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ABSTRACT 

 

Children under five years of age are at high risk for sustaining traumatic brain 

injury (TBI) and tend to have poorer outcomes despite greater neuroplasticity in 

children.  Hence, there is a great need to study TBI specifically in models of juvenile 

injury.   Additionally, long chain n-3 polyunsaturated fatty acids (LC-PUFA) are a major 

component of neural membranes, and accumulate in the brain during late gestation and 

early childhood.  Low dietary content of these essential fatty acids results in decreased 

n-3 LC-PUFA accumulation in the developing brain.  Long-chain n-3 polyunsaturated 

fatty acids have multiple neuroprotective and anti-inflammatory activities, thus low 

dietary LC-PUFA content may put children at risk for poorer outcomes after TBI.   

The first aim established a juvenile TBI model with consistent, measurable 

deficits, without debilitating injury or mortality.  In order to assess functional outcomes 

including severity of initial injury and the duration of deficits, a qualitative assessment of 

common sensorimotor behavioral tests in rats of various sizes and developmental 

stages (postnatal days 16-45, 35-190 g) was performed.  Tests were evaluated for their 

developmental appropriateness, scalability for growth, necessity for extensive pre-

training, and throughput capability.  The tests evaluated were grid-walk, automated gait 

analysis (DigiGait™), rotarod, beam walk, spontaneous forelimb elevation test, and 

force-plate actometry.  Both the rotarod and grid-walk tests were eliminated on their 

inability to scale for growth of the animal.  Rotarod also required several days of pre-

training that young animals were unable to perform.  DigiGait™ was eliminated due to 

problems associated with development and inadequate throughput.  Beam walk, 

spontaneous forelimb elevation test, and force-plate actometry, however, are simple, 
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complementary tests, each measuring a different aspect of motor function that met the 

criteria for being adequate behavior tests for use in a rodent model of juvenile TBI and 

were used in later studies. 

The second aim investigated the effects of dietary n-3 fatty acid content and, as a 

consequence, reduced brain fatty acid composition on outcomes of juvenile TBI.  Long-

Evans rats raised from conception on diets containing adequate n-3 fatty acids (Control) 

or low in n-3 fatty acids (Deficient), resulting in decreases in brain DHA of 25% and 

54%, respectively, were subjected to a controlled cortical impact or sham surgery on 

postnatal day 17.  Rats with decreased brain DHA levels had poorer sensorimotor 

outcomes, as assessed with force-plate actometry and the spontaneous forelimb 

elevation test, after TBI.  Ccl2, Gfap, and Mmp9 mRNA levels, and MMP-2 and -9 

enzymatic activities were increased after TBI regardless of brain DHA level.  Lesion 

volume was also not affected by brain DHA level.  In contrast, TBI-induced Timp1 gene 

expression was lower in rats fed the Deficient diet and was correlated with brain DHA 

level.  These data suggest that decreased brain DHA content contributes to poorer 

outcomes after TBI through a mechanism involving modulation of Timp1 gene 

expression. 

The third aim investigated the use of a high dose oral fish oil dosing regimen on 

biochemical, blood-brain barrier, and sensorimotor outcomes of TBI in a juvenile rat 

model.  Seventeen-day old Long-Evans rats were given a 15 mL/kG fish oil (2.01 g/kg 

EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage thirty minutes prior to being 

subjected to a controlled cortical impact injury or sham surgery.  Doses of oil were then 

administered for seven days after surgery.  Fish oil treatment resulted in improved 
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hindlimb deficits after TBI as assessed with the beam walk test, decreased IgG 

infiltration into the ipsilateral and contralateral hemispheres, and decreased TBI-induced 

gene expression of Mmp9 one day after injury.  TBI-induced increases in Gfap were 

also less persistent in rats treated with fish oil.  These results indicate that fish oil may 

improve sensorimotor outcomes after TBI in juveniles by decreasing blood-brain barrier 

disruption by a mechanism involving decreased gene expression of Mmp9, and also 

modulating glial activation. 

In summary, this dissertation established a juvenile model of TBI with persistent, 

measurable deficits and established three behavioral tools for assessing severity of 

injury, persistence of deficits, and recovery from TBI.  Furthermore, it determined that 

brain DHA content, not diet, that most influences TBI outcomes and that improved 

outcomes as a result of greater brain DHA content may be due to increased TBI-

induced Timp1 gene expression.  Lastly, it determined that acute fish oil dosing 

improves functional outcomes after TBI by limiting blood-brain barrier damage by 

preventing TBI-induced gene expression of Mmp9 and faster resolution of astrocytosis.  

Together, these findings support the use of an LC-PUFA-rich diet during gestation and 

early neonatal life to provide greater neuroprotection in the event of a TBI as well as 

support the use of fish oil as a therapy for juvenile TBI.  
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1.1 Overview of Traumatic Brain Injuries 

The Center for Disease Control and Prevention has described traumatic brain 

injuries (TBI) as a “silent epidemic” due the high rate of injury, many of whom never 

seek medical attention, and limited public knowledge.  More than 1.4 million people 

sustain a TBI each year in the United States.  Approximately 34% of those occur in 

children ages 0 to 14.   Falls are the leading cause of TBI and these rates are highest 

for children ages 0 to 4 and adults 75 years and older.  Very young children, ages 0 to 4 

also have the highest rate of TBI-related emergency room visits (1,035 per 100,000) 

(Faul et al., 2010).  And, despite increased neuronal plasticity in this group, they often 

have a worsened outcome following injury compared to adults, making this age group of 

particular importance to study (Luerssen et al., 1988; Prins and Hovda, 2003).  

TBI fall into three categories: mild, moderate, and severe.  Mild TBI, or 

concussions, are characterized by a brief change in mental status or consciousness.  

Clinical symptoms of mild TBI include lightheadedness, headache, confusion, dizziness, 

blurred vision, and tinnitus, difficulty with memory, concentration, and attention, among 

others.  Severe TBI is classified by an extended period of unconsciousness or amnesia 

after the injury.  Moderate TBI any injuries between the mild and severe.  Symptoms of 

a moderate/severe TBI include a constant, worsening headache, vomiting/nausea, 

convulsions or seizures, dilation of one or both pupils, loss of coordination, slurred 

speech, and others (National Institute of Neurologic Disorders and Stroke, 2002) .  

TBI results in two types of injury—primary and secondary.  Primary injury is 

damage that occurs at the moment of trauma as a result of compressing, stretching, 

and tearing tissues and blood vessels.  Primary injury of TBI occurs rapidly and is 

untreatable.  Upon neuronal injury, cells are damaged and torn and release a variety of 
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molecules into the extracellular space, including cytokines, bradykinin, proteases, and 

others (Nortje and Menon, 2004).  These molecules then activate the immune response 

and surrounding glial cells to repair damage and also initiates the secondary injury 

(Arvin et al., 1996). 

Secondary injury is the delayed insult that results from processes initiated by the 

trauma of the primary injury.  The many processes that occur to produce secondary 

injury are diagramed in Figure 1-1 and will be elaborated upon further.  These 

processes, although depicted in a linear fashion, most often occur in parallel and 

interact with one another.  Secondary injury occurs over time and is the main target of 

current TBI therapies. 
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Figure 1-1. The main processes associated with progression of secondary injury 

after TBI.  1) Microvascular stenosis, 2) Breakdown of the blood-brain barrier due to 

astrocyte swelling and shear forces, 3) Activation and proliferation of astrocytes 

resulting in 4) reversal of glutamate transport, 5) Activation of AMPA and NMDA 

receptors by extracellular glutamate causing and influx of Ca2+ and Na+ into the cell 

resulting in 6) cellular depolarization, oxidative stress, mitochondrial dysfunction, and 

activation of the caspase cascade.  7) Intraxonal calcium accumulation causes 

activation of proteases and 8) breakdown of the cytoskeleton that releases 

chemoattractant molecules into the extracellular milieu attracting microglia to the site of 

injury and 9) release pro-inflammatory cytokines.  Reprinted with permission from (Park 

et al., 2008).  © Copied under license from the Canadian Medical Association and 

Access Copyright.  Further reproduction prohibited. 
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1.2 Pathophysiology of TBI 

The pathophysiology of TBI is very extensive and well documented.  Figure 1-1 

describes some of the major processes occurring after TBI.  Briefly, development of 

secondary injury is initiated by decreased blood flow to the injured area and disruption 

of the blood-brain barrier (BBB) caused by the initial insult.  This can occur if shear force 

from the injury is great enough to damage vessels causing a loss of vascularization 

and/or agents released from damaged cells activating astrocytes.  This causes the 

astrocytes to swell around vessels and restrict blood flow.  Processes of secondary 

injury include an early necrotic phase and long term apoptotic phase, 

neuroinflammation, excitotoxicity, and mitochondrial dysfunction resulting in formation of 

reactive oxygen species (ROS) (Nortje and Menon, 2004).  

Microglia and astrocytes, the two types of glial cells located in the central 

nervous system (CNS), play an important role in the restoration of normal function after 

TBI but also have potential damaging roles as well (Nakajima and Kohsaka, 2004; Laird 

et al., 2008).  In the uninjured brain, astrocytes perform several functions including 

structural and metabolic support of neurons, assisting endothelial cells in the formation 

of the BBB, and modulation of blood flow (Kandel et al., 2000).  The main role of 

microglia, the brain’s resident macrophage, is defense.  Microglia scavenge invading 

microorganisms and dead cells and also act as innate immune cells (Kandel et al., 

2000).  Upon TBI, damaged cells release factors including glutamate, ATP, ROS, and 

intracellular proteins into the extracellular milieu that activate astrocytes and microglia.  

Reactive astrocytes form glial scars that restrict tissue damage, helping to spare 

neighboring non-injured tissue from the spreading secondary injury (Fitch and Silver, 
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1997; Rolls et al., 2009).  However, by restricting tissue damage, glial scars also inhibit 

neurite outgrowth and axonal plasticity from surviving neurons, thereby inhibiting 

regeneration (Bush et al., 1999; Liu et al., 2008). 

Reactive astrocytes have also been shown to repair the BBB following both brain 

and spinal cord injury (SCI) (Bush et al., 1999; Faulkner et al., 2004).  As a potential 

repair mechanism, microglia and reactive astrocytes release growth factors and matrix 

metalloproteinases (MMPs) at the site of injury to promote neuroplasticity and clean up 

cellular debris and secrete cytokines to initiate an inflammatory response.    

Astrocytes, and particularly microglia, initiate the immune inflammatory response; 

this inflammatory response is both beneficial and harmful.  During inflammation, 

leukocytes and peripheral macrophages infiltrate the site of injury through the perturbed 

BBB and further exacerbate and sustain the inflammatory response (Morganti-Kossman 

et al., 2005).  Cytokines and chemokines such as tumor necrosis factor (TNF), 

interleukin (IL) -6, -1α and -1β, have been shown to be elevated in the hours and days 

after TBI in both rodent and humans (detectable in cerebral spinal fluid) indicating 

initiation of an inflammatory response following TBI (Morganti-Kossmann et al., 2002; 

Morganti-Kossmann et al., 2007; Harting et al., 2008). 

Astrocytes are also involved in the formation of edema following injury.  

Astrocytes, but not neurons, express aquaporin-4 (AQP4) (Verkman, 2008).  AQP4 is 

an important water channel that transports water in and out of the brain (Wolburg et al., 

2009).  Astrocytes swell after injury due to increased ion uptake, causing water influx to 

maintain the osmotic gradient (Wolburg et al., 2009; Yukutake and Yasui, 2009).  The 

increase in water in the brain following TBI is very serious and must be monitored 
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closely.  Edema causes an increase in intracranial pressure (ICP), which compresses of 

blood vessels, reduces tissue blood flow and oxygenation, and can ultimately lead to 

herniations that may crush vital centers in the brain including those involved with 

respiratory and cardiac functions.   

Excitotoxicity also occurs upon injury to the brain.  Release of the excitatory 

amino acids glutamate and aspartate activate 2-amino-3-(3-hydroxy-5-methyl-isoxazol-

4-yl)propanoic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors causing 

influx of calcium and sodium into the cell (Yi and Hazell, 2006).  This causes cells to 

depolarize and fire unnecessarily.  Excitotoxicity and primary injury also lead to 

mitochondrial damage.  Mitochondria are important for maintaining energy supplies and 

intracellular calcium homeostasis as well as generating and detoxifying reactive oxygen 

species.  When mitochondria become damaged and these important processes are 

disrupted, there is an increase in reactive oxygen species, caspases are released and 

activated, mitochondria swell, and ATP production and respiration are decreased all of 

which lead to cell death and cause the secondary injury after TBI to spread to 

neighboring tissues.  This is very detrimental as neurons cannot divide or regenerate to 

replace damaged or lost neurons.  For a review of mitochondrial dysfunction after TBI in 

the mature and immature brain, see Robertson (2004).   

Mitochondrial dysfunction also results in diffuse axonal injury (DAI), another 

process causing the spread of secondary injury after TBI.  Initially it was thought that 

DAI is the result of axons being mechanically torn at the moment of injury.  Newer 

studies, however, have demonstrated otherwise.  Instead, DAI is more likely to be 

caused by the drastic increase in intracellular calcium after injury (Park et al., 2008).  
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The calcium increase results in activation of caspases and proteases (e.g. calpain) that 

degrade the axonal cytoskeleton (Walker et al., 2009) causing failure of axonal 

transport, axonal swelling, and ultimately, disconnection.  The timeline of development 

of many processes associated with secondary injury is shown in Figure 1-2. 

 

 

 

Figure 1-2.  Timing in days of cytokine production, cerebral edema, scar formation, and 

delayed cell death after TBI.  Modified from and reprinted with permission from Wolters 

Kluwer Health: The Journal of Trauma: Injury, Infection, and Critical Care (Walker et al., 

2009). 
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1.4.1 MMPs and their Endogenous Inhibitors 
 

MMPs are a family of zinc-dependent endopeptidases that degrade extracellular 

matrix proteins and activate an array of bioactive molecules.  These enzymes are key 

factors in bone and heart remodeling, cancer metastasis, edema, inflammation, and 

other processes.  For a review of MMPs see Nagase, Visse et al. (2006).  After injury, 

MMPs are secreted by reactive astrocytes and activated to degrade damaged 

extracellular matrix proteins and other cellular debris, so that new matrix may be laid.  

MMPs can also worsen damage.  Prolonged activation of MMPs, particularly MMP-2, 

and -9, contributes to BBB disruption leading to vascular edema following injury and 

increased intracranial pressure (Shigemori et al., 2006; Sifringer et al., 2007; Vilalta et 

al., 2008). 

MMP-2 and MMP-9 are the only gelatinases in the family of at least 23 (human) 

MMPs.  MMP-2 and MMP-9 digest type IV, V, and XI collagens.  MMP-2, but not MMP-

9, additionally digests type I, II, and III collagens.  Also, both MMPs activate or 

inactivate a variety of bioactive molecules.  Both MMP-2 and MMP-9 cleave the pro- 

forms of TNFα, IL-1β, transforming growth factor (TGF)- β, and others (Gearing et al., 

1994; Gottschall and Deb, 1996; Schonbeck et al., 1998; Yu and Stamenkovic, 2000).  

Transcription of a pro-MMP-2 and pro-MMP-9 is regulated by nuclear factor kappa B 

(NF-κB) (Gottschall and Deb, 1996).  The pro- forms are cleaved to active forms by 

each other and other MMPs when necessary (Nagase et al., 2006).  

MMPs are endogenously inhibited by a family of four proteins termed tissue 

inhibitors of matrix metalloproteinases (TIMP).  All four TIMP family members are 

expressed in the brain (Pagenstecher et al., 1998).  TIMP-1, which has the broadest 
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substrate specificity, inhibits MMPs in a 1:1 ratio by binding to the MMP active site 

(Gomis-Ruth et al., 1997).  TIMP-1 also has anti-apoptotic and growth factor properties 

that are independent of its MMP-inhibiting ability (Hayakawa et al., 1992; Gardner and 

Ghorpade, 2003; Jourquin et al., 2005), and are thought to occur through interactions 

with cell surface receptors including CD63 (Strongin et al., 1995) 

 

1.4.2 Pathophysiology Unique to Juvenile TBI 
 

While the above pathophysiology occurs in all brain injuries, there are some 

unique biochemical and structural elements of the immature brain that may make 

juveniles more susceptible to worsened TBI.  For example, diffuse brain swelling (DBS) 

more often occurs in children after TBI than in adults (Bruce et al., 1981).  Children who 

demonstrate DBS have a threefold higher rate of mortality than those who don’t exhibit 

DBS (Aldrich et al., 1992; Adelson et al., 1998).  This may be due to the naturally higher 

water content in juvenile brains as well as an inability to properly manage the water after 

TBI.  Both juvenile (newborn and 14 days old) rat and piglet brains have increased 

water content compared to older animals (seven weeks and 14 weeks) (Dobbing, 1981).  

AQP4, the water channel expressed by astrocytes is not fully developed until adulthood.  

Seven days old rats have only 2% of the adult level of AQP4 and rats at post-natal day 

(PND) 14 and PND 28 have 25% and 60% of adult AQP4 levels, respectfully (Wen et 

al., 1999). 

There are also variable changes in cerebral blood flow following TBI in the 

juvenile brain.  Biagas and colleagues (1996) reported regional increases in cerebral 

blood flow in immature and mature rats subjected to TBI compared to aged rats.  
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However, retrospective studies in humans claim the opposite.  Adelson and colleagues 

(1997) reported hypoperfusion and ischemia during the first 24 hours after injury in the 

immature brain, which was associated with a poorer outcome compared to the adult 

brain.   

The immature brain is also subject to greater damage from ROS generated by 

TBI than is the adult brain.  This is due to yet-fully-developed ROS defense systems, 

like decreased glutathione peroxidase activity (Fullerton et al., 1998).  The immature 

brain also has increased levels of free iron compared to the mature brain, which causes 

the formation of hydroxyl radicals from peroxide in a Fenton-like reaction (Ferriero, 

2001; Blomgren et al., 2003).  Free radicals then cause lipid peroxidation, protein and 

DNA oxidation, and general cellular dysregulation.  

Infants and children also have less protection from mechanical impact than do 

adults due to a more compliant skull and sutures.  This causes an increased mechanical 

load that is then transferred to the brain tissue and also results in large changes in 

cranial shapes compared to adults (Thibault and Margulies, 1998; Margulies and 

Thibault, 2000).  All of these differences together contribute to juveniles having 

worsened outcomes after TBI. 

 
 

1.3 Current Therapies for TBI 

 
One of the difficulties in treating TBI is that treatment is often not sought until 

days after the injury, by which time most of the damage has occurred.  When patients 

do seek treatment the main course of action is to lower intracranial pressure through 

sedation and analgesia, draining cerebrospinal fluid (CSF), administering mannitol or a 
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hyperosmolar solution of 3% saline, or performing a craniectomy (Huh and Raghupathi, 

2009).  Medically-induced comas are also in practice in patients with severe TBI 

because of the lower oxygen demand of a comatose brain, which then, in theory, would 

reduce post-TBI oxidative damage.  However, currently there are no FDA-approved 

pharmacologic therapies to treat secondary damage resulting from TBI in either children 

or adults.  With so many processes occurring after TBI, there is little hope for a single 

treatment.  Instead, using several process-targeted therapies may be more realistic.  

Numerous compounds have shown to be beneficial in pre-clinical trials but then go on to 

fail in clinical trials.   

 
 
1.5 Modeling TBI 

 

There are many difficulties in studying TBI, one of them being choosing an 

appropriate model.  Currently there are several models of TBI in use.  Modeling juvenile 

brain injuries adds the additional complexities of choosing an appropriate age and injury 

severity, properly evaluating the recovery in rapidly developing animals, and the use of 

anesthesia.  The most common juvenile age to injure in rats is PND 17 which is roughly 

the equivalent to a human toddler; however, PND 3-14 and 26-32 are also widely used 

(Prins and Hovda, 2003).  A wide range of injury parameters and severities are also 

used, varying in diameter, duration, and velocity of impact, making cross-comparison 

between juvenile studies and comparisons with adult studies difficult.   

There is also debate on the effect of anesthesia on juvenile TBI models.  

Anesthesia, of course must be used during these experiments to comply with animal 

use regulations; however, there is an abundant body of literature to suggest age-related 
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differences in response to anesthesia in rodents and humans that may alter outcomes 

of TBI including variations in cerebral vasodilation and cerebral blood flow, ketone body 

uptake, and respiratory, cardiovascular, and thermoregulatory functions (Settergren et 

al., 1980; Cohen et al., 1990; Brussel et al., 1991).  Also, different anesthetics are used 

between groups of researchers, most commonly ketamine, isoflurane, or halothane, 

which each may have different effects on juvenile TBIs and thus further complicate 

cross-comparisons between studies.  For a complete review on the difficulties of 

modeling juvenile TBI, see Prins and Hovda (2003).  The four most commonly used 

models, the weight-drop model (Feeny model), the impact acceleration model 

(Marmarou model), the fluid percussion model (FPI), and the controlled cortical impact 

(CCI) model are briefly described below and in Figure 1-3 (Prins and Hovda, 2003; 

Morales et al., 2005). 

 

1.5.1 Weight-Drop Models 

The weight-drop model involves dropping a weight down a cylindrical tube onto a 

footplate resting on the animal’s head.  There are two versions of the weight-drop 

model—the Feeny model, which removes part of the cranium and rests the footplate 

directly on the dura, and the Marmarou model (also called the impact acceleration 

model), which leaves the cranium intact to prevent penetration of the weight.  In both 

cases, changing the mass of the weight or the distance from which it is released 

modifies the severity of injury.  The Feeny model generates a focal contusion whereas 

the Marmarou model creates a more diffuse injury often used to study diffuse brain 

swelling. 
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1.4.2  FPI Model 

The FPI model creates a diffuse brain injury.  This model involves injecting a 

bolus of saline into the epidural space.  Briefly, after a craniotomy is performed, a 

pendulum is released from a predetermined height and hits a fluid reservoir which then 

causes a release of a fluid bolus that strikes the intact dural surface (Sullivan et al. 

1976).  Depending on the volume of the fluid bolus, or the height from which the 

pendulum is released, a range of injury severities can be created.  Mild injury is meant 

to mimic a concussion where as a more severe FPI generates hemorrhages, 

contusions, and diffuse axonal injury (Dixon et al., 1987; Povlishock and Christman, 

1995).   

 

1.4.3 CCI Model  

 The CCI model is similar to the Feeny weight-drop model in that it utilizes direct 

impact onto exposed dura to create a focal injury. CCI injury, however, is delivered by a 

pneumatic piston allowing for greater control of injury including velocity and duration of 

impact.  Interchangeable tips are also available to vary the diameter of impact.  
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Figure 1-3. Models of TBI.  In the case of the Feeny (A) and Marmarou (B) models of 

TBI, a weight is dropped down a hollow tube onto a foot plate.  In the Feeny model, the 

plate makes direct contact with the dural surface of the brain.  In the Marmarou model, 

the cranium is left intact and the footplate distributes the impact across the cranial 

surface and prevents penetration into the tissue.  In the FPI model (C) after a 
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craniotomy is performed, a pendulum is released from a predetermined height to strike 

a reservoir of saline positioned over dural surface of the brain.  Fluid is then released to 

strike the surface of the brain.  In the CCI model (D), a pneumatic impactor is used to 

strike the surface of the brain which creates a more reproducible focal injury than does 

the weight-drop model.  Modified and reprinted with permission from Mary Ann Liebert, 

Inc.: Journal of Neurotrauma:(Prins and Hovda, 2003).  

