Understanding Operational Amplifiers

Cheng Zhang Nan Xia Alexander Gollin Kenneth Young Patrick Powers

Outline

- Cheng History
- Pat OP AMP Construction/design
- Alex OP Amp Application Circuits
- Ken Effect of Input offset voltage
- Nan Effect of Slew Rate, Packaging, Conclusion

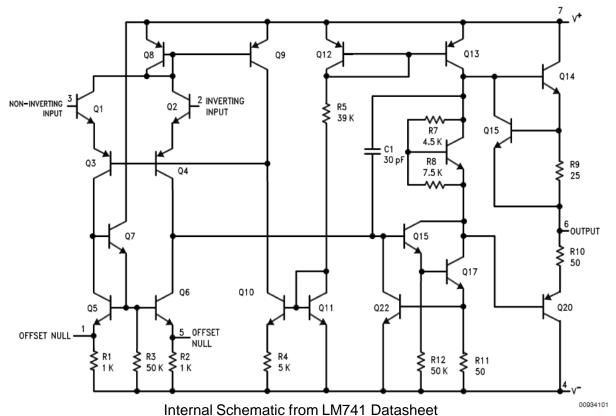
History

1941	First vacuum tube op-amp	Karl D. Swartzel Jr.
1947	First op-amp with non- inverting input	John R. Ragazzini
1949	First chopper-stabilized op- amp	Edwin A. Goldberg
1961	Discrete IC op-amp	

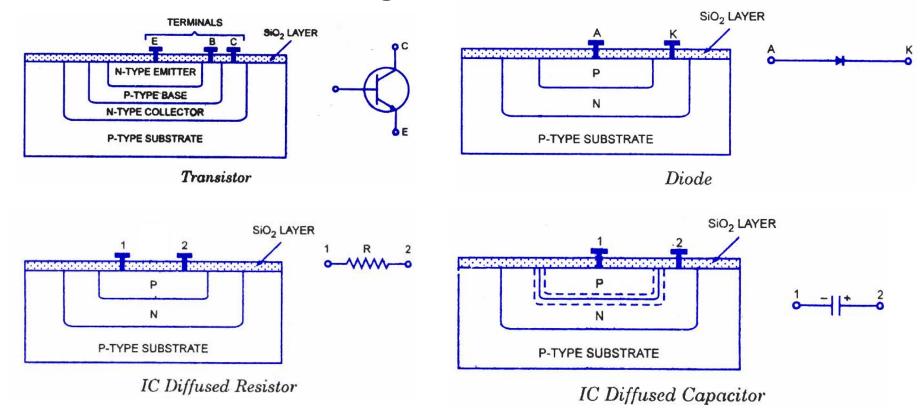
History Continued

1963	First monolithic IC op-amp	Bob Widlar
1970	First high-speed, low-input current FET design	
1972	Single sided supply op- amps being produced	

