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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

1. PRIGOGINE
STUART A. RICE

vii



PREFACE

The first attempts to model proteins on the computer began almost 30 years ago.
Over the past three decades, our understanding of protein structure and dynamics
has dramatically increased as a result of rapid advances in both theory and
experiment. The Protein Data Bank (PDB) now contains more than 10,000 high-
resolution protein structures. The human genome project and related efforts
have generated an order of magnitude more protein sequences, for which we do
not yet know the structure. Spectroscopic measurement techniques continue to
increase in resolution and sensitivity, allowing a wealth of information to be
obtained with regard to the kinetics of protein folding and unfolding, comple-
menting the detailed structural picture of the folded state. In parallel to these
efforts, algorithms, software, and computational hardware have progressed to
the point where both structural and kinetic problems may be studied with a fair
degree of realism.

Despite these advances, many major challenges remain in understanding
protein folding at both a conceptual and practical level. There is still significant
debate about the role of various underlying physical forces in stabilizing a
unique native structure. Efforts to translate physical principles into practical
protein structure prediction algorithms are still at an early stage; most successful
prediction algorithms employ knowledge-based approaches that rely on
examples of existing protein structures in the PDB, as well as on techniques
of computer science and statistics. Theoretical modeling of the dynamics of
protein folding faces additional difficulties; there is a much smaller body of
experimental data, which is typically at relatively low resolution; carrying out
computations over long time scales requires either very large amounts of
computer time or the use of highly approximate models; and the use of
statistical methods to analyze the data is still in its infancy.

The importance of the protein folding problem—underscored by the recent
completion of the human genome sequence—has led to an explosion of
theoretical work in areas of both protein structure prediction and kinetic
modeling. An exceptionally wide variety of computational models and
techniques are being applied to the problem, due in part to the participation
of scientists from so many different disciplines: chemistry, physics, molecular
biology, computer science, and statistics, to name a few. This has made the field
very exciting for those of us working in it, but it also poses a challenge; how can
the key issues in state of the art research be communicated to different
audiences, given the interdisciplinary nature of the task at hand and the methods
being brought to bear on it?

iX



X PREFACE

The objective of this volume of Advances in Chemical Physics is to discuss
recent advances in the computational modeling of protein folding for an audience
of physicists, chemists, and chemical physicists. Many of the contributors to this
volume have their roots in chemical physics but have committed a significant
fraction of their resources to studying biological systems. The chapters thus
address the target audience but incorporate approaches from other areas because
they are relevant to the methods that the various authors have developed in their
laboratories. While some of the chapters contain review sections, the principal
focus is on the authors’ own research and recent results.

When modeling protein folding the key questions are (a) the nature of the
physical model to be used and (b) the questions that the calculations are aimed
at answering. It is impossible in a single volume to cover all of the different
approaches that are currently being used in research on protein folding. Never-
theless, a reasonably broad spectrum of computational methods is represented
here, as is briefly described below. The volume is organized so as to group
together contributions in which similar approaches are adopted.

The simplest models of proteins involve representations of the amino acids as
beads on a chain (typically taken to be hydrophobic or hydrophilic, depending
upon the identity of the amino acid) embedded in a lattice. Primitive models of
this type employ a simple lattice such as a cubic lattice, and they use a single
center to represent each amino acid. These models are very fast computation-
ally, but lack a level of detail (both structurally and in their potential energy
function) to permit prediction of protein structure from the amino acid sequence.
On the other hand, they can be extremely valuable in providing conceptual
insight into the general thermodynamic and kinetic issues as to why and how
proteins fold into a unique native state; they can also be profitably used to model
folding kinetics, as well as to make testable predictions for such kinetics that
can be compared with experimental data. The contributions of Thirumulai et al.
and Dinner et al. discuss models of this type, presenting both conceptual
insights into the basis of protein folding and results for modeling of specific
protein folding events.

Reduced models of proteins (i.e., models not containing complete atomic
detail) can be used to make structural predictions, either by allowing assessment
of the fitness of a protein structure already in the PDB as a model for an
unknown sequence (‘‘threading’) or by carrying out Monte Carlo simulations
using the model and a suitable potential energy function. The contribution by
Meller and Elber describes a classical threading approach in which the amino
acid sequence is ‘“‘threaded” in an optimal fashion onto a set of candidate
template structures using dynamic programming techniques, and the suitability
of the template is evaluated by a potential energy function. These authors have
worked out new methods for optimizing such functions, which are discussed in
detail in their chapter.



PREFACE X1

If a reduced (or other) model is used to predict protein structure via
simulation, without direct reference to structures in the PDB, this is referred to
as ‘““‘ab initio protein” structure prediction. Potential energy functions for ab
initio prediction can be derived either from physical chemical principles or from
a “knowledge-based”” approach based on statistics from the PDB (e.g., the
probability of observing a residue-residue distance for a given pair of amino
acids). For reduced models, the use of knowledge-based potential of some sort
is mandated. The contributions of Eyrich et al., Skolnick and Kolinsiki, and
L’Heureux et al. derive originally from an ab initio approach using reduced
models. However, all of these groups have in the past several years increasingly
incorporated empirical elements from threading and other such approaches, so
that what is described in these contributions is more of an attempt to integrate
reduced model simulations with additional information and techniques that can
improve practical structure prediction results. Several of these research groups
have entered the CASP (Critical Assessment of Protein Structure Prediction)
blind test experiments, which allow a comparative evaluation of the prediction
accuracy of the different methods employed by the participants; results from
the most recent such experiment, CASP4 (not reported in this volume because
the results were available subsequent to submission of most of the chapters),
were encouraging with regard to the ability of these hybrid methods to provide
improvement in many cases over methods not incorporating simulations.

The use of models employing an atomic level of detail (e.g. a molecular
mechanics potential function) in addressing the protein folding problem
presents significant difficulties for two reasons: (1) A large expenditure of
computation time is required to evaluate the model energy at each configuration;
(2) the quality of the potential energy functions and solvation model are critical
in being able to accurate compare the stability of alternative structures. The
contribution by Klepeis et al. discusses both algorithms designed to reduce the
required computational effort by sampling phase space more efficiently and a
wide variety of applications of atomic level models using these more efficient
sampling techniques. The contribution from Wallgvist et al. is more narrowly
focused on a single problem: the use of detailed atomic potential functions in
conjunction with a continuum solvation model to distinguish native and
“native-like” protein structures from ‘“‘decoys”—alternative structures gener-
ated by various means and intended to challenge the model’s accuracy. Both of
these contributions demonstrate that considerable progress is being made in the
application of atomic level models with regard to improving both accuracy and
efficiency.

In the end, a thorough description of all aspects of protein folding will
require the use of the full range of models and methods discussed in this
volume. In the simplest hierarchical picture, one can imagine using inexpensive
reduced models to generate low-resolution structures that can then be refined
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using more detailed (and computationally expensive) approaches. Although
progress will undoubtedly continue in the development of physical chemical
models, empirical information and phenomenological approaches will always
provide additional speed and reliability if practical results are desired. How to
best combine all of these elements represents one of the principal issues facing
those working in the field; it also exemplifies the need for new ideas and
approaches.

Columbia University RICHARD A. FRIESNER
New York, New York
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global optimization, 341
torsion angle dynamics (TAD), 341-345,
356-359
protein folding dynamics:
aBB algorithm, 367-369
coil-to-helix transitions, 369-390
pathways, 373-378
rate disconnectivity graphs, 378—380
reaction coordinates, 383—-386
solvated tetra-alanine, 386—-390
time evolution of quantities, 380—-382
transition rates and master equation,
371-373
unsolvated tetra-alanine, 370-371
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framework and implementations, 390—403
local stationary point search methods,
392-393
minima and transition rate search,
393-397
potential energy surface analysis,
397-403
future research, 403—-405
potential energy surface, 366—367
secondary structure formation, 364
stationary points, 365-366
protein-protein interactions:
binding affinity prediction, 408—414,
430-442
computational studies, 440—442
decomposition techniques, 431
minimization scheme, 438—-440
modeling, 431-438
binding site structure prediction, 407408,
414-430
class I HLA molecule structures, 415
computational studies, 421-430
modeling techniques, 418-420
prediction techniques, 416—418
programming tools, 420-421
future research issues, 442—444
research background, 404-414
solution enclosure, 279-287
twice continuously differentiable NLPs,
269-279
oBB algorithm, 276-279
convex lower bounding, 275
feasible region convexification, 274275
nonconvex terms, underestimation,
272-274
special structure, underestimation, 270—
272
variable bound updates, 275-276
Dielectric models, native vs. decoy
conformations:
distance-dependent dielectric approximation,
480-481
screened Coulomb approximation, 478—-480
Diffusion-collision model, folding rates of
proteins, 10—11
Dihedral angles, protein-protein interactions,
binding site structure prediction,
418-420, 432435
Distance constraints, tertiary protein structure:
implementation and results, 206—207
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knowledge-based prediction, 202
Distance-dependent dielectric approximation,
native vs. misfolded protein
conformation, 480-481
Distance geometry, sequence-structure-function
prediction, 160
Distance power-law potentials, pairwise models,
92-93
Distant-dependent pair energies, threading
potentials, protein recognition, 79-80
Disulfide bonds, protein folding mechanism:
barnase engineering, 62—-63
BPTI refolding, 53-55
modeling techniques, 58—62
proximity rule, 55-58
bovine pancreatic trypsin inhibitor (BPTI),
55
folding kinetics, 56—58
loop formation probability, 55
Double Z-score filter:
protein energy gaps, 112-114
THOM2 model, vs. pair energies, 120—126
THreading Onion Model 2 (THOM?2), 114—
126
HL test, 114-118
recognition excluded from training, 118—
120
vs. pair energies, 120—126
DYANA protocol, sparse restraints, structural
refinement, torsion angle dynamics
(TAD) vs., 353-356
Dynamic programming (DP) algorithm:
energy parameter optimization, 87—88
protein recognition, 79
sequence-structure-function prediction,
threading procedures, 136—138
Dynamics analysis, protein folding dynamics,
coil-to-helix transitions, 390—-403

ECEPP/3 program:

oligopeptide structure prediction:
global optimization, 299-300
potential energy models, 290-291
solvation energy models, 294-296

protein folding mechanisms:
coil-to-helix transitions, 369-370

solvated tetra-alanine, 386—390

potential energy surfaces, 403—405

protein-protein interactions:
binding site structure prediction:
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ECEPP/3 program: (Continued)
future issues, 442—444
global optimization, 438—440
solvation modeling, 438
global optimization, 420—421
sparse restraints, structural refinement:
BB algorithm, 345-347
computational analysis, 348—353
DYANA protocol vs., 354—356
energy modeling, 340—-341
global optimization, torsion angle
dynamics, 357-359
Effective Energy Function (EEF1), potential
energy surface, 404-405
1leh2 proteins, ab initio simulations, 259

Eigenmode-following methods, protein folding:

coil-to-helix transition, 371-373
stationary points searching, 365, 392-393
uphill searches, 394—395
Energy-directed approach (EDA), oligopeptide
structure prediction:
computational studies, 322—-336
local minimum energy conformations,
319-321
Energy gaps:
double Z-score filter, 112—114
native vs. decoy protein conformations, 464
Holm and Sander single decoys, 472-474
screened Coulomb approximation,
dielectric models, 478—-480
optimization protocols, 101-107
protein folding kinetics, lattice models, 6—8
Z-score filter, 108112
Energy minimization, oligopeptide structure
prediction, global optimization
framework, 297-300
Energy parameter optimization, protein
recognition, 85-87
learning and control sets, 87—-88
linear programming protocol, 88—89
Energy profile models:
distance power-law potentials, 92—93
minimal models, 91-92
new energy profiles, 93—100
parameter-free models, 90-91
protein recognition, 83—-85
Entropic states, oligopeptide structure
prediction:
free energy modeling, 313-314
harmonic approximation, 314-316
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Equilibrium probability, protein folding,
potential energy surface, 398-399
Escherichia coli, sequence-structure-function
prediction:
future issues, 183-186
genome-scale threading, 153
ESMC methods, sequence-structure-function
prediction, 144—146
Euler angles, protein-protein interactions,
binding site structure prediction,
418-420
Excluded volume interactions, conformational
space reduction, 43—44
Exhaustive enumeration, protein folding
kinetics, lattice models, 41

Family protein recognition, THOM2 model vs.
pair energies, 122—-126
FASTA database, sequence-structure-function
prediction, first-pass threading,
148-149
Fill algorithm, protein folding, 395-396
First-pass threading, sequence-structure-
function prediction, 148—149
Fischer database, sequence-structure-function
prediction:
generalized comparative modeling, 161-164
PROSPECTOR?2 applications, 152
threading procedures, 149—-151
Flavodoxin (2FX2), tertiary protein structure,
ambiguous constraints, 208-209
Flexible-angle constraints, tertiary protein
structure, constraint analysis, 203—204
Flexible models, protein-protein interactions,
binding affinity prediction, 411-414
Folding rates of proteins:
statistical analysis, 9-26
database, 11-16
multiple-descriptor models, 19-24
physical observations, 24-26
review, 9—11
single-descriptor models, 16—19
tertiary protein structure, ab initio predictions:
PDB-derived secondary structure
simulations, 238-246
methodology, 238-241
size-dependent potential, 241-245
terminal loop definition and truncation,
245
three-dimensional topologies, 245-246
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predicted-derived secondary structure
simulations, 246-260
research background, 224-226
size-dependent potential energy function,
226-237
error identification, 226—-230
improvements in, 230-233
results, 233-237
Force field potentials:
native vs. decoy protein conformations,
462-464
sparse restraints, structural refinement, energy
modeling, 339-341
Fragment lists:
protein-protein interactions, binding affinity
prediction, 413-414
tertiary protein structure, search space
limitation, local threading, 211-212
Fragment screening, tertiary protein structure,
search space limitation, 212-213
Free energy directed approach (FEDA),
oligopeptide structure prediction,
local minimum energy conformations,
321
Free energy global minum (FEGM),
oligopeptide structure prediction,
computational studies, 322-336
Free energy modeling:
oligopeptide structure prediction, 312-318
computational studies, 322-336
protein folding:
coil-to-helix transition, 371-373
potential energy surface, 398
Frozen environment approximation (FEA):
sequence-structure-function prediction:
first-pass threading, 148—149
threading procedures, 136—138
THOM2 model, vs. pair energies, 120—126
Fuzzy functional forms (FFF), sequence-
structure-function prediction:
active site identification, 173-174
biochemical function prediction, 175-178
future issues, 183—184

Gap energies:
deletions, 107—108
global alignments vs. local alignments,
108
optimization protocols, 101-107
training protocols, 103—-107
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Gapless threading:
distance power-law potentials, 92-93
energy parameter optimization, 86—87
learning and control sets, 87—88
pseudo-native structures, 104—107
Gaussian distribution, protein folding kinetics,
random bond model, 40
GeneComp modeling, sequence-structure-
function prediction, 183—-186
General nonconvex terms, deterministic global
optimization, twice continuously
differentiable NLPs, 272-274
aBB algorithm, 276-279
Genetic algorithms:
protein folding statistical analysis, 5—6
three-descriptor models, 22-24
protein-protein interactions, binding affinity
prediction, 413-414
sequence-structure-function prediction,
ab initio prediction, 139-143
Genetic neural network (GNN) method, protein
folding statistical analysis, lattice
models, 8
Geometrical representation:
deterministic global optimization, twice
continuously differentiable NLPs,
282-287
protein-protein interactions, binding site
structure prediction, 418-420
tertiary protein structure, 198—199
knowledge-based prediction, 202-203
Gerschgorin’s theorem, deterministic global
optimization, twice continuously
differentiable NLPs, 273-274
Gibbs-Boltzmann distribution, oligopeptide
structure prediction, free energy
modeling, 313-314
Global alignments, protein energy gaps, 108
double Z-score filter, 112-114
Global minimization. See also Deterministic
global optimization
native protein detection, 461-462
oligopeptide structure prediction, 297-300
sparse restraints, structural refinement, 341
torsion angle dynamics (TAD), 356—-359
twice continuously differentiable NLPs,
solution enclosure, 280-282
Globular proteins:
sequence-structure-function paradigm,
ab initio folding, 164—169
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Globular proteins: (Continued)
tertiary protein structure, distance constraints,
206-207
GLO-DOCK software, protein-protein
interactions, binding site structure
prediction, 435-436
GLO-FOLD software, oligopeptide structure
prediction, global optimization,
299-300
Glutathione, protein folding kinetics, 57-58
Go model:
protein folding kinetics, 40—41
two-state protein folding, 51
Gradient discontinuities, oligopeptide structure
prediction, solvation energy models,
293-296
Graph-theory techniques, protein folding,
coil-to-helix transition pathways,
374-378
Grid search algorithm, protein folding stationary
points, 394
GroEL proteins:
chaperonin-facilitated protein folding
mechanism, 64—-66
stretching-induced unfolding, 68—69
unfolding activity, 66—67
disulfide bonds in protein folding, modeling
techniques, 60—62
GroES proteins, chaperonin-facilitated protein
folding mechanism, 64—65

Harmonic approximation, oligopeptide structure
prediction, 314-316
potential energy models, 289-291
Helix pairing, tertiary protein structure:
constraint analysis, 203—204
fragment-based modeling, 213-214
Hessian matrix:
deterministic global optimization, twice
continuously differentiable NLPs,
273-274
oligopeptide structure prediction, harmonic
approximation, 315-316
protein folding:
global optimization, 369
potential energy surface, vibrational
frequencies, 397-398
stationary points searching, 392—393
Hierarchical search algorithm, tertiary protein
structure, 199-200
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search space limitation, 212-213
Hinds-Levitt (HL) set:
distance power-law potentials, 92—93
double Z-score filter, THreading Onion
Model 2 (THOM?2) testing, 114—118
energy parameter optimization, 87-88
minimal models, 91-92
parameter-free optimization, 90-91
THOMI potential, 94—100
Z-score filter testing, 111-112
HLA-DRI pockets, protein-protein interactions,
binding affinity evaluation, 440—442
Holm and Sander single decoys, native vs. decoy
protein conformations, 472-474
Homologous proteins:
energy gap deletions, 107—-108
gap penalty training, 103—107
HL test of, 116—118
protein folding statistical analysis, 28—29
tertiary protein structure, knowledge-based
prediction, 214-218
identification, 215
local templates, 217-218
Homology modeling:
protein-protein interactions, binding site
structure prediction, 407-408
sequence-structure-function paradigm,
147
sequence-structure-function prediction, 134,
155-165
atomic model reconstruction, 160—-161
average model construction, 160
Fischer database results, 161-164
lattice chain, starting construction, 158
lattice folding optimization, 158—159
lattice model and force field, 157-158
Modeller tool, 164—165
Hooke’s law, oligopeptide structure prediction,
potential energy models, 289-291
Hydration shell, oligopeptide structure
prediction:
computational studies, 302-312
solvation energy models, 292-296
Hydrophobic contacts:
native vs. decoy protein conformations, Park
and Levitt decoys, 470-472
tertiary protein structure:
ab initio predictions, folding potential,
226-230
local templates, 218
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Hydrophobic-polar model, protein folding
kinetics, 40

Hydrophobic residue-based superstructure,
polypeptide structure prediction, 360—
362

Hydrophobic zipper hypothesis, protein folding
statistical analysis, 25-26

IMPACT modeling program, native vs. decoy
protein conformations, 462—464

Interior dielectric constant, native vs. decoy
protein conformations, 481-482

Interior point algorithm, energy parameter
optimization, 89

Isothermal simulations, sequence-structure-
function prediction, 144146

Iterative threading, sequence-structure-function
prediction, 151-152

genome-scale threading, 152153

JPRED structures, tertiary protein simulations,
247
protocols, 248-250
JRF parameters, oligopeptide structure
prediction:
computational studies, 301-312
global minimization, 296-300
solvation energy models, 294-296

Kinetic partitioning mechanism (KPM), protein
folding mechanisms, 5253
Knowledge-based prediction:
native vs. decoy conformations

applications, 483—484

approximate effective dielectric models:
distance-dependent dielectric

approximation, 480—-481
screened Coulomb approximation,
478-480

CASP3 targets, 473—-474

decoy data sets, 464—465

energy components, 474—478

force feld calculations, 462—-464

Holm and Sander single decoys, 472—473

interior dielectric constant, 481-482

Park and Levitt decoys, 465-472

research background, 460—-462

tertiary structure:

constraint methods, 201-210

ambiguous constraints, 205, 208-209
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angle constraints, 202, 207-208
distance constraints, 202, 206—-207
implementation, 204-205
predictions, derivation from, 203-204,
209-210
constraint refinement, 219
homology and structural templates,
214-218
identification, 215
local templates, 217-218
multiple templates, 215-217
protein modeling, 197-201
computational models, 197—-198
geometrical representations, 198—199
scoring functions, 200-201
search algorithms, 199-200
research issues, 194—197
search space limitation, 210-214
fragment screening and enrichment,
212-213
local threading and fragment lists,
211-212
secondary structure modeling, 213-214
threading principle, 210-211
sequence-specific potentials, 218-219
Kronecker delta function, protein folding
kinetics, lattice models, 39

Lattice models:
disulfide bonds in protein folding, 58—62
protein folding kinetics, 6-8, 29-30, 38
basic principles, 38—41
computational models, 41-43
contact energies, 39
dense sequence space, 44—49
exhaustive enumeration, 41
Go model, 40-41
hydrophobic-polar model, 40
intermediates, 69—70
Monte Carlo simulation, 41-42
multiple histogram technique, 42
random bond model, 40
side chain models, 41
statistically derived pairwise potentials, 40
sequence-structure-function prediction:
ab initio prediction, 140—143
folding optimization, 158—-159
force field parameters, 157—158
future issues, 180—182
lattice chain, starting construction, 158
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Lattice models: (Continued)
tertiary protein structure, search algorithm,
199-200
Learning sets, energy parameter optimization,
87-88
Length cutoff, protein folding, coil-to-helix
transition pathways, 374-378
Lennard-Jones potentials:
distance power-law potentials, 92—-93
oligopeptide structure prediction, potential
energy models, 290-291
pairwise potentials, 82—83
sequence-structure-function paradigm,
ab initio prediction, 138—139
Levinthal paradox:
conformational space reduction, 43—44
protein folding kinetics, 36—38, 267-269
Ligand identification:
protein-protein interactions, binding affinity
prediction, 410—411
sequence-structure-function prediction,
low-resolution structures, 178—180
future improvements, 184
Linear programming:
energy parameter optimization, 88—89
pairwise potentials:
distance power-law potentials, 92—-93
minimal models, 91-92
new energy profiles, 93—100
parameter-free models, 90-91
protein recognition, energy parameter
calculations, 79-80
THOM1 potential, 94—100
threading potentials, 101-102
Linear regression, protein folding statistical
analysis, 4-5
single-descriptor models, 16—19
Local alignments:
protein energy gaps, 108
double Z-score filter, 113-114
tertiary protein structure, search space
limitation, local threading, 211-212
Local minimum energy conformations,
oligopeptide structure prediction,
318-321
Local templates, tertiary protein structure,
217-218
Long helices, ab initio folding simulation,
257-258
Loop formation probability, protein folding:

kinetics, 56—-58
proximity rule, 55
LOOPP program, protein recognition, gap
penalties, THOM1 and THOM2 models,
106-107
Loop segments:
ab initio folding simulation, 257-258
tertiary protein structure, hierarchical search
space limitation, 212-213
Low-resolution structures, sequence-structure-
function prediction, ligand identification,
178-180
future improvements, 184

M. genitalium, sequence-structure-function
prediction:
future issues, 183—-186
genome-scale threading, 152—-153
Major histocompatibility complex (MHC),
protein-protein interactions:
binding affinity prediction, 414
computational studies, 440—442
decomposition techniques, 431
HLA-DRI1 pockets, 440-442
minimization schemes, 438-440
modeling procedures, 431-438
binding site structure prediction, 407-408,
415-418
HLD-DR3 binding sites, 424—427
Many-body effects, pairwise interactions,
99-100
Master equation, coil-to-helix transition,
time-evolution of quantities, 380382
Met-enkephalin, oligopeptide structure
prediction, computational studies,
304-312, 326-336
Metropolis criterion:
sequence-structure-function prediction,
145-146
tertiary protein structure, scoring functions,
200-201
Minimal models:
coil-to-helix transition:
pathway determination, 374—378
rate disconnectivity graph, 378-380
optimization, 91-92
protein folding, transition state algorithms,
393-397
tertiary protein structure:
geometrical representation, 198—199
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search algorithm, 199-200
Minimum energy structure (MES), protein
folding kinetics, dense sequence space,
46-49
Minimum-saddle-minimum triples, protein
folding:
potential energy surfaces, 366—367
stationary points searching, 395
Misthreaded structures, THOMI1 potential,
94-100
MODELLER technique, sequence-structure-
function prediction:
comparative modeling, 134, 164—165
Fischer database results, 161—-164
Moderate protein folding, mechanisms,
52-53
Molecular dynamics, oligopeptide structure
prediction, solvation energy models,
292-296
Molecular mechanics models, oligopeptide
structure prediction, potential energy
models, 288—-291
Monod-Wyman-Changeaux model, chaperonin-
facilitated protein folding mechanism,
65-66
MONSSTER ab initio folding algorithm,
sequence-structure-function prediction,
174-175
reduced/atomic model compatibility,
171-172
threading-based prediction, 153—155

Monte Carlo plus minimization (MCM) strategy:

oligopeptide structure prediction, local
minimum energy conformations, 321
tertiary folding simulation:
PDB-derived and ideal structures,
238-241
predicted-derived secondary structure
protocols, 248—250
Monte Carlo simulation:
oligopeptide structure prediction, solvation
energy models, 292-296
protein folding kinetics, 6—8
lattice models, 38—41, 41-42
protein-protein interactions, binding affinity
prediction, 412—-414
sequence-structure-function prediction:
ab initio prediction, 139-143
sampling structure selection, 143—146
threading procedures, 136—137
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Motif library, tertiary protein structure, search
space limitation, local threading,
211-212

MSEED algorithm:

oligopeptide structure prediction:
global optimization, 299-300
solvation energy models, 293-296
protein-protein interactions:
binding site structure prediction:
modeling techniques, 435-436
solvation modeling, 437—-438
global optimization, 420-421

Multiple-descriptor models, protein folding

kinetic statistical analysis, 19-24
three-descriptor models, 22-24
two-descriptor models, 20—-22

Multiple histogram, protein folding kinetics,
lattice models, 42

Multiple sequence alignment (MSA) generation,
sequence-structure-function prediction,
first-pass threading, 148—149

Multiple templates, tertiary protein structure,
knowledge-based prediction, 215-217

Murine binding site prediction, protein-protein
interactions, 427-430

Myoglobin (IMBA), tertiary protein structure,
distance constraints, 206—207

Myoglobin (IMBO), tertiary protein structure:

ambiguous constraints, 208—-209
angle constraints, 207-208
structural template identification, 215

Native protein structures:
deletions, 107—108
disulfide bonds in protein folding:
bovine pancreatic trypsin inhibitor (BPTI),
55
modeling techniques, 58—62
energy parameter optimization, 86—87
gap energy optimization, 101-107
THOMI potential, decoy structures,
97-100
THOM?2 potential:
HL test, 118
self-recognition of folds, 120
vs. decoy conformations:
applications, 483—-484
approximate effective dielectric models:
distance-dependent dielectric
approximation, 480—481
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Native protein structures: (Continued)
screened Coulomb approximation,
478-480
CASP3 targets, 473-474
decoy data sets, 464—465
energy components, 474478
force feld calculations, 462—-464
Holm and Sander single decoys, 472-473
interior dielectric constant, 481-482
Park and Levitt decoys, 465-472
research background, 460—462
Nearly bimodal distrbution (NBD), two-state
protein folding, 49-51
Needleman-Wunsch global alignment program,
sequence-structure-function prediction,
first-pass threading, 149
Negative energies, Z-score filter testing,
109-112
Neural networks:
folding rates of proteins, 9—-11
protein folding statistical analysis, 4—5
single-descriptor models, 16—19
Newton-Raphson method, protein folding:
searching strategies, 365-366
stationary points searching, 392—-393
Nonbonded energy terms, oligopeptide structure
prediction, potential energy models,
290-291
Non-native intermediates, disulfide bonds in
protein folding:
bovine pancreatic trypsin inhibitor (BPTI),
54-55
modeling techniques, 58—62
NPSOL program:
protein-protein interactions:
binding site structure prediction, 435-436
global optimization, 438440
global optimization, 420—421
sparse restraints, structural refinement, BB
algorithm, 345-347
Nuclear magnetic resonance (NMR):
sparse restraints:
computational study, 347-353
structural refinement, 338—-359
tertiary protein structure, constraint analysis,
201-210
Nuclear Overhauser effect, sparse restraints,
structural refinement:
computational study, 348—353
energy modeling, 339-341
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Oligopeptide structural prediction, deterministic
global optimization:
computational models, 301-312
free energy computational studies, 322—-336
free energy modeling, 312-314
global optimization framework, 296—300
harmonic approximation, 314-318
local minimum energy conformation,
318-322
potential energy models, 288—291
solvation energy models, 291-296
1aj3 protein, ab initio folding simulation, 256
lam3 protein, ab initio folding simulation,
256-257
1bg8-chain A protein, ab initio simulations,
259-260
Imzm protein, ab initio folding simulation,
257
OONS parameter set, oligopeptide structure
prediction:
computational studies, 301-312
solvation energy models, 293-296
Open reading frames (ORFs), sequence-
structure-function paradigm, 132
genome-scale threading, 153
OPLS-AA force field, native vs. decoy
conformations:
applications, 483-484
approximate effective dielectric models:
distance-dependent dielectric
approximation, 480—481
screened Coulomb approximation,
478-480
CASP3 targets, 473-474
decoy data sets, 464—465
energy components, 474—478
force feld calculations, 462—464
Holm and Sander single decoys, 472—473
interior dielectric constant, 481-482
Park and Levitt decoys, 465-472
research background, 460-462
Optimization cycle. See also Deterministic
global optimization
tertiary protein structure, ab initio folding
prediction, potential energy function,
231-237

PACK program:
oligopeptide structure prediction, global
optimization, 299-300
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protein-protein interactions:
binding site structure prediction,
435-436
global optimization, 438-440
global optimization, 420421
sparse restraints, structural refinement:
aBB algorithm, 345-347
computational analysis, 349—353
Pair energies, THOM?2 recognition vs.,
120-126
Pair interactions:
sequence-structure-function prediction,
threading procedures, 135-136
statistics of, 98—100
Pairwise potentials:
distance power-law potentials, 92—93
many-body effects, 99-100
minimal models, 91-92
new energy profiles, 93—100
parameter-free models, 90-91
protein folding kinetics, 40
THreading Onion Model (THOM),
81-83
threading potentials, protein recognition,
79-80
Parallelization, deterministic global
optimization, 363
Parameter-free models, optimization, 90-91
Park and Levitt decoys:
native vs. decoy protein conformations,
466-472
energy components, 476—478
interior dielectric constant, 481-482
“Partially thawed” approximation, sequence-
structure-function prediction, first-pass
threading, 148—-149
Pathway determination, protein folding:
coil-to-helix transition, 373-378
potential energy surface, 400—402
Pearson linear correlation coefficient, protein
folding statistical analysis, 3—4
lattice models, 7—-8
single-descriptor models, 16—19
Penalty functions, tertiary protein structure,
constraint implementation, 204—-205
PhD structures, tertiary protein simulations,
247
Phenomenological models:
folding rates of proteins, 10—11
protein folding kinetics, 37-38

