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ABSTRACT 

 

 

Glutamate has been shown to lead to neurotoxicity and subsequent 

neurodegeneration through changes in synaptic function, loss of glutamatergic neurons, 

synapses, and dendrites.  All of these characteristics are also observed during aging or 

in age-associated neurodegenerative diseases. To probe the effects of excess 

glutamate and determine if these effects might contribute to the morphological and 

functional changes associated with aging, our laboratory generated a transgenic mouse 

model that over-expresses the mitochondrial glutamate dehydrogenase 1 (GLUD1) 

gene.  This transgene was only expressed in neurons through the use of the neuron-

specific enolase promoter.  The Glud1 Tg mouse model generated in our laboratory 

demonstrated significantly increased GLUD1 levels, GLUD activity, extracellular 

glutamate levels, and increased glutamate release after stimulation as compared to wild 

type (wt).  There were also many significant morphological changes observed in the Tg 

mice including cell layer thinning in the hippocampus, cortex, and striatum, 

accompanied by synapse, neuronal, and dendrite losses.  It was noted that the 

morphological changes observed were within specific brain regions; for example, the 

cerebellum showed no changes despite the fact that Glud1 was over-expressed in all 

neuronal cells.  In addition, the morphological changes in the various brain regions of 

the Tg mice were further exacerbated by advancing age.   

Selective neuronal vulnerability has also been observed in many neurodegenerative 

diseases and has been found to occur in the cerebral cortex, hippocampus, and 

amygdala neurons of those with Alzheimer’s disease.  Therefore, the Glud1 Tg mice 
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may be used to probe the molecular and cellular pathways involved in selective 

neuronal vulnerability as it may relate to excess extracellular glutamate.   

The studies presented in this dissertation focused on investigating the role of 

mitochondria in inducing region specific neuronal degeneration under the conditions of 

the combined effects of aging and excess glutamate activity in the central nervous 

system.  Specifically, I have focused on whether there are changes in mitochondrial 

bioenergetics (Chapter 2), mitochondrial Ca2+ regulation (Chapter 3), and mitochondrial 

reactive oxygen species generation (Chapter 4) during the aging process in different 

brain regions in wild type and Glud1 Tg mice.   

Our studies demonstrated that there are altered mitochondrial electron transport 

system activities, mitochondrial calcium dishomeostasis, mitochondrial membrane 

potential, and generation of reactive oxygen species in the Tg as compared to wt mice.  

Complex I of the electron transport system is significantly lower in the Tg as compared 

to wt mice at 9 months in the cerebellum.  In addition, the membrane potential in the Tg 

mice as compared to wt mice is 2-fold higher and the same results were demonstrated 

for the levels of superoxide.  Mitochondrial calcium uptake in the Tg mice is 2-fold 

higher than wt mice at 9 months and significantly decreases across advances age.  

Taken together, these data suggest some adaptive and compensatory mechanisms 

might be taken place in the Tg mice as a result of the over-expression of the Glud1 

gene i.e. down-regulated complex I activity and decreased calcium uptake across age. 
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Chapter One:  The Role of Glutamate, Glutamate Dehydrogenase, and 

Mitochondria in the Brain 

 

1. NEUROTRANSMISSION IN THE BRAIN  

Neurons communicate to one another by transferring information from the 

axons of one neuron to the dendrites of another.  This process of 

neurotransmission is not direct and involves the release of chemicals into the 

space between the axon and dendrite, the synapse.  The neurotransmitters bind 

to receptors located within the cell membranes of dendrites which either inhibit or 

stimulate an electrical response in the receiving cell’s dendrites.  See figure 1 for 

an illustration of the structure.  The type of response is dependent on the type of 

neurotransmitter released.   

 

Figure 1 Pre and post synaptic structure illustrating neurotransmitter 
release. 
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The neurotransmitters in the brain can be divided into three main groups, 

amino acids, peptides, and monoamines.  The most prevalent neurotransmitter in 

the brain is glutamate, which functions as an excitatory molecule and is present 

at well over 90% of excitatory synapses in the human brain (Fonnum 1984).   

Glutamatergic System 

    The role of glutamate in processes such as synaptic transmission, 

plasticity, and learning has been well established by a multitude of studies (Clark, 

Magnusson et al. 1997); (Barnes 1979); (Wenk and Barnes 2000); (Levy and 

Steward 1979; Cotman and Monaghan 1988; Francis, Sims et al. 1993; Laube, 

Hirai et al. 1997).  Excessive glutamate can lead to hyper-activation of glutamate 

receptors, and this has been demonstrated to lead to increased calcium ions 

(Ca2+) entering the postsynaptic cell (Pull, McIIwain et al. 1970).  The high 

Ca2+concentration in post-synaptic cells can lead to cell death by activating 

proteases, lipases, nitric oxide synthase, and enzymes that destroy the cell by 

necrosis or apoptosis (Olney, Ho et al. 1971) (Meldrum and Garthwaite 1990) 

(Lipton 1999), resulting in a loss of neuronal structuel and synapses (Palmada 

and Centelles 1998) (Aarts, Wei et al. 2003) (Peters, Sethares et al. 2008).   

 Glutamate is used as the neurotransmitter at fast 

excitatory synapses in the brain and spinal cord and 

figure 2 illustrates glutamate’s chemical structure.  In 

addition, it is also used at “plastic” synapses, i.e. 

synapses that are capable of decreasing or increasing 

in strength.  These plastic synapses are thought to be 

Figure 2 L-glutamate 
chemical structure 
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the main memory storage elements in the brain and therefore glutamate is 

involved in processes such as memory formation and learning.  In addition, 

glutamatergic neuro-transmission is involved in a wide array of other cellular 

processes including energy metabolism, protein synthesis, and ammonia 

metabolism.  Due to its multi-purpose role, intracellular glutamate content is high 

~10 mmol/kg weight (Francis, Sims et al. 1993) (Debanne, Daoudal et al. 2003).   

Biosynthesis 

Glutamate is synthesized in the brain through a variety of different 

reactions involving different enzymes.  Major contributors are the mitochondrial 

enzyme glutaminase which converts glutamine to glutamate (Procter, Palmer et 

al. 1988) and aspartate aminotransferase which transaminates  �-ketoglutarate 

to produce glutamate in the cytosol.  Table 1 shows a listing of these and other 

metabolic reactions leading to glutamate synthesis.   
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Table 1 List of chemical reactions leading to glutamate synthesis. 

 

 

Reactants Products 

 

 

Enzymes 

Glutamine + H2O → Glutamate+ NH3 GLS, GLS2 

NAcGlu + H2O → Glutamate + Acetate 

 

(unknown) 

α-ketoglutarate + NAD(P)H + 
NH4

+ 
→ Glutamate + NAD(P)+ + 
H2O 

GLUD1, 
GLUD2 

α-ketoglutarate + α-amino acid → Glutamate + α-keto acid 

.   

 

transaminase 

1-Pyrroline-5-carboxylate + NAD+ 
+ H2O 

→ Glutamate + NADH 

 

ALDH4A1 

N-formimino-L-glutamate + FH4 
→ Glutamate + 5-
formimino-FH4 

FTCD 

In addition, mitochondrial glutamate dehydrogenase (Glud1) catalyzes an 

oxidative deamination of glutamate to form -ketoglutarate (Fig.3).  

 
   Glutamate   Alpha-ketoglutarate 

Figure 3 Reversible reaction catalyzed by glutamate dehydrogenase. 
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The -ketoglutarate is transported out of mitochondria by the keto-

dicarboxylic acid carriers, as mentioned earlier, and is transaminated by 

aspartate aminotransferase to produce glutamate.  This glutamate is stored in 

synaptic vesicles until nerve impulses trigger release of glutamate from the pre-

synaptic cell.  Even though a variety of enzymes and reactions are involved in 

the biosynthesis of glutamate in nerve endings (Table 1), studies have shown 

that the releasable endogenous glutamate pool in cerebellar neurons is 

dependent on -ketoglutarate formed by glutamate dehydrogenase (GLUD) 

(Palaiologos, Hertz et al. 1989).   

Once released from the vesicles, glutamate may be removed from the 

synapse by rapid reuptake systems located on the pre-and post-synaptic 

elements and on astrocytes.  In astrocytes, it is metabolized to glutamine by 

glutamine synthase.  Glutamine is released by astrocytes and can be taken up by 

neurons once again for recycling into glutamate (Danbolt 2001).  Figure 4 

illustrates the pathways of glutamate biosynthesis in nerve endings and the 

central role of glutamate dehydrogenase in contributing to the pool of releasable 

glutamate.  As illustrated, glutamate plays a pivotal role in cell metabolism being 

synthesized by the transamination of -ketoglutarate (also known as 2-

oxoglutarate), an intermediate in the Krebs cycle (TCA cycle).  The resulting 

alpha-ketoacid products from this reaction can also contribute as fuel for further 

metabolic processes.   
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Astrocycte Neuron 

Figure 4 Major pathways of glutamate synthesis at nerve endings. 

 

Glutamate Interaction with its Receptors 

Once released from the pre-synaptic cell, glutamate is free to bind to its 

receptors on the post-synaptic cell.  Glutamate receptors exist primarily in the 

central nervous system and are found on both neuronal and glial cells and both 

cell types are therefore influenced by this molecule.  These receptors are 

localized on the dendrites of postsynaptic cells (Steinhauser and Gallo 1996) 

(Palmada and Centelles 1998).  Glutamate receptors are divided into two types 

based on the mechanism by which their activation gives rise to a postsynaptic 

current (Cotman and Monaghan 1988).  These two types include metabotropic 

and ionotropic receptors (Hollmann and Heinemann 1994) (Sprengel and 

Seeburg 1993) (Ozawa, Kamiya et al. 1998) and are further divided into sub-

types based on specific agonists that bind to the receptor.   
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Ionotropic Receptors 

Ionotropic glutamate receptors are ligand-

gated nonselective cation channels that allow K+, 

Na+, and Ca2+ ions to flow through once 

glutamate binds to the receptor (Palmada and 

Centelles 1998).  This ion flow triggers an 

excitatory postsynaptic current (EPSC) which is a 

depolarizing current. If the depolarizing current is 

strong enough and reaches threshold it activates an action potential in the 

postsynaptic neuron.  All three sub-types of ionotropic receptors; N-methyl-D-

aspartate (NMDA), -amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), 

and Kainate bind glutamate. NMDA receptors are permeable to calcium and it is 

the flow of calcium that is thought to cause long-term potentiation (LTP) by 

transducing signaling cascades and regulating gene expression (Ozawa, Kamiya 

et al. 1998).  Long term potentiation is the process that underlies learning and 

memory, a form of synaptic strengthening following brief, high frequency 

stimulation (Francis 2003) (Baudry 2001).  Figure 5 illustrates an example of an 

activated NMDA receptor with the glutamate and glycine binding sites and the 

channel which allows for entry of calcium ions.  NMDA receptors have also been 

demonstrated to play a key role in the excitotoxic process.  Over-activation of 

NMDA receptors triggers excessive entry of calcium (Ca2+) initiating a series of 

nuclear and cytoplasmic processes that promote neuronal cell death, i.e. Ca2+ 

activated proteolytic enzymes, Ca2+/calmodulin kinase II (CaM-KII), and many 

enzymes are phosphorylated which increases their activity (Del Bigio 2000) 

 Figure 5 Activated NMDA 
receptor. 

  7



(Otmakhov, Tao-Cheng et al. 2004) (Sanhueza, Fernandez-Villalobos et al. 

2011) (Ashpole, Song et al. 2012) and taken together all of these mechanisms 

can lead to cell damage and/or death (Choi 1992) (Aarts, Wei et al. 2003). 

 

2. ROLE OF THE GLUTAMATERGIC SYSEM IN AGING AND AGE-

ASSOCIATED DISEASES 

  Changes in the glutamatergic system throughout aging have shown that 

extracellular glutamate levels increase with age in specific brain regions, 

specifically the hippocampus (Donzanti, Hite et al. 1993) (Freeman and Gibson 

1987) (Kaiser, Schuff et al. 2005) (Potier, Billard et al. 2010), but decreasing in 

regions such as the cerebral cortex (Saransaari and Oja 1995).  Therefore, 

changes in glutamate concentrations with age are region specific.  More 

examples include the striatum where glutamate concentrations increase in the 

lateral, but not the medial striatum of rats (Donzanti, Hite et al. 1993).  Beyond 

the observed increases in extracellular glutamate with advancing age, there is a 

steady decline in many cognitive processes, specifically a marked dysfunction of 

primate prefrontal cortex leading to a decreased ability to perform cognitive tasks 

(Hedden and Gabrieli 2004).  An underlying cause of the decline in these 

cognitive functions is thought to be due to a loss and/or damage of glutamatergic 

synapses which has been shown to occur in aging  
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Image analysis shows synapse losses in normal 
aging cortex

From: Structure of the Human Brain in Normal Aging and in Alzheimer’s Disease, Robert D. Terry, MD, 
Neuroscience and Pathology, UCSD

And, Masliah, E. et al., Neurology, 43, 1993

 

Figure 6 Image analysis showing synapse losses in normal 
aging cortex. 

From: Structure of the Human Brain in Normal Aging and in Alzheimer’s 
Disease.  

 

  (Peters, Sethares et al. 2008).  Electron microscopic studies have shown that in 

specific layers of the frontal cortex in rhesus monkeys there is an overall loss of 

about 30% of excitatory (glutamatergic) synapses with age (Peters, Sethares et 

al. 2008).  In the same study, behavioral tests were carried out to assess the 

cognitive status of the monkeys and these results showed that there was a 

strong correlation between excitatory (glutamatergic) synapse loss and cognitive 

impairment (Peters, Sethares et al. 2008).  Figure 6 illustrates the correlation 

between synapse loss and aging in normal cortex.  With an increase in age there 

is an increase in synapse loss.   
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 Age-associated Diseases 

Some of the strongest evidence supporting the role of the glutamatergic 

system in age-associated diseases comes from histopathological data.  In these 

studies, brains from patients with AD exhibited atrophy in the temporal, frontal, 

and hippocampal/entorhinal cortex regions (Francis 2003).  The atrophy was the 

result of a loss of pyramidal neurons and their synapses.  These changes also 

correlated with the degree of dementia in the patients suffering from the disease.  

The highest correlation coefficient among dementia and individual neurochemical 

and neuroanatomical measures was the correlation between synapse  loss and 

dementia (Fig. 7) (Francis 2003). 

 

Figure 7 Magnitude of correlations between various markers of the 
Glutamatergic and cholinergic system and the dementia rating.  
Asterisks indicate statistically significant relationships.  Francis et al. 
2003 

In 1993 Francis et al. provided biochemical evidence that glutamate is the 

neurotransmitter used by the cells lost in AD.  Therefore, the conclusion was that 

due to the specific cell and synapse loss, glutamatergic neurons and activity are 
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decreased in AD (Francis, Sims et al. 1993).  This decrease or dysfunction in 

excitatory neurotransmission might be part of the clinical manifestations seen in 

Alzheimer’s disease, i.e., decreased cognitive abilities such as memory and 

learning. 

 

 Conclusion 

To probe the effects of excess glutamate and determine if these effects 

might contribute to aging, three different types of animal models have been 

generated to investigate the effects of excess extracellular glutamate 

concentrations in the brain of organisms.  The first two types of animal models 

generated in excess glutamate in the extracellular space by knocking down the 

glutamate transporters Slc1a2 (Eaat2 or Glt-1) and Slc1a3 (Eaat1 or Glast) 

(Matsugami, Tanemura et al. 2006) (Rothstein, Dykes et al. 1996).  The third 

animal model resulted in excess glutamate by knocking down the tuberous 

sclerosis complex-1 gene (Tsc1) (Zeng, Ouyang et al. 2007).  All three of these 

animal models have been shown to lead to an excess accumulation of glutamate 

with increases between 1.5 and 32-fold the normal levels of extracellular 

glutamate (Matsugami, Tanemura et al. 2006) (Rothstein, Dykes et al. 1996) 

(Zeng, Ouyang et al. 2007).  Even though the generation of these animal models 

did lead to an excess accumulation of glutamate, there were limitations in their.  

The first two animal models resulted in excessive brain damage and embryonic 

lethality and the third model resulted in dramatic reductions in the life span of the 

mutant mice.  These severe limitations have therefore made these animal 
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models unsuitable for studying the effects of chronic, aging-related excess 

glutamate formation and release in the brain.  The three animal models 

described above would not accurately mimic the transient and moderate 

increases in extracellular glutamate that might occur throughout a prolonged 

period of the life of an organism.  The goal of our laboratory was to generate a 

mouse model that would result in transient and moderate increases in 

extracellular glutamate.  This model would allow us to probe the molecular 

changes within neurons in response to the presence of excess extracellular 

glutamate throughout development and during the aging process. 

 

3.  GLUTAMTE DEHYDROGENASE TRANSGENIC MOUSE MODEL 

Rationale 

Two types of transgenic mice were generated, one over-expressing the 

cytoplasmic enzyme alanine aminotransferase, and the other the mitochondrial 

enzyme glutamate dehydrogenase 1 (GLUD1).  Both transgenes were expressed 

only in neurons through the use of the neuron-specific enolase promoter, but only 

the GLUD1 transgenic line resulted in mice that overproduced and over-released 

glutamate at the synapse (Bao, Pal et al. 2009). 

Glutamate dehydrogenase 

 The enzyme glutamate dehydrogenase is a mitochondrial matrix enzyme 

which plays a key role in glutamate metabolism and energy homeostasis.  It is 

present in highest concentrations in the nervous tissue as compared with other 

tissues.  Glutamate dehydrogenase displays an energy sensing mechanism, 
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which allows enzyme activation under states of low cellular energy.  Upon 

activation in the neuron, it catalyzes the oxidative deamination of glutamate to -

ketoglutarate.  The -ketoglutarate serves as a substrate for the TCA cycle and 

when transported back into the cytoplasm is converted into glutamate.  

Therefore, in neurons glutamate dehydrogenase is involved in energy production 

and the metabolism of glutamate (Palaiologos, Hertz et al. 1989).  In the 

astrocyte it catalyzes the reductive amination of -ketoglutarate to form 

glutamate.  In addition, it is involved in a major pathway for cerebral ammonia 

generation.  Cooper et al., demonstrated that a small amount of [13N] ammonia in 

rat brain is incorporated into glutamate indicating that the cerebral glutamate 

dehydrogenase reaction more likely favors glutamate oxidation (ammonia 

production) (Cooper 2012).  Taken together, these studies demonstrate that in 

brain an increase in glutamate dehydrogenase activity leads to excess glutamate 

formation.  These studies did not however differentiate between neuronal vs. glial 

glutamate dehydrogenase activity. The effect of up or down regulation of 

glutamate dehydrogenase activity in neurons vs. glial cells may have different 

results.  Our goal was to create a transgenic animal model that would over-

express the glutamate dehydrogenase gene, specifically in neurons.  The 

neuronal targeted over-expression of glutamate dehydrogenase would lead to  

excess glutamate and would allow us to probe the effects of excess extracellular 

glutamate on neurons, specifically, the molecular and cellular pathways that may 

lead to altered metabolic states, synapse loss, neuronal loss, structural 

modifications and function.  

 

  13



 Generation and characterization of the Glud1 mouse model 

The transgenic mouse model was generated by over-expressing the Glud 

1 gene in central nervous system neurons.  Briefly, “Tg mice were generated by 

microinjecting fertilized oocytes from super-ovulating C57BL6/SJL hybrid mice 

with linearized DNA containing the cDNA of mouse Glud1.  The cDNA was 

placed under the control of the Nse promoter.” (Bao, Pal et al. 2009).  The mouse 

model was characterized in terms of GLUD1 activity, amino acid concentrations, 

synaptic glutamate release, stimulus-evoked glutamate release in vivo, neuronal 

structure, effects of age on dendrite structure and neuronal numbers, functional 

changes in neurons, alterations in spine density and morphology of neurons.  

The results of these characterizations are illustrated in figure 8.   
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Figure 8 Summary of differential characteristics of Glud1 Tg mice compared to with wt 

C57BL6 mice.  Bao, X et al., 2009. 

 

Figure 8 demonstrates that the Tg mice exhibited higher GLUD1 levels and 

higher enzyme activity (35-40%) as compared with wt littermates.  These results 

were obtained using in vitro biochemical assays and in situ histochemical 

detection assays.  A magnetic resonance spectroscopy (MRS) approach was 

used to measure amino acid concentrations in the brains of living mice.  The 

results demonstrated that in both hippocampus and striatum, the concentration of 

glutamate was significantly increased, but by a relatively modest amount.  Having 

demonstrated the increases in glutamate, our laboratory also examined whether 
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the Tg mice would have increased glutamate release in vivo after stimulus 

application.  A self-referencing multi-electrode array for measuring glutamate 

release and reuptake in vivo was used and the results demonstrated that after 

stimulus application glutamate release was higher in the Tg mice while glutamate 

reuptake was not significantly different from that of the wt mice.  In addition, the 

increase of stimulus-evoked glutamate occurred through synaptic release at 

glutamatergic synpases as the data demonstrated significantly higher increases 

(5-fold increase) in both frequency  and amplitude(2-fold increase) of miniature 

excitatory postsynaptic currents (mEPSCs) in Glud1 as compared with  wt mice 

(Bao, Pal et al. 2009).   