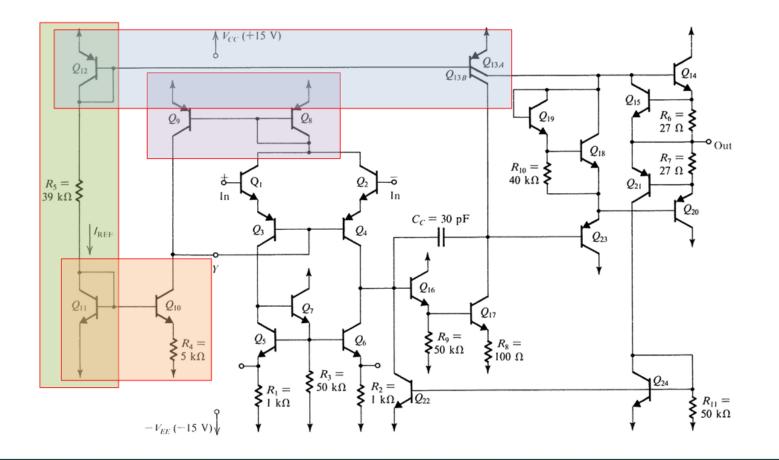
Op Amp Construction

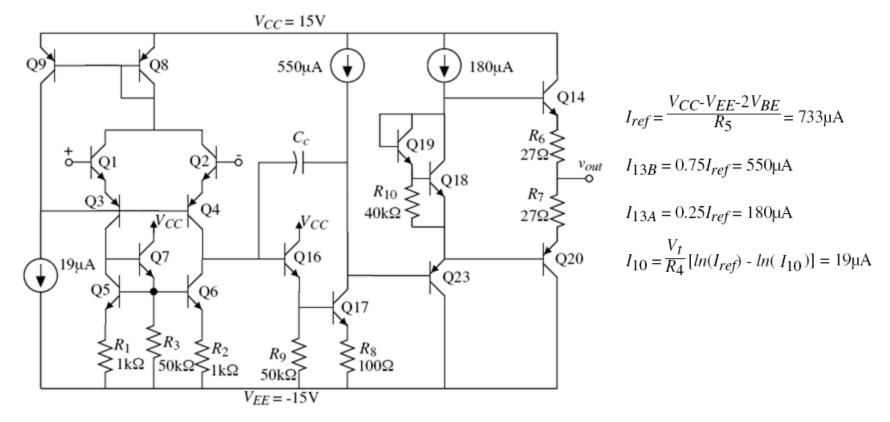

- Integrated Circuit(IC) Main Categories:
 - Linear ICs
 - Performs amplification or linear operations on signals.
 - Monolithic ("one stone") Circuits
 - The entire circuit is embedded upon a single piece of semiconductor.