Pocket definition, protein-protein interactions,
binding site structure prediction, 416—418
global optimization, 420421
HLA-DRI pockets, 440—442
modeling techniques, 431-435
Poisson-Boltzmann equation:
native vs. decoy protein conformations:
SGB calculations, 464
solvation effects, 461-462
oligopeptide structure prediction, solvation
energy models, 292-296
protein-protein interactions, binding site
structure prediction, 443—444
Polypeptide structural prediction, deterministic
global optimization:
computational models, 301-312
free energy computational studies, 322—-336
free energy modeling, 312-314
future issues, 360-362
global optimization framework, 296—300
harmonic approximation, 314-318
local minimum energy conformation,
318-322
potential energy models, 288—291
solvation energy models, 291-296
Potential energy global minimum (PEGM),
oligopeptide structure prediction,
computational studies, 322—-336
Potential energy surface:
oligopeptide structure prediction, 288—291
protein folding mechanism:
equilibrium probabilities, 398-399
free energy calculation, 398
global optimization, 365-367
pathway definition, 400-402
rate disconnectivity graph, 402—403
time-dependent probabilities, 399-400
transition rates, 399
vibrational frequencies calculation,
397-398
tertiary protein structure, ab initio folding
potential predictions, 230-237
Potential of mean force (pmf), tertiary protein
structure:
ab initio folding potential predictions,
potential energy function, 230-237
ab initio predictions, folding potential,
226-230
POU proteins, THOM?2 model vs. pair energies,
120-126
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Predicted-derived secondary structure, ab initio

predictions, folding potential, tertiary
protein structure simulations, 246—260

ranking procedures, 250-260
simulation protocols, 248—250
techniques, 247

Prediction techniques:

kn

na

owledge-based prediction, tertiary
structure:
constraint methods, 201-210
ambiguous constraints, 205, 208-209
angle constraints, 202, 207-208
distance constraints, 202, 206—207
implementation, 204-205
predictions, derivation from, 203-204,
209-210
constraint refinement, 219
homology and structural templates,
214-218
protein modeling, 197-201
research issues, 194—-197
search space limitation, 210-214
sequence-specific potentials, 218-219
tive vs. decoy conformations, 460—-462
applications, 483-484
approximate effective dielectric models:
distance-dependent dielectric
approximation, 480—481
screened Coulomb approximation,
478-480
CASP3 targets, 473-474
decoy data sets, 464—465
energy components, 474478
force feld calculations, 462—-464
Holm and Sander single decoys,
472-473
interior dielectric constant, 481-482
Park and Levitt decoys, 465-472
research background, 460—-462

polypeptide structure prediction:

computational models, 301-312

free energy computational studies,
322-336

free energy modeling, 312-314

global optimization framework, 296-300

harmonic approximation, 314-318

local minimum energy conformation,
318-322

potential energy models, 288—291

solvation energy models, 291-296

sequence-structure-function:

ab initio prediction, 138-143
biochemical function, 174—175
methodology, 165-167
test protein results, 167—169

biochemical function, transition to, 172—178
ab initio folding, 174—175
active site identification, 172—174
future issues, 183-184
threaded structures, 175-178

comparative modeling methods, 134,
155-165
atomic model reconstruction, 160—161
average model construction, 160
Fischer database results, 161-164
lattice chain, starting construction, 158
lattice folding optimization, 158—159
lattice model and force field, 157158
Modeller tool, 164—165

experimental data and, 182—183

future improvements, 180—186

low-resolution structures, ligand
identification, 178—180
future improvements, 184

reduced/atomic model compatibility:
atomic reconstruction, 170-171
structural refinement feasibility,
171-172
structural reproducibility, 169—170
research background, 132—134
sampling techniques, 143—-146
threading procedures, 134—138
first-pass threading, 148—149
Fischer database applications,
149-151

genome-scale iterative threading,
152-153

iterative threading, 151-152

orientation-dependent pair potential,
PROSPECTOR extension, 153
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Figure 7. (See Chapter 2.) The native-state conformation of the
bovine pancreatic trypsin inhibitor (BPTI). The figure was produced
with the program RasMol 2.7.1 [126] from the PDB entry 1bpi. There
are three disulfide bonds in this protein: Cys5-Cys55 shown in red,
Cys14—-Cys38 shown in black, and Cys30-Cys51 shown in blue. The
corresponding Cys residues are in the ball-and-stick representation and
are labeled. The two helices (residues 2-7 and 47-56) are shown in
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Figure 8. (See Chapter 2.) (a) The ground-state
® n conformation of the two-dimensional model sequence
with M = 23 beads and four covalent (S) sites. The red,
green, and black circles represent, respectively, the
€] L 2 L 2 hydrophobic (H), polar (P), and S sites.
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Figure 9. (See Chapter 2.) (a) Rasmol [126] view of one of the two rings of GroEL, from the
PDB file 1oel. The seven chains are indicated by different colors. The amino acid residues forming
the binding site of the apical domain of each chain (199-204, helix H: 229-244 and helix I: 256
268) are shown in red. The most exposed hydrophobic amino acids that are facing the cavity and are
implicated in the binding of the substrate as indicated by mutagenesis experiments [112, 127] are:
Tyr199, Tyr203, Phe204, Leu234, Leu237, Leu259, Val263, and Val264. (b) A schematic sketch of
the hemicycle in the GroEL-GroES-mediated folding of proteins. In step 1 the substrate protein is
captured into the GroEL cavity. The ATPs and GroES are added in step 2, which results in doubling
the volume, in which the substrate protein is confined. The hydrolysis of ATP in the cis-ring occurs
in a quantified fashion (step 3). After binding ATP to the trans-ring, GroES and the substrate protein
are released that completes the cycle (step 4).
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Figure 4. (See Chapter 4.) For the predicted protein structure of 2sarA (2cmd_) generated by
GeneComp using a template provided by the Fischer Database [34], the red-colored ligand
represents the superposition of the ligand bound to the native receptor. The highest-scored match is
colored in yellow.
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Figure 7. (See Chapter 6.) Comparison of raw data and clustered results (red dots: raw
simulation data, black circles: cluster representatives, green square: locally minimized native
structure).
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I. INTRODUCTION

Experimental and theoretical studies have led to the emergence of a unified
general mechanism for protein folding that serves as a framework for the design
and interpretation of research in this area [1]. This is not to suggest that the
details of the folding process are the same for all proteins. Indeed, one of the
most striking computational results is that a single model can yield qualitatively
different behavior depending on the choice of parameters [1-3]. Consequently, it
remains to determine the behavior of individual sequences under given
environmental conditions and to identify the specific factors that lead to the
manifestation of one folding scenario rather than another. Although doing so
requires investigation of the kinetics of particular proteins at the level of
individual residues, for which protein engineering [4] and nuclear magnetic
resonance (NMR) [5] experiments are very useful, complementary information
about the roles played by the sequence and the structure can also be obtained by a
statistical analysis of the folding rates of a series of proteins.

Statistical methods have been applied for many years in attempts to predict
the structures of proteins (for a review of progress in this area, see the chapter
by Meller and Elber, this volume), but their use in the analysis of folding kinetics
is relatively recent. The first such investigations focused on “toy”” protein models
in which the polypeptide chain is represented by a string of beads restricted to
sites on a lattice. It was found that the ability of a sequence to fold correlates
strongly with measures of the stability of its native (ground) state (such as the
Z-score or the gap between the ground and first excited compact states) [6-9],
but the native structure also plays an important role for longer chains [10,11].
While lattice models are limited in their ability to capture the structural features
of proteins, they have the important advantage that the results of statistical
analyses can be compared with calculated folding trajectories to determine the
physical bases of observed correlations. Consequently, studies based on such
models are particularly useful for the quantitation of observed effects, the
generalization from individual sequences, the identification of subtle relation-
ships, and ultimately the design of additional sequences that fold at a given rate.

Analogous statistical analyses of experimentally measured folding kinetics
of proteins were hindered by the fact that complex multiphasic behavior was
exhibited by most of the proteins for which data were available (e.g., barnase
and lysozyme). In recent years, an increasing number of proteins that lack
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significantly populated folding intermediates and thus exhibit two-state folding
kinetics have been identified, and a range of data have been tabulated for them
[12—14]. The initial linear analyses of such proteins indicated that their folding
rates are determined primarily by their native structures [12,14]. More recently,
a nonlinear, multiple-descriptor approach revealed that there is a significant
dependence on the stability as well [15]. These and related studies are discussed
in Section IV.A, after an overview of the statistical methods employed in this
area (Section II) and a review of the results from lattice models (Section III).
An in-depth analysis of a database of 33 proteins that fold with two- or
weakly three-state kinetics is presented in Sections IV.B through V. We explore
one-, two-, and three-descriptor nonlinear models. A structurally based cross-
validation scheme is introduced. Its use in conjunction with tests of statistical
significance is important, particularly for multiple-descriptor models, due to the
limited size of the database. Consistent with the initial linear studies [12,14], it
is found that the contact order and several other measures of the native structure
are most strongly related to the folding rate. However, the analysis makes clear
that the folding rate depends significantly on the size and stability as well. Due
to the importance ascribed to the stability by analytic [16—18] and simulation
[2,3,6-11] studies, as well as its recent use in one-dimensional models for fitting
and interpreting experimental data [19,20], we examine its connection to the
folding rate in more detail. The unfolding rate, which correlates more strongly
with stability, is considered briefly. The relation of the statistical results to
experiments and the model studies is discussed in Sections VI and VIIL.

II. STATISTICAL METHODS

Before reviewing the results for specific systems, we introduce the statistical
methods that have been used to analyze folding kinetics. Perhaps the simplest
such method is to group sequences; here, one categorizes each sequence in a
database according to one or more of its native properties (‘‘descriptors’’) and its
folding behavior. Visualization can be used to identify patterns, and averages and
higher moments of the distributions of descriptors can be used to quantitate
differences between groups. For properties on which the folding kinetics depend
strongly, such as the energy gap in lattice models, this type of analysis has proven
effective [6].

However, simple grouping is often insufficient to identify weaker but still
significant trends and makes it difficult to determine the relative importance of
relationships. Consequently, more quantitative methods are necessary. One stati-
stic that is employed widely is the Pearson linear correlation coefficient (ry,):

_ T i =X =)
%O Y~ BP0 - 9

(1)

Txy
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Typically, the x; are a set of values of a particular descriptor, such as the sequence
length, and the y; are a set of values for a measure of the folding kinetics, such as
the logarithm of the folding rate constant (log k) [9,10,12]. The magnitude of r,
determines its significance, and its sign indicates whether x; and y; vary in the
same or opposite manner: 7, , = 1 corresponds to a perfect correlation, 7, = —1
to a perfect anticorrelation, and r,, =0 to no correlation. In spite of its
popularity, this statistic has several shortcomings when used by itself. It is
limited to the identification of linear relationships between pairs of properties; it
is not straightforward to test or cross-validate those relationships, which is
important, as discussed below; and it cannot be used directly to predict the
behavior of additional sequences.

These limitations can be overcome by constructing models to predict folding
behavior and then quantifying their accuracy. For the latter step, the Pearson
linear correlation coefficient can be used with x; as the observed values and y; as
the predicted ones (for which we introduce the shorthand notations 7, rjc, and
ey, described below). Alternatively, one can calculate the root-mean-square
error or the closely related fraction of unexplained variance:

(2)

Again, x; (y;) are the observed (predicted) values. Typically, r and ¢*> behave
consistently. The latter is useful for quantitating the improvement obtained upon
extending a model with N descriptors to one with N 4 1 with Wold’s statistic:
E=(1-q%.,)/(1—q%) [21,22]. A value of less than 1.0 for the latter shows
that ¢ increases upon adding a descriptor. The statistical significance of a
particular value of E depends on the specific data, but E = 0.4 has been
suggested to correspond typically to the 95% confidence interval [23].

For constructing the models themselves, linear regression (on one or more
descriptors) is attractive in that the best fit for a set of data can be determined
analytically, but, as its name implies, it is limited to detecting linear relation-
ships. While fits with higher-order polynomials are possible, a general and
flexible alternative is to use neural networks (NNs). The latter are computational
tools for model-free mapping that take their name from the fact that they are
based on simple models of learning in biological systems [24,25]. Neural
networks have been used extensively to derive quantitative structure—property
relationships in medicinal chemistry (for a review, see Ref. 26) and were first
used to analyze folding kinetics in Ref. 11. A schematic diagram of a neural
network is shown in Fig. 1. In this example, there are three inputs (indicated by
the rectangles on the left); in the present study these would each contain the
value of a descriptor, such as the free energy of unfolding or the fraction of
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input layer hidden layer output layer

descriptor 1

descriptor 2 predicted log k¢

descriptor 3

Figure 1. Schematic of a neural network.

helical contacts. The circles represent sigmoidal functions (nodes). There are
many possible choices for the specific form of these functions; we use
Fe 1

1+exp(—0— >, wipi)
where the sum ranges over the previous layer (to the left in the diagram), p;
are the values of the elements of that layer, w; are the weights for each of
those elements (represented by the connecting lines in the diagram), 6 is an
arbitrary constant, and the data are assumed to be normalized for clarity. Thus, to
“fire” the network in Fig. 1, a weighted sum over the three inputs to each hidden
node is made, the resulting sums are used to calculate the values of the sigmoidal
functions associated with those nodes, a weighted sum of those values is then
made, and the final sigmoidal function of the output node is calculated. To fit
data, the w; are initialized to random values and adjusted with standard
optimization techniques to maximize the accuracy of the output for the (training)
set. In the present study, we varied the weights with the scaled conjugate gradient
method [27].

When one wishes to test many different possible descriptors, the number of
possible NN input combinations can be very large. One can avoid making an
exhaustive search by using a genetic algorithm (GA) to select the descriptors to
test. This tool is also biologically motivated—in this case, by evolution. A
population is created in which each individual consists of a particular set of
descriptors. Repeatedly, each such set (a “parent’) is duplicated (*“‘asexual repro-
duction”), the new copy (a ““child’”) is changed by one descriptor (‘“‘mutated”),
and then only the best (““fittest”) individuals in the combined pool of parents
and children are kept. Here, “‘best” means that a linear regression or NN model
employing those descriptors yields the greatest accuracy for the training set.
Alternative schemes that involve combining features from different individuals
(“sexual reproduction”) also exist but are not employed here; for a compre-
hensive review of the use of GAs in medicinal chemistry see Ref. 28. In the
present study, we used 40 individuals with 20 genetic cycles; a few trials with
200 individuals and 50 cycles did not yield significantly different results.

3)
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An important point concerning neural networks, and indeed any multiple
parameter model, is that it is possible to overfit the data. For small sample sizes
(here, a small number of proteins), even relatively simple neural networks can
memorize the examples in the training set at the expense of learning more
general rules. Thus, it is important to test a model on novel data not used during
the fitting process. One approach is cross-validation, in which one partitions the
existing data into a series of training and test sets. In the special case of
jackknife cross-validation, all possible combinations are formed in which a
single protein is used to test the network and the remainder are used to train it.
While jackknife cross-validation is straightforward to automate, it is not
appropriate if any members of the database are significantly related (e.g.,
homologous proteins) because the inclusion of the similar data in the training
set can bias the test. A structurally based partitioning scheme is presented in
Section IV.B. Throughout, care is taken to distinguish statistics (r and ¢?) for fits
of the entire (training) set (denoted ‘“‘trn’’) from those for predictions obtained
with either jackknife or structurally based cross-validation (denoted “‘jck’ and
“cv,” respectively).

III. LATTICE MODELS

The first study in which a large number of unrelated sequences were analyzed to
identify the factors that determine their folding kinetics was based on a 27-
residue chain of beads subject to Monte Carlo dynamics on a simple cubic lattice
[6]. In this and the subsequent studies of 125-residue sequences [10,11], folding
rate constants were calculated for only a few sequences due to the large number
of trajectories required to obtain accurate results. Folding ‘‘ability” was
measured by either (a) the fraction of Monte Carlo trials that reached the native
state within the allotted simulation time or (b) the average fraction of native
contacts in the lowest energy states sampled. When the results for the 27-residue
sequences were grouped according to the former, it was found that the stability of
the native (ground) state is the only feature that distinguishes those that folded
repeatedly within the simulation time from those that did not. If the native state is
maximally compact, the stability criterion can be simplified to a consideration of
the difference in energy between the ground state and the first fully compact
(3 x 3 x 3) excited state [6]. These criteria have been used in the design of fast
folding sequences [29] and are consistent with similar studies which focus on
exhaustive enumeration of folding paths for two-dimensional chains [7,30] or on
the ratio of the folding and the “‘glass’ transition temperatures for the (three-
dimensional) 27-residue model [8].

In a number of subsequent studies of the 27-residue model, it was argued that
the kinetic folding behavior is determined by factors other than the energy gap
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[31-33]. Unger and Moult [31] suggested that the dependence on the energy gap
derived from the variation in the simulation temperature in Ref. 6 and identified
the structure of the ground state as the primary determinant of the folding
kinetics of this system. However, in a study of 15- and 27-residue three-dimensional
chains that employed the Pearson linear correlation coefficient to quantitate the
relationships between various sequence factors and the logarithm of the mean
first passage time, the correlation with the Z-score was robust to use of a single
temperature [9]. Examination of Ref. 31 showed that sequences were designed
to have strong short-range contacts without mandating a certain fraction of long-
range contacts, so that the resulting ground states were more appropriate for
modeling a helix-coil transition than protein folding. Nevertheless, as will be
discussed below, native structure does play a role for certain lattice models
[10,11] as it does for proteins [12,14,15]. Klimov and Thirumalai [32,33]
introduced the parameter ¢ = 1 — Ty /Ty, where T} is the temperature at which
the fluctuation of the order parameter is at its maximum and Ty is the
temperature at which the specific heat is at its maximum. They found that c
is positively correlated with the logarithm of the mean first passage time (i.e.,
small sigma gives fast folding). However, the interpretation of Ty as the collapse
transition temperature is not correct in general, and the correlation described
above arises from the fact that o is related to the energy gap [9]. These
statistical studies of short chains are discussed in detail in Ref. 9.

The correlation of the folding time with the energy gap can be understood in
terms of its effect on the energy surface. For random 27-residue sequences,
folding proceeds by a fast collapse to a semicompact disordered globule,
followed by a slow, nondirected search through the relatively small number
of semicompact structures for one of the many transition states that lead rapidly
to the native conformation [2]. A large energy gap results in a native-like
transition state that is stable at a temperature high enough for the folding
polypeptide chain to overcome barriers between random semicompact states. As
the energy gap increases to the levels obtainable in designed sequences, the
model exhibits Hammond behavior [34] in that there is a decrease in the fraction
of native contacts required in the transition state from which the chain folds
rapidly to the native state. Random sequences with relatively small gaps must
form about 80% of the native contacts [2], whereas designed sequences with
large gaps need form only about 20% [35]. This shift increases the ratio of the
number of transition states to the number of semicompact states and results in a
nucleation mechanism [35].

The first study to employ the Pearson linear correlation coefficients between
various individual sequence properties and measures of folding ability concerned
the analysis of 125-residue lattice model simulations [10]. It revealed that, in
addition to the stability, the native structure plays an important role in determining
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folding ability for chain lengths comparable to that typical of certain well-
studied proteins (e.g., barnase and lysozyme); that is, a strong correlation was
observed between the frequency of reaching the native state within the
simulation time and the number of native contacts in tight turns or antiparallel
sheets. On the lattice, these are the cooperative secondary structural elements
that have the shortest sequential separations between contacts; lattice ‘“‘helices,”
which typically consist only of i, i + 3 contacts, are noncooperative and thus do
not accelerate folding. The physical basis of the relation between structure and
kinetics in lattice models and in proteins is discussed in Section IV.E.

The initial linear analysis of the 125-residue model also made clear that one
descriptor can compensate for others, so that it is necessary to consider more
than one simultaneously [10]. Accordingly, the functional dependence of the
folding ability on sets of sequence properties was derived with an artificial
neural network, and a genetic algorithm was used to select the sets that
maximize the accuracy of the predictions. Not only did the nonlinear, multi-
ple-descriptor method increase the correlation coefficients between the observed
folding abilities and the cross-validated predictions from about 0.5 to greater
than 0.8, but it revealed (in addition to the strong dependences on the stability
and structure of the native state) a role for the spatial distribution of strong and
weak pairwise interactions within the native structure. Sequences with native
structures that have more labile contacts between surface residues were found to
fold faster in general because misfolded subdomains are less likely to form and
lead to off-pathway traps [10,11,36]. This observation indicates that, as one goes
to longer sequences, the relationship between the folding rate and the native
state descriptors becomes more complex.

The genetic neural network (GNN) method was further validated by use of
one of the resulting quantitative structure—property relationships (QSPRs) to
design additional fast-folding 125-residue sequences [37]. The target native
structure and the pairwise interaction energies were varied to maximize the
output of a network trained on the original set of sequences to predict the aver-
age fraction of native contacts in the lowest energy structure sampled in each of
10 Monte Carlo simulations [10,11]. The specific descriptors employed were the
number of contacts in antiparallel sheets, the estimated gap in energy between
the native state and the lower limit of the quasi-continuous spectrum [38], and
the total energy of the contacts between surface residues. On average, the
designed sequences folded more rapidly than those for which only the stability
of the native state was optimized [29,39]. The studies of the 125-residue lattice
models thus make clear that simultaneous consideration of multiple descriptors
can improve our understanding of protein folding and our ability to extrapolate
from the analysis to predict the behavior of novel sequences. The utility of the
statistical approach for obtaining a better understanding of the folding rates of
proteins is described in the following section.
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IV. FOLDING RATES OF PROTEINS

In this section we describe statistical analyses of measured rates of protein
folding. Earlier studies are reviewed and an analysis of currently available experi-
mental data is presented. The physical bases of the results are then discussed.

A. Review

As mentioned in the Introduction, statistical analyses of the folding kinetics of
proteins were delayed until a sufficient number of proteins that fold with two-
state kinetics overall were identified [12,13]. Plaxco et al. [12] carried out an
analysis much like the initial 125-mer lattice model study mentioned above [10]
for a set of 12 two-state proteins (extended to 24 proteins in Ref. 14); that is, they
calculated linear correlation coefficients between several individual sequence
properties and the logarithm of the measured folding rate constants (log k¢). The
only descriptor examined that exhibited a high correlation (r./, 1og 1, = 0.81) was
the structure of the native state as measured by the normalized contact order
(c¢/n), the average sequential residue separation of atoms in contact divided by
the length of the sequence (see the footnote to Table III for the exact definition of
¢/n employed here). It is important to note that the contact order does not include
any information about the energies of the interactions in the native state; it is only
a measure of the structure (we use the term “structure’ rather than “topology”
[12,14] because, according to the standard mathematical meaning of the latter,
all proteins that lack disulfide bonds have the same topology).

We used a neural network to carry out a nonlinear, two-descriptor analysis of
the database of 33 proteins described in Section IV.B [15] and demonstrated that
the stability contributes significantly to determining folding rates for a given
contact order. Moreover, for 14 slow-folding proteins with high contact orders
(mixed-o/f and B-sheet proteins), the free energy of unfolding can be used by
itself to predict folding rates. By contrast, the folding rates of a-helical proteins
show essentially no dependence on the stability. The variation in behavior
observed for the structural classes suggests that, although there is a general
mechanism of folding (see the Introduction), its expression for individual
proteins can lead to very different behavior.

A number of simple physically motivated one-dimensional models have been
introduced recently to fit and interpret data on peptide and protein folding [19,
20,40-42]. These models, which use only native state data, have elements in
common with earlier theoretical treatments by Zwanzig, Wolynes, and their co-
workers [16,17,43]. The conformation of a protein is represented by a series of
binary variables (based on one or two residues), each of which can be either
native or random coil. Pairwise interactions (which are assumed to be entirely
favorable, as in a Go model [44,45]) are counted if and only if both the sequence
positions involved are native. Often, an additional approximation is made in
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which the formation of the native structure is limited to one or two sequential
segments [46]. Independent of this assumption, the one-dimensional character
of these models and the choice of energy functions typically force the native
structure to propagate in an essentially sequential manner. By adjusting
parameters, one of these models was shown to fit log k; with an accuracy of
0.83 < 1y < 0.87 for 18 proteins [20]. The fact that this correlation is some-
what higher than that obtained using only the contact order (Table I and Refs.
12,14, and 20) has been used as evidence for the physical basis of the model;
that is, it provides an ‘“‘explanation” of the empirical relationship between the
folding rate and the contact order. However, the improvement appears to be due
to the incorporation of the protein stabilities into the model. These were
introduced by adjusting the pairwise interactions separately for each protein
such that the model yielded free energies for folding that matched experimental
AG values. Using the methods described in Section II and applied in
Section IV.B, we were able to obtain r;;, = 0.93 with two descriptors (AG
and q,, described in Table I) and r,,, = 0.98 with three (AG, ¢, and b) for the
same set of 18 proteins; for ¢/n, and AG/n, r,,, = 0.85, which is very similar to
the correlations reported in Ref. 20 (0.83 < ry,,, < 0.87). Thus, further work is
required to show that such simple phenomenological models can predict aspects
of the folding reaction that go beyond the experimental data used in the fitting
procedures. Although these model studies consider the prediction of ¢ values
[4], it appears from the published results and statements in the text of Ref. 20
that the correlation is poor. This suggests that quantitative comparisons of
predicted ¢-values with the observed ones could serve as a meaningful test of
such phenomenological models.

An alternative phenomenological model was developed by Debe and God-
dard [47]. In essence, they assumed a sequence of events which is, in a certain
sense, the reverse of the diffusion—collision model [48,49]: the correct overall
(tertiary) structure is formed at low-resolution first by a random search and then
local (secondary) refinement takes place within the manifold of states in that
fold. Thus, the factor that determines the relative rate of folding for a series of
proteins is the probability of randomly sampling a structure with the known
native contacts (estimated by a Monte Carlo procedure); the distance at which a
contact was counted was adjusted to optimize the fit. For mixed-o/f and B-sheet
proteins, an accuracy of r,,, = 0.78 was obtained. This statistic is comparable to
the correlation coefficients associated with the contact order (Table I and Refs.
12 and 14), which could suggest that this model is a rather complex procedure
for reproducing the simple (essentially linear) dependence of log k; on that
descriptor. For a-helical proteins, the folding rates were considerably under-
estimated, which led Debe and Goddard to conclude that hose proteins must
instead fold by a diffusion—collision mechanism [48,49]. The discussion in the
present section shows that phenomenological models can be useful for
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interpreting the observed statistical correlations. However, it is important to
keep in mind that the ability to fit a particular set of data is not sufficient to
demonstrate that the folding mechanism on which the model is based is correct.

B. Database

To illustrate the methods described in Section II and to show that simultaneous
consideration of multiple descriptors improves prediction of protein folding
kinetics, we describe a detailed analysis of the available data for the folding rates
of two- and weakly three-state proteins. The descriptors tested are listed in Table I
and can be divided into several categories: native state stability (0 and 1), size (2
to 5), native structure (8 to 15), and the propensity for a given structure (16 to 23).
Definitions and sources for the descriptors as well as the data themselves are
given in Tables II and III. Although certain descriptors are significantly

TABLE I
Descriptors Tested as Inputs to the GNN and Their Correlations®
Index  Symbol Description Txlogks Tirn Ty qfv
0 AG Stability 0.29 0.40 0.06 —0.16
1 AG/n Normalized stability 0.37 0.42 —0.00 -0.13
2 m Buried surface area —0.04 0.38 —-0.16 —-0.40
3 m/n Normalized surface area —0.04 0.24 -0.29 -0.21
4 n Sequence length —-0.10 0.35 —-0.52 —-0.19
5 ne Number of atomic contacts —0.08 0.34 —0.32 —0.18
6 c Contact order —-0.73 0.74 0.67 0.45
7 c/n Normalized contact order -0.79 0.83 0.74 0.54
8 h a-Helix content 0.63 0.64 0.39 0.11
9 e B-Sheet content —0.67 0.71 0.59 0.34
10 t H-bonded turn content 0.04 0.34 —0.07 —-0.21
11 K Bend content —0.11 0.31 —-0.25 —-0.26
12 g 3,0-Helix content —0.01 0.35 —0.47 —0.28
13 b B-Bridge content —0.15 0.30 —-0.36 —-0.32
14 0 Other 2° structure —0.05 0.27 —-0.32 —0.44
15 a Total helix content (h + g) 0.63 0.67 0.28 —0.04
16 Py Predicted o-helix 0.47 0.49 0.05 —0.10
17 P, Predicted f-sheet —0.48 0.57 0.29 0.01
18 P, Predicted other 2° -0.27 043 —0.39 —-0.32
19 Dh a-Helix propensity 0.51 0.55 0.21 —0.03
20 Pe B-Sheet propensity —0.47 0.64 0.42 0.14
21 Do Other 2° propensity —0.40 0.50 —-0.20 —-0.16
22 qe Expected 2° prediction accuracy 0.21 0.42 0.07 —-0.14
23 qa Actual 2° prediction accuracy 0.40 0.45 —-0.14 —0.45

“Here ry, and r,, are correlation coefficients between observed and calculated values of log ks for
training set fits and cross-validated predictions, respectively. Correlations are the maximum ones
observed for 10 independent trials, each with a different random number generator seed. Statistics
for linear regression are available in Table V.
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16 AARON R. DINNER ET AL.

correlated with others (Table IV), consideration of all of them is useful because
exhaustive enumeration or a genetic algorithm (GA) is employed to determine
which to include for optimal fitting and prediction.

The database consists of 33 proteins. Twenty-four of these fall into six struc-
turally related groups, and nine are structurally unique. The former are SH3
domains [INYF (82 to 148), 1PKS, 1SHG, and 1SRL], Ig-like B-sandwiches
[IENF (1326 to 1415), 1FNF (1416 to 1509), 1HNG, 1TEN (802 to 891), 1TIT,
and 1WIT], members of the acylphosphatase family (1APS, 1HDN, 1PBA,
1URN, and 2HQI), cytochromes (IHRC, 1HRC-oxidized, 1YCC), cold shock
proteins [1CSP and IMIJC (2 to 70)], A-repressor variants (ILMB wild type and
G46A/G48A), and ubiquitin variants (1UBQ wild type and V26A). The remain-
der of the proteins are 1COA (20 to 83), 1DIV (1 to 56), 1IFKB, 1IMQ, 2ABD,
2AIT, 2PDD, 2PTL (94 to 155), and 2VIK. Numbers in parentheses indicate the
residue numbers of the domain or fragment studied.

To cross-validate the results, each group of structurally related proteins is left
out of the training set in turn and used to test the network. Such a partitioning
scheme (in contrast to a jackknife one, for example) minimizes the likelihood of
biasing the results in favor of structural descriptors (see Section II). Its use
yields true predictions (denoted ““cv’’) in contrast to fits of the data, in which all
the proteins are included during the training (denoted “trn’’). The latter tend to
yield inflated accuracy statistics, but we describe them here as well for
comparison with earlier studies [12,13,20,47], which failed to cross-validate
their results [however, it should be noted that the relationship in Ref. 12 has been
used successfully for blind predictions (K. W. Plaxco and D. Baker, personal
communication)].