Many significant morphological differences were observed between the Tg 

and the wt mice.  For example, there was cell layer thinning observed in the Tg 

mouse hippocampus CA1 pyramidal cell layer (Fig. 9A, B) and the ventral 

granule cell layer of the dentate gyrus (Fig. 9C, D), and significant decreases in 

the number of neurons in the CA1 region of the hippocampus of the Tg mice as 

compared with that of the wt mice (Bao, Pal et al. 2009).     
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Figure 9 Neuronal structure of Tg Glud1 and wt mice.  Histological sections 
through the hippocampus CA1 (A, B), dentate gyrus (C, D), and cerebral cortex 
(E, F ) of 16-month-old Tg (A, C, E) and wt (B,D, F ) mice.  Bao, et al., 2009.  
Sections were stained with methylene blue.  N=5 
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In addition to changes in hippocampus tissue, loss of pyramidal cells was 

seen in layers III-V of the primary motor/somatosensory cortex of Tg mice (Figure 

9E, F).  A finding of interest was that despite the significant changes and losses 

in the Tg mice in cortical and hippocampal regions, the cerebellum did not 

demonstrate any changes.  The morphological changes observed in the Glud1 

Tg mice are similar to those observed after acute injections of a glutamate 

transport inhibitor.  These findings may serve as indirect evidence that the 

observed morphological changes could be a result of altered Glud1 and 

increased glutamate levels.   

In addition to significant changes in neurons, robust changes in dendrite 

labeling were also observed.  There were significant decreases in dendrite 

labeling by anti-MAP2A antibodies in the CA1 region of the hippocampus in the 

Tg mice (figure 10), as well as the striatum.  The decreases in dendrite labeling 

by MAP2A are similar to those observed after inhibition of glutamate transporters 

which results in increases in extracellular glutamate, providing more indirect 

evidence that these morphological changes are the result of excess extracellular 

glutamate. 

In addition to the significant morphological differences in neuronal elements in 

the brain between Tg and wt mice, functional changes in neurons were also 

observed.  Specifically, the slope of excitatory postsynaptic potentials fEPSPs in 

the post-high frequency stimulation period were significantly lower in the Tg mice.  

A contributing factor to this observation could be the significant decrease in spine 

density in dendrites of the hippocampus CA1 region neurons observed in Tg 

mice.   
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Figure 10 Immune labeling of MAP2A (green) and synaptophysin 
(red) reactive sites in CA1 of hippocampus of 12-month-old wt (A-
D) and Tg (E-H) mice. C,G Enlarged views of dendrite labeling by 
anti-MAP2A antibodies in the SO of CA1 pyramidal neurons. D,H 
Superimposed images of MAP2A- and synaptophysin-
immunoreactive sites. Scale bars, 10 mm. Bao et al. 2009 

 

 Many studies have shown that with age there is a decrease in neurons 

and synapses (Peters, Sethares et al. 2008) and an increase in extracellular 
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glutamate (Donzanti, Hite et al. 1993).  When dendrite labeling using MAP2A 

antibodies was measured in the CA1 region of the hippocampus of Tg and wt 

mice, there was a significant decrease in labeling in Tg, but not in wt, mice 

across age (Figure 11A).  In addition, comparisons between the two genotypes at 

each age (6, 11, and 20 months) revealed significant differences (Bao, Pal et al. 

2009).  Cell counts were also performed in the hippocampus CA1 and CA3 

regions and demonstrated significant decreases in the Tg mice as compared to 

wt (Fig 11B) and in every age group. 
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Figure 11 Age-associated changes in MAP2A labeling in dendrites and cell 
bodies of the CA1 of hippocampus of wt and Tg mice. A MAP2A labeling in 
SR dendrites of the CA1 measured across age for wt and Glud1 mice. The 
data shown are means (+-SEM) of pixel density measurements from equal 
areas from 6-14 pairs of wt and Tg mice of the indicated ages. B, Cell 
counts of neurons obtained from a 3128 um2 area of SP in CA1 and CA3 of 
wt and Tg hippocampus. Cell bodies labeled with anti-MAP2A antibodies 
were counted. Bao et al. 2009 
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Conclusion 

  The Glud1 Tg mouse model generated in our laboratory demonstrated 

significantly increased GLUD1 levels, GLUD activity, extracellular glutamate, and 

increased glutamate release after stimulus as compared to wt.  There were also 

many significant morphological changes observed in the Tg mice including cell 

layer thinning in the hippocampus, cortex, and striatum, accompanied by 

synaptic, neuronal, and dendritic losses.  It was noted that the morphological 

changes observed were within specific brain regions, for example, the 

cerebellum showed no changes despite the fact that Glud1 was over-expressed 

in all neuronal cells.  In addition, the morphological changes in the various brain 

regions of the Tg mice were further exacerbated by advancing age.  The 

observation that not all of the neurons underwent the same morphological 

changes gives support to the idea that not all neurons suffer equally through age 

or as a result of extracellular glutamate.  These findings support previous work 

which has shown that there is region-specific neuronal vulnerability to damaging 

agents, such as those that induce oxidative stress (Wang, Pal et al. 2007) 

(Wang, Pal et al. 2005).   

Selective neuronal vulnerability has also been observed in many 

neurodegenerative diseases and it is seen in the cerebral cortex, hippocampus, 

and amygdala of those with Alzheimer’s disease.  Therefore, the Glud1 Tg mice 

may be used to probe the molecular and cellular pathways involved in selective 

neuronal vulnerability as it may relate to excess extracellular glutamate.  There is 

not much information on this topic and several pathways have been suggested, 

including mitochondrial dysfunction, to account for differential vulnerability of 
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certain neurons.  Mitochondrial dysfunction as a factor involved in glutamate-

mediated toxicity has been proposed by other investigators and reduced energy 

levels in AD due to dysfunctional mitochondria have been described (Francis, 

Sims et al. 1993) (Beal 1998). 

 

4.  MITOCHONDRIAL DYSFUNCTION AS A RESULT OF EXCESS 

GLUTAMATE 

 

Mitochondrion Overview 

 Mitochondria were first described in 1895 by Richard Altmann, but it was 

not until 1912 that B.F. Kingsbury linked mitochondria to cell respiration.  

Thereafter, the function of mitochondria began to be elucidated and in the 1950s 

the phrase “powerhouses” of cells was used to coin them (Siekevitz 1957; 

Ernster and Schatz 1981).  Mitochondria are organelles found in eukaryotic cells 

and they vary in number and location according to the cell type.  Human cells 

contain numerous mitochondria, about 1000-2000 per cell.   

The main function of mitochondria is to provide cells with energy in the 

form of ATP through the process of cellular respiration.  Since the number of 

mitochondria varies in different cell types, different amounts of ATP are produced 

in different cell types.  When the demand for ATP is high, for example in muscle 

cells, the volume of mitochondria per cell is high.  Mitochondria are also involved 

in a variety of other processes including cell death, cell differentiation, cell 

signaling, Ca2+ buffering, and control of cell cycle and cell growth (Schon and 
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Przedborski 2011).  Overall, mitochondria have very critical roles in eukaryotic 

cells (Campbell, Williamson et al. 2006) (McBride, Neuspiel et al. 2006). 

 

Function 

The process of glycolysis yields the product pyruvate which is oxidized 

and combined with Coenzyme A to form carbon dioxide, NADH, and acetyl CoA.  

by mitochondrial pyruvate dehydrogenase.  Acetyl CoA is the primary substrate 

which feeds into the TCA cycle.  All of the enzymes of the citric acid cycle are 

localized in the mitochondrial matrix and the cycle consists of a series of ten 

chemical reactions.  The overall function of this cycle is to produce energy by the 

catabolism of fats, proteins, and sugars and the oxidation of acetyl CoA.  An 

important and key regulatory step in the cycle is the oxidative decarboxylation of 

-ketoglutarate to form succinyl-CoA which is an intermediate in the cycle.  This 

process is required in order to complete Alpha-ketoglutarate may also enter the 

directly into the TCA cycle following deamination of glutamate in the mitochodnria 

by glutamate dehydrogenase.  Therefore, glutamate dehydrogenase is key for 

generating an intermediate of the citric acid cycle.  This reaction also generates  

nicotinamide adenine dinucleotide (NADH) which is the primary substrate that 

feeds into the electron transport chain to generate ATP.  Therefore, glutamate 

dehydrogenase can contribute to the TCA cycle by supplying the primary 

substrate for the electron transport chain activities, or ATP generation. 
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Electron transport system 

 The products of the citric acid cycle, NADH and flavin adenine 

dinucleotide (FADH2) function as substrate, to fuel the activities of the electron 

transport chain.  Once inside the mitochondria NADH and FADH2 are oxidized by 

enzymes of the electron transport chain, respectively NADH:ubiquinone 

reductase (Complex I) and succinate dehydrogenase  

 

 

 

 

 

 

 

 

 

 

 Figure 12 Schematic representation of the electron transport system 

 

(Complex II).  Through a series of oxidation-reduction reactions the electrons 

from the substrates are transferred to molecular oxygen which is ultimately 

broken down to water.  As electrons are transferred through the chain, energy is 

obtained and used to pump hydrogen protons from the matrix into the inner 

membrane space (Fig. 12).  The generation of this electrochemical proton 
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gradient is the overall purpose of the electron transport chain enzyme activitie

The energy from the electrochemical proton gradient drives ATP synthase to 

generate adenosine triphosphate (ATP)

s.  

  from adenosine diphosphate (ADP) and 

organic phosphate.     

ffects of altered electron transport system activities 

ition of 

d ETS 

 

 

a key player involved in altering ETS activities (McCormack 

nd Denton 1993). 

in

 

E

 

 The main output of the electron transport system (ETS) is the generation 

of a membrane potential (Ψm) and production of ATP; therefore, any changes in 

ETS activities can alter ATP output.  Studies have documented that inhib

complexes of the ETS, i.e. NADH: cytochrome c oxireductase (Complex 

I+CoA+complex III) and cytochrome c oxidase (COX) (complex IV) result in 

decreased ATP levels (Brusque, Borba et al. 2002).  In addition, increase

activities have been demonstrated to be followed by an increase in ROS 

generation (Raha, Myint et al. 2002) (Maj, Raha et al. 2004).  Major sites in the 

ETS which are contributors to the ROS generation are the ubiquinone of complex

III and complex I (Liu, Fiskum et al. 2002) (Turrens and Boveris 1980) (Turrens, 

Alexandre et al. 1985) (Cadenas and Davies 2000).  Studies have demonstrated

that calcium is also 

a
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 Calciu

m  ( es, 

Yoon et al. 2004  m

e been 

m 

generation is exponentially dependent on the  Ψm (Starkovv and Fiskum 2003) 

m effects on the mitochondrion 

Ca2+ has been demonstrated to activate key dehydrogenases of 

glycolysis and the TCA cycle including pyruvate dehydrogenase, -ketoglutarate 

dehydrogenase, isocitrate dehydrogenase, Ca2+ can also stimulate ATP 

synthase, -glycerophosphate dehydrogenase, and the adenine nucleotide 

translocase (ANT) (McCormack and Denton 1993) (Das and Harris 1990) 

(Wernette, Ochs et al. 1981) (Mildaziene, Baumann et al. 1995).  The end result 

is an up-regulation of oxidative phosphorylation (electron transport system 

activities) leading to an increase of ATP synthesis.  Ca2+ uptake into 

mitochondria is driven by the mitochondrial membrane potential (Ψ ) Brook

) and the net movement of Ca2+ ions consumes the Ψ .    

Despite the beneficial effects of Ca2+, excess levels of calcium hav

demonstrated to exert several negative effects on mitochondrial function 

including ROS generation, cytochrome c release, and apoptosis (Aarts, Wei et al. 

2003) (Loeffler and Kroemer 2000) (Di Giorgi, Lartigue et al. 2002) (Green and 

Reed 1998) (Grijalaba, Vercesi et al. 1999).  The generation of ROS through a 

Ca2+ driven pathway can arise from multiple processes.  Ca2+ uptake is driven 

by the Ψ and studies have demonstrated that chemical uncouplers (i.e. 2,4-

dinitrophenol) decrease ROS generation in whole cells; therefore, ROS 

(Okuda, Lee et al. 1992).  An increase in mitochondrial calcium levels has been 

demonstrated to trigger PT pore opening (Halestrap and Brennerb 2003) and this 

is linked to cytochrome C release (Loeffler and Kroemer 2000).  Cytochrome c 

  27



release has been demonstrated to be accompanied by an immediate increase in 

ROS ( ) (Grijalaba, Vercesi et al. 1999). 

  

n.  

 

DNA fragmentation in cells; therefore,

lls in 

uce oxidative damage also cause massive cell death of neurons in 

Green and Reed 1998

 

ROS effects on mitochondrion 

 Calcium, the mitochondrial membrane potential, and ETS activities are 

involved in the generation of mitochondrial ROS.  Once produced, excess levels 

of ROS can exert negative effects on mitochondria.  ROS can damage mtDNA 

which encodes for essential components of the ETS proteins, i.e. complex I.  As 

stated earlier, an inhibition of complex I activity would decrease ATP generatio

In addition, Nianyu et al., demonstrated that mitochondrial ROS production was

induced by mitochondrial complex I inhibitors and this inhibition also induced 

mitochondrial permeability transition, increased the potential difference across 

the mitochondrial membrane, cytochrome c release, caspase 3 activation, and 

 linking mitochondrial bioenergetics, ROS 

generation, and apoptosis (Nianyu 2002). 

Of particular interest is the observation that neurons express differential 

vulnerability to oxidative stress brought about by ROS.  In the brain the 

hippocampus is divided into four regions, CA1 through CA4, and these regions 

respond to oxidative stress differently.  When exposed to oxidative stress ce

the CA1 region have low survival rates, while cells in the CA3 region are resistant 

(Wilde, Pringle et al. 1997) (Wang, Pal et al. 2005) (Sarnoska 2002).  Also 

agents that ind
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the cerebellar granule cell layer, but not in the cerebral cortex area (Wang, Zaidi 

 

and de

et al. 2009).   

 

5.  OVERALL CONCLUSIONS 

Glutamate has been shown to lead to neurotoxicity and subsequent 

neurodegeneration (Lucas and Newhouse 1957) (Camacho and Massieu 2006) 

through changes in synaptic function, loss of glutamatergic neurons, synapses, 

ndrites.  All of these characteristics are also observed during aging or in 

age-associated neurodegenerative diseases (Segovia, Porras et al. 2001) .  

 In the Glud1 Tg mice, we detected region-specific differences between wt 

and Tg mice in the loss of neurons and synapses and these differences became 

more pronounced with advancing age.  A question that we probed was what 

were the molecular and cellular determinants involved in the glutamate-induced 

region specific neuronal damage.  Our laboratory has published data that has 

begun to shed some light in these two issues.  Integrated bioinformatic analyses 

of gene expression has identified pathways and gene networks underlying 

neuronal responses in the Tg mice (Wang, Bao et al. 2010).  Based on the 

results of these studies, enhanced gene expression associated with oxidative 

stress, inflammation, neuronal growth and synaptic transmission  were all up-

regulated in the hippocampus of the Tg  mice as compared with that from the wt 

mice.  These results could be interpreted as showing that the Tg mice undergo 

compensatory responses to the chronic exposure to excess glutamate by up-

regulating genes involved in protection against stress while enhancing growth of 
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neuronal processes and re-establishing synapses.  It is important to note, 

however; that gene expression does not always correlate with protein expression 

so it will be important not only to identify the factors involved, but the pathways. 

My work has focused on investigating the role of mitochondria in indu

 

cing region 

specific neuronal degeneration under the conditions of the combined effects of 

aging and excess glutamate activity in the central nervous system.   

 

cycle 

in 

 of 

ain 

 an 

lier, changes in-

ketoglutarate would led to increased extr

ed 

Rationale 

A change in the production of intermediates and products of the TCA 

would change the amount of substrate feeding into the electron transport cha

and alter ETS activities.  Specifically, changes in glutamate dehydrogenase 

levels and activities would change the levels of -ketoglutarate and levels

NADH produced in the citric acid cycle which would alter electron transport ch

activities due to the change in substrate availability.  As stated earlier

alteration of ETS activities would affect the generation of ATP, generation of 

ROS, mitochondrial membrane potential, and mitochondrial calcium 

homeostasis.  Take together a change in any of these has been shown to be 

involved in cell damage and apoptosis.  As mentioned ear

acellular glutamate levels which has 

also been shown to led to neuronal damage and death.   

The Glud1 Tg mouse model generated in our laboratory has been 

demonstrated to exhibit increased levels of glutamate dehydrogenase activity, 

increased levels of extracellular glutamate, increased depolarization induc
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glutamate release, and to undergo region specific neuronal and synaptic da

as compared to wt mice (

mage 

ifically, 

 Glud1 Tg mice.  Figure 13 illustrates a 

schematic representation of the hypothesized effects over-expression of the 

Glud1 would exert on mitochondrion. 

Bao, Pal et al. 2009).  Therefore, to identify the 

molecular and cellular pathways involved in the glutamate-induced region 

specific damage has been my goal.  The focus of my work as examined the 

effect(s) of excess extracellular glutamate on mitochondrial function.  Spec

I have focused on whether there are changes in mitochondrial bioenergetics 

(Chapter 2), mitochondrial Ca2+ regulation (Chapter 3), and mitochondrial 

reactive oxygen species generation (Chapter 4) during the aging process in 

different brain regions in wild type and

 

Figure 13 Hypothesized effects of over-expression of glutamate 
dehyd nase (Glud1) on mitochondrion and cells. 
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 pathways underlying glutamate induced 

region specific vulnerability. 

Hypot

s, calcium homeostasis, 

membrane potential, and the generation of ROS.   

jective 

To identify the molecular and cellular

 

hesis 

The region specific and age-associated morphological and functional 

changes observed in the Glud1 Tg mice may occur as an adaptive or 

compensatory consequence of mitochondria dysfunction.  The Tg mice might 

exhibit adaptive or compensatory changes in mitochondria function and the key 

measures affected might be mitochondrial bioenergetic
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Chapter Two:  Effects of the Over-Expression of Neuronal Glutamate 
Dehydrogenase (GLUD1) on Brain Mitochondrial Electron Transport Chain 

Activities 

 

6.  INTRODUCTION  

The effects on neuronal function and structure(s) caused by acute 

treatments with glutamate have been extensively studied and described (Aarts, 

Wei et al. 2003).  However, these studies have been difficult due to the 

decreased lifespan and severe brain damage the acute treatments and 

exposures inflict on cells and mouse models (Tanaka, Watase et al. 1997) 

(Rothstein, Dykes-Hoberg et al. 1996).  In addition, these models undergo 

exposure to glutamate that is not localized and are therefore they would not be 

ideal for investigating glutamate induced damage at nerve terminals.   

 

Rationale for Glud1 Tg mouse model 

 The Glud1 Tg mouse model generated in our laboratory has already been 

demonstrated to contain increased levels of glutamate dehydrogenase activity, 

increased levels of chronic extracellular glutamate, increased depolarization 

induced glutamate release, and to undergo region specific neuronal and synaptic 

damage as compared to wt mice.  Therefore, this model provides a means for 

studying the effects of chronic, localized excess levels of extracellular glutamate 

on neuronal function over the lifespan of an organism.  In addition, it also serves 
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as a model for identifying the molecular and cellular pathways involved in the 

glutamate-induced damage that is region specific.   

 

Rationale for the studies described  

 The Glud1 Tg mouse model was generated with a neuronal specific 

promoter, enolase,  and was shown to be over-expressed in only neuronal cells 

(Bao, Pal et al. 2009).  Despite the over-expression of Glud1 in all neuronal cells, 

only specific brain regions were damaged i.e., cerebellum was resistant while 

hippocampus was vulnerable (Bao, Pal et al. 2009).  This raised the possibility 

that another pathway was involved in the region specific damage besides that of 

increased glutamate induced damage.   

 

Mitochondrial effects of glutamate dehydrogenase 

Changes in glutamate dehydrogenase levels and activities are expected to 

change the levels of -ketoglutarate, levels of NADH produced in the TCA cycle, 

and can alter electron transport chain activities due to the change in substrate 

availability.  Changes in ETS activities can affect the generation of ATP, 

generation of ROS, mitochondrial membrane potential, mitochondrial calcium 

homeostasis and generation of ROS (Chapter 1).  Taken together a change in 

any of these has been shown to be involved in cell damage and apoptosis 

(Brookes, Yisang et al. 2004) (Gunter, Yule et al. 2004) (Gunter, Buntinas et al. 

2000) (Muller, Roberts et al. 2003).  The studies described below were designed 
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to determine if mitochondrion bioenergetics is altered in the Glud1 T mouse 

model. 

 Experimental Design 

 In previous work from our laboratory it was noted that cerebellar granule 

(CbG) and hippocampal CA1 neurons are more sensitive to paraquat insults (a 

form of oxidative stress) than cerebral cortical and hippocampal CA3 neurons 

(Wang, Zaidi et al. 2009).  Preliminary studies conducted in our laboratory have 

begun to shed light into the molecular pathways and genes that may be involved 

in the differential neuronal response to oxidative stress (Wang, Pal et al. 2005) 

(Wang, Pal et al. 2007); however, there is still much information lacking. The 

goals of the studies described below were to probe mitochondrial function across 

different brain regions in order to determine whether, under conditions of 

increased glutamate activity in brain, there are differential responses in 

mitochondria isolated from different regions. The overall plan was to select three 

different brain regions, cerebellum, frontal cortex, and hippocampus, for the 

studies on mitochondrial metabolism and integrity.  The initial studies were 

focused on the activity of electron transport complexes as they represent the 

pathway of oxidative phosphorylation and a major source of ROS in cells (Liu, 

Fiskum et al. 2002)  .  
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2.  MATERIALS 

  All materials were purchase from Sigma-Aldrich unless otherwise noted.  

Protease inhibitor cocktail was purchased from Calbiochem, Catalog #539134.  

