
Run-time Environments
 - Part 2

Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture –

Part 2

What is run-time support?
Parameter passing methods
Storage allocation
Activation records
Static scope and dynamic scope
Passing functions as parameters
Heap memory management
Garbage Collection

Y.N. Srikant 3

Static Data Storage Allocation

Compiler allocates space for
all variables (local and global)
of all procedures at compile
time

No stack/heap allocation; no
overheads
Ex: Fortran IV and Fortran 77
Variable access is fast since
addresses are known at compile
time
No recursion

Main program
variables

Procedure P1
variables

Procedure P2
variables

Procedure P4
variables

Main memory

Y.N. Srikant 4

Dynamic Data Storage Allocation

Compiler allocates space only for golbal
variables at compile time
Space for variables of procedures will be
allocated at run-time

Stack/heap allocation
Ex: C, C++, Java, Fortran 8/9
Variable access is slow (compared to static
allocation) since addresses are accessed through
the stack/heap pointer
Recursion can be implemened

Y.N. Srikant 5

Activation Record Structure

Static and Dynamic links
(also called Access and Control link resp.)

(Address of) function result

Actual parameters

Local variables

Temporaries

Saved machine status

Space for local arrays

Note:

The position of the fields
of the act. record as
shown are only notional.

Implementations can
choose different orders;
e.g., function result
could be at the top of the
act. record.

Return address

Y.N. Srikant 6

Variable Storage Offset Computation

The compiler should compute
the offsets at which variables and constants will
be stored in the activation record (AR)

These offsets will be with respect to the
pointer pointing to the beginning of the AR
Variables are usually stored in the AR in the
declaration order
Offsets can be easily computed while
performing semantic analysis of declarations

Y.N. Srikant 7

Example of Offset Computation

P Decl { Decl.inoffset↓= 0;}
Decl T id ; Decl1

{enter(id.name↑, T.type↑, Decl.inoffset↓);
Decl1

.inoffset↓

= Decl.inoffset↓

+ T.size↑;
Decl.outoffset↑

= Decl1

.outoffset↑; }
Decl T id ; {enter(id.name↑, T.type↑, Decl.inoffset↓);

Decl.outoffset↑

= T.size↑;}
T int {T.type↑ = inttype; T.size↑ = 4;}
T float {T.type↑ = floattype; T.size↑ = 8;}
T [num] T1 {T.type↑ = arraytype(T1.type↑, T1.size↑);

T.size↑

= T1.size↑

* num.value↑;}

Y.N. Srikant 8

Allocation of Activation Records

program RTST;
procedure P;

procedure Q;
begin R; end

procedure R;
begin Q; end

begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

SL chain DL chain

Next

Base

Activation records are
created at procedure entry
time and destroyed at
procedure exit time

Y.N. Srikant 9

Allocation of Activation Records

program RTST;
procedure P;

procedure Q;
begin R; end

procedure R;
begin Q; end

begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Base

Next

Y.N. Srikant 10

Allocation of Activation Records

program RTST;
procedure P;

procedure Q;
begin R; end

procedure R;
begin Q; end

begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Base

Next

Y.N. Srikant 11

Allocation of Activation Records

program RTST;
procedure P;

procedure Q;
begin R; end

procedure R;
begin Q; end

begin R; end
begin P; end

RTST -> P -> R -> Q -> R

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Base

Next

Y.N. Srikant 12

Allocation of Activation Records

1 program RTST;
2 procedure P;
3 procedure Q;

begin R; end
3 procedure R;

begin Q; end
begin R; end

begin P; end

RTST1 -> P2 -> R3 -> Q3 -> R3

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Static Link
Dynamic Link

R

Base

Next

Y.N. Srikant 13

Allocation of Activation Records
Skip L1 -L2 +1 records
starting from the caller’s
AR and establish the
static link to the AR
reached
L1 – caller, L2 – Callee
RTST1 -> P2 -> R3 -> Q3 -> R3

Ex: Consider P2 -> R3

2-3+1=0; hence the SL of R
points to P
Consider R3 -> Q3

3-3+1=1; hence skipping one
link starting from R, we get P;
SL of Q points to P

Static Link
Dynamic Link

RTST

Static Link
Dynamic Link

P

SL chain DL chain

Static Link
Dynamic Link

R

Static Link
Dynamic Link

Q

Static Link
Dynamic Link

R

Base

Next

Y.N. Srikant 14

Display Stack of Activation Records
1 program RTST;
2 procedure P;
3 procedure Q;

begin R; end
3 procedure R;

begin Q; end
begin R; end

begin P; end
Pop L1 -L2 +1 records off the display
of the caller and push the pointer to
AR of callee (L1 – caller, L2 – Callee)

The popped pointers are stored in
the AR of the caller and restored to
the DISPLAY after the callee returns

RTST RTST

RTST RTST

RTST

P

PP

P

Q

R

R

call

return

Y.N. Srikant 15

Static Scope and Dynamic Scope

Static Scope
A global identifier refers to the identifier with that name that
is declared in the closest enclosing scope of the program
text
Uses the static (unchanging) relationship between blocks in
the program text

