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ABSTRACT OF DISSERTATION 

 
 
 
 
 

COMPUTATIONAL DESIGN OF 3-PHOSPHOINOSITIDE DEPENDENT KINASE-1 
INHIBITORS AS POTENTIAL ANTI-CANCER AGENTS  

 
 Computational drug design methods have great potential in drug discovery 
particularly in lead identification and lead optimization. 3-Phosphoinositide dependent 
kinase-1 (PDK1) is a protein kinase and a well validated anti-cancer target. Inhibitors of 
PDK1 have the potential to be developed as anti-cancer drugs. In this work, we have 
applied various novel computational drug design strategies to design and identify new 
PDK1 inhibitors with potential anti-cancer activity. We have pursued novel 
structure-based drug design strategies and identified a new binding mode for celecoxib 
and its derivatives binding with PDK1. This new binding mode provides a valuable 
basis for rational design of potent PDK1 inhibitors. In order to understand the 
structure-activity relationship of indolinone-based PDK1 inhibitors, we have carried out 
a combined molecular docking and three-dimensional quantitative structure-activity 
relationship (3D-QSAR) modeling study. The predictive ability of the developed 
3D-QSAR models were validated using an external test set of compounds. An efficient 
strategy of the hierarchical virtual screening with increasing complexity was pursued to 
identify new hits against PDK1. Our approach uses a combination of ligand-based and 
structure-based virtual screening including shape-based filtering, rigid docking, and 
flexible docking. In addition, a more sophisticated molecular dynamics/molecular 
mechanics- Poisson-Boltzmann surface area (MD/MM-PBSA) analysis was used as the 
final filter in the virtual screening. Our screening strategy has led to the identification of 
a new PDK1 inhibitor. The anticancer activities of this compound have been confirmed 
by the anticancer activity assays of national cancer institute-developmental therapeutics 
program (NCI-DTP) using 60 cancer cell lines. The PDK1-inhibitor binding mode 
determined in this study may be valuable in future de novo drug design. The virtual 
screening approach tested and used in this study could also be applied to lead 
identification in other drug discovery efforts.  
 
 
 



KEYWORDS: Drug design, 3-Phosphoinositide dependent kinase-1 (PDK1), Celecoxib 
binding mode, 3D-QSAR models, Ligand-based and structure-based 
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CHAPTER 1 

 

1. INTRODUCTION 

Computational drug design is a fast growing field and it has emerged as a major 

player to design new drugs in a rational manner. In this work, the application of 

computational drug design techniques including structure-based drug design, 

ligand-based three-dimensional quantitative structure-activity relationship 

(3D-QSAR) methods and combined virtual screening approaches were studied using 

a well known anti-cancer target 3-phosphoinositide dependent kinase-1 (PDK1). 

These computational drug design approaches have been successfully applied to both 

lead optimization and hit identification against PDK1. In this chapter the 

background information about computational drug design and PDK1 are presented. 

 

1.1 Computer-aided drug design 

Drug discovery is broadly defined by Burger as the process that includes 

identification and validation of a therapeutic target, development and validation of 

suitable assays, lead identification and characterization in vitro, lead optimization, 

formulation, pharmacological studies, pharmacokinetic and toxicity studies in 

animals, followed by three phases of clinical trials in humans.1

4

 This description of 

drug discovery itself underlines the fact that it is a very long and expensive process. 

Discovery and development of a single drug is estimated to take 12 to 24 years.2 It 

is reported that the average cost to develop a new drug into market is more than 

US$800 million before 2004.3 Historically, Paul Ehrlich postulated on the existence 

of chemoreceptors that can be exploited therapeutically and it marked the beginning 

of the modern drug therapy.4 Initial focus was reported to be on the isolation and 

purification of active ingredients from natural products.  This evolved into the trial 

and error process of synthesis and in vivo screening of compounds leading to 

serendipitous discovery.2 This was followed by rational approaches which were 

based on studying the underlying molecular mechanism involved and understanding 

the drug-receptor interactions.4 Despite this systematic approach, the number of new 
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chemical entities (NCE) that are approved for market was reported to be declining in 

the recent years.5 Only 18 NCEs were reported to be approved in the year 2005 and 

2006.6 There was a need for newer technologies to increase the efficiency of drug 

discovery process. 7  In this scenario, different experimental and computational 

approaches were developed to address the issues in drug discovery process. Some of 

the new approaches include combinatorial chemistry, high throughput screening and 

computational drug design.8 Among these new technologies, computational drug 

discovery has been successful and helps to increase the efficiency of the drug 

discovery process.7 Computational drug design is also commonly known as 

molecular modeling or computer-aided drug design (CADD). Cohen defines 

computational drug design as the approach “which uses a range of computerized 

techniques based on theoretical chemistry methods and experimental data that can 

be used to analyze molecules and molecular systems and to predict molecular and 

biological properties”. 9   Simply this approach is the use of computers and 

computational methods to design and discover new drug molecules.10 The increase 

in computing power, the availability of cheaper computers and development of new 

modeling software has increased the usefulness of this approach.11  Rather than 

being a separate process, computational modeling is more useful when integrated 

with experimental studies.7 CADD approaches are being implemented in all stages 

of drug discovery cycle namely target identification, lead identification, lead 

optimization, prediction of absorption, distribution, metabolism, elimination, and 

toxicity (ADMET) properties and design of compound libraries. 12  The main 

advantage of computational drug design is that it is faster and cheaper than other 

experimental approaches.12 This approach is reported to play an active role in both 

lead identification and optimization. Computational drug design is reported to have 

played a major role in the successful development of marketed drugs like HIV 

protease inhibitor Viracept and the anti-influenza drug Relenza.13 In these cases, 

computational approaches were used to predict the activity of the designed inhibitor 

prior to synthesis and testing.14 Thus it helps to guide the experimental work and 

prioritize synthesis of the next compounds. Recently reported studies suggest that 
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computational drug design is also an important component for open-source drug 

discovery projects. 15 , 16  Different sources are being explored to carry out 

computational drug design in a cheaper way. A project called the ‘screen saver 

project’ made use of the free computer time (screen saver time) of users throughout 

the world and successfully carried out computational screening against many 

therapeutic targets and identified new hits.17 There are two broad strategies in 

computational drug design. They are  

1. Ligand-based drug design 

2. Structure-based (or Receptor-based) drug design 

Ligand based drug design (LBDD) which is also known as indirect drug design 

make use of the ligand molecule or a series of ligand molecules as the starting point 

and explore their properties to identify better lead molecules.7,8 Based on the study 

of known ligands a hypothetical receptor active site can be proposed.18  The 

structure based drug design which is also known as direct drug design make use of 

either a solved X-ray crystal/NMR structure or modeled structure of the target 

protein or other macromolecule.7,19 This target structure is used as the starting 

point.19 The binding mode of ligand is then studied to design new ligands with 

increased affinity to the target.19  
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Computational
Drug Design
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Drug Design

Structure-Based
Drug Design

Shape-based
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Pharmacophore
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De Novo
Drug Design
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Figure 1.1 Flowchart of computational drug design strategies 

 

1.1.1 Ligand-based drug design 

The structures of protein or other macromolecules are not available for many of 

the potential drug targets. In such cases, ligand-based drug design strategies can be 

utilized.7 These strategies are based on the concept that biological activity depends 

on the ligand’s structure, molecular constitution and charge distribution.20 When a 

series of ligands with their biological activity are available, then attempt can be 

made to correlate their structure with their biological activities.21 Quantitative 

structure-activity relationship (QSAR) is the “technique that quantifies the 

relationship between structure and biological data”.22 It involves the study of 

descriptors to mathematically correlate the chemical structure with biological 

activity.23  The descriptors are parameters which are used to represent the structural 

features in numerical values.24 The different types of descriptors commonly used in 

QSAR models include lipophilicity parameter like LogP, electronic descriptors like 

Hammet’s constants and dipole moments, geometrical descriptors like Taft’s steric 

parameter and Verloop’s STERIMOL parameters, and finally topological descriptors 
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like molecular connectivity index.20,25 Three essential prerequisites for developing a 

QSAR model are “1) descriptors of the chemical’s structure 2) measures of the 

chemical’s activity and 3) statistical techniques to quantify the relationship”.20 The 

most attractive feature of the QSAR model is that the activity of new molecules to 

be synthesized in a series could be predicted.21 QSAR methods have some common 

assumptions. They are 1) the compounds in the series being studied interact with the 

same biological target through non-covalent interactions; 2) structurally similar 

compounds interact in the same pocket and are similarly oriented in the active site.7 

The dynamics of the receptor system are usually neglected in ligand-based studies.7 

The first QSAR model was reported by Hansch et al.26,27 It was developed by 

relating the biological activity to various physico-chemical parameters using suitable 

statistical regression analysis. The type of QSAR approach which uses the 

physicochemical properties as molecular descriptors is commonly known as the 

Hansch approach or linear free energy relationships (LFER) approach. 28 

Free-Wilson approach is another type of QSAR method in which indicator variables 

that denote the presence or absence of particular groups were used as descriptors 

instead of the physicochemical properties.28 In addition to predicting the activity of 

new molecule, the QSAR model can also provide information on the mechanism of 

action of the compounds.22 It also helps to understand the different aspects of 

chemical-biological interaction.29 Some of the successful application of 2D-QSAR 

has been reported in the literature.30,31 Some of the limitations of the 2D-QSAR 

methods include 1) the lack of physicochemical parameters for either the whole 

molecule or its substituents; 2) the absence of 3D molecular properties which are 

expected to better explain the receptor-ligand interactions.32 The 3D-QSAR tried to 

address the deficits of 2D-QSAR methods. 3D-QSAR models are “quantitative 

models that relate the biological activity of small molecules with their properties 

calculated in 3D space”.7 Some of the well known 3D-QSAR methods are 

Comparative Molecular Field Analysis (CoMFA), Comparative Molecular Similarity 

Indices Analysis (CoMSIA), Molecular Field Analysis (MFA) and Receptor Surface 

Analysis (RSA).33,34,35 
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Some of the general steps involved in 3D-QSAR are: identification of bioactive 

conformation which is usually used as the template, alignment of compounds to the 

template, computation of molecular properties, correlation analysis of these 

properties with activity, and visualization of regions around the molecule which are 

either favorable or unfavorable for activity.32 Alignment of different compounds 

using similar groups or common atoms is one of the crucial steps in many 3D-QSAR 

methods.36 The major advantages of 3D-QSAR is the ability to predict the activity 

of new molecules which is not used in the development of the model as well as the 

presence of contour maps showing favorable and non-favorable areas around the 

molecules in 3D-space.37 

Pharmacophore modeling and shape based screening are the other ligand-based 

drug design methods. Pharmacophore can be defined as the three dimensional 

representation of essential chemical features of a compound needed for its biological 

activity.38 A 3D pharmacophore gives “the relationship between the groups or 

chemical features, by defining distance ranges between groups, angles between 

groups or planes, and exclusion spheres”. 39  Based on the structure-activity 

relationship of diverse ligands the common pharmacophore can also be 

identified.40,41 Once a pharmacophore is developed, it can be used in 3D database 

searching to retrieve novel compounds that would match the pharmacophore, 

without having the topological features of known active compounds.42 Thus it helps 

to identify new class of molecules. Some of the most commonly used programs for 

pharmacophore development are Catalyst, Phase and Ligand scout.38 More recently 

the shape of the known ligand was successfully used in virtual screening process to 

carry out scaffold hopping or to find new inhibitors from database searching.43 

 

1.1.2 Structure-based drug design 

 Structure-based drug design (SBDD) methods are used when the detailed 

structural information of the macromolecular target is available.39 Docking studies 

and de novo drug design are two different methods used in structure-based drug 

design.8 SBDD is now considered as an integrated part of drug discovery cycle.44 
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The main theme of SBDD is to find ligands complementary to the receptor active 

site. Hence the structure of the macromolecular target is essential.39 If the 

experimentally solved structure of the target is not available, computational 

modeling methods like homology modeling or ab initio modeling can be used.45,46 

The modeled structures can then be used to study the ligand-receptor interactions. 

The docking process helps to understand the structure-activity relationship of known 

ligands based on their molecular level interactions with the active site residues.47 

Visual analysis of docked results allows us make chemical modifications in a 

rational manner. The two important aspects of docking algorithm are 1) to find the 

correct binding mode and 2) to estimate the binding energy and rank order a given 

series of ligands.48 Virtual screening is the process by which whole databases of 

molecules were screened against target of interest to identify new hits.13 The 

identified compounds can then be either synthesized or purchased from commercial 

sources and tested for activity.13 This computational screening strategy helps to 

refine millions of virtual compounds in silico and reduces the amount of actual 

experimental tests needed.49 Different docking programs currently available include 

FlexX, Fred, Dock, AutoDock and Glide.39,50 The docking programs are limited by 

their ability to consider protein dynamics, solvation and entropic effect of ligand 

binding.51,52 De novo design involves design of totally new inhibitors using only the 

active site as the starting point.8 In this case, fragments which are complementary to 

the different regions of active sites were identified and then joined using suitable 

linker groups.8 The problem with this strategy is that some computationally designed 

compounds could not be synthesized.  

 

1.2 3-Phosphoinositide dependent kinase-1 (PDK1) as a test case 

1.2.1 Cancer  

Cancer is defined as a group of diseases characterized by uncontrolled growth 

and spread of abnormal cells.53 It is a life-threatening disease condition worldwide. 

A total of 7.6 million people were estimated to have died due to cancer worldwide in 

the year 2008 alone.54 Others have estimated that the global cancer burden will 
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increase to 27 million new cases by 2050.55 In USA, cancer is the second most 

common cause of death.56  According to the American cancer society, nearly 

1,437,180 new cancer cases are expected to be diagnosed in 2008.53 It is estimated 

that cancer death rate will be 1500 people per day in USA alone.53 Cancer can 

develop in any individual at any time in their lifetime. But the risk of being 

diagnosed with cancer is reported to be increasing with age.57 Nearly 80% of all 

cancers are diagnosed in patients age 55 and older.57 About 12% of childhood deaths 

in USA are due to cancer.55 The overall cost of medical treatment of cancer in 2007 

is reported to be $89 billion in USA alone.53 More than 100 different types of 

cancers were reported so far.58 Among the different types of cancers, lung cancer is 

reported to be the major type of cancer occurring worldwide.59 In the year 2000 

itself 1.1million deaths were reported to be due to lung cancer.59 The Prostate, lung 

and colorectal cancers are the three most commonly diagnosed cancers in men living 

in developed countries.55 Breast, colorectal and lung cancer are the three most 

commonly occurring cancer in women living in developed countries.55 In 

developing countries the most commonly diagnosed cancers are lung, stomach and 

liver in men, and breast, cervix and stomach in women.55 Leukemia and lymphoma 

are reported to be the most commonly occurring cancer in children in most 

countries.60 The leading sites producing cancer mortality for males and females in 

the year 2007 were given in Figure 1.2 and Figure 1.3 
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Figure 1.2 Leading sites producing cancer mortality reported worldwide for males. 
Graph created using the data reported in ref. 55. 
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Figure 1.3 Leading sites producing cancer mortality reported worldwide for females. 
Graph created using the data reported in ref. 55. 
 

The mechanism by which cancer is produced in an organism is reported to be 

multifactorial, multistage and complex process.61,62 The current dominant view 

regarding the molecular basis of human cancer is that it is due to the “accumulation 

of multiple mutations within genes of a single cell that drives the neoplastic 
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transformation, ultimately leading to tumorigenesis”.63  

The molecular mechanisms involved in carcinogenesis and the pattern of spread 

of cells from the primary site is reported to differ in different types of cancers.58 In 

spite of these differences, cancer cells were reported to exhibit some characteristic 

features. Hanahan et al. have defined six hallmarks that are present in most of the 

cancers. 64  The six hallmarks of cancer are: “1. Acquiring capability for 

self-sufficiency in growth signals 2. Insensitivity to anti-growth signals, 3. Evasion 

of apoptotic cell death, 4. Acquiring capability for limitless replicative potential, 5. 

Angiogenesis or the ability to form new blood vessels, and 6. Tissue invasion and 

metastasis”.64   

The conventional chemotherapy is the main treatment option available to the 

cancer patients.65 Surgery and radiation therapy are two other most commonly used 

treatment options for localized tumors.65 The drugs which are active against a cancer 

of one tissue are reported to be mostly not effective against cancer of other tissues.66 

Most of the chemotherapeutic drugs non-specifically target almost all dividing cells 

and causes many toxic side-effects.67 They have very low therapeutic index. The 

side-effects associated with cancer treatment as well as cost of treatment makes it a 

dangerous disease. Selectively targeting cancer cells without inhibiting the normal 

cells is an area of great interest in anti-cancer drug design.66 Very few cancers can be 

completely cured.66 In most of the cases the goal of the treatment is to achieve 

remissions and increase the survival rate of the patients.68 The rise of resistance to 

the currently available drugs treatment is another major hurdle in cancer therapy.69,70   

For many types of cancer we still need better treatment options.71 There is also 

a wide variation in the global survival rate for different types of cancer. For example, 

there is a considerable improvement in the five year survival rate in the case of 

breast, colorectal and prostate cancer in developed nations.72 But for the same types 

of cancer the survival rate is lower in developing or underdeveloped countries.72 The 

five year survival rate for lung cancer patients in U.S.A is 15% only.73 The 5 year 

survival rate for pancreatic cancer is less than 5%.74 Once the main line treatment 

fails, currently there are no available drugs for some cancers like pancreatic cancer 
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and the five year survival rate is low.75 So there is an urgent need to discover new 

compounds that could be developed as anti-cancer drugs. The newer approach in 

cancer treatment is to target the altered cell survival pathways which are over 

expressed in cancer cells.76 This approach is based on the assumption that targeting 

over-expressed pathways will be more selective in destroying the cancer cells and 

will have fewer effects on normal cells.76 Protein kinases which are important 

constituents of cellular signal transduction pathways are frequently altered or 

overexpressed in cancer cells.77,78 This has led to increased focus on kinases for 

targeted anti-cancer drug discovery efforts.79,80 

 

1.2.2 Protein Kinase 

Protein kinases are critical components of cellular signal transduction 

cascades.81 There are reported to be over 500 protein kinases in the human genome 

and they are considered as the second largest group of drug targets.82,83 Kinases 

catalyze the transfer of the terminal (or gamma) phosphate group of adenosine 

triphosphate (ATP) to the specific hydroxyl group of serine, threonine, or tyrosine 

residues in a protein substrate.84 This phosphorylation acts as a key event in signal 

transduction and ultimately helps to transfer the signal from extracellular to 

intracellular environment.84,85 The kinase mediated signal transduction plays a key 

role in a number of important cellular processes like cell growth, cell differentiation, 

maintaining cytoskeletal integrity and apoptosis.86 Hence aberrant kinase signaling 

either from an activating mutation or over expression was reported to play a role in 

diseases like cancer, inflammation, diabetes neurodegeneration and psoriasis.87 In 

cancer cells, the kinase signaling pathways are often altered, resulting in 

uncontrolled growth and increased capability to invade surrounding tissue.88 Agents 

targeting altered kinase pathways are currently being developed as the next 

generation anti-cancer agents.89 , 90  Among different kinase signaling pathways, 

altered or constitutively activated phosphoinositide 3-kinase (PI3K) pathway is 

reported in many human cancers.91,92,93 Such aberrant PI3K pathway is implicated 

in tumor development and progression and also in tumor’s response to cancer 



 12 

treatment.94 3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a pivotal 

kinase for the PI3K pathway95 and is an attractive target for developing anticancer 

therapeutics.96 

 

1.2.3 3-Phosphoinositide dependent kinase-1 (PDK1) 

PDK1 is a 63 kDa Serine/Threonine kinase and is ubiquitously expressed in 

human tissues.97 It is a 556 amino acid containing enzyme.98 PDK1 possesses an 

N-terminal kinase domain and C-terminal pleckstrin homology (PH) domain.98 PH 

domain is involved in the interaction with the phosphatidyl-inositol 3,4,5 

triphosphate (PtdIns(3,4,5)P3) in the membrane, and kinase domain is involved in 

activation of other downstream kinases.99 PDK1 is noted as the master regulator of 

cAMP-dependent, cGMP-dependent, protein kinase C (AGC) kinase family.100 It is 

known to activate at least 23 downstream AGC kinases.101 These include protein 

kinase B (PKB, also known as Akt),102,103 p70 ribosomal S6 kinase (S6K), 104 

serum- and glucocorticoid-induced protein kinase (SGK)105and protein kinase C 

(PKC) isoforms.106,107  

X-ray crystal structures are available for PDK1 binding with its inhibitors in the 

protein data bank (PDB).108,109,110,111 Like all other protein kinases, the catalytic 

core of PDK1 has a bilobal domain, with predominantly α-helical C-terminal lobe 

and an N-terminal lobe consisting mainly of β-sheets.108 The adenosine triphosphate 

(ATP) binding region is located in the hinge region between the N- and C-terminal 

lobes.108 As in other kinases, the ATP binding site in PDK1 can be divided into 

adenine region, sugar region, and phosphate region.112 As PDK1 itself belongs to 

the same AGC family as its substrates, it needs to be phosphorylated at the 

activation loop or T-loop.100 PDK1 is reported to be constitutively active and has an 

intrinsic ability to phosphorylate its own T-loop at Ser241 residue. 113  This 

autophosphorylation is found to be mediated by intermolecular reaction.114 The 

activation loop is a common feature in kinase superfamily.115 PDK1 kinase domain 

has hydrophobic motif (HM) pocket or PDK1 interacting fragment (PIF) pocket.108 

AGC kinases were reported to be activated by phosphorylation in two regions 
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namely T-loop region and hydrophobic motif region.97 PDK1 is different from other 

AGC kinases in that it does not have a separate hydrophobic motif.100 Studies have 

shown that PDK1 is the major T-loop kinase of other AGC kinases.116   

PDK1 function is reported to be regulated by substrate conformation and 

sub-cellular location.95 The various kinases involved in PDK1 signaling pathway is 

given in Figure 1.5. Activation of upstream PI3K leads to the synthesis of 

phosphatidyl-inositol 3,4,5 triphosphate [PtdIns(3,4,5)P3]/ phosphatidyl-inositol 3,4 

diphosphate [PtdIns(3,4)P2] at the plasma membrane.97 This results in PKB’s and 

PDK1’s PH domain’s interaction with PtdIns(3,4,5)P3/PtdIns(3,4)P2 and thus causes 

translocation to membrane and co-localization.99 The interaction of the PH domain 

with PtdIns(3,4,5)P3 relieves autoinhibition of PKB and PDK1 phosphorylates PKB 

on Thr308.95 Substrates other than PKB was reported to interact with PIF pocket of 

PDK1 using their phosphorylated hydrophobic motif and then subsequently gets 

activated by PDK1.117 Thus PDK1 acts as the sensor of substrate conformation and 

is regulated by substrate conformation. 
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Figure 1.4 Structure of PDK1 kinase domain with ATP molecule (PDB ID: 2BIY)101 
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Figure 1.5 PDK1 signaling pathway 
 
1.2.4 PDK1 as anti-cancer target 

The tumor suppressor, Phosphatase and Tensin homologue deleted on 

chromosome Ten (PTEN), acts as the phosphatidylinositol 3-phosphatase118 and 

thus down regulates the PDK1-mediated growth and signaling pathway. Mutations 

in PTEN resulting in elevated levels of PtdIns(3,4,5)P3 was reported in many human 

cancers and in such cases inhibition of PDK1 is expected to mimic the tumor 

suppressing activity of PTEN.119 Moreover, most of the downstream proteins of 

PDK1 are also implicated in cancers.95,120,121,122,123 As PDK1 is the master regulator 

of such AGC kinases, it is in a unique position to control all these proteins. 