Bicinchoninic Acid Protein Assay Kit was purchased from Thermo Scientific # 

23225.  Complex I subunit NDUFB8 monoclonal antibody was purchased from 

Invitrogen Catalog #459210. 

 

3.  METHODS 

Generation of Tg Glud1 mice 

The GLUD1 transgenic mice were generated as published in Bao, X et al., 

2009. Briefly “Tg mice were generated by microinjecting fertilized oocytes from 

super-ovulating C57BL6/SJL hybrid mice with linearized DNA containing the 

cDNA of mouse Glud1.  The cDNA was placed under the control of the Nse 

promoter.  This promoter was excised from pNSE-LacZ  vector by digesting the 

SV40 polyA tail (BamHI and EcoRI), blunting and cloning it into pGEM-7Z 

between SmaI and BamHI.  Then the Nse promoter was excised from pNSE-

LacZ (BamHI and SphI digestion) and cloned into the modified pGEM-7Z.  A 

linker containing multiple restriction sites (Bg1II/EcoRV/Hink1II/MluI/XbaI/KpnI; 

sense sequence, 5’-AGATCTGATATCAAGCTTACGCGTCTAGAGGTAC-3’) was 

cloned between SphI (blunted) and KpnI of pGEM-7Z, which contained the Nse 

promoter and SV40 polyA tail (pNSE-GEM-7Z).  The open reading frame (ORF) 

of Glud1 cDNA was excised from pUC19 [by SacI 5’-untranslated region 

(UTR)/HpaI 3’-UTR] and subcloned into the Eco721 site of a reconstructed 
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pSindRep5 Sindbis virus vector, into which a polylinker 

(Bc1I/XhoI/SacI/NotI/PvuI) was introduced.  The orientation of the Glud1 ORF 

insert was confirmed by sequencing; the insert was digested (XbaI/XhoI) and 

cloned into pNSE-GEM-7Z to create the pNSE-GLUD1 vector.  This vector was 

digested with EcoRI, and the DNA was microinjected into the pronuclei of 215 

fertilized mouse oocytes and transferred to the oviducts of pseudopregnant mice.  

Forty-eight pups were born after transfer of oocytes microinjected with the pNSE-

GLUD1 construct.  Of these pups, four had the transgene for Glud1.  Genotyping 

was performed on genomic DNA extracted from tail biopsies obtained from 3- to 

4-week-old pups.  The DNA was subjected to Southern blot and PCR analysis.  

For the identification of the Glud1 transgene by PCR, the primers used were as 

follows: F1, 5’-GATATCGGGTGCATCTGAG-3’; and R1, 5-

GGTTTATGAGGACACAGAGG-3’ (900 bp product).  PCR amplification was 

performed using pfu polymerase and either 100 ng of genomic DNA or 1 ng of 

DNA from the pNSE-GLUD1 vector (reaction conditions: 32 cycles of 95C for 30 

s, 53C for 30 s, 72C for 1 min).  Southern blot analyses were used to confirm the 

PCR results.  pNSE-GLUD1 and genomic DNA from tail clippings were digested 

with EcoRV.  A 790 bp fragment from the Glud1 ORF was used as a proble for 

hydridization with genomic DNA”- (Bao, Pal et al. 2009). 
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Surgical procedure 

Mice from the three different ages, 9 months, 15 months, and 22 months were 

sacrificed under CO2 anesthesia and decapitated by a guillotine.  The brain was 

quickly removed and the cerebellum, frontal cortex, and hippocampus were 

dissected.  The hippocampus was removed using the technique of Navarro, Ana 

et al., 2007.  To reveal the hippocampus, a linear incision in both cortical sides 

was made extending from the posterotemporal pole of one hemisphere to the 

anterior pole of the frontal lobe at a 30o angle, with the incision depth adjusted to 

cut only the cortex and subjacent corpus callosum.  The excised brain regions 

were washed and immersed in homogenization buffer which contained (in mM): 

230  mannitol, 70 sucrose, 1  EGTA, 10 HEPES, 0.1 benzamide, 0.1  

benzamidine.HCl,  50  sodium fluoride, 1 sodium orthovanadate, 10 sodium 

pyrophosphate decahydrate, 10 -glycerophosphate, plus 20 l of protease 

inhibitor cocktail III.  

Mitochondrial Preparations 

Homogenization of the cerebellum, frontal cortex, and hippocampus was 

carried out using a glass Dounce homogenizer (20-30 strokes) (1 gram of tissue / 

9 ml homogenization buffer).  The homogenate was centrifuged at 1,000 xg for 5 

min at 4 oC to remove cell debris and nuclei.  After centrifugation, the pellet was 

discarded and the supernatant (S1) was transferred to a clean microcentrifuge 

tube.  The S1 was centrifuged at 10,000 xg for 10 min at 4 oC to obtain the 

mitochondrial pellet (P2).  The supernatant (S2) was also harvested and 

immediately frozen at -80 oC for later analysis.  The P2 fraction was re-
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suspended in a small volume of homogenization buffer, 350 l for the 

hippocampus and 450 l for the cerebellum and frontal cortex homogenates and 

the re-suspeneded pellets divided into 25 l aliquots, snap frozen in liquid 

nitrogen, and stored at  -80 oC. 

  

Citrate Synthase Assay 

A citrate synthase assay kit was used to determine total citrate activity and 

percent of leakiness of mitochondria in the isolated P2 pellets.  The P2 pellets 

described previously, were suspended in bicine buffer (buffer containing no 

detergent) using 200 l per gram of tissue.  The suspension was split into two 

tubes and centrifuged at 11,000 xg for 10 min.  The supernatant in the first tube 

was removed and the pellet was re-suspended in CelLytic M buffer (a buffer 

containing detergent) and the pellet in the second tube was re-suspended with 

bicine buffer using 200 l per gram of tissue.  The samples in the bicine and 

CelLytic M buffer were assayed for protein content using a colorimetric 

Bicinchoninic Acid Protein Assay Kit at 37 oC.  The total citrate synthase activity 

was measured spectrophotometrically at 412 nm with a kinetic program of no lag 

time, 1.5 minute read with 10 second interval readings.  The assay was 

performed in 96-well plates.  All solutions were warmed before starting the 

reactions.  Three different reaction samples were prepared.  One reaction 

sample contained 5 l of CelLytic M mito-pellet, 186 l 1x Assay buffer, 2 l 30 

mM Acetyl CoA solution, and 2 l 10 mM 5,5’-Dithiobis-(2-nitrobenzoic acid) 

(DTNB).  The second sample contained all of the above but differed in the fact 
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that it contained 5 l of the mito-pellet in bicine buffer.  The third reaction 

contained everything that was in the first reaction except the sample was not the 

CelLytic M mito-pellet, but in this reaction we added 2 l of citrate synthase 

diluted solution (positive control).  All sample reactions were mixed well by gentle 

vortexing.  The absorbance of the reaction mixtures was followed for 1.5 minutes 

to measure the baseline reaction.  This was done in order to determine the 

endogenous levels of thiol or deacetylase activity.  After baseline measurements, 

10 l of oxaloacetic acid (OAA) was added to each well to start the reaction.  A 

multichannel pipette was used in order to start the reaction in all the wells 

simultaneously.  While adding the OAA, the wells were mixed with the pipette 

and the plates were shaken for 5 seconds before reading the absorbance.  The 

absorbance of the reaction mixture was followed for 1.5 minutes to measure the 

total citrate synthase activity.  Three brain region samples from four mice from 

each genotype were used and all reactions were run in triplicate.  

 

Complex I to IV Assays 

 The activities of the ETC complexes were assayed at 37 oC 

spectrophotometrically. Enzyme activites for coupled complexes I-III, II-III and for 

individual complexes I, II, and IV were determined using the mito-pellets from the 

different brain regions and from different ages.  Prior to running the assays the 

mito-pellets were thawed at room temperature and ruptured (Janssen, Trijbels et 

al. 2007) as technique stated in Navarro et al. 2007.  Briefly, samples were 

passed through a syringe with a hypodermic needle then placed on dry ice for 5 
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minutes.  This process was repeated 3 times.  The BCA protein assay was run to 

determine the protein concentration of each sample after mitochondrial rupturing.  

For the coupled reactions for complexes I-III and II-III, ruptured mito-pellets were 

suspended in a medium that contained 0.1 M potassium phosphate buffer (pH 

7.4), 10 g mitochondrial protein, 20 mM KCN, and 0.5 mM cytochrome C 

oxidized.  For complex I-III assays 100 m of NADH was added immediately prior 

to reading the reaction.  For complex II-III assays 50 mM of succinate was added 

immediately prior and all assays were measured at an absorbance of 550 nM.  

All reactions were carried out in 96-well microplates and the rate of the reaction 

was monitor by measuring changes in absorbances on Biotek-Synergy HT plate 

reader.  Temperature of 30 oC was maintained and samples were shaken and 

absorbance measurements initiated 6 sec after mixing and continued for 10 min 

at 15 sec intervals.  Blanks contained all of the reagents and mitochondria, but 

did not contain either NADH or succinate.  Blank absorbances were subtracted 

from reaction values.   

 For the measurement of complex IV, reaction samples contained 0.1 M 

potassium phosphate buffer (pH 7.4), 10 g mitochondrial sample, and 692 M 

reduced cytochrome C.  Blanks contained no protein sample and these values 

were subtracted from the reaction values.  Cytochrome C was reduced by 

placing 2 mM oxidized cytochrome c in a brown colored microcentrifuge tube, 

adding five drops of sodium borohydride,  mixing well, and incubating at 51 oC for 

one hour with periodic mixing (every 15 minutes).  At the end of the incubation 

period, four drops of 0.1 N HCl were added to remove excess sodium 

borohydride.  The solution was neutralized by adding four drops of 0.1 n NaOH.  
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The final concentration of reduced cytochrome c was adjusted to 692 m with 

distilled water using an absorbance measurement.  An aliquot of this reaction 

was scanned and a spectrum was obtained to ensure cytochrome c was reduced 

as observed by a shift in the absorbance maximum at 550 nM.  Reduced 

cytochrome c was kept at -20 oC until use. 

 Complex I (NADH:ubiquinone oxido-reductase) activity was assayed 

following Janssen et al. 2007 (Janssen, Trijbels et al. 2007) . Mito-pellets were 

ruptured as described above and the ruptured mitochondria (3 mg/ml) were 

incubated at 37 oC in a medium that contained 25 mM potassium phosphate (pH 

7.4), 3.5 mg/mL BSA, 60 M 2,6-dichlorophenol-indophenol (DCIP), 70 M 

decylubiquinone, and 1.0 M antimycine-A.  Following 3 min of incubation, 20 L 

of 10 mM NADH were added and the absorbance was measured 

spectrophotometrically at 600 nm for 4 minutes at 30 second intervals.  At the 

end of 4 min, 1.0 L of 2 M rotenone was added and the absorbance was 

measured again at 30 second intervals for 4 min. 

 Complex II (succinate dehydrogenase) activity was assayed following the 

methods as described in Janssen et al. 2007.  Ruptured mitochondria (3 mg/mgl) 

were incubated in a medium that contained 80 mM potassium phosphate (pH 

7.4), 1 mg/mL BSA, 1 mM EDTA, 80 M DCIP, 50 mM decylubiquinone, 1 M 

antimycin-A, and 3 M rotenone, pH 7.8.  The reaction mixture was incubated at 

37 oC for 10 min then 0.3 mM KCN and 10 mM succinate were added to start the 

reaction.  Absorbance was measured at 600 nm for 5 min at 30 second-intervals.  

For assay blanks, 5 mM malonate was used in place of succinate and 
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absorbance values for the blanks were subtracted from sample values.  All 

measurements were from mitochondria from 3 brain regions obtained from mice 

at each age and all reactions were run in triplicate.  Three-way ANOVA analyses 

were used to determine statistical significance. 

 

ELISA estimation of NADH: ubiquinone oxido-reductase protein levels 

 An enzyme-linked immunosorbant assay (ELISA) was used to quantify the 

levels of mitochondrial complex I (NADH:ubiquinone oxido-reductase).  Complex 

I subunit NDUFB8 monoclonal antibody was used.    ELISA microplates were 

used for the assay.  One hundred microliters of poly-D-lysine (10g/ml in PBS) 

were added to the microplate, covered with saran wrap and incubated at room 

temperature for 30 min.  This was followed by the addition of 100 l of mito-pellet 

added to the respective wells (dilutions in PBS) (0.5 mg per well) and further 

incubation for 1h at 23 oC.  The proteins were attached to the well by adding 100 

l of 0.5% glutaraldehyde in PBS.  Each well was washed 3 times for 20 sec with 

200 l of PBS-0.05% Tween 20.  Following the washes, 200 l of 100 mM 

Glycine-2% gelatin in PBS was added to each well and incubated at 37 oC for 30 

min.  After this incubation the wells were washed again 2x with 200 l of PBS-

0.05% Tween 20 and 100 l of anti-NDUFB8 primary antibody (1:1000 dilution) 

were added.  To the control wells, 100 l of PBS-Tween was added.  The 

microplates were incubated for 2 h at 23 oC, with gentle shaking and washed 3 

times with 200 l of PBS-0.05% Tween 20, before the addition of 100 l anti-

mouse antibody conjugated to alkaline phosphate (1:1000 dilution).  After 
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incubation for 1 h at 23 oC, the wells were washed 15 times with 200 l PBS-

0.05% Tween 20 and to each well was added 150 l of p-nitrophenyl phosphate 

(PNPP) + buffer tablets and the plate developed in the dark for 30 min, the 

absorbance measured at 405 nm and the reaction was stopped with 50 l of 3M 

NaOH. 

  

 Data analysis 

Determination of Citrate Synthase Activity 

The absorbance was plotted against time for each reaction. The change in 

absorbance at 412 nm per min was measured in the linear range of the 

endogenous activity.  The net citrate synthase activity was calculated by 

subtracting the ∆A412 in/min of the activity in the absence of substrate from the 

(∆A412)/minute of the activity in the presence of substrate.  The net absorbance 

change was then used to calculate the citrate synthase activity using the 

equation:  

Units (mole/ml/min)=( ∆A412)/min) x vol(ml) x (dil)/Ext. coeff  x L (cm) x volenz 

(ml) 

where dil is the dilution factor of the original sample, vol (ml) is the reaction 

volume (0.2 mL); volenz (ml) is the volume of the enzyme sample in ml, Ext. coeff.  

is the extinction coefficient of TNB at 412 nm, which is 13.6 mM-1 cm-1, and L 

(cm) is the pathlength for the absorbance measurements. 
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Estimation of mitochondrial membrane integrity. 

The ∆A412/minute in the linear range of the activity of citrate synthase 

performed in the CelLytic M buffer and that in the bicine buffer were calculated.  

The ratio between the calculated citrate synthase activity in bicine buffer versus 

that in CelLytic M buffer gave the percentage of leaky or ruptured mitochondria:  

(% ruptured mitochondria=activity in bicine buffer x 100 / activity in CelLytic M). 

Determination of Vmax and “KM” values for the combined activity of complexes I-

III. 

 A derivative of the Michaelis-Menten kinetics equation was used to 

determine time-dependent kinetics of product formed for all enzyme activity 

assays.  The equation used was: (V-(KM * ln([So]/[So]-[P])t=[P]/t where V=a; 

KM=b; ln([So]/[So]-[P])/t=x; and [P]/t= y.  Thus the equation became a-bx=y, a 

linear equation in which I estimated a, the velocity and b, the KM.  The first 

calculation determined the starting concentration of substrate [So] and 

concentration of product [P] formed.  The concentration was determined for each 

time period.  The second calculation was ln([So]/[So]-[P]).  This calculation was 

done for all time periods.  The third calculation was [P]/t where [P] was the 

concentration of product formed and t was the time of the reaction.  The 

calculation was done for all time periods (Fig.1).  All above calculations were 

carried out in Excel 09.  SigmaPlot 11.0 was used to plot: [P]/t vs ln([So]/[So]-

[P])/t.  The plot below is an example of the plots analyzed.    
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Figure 8 Time dependent kinetic plot 

Final Vmax values were determined by multiplying Yo (slope) by the time  

(60 mins), the volume of the reaction, and dividing by the amount of protein, and 

are reported as nmoles/mg protein/minute.  

 

Statistical analyses 

 A combination of student’s t-test, three-way ANOVA analysis and post-hoc 

Bonferroni analyses were used to determine statistical significance on SigmaPlot 

11.0. 
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   4.  RESULTS 

 

 

Citrate synthase activity in wt and Glud1 Tg mice 

Citrate synthase is the first enzyme of the tricarboxylic acid (TCA) cycle 

and is located within the mitochondrial matrix.  This enzyme catalyzes the 

conversion of acetyl coenzyme A (acetyl CoA) and oxaloacetic acid (OAA) to 

form citric acid.  Since this enzyme is located within the mitochondrial matrix its 

activity can only be measured in intact mitochondria.  Therefore, the activity of 

this enzyme is a marker of the integrity of the mitochondria 

In order to determine whether the sustained over-expression and over-

activity of GLUD1 in mitochondria had any effect on the first enzymatic step of 

the TCA cycle, the citrate synthase activity was measured in permeabilized 

mitochondria (total enzyme activity).  In addition, the activity of citrate synthase in 

non-permeabilized mitochondria was estimated in order to assess the leakiness 

of the mitochondrial preparations obtained from Tg and wt mice.  This was 

necessary in order to ensure that any enzymatic changes detected were not due 

to differentially leaky mitochondria.  The brain mitochondria used in these and all 

subsequent studies were obtained from cerebellu, frontal cortex, and 

hippocampus, of Tg and wt mice at three ages, 9, 15, and 22 mo-old mice (see 

Methods section).  A total of 4 mice were used for the studies representing each 

genotype, age, and brain region.  The total citrate synthase activity was not 

significantly different between wt and Tg mice and there were no significant 

differences across the different brain regions or across the 3 ages (Fig 2A-C).  In 
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addition, the percent of “leaky” mitochondria was not significantly different 

regardless of the mouse brain, the age of the mice or the site of origin of the 

mitochondria.  Also, the brain regions or the age of the mice did not have an 

effect on the integrity of the isolated mitochondria (Fig. 3A-C).  We conclude from 

these findings that the total citrate synthase activity is similar in both genotypes 

and that both genotypes are similarly intact as determined by the percent of leaky 

mitochondria data. 
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Figure 9 Total citrate synthase activity of Tg and wt mice 
at A) 9 months B) 15 months and C) 22 months. 
Mitochondria were isolated from Cerebellum, Frontal 
Cortex, and Hippocampus.  All experiments were 
performed using n=4 of each genotype. Open circle 
indicate Tg and dark circles wt mouse mitochondria. 
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 Figure 3 Percent of leaky mitochondria of Tg and 
wt mice at A) 9 months B) 15 months and C) 22 
months. Mitochondria were isolated from 
Cerebellum, Frontal Cortex, and Hippocampus.  
All experiments were performed using n=4 of each 
genotype. Open circle indicate Tg and dark circles 
wt mouse mitochondria. 
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Complex I-III activity of mitochondria from different brain regions and 

across age of wt and Tg mice 

In aging and in age-associated neurodegenerative diseases, deficits in 

mitochondrial electron transport chain activities have been demonstrated (Curti, 

Giangare et al. 1990) (Sohal 1993) (Freddari-Bertoni, Fattoretti et al. 2004) 

(Paradies, Ruggiero et al. 1997) (Brown-Borg, Johnson et al. 2012).  In our 

study, we looked at the coupled reactions of complex I-III to determine if there 

are differences in these two enzymatic steps of the electron transport chain 

between wild type and Tg mice.  We observed that in mitochondria from the 

cerebellum and hippocampus, the Vmax values for the activity of Complex I-III 

decreased with advancing age, whereas this pattern was not observed for the 

mitochondria from the frontal cortex.  At the age of 9 months, there were 

significant differences in Complex I-III Vmax  values between the two genotypes 

with the Tg brain mitochondria exhibiting lower activity in the cerebellum and 

higher activity in the cortex (Fig. 4) (p=0.02).  These differences in complex I-III 

Vmax between genotypes were only seen at 9 months of age.   

The estimates of KM values were representative of the combined 

enzymatic activity of two complexes, I and III and therefore, they did not 

represent either enzyme.  Nevertheless, the estimated KM for the combined 

enzymatic activities showed no significant differences between wt and Tg 

mitochondria, from any region and any of the ages tested.     

When the Vmax data for the mitochondria from all the brain regions, across 

all ages, and the two genotypes (shown in figure 5) were analyzed by three-way 
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ANOVA (with post-hoc analysis using the Bonferroni test) a significant effect of 

age (p=0.002) and a significant set of interactions between genotype and brain 

region (p=0.011) as well as age and brain region (p=0.017) were noted.  These 

analyses confirmed the trend toward decreases in complex I-III Vmax during the 

aging process and the fact that mitochondria from different brain regions, such as 

the frontal cortex, differ from those from other regions, such as cerebellum or 

hippocampus, in both the age effect and the genotype differences.  As noted 

above, cortical mitochondria from Tg mice had higher estimated Vmax for complex 

I-III than mitochondria from the wt mice. 
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Figure 4: Complex I-III Vmax values across age of 
Tg and wt mice Mitochondria were isolated from 
A) Cerebellum B) Frontal Cortex and C) 
Hippocampus.  All experiments were performed 
using n=4 mice of each genotype.  Open circles 
indicate Tg and dark circles wt mouse 
mitochondria. Student’s t-test *=p<0.05. 