Dynamic Scope
A global identifier refers to the identifier associated with the
most recent activation record
Uses the actual sequence of calls that are executed in the
dynamic (changing) execution of the program

Both are identical as far as local variables are
concerned

Y.N. Srikant 16

Static Scope and Dynamic Scope :
 An Example

int x = 1;
function g(z) = x+z;
function f(y) = {

int x = y+1;
return g(y*x)

};
f(3);

After the call to g,
Static scope: x = 1
Dynamic scope: x = 4

x 1

y 3

x 4

z 12

outer block

f(3)

g(12)

Stack of activation records
after the call to g

Y.N. Srikant 17

Static Scope and Dynamic Scope:
 Another Example

float r = 0.25;
void show() { printf(“%f”,r); }
void small() {

float r = 0.125; show();
}
int main (){
show(); small(); printf(“\n”);
show(); small(); printf(“\n”);
}

Under static scoping,
the output is
0.25 0.25
0.25 0.25
Under dynamic
scoping, the output is
0.25 0.125
0.25 0.125

Y.N. Srikant 18

Implementing Dynamic Scope –
 Deep Access Method

Use dynamic link as static link
Search activation records on the stack to find the
first AR containing the non-local name
The depth of search depends on the input to the
program and cannot be determined at compile time
Needs some information on the identifiers to be
maintained at runtime within the ARs
Takes longer time to access globals, but no
overhead when activations begin and end

Y.N. Srikant 19

Implementing Dynamic Scope –
 Shallow Access Method

Allocate some static storage for each name
When a new AR is created for a procedure p,
a local name n in p takes over the static
storage allocated to name n
The previous value of n held in static storage
is saved in the AR of p and is restored when
the activation of p ends
Direct and quick access to globals, but some
overhead is incurred when activations begin
and end

Y.N. Srikant 20

Passing Functions as Parameters

An example:
main()
{ int x = 4;
int f (int y) {

return x*y;
}
int g (int → int h){

int x = 7;
return h(3) + x;

}
g(f);//returns 12

}

A language has first-class functions
if functions can be

declared within any scope
passed as arguments to other
functions
returned as results of functions

In a language with first-class
functions and static scope, a function
value is generally represented by a
closure

a pair consisting of a pointer to
function code
a pointer to an activation record

Passing functions as arguments is
very useful in structuring of systems
using upcalls

Y.N. Srikant 21

Passing Functions as Parameters –
 Implementation with Static Scope

x=4
main

SL

x=7

SL

y=3

g(f)

h(3)

SL chain

closure for
parameter h

pointer to
code for f

AR for the
call f(3)

An example:
main()
{ int x = 4;

int f (int y) {
return x*y;

}
int g (int → int h){

int x = 7;
return h(3) + x;

}
g(f);// returns 12

}

Y.N. Srikant 22

Passing Functions as Parameters –
 Implementation with Static Scope

An example:
main()
{ int x = 4;
int f (int y) {

return x*y;
}
int g (int → int h){

int x = 7;
return h(3) + x;

}
g(f);

}

In this example, when executing the call
h(3), h is really f and 3 is the parameter y
of f
Without passing a closure, the AR of the
main program cannot be accessed, and
hence, the value of x within f will not be 4
When f is passed as a parameter in the
call g(f), a closure consisting of a pointer
to the code for f and a pointer to the AR
of the main program is passed
When processing the call h(3), after
setting up an AR for h (i.e., f), the SL for
the AR is set up using the AR pointer in
the closure for f that has been passed to
the call g(f)

Y.N. Srikant 23

Heap Memory Management

Heap is used for allocating space for objects created
at run time

For example: nodes of dynamic data structures such as
linked lists and trees

Dynamic memory allocation and deallocation based
on the requirements of the program

malloc() and free() in C programs
new() and delete() in C++ programs
new() and garbage collection in Java programs

Allocation and deallocation may be completely
manual (C/C++), semi-automatic (Java), or fully
automatic (Lisp)

	Run-time Environments�- Part 2
	Outline of the Lecture – Part 2
	Static Data Storage Allocation
	Dynamic Data Storage Allocation
	Activation Record Structure
	Variable Storage Offset Computation
	Example of Offset Computation
	Allocation of Activation Records
	Allocation of Activation Records
	Allocation of Activation Records
	Allocation of Activation Records
	Allocation of Activation Records
	Allocation of Activation Records
	Display Stack of Activation Records
	Static Scope and Dynamic Scope
	Static Scope and Dynamic Scope :�An Example
	Static Scope and Dynamic Scope:�Another Example
	Implementing Dynamic Scope –�Deep Access Method
	Implementing Dynamic Scope –�Shallow Access Method
	Passing Functions as Parameters
	Passing Functions as Parameters –�Implementation with Static Scope
	Passing Functions as Parameters – �Implementation with Static Scope
	Heap Memory Management