C. Single-Descriptor Models

We begin by examining the relationship between logk; and each individual

descriptor.
1. Linear Correlations

The first column of statistics given in Table I contains the Pearson linear
correlation coefficients between the descriptor values (x) and log ky (7, og k/). This
is the statistical measure used by Plaxco et al. in their analysis of a subset of the
descriptors considered here [12,14]. Consistent with their results, the two
coefficients with the largest magnitudes are associated with the contact order
(c and ¢/n). Several descriptors not examined by Plaxco et al. [12,14] exhibit
|rx710g kf| > (.5 as well: the a-helix content and propensity (4 and pj,), total helix
content (a), and B-sheet content (¢). Additional linear statistics are provided in
Table V. Physical interpretations of the results are given in Section IV.E.

2. Neural Network Predictions

The second and third columns of statistics in Table I measure the ability of a
single-input neural network to predict the folding rate. They contain Pearson
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18 AARON R. DINNER ET AL.

TABLE V
Linear Regression Statistics for log k¢
Index Symbol Tirn Tey qf‘,
0 AG 0.29 -0.02 —0.09
1 AG/n 0.37 0.13 —0.05
2 m 0.04 —0.65 —0.19
3 m/n 0.04 -0.52 -0.20
4 n 0.10 -0.53 -0.27
5 ne 0.08 —0.60 —0.24
6 c 0.73 0.70 0.48
7 c/n 0.79 0.77 0.59
8 h 0.63 0.55 0.30
9 e 0.67 0.59 0.34
10 t 0.04 -0.76 -0.23
11 s 0.11 -0.52 —-0.19
12 g 0.01 -0.75 —041
13 b 0.15 —043 —0.26
14 0 0.05 -0.74 —0.31
15 a 0.63 0.57 0.32
16 Py 0.47 0.29 0.06
17 P, 0.48 0.31 0.08
18 P, 0.27 -0.27 —0.28
19 Dh 0.51 0.37 0.13
20 De 0.47 0.28 0.05
21 Do 0.40 0.07 -0.09
22 qe 0.21 -0.21 —0.14
23 Ga 0.40 0.12 —-0.07

linear correlation coefficients (r,,, and r.,) between observed and calculated
values of log k;; thus, only positive values of r are significant. Because there are
only 24 different input possibilities, it is feasible to consider each one in turn, so
that use of a genetic algorithm is not necessary at this stage. However, the NN
weights depend on the random number generator seed through the training pro-
cedure. Consequently, for each descriptor, the network was trained indepen-
dently with ten different seeds. The maximum correlation coefficient for each set
of 10 networks corresponding to a particular descriptor is listed in Table I; the
average standard deviation for a given descriptor was 0.03 for r,,, and 0.06 for r,.
As stated above, the coefficients denoted “trn” are for results obtained with
networks trained on all 33 proteins; in other words, they are not true predictions
since all the data are included in the training set. For descriptors that are linearly
related to log kg, 7, is expected to be comparable in magnitude to 7y e ks
(in fact, for linear regression, ri, = |Fylog k1), whereas, for ones that are
non-linearly related, it should be higher. Thus, r,, can be viewed as essentially
a nonlinear version of the statistic employed in Ref. 12. Accordingly, most of
the descriptors that exhibit high r,,, were included in the analysis of 7y jog -
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The coefficients denoted “cv” are for the predictions obtained with the
structurally based cross-validation scheme. Negative values of r,, indicate that
the accuracy of the network is lower than that which would be obtained from
random guesses. If a network fails in this way when confronted with novel test
data, it has derived a spurious relationship by memorizing the information in the
training set at the expense of learning more general rules. The highest r,, do
correspond to the highest r,,, but overall the cross-validated coefficients are
much lower. The large differences between r,,, and r., in many cases (Table I)
make clear that the former is a relatively indiscriminate statistic for such a small
database. If linear regression is used, r,, and r., are often closer due to the
decreased flexibility of the fitting method (Table V). However, such an approach
fails to identify nonlinear relationships and can hide complexities in the results.

In summary, the contact order yields relatively good prediction of log &y but
is not alone in doing so. Several measures of the propensity of the sequence for
a given structure also exhibit significant relationships with the folding rate.
Although r., values for the various descriptors obtained from the secondary
structure prediction program (indices 16 to 21 in Table I) are lower than those
for measures of the known native structure (indices 6 to 15), the former
correlations may be sufficiently high that the calculated descriptors could be
used to identify particularly fast or slow proteins without the need for high-
resolution structures. The stability, which has been suggested to be of im-
portance based on model studies, exhibits no clear relation to the folding rate.
An essential additional point of the single-descriptor analysis is that large
differences are observed between most of the values obtained with and without
cross-validation. This highlights the need for care in assessing the significance
of correlations when working with small numbers of sequences.

D. Multiple-Descriptor Models

We present results for two- and three-descriptor models; addition of a fourth
descriptor yielded no significant improvement in predictive accuracy. In the two-
descriptor case there are only 276 possible input combinations, so we examine
each explicitly, whereas, in the three-descriptor case there are 2024, so we use the
genetic algorithm (GA) to optimize the descriptor selection. Use of the GA in the
two-descriptor case gives models of comparable quality to the exhaustive search,
but this test of the algorithm is not very stringent because the space of input
combinations is small. Because both the GA and the NN depend on the random
number generator seed, several trials were performed in each case (as detailed in
Section IV.D.2).

1. Two Descriptors

The best five two-descriptor models are shown in Table VI, and selected
examples to illustrate the types of behavior that are observed are shown in Fig. 2.
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There is a significant increase in fitting ability (training) and, more importantly,
in predictive accuracy (cross-validation) upon adding a second descriptor. In
Figure 2, we see that the squares ([J) tend to be closer to the ideal line than the
circles (O), particularly for lower log k; (slower-folding proteins). To quantitate
the improvement, we calculated Wold’s E statistic from the q?v values (Table VI).
While these figures suggested to us that the additional descriptors significantly
improve the accuracies of the cross-validated predictions, general confidence
limits are not straightforward to calculate. Consequently, we did the following.
We shuffled the values of each secondary descriptor (other than ¢/n) 10 times
and then trained neural networks to predict log k¢ as for the actual data. Averages
and standard deviations of the correlation coefficients are reported in Table VII.
We see that, even though the r,, values are comparable to those in Table VI, the

5.0 1 5.0 1
. 4.0] 24 _ 4.0] I f
X ) X
g 3.0] f g8 3.0 ; )
b= 88 ¢ ot = e
g 20 ?l £ 20; .
S =
S 1.0 05 S 1.0 ﬂf
8 5 ; ; !

0.0 1 0.0 1
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Figure 2. Comparison of observed and calculated values of log k¢ for selected models. (a and
b) ¢/n(Q); ¢/n and AG/n (0O); and ¢/n, AG/n and p.(A). (¢ and d) ¢/n(QO);c/nandn. ((1); and
¢/nyne, and AG(A). (a and c¢) Training set fits. (b and d) Cross-validated predictions.
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TABLE VI
The Best (as Measured by r.,) Five Two-Descriptor Models Obtained by Examining All Possible
Combinations for Ten Different Random Number Generator Seeds®

Descriptors Tirn Tey 7, E

c/n  AG/n 0.89 0.81 0.66 0.74
c/n Py 0.87 0.80 0.63 0.81
c/n ne 0.89 0.79 0.62 0.82
c/n py 0.86 0.77 0.57 0.93
c/n qa 0.84 0.77 0.59 0.89

“For the calculation of E, g%, was compared with that for ¢/n. Statistics for linear regression and
additional measures of the predictive accuracy are available in Tables VII and VIIIL.

rey values are close to that for c¢/n by itself (Table I); the NN ignores the
randomized descriptor. The fact that the r,, values for the actual data are two to
four standard deviations above the average r., values for the randomized data
demonstrates that the improvement is significant and is not due to the increase in
the number of fitting parameters.

The best predictions are obtained with AG/n paired with ¢/n (AG with c is
the sixth best set of inputs with r,,= 0.77 and E = 0.76) This combination of
input descriptors was investigated previously [15], but it is of interest that it
ranks first in the exhaustive search performed here. To better understand the
physical basis for the correlations, we show the dependence of log k; on ¢/n and
AG/n in Fig. 3a. When ¢/n is small (¢/n <19; mainly o-helical proteins),
folding is always fast (k; > 400s~'), whereas when c/n is large (c/n >25;
either mixed-o/f or P-sheet proteins), the rate spans over three orders of
magnitude. Thus, proteins with lower contact orders fold fast regardless of
their stabilities, whereas for those with higher contact orders, the rate increases
with AG/n. As described in Ref. 15, a single-input neural network can be
trained to predict log ky from AG for the 14 proteins with ¢ > 21 (Fig. 4);
ryn = 0.81, and r,, = 0.64, which confirms that stability plays a significant role
in determining the folding rates of mixed-o/f and B-sheet proteins. For these 14

TABLE VII
Randomization Tests for the Models in Table VI*
Descriptors Tirn Tey q%v
c/n AG/n 0.83 +0.01 0.71 +0.03 0.49 +0.04
c/n Py 0.84 +£0.03 0.68 +0.07 0.43+0.12
c/n ne 0.87 +0.02 0.69 +0.04 0.46 £ 0.05
c¢/n py 0.84 +0.02 0.68 +0.06 0.42 +0.10
c/n qa 0.84 £+ 0.00 0.68 +0.07 044 +0.11

“In each case, the second descriptor listed was shuffled 10 times, and the networks were trained as
for the original data. Values shown are averages for the 10 trials; ranges indicate standard deviations.
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TABLE VIII
Linear Regression Statistics for the Models in Table VI
Descriptors Ttn Tev 0 E
c/n  AG/n 0.81 0.72 0.47 1.27
c/n Py 0.79 0.75 0.57 1.04
c/n ne 0.82 0.79 0.62 0.92
c/n pu 0.79 0.75 0.56 1.05
c/n qa 0.80 0.77 0.60 0.97

proteins, 7agogk = 0.80 while r.jogr = —0.22;E = (1 — qf‘AG)/(l - q%)
=0.23.

Two of the other models in Table VI combine the contact order with a
measure of the o-helical propensity: ¢/n with either P, or pj,. These pairings
essentially reflect the results of the previous section. The remaining model
couples ¢/n with n., which reveals a secondary dependence on protein size.
Consistent with the sign of 7,10 ks (Table I), the functional dependences of
log ks on these descriptors for the models in Table VI indicate that shorter
proteins fold faster than longer ones (Fig. 3b).

2. Three Descriptors

As mentioned above, there are 2024 possible combinations of three descriptors,
so we use a GA to identify the inputs that are likely to yield the greatest
predictive accuracy. Use of the GA requires selection of a particular measure of
predictive accuracy to decide which models to keep at each cycle. Because we
are interested primarily in cross-validated predictions, r,, is a natural choice.
However, the structurally based partitioning scheme is less straightforward to
automate than a jackknife one. Consequently, for the GNN, we used the Pearson
linear correlation coefficient for the jackknife cross-validated outputs (rj) and
subsequently tested each selected combination of descriptors with the
structurally based cross-validation scheme (r.,). We performed five GNN trials,
from each of which we saved the best 20 models. Of these 100 models, 46 were
unique, and each of these was subjected to 10 trials with the structurally based
cross-validation scheme.

In general, the GA combines the descriptors that were identified above by the
two-dimensional exhaustive search (¢, ¢c/n, AG, AG/n, and n,) to further refine
the predictions (Tables IX to XI and Fig. 2). The propensity for sheet structure
(p.) appears in two of the five models; not surprisingly, it is strongly anti-
correlated with the propensity for helical structure, which appeared in Table VI
(7, p, = —0.89). In considering these results, it is necessary to keep in mind that
the database is small, so that there is a danger of overfitting (but see Table X).
Nevertheless, given this disclaimer, we see that simultaneous consideration of
multiple descriptors improves prediction of the folding rate and that both the
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Figure 3. Functional dependence of calculated folding rate (k;, in s~") on the normalized
contact order (¢/n) and either (a) the normalized stability (AG/n in kcal/mol) or (b) the total number
of atomic contacts (n,).
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log k¢

Figure4. Observed (points)
and calculated (line) log kr as a
function of the stability in kcal/
mol for the 14 proteins in the
database with ¢ > 21.

size and the stability play significant secondary roles that could not have been
anticipated from the single-descriptor analyses.

E. Physical Bases of the Observed Correlations

Consistent with earlier, single-descriptor linear analyses of protein folding
[12,13,50], the primary determinants of the folding rate are measures that
characterize the native structure; that is, proteins with more sequentially local
interactions tend to fold faster. As discussed below, the equilibrium structure and
the kinetics are connected by the fact that the structure of the transition state
resembles that of the native state in many small proteins [50]. Thus, the kinetics
and the underlying thermodynamics of the reaction are affected in a similar way,
in accord with linear free energy relations.

The microscopic origin for the statistical dependence of the folding kinetics
on the structure is the stochastic diffusive search that is required to find the

TABLE IX
The Best (as Measured by r.,) Five Unique Three-Descriptor Models Obtained from the GNN
Protocol for Ten Different Random Number Generator Seeds”

Descriptors T Tick Tey ‘1(2~u E

c¢/n AG/n  p, 0.92 0.84 0.86 0.74 0.76
c¢/n AG ne 0.93 0.84 0.84 0.70 0.80
¢/n AG/n ne 0.92 0.81 0.83 0.67 0.97
c/n AG c 0.90 0.83 0.83 0.66 0.81
c/n AG Pe 0.91 0.80 0.83 0.67 0.72

“For the calculation of E, g2, was compared with the highest observed g2, of the six possible two-
descriptor models that could be formed from the three selected inputs (corresponding to the
unshuffled pair in Table X). Statistics for linear regression and additional measures of the predictive
accuracy are available in Table X and XI.
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TABLE X
Randomization Tests for the Models in Table IX
Descriptors Randomized Ttrn Tev 7,
¢/n AG/n  p, Pe 0.89 £0.02 0.80 +£0.03 0.61 £0.07
c/n AG ne AG 0.88 £0.02 0.72 £ 0.05 0.48 +£0.10
¢/n AG/n  n, ne 0.89 £ 0.01 0.74 £ 0.04 0.49 +0.09
c/n AG c ¢/n 0.89 +£0.01 0.71 £ 0.04 0.46 4+ 0.08
c/n AG Pe AG 0.88 £ 0.01 0.69 £+ 0.06 0.41+0.10

transition state. As described in the formulation of the ‘“hydrophobic zipper
hypothesis™ [51,52] and in the statistical analyses of 125-residue lattice models
[10,11], having sequentially short-range contacts in the transition state should
increase the folding rate for two reasons. First, such contacts are found more
readily because there are fewer conformations to search (the number grows ex-
ponentially with loop length). Second, making sequentially long-range contacts
costs more entropy because they constrain the chain to a greater degree. These
advantages correspond to different components of the macroscopic rate law
[kf = A(T)exp(—AG/kgT)]. In this regard, it is necessary to keep in mind that
the preexponential factor can be nontrivial for protein folding [53,54]. If A(T) is
sufficiently large, there is a separation of time scales; the protein reaches an
effective equilibrium within the unfolded state rapidly, and the rate is dominated
by the time required to surmount the barrier [55]. In this case, the observed
statistical dependence on the structure implies that the barrier is entropic (as in
Fig. 3a of Ref. 1 and Figs. 6 and 7 of Ref. 36). Based on these ideas, Fersht
recently derived a simple relationship to show that changes in contact order are
directly proportional to changes in log ks [50]. On the other hand, if A(T) is
small, there is no separation of time scales. Because a dependence on the
structure enters through the preexponential factor in this case, the barrier, if
there is one, could be either entropic or energetic (as in Fig. 3b of Ref. 1).
Free energy surfaces for folding have now been determined for high-
resolution (all-atom) models of several peptides and proteins [72-77]. For
both a-helical and B-hairpin peptides, decomposition of the surfaces into
contributions from the effective energies (which include the full solvent free

TABLE XI
Linear Regression Statistics for the Models in Table IX
Descriptors Tirn Tev @ E
c¢/n AG/n p, 0.83 0.71 0.46 1.57
c¢/n AG ne 0.84 0.73 0.46 1.42
c¢/n AG/n n, 0.84 0.76 0.55 1.29
c/n AG c 0.83 0.71 0.41 1.40

c¢/n AG De 0.82 0.69 0.38 1.34
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energies) and configurational entropies indicated that the free energy barriers
derive primarily from the fact that the entropy decreases more rapidly than the
energy [75-77], as in Ref. 36 discussed above. However, consistent with the
statistical analyses of proteins, differences in secondary structure content
correspond to differences in the general shapes of the free energy surfaces.
For a-helical sequences, the transition states tend to be less folded, and
secondary and tertiary structure form concurrently [72,77]. For peptides and
proteins which contain -hairpins and B-sheets, a collapse to a native-like radius
of gyration occurs first, and rearrangement to the native state follows wihout
significant expansion [73-75]. At least for peptides at elevated temperatures
[76,77], determination of the rate of diffusion on the free energy surfaces, which
relates directly to the pre-exponential factor in the rate law [53], should now be
possible but has not been done and would be of interest.

In connecting these ideas with earlier phenomenological models, it is not
obvious how to reconcile the dependence of the rate on the structure with a
nucleation mechanism, as in Ref. 50. The statistical relationship suggests that
the transition state contains a considerable amount of native structure, while a
nucleus, in the classic sense of the word, is a small part of the structure.
However, it could be that a limited number of native contacts (i.e., those in the
nucleus) are sufficient to confine the transition state ensemble to a native-like
fold. This idea is supported by a recent analysis of the folding transition state of
acylphosphatase in which key residues, as determined by a ¢ value analysis,
play a critical role [56].

V. UNFOLDING RATES OF PROTEINS

To function, a protein must not only fold (kinetic criterion) but populate its native
state for a significant fraction of the time (thermodynamic criterion). The
unfolding rate (k,) as well as k; contribute to the equilibrium constant, which
determines to what degree the latter condition is satisfied. To find the factors that
affect the unfolding rate, we carried out an analysis for logk,. Rate data for
unfolding in water were not available for three of the proteins (2HQI, 1YCC, and
1HRC-oxidized), so these were excluded from the analysis; the choice of
descriptors was the same.

For single-descriptor models, the best cross-validated predictions are ob-
tained with the contact order (c and c¢/n ), the free energy of unfolding (AG and
AG/n), and the buried surface area (m) (Table XII). The strong dependence of
the unfolding rate on the contact order for these proteins is somewhat surprising
because no significant correlation was observed in a previous study of a
database of 24 proteins [14], 19 of which are included here. For those 19 proteins
we have raglogr, = —0.61, relogk, = —0.56 and r,jp 10gx, = —0.45, whereas for
the 11 additional proteins included in the present analysis of the unfolding rate
we have rag logk, = —0.64, re1ogk, = —0.85, and r/, 10gr, = —0.83. The proteins
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TABLE XII
Single-Input Correlations for Unfolding Rates
Index Symb()l Fxslogk, Ttrn Tev q?»
0 AG —0.64 0.69 0.53 0.21
1 AG/n —0.45 0.55 0.40 0.12
2 m —0.41 0.61 0.45 0.14
3 m/n —0.31 0.36 0.08 —0.11
4 n —043 0.58 0.09 -0.09
5 ne —0.40 0.53 0.09 —0.05
6 c —0.68 0.77 0.67 0.44
7 c/n —0.58 0.69 0.52 0.20
8 h 0.40 0.49 —0.57 —0.86
9 e —0.34 0.53 0.16 —0.06
10 t —0.01 0.39 —-0.25 —-0.12
11 s —0.08 0.26 —-0.19 —-0.24
12 g 0.03 0.36 —0.16 -0.32
13 b —-0.27 0.27 —-0.19 —-0.23
14 0 —0.20 0.55 0.15 —0.08
15 a 0.40 0.50 —-0.27 —-0.27
16 Py 0.29 0.53 —0.64 —-0.32
17 P, —0.28 0.30 —0.38 —0.47
18 P, —0.20 0.52 -0.22 —-0.20
19 P 0.29 0.50 —0.31 —-0.42
20 De —-0.23 0.50 —0.38 —0.40
21 Po —-0.27 0.49 —0.56 —0.11
22 qe 0.14 0.35 —0.11 —0.14
23 qa 0.24 0.48 0.19 —0.06

that appear to be primarily responsible for decreasing the correlation with the
free energy of unfolding and increasing the correlation with the contact order
are the helical proteins—in particular, 2PDD and 1LMB. Because for the 30
proteins considered in this section there is no significant correlation between the
contact order and either the free energy of unfolding (rag,. = 0.28) or the
amount of buried surface area (r,. = 0.23), higher predictive accuracy is
obtained by combining these descriptors (Table XIII). Only a slight improve-
ment was observed upon adding a third descriptor.

We end this section by noting that, for these 30 proteins, there is a significant
correlation between the folding and unfolding rates (riog & logk, = 0.59). At least
in the case that k; and k,, are determined by an entropic barrier (Section IV.E),
this relationship can be understood in the following way. Because all the
proteins are roughly the same size, the stability of the native state does not
depend on contact order (for the overall reaction, AS  n). Changes to ¢ that
raise or lower the free energy of the transition state (TS) relative to the fixed
endpoints (U and F) will change Ay_rs and AGp_zs in the same manner. This
dependence of the activation free energies is the basis not only for the correlation
of log k, with logk; but also that with c.
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TABLE XIII

The Best (as Measured by r.,) Five Two-Descriptor Models for the Unfolding Rates
Descriptors Ttrn Tev @ E
c AG/n 0.90 0.85 0.71 0.53
c AG 0.88 0.81 0.66 0.62
c/n AG 0.89 0.80 0.61 0.49
c m 0.83 0.73 0.53 0.85
c m/n 0.90 0.71 0.49 0.92

VI. HOMOLOGOUS PROTEINS

Information about the transition state of a protein can be obtained from protein
engineering experiments in which one compares the effects of mutations on the
folding rate to their effects on the overall stability (¢ values). Several proteins
have been mutated extensively, and their kinetics have been measured. The fact
that proteins with related structures but low sequence homologies are found to
have similar transition states has been taken to support the relation between
native structure and folding behavior; this is the case for the transition states of
the src [57] and a-spectrin [58] SH3 domains, which have 36% sequence homo-
logy. A particularly interesting transition state comparison involves acylphos-
phatase (AcP) [59] and procarboxypeptidase A2 [60]. These two proteins fold to
sandwich structures with two a-helices packed against a five- or four-stranded
antiparallel sheet, respectively. Although their sequences have only 13% identity,
the average ¢ values for all elements of secondary structure (except one, B-strand
4) are almost the same. Moreover, it has been suggested that the reason
that procarboxypeptidase A2 folds about 4000 times faster than AcP is that the
transition state of the latter involves longer loops and secondary structure
elements; consistent with this observation, there is a strong correlation between
log ks and the contact order for proteins with this fold [59].

The dependence of the folding rate on the stability can be evaluated by
measuring the kinetics of a family of proteins with native states that have
similar structures but different AG values. Such an analysis was made recently
for a set of six immunoglobulin-like B-sandwich domains [61]. They have
stabilities that are distributed relatively uniformly over the range 1.2 < AG <
9.4 kcal/mol (in contrast to the AcP family discussed above, for which four of
the five members have 3.8 < AG < 5.4 kcal/mol). Although there is some
variation in the detailed structures of these six proteins, using the definition of
the contact order given in Section II, all of them have c¢/n > 28 (for these six,
28.22 < ¢/n < 32.53; for the five members of the AcP family, 25.83 < ¢/n <
35.08; for all 33 proteins, 12.21 < ¢/n < 37.32). In accord with the functional
dependence on AG shown in Figs. 3a and 4, a strong positive correlation
between log kr and AG was observed for this family (rac,jog k= 0.99). The data
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TABLE XIV
Relation Between Stability and Folding Rate for Six Two-State Proteins That
Have Been Mutated Extensively”

Protein Reference c Number of Mutants  rag ogk Tt Tick

Acylphosphatase 59 344 25 0.614 0.667  0.386
Procarboxypeptidase A2 60 20.7 19 0.531 0.712  0.464
src SH3 57 20.5 58 0.552 0.556  0.408
a-Spectrin SH3 58 18.0 18 0.481 0.476  0.099
CI2 71 16.1 86 0.554 0.606  0.519
A-Repressor 64 9.8 9 0.720 0.760  0.307

“The coefficients r;,, and rj are for single-input (AG) neural networks. The a-spectrin SH3 domain
values are those for pH 7; the src SH3 domain values are for pH 6. The A-repressor values are for
2M urea.

suggest that for a given structural family with significant variation in AG, the
folding rates of individual sequences are determined by their stabilities.

This conclusion is consistent with the fact that both log k; and log &, typically
vary linearly with the stability of the native state as a protein is mutated. Such
Brgnsted behavior has been used in protein engineering studies to argue that
fractional ¢ values derive from partial structure formation rather than multiple
parallel folding pathways [62]. Correlation coefficients for published folding
rates of mutants of six two-state proteins are given in Table XIV. For the most
part, there is a strong, essentially linear relation that is reasonably robust to
jackknife cross-validation. For all the sequences, increases in stability tend to
accelerate folding. Similar behavior is obtained simply by varying the condi-
tions to affect the stability of a protein (for example, see Fig. 2a of Ref. 14).
This analysis thus confirms that the stability is an important secondary factor in
determining folding rate. As described in Ref. 9, in accord with the Hammond
postulate [34], stabilizing the native state of a protein in most cases also lowers
the energy of its transition state relative to the unfolded state and thus increases
the folding rate.

VII. RELATING PROTEIN AND LATTICE MODEL STUDIES

The fact that the folding (and unfolding) kinetics of relatively small, two-state
proteins can be predicted with reasonable accuracy from global features of the
native state like the contact order, stability, and number of contacts supports the
idea that the details of protein structure are not required to capture the key
features of protein folding, so that reduced representations should be adequate.
However, the most widely used simple heteropolymer models, those restricted to
a simple cubic lattice, predict that stability is more important than native
structure, in contrast to the experimental data for proteins. In this section we seek
to understand why lattice models differ from proteins in this regard. Doing so is
of importance because complete details of the folding trajectories of such models
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can be obtained and used to test phenomenological models like those described
in Section IV.A.

In the case of the 27-residue model described in Section III [6,9], it is likely
that the chain length is too short for there to be contacts that are sufficiently long
range to slow-folding. In the case of the 125-residue model, which is larger than
all but one (2VIK) of the proteins considered in the present study, significant
correlations between various measures that characterize the native structure and
the folding behavior were observed [10,11] (it should be mentioned that, in
contrast to the number of antiparallel sheet contacts discussed in Section III, the
contact order is a poor measure for characterizing lattice model structure;
18.7 < ¢ <31.0 for the 100 helical proteins in Refs. 10 and 11, whereas
17.2 < ¢ < 32.0 for the 100 sheet proteins). However, in the lattice model, the
functional dependence of the folding stability is essentially the same regardless
of the native structure; at a particular threshold value of the stability (which
varies only slightly with the number of antiparallel sheet contacts), the folding
ability rises rapidly and then levels off [11,37]. There are two likely reasons that
the functional dependence is much simpler than that for proteins (Fig. 3a). First,
the 125-residue sequences were energetically optimized to observe folding on
the time scale of feasible simulations and are thus expected to correspond to the
more stable region in Fig. 3a. Second, due to the highly restricted confor-
mational space of the lattice and the choice of move set, helices that form in
isolation cannot diffuse as semirigid units [49]; as a result, lattice models cannot
correctly capture the lower contact order region of Fig. 3a. Once one restricts
oneself to the remaining part of Fig. 3a, the behaviors observed in the lattice
models and proteins are consistent; in both, the folding ability increases
sigmoidally with the stability [compare Fig. 4 with Fig. 16 of Ref. 11 and
Fig. 1 of Ref. 37]. It should be noted, however, that an exact correspondence is
not expected because, in the lattice model [2,6—11] and related analytic [16—18]
studies, the stability descriptors are calculated from effective energies that
include solvent effects implicitly rather than from full free energies, while the
experimental AG values include the protein configurational entropy as well. It
would be useful in this regard to have experimental enthalpies of folding for the
proteins considered.

VIII. CONCLUSIONS

In the present study a nonlinear, multiple-descriptor method was applied to the
prediction of the logarithm of the folding rate constant for a set of 33 two- and
weakly three-state proteins. With two (three) descriptors, the Pearson linear
correlation coefficient between the observed values and the training set and
cross-validated predictions reach 0.89 (0.93) and 0.81 (0.86), respectively. These
results are to be compared with those obtained by using the contact order by
itself: r,,, = 0.83 and r., = 0.74. In addition to the contact order, some measures
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of the propensity of the sequence for a given structure also exhibited significant
relationships with the folding rate; for example, r., = 0.42 for p,. Although the
propensity correlations are somewhat lower than those for measures obtained
from the observed native structure, the sequence-based predictions may be
sufficient to identify fast- or slow-folding proteins without the need for high-
resolution structures. For example, using n and p,, the folding rates for all 33
proteins, which range over almost six orders of magnitude, are predicted within a
factor of 200; these (cross-validated) predictions are to be compared with those
based on n, and ¢/n, which are accurate within a factor of 60. In addition to the
contact order, the size and stability play significant roles and are selected
frequently for two- and three-descriptor models. Of particular interest is the
finding that, for mixed-o/f and PB-sheet proteins with higher contact orders
(c > 21), the stability not only significantly improves the accuracy of multiple-
descriptor models but gives excellent predictions by itself. The explicit or
implicit inclusion of the stability in phenomenological models accounts for
recent improvements in fitting experimental kinetic data [19,20,42]. Given the
high quality of predictions that are obtained with the present analysis, further
investigation of such correlations and their physical origins appear worthwhile,
as has been suggested elsewhere [50].
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I. INTRODUCTION

Protein folding is a process by which a polypeptide chain made up of a linear
sequence of amino acids adopts a well-defined three-dimensional native structure
[1]. Single-domain proteins reach their biologically active native conformations
on time scales that are typically on the order of 10-1000 milliseconds [2]. Since
Anfinsen’s pioneering experiments it has been known that protein folding is a
self-assembly process in which the information needed to determine the three-
dimensional native structure is contained in the primary sequence [3]. Given this,
the next important question is how the native state is kinetically reached in such a
short time scale [4]. This issue was first emphasized by Levinthal, who wondered
how a protein of a reasonable length can navigate the astronomically large
conformational space so efficiently [5]. Seeking to resolve the paradox,
Levinthal suggested that certain preferred pathways must guide the chain to
the native state. For years the Levinthal paradox has served as an intellectual
impetus in our quest to understand the mechanisms by which a polypeptide chain
reaches the native conformation.

The last decade has witnessed considerable advances in our understanding of
how a polypeptide chain folds starting from an ensemble of denatured states [6—
13]. In recent years, protein folding kinetics has become increasingly important,
largely because misfolding (i.e., errors in refolding) has been implicated in a
number of diseases [14]. As a result, several advances have been made to probe
the factors that govern the normal folding of proteins. Fast-folding experiments
[2,8,15-19] and single-molecule methods [20-24] are beginning to provide
direct glimpse into the early events in the assembly of proteins. Protein
engineering in conjunction with the ®-value analysis has become the corner-
stone technique in deciphering the structures of the elusive transition state
ensemble of two-state folders [25-27]. Although these tools have helped us to
understand folding of individual proteins, considerable progress still needs to be
made before the complex processes in misfolding and assembly of proteins with
increasing complexity are well understood. In particular, to translate the
functional genomics efforts into practical applications, it is important to solve
rapidly the proteomics problem, namely, the determination of protein structures.
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These multifaceted activities have ushered all aspects of protein folding at the
center stage of molecular biology.