  64



  

 

Figure 5: Combined data of Vmax values across age of Tg 
and wt mice.  Mitochondria were isolated from cerebellum, 
frontal cortex, and hippocampus.  All experiments were 
performed using n=4 of each genotype.  Open marks 
indicate Tg and dark circles wt mouse mitochondria. 
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Complex II-III activity of mitochondria in different brain regions across age 

of Tg and wt mice 

Complex II is an entry point for FADH2 and like Complex I it is also involved in 

the transfer of reducing equivalents to the acceptor ubiquinone.  Succinate, the 

substrate of complex II, is a product of the TCA cycle generated by the metabolic 

conversion of -ketogluturate to succinyl Co-A, the immediate precursor of 

succinate.  Thus, we hypothesized that complex II activity might be increased in 

the mouse brains that over-expressed GLUD1 and probably over-produced -

ketoglutarate.  In order to assess whether over-expression of GLUD1 had an 

effect on Complex II-III activities we measured the activity and estimated the Vmax 

of the coupled Complex II-III reactions in mitochondria from cerebellum, frontal 

cortex, and hippocampus of wt and Tg mice.  The data shown in figure 6 were 

indicative of a progressively increasing Vmax for the activity of complex II-III with 

advancing age, especially in cerebellum and frontal cortex mitochondria, and for 

both wt and Tg mice.  There were no significant differences between wt and Tg 

mice, except for the mitochondrial Complex II-III activities in the frontal cortex 

(p=0.038) and hippocampus (p=0.027) at 9 months of age (the Vmax for the Tg 

mice is higher as compared with wt) (Fig. 6A-C).   

When the Vmax data for the mitochondria from all the brain regions, across all 

ages, and the two genotypes (figure 7) were analyzed by three-way ANOVA (with 

post-hoc analysis using the Bonferroni test) a significant genotype effect 

(p=0.005), a significant age effect (p0.001), and a significant brain region effect 
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(p0.001) were noted.  There was also a significant interaction of age x region 

(p0.001).  These analyses confirmed the trend of increasing complex II-III 

activity in the three brain regions of both wt and Tg mice, with the increases in 

the Tg mice being higher than those in the wt mice, thus supporting the 

possibility that Complex II-III may have higher activity in Tg mice in order to 

accommodate increases in succinate formation. 

The estimates of KM values were representative of the combined 

enzymatic activity of two complexes, I and III, therefore, they did not represent 

either enzyme.  Nevertheless, the estimated KM for the combined enzymatic 

activities showed no significant differences between wt and Tg mitochondria, 

from any region and any of the ages tested. 
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Figure 6: Complex II-III Vmax values across age of 
Tg and wt mice.  Mitochondria were isolated from 
A) Cerebellum B) Frontal Cortex and C) 
Hippocampus. All experiments were performed 
using n=4 of each genotype.  Open marks indicate 
Tg and dark circles wt mouse mitochondria. 
Student’s t-test *p=<0.05.  
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Figure 7: Vmax values for Complex I-III A) and II-III B) 
across 9, 15, and 22 months. Mitochondria were 
isolated from Cerebellum, frontal cortex, and 
hippocampus and combined as one sample. All 
experiments were performed using n=4 of each 
genotype.  Open marks indicate Tg and dark circles wt 
mouse mitochondria.   
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Contribution of mitochondrial Complex I and Complex II to the estimates of 

Complex I-III and Complex II-III activities 

 Having observed differential genotype effects on complex I-III and 

complex II-III Vmax values in different brain regions, we explored the likelihood 

that these differences were due to differential complex I or complex II activities.  

In these studies, complex I and complex II activities were measured 

independently using established assay procedures (Janssen, Trijbels et al. 

2007).  As shown in figure 8A, the estimated Vmax values for Complex I were 

significantly lower in the mitochondria isolated from the cerebellum from Tg mice 

as compared with those from wt mice (p=0.029).  These results fit with the 

observed significantly lower Complex I-III activities in cerebellar mitochondria 

(Fig. 4).   

On the other hand, the Vmax for Complex II activity in cerebellar and cortical 

mitochondria from Tg mice did not differ significantly from those of wt (Fig. 8B, 

C).  These results also fit the observed lack of significant differences between 

cerebellar mitochondria from Tg and those from wt mice with respect to the Vmax 

of Complex II-III (Fig. 6).  Thus, the Vmax values of the individual enzymes for 

Complex I and Complex II appeared to reflect the differences observed in the 

coupled reactions of Complex I-III and Complex II-III.     
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Figure 8: Complex I (A) and Complex II (B, C) Vmax 
values in 9 month cerebellum (A, B) and frontal 
cortex (C) from Tg and wt mice.  All experiments 
were performed using n=4 of each genotype.  Open 
bars indicate Tg and dark circles wt mouse 
mitochondria. Student’s t-test p=0.029. 
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Estimation of complex I protein levels in mitochondria from wt and Glud1 

mice 

 

 Having observed a significant genotype difference in Complex I activity, 

especially at 9 months in mitochondria from the cerebellum, the question that 

needed to be addressed was whether this difference could be attributed to 

differential protein levels for Complex I.  Previous studies that have examined 

protein levels for Complex I reported contradictory results.  Some studies have 

demonstrated that Complex I protein levels increase with age (Brown-Borg, 

Johnson et al. 2012) while others have shown that Complex I protein levels 

significantly decrease with age (Gomez, Monette et al. 2009).  We subjected the 

mitochondrial proteins from the 3 brain regions and across the 3 age groups to 

ELISA immunochemical analyses in order to quantify the levels of a subunit of 

Complex I (NDUFB8) as an index of possible changes in the expression of the 

proteins in this Complex.  Based on the ELISA assay results (Fig. 9), there were 

no significant differences in protein levels for NDUFB8 between genotypes and 

different brain regions, but three-way ANOVA analysis indicated a significant age 

effect for both genotypes (age p<0.001).  Across all there brain regions and in 

both genotypes the levels of the subunit NDUFB8 significantly decreased across 

advancing age.  Assuming that the subunit NDUFB8 was representative of the 

levels of all subunits of Complex I, the differences in Vmax for Complex I at 9 

months described in preceding sections are not likely the result of differences in 

Complex I protein levels.  At 9 months there was a significant genotype effect, 

the Tg Vmax for Complex I was significantly lower than wt, yet Complex I protein 
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levels for both genotypes are very similar.  The Vmax for Complex I-III 

significantly decreases across age in both genotypes in the Cerebellum and 

frontal cortex and this significant age effect may partially be due to decreased 

Complex I protein levels.  The likelihood of this being the only cause for the 

decreased Complex I-III activity across age is very small as Complex I protein 

levels significantly decreases across age in all three brain regions, while 

Complex I-III activity significantly decreases only in the hippocampus and 

cerebellum.  
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Figure 9: Absorbance values for NDUFB8 of complex 
I in A) Cerebellum B) Frontal Cortex and C) 
Hippocampus across age.  Mitochondria were 
isolated from cerebellum, frontal cortex, and 
hippocampus.  All experiments were performed using 
n=4 of each genotype.  Open marks indicate Tg and 
dark circles wt mouse mitochondria. 
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Complex IV activity in mitochondria from different brain regions of Tg and 

wt mice across age 

 The fourth enzymatic step in the electron transport system is that of 

cytochrome C oxidase (Complex IV).  It is well established that there are 

decreases in cytochrome c oxidase activity (complex IV) with advancing age, and 

some investigators have observed a differential level of decline in specific brain 

regions (Curti and Giangare 1990) (Sohal 1993) (Freddari-Bertoni and Fattoretti 

2004) (Paradies and Ruggiero 1997).  Cytochrome c oxidase activity was 

measured in the present studies in the three different brain regions and across 

the three ages of Tg and wt mice as those for Complexes I-III.  The results 

shown in Fig. 10A-C represent the means (±SE) of Complex IV activity in 

mitochondria from 4 Tg and 4 wt mice at each age shown.  As is obvious, there 

was a marked decline in enzyme activity with advancing age of the mice.  Three-

way ANOVA analysis indicated that there were no significant region or genotype 

differences, but there was a significant age effect (p<0.001).  The same results 

were observed when the enzyme activity values for mitochondria from the 

cerebellum, frontal cortex, and hippocampus were averaged together (Fig. 11).  

There was a significant age effect (p=0.001), but no significant region or 

genotype effect as determined by three-way ANOVA analysis. 
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Figure 10 Complex IV Vmax values across age of Tg and 
wt mice.  Mitochondria were isolated from A) Cerebellum 
B) Frontal Cortex and C) Hippocampus. All experiments 
were performed using n=4 of each genotype.  Open marks 
indicate Tg and dark circles wt mouse mitochondria. 
Three-way ANOVA analysis indicated significant age 
effect p=<0.001.  
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Figure 11 Complex IV Vmax values across age in Tg and 
wt mice mitochondria.  Mitochondria were isolated from 
Cerebellum, Frontal Cortex, and Hippocampus and 
combined as one sample.  All experiments were 
performed using n-4 of each genotype.  Open circles 
indicate Tg and dark circles wt mouse mitochondria.  
Three-way ANOVA analysis indicated significant age 
effect p=<0.001. 
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5.  DISCUSSION. 

The data presented in this chapter demonstrate the following: 

 

Complex I-III and Complex I Vmax values are lower in the Tg mitochondria at 9 

months. 

Both Tg and wt mouse mitochondria exhibited decreases in Complex I-III Vmax 

across age. 

There were no differences in Complex I protein levels between Tg and wt or 

across regions or age. 

Complex II-III Vmax values are equal or higher in Tg mitochondria at 9 months vs. 

wt. 

Both Tg and wt mouse mitochondria exhibited increases in Complex II-III Vmax 

across age. 

Complex IV Vmax values are the same in Tg and wt mitochondria. 

Both Tg and wt mouse mitochondria exhibited decreases in Complex IV Vmax 

across age. 

No differences in mitochondrial integrity or citrate synthase activity. 
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Overall, the only significant genotype effects were exhibited at an early 

age, 9 months.  At 9 months there were significant genotype effects in Complex 

I-III, Complex I, and Complex II-III Vmax values with variances on which 

genotype had higher Vmax activity.  By 15 and 22 months no genotypes 

differences were observed in any of the ETS activities.  These results indicate 

that whatever differences in ETS activities exist as direct result of over-

expression of GLUD1, occur only early in age and with advancing age the Tg 

mice undergo some type(s) of adaptive change(s) to become similar in ETS 

activities to the wt mice.  This would explain why by 15 and 22 months there are 

no significant genotype effects. 

Apart from the significant genotype effects at 9 months both genotypes 

exhibited similar trends in ETS activities across advancing age.  Complex I-III 

activity significantly decreased across advancing age while Complex II-III activity 

increased.  Even though these trends were similar, they were region specific and 

the values were significantly different in the three regions.  Complex I-III activity 

decreased in both genotypes across age only in the cerebellum and 

hippocampus while remaining stable in the frontal cortex.  Complex II-III activity 

increased in both genotypes across age only in the cerebellum and frontal cortex 

while remaining stable in the hippocampus.  These results would indicate that 

there are region specific differences in ETS activities and these differences are 

likely not the result of over-expression of GLUD1, but the result of an adaptive or 

compensatory mechanism.  The cause for the adaptive or compensatory 

mechanism is either the result of changes across age or differences in the three 

brain regions.  The significant region effects may be due to differences in 
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mitochondrial calcium concentrations and mitochondrial calcium uptake in the 

brain regions, which would directly affect the ETS activities and these are key 

measure which we plan to explore in chapter three. 

Overall, studies measuring electron transport chain activities have 

demonstrated that with advancing age  coupled Complex I-III activity decreases 

in different tissues (Brown-Borg, Johnson et al. 2012).  We also observed the 

same decrease in activity with advancing age and this was observed for both 

genotypes.  In wt mice the decreases in activity with age have been attributed by 

some to be the results of decreases in the protein complexes of the electron 

transport chain  (Gomez, Monette et al. 2009).  Our bioenergetic data is not likely 

the result of differences in Complex I protein levels as our ELISA assay 

demonstrated that there are no significant genotype effects.  In addition, the 

significant age effect indicated by three-way ANOVA results in decreases in 

Complex I protein levels across age in all three brain regions, yet the Complex I-

III Vmax significant decreases was only for specific regions.  These results 

indicate that Complex I protein levels are not directly contributing to the Vmax 

data.   

Results obtained in wt mice are in agreement with what others have 

reported as an overall decrease with age in Vmax values of Complex I-III; 

however, our values are slightly lower than others have reported.  Others have 

reported Vmax values of Complex I-III activity of anywhere from 80-400 nmol/min 

x mg and our values are below 100 (Gomez, Monette et al. 2009).  One reason 

for this discrepancy could be the type of mitochondria isolation technique we 

used.  It could be argued that we damaged our mitochondria in our isolation 
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technique; however, our citrate synthase data argue against this idea.  In support 

of our data isolated mitochondria samples are better for understanding 

mechanisms and many methods and protocols have been well established.   

 The mitochondria isolated from the Tg mice also demonstrated an age-

dependent decrease in Complex I-III activity.  These results were surprising in 

that we might have expected the opposite, an increase in activity with advancing 

age.  The rationale for this expectation is that since the Tg mice over-express the 

glutamate dehydrogenase gene this would increase production of NADH due to 

glutamate deamination.  Since NADH is the primary substrate which feeds into 

Complex I of the respiratory chain increased glutamate-dehydrogenase protein 

and activity should lead to increased levels of NADH and to increased complex I 

activity.  A decrease in the Vmax values for complex I activity could be the result 

of several factors.  Even though we increased the protein levels and activity of 

glutamate dehydrogenase we do not know if the levels of -ketoglutarate were 

also increased.  Studies have demonstrated that GLUD1 favors the production of 

-ketoglutarate and measuring the levels of this protein in the Tg mouse model 

would eliminate the possibility that it did not. 

 An additional possibility for the decreased Complex I-III activity is not due to 

substrate limitation, but to a regulatory attempt to decrease the heightened 

activity due to increased substrate availability.  In support of this idea Complex I 

activity is regulated by phosphorylation of specific subunits by protein kinase A 

(PKA), which increases complex I activity on the other hand, phosphorylation by  

pyruvate dehydrogenase kinase (PDK) which decreases complex I activity (Maj, 

Raha et al. 2004) (Raha, Myint et al. 2002).  The regulation of these kinases 
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would function as a compensatory mechanism and would explain why we 

demonstrated significant genotype effects in Vmax values for Complex I-III at 9 

months which decreased with advancing age.  The Tg mouse is exposed to over-

expression of GLUD1 and excess extracellular glutamate since birth, resulting in 

a change in NADH levels.  If increased substrate availability increases Complex I 

activity developmentally then by 9 months the cells may have up-regulated 

compensatory mechanisms in an attempt to decrease the complex I activity.  

Throughout the aging process this regulation would have resulted in Complex I 

Vmax values in the Tg mice to be closer to the Vmax values in the wt mice at the 

older ages, i.e. 15 and 22 months.  Our data demonstrate that with advancing 

age the Complex I Vmax values for the Tg and wt mice are closer in range.  This 

idea is supported by studies that have shown that pyruvate dehydrogenase 

activity (PDK) is stimulated by the presence of increased NADH (Maj, Raha et al. 

2004). 

The observation that at a specific age there were region specific 

differences in complex I activity could be due to several factors.  Complex I is a 

large protein made up of 45 subunits, seven of which are encoded by mtDNA.  

Several studies have shown that there is a differential expression of many of the 

subunits across different brain regions (Wirtz and Schuelke 2011).  This 

differential expression is thought to be due to region specific dependence of 

complex I, i.e. higher levels of the subunits in cerebellar Purkinje cells resulting in 

increased complex I activity needed for higher brain order functions.  In addition, 

this same group also showed increased levels of the subunits in hippocampal 

CA1/CA3 regions which correlates with our data in which we demonstrated 
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increased Complex I-III activity in the cerebellum and hippocampus as compared 

to the frontal cortex at 9 months (Wirtz and Schuelke 2011).   

In addition to a differential expression of Complex I subunits leading to 

altered activity, mutations in the subunits of Complex I could also lead to altered 

activity.  If a specific brain region is more susceptible to oxidative damage or 

accumulates reactive oxygen species faster or in higher amounts, these radicals 

could lead to increased oxidation of the subunits, thereby decreasing complex I 

activity.  It would be interesting to look at whether different brain regions in the wt 

and Tg mice have different or similar levels of reactive oxygen species and what 

happens to those levels with advancing age (chapter 4). 

The Tg mice did not show the regional differences observed in the wt mice 

did leading us to believe that there were other mechanisms, in addition to or 

apart from complex I, leading to the neurodegeneration observed in the Tg mice; 

possibly the altered activity of other complexes along the respiratory chain.   

With regard to Complex II-III activity, we observed that there was an 

overall increase in Vmax values with advancing age in three different brain 

regions and when the regions were combined.  These results are very interesting 

in that most studies have demonstrated decreases in complex II activity with 

advancing age (Choksi, Nuss et al. 2011).  The difference in the trend could be a 

compensatory mechanism in an attempt to make up for the decreased complex I-

III activity with age.  If there is a decrease in overall ATP output due to decreased 

complex I-III activity, the cell might be attempting to make up for this bioenergetic 

deficit by increasing Complex II-III activity.  If this is the case, then an increase in 

the substrate which feeds into this complex would be necessary.  Succinate is 
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the main substrate which feeds into Complex II and in the Tg mice succinate 

levels might be increased due to the increased -ketoglutarate intermediate 

which should result in an overall up-regulation of the TCA cycle.  If this is the 

case there would be increased levels of succinate available and with advancing 

age these levels would increase leading to increased levels of complex II-III 

activity.  This same idea; however, may not be as likely since we saw the 

increase in activity in both genotypes.  Therefore the increase in activity in 

complex II-III cannot be entirely due to the over-expression of the glutamate 

dehydrogenase gene, but an overall compensatory mechanism utilized by all 

cells. 

 There were no differences between Tg and wt mouse mitochondria in 

terms of complex IV (cytochrome c oxidase) activity.  The only significant effect 

demonstrated was an age effect, with advancing age there was a significant 

decrease in complex IV activity.  These data are in agreement with data by many 

others that have shown a decrease in activity with advancing age (Paradies, 

Ruggiero et al. 1997) (Sohal 1993) (Curti, Giangare et al. 1990).  Complex IV 

activity followed the same pattern as Complex I-III activity.  Complex I-III activity 

may have “diluted out” the Complex II-III activity simply because Complex I is the 

main entry point for the chain and under normal physiological settings the 

electron flow into the chain operates at a 4:1 NADH:succinate ratio (Gnaiger 

2009).   

 We observed a lower Vmax for Complex I activity in the Tg as compared 

to wt mice.  This result was not expected as a higher availability of NADH due to 

over-expression of GLUD1, should result in higher Complex I activity.  A possible 
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explanation could be a down regulation of complex I activity as an adaptive 

response to the increased substrate.  Complex I-III activity decreased across age 

while Complex II-III activity increased across age.  This might be the result of a 

compensatory response in order make up for the decreased I-III activity and/or 

might be the result of increased succinate due to the over-expression of GLUD1. 

Overall, we demonstrated changes in electron transport activities that 

were genotype, region, and complex specific.  Additionally, we observed different 

patterns in the activities of these complexes with advancing age.  A consequence 

of changes in electron transport system activities is altered generation of a proton 

gradient in the inner mitochondrial membrane.  Such a gradient is necessary to 

drive calcium uptake into mitochondria.  Altered calcium homeostasis because of 

changes in mitochondrial function is a frequently invoked pathway leading to 

neurodegeneration.  In addition, the increase in glutamate levels in Tg mice 

would lead to increased glutamate receptor activation and therefore increases in 

calcium in the postsynaptic cell.  This led to the next series of studies to examine 

whether the mitochondria from Tg mice had higher concentrations of calcium due 

to the increases in glutamate and whether calcium uptake into mitochondria was 

altered in the different ages and regions, possibly as a result of any changes in 

mitochondrial membrane potential. 
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Chapter Three:  Effects of the Over-Expression of Neuronal Glutamate 
Dehydrogenase (GLUD1) on Brain Mitochondrial Calcium 

Homeostasis 

 

7.  INTRODUCTION  

Eukaryotic cells produce ~95% of their energy in the form of ATP; the 

major source of the ATP generated is the mitochondria through the process of 

oxidative phosphorylation.  In addition to being the source of the majority of the 

cell’s energy, mitochondria also play a pivotal role in calcium (Ca2+) regulation 

within the cell.  Calcium uptake into mitochondria was first described in the early 

1960s and since then many laboratories have described the mechanisms 

involved in mitochondrial Ca2+ uptake and the overall significance of 

mitochondrial regulation of Ca2+  homeostasis (DeLuca and Engstrom 1961).  

Mitochondrial Ca2+ transport is crucial in regulating cytoplasmic free calcium 

concentrations [Ca2+ ], i.e., Ca2+ buffering.  Mitochondria serve as a calcium 

reservoir and protect cells from any Ca2+-induced cell stress.  Mitochondria also 

function as a source of releasable Ca2+ back into the cytosol as needed.   