Accumulating pharmacologic and genetic evidences supports the potential role 

of PDK1 as anticancer target.124,125 It has been reported that over-expression of 

PDK1 in mammary cells resulted in their transformation in vitro and tumor 

formation in vivo.125 Elevated levels of PDK1 phosphorylation was also reported in 

metastasized breast tumors.126 Studies also showed that PDK1 phosphorylation is 

associated with downstream kinase activation and together correlated with invasive 

breast tumor.126 PDK1 is over-expressed in pre-malignant and low to high grade 
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ovarian carcinomas.127 PDK1/AKT pathway is also reported to be activated in 

Rhabdomyosarcoma (RMS).128 Targeting PDK1 with anti-sense oligonucleotides 

has showed a marked reduction of cell proliferation and survival and also an 

increased rate of apoptosis than that observed in PI3K or PKB inhibition.124 PDK1 

was also reported as a potential target for sensitizing breast cancer cells to 

chemotherapeutic agents. 129  Knock down of PDK1 was recently reported to 

enhance the anti-tumor effect of EGFR inhibitor.130 These studies also show that 

PDK1 inhibitors will help to improve the clinical response to EGFR inhibitors. 

PDK1 is also reported to play a role in the motility of cancer cells.131 Lack of PDK1 

is reported to cause inhibition of cell proliferation in mouse embryonic fibroblasts 

(MEFs).132 A recent study shows that PDK1 mediates cell survival through another 

distinct IκB kinase-β (IKKB)/NFkB pathway in addition to AKT pathway.133 

PDK1-hypomorphic mice which express only 10% of normal levels of PDK1 were 

reported to be viable and fertile.134 This finding shows that inhibition of PDK1 can 

be achieved without severe toxicity. A more recent study using PDK1-hypomorphic 

mice has shown that the reduced PDK1 expression in PTEN+/- mice markedly 

protected the animal from a wide range of tumors.135 Thus PDK1 has become a well 

validated anticancer target. ATP competitive PDK1 inhibitors will compete with ATP 

molecule to bind in the PDK1 active site and prevents the transfer of phosphate 

group from ATP to downstream substrate proteins (Figure 1.6). This will result in the 

blockade of PDK1 mediated signal transduction. Development of PDK1 inhibitor 

could lead to development of better treatment options for cancer.   
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Figure 1.6 Schematic diagram of PDK1 inhibitor action. PDK1 inhibitor block the 

transfer of phosphate group from ATP molecule to substrate proteins 

 

1.3 Overview of present work 

Computational drug design approaches were reported to aid in the drug design 

process. This approach helps to increase the efficiency of the drug discovery process 

as well as reduce the experimental work done. We were interested to explore the 

different aspects of computational drug design. As PDK1 is a well validated 

anti-cancer target we selected it as our target molecule. The availability of X-ray 

crystal structure of PDK1 allowed us to explore both the structure-based and 

ligand-based drug design strategies.  

Identification of correct binding mode is very essential for structure-based lead 

optimization. Chapter 2 details our study of the binding mode of PDK1 with known 

inhibitors including celecoxib and its derivatives using computational techniques 

like molecular docking, molecular dynamics (MD) simulation, and molecular 

mechanics-Poisson-Boltzmann surface area method (MM-PBSA). For celecoxib and 

its derivatives, we had identified a new binding mode which serves as a better 

starting point for structure-based drug design and further lead optimization of this 

series.  

Ligand-based drug design strategies can be explored to develop predictive 
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3D-QSAR models as well as to understand the SAR for a given series. In Chapter 3, 

our ligand-based study of PDK1 inhibitors belonging to the series of novel 

indolinone derivatives was discussed. We have developed predictive 3D-QSAR 

models by exploring ligand-based and receptor-based 3D-QSAR model 

development strategies. Our models were internally and externally well validated. It 

could be used in the further lead optimization of this series. 

 Chapter 4 details our work on virtual screening studies. We have developed a 

novel hierarchical virtual screening strategy which combines ligand-based and 

structure-based virtual screening. We have identified new hits in this process. One of 

the compounds was found to have anti-cancer activity against many cancer cell lines 

tested at national cancer institute (NCI) screening.  
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CHAPTER 2  

 

2. IDENTIFICATION OF NEW BINDING MODE AND ITS APPLICATION 

IN LEAD OPTIMIZATION 

Computational drug design strategies are utilized in both lead optimization and 

lead identification processes. Lead optimization is the process by which a known 

inhibitor (also called as the lead compound) of a particular target is used as the 

starting point and further more potent inhibitors were developed. Computational 

lead optimization strategies can adopt structure-based, ligand-based or combined 

approaches. As discussed in the introduction, PDK1 is a well known anti-cancer 

target and there is a need to develop new inhibitors for PDK1. This will help 

towards the development of new anti-cancer drugs. In this chapter, we discuss the 

application of structure-based lead optimization strategy against PDK1. Celecoxib 

and its derivatives were used as the lead compounds and different sophisticated 

computational approaches were utilized to understand the binding mode of these 

inhibitors. The obtained binding mode serves as the starting point for further rational 

design of new inhibitors. Part of the contents in chapter 2 was adapted from 

published article, AbdulHameed et al. J. Phys. Chem. B. 2006, 110, 26365-26374.136 

 

2.1 Celecoxib and its derivatives as lead molecules in PDK1 inhibitor design 

Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor and used as a 

non-steroidal anti-inflammatory drug (NSAID). 137  It is a well-known 

FDA-approved drug in the market since 1998.137 Celecoxib (Commercial Name: 

Celebrex; Company: Pfizer) is the first selective COX-2 inhibitor to be approved in 

the market.138 It is approved for the treatment of osteoarthritis and rheumatoid 

arthritis.139 Initial randomized clinical trials showed that the celecoxib produced 

better anti-inflammatory activity than placebo.138 Clinical trials also showed that the 

celecoxib was equivalent in efficacy as the conventional NSAIDs and produced less 

gastrointestinal side-effects than traditional NSAIDs.138 The gastrointestinal ulcers 
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and bleeding are some of the severe side effects of traditional NSAIDs.139 The 

treatment of conditions like arthritis requires taking medications for a long time. 

Hence side-effects like ulcers severely affect the patients, particularly the elderly 

patients. Statistics shows that in United States alone, a total of ~16,000 patients with 

arthritis died due to GI toxicity of NSAIDs during the year 1997.140 Nearly 200,000 

to 400,000 hospitalizations were due to the GI complications of NSAID therapy. 141 

The cost of treating the GI complications due to NSAID therapy is around $0.8 to 

1.6 billion/year in United States alone.141 Hence the discovery of selective COX-2 

inhibitors was considered as a significant breakthrough in the treatment of 

inflammatory conditions. The success of this class of drugs can be understood by the 

fact that celecoxib is remembered as the fastest-selling drug in history.142 Despite 

the unprecedented success of celecoxib in the market, stomach and intestinal ulcers 

still occur with the use of celecoxib although the incidence is less than with other 

NSAIDs in short-term studies.143 Further clinical trials showed that the increased 

gastrointestinal protection of celecoxib is lost, when the patient is simultaneously 

taking low-dose aspirin.144 Moreover the therapeutic uses of selective COX-2 

inhibitors were also limited by the occurrence of cardiovascular side-effects.145 

Rofecoxib (brand name: Vioxx) is also a selective COX-2 inhibitor but was 

withdrawn from the market due its cardiovascular effects.145 A boxed warning has 

been added to the celecoxib label highlighting the potential of cardiovascular risk 

associated with the use of this drug. 146  Researchers have identified that the 

cardiovascular side-effect is not related to a particular drug but a class effect that 

arises from the inhibition of cyclooxygenase pathway.147 Cyclooxygenase is a key 

enzyme in the prostaglandin (PG) bio-synthesis pathway. By inhibiting COX-2, the 

functions of all downstream PG synthases are blocked, including prostacyclin 

synthase (PGIS) for the conversion of prostaglandin H2 (PGH2) to prostaglandin I2 

(PGI2).139 PGI2 is reported to have a vasodilatory role.148 Blocking the production of 

PGI2 has been reported to play a role in cardiovascular side effects.148 In addition to 

the anti-inflammatory effect, celecoxib is in the spotlight for its anti-cancer activity. 

Epidemiological studies have shown that the use of celecoxib and other NSAIDs 
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were associated with a reduced risk of colon cancer.149 The use of celecoxib for 

cancer prevention and treatment has become a very hot topic in the field of cancer 

research. 150 , 151 , 152 , 153 , 154 , 155 , 156 , 157  Celecoxib was reported to cause significant 

reduction in the number of colorectal polyps.158 It is the only NSAID that has been 

approved for the familial adenomatous polyposis treatment.159 Overexpression of 

COX-2 is reported in variety of malignancies.160 Inhibition of COX-2 by selective 

inhibitors may account for the anti-carcinogenic activity of these compounds.137 But 

there is a growing body of evidence to show the COX-2 independent anti-cancer 

activity of NSAIDs. For example, studies have shown that celecoxib has apoptotic 

effect which is independent of COX-2 inhibitory activity,161 implying that the 

well-known anticancer activity of celecoxib is not due to the inhibition of COX-2. 

Different COX-2 inhibitors have the same ability to inhibit COX-2 but have 

different apoptosis-inducing activity. 162  Celecoxib produces rapid induction of 

apoptosis.162 Other potent COX-2 inhibitors like rofecoxib and DuP697 is reported 

to have very low apoptosis inducing activity.162 This shows that the apoptosis 

activity may be independent of COX-2 inhibitory activity. The cardio-vascular side 

effect is considered as a class effect whereas the beneficial anti-cancer activity is not 

considered as a class effect of coxibs.159 Experiments on the effect of selective 

COX-2 inhibitors in COX-2 overexpressing (HCA-7) and COX-2 negative 

(HCT-116) human colon cancer cells showed that only celecoxib has 

anti-proliferative effect.159 This study showed that related coxibs like valdecoxib, 

etoricoxib and rofecoxib has very weak or no anti-proliferative effects in vitro and in 

vivo.159 Celecoxib is reported to produce similar apoptosis effect in BxPC-3 

pancreatic carcinoma cell line which does not express COX-2 compared to 

MIA-PaCA-2 cell line in which COX-2 is highly expressed.163 Studies have shown 

that anti-sense mediated depletion of COX-2 did not produce apoptosis in prostate 

cancer cells.161 It was also identified that the sensitivity of COX-2 inhibitor induced 

apoptosis is independent of COX-2 expression.161 Further, a systematic 

structure-activity relationship (SAR) study was performed to identify the functional 

groups essential for apoptotic activity of celecoxib and similar compounds.162 In the 
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work by Zhu et al. the molecule was divided into 3 regions and the structural 

requirements for apoptosis inducing activity and COX-2 inhibition was explored.162 

Through this detailed SAR analysis it was proved that the structural requirement for 

apoptosis induction is different from COX-2 inhibitory activity. Another study has 

shown that celecoxib inhibits PDK1 kinase activity.164 Zhu et al.165 demonstrated 

that a series of celecoxib derivatives, through certain modification of the aryl group 

and other groups of celecoxib, are more potent PDK1 inhibitors that have the desired 

anticancer activity, but these celecoxib derivatives do not inhibit COX-2. Without 

inhibiting COX-2, these compounds are not expected to have the common side 

effects of the COX-2 inhibitors. Further structural modifications of celecoxib could 

eventually lead to more potent PDK1 inhibitors as potentially more efficient 

anticancer drugs that do not have the side effects of celecoxib. According to Zhu et 

al.,165 celecoxib has an IC50 value of 48 µM, whereas a series of celecoxib 

derivatives have IC50 values at the low micromolar, for inhibiting PDK1 kinase 

activity.  

To further develop a novel derivative of celecoxib with a lower IC50 value for 

PDK1, one first needs to understand how celecoxib and its known derivatives bind 

with PDK1. X-ray crystal structures are available for PDK1 binding with other 

PDK1 inhibitors in the active site.108, 109, 110, 111 To begin a structure-based study, first 

we have to understand the nature of the active site. As mentioned in chapter 1, the 

catalytic core of PDK1 has a bilobal domain, with predominantly α-helical 

C-terminal lobe and an N-terminal lobe consisting mainly of β-sheets.108 The 

adenosine triphosphate (ATP) binding region is located in the hinge region between 

the N- and C-terminal lobes.108 Based on the interaction of ATP, the ATP binding site 

in kinase is usually divided into adenine region, sugar region, and phosphate 

region.112 In PDK1, as in other kinases, adenine region consists of hydrophobic 

residues and the adenine moiety also forms the conserved hydrogen bonds with the 

backbone of hinge region.108 The sugar region is hydrophilic and consists of acidic 

residues. The phosphate region is a solvent-exposed area.166 The ATP binding site of 

PDK1 is shown in Figure 2.1 
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ATP

 

Figure 2.1 The active site of PDK1 kinase domain with bound ATP molecule 

 

By using the available X-ray crystal structures, Zhu et al.165 further proposed a 

microscopic binding mode for PDK1 binding with celecoxib and its derivatives 

based on some molecular docking tests with the compounds. Obviously, it is crucial 

to know whether the proposed microscopic binding mode is reasonable or not for 

future rational drug design targeting PDK1. A reasonable microscopic binding mode 

for PDK1 binding with celecoxib and its derivatives could guide rational design of 

significantly more potent PDK1 inhibitors. As discussed in the chapter 1, molecular 

docking methods are now being routinely used to predict protein-ligand binding 

modes.167 Some important shortcomings of the currently used docking programs are 

associated with the difficulty of reliably accounting for the solvation/desolvation 

effects on and entropic contributions to the protein-ligand binding.167 In addition, it 

is also difficult to account for the effects of protein dynamics on the microscopic 

binding during the simple docking process. Nevertheless, the protein-ligand binding 

structures obtained from molecular docking can be considered as reasonable starting 

structures for molecular dynamics (MD) simulations in water that can more 
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reasonably account for the solvation effects and the dynamics of the protein-ligand 

binding. Hence, in further considering the limit of traditional molecular docking 

methods, we re-examined all of the possible microscopic binding modes for PDK1 

binding with celecoxib and its derivatives (Figure 2.2), by using more sophisticated 

computational modeling techniques, including molecular dynamics (MD) 

simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) 

calculations,168 in addition to the molecular docking. The MD simulations allow us 

to obtain a dynamically stable protein-ligand binding mode associated with a stable 

MD trajectory. Further, the MD simulations are followed by the MM-PBSA 

calculations accounting for the contributions of the gas phase interactions, bulk 

solvent, and entropy to the binding free energies. When a ligand has multiple 

possible modes of binding with a protein, the relative binding free energies obtained 

from the MM-PBSA calculations can be used to determine the most favorable 

binding mode. The MD simulations followed by MM-PBSA calculations have been 

used to accurately predict the protein-protein and protein-ligand binding free 

energies for other systems.168,169 
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Figure 2.2 Molecular structures of celecoxib and its representative derivatives. 
 

In this study, molecular docking followed by MD simulations and MM-PBSA 

binding free energy calculations has allowed us to examine various possible 

microscopic binding modes for a given ligand with PDK1 and to theoretically 

determine the most favorable binding mode, i.e. the one with the lowest binding free 

energy. Thus, we have identified a new, more favorable binding mode for PDK1 

binding with celecoxib and its derivatives. Based on the new binding mode, one can 

better understand the available SAR data and the calculated binding free energies 

were all in good agreement with available experimental activity data, providing 

valuable new insights for future rational design of more potent PDK1 inhibitors.  
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(B) BX-320 (IC50 = 39 nM)(A) Staurosporine (IC50 = 6 nM)

(C) LY-333531 (IC50 = 0.75 µM) (D) BIM-1 (IC50 = 9 µM)
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Figure 2.3 Molecular structures of staurosporine, BX-320, LY-333531, and BIM-1. 

 

2.2 Computational Methods 

2.2.1 Molecular docking 

 A few X-ray crystal structures are available for PDK1 binding with inhibitors 

in the protein data bank (PDB).170 The starting protein structure used for our 

molecular docking is the X-ray crystal structure of  ATP-bound PDK1 (pdb code: 

2BIY),101 as this structure is more complete as compared with other X-ray crystal 

structures of PDK1. The missing side chain atoms of residues Gln73, Arg75, Glu153, 

Lys228, Arg238, Lys304, Glu343, Glu348, and Lys357 were modeled using Sybyl 

7.0 program.171  
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Molecular docking was carried out by using two different docking programs in 

order to obtain different initial binding structures for MD simulations. One is FlexX 

module of the Tripos software.172 The FlexX uses incremental docking algorithm 

called pose clustering.172 In this program, the ligand molecule is split up into 

fragments and the core fragment is first placed according to given scoring 

function173 The molecule is built up using the tree search, which performs the 

conformational search of the ligand and calculates its binding score.172 Only the best 

conformation was built upon and the others are discarded. As discussed in the 

introduction, the important steps in docking include generation of conformations, 

placement in the active site and scoring the poses. FlexX uses MIMUMBA approach 

for the generation of conformations and spherical interaction surfaces to model the 

molecular interactions.48 The interaction type, interacting group and interacting 

geometry were parameterized to account for interactions such as hydrogen bonds, 

salt bridges, metal coordination, Π-Π interaction and hydrophobic interaction.48 The 

“FlexX score” is used as the scoring function. FlexX score contains “a hydrogen 

bonding term, a penalty for protein-ligand overlap, a pairwise hydrophobic potential 

and additional terms for hydrophobic contacts”.48 The receptor description file for 

our docking with the FlexX module was built upon using the PDK1 structure110 and 

the residues within 5 Å around the ligand were defined as the active site. The 

docking was performed for four representative ligands, i.e. celecoxib and its three 

representative derivatives depicted in Figure 2.2, with different IC50 values for 

PDK1. The molecular structures of these ligands were drawn and energy-minimized 

by using the Sybyl 7.0 program with the Tripos force field.174 For docking with 

each ligand, 30 poses were saved for further examination before the best possible 

poses were chosen based on the docking scores.  

The other program used in our molecular docking is DOCK,175,176,177 which 

uses incremental construction algorithm for flexible docking.178 We also used the 

DOCK program because a previously reported binding mode165 could not be 

obtained from the molecular docking using the FlexX for some protein-ligand 

binding systems. The DOCK program was used only in these special cases. The 
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ligand orientations were scored through the use of a force field-based energy scoring 

function and the top-scored binding structure was selected. Both the FlexX and 

DOCK programs use incremental docking algorithm for flexible docking of ligands. 

The major difference is that whereas the FlexX program uses an empirical scoring 

function based on the work of Bohm179 and Klebe,180 the DOCK program uses a 

grid-based energy scoring function.181 In the DOCK approach, the binding site is 

filled with spheres and the center of each sphere was used as a matching point to 

guide the orientation of ligand in the active site.182 DOCK uses Anchor and Grow 

algorithm for incremental construction of the ligands in the active site.182 The files 

of protein and ligands required for using the DOCK 5.2 program were prepared by 

using Sybyl 7.0. The active site spheres were prepared using SPHGEN program.183 

The spheres were selected such that they cover the entire ligand-binding region. 

These spheres served to orient ligands in the active site.183 Grid calculations were 

carried out by using 0.3 Å grid spacing.  

 

2.2.2 Molecular dynamics 

 The possible protein-ligand binding complexes obtained from the molecular 

docking with the ligands depicted in Figure 2.2 were used as the initial structures for 

MD simulations. Besides, we also examined other four ligands that have X-ray 

crystal structures available for their binding with PDK1, i.e. Staurosporine (pdb code: 

1OKY),110 BX-320 (pdb code: 1Z5M),111 LY-333531 (pdb code: 1UU8),109 and 

BIM-1 (pdb code: 1UU3),109 and carried out MD simulations on these four 

protein-ligand complexes. The residues #230 to #241 were missing in these 

structures. To complete the protein structures for these four complexes, each of these 

four incomplete X-ray crystal structures were superimposed with the complete 

protein structure constructed from the structure in 2BIY. Thus we obtained the 

complete protein structure binding with Staurosporine, BX-320, LY-333531, and 

BIM-1. These complete complex structures were also used as the initial structures 

for MD simulations.  

The MD simulations were performed using Sander module of Amber 8 
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program.184 The partial atomic charges for the ligand atoms were calculated using 

the RESP protocol185 after electrostatic potential calculations at Hartree-Fock (HF) 

level with 6-31G* basis set using Gaussian 03 program.186 Each PDK1-ligand 

binding complex was neutralized by adding counterions (three Cl- ions) and was 

solvated in a rectangular box of TIP3P water molecules187 with a minimum solute 

wall distance of 10 Å. The solvated systems were carefully equilibrated and fully 

energy-minimized. These systems were gradually heated from T = 10 K to T = 

298.15 K in 35 ps before a production MD simulation run for 1 ns, or longer, until a 

stable MD trajectory was obtained for each of the simulated systems. The time step 

used for the MD simulations was 2 fs. Periodic boundary conditions in the NPT 

ensemble at T = 298.15 K with Berendsen temperature coupling188 and P = 1 atm 

with isotropic molecule-based scaling185 were applied. The SHAKE algorithm189 

was used to fix all covalent bonds containing hydrogen atoms. The non-bonded pair 

list was updated every 10 steps. The particle mesh Ewald (PME) method190 was 

used to treat long-range electrostatic interactions. Restrain was placed on the 

C-alpha backbone atoms during the MD run. A residue-based cutoff of 12 Å was 

utilized for the non-covalent interactions. The time-dependent geometric parameters 

were carefully examined to make sure that we obtained a stable MD trajectory for 

each simulated protein-ligand binding system. The coordinates of the simulated 

system were collected every 1 ps during the simulation. The equally distributed 100 

snapshots of the simulated structure within the stable MD trajectory were used to 

perform the MM-PBSA calculations.  

