
Data-flow Analysis: Theoretical Foundations -
Part 1

Y.N. Srikant

Department of Computer Science
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Theoretical Foundations of DFA



Foundations of Data-flow Analysis

Basic questions to be answered
1 Under what situations is the iterative DFA algorithm correct?
2 How precise is the solution produced by it?
3 Will the algorithm converge?
4 What is the meaning of a “solution”?

The above questions can be answered accurately by a
DFA framework
Further, reusable components of the DFA algorithm can be
identified once a framework is defined
A DFA framework (D,V ,∧,F ) consists of

D : A direction of the dataflow, either forward or backward
V : A domain of values
∧ : A meet operator (V ,∧) form a semi-lattice
F : A family of transfer functions, V −→ V

F includes constant transfer functions for the
ENTRY/EXIT nodes as well

Y.N. Srikant Theoretical Foundations of DFA



Semi-Lattice

A semi-lattice is a set V and a binary operator ∧, such that
the following properties hold

1 V is closed under ∧
2 ∧ is idempotent (x ∧ x = x), commutative (x ∧ y = y ∧ x),

and associative (x ∧ (y ∧ z) = (x ∧ y) ∧ z)
3 It has a top element, >, such that ∀ x ∈ V , > ∧ x = x
4 It may have a bottom element, ⊥, such that
∀x ∈ V , ⊥ ∧ x = ⊥

The operator ∧ defines a partial order ≤ on V , such that
x ≤ y iff x ∧ y = x
Any two elements x and y in a semi-lattice have a greatest
lower bound (glb), g, such that g = x ∧ y , g ≤ x , g ≤ y ,
and if z ≤ x , and z ≤ y , then z ≤ g

Y.N. Srikant Theoretical Foundations of DFA



Semi-Lattice of Reaching Definitions

3 definitions, {d1,d2,d3}
V is the set of all subsets of {d1,d2,d3}
∧ is ∪
The diagram (next slide) shows the partial order relation
induced by ∧ (i.e., ∪)
Partial order relation is ⊇
An arrow, y → x indicates x ⊇ y (x ≤ y )
Each set in the diagram is a data-flow value
Transitivity is implied in the diagram (a→ b & b → c
imples a→ c)
An ascending chain: (x1 < x2 < ... < xn)

Height of a semi-lattice: largest number of ‘<’ relations in
any ascending chain
Semi-lattices in our DF frameworks will be of finite height

Y.N. Srikant Theoretical Foundations of DFA



Lattice Diagram of Reaching Definitions

y → x indicates x ⊇ y (x ≤ y )

Y.N. Srikant Theoretical Foundations of DFA



Transfer Functions

F : V → V has the following properties
1 F has an identity function, I(x) = x , for all x ∈ V
2 F is closed under composition, i.e., for f ,g ∈ F , f .g ∈ F

Example: Again considering the R-D problem
Assume that each quadruple is in a separate basic block
OUT [B] = GEN[B] ∪ (IN[B]− KILL[B])

In its general form, this becomes f (x) = G ∪ (x − K )

Let f1(x) = G1 ∪ (x − K1) and f2(x) = G2 ∪ (x − K2) be the
transfer functions of two basic blocks B1 and B2
Identity function exists here (when both G and K (GEN
and KILL) are empty)

Y.N. Srikant Theoretical Foundations of DFA



Transfer Functions

If control flows from B1 to B2, then
f2(f1(x)) = G2

⋃
((G1 ∪ (x − K1))− K2)

The right side above is algebraically equivalent to
(G2 ∪ (G1 − K2))

⋃
(x − (K1 ∪ K2))

If we let K = K1 ∪ K2 and G = G2 ∪ (G1 − K2), then
f2(f1(x)) is of the same form as f (x) = G ∪ (x − K ), and
composition is proved to be true

Y.N. Srikant Theoretical Foundations of DFA



Reaching Definitions Framework - Example

Y.N. Srikant Theoretical Foundations of DFA



Monotone Frameworks

A DF framework (D,F ,V ,∧) is monotone, if
∀x , y ∈ V , f ∈ F , x ≤ y ⇒ f (x) ≤ f (y), OR
f (x ∧ y) ≤ f (x) ∧ f (y)
The reaching definitions lattice is monotone
Proof: ∧ is ∪. Therefore, we need to prove that
f (x ∪ y) ⊇ f (x) ∪ f (y)
f (x ∪ y) = G ∪ (x ∪ y − K )
f (x) ∪ f (y) = (G ∪ (x − K )) ∪ (G ∪ (y − K ))
= G ∪ (x − K ) ∪ (y − K )
= G ∪ (x ∪ y)− K ) = f (x ∪ y)
Therefore, the Reaching Definitions framework is
monotone