Mitochondrial Ca2+ levels also control the activation of three important 

dehydrogenases within mitochondria and links mitochondrial Ca2+ to oxidative 

phosphorylation.  Specifically, a component of the glycolytic pathway that links 

that pathway to the TCA cycle, the enzyme pyruvate dehydrogenase, two TCA 

cycle enzymes, -ketoglutarate and isocitrate dehydrogenase, and an enzyme of 
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the electron transport chain, ATP synthase, are all controlled by intra-

mitochondrial free Ca2+ concentrations ([Ca2+]m) (Das and Harris 1990) (Mailer 

1990) (Balaban 2002) (Das and Harris 1990) (Hansford and Zorov 1998) 

(McCormack and Denton 1993).  Because of the multiple regulatory steps in 

which mitochondrial Ca2+ is involved, Ca2+  dysregulation in mitochondria can 

have very damaging effects on cell metabolism and viability.  For example, large 

increases in [Ca2+]m+ have been associated with pathophysiological conditions 

and cell death (Krieger and Duchen 2002).  The mechanism through which Ca2+ 

leads to cell death (apoptosis) is by opening the mitochondrial PT pore and 

causing cytochrome c release, a critical event in initiating caspase activation and 

apoptosis (Loeffler and Kroemer 2000).   

In chapter two, the effects of the over-expression of GLUD1 on 

mitochondrial bioenergetics were examined.  In this chapter, the effects of 

increased expression of GLUD1 in mitochondria on ΔΨm and Ca2+ homeostasis 

were explored.  The change in mitochondrial bioenergetics would alter 

chemiosmosis which would change the ΔΨm.  As a consequence of this change 

in ΔΨm, Ca2+ homeostasis would be changed since ΔΨm drives Ca2+  uptake into 

mitochondria (Brookes, Yoon et al. 2004) (Hill and Kats 2007) (Rottenberg and 

Scarpa 1974).  Our hypothesis was that ΔΨm and Ca2+homeostasis would be 

altered due to changes in both the TCA and ETS enzyme activities.   
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8.  MATERIALS  

 All chemicals used were purchased from Sigma-Aldrich unless otherwise 

noted.  Fluo-3 Acetoxymethyl ester (Fluo-3/AM) was from Invitrogen (Catalog #F-

1241). 

 

9.   METHODS 

Isolation of mitochondrial pellets 

 Mitochondrial samples from three different brain regions cerebellum, frontal 

cortex, and hippocampus were isolated as described in chapter two materials 

and methods section. 

 

Determination of Ca2+ steady state levels and kinetics 

 To determine the calcium steady state levels and mitochondrial Ca2+ kinetics 

we followed the method described in Saavedra-Molina et al (Saavedra-Molina, 

Uribe et al. 1990).  Brain mitochondria (0.5 mg/ml) were incubated for 20 min at 

25 oC with shaking in a medium containing (in mM): 220 mannitol, 70 sucrose, 2 

MOPS (pH 7.4), 2 phosphate-tris, 2 MgCl2, and in (M): 10 Fluo-3/AM, 600 

EGTA, plus 0.003% pluronic acid.  The extra-mitochondrial Ca2+ concentration in 

the medium was maintained at different levels between 100 nM and 1 M by 

using an EGTA (600 M) Ca2+ buffering medium.  The program MAXCHELATOR 

(http://maxchelator.stanford.edu/) was used to determine the concentration of 
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EGTA and Ca2+ that was needed to maintain a specific free Ca2+ concentration 

[Ca2+]f.  The fluorescence of mitochondrial suspensions was monitored in a 

BioTek Synergy HT spectrophotometer with an excitation wavelength set at 506 

nm and emission at 526 nm.  The kinetic measurements were obtained over a 

period of 25 min and at 30-sec intervals.  All measurements were done in 

triplicate on a 96-well plate.  The mitochondrial samples were isolated from three 

brain regions and from four mice of each genotype and at each age.   

 

Measurement of free intramitochondrial calcium concentrations ([Ca2+]m) 

 Isolated brain mitochondrial samples (0.125 mg/ml) were incubated for 20 

min at 25 oC with shaking in a buffer containing (in mM): 210 mannitol, 70 

sucrose, 10 MOPS, plus 0.5% bovine serum albumin, 10 M Fluo-3/AM, and 

0.003% pluronic acid,.  After incubation in the above described medium, the 

mitochondria were centrifuged, resuspended and re-precipitated twice, 

(Eppendorf microfuge) for 2 min and finally re-suspended in the above described 

medium.  Fluorescence was measured as described above.  In each assay, a 

minimum and a maximum fluorescence for Ca2+ (Fmin/Fmax) were obtained by 

treating the mitochondrial samples at the end of each assay with a combination 

of EGTA and deoxycholate (0.6 mM and 0.05% w/v, respectively) in order to 

obtain the value for Fmin, and with 8 mM Ca2+ final concentration in order to 

measure Fmax.  The Ca2+ concentration was calculated by using the formula 

described under data analysis.  All measurements were done in triplicate on a 

96-well plate.   
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Measurement of mitochondrial Ca2+ due to uptake 

 Mitochondrial Ca2+ uptake was determined according to the methods 

described above except for the addition in the incubation solutions of extra-

mitochondrial Ca2+ at either 100 nM Ca2+ or 1M.  All samples included 2.5 M 

thapsigargin (Tg) in order to block Ca2+ uptake into the ER.  In some samples, 

substrates were added in order to energize the mitochondria, metabolic 

inhibitors, either rotenone or antimycin, or an inhibitor of the uniporter and of the 

Ca2+/H+ exchanger, RU-360, were added.  The two substrates used to energize 

mitochondria were 5 mM glutamate/5 mM malate or 5 mM succinate.  When the 

combination of 5 mM glutamate/5 mM malate was used as the substrate, two 

different assays were carried out: one in which Ca2+ transport was measured in 

the presence of 2 M rotenone and the other in its absence.  The rotenone-

inhibited Ca2+ levels were determined by subtracting the [Ca2+ ]m after rotenone 

addition from the estimated [Ca2+]m in its absence.  These values represented the 

rotenone-sensitive and glutamate/malate-activated Ca2+ uptake into the 

mitochondrial matrix.  When 5 mM succinate was used as the substrate, 2 M 

antimycin was used as an inhibitor.  The contribution of the Ca2+ uniporter and of 

the Ca2+/H+ exchange carriers  to overall Ca2+ uptake measured under the 

conditions described above was determined by performing the Ca2+ uptake 

assays in the presence or absence of ruthenium red Ru-360, 10M. 
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Determination of m using tetramethylrhodamine  

 Isolated brain mitochondrial samples (0.5 mg/ml) were incubated for 30 min 

at 37 oC in a buffer containing (in mM): 135 KCI, 20 MOPS, 5 K2HPO4, 5 MgCl2, 

and 2.5 tetramethylrhodamine methyl ester dye (TMRM).  The TMRM dye was 

dissolved in methanol.  Resting state (no substrate) measurements were 

obtained for a period of 3 min and at 15-sec intervals.  Following the resting state 

measurements, the mitochondria were energized with a substrate either, 10 mM 

glutamate/10 mM malate or 10 mM succinate, and fluorescence readings were 

obtained for a period of 3 min and at 15-sec intervals.  These measurements 

were followed by the addition of a substrate and inhibitor, either 2 M rotenone 

when 10 mM glutamate/10 mM malate was the substrate or 2 M antimycin when 

10 mM succinate was the substrate, fluorescence was monitored for another 3 

min taking measurements at 15-sec intervals.  At the conclusion of the assay, the 

membrane potential un-coupler carbonylcyanide-p-

trifluoromethoxyphenylhydrazone (FCCP; 1 M) was added.  The m was 

determined by the changes in TMR fluorescence in response to respiratory 

substrates.  All assays were run on four mitochondrial samples from each brain 

region of Tg and wt mice at each of the three ages described above. 
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Data analysis 

Determination of [Ca2+]m 

 The [Ca2+]m was determined by measuring the Fmin and Fmax in each assay 

as described above.  The [Ca2+]m was estimated using the following equation:  

[Ca2+]Fm=Kd (F-Fmin) / (Fmax-F) 

where F is the fluorescence of the sample, Kd is the dissociation constant for 

Ca2+ binding to Fluo-3, estimated previously to be equal to 0.40 M (Saavedra-

Molina, Uribe et al. 1990).  All samples were run in triplicates on a 96-well plate.   

 

 

3.  RESULTS. 

m in mitochondria from wt and Tg mice 

  Based on our studies of differential Complex II-III activities in Tg vs. wt 

mitochondria (chapter 2), we hypothesized that there would be differences 

between Tg and wt also in H+ concentration in the intermembrane space and in 

m.  Using intra-mitochondrial TMR fluorescence as the measure of ΔΨm, 

assays were performed under resting state and energized conditions.   The 

measurements obtained clearly indicated that both the wt and Tg mouse 

mitochondria from the cerebellum, frontal cortex, and hippocampus exhibited 

increases in the ΔΨm following activation of the ETS by glutamate/malate (Fig. 

1A-C).  This observation was similar to what was documented previously 
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(Calderon-Cortex and Cortes-Rojo 2008).  A major difference between 

mitochondria from wt and Tg mice was the high m of the Tg mitochondria in 

the resting state as compared with the m of wt mitochondria.  The addition of 

the Complex I inhibitor rotenone, markedly suppressed the mitochondrial m to 

levels equal to or slightly below those observed in the resting state (Fig. 1A-C).  

The addition of the protonophore FCCP led to the complete collapse of the m, 

as expected (Fig.1A-C).   

Having established the apparent validity of the m measurements using 

TRM fluorescence as the measure of m, in the remaining assays only the 

treatments with the addition of a substrate were carried out.  In these 

measurements of m, a mean value for the baseline measurements was 

obtained and this value was subtracted from each data point following the 

addition of a Complex I or II substrate.  Mitochondria obtained from the three 

different brain regions and across the three ages of Tg mice, had an almost 2-

fold higher ΔΨm in the resting state as compared with that of the wt mouse 

mitochondria (Fig 2A-C).  Student’s t-test revealed a highly significant genotype 

difference (p0.001) between Tg and wt mice across all ages and regions (Fig. 

2A-C).  The measurements of m of the combined brain regions cerebellum, 

frontal cortex, and hippocampus revealed significant age (p=0.001) and genotype 

(p=<0.001) effects as determined by three-way ANOVA analysis (Fig. 3). 
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Figure 1: Membrane potential as measured by TMR fluorescence 
of Tg and wt mice mitochondria from 9 month A) Cerebellum B) 
Frontal cortex and C) Hippocampus. The data represent the 
average (+-S.E.) from 4 mitochondrial preparations. All 
measurements of fluorescence were obtained every 15 sec. Each 
treatment was 3 mins long. Open circles denote Tg and dark 
circles wt samples. 
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Figure 2: Membrane potential across age of Tg 
and wt mice. Mitochondria were isolated from 
A) Cerebellum B) Frontal Cortex and C) 
Hippocampus. All experiments were performed 
using n=4 mice of each genotype.  Open bars 
indicate Tg and dark bars wt mouse 
mitochondria.  ***=p≤0.001 (Student’s t-test). 
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Figure 3: Membrane potential average across age.  
Mitochondria were isolated from cerebellum, frontal 
cortex, and hippocampus and were combined as one 
sample.  All experiments were performed using n=4 mice 
f each genotype.  Open circles indicate Tg and dark 
circles wt mitochondria.  Student’s t-test ***=p≤0.001. 

 

 

m in energized Tg and wt mitochondria across age, brain region, and in 

response to different substrates 

The mitochondrial m was measured following the addition of substrates, 

either 10 mM each of glutamate/malate or succinate.  To determine the net 

change in membrane potential following substrate addition, the average value of 

baseline TMR fluorescence in the absence of substrate was subtracted from the 

values in the presence of the different substrates.  Once the baseline values 

were subtracted, the plots of fluorescence vs. time following the addition of 

substrate were essentially linear increases in fluorescence across time (Fig. 4). 
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The slopes of the lines were estimated and the values for each brain region at 

each age of Tg and wt mice were analyzed using three-way ANOVA.   
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Figure 4: Energized membrane potential in 9 month 
cerebellum wt (dark circles) and Tg (open circles) samples.  
In the presence of 5mM glutamate/malate.  Three min 
reading with 15 sec intervals. 
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Approach for estimating steady state concentrations and kinetics of [Ca2+]m 

 In figure 5B, an extra-mitochondrial Ca2+ concentration of 400 nM was 

maintained using an EGTA buffer system.  After ~7 min of fluorescence 

measurements, [Ca2+]m reached a steady state.  The addition of an extra amount 

of EGTA in the extramitochondrial medium (600 M EGTA) caused a rapid 

decrease in Fluo-3 reaching a steady state within 100 sec.  This drop was 

expected as EGTA functions as a Ca2+ chelator and would bind free Ca2+ thus 

causing re-equilibration of [Ca2+]m and a drop in fluorescence.  The addition of 

ionomycin caused a further decrease in fluorescence, as expected, because 

ionomycin functions as an ionophore that would lead to calcium efflux from the 

mitochondria and its chelation by EGTA.  The subsequent addition of 

deoxycholate (DOC) had a similar effect as ionomycin, and was again expected 

as DOC is a mild detergent that would permeabilize the mitochondrial membrane 

and lead to the release of calcium from the mitochondrial matrix.  In figure 5A 

there was zero extra mitochondrial Ca2+ in the beginning of the assay and the 

fluorescence values were very low and similar to those values in 5B when EGTA 

was used in the medium to chelate Ca2+.  After addition of 400 nM of extra 

mitochondrial Ca2+ the fluorescence values reached levels similar to that in 5A 

when the assay contained 400 nM of extra mitochondrial Ca2+ in the medium at 

the beginning of the measurements.  With the addition of 400 nM of Ca2+ the 

values remain steady after a few seconds.  The addition of EGTA together with 

DOC caused a marked decrease in fluorescence, as would be expected as a 

result of loss of intramitochondrial Ca2+ and its chelation in the extramitochondrial 
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medium by the chelator EGTA. These results indicate that the steady state levels 

and kinetics of mitochondrial calcium can be determined.   
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Figure 5: Determination of mitochondrial free calcium in 
mouse brain cerebellum. Mitochondria (0.5mg/ml) were loaded 
with fluo-3 with A) zero calcium or B) 400 nM calcium with 
2mM phosphate-tris and 2mM MgCl2.  Additions of other 
reagents were made where indicated by the arrows.   
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Resting [Ca2+]m across age and brain regions of wt and Tg mice 

 Initially we wanted to determine if there were differences in the levels of 

[Ca2+]m in the Tg vs. the wt mice.  Our hypothesis was that there would be 

differences in the levels due to the observed significant differences in m 

between the wt and Tg mice.  It has been shown previously that Ca2+ 

homeostasis and Ca2+  uptake is driven by the ΔΨm (Gunter, Buntinas et al. 

2000) (Gunter, Yule et al. 2004) (Rottenberg and Scarpa 1974) (Brookes, Yisang 

et al. 2004; Santo-Domingo and Demaurex 2010).  The levels of [Ca2+]m were 

measured as described above in mitochondria isolated from three brain regions 

of Tg and wt mice of three different ages.  

Other investigators have shown that [Ca2+]m levels increase with age 

(Peterson and Gibson 1983) (Xiong, Verkhratsky et al. 2002).  This accumulation 

is thought to occur as a result of decreased ATP generation which is required by 

the plasma membrane and ER calcium-ATPases to pump calcium out of the cell 

or sequester Ca2+ into the ER.  With advancing age, the mitochondrial electron 

transport chain activities decrease, especially Complex IV as we (Chapter 2) and 

others have shown before, thus leading to an overall decrease in ATP generation 

(Kann and Kovacs 2006).  Therefore, it was important to determine whether there 

were differences in the levels of free [Ca2+]m in the brain mitochondria of wt and 

Tg mice across the ages of 9, 15, and 22 mos of age.   

Across the three brain regions examined, there were similar levels of 

[Ca2+]m, even during the aging process.  The [Ca2+]m in wt mice varied little 

across the three age groups, while in the Tg mice, there appeared to be some 
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increase in [Ca2+]m in the oldest set of mice, especially in the cerebellum (Fig 6A).  

Overall, there were no significant differences in the levels of [Ca2+]m, except at 22 

months in the cerebellum, Tg levels were higher as compared to wt (Fig. 6A) 

(p=0.038).  However, when the data were combined and analyzed by three-way 

ANOVA, a significant genotype effect (p=0.002) was observed with the Tg mouse 

mitochondria exhibiting higher levels of [Ca2+]m across regions and ages.  
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Figure 6: Free Intramitochondrial calcium levels across age 
of Tg and wt mice. Mitochondria were isolated from A) 
Cerebellum B) Frontal Cortex and C) Hipocampus. All 
experiments were performed using n=4 mice of each 
genotype.  Open circles indicate Tg and dark circles wt 
mice mitochondria. The results shown represent the 
average (SE) from an n=4 mice, each sample measure in 
triplicates. Student’s t-test *p=0.038.
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Ca2+ concentration due to uptake into brain mitochondria 
obtained from Tg and wt mice  

 

 The generation of ATP by mitochondria is regulated by Ca2+ through its 

activation of key mitochondrial matrix dehydrogenases (McCormack, Halestrap et 

al. 1990).  Thus, periodic increases in cytoplasmic Ca2+, also known as calcium 

oscillations, cause increases in mitochondrial NADH levels (Pralong, Spat et al. 

1994) thereby providing a mechanism by which Ca2+ concentrations regulate 

mitochondrial bioenergetics.  If Ca2+ plays such an important regulatory role in 

mitochondrial bioenergetics, and if the m is the result of H+ release into the 

intermembrane space following increased respiratory activity, then Ca2+ uptake 

into mitochondrial might also differ in the Tg as compared with wt mice.  A 

question being addressed by the following studies was whether the lifelong 

exposure to glutamate might lead to gradual increases in [Ca2+]m  as a buffering 

response or to a down-regulation of Ca2+ uptake as a compensatory response 

that would prevent excessive increases in [Ca2+]m and possible mitochondrial and 

cell damage.   

The differences we observed in Ca2+ levels under resting conditions could 

be a result of several processes, such as changes in the concentration of bound 

vs. free intra-mitochondrial calcium levels.  In order to determine whether any 

such differences in [Ca2+]m were the direct result of altered Ca2+ uptake, we 

measured [Ca2+]m following the addition of exogenous Ca2+, i.e., the transport 

activity of mitochondria.  Our rationale for using two exogenous Ca2+  

concentrations, a high (1 M) and low (100 nM) extra-mitochondrial Ca2+  
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concentration, was based on studies which have shown that the uptake of Ca2+  

by mitochondria is regulated by cytoplasmic Ca2+  levels.  Specifically, the 

majority of Ca2+  uptake occurs through the Ca2+  uniporter and this channel has 

been shown to be activated by external Ca2+  and deactivated by removal of 

extra-mitochondrial Ca2+  (Kroner 1986) (Kirichok, Krapivinsky et al. 2004) 

(Baughman, Perocchi et al. 2011; De Stefani, Raffaello et al. 2011).  We chose 

the concentration of 100 nM as our low concentration because this is 

approximately equal to the concentration of calcium in the cytosol under normal 

physiological conditions. 

Calcium uptake occurs in respiring mitochondria, so we used two different 

substrates to increase the membrane potential by increasing ΔpH across the 

inner mitochondrial membrane; the two substrates used were glutamate/malate 

(NADH-generating) and succinate (FADH2-generation).  The effects of advancing 

age on Ca2+ uptake into mitochondria from different brain regions were also 

examined.  Because it has been shown that high local Ca2+  concentrations can 

cause Ca2+  release from the ER and transfer of such Ca2+ to mitochondria 

(Rizzuto and Pozzan 2006), we measured Ca2+ uptake into mitochondria in the 

presence of thapsigargin, an inhibitor of ER Ca2+ ATPase and of Ca2+ uptake into 

the ER.  This was done in order to ensure that the calcium uptake we were 

measuring was due only to mitochondrial calcium uptake and not uptake into the 

ER that may remain attached to mitochondria as the so-called mitochondrial 

associated membranes. 

The parameter that affected Ca2+ uptake most significantly was the 

concentration of exogenous Ca2+ added to the assay.  When low Ca2+ 
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concentrations were present (100 nM) the uptake of Ca2+ in the presence of 

glutamate/malate decreased in both wt and Tg mouse mitochondria with 

advancing age of the mice and across all regions (Fig. 7A-C).This decrease 

reached significant levels for mitochondria isolated from the cerebellum and 

hippocampus (Fig.7A and C, p=0.008) as determined by three-way ANOVA.  

When Ca2+ uptake was measured in the presence of succinate as the substrate 

and of 100 nM extramitochondrial Ca2+, there were no significant differences as 

determine by three-way ANOVA analysis (Fig. 9A-C).  A trend of decreasing Ca2+ 

uptake with advancing age was observed, once again, when mitochondrial 

metabolism was activated by succinate, especially in mitochondria from the 

frontal cortex and hippocampus, although the effect was not as pronounced as it 

was when glutamate/malate was used as the substrate. 

Significant genotype, region, age, and substrate-specific effects were seen 

in the Tg mice, but not the wt mice, when Ca2+ uptake was measured in the 

presence of high extramitochondrial Ca2+ concentration (1 M) and 

glutamate/malate as the substrate.  Under these conditions, the brain 

mitochondria from wt mice maintained stable Ca2+ uptake activity across different 

brain regions and with advancing age while the mitochondria from Tg mice 

exhibited significantly decreased Ca2+ uptake with advancing age (p0.001) as 

shown in Fig. 8 A-C.  The estimated Ca2+ uptake in mitochondria isolated from 

the cerebellum and cortex of Tg mice was significantly higher compared with that 

in mitochondrial from the same two regions of the brain of wt mice (p=0.011, 

three-way ANOVA).  When succinate was used as the substrate and in the 

presence of 1 M extramitochondrial Ca2+, the levels of Ca2+ uptake were very 
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low as compared to when glutamate/malate was used the substrate (Fig.10 A-C).  