 

2.2.3 Binding free energy calculation 

 The binding free energies were calculated by using the molecular 

mechanics-Poisson-Boltzmann surface area (MM-PBSA) free energy calculation 

method.168 In the MM-PBSA method, the free energy of the 

receptor/protein-inhibitor binding, ∆G bind, is obtained from the difference between 

the free energies of the receptor/protein-ligand complex (Gcpx) and the unbound 

receptor/protein (Grec) and ligand (Glig) as following:  
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∆Gbind = Gcpx - Grec – Glig                    (2-1) 

The binding free energy (∆Gbind) was evaluated as a sum of the changes in the 

molecular mechanical (MM) gas-phase binding energy (∆EMM), solvation free 

energy (∆Gsolv), and entropic contribution (-T∆S):  

∆Gbind = ∆Ebind - T∆S                      (2-2) 

∆Ebind = ∆EMM + ∆Gsol                       (2-3) 

∆EMM = ∆Eele + ∆Evdw                  (2-4) 

∆Gsol = ∆GPB + ∆Gnp                       (2-5) 

∆Gnp = γ*SASA + β                    (2-6) 

The MM binding energies were calculated with the ANAL module of Amber8 

program. Electrostatic solvation free energy was calculated by the finite-difference 

solution to the Poisson–Boltzmann equation (∆GPB) as implemented in the Delphi 

program.191,192 Used in the solvation calculation was a grid spacing of 0.5 Å, 

80%-filled grid box, an exterior dielectric constant of 80, and an interior dielectric 

constant of 1. Parse radius193 and Amber charge194 were used in the Delphi 

calculations. The radius used for the solvent probe is 1.4 Å. The MSMS program195 

was used to calculate the SASA for the estimation of the non-polar solvation energy 

(∆Gnp) using Eq.(2-6) with the default parameters, i.e. γ = 0.00542 kcal/Å 2 and β = 

0.92 kcal/mol. Further, the entropic contribution, -T∆S, to the binding free energy 

was also calculated at T = 298.15 K by using the NMODE module of Amber8 

program which is based on a combination of the standard classical statistical 

formulas196 and normal mode analysis.197  

 The final ΔEMM and ΔGsol values for each protein-ligand binding mode were 

taken as the averages of the respective ΔEMM and ΔGsol values calculated for the 100 

snapshots. For these energetic calculations, the ligand and the receptor were studied 

using the snapshots from the complex simulation (without performing further energy 

minimization); the water molecules and counter ions were stripped away before 

MM-PBSA analysis. To evaluate –TΔS, a full energy minimization was first 

performed on each species (receptor, ligand, or complex) prior to the normal mode 

analysis. As the full energy minimization and normal mode analysis are much more 
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time-consuming than the single-point energy calculations, we only evaluated the 

–TΔS values for 10 of the above 100 snapshots (i.e. one from each 10 of the above 

100 snapshots). The final -TΔS value for each protein-ligand binding mode was 

taken as the average of the -TΔS values calculated for the 10 snapshots.   

 

2.3 Validation study and identification of new binding mode  

2.3.1 Binding with staurosporine, BX-320, LY-333531, and BIM-1.  

X-ray crystal structures have been reported for PDK1 binding with some PDK1 

inhibitors, including staurosporine, BX-320, LY-333531, and BIM-1 depicted in 

Figure 2.3. Through MD simulations and MM-PBSA calculations on PDK1 binding 

with these four inhibitors whose binding modes have been known in the X-ray 

crystal structures, we tested whether the computational protocol used in this study, 

i.e. MD simulations followed by MM-PBSA calculations, can reasonably predict the 

PDK1-ligand binding free energy for a given binding mode.  

The MD simulation for each of the PDK1-ligand binding structures was quickly 

stabilized, because there was no any significant structural change during the 

simulation (see Figure 2.5 for the MD trajectories). The MD-simulated PDK1-ligand 

binding structures (Figure 2.4) were all essentially the same as the corresponding 

X-ray crystal structures. We did not note any significant difference between the 

MD-simulated structures and the corresponding X-ray crystal structures. The 

energetic results obtained from the MM-PBSA calculations for these binding 

structures are summarized in Table 2.1, in comparison with available experimental 

data. As seen in Table 2.1, the calculated binding free energies (∆Gbind) were all in 

good agreement with the corresponding experimental ∆Gbind values (derived from 

the experimental IC50 values reported in literature); the average absolute deviation is 

~1.2 kcal/mol. More importantly, the qualitative order of the calculated ∆Gbind 

values was completely consistent with that of the experimental ∆Gbind values. The 

reasonable agreement between the calculated and experimental binding free energies 

showed that the computational protocol was adequate for predicting PDK1 binding 

with its ligands.   
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(C)

 

 

(D)

 
Figure 2.4 MD-simulated structures of PDK1 binding with (A) staurosporine, (B) 

BX-320, (C) LY-333531, and (D) BIM-1. 
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Figure 2.5 Plots of MD-simulated internuclear distances versus simulation time for 

PDK1 binding with staurosporine, BX-320, LY-333531, and BIM-1 (see Figure 2.3 

for the structures and the positions of atoms referred here). (A) staurosporine: D1 

refers to the distance between O3 atom of Staurosporine and the NH hydrogen of 

Ala162 backbone, D2 the distance between H19 atom of staurosporine and the 

carbonyl oxygen of Ser160 backbone, and D3 the distance between H9 atom of 

staurosporine and the carbonyl oxygen of Glu209 backbone. (B) BX-320: D1 refers 

to the distance between H29 atom of BX-320 and the carbonyl oxygen of Ala162 

backbone, D2 the distance between N2 atom of BX-320 and the NH hydrogen of 

Ala162 backbone, and D3 the distance between O1 atom of BX-320 and the NH 

nitrogen atom of Glu166 backbone. (C) LY-333531: D1 refers to the distance 

between O2 atom of LY-333531 and the NH hydrogen of Ala162 backbone, D2 the 

distance between H10 atom of LY-333531 and the carbonyl oxygen of Ser160 

backbone, and D3 the distance between O1 atom of LY-333531 and the hydroxyl 

hydrogen of Thr222 side chain. (D) BIM-1: D1 refers to the distance between O2 

atom of BIM-1 and the NH hydrogen of Ala162 backbone, D2 the distance between 

H18 atom of BIM-1 and the oxygen atom of Ser160 backbone carbonyl group, and 

D3 the distance between O1 atom of BIM-1 and the hydroxyl hydrogen of Thr222 

side chain.  
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Table 2.1 Binding free energies (kcal/mol) calculated at T = 298.15 K and P = 1 atm 

for PDK1 binding with representative inhibitors in comparison with the 

corresponding experimental data.136 

Inhibitor Calc.a Expt.b 
ΔEMM ΔGsol -TΔS ∆Gbind  ∆Gbind  

Staurosporine -93.8 (1.4) 60.3 (1.3) 21.7 (2.5) -11.8 (1.9) -11.2 
BX-320 -127.5 (2.1) 97.3 (2.2) 18.7 (1.9) -11.5 (2.1) -10.1 

LY-333531 -107.7 (1.4) 77.4 (1.6) 20.1 (1.9) -10.2 (1.8) -8.4 
BIM-1 -82.8 (1.4) 59.0 (1.8) 16.1 (2.4) -7.7 (2.1) -6.9 

a The MM-PBSA calculations were performed on 100 snapshots along a stable MD 

trajectory for each PDK1-inhibitor binding complex. The results given in the table 

are the average values calculated for the 100 snapshots.  
b Experimental binding free energies were calculated from the experimental IC50 

values reported in refs.109, 110 and 111 via ΔGbind = RT × lnKd ≈ RT × lnIC50.  

 

2.3.2 Binding with celecoxib and its derivatives 

 To understand how PDK1 binds with celecoxib and its derivatives, four 

representative compounds (depicted in Figure 2.2) were considered whose 

experimental IC50 values for inhibiting PDK1 kinase activity range from 48 µM to 5 

µM. The molecular docking revealed two quite different possible binding modes for 

each of these compounds binding with PDK1 and the scores are given in Table 2.2. 

For all the compounds FlexX gave a new binding mode. DOCK results showed only 

the mode which was similar to that proposed by Zhu et al.165 Further MD 

simulations led to a stable MD trajectory, as seen in Figure 2.10 to 2.13, for each of 

the binding modes (Figures 2.6 to 2.9). So, we could not simply judge which binding 

mode is more reasonable without further evaluating the relative binding free 

energies.  
 



 36 

(A)

 

 

(B)

 

Figure 2.6 MD-simulated structures of PDK1 binding with celecoxib: (A) new 

binding mode determined in our work (ref. 136); (B) the binding mode similar to 

that proposed by Zhu et al. (ref.165).  
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(A)

 
 

(B)

 
Figure 2.7 MD-simulated structures of PDK1 binding with celecoxib-der1: (A) new 

binding mode determined in our work (ref. 136); (B) the binding mode similar to 

that proposed by Zhu et al. (ref. 165).  

 



 38 

(A)

 
 

(B)

 

Figure 2.8 MD-simulated structures of PDK1 binding with celecoxib-der2: (A) new 

binding mode determined in our work (ref. 136); (B) the binding mode similar to 

that proposed by Zhu et al. (ref. 165).  
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(A)

 
 

(B)

 

Figure 2.9 MD-simulated structures of PDK1 binding with celecoxib-der3: (A) new 

binding mode determined in our work (ref.136); (B) the binding mode similar to that 

proposed by Zhu et al. (ref. 165).  
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Figure 2.10 Plots of MD-simulated internuclear distances and RMSD for atomic 

positions of the ligand versus simulation time for PDK1 binding with celecoxib-der1 

(see Figure 2.2 for the structure). (A) The new binding mode determined in our work 

for the first time (ref. 136): D1 refers to the distance between N1 atom of 

celecoxib-der1 and one of the two oxygen atoms of Asp223 side chain carboxyl 

group, D2 the distance between N4 atom of celecoxib-der1 and the nitrogen atom of 

Lys111 side chain, and D3 the distance between N4 atom of celecoxib-der1 and the 

nitrogen atom of Asp223 backbone. (B) The binding mode similar to that proposed 

by Zhu et al. (ref. 165): D1 refers to the distance between O1 atom of 

celecoxib-der1 and the hydroxyl oxygen of Thr222 side chain, D2 the distance 

between N1 atom of celecoxib-der1 and the carbonyl oxygen of Ser160 backbone, 

and D3 the distance between N4 atom of celecoxib-der1 and the nitrogen atom of 

Glu166 backbone.  
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Figure 2.11 Plots of MD-simulated internuclear distances and RMSD for atomic 

positions of the ligand versus simulation time for PDK1 binding with celecoxib (see 

Figure 2.2 for the structure). (A) The new binding mode determined in our work for 

the first time (ref. 136): D1 refers to the distance between N2 atom of celecoxib and 

the carbonyl oxygen of Glu209 backbone, D2 the distance between N3 atom of 

celecoxib and the NH nitrogen of Asp223 backbone, and D3 the distance between 

N3 atom of celecoxib and the nitrogen atom of Lys111 side chain. (B) The binding 

mode similar to that proposed by Zhu et al. (ref. 165): D1 refers to the distance 

between O1 atom of celecoxib and the hydroxyl oxygen of Thr222 side chain, D2 

the distance between N3 atom of celecoxib and the NH nitrogen of Glu166 

backbone, and D3 the distance between N3 atom of celecoxib and the carbonyl 

oxygen of Ala162 backbone.   
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Figure 2.12 Plots of MD-simulated internuclear distances and RMSD for atomic 

positions of the ligand versus simulation time for PDK1 binding with celecoxib-der2 

(see Figure 2.2 for the structure). (A) The new binding mode determined in our work 

for the first time (ref. 136): D1 refers to the distance between N2 atom of 

celecoxib-der2 and the carbonyl oxygen of Glu209 backbone, D2 the distance 

between N2 atom of celecoxib-der2 and one of the two oxygen atoms of Asp223 

side chain carboxyl group, D3 the distance between O2 atom of celecoxib-der2 and 

the nitrogen atom of Asn210 backbone, and D4 the distance between N3 atom of 

celecoxib-der2 and the nitrogen atom of Asp223 backbone. (B) The binding mode 

similar to that proposed by Zhu et al. (ref. 165): D1 refers to the distance between 

N2 atom of celecoxib-der2 and the nitrogen atom of Ala162 backbone, D2 the 

distance between N2 atom of celecoxib-der2 and the carbonyl oxygen of Ser160 

backbone, and D3 the distance between O2 atom of celecoxib-der2 and the hydroxyl 

oxygen of Thr222 side chain. 
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Figure 2.13 Plots of MD-simulated internuclear distances and RMSD for atomic 

positions of the ligand versus simulation time for PDK1 binding with celecoxib-der3 

(see Figure 2.1 for the structure). (A) The new binding mode determined in our work 

for the first time (ref. 136): D1 refers to the distance between N1 atom of 

celecoxib-der3 and the nitrogen atom of Asp223 backbone, D2 the distance between 

N3 atom of celecoxib-der3 and the carbonyl oxygen of Glu90 backbone, and D3 the 

distance between N4 atom of celecoxib-der3 and the carbonyl oxygen atom of 

Glu90 backbone. (B) The binding mode similar to that proposed by Zhu et al. (ref. 

165): D1 refers to the distance between N3 atom of celecoxib-der3 and the carbonyl 

oxygen of Ala162 backbone, D2 the distance between N4 atom of celecoxib-der3 

and the nitrogen atom of Ala162 backbone, and D3 the distance between N1 atom of 

celecoxib-der3 and the nitrogen atom of Glu166 backbone.  
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Based on the molecular docking followed by the MD simulations, one of the 

two possible binding modes (see mode “B” depicted in Figures 2.6 to 2.9) is similar 

to that proposed by Zhu et al.165 For a remarkable feature of this binding mode, the 

4-methyl-phenyl group of celecoxib (or the phenanthrene ring of the celecoxib 

derivatives) was positioned in the ATP sugar/phosphate binding region formed by 

Gly89, Glu90, Gly91, and Ser94 residues. This hydrophilic environment looks more 

appropriate to accommodate a hydrophilic functional group of a ligand. The only 

hydrophobic residue nearby the 4-methyl-phenyl group of celecoxib is Val96 at a 

distance >3.5 Å. Glu166 is close to both the pyrazole ring and 4-methyl-phenyl of 

celecoxib. The other binding mode (see mode “A” depicted in Figure 2.6) found in 

our docking and MD simulations for the first time is totally different. In this newly 

found binding mode, the 4-methyl-phenyl moiety of celecoxib stays in the adenine 

pocket and is sandwiched between the hydrophobic residues Val96 and Leu212, the 

sulfonamide moiety extends into the sugar/phosphate pocket and forms a hydrogen 

bond with the carbonyl oxygen of Glu209 backbone, and a nitrogen on the pyrazole 

ring forms a hydrogen bond with the protonated amine group on the Lys111 side 

chain. This binding mode allows the CF3 group to stay in a small hydrophobic 

pocket defined by residues Leu159, Phe157, Leu113, Met134, and Val143. The 

conserved residues Lys111 and Glu130 are nearby this small pocket. Further, all the 

celecoxib derivatives examined in this study bind with PDK1 in a similar way as 

celecoxib, as seen in Figures 2.6 to 2.9. For example, when the 4-methyl-phenyl 

group of celecoxib is replaced by a phenanthrene ring, celecoxib becomes 

celecoxib-der2 (see Figure 2.2) and the phenanthrene ring of celecoxib-der2 also 

stays in the adenine pocket although the phenanthrene ring is surrounded by more 

hydrophobic residues (including Leu88 in addition to Val96 and Leu212). An 

interesting difference is that the terminal sulfonamide group of this derivative forms 

a hydrogen bond with Asp223, instead of Glu209, for the binding with celecoxib. 

The celecoxib-der1 and celecoxib-der3 retain the same hydrophobic interactions 

between the phenanthrene ring and the adenine pocket as that found in 

celecoxib-der2 binding with PDK1. These derivatives show flexibility in their 
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interactions with the sugar/phosphate pocket. The amino group of celecoxib-der3 

forms a hydrogen bond with the carbonyl oxygen of Glu90 backbone, whereas 

celecoxib-der1 does not have such a strong hydrogen bond with PDK1.  

MM-PBSA calculations were performed to calculate the binding free energies 

for all of the MD-simulated binding structures and the calculated binding free 

energies are summarized in Table 2.2. We note that the binding free energy for a 

given binding mode is determined by all of the contributions from the protein-ligand 

interactions in the gas phase, solvation/desolvation effects, and entropy change. In 

comparison between the two different modes of PDK1 binding with a given ligand 

(i.e. celecoxib or its derivative), one binding mode might be much more favorable 

than the other in the gas phase, but the solvation/desolvation effects could make a 

big difference in changing the relative binding free energies. As seen in Table 2.2, 

for each of these compounds binding with PDK1, the binding free energy calculated 

for our newly found binding mode is always significantly lower than that calculated 

for the other binding mode (similar to that proposed by Zhu et al.165), which 

suggests that our newly found binding mode is significantly more favorable. 

According to the new binding mode, the binding free energies calculated for PDK1 

binding with all of these compounds are reasonably close to the corresponding 

experimental binding free energies (derived from the experimental IC50 values 

reported by Zhu et al.165); the average absolute deviation is ~0.9 kcal/mol. This 

agreement further supports that the new binding mode found for PDK1 binding with 

celecoxib and its derivatives in this study is more reasonable.   
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Table 2.2 Binding free energies (kcal/mol) calculated at T = 298.15 K and P = 1 atm 

for PDK1 binding with celecoxib and its derivatives (der1, der2, and der3) in 

comparison with the corresponding experimental data.a,136   

Compound Binding 
mode 

Docking 
scoring d 

MM-PBSAe Expt.f 
ΔEMM ΔGsol -TΔS ∆Gbind  ∆Gbind  

Celecoxib This workb   -3.1 -56.5 
(1.7) 

40.1 
(1.6) 

11.3 
(0.2) 

-5.1 
(1.1) 

-5.9 

Zhu et al.c (-43.8) -59.1 
(1.4) 

48.5 
(1.6) 

11.0 
(1.9) 

0.4 
(1.6) 

Celecoxib-der1 This workb -4.9 -71.2 
(2.0) 

54.8 
(2.0) 

11.9 
(1.2) 

-4.5 
(1.6) 

-6.0 

Zhu et al.c (-47.9) -61.0 
(3.1) 

50.9 
(1.5) 

13.2 
(1.3) 

3.1 
(1.9) 

Celecoxib-der2 
(i.e. OSU-02067) 

This workb -5.6 -64.6 
(1.7) 

45.1 
(1.4) 

12.1 
(2.0) 

-7.3 
(1.7) 

-6.9 

Zhu et al.c (-49.4) -71.5 
(1.7) 

55.6 
(1.5) 

11.8 
(1.5) 

-3.7 
(1.4) 

Celecoxib-der3 
(i.e. OSU-03012) 

This workb -6.5 -96.8 
(2.9) 

78.0 
(2.8) 

12.6 
(2.0) 

-6.2 
(2.0) 

-7.2 

Zhu et al.c -4.4 -48.2 
(1.9) 

45.9 
(2.5) 

12.1 
(0.8) 

9.8 
(1.4) 

a All energies are in kcal/mol.  
b The new binding mode determined in our study (ref. 136).   
c The binding mode reported by Zhu et al. (ref. 165).  
d Scores of the molecular docking using the FlexX program. The values in 

parentheses are scores of the molecular docking using the DOCK program; the 

DOCK program was used for these binding structures because the molecular 

docking using the FlexX program did not reveal these binding structures. We note 

that the DOCK score is the gas phase interaction energy which does not account for 

the solvation. Thus, the two types of docking scores cannot be compared.  
e The MM-PBSA calculations were performed on 100 snapshots along a stable MD 

trajectory for each PDK1-inhibitor binding mode. The results given in the table are 

the average values calculated for the 100 snapshots. The values in the parentheses 

are the root-mean-square fluctuations of the calculated energies.  
f Experimental binding free energies are calculated from IC50 (ref 165) via ΔGbind = 
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RT lnKd ≈ RT lnIC50. 

 

2.3.3 Significance of new binding mode 

Further, the new, more favorable binding mode found in this study can help to 

better understand the substituent effects of the celecoxib derivatives on the 

previously reported biological activity. 165,162 For example, some experimental trends 

can be understood easily now when we know that the 4-methyl-phenyl group of 

celecoxib stays in the hydrophobic adenine pocket. When the 4-methyl-phenyl group 

of celecoxib is replaced by a phenanthrene group, celecoxib becomes celecoxib-der2 

and the IC50 value changes from 48 μM to 9 μM.165 The activity increase from 

celecoxib to celecoxib-der2 is attributed to the increase of the size of the 

hydrophobic functional group (from the 4-methyl-phenyl to phenanthrene) 

interacting with the hydrophobic adenine pocket of PDK1. So, the hydrophobic 

interaction for PDK1 binding with celecoxib-der2 should be stronger than that with 

celecoxib. The additional interaction of celecoxib-der2 with Leu88 residue is shown 

in Figure 2.14. When 4-methyl-phenyl group of celecoxib is replaced by 

4-amino-phenyl group, the hydrophobic interaction is expected to decrease and, 

therefore, its binding affinity with PDK1 is expected to decrease, which is consistent 

with the experimental observation of the decrease in the apoptotic activity.162 The 

molecular structures of celecoxib-der1 and celecoxib-der3 differ only by a -CH2- 

group, but show a significant difference in the IC50 value (40 μM for celecoxib-der1 

versus 5 μM for celecoxib-der3), as seen in Figure 2.2. According to our newly 

found binding mode, the amino group of celecoxib-der3 forms a hydrogen bond 

with the carbonyl oxygen of Glu90 backbone, whereas the similar hydrogen bonding 

does not exist in celecoxib-der1 binding with PDK1 (Figure 2.15). The difference in 

the hydrogen bonding reveals that celecoxib-der3 binds with PDK1 stronger than 

celecoxib-der1 with PDK1, which explains why the IC50 value of celecoxib-der3 is 

significantly lower than that of celecoxib-der1. Previously reported SAR studies by 

Zhu et al.162 identified that CF3 group, tolyl group and sulfonamide group of 

celecoxib are essential for its apoptosis activity. Removal of CF3 group was reported 
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to produce a loss of apoptosis activity of celecoxib. In our newly proposed binding 

mode, as seen in Figure 2.16, the CF3 group occupies a small hydrophobic pocket 

defined by residues Leu159, Phe157, Leu113, Met134, and Val143. The tolyl group 

occupies the hydrophobic adenine pocket and the sulfonamide group has interaction 

in the sugar binding region. We also analyzed whether our newly proposed binding 

mode can explain the difference in apoptotic activity between celecoxib and 

rofecoxib. In the case of Rofecoxib, the furanone ring will have unfavorable 

interaction with the hydrophobic residues (Figure 2.16). Due to the absence of 

sulfonamide group, there is a loss of hydrogen bonding interaction which is 

observed in celecoxib in sugar pocket. This explains the loss of apoptotic activity for 

rofecoxib.  