The major focus has been in understanding the folding mechanisms of
proteins that display two-state behavior [28]. A variety of factors that determine
the plausible folding scenarios have been identified [6,9—12,29-36]. A number
of distinct folding mechanisms emerge depending on the characteristics
temperatures that determine the phases of the polypeptide chain [10,34]. These
findings explicitly link the underlying thermodynamic properties of proteins
and their folding mechanisms. Several studies have focused on the factors
that determine the folding rates of two-state proteins. Plausible relation-
ships between folding rates and the contact order [37] (which emphasizes
the role of structures involving proximal residues), stability [34,38], and Z
score [34] have been established. Because many of these conceptual ideas
have been described in recent reviews [6,9-12,33,39-41], we will not discuss
these here.

A variety of computational and phenomenological approaches have been
employed to obtain the general principles that control the folding rates and
mechanisms of single-domain globular proteins [6,10,33]. It may be naively
thought that the computational protocol for describing protein folding is
straightforward. Indeed, the folding dynamics is well-described by the classical
Newton equations of motion, and folding may be directly monitored from an
appropriately long trajectory. However, there are two drastic limitations that
prevent this approach to study the folding of proteins. First, the force fields for
such a complex system are not precisely known. As a result, one needs to rely
on the transferability hypothesis that interactions derived for small molecules
can be used in larger systems, such as proteins. The second problem is simple:
the limitations of current CPU power. Repeated folding of even a single-domain
protein requires generating of multiple trajectories in a millisecond time scale.
Even creative use of massively parallel simulations does not entirely solve this
severe numerical constraint [42].!

In light of these difficulties, various simplified models of proteins have been
suggested [10,39,41]. Most of the insights from computations came from the
systematic studies of folding using coarse-grained models. The main rationale
for their use is that a detailed study of such models will reveal general principles,
if any, that govern the folding of proteins [10,39,41,43,44]. Such an approach

'We have recently achieved extraordinary speed-up of folding simulations for several B-hairpin
sequences using distributed computing. In collaboration with Parabon Computations Inc., we have
shown that distinct folding scenarios emerge even in the formation of B-hairpins. For the hairpin
taken from the C-terminal of the immunoglobulin binding protein (GB1), the folding mechanisms
and the time scales depend on the location of the hydrophobic cluster (D. Klimov, D. Newfield, and
D. Thirumalai, unpublised results).
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has yielded considerable insights into the mechanisms, time scales, and path-
ways in the folding of polypeptide chains.

The purpose of this chapter is to describe applications of simple concepts and
computations to three specific problems in protein folding: (i) Are the re-
quirements that folded states of proteins be compact and have low energy
sufficient to explain the emergence of the finite number of folds from a very
dense sequence space? An affirmative answer to this question, at the conceptual
level, can be given using lattice models of proteins [44]. (ii)) Phenomenological
theory and lattice model computations are used to clarify the role of disulfide
bonds in protein folding. The theory based on the proximity rule [45] and the
lattice models investigating disulfide bonds formation [46] provided clarifica-
tions of the expected pathways in the refolding of bovine pancreatic trypsin
inhibitor (BPTI). Recent calculations have explained quantitatively the effect of
intact S-S bonds on the folding and stability of barnase. (iii) We describe a
simple model of chaperonin-assisted folding [47]. Specific predictions about the
coupling between conformational change of the chaperone molecule and the
folding of the substrate protein emerge from the calculations. These predictions
were subsequently tested experimentally.

To make this chapter as self-contained as possible, we briefly describe lattice
models and the commonly employed computational methods. This is followed
by a brief description of how a monomeric protein folds. The contents of this
section are important to better appreciate the role of chaperones in the rescue of
proteins. The chapter is concluded with brief comments about the challenges we
face in the straightforward all-atom simulations of protein folding.

II. LATTICE REPRESENTATIONS OF PROTEINS

A. Basic Assumptions

Lattice models (LM) of single chains have long been used in polymer physics to
obtain a number of universal properties (scaling of the size of the polymer with
N, distribution of end-to-end distances, etc.) of real homopolymer chains [48].
For these issues the universal properties are unaffected by the precise interactions
between monomers as long as they are short-ranged. It is not clear a priori that
lattice models can be used to investigate general features of folding (e.g.,
cooperativity of transition from unfolded U to native N states). Single-domain
proteins are finite-sized with the number of amino acid residues, N, not typically
exceeding much beyond 200. Specific interactions that leads to the unique
architecture of the N state cannot be fully represented using LM. The dynamics
of the folding process can clearly depend on the precise move sets, so that the
correspondence between the Monte Carlo simulations and the kinetics in
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aqueous solution is ambiguous at best. Nevertheless, a series of studies from
several groups have yielded a number of predictions many of which have been
affirmed experimentally [6,39,41,47].

In the context of protein folding, lattice models were first introduced by Go
and co-workers [49]. The insights brought by Dill and Chan in the late 1980s
have had a great influence on the development of LM for understanding protein-
folding kinetics [50]. Dill and co-workers argued that protein folding can be
studied using short enough chains so that exact enumeration of all allowed confor-
mations becomes possible. Exact enumeration enables precise computations of
thermodynamic characteristics. Monte Carlo (MC) simulations, based on
physically motivated move sets, can be used to monitor folding kinetics.

In the simplest LM, amino acids are represented by a single atom (treated as
a backbone a-carbon) and the side chains are not explicitly considered. As a
result, only a few basic interactions found in real proteins can be modeled. In
the most popular version of LM the polypeptide chain adopts a self-avoiding
walk on a cubic lattice [32,51,52]. The heterogeneity of interactions in amino
acids is mimicked by having several interaction energy scales between the beads
of the chain. In general, only short-range interactions between nonbonded
residues that are nearest neighbors on the cubic lattice are taken into account.
Thus, a generic energy function for such a model includes three components:
(i) connectivity of the chain is preserved through rigid bonding of successive
beads; (ii) a self-avoidance condition is imposed by the restriction that a given
lattice site can be occupied only once; (iii) the contact interactions between the
side chain beads i and j B;;(|i —j| > 1) are given by pairwise potentials. The
energy of a conformation is

E=> B;idjs i (1)

i<j
where 9, , is the Kronecker delta function and a (=3.8 A) is the lattice spacing.

1. Contact Energies

There are several models for the interaction matrix elements B;; which take into
account the diversity of interactions between amino acids. Because these models
are at best a simple representation of the potentials in real proteins, it is not a
priori clear that any particular model is better than the other. In the literature
several different interaction schemes have been utilized [32,34,39,47,51,52].
These include HP model [39,51], random bond (RB) model [32], and the
pairwise potentials derived from the statistical analysis of contacts between
different amino acids in the protein structures [53-55]. In what follows we give a
brief description of these models.
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2. HP Model

This model reduces the set of 20 naturally occurring amino acids to two kinds,
namely, hydrophobic (H) and polar (P) [39,51]. A sequence is given by the
nature of the amino acid residue at a given position. For example, HPHPH is a
sequence with N = 5. There are 2" total sequences for a given N. In the HP
model the interactions are given by a 2 X 2 matrix, whose elements are
Byy = —e and zeros, otherwise. Despite the simplicity of the model, it is not
exactly solvable due to the chain connectivity and excluded volume effects. Be-
cause the HP model can lead to microphase separation, variations in the inter-
action energies have been introduced. Various aspects of folding observed in the HP
model (two-letter code) have been investigated by Dill et al. [39] and others [51].

3. Random Bond Model

In the RB model [32] the interaction elements are drawn from the Gaussian

distribution
1 (Bj — By)*
P(By) = NerT M <_ 1232 (2)

where By, is the average interaction that specifies the strength of the drive toward
forming compact structures at low temperatures, and the dispersion B gives the
extent of diversity of the interactions among beads. Energy is measured in
terms of B which is set to unity. The choice of By = —0.1 [32] ensures that the
fraction of hydrophobic residues in a sequence (specified by the interaction
matrix elements B;;) is about 0.55, which roughly coincides with the fraction of
hydrophobic residues in real proteins. A sequence is specified by the matrix of
contact energies B;;.

4. Statistically Derived Pairwise Potentials

In this case, the energies B;; are given by pairwise statistical potentials computed
by analyzing the frequency of amino acids interactions in the experimentally
determined protein structures. Several sets of such potentials are currently
available. These includes the potentials calculated by Miyazawa and Jernigan
(M1J) [53], Kolinski, Godzik, and Skolnick (KGS) [54], Mirny and Shakhnovich
[56], Tobi and Elber [57], and Betancourt and Thirumalai [55]. The major
advantage of the such potential sets is that the model lattice sequence may now
be described in terms of ‘“‘real” amino acid composition, assuming that the
contact energies reproduce the nature of interactions between amino acids.

5. Go Model

The Go model does not directly introduce a new force field, but modifies the
existing energy function by tuning it to the known native structure [58].
Specifically, the Go model considers only the interactions between residues
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(beads on the lattice) that are present in the native (ground) state. In other words,
only native contacts are taken into account. The major advantage of the Go
model is almost a complete elimination of frustration in a model protein and, as a
result, a substantial increase in the folding rates [59]. The severe shortcoming is
that the energy function and the native structure cannot be decoupled; conse-
quently the Go model, despite being topologically frustrated, is “‘foldable” by
definition.
B. Lattice Models with Side Chains

The cubic lattice models described above is the simplest version of the coarse-
grained model. One obvious way to make it more realistic is to incorporate the
explicit representation of side chains [60]. In this case, a polypeptide chain is
modeled by a sequence of N backbone beads, representing the C, carbons of a
protein backbone. Side-chain beads, which mimic amino acid residues, are
attached to each backbone bead. In all, there are 2N beads in the model, all of
which occupy the vertices of cubic lattice. The conformation of a protein is
specified by 2N vectors 7 ;,7;,i = 1,2,...,N = 15, where 7}, and 7;; are the
positions of backbone and side-chain beads, respectively. The energy function
used for the side-chain model is typically the same as employed in the model
without side chains. These models provide a more realistic description of
cooperativity of folding, because they include effects of side-chain packing [39].

C. Computational Methods
1. Exhaustive Enumeration

The conformational space of short lattice sequences can be exhaustively
enumerated. All conformations for a polypeptide chains with N <20 on a cubic
lattice can be enumerated using the Martin algorithm [61]. This algorithm
successively generates all self-avoiding conformations for a given N, which
allows exact calculation of any thermodynamic quantity. In order to reduce the
sixfold symmetry on the cubic lattice, the direction of the first monomeric bond
may be fixed in all conformations. The remaining conformations are still related
by the eightfold symmetry on the cubic lattice (excluding the cases when
conformations are completely confined to a plane or straight line). To decrease
further the number of conformations, the Martin algorithm may be modified to
reject all conformations related by this symmetry [32]. For longer model
sequences the CPU time required to enumerate all conformations becomes
prohibitively long. With constant upgrade in computer power this limitation is
being steadily overcome.

2. Monte Carlo Method

The standard method for studying thermodynamics and kinetics of folding in the
context of lattice models is the Monte Carlo (MC) algorithm [62]. Several types
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of moves are commonly used [32]. These are (i) corner moves (a flip of the
residue across the diagonal of the square formed by the neighboring bonds), (ii)
crankshaft rotations (rotation of the beads i + 1 and i + 2, while keeping the
adjacent beads i and i + 3 fixed), and (iii) rotation of the end beads. Although the
precise choice of moves or their probabilities affects the local structural
dynamics, it is commonly believed that the general thermodynamic properties
and even kinetic characteristics remain unchanged as long as the moves are
ergodic. Even with the choice of physically motivated move sets their influence
on the results must be tested.

3. Multiple Histogram Technique

The thermodynamic quantities for longer chains may be effectively computed
using the multiple histogram method [51,60,63]. The method is based on the
collection of a set of histograms at different values of the external parameter and
combining them by reweightening the contribution from individual histograms.
The thermal average of any quantity may then be calculated. Technically,
multiple slow-cooling MC trajectories, each starting from different conditions,
are needed to obtained the histograms. Each trajectory starts at a high temperature
(Ty, > Tp) and ends at the temperature 7; < T, where Ty and T are the collapse
and folding temperatures, respectively. In the course of a trajectory the
temperature is changed periodically by small decrements, and the portions of
simulations at a given fixed temperature (after quick equilibration intervals) are
used for histogram collection. Usually, histograms for the values of energy,
number of native contacts, radius of gyration, and so on, are obtained. There is no
general prescription for choosing the lengths of the trajectory and of the equili-
bration interval because they depend strongly on the sequence and on the
temperature. The number of trajectories is determined by the condition that the
thermodynamics of the system should not change significantly with subsequent
increase in sampling. Thus, by using multiple histogram technique, one can
completely characterize the thermodynamics of the system by calculating the
average of any quantity as a function of external parameter as well as the free
energy profiles. Using the histograms, we can generate free energy profiles,
provided that a useful reaction coordinate is chosen.

4. Folding Kinetics

The kinetics of folding of a lattice sequence is obtained using multiple
folding trajectories at a fixed temperature. Each trajectory starts from a different
high-temperature conformation. After a sudden quench of the temperature to T,
the chain kinetics is monitored. Typically, the folding kinetics is characterized by
time dependence of folding probes averaged over the total number of trajectories
considered. The first passage to the native structure ty; is also recorded. From the
distribution of ty; Py, the fraction of trajectories that have not reached the native
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conformation at a time ¢ is calculated using

r

Pu(t)=1- L Py (s) ds (3)

The integral of P,(f) determines the average passage time Tr as

Tp = J:C P,(t)dt 4)

Accurate results require generation of hundreds of folding events.
III. REDUCTION IN CONFORMATIONAL SPACE

A. Importance of Excluded Volume Interactions

The impetus to examine the size of the conformational space of proteins comes
from Levinthal [5], who wondered how can a polypeptide chain, even though it is
relatively small, navigate the vast number of allowed conformations in search of
the unique native state? A popular resolution of this argument suggests that
fundamental constraints, notably the excluded volume (EV) interactions between
atoms, so vastly reduces the conformations that only a very limited number is
ever sampled. This idea can be precisely tested using appropriate models.

The number of independent conformations for a chain with N beads on a
cubic lattice is Cjyp = ZV, where Z (=6) is the lattice coordination number. If
excluded volume interactions (also referred to as steric clashes [64]) are taken
into account, then the number of allowed conformations is

CEV ZZ%N771 (5)

where the universal exponent y ~ 1.16, and Z,; = 4.684 in a cubic lattice. Both
Civp and Cgy scale exponentially with N. However, it might be argued that the
finite size of the proteins might make the reduction, due to EV interactions, so
significant that the “entropy price’ to adopt native-like conformations is not
very large. In a cubic lattice the entropy change, AS, upon going from S;yp to Sgy
is AS/kg ~N In(Z/Z,). For N =10,AS ~ 12.8eu, which is substantial.
However, the absolute entropy associated with Sgy is NInZ.:. Neglecting
logarithmic corrections we get Sgy = kpln Cgy =~ 15.4eu. Thus, considering
steric clashes alone does substantially reduce the size of the conformational
space. However, this reduction is not sufficiently large to solve the ‘“‘search
problem” envisioned by Levinthal.

In a recent interesting article, Pappu et al. [64] have reemphasized the
importance of excluded volume interactions by enumerating the allowed
conformations for blocked all-atom polyalanine chains, Al-(Ala),~N’-methylamide
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for n < 7. By coarse graining the (¢, V) angles, they showed that the con-
formational space due to EV interactions is less than it would be if the (¢, )
angles are considered independent as suggested by Flory. This result is in
qualitative accord with the estimates for lattice models given above. As pointed
out above, this reduction is not sufficient to provide a qualitative explanation of
the central kinetic issue raised by Levinthal.

Pappu et al. [64] suggest that EV interactions or steric clashes “bias” the
conformations so that even in the unfolded state there is a significant tendency
to form local structures. This is certainly the case in off-lattice models of
proteins [10]. Typically, these fluctuating structures are stabilized by additional
interactions (say, hydrogen bonding). If the favorable biasing interactions are too
strong (greater than 2-3 kpT), then the local interactions would become incom-
patible with the tertiary interactions. This has been shown to increase the topo-
logical frustration [65] see below, which in turn can lead to the dominance of
kinetic traps. Thus, arguments that are based solely on the reduction of
conformational space of proteins cannot account for the global folding mechan-
isms. Harmony (or consistency) between local and nonlocal interactions is
necessary for efficient folding of proteins.

If only EV interactions are included in polypeptide chains, the chain cannot
undergo a ‘“phase transition” to any specific conformation. The effective mean-
field one-body potential describing EV interactions is known to be long-ranged
(scaling as r—*/3). Consequently the polypeptide chain would adopt a random
coil state at all temperatures, if only EV interactions are included. However, the
chain can be induced to adopt a preferred structure (native conformation), if an
additional attractive energy —e between residues (hydrogen bond interactions,
for example) is introduced. This is the basis of the popular HP model for
proteins [39]. In a model, which takes into account the EV and attractive
interactions, a phase transition into a native-like structure can occur at 7" such
that T = Cye/Sy, where Cy is the number of favorable native interactions and
Sy is the entropy of the unfolded state. Pappu et al. [64] showed that by
including an attractive energy term to mimic backbone hydrogen bonding, an
apparent two-state transition from a stretched state to a contracted state takes
place (Fig. 1). This kind of apparent two-state transitions, similar to those found
in proteins, has been observed in simple lattice models as well [6]. The
interesting feature of the calculations by Pappu et al. [64] is that a realistic
model of even a short polypeptide chain with only one attractive energy scale
can exhibit protein-like behavior.

IV. EMERGENCE OF STRUCTURES FROM THE
DENSE SEQUENCE SPACE

The sequence space of proteins is extremely dense as the number of possible
sequences for proteins of length N scales as 20". However, not all these
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Figure 1. Dependence of the radius of gyration (R,) for polyalanyl chain of length n =7 [64]
on the hydrogen bond length €. As € increases, compact conformations are populated preferentially.
The transition from the extended conformations at higher values of € to the contracted conformations
occurs rather cooperatively in an apparent “‘two-state” manner. The radius of gyration is computed
using a coarse-grained thermally weighted density of states (see Ref. 64 for details). Conformations
that make the most significant contributions at different values of € are also shown.

sequences encode for foldable protein structures, which for functional purposes
are constrained to have specific physical characteristics. How do viable protein
structures emerge from the dense sea of sequence space [66]? The extraordinary
thinning of the sequence space as one gets to the structure space may be
understood purely on the basis of accepted physical properties of proteins. To
this end, two interrelated physical features of folded proteins must be taken into
account. (i) Native proteins are compact. (ii) The interior of proteins consists
mainly of hydrophobic residues, while the hydrophilic residues are typically
found on the surface. This gives rise to a maximum number of favorable
interactions making the native state very low in energy.

Lattice models are remarkably useful in answering the conceptual question
posed above. To infer the sequence to structure mapping, we performed an
exhaustive enumeration of all self-avoiding conformations for the sequences
confined to cubic lattice with N = 15 [44]. The RB model has been used in the
energy function with the parameters By = —0.1 and B = 1. Protein-like struc-
tures are not only compact but also have low energy. We first computed the
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number of compact structures (CSs) for a given N, Cy, (CS). The number of
CSs, in its most general form, is expected to scale as

Cn(CS) =~ ZVZV T Nt (6)

where In Z is the conformational free energy (in units of kzT), Z, is the surface
fugacity, d is the spatial dimension, and Yy, measures possible logarithmic
corrections to the free energy. The number of natural protein folds is limited
(perhaps a few thousands), and their number is expected to grow at rates much
smaller than those predicted in Eq. (2). To explore this we calculated by exact
enumeration the number of minimum energy structures (MES), Cy(MES), as a
function of N.

We define MES as those conformations whose energies lie within the energy
interval A above the lowest energy E, corresponding to the native state. Several
values for A (1.2 or 0.6) were used to ensure that no qualitative changes in the
results are observed. We also tested another definition for A = 1.3|Ey — tBo|/N,
where ¢ is the number of nearest-neighbor contacts in the ground state. It is
worth noting that in the latter case A increases with N. Nevertheless, both
definitions yield equivalent results. The computational technique involves
exhaustive enumeration of all self-avoiding conformations for N<15 on a
cubic lattice. We calculated the energies of all conformations according to Eq.
(1) and then determined the number of MES and CS. Each quantity, such as
Cy(MES), Cy(CS), the lowest energy E(, or the number of nearest-neighbor
contacts ¢ in the lowest energy structures, is averaged over 30 sequences. To test
the reliability of the computational results, an additional sample of 30 RB
sequences was generated. Note that in the case of C(MES) we computed the
quenched average as Cy(MES) = exp [In [¢(MES)]], where ¢ is the number of
MES for one sequence.

The number of MES C(MES) is plotted as a function of the number of
residues N in Fig. 2 for A =0.6. A pair of squares for a given N represents
C(MES) computed for two independent runs of 30 sequences each. For
comparison, the number of self-avoiding walks C(SAW) and the number of
CS C(CS) are also plotted in this figure (diamonds and triangles, respectively).
As expected on general theoretical grounds, C(SAW) and C(CS) grow expo-
nentially with N, whereas the number of MES C(MES) exhibits drastically
different scaling behavior. There is no variation in Cy(MES) (normally, associ-
ated with the variation of shapes of compact structures) and its value remains
steady within the entire interval of N starting with N = 7. We find (see Fig. 2)
that Cy (MES) ~ 10". This result further validates our earlier finding for the two-
dimensional model [46]. The results strongly suggest that Cy (MES) scales only
as In N. Thus, the dual restriction of compactness and low energy of the native
states may impose an upper bound on the number of distinct protein folds.
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Figure 2. Scaling of the number of MES Cy(MES) (squares) on a cubic lattice. The data are
obtained for By = 0.1 and A = 0.6. The pairs of squares for each N represent the quenched averages
for different samples of 30 RB sequences. The number of compact structures Cy (CS) and self-
avoiding conformations Cy(SAW) are plotted to highlight the dramatic difference in scaling
behavior. It is clear that C(MES) remains practically flat; that is, it grows no faster than In N.

A. Designability of Protein Folds

The computations described above indicate that minimal restrictions on the
structures (compactness and low energies) make the structure space sparse.
Consequently, each basin of attraction in the structure space must contain
numerous sequences [66]. The way these sequences are distributed among the
very slowly growing number (with respect to N) of conformations—that is, the
density of sequences in structure space—is another important question. Li et al.
[67] considered a three dimensional cubic lattice proteins with N = 27. By using
the HP model and restricting themselves to only maximally compact structures
as tentative candidates for protein native states, they showed that certain folds
(i.e., structures) accommodate much larger number of sequences (see Fig. 3a)
than the others. In one example, they found the NBA (the structure) that serves
as a ground state for 3794(!) (when the total number is 227) sequences and, hence,
was considered most designable. The precise distribution of sequences among
NBAs is a function of the particular energy function.

An important conclusion of Li et al. [67] is that one can define, at least
operationally, a designability index for every fold found in PDB. The structural
characteristics of a given fold determine its designability. Several authors have
suggested that if the fold has even an approximate symmetry, then it would be
more designable [67,68]. This might explain the preponderance of TIM barrel
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structures. If the symmetry argument is extended to RNAs, then we would
conclude that certain symmetries should be hidden at the sequence level of
mRNAs and ultimately the genes themselves encoding a given protein [44].

Because the number of NBA for the entire sequence space is very small, it is
likely that proteins could have evolved randomly. Natural folds must correspond
to one of the native basins of attraction in the structure space so that many
sequences have these folds as the native conformations. In other words, natural
protein folds, especially those with approximate symmetries, represent highly
designable structures [67]. Further support for these ideas comes from the
study of Lindgard and Bohr [69]. These authors showed that among maximally
compact structures there are only very few folds that have protein-like charac-
teristics. It was also estimated that the number of distinct protein folds is on the
order of 10°. Thus, each fold can be designed by many candidate sequences.
However, there is also evolutionary pressure for sufficiently rapid folding to
avoid aggregation. This kinetic requirement further restricts the possible
sequences that can serve as biologically viable proteins (Fig. 3b).

V. PROTEIN FOLDING MECHANISM

Using lattice models with side chains we describe the most commonly found
scenarios observed in protein folding. Because this topic has been subject of
numerous reviews [6,9-12,41], we will stress a few points that are relevant in
considering chaperonin-mediated protein folding that is discussed in Section VIIL.

A. Two-State Folders

Thermodynamics for the sequence with the native state shown in Fig. 4 with the
contact interaction potentials B;; taken from Table III of Ref. 54 reveals that it
folds cooperatively in an apparent two-state manner. This is also reflected in the
thermal distribution of the overlap function values A(y) at the folding transition
temperature T (Fig. 4). A nearly bimodal distribution of h(y) with the peaks at
¥ < 0.2 (NBA) and y ~0.6 (unfolded state) is observed. There is also
nonnegligible contribution from the intermediate values of 7y representing
partially folded structures. Experiments that probe in more detail the thermal
unfolding of proteins are beginning to reveal the possible importance of these

Figure 3. (a) A log-log plot of the histogram for number of structures with respect to the
number of associated sequences N, for 27-mer maximally compact cubic lattice conformations [67].
The plot illustrates a dramatic heterogeneity among structures in terms of their ability to encode
protein sequences. (b) Schematic illustration of the mapping of vast sequence space onto the limited
number of protein folds. This mapping involves drastic reduction in sequence space as polypeptide
sequences evolve into functionally competent proteins.



50 D. THIRUMALAI, D. K. KLIMOV, AND R. I. DIMA

0.10 [T T T T T

0.08 | 1

0.06

hoo

e © ¢ ¢ 0.04

¢
LL LL &L kL 0.00 L - - -

0.0 0.2 0.4 0.6 0.8

Figure 4. Native structures of sequences A generated using [126] is shown in the left panel.
Backbone and side-chain beads are shown in light and dark gray, respectively. Native conformation
is compact and has a well-defined hydrophobic core. The figure is generated using program RasMol
[126]. The right panel displays the thermal distribution of states h(y) calculated at T = Tr for
sequence A. h(y) is approximately bimodal so that only NBA (x < 0.2) and unfolded state
U(y ~ 0.6) are significantly populated. Although small, the population of intermediate states
nevertheless makes a sizable contribution to thermodynamics (affecting mainly cooperativity of
folding).

conformations [70]. Due to substantial contribution from the partially folded
structures, thermal unfolding cannot be quantitatively described as two-state.

The folding kinetics can be probed using the distribution of the first passage
times, Ty;. Several hundred (~600) folding events are used to obtain the
distribution of ty;, from which the fraction of unfolded molecules P,(f) may
be readily obtained. In addition to P,(t), we have computed the time depen-
dence of the radius of gyration (R,(¢)), where the average is taken over 100
folding trajectories.

The sequence, whose native state is shown in Fig. 4, displays two-state
kinetics for the temperatures T > 0.87TF; that is, P,(t) ~ exp(— #), where Tf is
the folding time. To probe the sequence of events en route to the native
conformation, we computed (R,(z)), which reveals two stages in collapse.
Initial rapid burst phase is followed by a gradual chain compaction (Fig. 5). The
overall collapse time T, is associated with the second characteristic time. From
the approach to the native conformation we draw the following general
conclusions regarding two-state folders:

(a) The ratio tr/t. for two-state folders is typically less than 10. This is
consistent with the fast-folding experiments on several two-state folders, which
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Figure 5. The time dependence of the normalized radius of gyration (R,(r)) and the fraction of
unfolded molecules P,(t) for sequence A at T = 0.94T . Data are averaged over 100 [for (R,(1))]
and 600 [for P,()] trajectories. P,(f) decays exponentially with the time scale T = 2.07x
10® MCS. The approach of (R,(t)) to equilibrium is biexponential with the times scales 0.083x
10° MCS and 0.698 x 10® MCS. The first time scale is due to extremely rapid burst-phase partial
collapse. The second time scale, which is associated with the collapse time 1., corresponds to the
final compaction. The ratio 17 /7. is approximately 3.0.

show that proteins rapidly collapse and reconfigure themselves to reach the
native state. For the sequence in Fig. 4, tr/t, ~ 3. This ratio is in the range
5-10 for proteins.

(b) Analysis of the collapsed conformations shows that they are native-like;
that is, the initial collapse in two-state folders is “‘specific”” with very few
nonnative interactions present. The overall scheme for reaching the NBA for
two-state folders, which was predicted using theoretical arguments, is

U— {IN} — N (7)

where {In} is a collection of native-like structures. Fast-folding experiments on
cyt-c and tendamistat [71] have been interpreted using this picture. Because the
initial collapse is specific, the ensemble of native-like intermediates can
be likened to an “on-pathway” intermediate. Lattice simulations (without side
chains) using Go model have come to a similar conclusion [72]. In the GO model
the only possible nonnative “interaction’ comes from the topological entangle-
ments, which are highly unlikely given the relatively small (48-mer) well-
designed sequence.
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B. Moderate Folders, Topological Frustration, and
Kinetic Partitioning Mechanism

Many qualitative aspects of the folding kinetics of moderate folders can
be understood in terms of the concept of topological frustration [10]. On
average, about 55% of residues in proteins are hydrophobic, and their density
along the sequence is roughly constant. As a result, on any local length scale
there is a propensity for the hydrophobic residues to form tertiary contacts
(structures) under folding conditions; that is, proximal residues adopt preferred
structures. The assembly of the resulting structures would most likely be in
conflict with the global native fold. The incompatibility of the low free-energy
structures on local and global scales leads to a phenomenon called topological
frustration. Topological frustration is an intrinsic property of all foldable
sequences and arises due to the polymeric nature of proteins and the
heterogeneity of amino acids. It follows that even the Go model is topologically
frustrated because residue connectivity can render certain favorable local
structure incompatible with the global fold. An important physical outcome of
topological frustration is that the free-energy folding landscape is rough,
consisting of many minima that are separated by barriers of varying heights.
One of the principal consequences of topological frustration is that the fold-
ing kinetics follows the kinetic partitioning mechanism (KPM) [10]. Imagine an
ensemble of unfolded molecules in search of the native conformation (Fig. 6).
Due to the heterogeneity of folding pathways, a fraction of molecules, ¢, would
reach the NBA (or N) rapidly without being kinetically trapped in the low-lying
free-energy competing basins of attraction (CBA). The remaining fraction,

27N
{u} N

“N—11)”

Figure 6. The sketch of the protein folding pathways. The fast (upper) folding pathway
includes the formation of native-like collapsed states {In}, which rapidly convert into the native
state N. The fraction of protein molecules, folding along this pathway, is ®. For two-state folders,
® =~ 1. The lower track (followed by 1 — ® molecules) represents slow pathway(s), which fold by a
three-stage kinetic mechanism. At the first stage, nonspecific collapse species Insc form, which later
convert into a collection of discrete native-like intermediates {I;}. The transition from {I;} to the
native state is slow and represents the rate-limiting step in the slow pathway. The degree of
heterogeneity in the folding pathways depends on the sequence and external conditions.
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(1—-®), would be trapped, and only on longer time scales would thermal

fluctuations enable the chain to reach the NBA through an activated process.

The value of the partition factor ® depends on the sequence and external

conditions. Thus, topological frustration leads to a separation of the initial

ensemble of denatured molecules into fast- and slow-folding phases (Fig. 6).