 

 

1.5 Polyunsaturated Fatty Acids:  Synthesis and Accretion 
 

The n-3 series of long-chain polyunsaturated fatty acids (LC-PUFAs) are 

synthesized from the dietary essential fatty acid alpha-linolenic acid (ALA) and are of 

great importance in developing and maintaining optimal brain function (Willatts et al., 

1998; Birch et al., 2000).  ALA undergoes several elongation and desaturation steps in 

the liver before ultimately being converted to docosahexaenoic acid (DHA) and 

transported to cellular membranes.  The counterpart to the n-3 series of fatty acids, the 

n-6 series, utilizes the same enzymes to convert linoleic acid (LA) to n-6 

docosapentaenoic acid (n-6 DPA).   See Figure 1-4.  

When consumed in the diet, LC-PUFAs become incorporated into the 

phospholipids of cellular membranes.  Brain tissue contains three major categories of 

lipids: cholesterol, sphingolipids (sphingomyelin, cerebrosides, sulfatides, gangliosides), 

and glycerophospholipids (phosphatidylcholine [PtdCho], phosphatidylethanolamine 

[PtdEth], phosphatidylinositol [PtdIns], and phosphatidylserine [PtdSer]) (Suzuki, 1972).  
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Glycerophospholipids contain a glycerol backbone with an unsaturated fatty acid 

at the second position carbon and a phosphobase (choline, ethanolamine, serine, or 

inositol) at the third position carbon.  Sphingolipids contain ceramide linked to 

phosphocholine through the primary hydroxyl group.  These lipids provide neural 

membranes with stability, fluidity, and permeability and are also required for proper 

function of receptors, transporters, integral membrane proteins, and ion-channels 

(Farooqui et al., 2000).  In the brain, the phospholipids are unequally distributed across 

cellular membranes.  PtdEth, PtdSer, and PtdIns are concentrated in the inner leaflet of 

the membrane whereas PtdCho and sphingomyelin are concentrated in the outer leaflet 

(Farooqui et al., 2000).   

DHA constitutes approximately 15% of weight of the total fatty acids in the brain 

of rats and >33% of the total fatty acids in the retina and is mainly found on the sn-2 

position of PtdEth and PtdSer (Sinclair, 1975).  In human brain gray matter, DHA 

accounts for approximately 24% of acyl groups in PtdEth and 37% of acyl groups in 

PtdSer (Salem, 1986).  The n-6 LC-PUFA, arachidonic acid (AA) is distributed evenly in 

the gray and white matter and among the different cell types in the brain.  DHA, 

however, is highly enriched in neuronal and synaptic membranes (Farooqui et al., 

2000). 

DHA content of the membranes can significantly alter basic properties of the 

cellular membrane.  DHA is sterically incompatible with cholesterol and has been shown 

to alter fatty acid chain order and fluidity, ion permeability, elastic compressibility, 

resident protein function, phase behavior, and fusion of membranes (Stillwell and 

Wassall, 2003; Wassall and Stillwell, 2008).  Preferential incorporation of DHA into 
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PtdEth and PtdSer on the inner leaflet of neuronal and synaptic membranes and 

incompatibility with cholesterol allows for formation of DHA-rich/cholesterol-poor and 

DHA-poor/cholesterol-rich lipid rafts.  Lipid rafts are specialized membrane 

microdomains that allow for selectivity of proteins within the membrane and play an 

important role in compartmentalization and modulation of cell signaling (Farooqui et al., 

2000).  
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Figure 1-4. Summary of omega-3 and omega-6 PUFA biosynthetic pathways.  The 

pathways proceed through a series of desaturation and elongation steps in the 

endoplasmic reticulum until 24:5n6 and 24:6n3 are formed, at which time they are 

translocated to the peroxisome and shortened by C2 by one cycle of the β-oxidation 

pathway to form 22:5n6 and 22:6n3 (DHA), respectively.  These are then translocated 

back to the endoplasmic reticulum.  The relative efficiencies of the omega-3 PUFA 

conversion process are shown to the right of the pathways.  For futher details refer to 

the text.  Reprinted with permission from Springer Science + Business Media: 

NeuroMolecular Medicine (Dyall and Michael-Titus, 2008).   
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1.5.1 DHA Accretion and the Western Diet 
 

Because DHA cannot be synthesized de novo in mammals, ALA or any of the n-

3 fatty acids, must be consumed in the diet. Some foods high in n-3 fatty acids include 

cold-water fish such as salmon and sardines, canola oil, and walnuts.  However, 

Western diets, particularly those in the United States are very low in n-3 fatty acids, and 

have an n-6/n-3 as high as 16.7/1 (Simopoulos, 2003).  Multiples studies report that a 

high n-6/n-3 ratio promotes numerous disease states including heart disease, cancer, 

increased inflammation, and autoimmune diseases (Simopoulos, 2002).  Lower dietary 

n-6/n-3 ratios have been shown to have beneficial effects including decreasing the 

mortality of cardiovascular disease, reducing cell proliferation in colorectal cancer, 

decreasing risk of breast cancer, and decreasing inflammatory states associated with 

rheumatoid arthritis and asthma (Haworth and Levy, 2007; Calder and Yaqoob, 2009; 

Fetterman and Zdanowicz, 2009; Lavie et al., 2009).   

In humans, the main period of DHA accumulation occurs in late gestation and 

early childhood while turnover continues throughout life (Clandinin et al., 1980a; 

Clandinin et al., 1980b; Hadley et al., 2009).  Rats, however, are more immature at birth 

and DHA accumulates with a pronounced spike during the last three days of gestation 

and continues through weaning (Kishimoto et al., 1965; Green and Yavin, 1996).  During 

this time, DHA is supplied to growing fetuses by the mothers’ dietary consumption and 

to infants in breast milk.  Recently, infant formula has been supplemented with DHA and 

eicosapentaenoic acid [EPA, 20:5(n3)].  However, studies in infant baboon suggest that 

formula supplementation is still insufficient in raising brain DHA levels compared to 

breastfeeding (Diau et al., 2005; Hsieh et al., 2007).   
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Adequate DHA is essential for optimal brain and visual development and 

function.  While there are no gross disorders associated with LC-PUFA deficiency, 

several studies have reported visual and cognitive deficits in children due to a low n-3 

diet and benefits inferred by an n-3 supplementation during pregnancy (McNamara and 

Carlson, 2006).  Infants from mothers supplemented with DHA during pregnancy had 

significantly improved visual acuity at 4 and 6 months of age (Judge et al., 2007).  Also, 

several randomized controlled studies reported impaired mental performance and visual 

function in otherwise healthy term infants with a lack of dietary DHA (Willatts et al., 

1998; Birch et al., 2000).  Studies with rhesus monkeys with an n-3 deficient diet during 

gestation and early postnatal development demonstrated reduced DHA levels in the 

retina and cerebral cortex, psychomotor and cognitive deficits, and impaired visual 

function (Neuringer et al., 1984; Neuringer et al., 1986).   

 

1.6 Recommended Intakes of LC-PUFAs 

Despite the multiple worsened disease states associated with a high n-6/n-3 

ratio, the Food and Drug Administration has no formal dietary recommendation of LC-

PUFAs.  The International Society for the Study of Fatty Acids and Lipids (ISSFAL), 

however, has recommended that normal, healthy individuals consume 2% of daily 

energy of the n-6 LA and 0.7% daily energy of the n-3 ALA.  To improve cardiovascular 

health, ISSFAL recommends a 500 mg/day minimum intake of EPA and DHA combined 

(ISSFAL, 2004).  Because of the increased LC-PUFA demand by a growing fetus and 

infant, it is recommended that pregnant or lactating mothers consume at least 200 mg of 

DHA/day (Koletzko et al., 2007). 
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1.7 Phospholipases 

Before n-3 fatty acids can act as signaling molecules, they must first be cleaved 

from the membrane.  This is achieved through a family of enzymes called 

phospholipases.  Phospholipases, first identified in snake venom, are a family of 

enzymes that cleave phospholipids into fatty acids and other lipophilic molecules 

through hydrolysis.  There are four classes of phospholipases—A, B, C, and D; each 

distinguished by the site of hydrolysis on the phospholipid.  N-3 and n-6 fatty acids are 

preferentially cleaved by the cytosolic form of phospholipase A2 (cPLA2) allowing for 

formation of DHA and AA-derived signaling molecules including prostaglandins, 

eicosanoids, docosanoids, and maresins (Burke and Dennis, 2009; Serhan et al., 2009).   

 

1.8 DHA Mechanisms of Action 

There are several mechanisms by which DHA exerts its neuroprotective 

properties that are relevant to TBI.  DHA itself is anti-inflammatory but can also be 

metabolized in to a wide variety of anti-inflammatory and pro-inflammation resolving 

molecules.  DHA also is anti-apoptotic, anti-excitotoxic, and has anti-oxidant properties.  

Each of these processes is described herein.  

 

1.8.1 DHA and Inflammatory Signaling  

Inflammation is the body’s response to harmful stimuli including cell damage, 

pathogens, or irritants.  The purpose of inflammation is to remove the damaging 

stimulus and initiate healing.  In the brain, the inflammatory response is initiated by 

microglia.  Currently, there are three general mechanisms by which n-3 fatty acids (DHA 
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and EPA, specifically) alter the inflammatory response.  They 1) alter lipid raft formation, 

2) compete with AA and are synthesized into unique anti-inflammatory molecules, and 

3) modify cell signaling and alter pro-inflammatory gene expression (Chapkin et al., 

2009).  

Cytokines are small peptides involved in modulating and amplifying an acute or 

chronic inflammatory state.  Transcription of many cytokines is regulated by the NF-κB 

pathway.  Upon a ligand binding to a Toll-like receptor the inhibitor of kappa B kinase 

(IκK) complex is formed.  The IκK complex consists of IκKα and/or IκKβ catalytic 

subunits and two of the scaffolding molecule NF-κB essential modulator. The IκK 

complex phosphorylates IκB, the NF-κB inhibitor.  IκB is then degraded by the 

proteosome, allowing the freed NF-κB to translocate to the nucleus and activate target 

genes regulated by κB sites.  Target genes include IL-1, IL-6, TNFα, MMPs and others.  

These proteins have several important roles including promoting T-cell and B-cell 

activation (which release more cytokines), increasing vascular permeability, inducing 

apoptosis, and attracting leukocytes to the site of injury (Arvin et al., 1996).  

Many of the beneficial actions of DHA are thought to come from its ability to 

inhibit toll-like receptor 4 (TLR4), decrease IkB phosphorylation, and interact with 

various nuclear receptors which then initiate the NF-κB-mediated inflammatory 

response.  Free n-3 fatty acids, cleaved from membrane phospholipids by cPLA2, can 

directly inhibit TLR4 to prevent activation of IκK and ultimately translocation of NF-κB 

into the nucleus (Lee et al., 2003; Weatherill et al., 2005).  DHA also inhibits TLR4 

receptor dimerization in the membrane, which is required for activation (Wong et al., 

2009).   
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Several nuclear receptors are also influenced by n-3 fatty acids. The peroxisome 

proliferator-activated receptors (PPAR) alpha and gamma and retinoid X receptor (RXR) 

nuclear receptors are activated by DHA and EPA at micromolar concentrations (Kliewer 

et al., 1997; Xu et al., 1999; de Urquiza et al., 2000; Fan et al., 2003).  Activated 

peroxisome proliferator-activated receptors have been shown to transrepress the NF-

κB-mediated inflammatory response (Pascual et al., 2005).  Several studies have 

documented the ability of n-3 fatty acids to decrease cytokine production.  In vitro, cells 

pre-treated with DHA before lipopolysaccharide, a TLR4 agonist, decreases protein 

levels of IL-12p70, IL-6, and decreases transcription of NF-κB and cyclooxygenase-2 

(COX-2) (Lee et al., 2003; Weatherill et al., 2005).  Also, prostaglandin E2 production, 

as a response to COX-2 activity, was decreased in humans supplemented with 15 g/day 

of fish oil for four weeks (Lee et al., 2003).  

Another part of the inflammatory response involves the cleavage of the n-6 fatty 

acid AA from the membrane by cPLA2 and its conversion into the potent pro-

inflammatory molecules 2-series prostanoids (thromboxanes and prostaglandins) and 4-

series leukotrienes by COX-2 and lipoxygenase (LOX), respectively. However, not all 

AA-derived molecules are pro-inflammatory.  For example, lipoxins and aspirin-triggered 

lipoxin (ATL) share many of the same endogenous anti-inflammatory and pro-resolving 

properties;  however, ATL is longer acting and resists rapid dehydrogenation.  Briefly, 

lipoxins and ATL have been shown to inhibit entry of polymorphonuclear leukocytes into 

the site of injury, as well as reduce vascular permeability, and stimulate clearance of 

apoptotic neutrophils via macrophages (Maderna et al., 2005).  For a complete review 

of actions of lipoxins and ATL, see Serhan, Yacoubian et al. (2008b).   
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 Previously, it was thought that the anti-inflammatory properties exhibited by DHA 

were due to DHA’s competition with AA; more DHA meant less AA.  While this is true to 

an extent, it was recently discovered that DHA and EPA themselves are substrates for 

COX-2 and LOX and serve as a precursors to several unique inflammatory and 

immunoregulatory molecules, termed resolvins and protectins (Serhan et al., 2002).  As 

with the AA-derived lipoxins, there are also aspirin-triggered and non-aspirin-triggered 

resolvins.  During resolution of inflammation, acetylated COX-2 coverts EPA to 18R-

HEPE, which is then oxygenated and undergoes epoxide hydrolysis and rearrangement 

into Resolvin E1 (RvE1).  RvE1 acts to down-regulate NF-κB activity by binding to the 

ChemR23 G-protein coupled receptor and has demonstrated very potent anti-

inflammatory properties in vivo.  Administration of RvE1 has been shown to reduce 

leukocyte and neutrophil migration, activate resolution earlier and decreases the 

number of several pro-inflammatory cytokines and chemokines during resolution of 

inflammation in murine peritonitis (Bannenberg et al., 2005).  Similarly to EPA, DHA in 

the presence of aspirin can be converted into the 17R D-series of resolvins.  These 

resolvins have been shown to decrease IL-1β secretion from glioma cells and reduce 

leukocyte migration in murine periotonitis (Marcheselli et al., 2003; Bannenberg et al., 

2005).    

DHA, in the absence of aspirin, can be converted by COX-2 into the 17S 

resolvins (RvD1-RvD4) which also exhibit anti-inflammatory, pro-resolving properties 

(Serhan et al., 2002).  In side-by-side comparisons, equal amounts of RvE series, RvD 

series, or aspirin-triggered-RvD series resolvins all caused a 50% reduction in 

polymorphonuclear leukocyte (PMN) infiltration in murine peritonitis. This is in contrast 
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to indomethacin, a widely used non-selective COX inhibitor, which only decreased 

leukocyte infiltration by 25% at the same dose (Serhan et al., 2002).    

DHA can also form non-aspirin triggered docosatrienes.  In this case, DHA is 

converted 17S-H(p)DHA by 15-lipoxygenase.  17S-H(p)DHA can then undergo 

enzymatic hydrolysis to form Neuroprotectin D1 (NPD1) when in neural tissues 

(Marcheselli et al., 2003).  NPD1 exhibits tremendous anti-inflammatory properties in 

vivo and in vitro.  Ten nM of synthetic NPD1 decreased human neutrophil 

transmigration in vitro by 50% (Marcheselli et al., 2003).  NPD1 also reduced PMN 

infiltration by 40% at a dose of 1 ng/mouse in murine peritonitis.  It also shortened the 

interval of inflammation resolution, down-regulated pro-inflammatory cytokines and up-

regulated anti-inflammatory cytokines (Marcheselli et al., 2003).  NPD1 also reduced 

both retinal damage and limited ischemic damage in model of kidney injury and stroke 

(Marcheselli et al., 2003; Mukherjee et al., 2004; Duffield et al., 2006; Bazan et al., 

2012).   

More recently, activated macrophages have been implicated in the formation of 

another group of DHA-derived anti-inflammatory mediators, the maresins.  Maresins 

have potent anti-inflammatory and pro-resolving activity with potency similar to RvE1 

and NPD1 (Serhan et al., 2009). 

In general, there are more n-3-derived anti-inflammatory molecules than there 

are n-6-derived ones, suggesting that the ratio of n-3 to n-6 PUFAs in the brain may 

play an important role in regulating an inflammatory response after injury.  See Figure 

1-5 for a diagram of the synthesis of fatty acid-derived inflammatory mediators.  
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Figure 1-5. Fatty acid-derived bioactive lipid mediators. (a) Arachidonic acid is the 

precursor of eicosanoids, which have distinct functions as proinflammatory mediators. 

Lipoxins are also generated from AA but are anti-inflammatory and promote resolution.  

The n-3 fatty acids EPA and DHA are converted into the anti-inflammatory E1 (RvE1) 

and D1 (RvD1) resolvins, respectively.  DHA can also form neuroprotectin D1 and 

neuroprostanes, also both anti-inflammatory.  (b) In the presence of aspirin, EPA and 
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DHA form aspirin-triggered E1 and D series resolvins, respectively which vary slightly in 

structure from their non-aspirin triggered counterparts, but still are anti-inflammatory.  

Besides RvD1, in the presence of aspirin, DHA can also form RvD2, D3, and D4 and 

neuroprotection D1.  Reprinted by permission from Macmillan Publishers Ltd: Nature 

Immunology (Serhan and Savill, 2005).   

 
 
 
1.8.2   DHA and Apoptosis 

 
DHA is also thought to be involved in apoptosis, a critical process of 

neurodegeneration after TBI.  The DHA-derived NPD1 has been shown to decrease 

oxidative stress and apoptotic DNA damage in culture and also up-regulate anti-

apoptotic proteins (B-cell lymphoma-2 [Bcl2] and B-cell lymphoma-extra large [BclxL]) 

and down-regulate pro-apoptotic proteins (Bcl-2-associated X protein [Bax] and B-cell-

associated death promoter [Bad]) after ischemia/reperfusion (I/R) (Bazan, 2005).  NPD1 

also inhibits caspase-3 activity, an important apoptosis initiating molecule, and IL-1-

mediated expression of COX-2 in retinal pigment epithelial cells (Mukherjee et al., 2004; 

Mukherjee et al., 2007).  N-3 supplementation has also shown to significantly reduced 

DNA fragmentation, and caspase-3 and Bax levels as well as increase Bcl2 and BclxL 

levels in the cerebellum of rat pups in a model of hypothyroidism-induced neuronal 

apoptosis (Sinha et al., 2009).  DHA also inhibits soluble β-amyloid oligomer-mediated 

neuronal apoptosis and significantly increases neuronal survival by preventing 

cytoskeleton perturbations, caspase activation, and promoting extra signal-related 

kinase pathways (Florent et al., 2006).   
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DHA can also influence apoptosis and cell survival through its incorporation in to the 

membranes and altering phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt) 

signaling.  PI3K/Akt is a well-studied anti-apoptotic pathway overactive in cancer cells 

(Fresno Vara et al., 2004).  DHA is preferentially incorporation into PtdSer in the inner 

leaflet of the membrane bilayer.  This facilitates translocationof Akt resulting in efficient 

phosphorylation and activation of Akt.  Akt initiates a series of signaling cascades that, 

ultimately, suppresses caspase-3 activation and cell death (Akbar et al., 2005).  

Conversely, DHA-depleted membranes slow translocation and phosphorylation of Akt 

(Akbar and Kim, 2002; Akbar et al., 2005). 

 

1.8.3  DHA and Excitotoxicity  

Besides being anti-inflammatory and anti-apoptotic, DHA has anti-excitotoxic and 

anti-oxidant properties, which contribute to its overall neuroprotective profile.  DHA 

reduces endothelial COX-2 induction through inhibiting NADPH oxidase and protein 

kinase Cε (Massaro et al., 2006).  DHA up-regulates γ-glutamyl-cysteinyl ligase and 

glutathione reductase activities in human fibroblasts, thereby enhancing the antioxidant 

response (Arab et al., 2006).  Dietary depletion of DHA activates caspases and 

decreases NMDA receptors in Tg2576 mouse brain and DHA supplementation partially 

protects the mice from NMDA receptor subunit loss (Calon et al., 2005).  DHA also 

induces antioxidant defense mechanisms by enhancing cerebral activities of catalase 

and glutathione peroxidase and increasing levels of glutathione in the cerebral cortex 

(Hossain et al., 1998).  DHA supplementation reduced ROS in the hippocampus of 

amyloid beta (Aβ)-infused and aged rats (Hossain et al., 1998; Hossain et al., 1999).   
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Additionally, infant rats receiving an LC-PUFA-enriched formula were protected against 

against NMDA-induced excitotoxic degeneration of cholinergic neurons (Hogyes et al., 

2003).  

 

1.9 DHA in CNS injury  
 

Several studies have demonstrated the benefits of an n-3 fatty acid-enriched diet 

or administering DHA in adults before or after CNS injuries, including TBI, SCI and I/R.   

In 2004, Wu and colleagues demonstrated beneficial effects of a DHA- and EPA-

enriched diet when given after FPI.  A DHA and EPA-enriched diet after FPI normalized 

levels of brain derived neurotrophic factor (BDNF), and its downstream effectors cAMP 

response element binding protein (CREB), and synapsin I (Wu et al., 2004).  Injured 

animals on the diet also had reduced oxidative damage and improved learning 

compared to those on the control diet.  There are, however, flaws with this study.  The 

authors claim all benefits are the result of DHA rather than EPA, a claim that cannot be 

substantiated due to lack of DHA-only or EPA-only diet controls.  Also, the claim that the 

fish oil diet normalized BDNF levels after injury cannot also be made because the fish 

oil diet also increased BDNF in sham animals.    

DHA has also shown promise in the treatment of spinal cord injuries.  Huang and 

King and colleagues have investigated the benefits of DHA both as diet and post-injury 

administration in a model of adult spinal cord injuries.  Post-injury DHA and DHA 

administration in conjunction with a DHA-enriched diet increased neuron and 

oligodendrocyte survival, improved behavioral recovery, and decreased the axonal 

injury and macrophage and microglial recruitment to the site of injury (Huang et al., 
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2007).  DHA administration after injury alone decreased lipid, protein and DNA/RNA 

oxidation and decreased COX-2.  In a similar study by the same group, post-injury 

treatment with n-3 fatty acids improved and n-6 fatty acids worsened outcomes after 

SCI (King et al., 2006).  These data suggest that, like in TBI, DHA provides 

neuroprotection by many mechanisms in SCI, including reducing oxidative stress, 

protecting white matter tracts, and modulating the inflammatory response.  DHA 

supplementation in humans suffering spinal cord injuries was also beneficial in 

improving strength and stamina (Javierre et al., 2006). 