There were no significant region, age, or genotype effects detected in 

mitochondrial uptake measured under these conditions as indicated by three-way 

ANOVA analysis. 
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Figure 7: Rotenone sensitive/ER insensitive Ca2+ 
concentration due to uptake, across age of Tg and wt 
mice.  Mitchondria were isolated from A) Cerebellum B) 
Frontal cortex and C) Hippocampus. All experiments 
were performed using n=4 mice of each genotype.  Open 
circles indicate Tg and dark circles wt mouse 
mitochondria. 100nM calcium was added in the 
presence of 5 mM glutamate/malate. Three-way ANOVA 
analysis indicated a significant age effect in 
mitochondria from wt and Tg cerebellum and 
hippocampus p=0.008. 
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Figure 8: Rotenone sensitive/ER insensitive Ca2+ 
concentration due to uptake across age of Tg and 
wt mice.  Mitchondria were isolated from A) 
Cerebellum B) Frontal cortex and C) Hippocampus. 
All experiments were performed using n=4 mice of 
each genotype.  Open circles indicate Tg and dark 
circles wt mouse mitochondria. 1 M calcium was 
added in the presence of 5 mM glutamate/malate. 
Three-way ANOVA analysis indicated a significant 
age effect in mitochondria from Tg cerebellum and 
frontal cortex p=0.011 and age effect in 
mitochondria from Tg mice p≤0.001  
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Figure 9: Rotenone sensitive/ER insensitive Ca2+ 
concentrations due to uptake across age of Tg and wt 
mice.  Mitchondria were isolated from A) Cerebellum B) 
Frontal cortex and C) Hippocampus. All experiments 
were performed using n=4 mice of each genotype.  
Open circles indicate Tg and dark circles wt mouse 
mitochondria. 100nM calcium was added in the 
presence of 5 mM succinate.  
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Figure 10: Rotenone sensitive/ER insensitive Ca2+ concentration 
due to uptake across age of Tg and wt mice.  Mitchondria were 
isolated from A) Cerebellum B) Frontal cortex and C) 
Hippocampus. All experiments were performed using n=4 mice of 
each genotype.  Open circles indicate Tg and dark circles wt 
mouse mitochondria. 1 M calcium was added in the presence of 
5 mM succinate.  
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Mitochondrial calcium uptake is blocked by the calcium inhibitor ruthenium 
red 

  

Ca2+ uptake occurs through several pathways including “rapid-mode” 

uptake, Ca2+ uptake via the ryanodine receptor isoform (RyR)1, and through the 

mitochondrial Ca2+ uniporter (MCU) (Brookes, Yoon et al. 2004) (Santo-Domingo 

and Demaurex 2010) (Kirichok, Krapivinsky et al. 2004).  The majority of calcium 

uptake into mitochondria has been shown to occur through the MCU (Santo-

Domingo and Demaurex 2010).  This channel allows for massive and fast entry 

of calcium ions into the mitochondria (Santo-Domingo and Demaurex 2010).  An 

oxygen-bridged dinuclear ruthenium amine complex, RU-360, has been shown to 

be a potent and selective inhibitor of the mitochondrial calcium uniporter (DeLuca 

and Engstrom 1961) (Gunter and Gunter 1994) (De Stefani, Raffaello et al. 2011) 

and of the Ca2+/H+ exchanger (Matlib, Zhou et al. 1998).  To determine whether 

the uptake of Ca2+ was due to either the uniporter or the Ca2+/H+ exchanger, Ca2+ 

uptake was measured in the presence of 1 M extramitochondrial Ca2+ and in the 

presence or absence of 10 M Ru-360.  Thapsigargin-insensitive Ca2+ uptake by 

mitochondria energized by glutamate/malate was completely inhibited in the 

presence of Ru-360, thus demonstrating that the observed uptake of Ca2+ into 

mitochondria was dependent either on the Ca2+  uniporter or the Ca2+/H+ 

exchanger, or both (Fig. 11).   
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Figure 11: Mitochondrial calcium uptake in 9 month 
cerebellum mice across time. In the presence of 1M 
calcium, 5mM glutamate/malate, and 2.5 M thapsigarin. 
Dark circles indicate samples with no RU 360 and open 
circles in the presence of RU 360.                                                                                          
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5.   DISCUSSION 
 
 
 

Significant genotype difference in baseline membrane potentials 

 Our measurements of TMR fluorescence demonstrate that there is a 

significant genotype effect (p0.001) across different brain regions and different 

ages, Tg mice being 2-fold higher than wt.  The increase in TMR fluorescence 

reflects a  across the mitochondrial inner membrane.  A high fluorescence 

signal demonstrates an increase inm.  This increase in m could be due to an 

increase in H+ in the inner membrane space or an increase in negative ions in 

the mitochondrial matrix.   

 In the wt mouse mitochondria, we demonstrated that the resting state m 

is two-fold lower than that in Tg mouse mitochondria.  Despite such large 

differences between Tg and wt in terms of m, both genotypes had similar 

concentrations of [Ca2+]m, but the Tg mice displayed increased levels of Ca2+ 

uptake.  The increase in Ca2+ uptake would therefore cause a collapse of the 

membrane potential due to the increase of positive ions in the matrix.  However, 

a possibility could be that even though there is an increase of the Ca2+ uptake, 

the Ca2+ ions may not make it into the matrix, but get trapped in the inner 

membrane space, therefore increasing the potential difference instead of 

collapsing it.  This would explain why we observed such a significant decrease in 

the membrane potential in the Tg mice compare to the wt.  However, we would 

have only expected to see these significant differences in potential at an early 

age with a decrease in potential difference with advancing age.  If Ca2+ uptake 
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was decreasing with age in the Tg mice then less Ca2+ would be plugging up the 

inner membrane space and contributing to the potential difference.  In addition, 

only the cerebellum and frontal cortex exhibited these changes in Ca2+ uptake; 

however, in our membrane potential assays all three different brain regions 

exhibited significant genotypes differences.  However, the Tg mice would have 

been exposed to increased levels of Ca2+ under normal conditions due to the 

GLUD1 protein as compared to the wt mice.  This increased exposure could 

have already established a high concentration of Ca2+ ions being trapped in the 

mitochondrial inner membrane across all different brain regions and therefore 

resulting in a high potential difference regardless off the differential Ca2+ uptake 

across the different brain regions.  And even though Ca2+ uptake decreased with 

age in the Tg mice, again the lifelong exposure to Ca2+ could have already 

established high baseline concentrations of Ca2+ ions being plugged in the 

mitochondrial inner membrane space that would contribute to a high potential 

difference in the Tg mice across all ages as compared to the wt mice. 

 

No significant differences in net energized membrane potentials 

 An average value for the baseline kinetic values was determined and this 

value was subtracted from each time point after addition of either 

glutamate/malate or succinate to energize the mitochondria.  An interesting 

finding was that after addition of a substrate and subtraction of the baseline 

mean measurement there was no longer a significant genotype effect.  

Membrane potential differences and trends were similar in both genotypes, 
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across different brain regions, and with advancing age.  The time kinetic plots 

were fitted to a polynomial, linear equation and slopes (rate constants) were 

determined for the net energized .   ANOVA 3-way analysis picked up no 

significant differences in the slopes with addition of either substrate, across 

different brain regions, or with advancing age.  This finding was unexpected for 

two reasons.  One is that addition of a substrate would energize mitochondria 

and contribute to the proton gradient, thus generating a larger potential difference 

in the inner membrane as compared to baseline and secondly we observed 

significant differences in Ca2+ uptake.   

The addition of either glutamate/malate or succinate resulted in eliminating 

the  difference between the two genotypes.  At baseline the Tg mice had a 2-

fold higher potential difference as compared to wt; however, after addition of 

substrate the Tg potential difference was similar to that of wt.  A reason for this 

could be that with addition of a substrate more hydrogen ions are being pumped 

into the inner membrane thereby increasing the potential difference in the wt 

mice to similar levels as the Tg mice.   

Calcium uptake has been documented in many studies to be an energy 

driven process regulated by respiration and the proton electrochemical potential 

which is generated during respiration (Rottenberg and Scarpa 1794).  Therefore  

Ca2+uptake is driven by the potential difference across the mitochondrial inner 

membrane (Mitchell and Moyle 1967).  Ultimately, Ca2+ enters the mitochondrial 

matrix through a process termed “down its electrochemical gradient”, or moving 

towards an area where there are fewer positive ions.  Our studies showed that 

Ca2+ uptake in the Tg mice was highest at 9 months and decreased with 
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advancing age.  Therefore, we would have expected to see a high potential 

difference at 9 months that also decreased with age. 

 
 

Free intra-mitochondrial  Ca2+concentrations 
 

Mitochondria normally contain between 5 and 20 nmol-Ca2+/mg of protein 

and only ~0.01% of this total represents free or ionized intra-mitochondrial Ca2+ 

(Coll, Joseph et al. 1982).  In our data the Ca2+
Fm concentrations are in 

agreement with levels published in other studies (Coll, Joseph et al. 1982).  In 

the wt mitochondria samples we observed no regional effect or age effect on the 

Ca2+
Fm levels.  Many studies have documented that Ca2+ uptake is altered during 

aging, specifically decreasing with age, and therefore cytoplasmic  

Ca2+concentrations increase with age (Peterson and Gibson 1983).  Due to the 

increase in cytosolic concentrations with advancing age we would have expected 

to see increases in Ca2+
Fm as well.  This idea is based on studies which have 

demonstrated that mitochondria function as a buffer when the cell cytosol 

experiences periods of high Ca2+ concentrations.  Specifically, these studies 

demonstrated that when high insults of  Ca2+are applied, mitochondria increase 

Ca2+ uptake and therefore Ca2+
Fm concentrations are increased (Coll, Joseph et 

al. 1982) (Aarts, Wei et al. 2003).  A difference in our results could be that we 

measure Ca2+
Fm concentrations where others have reported total levels of 

Ca2+
Fm.  In addition, mitochondria may also have developed a type of 

compensatory mechanism when the organelle itself experiences high levels of 

calcium.  This would be important since Ca2+
Fm plays such a pivotal role in 

bioenergetics and reactive oxygen species generation that developing regulatory 
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mechanisms within the mitochondria would be of critical importance.  In our 

studies the wt mice may have had increased levels of Ca2+ uptake and therefore 

increased Ca2+
Fm concentrations, but the Ca2+ions may have been bound and 

therefore not measured in our assays.  Specifically, studies have demonstrated 

increases in deposits of Ca2+ phosphate in mitochondria during periods of 

pathological stress, i.e., excess Ca2+.  These studies have shown that the role of 

phosphate in mitochondria is to buffer Ca2+ to maintain Ca2+
Fm concentrations 

low (Chalmers and Nicholls 2003).  Mitochondria therefore may have evolved this 

mechanism in an attempt to counteract the deleterious effects of excess Ca2+.  In 

addition, the observation that there were no regional differences in mitochondrial 

Ca2+ in the wt mice was also surprising.  Studies have documented regional 

differences in cytosol Ca2+ levels and therefore would lead to differences in 

Ca2+
Fm levels across regions (Haycock and Meligeni 1977).  Many of these 

differences in cytosol Ca2+ levels are attributed to regional differences in 

neurotransmitter dynamics.  A possible reason why there was no significant 

difference in mitochondrial Ca2+ levels across different brain regions in our 

studies could be due to the type of samples used.  In many studies where they 

have measured Ca2+
Fm and cytosol Ca2+ levels, investigators have carried out in 

vivo assays measuring  levels in living cells using the calcium sensitive 

photoprotein aequorin that is specifically targeted to the mitochondria (Pinton, 

Rimessi et al. 2007) (Rizzuto, Brini et al. 1995).  Neurotransmitter dynamics may 

play a stronger role in vivo because it allows for a physiological setting where all 

mitochondrial dynamics are interconnected.  Specifically, studies have shown 

that mitochondria in an in vivo setting respond more efficiently and faster to 
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cytosol Ca2+ concentrations due to their increased capacity to sense the Ca2+ 

ions more efficiently in this type of setting (Rizzuto, Pinton et al. 1998) (Pinton, 

Wieckowski et al. 2004).  After the addition of the substrate glutamate/malate we 

again demonstrated no significant differences in the wt samples across the 

different brain regions and with advancing age.  A possible reason for this could 

be due to the fact that respiratory chain activities, specifically through Complex I, 

are not the only regulators of Ca2+
Fm  levels or again due to any of the reasons 

explained prior. 

In the Tg mice, baseline Ca2+ concentrations and trends were similar to 

that of wt except in the cerebellum where there was a significant increase in Ca2+ 

concentrations with advancing age (genotype=p=0.002).  Overall, in the Tg we 

would have expected dysregulation of Ca2+homeostasis across all three different 

brain regions and with advancing age.  The reason for this is due to the 

observations that glutamate has been documented in many studies to lead to a 

dysregulation of Ca2+ homeostasis (Budd and Nicholls 1996) (Khodorov 2003).  

Our laboratory has shown that over-expression of GLUD1 in neurons leads to 

increased levels of glutamate (Bao, Pal et al. 2009).  The increase in glutamate 

levels would cause over-activation of glutamate receptors, primarily NMDA 

receptors, resulting in increased levels of Ca2+ flux into the post-synaptic cell.  

This would result in excess levels of cytoplasmic calcium and increased levels of 

intra-mitochondrial calcium.  The observation that this was only seen in one 

tissue, cerebellum could be a structural difference in the tissues.  Cerebellum 

contains granule cells which contain small cell bodies that are packed with 

mitochondria.  The hippocampus and frontal cortex contain pyramidal cells which 
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have large cell bodies that may not contain as many mitochondria.  The 

differences in the calcium levels across regions could be one of more 

mitochondria, therefore a significant difference in Ca2+
Fm levels.  After addition of 

glutamate/malate there was a significant age and genotype effect in the Tg 

samples, but only in the cerebellum and frontal cortex (genotype=p=<0.001 and 

age=p=<0.001).  Possible reasons could again be because some other type of 

regulation of Ca2+ levels is in effect besides the respiratory chain activities or 

there could be morphological differences across the different brain regions which 

result in altered mitochondrial function, i.e. an imbalance of fission vs. fussion 

resulting in fragmented mitochondrion. 

 

Mitochondrial Ca2+ concentration due to uptake-After substrate addition 

 In the Ca2+ uptake assays the most significant factor affecting 

mitochondrial Ca2+ uptake was the concentration of extra-mitochondrial Ca2+ 

added to the assay.  More specifically the only time there was significant 

difference between genotypes, substrate, age, or regions was when a high 

extracellular Ca2+
 concentration was added (1 M).  This finding was not 

surprising dince many studies have documented that the uniporter, which is the 

main pathway for Ca2+ entry into the mitochondria, is gated by extra-

mitochondrial Ca2+ concentrations (Bragadin, Pozzan et al. 1979). 

At a low extra-mitochondrial Ca2+ concentration (100 nM) there were no 

significant differences (as denoted by ANOVA 3-way analysis on SigmaPlot 

11.0).  At 100 nM Ca2+ concentration, using glutamate/malate as a substrate, 
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Ca2+ uptake concentrations were similar to those observed in the Ca2+
Fm assay 

for both wt and Tg mice.  In the wt mice Ca2+ uptake levels remained steady 

across different brain regions and with increasing age.  Other studies have 

demonstrated that an increase in cytosolic Ca2+ concentrations mediates calcium 

release from depolarized mitochondria preloaded with Ca2+.  Leading to the 

hypothesis that mitochondrial Ca2+ entry is gated by cytosol Ca2+ concentrations 

and therefore resulting in cytosol Ca2+ needing to be higher than that of a 

conducting Ca2+ channel to see any significant differences in Ca2+
Fm 

concentrations (Igbavboa and Pfeiffer 1988),  In addition, the kinetic features of 

Ca2+ transport predict that Ca2+ uptake into mitochondria should not be significant 

under physiological conditions (100 nM is physiological extra-mitochondrial 

calcium concentration) due to the low affinity of the uniporter for Ca2+ (Pinton, 

Rimessi et al. 2007) (Rizzuto, Brini et al. 1995).  These studies could explain why 

we did not see any significant differences in Ca2+ uptake concentrations with 100 

nM Ca2+ added to the assay and why we did not see any significant differences 

in the Ca2+
Fm concentrations.  Regardless of the substrate used glutamate/malate 

or succinate, ANOVA 3-way analysis picked up no significant differences in the 

genotypes, with different substrates used, across the different brain regions, or 

with advancing age.  In the wt mice we would have expected to see differences 

in difference brain regions and with advancing age, but again remained steady 

due to one of the reasons stated in the free intra-mitochondrial assays.  These 

being in vitro and not in vivo studies may affect the mitochondrial Ca2+ transport 

assays and neurotransmitter dynamics.  In support of this studies have 

documented that mitochondrial Ca2+ buffering in intact cells is different from that 

  126



of isolated mitochondrial samples.  These differences are due to the 

concentration of extracellular Ca2+ and to the contribution of Ca2+ to the 

extracellular medium from other organelles such as the endoplasmic reticulum 

(Chalmers and Nicholls 2003). 

When a high concentration, 1 M, of Ca2+ is added the Tg samples display 

significant differences as compared to wt samples, across different brain regions, 

and with advancing age.  In this assay the Ca2+ uptake concentrations are 

significantly higher at 9 months as compared to the wt and decrease with 

advancing age in the cerebellum and frontal cortex.  This may seem perplexing 

since our Ca2+
Fm assay showed low levels of Ca2+

Fm (0.1-0.3 M) that were 

similar in both genotypes across the different regions and with advancing age.  

First one must take into account that Ca2+ uptake is not proportional to a net 

increase in mitochondrial Ca2+ concentrations.  In support of this studies have 

shown that Ca2+ addition to mitochondria results in formation of Ca2+ phosphate 

deposits and therefore does not result in increases in Ca2+
Fm (Chalmers and 

Nicholls 2003).  So even though there is a significant amount of Ca2+ uptake 

occurring at 9 months the Tg mitochondria may attempt to shut down the 

deleterious effects of high intra-mitochondrial Ca2+ by increasing binding to 

phosphate or by increasing mitochondrial Ca2+ efflux; therefore, resulting in low 

levels of Ca2+
Fm as seen in our assays.  In addition, the Tg mice might be very 

efficient at handling this type of stress, i.e. high amounts of Ca2+ due to the 

prolonged exposure of glutamate and subsequent excess Ca2+ flux into the cell.  

This would allow the Tg mitochondria to have undergone a type of “conditioning” 

that would allow them to efficiently handle when they are stressed by a bolus 
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application of extracellular Ca2+.  The decrease in Ca2+ uptake with advancing 

age is the opposite of what we demonstrated in terms of Ca2+
Fm concentrations, 

which increased with age.  This could simply be due to compensatory pathway in 

where the mitochondria are decreasing calcium uptake due to the rise in intra-

mitochondrial calcium.  If this is the case then the explanation for the rise in intra-

mitochondrial Ca2+ concentrations is not due to increased Ca2+ uptake, but to a 

change in the bound versus free intra-mitochondrial Ca2+ concentrations.  

Specifically, if with advancing age there is an increase or decrease in phosphate 

this would affect the amount of free intra-mitochondrial Ca2+.   

The studies demonstrate that addition of succinate causes no significant 

differences in Ca2+ uptake between genotypes, across different brain regions, 

and with advancing age.  With the addition of glutamate/malate significant 

differences were observed between genotypes, across different brain regions, 

and with advancing age.  The observation that succinate induced no significant 

differences, with high or low extracellular Ca2+, was not surprising.  Mitochondrial 

Ca2+ uptake is controlled by a variety of processes one being respiration.  The 

majority of respiration is driven by reducing equivalents feeding into complex I of 

the respiratory chain.  Many studies have documented that Ca2+ regulates 

respiration directly.  Specifically, these studies have demonstrated that Ca2+ 

regulates respiration by activating specific dehydrogenases which result in 

increased activity of the TCA cycle.  This increase in activity leads to a rise in 

NADH levels which transfer electrons to complex I and results in an increase in 

mitochondrial metabolism (McCormack, Halestrap et al. 1990) (Hansford 1981).  

The increased metabolism leads to an increase in hydrogen pumping to the inner 
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membrane and the establishment of a potential difference which is also another 

driving force for Ca2+ uptake into mitochondria.  Succinate contributes reducing 

equivalents to complex II, but Complex II does not pump hydrogen ions to the 

inner membrane causing no further increase and potential difference and 

therefore no significant increase in Ca2+ uptake.   

 

Conclusions 

The only significant genotype affect observed in Ca2+
m concentrations was 

at 22 months in the mitochondria from cerebellum with the Tg mice having a 

higher concentration of Ca2+
m as compared to wt.  Across the different brain 

regions the concentrations of Ca2+
m were similar and across advancing age the 

trends were also similar in both genotypes.  These results indicate that the 

significant genotype effect observed is the result of over-expression of GLUD1 

and that with advancing age the Tg mice are not able to either buffer (combine 

Ca2+ with phosphate in mitochondria to form calcium phosphate), or export Ca2+ 

out of the mitochondria as efficiently as wt mice, resulting in 2-fold higher levels 

of Ca2+
m concentrations in the mitochondria from Tg mice as compared to wt.  

This significant genotype effect was only observed in the mitochondria from 

cerebellum regions and not from the frontal cortex or hippocampus.  These 

results indicate that the mitochondria isolated from 22 month old Tg cerebellum 

regions contain higher concentrations of Ca2+ which may be the result of 

increased capacity of Ca2+ uptake which is neuronal cell type dependent, i.e. 

Purkinje neurons of the cerebellar cortex more efficient versus cortical and 
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hippocampal neurons.  This might also be the reason why in our morphological 

studies the cerebellum neurons did not suffer cell death and/or damage as the 

other regions did.  To determine if this was the case mitochondrial Ca2+ uptake 

assays were carried out. 