For two-state folders, which have a funnel-like free energy landscape, ® = 1.
According to the KPM P, (t) [see Eq. (3)] is given by

P,(t) = Dexp (— %) + ;ak exp <— %) (8)

k

where 1y is the time scale for reaching the native state by the fast (direct) process
(presumably by the nucleation-collapse), and T is the time scale for indirect
folding pathways, in which the native state is reached after escaping a local free-
energy minimum (trap) k. Prefactors gy are related to the “volumes” associated
with the k™ CBA. Thus, folding trajectories can be divided into those that reach
the native conformation rapidly (their fraction or partition factor is ®) and those
that follow indirect off-pathway routes (Fig. 6).

The validity of the KPM has been demonstrated in several protein-like
models beginning with the studies of Guo and Thirumalai [73]. More impor-
tantly, refolding experiments, on lysozyme [74] and large ribozymes [75] have
confirmed the KPM. Using interrupted folding experiments, Kiefhaber [74] was
the first to show that ® ~ 0.15 in lysozyme. Subsequent studies of lysozyme by
Dobson and coworkers [76] show that ® =~ 0.25 in lysozyme. The difference is
presumably due to changes in folding conditions. Perhaps the most direct
demonstration of the validity of the KPM comes from the single-molecule
FRET measurements on the L-21 Sca I ribozyme [77]. The results of these
experiments analyzed by us showed that ® ~ (.06, which is consistent with the
estimates from ensemble measurements. These experiments show that KPM
offers an unified picture of folding for a class of proteins and RNA [78].

VI. DISULFIDE BONDS IN FOLDING

A. Refolding of BPTI

Bovine pancreatic trypsin inhibitor (BPTI), a small protein with 56 amino acid
residues (Fig. 7), is the first one for which a detailed map of the refolding
pathways was deciphered. The native state of BPTI contains three disulfide (S-S)
bonds formed between six Cys residues. Native state is specified by [30-51;
5-55;14-38] bonds. This notation indicates that Cys30 forms an S-S bond with
Cys”!, and so on. Reduction of the S-S bonds unfolds BPTI. By using S—S bond
formation as a ‘‘progress variable,” Creighton [79-83] devised ingenious
methods to trap the disulfide-bonded intermediates along the folding pathway.
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Figure 7. See also color insert. The native-state K s § 1 /
conformation of the bovine pancreatic trypsin
inhibitor (BPTI). The figure was produced with the t -

program RasMol 2.7.1 [126] from the PDB entry | i /

1bpi. There are three disulfide bonds in this protein:

Cys5-Cys55 shown in red, Cys14—Cys38 shown in

black, and Cys30-Cys51 shown in blue. The v

corresponding Cys residues are in the ball-and-stick

representation and are labeled. The two helices

(residues 2—7 and 47-56) are shown in green.

The refolding pathways were described in terms of the nature of the inter-
mediates that accumulate during folding. There are 75 distinct intermediates
containing one or more disulfide bonds that can be formed from six Cys residues.
On the time scale of the experiments, Creighton discovered that only eight inter-
mediates could be detected. These experiments were among the earliest to show
that in the folding reaction only a small number of partially folded intermediates
accumulates.

The most surprising discovery made by Creighton [79-83] was that in the
refolding of BPTI, three non-native states—namely, the intermediates with
disulfide bonds not present in the native state—are well-populated. More im-
portantly, two of the non-native species, [30-51;5-14] and [30-51;5-38], are
involved in the productive pathway; that is, folding proceeds through either of
these two kinetically equivalent intermediates. The detection method employed
by Creighton involves quenching the folding reaction using chemistry to stop
the reaction. To isolate only the intermediate that would naturally occur in the
refolding process, the quench rate must exceed rates of formation of other
products. The chemistry of the quench method determines the time required to
stop the reaction from progressing. Creighton’s findings were challenged by
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Weissman and Kim (WK) [84-87], who used pH changes (acid quenching) to
disrupt the folding reaction. The most glaring difference between the two series
of studies is that WK showed that, in the productive pathway, only native
intermediates play a significant role. Non-native intermediates may only be
involved as required by disulfide chemistry in the last stages of folding of BPTI,
that is, they play a role in the formation of the precursor [30-51;5-55] from
[30-51;14-38] (denoted by N* and N, respectively).

In an attempt to resolve the apparent controversy between the findings of
Creighton and WK, we introduced a phenomenological theory, referred to as the
proximity rule [45], to predict the folding pathways in globular proteins. Our
theory accounts for entropic effects analytically and energetic effects only
approximately. The premise of the proximity rule is that local events, governed
mainly by entropic considerations, dictate the initial events in protein folding.
The importance of local events is the basis of the hierarchic mechanism of
folding [11,12] and is also emphasized in the notion that contact order [37] is
the primary determinant of folding rates of proteins. Just as in the applications
of proximity rule, we expect that theories that rely largely on local events can
only account for the early processes in folding. However, such theories often
“work” in regimes for which they are not, in principle, applicable.

B. Proximity Rule

The major conformational changes in disulfide bonded proteins, such as BPTI
and ribonuclease A [88], can be understood in terms of disulfide bond
rearrangement. Thus, the conformations of the intermediates that determine
the folding pathways are specified in terms of the S—S bonds. In such proteins
the S—S bonds serve as a surrogate “‘reaction coordinate.” These observations
enable us to develop the proximity rule based on the following general principles.

1. Loop Formation Probability

We assume that the initial intramolecular disulfide bond rearrangement is a
random process governed largely by entropic considerations. The probability of
forming a disulfide bond under oxidizing conditions depends only on the loop
length [ = |i — j|, where i and j are the positions of the Cys residues along the
polypeptide chain. The probability of simultaneous loop formation of lengths /4
and I, P(ly, I,), is assumed to be proportional to P(l;)P(l,). The absence of
correlation limits the theory to the prediction of only the earliest events in BPTI
refolding. Similarly, theories that are based on local propensities alone can only
describe the formation of secondary structures and initial tertiary structures in the
folding of globular proteins. Despite this limitation, the utility of the proximity
rule to predict the refolding pathways of BPTI was extended using parameters
determined from experiments [45]. The loop formation probability P(/) may be
computed by modeling the polypeptide chain as a semiflexible chain.
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2. Folding Kinetics

For slow-folding proteins, which require reconfiguration of partially folded
structures, folding follows a three-stage kinetics [45]. These stages are as
follows: (i) There is a rapid collapse of the chain to a set of compact confor-
mations. At this stage, most of the free energy arises from a competition between
hydrophobic forces and loop entropy. In BPTT this stage is characterized by the
need to have proper loop contacts between Cys residues, so that a single S-S
bond can form. At the end of this stage the most stable single disulfide species
accumulate. (ii) The rearrangement of the single disulfide bonds leads to the
formation of the native two-disulfide species. (iii) The rate-determining step
involves the transition from the stable two-disulfide species to the native
conformation. In this sequential progression bifurcations in the folding pathways
are possible resulting in the parallel pathways to the native state.

Loop formation probability P(/) may be obtained approximately using
statistical mechanics of stiff chains [89]. Here, we provide the physical
requirements. For chains with an effective persistence length [,, we expect
P(l) to be negligible for I < l,,.2 This is because the requisite self-avoidance
criterion, bond angle, and dihedral angle constraints are violated for the loop
lengths less than /,. In the denatured conformations, excluded volume inter-
actions are predominant; therefore for large enough [ we expect P(I) to decay as
~ 1% with 05 &~ 2.2. Combining these requirements, we write P([) as

P(l) ~ l_ex+_l/117) 9)

Experiments by Darby and Creighton [91], who measured the rates of formation
of single disulfide intermediates in BPTI, can be understood using Eq. (9) for
P(l). The higher probability of forming loops between the ends of the chain is
neglected in obtaining P([). This approximation should not have an effect in
predicting the rates of single S—S bond formation in BPTI, but will be relevant in
getting estimates of time scales for forming loops in polypeptide chains.

The general scheme described above has been applied to obtain approxi-
mately the refolding pathways in BPTI using experimentally determined
rearrangement time t; for the transition from the single S-S intermediates to
the double S-S species. Our results showed [45] that on a relatively long time
scale, comparable to that used in the experiments by Creighton or WK, only
native-like species should be populated. It may be that in the process of forming
these native-like intermediates, certain non-native species identified by
Creighton are transiently involved. Based on our estimate of t;, the transient

’In certain protein structures, loops with [ < I, can form. However, such loops are stiff and often
have very high strain energy [90].
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population of non-native intermediates occurs on the time scales less than
30 seconds.

Because our theory is most accurate for predicting the ordering of single
disulfide species, we focus on their rates and extents of accumulation. Consi-
derations based on P(/) suggest that only a small subset of the single disulfide
intermediates can form. From P(/) it follows that the probability of forming [14—
38] is considerably greater than that of [5-55]. However using the kinetic
constraints we have shown that although [14-38] forms rapidly and early in the
folding process, its concentration decreases rapidly at subsequent times,
whereas those of [30-51] and [5-55] increase. This specific prediction is one
of the striking outcomes of the proximity rule [45]. The distinct kinetic behavior
of the native [14-38] compared to the other two native single S-S intermediates
is related to stability reasons [45,92]. The partially folded solvent-exposed state
[14-38], which perhaps is the molten globule form of BPTI, can form without
burying the hydrophobic core of the protein. On the other hand, the interme-
diates [5-55] and [30-51], in which the four Cys residues are in the interior,
require the formation of the hydrophobic core of the protein (Fig. 7). The burial
of hydrophobic residues that brings the Cys residues in proximity so those S-S
bonds can form requires overcoming free energy barriers. This delays their
formation compared to that of [14-38].

Proximity rule also predicts that the ratio of the maximum concentration of
[30-51] to that of [5-55] is about 7:1, whereas the concentration of [14-38] is
negligible on the same time scale. This ratio is in excellent agreement with the
experiments of WK, who found a ratio of 6:1, and is in disagreement with
Creighton’s estimate of 20: 1.

The theoretical prediction that [14-38] should be the first intermediate to
accumulate was subsequently confirmed by Dadlez and Kim [92]. Using
oxidized glutathione (GSSH) to initiate disulfide bond formation and acid
quenches to trap intermediates, they noted that the earliest intermediate that
accumulates is [14-38]. The tenfold rearrangement of [14-38] compared to
[30-51] or [5-55] was rationalized in terms of stability (see arguments given
above). These findings are also consistent with the results for synthetic models,
in which the Cys except at the positions 14 and 38 were replaced by a-amino-n-
butryic acid (Abu) [93]. The folding of [14-38] 4, is similar to the formation of
[14-38] in the wild type. This reinforces the notion that entropic considerations
and overall hydrophobicity of BPTI rather than specific native interactions
between the remaining cysteines, perhaps on the collapse time scale, determine
the early formation of [14-38].

Despite being intensively studied, there are several major questions in the
refolding of BPTI that are not understood. We mention two of them: (a) The in
vitro folding pathways show that there are dead-end kinetic traps [84], which
completely block the folding reaction. Weissman and Kim [87] showed that
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such kinetic traps are completely eliminated when the disulfide bonds rearran-
gements are catalyzed by protein disulfide isomerase (PDI). The presence of
PDI, which may be viewed as an intramolecular chaperone, enhances the
folding rate by several thousands. The mechanism of action of PDI has not
been elucidated. (b) In a beautiful experiment, Zhang and Goldenberg [94]
showed that the dead-end kinetic traps in the wild-type BPTI are entirely
eliminated by a single amino acid substitution. The mutant Y35L (tyrosine at
position 35 is replaced by leucine) results in a rapid sequential pathway in
which only native intermediates are populated. The simplistic explanation of
this spectacular experiment is that the nonproductive intermediates in this
mutant are destabilized. A fuller molecular explanation is required.

C. Modeling the Role of S-S Bonds

A key disagreement between the early works [79-83] and the more recent studies
WK on the refolding of BPTT is the role of non-native intermediates in directing
the folding of BPTI. Creighton argued that not only were two non-native
intermediates ([30-51;5-14] and [30-51;5-38]) accumulated substantially, but
also they were equally involved in the productive folding pathways. WK showed
that non-native states were not obligatory intermediates, and the only inter-
mediates in the folding were native. Non-native intermediates may be involved in
the transition state in the late stages of folding.

To clarify the relevance of non-native intermediates in the folding of proteins
dictated by the formation of disulfide bonds Camacho and Thirumalai [45] used
lattice models. While these models are merely caricatures of proteins, they
contain the specific effects that can be studied in microscopic detail. We used a
two-dimensional lattice sequence consisting of hydrophobic (H), polar (P), and
Cys (C) residues. If two C beads are near neighbors on the lattice, they can form
a S-S bond with an associated energy gain of —e, with €; > 0. Thus, topological
specificity is required for native S—S bond formation in this model. We have
studied the folding kinetics of this model, which is perhaps the simplest model
that can probe the characteristics of native and non-native disulfide bonded
intermediates.

The sequence studied consists of M = 23 monomers, of which four represent
C sites. The native conformation corresponds to [2—15;9-22] (Fig. 8a). The
model sequence has six possible single and two disulfide intermediates including
the native state. There are three native intermediates and two non-native inter-
mediates. Even though the number of such intermediates are far less than
the corresponding number in BPTI, it is sufficient to examine the crucial
distinction between the roles played by native and non-native intermediates
in the folding kinetics. Some of the questions that arise in the experimental
studies of refolding of BPTI can be precisely answered using these simple
models.



INSIGHTS INTO SPECIFIC PROBLEMS IN PROTEIN FOLDING 59

|
[2-9:15-22]

DLU' E%
e

L 0,
-.J_ - \K =
e 2
| | [2-15;9-22] |
10? 10* 10° 108
MCS
(b)

Figure 8. (See also color insert.) (a) The ground-state conformation of the two-dimensional
model sequence with M = 23 beads and four covalent (S) sites. The red, green, and black circles
represent, respectively, the hydrophobic (H), polar (P), and S sites. (b) Diagram of representative
time snapshots along the main pathways of folding of the sequence in panel (a). The S sites are
shown as black circles. Dotted lines delineate the three main folding regimes (random collapse,
kinetics ordering and all-or-none). The arrows indicate the various transitions occurring in the
system: the double-headed continuous arrows indicate backward and forward reactions where there
is no substantial re-arrangement of the chain; the single-headed arrows indicate that the native-state
is stable on the time scale of the simulations (~10° MCS); the dashed arrows are for indirect
transitions which occur by breaking the disulfide bonds and partial unfolding of the structure. The
percentages indicate the concentration of the native and two native-like intermediates at the end of
the second regime of kinetic ordering.
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To probe the dynamical role played by the intermediates, we computed the
time dependence of the concentration of the six species. The folding pathways
are characterized in terms of the appearance of these intermediates (Fig. 8b).
There are pathways that lead directly to N exclusively via native-like inter-
mediates. In others, non-native intermediates are involved early in the folding
process. For purposes of ascertaining the importance of the intermediates, all
times are measured in terms of tp, the folding time. At the earliest time,
t < 10731 single disulfide species accumulate, whose probabilities of forma-
tion are determined by P(/). At times that are roughly tenfold longer, the
rearrangement of the nonnative single disulfide intermediates leads to the
formation of two stable native single disulfide ([9-22] and [2-15]) species.
These early intermediates act as seeds (nucleating sites) for subsequent forma-
tion of the native state [45]. At times on the order of about 10~ *tz, which
coincide with the time at which native single disulfide species form, the
concentration of these intermediates cannot be determined based on entropic
considerations alone. Energetic considerations, such as favorable hydrophobic
interactions, affect the formation of single disulfide intermediates.

In the second stage of the assembly we find that non-native two disulfide
intermediate [2-9;15-22] can form transiently (Fig. 9b). Because this inter-
mediate is unstable, it quickly rearranges to the more stable native N state. On
relatively long time scales (¢ = 0.011r) we find that there are two native-like
intermediates, in which the disulfides are in place but some other parts of the
structure are not yet fully formed. This may be the analogue of the Niz state in
BPTI which only needs the nearly solvent-exposed [14-38] bond to form. In the
final stage of folding, structural fluctuations that transiently break the native S-S
bonds enable the transition to N. This transition involves the transient formation
of the non-native intermediate [2-9;15-22]. The two native-like intermediates /;
and I, (Fig. 8b) rearrange almost exclusively via [2-9;15-22].

Even with an extremely simple model, several conclusions have been
reached, which help clarify some of the issues in the refolding of BPTI.
(1) Non-native species can form early in the folding process when bulk of the
ordering is determined by entropic considerations. The current experiments on
BPTT are far too slow to detect these early intermediates. On the time scale of
collapse the more stable single disulfide species, which are native-like, form.
(2) As the folding reaction progresses, native-like intermediates tend to form so
that the productive pathways largely contain native-like intermediates. (3) The
rate-determining step involves an activated transition from native-like species,
via a high free-energy non-native transition state, to N. The transitions appear to
involve rearrangement of the structure that does not involve the S-S bonds.
These calculations suggest that although the folding pathways of BPTI can be
described in terms of the disulfide intermediates, a complete description
requires accounting for hydrophobic and charge effects as well. At present,
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these effects have not been completely examined experimentally or theoreti-
cally. The profound effect of point mutations [94] in altering the folding rates
and the pathways of BPTI folding suggests that there are strong couplings
between S-S bond formation and other forces that drive the native structure
formation.
D. Engineering Disulfide Bonds in Barnase

To probe the folding pathways in BPTI the S—S bonds were initially reduced that
results in unfolding. Refolding is initiated under oxidizing conditions that enable
S-S bond formation and restoration of the native state. Alternatively, the impact
of S-S bonds can be studied by engineering them at specific locations. With the
S—S bonds intact, protein can be unfolded using denaturants such as urea. The
folding kinetics can be initiated by diluting the denaturant. The latter procedure,
which was first used by Clarke and Fersht [95], enables the study of the effect of
intact S-S bonds on the stability and kinetics of folding. Clarke and Fersht used
this procedure to engineer S—S bonds at two specific locations in barnase, whose
folding without disulfide bonds has been well-characterized. This allows for a
comparison of folding characteristics of proteins with and without disulfide
bonds.

Two positions in barnase were constrained by S—S bonds that were left intact
[95a]. One of them, between residues 85 and 102, connects two loops that
apparently form early in the folding pathway of the wild type protein. A second
disulfide between residues 43 and 80 connects two secondary structural
elements. Barnase containing disulfide bonds is more stable than the wild
type because the introduction of the S-S bond increases the free energy of the
unfolded states. From the native state of barnase it is clear that the enhanced
stability upon introduction of the disulfide bond between 43 and 80 cannot
be accounted for solely by lowered entropy of the unfolded state compared to
the WT. Using the Flory estimate we expect that stability of [43-80]p,, should
be 1.5RT In38 = 3.2 kcal/mol, whereas that of [85-102]p,, is ~2.6 kcal/mol.
These estimates do not compare favorably with the experimental values, which
are 2.1 kcal/mol and 4.3 kcal/mol for [43—-80]p,, and [85-102]3,,, respectively.
This suggests that the introduction of S—S bonds could also stabilize the native
state to some extent.

Refolding kinetics of the mutated barnase depends strongly on the location of
the S—S bond. Assuming that reduction in the conformation space leads to rate
enhancement, we would predict that [43-80]p,, should fold faster than [85—
102]z,,. However, the opposite trend is found experimentally. The mutant with
the shorter loop folds about five times more rapidly, whereas barnase with the
disulfide between 43 and 80 folds two times slower than the wild type. Using
lattice simulations, Abkevich and Shakhnovich [95b] argued that if S—S bonds
are engineered into the regions highly structured in the transition state, refolding
rates can be increased compared to the WT. The presence of S-S bonds
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elsewhere in the protein can either increase or decrease folding rates depending
on the external conditions. Because the region containing residues 83 and 102
forms early in the folding process, it may be part of the folding nuclei. This
explains the enhanced rate of folding of [85-102]p,, compared to WT. Because
residues 43 and 80 are not part of the folding nuclei, the folding of [43-80]p,, is
about 1.7 times slower than the WT. Thus, the simulations of Abkevich and
Shakhnovich using simple lattice models are consistent with experiments.

VII. CHAPERONIN-FACILITATED PROTEIN FOLDING

According to the Anfinsen’s hypothesis [88] natural proteins fold spontaneously
to their lowest free energy states. By analyzing the weights of proteins and
protein synthesis rates under glucose feeding conditions, Lorimer [96] estimated
that in Escherichia coli more than 90% of proteins fold to their native states as
envisaged by Anfinsen. This is remarkable because one might imagine that trafic
(due to other macromolecules) in the crowded cellular environment might lead to
strong intermolecular interactions which could potentially interfere with
monomeric folding. Nevertheless, it appears that many proteins assemble
spontaneously to their functionally competent states in vivo as envisioned by
Anfinsen. However, there are some proteins that require the assistance of
molecular chaperones to fold to the native conformation. The functions of the
class I chaperonins belonging to heat shock protein family are the most
extensively studied [97-100]. In this chapter we focus on insights into their
function using simple lattice models [47,101,102].

The chaperonin family of proteins, namely GroEL and GroES, that function
as a nanomachine by utilizing ATP, assist misfolded substrate proteins to reach
their native states [100,103,104]. The crystal structures of GroEL [105], GroES
[106], and the complex GroEL/GroES/ADP [107] have provided considerable
insights into the chaperonin action. The chaperonin GroEL is a double-ringed
oligomer consisting of two back-to-back stacked heptameric rings. It has an
overall cylindrical structure divided into two nonconnected cavities, in which
the substrate protein (SP) can be sequestered. Each subunit of the GroEL
particle consists of three domains, namely, the equatorial domain, the inter-
mediate domain, and the apical domain [100]. The heaviest of these is the
equatorial domain, which contains more than half of the molecular weight of
GroEL. We have argued that the concentration of dense inertial mass in
the equatorial domain is necessary to generate the requisite force to peel the
initially captured substrate protein (SP) from the apical domain. The concentric
assembly of the subunits produces a ring structure having an architecture with
an unusual sevenfold symmetry (Fig. 9a).

The co-chaperonin GroES, containing seven subunits [106], caps the GroEL
particle as a dome. A remarkable feature, which has mechanistic implications, is



INSIGHTS INTO SPECIFIC PROBLEMS IN PROTEIN FOLDING 63

that upon binding of GroES and ATP the volume of the cavity doubles [100].
This enhanced volume is accompanied by a series of concerted allosteric
transition that the GroEL particle undergoes [108-110]. Because of the non-
specificity of GroEL-SP interactions [111-113] and the plasticity of the
architecture of the GroEL particle, this system acts as a ‘“‘one size fits all”
nanomachine.

Considerable progress in understanding the mechanism of this nanomachine
has become possible due to a combination of an extraordinary body of
experimental work [98,100] and some contributions from theoretical studies
[114,115]. The hemicycle, which constitutes the fundamental functioning cycle
of the GroEL machine [110], is schematically sketched in Fig. 9b. The process
is initiated by the capture of the SP by the apical domain of the GroEL particle.
To a first approximation, the mouth of the cavity can be thought of as a
continuous hydrophobic surface formed by the helices in the apical domain. The
nonspecific, but favorable, interaction between the SP and GroEL is due to
the attraction between the exposed hydrophobic residues of the SP and the
hydrophobic surface of the apical domain. Upon binding of ATP and GroES (in
this specific order), significant concerted transitions occur in the GroEL particle.
The series of transitions alters, in a fundamental way, the nature of interaction
between GroEL and the SP [100]. Whereas in the process of capture the SP-
GroEL interaction is attractive, the interaction is either neutral or even repulsive
after encapsulation (step 2 in Fig. 9b). The surface remains hydrophilic until the
restoration of GroEL to the initial state. This alteration between hydrophobic
(H) and hydrophilic (P) surface enables this system to function as an annealing
machine. The release of GroES and the encapsulated SP occurs when ATP and/
or another SP molecule binds to the trans-ring [107].

Although the underpinnings of the cycle (Fig. 9b) are based on a number of
experiments and theoretical arguments, several outstanding questions remain. A
key issue is related to the coupling between the concerted allosteric transitions
that the GroEL particle undergoes and the SP folding rate [47,116]. Consider
the cycle displayed in Fig. 9b. Upon binding ATP to the upper ring, a
cooperative transition 7 « R takes place. The terminology 7 and R are
borrowed from the Monod—Wyman—Changeaux model [117] describing the
binding of oxygen to hemoglobin. The tense state T has a higher afinity for ATP
than the relaxed R state [109]. Upon binding ATP, the intermediate domain
moves 25° toward the equatorial domain, which closes the ATP binding sites.
Even with this relatively minor rigid body movement of the intermediate
domain, the interaction between the SP and the walls (the apical domain) are
weakened [108,109]. The weakened interaction is sufficient to enable the SP
protein to unfold at least partially [118]. Subsequent binding of ATP and GroES
leads to much larger domain movements in the GroEL particle. In particular, the
apical domain moves upward by 60° and twists, with respect to the equatorial
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domain, by 90° [100]. This large segmental motion, which results in the
encapsulation of the SP, doubles the volume of the cavity. Upon encapsulation,
the interaction between the SP and the walls is either neural or repulsive
depending on the size of SP. At least five independent rate constants are required
to describe these large-scale concerted allosteric transitions in the GroEL
particle [110]. This makes the description of the coupling between allostery
of GroEL and the SP folding rate very difficult.

To examine the coupling between the allosteric transitions and SP folding
rates, a model system may be considered in which the action of GroEL and ATP

{a)

Figure 9. (See also color insert.) (a) Rasmol [126] view of one of the two rings of GroEL from
the PDB file loel. The seven chains are indicated by different colors. The amino acid residues
forming the binding site of the apical domain of each chain (199-204, helix H: 229-244 and helix I:
256-268) are shown in red. The most exposed hydrophobic amino acids that are facing the cavity
and are implicated in the binding of the substrate as indicated by mutagenesis experiments [112,
127] are : Tyr199, Tyr203, Phe204, Leu234, Leu237, Leu259, Val263, and Val264. (b) A schematic
sketch of the hemicycle in the GroEL-GroES-mediated folding of proteins. In step 1 the substrate
protein is captured into the GroEL cavity. The ATPs and GroES are added in step 2, which results in
doubling the volume, in which the substrate protein is confined. The hydrolysis of ATP in the cis-
ring occurs in a quantified fashion (step 3). After binding ATP to the trans-ring, GroES and the
substrate protein are released that completes the cycle (step 4).
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(b

Figure 9 (Continued)

on SP can be investigated without the complication of the GroES interaction
[116]. Many in vitro studies on the interaction between the GroEL and the SP
have used only this subset [98]. In this reduced model system the equilibrium
constant between T and R states and the time constants characterizing the SP
folding are the only relevant parameters [110,116]. To examine the coupling in
the reduced nanomachine, we modeled the central cavity as a cubic box, and a
lattice model representation of the polypeptide chain was employed [47]. This,
of course, is a highly simplified representation the GroEL-SP system. However,
qualitative testable predictions of the coupling between allostery and the SP can
be made using this caricature. Initially the interior walls of the GroEL particle
(in the T state) are assumed to be hydrophobic. This description is reasonable,
because in the T state the arrangement of the apical domain offers the SP a
continuous lining of hydrophobic residues (Fig. 9a). We vary the wall hydrophobicity
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of GroEL by letting one particular residue (leucine) describe the wall character.
Thus, the interactions between the wall and the SP protein is

E.=Y hEy (10)

where h (0 < h < 1) gives the strength of the interaction, and E,,, is the contact
interaction between the ith residue of the SP and the wall. The total energy of
the encapsulated SP is given by the sum of Eq. (10) and the “internal” energy
of the SP [Eq. (1)].

The key annealing action of the GroEL particle arises due to the changes in
the hydrophobicity of its inner walls during the hemicycle [47]. In other words,
during a single turnover the cavity changes from being able to capture the SP to
that is which binding is not favored. This change in the wall character is
accompanied by the allosteric transition of GroEL, resulting in the encapsula-
tion of the SP. The effect of changing hydrophobicity is mimicked in our
simplified model by letting the hydrophobicity of the confining cavity vary
during the turnover time, ;. We divide t; into two subintervals. During a period
Tp the wall remains hydrophilic (P), and for the remainder t; — 1Tp the cavity is
hydrophobic. Because the model does not include GroES, the situation we
consider may serve as a model for the coupling between T < R transition and
the SP folding. Here we have tp/(1; — 1p) ~ L, where L is the equilibrium
constant between 7 and R [116]. By examining the effect of changing values of
L on the rates of the SP folding the dependence of the SP folding rate on the
allosteric equilibrium transitions can be examined. Simulations of the simplified
lattice representation of the GroEL-SP system shows that there is an inverse
correlation between the extent of the T < R transition and the folding rate of
the SP. In other words, as the cooperativity of the 7 « R transition increases
(higher values of L), the slower is the SP folding rate.

A. Unfolding Activity of GroEL

Although it is accepted that the GroEL nanomachine rescues the SP by
stochastically enabling it to sample the rough free-energy landscape, the
microscopic action on the SP has only recently become clear. A few experiments
have shown that upon change in the wall characteristics of GroEL the SP unfolds
partially, if not globally. Using hydrogen exchange labeling, Zahn et al. [118]
showed that GroEL accelerates the exchange of highly protected amide protons.
Because highly protected protons (high protection factor) are typically buried in
the core of the SP, it follows that the SP unfolds in the presence of GroEL.
Nieba-Axmann et al. [119] also examined the plausible structural fluctua-
tions in GroEL-bound cyclophilin A (CypA) using amide-proton exchange
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measurements. In the absence of nucleotides and GroES, folding of CypA is
extremely sluggish. Upon addition of ADP, the rate increases by a factor of
about 2.5, whereas the addition of ATP leads to a threefold enhancement in the
folding rate. However, when GroES is added, the rate increases by a factor of 14
at 6°C and by nearly 30-fold at T = 30°C. The near independence of the
refolding on nucleotides suggests that the full recovery of CypA occurs within a
single turnover.

Upon binding of ATP and GroES, the domain moves upward and twists by
90° about the equatorial domain [100]. This results in the weakening of the
interaction between the SP and the walls of the cavity. The simple lattice model
described above, in which the character of the wall changes from H to P, can
model the chaperonin-assisted folding provided the folding reaction is complete
in a single turnover. To examine the structure of the polypeptide chain due to
alterations in the wall character, we computed the inherent structures of the
chain in the on state (hydrophobic wall) and in the off state (hydrophilic wall).
According to the iterative annealing mechanism [103,104], upon going from the
on state to the off state the polypeptide chain should undergo kinetic parti-
tioning [Eq. (8)]. The inherent structures prior to and immediately following the
change in the cavity characteristics allows us to compute the degree of com-
mitment of the SP to folding. Because the GroEL machine operates stochas-
tically, there ought to be a distribution of states of the SP that are populated
as the on—off transition takes place. The simulations show (see Fig. 9 of Ref. 47)
that before the transition in the cavity, a fraction of molecules is committed to
folding, while most of the conformations fall into basins of attraction corres-
ponding to misfolded or unfolded states. After the transition to the off state the
chain is largely unfolded. This shows that upon weakening of the SP-GroEL
interaction, which occurs as the GroEL particle undergoes the allosteric
transitions, the polypeptide chain globally unfolds. In other words, the chief
mechanism operative in the GroEL-mediated folding is that chaperonins help
fold proteins by globally unfolding them! This is consistent with the predictions
of IAM and is also affirmed by several experiments [118-120].