Despite demonstrated benefits of administering DHA post-injury in SCI models, 

DHA administration in the area of adult I/R has been contradictory depending on 

treatment time.  Pan and colleagues (2009) investigated the effects of various 

pretreatment regimens and doses of DHA on outcomes of adult I/R.  At a high dose and 

in all treatment regimens (one hour, three days, or daily administration for 6 weeks), 

DHA decreased infarct volume, brain water content, BBB disruption, IL-6 levels, 

caspase-3 and myeloperoxidase activity, and levels of malondialdehyde, a product of 

lipid peroxidation.  However, in an earlier study by the same group (Yang et al., 2007), 

post-treatment of I/R with DHA was detrimental.  Post-treatment with DHA increased 

infarct volume, BBB disruption, water content, myeloperoxidase and caspase-3 activity, 

lipid peroxidation, and oxidative stress and decreased motor activity after I/R.    

Even though progress has been made to investigate the potential benefits of LC-

PUFAs in CNS injuries, no studies have investigated these effects in juvenile models, a 

time during which DHA is accumulating and risk of TBI is high.  Additionally, no studies 
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have determined whether diet or tissue LC-PUFA composition has more influence on 

TBI outcomes. 
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2.1  Significance and Objectives 
 
 Young children are at high risk for sustaining TBI and have poorer outcomes than 

adults despite having greater neuroplasticity.  Additionally, juveniles have unique 

therapeutic needs compared to the average adult including unique pathophysiologic 

processes, differential gene expression, and differential drug metabolism (Maxwell, 

2012; Pinto et al., 2012a; Pinto et al., 2012b).  N-3 polyunsaturated fatty acids are a 

major component of neural membranes and accumulate in the brain during late 

gestation and early childhood (Clandinin et al., 1980a; Clandinin et al., 1980b).  Low 

dietary content of these essential fatty acids results in decreased n-3 LC-PUFA 

accumulation in the developing brain.  N-3 LC-PUFAs have multiple neuroprotective 

and anti-inflammatory activities (Serhan et al., 2008b; Serhan et al., 2009; Orr et al., 

2012), thus low dietary n-3 LC-PUFA content, during a time at which they’re lacking a 

full complement of brain DHA, may put children at risk for poorer outcomes after TBI.  

Additionally, the neuroprotective properties, low toxicity, and high bioavailability of n-3 

LC-PUFAs make them an attractive therapeutic for neural injuries.  While studies using 

n-3 LC-PUFA as a therapeutic strategy in adult models of neural injuries have been 

done and show benefit (Javierre et al., 2006; Huang et al., 2007; Wu et al., 2007; Pan et 

al., 2009; Bailes and Mills, 2010), no studies have looked at acute n-3 LC-PUFA 

supplementation in juvenile models of injury, including TBI.  Thus, the OBJECTIVES of 

this project were to: 

1. Establish a model of juvenile TBI with consistent injury and 

measurable sensorimotor deficits.  A qualitative comparison of six 

behavioral tests was assessed in rats of various sizes and developmental 
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stages.  Male and female rats were also assessed for potential sex 

differences in sensorimotor response to TBI. 

2. Determine whether or not dietary n-3 fatty acid intake and/or brain 

fatty acid status influence recovery from juvenile TBI.  Sensorimotor 

and biochemical outcomes of TBI were assessed in rats with one of three 

levels of brain DHA and consuming a control or n-3 LC-PUFA deficient 

diet. 

3. Investigate the use of acute fish oil dosing as a therapeutic option to 

improve recovery from juvenile TBI.  Sensorimotor and biochemical 

outcomes of TBI were assessed in rats treated acutely with fish oil. 

 
2.2  Rationale for Using a Rat Model of Juvenile TBI 

 
Using young rats to model juvenile TBI is well established (Prins and Hovda, 

2003).  The most widely used injury day in the field is PND 17.  A PND 17 rat is at the 

approximate developmental stage as a human toddler with regard to motor function and 

brain development (Rice and Barone, 2000; Prins and Hovda, 2003).  With regard to 

DHA accretion, human toddlers and PND 17 rats are also very similar.  Humans 

accumulate most brain DHA during the third trimester of gestation (Clandinin et al., 

1980b) and throughout early childhood (Clandinin et al., 1980a).  Likewise, rats have a 

dramatic spike in DHA accretion beginning 5 days before birth that continues through 

weaning (Green et al., 1999).   

A PND 17 rat weighs approximately 35 g, larger than the average adult mouse.  

Therefore, using rats provides much more tissue allowing for multiple types analysis for 
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which sample preparation procedures may not be compatible.  Additionally, subtle 

changes in motor function are more easily detectible in rats because they are larger. 

 
 
2.3 Rationale for the CCI Model and Sham Surgery 
 

Controlled cortical impact is a widely used procedure to model focal brain 

injuries, especially in juvenile models of TBI (Adelson et al., 1996; Adelson et al., 1998; 

Appelberg et al., 2009).  A very specific, controlled injury to a select area of tissue can 

be produced using CCI.  In this case, the sensorimotor cortex was injured allowing us to 

measure motor deficits as a measure of injury severity and recovery.  Other models of 

TBI, such as fluid percussion, produce diffuse, wide-spread injuries which may cause 

deficits that can be more difficult to quantify (Prins and Hovda, 2003).   

Sham procedures involving the use of a trephine or drill to produce craniotomy 

have been shown to cause brain injury distinct from that caused by impact (Cole et al., 

2011).  Cortical damage induced by TBI significantly outweighs damage caused by the 

craniotomy (Wu et al., 2013); nevertheless, to avoid potential experimental confounds, 

the sham surgery consisted of a scalp incision with no craniotomy or impact from the 

CCI device.  Thus, the experiments utilized two experimental conditions: no injury to the 

skull or brain or craniotomy with contusion injury to the brain.  

 

2.4  Aims and Rationale for Endpoints Chosen 

2.4.1 Specific Aim 1 

The goal of Aim 1 was to establish a juvenile TBI model with consistently 

reproducible behavioral deficits as well as establish a battery of sensorimotor behavioral 



37 
 

tests capable of assessing recovery throughout the rapid growth and development of a 

juvenile rat. While establishing this model, we also investigated potential sex differences 

in sensorimotor deficits after TBI.  It was hypothesized that: 

 Suitable sensorimotor tests could be identified or created to assess 

behavioral recovery after TBI in juvenile rats 

 There would be no sex differences in sensorimotor deficits after TBI.  

This study is presented in Chapter 4.  

2.4.1.1 Rationale for Aim 1 Endpoints 

Rats received a CCI injury to the sensorimotor cortex thus enabling us to assess 

motor deficits as a function of injury and recovery.  As such, motor tests assessing 

forelimb and hindlimb function, balance, gait, and locomotion and related behaviors 

were selected for evaluation.  

With the anticipation that the sensorimotor tests would be used to assess the 

effects of a TBI occurring on PND 17 for at least 28 days after injury in later studies, the 

initial evaluation of the sensorimotor tests examined the use of each procedure with rats 

ranging in age from as early as PND 14 (allowing for as many as three days of pre-

training, depending on the test) through PND 45 (35-170 g).  Rats’ body size, motor 

coordination, and eyesight change drastically and rapidly during the juvenile and 

adolescent period; therefore, it was important to establish reliable behavioral tests that 

could assess function from two weeks of age through adulthood.  Tests were evaluated 

based on four criteria: the necessity for pre-training to learn the task before injury, ability 

to scale the test to accommodate animals of varying sizes, whether the task was 

developmentally appropriate for rats at all of the relevant ages, and the throughput 
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capacity including the labor required to analyze the data.  Scalability was determined 

empirically by testing the ability of rats of each age group to perform each test on each 

available size of apparatus. 

Both male and female rats were used when evaluating behavioral tests assess 

potential hormonal or estrous cycle effects on behavioral outcomes.  Though at the time 

of injury rats are sexually immature, toward the end of the testing period of interest, rats 

begin to mature.  As a result of maturation, sex differences might develop and create a 

potential confound.  If no behavioral sex differences exist, this would allow us to use 

both sexes in later behavioral studies, if necessary. 

  

2.4.2 Specific Aim 2 

The goal of Aim 2 was to determine the effects of dietary n-3 LC-PUFA content 

and brain fatty acid status on sensorimotor and molecular outcomes of a TBI in juvenile 

rats.  Previous studies showed that, in addition to diet, affects offspring brain fatty acid 

composition.  By breeding two sequential litters of rats on a Control and Low N-3 diet, 

we can produce rats with three levels of brain DHA, with both litters consuming the 

same diets.  This allowed us to investigate the “dose-response” effects of brain DHA 

content on the motor and biochemical outcomes of juvenile TBI.  Three possible 

outcomes were hypothesized:  

 Severity of biochemical and sensorimotor outcomes will not be influenced by 

diet or brain fatty acid content such that all injured rats, regardless of diet or 

litter, will have similar outcomes. 
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 Severity of biochemical and sensorimotor outcomes will correlate with diet, 

not brain DHA, such that injured rats fed the low n-3 diet will have worsened 

outcomes.  This would indicate outcomes of TBI are a function of the amount 

of n-3 fatty acids consumed in the diet and not of the fatty acid status of the 

brain.  

 Severity of biochemical and sensorimotor outcomes will correlate with brain 

DHA content, such that rats with greater decreases in brain DHA will have 

the worst outcomes; thus indicating outcomes after TBI are a function of 

tissue DHA levels rather than dietary n-3 content, since both litters consume 

the same diets 

This study is presented in Chapter 5.  

 

2.4.2.1 Rationale for Aim 2 Endpoints 

This was the first study of the effects of dietary n-3 LC-PUFA content on TBI 

outcomes in a juvenile rat model.  As such, endpoints providing information on multiple 

injury processes were chosen to provide a comprehensive overview that would form the 

basis for subsequent targeted studies of implicated processes.  

Previous studies have shown that maternal diets deficient in n-3 LC-PUFAs 

decrease the DHA content of the offspring and that this effect increases when animals 

are maintained on n-3 LC-PUFA-deficient diets for multiple pregnancies or generations 

(Favreliere et al., 1998; Levant et al., 2006c; Ozias et al., 2007).  The technique of 

breeding multiple litters from a single dam on a deficient diet has been used extensively 

by our laboratory (Levant et al., 2006c; Ozias et al., 2007; Levant et al., 2010) to 
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produce pups with varying degrees of brain DHA without the confound of using multiple 

n-3 LC-PUFA deficient diets to produce multiple levels of brain DHA content.  This diet 

and breeding procedure allows for the determination of dose-response effects of brain 

DHA on content on the outcomes of TBI while avoiding potentially confounding effects 

of using different diets.  

It was established in Aim 1 that no sex differences with regard to behavioral 

outcomes after TBI are detectable with our tests; however, sex differences on 

biochemical outcomes were not assessed and may exist.  To eliminate the confound of 

potential hormonal or estrous cycle effects, only male rats were used in Aim 2.  

Additionally, males have a higher incidence of TBI than females making using only 

males more clinically relevant (Faul et al., 2010).  

Behavior was assessed in a repeated measures design weekly through 28 days 

after injury to assess the initial magnitude of the injury as well as recovery or 

persistence of effects using tests identified as suitable in Aim 1.  This also allowed us to 

assess not only the severity of the initial injury but also the rate of recovery.  To make 

the best use of all rats in the study, rats used for behavioral testing were used to 

measure lesion volume after completion of the behavioral testing on day 28. 

For biochemical endpoints, day one after injury was chosen as the optimal time 

point because multiple injury processes are occurring including necrosis, inflammation, 

edema, etc.  Additionally, preliminary data suggested MMP activity after injury may 

partly be regulated by n-3 fatty acid content of the brain.  Matrix metalloproteinase-2 

and -9 activities peak approximately 24 hours after TBI (Sifringer et al., 2007).  By 

seven days after injury many of the acute injury processes, including MMP activity, are 
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concluding but long-term processes like apoptosis and glial scaring are beginning 

(Sifringer et al., 2007; Walker et al., 2009).  Additionally, choosing day one and day 

seven after injury allowed the assessment of the initial magnitude of the injury as well as 

persistence of effects, which may be prolonged in rats with low brain DHA.  

To best determine the effects of TBI on MMP-2 and MMP-9, both enzymatic 

activity and mRNA levels were assessed one and seven days after injury.  Matrix 

metalloproteinases, like many other proteases, are transcribed and then translated into 

zymogens that require cleavage to be fully activated.  As such, mRNA levels likely do 

not directly reflect the level of active protein.  Also, MMP-9 is transcriptionally regulated 

whereas MMP-2 is constitutively expressed and is primarily regulated at the level of 

enzyme-activation (Strongin et al., 1995; Gottschall and Deb, 1996).  Therefore, to get 

the most accurate profile of MMP level after TBI, both mRNA levels and enzymatic 

activity were assessed.   

Because little is currently known about the mechanism(s) by which brain n-3 fatty 

acid content would modulate recovery after TBI, it was important to select genes that 

are representative of the spectrum of physiological processes occurring after TBI.  

Evaluation of mRNA levels using quantitative polymerase chain reaction (qPCR) was 

chosen because it enabled the assessment of a large number of mediators from a very 

small sample. Furthermore, genes were chosen based on processes affected by n-3 

administration in other models of neural injury (Wu et al., 2004; King et al., 2006; Huang 

et al., 2007; Wu et al., 2007; Pan et al., 2009; Wu et al., 2013). Messenger RNAs for Il-

6, Il-1 , and Tnf  were chosen based on their involvement with inflammation, a process 

DHA and EPA are known to modulate in other models of neural injury.  Glial fibrillary 
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acidic protein (Gfap) is a marker of injury and glial activation.  Chemokine (C-C motif) 

ligand 2 (Ccl2) is an inducible chemoattractant protein secreted by monocytes, 

macrophages, and dendritic cells after tissue injury to attract other similar cells to the 

site.  Matrix metalloproteinase-2 and MMP-9 are proteases known to be involved in the 

degradation of the BBB after TBI through degradation of the matrix.  Matrix 

metalloproteinases also activate many pro-inflammatory molecules including IL-1 .  

TIMP-1 is a broad substrate MMP inhibitor has-apoptotic and growth factor properties 

(Hayakawa et al., 1992; Gardner and Ghorpade, 2003; Jourquin et al., 2005). 

Gene expression and mRNA level does not necessarily correlate with the level of 

functional protein.  There is a significant amount of post-translational modification, 

stabilization, activation, and degradation that may lead to more or less protein in relation 

to mRNA levels.  Additionally, there are many factors that contribute to mRNA stability 

which many therefore affect measured mRNA levels.  These limitations will be taken 

into consideration when drawing conclusions about mRNA levels. 

 

2.4.3 Specific Aim 3  

The goal of Aim 3 was to examine the effects of acute administration of fish oil on 

sensorimotor and biochemical outcomes of TBI in juvenile rats.  It was hypothesized 

that: 

 Acute fish oil administration will improve sensorimotor and biochemical 

outcomes after TBI.  Fish oil administration will improve locomotor function, 

reduce immunoglobulin G (IgG) infiltration, and improve measures of gene 

expression after TBI compared to injured rats administered soybean oil.  
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This study is presented in Chapter 6.  

 

2.4.3.1 Rationale for Aim 3 Endpoints 

Aim 3 examines the effects of fish oil dosing on outcomes of TBI.  Soybean oil 

served as the control as that was the oil supplied in the diet to all groups. Thirty minutes 

prior to receiving a brain injury rats were dosed with the appropriate oil to serve as a 

“loading dose” and provide possible benefit immediately after TBI.  Oil dosing continued 

once a day to mimic a reasonable human dosing paradigm and also to allow the young 

rats to consume other necessary nutrients through maternal milk, and later, chow.  Rats 

were dosed with 15 mL/kg of oil, which was approximately 0.5 mL at the time of injury, a 

volume that could be well tolerated but still provided a substantial dose of n-3 fatty 

acids. 

Several studies have shown the benefit of fish oil, and DHA or EPA alone for the 

treatment of neural injuries (Bailes and Mills, 2010; Huang et al., 2007; Javierre et al., 

2006; Pan et al., 2009; Wu et al., 2007).   Both DHA and EPA have neuroprotective 

properties (Zhang et al., 2011).  Therefore, for this initial study, animals were dosed with 

fish oil, a combination of DHA, EPA, and other n-3 fatty acids to test the effects of n-3 

LC-PUFAs generally.  This treatment strategy is also highly clinically relevant as 

nutraceutical fish oil supplements are currently available and could thus be immediately 

used in patients with TBI should they prove beneficial.  The specific contributions of 

individual n-3 LC-PUFA to the beneficial effects observed after TBI, if any, must be 

determined in subsequent studies. 
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Endpoints for Aim 3 were based on the outcomes of Aim 2.  Likewise with Aim 2, 

to eliminate possible sex effects on biochemical outcomes, only male rats were used for 

this study.  Rats underwent behavioral assessment one, four, and seven days after TBI 

after determining that most behavioral effects were maximal within 24 hours after injury 

and recovery could be detected within seven days after TBI.  To minimize the number of 

rats used, rats used for behavioral testing were also used to assess BBB damage via 

IgG immunohistochemistry after completion of the behavioral testing on day seven.   

Damage to the BBB was assessed using IgG immunohistochemistry to measure 

IgG infiltration into the brain.  Under normal conditions, IgG is not found in the brain and 

it can only pass through the BBB when it is damaged.  An alternative technique to 

measure BBB damage would be to inject Evans Blue dye prior to sacrifice.  Like IgG, it 

cannot pass through the BBB unless it is damaged.  However, using IgG 

immunohistochemistry provided additional unaltered sets of sectioned tissue that could 

be analyzed for other mediators of injury if necessary.   

To limit redundancy from Aim 2 to Aim 3, only genes with significant main effect 

of injury in Aim 2 as indicated by a two way analysis of variance (ANOVA) were 

measured in Aim 3.  Those genes were: Timp1, Mmp2, Mmp9, Gfap, and Ccl2.   
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Parts of this chapter are reprinted with permission from Journal of Neuroscience 

Methods,199, Russell KL, Kutchko KM, Fowler SC, Berman NE and Levant B, 

Sensorimotor behavioral tests for use in a juvenile rat model of traumatic brain injury: 

assessment of sex differences, 214-222, (2008), with permission from Elsevier. 
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All experiments were conducted in accordance with the NIH Guide for the Care 

and Use of Laboratory Animals and were approved by the University of Kansas Medical 

Center Institutional Animal Care and Use Committee.   

 

3.1 Animals, Husbandry, Diets, and Dosing 

Long-Evans rats were housed in a temperature- and humidity-controlled facility 

with a 14-10 hour light-dark cycle (on at 06:00 h) with ad libitum access to food and 

water.  Breeding stock (females 75–85 days; male proven breeders; Harlan 

Laboratories, Inc. Indianapolis, IN) were obtained a minimum of five days prior to the 

beginning of the experiment and were handled regularly.  Males and females were 

maintained on a standard laboratory rodent diet (#8604, Harlan Laboratories, Inc., 

Indianapolis, IN) until mating.  At the time of mating, breeding pairs were placed on one 

of two purified diets (Control or Deficient).  Mated females were singly housed and 

maintained on their diet through two consecutive litters, allowing one week rest after 

weaning the first litter and mating for the second litter.  Litters were culled to eight pups 

with preference for males on PND 1.  Pups received either a CCI injury or sham surgery 

on PND 17 and were returned to the dam until weaning.  Pups were weaned on PND 20 

onto their mothers’ respective diet and housed in groups of two to four, TBI and sham-

injured together, for the remainder of the study.  
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3.1.1  Experimental Diets  

 In Aim 1, rats were fed standard laboratory chow (Teklad 8604, Indianapolis, IN). 

For Aim 2, the Control diet was AIN-93G (Teklad, Indianapolis, IN, which was 

formulated with unhydrogenated soybean oil (70 g/kg) and contained 4.20 g/kg ALA 

(18:3n-3) and 33.81 g/kg LA (18:2n-6).  It met all current nutrient standards for rat 

pregnancy and growth (Reeves et al., 1993).  The Deficient diet was a custom prepared 

pelleted diet (Teklad) that was identical to the Control diet except it was prepared with 

safflower oil (66.5 g/kg) and soybean oil (3.5 g/kg), and thus contained 0.38 g/kg ALA 

(18:3n-3) and 45.96 g/kg LA (18:2n-6).  

 For Aim 3, rats were fed Teklad Global diet 2016, which does not contain soy 

products and thus obviates the potential confound of phytoestrogens in the diet.  Fatty 

acid composition of the Control, Deficient, and Teklad Global 2016 diets are shown in 

Table 3-1. 
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Table 3-1.  Diet fatty acid composition. 

Diet Fatty Acid 
Composition (g/kg) 

Control Deficient 
Teklad  

Global 2016 

14:00 0.29 1.23 0.16 

16:00 9.84 7.23 6.16 

18:00 6.42 5.84 2.29 

20:00 0.51 0.19 0.14 

22:00 0.33 0.39 0.21 

24:00 ND ND ND 

16:01 ND 0.10 ND 

18:01 13.39 10.99 7.38 

20:1n-9 0.06 0.16 0.28 

18:2n-6 28.68 37.20 17.78 

18:3n-3 (ALA) 5.32 0.54 1.59 

20:2n-6 0.22 0.17 0.41 

20:4n-6 ND 0.62 0.11 

20:5n-3 (EPA) ND ND ND 

22:5n-3 ND ND ND 

22:6n-3 (DHA) ND ND ND 

   ND: not detected 

 

3.1.2  Acute Fish Oil Dosing  

Rats were dosed with either 15 mL/kg of fish oil (2.01 g/kg EPA, 1.34 g/kg DHA; 

Nature Made 1200 mg fish oil capsules, Mission Hills, CA) or unhydrogenated soybean 

oil via oral gavage 30 minutes prior to the initial TBI or Sham surgery and then daily for 

seven days.  Fish oil contained no traces of Vitamin D and 5.6 pg/mg of oil of Vitamin E 

(tocopherol) as an antioxidant.  On days behavioral testing occurred, rats were dosed 

after testing.  On days of sacrifice, rats were sacrificed approximately six hours after 

dosing.  Soybean oil was chosen as the control as it was the oil used in the Teklad 2016 



49 
 

diet and was already supplied to all groups via the diet.  Fatty acid composition of the 

fish and soybean oils are shown in Table 3-2. 

 

Table 3-2. Soybean oil and fish oil fatty acid composition.  

Oil Composition  
(% Total Fatty Acids) 

Fish 
Oil 

Soybean 
Oil 

12:0 0.13 ND 

14:0 7.66 ND 

14:1 0.09 ND 

15:0 0.53 ND 

16:0 16.02 11.09 

16:1 13.53 0.10 

17:0 0.54 0.17 

17:1 1.60 0.05 

18:0 5.23 5.05 

18:1n-9t 10.28 ND 

18:1n-9c 3.66 20.99 

18:2n-6c 1.52 50.13 

18:3n-6 0.45 ND 

20:0 ND 0.69 

18:3n-3 (ALA) 0.78 9.74 

20:1n-9 1.04 0.13 

21:0 ND 0.19 

20:2n-6 0.37 0.32 

20:3n-6 0.23 ND 

22:0 ND 0.60 

20:4n-6/20:3n-3 1.70 0.02 

22:1 0.22 0.04 

23:0 1.28 0.07 

20:5n-3 (EPA) 11.66 ND 

22:2n-6 0.14 0.27 

24:0 0.058 0.18 

24:1 1.63 0.15 

22:5n-6 0.36 ND 

22:6n-3 (DHA) 16.25 ND 

    ND: not detected 
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3.2  Procedures  

Male rat pups (n = 5-12 per group, depending on endpoint, and each from a 

different litter) were subjected to CCI TBI or sham surgery on PND 17.  Those used for 

sensorimotor testing were tested one, seven, 14, 21, and 28 days after surgery for Aims 

1 and 2, or days one, four, and seven after surgery for Aim 3 and then euthanized on 

the final testing day by transcardial perfusion under pentobarbital anesthesia followed 

by the removal of the brain.  A second cohort of rats not used for behavioral testing 

were euthanized on day one (28 hrs) or day 7 after surgery (Aim 2) or day one or day 

four after surgery (Aim 3) by decapitation. 