Y.N. Srikant Theoretical Foundations of DFA



Distributive Frameworks

A DF framework is distributive, if
∀x , y ∈ V , f ∈ F , f (x ∧ y) = f (x) ∧ f (y)
Distributivity⇒ monotonicity, but not vice-versa

proof: If a = b, a ∧ b = a, so, a ≤ b (by definition of ≤)
From the definition of distributivity, we know that
f (x ∧ y) = f (x) ∧ f (y)
Substituting f (x ∧ y) for a and f (x) ∧ f (y) for b,
in a ≤ b, we get f (x ∧ y) ≤ f (x) ∧ f (y),
which is the requirement of monotonocity
The reaching definitions lattice is distributive

Proof: We have already proved during the proof of
monotonocity of the RD framework, that
f (x ∪ y) = f (x) ∪ f (y). This proves distributivity also

Y.N. Srikant Theoretical Foundations of DFA



Iterative Algorithm for DFA (forward flow)

{OUT [B1] = vinit ;
for each block B 6= B1 do OUT [B] = >;
while (changes to any OUT occur) do

for each block B 6= B1 do {

IN[B] =
∧

P a predecessor of B

OUT [P];

OUT [B] = fB(IN[B]);

}
}

Y.N. Srikant Theoretical Foundations of DFA



Reaching Definitions Framework - Example contd.

Y.N. Srikant Theoretical Foundations of DFA



Properties of the Iterative DFA Algorithm

If the iterative algorithm converges, the result is a solution
to the DF equations

Proof: If the equations are not satisfied by the time the
loop ends, atleast one of the OUT sets changes and we
iterate again
If the framework is monotone, then the solution found is the
maximum fixpoint (MFP) of the DF equations
An MFP solution is such that in any other solution, values
of IN[B] and OUT [B] are ≤ the corresponding values of
the MFP (i.e., less precise)

Proof: We can show by induction that the values of IN[B]
and OUT [B] only decrease (in the sense of ≤ relation) as
the algorithm iterates

Y.N. Srikant Theoretical Foundations of DFA



Properties of the Iterative DFA Algorithm (2)

If the semi-lattice of the framework is monotone and is of
finite height, then the algorithm is guaranteed to converge

Proof: Dataflow values decrease with each iteration
Max no. of iterations = height of the lattice × no. of nodes
in the flow graph

Y.N. Srikant Theoretical Foundations of DFA



Meaning of the Ideal Data-flow Solution

Find all possible execution paths from the start node to the
beginning of B
(Assuming forward flow) Compute the data-flow value at
the end of each path (using composition of transfer
functions) and apply the ∧ operator to these values to find
their glb
No execution of the program can produce a smaller value
for that program point

IDEAL[B] =
∧

P, a possible execution path from start node to B

fP(vinit)

Answers greater (in the sense of ≤) than IDEAL are
incorrect (one or more execution paths have been ignored)
Any value smaller than or equal to IDEAL is conservative,
i.e., safe (one or more infeasible paths have been included)
Closer the value to IDEAL, more precise it is

Y.N. Srikant Theoretical Foundations of DFA



Meaning of the Meet-Over-Paths Data-flow Solution

Since finding all execution paths is an undecidable
problem, we approximate this set to include all paths in the
flow graph

MOP[B] =
∧

P, a path from start node to B

fP(vinit)

MOP[B] ≤ IDEAL[B], since we consider a superset of the
set of execution paths

Y.N. Srikant Theoretical Foundations of DFA



Meaning of the Maximum Fixpoint Data-flow Solution

Finding all paths in a flow graph may still be impossible, if it
has cycles
The iterative algorithm does not try this

It visits all basic blocks, not necessarily in execution order
It applies the ∧ operator at each join point in the flow graph
The solution obtained is the Maximum Fixpoint solution
(MFP)

If the framework is distributive, then the MOP and MFP
solutions will be identical
Otherwise, with just monotonicity, MFP ≤ MOP ≤ IDEAL,
and the solution provided by the iterative algorithm is safe

Y.N. Srikant Theoretical Foundations of DFA



Example to show MFP ≤ MOP

Y.N. Srikant Theoretical Foundations of DFA



Example to show MFP ≤ MOP (2)