The simulations using simplified models are entirely consistent with several
experiments including the one reported by Nieba-Axmann et al. [119], who
noted that amide protons that are highly protected from hydrogen exchange in
the native state of CypA in the absence of GroEL become much less protected
when bound to the chaperonin. The protection factor decreases by nearly two
orders of magnitude upon binding to GroEL. Thus binding to GroEL shifts the
equilibrium from compact native-like states to globally unfolded conformations.
In this dynamical picture of GroEL action, as opposed to the static Anfinsen
cage model, chaperonins unfold the SP. It also follows that efficient folding can
be induced by repeated unfolding of the chain.
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B. Unfolding by Stretching

If, in the course of the allosteric transitions of the GroEL particle, the SP is
unfolded, a natural question is, what is the mechanism of the GroEL-SP
interaction that globally unfolds the protein? Lorimer and co-workers [120]
have explored this issue using hydrogen—tritium exchange experiments in
chaperonin-assisted folding of RUBISCO. They observed that within the time
scale of a single turnover (approximately 13 seconds), complete exchange of
tritiums takes place. This shows that RUBISCO unfolds at least partially, if not
globally. From the crystal structures of GroEL and the GroEL-ADP-GroES
complex, it is known that upon undergoing a series of concerted allosteric
transitions, two adjacent subunits that are about 25 A apart in the 7 state are about
33A apart in the R” state [107,120]. This large-scale movement is presumed to
generate force on the SP [99]. Recent pulling experiments on several proteins
[121] show that the native state can be fully unfolded if a force exceeding a
threshold value is applied. The magnitude of the threshold force depends on the
SP [122].

To estimate the value of the force imparted to the SP, it is necessary to obtain
the interaction energy between the SP and the apical domain of the GroEL
particle. The SP-GroEL interaction energy must exceed %kBTS,,,iS, where S,
is the translational entropy of the misfolded chain molecule for capture by
GroEL to occur. Assuming that the subunits move apart by about 0.2 nm, we
estimate that the minimum force required to peel off the SP from the apical
domain is about 35pN. A more precise estimate of the interaction energy
between the SP and GroEL can be made by assuming that the inner lining of the
GroEL cavity can be modeled as a hydrophobic wall onto which the SP is
adsorbed [114]. By balancing the free energy gain due to favorable hydrophobic
interaction between GroEL and SP and the entropy loss due to the pinning of the
SP, we estimate that the interaction energy should not exceed about 10kgT
[114]. The force needed to overcome this interaction is about 200 pN. This
value is large enough to unfold immunoglobin proteins with B-sandwich
topology [121]. We suspect that at these values of the forces most substrate
proteins can at least partially unfold. These estimates give credence to the
notion that it is the generation of force in the power stroke of the chaperonin
machinery that unfolds the SP [120].

The estimate of the force given above is only an average force. A given SP
molecule can bind to a subset of the seven subunits [123]. Because of the
heterogeneity of the conformations of the misfolded SP, we expect variations in
the binding states from molecule to molecule. Thus, there should be a
distribution of unfolding forces. Recent AFM experiments [124] show that
this distribution is very broad, indicating that there is a large sample to sample
variation in the unbinding forces. Such large variations for other SP can only
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be measured using single-molecule measurements. Surely, these sample-to-
sample variations in lifetimes of the complexes [125] and forces imparted to SP
will require revisions of the iterative annealing mechanism [103].

VIII. CONCLUSIONS

Protein folding presents significant challenges because the parameter space is
extremely large. From the myriad of experimental and theoretical studies it is not
clear that there are many general principles that govern the kinetics of folding.
Nevertheless, using simple models, several precise predictions have been made.
In this chapter we have described the utility of simple lattice models and
phenomenological theories in answering very specific questions in protein
folding. It is remarkable that these simple ideas have been fruitful in enabling us
to formulate conceptual questions such as the physical basis for the emergence of
structures and their designability. Lattice models can also be used to understand
qualitatively the importance of intermediates in the folding of proteins that are
controlled by the stability of disulfide bonds. Experimentally testable predictions
in the field of assisted folding also have been made using caricatures of the
chaperonin systems. These practical applications attest to the utility of these
models in providing a conceptual understanding of the basic principles in a
variety of problems.

None of the applications described here can be tackled using a “‘realistic”
all-atom representation of proteins. The precise predictions that we and others
have made using coarse-grained models of proteins are currently beyond the
reach of molecular dynamics simulations. In this sense, we hope that this
chapter serves as a challenge to the practitioners of all-atom simulations. Even
assuming that the interaction potentials are adequate, the severe restriction on
the simulation time scales acts as a major constraint. The lack of reliable
potentials and the accessible computer times has prevented straightforward
use of molecular dynamics calculations from being a predictive tool. There is
hope that, in the next few years, unlimited computer power may be unleashed to
obtain a detailed picture of how proteins fold. This potential comes from
developments in distributed computing that can, in principle, be used to
generate several long trajectories. In the applications that we have carried
out, a rather detailed picture of B-hairpin assembly for several sequences has
been obtained (D. K. Klimov, D. Newfield, and D. Thirumalai, unpublished
results). A different, but related, approach has also been undertaken by Pande
and co-workers (V. Pande, private communication). The development of a high-
performance computer by IBM also has raised the specter of hope that
computational bottlenecks may be overcome in the next few years so
that challenging problems such as biomolecular folding can be undertaken.
Even if these tolls are routinely available, simple concepts will play a pivotal
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role in formulating the issues in the study of biomolecules, because in the
ultimate analysis protein folding (or any other problem in molecular biology) is
not merely a computational problem.
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I. INTRODUCTION

The threading approach [1-8] to protein recognition is a generalization of the
sequence-to-sequence alignment. Rather than matching the unknown sequence
S; to another sequence S; (one-dimensional matching), we match the sequence S;
to a shape X; (three-dimensional matching). Experiments found a limited set of
folds compared to a large diversity of sequences. A shape has (in principle) more
detectable ‘“family members” compared to a sequence, suggesting the use of
structures to find remote similarities between proteins. Hence, the determination
of overall folds is reduced to tests of sequence fitness into known and limited
number of shapes.

The sequence—structure compatibility is commonly evaluated using reduced
representations of protein structures. Assuming that each amino acid residue is
represented by a point in three-dimensional space, one may define an effective
energy of a protein as a sum of inter-residue interactions. The effective pair
energies can be derived from the analysis of contacts in known structures.
Knowledge-based pairwise potentials proved to be very successful in fold
recognition [2,3,6,9—11], ab initio folding [11-13], and sequence design [14—15].

Alternatively, one may define the so-called “profile’” energy [1,5] taking the
form of a sum of individual site contributions, depending on the structural
environment (e.g., the solvation/burial state or the secondary structure) of a site.
The above distinction is motivated by computational difficulties of finding
optimal alignments with gaps when employing pairwise models.

Consider the alignment of a sequence S = a,a; . . . a, of length, n, where g; is
one of the 20 amino acids, into a structure X = (x1,x,...,X,) with m sites,
where x; is an approximate spatial location of an amino acid (taken here to be
the geometric center of the side chain). We wish to place each of the amino
acids in a corresponding structural site {a; — x,}. No permutations are allowed.
In order to identify homologous proteins of different length, we need to consider
deletions and insertions into the aligned sequence. For that purpose we
introduce an “‘extended” sequence, S which may include gap “residues”
(spaces, or empty structural sites) and deletions (removal of an amino acid,
or an amino acid corresponding to a virtual structural site).

Our goal is to identify the matching structure X; with the extended sequence
S;. The process of aligning a sequence S into a structure X provides an optimal
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score and the extended sequence S. This double achievement can be obtained
using dynamic programming (DP) algorithm [16-19]. In DP the computatio-
nal effort to find the optimal alignment (with gaps and deletions) is proportional
to n x m, as compared to exponential number (/2"") of all possible align-
ments.

In contrast to profile models, the potentials based on pair interactions do not
lead to optimal alignments with dynamic programming. A number of heuristic
algorithms that provide approximate alignments have been proposed [20]. These
algorithms cannot guarantee an optimal solution with less than exponential
number of operations [21]. Another common approach is to approximate the
energy by a profile model (the so-called frozen environment approximation) and
to perform the alignment using DP [22]. In this work, we are aiming at deriving
systematic approximations to pair energies that would preserve the computa-
tional simplicity of profile models.

Threading protocols that are based exclusively on pairwise models were
shown to be too sensitive to variations in shapes [23]. Therefore, pairwise
potentials are often employed in conjunction with various complementary
““signals,” such as sequence similarity, secondary structures, or family profiles
[9-11,24-28]. Such additional signals enhance the recognition when the tertiary
contacts are significantly altered. In GenTHREADER [9], for example, se-
quence alignment methods are employed as the primary detection tools. A
pairwise threading potential is then used to evaluate the consistency of the
sequence alignments with the underlying structures. Bryant and co-workers use,
in turn, an energy function which is a weighted sum of a pairwise threading
potential and a sequence substitution matrix [10].

Distant-dependent pair energies are expected to be less sensitive to variations
in shapes than simple contact models, in which inter-residues interactions are
assumed to be constant up to a certain cutoff distance and are set to zero at
larger distances. A number of distance-dependent pairwise potentials have been
proposed in the past [29,30]. We consider both simple contact models and
distance-dependent power law potentials and compare their performance with
that of novel profile models.

We compute the energy parameters by linear programming (LP) [31-33].
There are a number of alternative approaches to derive the energy parameters.
For example, statistical analysis of known protein structures makes it possible to
extract “‘mean-force” potentials [34—38]. Another approach is the optimization
of a single target function that depends on the vector of parameters such as
Ty/T, [39], the Z score [1], or the ¢ parameter [40]. We note also that
optimization of the gap energies has been attempted in the past [22,41]. The
statistical analysis is the least expensive computationally. The optimization
approaches have the advantage that misfolded structures can be made part of
the optimization, providing a more complete training. The LP approach is
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computationally more demanding compared to other protocols. However, it has
important advantages, as discussed below.

In LP training we impose a set of linear constraints (for energy models linear
in their parameters) of the general form

AEdec. nat = Edecoy - Enative >0 (1)

where Enaive 1S the energy of the native alignment (of a sequence into its native
structure) and Egecoy represents the energies of the alignments into non-native
(decoy) structures. In other words, we require that the energies of native
alignments be lower than the energies of alignments into misfolded (decoy)
structures.

While optimization of the Z, T;/T,, and ¢ scores led to remarkably
successful potentials [1,39,40], it focuses at the center of the distribution of
the AEge na’s and does not solve exactly the conditions of Eq. (1). For
example, the tail of the distribution of the AEge. n may be slightly wrong,
and a fraction f of the AEge. no’s may “leak’ to negative values. If fis small, it
may not leave a significant impression on the first and second moments of the
distribution; that is, the value of the Z score remains essentially unchanged.
“Tail misses” is not a serious problem if we select a native shape from a small
set of structures. However, when examining a large number of constraints, even
if fis small, the number of inequalities that are not satisfied can be very large,
making the selection of the native structure difficult if not impossible.

In contrast to the optimization of average quantities, the LP approach
guarantees that all the inequalities in Eq. (1) are satisfied. If the LP cannot
find a solution, we get an indication that it is impossible to find a set of
parameters that solve all the inequalities in Eq. (1). For example, we may obtain
the impossible condition that the contact energy between two ALA residues
must be smaller than 5 and at the same time must be larger than 7. Such an
infeasible solution is an indicator that the current model is not satisfactory, and
more parameters or changes in the functional form are required [31-33]. Hence,
the LP approach, which focuses on the tail of the distribution near the native
shape, allows us to learn continuously from new constraints and improve further
the energy functions, guiding the choice of their functional form.

In the present chapter we evaluate several different scoring functions for
sequence-to-structure alignments, with parameters optimized by LP. Based on a
novel profile model, designed to mimic pair energies, we propose an efficient
threading protocol of accuracy comparable to that of other contact models. The
new protocol is complementary to sequence alignments and can be made a part
of more complex fold recognition algorithms that use family profiles, secondary
structures, and other patterns relevant for protein recognition.

The first half of the chapter is devoted to the design of scoring functions. Two
topics are discussed: the choice of the functional form (Section II) and the
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choice of the parameters (Section III). The capacity of the energies is explored
and optimal parameters are determined (Section IV). High capacity indicates
that a large number of protein shapes are recognized with a small number of
parameters.

The second part of the manuscript deals with optimal alignments. We design
gap energies (Section V) and introduce a double Z-score measure (from global
and local alignments) to assess the results (Section VI). Presentation of
extensive tests of the algorithm (Section VII) is followed by the conclusions
and closing remarks.

II. FUNCTIONAL FORM OF THE ENERGY

In a nutshell there are two ‘“‘families” of energy functions that are used in
threading computations, namely the pairwise models (with ‘““identifiable” pair
interactions) and the profile models. In this section we formally define both
families and we also introduce a novel THreading Onion Model (THOM), which
is investigated in the subsequent sections of the chapter.

A. Pairwise Models

The first family of energy functions is of pairwise interactions. The score of the
alignment of a sequence S into a structure X is a sum of all pairs of interacting
amino acids,

Epairs = Zd)ly(fli»ﬁj,’”ij) (2)

i<j

The pair interaction model, d)ij, depends on the distance between sites i and j and
also depends on the types of amino acids, o; and B;. The latter are defined by the
alignment, because certain amino acid residues a;, a; € § are placed in sites i and
J» respectively.

We consider two types of pairwise interaction energies. The first is the
widely used contact potential. If the geometric centers of the side chains are
closer than 6.4 A, then the two amino acids are considered in contact. The total
energy is a sum of the individual contact energies:

3)

e, 1.0<r; <64A
o Byr) = { & i SOAA

otherwise

where i, j are the structure site indices (contacts due to sites in sequential vicinity
are excluded, i = 3 < j), a, P are indices of the amino acid types (we drop the
subscripts i and j for convenience), and &, is a matrix of all the possible contact
types. For example, it can be a 20 x 20 matrix for the twenty amino acids.
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TABLE I
The Definitions of Different Groups of Amino Acids That Are Used in the Present Study”
Hydrophobic (HYD) ALA CYS HIS ILE LEU MET PHE PRO TRP TYR VAL
Polar (POL) ARG ASN ASP GLN GLY LYS SER THR
Charged (CHG) ARG ASP GLU LYS
Negatively charged (CHN) ASP GLU

“Note that 10 types of amino acids are found to be sufficient to solve the Hinds—Levitt set either by
pairwise interaction models or by THOM2 (in the case of continuous LJ models, HIS was replaced
by CYS). The amino acid types are HYD, POL, CHG, CHN, GLY, ALA, PRO, TYR, TRP, and HIS.
The list implies that when an amino acid appears explicitly, it is excluded from other groups that
may contain it. For example, HYD includes in this case CYS, ILE, LEU, MET, and VAL, while
CHG includes ARG and LYS only, since the negatively charged residues form a separate group.

Alternatively, it can be a smaller matrix if the amino acids are grouped together
to fewer classes. Different groups that are used in the present study are
summarized in Table I. The entries of €, are the target of parameter optimization.

The advantage of the single-step potential is its simplicity. This is also its
weakness. From a chemical physics perspective the interaction model is over-
simplified and does not include the (expected) distance-dependent interaction
between pairs of amino acids. To investigate a potential with more “realistic”
shape we also consider a ‘“‘distance power’’ potential:

A B
(bij(ai’Bj’rij) = ,ff + ,,ZB (4)
ij ij

Here two matrices of parameters are determined: one for the m power, A,p,
and one for the n power, B,g (m > n). The signs of the matrix elements are
determined by the optimization. In “physical” potentials like the Lennard-Jones
model we expect A,g to be positive (repulsive) and By to be negative (attrac-
tive). The indices m and n cannot be determined by LP techniques and have to
be decided on in advance. A suggestive choice is the widely used Lennard-Jones
[LJ(12,6)] model (m = 12, n = 6). In contrast to the square well, the LJ(12,6)
form does not require a prespecification of the arbitrary cutoff distance, which is
determined by the optimization. It also presents a continuous and differentiable
function that is more realistic than the square well model.

We show in Section IV that the LJ(12,6), commonly employed in atomistic
simulations, performs poorly when applied to inter-residue interactions. Therefore
other continuous potentials of the type described in Eq. (5) were investigated.
We propose a shifted LJ potential (SLJ) that has significantly higher capacity
compared to LJ and is closer in performance to that of the square well potential.
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Figure 1. A sample plot of the Lennard-Jones-like potential that we developed. The functional
form is A,g/ rf’j + B/ rfj (LJ(6,2)), where the indices o and B denote the amino acid types and the
indices i and j are the positions along the chain. A,3 and B,y are optimized using the LP approach.
The plot includes interactions of the types HH, HP, and PP, where H stands for hydrophobic and P
stands for polar residues, respectively. The coefficients A and B are given in Table 7a. Note that the
usual Lennard-Jones potential (LJ(12,6)) has a poor recognition capacity.

The SLJ is based on the replacement of AuB/riljz by A,/ (rij + a)"?, where a is a
constant that we set to 1 A.

The SLJ is a smoother potential with a broader minimum. An alternative
potential that also creates a smoother and wider minimum is obtained by
changing the distance powers. We also optimized a potential with the (unusual)
(m = 6, n = 2) pair. This choice was proven most effective and with the largest
capacity of all the continuous potentials that we tried (Fig. 1).

B. Profile Models

The second type of energy function assigns “‘environment’” or a profile to each of
the structural sites [1]. The total energy E,s. is written as a sum of the energies
of the sites:

Eprofite = Z P; (0, X) (5)

As previously, o; denotes the type of an amino acid a; of S that was placed at site
i of X. For example, if a; is a hydrophobic residue and x; is characterized as a
hydrophobic site, the energy ¢,(o;, X) will be low (score will be high). If gy is
charged, then the energy will be high (low score). The total score is given by a
sum of the individual site contributions.



84 JAROSLAW MELLER AND RON ELBER

We consider two profile models. The first, which is very simple, was used in
the past as an effective solvation potential [1,2,42]. We call it THOM1 (THread-
ing Onion Model 1), and it suggests a clear path to an extension (which is our
prime model), namely, THOM2. The “onion” level denotes the number of
contact shells used to describe the environment of the amino acid. The THOM 1
model uses one ‘“‘contact” shell of amino acids. The more detailed THOM?2
energy model (to be discussed below) is based on two layers of contacts.

In the “profile” potential THOMI, the total energy of the protein is a direct
sum of the contributions from m structural sites and can be written as

ETnom1 = Zﬁai (n;) (6)

The energy of a site depends on two indices: (a) the number of neighbors to the
site, n; [a neighbor is defined as for pairwise interaction—Eq. (2)], and (b) the
type of the amino acid at site 7, o;. For 20 amino acids and a maximum of 10
neighbors we have 200 parameters to optimize, a number that is comparable to
the detailed pairwise model.

THOMI provides a nonspecific interaction energy, which, as we show in
Section IV, has relatively low prediction ability when compared to pairwise
interaction models. THOM2 is an attempt to improve the accuracy of the
environment model, making it more similar to pairwise interactions. In order to
mimic pair energies, we first define the energy &, (n;,n;) of a contact between
structural sites i and j, where n; is the number of neighbors to site i and #; is the
number of contacts to site j (see Fig. 2). The type of amino acid at site i is o.
Only one of the amino acids in contact is “‘identifiable.” The total contribution
due to a site i is then defined as a sum over all contacts to this site ¢; tyoma
(0, X) = Z; €4, (n;, nj), with the prime indicating that we sum only over sites j
that are in contact with i (i.e., over sites j satisfying the condition 1.0 <
rij < 6.4 A and |i — j| > 4). The total energy is finally given by a double sum
over i and j:

Ethom = Z Z/Son,- (i, ny) (7)
i

Consider a pair of sites (i, j) which are in contact and occupied by amino
acids of types o; and o;. Let the number of neighbors of site i be n;, and let for
site j be n;. The effective energy contribution of the (i, j) contact is

V,-‘J’ff = &y, (ni, 1)) + &5, (nj, 1) ®)

Hence, we can formally express the THOM?2 energy as a sum of approximate
pair energies Etroma = ;. ; V;.ff .
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Figure 2. A schematic representation of the interactions with the THOM2 potential. THOM?2
assigns scores according to two contact shells. As an example we show a sample of contacts to a site
and the associated energies for valine and lysine. As expected, the hydrophobic residue (valine)
strongly prefers to be at a site with a large number of neighbors in the first and second shells. Lysine
is the extreme case on the polar side.

The effective energy mimics the formalism of pairwise interactions. How-
ever, in contrast to the usual pair potential the alignments with THOM2 can be
done efficiently. Structural features alone (the number of the contacts) deter-
mine the ““identity” of the neighbor. The structural features are fixed during the
computations, making it possible to use dynamic programming. This is in
contrast to pairwise interactions for which the identity of the neighbor may vary
during the alignment. For 20 amino acids, the number of parameters for this
model can be quite large. Assuming a maximum of 10 neighbors, we have
20 x 10 x 10 = 2000 entries to the parameter array. In practice we use a coarse-
grained model leading to a reduced set of structural environments (types of
contacts) as outlined in Table II.

The use of a reduced set makes the number of parameters (300 when all 20
types of amino acids are considered) comparable to that of the contact potential.
Further analysis of the new model is included in Section IV.

III. OPTIMIZATION OF THE ENERGY PARAMETERS

Here we consider the amino acid interactions (the gap energies are discussed in
Section V). In order to optimize the energy parameters, we employ the so-called
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TABLE II
Definitions of Contact Types for the THOM2 Energy Model*

Type of Site” n=12;1 n=3456;5 n>7,9
n=12;1 a,n (1,5 (1,9
n=34; § 3,1 (355) (?’9)
n=5,0; 5 G.1 (5.5 (5.9
n=17.8;7 , as (1.9
n>9;9; (CAl 9.5 9.9

“The THOM2 model defines an energy of a site as a sum of contributions due to contacts to this site.
A contact between two amino acids is “on” if their distance is smaller than 6.4 A. Different types of
contacts are defined by the number of neighbors to the two sites involved in contact i.e., the
information about the first and second contact layer of a site is used (see Fig. 2). We consider five
types of sites in the first layer (primary site i occupied by an amino acid of known type) and three
types of sites in the second layer (secondary site j with no amino acid type assigned). Therefore,
there are 5 x 3 = 15 types of contacts. The primary site / may be occupied by any of the 20 amino
acids, leading to 20 x 15 = 300 different energy terms. A reduced set of amino acids is associated
with a smaller number of parameters to optimize (for 10 types of amino acids, the number of
parameters is 10 x 15 = 150). The notation we used for each type of site is based on a representative
number of neighbors. The number of neighbors n in a given class and its representative are given in
the first column (for different classes of sites in the first layer) and in the first row (for different
classes of sites in the second layer). The intersections between columns and rows correspond to
contacts of different types: a contact between two sites of medium number of neighbors is denoted
by (5,5), for example.

gapless threading in which the sequence S; is fitted into the structure X; with no
deletions or insertions. Hence, the length of the sequence (7) must be shorter or
equal to the length of the protein chain (m). If n is shorter than m, we may try
m —n + 1 possible alignments varying the structural site of the first residue
{a1 — X1,3X2, ... 7xm,,1+1}.

The energy (score) of the alignment of S into X is denoted by E(S.X,p),
where X stands (depending on the context) either for the whole structure or only
for a substructure of length n, relevant for a given gapless alignment. The energy
function, E(S,X,p), depends on a vector p of ¢ parameters (so far undetermined).
A proper choice of the parameters will get the most from a specific functional
form, where we restrict the discussion below to knowledge-based potentials.

Consider the sets of structures {X;} and sequences {S;}. There is a correspon-
ding energy value for each of the alignments of the sequences {S;} into the
structures {X;}. A good potential will make the alignment of the ‘“native”
sequence into its “native” structure the lowest in energy. If the exact structure is
not in the set, alignments into homologous proteins are also considered
“native.” Let X,, be the native structure. A condition for an exact recognition
potential is

E(Sy,X;,p) — E(Sy,X,,p) >0, Vj#n 9)
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In the set of inequalities (9) the coordinates and sequences are given and the
unknowns are the parameters that we need to determine. We first describe the sets
used to train the potential and then describe the technique to solve the above
inequalities.
A. Learning and Control Sets

Two sets of protein structures and sequences are used for the training of
parameters in the present study. Hinds and Levitt developed the first set [43] that
we call the HL set. It consists of 246 protein structures and sequences. Gapless
threading of all sequences into all structures generated the 4,003,727 constraints
[i.e., the inequalities of Eq. (8)]. The gapless constraints were used to determine
the potential parameters for the 20 amino acids. Because the number of
parameters does not exceed a few hundred, the number of inequalities is larger
than the number of unknowns by many orders of magnitude.

The second set of structures consists of 594 proteins and was developed by
Tobi et al. [32]. It is called the TE set and is considerably more demanding. It
includes some highly homologous proteins (up to 60% sequence identity) and
poses a significant challenge to the energy function. For example, the set is
infeasible for the THOM1 model, even when using 20 types of amino acids (see
Section IV). The total number of inequalities that were obtained from the TE set
using gapless threading was 30,211,442. The TE set includes 206 proteins from
the HL set.

We developed two other sets that are used as control sets to evaluate the new
potentials in terms of both gapless and optimal alignments. These control sets
contain proteins that are structurally dissimilar to the proteins included in the
training sets. The degree of dissimilarity is specified in terms of the RMS
distance between the structures. The structure-to-structure alignments (neces-
sary for RMS calculations) were computed according to a novel algorithm [45].

The new structural alignment is based on dynamic programming and
provides for closely related structures results that are comparable to the
DALI program [44]. Contrary to DALI, we employ (consistently with our
threading potentials) the side-chain coordinates, and not the backbone (C,)
atoms, while overlapping two structures (in fact, in analogy with THOM2, we
overlap the contact shells, disregarding however the identities of amino acids).
Thus, the results of our structure-to-structure alignments refer to superimposed
side-chain centers. Our cutoff for structural dissimilarity is 12 A RMSD.

The first control set, which is referred to as S47, consists of 47 proteins
representing families not included in the training. This includes 25 structures
used in the CASP3 competition [46] and 22 related structures chosen randomly
from the list of VAST [47] and DALI [44] relatives of CASP3 targets. None of
the 47 structures has homologous counterparts in the HL set, and only three
have counterparts in the TE set. As measured by our novel (both global and
local) structure-to-structure alignments, the remaining proteins differ from those
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in the training sets by at least 12 A with respect to HL set and 9.3 A with respect
to TE set (the RMS distance is larger than 12 A for all but seven shorter
proteins), respectively.

The second control set, referred to as S1082, consists of 1082 proteins that
were not included in the TE set and which are different by at least 3 A RMSD
(measured, as previously, between the superimposed side chain centers) with
respect to any protein from the TE set and with respect to each other. Thus, the
S1082 set is a relatively dense (but nonredundant up to 3 A RMSD) sample of
protein families. The training and control sets are available from the web [48].

B. Linear Programming Protocol

The “profile” energies and the pairwise interaction models that were discussed
in Section II can be written as a scalar product:

E:Znypyzmp (10)
v

where p is the vector of parameters that we wish to determine. The index of the
vector, 7y, is running over the types of contacts or sites. For example, in the
pairwise interaction model the index 7 is running over the identities of the amino
acid pairs (e.g., a contact between alanine and arginine). In the THOM1 model it
is running over the types of sites characterized by the identity of the amino acid
at the site and the number of its neighbors. n, is the number of contacts, or sites of
a specific type found in a fold. The “number” may include additional weight. For
example, the number of alanine—alanine contacts in a protein is (of course) an
integer. However, in the Lennard-Jones model, the contact type A, g = p, is
associated with additional geometric weight hidden in a continuous ‘‘number”’
function, ny, o< 1/r".

In the pairwise contact model, there are 210 types of contacts for the 20
amino acids. We have experimented with different representations and different
numbers of amino acid types. While the Hinds—Levitt set can be solved with a
reduced number of parameters, the more demanding requirements of the larger
set necessitates (for all models presented here) the use of at least 210
parameters.

We wish to emphasize that the linear dependence of the potential energies on
their parameters is not a major formal restriction. Any potential energy E(X) can
be expanded in terms of a basis set (say {n,(X)},Z,) in which the coefficients
are unknown parameters:

ES.Xp) =Y pymy(X) (1)
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Note that we deliberately used a similar notation to Eq. (11) and that the
information on X and §'is “buried” in n,(X). A good choice of the basis set will
converge the sum to the right solution with only a few terms. Of course, such a
choice is not trivial to find, and one of the goals of the present chapter is to
explore different possibilities.

The linear representation of the energy simplifies Eq. (9) as follows:

E(Sijvp) SnaXnvp zpy nV n“/(Xn))
:p~Anj>O Vj#n (12)

Hence, the problem is reduced to the condition that a set of inner vector products
will be positive. Standard linear programming tools can solve Eq. (12). We use
the BPMPD program of C. S. Meszaros [49], which is based on the interior point
algorithm. We seek a point in parameter space that satisfies the constraints, and
we do not optimize a function in that space. In this case, the interior point
algorithm places the solution at the “maximally feasible’ point, which is at the
center of the accessible volume of parameters [50].

The set of inequalities that we wish to solve includes tens of millions of
constraints that could not be loaded into the computer memory directly (we
have access to machines with two to four gigabytes of memory). Therefore, the
following heuristic approach was used. Only a subset of the constraints is
considered, namely, {p - An < C }JJ: 1» with a threshold C chosen to restrict the
number of inequalities to a manageable size (which is about 500,000 inequal-
ities for 200 parameters). Hence, during a single iteration, we considered only
the inequalities that are more likely to be significant for further improvement by
being smaller than the cutoff C.

The subset {p- An < C}]{:l is sent to the LP solver “as is.” If proven
infeasible, the calculation stops (no solution possible). Otherwise, the result is
used to test the remaining inequalities for violations of the constraints [Eq.
(12)]. If no violations are detected, the process was stopped (a solution was
found). If negative inner products were found in the remaining set, a new subset
of inequalities below C was collected and sent to the LP solver. The process was
repeated, until it converged. Sometimes convergence was difficult to achieve,
and human intervention in the choices of the inequalities was necessary.
Nevertheless, all the results reported in the present chapter were iterated to a
final conclusion. Either a solution was found or infeasibility was detected.

IV. EVALUATION OF PAIR AND PROFILE ENERGIES

In this section we analyze and compare several pairwise and profile potentials,
optimized using the LP protocol. As described in the previous section, given the
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training set (HL or TE) and the sampling of misfolded (decoy) structures
generated by gapless threading, either we obtain a solution (perfect recognition
on the training set) or the LP problem proves infeasible.

We use the infeasibility of a set to test the capacity of an energy model. We
compare the capacity of alternative energy models by inquiring how many
native folds they can recognize (before hitting an infeasible solution). Next,
using the control sets, we further test the capacity of the models in terms of
generalization and the number of inequalities in Eq. (9) that can be still satisfied,
although they were not included in the training. We use the same sets of proteins
and about the same number of optimal parameters. The larger the number of
proteins that are recognized with the same number of parameters, the better the
energy model. We focus on the capacity of four models: the square well and the
distance power-law pairwise potentials, as well as THOM1 and THOM2
models. We find that the “profile” potentials have in general lower capacity
than the pairwise interaction models.

A. Parameter-Free Models

Perhaps the simplest comparison that we can make is for zero-parameter models,
and this is where we start. Zero-parameter models have nothing to optimize.
They suggest an immediate and convenient framework for comparison,
independent of successful (or unsuccessful) optimization of parameters.