Brains from these rats were rapidly removed and the dissected on ice.  The 

frontal cortex was frozen on dry ice for later fatty acid analysis.  The injured motor 

cortex was divided in half, with the rostral half being frozen on dry ice for later 

zymographic analysis and the caudal half preserved in RNAlater (Life 

Technologies/Ambion, Gaithersburg, MD) for mRNA analysis.  

 

3.2.1  Controlled Cortical Impact   

The CCI was performed as previously described (Russell et al., 2011).   Briefly, 

rats were anesthetized with isoflurane (induction, 3.0%; maintenance, 2.0%) and 

stabilized in a Cunningham stereotaxic frame (Stoelting, Wood Dale, IN).  A 4 x 4 mm 

craniotomy was performed lateral (right side) to the mid-sagittal suture, centered at: AP 

= 0, ML = 2.5 from bregma.  The impactor device, previously described in detail 

(Onyszchuk et al., 2007) was outfitted with a 3.0 mm-diameter tip.  The impactor tip was 

centered within the craniotomy and lowered until the tip just contacted the dura over 
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motor (M1, M2) and sensory (S1FL, S1HL) cortical areas (Sherwood and Timiras, 1970; 

Paxinos and Watson, 1986).  The parameters of the impact were as follows: 3.0 mm 

depth, 1.5 m/sec strike velocity, 300 msec contact time.  The scalp was closed with a 6-

0 silk suture and the animal was able to recuperate until locomotion was recovered.  

The sham surgery consisted of a scalp incision with no craniotomy or impact from the 

CCI device because sham procedures involving the use of a trephine or drill to produce 

craniotomy have been shown to cause brain injury distinct from that caused by impact 

resulting in an experimental confound (Cole et al., 2011).  All rats received 0.05 mg/kg 

of buprenorphine approximately one hour after surgery and again 24 hours after 

surgery, after day one behavioral testing was completed. 

 

3.3  Sensorimotor Testing 

 All behavioral testing occurred between 09:00 and 12:00 h in a brightly lit room 

specifically reserved for rodent behavioral testing.  Animals were allowed to acclimate to 

the behavioral testing facility in their home cages for approximately 15 minutes before 

beginning testing.   

 

3.3.1 Grid Walk  

Rats were placed on an elevated wire grid (46 x 92 cm), with 2.5 x 2.5 cm square 

holes and allowed to walk for five min while being videotaped from below, as previously 

described (Onyszchuk et al., 2007).  Three five-minute sessions were performed for 

each rat on each test day, with the rat spending at least five minutes in the home cage 

between sessions.  Videos were later analyzed for total walking time, number of steps 
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taken, and the number of foot faults for each foot.  Foot faults were defined as an 

instance where the animal attempted to place weight on a foot, which then passed 

completely through the plane of the wire grid.  Foot fault data were normalized to the 

total time spent walking to account for differences in the degree of locomotion seen in 

different trials, and are expressed as foot faults per minute of walking. 

 

3.3.2 Automated Gait Analysis  

Gait was assessed using a DigiGait™ imaging system (Mouse Specifics, Inc.). 

Rats were placed in the lighted Plexiglas™ chamber situated on a motorized 

transparent treadmill.  Paw placement was captured from the ventral aspect using a 

high-speed digital video camera (150 frames/sec, 5000 pixels/cm2) mounted under the 

treadmill.  Five-sec recordings were made of the rats walking between five and 10 

cm/sec and were analyzed using DigiGait™ analysis software to analyze more than 25 

parameters of gait. 

 

3.3.3 Rotarod 

An accelerating mouse-sized rotarod (Med Associates ENV-575M) was used in 

accordance with the methods of Hamm et al. (1994).  Rats were trained daily for three 

days prior to injury.  Rod speed accelerated from 4-40 RPM over the course of five 

minutes.  Six minutes was the maximum time allowed on the rotarod.  Rats were tested 

three times on each testing day, with a minimum of five minutes of rest in the home 

cage between trials. 
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3.3.4 Beam Walk  

Rats were tested for their ability to traverse a 75 cm-long wooden dowel elevated 

30 cm and ending in a dark goal box.  Two training sessions were performed on PND 

16 and PND 17 prior to surgery, which were sufficient for all rats to meet the pre-injury 

performance criterion of being able to complete two traverses of the full length of the 

rod.  Beams of increasing diameter were used to accommodate the growth of the rats 

over the course of testing.  Beam sizes were selected based on the criteria that the 

diameter was sufficiently large that the rat was able to walk the length of the beam, but 

not large enough that the rat could lie on the beam and crawl.  A 15 mm diameter beam 

was used for PND 16 and 17 pre-surgery training and testing on days one and seven 

after surgery.  An 18 mm diameter beam was used for testing 14 days after surgery, 

and a 21 mm diameter beam was used for testing 21 and 28 days after surgery.  On 

testing days, rats traversed the beam three times.  Test sessions were video-taped. The 

videos were scored for ipsilateral and contralateral foot slips, time required to reach the 

goal box, and total number of steps taken by the right (uninjured) hind foot.  Data are 

reported as the percent of contralateral foot slips to control for the decreasing number of 

steps needed to traverse the beam as the rats grow, and average speed (cm/sec). 

 

3.3.5 Spontaneous Forelimb Elevation (Cylinder) Test 

Rats were placed in a glass cylinder (standard laboratory beaker or cylindrical 

vase [Living Bright, Inc.]) scaled to the size of the rat so that the cylinder diameter was 

roughly 4 cm greater than the length of the rat from nose to hind quarters.  This 

provided ample room for the rat to turn, but also minimized horizontal exploration of the 
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cylinder (12 cm diameter for PND 16 pre-injury measurements and measurements one 

day after surgery, 15 cm for seven days after surgery, and an 18 cm for 14, 21, and 28 

days after surgery).  Rats were observed for spontaneous rearings during a single 5-min 

observation session.  The number of wall rearings using both left and right, right only, or 

left only forelimbs were recorded.  A measurement performed on the day prior to TBI 

surgery, was taken to control for pre-injury limb preference.  The laterality score was 

computed as follows: (number of right only - number of left only) / (number of right only 

+ number of left only + number of both together) (Schallert et al., 2000). 

 

3.3.6 Assessment of Motor Activity Using Force-Plate Actometry 

Rats were placed in the force-plate actometer chambers (42 x 28 cm, [Steven C. 

Fowler, University of Kansas]), enclosed in a dark, sound attenuating cabinet.  Behavior 

was recorded for 20-minutes in two-minute time bins.  A small wall-mounted fan in each 

cabinet provided background noise and air circulation.  Data were analyzed for total 

distance traveled, number of low mobility bouts (≥10 sec within a 20-mm radius), and 

low mobility distance (distance traveled during bouts of low mobility) as previously 

described by Fowler et al. (2001), and turning bias (see below).  To determine turning 

bias, the center of force coordinates of the rats’ movements were referenced to the 

geometric center of the floor on which the animals moved, and vector algebra was used 

to calculate angular direction of movements (degrees) relative to the floor geometric 

center every 0.01 sec.  Movements in a counter-clockwise direction (turning to the left) 

were coded with a positive algebraic sign while movements in the clockwise direction 

received a negative algebraic sign.  These signed values were summed algebraically as 
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session time advanced to yield the net directional rotations.  The method is analogous 

to using a bidirectional mechanical counter attached to a rat with a tether such that turns 

in one direction count up (add) and turns in the opposite direction count down (subtract). 

Zero turning bias, therefore, is reflected by zero counts at the end of the recording 

session.  All data were analyzed for the entire 20-minute session on each testing day 

after injury.  Data for distance traveled, bouts of low mobility, and low mobility distance 

were further analyzed in two-minute time bins on day one after injury. 

 

3.4  Quantitative Real-Time PCR 

Cortical tissue surrounding the site of injury was dissected on ice at the time of 

euthanasia and preserved in RNAlater (Life Technologies/Ambion, Gaithersburg, MD) at 

4oC until total RNA was to be isolated.  Total RNA was isolated from the tissue by 

homogenizing it in 1 mL of Trizol reagent (Life Technologies/Gibco BRL, Gaithersburg, 

MD) per 100 mg of tissue weight.  The RNA was isolated using a Trizol (Life 

Technologies/Ambion) phenol-chloroform extraction according to the manufacturer’s 

protocol and precipitated with 75% isopropyl alcohol overnight at -20oC.  The quality of 

isolated RNA quality was determined using a Nanodrop spectrophotometer (Thermo 

Scientific, Wilmington, DE) with adequate quality being an OD 260/280 greater than 1.8.  

mRNA quality was further verified using a Agilent Bioanalyzer 2011 (Agilent 

Technologies, Inc., Santa Clara, CA).  First strand cDNAs were synthesized using a 

High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Carlsbad, CA) per 

the manufacturer’s protocol using a PTC-100 Peltier Thermal Cycler (MJ Research, 

Waltham, MA).  Exon spanning, gene-specific primers (Table 3-3) were prepared using 
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the NCBI’s Primer-BLAST (Ye et al., 2012) and purchased from Integrated DNA 

Technologies, Inc. (Coralville, IA).  Primer specificity was determined by the presence of 

a single peak in the melt curve.  

The qPCR reactions were prepared using 10 ng of RNA-equivalent cDNA, 125 

nM of each forward and reverse primer, and 1x iQ SYBR Green Supermix in 96 well 

plates and run on a iCycler iQ real-time PCR system (Bio-Rad, Hercules, CA).  The 

thermal cycle conditions were as follows: 30 sec at 50oC, 8 min 30 sec at 95°C, followed 

by 95°C for 15 sec then 65°C for 30 sec for 40 cycles, then 95oC for 1 minute, 55oC for 

1 minute, and a melt curve beginning at 55oC and increasing 0.5oC every 10 sec until 

100oC.   

Relative gene expression was calculated using the 2-ΔΔCt method (Livak and 

Schmittgen, 2001).  Data are expressed as fold change in gene expression compared to 

the reference gene beta-2-microglobulin (B2m), which was experimentally determined 

to be the most stably expressing gene in our experimental model and brain region of 

interest (Harris et al., 2009). 
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Table 3-3. qPCR primers. 
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3.5  Gelatin Zymography 

Injured cortical tissue was dissected on ice and homogenized in lysis buffer (50 

mM Tris-HCl, 200 mM NaCl, 5 mM CaCl2, 0.02% Brij-35, pH 8) and centrifuged.  MMP-2 

and MMP-9 were purified from the supernatant using gelatin Sepharose 4B affinity 

media (GE Healthcare Life Sciences, Pittsburgh, PA) for one hour at 4o C.  MMP-2 and 

MMP-9 were eluted from the Sepharose 4B using the lysis buffer containing 10% 

DMSO.  Samples were loaded with a zymogram sample buffer (Bio-Rad, Hercules, CA) 

onto a 7.5% polyacrylamide gel containing 1 mg/mL porcine gelatin.  Samples were run 

in a tris-glycine sodium dodecyl sulfate (SDS) running buffer (25 mM Tris Base, 192 mM 

Glycine, 0.1% SDS, pH 8.3) at 100V until the dye front reached the bottom of the gel.  

Gels were rinsed 2X in rinse buffer (50 mM Tris, 5 mM CaCl2, 2.5% Triton X-100, pH 8) 

for 30 minutes, 1X in incubation buffer (50 mM Tris, 5 mM CaCl2, pH 8) at room 

temperature and then in fresh incubation buffer overnight at 37oC.  Bands were 

visualized by staining the gels with Coomassie brilliant blue stain (2.5 mg/mL) for 

several hours.  After destaining, gels were digitized and bands analyzed for color 

density using NIH ImageJ software (Abramoff et al., 2004).  Band density is expressed 

as a percentage of the density of the positive controls, human recombinant MMP-2 and 

MMP-9 (Anaspec, Freemont, CA).  

 

3.6  Histology and Immunohistochemistry 

 Twenty-eight days after surgery (Aim 2) or seven days after surgery (Aim 3), rats 

were deeply anesthetized with pentobarbital and transcardially perfused with cold 1X 

phosphate buffered saline (PBS) followed by 4% phosphate buffered formaldehyde 
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(PBF, pH. 7.4).  The brains were removed and post-fixed in 4% PBF for several days 

then cryoprotected in 30% sucrose in PBS for three days and stored at -80oC until 

sectioning.   

 

3.6.1  Lesion Volume 

Frozen sections were cut at 50 µm through the site of impact collecting every 

tenth section.  Sections were mounted on gelatin-subbed slides and dehydrated in 

graded ethanol and stained with cresyl violet before being coverslipped.  Macro-level 

images digitized images of each section and ImageJ (Rasband, 1997-2012) were used 

to determine the area of intact tissue of the ipsilateral and contralateral hemispheres .  

The total tissue loss was calculated using the following equations modified from 

(Coggeshall, 1992): (contralateral tissue area – ipsilateral intact tissue area) * section 

thickness * distance between sections = Subvolume.  Total lesion volume =Σ 

Subvolume (Section1 + Section2 + …Sectionn). 

 

3.6.2  IgG Immunohistochemistry 

Frozen sections were cut at 30 µm through the site of impact (+2.0 bregma to -

2.0 bregma), or the corresponding area in shams, collecting every tenth section.  

Sections were mounted on charged slides prior to staining. 

Frozen sections were allowed to equilibrate to room temperature for 15 minutes 

then hydrated in PBS before being stained for IgG using a Vectastain Rat IgG ABC Kit 

(Vector Labs, Burlingame, CA) according to the manufacturer’s protocol.  All solutions 

and dilutions were prepared according to the manufacturer’s instructions.  Briefly, 
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mounted sections were air-dried for 15 minutes then rinsed with PBS for 15 and 

incubated in 0.3% H2O2 for 30 minutes to block endogenous peroxide activity.  Next, 

sections were blocked in diluted normal serum for 30 minutes, then 2 x 5 minute rinse in 

PBS, and then a 1-hour incubation with a secondary biotinylated anti-rat IgG antibody.  

Sections were rinsed for 5 minutes in PBS before a 30-minute incubation with the ABC 

reagent (streptavidin-horse radish peroxidase) followed by 2-10 minute incubation with 

the prepared diaminobenzidine tetrahydrochloride reagent (Vector Labs, Burlingame, 

CA) to visualize immunoreactivity.  Sections were rinsed in water for 5 minute before 

being dehydrated through a graded alcohol baths and then coverslipped. 

ImageJ (Rasband, 1997-2012) was used to determine the ipsilateral cortical IgG 

density and total area of IgG staining (both hemispheres) from macro-level digitized 

grayscale images of each section.  The total area of IgG staining was calculated from 

IgG staining in the entirety of both hemispheres.  A baseline grayscale threshold was 

set at 75 based on the background level of nonspecific staining in sham sections.  Any 

areas darker than the threshold were considered positive for IgG staining.  The volume 

of IgG staining was calculated using the following equation: IgG area * section thickness 

* distance between sections = Subvolume.  Total IgG Volume = Σ Subvolume (section1 

+ section2 + …sectionn). 

. 

3.7  Brain Total Phospholipid Fatty Acid Composition  

Brain total phospholipid fatty acid composition was analyzed as previously 

described (Levant et al., 2006c).  Briefly, phospholipids were extracted from frontal 

cortex and isolated by thin layer chromatography.  The phospholipids were then 
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transmethylated with boron trifluoride methanol (Sigma, St. Louis, MO) to produce fatty 

acid methyl esters.  Individual fatty acid methyl esters were analyzed using a Varian 

3400 gas chromatograph with an SP-2330 capillary column (30 m, Supelco, Inc., 

Belfonte, PA), using helium as the carrier gas.  Peaks were identified by comparing to 

authentic standards (PUFA 1 and 2, and Supelco 37, Supelco, Inc. and 22:5n-6, Nu-

Chek Prep, Elysian, MN) and corrected for response factors.  Individual fatty acids were 

expressed as weight percent of total fatty acids on the basis of peak area. 

 

3.8  Statistical Analysis   

All data are expressed at the mean ± SEM. 

For Aim 1, data from tests found suitable for use with the rat model of juvenile 

TBI were analyzed for effects of injury (TBI or sham-injured) and sex (male or female) 

by repeated measures analysis of variance (ANOVA) with factors of TBI, sex, and day 

after injury (1-28 days after injury, repeated measure). Force-plate actometry data were 

also analyzed for effects across the observation session by 3-way ANOVA with factors 

TBI, sex, and time bin (repeated measure).  Post-hoc comparisons were made using 

one-way ANOVA and the Fisher’s Least Significant Difference (Fisher’s LSD) test.  

Differences were considered significant if P < 0.05. 

 For Aim 2, normally distributed data were analyzed for effects of injury (TBI or 

sham-injured) and diet (Control or Deficient) by repeated measures ANOVA with factors 

of TBI, diet, and day after injury (1-28 days after injury) (SYSTAT, v.12).  Time after 

injury was analyzed as repeated measure for the sensorimotor function studies.  

Outliers identified by SYSTAT were discarded from subsequent analyses.  Post-hoc 
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comparisons were made using one-way ANOVA and the Fisher’s Least Significant 

Difference test.  In one case of the real-time PCR analysis (Ccl2, 1st litter), data were 

not normally distributed and instead were analyzed by the Kruskal-Wallis nonparametric 

ANOVA with post-hoc comparisons made using Dunn’s Multiple Comparisons test.  A 

significant difference was assumed if P < 0.05.  Because the experimental design 

required the production pups from 1st and 2nd litters from the same dam, testing of 1st 

and 2nd litter pups was performed as separate cohorts.  Consequently, with the 

exception of the brain fatty acid data, comparison of the effects in the 1st and 2nd litter is 

limited to qualitative comparisons. 

For Aim 3, normally distributed data were analyzed for effects of injury (TBI or 

sham-injured) and oil (Fish or Vegetable) by repeated measures ANOVA with factors of 

TBI, oil, and day after injury (1-28 days after injury) (Systat, v.12).  Time after injury was 

analyzed as repeated measure for the sensorimotor function studies.  Outliers identified 

by Systat were discarded from subsequent analyses.  Post-hoc comparisons were 

made using 1-way ANOVA and the Fisher’s Least Significant Difference test.  In cases 

of non-normal distribution, data were analyzed by the Kruskal-Wallis nonparametric 

ANOVA with post-hoc comparisons made using Dunn’s Multiple Comparisons test.  

Differences were considered significant if P < 0.05.   
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CHAPTER FOUR 

ANALYSIS OF SENSORIMOTOR TESTS AND ASSESSMENT OF SEX 

DIFFERENCES IN SENSORIMOTOR FUNCTION AFTER TBI 

 
 
 

 

 

 

 

 

 

 

 

 

Reprinted with permission from Journal of Neuroscience Methods,199, Russell KL, 

Kutchko KM, Fowler SC, Berman NE and Levant B, Sensorimotor behavioral tests for 

use in a juvenile rat model of traumatic brain injury: assessment of sex differences, 214-

222, (2008), with permission from Elsevier. 
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4.1  Abstract 

Modeling juvenile TBI in rodents presents several unique challenges compared 

to adult TBI.  One challenge is selecting appropriate sensorimotor behavioral tasks that 

enable the assessment of the extent of injury and recovery over time in developing 

animals.  To address this challenge, we performed a comparison of common 

sensorimotor tests in Long-Evans rats of various sizes and developmental stages (PND 

16-45, 35-190 g).  Tests were compared and selected for their developmental 

appropriateness, scalability for growth, pre-training requirements, and throughput 

capability.  Sex differences in response to TBI were also assessed.  Grid walk, 

DigiGait™, rotarod, beam walk, spontaneous forelimb elevation test, and measurement 

of motor activity using the force-plate actometer were evaluated.  Grid walk, gait 

analysis, and rotarod failed to meet one or more of the evaluation criteria.  Beam walk, 

spontaneous forelimb elevation test, and measurement of motor activity using the force-

plate actometer satisfied all criteria and were capable of detecting motor abnormalities 

in rats subjected to CCI on PND 17.  No sex differences were detected in the acute 

effects of TBI or functional recovery during the 28 days after injury using these tests.  

These findings demonstrate the utility of these tests for the evaluation of sensorimotor 

function in studies using rat models of pediatric TBI, and suggest that pre-pubertal 

males and females respond similarly to TBI with respect to sensorimotor outcomes. 
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4.2  Introduction 

Testing the effects of juvenile brain injuries in animal models, particularly 

assessing recovery of function after injury, presents several challenges that are not 

encountered in adult models.  For example, age-matched controls must be used to 

account for developmental changes over the course of testing (Prins and Hovda, 2003).  

Also, many common methods to measure recovery in adult TBI models are unsuitable 

for use in a juvenile model due to their inability to scale for the rapid growth of the rats 

during the juvenile and adolescent periods and the necessity for extensive training prior 

to injury when the rats are quite immature.  To address these challenges of studying 

functional outcomes in an animal model of juvenile TBI, we tested the suitability of six 

sensorimotor behavioral tests.  The animal model is a CCI injury in 17-day old rats, a 

developmental time point that approximates the toddler period in humans with regard to 

motor function and used in a number of previous studies (Altman and Sudarshan, 1975; 

Westerga and Gramsbergen, 1990; Adelson, 1999; Prins and Hovda, 2003)  The tests 

examined included the grid walk, accelerating rotarod, beam walk, and the spontaneous 

forelimb elevation test, which have been used in a variety of TBI studies in adult rodents 

(e.g., (Hamm et al., 1994; Hamm, 2001; Baskin et al., 2003; Onyszchuk et al., 2007; 

Chen et al., 2008).  We also examined the automated DigiGait™ analysis system, which 

has been used to assess motor deficits after SCI (Ek et al., 2010; Springer et al., 2010), 

and the force-plate actometer, a sophisticated device typically used to measure 

locomotion and related behaviors (Fowler et al., 2001).  Tests were evaluated based on 

their pre-training requirements, ability to scale for the growth of the rat over time, and 

whether the task was developmentally appropriate for 17-45-day old rats.  Tests were 
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also assessed for throughput capacity.  Three tests met our criteria and detected 

sensorimotor deficits in a contusion model of TBI using juvenile rats.  Furthermore, 

juvenile male and female rats exhibit similar sensorimotor deficits following TBI. 

 

4.3  Brief Procedures   

All sensorimotor behavioral tests assessed are described in detail in Chapter 3 

(Materials and Methods).  With the anticipation that the sensorimotor tests would be 

used to assess the effects of a TBI occurring on PND 17 for at least 28 days after injury, 

the initial evaluation of the sensorimotor tests examined the use of each procedure with 

rats ranging in age from as early as PND 14 (allowing for as many as three days of pre-

training, depending on the test) through PND 45.  Tests were evaluated based on four 

criteria: the necessity for pre-training to learn the task before injury, ability to scale the 

test to accommodate animals of varying sizes, whether the task was developmentally 

appropriate for rats at all of the relevant ages, and the throughput capacity including the 

labor required to analyze the data.  Scalability was determined empirically by testing the 

ability of rats of each age group to perform each test on each available size of 

apparatus. 