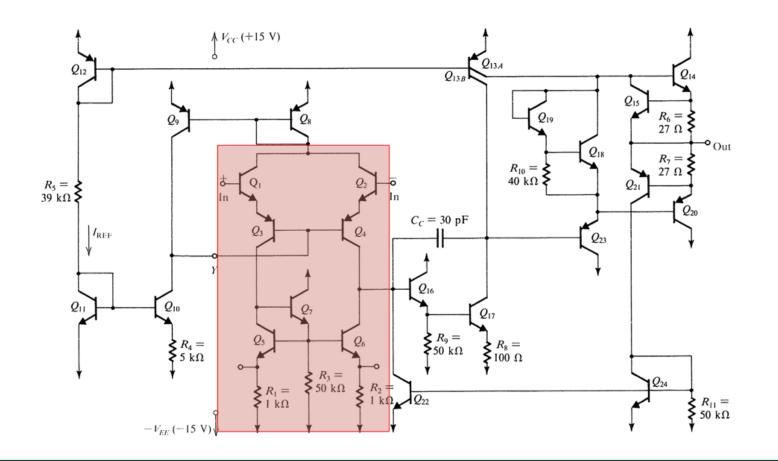
µA741 Op-Amp


Bias Circuit
Input Stage
Intermediate Stage

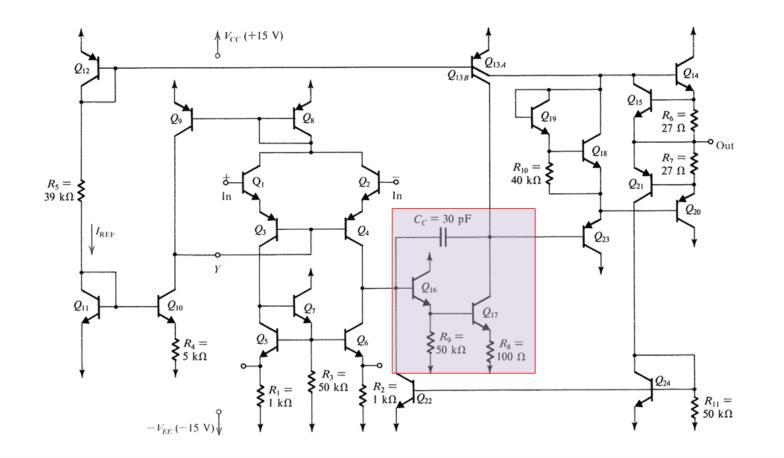
Output Stage


•Short-circuit Protection


Monolithic Building Blocks


Biasing Circuit

Biasing Circuit

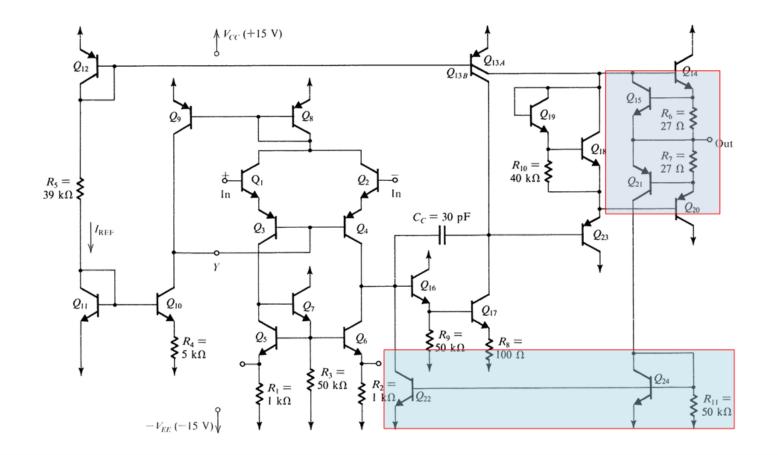

Input Stage

Input Stage

- Q1, Q2 are emitter followers.
- Q3, Q4 in common-base configuration serve as differential amplifier, level shifters and protect Q1, Q2 against emitter-base junction breakdown.
- Q5, Q6, Q7 and R1, R2, R3 provide the load (active load) for the differential amplifier.

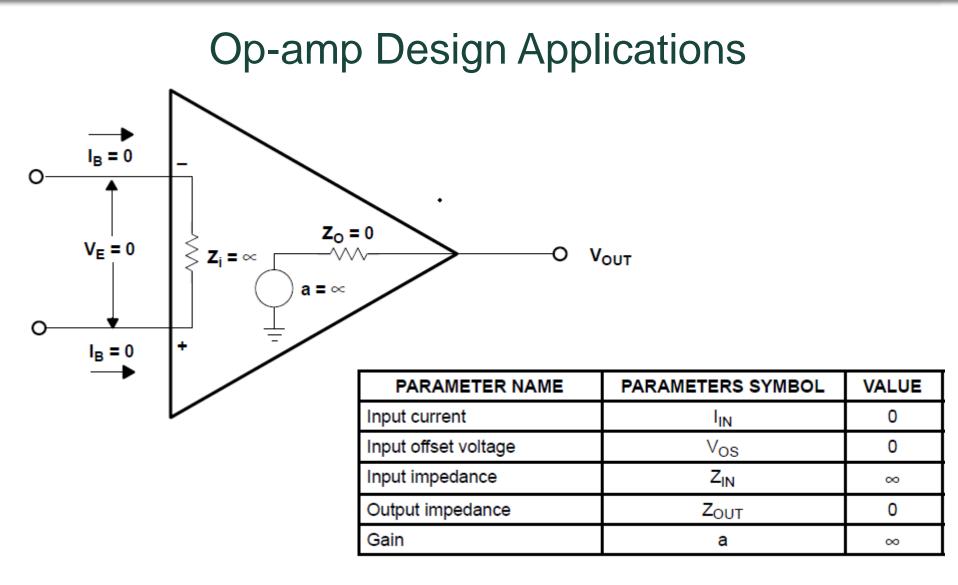
Intermediate Stage

Intermediate Stage

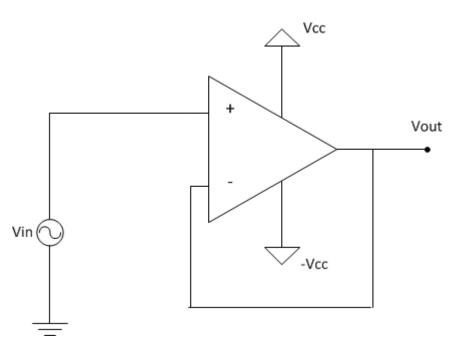

- Q16 is an emitter follower.
- Q17 is a common-emitter amplifier, loaded by Q13B.
 - GAIN $\approx (g_{m-Q17})(r_{0-Q13B})$
- Cc is the internal compensation cap used to maintain stability when the op-amp is used in a feedback configuration.