Another interesting aspect in our newly proposed binding mode is the absence 

of hydrogen bonding interaction with the hinge region. To the best of our knowledge, 

we have identified for the first time a new binding mode of kinase inhibitor without 

hinge hydrogen bonding interaction. A recent review by Liu et al. in 2006 reports 

that almost all kinase inhibitors has a hydrogen bond interaction with the hinge 

region.198 Our newly proposed binding mode will serve as a good starting point for 

the design of new class of PDK1 inhibitors without hinge hydrogen bonding region. 

Further experimental tests are needed to analyze whether binding without hinge 

hydrogen bond interactions confers selectivity for the inhibitors. More recently, after 

publication of our result, an X-ray crystal structure of cyclin-dependent kinase-2 

(CDK2) with inhibitor was deposited in PDB (PDB ID: 2UZD).199 Richardson et al. 

shows that the new class inhibitors interact with CDK2 without hinge hydrogen 

bond interaction (Figure 2.17).199 This X-ray crystal structure further serves as an 

experimental proof for design of inhibitors without hinge hydrogen bond interaction 

and it is consistent with our newly proposed binding mode for celecoxib and its 

derivatives.   

Our newly proposed binding mode serves as the starting point for further 

optimization of this series. De novo drug design of new inhibitors can be carried out 

based on the study of the binding mode and the environment around the inhibitors. 
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Based on our initial study, we propose that the celecoxib and its derivatives could be 

modified in two regions as shown in Figure 2.18. Additional interactions could be 

introduced through substitution of suitable groups either in hinge region or in sugar 

binding region or both. In kinase inhibitor design, a small hydrophobic pocket deep 

inside the active site has been exploited for achieving potency and selectivity.79 

“Gate-keeper” is the term used to denote the residues which are present at the 

entrance of the hydrophobic pocket in kinases. A small gate-keeper residue like 

threonine has been reported to allow bulky groups to enter the hydrophobic pocket 

whereas larger gate-keeper residues like phenylalanine restrict access to this 

pocket.200 In the case of PDK1, Leu159 is present as the gate-keeper residue. In our 

newly found binding mode, the CF3 group of celecoxib and its derivatives occupies 

the hydrophobic pocket. We propose that further studies involving isosteric 

replacement of CF3 group with methyl or iodide groups will help to understand the 

significance of interaction of this group. Studies using X-ray crystallography or 

point mutations would also help to further confirm the new binding mode 

experimentally.  
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Val96
Leu159

Leu212

(A)

 

 

Val96 Leu88

Leu212

Leu159

(B)

 

Figure 2.14 PDK1 binding with celecoxib and celecoxib-der2 in the newly 

identified binding mode. PDK1 binding with (A) celecoxib and (B) celecoxib-der2. 

The violet dotted lines show hydrophobic contacts. 
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(A)

 

 

(B)

 

Figure 2.15 PDK1 binding with inhibitors in the newly identified binding mode. 

PDK1 binding with (A) celecoxib-der1 and (B) celecoxib-der3. The violet dotted 

lines show hydrophobic contacts. 
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Figure 2.16 Schematic diagram showing PDK1 binding with inhibitors in the newly 

identified binding mode. PDK1 binding with (A) celecoxib and (B) rofecoxib. 
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Figure 2.17 CDK2 binding with inhibitor without hinge hydrogen bond interaction 

(PDB ID: 2UZD).199  

 

2.4 Summary of main computational insights 

Extensive molecular docking and combined molecular dynamics (MD) 

simulations and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) 

binding free energy calculations have demonstrated a new, more favorable 

microscopic binding mode concerning how celecoxib and its derivatives bind with 

3-Phosphoinositide-dependent protein kinase-1 (PDK1). The new binding mode was 

remarkably different from that proposed previously based on simple molecular 

docking tests. For example, the 4-methyl-phenyl moiety of celecoxib stays in the 

hydrophobic adenine pocket and is sandwiched between the hydrophobic residues 

Val96 and Leu212 according to the new binding mode, whereas the 4-methyl-phenyl 

moiety is positioned in the ATP sugar/phosphate binding region (which is 

hydrophilic) according to the previously proposed binding mode. For celecoxib and 

all of the derivatives binding with PDK1, the binding free energies determined for 

the new binding mode by the combined MD simulations and MM-PBSA 

calculations were always significantly lower than those determined for the 
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previously proposed binding mode. So the new binding was energetically more 

favorable. Thus we have identified a totally new binding mode for the first time. 

This binding mode can be used for further de novo design of novel PDK1 inhibitors. 

 

 

Figure 2.18 PDK1 binding with celecoxib in the newly identified binding mode. 

Potential region for de novo design are marked in red circle. 

 

For all of the representative PDK1 inhibitors examined in this study, based on 

the most favorable binding modes, the calculated binding free energies were all in 

good agreement with the corresponding experimental activity data. All of the 

computational results reported in this study strongly suggest that (1) the new 

microscopic binding mode determined in this work is reliable; (2) the determined 

new, more favorable binding mode can help to better understand the substituent 

effects of the celecoxib derivatives on the previously reported biological activity 

data; and (3) the computational protocol tested in this study, i.e. the molecular 

docking followed by the combined MD simulations and MM-PBSA calculations, is 

reliable and accurate for predicting protein-ligand binding structures and binding 

free energies, whereas only performing simple molecular docking could lead to a 
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wrong binding mode and thus mislead the drug design. These new insights will be 

valuable not only for future rational design of novel, more potent PDK1-specific 

inhibitors as promising anticancer therapeutics, but also for rational design of drugs 

targeting other proteins.  
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CHAPTER 3 

 
3. LIGAND-BASED DRUG DESIGN: DEVELOPMENT OF PREDICTIVE 

3D-QSAR MODELS 

Computational lead optimization strategies can adopt structure-based, 

ligand-based or combined approaches. PDK1 is a well known anti-cancer target and 

application of such computational drug design approaches will help towards the 

development of potent PDK1 inhibitors and ultimately lead to development of 

anti-cancer agents. In the previous chapter, we discussed the application of 

computational structure-based lead optimization strategy against PDK1. We used 

celecoxib and its derivatives as the lead compounds and identified the binding mode 

of these inhibitors which serves as the starting point for further rational design of 

new inhibitors. In this chapter, we discuss the application of ligand-based lead 

optimization strategy and combined approaches against PDK1. Part of the contents 

in chapter 3 was adapted from published article, AbdulHameed et al. J. Chem. Inf. 

Mol. Mod. 2008, 48, 1760-1772.201 
 

3.1 Ligand-based modeling study on indolinone derivatives as PDK1 inhibitors  

Computational approaches like structure-based and ligand-based ones have been 

found to be valuable in further optimization and development of novel inhibitors. 

Ligand-based three-dimensional quantitative structure-activity relationship 

(3D-QSAR) approaches, including comparative molecular field analysis 

(CoMFA)202 and comparative molecular similarity indices analysis (CoMSIA),203 

were reported to be effective for understanding the structure-activity relationships.37 

The 3D-QSAR modeling is useful to predict the activity of new molecules to be 

synthesized.37 3D-QSAR methods serve as an important complement to the 

structure-based methods.37 CoMFA and CoMSIA are two 3D-QSAR methods that 

have been successfully employed in drug design.204,205 These methods were useful 

in the lead optimization and also in understanding the drug-target 
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interaction.206,207,208 In CoMFA, the biological activity of molecules is correlated 

with their steric and electrostatic interaction energies.209 The steric and electrostatic 

interaction energies are calculated using Lennard-Jones potential and Coulombic 

potential respectively.202 In CoMSIA, similarity indices are calculated at regularly 

placed grid points for the aligned molecules.203 CoMSIA includes additional 

molecular descriptors like hydrophobic fields and hydrogen bond donor and 

acceptor fields.205 Both 3D-QSAR methods give contour maps as output that can be 

used to get some general insights into the topological features of the binding site.208  

Kinase inhibitors, such as Imatinib, Erlotinib and Sunitinib, have recently been 

approved for clinical use in the market as anti-cancer agents.210 The success of these 

new drugs, has given a new impetus for developing better anti-cancer agents by 

targeting kinases. Since PDK1 is a well validated anti-cancer target, ligand-based 

drug design strategies could be used in lead optimization of PDK1 inhibitors. More 

recently, a new series of indolinone derivatives were reported as PDK1 

inhibitors.211,212 This new series of compounds were developed using an initial hit 

identified from a high throughput screening (HTS) study.211, 212 Indolinones are well 

known kinase inhibitor scaffold but a novel scaffold with respect to PDK1. 

Developing predictive 3D-QSAR will be useful to predict the activity of new 

compounds belonging to indolinone series as PDK1 inhibitors.  

In this present work, the 3D-QSAR study on PDK1 inhibitors using CoMFA 

and CoMSIA methods was carried out. We also carried out molecular docking of the 

PDK1 inhibitors and further used the docked inhibitor structures to develop a 

separate set of docking-based (or receptor-based) 3D-QSAR models. Such a study 

allows us to compare the contour maps from two different strategies. Since the 

X-ray crystal structure of PDK1 binding with inhibitors are available, this study 

allows us to validate the potential and usefulness of the contour plots from 

ligand-based methods. In this study, the 3D-QSAR models obtained from both the 

ligand-based and receptor-based methods were all found to be statistically valid. The 

models were capable of predicting the activity of the test-set molecules. The contour 

plots obtained from the 3D-QSAR models correlate well with the detailed 
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interactions between the ligands and active site residues in the docked 

PDK1-inhibitor binding structures. The developed computational models are 

expected to help the lead optimization and future rational drug design and discovery 

efforts.  

 

3.2. Computational Methods  

3.2.1 Data sets and alignment  

All compounds used in the present study were reported recently by Islam and 

co-workers211,212 as inhibitors of PDK1. Of the 70 compounds reported, 56 

compounds were used as a training set and the remaining 14 compounds were used 

as a test set, based on a random selection. The compounds in the test set have a 

range of biological activity values similar to that of the training set. The IC50 values 

were converted into pIC50 (i.e. -logIC50) values. The pIC50 values are preferred due 

to convention, as the negative logarithms give larger values to most active 

compounds.213 The pIC50 values of the compounds studied cover an interval of 

more than 3 log units. The structures of the compounds and their pIC50 values are 

given in Table 3.1. 

Identification of the bioactive conformation and molecular alignment of 

compounds are two important steps in a 3D-QSAR study.214 The X-ray crystal 

structures of this class of inhibitors bound with PDK1 are available from the protein 

data bank (PDB).170 The bound conformation of compound 53 (PDB ID: 2PE2)212 

had a relatively better resolution (2.13Å) and was used as a template for alignment 

molecular structures. The 3D structures of all compounds were built using the 

SYBYL software (Tripos, Inc.).171 The geometries of all compounds were optimized 

by using semiempirical PM3 method. The optimized geometries were used to 

perform single-point ab initio calculations at the HF/6-31G* level in order to 

determine the electrostatic potential (ESP)-fitted atomic charges, i.e. the ESP 

charges, that fit to the electrostatic potential at points selected according to the 

Merz-Singh-Kollman scheme. 215 , 216  Two alignment methods were used. One 

method, denoted by Alignment-I, is a substructure-based alignment. In this method, 
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all compounds in the dataset were aligned to a common substructure (Figure 3.1) 

using the ‘align database’ command in the SYBYL software. The other method, 

denoted by Alignment–II, is the atom/centroid-based alignment. The selected atoms 

and centroids of the molecules were used for alignment using the root-mean-squares 

(RMS) fit method. The determined substructure and the reference atoms/centroids 

used for the alignment were shown in Figure 3.1. 

 

Table 3.1 Molecular structures of compounds used in the training and test sets and 

their PDK1 inhibitory activity a 

N
H

N
H

O

R2
R3

R1

4
5

7

5'

3'

6

4'

 
Compd. R1 R2 R3 pIC50 

1 H H H 5.74 
2 4-Me H H 6.29 
3b 5-Me H H 5.57 
4 7-Me H H 4.58 
5 4-OH H H 6.00 
6b 5-OH H H 6.47 
7 6-OH H H 6.05 
8 7-OH H H 4.58 
9 5-OH Me H 7.10 

10b 5-OH H 3’-Me 6.55 
11 5-OH H 4’-Me 6.55 
12 5-OH H 5’-Me 6.17 
13 5-OH H 5’-Et 5.64 
14 5-OH H 3’,5’-Me 5.96 
15 5-OMe H H 6.24 
16 5-SO2NH2 H H 6.54 
17 5-CO2Me H H 6.17 
18 5-CO2H H H 6.59 
19 5-CONH2 H H 6.92 
20 5-Tetrazole H H 6.70 
21b 5-NH2 H H 6.24 
22b 5-CN H H 6.00 
23 5-CH2NH2 H H 6.00 
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Table 3.1 (Continued) 
Compd. R1 R2 R3 pIC50 

24 5-NHSO2Me H H 6.28 
25b 5-NHCOMe H H 7.26 
26 5-NHCONH2 H H 7.74 
27 5-SO2NH2 Me H 7.17 
28b 5-SO2NH2 Et H 7.85 
29 5-SO2NH2 Ph H 7.54 
30 5-SO2NH2 CO2Et H 7.47 
31 5-SO2NH2 CO2H H 5.38 
32 5-SO2NH2 CONH2 H 5.41 
33 5-SO2NH2 CONHEt H 5.21 
34 5-SO2NH2 CONEt2 H 5.27 
35 5-NHCONH2 Me H 8.30 
36 5-NHCONH2 Et H 8.52 
37 5-NHCONH2 Ph-3-NH2 H 8.05 
38b 5-NHCONH2 4-Pyridine H 8.00 

N
H

N
H

O

R4

H
NH2N

O

R1 R2

R3

 
Compd. R1 R2 R3 R4 pIC50 

39 H COO- H H 8.05 
40 CH3 COO- H H 8.05 
41 CH3 (CH2)2COO- H H 7.41 
42 CH3 (CH2)2COO- CH3 H 7.24 
43 H CONH(CH2)2N(CH3)2 H H 7.57 
44 H 

N
H

O

N

 

H H 7.96 

45 H 

N
H

O

N

O

 

H H 7.54 

46b H 
N

O

N
 

H H 7.51 

47 H 

N
H

O

N
H

N

 

H H 7.85 
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Table 3.1 (Continued) 
Compd. R1 R2 R3 R4 pIC50 

48 H 

N
H

O N

 

H H 7.77 

49 H -Phenyl H H 7.68 
50 H 3-pyridyl H H 8.10 
51 H -Phenyl-3-carboxylic 

acid 
H H 7.35 

52 H 
H
N

O

N

 

H H 8.40 

53 H 
H
N

O

N

 

H H 8.40 

54b H 

OH  

H H 8.22 

55 H 

OCH3  

H H 7.72 

56b H 

F  

H H 7.29 

57 H 

 

H H 7.43 

58 H 

NH2

O  

H H 8.30 

59b H 

N
H

O

 

H H 8.10 

60 H 

NH2  

H H 8.52 

61 H -CH2NH2 H CH3 8.00 
62b H -CHNHCOCH3 H CH3 8.10 
63 H 

N
H

O

N  

H CH3 8.30 
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Table 3.1 (Continued) 
Compd. R1 R2 R3 R4 pIC50 

64 H 

N
H

O

N  

H CH3 8.00 

65 H 

N
H

O

NH  

H CH3 8.22 

66 H 

N
H

O

N  

H CH3 8.40 

67b H 

N
H

O

N
H

H
N

 

H CH3 8.30 

68 H -CH2NHCOCH2NH2 H CH3 8.30 
69 H -CH2NHCOCH2OH H CH3 8.00 
70 H 

N
H

O

N

 

H CH3 8.52 

a pIC50 values calculated from the IC50 data in refs. 211 and 212. b Compounds used 
in the test set were based on random selection. 
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Figure 3.1. The substructure and atoms/centroids used in alignments (A) The 
substructure used for the ‘Common substructure-based alignment’ (Alignment-I); (B) 
The atoms/centroids used in ‘Atom/Centroid based alignment’ is shown in asterisk 
(Alignment-II). 
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Figure 3.2 Superposition of all compounds in the training and test sets based on the 
common substructure based alignment (Alignment-I). 
 

3.2.2 3D-QSAR analysis  

The CoMFA and CoMSIA models were generated by using the SYBYL 

software with the default parameters. A regularly placed grid of 2.0 Å was created 

around the aligned molecules. In CoMFA, the steric and electrostatic fields were 

calculated at each intersection lattice point of the grid. A sp3 carbon atom with 

charge +1.00 was used as a probe atom. The steric and electrostatic fields were 

truncated at +30.00 kcal/mol. 

In CoMSIA, the steric, electrostatic, hydrophobic, hydrogen bond donor and 

acceptor descriptors were calculated at each lattice intersection of a regularly placed 

grid of 2.0 Å. A probe atom with radius 1.0 Å, charge +1.0, and hydrophobicity of 

+1.0 was used to calculate the respective fields. The attenuation factor α was set to 

0.3. CoMSIA similarity indices (AF) for molecule j with atom i at grid point q are 

calculated by Eq.(3-1): 

∑ −−=
2

probe,F, )(A iqr
ikk

q
k ej αωω                     (3-1) 

where k represents the steric, electrostatic, hydrophobic, H-bond donor, or H-bond 

acceptor descriptor. A Gaussian-type distance-dependence was used between the 

grid point q and each atom i of the molecule.  

 The partial least-square (PLS)217 analysis was used to derive the 3D-QSAR 

models. Sample-distance PLS (SAMPLS) algorithm 218  was used for the 

leave-one-out (LOO) cross-validation. The optimum number of the components 
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identified in the cross-validation was used in the final analysis. To further validate 

the model, 100 runs of bootstrap analyses were performed. The models were also 

rigorously analyzed by performing cross-validation using 5 groups and 2 groups in 

the training set. Since only the number of groups and the number of validation times 

can be controlled in the SYBYL ‘cross-validation’ process, the process was repeated 

for 25 times. The models were also evaluated for their ability to predict the activity 

of molecules in the test set. The predictive r2 (denoted by r2
pred) for molecules in the 

test set was calculated by using the Eq.(3-2): 

 

r2
pred = (SD – PRESS) /SD                     (3-2) 

where SD is the sum of the squared deviations of the individual biological activity 

values for the test-set molecules from the mean activity value of the test-set 

molecules, and PRESS is the sum of the squared deviations of the predicted activity 

values from the actual activity values of the test-set molecules.  

 

3.2.3. Molecular docking 

Molecular docking was carried out to understand the detailed binding modes of 

PDK1 binding with this series of inhibitors and develop receptor-based 3D-QSAR 

models. X-ray crystal structures are available for PDK1 binding with three different 

compounds in this series. The PDB IDs for X-ray crystal structures of PDK1 bound 

with compounds 9, 35, and 53 are 2PE0, 2PE1, 2PE2, respectively.211,212 The X-ray 

crystal structure (PDB ID: 2PE2) of PDK1 was used in molecular docking. Used in 

the docking were the optimized geometries and the calculated ESP charges for all of 

the compounds. Initial docking test runs were carried out on compounds 9, 35, and 

53 using four different docking approaches and the ability to reproduce the X-ray 

crystal structures were analyzed. Of the four docking approaches used in this study, 

three are associated with the use of the popularly used docking programs, i.e. 

DOCK,178 AutoDock,219 and FlexX.172 The fourth is an approach combining FRED 

docking 220 , 221  with energy minimization calculations on the docked binding 

structures, denoted by FRED-EM for convenience. Based on our initial docking test 
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runs, we finally selected FlexX and FRED-EM for molecular docking with all 70 

ligands. It should be noted that the different docking programs have different default 

choices/parameters and the above results are limited to this series of molecules and 

should not be taken as the mutual comparison of software performance in general.  

DOCK. The DOCK 6.1 program uses the anchor and grow strategy for flexible 

ligand docking.178 The protein was considered to be rigid and the ligand molecules 

were flexible. The ligand orientations were scored through the use of a force 

field-based energy scoring function and the top-scored binding structure was 

selected. The active site spheres were prepared using SPHGEN program.183 The 

spheres were selected such that they cover the entire ligand-binding region. These 

spheres served to orient ligands in the active site.183 A box was created to enclose the 

spheres and the energetic grid was created by the GRID module of DOCK program. 

Grid calculations were carried out by using 0.3 Å grid spacing. Both the anchor and 

the ligand were minimized. 500 minimization iterations and a clash overlap value of 

0.5 were used for the docking runs.  

AutoDock. The AutoDock 4.0 program performs automated and flexible ligand 

docking.219 The AutoDock Tools (ADT) was used in the preparation of protein and 

ligands. The molecular docking was performed using the Lamarkian genetic 

algorithm (LGA). The size of the grid, in which both the enzyme and the ligand 

were embedded, was set to be 60 Å × 60 Å × 60 Å along the x, y, and z directions of 

Cartesian coordinate system. This size of grid is large enough to cover all the protein 

atoms near the docking site. The default parameters in the AutoDock were used in 

this study. For docking with each ligand, the top-10 docked poses were compared to 

the corresponding X-ray crystal structure.  