The Ca2+ concentrations as a direct result of uptake varied dependent on 

the concentration of extra-mitochondrial Ca2+ added.  When a low concentration 

of Ca2+ was added, 100 nM there were no significant genotype effects, all three 

brain regions had similar values of Ca2+, while the cerebellum and hippocampus 

had similar trends and were different from the hippocampus.  These results 

indicate that different brain regions exhibit different capacities in Ca2+ uptake.  

Across advancing age both genotypes demonstrated a significant age effect with 

uptake decreasing in the cerebellum and hippocampus and remaining stable in 

the frontal cortex.  These results indicate that the differences in Ca2+ uptake are 

likely not the result of over-expression of GLUD1, but differences in Ca2+ uptake 

in the three brain regions and that with age these differences are further 

enhanced.  When a large concentration of extra-mitochondrial Ca2+ is added, 1 

M there are significant genotype differences that are region and age specific.  At 

9 months the Tg mitochondria from cerebellum and frontal cortex have 

significantly higher Ca2+ uptake as compared to wt and with advancing age these 

differences diminish.  These results indicate that the over-expression of GLUD1 

caused differences which enhanced the Ca2+ uptake pathways in the Tg 

mitochondria from cerebellum and frontal cortex regions.  A reason for this could 

be that the Tg mitochondria may have been pre-exposed and therefore “pre-

conditioned” to handling excess levels of Ca2+ which should be the result of over-
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expression of GLUD1 by over-activation of glutamate receptors and therefore 

increased Ca2+ concentrations in the cell.  If this is the case then the Tg 

mitochondria may have developed enhanced Ca2+ uptake to decrease the Ca2+ 

concentrations in the cytoplasm and therefore prevent dell damage.  In this 

scenario introduction of high levels of extra-mitochondrial Ca2+ (1 M) would 

result in faster Ca2+  uptake and in the Tg mitochondria as compared to wt.  In 

addition, only specific regions exhibited these genotype significant effects 

indicating that the adaptive changes in the Ca2+ uptake mechanisms were region 

specific.  A possibility could be that only specific regions were pre-disposed to 

the high levels of calcium throughout the lifespan of the organism, i.e. differences 

in the levels of glutamate receptors in the brain regions which would result in only 

specific brain regions being “pre-conditioned” to high levels of Ca2+.  In support of 

this studies have demonstrated that there is region specific distribution of 

glutamate receptors (Martin, Blackstone et al. 1993) (Nusser 2000). 

 In our Tg mice at baseline there is a significant potential difference in all 

regions and across all ages.  The establishment of such a high potential 

difference as compared to the wt mice could be that of the prolonged exposure of 

glutamate and thus lifelong exposure to excess Ca2+.  With time this excess Ca2+ 

could have entered the mitochondria, but remained “stuck” in the mitochondrial 

inner membrane thus generating a greater potential difference.  A reason for the 

Ca2+ remaining in the inner membrane could simply be one of the mitochondria 

attempting to regulate matrix Ca2+ levels and thus regulate respiration.  In this 

scenario even though there was an increase in Ca2+ uptake due to the large 

potential difference at 9 months, this would not have resulted in an increase in 
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free intra-mitochondrial Ca2+, as was seen in our studies.  The observation that 

the potential difference was significant in the Tg mice across all difference brain 

regions and with advancing age could again be because all neurons were over-

expressing the Glud1 gene, and therefore the inner membrane Ca2+ plugging 

would have occurred in all three brain regions.  After energizing mitochondria 

with the substrate glutamate/malate region specific differences in the 

mitochondrial membrane potential were observed.  Specifically, after substrate 

addition the mitochondria from wt samples in all of the brain regions increased 

steadily, while the mitochondria from Tg samples only increased in the 

cerebellum and remained steady in the hippocampus and frontal cortex.  These 

results might indicate that the mitochondria from Tg samples in the frontal cortex 

and hippocampus have reached maximal potential difference and even upon 

substrate addition do not accumulate any further hydrogen protons, while the 

cerebellar mitochondria still continue to pump hydrogen protons and drive a 

potential difference across its mitochondrial inner membrane.  The regional 

differences in membrane potential may in part explain the regions differences we 

observed in the Ca2+ uptake assays.  The mitochondria from Tg cerebellum 

samples may continue to pump hydrogen protons and pump a greater potential 

difference in an effort to drive mitochondrial Ca2+ uptake.  Studies have 

demonstrated that Ca2+
 uptake is an energy dependent process and a greater 

potential difference would result in increased Ca2+ uptake.  Increased Ca2+ 

uptake may be a response or adaptive mechanism by the cell to decrease 

cytosolic Ca2+ concentrations and avoid the harmful effects of excess Ca2+.   
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Chapter  Four:  Effects of the Over-Expression of Neuronal 
Glutamate Dehydrogenase (GLUD1) on Brain Mitochondrial 

Reactive Oxygen Species Generation 

 

10.  INTRODUCTION  

Reactive Oxygen Species 

 Reactive oxygen species are highly reactive chemical species 

which contain an unpaired electron in their valence shell.  These species 

include oxygen ions and peroxides.  The generation by mitochondria of 

superoxide (O2
●̶ ) and hydrogen peroxide (H2O2) is well documented 

(Gomez, Monette et al. 2009) (Kumaran, Subathra et al. 2004) (Ontko 

1966).  Once the ROS are produced, they are involved in a variety of cell 

functions that can benefit or harm the cell.  The ROS formed in cells are 

involved in many signaling networks such as redox signaling, in the 

mediation of apoptosis, cell homeostasis, and induction of host defense 

genes (Liu, Fiskum et al. 2002).   

 Cells normally defend themselves against the harmful effects of 

ROS through the action of cellular antioxidants.  These include enzymes 

such as glutathione peroxidases, superoxide dismutases, catalases, 

lactoperoxidases, peroxiredoxins, and alpha-1-microglobin.  All of these 

enzymes function in a similar manner and prevent damage by ROS 

species through the scavenging of free radicals.  Due to their damaging 

effects on the cell, ROS levels are maintained relatively low (Wirtz and 

Schuelke 2011) through the activities of these antioxidants.   
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The source of ROS in cells 

 The primary source of ROS is the electron transport system (ETS) 

in the  mitochondria (Raha, Myint et al. 2002) (Maj, Raha et al. 2004).  The 

major ROS produced as a by-product of the ETS is O2
● ̶   through the 

process of mono-electronic reduction of O2.  The generation of O2
●̶    can 

occur at very fast rates when the electron transport system activities are 

increased in response to a demand for more ATP generation, thereby 

establishing a relationship between metabolic conditions and ROS 

generation.  Many enzyme complexes within the ETS have been 

documented to directly generate ROS.  Specifically, ubiquinone  

oxidoreductase (complex III) and ubiquinone oxidoreductase (complex I) 

have been shown to lead to O2
●̶   and ROS gneration (Mailer 1990) 

(Choksi, Nuss et al. 2011) (Gnaiger 2009).   

ROS and aging 

There is a documented increase in ROS production in the 

mitochondria  and a subsequent increase in oxidative damage to cells 

during the aging process (Sarnoska 2002) (Wang, Zaidi et al. 2009).  

These observations have led to the belief that an accumulation of 

oxidative damage as a result of ROS is a factor that contributes to the 

aging process.  In support of this idea, genetic studies where mutant fly or 

worm models are resistant to oxidative damage have been shown to have 

extended life spans (Budd and Nicholls 1996).  In addition, mice which 

have had O2
●̶   dismutase 1 (SOD1), the enzyme with breaks down O2

●̶  , 
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knocked down have a 30% decrease in lifespan; whereas, over-

expression of this enzyme results in an increase in lifespan (Khodorov 

2003).   

 

Differential neuronal vulnerability to oxidative stress 

The damaging effects of oxidative stress that result from excess ROS 

formation has been well documented in studies of aging and age-associated 

diseases.  Of particular interest is the observation that neurons express 

differential vulnerability to oxidative stress.  In the brain, the hippocampus is 

divided into four regions, CA1 through CA4, and these regions respond to 

oxidative stress differently.  When exposed to oxidative stress, cells in the CA1 

region have very low survival rates, while cells in the CA3 region are almost 

completely insensitive to ROS-induced damage (Wilde, Pringle et al. 1997) 

(Wang, Pal et al. 2005) (Sarnoska 2002).  Also agents that induce oxidative 

damage also cause massive cell death of neurons in the cerebellar granule cell 

layer, but not in the cerebral cortex area (Wang, Zaidi et al. 2009).   

 

Mitochondrial calcium and membrane potential as regulators of ROS 

generation 

As discussed in chapter three, Ca2+ can exert an overall positive effect on 

mitochondrial bioenergetics by up-regulating the TCA cycle and ETS activities 

through stimulation of specific dehydrogenases.  As necessary as this function is 

at times when a high ATP output is needed, increased ETS activity may also lead 

to increased ROS generation, and thus a potentially negative effect on cell 
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survival.  ROS generation parallels metabolic rate (Brookes, Yoon et al. 2004).  

In Figure 1 the possible effects of intra-mitochondrial accumulation of Ca2+ on the 

generation of ROS by the ETS are shown.   

 

 

Figure 1 “Mechanisms for Ca2+ stimulation of mitochondrial ROS 
generation. Ca2+ stimulation of the TCA cycle (1) will enhance electron 
flow into the respiratory chain, and Ca2+ stimulation of nitric oxide 
synthase (NOS) and subsequent nitric oxide (NO·) generation (2) would 
inhibit respiration at complex IV (3). These events would enhance ROS 
generation from the Q cycle (4). In addition, NO· and Ca2+ can inhibit 
complex I, possibly enhancing ROS generation from this complex (5). 
Ca2+ also dissociates cytochrome c (cyt-c) from the inner membrane 
cardiolipin (6) and at high concentrations triggers PTP opening and 
cytochrome c release across the outer membrane (7). The subsequent 
inhibition at complex III (8) would enhance ROS generation at the Q 
cycle (4)” 

 

The tight regulation of Ca2+ homeostasis within the mitochondria is required to 

ensure that the “positive” effects of Ca2+ and metabolic activation are exerted on 

the cell.  
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In addition to Ca2+, another regulator of ROS generation in mitochondria 

has been shown to be the Ψm.  Specifically, the generation of ROS is 

exponentially related to the magnitude of the Ψm  (Brookes, Yoon et al. 2004).   

In chapter two we demonstrated that the ETS activity that is 

stimulated by succinate is increased in the Tg mice at 9 mos of age, but 

this differential activation is lost by 15 and 22 mos of age.  In chapter three 

it was shown that at 9 mos [Ca2+]m was the same in wt and Tg mice, but 

increased at 22 mos in mitochondria from cerebellum and cortex. Thus, 

there was no direct correlation between ETS activity and [Ca2+]m.  

Furthermore, succinate did not activate excess Ca2+ uptake, whereas 

glutamate/malate caused both an increase in [Ca2+]m at 22 mo old 

cerebellum and hippocampal neurons and stimulated Ca2+ uptake at 9 

mos in cerebellum and cortex.  Finally, though mitochondria from all three 

brain regions of the Tg mice maintained much higher Ψm , it was difficult to 

assign a specific ETS contribution to such differential in Ψm..  Therefore, it 

was difficult to predict whether mitochondria from Tg or wt mice would be 

likely to produce more ROS or how such ROS formation might differ from 

brain region to brain region or across the aging process.   

 

 

 

2.  MATERIALS 

 All materials were purchased from Sigma-Aldrich unless otherwise 

noted.  MitoSOX red dye was purchased from Molecular Probes, Catalog 
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#M36008.  An Amplex Red Hydrogen Peroxide/Peroxidase Assay kit was 

purchased from Invitrogen, Catalog # A22188.   

 

 

 

3.  METHODS 

 

Isolation of mitochondrial pellets 

 Mitochondrial samples from three different brain regions 

cerebellum, frontal cortex, and hippocampus were isolated as described in 

chapter two. 

 

Measurement of O2 and H2O2 levels in isolated mitochondria 

Superoxide (O2
●̶

 ) levels were measured in mitochondria 

isolated from the brain of Tg and wt mice at 9, 15, and 22 months.  The 

same three brain regions as in the other studies were the source of the 

mitochondria.  MitoSOX red dye was used for the measurement of O2
●̶  .  

The assays were performed in 100 L per reaction volume.  Mitochondrial 

samples (10 g protein) were incubated with 5 M MitoSOX dye in the 

presence or absence of either 5 mM glutamate/malate or succinate.  The 

mixture of mitochondria plus dye was incubated for 10 mins in the dark at 

37 oC  and at the end of this incubation period, was measured for 240 
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secs in a BioTek Synergy spectrofluorometer (excitation 510 nm; emission 

580 nm). 

 

Measurement of hydrogen peroxide levels in isolated mitochondria 

 Hydrogen peroxide levels were measured in the same 

mitochondrial preparations as those used for O2
●̶   measurements.  An 

Amplex Red Hydrogen Peroxide/Peroxidase Assay kit was used for the 

assays.  Prior to the conduct of these assays, standard curves were 

generated in order to determine the dynamic range of H2O2 and of protein 

concentrations in the assay.  A linear relationship between protein 

concentration and peroxide generation was obtained. 

From the standard curves we determined that the protein concentration 

for the H2O2 measurements to be used was 10 g per well.  Mitochondrial 

samples (10 g protein) were diluted in 1X reaction buffer provided in the 

kit.  A positive control was run in each assay and consisted of 10 M H2O2 

in 1x reaction buffer.  A negative control that contained only reaction buffer 

was used with no H202 present.  Fifty microliters of control and 

experimental samples were loaded into the individual wells in triplicate.  

Next a working solution was prepared which contained 100 M Amplex 

red reagent and 0.2 U/mL horseradish peroxidase (all solutions are part of 

assay kit) in a 50 L total reaction volume.  This working solution (50 L) 

was added to the protein solution (50 L) for a total of 100 L final 

reaction volume.  The microplate was incubated at room temperature for 
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30 minutes, protected from light to allow the H2O2 and Amplex dye to 

react and form the red-fluorescent oxidation product, resorufin.  After 

incubation a one time point measurement of fluorescence was obtained on 

a BioTek Synergy spectrofluorometer (excitation 520 nm; emission 590 

nm).  The values derived from the negative control were subtracted from 

those of each sample containing mitochondria from those of each sample 

containing mitochondria or known amounts of H2O2. 

 

4. RESULTS 

Baseline concentration of O2
●̶   in the mitochondria from wt and Tg 

mice 

  Baseline generation of O2
●̶   by mitochondria in the absence of any 

substrates was measured using the dye MitoSOX red.  This dye is 

selectively targeted to the mitochondria and exhibits increased red 

fluorescence when oxidized by O2
● ̶  .  Therefore, an increase in the 

fluorescence signal corresponds to an increase in O2
●̶   levels.  This probe 

is oxidized by superoxide only and not by any other ROS 

(http://products.invitrogen.com/ivgn/product/M36008).  Baseline 

measurements were carried out for 3 mins at 15-sec intervals.  An 

average of all those measurements was obtained in order to determine the 

average O2
● ̶     concentration at a resting state for the mitochondria.  

Across the three different brain regions and across the three ages of 9, 15, 

and 22 months, the mitochondria from the Tg mice had an almost 2-fold 
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higher O2
● ̶   concentration as compared with mitochondria from wt mouse 

brains.  Both genotypes maintained steady superoxide levels across 

regions.  Student’s t-test conducted on SigmaPlot 11.0 revealed a 

genotype significant difference (p0.001) across all ages and regions (Fig. 

2A-C).  When all three brain regions are combined and plotted across 

advancing age three-way ANOVA analysis indicated a significant 

genotype (p=0.002), age (p0.001), and region (p<0.001) effect (Fig. 3).  

Student’s t-test indicated significant genotype effects with the levels of 

superoxide being higher in the Tg mouse mitochondria across all ages 

and different brain regions. 
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Figure 2 Superoxide levels across age of Tg and wt 
mice.  Mitochondria were isolated from A) 
Cerebellum B) Frontal Cortex and C) Hippocampus. 
All experiments were performed using n=4 mice of 
each genotype.  Dark circles indicate wt and open 
circles Tg mouse mitochondria. Students t-test 
indicated genotype significant effect***p≤0.001 
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Figure 3 Superoxide levels across age of Tg and wt 
mice.  Mitochondria were isolated from Cerebellum, 
Frontal Cortex, and Hippocampus and combined and 
treated as one sample. All experiments were 
performed using n=4 mice of each genotype.  Dark 
circles indicate wt and open circles Tg mouse 
mitochondria. Three-way ANOVA analysis indicated a 
significant genotype (p=0.002), age (p0.001), and 
region (p<0.001) effect. 
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Concentration of O2
●̶   in the mitochondria from wt and Tg mice in the 

presence of glutamate/malate   

 ROS generation, a by-product of respiration, parallels metabolic 

rates (Brookes, Yoon et al. 2004).  Having determined O2
●̶   levels at 

baseline conditions, it was important to measure these levels after the 

addition of different substrates of the ETS.  Our hypothesis was that 

energizing the ETS through either addition of glutamate/malate (NADH-

generating) or succinate (FADH2-generating) would lead to altered levels 

of O2
●̶   as compared to baseline conditions and that brain mitochondria 

from Tg mice might respond differently compared to wt mice.   

 To estimate the amount of O2
●̶   formed the average fluorescence 

measurements during the resting state were subtracted from the 

fluorescence values obtained at 240 secs of the kinetic assays and these 

measurements were plotted on a vertical bar graph (Fig. 4A-C).  When the 

combined data from all regions and ages of the two genotypes were 

analyzed, the O2
●̶  levels in the presence of glutamate/malate resulted in 

significant effects that were age (p=0.003), region (p=0.049) and genotype 

(p=0.003) dependent as determined by three-way ANOVA (Fig.4A-C).  

Only the mitochondria from the Tg mouse exhibited a significant age 

effect. 
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Figure 4 Superoxide levels in the presence of 
5 mM glutamate/malate at A) 9 B) 15 C) 22 
months.  Mitochondria were isolated from 
cerebellum, frontal cortex, and 
hippocampus.  All experiments were 
performed using n=4 of each genotype.  
Open bars indicate Tg and dark bars wt 
mouse mitochondria.  Three-way ANOVA 
analysis indicated a significant genotype 
(p=0.003), age (p=0.03), and region (p=0.049) 
effect. 
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Concentration of O2
●̶   in the mitochondria from wt and Tg mice in the 

presence of succinate 

Superoxide fluorescence was also measured after the addition of 5 

mM succinate for 3 min and at 15-sec intervals.  The average 

fluorescence measurement during the resting state was subtracted from 

the values at 240 secs of the kinetic assays and these measurements 

were plotted on a vertical bar graph (Fig. 5A-C).  Superoxide levels in the 

presence of succinate resulted in significant effects that were age 

(p=0.008), region (p=0.032) and genotype (p=0.002) dependent as 

determined by three-way ANOVA (Fig.5A-C).  Both genotypes exhibited 

significant age effects and there were significant genotype differences 

dependent on the brain region.  Student’s t-test indicated significant 

genotype effect (p<0.05) in higher levels of O2
● ̶    in the mitochondria from 

Tg mouse as compared to wt at 9 month in the frontal cortex and 

hippocampus, at 15 months in the frontal cortex and at 22 months in the 

cerebellum.  The mitochondria from wt cerebellum at 22 months had 

higher levels of O2
●̶   as compared to Tg. 
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Figure 5 Superoxide levels in the presence of 5 
mM succinate at A) 9  B) 15 C) 22 months.  
Mitochondria were isolated from cerebellum, 
frontal cortex, and hippocampus.  All 
experiments were performed using n=4 of each 
genotype.  Open bards indicated Tg and dark 
bards wt mouse mitochondria.  Three-way 
ANOVA analysis indicated a significant genotype 
(p=0.002), age (p=0.008), and region (p=0.032) 
effect. Student’s t-test p<0.05. 
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Baseline concentration of H2O2 in the mitochondria from wt and Tg 

mice  

 Hydrogen peroxide levels at resting conditions (no substrate 

addition) did not show any significant genotype differences.  Both wt and 

Tg mice had similar levels and trends of H2O2 in the different brain regions 

and with advancing age.  Both genotypes demonstrated a significant 

increase in H2O2 levels with advancing age as was determined by two-way 

ANOVA analysis (Fig.6A-C) (p=0.014).  In addition, the levels of H2O2 

were highest in the frontal cortex (Fig.6B) as compared to cerebellum and 

hippocampus (Fig.6A and 5C) (p=0.027).   