 

4.4 Results 

4.4.1  Evaluation of sensorimotor tests for use in a juvenile rat model of TBI 

Six tests of sensorimotor function were evaluated for their developmental 

appropriateness, scalability for growth, pre-training requirements, and throughput 

capability.  Results are summarized in Table 4-1.  
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The accelerating rotarod had relatively high throughput, due to having short trial 

durations and automated data collection.  However, the test required a minimum of 

three days of training prior to injury.  In the juvenile rat model, this necessitated that 

training begin on PND 14.  At this point in development, which is roughly when the pup’s 

eyes open, the rats proved to be insufficiently coordinated to learn this task.  Scalability 

also proved to be a problem.  Notably, commercial accelerating rotarods are available 

only in two sizes designed for adult mice or adult rats.  The lack of intermediate sizes 

makes it difficult to accommodate the growth of juvenile rats over the course of testing 

without also changing the task for rats of different ages.  Thus, the rotarod test was also 

eliminated for use with the juvenile TBI model. 

 The beam walk test required only minimal pre-training prior to injury in order for 

the rats learn to traverse the beam.  Two brief training sessions prior to injury, requiring 

about 15 minutes per rat, were adequate for the pups to meet the criterion of being able 

to traverse the full length of the beam, and the second session could be done on the 

day of injury prior to surgery.  This test was easily scalable for rats of different sizes by 

using beams with increasingly larger diameters.  Rats as young as PND 16 were 

capable of completing the test.  Time required to test each animal was minimal; thus, 

experimental throughput was acceptable.  Analysis of recordings was comparatively 

labor intensive, but was less so than for the grid walk test.  Thus, the beam walk met all 

criteria for use with the PND 17 rat model of TBI and was further evaluated for its ability 

to detect deficits after injury. 

The spontaneous forelimb elevation test, or the cylinder test, required no pre-

training, though a test session prior to injury is required to determine if any baseline limb 



68 
 

preference exists.  This test was easily scalable by using cylinders of varying diameters 

and wall heights.  In addition, the test was readily performed by rats of any of the ages 

tested.  Throughput was relatively high.  Thus, the spontaneous forelimb elevation test 

met all the criteria for use with the PND 17 rat model of TBI and was further evaluated 

for its ability to detect deficits after injury. 

 Assessment of motor activity using the force-plate actometer required no pre-

training prior to injury, had no developmental limitations, and had a very high throughput 

due to automated data collection.  The actometer chamber accommodated rats of all of 

the ages of interest, though the relationship between the size of the rat and the size of 

the chamber changed as the rat grows.  Accordingly, the force-plate actometer was also 

assessed for its ability to detect a deficit after injury. 
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Table 4-1.  Evaluation of tests of rodent sensorimotor function for suitability for 

use with a juvenile rat model of TBI. 

 

 Minimal/No Fully Develop. Adequate Detects TBI 
Test Pre-Training Scalable Approp.2  Throughput Deficits 

Grid walk   Yes  No1 Yes No -- 

DigiGait™   No  Yes Yes No -- 

Rotarod No No1 No Yes  -- 

Spont. forelimb Yes Yes Yes Yes Yes 

Beam walk   Yes  Yes Yes Yes Yes 

Force-plate actometer  Yes  Yes Yes Yes Yes 

1Large (rat size) and small (mouse size) only 

2Can be performed by 14-16-day old rats for training or baseline measurements as 

required by the specific test. 

 

 

4.4.2. Effects of TBI in Juvenile Rats and Assessment of Sex Differences 

4.4.2.1 Beam Walk 

 With respect to percent of contralateral foot slips (Figure 4-1A), three-way 

ANOVA indicated a main effects of injury (F1,48 = 89.35, P < 0.001) and day after TBI 

(F4,192 = 27.72, P < 0.001), and an interaction of injury with day after injury (F4,192 = 

5.29, P < 0.001).  Post- hoc analysis indicated that rats with TBI exhibited an increased 

percentage of contralateral foot slips while traversing the beam compared to sham-

injured rats on each day of testing.  In addition, while all rats showed improvement in 
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performance between PND 17 and PND 45, those with TBI exhibited a more 

pronounced improvement in the first 14 days after injury.  There was no main effect of 

sex, or interaction of sex with the other parameters. 

Traverse speed exhibited main effects of injury (F1,48 = 5.01, P < 0.05) and day 

after injury (F4,192 = 46.63, P < 0.001), but no interaction of injury with day after injury 

(Figure 4-1B).  This indicated that rats with TBI traversed the beam more slowly than 

sham-injured rats and that all rats showed improvement in performance across test 

sessions.  There was no main effect of sex, or interaction of sex with the other 

parameters. 
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Figure 4-1.  Effects of TBI in male and female juvenile rats in the beam walk test 

on percent foot slips (A) and traverse speed (B).  Data are presented as the group 

means ± SEM (n = 12-15 per group).  Traverse speed exhibited only main effects of 

injury (P < 0.05) and day after injury (P < 0.01).  *TBI different from Sham, same day 

and for males and females combined (P < 0.05).  aDifferent from day one, same injury 
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and for males and females combined (P < 0.01).  bDifferent from day seven, same injury 

and for males and females combined (P < 0.05) by ANOVA and Fisher’s LSD test. 

 

4.4.2.2 Spontaneous Forelimb Elevation Test 

No differences in laterality were detected prior to injury.  After injury, three-way 

ANOVA revealed only a main effect of injury (F1,50 = 28.05, P < 0.001) indicating that 

rats with TBI exhibited greater tendency to use the forelimb ipsilateral to the injury 

compared to sham-injured rats on all days after injury (Figure 4-2).  There was no effect 

of sex, or interaction of sex with the other parameters. 

 

 
 

Figure 4-2.  Effects of TBI in male and female juvenile rats in the spontaneous 

forelimb elevation test.  Data are presented as the group means ± SEM (n = 12-15 per 

group).  No differences in laterality were detected prior to injury.  After injury, three-way 
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ANOVA revealed only a significant main effect of injury (P < 0.001) indicating a greater 

laterality in rats with TBI rats at all time points. 

 

 

4.4.2.3 Assessment of Motor Activity Using Force-Plate Actometry 

Distance traveled exhibited a main effect of day after injury (F4,200 = 40.34, P < 

0.001) such that rats exhibited less locomotor activity with increasing age (Figure 4-

3A).  There were no main effects of injury or sex.  An interaction of day with sex was 

detected (F4,200 = 2.92, P < 0.05), but proved non-significant after post-hoc analysis. 

Bouts of low mobility (≥10 sec spent within a 20-mm radius) (Figure 4-3B), and 

low mobility distance (the distance traveled during bouts of low mobility) (Figure 4-3C) 

exhibited significant main effects of injury (F1,50 = 13.48, P < 0.001 and F1,50 = 22.50, P < 

0.001, respectively), day (F4,200 = 51.33, P < 0.001 and F4,200 = 165.37, P < 0.001, 

respectively) and interactions of injury with day after injury  (F4,200 = 9.16, P < 0.001 and 

F4,200 = 24.97, P < 0.001, respectively).  Post -hoc analysis indicated that rats with TBI 

had fewer low mobility bouts on days one, seven, and 14 after injury and lower low 

mobility distance on day one after injury than in sham-injured rats (P < 0.05).  There 

was no main effect of sex on any of these parameters.  There was an interaction of sex 

with day after injury for bouts of low mobility (F4,200 = 3.28, P < 0.05) such that females 

had fewer bouts than males on day 21 after injury (P < 0.05).  There were no other 

interactions of sex with injury for either parameter or with day after injury for low mobility 

distance. 
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Figure 4-3.  Effects of TBI in male and female juvenile rats on distance traveled 

(A), bouts of low mobility (B), and low mobility distance (C) assessed using the 

force-plate actometer.  Data are presented as the group means ± SEM (n = 12-15 per 

group) for the entire 20-minute observation period on days one, seven, 14, 21, and 28 

after injury.   Low mobility bouts are defined as ≥10 sec spent within a 20-mm radius.  

Low mobility distance is the distance traveled during bouts of low mobility.  Distance 

traveled (A) exhibited only a main effect of day after injury (P < 0.001).  *TBI different 

from Sham, same day and for males and females combined (P < 0.05).  aDifferent from 

day one, same injury and for males and females combined (P < 0.05).  bDifferent from 

day seven, same injury and for males and females combined (P < 0.05).  +Female 

different from male, same day and for TBI and sham-injured combined (P < 0.05) by 

ANOVA and Fisher’s LSD test. 

 

 

 The acute effects of TBI on day one after injury were further analyzed for effects 

on distance traveled, low mobility bouts, and low mobility distance across the 20-minute 

observation period in two-minute time bins (Figure 4-4).  For distance traveled, there 

was a main effect only of time bin (F9,450 = 89.60, P < 0.001), consistent with the 

habituation of the rats to the actometer chamber.  Bouts of low mobility exhibited main 

effects of injury (F1,50 = 29.31, P < 0.001) and time bin (F9,450 = 51.49, P < 0.001), and an 

interaction of injury with time bin (F9,450 = 3.49, P < 0.001).  Post-hoc analysis indicated 

that although the number of low mob bouts increased across time bins in both TBI and 

sham-injured rats, the number of bouts of low mobility was lower in rats with TBI during 
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time bins two through 10 (P < 0.05).  Low mobility distance exhibited main effects of 

injury (F1,50 = 33.66, P < 0.001) and time bin (F9,450 = 47.56, P < 0.001), and an 

interaction of injury with time bin (F9,450 = 4.58, P < 0.001).  Post-hoc analysis indicated 

that low mobility distance increased across time bins in all groups, but the increase was 

smaller in rats with TBI than in sham-injured rats.  There were no effects of sex, or 

interaction of sex with the other parameters. 

 Turning bias (Figure 4-5) exhibited a significant main effect of sex (F1,50 = 6.96, P 

< 0.05) such that males exhibited a tendency to turn to the left, whereas females did not 

exhibit a significant turning bias.  Turning bias also exhibited a significant main effect of 

injury (F1,50 = 19.28, P < 0.001) such that rats with TBI exhibited greater tendency to 

turn towards the contralateral side compared to sham-injured rats, and an interaction of 

injury with day after injury (F4,200 = 2.44, P < 0.05).  There were no interactions of sex 

with injury, sex with day after injury, or sex with injury with day after injury.  Post-hoc 

analysis indicated that turning bias was greater in female rats with TBI on days one and 

21 (P < 0.05).  A similar pattern was observed after TBI in male rats although the 

increase in turning bias on day 21 after injury was not quite significant (P = 0.054). 
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Figure 4-4.  Effects of TBI in male and female juvenile rats on distance traveled 

(A), bouts of low mobility (B), and low mobility distance (C) assessed using the 

force-plate actometer on day one after injury.  Data are presented as the group 

means ± SEM (n = 12-15 per group) and are cumulative activity across the 20-minute 

observation period is presented in two-minute time bins.  Low mobility bouts are defined 

as ≥10 sec spent within a 20-mm radius.  Low mobility distance is the distance traveled 

during bouts of low mobility.  Distance traveled (A) exhibited only a main effect of time 

bin (P < 0.01).  *TBI different from Sham, same time bin and for males and females 

combined (P < 0.05).  XDifferent from time bin 1, same injury and for males and females 

combined (P < 0.05).  YDifferent from time bin 2, same injury and for males and females 

combined (P < 0.05).  ZDifferent from time bin 3, same injury and for males and females 

combined (P < 0.05) by ANOVA and Fisher’s LSD test. 
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Figure 4-5.  Effects of TBI in male and female juvenile rats on turning bias 

assessed using the force-plate actometer.  Data are presented as the group means 

± SEM (n = 12-15 per group).  Turning bias exhibited a significant main effect of sex (P 

< 0.05) such that males (A) males exhibited a tendency to turn to the left, whereas 

females (B) did not exhibit a significant turning bias.  *TBI different from sham-injured (P 

< 0.05) by ANOVA and Fisher’s LSD test. 
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4.4.2.4 Effects on Body Weight 

Body weight exhibited main effects of sex (F1,50 = 71.43, P < 0.001), day after 

injury (F4,200 = 6892.67, P < 0.001), and an interaction of sex with day after injury (F4,200 

= 121.04, P < 0.001) by 3-way ANOVA such that males were heavier than females and 

14, 21, and 28 days after injury (P < 0.001) (Figure 4-6).  There was no main effect of 

injury, nor any other interactions.  These results indicate that both male and female, and 

TBI and sham-injured rats maintained regular weight gain and growth throughout the 

study. 

 

 

Figure 4-6.  Effects of TBI in male and female juvenile rats on body weight.  Data 

are presented as the group means ± SEM (error bars are smaller than symbols) (n = 12-

15 per group).  There were no significant differences in weight as a result of TBI.  Error 

bars that are not visible are smaller than the symbols.  +Female different from male for 

TBI and sham-injured combined (P < 0.001) by ANOVA and Fisher’s LSD test. 
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4.5   Discussion 

4.5.1  Identification of Sensorimotor Tests for use in Juvenile Rats 

This study assessed the suitability of several behavioral tests for the detection of 

sensorimotor deficits the day after TBI in 17-day old juvenile rats, as well as during the 

short-to-midterm recovery period.  A number of changes in locomotor development 

occur during this period (PND 17 to PND 45).  Although adult-like walking patterns 

begin to emerge around PND 15, substantial hindlimb coordination does not develop 

until approximately PND 20 (Altman and Sudarshan, 1975; Westerga and 

Gramsbergen, 1990).  Visual function, another contributor to sensorimotor function, also 

changes substantially during this period of development.  Pups do not open their eyes 

until about PND 14, and visual acuity does not fully mature until approximately PND 45 

(Fagiolini et al., 1994).  The immaturity of the motor and visual systems at PND 17 (and 

even earlier if the tests require pre-training), combined with the dramatic changes in 

neurodevelopment between PND 17 and adulthood and the rats’ rapid growth, 

underscore the critical need to identify appropriate sensorimotor tests for use in the 

developing rat. 

Several types of behavioral assessments have been used with juvenile rodent 

models of TBI.  Most typically, the Morris water maze has been used to assess 

cognitive function after TBI in 17-day old rats (Adelson et al., 1997; Prins and Hovda, 

1998; Adelson et al., 2000; Fineman et al., 2000; Hickey et al., 2007; Raghupathi and 

Huh, 2007; Huh et al., 2008; Appelberg et al., 2009; Ochalski et al., 2010).  Motor and 

vestibular function have also been assessed using methods such as the beam balance, 
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inclined plane, and grip tests (Adelson et al., 2000).  These tests, however, have limited 

ability to detect sided deficits, which would result after a unilateral TBI. 

Sensorimotor testing in adult rodent models of TBI and other neural injuries is 

common (for review see Fujimoto et al. (2004), and has been done using a variety of 

tests such as the grid walk, accelerating rotarod, DigiGait™, beam walk, and the 

spontaneous forelimb elevation test.  Although these tests assess the motor deficits of 

interest after TBI, the present data demonstrate that at least some of them proved 

unsuitable, or not feasible, for use with young juvenile rats.  Notably, the rotarod, a well-

established test of motor function first used to describe motor deficits in adult rats after 

TBI by Hamm and colleagues (1994), proved to be unsuitable because of inadequate 

scalability of the instruments and because the youngest rats of interest in our studies 

were not developmentally capable of performing the test.  The grid walk test, which has 

been used to detect limb deficits in adult and neonatal rat and adult mouse SCI models 

(Kunkel-Bagden et al., 1992; Pajoohesh-Ganji et al., 2010; Pitzer et al., 2010) and adult 

mouse TBI models (Baskin et al., 2003; Onyszchuk et al., 2007; Onyszchuk et al., 

2008), could potentially be used with developing rats, but would require the fabrication 

of multiple appropriately-scaled apparatuses.  Furthermore analysis of the grid walk 

recordings was very labor intensive.  Likewise, DigiGait™, which has been used to 

detect variances in gait after SCI (Ek et al., 2010; Springer et al., 2010), suffered from 

issues relating to development of the rats and experimental throughput.  Thus, these 

tests were disfavored for use with the 17-day old juvenile rat TBI model. 

In contrast, several tests proved appropriate and expedient for sensorimotor 

testing in juvenile rats.  The spontaneous forelimb elevation test, beam walk, and 



83 
 

measurement of motor activity using the force-plate actometer provided useful data in 

17-day old rats.  The spontaneous forelimb elevation test, which detects CNS injury-

related forelimb deficits in multiple rodent models of neurologic injury (Schallert et al., 

2000; Baskin et al., 2003; Li et al., 2004; Bretzner et al., 2008; Vandeputte et al., 2010), 

was easily modified to accommodate growing rats by using cylinders of varying sizes.  

Likewise the beam walk test, which detects hindlimb deficit after TBI and other neural 

injuries in adolescent and adult rats (e.g., (Wagner et al., 2007; Appelberg et al., 2009; 

Kalonia et al., 2010; Scafidi et al., 2010; Sgado et al., 2010), proved achievable by rats 

as young as PND 16, thus allowing for the pre-training necessary for this test prior to 

injury on PND 17.  The force-plate actometer, which has not been used in TBI but has 

been used to detect altered motor function in a mouse model of Huntington’s disease 

(Fowler et al., 2009), was suitable for all ages and sizes of rats.  In agreement with 

previous studies (e.g. (Spear and Brake, 1983; Levant et al., 2010), distance traveled in 

the actometer decreased with age.  Although it is not certain whether this change in 

activity reflects neurodevelopmental maturation of the rats, the change in the size 

relationship between the rat and the actometer chamber, or both, this procedure is 

clearly capable of assessing behavior in rats of all the ages of interest in this study.  In 

contrast to the tests previously used in juvenile TBI (see above), the spontaneous 

forelimb elevation, beam walk, and force-plate actometer tests have the additional 

advantages of detecting deficits preferentially affecting one side of the body that result 

from a unilateral CCI injury.  In addition, combined use of the spontaneous forelimb 

elevation and beam walk tests enables separate resolution of fore- and hind-limb 
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deficits.  Furthermore, the tests have sufficient throughput capabilities to render them 

suitable for testing relative large numbers of subjects. 

 

4.5.2 Effects of TBI on Sensorimotor Function in the Juvenile Rat Model 

All tests deemed suitable for use in a CCI model of TBI in 17-day old rats 

detected sensorimotor deficits after injury.  While these deficits are likely due to the 

effect of the CCI-injury, the present experimental design does not allow for the 

differentiation of the contributions of the craniotomy and CCI to this effect. 

Forelimb deficits assessed by the spontaneous forelimb elevation test were first 

observed on the day after injury and persisted for at least 28 days after injury (Figure 4-

2).  The persistent deficit in forelimb function after TBI is likely indicative of poorer long-

term outcome.  The persistence of this deficit also suggests that this test may be useful 

in assessing interventions to improve outcomes of TBI.  The detection of both initial and 

persistent functional impairment may also prove useful in discerning the mitigation of 

the various pathological processes initiated by TBI, such as acute neuroinflammation or 

BBB disruption, which resolve relatively quickly after injury (Adelson et al., 1998; Bolton 

and Perry, 1998; Gaetz, 2004; Walker et al., 2009), as well as long-term sequelae of 

TBI such as apoptosis and glial scar formation (Walker et al., 2009). 

The beam walk also detected both acute functional impairment and persistent 

deficits after TBI (Figure 4-1A), indicating that this test should be useful in assessing 

therapeutic interventions for TBI.  The improvement in percent foot slips in this test 

between days one and 14 after injury was greater in the rats with TBI than in sham-

injured rats.  This indicates some recovery of function after injury in addition to 
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maturation-associated improvements in limb coordination and/or the effects of practice 

with repeated testing that were also observed in the sham-injured group.  The speed 

with which the rats traversed the beam also revealed effects of TBI, but only on day one 

after injury (Figure 4-1B).  Thus, traverse speed may be useful for comparing the initial 

effects of injuries of varying severity or the effects of interventions that affect the initial 

inflammatory response. 

The sensorimotor functions assessed by force-plate actometry also clearly 

detected effects of TBI.  Rats with TBI exhibited an increased turning bias toward the 

left, away from the injured hemisphere (Figure 4-5) consistent with the fore- and hind-

limb deficits observed in the spontaneous forelimb elevation and beam walk tests.  This 

effect was observed one day after injury, and also at some of the later time points; 

however, the detection of TBI-induced turning bias was not entirely consistent over time.  

Accordingly, this parameter should prove useful in detecting acute effects of TBI, though 

additional evaluation is required to determine its utility for the assessment of recovery 

after TBI.  In addition, bouts of low mobility and low mobility distance, which assess the 

number of instances that the rats spend time moving confined within a small area (20 

mm radius) and the amount of movement within the 20-mm radius, were altered after 

TBI, but this effect was observed only on the day after injury.  Thus, these low mobility 

parameters may be most useful for assessing the acute effects of TBI, or may prove 

effective for detecting the effects of factors that may worsen TBI outcomes.  

Interestingly, rats with TBI exhibited fewer bouts of low mobility (Figure 4-3B) and 

decreased low mobility distance (Figure 4-3C) indicating that they make fewer small 

movements than sham-injured rats when not locomoting.  Despite making fewer small 
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movements, analysis of distance traveled, bouts of low mobility, and low mobility 

distance across the observation period on day one after injury indicated that the pattern 

of behavior across the test session was generally similar between TBI and sham-injured 

rats (Figure 4-4).  The low mobility parameters are typically used as an index of 

stereotyped behavior (Fowler et al., 2001), but can also be used to measure other types 

of movements such as grooming.  It is likely that this decrease in low mobility activity 

represents a transient decrease in grooming, which has been reported previously in 

adult rats with contusion injuries (Grossman et al., 2011). 

 

4.5.3   Sex Difference in Response to TBI in Juvenile Rats 

Sex differences in response to TBI are found in both humans and in adult 

rodents.  Some studies suggest that females have less-adverse responses to TBI than 

do males, most likely due to the neuroprotective effects of estrogen and progesterone 

(Roof and Hall, 2000; Siegel et al., 2010), which decrease intracranial pressure and 

cerebral perfusion pressure after TBI (Shahrokhi et al., 2010), although poorer 

outcomes in women of childbearing age have also been reported (Bazarian et al., 

2010).  In addition to these effects attributed to sex hormones, sex differences exist 

prior to puberty as a result of genes encoded on the sex chromosomes that have sex-

specific effects on the brain, selective gene inactivation, and sex-biased expression of 

genes expressed on other chromosomes (Arnold, 2009; Mank, 2009). Consistent with 

these pre-pubertal differences, some sex differences in response to neural injury have 

been reported in juvenile rodents.  For example, in a neonatal hypoxia-ischemia model, 

females exhibited a caspase-3 mediated mechanism of apoptosis whereas males 
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exhibited a caspase-independent mechanism of cell death (Zhu et al., 2006).  These 

findings suggest that both adult and juvenile rodents exhibit sex differences in cellular 

response to neural injury; however, the full extent of differences prior to puberty 

including differences in sensorimotor function after TBI is unknown. 