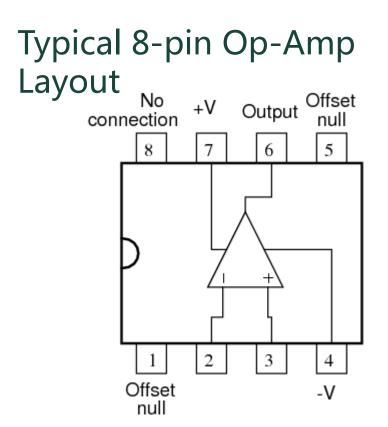
Output Stage Q19 Q18 · *↓ V_{cc}* (+15 V) Q13.4 Q_{12} Q13B Q_{15} Q_{19} $R_6 = \begin{cases} \\ 27 \\ \Omega \end{cases}$ Q_9 • Out Q18 $R_{7} =$ ş $\begin{array}{c} R_{10} = \\ 40 \text{ k}\Omega \end{array}$ 27 Ω $\begin{array}{c} R_5 = \\ 39 \text{ k}\Omega \end{array}$ Q_{21} Q_2 -0 In In Q_{20} $C_C = 30 \text{ pF}$ Q_3 /_{REF} Q_4 Q_{23} Y Q_{16} Q_{11} Q_{10} Q_{17} $\begin{array}{l} R_9 = \\ 50 \text{ } k\Omega \end{array}$ $\begin{cases} R_4 = \\ 5 \ k\Omega \end{cases}$ Q_5 Q_6 $R_8 = 100 \Omega$ 0 $\begin{cases} R_3 = \\ 50 \ k\Omega \end{cases}$ -0 Q_{24} $\begin{cases} R_1 = \\ 1 \ k\Omega \end{cases}$ $\begin{cases} R_{11} = \\ 50 \text{ k}\Omega \end{cases}$ -*V_{EE}* (−15 V)

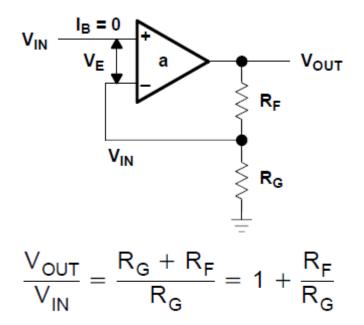
Output Stage

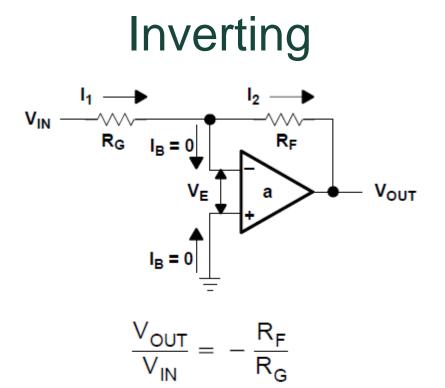

- Q23 is an emitter follower.
- Q14, Q20 are a complementary push-pull, or Class AB amplifier.
- Q19, Q18 are a Darlington-pair, but act similar to diodes. They maintain a V_{BE} drop to smooth out the crossover distortion of Q14, Q20.

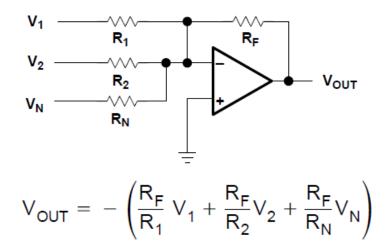
Short-circuit Protection


Short-circuit Protection

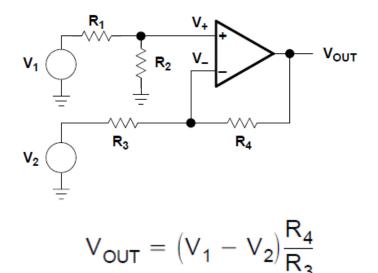

- Q15, Q21 are normally off.
- If too much current is being output (~25mA), the voltage drop across R6, R7 will turn Q15, Q21 on to bleed off the current via Q22, Q24 current mirror.