 Having determined H2O2 levels at resting conditions, these levels 

were also measured after the addition of different substrates of the 

respiratory chain.  Activation of ETS through the addition of either 

glutamate/malate or succinate resulted in significant age, genotype, and 

region (Figs.4A-C & 5A-C) effects in O2 levels; therefore, it was reasoned 

that H2O2 levels might also be altered.  Both genotypes had a significant 

increase in H2O2 levels with advancing age as determined by three-way 

ANOVA  (p≤0.001).These increases were significantly region specific 

(p≤0.001) for the different genotypes after the addition of glutamate/malate 

(5 mM) (Fig.7A-C).  Specifically, the mitochondria from wt cerebellum 

mouse at 9 and 22 months had higher levels of H2O2 as compared to Tg 

and the mitochondria from wt hippocampus mouse at 9 months had higher 

levels as compared to Tg mouse.  In the presence of succinate, significant 
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age (p=0.031), genotype (p=0.025), and region (p=0.047) effects were 

demonstrated by three-way ANOVA (Fig.8A-C).  Specifically, both 

genotypes had significant increases in levels of H2O2 with age, and in the 

cerebellum the mitochondria from Tg mouse had higher levels of H2O2 at 9 

months as compared to wt mitochondria while in the hippocampus at 9 

months the mitochondria from wt hippocampus had higher levels as 

compared to Tg. 
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Figure 6 Hydrogen peroxide levels across age 
of Tg and wt mice.  Mitochondria were isolated 
from A) Cerebellum B) Frontal Cortex and C) 
Hippocampus.  All experiments were performed 
using n=4 mice of each genotype.  Open circles 
indicate Tg and dark circles wt mouse 
mitochondria.   
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Figure 7 Hydrogen peroxide levels in the presence of 
5mM glutamate/malate across age of Tg and wt mice.  
Mitochondria were isolated from A) Cerebellum B) 
Frontal Cortex and C) Hippocampus.  All experiments 
were performed using n=4 mice of each genotype.  
Open circles indicate Tg and dark circles wt mouse 
mitochondria.  Three-way ANOVA analysis resulted in 
significant increases in age (p≤0.001) in both 
genotypes and significant region effects (p≤0.001) in 
the mitochondria from cerebellum and hippocampus 
between wt and Tg mouse. Student’s t-test* p<0.05. 
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Figure 8 Hydrogen peroxide levels in the presence of 5mM succinate across age of 
Tg and wt mice.  Mitochondria were isolated from A) Cerebellum B) Frontal Cortex 
and C) Hippocampus.  All experiments were performed using n=4 mice of each 
genotype.  Open circles indicate Tg and dark circles wt mouse mitochondria.  
Three-way ANOVA analysis resulted in significant increases in age (p=0.031) for 
both genotypes, significant region effects (p=0.047) and significant genotype 
effects (p=0.025).   
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5.  DISCUSSION 

  Mitochondria are a main source of O2
●̶   formation (Balaban and 

Ames 1998).  Within mitochondria there are two main sites where O2
● ̶   

generation occurs, complex I (NADH:ubiquinone reductase) (Turrens 

and Boveris 1980) and complex III (coenzyme Q : cytochrome c — 

oxidoreductase )( (Boveris, Cadenas et al. 1976).  With aging and in 

some age-associated diseases, there is an increase in ROS and the 

damage to cells associated with these processes might be a result of 

this increase (Balaban and Ames 1998) (Finkel and Holbrook 2000).   

ETS activities, Ψm, and mitochondrial Ca2+ have been shown to be 

sources and regulators of ROS (Muller, Roberts et al. 2003) (Cleeter, 

Cooper et al. 1994) (Starkov and Fiskum 2003) (Turrens 1997) (St-

Pierre, Buckingham et al. 2002).  The over-expression of the GLUD1 

protein lead to significant genotype differences in the bioenergetics of 

the ETS activities (chapter 2), mitochondrial Ca2+ homeostasis and Ψm 

(chapter 3); therefore we hypothesized that we would also observe 

differences in the levels of ROS.  In addition, these significant 

differences were also demonstrated across age and different brain 

regions.   

In chapter three we demonstrated significant genotype differences 

in Ψm.  The generation of ROS has been shown to be exponentially 

dependent on Ψm (Starkov and Fiskum 2003).  Chemical uncouplers 

have been shown to decrease ROS generation (Okuda, Lee et al. 1992) 
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and ROS has been shown to stimulate mitochondrial uncoupling 

(Echtay, ST-Pierre et al. 2002).  These processes can function in a 

feedback loop (Brookes 1998) (Miwa and Brand 2003).  Our results 

demonstrate that at baseline conditions (no substrate addition) there is 

a significant genotype difference in the levels of O2
●̶   (p≤0.001) across 

all ages and regions.  The Tg mice have higher levels of O2
●̶   as 

compared to the wt mice.  In our studies the levels of O2
● ̶   and the Ψm 

were two-fold higher in the Tg mitochondria as compared to wt and 

therefore support observations from other studies in which O2
●̶   levels 

parallel Ψm (Fig. 9 and 10).   
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Figure 9 Membrane potential average across age of 
Tg and wt mice.  Mitochondria were isolated from 
cerebellum, frontal cortex, and hippocampus and 
combined as one samples.  All experiments were 
performed using n=4 mice of each genotype.  Dark 
circles indicate wt and open circles Tg samples. 
***=p≤0.001 (Student’s t-test). 

 

 

 

 

 

 

 

 

 

Figure 10 Superoxide levels across age of Tg 
and wt mice.  Mitochondria were isolated from 
cerebellum, frontal cortex, and hippocampus 
and combined as one sample.  All experiments 
were performed using n=4 mice of each 
genotype.  Dark circles indicate wt and open 
circles Tg mouse mitochondria. ***=p≤0.001. 
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After the addition of either substrate, glutamate/malate or 

succinate, significant age, genotype, and region effects were 

demonstrated on superoxide levels.  This data is similar to other studies 

where a correlation between respiration and ROS has been 

demonstrated.  Specifically, increased activity of the ETS leads to 

increases in ROS as a result of mitochondrial ETC leak which occurs 

with the increased activity (Liu, Fiskum et al. 2002).  However, our 

bioenergetic data did not correlate with our ROS data.  A possible 

reason could be due that brain cells have adapted as a compensatory 

mechanism to reduce the generation of ROS, if there was to be an 

increase by increased respiration that is region specific.   

Superoxide dismutase, which is the enzyme that catalyzes the 

dismutation of superoxide into oxygen and hydrogen peroxide, is 

differentially expressed in rat brain (Ledig, Fried et al. 1982).  

Specifically, it is expressed at higher concentrations in the cerebellum 

versus the frontal cortex or hippocampus.  The lack of correlation 

between respiration state and ROS levels could be the result of 

differential superoxide dismutase expression.     

It is known that the levels and activities of antioxidants increase 

with advancing age (Hussain, Slikker et al. 1995).  If this is the case 

then any differences in O2
●̶    levels between the genotypes observed at 

9 months could be reduced with advancing age.  In our data, we 

observed that with advancing age the Tg mitochondria O2
●̶   levels 

decreased, while the wt mitochondria O2
● ̶   levels slightly increased (not 
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significant).  These results might be the result of a compensatory 

mechanism exhibited in the Tg mitochondria to decrease O2
●̶   levels, 

due to the already high levels. Integrated bioinformatics analyses 

studies conducted in our laboratory on transcriptomic data from Glud1 

Tg mice revealed increased gene expression in genes associated with 

offering protection against oxidative stress (Wang, Bao et al. 2010).    

In addition to using glutamate/malate as a substrate to energize 

mitochondria, we also measured O2
●̶   levels in the presence of 

succinate which energizes electron transport chain activities through 

complex II.  After addition of succinate in the 9 month mitochondria 

samples we noted no significant genotype differences, but we did 

observe significant region effects in the frontal cortex and hippocampus.  

In both of these regions there was a significant increase in the levels of 

O2
●̶   indicating that there might be decreased antioxidant activity.  In 

looking at our bioenergetics data (chapter 2) we observed significant 

genotype differences in complex II-III activity only in the frontal cortex 

and hippocampus as well.  Specifically, in both of these regions the Tg 

mice had higher activity.  Therefore, even though the Tg had higher 

electron activity this could have resulted in higher antioxidant activity as 

a protective mechanism of the cell.  These data indicate that in the 

cerebellum activation of transport chain activities through complex II 

does not result in significant O2
●̶    levels while activation of complex II in 

the frontal cortex and hippocampus leads to significant increases in the 

levels of O2
● ̶  .  In comparison to glutamate/malate which demonstrated 

  166



significant changes in superoxide levels across all brain regions.  

Providing for evidence that different brain regions are preferentially 

more susceptible to generation of O2
●̶   through the activation of specific 

complexes.   

In addition to measuring O2
●̶   we measured H2O2 levels in the two 

genotypes, across the different brain regions, and in advancing age.  At 

baseline conditions (no substrate) we observed no significant genotype 

differences.  Studies have shown differential expression and activity of 

many antioxidants across different brain regions and with advancing 

age and therefore the concentration of O2
●̶   are not parallel to that of 

H2O2.  Specifically, an increase in O2
●̶  will not necessarily result in an 

increase in H2O2.  Overall, we did observe a significant increase in the 

levels of H2O2 at 15 months as compared to 9 month and again this 

could be attributed to an increase in antioxidant activity that has been 

documented with advancing age (Hussain, Slikker et al. 1995).  After 

addition of glutamate/malate we observed significant genotype 

differences in the cerebellum and hippocampus at 9 months.  We did 

not observe these differences at 15 or 22 months.  In the cerebellum we 

did observe higher levels of O2
●̶   in the Tg mice which could have led to 

the higher levels of H2O2.  In addition, since antioxidant activity has 

been shown to be lowest at a younger age, then any significant 

genotype differences in O2
●̶   levels in the younger age might disappear 

with advancing age due to an increase in antioxidant activity.  The 

differential expression of antioxidants could also explain why there was 
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not a correlation between the O2
●̶   data and the free intra-mitochondrial 

Ca2+ levels.  In chapter three we demonstrated that free intra-

mitochondrial Ca2+ levels only exhibited a significant genotype effect in 

one brain region at one age.   

Overall, in chapter two we demonstrated significant genotypes 

effects in ETS activities and these effects were also demonstrated in 

chapter three with the Ψm measurements.  However, there was not a 

direct correlation in the significant effects across different regions and 

ages as compared to the bioenergetics data.  In chapter three we 

demonstrated that with advancing age free intra-mitochondrial Ca2+ 

levels increased, while mitochondrial Ca2+ uptake decreased.  This type 

of opposite effect might be one of a compensatory mechanism of the 

cell to reduce the levels of free intra-mitochondrial Ca2+; however, here 

was no correlation between the Ca2+ data and the O2
●̶   data.  In 

addition, the resting Ψm was two-fold higher in the Tg mitochondria as 

compared to the wt mitochondria and this data correlated with the O2
●̶   

data.  Our data demonstrate that some correlations do exist; however, 

they are not consistent across regions or age.  These differences could 

be due to one of the many compensatory and/or adaptive mechanism 

and/or pathways that the Tg mitochondria contain as a result of the 

lifelong exposure to glutamate.  Our initial characterization of the Tg 

Glud1 mouse model in terms of bioenergetics, Ca2+ homeostasis, ROS 

generation together with our integrated bioinformatics analyses will help 
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elucidate further the adaptive and compensatory mechanism that exist 

and that are region and age specific. 

 

 

OVERALL CONCLUSIONS 

The following table lists a summary of the major differences between 

mitochondria isolated from wt and Tg mice, and among different brain 

regions. 

 

1.  Membrane potential higher in Tg vs. wt, across all regions and ages at 

resting conditions and tended to become higher during the aging process in 

the Tg mice. 

2.  Ca2+ uptake by glu/malate activated mitochondria and when Ca2+ 

concentrations were low (100 nM) decreased in all regions with advancing 

age and showed no genotype or regional differences. 

3.  Ca2+ uptake by glu/malate-activated mitochondria and when extra-

mitochondrial Ca2+ concentrations were high (1 M), as may occur in 

hyperglutamatergic states, was significantly more active in tg vs. wt in 

cerebellum and cortex, but declined substantially with age, reaching the 

same level of activity as that of wt mice at 22 mos. 

4.  There were no significant differences in Ca2+ uptake in glu/malate-

activated mitochondria from the hippocampus when extramitochondrial 
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Ca2+ concentrations were at 1 M. 

5.  There were no significant differences in any region in free Ca2+ 

concentration under resting conditions or when uptake was measured at 

low Ca2+ concentrations. 

6.  Superoxide levels at resting state were higher in Tg than wt across ages 

and tended to decrease with advancing age; hippocampus showed the 

least amount of differential superoxide accumulation. 

7.  Superoxide levels in tg mouse hippocampus increased with age in 

glu/malate-activated mitochondria, whereas they decreased with age in 

cerebellum and to some extent in frontal cortex. 

8.  Superoxide may be one of the signaling molecules in hippocampus and 

its source is likely from complex I and complex III. 

9.  ETS activities in Tg and wt mice that changed with age were:  

a) Complexes I-III decreased with age  

b) Complexes I-III had no significant genotype differences except at 9 mos 
in the cerebellum and cortex where the Tg mice had higher activity than 
the wt mice 

c) Complexes II-III increased with age and there was a genotype 
difference with the Tg mouse mitochondria being higher than the wt 
mitochondria, particularly at 9 mos in the cortex and hippocampus of the 
Tg mice 

d) Complex IV decreased with age but had no significant genotype or 
regional differences 
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 The phenomenon of selective neuronal vulnerability refers to the 

differential sensitivity of neuronal cells to different types of stresses, i.e. 

glutamate induced toxicity.  Specifically studies have demonstrated that 

hippocampal neurons are more sensitive or vulnerable to glutamate 

induced toxicity in comparison to other brain regions.  Altered 

mitochondrial Ca2+ handling in the hippocampus as compared to other 

brain regions may be the mechanism resulting in the toxic effects.  Our 

studies demonstrated that when a stress (1 M excess mitochondrial 

Ca2+) was applied to the mitochondria from hippocampal cells, Ca2+ 

uptake concentrations as compared to the cerebellum and frontal cortex 

regions were significantly lower.  The inability of the mitochondria isolated 

from hippocampal neurons to take up Ca2+ may result in excess levels of 

Ca2+ in the cytosol and therefore toxic effects on the cell.  The sensitivity 

of hippocampal neurons may be linked to the calcium handling.  In 

addition, the age-related decreases in Ca2+ uptake, regardless of 

concentration of extra-mitochondrial Ca2+, may be the determinant for age-

related neuronal losses.  The factor(s) that could be driving the differential 

Ca2+ regulation could be the result of significant genotype differences in 

membrane potential measurements as demonstrated in our studies.  In 

addition, the differential formation of superoxide may be linked to altered 

sensitivity to the effects of Glud1 over-expression, especially by the fact 

that hippocampus neurons may be the ones that utilize superoxide for 

communication. 
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Chapter  Five: Future Directions 

 

1.  CHAPTER TWO  

In chapter two we measured electron transport system activities in the two 

genotypes, among different brain regions, and with advancing age.  Three-way 

ANOVA analysis identified significant genotype effects in complex I-III activity in 

mitochondria from the frontal cortex and cerebellum at 9 months and complex II-

III in the frontal cortex and hippocampus brain regions at 9 months.  To 

determine specifically which complex was leading to the differences we 

measured complex I and complex II activities separately.  At the current time; 

however, complex I and complex II activity was only assayed in 9 month 

cerebellum and frontal cortex samples.  Looking at complex I and complex II 

activities separately in all of the ages and different brain regions needs to be 

carried out to determine which complex is involved in the altered bioenergetics 

and whether the separate complex activity is similar to the coupled complex 

activity.  Once the exact complex/s leading to the altered bioenergetics between 

the two genotypes is determined further work should be carried out in 

determining the mechanism and pathway involved in the differential genotype 

dependent bioenergetics.  One approach, which we preliminarily began to 

address, is to measure the protein levels of all of the protein complexes.  We 

began this work by carrying out ELISA assays and measuring the protein 

concentration of Complex I across the different brain regions and with advancing 

age.  This should also be carried out for the remaining protein complexes of the 
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ETS.  If no differences in protein concentrations are observed then the 

differences in bioenergetics may be attributed to differences in enzymatic activity 

and not protein levels.  The next step will be to investigate the pathway(s) leading 

to enzyme activity regulation.  Studies have shown that there are several 

mechanisms which lead to regulation of electron transport system complexes 

including phosphorylation, substrate limitation, and calcium regulation (Maj, Raha 

et al. 2004) (Phillips, Covian et al. 2012).  Taking our preliminary data showing 

altered Complex I-III, Complex I, and Complex II-III bioenergetics between the 

two genotypes, I feel that further work should be carried out investigating the 

mechanism of regulation of Complex I in the Tg mice versus the wt.  My 

hypothesis is that complex I will be the major, if only contributor leading to the 

altered bioenergetics between the two genotypes.  This hypothesis is based on 

our own findings and other research which has demonstrated that complex I is 

the main contributor in altering electron transport system activities and leading to 

Ca2+ and the generation of ROS.  Based on these findings Complex I has been 

labeled a “pacemaker” of aging and thought to play a pivotal role in age-

associated diseases (Maj, Raha et al. 2004).  Specifically, a major mechanism of 

complex I activity is through post-translational modification processes such as 

phosphorylation.  Studies have demonstrated that pyruvate dehydrogenase 

kinase (PDK) decreases complex I activity through phosphorylation while protein 

kinase A (PKA) increases its activity (Yadava, Potluri et al. 2008) (Phillips, 

Covian et al. 2012).  Further worked should be carried out to determine 

phosphorylation states of complex I in the wt versus Tg sample.  Specifically, in 

vitro phosphorylation of complex I in mitochondrial pellets can be carried out by 
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incubating the protein with [y-32P]ATP in the presence and in the absence of 

cAMP and then analyzed by SDS-PAGE and autoradiography.  If any significant 

differences are demonstrated in the levels of subunit phosphorylation then further 

work can be carried out to determine the levels of the kinases in the samples.  

Determining if any kinases, specifically PDK or PKA are up or down-regulated 

will aid in determining the kinases involved in the phosphorylation.  Going even 

further into the mechanism of regulation, calcium has been shown to be involved 

in altering levels and activities of specific kinases (Phillips, Covian et al. 2012).  

Further work can be carried out where calcium concentrations are altered in the 

mitochondrial samples and then measure complex phosphorylation of complex I 

again.  All of the experiments thus far all dive further into elucidating the 

mechanism of complex I regulation, however, one approach before beginning 

any of these experiments could be to ensure that bioenergetics are differentially 

altered in the two genotypes by another type of assay.  Measuring electron 

transport chain activities in blue native polyacrylamide gel electrophoresis has 

been a very successful technique carried out by many laboratories (Jung, 

Higgins et al. 2000).  Carrying out these assays will provide for further support for 

the altered bioenergetics we observed in our biochemical assays. 

2.  CHAPTER THREE  

In chapter three we observed significant differences in calcium 

concentrations and calcium uptake in isolated mitochondrial samples under 

different conditions, baseline (no substrate) and after addition of a substrate 

(glutamate/malate or succinate).  At this point all of these assays were carried 

out in vitro and further work should be carried out in vivo.  It will be important to 
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determine whether these significant differences are also demonstrated in vivo 

since many studies have demonstrated differences in calcium concentrations 

based on the type of sample being used.  Specifically, studies have shown that 

mitochondria in an in vivo setting respond more efficiently and faster to cytosol 

calcium concentrations due to their increased capacity to sense the calcium ions 

more efficiently in this type of setting.  Therefore assays should be carried out 

where intra-mitochondrial calcium, cytosol calcium levels, and calcium uptake is 

measured in living cells using the calcium sensitive photoprotein aequorin 

specifically targeted to the mitochondria (Pinton, Rimessi et al. 2007) (Rizzuto, 

Brini et al. 1995) (Rizzuto, Pinton et al. 1998).  If the calcium data in vivo 

supports what was demonstrated in vitro then further work should be carried out 

to determine if and how calcium is involved and leading to altered bioenergetics.  

Specifically, calcium is thought to stimulate or be involved in altering 

bioenergetics by allosteric activation of pyruvate dehydrogenase, isocitrate 

dehydrogenase, and alpha-ketoglutarate dehydrogenase (McCormack and 

Denton 1993).  Assays should be carried out to quantitatively measure the 

activity of the above dehydrogenases in the different genotypes, across the 

different brain regions, and with advancing age.  In addition, different 

concentrations of calcium can be added to determine the direct effect of calcium 

on the dehydrogenases activity, but more importantly to determine whether the 

two genotypes respond differently to the altered calcium levels.   

In chapter three we also demonstrated significant genotype differences in 

the potential difference across the mitochondrial inner membrane.  Further work 

should be carried out to determine the mechanism leading to the difference in 
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membrane potential.  Specifically, many studies have demonstrated that calcium 

concentrations and calcium uptake contribute to the potential difference therefore 

assays should be carried out where the membrane potential is measured in the 

presence of varying concentrations of calcium (Brookes, Yoon et al. 2004).   

 

3.  CHAPTER FOUR 

In chapter four we demonstrated that there were significant genotypes 

differences in the concentrations of reactive oxygen species.  Further work 

should be carried to determine whether the results we demonstrated in vitro are 

also seen in vivo.  Specifically, superoxide levels should be measured in cells 

using chemilumigenic probes (Li, Zhu et al. 1999).  If the in vivo data supports 

the in vitro data then further work should be carried out to determine the 

mechanism or factors involved in the altered levels of ROS.  Specifically, assays 

should be carried out where the concentrations of calcium are altered and the 

ROS levels measured.  Many studies have demonstrated that calcium regulates 

ROS generation; therefore; it will be pivotal in determining whether this is also 

the factor leading to the altered ROS generation in the Tg mice (Yan, Wei et al. 

2006).  In addition, our studies demonstrated that across different brain regions 

and with advancing age there were significant differences in the generation and 

break down of superoxide across a kinetic time plot.  Many studies have 

demonstrated that there are differences in the levels and activities of many 

antioxidants that are tissue and age specific (Hussain, Slikker et al. 1995).  

Further work should be carried out to determine whether the levels and activities 

of specific antioxidants, specifically superoxide dismutase, are altered across the 
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different brain regions, with advancing age, and between the two genotypes.  

Changes in the activities of these antioxidants will aid in elucidating the 

mechanism of action that cells in the Tg mice, in different brain regions, or with 

advancing age use to decrease the levels of ROS and therefore use as a 

compensatory mechanism to decrease damage to the cell. 
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