Because of the potential for sex differences in the juvenile rat model, the effects 

of sex on sensorimotor response to TBI were assessed.  In this study, male and female 

juvenile rats exhibited generally similar behavior in the sensorimotor tests irrespective of 

injury, with two notable exceptions.  First, females had fewer low mobility bouts at the 

21 day time point after injury (PND 38) (Figure 4-3B), which may be attributable to 

puberty-associated changes.  This effect is consistent with previous observations that 

locomotor activity is similar in male and female rats until late adolescence (PND 52-54) 

when females begin to exhibit higher levels of activity that varies with the estrous cycle 

(Finger, 1969; Lynn and Brown, 2009).  In addition, a main effect of sex was observed 

for turning bias (Figure 4-5), where males had greater baseline turning bias than 

females.  Despite this sex difference in baseline turning bias, both male and female rats 

responded similarly after TBI with respect to turning bias, as well as in all of the other 

tests used in this study.  This supports the hypothesis that the sex differences in TBI 

outcomes observed in adults are due to post-pubertal secretion of sex hormones. 

 

4.6 Conclusion 

We have identified sensorimotor behavioral tests for use in assessing effects 

shortly after injury and during the short-to midterm recovery period in a PND 17 rat 

model of TBI.  The beam walk and the spontaneous forelimb elevation tests are easily 
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scalable for growth over time, have a relatively high throughput, are appropriate for rats 

of any developmental stage, and require limited or no pre-training.  Both tests detected 

acute and persistent functional deficits indicating that they may be useful in identifying 

interventions to improve outcomes after TBI.  The force-plate actometer also detected 

acute functional deficits after TBI; however the utility of this test and its ability to detect 

long-term deficits require further evaluation.  The lack of sex differences in outcomes in 

juvenile rats after TBI suggests that outcomes in pre-pubertal males and females may 

be similar, at least with respect to sensorimotor function. 
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CHAPTER FIVE 

LOW BRAIN DHA CONTENT WORSENS SENSORIMOTOR OUTCOMES AFTER TBI 

AND DECREASES TBI-INDUCED TIMP1 GENE EXPRESSION IN JUVENILE RATS



90 
 

5.1  Abstract 

 Children under five years of age are at high risk for sustaining TBI and tend to 

have poorer outcomes than adults. N-3 (omega-3) polyunsaturated fatty acids, of which 

DHA is the major species in brain, accumulate in the brain during late gestation and 

early childhood, and have multiple neuroprotective and anti-inflammatory activities.  Low 

dietary N-3 fatty acid content results in decreased DHA accumulation in the developing 

brain.  This study examined the effects of dietary modulation of brain DHA content on 

sensorimotor and molecular outcomes after TBI in a juvenile rat model.  Long-Evans 

rats raised from conception on diets containing adequate n-3 fatty acids (Control) or low 

in n-3 fatty acids (Deficient), resulting in decreases in brain DHA of 25% and 54%, 

respectively, were subjected to a CCI or sham surgery on PND 17.  Rats with 

decreased brain DHA levels had poorer sensorimotor outcomes, as assessed with 

force-plate actometry and the spontaneous forelimb elevation (cylinder) test, after TBI.  

Ccl2, Gfap, and Mmp9 mRNA levels, and MMP-2 and -9 enzymatic activities were 

increased after TBI regardless of brain DHA level.  Lesion volume was also not affected 

by brain DHA level.  In contrast, TBI-induced Timp1 was lower in rats fed the Deficient 

diet and was correlated with brain DHA level.  These data suggest that decreased brain 

DHA content contributes to poorer outcomes after TBI through a mechanism involving 

modulation of Timp1 gene expression. 
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5.2 Introduction 

Traumatic brain injury (TBI) is one of the leading causes of acquired disability 

and death in children under five years of age (Faul et al., 2010).  Children in this age 

group tend to have poorer outcomes than adults after sustaining a severe TBI.  Adverse 

outcomes can include sensorimotor deficits, difficulties with long-term memory, 

attention, language, problem solving, and managing stress and emotions, as well as 

increased risk for epilepsy and aging-related diseases such as Alzheimer’s and 

Parkinson’s (Ylvisaker et al., 2001; NIoNDaS, 2002; Davis and Dean, 2010; Anderson 

et al., 2011).  Worsened outcomes in children are likely due to the unique features of 

the pediatric population that make the pathophysiology of juvenile TBI different from that 

of adults; for example, young children have greater brain plasticity, less white matter 

myelination, higher brain water content, and reduced skull rigidity (Maxwell, 2012; Pinto 

et al., 2012a; Pinto et al., 2012b).  Accordingly, it is imperative that juvenile TBI be 

studied independently of adult TBI using an age-specific model (Prins and Hovda, 

2003). 

The n-3 long chain- polyunsaturated fatty acids (LC-PUFA) are a major 

component of neuronal membranes and accumulate in the brain through early 

childhood.  LC-PUFAs influence cellular function by forming the micro-environment 

around membrane-bound proteins, modifying lipid rafts (Salem et al., 2001a; Shaikh, 

2012) and modulating gene expression through activation of transcription factors (e.g., 

PPAR and RXR) (Khan and Vanden Heuvel, 2003).  Additionally, LC-PUFAs are 

precursors for lipid-derived signaling molecules such as leukotrienes, prostaglandins, 

and the more recently discovered anti-inflammatory and pro-resolving lipoxins, 
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resolvins, maresins and protectins (Serhan et al., 2008a; Serhan et al., 2008b; Serhan 

et al., 2009).  

DHA is derived from the essential fatty acid ALA and represents approximately 

15% of total lipids in the brain (Sinclair, 1975).  DHA accumulates in the brain during 

late gestation and early childhood, and is supplied by the mother to the fetus in utero 

and via breast milk after birth (Clandinin et al., 1980b; Clandinin et al., 1980a).  DHA 

accumulation in the brain is a function of the quantity of n-3 LC-PUFAs in the diet, which 

is notably low in the Western diet (Simopoulos, 2011).  Although DHA deficiency does 

not result in gross developmental pathology (Gordon, 1997), adequate DHA 

accumulation is essential for optimal brain and visual development and function (Salem 

et al., 2001b; McNamara and Carlson, 2006).   

 N-3 LC-PUFAs and their metabolites have anti-inflammatory effects in neural and 

non-neural tissues (Orr et al., 2012).  In animal models, administration of DHA or 

consuming a diet high in n-3 LC-PUFAs, has been beneficial in various types of 

neuronal injuries including TBI (Javierre et al., 2006; Huang et al., 2007; Wu et al., 

2007; Pan et al., 2009; Bailes and Mills, 2010),  although a worsened outcome has also 

been reported (Yang et al., 2007).  However, very little is known about what role 

endogenous brain DHA has in neuroprotection after TBI.  CCI, a model of TBI, causes a 

rapid and sustained increase in free fatty acids in the brain (Homayoun et al., 2000).  

We can thus hypothesize that populations lacking a full complement of endogenous n-3 

LC-PUFAs, such as young children consuming a Western diet, will be likely to have 

fewer of these fatty acids released after TBI and thus a poorer outcome.  Accordingly, 

we investigated the effects of low dietary n-3 LC-PUFA content, and consequently lower 
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brain DHA levels, on outcomes of TBI in a juvenile rat model.  Severity and persistence 

of sensorimotor outcomes was assessed, as well as expression of representative 

cellular mediators involved in the various pathophysiological processes initiated by TBI.  

Furthermore, by using procedures developed in our previous studies to produce rats 

with decreases in brain DHA content of varying magnitudes while feeding a single n-3 

LC-PUFA-deficient diet (Ozias et al., 2007), we can determine the dose-response 

effects of brain DHA content on the outcomes of TBI.  The results of this study 

demonstrate worsened sensorimotor outcomes following TBI are associated with lower 

brain DHA level and that these functional deficits correlate with mRNA levels of Timp1, 

indicating a potential mechanism for decreased brain DHA-induced sensorimotor 

deficits after TBI.  

 
 
5.3 Results 
 

5.3.1 Effects of Diets and Breeding Procedures on Brain Phospholipid Fatty Acid 

Composition 

In agreement with previous studies (Ozias et al., 2007), 1st litter rats raised on the 

Deficient diet had a 25% decrease in brain DHA compared to those raised on the 

Control diet  (P < 0.01) (Figure 5-1).  Brain DHA content of 2nd litter rats raised on the 

Deficient diet was decreased 54% (P < 0.001 v. Control diet, P < 0.001 v. 1st litter 

Deficient diet).  This decrease in DHA content was accompanied by compensatory 

increases in n-6 DPA [22:5(n-6)] and no alteration in AA [20:4(n-6)] content, in 

agreement with previous studies (Galli et al., 1971).   
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Figure 5-1. Effects of diet and breeding protocols on brain total phospholipid fatty 

acid composition.  Data are presented as the mean ± SEM (1st litter: n = 4-7 per 

group; 2nd litter: n = 8-9 per group selected at random from the total sample pool).  *P < 

0.05 by ANOVA and Fisher’s LSD test.   

 

 

5.3.2 Effects of Diets and Breeding Procedures on TBI-Induced Sensorimotor Deficits 
 

TBI resulted in altered locomotor activity on day one after injury as assessed 

using the force-plate actometer (Figure 5-2).  TBI-induced locomotor deficits returned to 

near-sham levels after day one and therefore, data for subsequent test days are not 

shown.    
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In rats raised on the Control diet, TBI resulted in a decrease in the number of low 

mobility bouts (P < 0.05) in agreement with our previous findings and/or decreased low 

mobility distance (Russell et al., 2011) (P < 0.05) but no difference in total distance 

traveled.  Both 1st and 2nd litter rats raised on the Deficient diet exhibited decreases in 

both bouts of low mobility (P < 0.05), low mobility distance (P < 0.05) and increased 

total distance traveled (P < 0.05) after TBI.  

In the spontaneous forelimb elevation (cylinder) test, all injured rats exhibited a 

preference for using the ipsilateral limb that persisted throughout the 28-day testing 

period (P < 0.01) (Figure 5-3).  The effects of TBI on forelimb preference in 1st litter rats 

raised on the Deficient diet were not different from those raised in the Control diet.  

However, in the 2nd litter, injured rats raised on the Deficient diet had greater sustained 

preference for the forelimb ipsilateral to the injury than injured rats fed the Control diet 

(P < 0.05). 
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Figure 5-2. Effects of TBI on locomotor function in rats with diet- and breeding-

induced decreases in brain DHA content.  Data are presented as the mean ± SEM (n 

= 11-12 per group).  Bouts of Low Mobility are defined as ≥10 sec spent within a 20-mm 

radius.  Low mobility distance is the distance traveled during bouts of low mobility.  All 

data presented are for the entire 20-minute test session on day one after surgery. *P < 

0.05 by ANOVA and Fisher’s LSD test.  
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Figure 5-3. Effects of TBI on forelimb preference in rats with diet- and breeding-

induced decreases in brain DHA content.  Laterality was calculated as: (number of 

right only - number of left only) / (number of right only + number of left only + number of 

both together).  Data are presented as the mean ± SEM (n = 11-12 per group).  *P < 

0.05 v. Sham, †P < 0.05 v. Control diet-TBI by ANOVA and Fisher’s LSD test.   

 

 



99 
 

5.3.3 Effects of Diets and Breeding Procedures on Lesion Volume  

 TBI caused a significant lesion assessed 28 days after surgery.  Lesion volume 

was not different between rats raised on the Control and Deficient diets for either the 1st 

or 2nd litters (Figure 5-4). 

 

 

 
 

Figure 5-4. Effects of diet- and breeding-induced decreases in brain DHA content 

on TBI-induced lesion volume 28 days after injury.  Data are presented as the mean 

± SEM (n = 5-9/ group).  No significant differences were indicated by ANOVA.   
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5.3.4 Effects of Diets and Breeding Procedures on Ccl2, Gfap, Mmp9, Mmp2, and 

Timp1 mRNA Levels  

 Levels of mRNA were measured on day one (28 hrs) and day seven after TBI.  

Significant alterations in expression of these mediators was observed primarily on day 

one, with mRNA levels returning to, or near, levels observed in sham-injured rats on day 

seven.  Accordingly, data for day one only are presented. 

Ccl2 mRNA was increased approximately 4.5-fold on day one after TBI in all 

injured rats, regardless of diet or litter (P < 0.001) (Figure 5-5A).  

 TBI increased Gfap mRNA on day one after TBI and average of 10-fold in the 1st 

litter (P < 0.001) and an average of 8-fold in the 2nd litter (P < 0.001) (Figure 5-5B).  

Additionally, in the 1st litter, there was an effect of diet, such that injured rats raised on 

the Deficient diet expressed less Gfap than injured rats raised on the Control diet (P < 

0.05).  This diet effect was not seen in the 2nd litter. 

 Mmp9 mRNA level was increased 9-fold after TBI in all rats on day one after 

injury (P < 0.001).  The Deficient diet resulted in lower levels of Mmp9 mRNA after TBI 

than those on the Control diet in 1st litter pups (P < 0.05), but not in 2nd litter pups 

(Figure 5-5C).  

Mmp2 mRNA level was not affected by TBI or diet on day one after injury in 

either litter (data not shown).  

 Timp1 mRNA level was affected by TBI in the 1st litter and by both TBI and diet in 

the 2nd litter (Figure 5-5D).  In the 1st litter, injured rats fed the Control diet had a 27-fold 

increase in Timp1 mRNA level (P < 0.001) while those fed the Deficient diet had a 19-

fold increase in Timp1 mRNA level after TBI (P < 0.001 v. sham, P = 0.056 v. TBI, 
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Control diet).  Second litter pups fed the Control diet exhibited a 24-fold increase of 

Timp1 mRNA level (P < 0.001 vs. sham), similar to that observed in the 1st litter.  In 2nd 

litter rats fed the Deficient diet, TBI resulted in an increase in Timp1 mRNA level of only 

9-fold (P < 0.05 v. Sham, P < 0.001 v. TBI, Control diet).   

mRNA levels TNFα, IL-1β, and IL-6 were also measured on day one after injury 

but no effect of TBI or litter was observed (data not shown). 
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Figure 5-5. Effects of TBI on Ccl2 (A), Gfap (B), Mmp9 (C), and Timp1 (D) relative 

mRNA levels in rats with diet- and breeding-induced decreases in brain DHA 

content.  Data are presented as the mean ± SEM (1st litter:  n = 11-13 per group, 2nd 

litter: n = 7-9 per group).  *P < 0.05 by ANOVA and Fisher’s LSD test (Ccl2, 2nd litter; 

Gfap; Mmp9, Timp1) or Kruskal-Wallis nonparametric ANOVA and Dunn’s Multiple 

Comparisons test (Ccl2, 1st litter). 
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5.3.5 Effects of Diets and Breeding Procedures on Enzymatic Activity of MMP-2 and 

MMP-9  

 Enzymatic activity of MMP-2 was increased roughly 2-fold in 1st and 2nd litter 

pups on day one after TBI compared to shams (P < 0.001), but there was no effect of 

diet (Figure 5-6A).  TBI-induced increases in MMP-2 enzymatic activity persisted 

through day seven after injury in both litters with no effect of diet (data not shown). 

MMP-9 enzymatic activity was increased roughly 25-fold on day one after injury 

in 1st and 2nd litter injured rats (Figure 5-6B) regardless of diet treatment (P < 0.001, 1st 

litter; P < 0.001, 2nd litter).  TBI-induced increases in MMP-9 enzymatic activity returned 

to near-sham levels on day seven after injury (data not shown). 

 

 
 

Figure 5-6. Effects of TBI on MMP-2 and MMP-9 enzymatic activities in rats with 

diet- and breeding-induced decreases in brain DHA content.  Data are presented as 

the mean ± SEM (n = 6-8 per group).  *P < 0.05 by ANOVA and Fisher’s LSD test.   
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5.4 Discussion 
 

 This study examined the effects of an n-3 LC-PUFA-deficient diet and the 

resulting diet-induced decreases in brain DHA content on sensorimotor and biochemical 

recovery from TBI in a juvenile model.  The use of diet and breeding protocols enabled 

the assessment of the dose-response effects of brain DHA content on the effects of TBI 

independently of the effects of dietary n-3 fatty acid content.   

 

5.4.1 Effects of TBI 

 In concordance with the site of injury in the motor cortex, sensorimotor function 

was used as the key assessment of functional outcome.  Deficits were observed in all 

groups using sensorimotor tests previously validated for use with this CCI model of 

juvenile TBI (Russell et al., 2011).  These included decreased low mobility movement 

on day after injury (Figure 6-2) consistent with reports of decreased grooming after TBI 

(Grossman et al., 2011) and a persistent preference for the forelimb ipsilateral to the 

injury (Figure 6-3).  TBI also resulted in a notable lesion at 28 days after injury, 

indicating significant cell loss (Figure 6-4).   

 TBI also increased mRNA levels of several mediators involved in the 

pathophysiological processes initiated by TBI on day one after injury including Ccl2, 

Gfap, Mmp9, and Timp1 mRNA (Figure 6-5), as well as MMP-9 and MMP-2 enzymatic 

activity (Figure 6-6).  These increases are consistent with the known increases in 

protein levels for these mediators after TBI and are supportive of the roles they play in 

inflammation, glial cell activation and degradation of the BBB, respectively, that occur in 

this time frame after TBI (Werner and Engelhard, 2007).  mRNA levels of the 
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inflammatory mediators TNFα, IL-1β, and IL-6 were also measured on day one after 

injury but no effect of TBI was observed as one day after injury was beyond the peak of 

inflammation (data not shown). 

 

5.4.2 Effects of Diet and Breeding Protocols 

In agreement with previous studies using these diets to manipulate brain 

phospholipid fatty acid composition (Ozias et al., 2007), 1st litter and 2nd litter of pups 

raised on the Deficient diet had decreases in brain DHA content of 25% and 54% DHA, 

respectively, compared to pups raised on the Control diet (Figure 5-1).  This graded 

effect on offspring brain DHA content occurs because consuming the Deficient diet by 

the dam while gestating and nursing the 1st litter results in depletion of maternal stores 

of n-3 LC-PUFAs, and thus an even greater failure to deliver DHA to the 2nd litter even 

though dietary n-3 content is the same for both litters (Levant et al., 2006a; Levant et 

al., 2007). 

In sham injured rats, the deficient diet produced an increase in locomotor activity 

(Figure 5-2) in agreement with previous studies indicating an increase in activity in rats 

with decreased brain DHA (Levant et al., 2004; Levant et al., 2006b; Vancassel et al., 

2007; Levant et al., 2010).  However, there were no effects of diet in either 1st or 2nd 

litter sham rats on any of the other endpoints examined in this study.   
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5.4.3 Effects of Diet and Breeding Protocols on TBI Outcomes 

Functional outcomes after TBI were poorer in rats with decreased brain DHA 

content.  Specifically, injured rats with either a 25% or 54% decrease in brain DHA level 

exhibited greater distance traveled in the locomotor test, in addition to the fewer bouts 

of low mobility and decreased low mobility distance also observed after TBI in rats 

raised on the Control diet.  These data indicate that the decreases in low mobility after 

TBI observed in rats raised on the Deficient diet was of sufficient magnitude that it also 

resulted in greater total distance traveled compared to those fed the Control diet 

(Figure 5-2).  Effects of TBI on locomotor activity were primarily observed on day one 

after injury (Grossman et al., 2011), suggesting that this test is likely best interpreted as 

a measure of acute behavioral effects after TBI, rather than of long-term functional 

outcome.  Because this effect was similar after TBI in both litters raised on the Deficient 

diet, this suggests that augmented early functional response to TBI is the result of the 

low n-3 LC-PUFA content of the Deficient Diet.  Alternatively, this effect may result more 

specifically from a reduction in the percentage of DHA in brain phospholipids, but may 

be maximal in the rats with a 25% decrease in brain DHA, and thus additional effect 

was not observed in rats with a 54% decrease.   

In contrast to the effects on locomotor activity, TBI produced persistent deficits in 

forelimb preference, indicating that this parameter reflects longer-term functional 

outcome.  Rats with a 25% decrease in brain DHA had forelimb deficits similar to those 

of rats fed the Control diet, whereas rats with a 54% decrease in brain DHA had greater 

forelimb deficits than their respective controls (Figure 5-3).  Since the Deficient diet was 

identical for the 1st and 2nd litters, this suggests that the brain DHA levels, rather than 
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simply dietary n-3 fatty acid content, are of primary importance in influencing long-term 

sensorimotor outcomes after TBI.  

 To assess the cellular mechanisms by which variation in dietary and/or brain 

DHA content might influence functional outcome after TBI, the effects of the diet and 

breeding treatments were assessed on representative measures of the various 

pathobiological processes induced by TBI.  Lesion size after TBI was not different 

between groups (Figure 5-4), indicating that differences in neuronal cell loss do not 

underlie the differences in functional outcomes.  Likewise, induction MMP-2 and -9 

enzymatic activities after TBI affected by low dietary and/or brain DHA (Figure 5-6).  

Several cellular markers of injury were altered by the diet and breeding protocol, such 

as mRNA levels of Gfap and Mmp9; however, the effects were not consistent with the 

diet treatment between litters, nor did they correlate with brain DHA levels, suggesting 

that they do not play a primary role in the poorer functional outcomes in rats with lower 

brain DHA levels (Figure 5-5).  Thus, these data suggest that changes in these 

mediators are not primary contributors to the observed differences in outcome.   

TBI-induced Timp1 gene expression, however, was directly related to brain DHA 

content and correlated with sensorimotor outcomes in the spontaneous forelimb 

elevation test (Figure 5-5D).  Specifically, rats with a 25% decrease in brain DHA 

tended toward expressing less Timp1 after TBI than rats on the Control diet.  

Furthermore, although the experimental design allows only qualitative comparison, rats 

with a 54% decrease in brain DHA expressed even less Timp1 after TBI than rats with a 

25% decrease in brain DHA.  This correlation between brain DHA content and Timp1 
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gene expression suggests a possible mechanism for brain DHA-mediated improvement 

in functional outcomes. 

MMP-2 and -9 are proteases that are rapidly induced after TBI and other 

neuroinflammatory conditions (Candelario-Jalil et al., 2009; Jia et al., 2010).  Unlike 

Mmp9, Mmp2 is constitutively expressed and is primarily regulated at the level of 

enzyme-activation (Strongin et al., 1995; Gottschall and Deb, 1996), in agreement with 

mRNA levels measured after TBI.  Early after injury, MMPs initiate apoptotic cell death 

and degrade the extracellular matrix, contributing to opening the BBB and facilitating 

vasogenic edema (Candelario-Jalil et al., 2009).  Consistent with the present findings, 

peak gene expression and enzymatic activity of MMPs occurs approximately 24 hours 

after juvenile TBI (Sifringer et al., 2007).  

TIMP-1 is one of a family of four endogenous MMP inhibitors (Brew and Nagase, 

2010).  All four TIMP family members are expressed in the brain (Candelario-Jalil et al., 

2009).  TIMP-1, which has the broadest substrate specificity, inhibits MMPs in a 1:1 

ratio by binding to the MMP active site (Gomis-Ruth et al., 1997).  TIMP-1 also has anti-

apoptotic and growth factor properties that are independent of its MMP-inhibiting ability 

(Hayakawa et al., 1992; Gardner and Ghorpade, 2003; Jourquin et al., 2005), and are 

thought to occur through interactions with cell surface receptors including CD63 

(Strongin et al., 1995; Jung et al., 2006).  In this study, the decreased induction of 

Timp1 gene expression after TBI in rats with either a 25% or 54% decrease in brain 

DHA, which would be anticipated to lead to decreased levels of TIMP-1 protein, was not 

associated with altered MMP-2 or MMP-9 enzymatic activity (Figure 5-6).  This 

suggests that it is the anti-apoptotic and/or growth factor properties of TIMP-1, rather 
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than inhibition of MMP enzymatic activity, that may provide neuroprotection after TBI in 

rats with sufficient levels of brain DHA, and that the decreased Timp1 gene expression 

observed in rats with decreased brain DHA is contributing to worsened functional 

outcomes.  