FlexX. We also analyzed docking using FlexX module of SYBYL.172 In FlexX 

method, the protein is kept rigid and the ligand flexibility is explored. In this 

program, the ligand molecule is split up into fragments and is built up by performing 

conformational search of the ligand in the active site.173 Only the best conformation 

was built upon and the others are discarded. The active site was defined as residues 

within 6.5Å around the bound ligand. Based on the crystal structure the region with 
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residues Leu88, Val96, Leu212, Ser160, and Ala162 were defined as the core 

sub-pocket. The ligands were docked using the multiple-ligand docking option of 

the FlexX. The top-30 docked orientations were generated for each ligand and the 

best docked structure was selected. 

FRED docking followed by energy minimization (FRED-EM). We first 

generated and energy-minimized various molecular orientations and conformations 

of each ligand by using Omega (Open Eye Scientific Software) and Amber9 

programs,222  producing ~600 different minimum-energy conformations. Omega 

sampling is capable of selecting a ligand conformation similar to that of the targeted 

X-ray crystal structure by using an appropriate option (the default) including a 

low-energy cutoff to discard high-energy conformations, a low RMSD value below 

which two conformations are considered to be similar, and a maximum of 500 to 

1000 output conformations.223 We checked to make sure that the sampling was 

sufficient enough to include at least one conformer of the scaffold 

(3-[(Pyrrol-2-yl)-meth-(Z)-ylidene]-1,3-dihydro-indol-2-one) similar to the one 

found in the X-ray complex. FRED (OpenEye Scientific Software) docking 

calculations were carried out using protein structures with all hydrogen atoms and 

with the binding site definitions provided by FRED Receptor program (Open Eye 

Scientific Software). 

FRED docking roughly consisted of two steps, i.e. shape fitting and 

optimization. During the shape fitting, the ligand was placed into a 0.5 Å-resolution 

grid box encompassing all active-site atoms (including hydrogen atoms) using a 

smooth Gaussian potential.220 A series of two optimization filters were then 

processed, consisting of rigid-body optimization and optimization of the ligand pose 

in the dihedral angle space. In the optimization step, four scoring functions are 

available: Gaussian shape scoring,220 ChemScore,224 PLP,225 and ScreenScore.226 

Preliminary docking trials led us to select ChemScore for the optimization filters. In 

separate docking runs, the conformational poses of each ligand that passed the 

shape-fitting and optimization filters were submitted to the energy minimization 

using AMBER9 program. During the energy minimization in vacuum, the 
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non-bonded cutoff and the dielectric constant were set to group-based (20 Å cutoff 

distance) and distance-dependent (ε=4r), respectively.227 The pose with the lowest 

interaction energy was selected as the best binding mode.  

 

3.3. Combined receptor-based and ligand-based 3D-QSAR models and their 

evaluation  

3.3.1. 3D-QSAR models  

The results obtained from the CoMFA and CoMSIA models using a training 

set of 56 compounds are summarized in Table 3.2. The structural alignment of the 

compounds is one of the important steps in the development of a 3D-QSAR 

model.202 Hence we tested two different alignment rules namely the 

substructure-based alignment (Alignment-I) and atom/centroid-based alignment 

(Alignment-II). For all of the 3D-QSAR models, the leave-one-out (LOO) 

cross-validation was performed first to identify the cross-validated correlation 

coefficient (q2) values. Then the number of components identified in the LOO 

cross-validation process was used in the final non-cross-validated PLS run. The 

developed 3D-QSAR models were analyzed in terms of a number of statistical 

parameters, namely the q2, non-cross-validated correlation coefficient (r2), standard 

error estimate (SEE), and F-statistic values. All models developed have a good q2 

value of >0.6. A q2 value of greater than 0.5 is usually considered significant.228 In 

CoMFA analyses, the substructure-based alignment (Alignment-I) led to the models 

with larger q2 and r2 values than those obtained from Alignment-II. In the case of 

CoMSIA, different combinations of the descriptors were also studied. The CoMSIA 

model with steric, electrostatic, hydrophobic, donor, and acceptor descriptors was 

associated with larger q2 and r2 values. It has been reported that, in addition to the q2 

value, r2
pred should also be used to choose the predictive QSAR models.229 Hence 

the CoMSIA model (denoted by CoMSIA-1d) from alignment I was selected for 

final analysis based on the larger r2
pred value and used to predict the activity of the 

compounds (see Table 3.2).  

The CoMFA-1a model (see Table 3.2) has a q2 value of 0.737 and an r2 value 
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of 0.907. The model was developed with 5 components. It has an F value of 97.053 

and an SEE value of 0.354. The CoMSIA-1d model has a q2 value of 0.824 and an r2 

value of 0.991. It was developed with 9 components and has an F value of 589.262 

and an SEE value of 0.112. The high r2, q2, and F values along with the low SEE 

values suggest that the models are reasonable and should have a good predictive 

ability. The results also reveal that the electrostatic and hydrophobic and hydrogen 

bond donor features play an important role in determining the biological activity of 

these inhibitors. In CoMSIA, the steric feature is found to have the least contribution 

to the activity. Based on the CoMFA-1a model, the contributions from the steric and 

electrostatic fields were found to be around ~46% and ~54%, respectively. 

According to the CoMSIA-1d model, the steric field has ~8% contribution, the 

electrostatic field has ~23% contribution, hydrophobic field has ~23% contribution, 

donor feature has 24%, and acceptor feature has ~22% contribution.  

The 3D-QSAR models were further validated using an external test set of 14 

compounds. CoMFA-1a and CoMSIA-1d models all gave good predictions of both 

the training- and test-set compounds (see Supporting Information). Both the 

CoMFA-1a and CoMSIA-1d models have the larger r2
pred values, i.e. 0.812 and 

0.883, respectively. The predicted activity of the compounds and their residuals 

(deviations) are given in Table 3.5, and the plots obtained were depicted in Figure 

3.2. In both models (CoMFA-1a and CoMSIA-1d) the deviations of the predicted 

pIC50 values from the corresponding experimental pIC50 values are always smaller 

than 1 log unit. 

We also performed additional cross-validation analyses using more groups in 

the training set. The CoMFA-1a and CoMSIA-1d models were further analyzed by 

additional rigorous statistical cross-validation using five and two groups in the 

training set. Each cross-validation process was repeated for 25 times and the results 

are tabulated in Table 3.3. In the case of cross-validation using two groups, the 

training set is divided into two groups and 50% of the compounds are dropped out in 

the training process and the activities of those compounds are predicted. In the case 

of cross-validation using 5 groups, 20% of the compounds are left out in the training 
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process and the activity values of those compounds are predicted. As shown in Table 

3.3, the average q2 values obtained in this way was only slightly lower than the q2 

values obtained with the LOO method. These results suggest that the high q2 values 

were not obtained by chance correlation and the obtained CoMFA-1a and 

CoMSIA-1d models are stable and valid. To further obtain statistical confidence 

limits, 100-runs bootstrap analyses were also carried out. The bootstrapping results 

are considered as good indicators concerning whether there exist possible chance 

correlations.230 Our analyses gave a bootstrap r2 value of 0.942 and 0.994 for 

CoMFA-1a and CoMSIA-1d, respectively. The high values of bootstrap r2 further 

confirm the robustness of our CoMFA-1a and CoMSIA-1d models. 

 

Table 3.2 Summary of the results obtained from the CoMFA and CoMSIA 

analysesa,201  

 Alignment-I  Alignment-II 
PLS statistic CoMF

A 
1a 

CoMSI
A 
1b 

CoMSI
A 1c 

CoMSI
A 1d 

 CoMF
A 
1e 

CoMSI
A 
1f 

CoMSI
A 
1g 

CoMSI
A 
1h 

 SE SE SEH SEHDA  SE SE SEH SEHDA 
q2 0.737 0.712 0.772 0.824  0.716 0.732 0.782 0.837 
SEP 0.595 0.623 0.548 0.507  0.619 0.611 0.536 0.493 
r2 0.907 0.900 0.921 0.991  0.882 0.897 0.919 0.993 
SEE 0.354 0.366 0.323 0.112  0.398 0.372 0.327 0.099 
F value 97.053 90.362 148.011 589.262  74.774 86.976 144.231 685.762 
NOC 5 5 4 9  5 5 4 10 
r2

pred 0.812 0.834 0.911 0.883  0.743 0.819 0.909 0.877 
r2

bs 
b
 0.942 n/a n/a 0.994  n/a n/a n/a n/a 

Fraction          
Steric 0.456 0.266 0.122 0.088  0.459 0.281 0.128 0.093 
Electrostatic 0.544 0.734 0.476 0.230  0.541 0.719 0.460 0.227 
Hydrophobi
c 

n/a n/a 0.402 0.230  n/a n/a 0.412 0.233 

Donor  n/a n/a n/a 0.235  n/a n/a n/a 0.223 
Acceptor n/a n/a n/a 0.217  n/a n/a n/a 0.224 
a CoMFA and CoMSIA analyses were preformed using the training set of 56 

compounds; Alignment-I refers to substructure-based alignment; Alignment-II refers 

to atom/centroid-based alignment; S=steric, E=electrostatic, H=hydrophobic, 
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D=donor and A=acceptor. b100 runs of bootstrap analysis.  
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Figure 3.3 Plots of the predicted pIC50 values versus the actual pIC50 values using 

the training set of 56 compounds and the test set of 14 compounds.201 (A) 

CoMFA-1a model using substructure-based alignment; (B) CoMSIA-1d model using 

substructure-based alignment; (C) CoMFA-2a model using the docking-based 

alignment; (D) CoMSIA-2b model using docking-based alignment. 
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Table 3.3 Result of the cross-validation analyses using five and two groups201  

 q2 a 
 Using five groups  Using two groups 
 CoMFA-1a CoMSIA-1d  CoMFA-1a CoMSIA-1d 
mean 0.725 0.794  0.67 0.730 
high 0.779 0.863  0.781 0.821 
low 0.631 0.699  0.562 0.637 
a Cross-validated q2 values obtained from using five and two groups with the 
optimum number of components on average of 25 runs. 
 
3.3.2 3D-QSAR contour maps 

One of the attractive features of the CoMFA and CoMSIA modeling is the 

visualization of the results as 3D-coefficient contour plots. The contour maps were 

generated as scalar products of coefficients and standard deviation, associated with 

each CoMFA or CoMSIA column. The maps generated depict regions having scaled 

coefficients greater than 80% (favored) or less than 20% (disfavored). In the case of 

CoMFA, the green contour shows favorable steric interaction and the yellow 

contours show the region where steric group is not favored. The red contour shows 

favorable electronegative region and the blue contour shows the region where 

electropositive region is favored. These contour maps (as depicted in Figures 3.4 and 

3.5) give us some general insight into the nature of the receptor-ligand binding 

regions. 

CoMFA contour maps One of the most active compounds in the series 

(compound 60) is shown superimposed with the CoMFA contour maps in Figure 3.4. 

The yellow contour region near #7 position of indolinone ring shows that, 

substituents at this position have unfavorable steric interactions. This is consistent 

with the reported experimental results. Compounds 4 and 8 have a methyl and 

hydroxyl group, respectively, at the #7 position and both compounds have a lower 

activity. The yellow contours are present below the plane of the indolinone group. 

This shows that there will be an unfavorable steric interaction if bulky substitutions 

were introduced in that region. This is in agreement with the reported X-ray crystal 

structure of PDK1 bound with compound 53 (PDB ID: 2PE2).212 The indolinone 
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group is sandwiched between hydrophobic residues. If bulky groups are introduced 

below the plane of indolinone group, they will have an unfavorable steric interaction 

with Leu212. 

 
Figure 3.4 CoMFA steric and electrostatic contour maps around compound 60; 

Green isopleths enclose areas where steric interaction is favored. Yellow contours 

are areas where the steric interaction is disfavored. Blue region represents the area 

where electropositive group is favorable for the binding. Red region refers to the 

area where an electronegative group is favorable for the binding. 

The green region near the urea group shows a favorable steric interaction in this 

position. The red contour near the carbonyl of urea group shows that electronegative 

groups are favored in this region. This explains the lower activity of compound 23. 

Compound 23 has (-CH2NH2) substituent at #5 position of indolinone group and has 

an IC50 value of 1000 nM. Similarly, red contour region (favorable electronegative 

group) is found in 4′ substituents at the pyrrole group. Compounds 39 to 48 have 

carbonyl group at this position and have an IC50 value in low nanomolar range. Blue 

contour region shows that electropositive groups are favored in this region. The 

–NH2 of urea group is present near this region and explains the increased activity of 

compound 26 (IC50 = 18 nM) compared to compound 25 (IC50 = 55 nM). 

CoMSIA contour maps In the case of CoMSIA, we get additional insight from 

the hydrophobic, acceptor, and donor features. The CoMSIA steric and electrostatic 

contour maps were similar to the ones obtained from the CoMFA model. Figure 3.5a 

shows compound 60 superimposed on the CoMSIA steric, electrostatic, and 

hydrophobic contour plot.  
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(A)

 

 

(B)

 

Figure 3.5. CoMSIA contour maps around compound 60. (A) CoMSIA steric, 

electrostatic, and hydrophobic contour maps around compound 60. Green and 

Yellow contours represent regions with favorable and unfavorable steric interactions. 

Blue and red contours represent regions which favor electropositive and 

electronegative groups respectively. Cyan isopleths enclose areas where 

hydrophobic groups could enhance the activity. White contours represent area where 

hydrophobic groups are disfavored. (B) CoMSIA acceptor and donor contour maps 

around compound 60. Orange isopleths indicate regions where acceptor group is 
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favored and red contour indicates region where acceptor groups are not favored. 

Magenta and purple contours represent favorable and unfavorable hydrogen bond 

donor regions, respectively. 

The yellow contour near #7 position of indolinone ring shows an unfavorable 

steric interaction at this region. This is also observed in the CoMFA model and 

explains the lower activity of compounds 4 and 7. In addition, the CoMSIA model 

shows that #5’ position of pyrrole ring has an unfavorable steric interaction. This 

agrees with the reported experimental results. Compounds 12 to 14 and 42 have a 

methyl or ethyl substituent at this position and have a lower activity. Green contour 

is present between #4 position of indolinone group and the methylidenyl (>C=CH-) 

group at the #3 position. This shows that, steric interaction is favored at this region. 

This agrees with the reported experimental results. Compounds 27 to 29 have bulky 

substituents in this region and have a higher activity. Similarly, when we compare 

compound 2 (IC50 = 510 nM) with 5 (IC50 = 1000 nM), we find that 4-methyl group 

(compound 2) is slightly favored than 4-OH group (compound 5) in this region, 

which is consistent with the relative IC50 values. The red contour near the carbonyl 

of urea group at #5 position of indolinone ring shows that electronegative groups are 

favored in this region. The blue contours occur immediately adjacent to it. It shows 

the favorable electropositive region. Another favorable electronegative region is 

present near the pyrrole ring. The favorable hydrophobic region (cyan contour) is 

present near the methylidenyl (>C=CH-) group at #3 position of indolinone ring 

(Figure 3.5a). This is consistent with the increased activity observed for compounds 

27 to 29. In Figure 3.5a, white contour showing an unfavorable hydrophobic 

interaction region is present near #5 position of indolinone group. This explains the 

lower activity of compound 3 (IC50 = 2700 nM) compared to compound 6 (IC50 = 

340 nM). The hydrogen bond donor and acceptor contour superimposed on 

compound 60 is shown in Figure 3.5b. The orange contour shows a favorable 

hydrogen bond acceptor region and the red contour shows regions in which 

hydrogen bond acceptor is not favored. The magenta color shows the favorable 

hydrogen bond donor contour and the purple color shows regions in which a 
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hydrogen bond donor group is not favored. From the contour plot we can see that the 

carbonyl oxygen of urea is present in the favorable hydrogen bond acceptor group 

region. This also agrees with the favorable electronegative contour observed in 

Figure 3.5a. The favorable hydrogen bond donor contour is present near the –NH2 of 

urea group. This is in agreement with the reported X-ray crystal structure of PDK1 

bound with compound 53 (PDB ID: 2PE2).212 In the crystal structure, the 

carboxylate side chain of Glu130 is present near –NH2 of urea group and could have 

a favorable interaction. There are unfavorable hydrogen bond donor and acceptor 

contours (Figure 3.5b, red contour and magenta contour) above the plane of the 

methylidenyl (>C=CH-) group (at #3 position of indolinone ring). Taking into 

account the hydrophobic contour from Figure 3.5a, we find that, this region has only 

a favorable hydrophobic interaction. Donor and acceptor groups are not preferred in 

this region. This explains the lower activity of compounds 31 to 34, as they have 

either donor or acceptor group in this region. There is an additional unfavorable 

hydrogen bond donor contour (purple) near the >NH of indolinone group. The X-ray 

crystal structure (PDB ID: 2PE2) shows that, the -NH- of indolinone group has a 

hydrogen bonding interaction with the backbone carbonyl oxygen of Ser160. The 

unfavorable hydrogen bond donor contour is present in the place where carbonyl 

group of serine backbone is present. So this purple contour represents that the -NH- 

of indolinone ring is the optimal or ideal group at this position. If a hydrogen bond 

donor substitution is made at #1 position of indolinone ring (instead of -NH- on the 

ring), there will be clash with the backbone atom and such a hydrogen bond donor 

will not be favorable for the activity.   

 

3.3.3 Binding structures and docking-based 3D-QSAR models  

In addition to the ligand-based 3D-QSAR, we have also performed molecular 

docking for all of the 70 inhibitors to understand the nature of interactions of these 

compounds with PDK1. We also carried out molecular docking and receptor-based 

3D-QSAR modeling, i.e. using the docked poses of the 70 compounds in the PDK1 

active site. The contour plots from the receptor-based 3D-QSAR models directly 
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relate the favorable and unfavorable contours to the corresponding detailed 

protein-ligand interactions in the active site. X-ray crystal structures are available for 

PDK1 binding with three different compounds (9, 35, and 53) in this series. The 

PDB IDs for X-ray crystal structures of PDK1 binding with compounds 9, 35, and 

53 are 2PE0, 2PE1, and 2PE2, respectively.211,212 As the first step, the docking 

reliability was tested using the PDK1 structure in 2PE2 for docking with compounds 

9, 35, and 53. For molecular docking with all ligands, we used the optimized 

geometries and calculated ESP charges. Three commonly used docking programs 

(DOCK, AutoDock, and FlexX) and the aforementioned FRED-EM approach were 

used for these three inhibitors. We found that only FlexX and FRED-EM were able 

to reproduce the X-ray crystal structures for all of the three ligands. The AutoDock 

was unable to reproduce the pose of compound 35 in PDK1. All of the 10 AutoDock 

poses for compound 35 were significantly different from that observed in the X-ray 

crystal structure. In the case of DOCK, compound 53 failed to dock into the active 

site. 

In light of the above docking tests, the FlexX and FRED-EM were finally 

selected for carrying out molecular docking for all of the 70 inhibitors. In the case of 

FlexX-based docking, 69 compounds were docked in a similar pose. One exception 

is compound 37, in which the -NH- of pyrrole ring is flipped by ~180o compared to 

the X-ray crystal structure. So, compound 37 was omitted from the training set of 

the 3D-QSAR modeling using the molecular structures obtained from the FlexX 

docking. The FRED-EM approach was able to dock all of the 70 compounds into the 

active site with a similar pose. The docked poses of all 70 compounds using this 

method were shown in Figure 3.6. The docked poses serve as a very good starting 

point for carrying out 3D-QSAR modeling. As discussed earlier, the alignment of 

compound structures plays a key role in developing successful 3D-QSAR models. 

Hence the docked poses of the ligands were used to develop receptor-based 

3D-QSAR models. 

In the development of 3D-QSAR models based on FlexX docking and 

FRED-EM docking, we found that the models developed with FRED-EM docking 
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(CoMFA-2a and CoMFA-2b) had larger q2, r2, and r2 pred values. Hence CoMFA-2a 

and CoMSIA-2b were used in our further analysis below. The results are 

summarized in Table 3.4.  

(A)

 
 

(B)

 
Figure 3.6 Docked poses of all 70 inhibitors in the active site of PDK1. (A) The 

trace view of PDK1 backbone is shown in magenta color. (B) Different view of the 

70 docked molecules; PDK1 is shown in Connolly surface and the surface is colored 

according to cavity depth.  
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Table 3.4 Summary of the results obtained from the docking-based CoMFA and 

CoMSIA analyses201 

a CoMFA and CoMSIA analyses were preformed using the training set of 56 

compounds and the alignment is based on the docked poses from FRED-EM method. 
b CoMFA and CoMSIA analyses were preformed using the training set of 55 

compounds and the alignment is based on the FlexX docked poses; S=steric, 

E=electrostatic, H=hydrophobic, D=donor and A=acceptor. c 100 runs of bootstrap 

analysis. 

 

 CoMFA. The CoMFA-2a model developed with the docked poses has a q2 

value of 0.729 and r2 value of 0.884. The validity of the model was tested with the 

external test set of 14 compounds. CoMFA-2a model gives satisfactory activity 

(pIC50) predictions for both the training and test sets. It is also interesting to note that 

the contour plots obtained from the docking-based model correlate well with the 

detailed interactions between the compounds and the active site residues (Figure 

3.7b). The predicted activity of the compounds and their residuals are provided in 

Table 3.6 and the plots obtained are depicted in Figure 3.3c. The deviations of the 

predicted pIC50 values are greater than 1 log unit only for two compounds (28 and 

33). The residuals between actual and predicted values for compounds 28 and 33 are 

 FRED-EMa FlexXb 
PLS statistic COMFA-2a COMSIA-2b CoMFA-3a CoMSIA-3b 
 SE SEHDA SE SEHDA 
q2 0.729 0.79 0.662 0.738 
SEP 0.598 0.521 0.663 0.615 
r2 0.884 0.909 0.854 0.992 
SEE 0.392 0.343 0.437 0.109 
F value 96.878 173.423 99.093 698.659 
NOC 4 3 3 8 
r2

pred 0.736 0.840 0.726 0.806 
r2

bs 
c
 0.911 0.926 n/a n/a 

Fraction     
Steric 0.428 0.079 0.459 0.086 
Electrostatic 0.572 0.283 0.541 0.248 
Hydrophobic n/a 0.245 n/a 0.229 
Donor  n/a 0.237 n/a 0.271 
Acceptor n/a 0.156 n/a 0.167 
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-1.25 and -1.12, respectively. A yellow contour present near #7 position of the 

indolinone ring represents an unfavorable steric interaction in this region. This is 

consistent with the corresponding protein-ligand binding structure obtained from 

molecular docking. A comparison between the docked structure and the contour 

plots reveals that the yellow contour is present in the region of Leu159 and Val143. 