An example of pair interaction energy with no parameters is the famous H/P
model [51]. In H/P the interactions of pairs of amino acids of the type HP and
PP are set to zero and the HH interaction is —A. The total energy of a structure is
the number of HH contacts (n;) of structure i times —A; that is, E; = —n;A. The
positive parameter A determines the scale of the energy, however, it does not
affect the ordering of the energies of different structures. The difference
E; — E, = —\(n; —n,) is positive or negative, regardless of the magnitude
of |A|. The existence of a solution of the inequalities in (9) is therefore
independent of A.

For the HL protein set with 246 structures, the HP model predicts the correct
fold of 200 proteins. For the larger TE set, the HP recognizes correctly 456 of
the 594 proteins. This result is quite remarkable considering the simplicity of
the model used, and it raises hopes for even more remarkable performance of
the pairwise interaction model once more types of pair interactions are
introduced. It is therefore disappointing that the addition of many more
parameters to the pairwise interaction model did not increase its capacity as
significantly as one may hope, though gradual increase is still observed.

A simple, parameter-free THOM!1 model can be defined as follows. As in the
pairwise interaction, we consider two types of amino acids: H and P. The energy
of a hydrophobic site is defined as ey (n) = —An. For a polar site it is ep = 0. It
is evident from the above definitions that the parameter-free THOMI1 cannot
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possibly do better than the HP model, because neighbors of the type HH and HP
are counted on equal footing. Indeed the parameter-free THOMI is doing
poorly in both HL and TE sets (only 118 of 246 proteins were solved for HL and
211 of 594 for TE).

B. “Minimal” Models

The parameter-free models are insufficient to solve exactly even the HL set. By
“exact” we mean that each of the sequences picks the native fold as the lowest in
energy using a gapless threading procedure. Hence, all the inequalities in Eq.
(12), for all sequences S, and structures X;, are satisfied and the LP problem of
Eq. (12) is feasible. This section addresses the question; What is the minimal
number of parameters that is required to obtain an exact solution for the HL and
for the TE sets? The feasibility of the corresponding sets of inequalities [Eq.
(12)] is correlated with the number of model parameters, as listed in Table III.

Consider first the training on the HL set (the solution of the TE set will be
discussed in Section IV.D). For the square well potential we require the smallest
number of parameters (i.e., 55) to solve the HL set exactly. Only 10 types of

TABLE III
Comparing the Capacity of Different Threading Potentials”

Potential Hinds—Levitt Set Tobi-Elber Set
SWP, HP model, par-free 200 456
SWP, 10 aa, 55 par 246* 504
SWP, 20 aa, 210 par 246%* 530
SWP, 20 aa, 210 par 237 594%*
LJ 12-6, 10 aa, 110 par 246%* 125
SLJ 12-6, 10 aa, 110 par 246* 488
LJ 6-2, 10 aa, 110 par 246%* 530
THOMI, HP model, par-free 118 221
THOMLI, 20 aa, 200 par 246%* 474
THOM2, 10 aa, 150 par 246* 478
THOM2, 20 aa, 300 par 246%* 428
THOM2, 20 aa, 300 par 236 594

“Capacity for recognition of pairwise and profile threading potentials is measured by gapless
threading on Hinds—Levitt and Tobi—Elber representative sets of proteins. We compare the capacity
of “parameter-free”” models (such as the HP and the HP variant of THOM1), demonstrating the
superiority of pair potential on profile model in the simplest possible case. We also show that the
square well potential and the LJ(6,2) potential are significantly better than THOM1. THOM?2,
however, is showing comparable performance and is able to learn the TE set (see also Table IV).
SWP stands for square well pairwise potential, and SLJ stands for shifted Lennard-Jones potential.
For each potential the number of amino acids types used and the resulting number of parameters are
reported. The training set used (either HL or TE) is indicated by an asterisk in the second or third
column, respectively. The number of correct predictions for structures in HL and TE sets is given in
the second and third columns as well.
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amino acids were required: HYD, POL, CHG, CHN, GLY, ALA, PRO, TYR,
TRP, HIS (see also Table I). The above notation implies that an explicit
mentioning of an amino acid excludes it from other, broader subsets. For
example, HYD includes now only CYS ILE LEU MET PHE and VAL, whereas
CHG includes ARG and LYS only because the negatively charged residues form
a separate group, CHN. The LJ, THOM1, and THOM2 models require 110, 200,
and 150 parameters, respectively, to provide an exact solution of the same (HL)
set (see table IV). It is impossible to find an exact potential for the HL set
without (at least) 10 types of amino acids.

Smaller number of parameters led to infeasibility. The optimized models are
then used “‘as is’’ to predict the folds of the proteins at the TE set. Again, we
find that the pairwise interaction model is doing the best and is followed by
THOM?2 and THOM1, with LJ(12,6) closing.

The above test of the models optimized on the HL set gives an “‘unfair”
advantage to the THOM models that are using more parameters. Nevertheless,
even this head start did not change the conclusion that the pairwise square well
model better captures the characteristics of sequence fitness into structures.
Without the need for efficient treatments of gaps (see Section V), the pairwise
interaction model should have been our best choice. Moreover, so far THOM?2 is
not significantly better than THOMI1.

C. Evaluation of the Distance Power-Law Potentials

The LJ(12,6) model, which is a continuous representation of the pairwise
interaction, performs poorly. The model trained exactly on the HL set predicts
correctly only 125 structures from the 594 structures of the TE set. This result is
surprising because the LJ is continuous and differentiable (and more realistic),
and has more parameters.

A possible explanation for the failure of LJ(12,6) is the following. The
LJ(12,6) is describing successfully atomic interactions. The shape of atoms
is much better defined than the shape of amino acid side chains. Amino acids
may have flexible side chains and alternative conformations, making the
range of acceptable distances significantly larger. To represent alternative con-
figurations of the same type of side chains, potentials with wide minima are
required.

To test the above explanation and in a search for a better model, we also tried
a shifted LJ function (SLJ) as well as an LJ-like potential with different powers
(m=6, n=2, LI(6,2); see also Fig. 1). As can be seen from Table IV, the
“softer” potentials are performing better than the steep LJ(12,6) potential. For
example, a LJ(6,2) potential trained on the HL set with 110 parameters (only 10
types of amino acids were used) recognizes correctly 530 proteins of the TE set.
Thus, LJ(6,2) has a similar capacity to a square well potential, trained on the
same set with 210 parameters.



PROTEIN RECOGNITION BY SEQUENCE-TO-STRUCTURE FITNESS 93

TABLE IV
Comparison of Performance of THOM2 and Knowledge-Based Pairwise
Potentials Using Gapless Threading”

Potential Recognized Structures Nonsatisfied Inequalities [mln]
BT 1447 (87.3%) 0.28
HL 1412 (85.2%) 3.53
MJ 1410 (85.1%) 0.48
THOM?2 1396 (84.3%) 0.38
TE 1353 (81.7%) 0.33
SK 1293 (78.0%) 0.16

“The results of gapless threading on the TE set with 20 redundant structures excluded and extended
by the S1082 set (see text for details) are reported. The resulting set of 1656 proteins generates about
226 million inequalities. The results of THOM2 potential are compared to five other knowledge-
based pairwise potentials by Betancourt and Thirumalai (BT) [37], Hinds and Levitt (HL) [36],
Myazawa and Jerningan (MJ) [34], Godzik, Kolinski, and Skolnick (GKS) [38] and Tobi and Elber
(TE) [32]. The latter potential was trained using LP protocol and the same (TE) training set.
Potentials are ordered according to the number of proteins recognized exactly (out of 1656), given in
the second column (values in parentheses indicate the percentage of proteins recognized exactly).
The third column contains the number of inequalities (out of 226 mln) that are not satisfied. Note
lack of correlation between the number of proteins that are missed and the number of inequalities
that are not satisfied.

This suggests that in ab initio off-lattice simulations of protein folding,
which employ ““residue’’-based potentials, LJ(6,2) may be more successful than
commonly used LJ(12,6) [12]. Finally, we comment that the training of the LJ
type potential was numerically more difficult than the training of the square well
potential.

D. Capacity of the New Profile Models

We turn our attention below to further analysis of the new profile models. An
indication that THOM?2 is a better choice than THOMI is included in the next
comparison: the number of parameters that is required to solve exactly the TE set
(see Table III). It is impossible to find parameters that will solve exactly the TE
set using THOMI1 (the inequalities form an infeasible set). The infeasibility is
obtained even if 20 types of amino acids are considered. In contrast, both
THOM?2 and the pairwise interaction model led to feasible inequalities if the
number of parameters is 300 for THOM2 and 210 for the square well potential
(SWP). Note that the set of parameters that solved exactly the TE set does not
solve exactly the HL set because the latter set includes proteins not included in
the TE set.

We have also attempted to solve the TE set using SWP and THOM2 with a
smaller number of parameters. For square well potential the problem was
proven infeasible even for 17 different types of amino acids and only very
similar amino acids grouped together (Leu and Ile, Arg and Lys, Glu and Asp).
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Similarly, we failed to reduce the number of parameters by grouping together
structurally determined types of contacts in THOM?2. Enhancing the range of a
“dense” site to be a site of seven neighbors or more also results in infeasibility.

Although the rare “crowded” sites need to be considered explicitly to solve
the TE set with THOM2, a reduced form of the full THOM?2 potential trained on
the TE set is doing quite well. Consider the contacts (9, 1), 9,5), and (9,9).
These contacts are very rare and are therefore merged with the contact types
(7,1), (7,5), and (7,9). After the merging the number of parameters drops to
200 (instead of 300). The “‘new”” potential recognizes 540 proteins out of 594 of
the TE set. Only 324 inequalities are not satisfied. Hence, adding 100
parameters increases the capacity of the potential only by a minute amount.

To make a comparison to potentials not designed by the LP approach and to
test at the same time the generalization capacity of THOM?2, we consider the set
of 1656 proteins obtained by adding the S1082 set to the TE set (with 20
redundant structures i.e., structures differing by less than 3 A with respect to
other structures in the TE set removed. This is a demanding test because it
contains many homologous pairs and many short proteins that may be similar to
fragments of larger proteins. Using the gapless threading protocol, we evaluate
the performance of five knowledge-based pairwise potentials. As can be seen
from Table IV, the Betancourt-Thirumalai (BT) potential [37] recognized
exactly the largest number of proteins, followed by the Hinds—Levitt (HL)
[36], Miyazawa—-Jernigan (MJ) [34], THOM2, Tobi-Elber (TE) [32], and
Godzik—Skolnick—Kolinski (GSK) [38] potentials. However, in terms of the
number of inequalities that are not satisfied, the GSK potential is the best,
followed by BT, TE, THOM2, MIJ, and HL potentials.

The performance of THOM?2 potential (84.3% accuracy) is comparable to the
performance of other square well potentials (including the TE potential trained
on the same set). Because most of the proteins used in this test were not
included in the training, we conclude that the perfect learning on the training set
avoids overfitting the data.

E. Dissecting the New Profile Models

The THOMI1 potential is the easiest to understand and we therefore start with it.
In Fig. 3 we examined the statistics of THOMI contacts from the HL learning
set. The number of contacts to a given residue is accumulated over the whole set
and is presented by a continuous line. We expect that polar residues have a smaller
number of neighbors compared to hydrophobic residues, which is indeed the
case. The distributions for hydrophobic and polar residues are shown in Figs. 3a
and 3b, respectively. The distributions make the essence of statistical potentials
that are defined by the logs of the distribution (appropriately normalized).

The statistical analysis employs only native structures, whereas our LP
protocol is using sequences threaded through wrong structures (misthreaded)
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during the process of learning. As a result, the LP has the potential for
accumulating more information, attempting to put the energies of the mis-
threaded sequence as far as possible from the correct thread. In Fig. 4 we show
the results of the LP training for valine, alanine, and leucine that are in general
agreement with the statistical data above. Nevertheless, some interesting and
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Figure 3. Statistical analysis of contacts for the THOM1 model. (a) Distribution of the number
of contacts for hydrophobic residues. (b) Distribution of the number of contacts for (c) Data for
alanine and glycine.
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Figure 3 (Continued)

significant differences remain. For example, very rare valine residues with 10
neighbors obtain positive energies.

A plausible interpretation of this result is that these rare sites are used to
enhance recognition in some cases, due to specific “homologous features.”
In Table Va we examined the type of contacts (in terms of the number of
neighbors) for native and decoy structures.

Energy

ala ----

.Iys.----

o 1 2 3 4 5 6 7 8 9 10
Number of contacts

1 . . . . . .

Figure 4. Potentials for THOMI energy as extracted from LP training. Three residues are
shown: alanine, lysine, and valine. Note that the minimum of the potential for valine is at seven
neighbors. Note also that lysine has a minimum at zero neighbors.
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TABLE V
Characterization of Native and Decoy Structures”

(a)

Type of Site”

Native (HYD/POL)

Decoys (HYD/POL)

(€]
(@)
3
“)
(6))
6)
(@)
®)
(©))
(10)

16.97 (4.89/12.09)
17.30 (6.06/11.24)
17.72 (8.29/9.43)
16.60 (9.68/6.92)
14.62 (10.16/4.47)
9.96 (7.66/2.30)
4.95 (4.02/0.92)
1.57 (1.32/0.25)
0.26 (0.21/0.05)
0.04 (0.04/0.00)

24.20 (11.72/12.48)
21.72 (10.52/11.20)
18.70 (9.06/9.64)
15.00 (7.28/7.73)
10.79 (5.24/5.55)
6.04 (2.94/3.10)
2.63 (1.28/1.35)
0.77 (0.38/0.40)
0.12 (0.06/0.06)
0.02 (0.01/0.01)

(b)

Type of Contact

Native (HYD/POL)

Decoys (HYD/POL)

©9.9)

5.09 (1.59/3.50)
9.02 (2.99/6.04)
0.41 (0.15/0.26)
6.25 (2.88/3.37)

24.09 (13.01/11.08)
3.23 (1.88/1.35)
2.77 (1.81/0.96)

28.36 (20.96/7.40)
6.85 (5.11/1.74)
0.40 (0.31/0.09)
9.56 (8.00/1.56)
3.21 (2.60/0.61)
0.01 (0.01/0.00)
0.52 (0.44/0.08)
0.23 (0.19/0.04)

11.34 (5.48/5.85)
12.69 (6.15/6.54)
0.35 (0.17/0.18)
9.51 (4.60/4.91)
26.59 (12.91/13.68)
2.29 (1.12/1.18)
3.18 (1.54/1.64)
22.09 (10.75/11.34)
3.84 (1.87/1.96)
0.34 (0.16/0.17)
5.84 (2.85/3.00)
1.54 (0.75/0.79)
0.01 (0.01/0.01)
0.29 (0.15/0.14)
0.09 (0.05/0.05)

“Frequencies of different types of sites (relevant for the training of THOM1) found in the native
structures of HL set as opposed to decoy structures generated using the HL set are presented in part a.
In THOMI the type of site is defined by number of its neighbors (7). Frequencies are defined by the
percentage from the total number of 53,012 native sites in HL set and 556.14 millions of decoy sites
generated using HL set, respectively. Frequencies of different types of contacts (appropriate for the
training of THOM?2) found in the native structures of TE set as opposed to decoy structures
generated using TE are given in Table Vb. Different classes of contacts are specified in Table II.
Frequencies are defined by the percentage from the total number of 439,364 native contacts in TE set
and 10,089.19 millions of decoy contacts generated using TE set, respectively. The comparable site
and contact distributions separated for hydrophobic and polar residues (as defined in Table I) are

given in parentheses.
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It is evident that native structures tend to have more contacts but that the
difference is not profound. The deviations are the result of threading short
sequences through longer structures (we have more threading of this kind). Such
threading suggests a small number of contacts for the set of decoy structures. A
sharper difference between native and decoy structures is observed when the
contacts are separated to hydrophobic and polar (Table Vb). The difference in
hydrophobic and polar contacts is very small at the decoy structures and much
more significant for the native shapes.

Another reflection of the same phenomenon is the statistics of pair contacts.
For the native structures we find that 42.6% of the contacts are of HH type,
38.2% are HP, and 19.3% are PP. This statistics is of the HL set that has a total
of 93,823 contacts. For the decoy structures the statistics of pair contacts is
vastly different. Only 23.5% of the contacts are HH, HP contacts are 50% of the
total, and 26.5% are PP. The number of contacts that were used is 833.79
million. More details can be found in Tables Va and Vb.

THOM?2 has significantly higher capacity, however the double layer of
neighbors makes the results more difficult to understand. In Fig. 2 we showed
the energy contributions of a few typical structural sites as defined by the
THOM?2 model. For example, the “lowest” picture in Fig. 2 is a site with six
neighbors in the first contact shell and a wide range of neighbors in the second
shell. The second shell includes a site with just two neighbors as well as a site
with nine neighbors. The overall large number of neighbors suggests that this
site is hydrophobic, and the corresponding energies of lysine and valine indeed
support this expectation.

In Fig. 5 we present a contour plot of the total contributions to the energies of
the native alignments in the TE set, as a function of the number of contacts in
the first shell, n, and the number of secondary contacts to a primary contact, 7/,
respectively. The results for two types of residues, lysine and valine, are
presented. The contribution of a type of site to the native alignment is twofold:
its energy &,(n,n’) and the frequency of that site f. It is possible to find a very
attractive (or repulsive) site that makes only negligible contribution to the native
energies because it is extremely rare (i.e., f is small). For specific examples see
Table VI. By plotting f - £,(n,n') we emphasize the important contributions.
Hydrophobic residues with a large number of contacts stabilize the native
alignment, as opposed to polar residues that stabilize the native state only with a
small number of neighbors.

It has been suggested that pairwise interactions are insufficient to fold
proteins and higher-order terms are necessary [30]. It is of interest to check if
the environment models that we use catch cooperative, many-body effects. As
an example we consider the cases of valine—valine and lysine-lysine interac-
tions. We use Eq. (8) to define the energy of a contact. In the usual pairwise
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Figure 5. Contour plots of the total energy contributions to the native alignments in the TE set
for valine and lysine residues as a function of the number of neighbors in the first and second shells.
Part a shows that contacts involving valine residues with five to six neighbors with other residues of
medium number of neighbors stabilize most the native alignments. On the other hand, as can be seen
from part b, only contacts involving lysine residues with a small number of neighbors stabilize native

interaction the energy of a valine—valine contact is a constant and independent
of other contacts that the valine may have.

In Table VI we list the effective energies of contacts between valine residues
as a function of the number of neighbors in the primary and secondary sites. The
energies differ widely from —1.46 to +3.01. The positive contributions refer,
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TABLE VI
Cooperativity in Effective Pairwise Interactions of the THOM?2 Potential®
(a)
V(1) V(@3) V() V(7) V(©)
V(1) —0.56 —0.41 —0.17 —1.46 3.01
V(3) —0.41 —0.34 —0.44 —0.30 —0.07
V(5) —0.17 —0.44 —0.54 —0.61 —0.38
v(7) —1.46 —-0.30 —0.61 —0.49 —0.76
V(9) 3.01 —0.07 —0.38 —0.76 —1.03
(b)
K(1) KQ3) K(5) K(7) K(©)
K(1) —0.03 —0.03 —0.19 1.18 0.69
K(@3) —0.03 0.28 0.40 0.58 0.61
K(5) —0.19 0.40 0.52 0.83 0.86
K(7) 1.18 0.58 0.83 1.34 0.38
K(9) 0.69 0.61 0.86 0.38 —0.59

“For a pair of two amino acids o and f in contact, we have 25 different possible types of contacts
(and consequently 25 different effective energy contributions) because o and f may occupy sites that
belong to one of the five different types characterized by the increasing number of contacts in the
first contact shell (see Table II). Moreover, the 5 x 5 interaction matrix will, in general, be
asymmetric. The effective energies of contact between two VAL residues with a different number of
neighbors are given in part a, whereas the energies of contacts between two LYS residues are given
in part b.

however, to very rare types of contacts, and the energies of the probable contacts
are negative as expected. Hence, the THOM?2 model is compensating for
missing information on neighbor identities by taking into account significant
cooperativity effects.

To summarize the study of the potentials we provide, in Table VII, the
optimal parameters for LJ(6,2), THOM1, and THOM?2 potentials.

V. THE ENERGIES OF GAPS AND DELETIONS

In the present section we discuss the derivation of the energy for gaps (insert-
ions in the sequence) and deletions. A gap residue is denoted by a —, and a
deletion is denoted by a v. For example, the extended sequence S =
a; —vas . ..a, has a gap at the second structural position (x;) and a deletion at
the second amino (a,).
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A. Protocol for Optimization of Gap Energies

The gap (an unoccupied structural site) is considered to be an (almost) normal
amino acid. We assigned to it a score (or energy) according to its environment,
like any other amino acid. Here we describe how the energy function of the gap
was determined. The parameters were optimized for THOM1 and THOM2,
because these are the models accessible to efficient alignment with gaps.

Gap training is similar to the training of other amino acid residues. Only the
database of ‘“native” and decoy structures is different. To optimize the gap
parameters we need ““pseudo-native” structures that include gaps. We construct
such “pseudo-native” conformations by removing the true native shape X, of
the sequence S, from the coordinate training set and by putting instead a
homologous structure, X;,. The best alignment of the native sequence into the
homologous structure is S, into X;, and it includes gaps. We require that the

TABLE VII
Parameters of Some of the Threading Potentials Trained Using the LP Protocol”

(a)
HYD POL CHG CHN GLY ALA PRO TYR TRP CYS

HYD 9.32 145 —-044 -04 735 —-1.09 217 -054 2.29 9.93
POL 145 —-1.19 —-107 —-095 —-155 —-0.75 —1.12 1.41 2.7 0.49
CHG -044 -—1.07 262 —-044 —-035 —1.23 —0.67 021 —-247 -251
CHN —-04 —-095 -044 1.89 —0.01 358 132 6.73 892 —1.61
GLY 735 -—-155 -035 -0.01 —-1.15 —-1.11 223 —-139 —1.17 —1.52
ALA -1.09 -0.75 -1.23 358 —1.11 29 —1.53 564 —2.43 3.59
PRO 217 —-1.12 —-0.67 1.32 223 —153 6.51 8.86 8.64 —2.68
TYR —-0.54 1.41 0.21 6.73 —139 564 886 4.98 7.19 =255
TRP 2.29 2.7 —2.47 892 —1.17 —243 864 7.19 995 -—-3.74
CYS 9.93 049 —-251 —-161 —-152 359 —268 —-255 -374 -0.12

HYD POL CHG CHN GLY ALA PRO TYR TRP CYS

HYD —2.34 0.47 1.71 1.11 —-021 —-0.35 122 —-133 —-098 -5.11

POL 0.47 001 -002 048 -0.07 -0.7 238 —-0.81 —-0.87 0.57
CHG 1.71 —0.02 023 —-1.65 —-0.51 1.13 0.05 —1.93 1.29 3.73
CHN 1.11 048 —1.65 012 0 1.58 —-226 033 491 3.35
GLY -0.21 -0.07 0.51 0 1.35 041 —-082 047 —-193 -3.59
ALA -035 —-0.7 1.13 1.58 041 —1.59 1.3 —238 2.12 1.19
PRO 122 238 0.05 —-226 -0.82 1.3 —-4.08 —-32 725 -—137
TYR —-133 -081 —193 0.33 047 -—-238 -—-32 -29 -5.13 1.67
TRP —-0.98 —-0.87 129 491 —-1.93 212 -725 -513 -273 -02

CYS —5.11 0.57 3.73 335 —3.59 1.19 —1.37 1.67 -02 —-7.87
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alignment S, into the homologous protein will yield the lowest energy compared
to all other alignments of the set. Hence, our constraints are

E(Snaxjvp) _E(Smxhap) = Zp"/(n“/(xj) - n*{(Xh)) >0 V.] 7é h?”
Y

(13)

Equation (13) is different from Eq. (12) in two ways. First, we consider the
“extended” set of “amino acids”—S instead of S. Second, the native-like
structure is X,—a coordinate set of a homologous protein and not X,,.

The number of inequalities that we may generate (alignments with gaps
inserted into a structure and deletions of amino acids) is exponentially large in
the length of the sequence, making the exact training more difficult. Some
compromises on the size of samples for inequalities with gaps have to be made.
To limit the scope of the computations, we optimize here the scores of the gaps
only. Thus, we do not allow the amino acid energies (computed previously by
gapless threading; see Section III) to change while optimizing parameters for
gaps. Moreover, the sequence S (obtained by prior alignment of the native
sequence against a homologous structure) is held fixed, and gapless threading
against all other structures in the set is used to generate a corresponding set of
inequalities [Eq. (13)]. By performing gapless threading of S, into different
structures, we consider only a small subset of all possible alignments of S,,,
because we fixed the number and the position of the gaps that we added to the
native sequence S),.

Pairs of homologous proteins from the following families were considered in
the training of the gaps: globins, trypsins, cytochromes and lysozymes (see
Table VIII). The families were selected to represent vastly different folds with a

TABLE VIII
Pairs of Homologous Structures Used for the Training of Gap Penalties”
Native Homologous Similarity
Imba (myoglobin, 146) 11h2 (leghemoglobin, 153) 20%, 2.8 A, 140 res
Imba (myoglobin, 146) 1babB (hemoglobin, chain B, 146) 17%, 2.3 A, 138 res
Intp (B-trypsin, 223) 2gch (y-chymotrypsin, 245) 45%, 1.2 A, 216 res
lcer (cytochrome ¢, 111) lyea (cytochrome c, 112) 53%, 1.2 A, 110 res
11z1 (lysozyme, 130) 11z5 (11z1 + 4 res insert, 134) 99%, 0.5 A, 130 res
11z1 (lysozyme, 130) 11z6 (11z1 + 8 res insert, 138) 99%, 0.3 A, 129 res

“For each pair the native and the homologous structures are specified by their PDB codes, names,
and lengths in the first and second column, respectively. In the third column the similarity between
the native and the homologous proteins is defined in terms of sequence identity (%), RMS distance
(angstroms), and length (number of residues) of the FSSP structure-to-structure alignment, obtained
by submitting the corresponding pairs to the DALI server [44].
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significant number of homologous proteins in the database. The globins are
helical, trypsins are mostly B-sheets, and lysozymes are o/f} proteins. Note also
that the number of gaps differs appreciably from a protein to a protein. For
example, S, includes only one gap for the alignment of lccr (sequence) versus
lyea (structure), and 22 gaps for Intp versus 2gch.

The energy functional form that we used for the gaps is the same as for other
amino acids. The ‘“pseudo-native” structures with extended sequences are
added to the HL set (while removing the original native structures). Gapless
threading into other structures of the HL set results in about 200,000 constraints
for the gap energies. Because we did not consider all the permutations of the
gaps within a given sequence and our sampling of protein families is limited,
our training for the gaps is incomplete. Nevertheless, even with this limited set
we obtain satisfactory results. A representative set of homologous pairs that we
used allows us to arrive at scores that can detect very similar proteins (e.g., the
cytochromes lccr and lyea) and also related proteins that are quite different
(e.g., the globins 11h2 and 1mba); see Table VIII.

The process of generating pseudo-native is as follows: For each pair of native
and homologous proteins the alignment of the native sequence S, into the
homologous structure Xj, is constructed. This alignment uses an initial guess for
the gap energy, which is based on the THOMI potential and was based on the
following observations.

e The gap penalty should increase with the number of neighbors. For
example, we require that €_(n+ 1) > €_(n) for the THOM1 gap energy.

e The energy of a gap with contacts must be larger than the energy of an
amino acid with the same number of contacts. The gap energy must be
higher; otherwise, gaps will be preferred to real amino acids. For example,
the THOMI energy of the proline residue with one neighbor is 0.29.
Therefore the gap energy must be larger than 0.29; or in general,
e_(n) > g(n), where k=1,..., 20 (types of amino acids) and
n=1,..., 10 (number of neighbors).

e The energy of amino acids without contacts is set to zero. The gap energy
is therefore greater than zero.

In Table IX we provide the initial guess for the gaps (used to determine
pseudo-native states) and the final optimal gap values for THOM1 and THOM2.
The value of 10 is the maximal penalty allowed by the optimization protocol
that we used. However, this value is not a significant restriction. A solution vector p
can be used to generate another scaled solution Ap, where A is a positive constant.

Nevertheless, note that the maximal value is reached rather quickly. This
may indicate that our sampling of inequalities is still insufficient from the
perspective of native alignment. The values of gaps that are found only in decoy
states are increasing without limit in the LP protocol. For example, it is so rare
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TABLE IX
The Gap Penalties for THOM1 and THOM2 Models as
Trained by the LP Protocol with the Limited Set of
Homologous Structures from Table VIII*

(@)

Type of Site Initial Penalty Optimized Penalty
) 0.1 2.7
(€))] 0.3 39
2) 0.6 9.0
3) 0.9 10.0
“4) 2.0 10.0
(5) 4.0 10.0
(6) 6.0 10.0
(7) 8.0 10.0
®) 9.0 10.0
©) 10.0 10.0
(b)
Type of Contact Penalty
) 1.0
(1,1) 8.9
1,5 57
(1.9 10.0

“Initial and optimized gap penalties for different types of
sites in the THOM1 model are given in part a. Optimized gap
penalties for different types of contacts in the THOM?2 model
are given in part b. Penalties that are not specified explicitly
are equal to the maximum value of 10.0.

to find a gap at the hydrophobic core of a protein that our protocol assigns to it
the maximal penalty.

The gaps are favored in sites with a small number of contacts. This observa-
tion is expected, because gaps are usually found in loops with significant solvent
exposure. Note that THOM?2 is penalized for a gap for each individual contact.