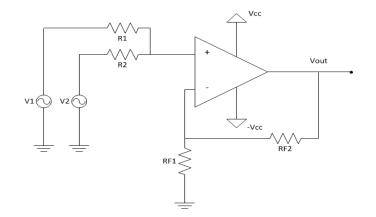

Simple Buffer Circuit or Voltage Follower



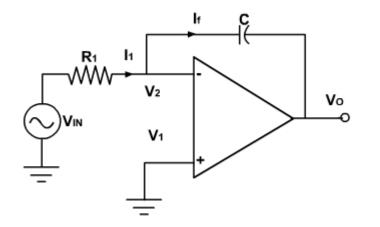

Amplifier Circuits

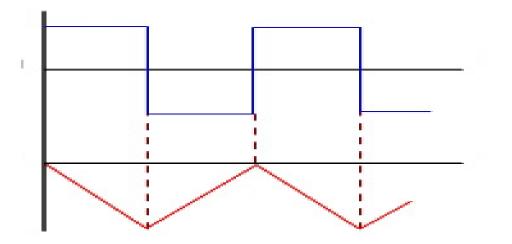
Non-Inverting

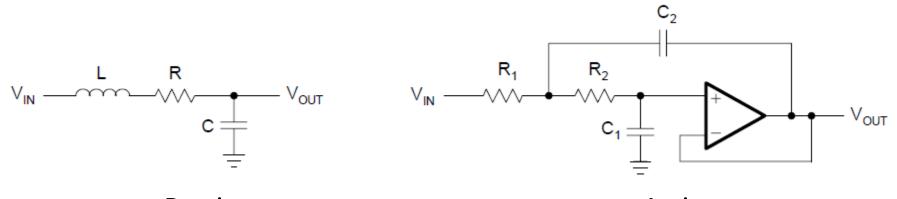



Adder

Differential




Non-Inverting Summing Amplifier


$$Vout = \left(1 + \frac{Rf2}{Rf1}\right) \cdot \left(V1 \cdot \frac{R2}{R1 + R2} + V2 \cdot \frac{R1}{R1 + R2}\right)$$

Integrator

Active Filter Design

Passive

Active

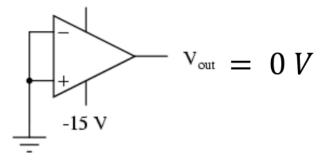
OP AMP Specifications

Some Specifications to be aware of when using Operational Amplifiers in your circuits.

- Input Offset Voltage- Input Offset Null Pins
- Slew Rate

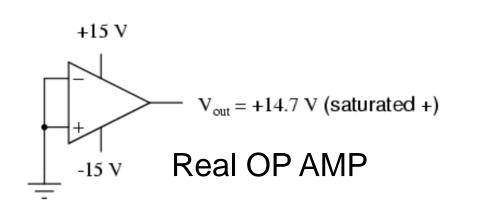
LM741 Datasheet

Electrical Characteristics (Note 5)

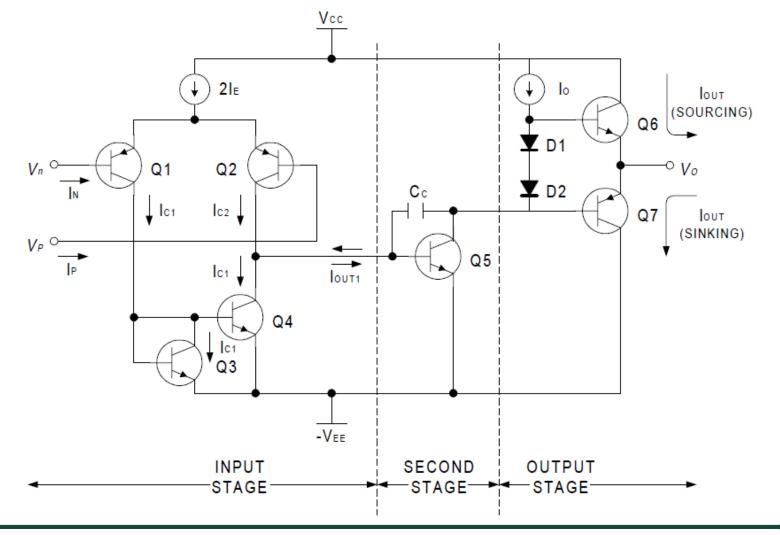

Parameter	Conditions LM741			Α		LM741			LM741C		
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C					\frown					
	$R_s \le 10 \ k\Omega$					1.0	5.0		2.0	6.0	mV
	$R_{s} \le 50\Omega$		0.8	3.0		\sim					mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_{\rm S} \le 50\Omega$			4.0							mV
	$R_s \le 10 \ k\Omega$						6.0			7.5	mV
Average Input Offset				15							µV/°C
Voltage Drift											
Input Offset Voltage	$T_A = 25^{\circ}C, V_S = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	$T_A = 25^{\circ}C$		3.0	30		20	200		20	200	nA
	$T_{AMIN} \leq T_A \leq T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	$T_A = 25^{\circ}C$		30	80		80	500		80	500	nA
	$T_{AMIN} \leq T_A \leq T_{AMAX}$			0.210			1.5			0.8	μA
Input Resistance	$T_A = 25^{\circ}C, V_S = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \leq T_A \leq T_{AMAX},$	0.5									MΩ
	$V_{s} = \pm 20V$										
Input Voltage Range	$T_A = 25^{\circ}C$							±12	±13		۷
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