There are two paths from Start to B4:
Start → B1→ B3→ B4 and Start → B2→ B3→ B4
MOP[B4] = ((fB3 · fB1) ∧ (fB3 · fB2))(vinit)

In the iterative algorithm, if we chose to visit the nodes in
the order (Start ,B1,B2,B3,B4), then
IN[B4] = fB3(fB1(vinit) ∧ fB2(vinit))

Note that the ∧ operator is being applied differently here
than in the MOP equation
The two values above will be equal only if the framework is
distributive
With just monotonicity, we would have IN[B4] ≤ MOP[B4]

Y.N. Srikant Theoretical Foundations of DFA



Constant Propagation Framework - Data-flow Values

The lattice for a single variable in the CP framework is
shown in the next slide
An example of product of two lattices is in the next slide
DF values in the RD framework can also be considered as

values in a product of lattices of definitions
one lattice for each definition, with φ as > and {d} as the
only other element

The lattice of the DF values in the CP framework
Product of the semi-lattices of the variables (one lattice for
each variable)

Y.N. Srikant Theoretical Foundations of DFA



Product of Two Lattices and Lattice of Constants

Y.N. Srikant Theoretical Foundations of DFA



CP Framework - The ∧ (meet) Operator

In a product lattice, (a1,b1) ≤ (a2,b2) iff a1 ≤A a2 and
b1 ≤B b2 assuming a1,a2 ∈ A and b1,b2 ∈ B
Each variable is associated with a map m
m(v) is the abstract value (as in the lattice) of the variable
v in a map m
Each element of the product lattice is a similar, but “larger”
map m

which is defined for all variables, and
where m(v) is the abstract value of the variable v

Thus, m ≤ m′ (in the product lattice), iff for all variables v ,
m(v) ≤ m′(v), OR, m ∧m′ = m′′, if m′′(v) = m(v) ∧m′(v),
for all variables v

Y.N. Srikant Theoretical Foundations of DFA



Transfer Functions for the CP Framework

Assume one statement per basic block
Transfer functions for basic blocks containing many
statements may be obtained by composition
m(v) is the abstract value of the variable v in a map m.
The set F of the framework contains transfer functions
which accept maps and produce maps as outputs
F contains an identity map
Map for the Start block is m0(v) = UNDEF , for all
variables v
This is reasonable since all variables are undefined before
a program begins

Y.N. Srikant Theoretical Foundations of DFA



Transfer Functions for the CP Framework

Let fs be the transfer function of the statement s
If m′ = fs(m), then fs is defined as follows

1 If s is not an assignment, fs is the identity function
2 If s is an assignment to a variable x , then m′(v) = m(v), for

all v 6= x , provided, one of the following conditions holds
(a) If the RHS of s is a constant c, then m′(x) = c
(b) If the RHS is of the form y + z, then

m′(x) = m(y) + m(z), if m(y) and m(z) are constants

= NAC, if either m(y) or m(z) is NAC

= UNDEF , otherwise

(c) If the RHS is any other expression, then m′(x) = NAC

Y.N. Srikant Theoretical Foundations of DFA



Monotonicity of the CP Framework

It must be noted that the transfer function (m′ = fs(m)) always
produces a “lower” or same level value in the CP lattice,
whenever there is a change in inputs

m(y) m(z) m′(x)

UNDEF UNDEF

UNDEF c2 UNDEF

NAC NAC

UNDEF UNDEF

c1 c2 c1 + c2

NAC NAC

UNDEF NAC

NAC c2 NAC

NAC NAC

Y.N. Srikant Theoretical Foundations of DFA



Non-distributivity of the CP Framework

Y.N. Srikant Theoretical Foundations of DFA



Non-distributivity of the CF Framework - Example

If f1, f2, f3 are transfer functions of B1,B2,B3 (resp.), then
f3(f1(m0) ∧ f2(m0)) < f3(f1(m0)) ∧ f3(f2(m0))
as shown in the table, and therefore the CF framework is
non-distributive

m m(x) m(y) m(z)
m0 UNDEF UNDEF UNDEF

f1(m0) 2 3 UNDEF

f2(m0) 3 2 UNDEF

f1(m0) ∧ f2(m0) NAC NAC UNDEF

f3(f1(m0) ∧ f2(m0)) NAC NAC NAC

f3(f1(m0)) 2 3 5
f3(f2(m0)) 3 2 5
f3(f1(m0)) ∧ f3(f2(m0)) NAC NAC 5

Y.N. Srikant Theoretical Foundations of DFA