Hence, bulky substitutions at #7 position of indolinone ring will have an unfavorable 

steric interaction. This also explains the lower activity of compounds 4 and 8. 

Another unfavorable steric interaction region (yellow contour) is present near the 

pyrrole and phenyl ring. Our docked model shows that a bulky substituent at this 

position will have an unfavorable steric interaction with the backbone of Lys163 and 

side chain of Tyr161. The red contour represents a favorable electronegative region 

and is present near the carbonyl of urea group. According to the docked structure, 

this favorable electronegative region is surrounded by Lys111, Thr222, and 

backbone -NH- group of Asp223. This explains the increased activity expected from 

the introduction of electronegative groups in this region. The red contour around the 

phenyl ring shows a favorable electronegative region. This contour is present near 

the backbone -NH- of Gly165 residue. Thus it is expected to have a favorable 

interaction with electronegative groups like carbonyl. The amino group on 3″ 

position of phenyl ring is present near the backbone carbonyl group of Asn164. This 

explains the increased activity of compounds with electropositive groups in this 

region. Blue contour is present in the region around urea group. Glu130 and Ser94 

are present in this region. This reveals that the activity of the compound can be 

increased further by extending the substituents and introducing suitable 

electropositive groups to interact with these residues.  
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(A)

 
 

(B)

 

Figure 3.7 CoMFA contour maps around compound 60 (A) CoMFA steric and 

electrostatic contour maps around compound 60; Green isopleths enclose areas 

where a steric bulk could enhance the activity. Yellow contours are areas where the 

steric interaction is disfavored. Blue region represents the area where a positive 

charge is favorable for the binding. Red region refers to the area where a negative 

charge is favorable for the binding. (B) The CoMFA contour plots were shown 

superimposed with PDK1 active site residues. Compound 60 is shown in magenta 

color. Hydrogen atoms and some side-chains were not shown for better clarity of 

this figure. 
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(A)

 

 

(B)

 

Figure 3.8 CoMSIA contour maps around compound 60 (A) CoMSIA steric, 

electrostatic, and hydrophobic contour maps around compound 60. Green isopleths 

indicates region where there is favorable steric interaction. Yellow contours are areas 

where the steric interaction is disfavored. Blue region represents the area where a 

positive charge is favorable for the binding. Red region refers to the area where a 

negative charge is favorable for the binding. Cyan isopleths enclose areas where 

hydrophobic groups could enhance the activity. White region represents area where 

hydrophobic groups are disfavored. (B) CoMSIA acceptor and donor contour maps 

around compound 60. Orange isopleths indicate regions where acceptor group is 

favored and red regions indicate where acceptor groups are not favored. Magenta 
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region indicates areas where hydrogen bond donor groups are favored. The purple 

region indicated areas where hydrogen bond donors are disfavored.  

 CoMSIA. The CoMSIA model developed with the docked poses has a q2 value 

of 0.79 and r2 value of 0.909. The validity of the model was tested with the external 

test set of 14 compounds. CoMFA-2b model gives satisfactory activity (pIC50) 

predictions for both the training and test sets. The predicted activity of the 

compounds and their residuals are provided in Table 3.6 and the plots obtained were 

depicted in Figure 3.3d. The deviation of the predicted pIC50 value from the 

corresponding experimental value was greater than 1 log unit only for compound 30. 

The residual (deviations) between actual and predicted values for compound 30 is 

1.09. In Figure 3.8a, the green contour along with white contour around the urea 

group shows that hydrophobic substituents are not favored at this region but the urea 

group has a favorable steric fit into the pocket surrounding this group. This is in 

agreement with the crystal structure as this group is surrounded by Thr222, Lys111, 

and Asp 223. Compound 26 with urea derivative has a higher activity (IC50 = 18 nM) 

than compounds 16 (IC50 = 290 nM) and 18 (IC50 = 260 nM) with 5-sulfonamide 

and 5-carboxylate groups, respectively. The cyan contour shows a favorable 

hydrophobic interaction with substituents in the methylidenyl (>C=CH-) group (at 

#3 position of indolinone ring). This is in agreement with the experimental 

observation that compounds 36 to 38 with a hydrophobic susbtituent in this region 

have an increased activity. The blue contour shows a favorable electropositive 

region near the amino group on the phenyl ring. The amino group of this molecule is 

present near the backbone carbonyl group of Asn164. This explains the increased 

activity of compounds with electropositive groups in this region. The orange contour 

shows a favorable acceptor region which corresponds to the interaction with Lys111. 

The red contour in Figure 3.7b corresponds to the unfavorable acceptor groups. 

Hydrophobic residues like Val96 and Leu88 are present in this region. This explains 

the unfavorable hydrogen bond donor (purple) and acceptor (red) contour in this 

region. The unfavorable hydrogen bond donor contour near the 2-carbonyl group of 

indolinone ring corresponds to the -NH- backbone of Ala162. This shows that 
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H-bond donor is not favored in this region. 

 

3.4. Significance and limitation of the combined 3D-QSAR modeling and 

molecular docking study 

 Indolinone is one of the ten most frequently encountered sub-structures in 

kinase inhibitors.231 Reasonable 3D-QSAR models will be of great help in further 

rational design of new ligands of indolinone series as PDK1 inhibitors. Through a 

combined use of 3D-QSAR modeling and molecular docking, we have developed 

ligand-based and docking-based 3D-QSAR models for the PDK1 inhibitors. The 

high r2 and q2 values of the 3D-QSAR models suggest that PDK-1 binds with all of 

the examined inhibitors in a similar binding mode. Combining molecular docking 

with 3D-QSAR modeling offers a more interesting, integrated approach and allows 

us to utilize structural information of the protein for 3D-QSAR modeling. The 

advantage of docking-based model is that we can directly superimpose the contour 

plots into the protein active site. Such superimposition will also allow us to check 

the correlation between the contour plots and the corresponding receptor residues 

present near them. Since the docked pose gives the bioactive conformation of the 

ligands, this method helps to overcome the error which may arise by using an 

incorrect conformation of the ligand. The results obtained from molecular docking 

and those from 3D-QSAR modeling can complement and validate each other. All of 

the structural insights obtained from molecular docking and 3D-QSAR contour 

maps are consistent with the available experimental activity data, suggesting that the 

microscopic enzyme-inhibitor binding structures obtained from the molecular 

docking are reasonable and that the developed 3D-QSAR models are reliable.  

 Another interesting aspect is the nature of contour plots from two different 

approaches namely ligand-based and receptor-based QSAR modeling. In the former, 

no receptor information is used, whereas in the latter docked poses were used as the 

starting alignment to carry out QSAR analysis. The contour plots from both 

approaches are very similar. As discussed above, the contour maps obtained from 

both models were consistent with the active site. These results show one of the 



 85 

potential applications of ligand-based study in drug design. For many important 

therapeutic targets, the experimentally solved X-ray structure is not available. But 

there are known ligands against such targets which were developed through 

traditional medicinal chemistry approach. In such cases, ligand-based approaches 

like 3D-QSAR can be used to get an insight into the nature of the active site. We 

have previously shown one such application in understanding the nature of active 

site of microsomal prostaglandin E synthase-1 and its interaction with the 

inhibitors.206 In our present study, we have also found that the contour plots from 

ligand-based alignment which does not include any receptor information are 

consistent with the receptor active site. 

One possible disadvantage of the docking-based 3D-QSAR method is that the 

small variation in docking pose could give rise to “noise” in the 3D-QSAR model. It 

is reported that the slight variation in the docked poses could create variations in the 

ligand field and will weaken the ability of the partial least-squares (PLS) to detect 

the real “signal”.232 The general limitation of 3D-QSAR modeling is that it cannot 

be used if the ligands have different microscopic binding modes with the enzyme. In 

such cases, the combined molecular docking and 3D-QSAR modeling approach 

cannot be used. Whenever 3D-QSAR modeling can be used for a series of 

compounds, developing both ligand-based and docking-based 3D-QSAR models 

could help us to overcome some possible error which may occur if we use one 

particular method.  
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Table 3.5 The actual and predicted inhibitory activity values (pIC50) and the 

residuals of the training- and test-set molecules.201  
  CoMFA-1a CoMSIA-1d 
Compound Actual 

pIC50 
Predicted 

pIC50 
Residual Predicted 

pIC50 
Residual 

1 5.74 5.69 0.05 5.58 0.16 
2 6.29 6.04 0.26 6.12 0.17 
4 4.58 5.33 -0.75 5.00 -0.42 
5 6.00 5.93 0.07 6.04 -0.04 
7 6.05 5.93 0.12 6.03 0.02 
8 4.58 5.32 -0.74 4.45 0.13 
9 7.10 6.56 0.54 7.00 0.10 
11 6.55 6.29 0.26 6.41 0.14 
12 6.17 5.94 0.23 5.99 0.18 
13 5.64 5.91 -0.27 5.76 -0.12 
14 5.96 6.09 -0.13 6.09 -0.13 
15 6.24 6.22 0.02 6.23 0.01 
16 6.54 6.24 0.30 6.52 0.02 
17 6.17 6.65 -0.48 6.21 -0.04 
18 6.59 6.36 0.23 6.57 0.02 
19 6.92 6.26 0.66 6.91 0.01 
20 6.70 6.65 0.06 6.74 -0.04 
23 6.00 6.37 -0.37 6.08 -0.08 
24 6.28 6.77 -0.49 6.30 -0.02 
26 7.74 7.86 -0.12 7.74 0.00 
27 7.17 6.52 0.65 7.18 -0.01 
29 7.54 7.02 0.52 7.57 -0.03 
30 7.47 6.91 0.56 7.49 -0.02 
31 5.38 5.47 -0.09 5.33 0.05 
32 5.41 6.29 -0.88 5.34 0.07 
33 5.21 5.21 0.00 5.13 0.08 
34 5.27 5.20 0.07 5.43 -0.16 
35 8.30 8.09 0.21 8.31 -0.01 
36 8.52 8.22 0.30 8.74 -0.22 
37 8.05 8.82 -0.77 7.84 0.21 
39 8.05 8.04 0.01 7.96 0.09 
40 8.05 8.29 -0.24 8.01 0.04 
41 7.41 7.31 0.10 7.57 -0.16 
42 7.24 7.16 0.08 7.16 0.08 
43 7.57 7.52 0.05 7.70 -0.13 
44 7.96 7.60 0.36 7.89 0.07 
45 7.54 7.44 0.10 7.57 -0.03 
47 7.85 7.75 0.10 7.84 0.01 
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Table 3.5 (Continued) 
Compound Actual 

pIC50 
Predicted 

pIC50 
Residual Predicted 

pIC50 
Residual 

48 7.77 7.78 -0.01 7.68 0.09 
49 7.68 7.93 -0.25 7.71 -0.03 
50 8.10 8.03 0.07 8.12 -0.02 
51 7.35 7.18 0.17 7.38 -0.03 
52 8.40 8.21 0.19 8.34 0.06 
53 8.40 8.21 0.19 8.36 0.04 
55 7.72 7.99 -0.27 7.76 -0.04 
57 7.43 7.61 -0.18 7.49 -0.06 
58 8.30 8.02 0.28 8.30 0.00 
60 8.52 8.28 0.24 8.52 0.00 
61 8.00 8.18 -0.18 8.02 -0.02 
63 8.30 8.50 -0.20 8.27 0.03 
64 8.00 8.06 -0.06 8.06 -0.06 
65 8.22 8.28 -0.06 8.22 0.00 
66 8.40 8.36 0.04 8.38 0.02 
68 8.30 8.43 -0.13 8.30 0.01 
69 8.00 8.35 -0.35 7.96 0.04 
70 8.52 8.58 -0.06 8.54 -0.02 

Test set      
3 5.57 6.12 -0.55 5.83 -0.26 
6 6.47 6.09 0.38 6.38 0.09 
10 6.55 6.24 0.31 6.47 0.08 
21 6.24 5.86 0.38 6.63 -0.39 
22 6.00 5.83 0.17 5.75 0.25 
25 7.26 7.12 0.14 6.48 0.78 
28 7.85 6.94 0.91 7.65 0.20 
38 8.00 8.48 -0.48 8.22 -0.22 
46 7.51 7.71 -0.20 7.84 -0.33 
54 8.22 7.91 0.31 7.88 0.34 
56 7.29 7.45 -0.16 7.53 -0.24 
59 8.10 8.01 0.09 8.05 0.05 
62 8.10 8.39 -0.29 8.16 -0.06 
67 8.30 8.41 -0.10 8.29 0.01 

 

Table 3.6 The actual and predicted inhibitory activity values (pIC50) and the 

residuals of the training- and test-set molecules using docking based 3D-QSAR.201  
  CoMFA-2a CoMSIA-2b 
Compound Actual 

pIC50 
Predicted 

pIC50 
Residual Predicted 

pIC50 
Residual 

1 5.74 5.71 0.03 5.69 0.05 



 88 

Table 3.6 (Continued) 
Compound Actual 

pIC50 
Predicted 

pIC50 
Residual Predicted 

pIC50 
Residual 

2 6.29 5.86 0.43 5.85 0.44 
4 4.58 5.38 -0.80 5.47 -0.89 
5 6.00 5.83 0.17 5.64 0.36 
7 6.05 5.96 0.09 5.86 0.19 
8 4.58 5.39 -0.81 5.36 -0.78 
9 7.10 6.52 0.59 6.50 0.60 
11 6.55 6.14 0.41 6.00 0.55 
12 6.17 6.03 0.14 6.06 0.11 
13 5.64 5.83 -0.19 5.95 -0.31 
14 5.96 5.84 0.12 6.00 -0.04 
15 6.24 6.27 -0.03 6.04 0.20 
16 6.54 5.95 0.60 6.57 -0.03 
17 6.17 6.46 -0.29 6.13 0.04 
18 6.59 6.38 0.21 6.85 -0.26 
19 6.92 6.26 0.66 6.74 0.18 
20 6.70 6.64 0.06 6.65 0.05 
23 6.00 6.73 -0.73 5.74 0.26 
24 6.28 6.64 -0.36 6.43 -0.15 
26 7.74 7.86 -0.12 7.78 -0.04 
27 7.17 6.82 0.35 7.18 0.00 
29 7.54 7.20 0.34 7.72 -0.18 
30 7.47 6.56 0.91 6.38 1.09 
31 5.38 5.48 -0.10 5.79 -0.41 
32 5.41 5.93 -0.52 5.45 -0.04 
33 5.21 6.33 -1.12 5.90 -0.69 
34 5.27 5.16 0.11 5.57 -0.30 
35 8.30 7.89 0.41 7.92 0.38 
36 8.52 8.20 0.32 8.19 0.33 
37 8.05 8.51 -0.46 8.54 -0.49 
39 8.05 8.24 -0.19 7.89 0.16 
40 8.05 8.14 -0.09 7.76 0.29 
41 7.41 7.42 -0.01 7.34 0.07 
42 7.24 7.30 -0.05 7.35 -0.11 
43 7.57 7.56 0.01 7.72 -0.15 
44 7.96 7.54 0.42 7.80 0.16 
45 7.54 7.37 0.18 7.66 -0.12 
47 7.85 7.63 0.22 7.68 0.17 
48 7.77 7.71 0.06 7.58 0.19 
49 7.68 7.73 -0.05 7.56 0.12 
50 8.10 7.81 0.29 7.87 0.23 
51 7.35 7.66 -0.31 7.33 0.02 
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Table 3.6 (Continued) 
Compound Actual 

pIC50 
Predicted 

pIC50 
Residual Predicted 

pIC50 
Residual 

52 8.40 8.30 0.10 8.42 -0.02 
53 8.40 8.44 -0.04 8.45 -0.05 
55 7.72 7.83 -0.11 7.55 0.17 
57 7.43 7.67 -0.24 7.57 -0.14 
58 8.30 8.04 0.26 8.12 0.18 
60 8.52 8.41 0.12 8.28 0.24 
61 8.00 8.48 -0.48 8.30 -0.30 
63 8.30 8.30 0.00 8.31 -0.01 
64 8.00 8.14 -0.14 8.17 -0.17 
65 8.22 8.32 -0.10 8.42 -0.20 
66 8.40 8.22 0.18 8.45 -0.05 
68 8.30 8.50 -0.20 8.64 -0.34 
69 8.00 8.08 -0.08 8.31 -0.31 
70 8.52 8.71 -0.19 8.79 -0.27 

Test set      
3 5.57 6.14 -0.57 5.64 -0.07 
6 6.47 5.96 0.51 5.96 0.51 
10 6.55 6.03 0.52 6.06 0.49 
21 6.24 5.93 0.31 6.19 0.05 
22 6.00 6.12 -0.12 6.05 -0.05 
25 7.26 7.35 -0.09 6.57 0.69 
28 7.85 6.61 1.25 7.21 0.64 
38 8.00 7.95 0.05 8.20 -0.20 
46 7.51 7.61 -0.10 7.68 -0.17 
54 8.22 7.89 0.34 7.79 0.43 
56 7.29 7.75 -0.46 7.39 -0.10 
59 8.10 7.96 0.14 8.08 0.02 
62 8.10 8.26 -0.16 8.33 -0.23 
67 8.30 8.44 -0.14 8.53 -0.23 

 

3.5 Summary of computational insights 

The combined 3D-QSAR modeling and molecular docking resulted in valuable 

insights into PDK1 binding with 70 inhibitors and their structure-activity correlation. 

In this present study we first developed a 3D-QSAR model using ligand-based 

alignment. We compared different alignment techniques and found that the 

substructure based alignment method gives the best ligand-based 3D-QSAR model. 

Use of higher-level optimization/charge calculation methods were reported to be 
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able to reproduce the experimental structure.233 Hence in our present study, we 

utilized PM3 for geometry optimization and the HF 6-31G* method for the charge 

calculations. The drawback that could be expected for ligand-based 3D-QSAR 

method is the difference between the template used for alignment and the real 

bio-active conformation of the molecule. So we also performed receptor-based 

3D-QSAR. We first performed a control run and checked the ability of different 

docking programs to reproduce the three X-ray crystal structures of the ligands 

binding with PDK1. We selected FRED-EM as the docking method to dock all the 

ligands. Thus we have used different strategies to develop robust ligand-based and 

receptor-based 3D-QSAR models. The models developed using both methods were 

statistically valid with better q2, r2 values. Finally the models were also able to 

predict the external test set of compounds which were not used in QSAR model 

development. This shows the usefulness of the models in predicting the activity of 

new compounds. Molecular docking revealed the detailed structures of PDK1 

binding with the compounds. The interactions identified from the CoMFA and 

CoMSIA 3D-contour maps correlate well with the specific interactions between the 

inhibitors and the amino acid residues identified in the docked binding structures. 

The fact that both methods gave similar results could point towards the general 

usefulness of ligand-based approaches in cases where the target structure is not 

available. Moreover, the combined modeling using two different approaches is a 

better approach because it helps to overcome the error which may occur if we use 

one particular method. The 3D contour maps obtained from the CoMFA and 

CoMSIA models in combination with the detailed PDK1-inhibitor binding structures 

obtained from molecular docking helped to better interpret the structure-activity 

relationship of these PDK1 inhibitors and provide valuable insights into rational 

drug design for further optimization of the biological activity of the PDK1 

inhibitors. 

 

 
Copyright © Mohamed Diwan Mohideen AbdulHameed 2009 
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CHAPTER 4  

 

4. HIT IDENTIFICATION: APPLICATION OF HIERARCHICAL VIRTUAL 

SCREENING 

Computational drug design approaches are used in both lead optimization and 

hit/lead identification. As discussed before, PDK1 is a well known anti-cancer target 

and application of such computational drug design approaches will help towards the 

development of potent PDK1 inhibitors and ultimately lead to development of new 

anti-cancer agents. In the previous chapters, we discussed the application of 

computational lead optimization strategies against PDK1. We have used 

structure-based lead optimization strategy for celecoxib and its derivatives. We have 

used ligand-based and combined approaches in lead optimization of indolinone 

derivatives. In both cases, previously known inhibitors were used as a starting point 

to understand and design new PDK1 inhibitors. We were also interested in 

identifying new compounds as PDK1 inhibitors. Computational virtual screening is 

a very useful tool for hit identification. In this chapter, we discuss the application of 

a hierarchical virtual screening strategy to identify hits against PDK1. Part of the 

contents in chapter 4 was adapted from submitted article, AbdulHameed et al. J. 

Comp. Aided Mol. Des. 2009. 
 

4.1 Computational virtual screening approaches  

Virtual screening methods are used for both lead identification and 

optimization in various drug discovery projects.234 This method involves screening 

a large database of millions of compounds using computational approaches and 

selection of smaller number of compounds for final experimental testing.235 Virtual 

screening is expected to reduce the amount of experimental work and has the 

potential to reduce the cost and time of the initial drug discovery phase. This makes 

virtual screening a very popular approach. A recent study comparing virtual 

screening against experimental high-throughput screening (HTS) for the same target 
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shows that virtual screening performs better than HTS.236 A number of recent 

studies have successfully identified new hits through virtual screening.237,238 Inspite 

of its success, the current virtual screening approaches  have their own limitations 

including consideration of the flexibility of active site residues during docking and 

accurately accounting for the solvation/desolvation effects of protein-ligand 

interaction.239 Many strategies have been proposed to improve the virtual screening 

approaches.240,241 Screening strategies which use fast and quick filters in the initial 

steps and more complex filters in later stages were reported to be better than simple 

screening using one method. 242  The development of commercially available 

compound database (ZINC) has further helped virtual screening applications by 

reducing the time spent in preparing the databases.243 Recent research papers shows 

that the performance of ligand-based virtual screening approach is faster and 

perform better than simple docking methods.234 Absorption, Distribution, 

Metabolism, and Excretion (ADME) properties were also reported to play a major 

role in the development of a hit into a potential drug molecule.242 Application of 

appropriate ADME filters in the early stage of virtual screening will help in 

identifying a more suitable hit molecule. The computational binding free energy 

calculation methods like linear interaction energy (LIE) and molecular 

mechanics/Poisson-Boltzmann surface area (MM-PBSA) were reported to be useful 

for the rapid estimation of the binding free energy of an inhibitor with the 

macromolecular target.242 The MM-PBSA method has been successfully used for 

calculating the binding free energies of protein-protein and protein-inhibitor 

interactions.168 There are very few reports about the use of MM-PBSA method as a 

part of virtual screening strategy to identify new lead molecules. One recent report 

has shown the ability of MM-PBSA method to retain the known ligand when the 

method is used as a part of virtual screening strategy.242 We are interested to analyze 

the hierarchical virtual screening approach which uses a combination ligand-based 

and structure-based approach along with the more sophisticated MM-PBSA method 

as a final filter.  