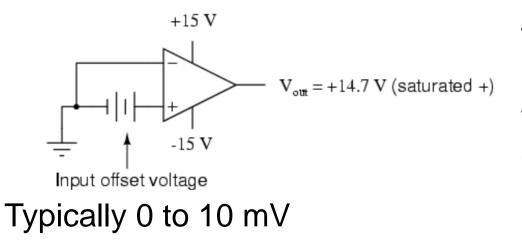
Electrical Characteristics (Note 5) (Continued)

Parameter	Conditions	LM741A			LM741			LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	1
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$										
	$V_{s} = \pm 20V, V_{o} = \pm 15V$	50									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
	$R_L \ge 2 k\Omega$,										
	$V_{s} = \pm 20V, V_{o} = \pm 15V$	32									V/mV
	$V_{s} = \pm 15V, V_{o} = \pm 10V$				25			15			V/mV
	$V_{\rm S} = \pm 5V, V_{\rm O} = \pm 2V$	10									V/mV
Output Voltage Swing	$V_s = \pm 20V$										
	$R_L \ge 10 \ k\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									٧
	$V_{\rm S} = \pm 15 V$										
	$R_L \ge 10 \ k\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		٧
Output Short Circuit	$T_A = 25^{\circ}C$	10	25	35		25			25		mA
Current	$T_{AMIN} \leq T_A \leq T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \leq T_A \leq T_{AMAX}$										
Rejection Ratio	$R_{s} \le 10 \text{ k}\Omega, V_{CM} = \pm 12 V$				70	90		70	90		dB
	$R_{s} \le 50\Omega$, $V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \leq T_A \leq T_{AMAX},$										
Ratio	$V_{\rm S}$ = ±20V to $V_{\rm S}$ = ±5V										
	$R_{s} \le 50\Omega$	86	96								dB
	$R_{s} \le 10 \ k\Omega$				77	96		77	96		dB
Transient Response	T _A = 25°C, Unity Gain										
Rise Time			0.25	0.8		0.3			0.3		μs
Overshoot			6.0	20		5			5		%
Bandwidth (Note 6)	$T_A = 25^{\circ}C$	0.437	1.5								MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7			0.5			0.5		V/µs
Supply Current	T _A = 25°C					1.1	2.8		1.7	2.8	mA

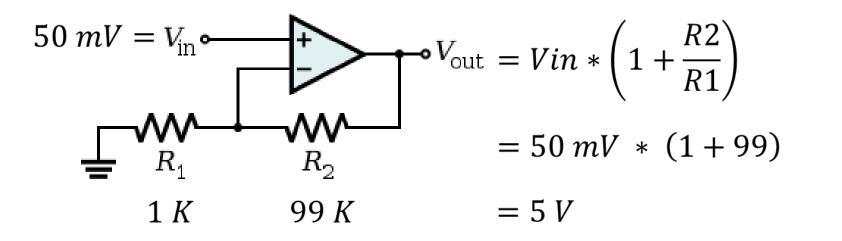

What is Input Offset Voltage?

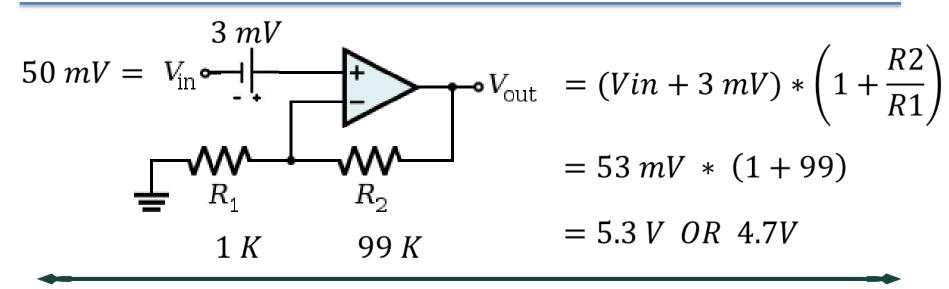
+15 V


In an Ideal Op Amp the output should be exactly 0v with inputs shorted.


