Global Register Allocation - Part 3

Y N Srikant

Computer Science and Automation Indian Institute of Science Bangalore 560012

NPTEL Course on Compiler Design

Outline

- Issues in Global Register Allocation
- The Problem
- Register Allocation based in Usage Counts
- Linear Scan Register allocation
- Chaitin's graph colouring based algorithm

Topics 1,2,3,4, and part of 5 were covered in part 1 of the lecture.

Simplification

- If a node *n* in the interference graph has degree less than R, remove *n* and all its edges from the graph and place *n* on a colouring stack.
- When no more such nodes are removable then we need to spill a node.
- Spilling a variable x implies
 - Ioading x into a register at every use of x
 - storing x from register into memory at every definition of x

Spilling Cost

- The node to be spilled is decided on the basis of a spill cost for the live range represented by the node.
- Chaitin's estimate of spill cost of a live range v

$$c * 10^{\circ}$$

all load or store operations in a live range v

- □ where *c* is the cost of the op and *d*, the loop nesting depth.
- 10 in the eqn above approximates the no. of iterations of any loop
- The node to be spilled is the one with MIN(cost(v)/deg(v))

Spilling Heuristics

- Multiple heuristic functions are available for making spill decisions (cost(v) as before)
- 1. $h_0(v) = cost(v)/degree(v)$: Chaitin's heuristic
- 2. $h_1(v) = cost(v)/[degree(v)]^2$
- 3. $h_2(v) = cost(v)/[area(v)*degree(v)]$
- 4. $h_3(v) = cost(v)/[area(v)^*(degree(v))^2]$

where area(v) =
$$\sum_{\substack{\text{all instructions I}\\\text{in the live range v}}} width(v, I) * 5^{depth(v,I)}$$

width(v,I) is the number of live ranges overlapping with instruction I and depth(v,I) is the depth of loop nesting of I in v

Spilling Heuristics

- area(v) represents the global contribution by v to register pressure, a measure of the need for registers at a point
- Spilling a live range with high area releases register pressure; i.e., releases a register when it is most needed
- Choose v with MIN(h_i(v)), as the candidate to spill, if h_i is the heuristic chosen
- It is possible to use different heuristics at different times

Here R = 3 and the graph is 3-colourable No spilling is necessary

A 3-colourable graph which is not 3-coloured by colouring heuristic

Spilling a Node

- To spill a node we remove it from the graph and represent the effect of spilling as follows (It cannot just be removed from the graph).
 - Reload the spilled object at each use and store it in memory at each definition point
 - This creates new webs with small live ranges but which will need registers.
- After all spill decisions are made, insert spill code, rebuild the interference graph and then repeat the attempt to colour.
- When simplification yields an empty graph then select colours, that is, registers

Effect of Spilling

Colouring the Graph(selection)

Repeat

V= pop(stack). Colours_used(v)= colours used by neighbours of V. Colours_free(v)=all colours - Colours_used(v). Colour (V) = any colour in Colours_free(v). Until stack is empty

 Convert the colour assigned to a symbolic register to the corresponding real registers name in the code.

1.	t1 = 202
2.	i = 1
3. L1:	t2 = i>100
4.	if t2 goto L2
5.	t1 = t1-2
6.	t3 = addr(a)
7.	t4 = t3 - 4
8.	t5 = 4*i
9.	t6 = t4 + t5
10.	*t6 = t1
11.	i = i+1
12.	goto L1
13. L2	

variable	live range	
t1	1-10	
i	2-11	
t2	3-4	
t3	6-7	
t4	7-9	
t5	8-9	
t6	9-10	

variable	live range	
t1	1-10	
i	2-11	
t2	3-4	
t3	6-7	
t4	7-9	
t5	8-9	
t6	9-10	

Assume 3 registers. Nodes t6,t2, and t3 are first pushed onto a stack during reduction.

This graph cannot be reduced further. Spilling is necessary.

Node V	Cost(v)	deg(v)	h ₀ (v)
t1	31	3	10
i	41	3	14
t4	20	3	7
t5	20	3	7

t1: 1+(1+1+1)*10 = 31i : 1+(1+1+1+1)*10 = 41t4: (1+1)*10 = 20t5: (1+1)*10 = 20t5 will be spilled. Then the graph can be coloured.

1.
$$t1 = 202$$

2. $i = 1$
3. L1: $t2 = i > 100$
4. $if t2 \text{ goto } L2$
5. $t1 = t1-2$
6. $t3 = addr(a)$
7. $t4 = t3 - 4$
8. $t5 = 4*i$
9. $t6 = t4 + t5$
10. $*t6 = t1$
11. $i = i+1$
12. $goto L1$
13. L2:

Drawbacks of the Algorithm

- Constructing and modifying interference graphs is very costly as interference graphs are typically huge.
- For example, the combined interference graphs of procedures and functions of gcc in mid-90's have approximately 4.6 million edges.

Some modifications

- Careful coalescing: Do not coalesce if coalescing increases the degree of a node to more than the number of registers
- Optimistic colouring: When a node needs to be spilled, put it into the colouring stack instead of spilling it right away
 - spill it only when it is popped and if there is no colour available for it
 - this could result in colouring graphs that need spills using Chaitin's technique.

A 3-colourable graph which is not 3-coloured by colouring heuristic, but coloured by optimistic colouring

Example

Say, 1 is chosen for spilling. Push it onto the stack, and remove it from the graph. The remaining graph (2,3,4,5) is 3-colourable. Now, when 1 is popped from the colouring stack, there is a colour with which 1 can be coloured. It need not be spilled.