As PDK1 is a well validated and a promising anti-cancer target, we chose it 



 93 

as the target for our study. Identifying new hits as PDK1 inhibitor will help towards 

the development of better treatment options for cancers. We have pursued an 

efficient strategy of the hierarchical virtual screening with increasing complexity to 

identify new hits against PDK1. We used ligand-based method ROCS 244,43 and 

Rigid docking FRED245 as the initial filters followed by flexible docking using 

FlexX 172 and finally molecular dynamics (MD) and MM-PBSA methods were used. 

Applying hierarchical (step-wise) virtual screening strategy has helped us to identify 

a nanomolar PDK1 inhibitor which is active in cell based anti-cancer screening. 

 

4.2 Simulation methods  

4.2.1 Preparation of database and protein 

In this work we have used the ligand-based screening, rigid docking, flexible 

docking, and molecular dynamics (MD) simulations followed by the MM-PBSA 

calculations as screening filters in virtual screening. The flow chart of steps used in 

our virtual screening strategy is given in Figure 4.1. The first step is the selection of 

compound database and preparing protein structure for virtual screening. A subset of 

Zinc 7 database243 containing 688,086 compounds was used in this study. Zinc 

database represents an annotated database with curated molecules suitable for virtual 

screening.243 The subset is made up of compounds from two major commercial 

compound suppliers IBScreen (570,038 compounds) and Sigma Aldrich (115,588 

compounds). We also included a subset of 2,460 FDA-approved drugs in our 

screening dataset.  

We chose to screen compounds from these two major vendors as it would be 

convenient to purchase the compounds obtained as hits. We also included a natural 

product database (2,900 compounds) built in our lab. This database was created 

using resources like Comprehensive herbal medicinal information system for cancer 

(CHMIS-C) database246 and other natural product literatures.247 Thus a total of 

690,986 compounds were used for this virtual screening study. 
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Figure 4.1 Flowchart of the virtual screening strategy used in this study. 
 

As discussed previously few X-ray crystal structures in the protein data bank 

(PDB) are available for studying PDK1 binding with potential inhibitors. The 

starting protein structure used in this study is the X-ray crystal structure of 

adenosine-tri-phosphate (ATP) bound PDK1 (pdb code: 2BIY)101. The missing side 

chain atoms of residues Gln73, Arg75, Glu153, Lys228, Arg238, Lys304, Glu343, 

Glu348, and Lys357 were modeled using Sybyl 7.0 program. We decided to use a 

known inhibitor, i.e. BX-320,111 as the bound ligand. The obtained complete protein 

structure binding with BX-320 was used to carry out an MD simulation. The final 

stable, MD-simulated structure was used as the initial structure for our virtual 

screening study.  

 

4.2.2 Pre-screening filter 

The entire database was filtered with FILTER v.1.1.1 (OpenEye scientific 

software, www.eyesopen.com) to eliminate inappropriate or undesirable 

compounds.248 The Filter is a molecular screening tool that uses a combination of 

physical property calculations and functional group knowledge to assess libraries 

and ultimately remove non-lead-like compounds.241 Physical properties, atomic or 

http://www.eyesopen.com/�
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functional group content, and molecular graph topology are the three categories used 

by this program to allow or remove a given molecule in the database. The default 

lead-like filter available in this program was used with some minor variations. The 

main parameters that we used involve: molecular weight (minimal value = 150 Da, 

Maximum value = 440 Da, and rings (min=0, max=3), rotatable bonds (min=0, 

max=10), allowed elements (H, C, N, O, F, S, Cl, and Br), hydrogen bond donor 

(max=6), hydrogen bond acceptor (max=10). We filtered out molecules with XlogP 

greater than 4.0, which violates more than one Lipinski rule of five or if it is a 

known aggregator. Predicted aggregator and GSK_VEBER calculation which is 

present in the default script was not used in our study. The resulting library 

contained 157,623 compounds in mol2 format. The Filter input file used in this 

study is given in Appendix A.  

 

4.2.3 Control data set 

In order to check the nature of the run and to evaluate the process, we added a 

control dataset of 33 known PDK-1 inhibitors. 17 compounds were collected from 

various scientific reports [109, 110, 111,211, 212 ,249] and 16 compounds from 

patent applications [250,251,252,253,254]. Thus a total of 33 known inhibitors were 

used as the control set to quantify the performance of the virtual screen run. To 

evaluate the performance of the virtual screening run, hit rate and enrichment factor 

suggested by Wang et al.242 were calculated by using Eqs.(1) and (2):   

database in theinhibitor known  ofnumber  Total
filter  thepassed that inhibitorsknown  ofNumber   RateHit =           (4-1)                         

filter  thepassed that compounds ofNumber 
database in the compounds ofNumber   RateHit  Factor  Enrichment ×=  (4-2) 

Enrichment factor is a commonly used metric in virtual screening run.255 The higher 

the enrichment factor, the better the performance of a virtual screening run is. The 

enrichment factor indicates that the final database obtained after the screening is 

enriched with the active compounds compared to the initial database where it is 

randomly scattered.255  
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4.2.4 Conformer Generation 

We first generated multiple conformations of each ligand in the database by 

using OMEGA. 256  OMEGA is a systematic conformer generation tool. The 

algorithm implemented in OMEGA has two main components: 1) model building 

and 2) torsion driving. It dissects the molecule into fragments and generates 

fragment library. The molecules were then reassembled from the fragments. 

Molecular assembly is accomplished by simple vector alignment. By reassembling 

the fragments, it regenerates many possible combinations and submits each 

conformer to a simplified energy evaluation. Then all conformers below an energy 

threshold were compared and those within a certain RMS distance are clustered into 

a single representation. Atom typing, energy calculations, and geometry 

optimization in OMEGA were performed using the Merck Molecular Force Field 

(MMFF). The maximum allowed conformations per compound was set to 400 and 

the energy window (the value used to discard high-energy conformations) was set to 

10 kcal/mol. The default values of OMEGA program were used for other 

parameters. 

 

4.2.5 Filter-1 (Ligand-based virtual screening) 

Shape-based screening was used as the first filter in our virtual screening. The 

program ROCS was used.244,43 It was used to find the similarity between the 

molecules based on their shape. The basic idea behind ROCS is that two objects 

cannot have the same shape if their volumes are not the same. This method tries to 

find and quantify the maximal overlap of the volume of two molecules. The goal of 

this method is to find molecules that can adopt shapes extraordinarily similar to the 

query without necessarily having similar atom types and bonding patterns.43 So 

molecules are optimally aligned and matches are based on the volume overlap. 

Similarity is quantitated by shape Tanimoto.  This shape Tanimoto has quantity 1.0 

if two shapes are identical, and 0.0 if completely different. In the present work 

ROCS shape searching with chemical complementarity is used. The chemical 
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complementarities searches used the ImplicitMillsDean chemical forcefield, (also 

called color forcefield) which defines six chemical types: hydrogen-bond donors, 

hydrogen-bond acceptors, hydrophobes, anions, cations, and rings. Both shape 

Tanimoto and color forcefield were used in the ranking of ligands by ROCS. 

From the 157,623 compounds, a multi-conformational database was generated 

using the OMEGA and screened with ROCS. We utilized the co-crystallized 

structures of 3 PDK1 inhibitors from PDB databank as the ligand query and selected 

the top ~2.5% (4000) hits for each query. The three ligand queries have three 

different scaffolds including amino-pyrimidine, bisindolylmaleimide, and indolinone 

and were retrieved from PDB IDs: 1Z5M, 1UU3, and 1PEO respectively.109,111,211  

 

4.2.6 Filter-2 (Rigid docking) 

FRED (OpenEye Scientific Software) docking calculations were carried out 

using protein structures with all hydrogen atoms and with the binding site definitions 

provided by FRED Receptor program (OpenEye Scientific Software).245 FRED 

docking roughly consisted of two steps, i.e. shape fitting and optimization. During 

the shape fitting, the ligand was placed into a 0.5 Å-resolution grid box 

encompassing all active-site atoms (including hydrogen atoms) using a smooth 

Gaussian potential.220  

FRED carries out exhaustive docking of multi-conformer ligand and generation 

of poses. The pose ensemble was then filtered to reject poses that do not have 

sufficient shape complimentarity to the protein’s active site followed by rejection of 

poses that do not have at least one heavy atom in adenine pocket near Leu212. The 

top-ranked poses are optimized by solid body optimization and refined with MMFF 

forcefield. Preliminary docking trials led us to select OEchemscore for the 

optimization filters. 

 

4.2.7 Filter-3 (Flexible docking) 

We also analyzed docking using FlexX module of SYBYL. The active site was 

defined as residues within 6.5 Å around the bound ligand. Based on the crystal 
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structure, the region with residues Leu88, Val96, Leu212, Ala162, and Lys111 were 

defined as the core sub-pocket. The ligands were docked using the multiple-ligand 

docking option of the FlexX.   

 

4.2.8 Molecular dynamics in vacuum 

We further refined the PDK1-ligand binding structures with the energy 

minimization followed by a 20-ps MD simulation at T = 298.15 K for each binding 

structure. The energy minimization was performed by using the steepest descent 

algorithm first until the maximum energy derivative was smaller than 4 kcal/mol/Å 

and then using the conjugated gradient algorithm until the maximum energy 

derivative was smaller than 0.001 kcal mol-1 Å-1. During the energy minimization 

and MD simulation, only the ligand and residue side chains in the binding pocket 

were kept free to move. The nonbonded interaction cutoff and the dielectric constant 

were set up to group-based (20-Å cutoff distance) and distance-dependent (  = 

4r)227,257 to mimic the solvent environment, respectively. The MD simulation was 

performed by using Amber8 program with a time step of 1 fs. 

 

4.2.9 Molecular dynamics in water 

The general procedure for carrying out the MD simulations in water is 

essentially the same as that used in our earlier computational studies in chapter 2. 

Briefly, the MD simulations were performed using Sander module of Amber8 

program.184 The partial atomic charges for the ligand atoms were calculated using 

the RESP protocol185 after electrostatic potential calculations at Hartree-Fock (HF) 

level with 6-31G* basis set using Gaussian03 program.186 The PDK1-ligand binding 

complex was neutralized by adding appropriate counter ions and was solvated in a 

rectangular box of TIP3P water molecules187 with a minimum solute-wall distance 

of 10 Å. The solvated systems were carefully equilibrated and fully 

energy-minimized. These systems were gradually heated from T = 10 K to T = 

298.15 K in 35 ps before a production MD simulation run. The time step used for 

the MD simulations was 2 fs. Periodic boundary conditions in the NPT ensemble at 
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T = 298.15 K with Berendsen temperature coupling188 and P = 1 atm with isotropic 

molecule-based scaling were applied. The SHAKE algorithm was used to fix all 

covalent bonds containing hydrogen atoms.189 The particle mesh Ewald (PME) 

method190 was used to treat long-range electrostatic interactions. Restrain was 

placed on the C-alpha backbone atoms during the MD run. A residue-based cutoff of 

12 Å was utilized to the non-covalent interactions. Production MD was then carried 

out for 1 nanosecond (ns) or more with 2 fs time step. The time-dependent geometric 

parameters were carefully examined to make sure that we obtained a stable MD 

trajectory for each simulated protein-ligand binding system. The coordinates of the 

simulated system were collected every 1 ps during the simulation. 100 snapshots of 

the simulated structure within the stable MD trajectory were used to perform the 

MM-PBSA calculations.  

 

4.2.10 Binding free energy calculation 

The binding free energies were calculated by using the molecular 

mechanics-Poisson-Boltzmann surface area (MM-PBSA) free energy calculation 

method.168 The MM binding energies were calculated with the Sander module of 

Amber8 program. Electrostatic solvation free energy was calculated by the 

finite-difference solution to the Poisson–Boltzmann equation (∆GPB) as 

implemented in the Delphi program.192 The radius used for the solvent probe is 1.4 Å. 

The MSMS program195 was used to calculate the SASA for the estimation of the 

non-polar solvation energy (∆Gnp) using with the default parameters, i.e. γ = 0.00542 

kcal/Å2 and β = 0.92 kcal/mol. Further, the entropic contribution, -T∆S, to the 

binding free energy was also calculated at T = 298.15 K by using the NMODE 

module of Amber8 program which is based on a combination of the standard 

classical statistical formulas and normal mode analysis.196,197 The final binding free 

energy calculated for each protein-ligand binding mode was taken as the average of 

the ∆Gbind values calculated for the 100 snapshots.  
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4.2.11 PDK1 kinase assay 

The in vitro kinase assays were performed using the Invitrogen PDK1 assay kit 

(P2884) according to vendor’s instructions. This assay was based on the ability of 

recombinant PDK1, in the presence of DMSO or the inhibitor, to phosphorylate its 

substrate peptide (P2925). These phosphopeptides generated during the kinase 

reaction of PDK1 competes with the fluorescein-labeled phosphopeptides (called as 

tracer) for binding to anti-phosphothreonine peptide-specific antibodies. This 

binding is then quantified using fluorescence polarization (FP) technique. FP value 

was measured using TECAN GENIOS PRO microplate reader.  

 

4.2.12 Cell-based assay 

The most active compounds in the kinase assay were submitted to the 

developmental therapeutics program (DTP) at national cancer institute (NCI).258, 259  

The compounds are screened against 60 human cancer cell lines. In the NCI screen, 

60 human cancer cell lines were treated 48 h with 10-fold dilutions of compounds at 

a minimum of five concentrations (0.01 to 100 μM). The screening was done using a 

sulforhodamine B protein assay to estimate the cell viability or growth. Using seven 

absorbance measurements [time zero, (Tz), Control growth, (C), and test growth in 

the presence of drug at five different concentration levels (Ti)], the percentage 

growth was calculated at each of the drug concentration levels. The percentage 

growth was calculated as: [(Ti-Tz)/(C-Tz)]* 100.258  

 
4.3 Hierarchical virtual screening analysis and identification of new hits  

We have used rapid and lower level methods at the beginning and turned to 

the more accurate and quantitative methods at the end. In this prospective analysis, 

we have utilized a subset of 688,086 commercially available inhibitors from Zinc 

database. In addition to screening commercially available compounds, we included 

another promising strategy in lead identification, namely the virtual screening of 

natural products. Natural products are a source of diverse chemical compounds. So 

we also included an in-house database of 2,900 natural products. Thus a total of 
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690,986 compounds were subjected to the virtual screening study. 

 

4.3.1 Pre-screening filter & control dataset 

We applied the physicochemical property filters (ADME/Tox, Lipinski’s rule of 

five) as the first step (pre-screening filter). The overall reasoning is that it is better to 

focus on identifying new leads with good potencies as well as good ADMET and 

pharmacokinetic properties. Previous reports have suggested that it would be more 

beneficial if we analyze the datasets for drug-like property at the beginning of the 

virtual screen run.242 False positives are one of the major problems in virtual screen 

run. Removing the non-drug like molecule will also help to improve the screening 

efficinecy and time. We used the lead-like filter with the FILTER software from 

OpenEye. It was used to remove compounds with reactive functional groups, 

compounds that violate more than one Lipinski rule of five, exceeding a maximum 

2-dimensional polar surface area etc. Thus we initially eliminated inappropriate or 

undesirable compounds from the dataset. Application of this pre-screening filter to 

the initial dataset of 690,986 compounds gave a final dataset of 157,623 compounds. 

The pre-filtered database of 157,623 compounds was used as the starting point 

for this virtual screening study. Our aim was to perform a prospective analysis to 

identify new PDK1 inhibitors. In order to check the nature of the run and to evaluate 

the process, we added a control dataset of 33 known PDK-1 inhibitors reported in 

literature and patents.  

 

4.3.2 Ligand-based virtual screening 

Recent reports have shown the success ligand-based virtual screening method 

such as ROCS in identifying the known inhibitors and in new lead identification.43 

Because of its speed and good performance in previously reported virtual screening 

studies,260,261 ROCS was chosen as the filter for the first ligand-based virtual 

screening filter. We used three different scaffolds as the query molecule in ROCS. 

The reason for using three different scaffolds simultaneously is that the choice of the 

ligand molecule will have a critical effect on the results from ligand-based screening 
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and the use of diverse ligands but in their native state will help us to overcome the 

bias of using any one ligand as the query molecule. Moreover it has been reported 

that the better enrichment can be obtained by using more than one query 

simultaneously.262 By selecting the top 4,000 (~2.5%) most similar compounds to 

the query ligands in this filter we got a total of 12,000 compounds. Removing the 

repeated structures gave us a total of 10,431 final compounds. This filter was able to 

retain 28 of the 33 known inhibitors. The hit rate for this step was 85% and the 

enrichment factor was 12.84. The enrichment factor of ~13 means that we have a 

13-fold higher chance to find a real inhibitor in this filtered dataset than from the 

initial database. 

 

4.3.3 Rigid & Flexible docking 

The results from ROCS were subjected to rigid docking using the FRED 

software from OpenEye. This step is more sophisticated than Filter-1 as it introduces 

the active site shape in the screening. Since it performs rigid docking, conformations 

have to be generated again for the hits from ROCS. OMEGA was used to generate 

the conformations using the default values. On average, 30 conformations were 

generated per molecule. FRED docking involves exhaustive docking of 

multi-conformer ligand and generation of poses. OEChemscore was used in the 

selection of hits. A total of 3,500 compounds were obtained by using the score cutoff 

of -32.6. 22 known inhibitors were found in this filtered set. The hit rate for this step 

is 76%. The hit rate for the first two filters together was 66% and the enrichment 

factor was 29.7 

Next we carried out flexible docking using FlexX. In this method, the ligand 

was treated as flexible and the receptor was held rigid. The FlexX uses anchor and 

grow strategy to account for flexible ligand docking. Selecting the top 1,200 

compounds from FlexX docking gave us a final set of 1,200 compounds. 19 known 

inhibitors were found in this final set. The hit rate for this step is 86%. The hit rate 

for the three filters together was 58% and the enrichment factor was 76.2. This 

means that we have ~76-fold higher chances to find a real inhibitor in this final 



 103 

dataset (obtained after three filters) than from whole database.    

 

4.3.4 Refinement through interaction energy calculation and visual analysis 

 To further refine the result, the docked ligands were refined by MD simulations in 

vacuum. The interaction energies (vdw and electrostatic) of PDK1-ligand complexes 

were used along with visual analysis and refinement. It should be noted that the 

active site of PDK1 as well as all known kinases can be divided into 3 regions, 

namely the adenine pocket, sugar pocket, and phosphate pocket.112 In order to refine 

the hits, the compounds that did not fit into the adenine pocket were removed first. 

We also checked whether there are common chemical features present in the known 

PDK1 inhibitors, as this could help us in further refining the hits. Superposition of 

the available PDK1-inhibitor X-ray crystal structures showed that all the inhibitors 

had a common hydrogen bond acceptor (in the same position) which interacts with 

the backbone NH group of Ala162 in the hinge region. Some inhibitors have an 

additional hydrogen bond interaction with the backbone carbonyl group of Ala162. 

Based on these observations, we removed the compounds that have very low 

binding affinity (i.e. high interaction energy) and that do not have at least one 

interaction with either i) the backbone -NH group of Ala162 or ii) with the backbone 

carbonyl group of Ala162 in the hinge region or iii) with Lys111 residue. 120 hits 

were selected from this process and were further refined using molecular dynamics 

simulations and MM-PBSA analysis discussed below. 

 

4.3.5 Molecular dynamics simulations and Binding free energy calculations 

Our final filter made use of molecular dynamics simulations and binding free 

energy calculations. Explicit water molecules were used in the molecular dynamics 

simulation. The ligands and the side chains of the protein were all flexible during 

this solvated molecular dynamics run for ~1.0 ns. The docked molecules that have 

stable MD trajectories were selected for further analysis. The binding free energy 

was calculated using the MM-PBSA method. The compounds having MM-PBSA 

scores better than -7.0 kcal/mol was chosen as the final hit set. From this hit list, two 
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compounds were cherry picked (based on the commercial availability or ease of 

synthesis) for initial experimental testing. The compound chosen for wet 

experimental study, is ethyl-4-[[2-[-(4-ethoxycarbonylphenyl)amino] 

-6-methylpyrimidin-4yl]amino] benzoate (1) which can be purchased from Analogix, 

Inc. (Burlington, WI). The other compound is (2) which had to be synthesized in 

house, as it belongs to the natural product database and it was not commercially 

available.  

 

4.3.6 PDK1 assay 

 Compound 1 was purchased from Analogix, Inc. (Burlington, WI). 

Compound 2 belongs to natural product database and was not commercially 

available. It was synthesized by our colloborator Dr. Wei Wang at University of New 

Mexico. Mr. Wenchao Yang in our lab carried out the wet experimental tests. Wet 

experimental tests on the inhibitory activities of the identified compounds were 

carried out using fluorescence polarization assays. We carried out the PDK1 assays 

along with a standard reference (Staurosporine) in order to make sure that the 

inhibitory activity data obtained for the two compounds are comparable to the 

previously reported inhibitory activity of known compound. Our experimental tests 

revealed that both compounds 1 and 2 can significantly inhibit PDK1. According to 

the activity data, we obtained IC50 = ~200 nM for compound 1 and IC50 = ~20 µM 

for compound 2. The natural product compound 2 is norathyirol, the aglycone of 

mangiferin. Thus by starting with a database of 690,986 molecules, we were able to 

obtain two new inhibitors of PDK1, by combining sequential virtual screening with 

experimental testing.  

 

4.3.7 Cell-based assay 

For a successful hit it is also important for the compound to be active in 

cell-based assay. So the activity of the identified PDK1 inhibitors was analyzed 

further in the cell-based assays. The compound was submitted to the NCI DTP for 

the 60 cancer cell lines screening. The new PDK1 inhibitors was found to 
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significantly inhibit many cancer cell lines. When tested at 10 micromolar 

concentration, norathyriol was found to have a significantly lower inhibitory activity 

than compound 1. This is qualitatively consistent with our PDK1 inhibition data. 