Ideal OP AMP

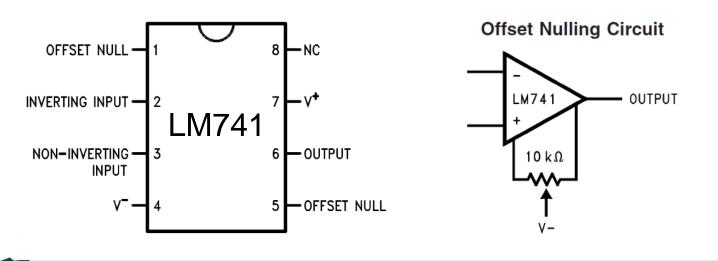
However In a real OP Amp there will be some output voltage when the inputs are shorted due to slight differences in the internal OP Amp transistors

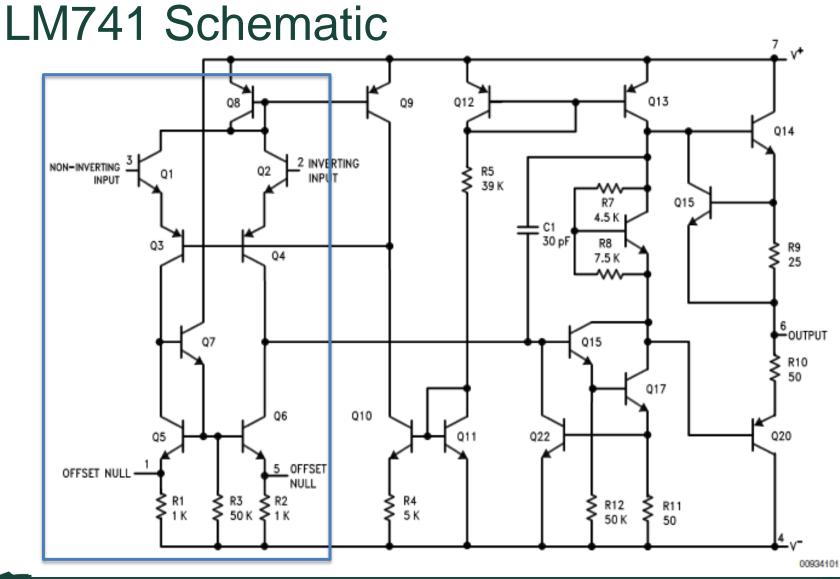

What Causes Input Offset Voltage?



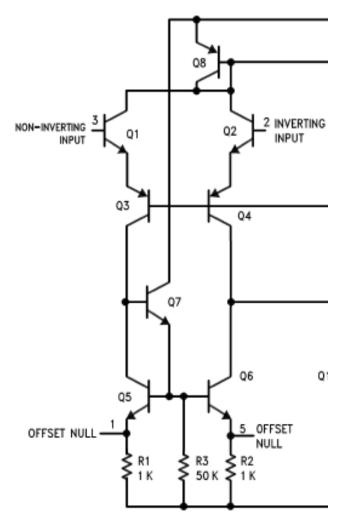
The Input Offset Voltage can be modeled as a small voltage always present at one of the inputs to an Ideal Op Amp.