TIMP-1 is mainly regulated at the level of gene transcription, supporting the use 

of mRNA as a proxy for levels of functional protein.  Upstream regions of the Timp1 

gene contain a serum response element that confers Timp1’s responsiveness to a 

variety of agents including cytokines and growth factors (Campbell et al., 1991; 

Edwards et al., 1992; Bugno et al., 1995; Gardner and Ghorpade, 2003).  LC-PUFAs 

are known to regulate gene expression through binding to several transcription factor 

response elements, including PPAR, and RXR (Khan and Vanden Heuvel, 2003).   

Identification of putative LC-PUFA response elements within 1500 base pairs upstream 

of the mouse Timp1 gene transcription start site, using JASPAR (Bryne et al., 2008), 

revealed 6 possible PPAR/RXR binding sites, indicating a potential mechanism by 

which variation in brain DHA content may influence regulation of Timp1 gene 

expression. 

 

5.5 Conclusions 

Diet-induced decreases in brain DHA content resulted in worsened sensorimotor 

outcomes after TBI compared to rats with adequate levels of brain DHA.  The poorest 

long-term function was observed in rats with the greatest decrease in brain DHA, 

suggesting that brain DHA level, rather than dietary n-3 LC-PUFA content, is of greatest 

importance in influencing the ultimate outcomes after TBI.  Timp1 mRNA levels after 
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TBI correlated with brain DHA content, suggesting that lower Timp1 gene expression, 

as a result of decreased brain DHA, contributes to poorer sensorimotor outcomes, most 

likely through its anti-apoptotic and/or growth factor activities.  Thus, the present data 

indicate a novel mechanism by which LC-PUFAs modulate a response to neural injury, 

in addition to serving as a precursor for many anti-inflammatory molecules (Serhan et 

al., 2008b).  Furthermore, these data suggest that diet regulates brain development and 

the ability of the brain to respond to injury.  Therefore, young children may be provided 

with greater protection against the deleterious effects of TBI by ensuring optimal 

accretion and maintenance of brain DHA levels through appropriate nutrition.  
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CHAPTER SIX 

FISH OIL IMPROVES MOTOR FUNCTION, LIMITS BLOOD-BRAIN BARRIER 

DISRUPTION AND REDUCES MMP9 GENE EXPRESSION AFTER JUVENILE TBI   
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6.1 Abstract 

 

Treatment of TBI in children presents a number of challenges including age-

specific response to injury and differences in pharmacokinetics and pharmacodynamics 

between young children and adults.  This study investigated the effects of a high dose 

oral fish oil dosing regimen on sensorimotor, BBB, and biochemical outcomes of TBI in 

a juvenile rat model.  Seventeen-day old Long-Evans rats were given a 15 mL/kg fish oil 

(2.01 g/kg EPA, 1.34 g/kg DHA) or soybean oil dose via oral gavage thirty minutes prior 

to being subjected to a CCI injury or sham surgery, followed by daily doses seven days.  

Fish oil treatment resulted in improved hindlimb deficits after TBI as assessed with the 

beam walk test, decreased IgG infiltration into the ipsilateral and contralateral 

hemispheres, and decreased TBI-induced expression of the Mmp9 gene one day after 

injury.  TBI-induced increases in Gfap gene expression were also less persistent in rats 

treated with fish oil.  These results indicate that fish oil may improve sensorimotor 

outcomes after TBI in juveniles by decreasing blood-brain barrier disruption by a 

mechanism involving decreased expression of the Mmp9 gene and also modulating a 

mediator of astroglial activation. 
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6.2 Introduction 
 

TBI is the leading cause of acquired disability and death in young children.  

Despite having a high degree of neuroplasticity, young children tend to have poorer 

outcomes after TBI than adults (Giza and Prins, 2006).  Children also have 

pharmacologic challenges not observed in adults including problems with formulations 

and issues of dosing, and altered bioavailability, metabolism, and drug response 

(Conroy et al., 2000; Kearns et al., 2003).  Therefore, it is imperative that TBI and 

potential therapeutics be investigated in an age-appropriate model (Prins and Hovda, 

2003). 

The long-chain n-3 polyunsaturated fatty acids EPA (20:6n-3) and DHA (22:6n-

3), the main constituents in fish oil, are biologically active with many neuroprotective 

properties.  N-3 fatty acids, particularly DHA, are incorporated into the developing brain 

during late gestation and early post-neonatal life in humans and rats, a time at which 

children have a high risk for sustaining TBI.  When consumed in the diet or via 

supplementation, n-3 fatty acids are incorporated into the phospholipids that form cell 

membranes where they can alter the physiochemical and membrane-signaling 

properties of the cell (Salem et al., 2001a; Shaikh, 2012).  DHA, EPA and their 

metabolites have well-documented anti-excitotoxic (Hogyes et al., 2003), antioxidant 

(Hossain et al., 1998), anti-apoptotic (Florent et al., 2006; Sinha et al., 2009), and anti-

inflammatory properties (Bazan et al., 2005).  Additionally, free n-3 fatty acids and 

membrane-incorporated EPA and DHA, can be metabolized into several families of 

molecules including NPD1, docosanoids, resolvins, etc.  These fatty acid-derived 

molecules have been shown be neuroprotective through their anti-inflammatory and 
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pro-resolving properties (Serhan et al., 2008b; Bazan, 2009; Serhan et al., 2009).  LC-

PUFAs can also directly or indirectly modulate gene expression through activation or 

suppression of cell signaling pathways and transcription factors (e.g., PI3K/Akt, NF-kB, 

PPAR and RXR) (Khan and Vanden Heuvel, 2003; Akbar et al., 2005; Draper et al., 

2011).  

Currently, clinical therapies for TBI are very limited. Fish oil, a source of DHA and 

EPA, is very well tolerated, has no known toxicity or significant adverse side effects, is 

well absorbed, and readily crosses the BBB.  In view of the many potentially beneficial 

effects on n-3 fatty acids (see above), fish oil is an attractive treatment for conditions 

like neural injuries, which initiate multiple cascades of responses.  The preponderance 

of studies investigating fish oil, or DHA or EPA alone, in a variety of neural injury models 

including TBI and spinal cord injuries indicate that these preparations produce beneficial 

effects (King et al., 2006; Pan et al., 2009; Mills et al., 2011b).  Furthermore, in a case 

report, high dose fish oil supplementation (19.2 g/day) was associated with substantial 

clinical improvement in a young patient with severe head trauma deemed likely lethal 

(Lewis et al., 2013).  However, to date, all animal studies demonstrating the benefit of 

LC-PUFAs in neural injuries have been conducted in adults.  The effects of LC-PUFA or 

fish oil dosing have not been investigated in juvenile brain injury.  Accordingly, this study 

investigated the use of high-dose oral fish oil dosing on sensorimotor and biochemical 

outcomes of TBI in a juvenile rat model.  This study will show that fish oil improves 

functional outcomes after TBI through preservation of the BBB possibly through 

decreasing Mmp9 gene expression and faster resolution of Gfap gene expression, a 

marker of astrocytosis and glial scarring.  
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6.3 Results 
 

6.3.1 Effects on Growth, Development, and Brain Phospholipid Fatty Acid Composition 

The oil dosing was well tolerated in all groups.  No gross adverse effects were 

observed. 

Overall growth and development of the rats was not affected by TBI or oil 

treatment.  Neither body weight nor rate of growth was significantly altered by injury or 

oil at any time point (Figure 6-2).   

Acute oil dosing slightly altered the phospholipid composition of the frontal cortex 

four days after injury (Table 6-1, Figure 6-1).  Compared to soybean oil treated rats, in 

shams, fish oil doing reduced the percentage of the monounsaturated fatty acid (MUFA) 

24:1 and Other MUFAs by 0.75% (P < 0.05) and 1.3% (P < 0.01), respectively.  Fish oil 

administration also significantly reduced n-6 LC-PUFA 22:5n6 and Other N-6s by 0.4% 

(P < 0.01) and 0.5% (P < 0.01), respectively compared to soybean oil treated shams. 

TBI did not change the relative abundance of any individual fatty acids in brain 

phospholipids.  However, regardless of oil treatment, TBI caused a decrease in total n-

6s by 2% in both oil treatment groups (P < 0.01 vs. sham, same oil) and a decrease in 

total n-3s by 5% and 2% in soybean oil and fish oil groups, respectively (P < 0.01 vs. 

sham, same oil).   The overall decrease in total long chain-polyunsaturated fatty acids 

was 7% in soybean oil treated rats (P < 0.01 vs. sham, same oil) and 4% in fish oil 

treated rats (P<0.01 vs. sham, same oil).  The loss of LC-PUFAs was accompanied by a 

5% increase in total saturated fatty acids (P < 0.01 vs. sham, same oil) in both oil 

treatment groups. There was no difference in the TBI-induced total LC-PUFA loss or 

saturated fatty acid (SFA) gain between soybean and fish oil groups.   
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Table 6-1. Effects of TBI and fish or soybean oil dosing on frontal cortex fatty acid 

composition four days after fish oil and soybean oil dosing.  Other saturated fatty 

acids (SFA): 13:0, 14:0, 15:0, 17:0, 18:0, 20:0, 21:0, 22:0, 23:0, 24:0; Other 

monounsaturated fatty acids (MUFA): 15:1, 16:1, 20:1n-9; Other N-6: 18:2n-6c, 18:3n-6, 

20:2n-6, 20:3n-6, 22:2n-6; Other N-3: 18:3n-3, 20:5n-3.  Data are presented as the 

mean ± SEM; n = 6-7 per group. aP < 0.05 vs. Sham, Same Oil; bP < 0.05 vs. Sham, 

Different Oil; cP < 0.05 vs. TBI, Different Oil. 

 

Fatty Acid  
( % of Total) 

Soybean Oil 
Sham 

Soybean Oil 
TBI 

Fish Oil 
Sham 

Fish Oil 
TBI 

16:0 23.99 ± 0.89 27.27 ± 1.13 25.57 ± 1.21 25.81 ± 0.73 

     Other SFA 24.42 ± 0.86 25.70 ± 0.91 25.83 ± 1.07 26.66 ± 0.70 

18:1n9 9.12 ± 1.66 10.17 ± 1.25 11.41 ± 0.72 10.20 ± 0.53 

24:1 4.74 ± 0.24 4.07 ± 0.25a 3.99 ± 0.20b 3.47 ± 0.19 

     Other MUFA 2.24 ± 0.12 1.43 ± 0.26a 0.95 ± 0.16b 1.57 ± 0.35 

20:4n6/20:3n3 14.55 ± 0.38 13.60 ± 0.44 15.21 ± 0.76 13.49 ± 0.46a 

22:5n6 1.99 ± 0.11 1.59 ± 0.09a 1.55 ± 0.09b 1.34 ± 0.09 

     Other N-6 2.27 ± 0.08 2.23 ± 0.06 1.81 ± 0.11b 1.71 ± 0.02c 

22:6n3 18.26 ± 0.77 13.79 ± 0.66a 18.11 ± 1.12 15.70 ± 0.79 

     Other N-3 0.08 ± 0.04 0.02 ± 0.01 0.06 ± 0.02 0.05 ± 0.01 
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Figure 6-1 Frontal cortex composition of the major brain phospholipid classes.  

Fatty acid composition was determined 4 days after TBI or sham surgery.  Data are 

presented as the mean ± SEM (n = 7-8 per group). *P < 0.01 vs. Sham, same oil by 

ANOVA and Fisher’s LSD. 
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Figure 6-2. Effects of injury and fish oil treatment on body weight. Data are the 

mean ± SEM (n = 11-12 per group).  Rate of weight gain did was not altered by TBI or 

oil treatments as assessed by repeated-measures ANOVA.  

 

 

6.3.2  Effects on Sensorimotor Function 

Sensorimotor function was altered in all rats that sustained a TBI as indicated by 

an overall significant increase in the percentage of unilateral beam walk slips (Figure 6-

3).  A two-way ANOVA with factors of oil type and injury indicated a significant main 

interaction of injury and oil (P < 0.001) such that injured rats dosed with fish oil had a 

lower overall percentage of foot slips on the beam walk than did injured rats receiving 

soybean oil.  Post -hoc analysis indicated that rats treated with fish oil had lower levels 

of functional deficit days one and seven after injury (P < 0.05).  In a repeated-measures 
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ANOVA, both groups showed significant improvement from day one to day seven; 

however, post-hoc analysis indicated that rats treated with soybean oil, maximal 

improvement was achieved by day four after injury whereas rats treated with fish oil had 

a trend towards improvements in performance through day seven.    

 

 

Figure 6-3. Effects of fish oil treatment of TBI-induced hindlimb deficits assessed 

using the beam walk test.  Data are the mean ± SEM (n = 11-12 per group).  *P < 0.05 

vs. same day, different oil; †P < 0.05 vs. same oil, day one by repeated-measures 

ANOVA and Fisher’s LSD test. 
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6.3.3 BBB Disruption 

TBI induced extensive IgG staining seven days after TBI.  There was a significant 

interaction with the oil treatments such that IgG infiltrated a smaller volume of brain area 

in rats treated with fish oil than with soybean oil (P < 0.05) (Figure 6-4).  The volume of 

IgG stained tissue was not different in sham-injured rats treated with either oil (not 

shown).  
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Figure 6-4. Effects of fish oil treatment on TBI-induced IgG Infiltration.  The volume 

of TBI-induced IgG infiltration, visualized by immunocytochemistry, was significantly 

reduced by fish oil treatment.  Data are the mean ± SEM (n = 10-11 per group).  *P < 

0.05 by Student’s-t test. 

 

 

 

  



122 
 

A 

 

B 

 

C 

 

 



123 
 

Figure 6-5. Effects of fish oil on TBI-induced expression of (A) Ccl2, (B) Gfap, and 

(C) Mmp9 mRNA levels.  Data are the mean ± SEM (n = 4-7 per group).   *P < 0.05 by 

ANOVA and Fisher’s LSD test. 

 

 

6.4 Discussion 

 

LC-PUFA or fish oil treatment has been beneficial in treating adult neural injuries 

in several models, including humans (Javierre et al., 2006; King et al., 2006; Pan et al., 

2009; Mills et al., 2011a; Shin and Dixon, 2011; Lewis et al., 2013).  This study 

investigated the benefits of fish oil treatment on outcomes of juvenile TBI.  

 

6.4.1 Effects of TBI 

In this study, injury to the primary motor cortex produced deficits in sensorimotor 

function as assessed using the beam walk test (Figure 6-3), a sensorimotor test 

previously validated for use with this CCI model of juvenile TBI (Russell et al. 2011).  

TBI also increased expression of the Ccl2 and Gfap genes (Figure 6-5), mediators 

involved in monocyte recruitment and astrocytosis, respectively.  These increases are 

consistent with the known increases in protein levels for these mediators after TBI (Laird 

et al., 2008; Semple et al., 2010).  Also in agreement with previous studies (Aihara et 

al., 1994; Onyszchuk et al., 2008), TBI caused significant BBB disruption as indicated 

by infiltration of IgG, a serum protein, into the brain parenchyma.  Together, these data 

indicate that a successful injury specific to the sensorimotor cortex with persisting 

deficits was achieved.  
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In addition to the effects of TBI on sensorimotor function, TBI significantly altered 

the fatty acid composition of the frontal cortex.  Four days after injury, TBI resulted in an 

overall decrease in LC-PUFAs regardless of oil treatment, which was accompanied by 

an increase saturated fatty acids.  Because this study used semi-quantitative methods 

which assess the fatty acid composition of brain phospholipids, rather that the absolute 

amounts of each fatty acid, these changes could be due to substitution of saturated fatty 

acids for LC-PUFA or changes in the absolute amounts of specific fatty acids.  

However, other studies indicate that TBI causes a rapid, sustained increase of free fatty 

acids (Homayoun et al., 2000), including DHA (Chris Butt, personal communication).  

Therefore, it is likely that the cleavage of n-6 and n-3 fatty acids from the membrane, as 

a result of TBI, is responsible for the observed decrease in the total percentage of 

membrane LC-PUFAs.  When cleaved from the membrane, DHA and EPA can directly 

or indirectly modulate gene expression through activation or suppression of cell 

signaling pathways and transcription factors (e.g., PI3K/Akt, NF-kB, PPAR and RXR) 

(Khan and Vanden Heuvel, 2003; Akbar et al., 2005; Draper et al., 2011) or be 

metabolized into several neuroprotective, anti-inflammatory, and pro-resolving families 

of molecules including neuroprotectin D1, docosanoids, resolvins, etc.  (Serhan et al., 

2008b; Serhan et al., 2009).   

 

6.4.2 Effects of Oil Administration in Sham-Injured Rats 

Administration of either fish oil or soybean oil in sham-injured rats did not cause 

any alterations in growth (Figure 6-2), behavior (Figure 6-3), expression of Ccl2, Gfap, 

or Mmp9 genes (Figure 6-5) or IgG infiltration in to the CNS (Figure 6-4).  This 
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indicates that soybean oil and fish oil administration was well-tolerated and that neither 

oil stimulated expression of TBI-induced mediators in the absence of TBI.   

With regard to brain fatty acid composition, fish oil administration decreased the 

percentage of 24:1 and other MUFAs, though total MUFA percentage was not altered.  

Similarly, fish oil administration decreased the percentage of 22:5n6 and other N-6 LC-

PUFAs, but did not affect total LC-PUFAs.   

 

6.4.3 Effects of Fish Oil Administration in TBI Rats 

In rats with a CCI injury, fish oil prevented the TBI-induced decrease in brain 

DHA (Table 6-1) that was observed in rats treated with soybean oil.  However, the DHA 

content in injured rats administered soybean oil was not statistically different from 

injured rats administered fish oil.  Furthermore, the decrease in total LC-PUFA as a 

result of TBI was not altered by fish oil administration.  This suggests that fish oil 

administration can have small changes on individual fatty acids but classes as a whole 

are not affected.   

Fish oil administration also decreased the magnitude and persistence of TBI-

induced motor function deficits, reduced the extent of IgG infiltration into the brain 

parenchyma (Figure 6-4), and decreased the persistence Gfap gene expression 

(Figure 6-5B).  Furthermore, fish oil treatment prevented a TBI-induced increase in 

Mmp9 mRNA levels (Figure 6-5C), a key mediator in the breakdown of the BBB.  

Although the endpoints were different from those measured in this study, beneficial 

effects of n-3 LC-PUFA supplementation have been reported in studies using adult 

models of TBI (Wu et al., 2004; Wu et al., 2007; Bailes and Mills, 2010; Mills et al., 
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2011a; Mills et al., 2011b; Shin and Dixon, 2011; Wu et al., 2011).  Thus, although the 

underlying mechanism(s) remain to be fully characterized, these studies support the use 

of fish oil as a treatment for TBI in both juveniles and adults. 

 

6.4.4 Potential Mechanisms of Fish Oil-Mediated Neuroprotection 

Taken together the present findings suggest that n-3 LC-PUFA in fish oil 

enhance outcomes after TBI through limiting blood-brain barrier damage after TBI 

and/or expediting its repair.  The BBB is a dynamic, complex structure made up of 

vascular endothelial cells surrounded by support cells and astrocytic foot processes 

(Abbott et al., 2010).  TBI causes significant astrocytosis, as indicated by increased 

Gfap gene expression (Mucke et al., 1991; Eng and Ghirnikar, 1994) an intermediate 

filament protein, and the secretion of the gelatinases MMP-2 and -9 (Candelario-Jalil et 

al., 2009; Jia et al., 2010).   

There is a growing body of evidence implicating MMP-9 in the breakdown of the 

BBB after neural injury in both developmental and adult models (Gasche et al., 1999; 

Asahi et al., 2001; Shigemori et al., 2006; Sifringer et al., 2007; Svedin et al., 2007).  

MMP-9 disrupts the BBB by degrading collagen IV and laminin in the basal lamina 

(Harkness et al., 2000).  Additionally, increased MMP activity at the BBB leads to MMP-

dependent cleavage of BBB tight junction proteins and causes significant disruption of 

cell-cell contact (Lohmann et al., 2004).  Similar to our results in juvenile TBI, others 

have reported decreased BBB permeability (Pan et al., 2009) and decreased infarct 

volume (Belayev et al., 2009; Eady et al., 2012) in adult models of I/R after treatment 

with DHA, supporting our conclusion of DHA and/or EPAs role in maintenance of the 
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BBB after injury.  DHA and EPA have been shown to decrease MMP-9 protein levels 

and activity in vitro (Shinto et al., 2011), suggesting DHA and EPA may also be 

modulating MMP-9 in vivo and contributing to our observed outcomes.   

Mmp9 is regulated at the level of gene transcription, primarily through an NF-κB 

site in the promoter region (Ogawa et al., 2004) and consistent with the present 

findings, peak expression of the Mmp9 gene occurs approximately 24 hours after 

juvenile TBI (Sifringer et al., 2007).  LC-PUFAs are known to regulate NF-κB signaling 

through binding to and activating PPAR receptors thereby antagonizing the NF-κB 

signaling pathway (Zuniga et al., 2011) or through directly inhibiting activation of NF-κB 

independently of PPAR (Novak et al., 2003; Draper et al., 2011).  From this we can 

propose that fish oil is providing BBB protection after TBI by limiting gene expression of 

Mmp9 in activated astrocytes through inhibition of NF-κB signaling early after injury.   

Modulation of astrocytosis and glial scar formation represents an additional 

mechanism by which fish oil may improve outcomes after TBI.  In support of both a 

beneficial and harmful role of astrocytosis in neural injury (Laird et al., 2008), DHA 

treatment increased GFAP staining seven days after I/R in an adult model (Belayev et 

al., 2009; Eady et al., 2012).  The authors suggest this is a protective scarring 

mechanism to spare adjacent neurons from damage.  However, in an adult model of 

TBI, vitamin B3 treatment reduced Gfap gene expression and improved functional 

outcomes (Hoane et al., 2003).  Similarly, in our juvenile model of TBI, DHA treatment 

improved functional outcomes and decreased Gfap gene expression to sham-levels by 

day four after injury, suggesting the fish oil-induced reduction of astrocytosis is 

beneficial in this model.  These findings, compared to adult models of neural injury, 
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indicate there may be age, injury model, or time after injury-dependent responses to the 

effects of DHA on GFAP mRNA and protein levels.  

Transcriptional regulation and astrocyte-specific expression of the Gfap gene is 

very complex (Brenner, 1994).  Expression of the Gfap gene, however, is induced by 

hormones, growth factors, and cytokines (Laping et al., 1994).  DHA, EPA, and their 

metabolites are known to have anti-inflammatory properties through promoting 

resolution of inflammation and through decreasing cytokine expression via NF-κB-

dependent and independent mechanisms (Mori and Beilin, 2004; Calder, 2007; Kang 

and Weylandt, 2008).  Therefore, we can hypothesize at least one mechanism by which 

DHA and EPA regulate Gfap gene expression via modulation of inflammation and 

cytokine production.  