The inhibition data of the new compound against 4 selected cell lines was shown in 

Figure 4.5. Our new lead compound 1 also effectively inhibit many cancer cell lines, 

such as multiple myeloma cell line RPMI8226, non non-small cell lung cancer cell 

line HOP92, colon cancer cell line KM12, CNS cancer cells SF268, Melanoma cell 

LOX IMVI, Ovarian cancer cells OVCAR-3, Renal cancer cells RXF 393, Prostate 

cancer cell line PC-3, and Breast cancer cell line HS578T. The growth inhibitory 

activity of compound 1 against various cell lines are given in Table 4-2. 

 

4.3.8 Binding mode of new hits  

Understanding the binding mode of this new PDK1 inhibitor will be of great 

help in further lead optimization studies. Figures 4.3 and 4.5 shows the binding 

mode of the hits with PDK1. The compound 1 has a hydrogen bond interaction with 

the backbone carbonyl group of Ala162 in the hinge region. The pyrimidine ring is 

present in the hydrophobic adenine pocket of PDK1. It is surrounded by residues 

Leu212 and Leu88. There is another hydrogen bond interaction between the 

backbone carbonyl group of Leu88 and the –NH group of the inhibitor. The ester 

group is present in the sugar region in the pocket does not interact with any specific 

residue. Based on the PDK1-inhibitor binding modes, the identified PDK1 inhibitor 

may be used as new starting point in future de novo drug design and discovery 

efforts.  
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Figure 4.2 Molecular structures of new hits identified through virtual screening.  
 
 

Table 4.1 Binding free energies (kcal/mol) calculated at T = 298.15 K and P = 1 atm 

for PDK1 binding with representative inhibitors in comparison with the 

corresponding experimental data. 

Inhibitor Calc.a Expt. 
ΔEMM ΔGsol -TΔS ∆Gbind  ∆Gbind  

Celecoxibb -56.5 40.1 11.3 -5.1 -5.9 
Compound 1 -59.6 35.5 12.5 -11.5 -9.1 
Compound 2 -81.3 59.8 13.3 -8.2 -6.4 

a The MM-PBSA calculations were performed on 100 snapshots along a stable MD 
trajectory for each PDK1-inhibitor binding complex. The results given in the table 
are the average values calculated for the 100 snapshots. b The data for celecoxib was 
reported in reference [136]. 
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Figure 4.3 Binding of compound 1 in the PDK1 active site. Compound 1 is shown 
in sticks with carbon atoms in green color. 
 

 

2

 
Figure 4.4 Binding of compound 2 in the PDK1 active site. Compound 2 is shown 
in sticks with carbon atoms in green color. 
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Figure 4.5 Growth inhibitory effect of compound 1 against representative cancer 
cell lines  
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Figure 4.6 Plots of MD-simulated internuclear distances versus simulation time for 

PDK1 binding with compound 1. D1 refers to the distance between N1 atom of 

compound 1 and the carbonyl oxygen of Ala162 backbone, D2 the distance between 
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N3 atom of compound 1 and the carbonyl oxygen of Leu88 backbone, and D3 the 

distance between N4 atom of compound 1 and the carbonyl oxygen of Leu88 

backbone. 
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Figure 4.7 Plots of MD-simulated internuclear distances versus simulation time for 

PDK1 binding with compound 2. D1 refers to the distance between O4 atom of 

compound 2 and the NH nitrogen of Ala162 backbone, D2 the distance between O3 

atom of compound 2 and the carbonyl oxygen of Ser160 backbone, and D3 the 

distance between O2 atom of compound 2 and the hydroxyl oxygen of Thr222 

sidechain. 
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Table 4.2 Growth inhibitory activity of compound 1a against various cell lines in 
NCI human cancer cell line panel 

No. Cell Line (Panel name) GI50 
(μM) 

1. RPMI-8226  
(Leukemia) 

3.54 

2.  HOP-92 
(Non-Small cell Lung Cancer) 

3.25 

3.  KM12 
(Colon Cancer) 

3.62 

4.  SF-268 
(CNS cancer) 

3.80 

5. SF-295 
(CNS Cancer) 

8.64 

6. U251 
(CNS Cancer) 

9.88 

7. LOX IMVI 
(Melanoma) 

7.24 

8.  OVCAR-3  
(Ovarian Cancer) 

2.02 

9. RXF 393 
(Renal Cancer) 

5.05 

10.  PC-3  
(Prostate Cancer) 

6.02 

11. DU-145 
(Prostate Cancer) 

5.39 

a Data obtained from the NCI-DTP’s in-vitro human cancer cell line screen259 
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4.4 Key Findings  

A hierarchical virtual screening strategy has been tested and employed to 

identify new lead compounds against PDK1. We utilized the fast filtering, such as 

ligand-based screening in the beginning, and carried out the more sophisticated 

MD/MM-PBSA analysis as a final filter in the virtual screening. The virtual 

screening of 690,986 compounds eventually led to the selection of five compounds 

for wet experiments. Among the five compounds selected for wet experiments, two 

compounds were found to significantly inhibit PDK1. We also used a control dataset 

to evaluate the virtual screening run. The hit rate and the enrichment factor for the 

first three filtering steps were found to be 58% and 76.2, respectively. Thus, using 

virtual screening stratgey combined with the MD simulations and MM-PBSA 

binding energy analysis, we were able to identify new hits for PDK1 with reduced 

the amount of experimental efforts. The compounds identified in this study serves as 

a good starting point for future rational drug design of PDK1 inhibitors. Our virtual 

screening approach may also be applied in discovery of new lead molecules for 

other drug targets.   
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CHAPTER 5  

 

5. SUMMARY AND FUTURE DIRECTIONS 

 Computational drug design approach has a great potential in accelerating the 

drug discovery process. Structure-based drug design and ligand-based drug design 

are the two broad classes of computational drug design. PDK1 is a well validated 

anti-cancer target and developing inhibitors for PDK1 has the potential to be 

developed as the anti-cancer therapeutics. In this work, we have showed the 

potential of computational approaches in drug discovery using PDK1 as our target. 

We have used both structure-based and ligand-based drug design strategies as well 

as combined approaches for lead optimization and hit identification against PDK1.  

 In our structure-based lead optimization, we used celecoxib and its derivatives 

as our lead molecules. For any structure-based drug design study it is crucial to 

know whether the proposed binding mode is reasonable or not for future rational 

drug design. Understanding the molecular basis of interaction is essential to carry 

out structure-guided lead optimization. One cannot expect to have success in a 

computational drug design starting with a wrong binding mode. In order to find the 

reasonable microscopic binding mode for PDK1 binding with celecoxib and its 

derivatives, we carried out molecular docking, followed by molecular dynamics 

simulations, and found a totally new binding mode. Since different docking 

programs gave different results, we used more sophisticated computational 

techniques like molecular dynamics simulations and MM-PBSA binding free energy 

calculations. For all of the representative PDK1 inhibitors examined in this study, 

based on the most favorable binding modes, the calculated binding free energies 

were all in good agreement with the corresponding experimental activity data. The 

determined new, more favorable binding mode can explain the SAR for this series of 

inhibitors.  

Another significant contribution is that we have showed for the first time that the 

novel binding mode without the hydrogen bond interaction in the hinge region is 

possible for a kinase inhibitor. It will be interesting to analyze in future studies 
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whether absence of such interaction contributes to the selectivity of the inhibitors 

against different kinases. Further exploring this type of inhibitors for other kinases 

has the potential to find new class of inhibitors which will help to overcome 

crowded intellectual property rights in this field. Moreover we have also shown that 

only performing simple molecular docking could lead to a wrong binding mode and 

thus mislead the rational drug design. The computational protocol tested in this study, 

i.e. the molecular docking followed by the combined MD simulations and 

MM-PBSA calculations, is reliable and accurate for predicting protein-ligand 

binding structures and binding free energies. This protocol could be used in other 

drug discovery efforts.  

We have also carried out ligand-based lead optimization using indolinone 

derivatives as our lead molecule. We have developed both ligand-based and 

receptor-based 3D-QSAR models. This analysis led to the development of 

satisfactory 3D-QSAR models for predicting the biological activity of new 

compounds. Our models were able to predict the activity of external test set of 

compounds which were not used in model development. All of the results obtained 

from the 3D-QSAR analysis and molecular docking are consistent with the 

experimental activity data. Since Indolinone is one of the ten most frequently 

encountered sub-structures in kinase inhibitors, our 3D-QSAR models have the 

potential to predict and guide the rational design of new ligands of indolinone series 

as PDK1 inhibitors. We have also showed that the usefulness of ligand-based models. 

The contour plots obtained from the ligand based models is consistent with the 

receptor active site. There are many therapeutic targets which do not have the 

experimentally determined structures. Our study shows that the ligand-based 

approaches like CoMFA have the potential to give insight into the nature of the active 

site of the targets in such cases.   

We have used hierarchical virtual screening of increasing complexity to 

identify new hits against PDK1. We have used the ligand-based screening, rigid 

docking, flexible docking, and molecular dynamics (MD) simulations followed by 

the MM-PBSA calculations as screening filters in virtual screening. Using this 
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strategy we have identified a promising new hit for the development of a novel 

anticancer therapeutic. The inhibitor identified in this study serves as a good starting 

point for future rational drug design of PDK1 inhibitors. Our virtual screening 

approach may also be applied to discovery of new lead molecules for other drug 

targets.   

 De novo drug design can be carried out starting from the new hit identified from 

virtual screening. The computational design can be followed by chemical synthesis 

and in vitro enzyme inhibition assays for the inhibitory activity and selectivity. The 

inhibitors can be tested for their anticancer activities in vitro. Further extensive 

retrospective validation of the shape-based virtual screening approaches and 

hierarchical virtual screening approaches can be done. Such large-scale validation 

using already known inhibitors will help to prove the applicability of this approach in 

a wide variety of target and also document potential advantages and limitations of this 

approach.   

 The insights obtained from this research work can also be applied in new drug 

discovery projects against other therapeutic targets. The different scenarios for new 

projects include: 1) projects where the experimentally solved structure of target is 

available; 2) experimentally solved structure of target is not available but structure of 

related protein (which can serve as template) is available; 3) structures of target and 

template are not available; 4) experimentally solved structure of target is not available 

but ligands of target available. In the first case, when the X-ray crystal structure of the 

target is available, we may carry out structure-based drug design by using the same 

procedures as we used in this project. Specifically, we may carry out virtual screening 

and de novo design for discovery of new inhibitors. If the experimentally solved 

structure is not available but the X-ray structure of a related protein (template) is 

available, then we can carry out homology modeling of the target structure using the 

template structure. The modeled protein structure will serve as the starting point for 

structure-based drug design. Then we may follow the same strategies used in this 

present work, namely virtual screening and de novo design, using the modeled target 

structure. In the third scenario, i.e. when both the target structure and template 
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structure are all unavailable, it might be possible to perform ab initio prediction of the 

target protein structure, as our lab did for anti-inflammatory target mPGES-1.46 

Site-directed mutagenesis experiments may be performed to validate the 3D structure 

resulted from the ab initio protein structure prediction. If the 3D structure is consistent 

with the experimental studies, then it is reasonable to use the 3D structure for further 

computational drug design as described above. Finally, if we have to work on a new 

project without any experimentally solved structure of the target but if there are 

known ligands of the target, then we may utilize ligand-based drug design strategies 

as we have done in this work (chapter 3). Ligand-based 3D-QSAR methods like 

CoMFA and CoMSIA can be utilized to understand the structure-activity relationship 

and to aid in the design of new inhibitors of this series. The contour plots can also be 

used to get insights into the nature of the target active site as we have shown in our 

studies. 201,206  
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APPENDIX I  Filter used in virtual screening 
# FILTER used in PDK1 virtual screening run  
#/********************************************************************** 
#Copyright (C) 2000-2005 by OpenEye Scientific Software, Inc. 
#*********************************************************************** 
#This file defines the rules for filtering multi-structure files based on properties and substructure 
#patterns. 
MIN_MOLWT      150         "Minimum molecular weight" 
MAX_MOLWT      440         "Maximum molecular weight" 
 
MIN_NUM_HVY   10         "Minimum number of heavy atoms" 
MAX_NUM_HVY   35         "Maximum number of heavy atoms" 
 
MIN_RING_SYS    0         "Minumum number of ring systems" 
MAX_RING_SYS    3        "Maximum number of ring systems" 
 
MIN_RING_SIZE    0        "Minimum atoms in any ring system" 
MAX_RING_SIZE    20       "Maximum atoms in any ring system" 
 
MIN_CON_NON_RING    0      "Minimum number of connected non-ring atoms" 
MAX_CON_NON_RING    15     "Maximum number of connected non-ring atoms" 
 
MIN_FCNGRP       0      "Minimum number of functional groups" 
MAX_FCNGRP       12     "Maximum number of functional groups" 
 
MIN_UNBRANCHED   0    "Minimum number of connected unbranched non-ring atoms" 
MAX_UNBRANCHED   3   "Maximum number of connected unbranched non-ring atoms" 
 
MIN_CARBONS      5      "Minimum number of carbons" 
MAX_CARBONS      35      "Maximum number of carbons" 
 
MIN_HETEROATOMS    2      "Minimum number of heteroatoms" 
MAX_HETEROATOMS    12      "Maximum number of heteroatoms" 
 
MIN_Het_C_Ratio    0.10    "Minimum heteroatom to carbon ratio" 
MAX_Het_C_Ratio    1.1      "Maximum heteroatom to carbon ratio" 
 
MIN_HALIDE_FRACTION      0.0      "Minimum Halide Fraction" 
MAX_HALIDE_FRACTION      0.5      "Maximum Halide Fraction" 
 
#count ring degrees of freedom = (#BondsInRing) - 4 - (RigidBondsInRing) - 
(BondsSharedWithOtherRings) 
#must be >= 0, from JCAMD 14:251-265,2000. 
ADJUST_ROT_FOR_RING     true      "BOOLEAN for whether to estimate degrees of 
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freedom in rings" 
MIN_ROT_BONDS    0      "Minimum number of rotatable bonds" 
MAX_ROT_BONDS    10      "Maximum number of rotatable bonds" 
 
MIN_RIGID_BONDS    0      "Minimum number of rigid bonds" 
MAX_RIGID_BONDS    25      "Maximum number of rigid bonds" 
 
MIN_HBOND_DONORS  0      "Minimum number of hydrogen-bond donors" 
MAX_HBOND_DONORS  4      "Maximum number of hydrogen-bond donors" 
 
MIN_HBOND_ACCEPTORS  0      "Minimum number of hydrogen-bond acceptors" 
MAX_HBOND_ACCEPTORS  6      "Maximum number of hydrogen-bond acceptors" 
 
MIN_LIPINSKI_DONORS  0      "Minimum number of hydrogens on O & N atoms" 
MAX_LIPINSKI_DONORS  5      "Maximum number of hydrogens on O & N atoms" 
 
MIN_LIPINSKI_ACCEPTORS  0      "Minimum number of oxygen & nitrogen atoms" 
MAX_LIPINSKI_ACCEPTORS  10      "Maximum number of oxygen & nitrogen atoms" 
 
MIN_COUNT_FORMAL_CRG    0      "Minimum number formal charges" 
MAX_COUNT_FORMAL_CRG    3      "Maximum number of formal charges" 
 
MIN_SUM_FORMAL_CRG   -2      "Minimum sum of formal charges" 
MAX_SUM_FORMAL_CRG    2      "Maximum sum of formal charges" 
 
MIN_CHIRAL_CENTERS                      0                       "Minimum 
chiral centers" 
MAX_CHIRAL_CENTERS                      4                       
"Maximum chiral centers" 
 
MIN_XLOGP      -5.0      "Minimum XLogP" 
MAX_XLOGP       4.0      "Maximum XLogP" 
 
#choices are insoluble<poorly<moderately<soluble<very<highly 
MIN_SOLUBILITY      moderately      "Minimum solubility" 
 
PSA_USE_SandP   false    "Count S and P as polar atoms" 
MIN_2D_PSA      0.0      "Minimum 2-Dimensional (SMILES) Polar Surface Area" 
MAX_2D_PSA      150.0    "Maximum 2-Dimensional (SMILES) Polar Surface Area" 
 
AGGREGATORS    true      "Eliminate known aggregators" 
#PRED_AGG       true      "Eliminate predicted aggregators" 
 
#secondary filters (based on multiple primary filters) 
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#GSK_VEBER      true      "PSA>140 or >10 rot bonds" 
MAX_LIPINSKI   1         "Maximum number of Lipinski violations" 
MIN_ABS 0.5              "Minimum probability F>10% in rats" 
PHARMACOPIA    true      "LogP > 5.88 or PSA > 131.6" 
ALLOWED_ELEMENTS  H,C,N,O,F,S,Cl,Br 
ELIMINATE_METALS Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd 
#acceptable molecules must have <= instances of each of the patterns below 
#specific, undesirable functional groups 
RULE  0  quinone 
RULE  0  pentafluorophenyl_esters 
RULE  0  paranitrophenyl_esters 
RULE  0  HOBT_esters 
RULE  0  triflates 
RULE  0  lawesson_s_reagent 
RULE  0  phosphoramides 
RULE  0  beta_carbonyl_quat_nitrogen 
RULE  0  acylhydrazide 
RULE  0  cation_C_Cl_I_P_or_S 
RULE  0  phosphoryl 
RULE  0  alkyl_phosphate 
RULE  0  phosphinic_acid 
RULE  0  phosphanes 
RULE  0  phosphoranes 
RULE  0  imidoyl_chlorides 
RULE  0  nitroso 
RULE  0  N_P_S_Halides 
RULE  0  carbodiimide 
RULE  0  isonitrile 
RULE  0  triacyloxime 
RULE  0  cyanohydrins 
RULE  0  acyl_cyanides 
RULE  0  sulfonylnitrile 
RULE  0  phosphonylnitrile 
RULE  0  azocyanamides 
RULE  0  beta_azo_carbonyl 
RULE  0  polyenes 
RULE  0  saponin_derivatives 
RULE  1  cytochalasin_derivatives 
RULE  4  cycloheximide_derivatives 
RULE  1  monensin_derivatives 
RULE  1  squalestatin_derivatives 
 
#functional groups which often eliminate compounds from consideration 
RULE  0  acid_halide 
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RULE  0  aldehyde 
RULE  0  alkyl_halide 
RULE  0  anhydride 
RULE  0  azide 
RULE  0  azo 
RULE  0  di_peptide 
RULE  0  michael_acceptor 
RULE  0  beta_halo_carbonyl 
RULE  0  nitro 
RULE  0  oxygen_cation 
RULE  0  peroxide 
RULE  0  phosphonic_acid 
RULE  0  phosphonic_ester 
RULE  0  phosphoric_acid 
RULE  0  phosphoric_ester 
RULE  0  sulfonic_acid 
RULE  0  sulfonic_ester 
RULE  0  tricarbo_phosphene 
RULE  0  epoxide 
RULE  0  sulfonyl_halide 
RULE  0  halopyrimidine 
RULE  0  perhalo_ketone 
RULE  0  aziridine 
RULE  1  oxalyl 
RULE  0  alphahalo_amine 
RULE  0  halo_amine 
RULE  0  halo_alkene 
RULE  0  acyclic_NCN 
RULE  0  acyclic_NS 
RULE  0  SCN2 
RULE  0  terminal_vinyl 
RULE  0  hetero_hetero 
RULE  0  hydrazine 
RULE  0  N_methoyl 
RULE  0  NS_beta_halothyl 
RULE  0  propiolactones 
RULE  0  nitroso 
RULE  0  iodoso 
RULE  0  iodoxy 
RULE  0  noxide 
 
 
#groups of molecules 
RULE  2  dye 
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#functional groups which are allowed, but may not be wanted in high quantities 
#common functional groups 
RULE  6  alcohol 
RULE  4  alkene 
RULE  4  amide 
RULE  4  amino_acid 
RULE  2  amine 
RULE  4  primary_amine 
RULE  4  secondary_amine 
RULE  4  tertiary_amine 
RULE  2  carboxylic_acid 
RULE  6  halide 
RULE  0  iodine 
RULE  2  ketone 
RULE  4  phenol 
RULE  1  imine 
RULE  1  methyl_ketone 
RULE  1  alkylaniline 
RULE  4  sulfonamide 
RULE  1  sulfonylurea 
RULE  0  phosphonamide 
RULE  0  alphahalo_ketone 
RULE  0  oxaziridine 
RULE  1  cyclopropyl 
RULE  2  guanidine 
RULE  0  sulfonimine 
RULE  0  sulfinimine 
RULE  1  hydroxamic_acid 
RULE  0  phosphoryl 
RULE  0  sulfinylthio 
RULE  0  disulfide 
RULE  0  enol_ether 
RULE  0  enamine 
RULE  0  organometallic 
RULE  0  dithioacetal 
RULE  1  oxime 
RULE  0  isothiocyanate 
RULE  0  isocyanate 
RULE  3  lactone 
RULE  3  lactam 
RULE  1  thioester 
RULE  1  carbonate 
RULE  0  carbamic_acid 
RULE  1  thiocarbamate 
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RULE  0  triazine 
RULE  1  malonic 
#other functional groups 
RULE  2  alkyne 
RULE  4  aniline 
RULE  4  aryl_halide 
RULE  2  carbamate 
RULE  3  ester 
RULE  5  ether 
RULE  1  hydrazone 
RULE  0  nonacylhydrazone 
RULE  1  hydroxylamine 
RULE  2  nitrile 
RULE  2  sulfide 
RULE  2  sulfone 
RULE  2  sulfoxide 
RULE  1  thiourea 
RULE  1  thioamide 
RULE  1  thiol 
RULE  2  urea 
RULE  0  hemiketal 
RULE  0  hemiacetal 
RULE  0  ketal 
RULE  1  acetal 
RULE  0  aminal 
RULE  0  hemiaminal 
#protecting groups 
RULE  0  benzyloxycarbonyl_CBZ 
RULE  0  t_butoxycarbonyl_tBOC 
RULE  0  fluorenylmethoxycarbonyl_Fmoc 
RULE  1  dioxolane_5MR 
RULE  1  dioxane_6MR 
RULE  1  tetrahydropyran_THP 
RULE  1  methoxyethoxymethyl_MEM 
RULE  2  benzyl_ether 
RULE  2  t_butyl_ether 
RULE  0  trimethylsilyl_TMS 
RULE  0  t_butyldimethylsilyl_TBDMS 
RULE  0  triisopropylsilyl_TIPS 
RULE  0  t_butyldiphenylsilyl_TBDPS 
RULE  1  phthalimides_PHT 
RULE  2  arenesulfonyl 
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