Effect of Input Offset Voltage

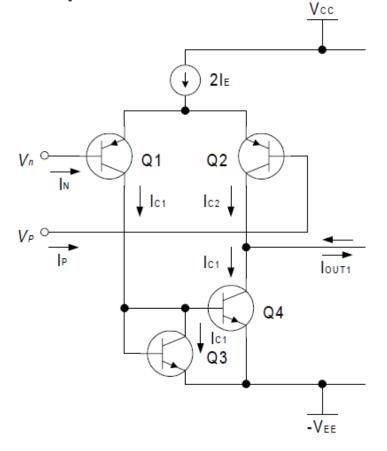


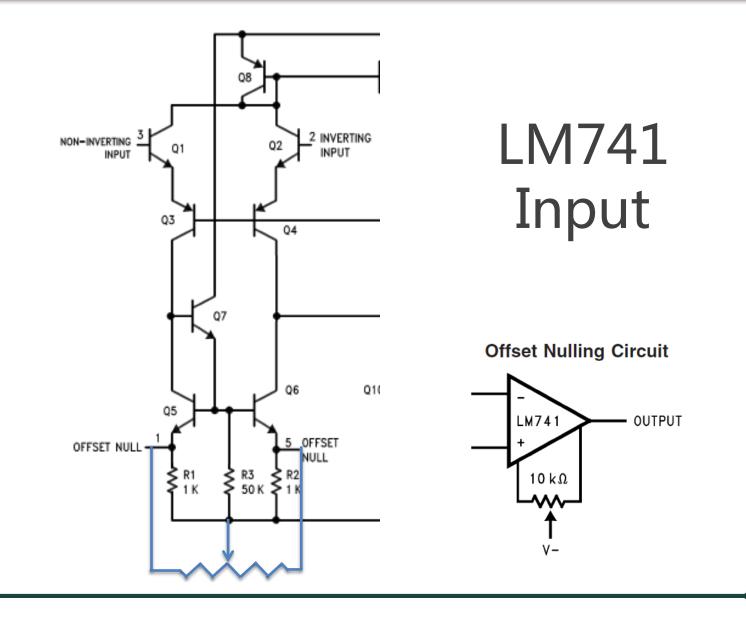


LM741 Null Pins


Some Op Amps have NULL Pins which allow adjustment to compensate for Input Offset Voltage.

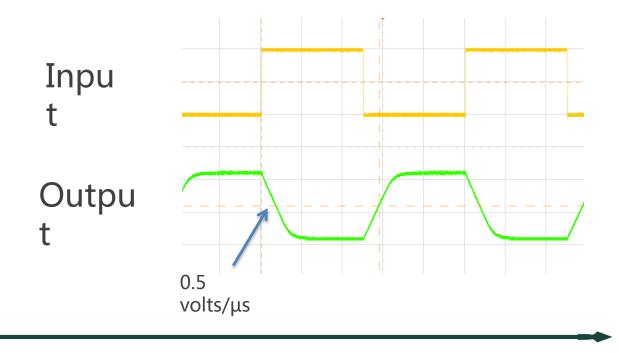
- LM741 Has Null Pins
- LM324 Does NOT have Null Pins



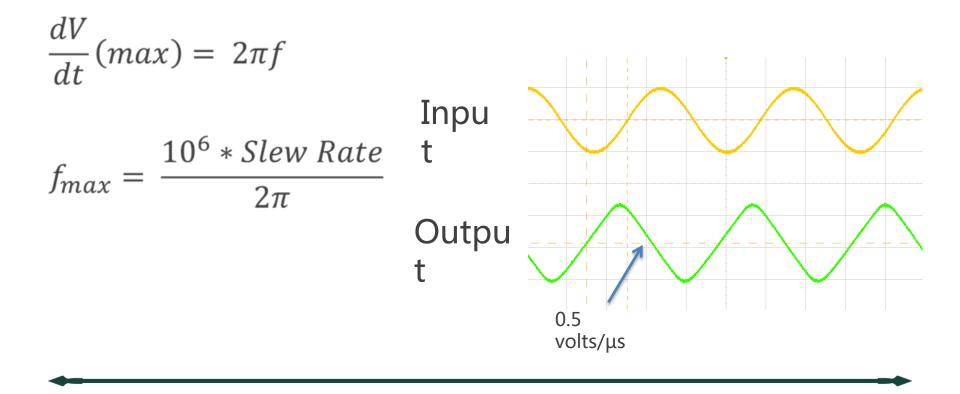


LM741 Input

Generalized Op Amp Input- similar to LM324



Slew Rate


The Slew Rate of an Op Amp is the maximum rate of change in the output voltage expressed in volts/ μ s

The LM741 has a slew rate of 0.5 volts/ μ s

The maximum frequency input sine which can be applied before slew rate distortion is seen-

$$\frac{dv}{dt}(\sin(2\pi ft)) = 2\pi f\cos(2\pi ft)$$

Purchasing an Op-amp

- Package
 - DIP
 - TSSOP
 - MSOP
- Mount Type
 - Surface Mount
 - Through Hole

- 1. Package
 - Dual in-line-package (DIP): Regular sized op amp.
 - Thin Shrink Small outline package (TSSOP):

Smaller body size & lead pitches (0.9mm thick).

• Micro small outline package (MSOP):

Only 3mm * 3

2. Mount type

- Surface mount
 SOPs are surface mount.
 Need sockets to solder on the PCB.
- Through hole
 DIPs are though hole.
 Sockets will help to remove or switch the op amp.

Conclusion

Cheng - History

Pat - OP AMP Construction/design

Alex - OP Amp Application Circuits

Ken - Effect of Input offset voltage

Nan - Effect of Slew Rate, Packaging, Conclusion

Thank you