In addition to the various signaling roles of n-3 LC-PUFA, these molecules also 

influence cellular function through their role as components of membrane phospholipids.   

It is possible that neuroprotection afforded by fish oil after TBI may also be due to slight 

alterations in lipid membrane microenvironments or lipid rafts.  Additional studies are 

needed to fully investigate the TBI-induced changes in membrane fatty acid 

composition. 

 

6.5 Conclusion  

In agreement with reports from studies in adult animals, these results indicate 

that fish oil can improve TBI outcomes in juvenile animals.   There are numerous 

potential mechanisms by which the DHA and EPA contained in fish oil may contribute to 

improved TBI outcomes.  This study demonstrates that fish oil resulted in improved 



129 
 

functional outcome, in part, by limiting disruption of the BBB by preventing TBI-induced 

expression Mmp9 and by modulating expression of Gfap, which potentially also affects 

BBB function and/or astrocytosis and glial scarring.  Accordingly, these findings suggest 

that administration of fish oil may improve outcomes after TBI in children. 
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CHAPTER SEVEN 

DISCUSSION AND FUTURE DIRECTIONS 
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7.1   Developing a Model of Juvenile TBI 
 

The field of juvenile TBI research is relatively small and lacking the tools to 

appropriately assess functional recovery.  The most widely used behavioral test in 

juvenile TBI is the Morris Water Maze (MWM).  However, the MWM only assesses 

cognitive impairments and is conventionally used several weeks after the initial injury 

has occurred.  Therefore, while establishing a juvenile TBI model, it was important to 

establish a battery of behavioral tests that could measure the initial injury acutely as well 

as the persistence of deficits and long-term recovery.   

The first aim established a juvenile TBI model with consistent, measurable 

deficits, without debilitating injury or mortality.  In order to easily assess recovery, it was 

decided to injury the sensorimotor cortex allowing us to measure motor function as a 

TBI outcome, something that is easily done in rats. After the model was established, 

three reliable, easily adaptable sensorimotor tests were identified for use in a rapidly 

growing model, something that was lacking in the field.  Lastly, it was determined that 

there are no sex differences in sensorimotor response to TBI using the three tests 

meeting our evaluation criteria allowing for the use of both males and females in TBI 

studies evaluating behavioral outcomes.  

 
 
7.2  The Effects of Diet and Brain Fatty Acid Composition on TBI Outcomes 

 
The second aim studied the influence of dietary n-3 fatty acids and brain fatty 

acid content on recovery from TBI in juvenile rats.  The main goal of this study was to 

determine if dietary n-3 fatty acid content or brain fatty acid composition that has more 

influence on outcomes of TBI.  Knowing whether dietary n-3 fatty acids or brain fatty 
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acid content has more influence on TBI outcomes would facilitate improved outcomes of 

TBI.  If dietary n-3 fatty acid content has a greater influence, then n-3 supplementation 

after TBI would provide the most benefit.  However, if n-3 brain fatty acid content has 

greater influence, this would encourage the consumption of a diet high in n-3 fatty acids 

by pregnant and nursing women as well as neonates and toddlers, during the times at 

which DHA rapidly accumulates in the developing brain.  

In Aim 2, it was determined that rats with diet-induced decreases in brain DHA 

content had worsened outcomes after TBI.  Furthermore, by testing rats with varying 

decreases in brain DHA content, but fed an identical n-3-deficient diet, I determined that 

brain fatty acid content, and thus maternal nutrition, has the greatest influence on 

juvenile TBI outcomes.  Rats with the greatest decreases in brain DHA had the worst 

sensorimotor outcomes after TBI.  These rats also had the smallest induction of Timp1, 

an endogenous MMP inhibitor.  TIMP-1 has known anti-apoptotic and growth factor 

properties that are independent of its MMP-inhibiting ability (Hayakawa et al., 1992; 

Gardner and Ghorpade, 2003; Jourquin et al., 2005), and are thought to occur through 

interactions with cell surface receptors (Strongin et al., 1995).  Because the increase in 

Timp1 gene expression was not accompanied by a decrease in MMP2 or -9 message 

levels or activity, it is likely that it is the anti-apoptotic and growth factor properties of 

TIMP-1 that are contributing to improved outcomes in our model.  

 

7.3  Implications for Maternal and Early Childhood Nutrition 

In Aim 2, it was determined that brain fatty acid composition, not dietary n-3 

content, had the greatest effects on TBI outcomes.  This result encourages the 
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consumption of diet high in n-3 fatty acids by pregnant and nursing mothers, as well as 

toddlers.    

DHA and other n-3 LC-PUFAs appear to have very little, if any toxicity.  In a 

toxicologic evaluation of DHA-rich algal oil, an oral dose of 2000 mg/day in pregnant 

dams did not have any adverse effects on dams or pups before or after birth (Schmitt et 

al., 2012).  Furthermore, pregnant dams consuming a diet high in n-3 fatty acids did not 

experience any adverse effects relating to reproductive capacity or pup development 

(Blum et al., 2007).  Also, rats experienced no adverse effects when administered DHA 

in utero and for 90 days at dietary levels resulting in exposures up to 22 or 66 times 

higher than those expected in infant formulas (Burns et al., 1999). 

The current recommended daily intake of DHA during pregnancy and lactation is 

300 mg/day (ISSFAL, 2004).  A greater DHA and EPA recommended daily intake for in 

pregnant and nursing mothers and a greater DHA and EPA concentration in infant 

formulas is called for based on the benefits of DHA on both post-partum maternal 

mental health (Kendall-Tackett, 2010) and fetal brain development (Carlson, 2009), and 

now the implications of worsened TBI in juveniles with low brain DHA.  Additionally, 

greater n-3 intake may be even more beneficial in mothers with multiple pregnancies or 

pregnant with multiples because in these instances the average intake per fetus/child is 

reduced.   
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7.4 Potential Mechanisms for LC-PUFA Membrane Composition-Mediated 

Modulation of Timp1 Gene Expression 

TIMP-1 is an endogenous inhibitor of MMPs whose gene expression is highly 

induced by many cytokines and hormones.  If reduced brain DHA caused worsened TBI 

through increased inflammation and cytokine activity, we would expect rats with the 

greatest decreases in brain DHA levels to have the greatest levels of TBI-induced 

Timp1 gene expression; however the opposite was true.  Therefore, we can propose a 

mechanism(s) by which Timp1 is expressed involving altered membrane signaling as a 

result of decreased brain DHA, either through modulation of lipid raft composition or 

membrane fluidity or though free fatty acids cleaved from the membrane. 

 

7.4.1  Increased Akt Signaling 

One way that endogenous DHA is known to modulate cell signaling is through 

preferential incorporation into PtdSer in the inner leaflet of the membrane bilayer and 

promoting PI3K/Akt signaling (Akbar et al., 2005).  PI3K/Akt is a well-studied anti-

apoptotic pathway overactive in cancer cells (Fresno Vara et al., 2004).  Increasing 

concentrations of DHA and PtdSer in the membrane facilitates the translocation and 

phosphorylation of Akt.  The phosphorylation and activation of Akt suppresses caspase-

3 activation and cell death, thus promoting cell survival (Akbar et al., 2005).  

Conversely, DHA-depleted membranes slow translocation and phosphorylation of Akt 

(Akbar and Kim, 2002; Akbar et al., 2005).  Like endogenous DHA, TIMP-1, in cancer 

cells, exerts its anti-apoptotic properties through initiating phosphorylation of Akt 

through activation of the CD63 surface receptor (Lambert et al., 2003; Jung et al., 2006; 
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Wurtz et al., 2008).  Thus, we can speculate based on endogenous DHA’s effects on 

TBI-induced Timp1 gene expression, demonstrated in Aim 2, and Akt activation, that the 

two pathways are related.  Timp1 gene transcription may be initiated by membrane 

DHA mediated-Akt signaling and the anti-apoptotic signal further amplified through 

TIMP-1-mediated activation of CD63 and Akt.   

 

7.4.2  Transcription Factor Modulation 

A second potential mechanism by which DHA might regulate Timp1 gene 

expression includes DHA’s direct effects on transcription factors.  TBI causes a rapid, 

sustained increase in free fatty acids.  LC-PUFAs are known to regulate gene 

expression through binding to several transcription factor response elements, including 

PPAR, and RXR (Khan and Vanden Heuvel, 2003).  Upstream regions of the Timp1 

gene contain a serum response element that confers Timp1’s responsiveness to a 

variety of agents including cytokines and growth factors (Campbell et al., 1991; 

Edwards et al., 1992; Bugno et al., 1995; Gardner and Ghorpade, 2003).  Identification 

of putative LC-PUFA response elements within 1500 base pairs upstream of the mouse 

Timp1 transcription start site, using JASPAR (Bryne et al., 2008), revealed 6 possible 

PPAR/RXR binding sites, indicating a second mechanism by which variation in brain 

DHA content may influence regulation of Timp1 gene expression. 

Very little is known about TIMP-1s involvement in TBI.  MMPs have an important 

role in neurogenesis, neurovascular remodeling, and matrix-trophic signaling in the later 

stages of recovery from TBI (Falo MC, et al. J Neuroscie Res 2006).  Therefore, the 

best approach to improving TBI outcomes may be through increasing TIMP-1 gene 
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expression and enzymatic activity and not through inhibiting MMPs.  Knowing more 

about how Timp1 gene expression is regulated in this context, and influenced by brain 

fatty acid content, will help us better understand the sequlae of juvenile TBI.  

Additionally, knowing more about the specific actions of TIMP-1and its target(s) in 

juvenile TBI will help develop small molecule therapies to improve outcomes, as 

currently no TIMP-1 mimetics exist.   

 

7.5 Acute Fish Oil Treatment in Juvenile TBI 

The third aim examined the effects of acute fish oil administration on behavioral 

and biochemical recovery from juvenile TBI.  Rats treated with fish oil had improved 

functional outcomes, reduced IgG infiltration into the brain, as well as reduced Mmp9 

gene expression and faster resolution of Gfap gene expression.  Together, these data 

suggest that fish oil treatment improves functional outcomes through protection of the 

BBB through a mechanism that includes faster resolution of gliosis and/or reduced 

Mmp9 mRNA levels.  

Current clinical therapies for TBI are very limited.  Because TBI is a very complex 

injury, a single therapeutic targeting one post-TBI process is not likely to have much 

benefit.  However, therapies targeting multiple TBI processes may provide more benefit.   

Fish oil, and specifically DHA, makes for an attractive therapeutic because of the broad 

range of processes it influences and its low toxicity.  Even at the high dose of 15 mL/kg 

was well tolerated in rats.  In fact, high dose fish oil supplementation (19.2 g/day) 

provided significant benefit in a young patient with severe head trauma deemed likely 
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lethal (Therapeutic use of omega-3 fatty acids in severe head trauma, Lewis et al. 

2013). 

 

7.6 Differential Signaling of Membrane LC-PUFAs and Free Fatty Acids in TBI:  

MMP-9 as an Example 

Brain fatty acid composition and free fatty acids both influence TBI outcomes.  

However, their influences appear to occur through different mechanisms, though 

overlapping mechanisms may also exist but were not examined in these studies.  Rats 

with greater brain DHA content had a less severe injury than did those with reduced 

brain DHA even though both were consuming the same diet, and theoretically, should 

have the same plasma levels of LC-PUFAs.  This suggests that brain fatty acid 

composition is influencing cellular signaling through alterations in lipid rafts or 

membrane fluidity.  Fish oil dosing improved function and reduced BBB damage in rats 

with the same brain fatty acid composition suggesting free fatty acids themselves are 

altering intracellular signaling.   

Mmp9 message levels and enzymatic activity, as an example, were increased 

equally after TBI in rats that sustained a brain injury, regardless of brain fatty acid 

composition (Aim 2).  Fish oil dosing, on the other hand, prevented TBI-induced 

transcription of the Mmp9 gene. One possible mechanism for fish oil’s effects on Mmp9 

gene expression in injured rats is through fish oil’s influence on NF-κB.  DHA and EPA 

both inhibit phosphorylation of IκK, the NF-κB inhibitor (Yang et al., 2013), thereby 

preventing activation of NF-κB and transcription of NF-κB-regulated genes, including 

Mmp9.  There was no effect of brain fatty acid composition on Mmp9 gene expression.  
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From that we can conclude that brain fatty acid composition does not directly alter NF-

κB signaling, nor do fatty acids cleaved from the membrane, at least not to the extent 

that high-dose LC-PUFA supplementation does.  I would hypothesize that fish oil 

inhibits transcription of NF-κB-regulated genes in a dose dependent manner, though a 

study like this has yet to be done.  

 

7.7 Fatty Acids and PPAR 

PPARs are a family of three nuclear receptors isoforms (α, β/δ, and γ).  They 

form a heterodimer with the nuclear receptor RXR to play a critical role as lipid 

sensors and regulators of lipid metabolism.  Fatty acids, including DHA and EPA, and 

eicosanoids are endogenous ligands for PPARs but several exogenous ligands such 

as the thiazolidinediones (glitazones) and fibrates have been developed to treat type 2 

diabetes and hypercholesterolemia.   

Recently PPAR agonists have been investigated for the treatment of neural 

injuries particularly through activation of PPAR-γ.  Fenofibrate (Besson et al., 2005) 

and rosiglitazone (Chen et al., 2007; Hyong et al., 2008; Yi et al., 2008) have 

demonstrated neuroprotective effects in models of TBI via reducing inflammation, 

oxidative stress, and apoptosis.  PPAR-γ is thought to elicit its anti-inflammatory 

effects by blocking NF-κB-dependent gene expression as well inhibiting 

phosphorylation of MAPK and preventing MAPK-dependent pro-inflammatory gene 

expression (Desreumaux et al., 2001).  Additionally, PPAR- γ is able to block 

transcription of NF-AT, AP-1, and STAT-dependent genes (Lehrke and Lazar, 2005).  
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However, the molecular mechanism for transcriptional repression by PPARs in 

response to the binding of ligands is still poorly understood. 

 Synthetic PPAR ligands have many side effects that make their use less than 

ideal.  The thiazoladine-derived glitazones have side effects including weight gain, 

peripheral edema, and, as a result, congestive heart failure.  Additionally, many glitizars, 

non-thiazolidine derived PPAR agonists, have failed clinical trials because of serious 

side effects and/or carcinogenesis-related issues.  The demonstrated benefit of PPAR 

agonists in treating TBI validate potential short-term use of these drugs and justify the 

need for safer PPAR agonist drugs.  The actions of DHA and EPA on PPARs, as well 

as their other neuroprotective properties and low toxicity, make them an ideal 

therapeutic alternative.   

With regard to the studies in this dissertation, fish oil treatment provided benefit 

after juvenile TBI by improving functional outcomes, reducing IgG infiltration, preventing 

TBI-induced expression of the Mmp9 gene, and faster resolution of Gfap gene 

expression.  Though we did not investigate the specific mechanisms of actions of fish oil 

in these studies, it is possible that fish oil is providing protection in TBI, in part, through 

agonist effects at PPAR receptors.  

 

7.8 Future Directions  
 

7.8.1 Benefits and Limitations of Fat-1 Transgenic Mice 
 
In 2004, a transgenic mouse containing the C. elegans fat-1 gene was created 

(Kang et al., 2004).  The fat-1 gene, absent in mammals, encodes n-3 fatty acid 

desaturase that introduces a double bond into n-6 fatty acids at the n-3 position of the 



140 
 

hydrocarbon chain, allowing for the production n-3 fatty acids in the absence of a dietary 

n-3 supply.  Using this transgenic mouse model would eliminate many common 

confounds associated with nutritional studies.  For example, wild-type and transgenic 

litter mates can be fed the same diet and produce different fatty acid profiles, eliminating 

the need for multiple differing diets.  Also, because litter mates can produce different 

fatty acid profiles, this eliminates possible maternal influences on outcomes.  Another 

benefit of the fat-1 transgenic mouse model is that it can be crossed with other 

transgenic or knockout disease models to produce combined models, allowing for the 

evaluation of the effects of n-3 fatty acids and or n-6/n-3 ratio on disease development 

and progression.  

While this model has many benefits, it also has some limitations.  One significant 

limitation of this model is that it produces only two levels of n-3 fatty acids: high (fat-1 

transgenic) or low (wild type).  A multi-generational or a multi-litter model, as was done 

in Aim 2, has the benefit of producing of several levels of n-3 fatty acid depletion and 

thus the examination of a dose-response effect on outcomes.  Additionally, while 

transgenic mice are useful for mechanistic studies, they’re not as applicable to human 

health as are wild type, outbred animals because they’ve been intentionally genetically 

manipulated.  

 
 

7.8.2 A Comprehensive Evaluation of DHA-dosing in Adult and Juvenile Models of TBI 

The studies within this dissertation have demonstrated that brain fatty acid 

content, more so than dietary fatty acid content, influences TBI outcomes in juvenile 

rats.  Additionally, this effect may be due to greater TBI-induced Timp1 gene expression 
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in rats with the greatest brain DHA content.  Also, dosing rats with fish oil improves 

outcome and may have specific neuroprotective effects on the BBB.  However, it 

remains to be determined if these effects also occur in adults, and whether brain DHA 

level at the time of TBI influences the magnitude of benefit produced by n-3 LC-PUFA 

treatment at the time of injury.  Additionally, most studies investigating the use of acute 

n-3 LC-PUFAs treatment for neural injuries have investigated a single concentration of 

DHA in adult rodents.  Furthermore, these animals have all been fed a standard chow 

causing them to have high levels of brain DHA.  No studies have investigated various 

doses of DHA in adults or juveniles with various degrees of brain n-3 depletion.  

If given an unlimited research budget, based on the current literature, and to 

provide the most comprehensive study of n-3 fatty acid supplementation in TBI 

treatment, it would be important to investigate a dose-response effect of acute DHA 

dosing in adult and juvenile models of TBI in rats raised on a control diet, n-3 deficient 

diet, and an n-3 enriched diet.  Measured outcomes would include sensorimotor deficits 

using the tests identified in Aim 1, MMP and TIMP expression and activity, and markers 

of inflammation, excitotoxicity, and apoptosis, all processes identified in this dissertation 

and in the literature to be improved by DHA.  Based on proposed mechanisms of DHA 

signaling, it would be important to investigate phosphorylation of IκK and Akt, as well.   

Decreased phosphorylated IκK would support DHA’s role in inhibiting activation of NF-

κB through inhibition of IκK phosphorylation.  Additionally, decreased phosphorylation of 

Akt would demonstrate membrane DHA’s proposed agonistic effect on Akt signaling, 

specifically translocation and phosphoylation of Akt. 
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7.8.3 Preferential synthesis of anti-inflammatory DHA-derived lipid mediators after TBI 

As described previously, n-3 fatty acids, particularly DHA and EPA, are 

metabolized into many families of anti-inflammatory, pro-resolving lipid mediators 

including resolvins and neuroprotectins.  Although resolvins have not been investigated 

in the brain, they decrease neutrophil recruitment, pro-inflammatory cytokines, improve 

survival, and have many other beneficial effects in mouse models of peritonitis, 

inflammatory pain, sepsis, and colitis (Spite and Serhan, 2010).  NPD1, synthesized 

from DHA, inhibits leukocyte infiltration and inflammatory gene expression in a model of 

I/R (Marcheselli et al., 2003).  It is not known, however, what role these mediators play 

in TBI or if they are synthesized from free or membrane-bound fatty acids.  Therefore, to 

better understand whether a long-term n-3 fatty acid-enriched diet or acute n-3 

supplementation has greater influence on TBI outcomes, it would be beneficial to know 

more about the synthesis of these lipid-mediators.   

 An efficient way to investigate this would be in vitro using neuronal cultures or 

hippocampal slices.  An in vivo experiment could be proposed, though it would be very 

costly.  In culture, the production of lipid mediators after injury in the presence and 

absence of [13C]-DHA in the media could easily be investigated.  DHA-derived 

mediators in the cell lysates and media could be identified via HPLC and further 

analyzed via NMR.  Based on the nuclear magnetic spin profile of the different 

mediators we would be able to determine if dietary fatty acids, membrane-incorporated 

fatty acids, or both equally, are made into these beneficial lipid-derived anti-

inflammatory mediators after injury. 
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7.8.4 Doxycycline to Improve Outcomes of TBI 

Tetracycline antibiotics, particularly doxycycline, have MMP-inhibiting properties 

independent of their antimicrobial properties.  If TIMP-1 is a crucial determinant of TBI 

outcomes, it would stand to reason that inhibiting MMPs using another molecule would 

free TIMP-1 to exert its other properties as a growth factor and anti-apoptotic factor.  

Additionally, besides inhibiting MMPs, sub-microbial doses of doxycycline also exhibits 

anti-inflammatory and anti-oxidant properties, possibly though inhibition of COX-2 and 

TNF  converting enzyme.  Knowing the role of MMPs, TIMPs, TNF , and COX-2 in the 

pathphysiology of TBI, doxycycline, in theory, should improve outcomes from several 

cellular angles.  

Doxycycline does not readily cross an intact BBB or enter CSF (Andersson and 

Alestig, 1976).  However, in TBI, where the BBB is disturbed until at least four days after 

injury according to Aim 3, and possibly longer, early administration of doxycycline may 

help improve outcomes after TBI.  To confirm this, after injury, rats could be treated with 

doxycyline, celeoxib, a selective COX-2 antagonist, or etanercept, a selective TNF -

inhibitor.  Endpoints measured could include behavior and Gfap gene expression to 

confirm injury, as well levels of TNF , markers of TNF -induced inflammation, COX-2 

activity, COX-2-produced prostaglandins, and MMP and TIMP gene expression and 

activities.  

DHA and EPA are both substrates for COX-2 in the formation of resolvins (Rv) 

D1 and E1, respectively.  RvD1 and RvE1 have potent in vitro and in vivo anti-

inflammatory properties (Marcheselli et al., 2003; Bannenberg et al., 2005).  It is 

possible that celecoxib may worsen injuries via inhibiting production of RvD1 and RvE1.  
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However, other potent anti-inflammatory fatty-acid derived mediators are made via other 

enzymes not affected by celecoxib; for example, formation of NPD1 is initiated by 

converting DHA to 17S-H(p)DHA by 15-LOX (Marcheselli et al., 2003).  In itself, treating 

rats with TBI with or without celecoxib would demonstrate the contributions of the 

resolvins versus NPD1 in TBI pathology. 

Overall, this study would demonstrate the efficacy, or lack thereof, of doxycycline 

in the treatment of TBI as well as delineate its primary neuroprotective mechanism(s) of 

action.  This would allow for a better understanding of the pharmacologically-targetable 

pathophysiological processes occurring after TBI and help identify new, or repurpose 

old, pharmacologic agents for the treatment of TBI.  

 

7.9 Conclusion 
 
In conclusion, brain injuries, particularly those in children, are tremendously 

understudied and lack efficacious therapeutics.  N-3 LC-PUFAs, which exhibit anti-

inflammatory, anti-excitotoxic, and anti-apoptotic properties, are an excellent candidate 

for treating TBI.  Additionally, n-3 fatty acids have no known toxicities, even at high 

doses, are well absorbed, and have few side effects.  Better understanding of how both 

endogenous and exogenous n-3 fatty acids work in the brain after TBI will lead to better 

therapeutics and, ultimately, better outcomes for those suffering from TBI.  
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