In Table X we show the results of optimal threading with gaps (using
dynamic programming) for myoglobin (1mba) against leghemoglobin (11h2)
structure. We show the initial alignment (with the adhoc gap parameters from
Table IXa) defining the pseudo-native state, and we also show the results for
optimized gap penalties for THOM1 and THOM?2. These alignments are largely
consistent with the DALI [44] structure—structure alignment (see Table X). Note
that the gaps appear (as expected) in loop domains (e.g., the CD, EF, and GH
loops). The only “‘surprising” gap is at position 9. Further tests of alignments
with gaps for proteins that we did not learn are given in Section VI.
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TABLE X

An Example of Output from the Program LOOPP for Sequence-to-Structure Alignments [48]"

(a)

SLSAAEADLAGKSWAPVFANKNANGLDFLVALFEKFPDSANFFADFKGKSVADIKASPK
GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE

LRDVSSRIFTRLNEFVNNAANAGKMSA-] MLSQFAKEHVGFGVGS AQFENVRSMFPGFV
LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI

6. .. ... /P, 8. .. 9. 0......... |
R R PR 3. 4. 0.0 117-146
ASVAAP-PA-GADAAWTKLFGLIIDALK-AAG-A- Imba
KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 11h2
L2 3. 4.0 5... 119-153

(b)
........ il 200 30 PO . P

SLSAAEAD-LAGKSWAPVF-ANK-NANGLDFLVALFEK-FPDSANFFADFKGKSVADIK
GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE

ASPKLRDVSSRIFTRLNEFV NNAANAG- KMSAMLSQFAKEHVGFGVGSAQFENVRSMF
LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI

6......... Toooo o, 8. .. 9. . 0......... Lo.o......
cede 200000 3.0 4.0 ... 113-146
PGFV-ASVAAPPAGADAAWTKLFGLIIDALKAAGA Imba
KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 11h2
L2 3o 40000 5... 119-153

(©
........ T . N DT S SRS TN 8

SLSAAEAD-LAGKSWAPVFANKNANGLDFLVALFEKFPDSANFFADFKGK-SVAD-I-K
GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE

ASPKLRDVSSRIFTRLNEFVNNA-ANA- GKMSAMLSQFAKEHVGFGVGSAQFENVRSMF
LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI

1-59
1mba
11h2
1-59

60-116
Imba
11h2
60-118

1-55
1mba
11h2
1-59

56-112
Imba
11h2
60-118

1-55
Imba
11h2
1-59

56-112
1mba
11h2
60-118
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TABLE X (Continued)

....... 2 . O 113-146
PGFVASVAA-PPAGADAAWTKLFGLIIDALKAAGA Imba
KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 11h2
L2200 3. 400000 5... 119-153

“We compare alignments of myoglobin (1 mba) sequence into leghemoglobin (11h2) structure using
the intial (part a) and trained gap penalties (part b for THOM1 and part ¢ for THOM?2). Note that the
location of insertions in the initial alignment (which is used for training of gap energies) is to a large
extent consistent with the DALI structure to structure alignment [44], which aligns: residues 2—50 of
1 mba to 3-51 of 11h2 (helices A, B, and C), residues 53-56 of 1 mba to 52-55 of 11h2 (implying
deletions at positions 51 and 52 in 1 mba), residues 59-80 of 1 mba to 5677 of 11h2 (E helices),
residues 81-86 of 1 mba to 82-87 of 11h2, residues 87-121 of 1 mba to 89-123 (with the implied
insertion at position 88 in 11h2), residues 122—139 of 1 mba to 126-143 of 11h2 (implying two
insertions at positions 124 and 125 in 11h2) and residues 140—145 of 1 mba to 145-150 of 11h2 (with
an insertion at position 144 in 1lh2), respectively. Note also that F and G helices are shifted
considerably in the DALI alignment (there is no counterpart of the D helix in 11h2). The initial
THOMI alignment (part a) is in perfect agreement with the DALI superposition between residues 88
and 150 of 11h2, except for two insertions at positions 128 and 147 (shifted by three residues with
respect to the DALI alignment). The insertions at positions 88, 125, 151, and 153 coincide with the
DALI alignment. The THOM?2 alignment, with trained gap penalties (part c), is in perfect agreement
with the DALI superposition for residues 10 to 50 of 1lh2 and then departs from the DALI
alignment, overlapping E, F, and G helices with a smaller shift.

B. Deletions

Yet another technical comment is concerned with ‘“deletions” that were
mentioned above. A single deletion makes the native sequence shorter by one
amino acid, leaving the structure unchanged. In sequence—sequence alignment,
deletions can be made equivalent to insertion of gaps. In threading, however, the
sequence and the structure are asymmetric. Deleting of residues (amino acids
with no corresponding structural sites) or the insertion of gap residues (empty
structural sites) is not the same operation.

Nevertheless, in the present chapter we exploit an assumed symmetry
between insertion of a gap residue to a sequence and the placement of a
“delete” residue in a “‘virtual” structural site. The deletions are assigned an
environment dependent value that is equal to the averaged gap insertion penalty
for the mirror image problem (shorter sequence instead of longer). The deletion
penalty is set equal to the cost of insertion averaged over two nearest structural
sites. No explicit dependence on the amino acid type is assumed.

While optimization for deletions is not performed in the present chapter, such
an optimization is similar to the optimization of gaps. Consider a partial
alignment of the sequence S, = ...ay_1vyay ... into a homologous structure,
Xy =(...,Xj,Xjt1,...), in which ay_; is placed into x;j, a; 4 is placed into x;y1,
and vy is a deletion. What is the energetic cost associated with deleting v;? An
estimate would be based on an analogous formulation to the gap residue:

8vj(Sn7Xh) = gv(xj’xﬁrl) (14)
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We denoted the ““deletion” residue by v’ because it corresponds to a virtual
site inserted into the structure. The deletion is designed as a special energy term
that depends on the nearest structural sites: x; and x;j;;. The optimization of the
new energy function is the target of a future work.

VI. TESTING STATISTICAL SIGNIFICANCE OF THE RESULTS

In the following we will consider optimal alignments of an extended sequence S
with gaps into the library structures X ;. We focus on the alignments of complete
sequences to complete structures (global alignments [16]) and alignments of
continuous fragments of sequences into continuous fragments of structures (local
alignment [17]). In global alignments, opening and closing gaps (gaps before the
first residue and after the last amino acid) reduce the score. In local alignments,
gaps or deletions at the C and N terminals of the highest scoring segment are
ignored. Only one local segment, with the highest score, is considered.

Threading experiments that are based on a single criterion (the energy) are
usually unsatisfactory. While we do hope that the (free) energy function that we
design is sufficiently accurate so that the native state (the native sequence
threaded through the native structure) is the lowest in energy, this is not always
the case. Our perfect training is for the training set and for gapless threading
only. The results were not extended to include (a) perfect learning with gaps or
(b) perfect recognition of shapes of related proteins that are not the native.

Despite significant efforts to eliminate all ‘“‘false-positive” signals, the
present authors are not aware of any energy function that can achieve this
goal. Tobi and Elber [30] conjectured, based on significant numerical evidence,
that it is impossible to use a general pair interaction model and to make the
native structure the lowest in energy from a set of protein-like structures. The
evidence was given for the (simpler) problem of gapless threading. In the
present chapter we discuss the more complex problem of threading with gaps
that makes the robust detection of the native state even more difficult.

Other investigators use the Z score as an additional filter or as the primary
filter [18,52,4,6], and we follow their steps. The novelty in the present protocol
is the combined use of global and local Z scores to assess the accuracy of the
prediction. This filtering mechanism was found to provide improved discrimi-
nation as compared with a single Z score test.

A. The Z-Score Filter

The Z score, which may be regarded as a dimensionless, ‘‘normalized’ score, is
defined as

(15)
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The energy of the current “‘probe”’—that is, the energy of the optimal alignment
of a query sequence into a target structure—is denoted by E,. The averages,
(...), are over “random” alignments (that still need to be defined). The Z score is
designed as measure of the deviation of our “hits” from random alignments. The
larger the value of Z, the more significant the alignment. This is because the score
is far from the “‘random” average value.

A nontrivial question is how we define a random alignment. The randomness
can come from two sources: random structure or random sequence. It is
common in ab initio folding to assess the correctness of a given structure by
comparing its energy to the energies of other structures assumed random. This
approach is useful if the number of structures is much larger than the number of
sequences (typical of ab initio computations). However, in threading protocols
the number of structures is relatively small and the number of sequences (with
gaps) is significantly larger.

It is therefore suggestive to use a measure, which is based on random
sequences instead of random structures. Following the common practice [52—
54] we generate this distribution numerically, employing sequence shuffling of
the probe sequence. Let S, = aja; . .. a, be the probe sequence. We consider the
family of sequences that is obtained by permutations of the original sequence.

The set of shuffled sequences has the same amino acid composition and
length as the native sequence. This leads to a deviation from ‘“‘true’” randomness
(no constraints) that is used in analytical models. Nevertheless, the constraints
are convenient to “‘solve” the problem of the energy of the unfolded state. In the
unfolded state all amino acids are assumed to have no contacts with other amino
acids. Therefore all the shuffled sequences have the same energy in the unfolded
state.

We address the convergence of the Z score in Fig. 6. How many shuffled
sequences do we need before we get a reliable estimate? For example, after 100
shuffles the Z score of the global alignment of 1pbxA into 2lig (two different
families) suggests that the result is significant. However, enlarging the sample to
include 1000 random probes significantly reduces the Z score below the
“cutoff” of 3. Hence, especially when the signal is not very strong, it is
important to fully converge the value of the Z score. The large number of
alignments that are performed for the shuffled sequences (between 50 and 1000)
makes the process computationally demanding and underlines the need of an
efficient algorithm for genomics scale threading experiments.

An essential decision needed is what is a ““good” score and what is a ‘““bad”
score. Intuitively, negative energies are assumed “good.” Negative energies are
lower than the state with no contacts—that is, contacts with water molecules as
in the unfolded state. However, no such intuition is obvious for the Z score. To
establish a cutoff for the Z score that eliminates false positives, we consider the
probability P(Z,) of observing a Z score larger than Z, by chance. Clearly our
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2lig —
1lbabB ---
1pbxA ---
1pbxB - -
e B
o
[8] -—
S T P - <
N |
2t ]
15} [ ————— ;
/ ------------------
1 1 1 1 1
200 600 1000
Number of alignments for randomly shuffled sequences

(@)

Z score

15} 1
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200 600 1000
Number of alignments for randomly shuffled sequences
(®)

Figure 6. The convergence of the Z scores as a function of the number of shuffled sequences.
The results for global and local alignments are presented in the parts a and b, respectively. The
sequence of the aspartate receptor protein 2lig (not included in the training set) is aligned to all the
structures of the HL set, and the best matches are shown. Note that hemoglobin 1pbxA is found
among the good matches (false positive) with a global Z score of about 3 when using only 100
shuffled sequences to estimate the distribution for random sequences. Converging the Z scores makes
it possible to better separate the native alignment with respect to incorrect alternatives. The Z score
for local alignment of 2lig into 1pbxA is small (about 1) and suggests that this match is indeed a
false positive. The initial values in the figure correspond to scaled energies of the alignments.



PROTEIN RECOGNITION BY SEQUENCE-TO-STRUCTURE FITNESS 111

results will be statistically significant only if P(Z,) is very small. The expecta-
tion value of the number of occurrences of false positives in N alignments with a
Z score larger than Z, is N - P(Z,).

To estimate P(Z,), we thread sequences of the S47 set through structures
included in the Hinds—Levitt set. The probe sequences of known structures were
selected to ensure no structural similarity between the HL set and the structures
of the probe sequences (see Section III.A). Therefore any significant hit in this
set may be regarded as a false positive.

Z scores of local alignments are employed to estimate P(Z,). In local
alignments the number of “good’ energies (significantly lower than zero) is
large, underlining the need for an additional selection mechanism to eliminate
false positives. It also makes it possible for us to estimate P(Z,) for a population
of alignments with “good” scores. For each probe sequence, Z scores are
calculated for 200 structures with the best energies. Only alignments with
matching segments of at least 60% of the total sequence length are considered.
One hundred shuffled sequences are used to compute the averages required for a
single Z-score evaluation. A histogram of the resulting 6813 pairwise align-
ments is presented in Fig. 7.

g ——mm—m—mm—————————

700

600

500

400

300

200

100t

-3

Figure 7. The probability distribution function of the Z scores computed for the population of
false positives. A set of 47 sequences from the 547 set of proteins with known structures without
homologs in the HL set is used to sample the distribution of Z scores for false positives. Each of the
sequences is aligned to all the structures included in HL set. The Z scores are calculated for the 200
best matches (according to energy) using 100 shuffled sequences. The observed distribution of Z
scores is represented by +. The dashed line shows the attempted analytical fit to a Gaussian
distribution, whereas the solid line the analytical fit to the expected extreme value (double
exponential) distribution. Note the significant tail to the right, which is the probability of obtaining a
relatively large Z score by chance. See text for more details.
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Let us denote by p(Z) the probability density of finding a Z-score value
between Z and Z + dZ. Hence, P(Z,) is given by P(Z,) = ffgo p(Z) dZ. We
approximate the observed distribution (‘+ ) by an analytical fit to the extreme
value distribution (represented by a continuous line in Fig. 6), which is defined
by [55]

p(Z) = 1/c - exp[~(Z —a) /o — # /7] (16)

In the realm of sequence comparison, the extreme value distribution has been
used to model scores of random sequence alignments for local, ungapped
alignments [56] as well as for local alignments with gaps [57].

The observed distribution is asymmetric and has a long tail toward high
Z-score values (which is the tail that we are mostly interested in). Note,
however, that there are significant differences between the numerical data and
the analytical fit (and of course from the symmetric Gaussian distribution;
dotted line in Fig. 7). Some deviations are expected because the distribution we
extracted numerically differs from a random distribution. As discussed above,
we use, for example, only alignments with negative energies. Hence, the energy
filter was already employed.

Using analytical fit, we find that P(Z,) = 1 —exp[—exp(—1.313 - (Z, +
0.466))] with the 98% confidence intervals 1.313 £ 0.112 and 0.466 £ 0.079.
For example, we estimate that the probability of observing a random Z score
that is larger than 4 is 0.003. We emphasize, however, that the analytical fit is an
upper bound as is shown in Fig. 6. For example, the observed number of Z
scores larger than 4.0 is equal to 3—as opposed to the expected number of
finding a Z score larger than 4.0, which is equal to (according to the analytical
fit) 6813 - 0.003 = 20.4.

We observe similar discrepancy for global threading alignments of all the
sequences from the HL set into all the structures in the HL set. For each probe
sequence we select the 10 best matches (with lowest energies) that are
subsequently subject to the statistical significance test, resulting in a sample
of 2460 Z scores. Only five of the calculated Z scores, which are larger than 3.0,
correspond to false positives. Using the analytical fit from Fig. 7 the expected
number of observing by chance Z scores larger than 3.0 is equal to 24.6. Thus, it
seems that the conservative estimate of the tail of the extreme value distribution
indeed provides an upper bound for the probability of observing a false positive
with a low energy and a high Z score.

B. Double Z-Score Filter

When searching large databases, the probability of observing false positives is
growing, because the expected number of false positives is N - P(Z,), where N is
the number of structures in the database. Therefore, only relatively high Z
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scores may result in significant predictions. Unfortunately, there are many
correct predictions with low Z scores that overlap with the population of false
positives. A high cutoff will therefore miss many true positives. Restricting the Z
score test to only best matches (according to energy) is still insufficient.
Therefore we propose an additional filtering mechanism, based on a combination
of Z scores for global and local alignments. The double Z-score filter eliminates
false positives, missing much smaller number of correct predictions.

Global alignments (in contrast to local alignments) are influenced signifi-
cantly by a difference in the lengths of the structure and the threaded sequence.
The matching of lengths was considered too restricted in previous studies [58].
However, at our hands and using environment-dependent gap penalty, the Z

=
o

Local

OFRL NWHAMOUOO N 0 ©

I
N

|
w

Global

Figure 8. The joint probability distribution for the Z scores of global and local alignments. The
distribution at the lower left corner (circles) is the result of the alignments of the 547 set sequences
against all structures in HL set. The Z scores for the false positives are computed using 1000 shuffled
sequences for both global and local alignments to ensure convergence. Only weak energy constraint
are used; that is, 100 best global and 200 best local matches are subject to a Z score test, and then a
given pair (global Z score, local Z score) is included if the energy of the global alignment is negative.
The resulting 1081 pairs are included in the figure. The best pair in this population is slightly below
the threshold (3.0,2.0). The population in the right upper corner represents (square boxes) 331 pairs
of HL sequences aligned to HL structures with global Z scores larger than 2.5 and local Z scores
larger than 1 [some of the Z scores fall beyond the (10,10) range). This set includes 236 native
alignments and 95 non-native alignments. There are 10 matches that are false positives (filled
squares), and they are all below the threshold (3, 2). Four of them are marginally so. The Z scores of
this distribution were generated using 1000 shuffled sequences for global alignments, but only 50 for
local alignments. Stiffer energy constraints were employed in which only the 10 best matches
(according to energy) for global alignments and with 200 best matches for local alignments were
considered. Of course, there is still a population of matches below (2.5,1.0) threshold (including 10
native alignments). However, the number of false positives below this threshold grows quickly,
making predictions with Z scores in this range difficult.
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score of the global alignment was proven a useful independent filter. This filter
is an addition to the use of energy (of local and global alignments) and of the Z
score of local alignments.

In Fig. 8 we present the joint probability distribution for global and local Z
scores for a population of false positives versus a population of correct
predictions. The squares at the upper right corner represent correct predictions,
resulting from 331 native alignments (of a sequence into its native structure) and
homologous alignments (of a sequence into a homologous structure) of the HL
set proteins. The circles at the left lower corner are false positives obtained from
the alignments of the sequences of the S47 set against all structures in the HL.
The procedure is the same as the one used previously to generate the probability
density function for the Z scores of local alignments (see Fig. 7). However, the Z
scores are computed using 1000 shuffled sequences for both global and local
alignments, which is sufficient to converge the values of the Z scores. The
converged results reduce somewhat the tails of the distribution. For example, the
number of false positives with a global Z score larger than 2.5 and a local Z
score larger than 1.0 is equal to 3, as compared to 7 with only 100 shuffled
sequences.

Figure 8 shows that the thresholds of 3.0 for global Z scores and of 2.0 for
local Z scores are sufficient to eliminate all the false predictions. These cutoffs
result in a number of misses, for example, 23 native alignments are dismissed as
insignificant (see also the next section). However, this is a price we have to pay
for high confidence levels in our predictions. The total number of pairwise
alignments for which we compute the global and the local Z scores, and
subsequently test for the presence of false positives, is about 10,000. Hence, we
estimate that the probability of observing a single false positive with a global
and a local Z score larger than the 3.0 and 2.0 thresholds is smaller than 0.0001.

VII. TESTS OF THE MODEL

There are three tests that we perform in this section on the THOM?2 potential. We
use optimal alignments and the double Z-score test proposed in Section V1. First,
we analyze the results of threading the sequences of the HL set into all the
structures of the HL set. Self-recognition and family recognition are discussed.
Next, threading of the CASP3 sequences into an extended TE set is used to test
the performance of the new threading protocol on the set of folds that were not
included in the training. Finally, further tests of family recognition are presented,
including the comparison of THOM2 results with those of a pairwise model
using the frozen environment approximation.

A. The HL Test

The HL set was partially learned (using gapless threading). The first test verifies
that the additional flexibility of gaps and deletion maintain good prediction
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ability such as self- and family recognition. We note that our training did not
include the Z score, so successful predictions based on only the Z score are useful
tests even if performed on the training set of structures. The second test is a
prediction experiment on proteins not included in the learning set. There are 40
new proteins that are included in Table XIa.

TABLE XI
A Summary of the THOM2 Threading Alignments of All the Sequences of the HL
Set Into All the Structures of the HL Set?

(a)

1bbtl, 1gplA, lgrcA, lipd, llap, llpe, 1phd, 1prcL, 1prcM, 1rbp, 1rhd,
1rnh, 1stp, 1wsyB, 2cna, 2cts, 2gbp, 2snv, 2wrpR, 3sicE, 4dfrA, 4gcr,
4rerH, 4rerL, 4rerM, 7acn, 8adh, 4cms, 4ilb, 5fdl, latnA, 1tfd, 2aaiA,
2aaiB, 2bbkA, 2bbkB, 2lig, 2mnr, 2plv1, 2sas

(b)
Energy Z Score N
First First 234
First Second 4
First Fourth 1
Second Second 3
‘Weak Weak 4
(©
Z Score N
First 177
Second or Third 35
Fourth and lower 14
Weak 11
Very Weak 9

“A list of proteins of the HL set that were not included in the training (TE) set is given in part a. A
summary of the native global alignments is included in part b. Part ¢ contains a summary for the
native local alignments. The number of native alignments N, with ranks specified in terms of
energies (first column in part b) and Z scores (second column in part b and the first column in part c),
is given in the last column. For global alignments, “weak” is used to mark alignments with a weak
energy or Z-score signals. There are four weak alignments corresponding to the photosynthetic
centers membrane domains that were not included in the training set. Only five out of the remaining
242 native alignments obtain Z scores smaller than 3.0 (four alignments with Z scores larger than 2.5
and one alignment with a Z score smaller than 2.5). For local alignments, “very weak” denotes
native alignments with Z scores smaller than 1.0, whereas “weak’ marks alignments having Z scores
larger than 1.0 and smaller than 2.0. There are 226 local native alignments with Z scores larger than
2.0. Note also that energy is not used to filter local alignments (beyond the initial restriction to 200
best candidates).
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The self-recognition of the HL set proteins in terms of optimal alignments
and Z-score filters is summarized in Tables XIb and Xlc (see also Fig. 8). In
Table XIb we provide the data for the global alignment. Energy and Z-score
filters are considered. Of the total of 246 proteins, 234 are clear-cut cases (the
energy and the Z scores of the native alignment are at the top). The four failures
are membrane proteins (photosynthetic reaction centers) that were not included
in the training set. In Table XIc the data for the local alignments are provided.
We use only the Z score as a filter because there are many incorrect alignments
with good (negative) energies. Among nine native alignments that are clear
failures (Z < 1.0), six refer to structures that were included in the training set.

As examples of protein families, represented in the HL set, we discuss
cytochromes, dehydrogenases, and acid proteases. Cytochromes were included
in the training of the gaps, so we might expect that identification of cytochromes
will be easy. Yet, this is not the case and we report a “‘bad” case scenario for
some of the members of the family in Table XIla. The Z-score values are below
what we usually consider as a significant hit. Even though the correct proteins
make it to the top, the global Z scores are too low (1.3-1.4) to confirm the
prediction. The successful recognition of dehydrogenases and acid proteases
families is shown in Tables XIIb and XIIc. We comment that most of the family
members of the HL set are recognized irrespective of the choice of the probe
sequence, as long as it belongs to a given family. More extensive tests of family
recognition are discussed in Section VII.C.

Global Z scores reported in Tables XI and XII are converged using 1000
shuffled sequences. Local Z scores are, however, computed using only 50
shuffled sequences. The constraint here is of computational resources. Global Z
scores are computed only for 10 energy-best structures and can be done

TABLE XII
Examples of Predictions for Families of Homologous Proteins”

(@

Query srequence: ScytR Structure Energy Z score RMS
Global alignments ScytR —-22.1 4.1 0.0
lcer —10.4 1.4 6.9
3c2c —-104 1.4 49
Irro —11.2 1.3 —
256bA —-12.0 1.0 —
Local alignments ScytR -31.0 39 0.0
leer —-35.6 32 1.9
lyea —-239 32 1.9
2ccyA —22.8 3.0 —

2fox —-27.6 2.3 —
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TABLE XII (Continued)

(b)
Query Sequence: 1llc Structure Energy Z Score RMS
Global alignments 1llc —80.0 7.0 0.0
111dA —60.7 4.4 53
11dnA —-529 4.2 4.6
4mdhA —474 2.1 6.7
6ldh —45.8 1.6 4.6
Local alignments 11dnA —-734 52 4.1
1llc —89.8 52 0.0
111dA —74.1 4.4 5.0
6ldh —73.4 43 4.4
lipd —82.7 2.8 —
(©
Query Sequence: 1pplE Structure Energy Z Score RMS
Global alignments 1pplE —-77.3 9.5 0.0
2er7E —6l1.4 7.3 2.9
3aprE -51.9 43 39
4cms —45.0 4.2 54
4pep —43.1 3.6 5.7
Local alignments 1pplE —-79.2 12.9 0.0
2er7E —68.6 8.3 2.9
3aprE —59.6 4.5 5.2
4pep —554 33 5.7
1prcH —46.6 22 —

“The results of global and local threading alignments for representatives of three families in the HL
set are reported. The families are cytochromes (part a), lactate and malate dehydrogenases (part b),
and pepsin-like acid proteases (part c). Five best alignments, ordered according to their Z scores
(fourth column), are reported. The names of the query sequences are specified in the first column,
target structures in the second, and the energy of the alignment in the fourth column, respectively. In
the last column the RMS distance between the (known) structure of the probe (query) and the target
structure, according to a novel structure-to-structure alignment (Meller and Elber [45]), is provided.
RMS distances larger than 12 A are indicated by a dash. Note that in a “bad” case scenario a
distance of about 5 A between the superimposed side-chain centers of ScytR and 3c2c is sufficient to
make threading identification virtually impossible because the Z score is too low (see part a). The
local alignment provides a significantly improved Z score in this case. On the other hand, there are
homologous structures that are not detected by the local alignments, although their global Z scores
are high. Examples are malate dehydrogenase 4mdh (see part b) and acid protease 4cms (see part c).
The structures with the PDB codes 1rro and 2fox (part a), lipd (part b) and 1prcH (part c) do not
belong to the families of interest.
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accurately. Local Z scores are computed for 200 alignments. The number of
alignments with negative energies, which needs to be probed by an additional
filter, is much larger for local alignments. With limited computational resources
and/or a large-scale alignment project, it may be necessary to use Z scores that
are not fully converged. For example, when aligning a 1pplE sequence into a
1prcH structure, a Z score of 1.8 with 1000 shuffled sequences is obtained, as
opposed to 2.2 with only 100 shuffles sequences.

Finally, we remark that we were able to find alignments (with gaps) that have
energies lower that the energy of the native state. Moreover, even aligning a
sequence into its own structure may result in lower energy than the native if the
addition of gaps and deletions is favorable. One such example is the alignment
(with gaps) of 1llc onto its native shape.

B. Recognition of Folds Not Included in the Training

In order to assess the generalization capacity of THOM2 in terms of optimal
alignments, we use the S47 set again. Let us recall that the S47 set is composed of
CASP3 [46] targets and their relatives. Using CASP3-related structures is a
convenient way of finding protein shapes that are not sampled in the training. The
experiment we perform is for self-recognition and is not aimed at finding remote
relatives (as in CASP). The results are summarized in Table XIII. The native and

TABLE XIII
Self-Recognition for Folds That Were Not Learned”
FSSP THOM2 THOM2
PDB Code (len) Z-score (RMS) Global Z score Local Z score
1HKA (158) 33.0 (0.0) 7.1 7.1
1VHI (139) 4.3 (5.2) 0.2 0.3
2A2U (158) 33.8 (0.0) 2.5 4.0
1BBP (173) 11.6 (3.3) 3.5 3.0
2EZM (101) 55.3 (0.0) 3.7 3.2
1QGO (257) 46.0 (0.0) 5.6 7.6
1ABE (305) 6.4 (3.4) 0.5 0.4
1BYF (123) 29.5 (0.0) 1.8 2.8
1YTT (115) 16.4 (2.2) —-0.1 14
1JWE (114) 26.9 (0.0) 2.6 2.3
1B79 (102) 18.7 (1.3) 0.3 1.3
1B7G (340) 61.5 (0.0) 8.7 8.8
1A7K (358) 25.1 (2.9) -04 —-0.9
1EUG (225) 43.0 (0.0) 34 3.0
1UDH (244) 30.8 (1.7) —-1.0 2.9
1D3B (72) 18.4 (0.0) 3.5 2.8
1B34 (118) 13.4 (1.1) 1.9 2.0
1DPT (114) 24.8 (0.0) 6.2 6.0
1CA7 (114) 18.7 (1.2) 4.0 2.5

1BG8 (76) 19.1 (0.0) 34 35



PROTEIN RECOGNITION BY SEQUENCE-TO-STRUCTURE FITNESS 119

TABLE XIII (Continued)

FSSP THOM?2 THOM?2
PDB Code (len) Z-score (RMS) Global Z score Local Z score
1DJ8 (79) 16.2 (0.7) 5.1 39
1QFJ (226) 42.7 (0.0) 8.1 84
1VID (214) 7.1 (3.1) -2.0 0.5
1BKB (132) 25.1 (0.0) 2.7 1.5
1EIF (130) 17.4 (1.6) 3.5 2.0
1BON (103) 19.5 (0.0) 4.7 5.0
1LMB (87) 8.0 (5.3) 0.3 0.1
1BD9 (180) 38.8 (0.0) 4.5 5.8
1BEH (180) 36.0 (0.3) 74 5.8
1BHE (376) 70.2 (0.0) 6.7 0.6
1IRMG (422) 36.9 (2.2) 0.9 —
1B9K (237) 39.7 (0.0) 8.1 8.2
1QTS (247) 36.1 (0.7) 3.5 6.4
1EH2 (95) 24.3 (0.0) 6.0 6.5
1QJT (99) 7.6 (2.5) 3.6 3.7
1BQV (110) 20.9 (0.0) 35 23
1B4F (82) 32 (3.3 0.0 1.7
1CK2 (104) 26.0 (0.0) 5.2 4.3
1CNS8 (104) 14.3 (2.2) 53 2.0
1BLO (116) 24.9 (0.0) 0.5 0.5
1JHG (101) 3.4 (6.6) 1.1 1.0
1BNK (100) 24.9 (0.0) 54 6.3
1B93 (148) 31.4 (0.0) 4.0 32
1IMJH (143) 6.1 (3.4) 0.3 1.3
1BK7 (190) 37.2 (0.0) 7.7 9.0
1BOL (222) 19.7 (2.3) 0.1 —-1.0
1BVB (211) 37.3 (0.0) 53 4.3

“Twenty-two pairs of CASP3 targets and their structural relatives, as well as an additional three
singleton targets, are added to the TE set. Their PDB codes are given in the first column (with
lengths in parentheses). The actual CASP3 targets are given as the first structure of each pair (e.g.,
1HKA from the pair 1HKA, 1VHI). If the domain is not specified and one refers to a multidomain
protein, then the A (or first) domain is used. The results of global and local THOM?2 threading of the
25 CASP3 sequences into an extended TE set (594 4 47 structures) are reported in the third and
fourth column, respectively. Two of 25 native alignments gave weak signals (DNA-binding protein
1BLO and glycosidase 1BHE). Four other native alignments (2A2U, 1BYF, 1JWE, and 1BKB)
provide global Z scores somewhat smaller than 3. The DALI Z scores and RMS deviations for
structure-to-structure alignments into native and homologous structures are reported in the second
column (the native structures have RMS distances of zero). Note that low Z scores indicate that only
short fragments of the respective structures are aligned and the resulting RMS deviation may not be
representative. Nine related structures, among the 14 pairs with the DALI Z score larger than 10,
obtain Z scores larger than 3.0 and 2.0 for the global and local THOM2 threading alignments,
respectively. The alignment of 2A2U sequence into the 1BBP structure was the only significant hit of
any of the target sequences into the structures included in the training (TE) set. Thus, no false
positives with scores above our confidence cutoffs were observed. All the predictions that can be
made with a high degree of confidence are indicated by Z scores printed using boldface type.
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homologous shapes were embedded in the structures of the TE set, and the
sequences of CASP targets were aligned into all the structures of such extended
set. We provide in the table the results of the native alignments and the
alignments into related homologous structure, irrespective of their rank.

One encouraging observation is that the native structures are found with high
probability. Twenty of 25 structures would have been found if the native
structure was included in the set. A less encouraging observation is the
sensitivity of the results to structural fluctuations. The THOM2 model can
identify related structures only if their distance is not too large. Nine out of 14
homologous structures with the DALI [44] Z score for structure-to-structure
alignment larger than 10 are detected with high confidence. Only one homo-
logous structure with the DALI Z score lower than 10 is detected.

Only three among the 25 structures of the CASP3 targets included in Table XIII
had homologous counterparts in the training set. These are 2a2u, 1byf, and leug
with their respective homologous proteins 1bbp, 2msb, and lakz. It is therefore
reassuring that most of the native structure and a significant fraction of relatives
are recognized in terms of both their energies and the Z scores. Also, there are
no further significant hits into other structures from the TE set. Hence, no false
positives above our confidence thresholds are observed in this test. We conclude
that our nearly perfect learning (on a training set) preserves significant capacity
for identification of new folds using optimal alignments with gaps.

Note also that good scores with the global alignment are obtained for length
differences (between sequence and structure) that are on the order of 10%. This
was made possible by using environment-dependent gaps. When the differences
in length are profound (e.g., 1bqv versus 1b4f), it is obvious and expected that
the global alignment will fail. Large differences are clearly focused on
identification of domains and not a whole protein. This is a different problem,
which the present chapter does not address.

C. Recognition of Protein Families: THOM2 Versus Pair Energies

Three families are considered here: globins (92 proteins), immunoglobins (Fv
fragments, 137 proteins), and the DNA-binding, POU-like domains (26
proteins). Sequences of all family members are aligned optimally to all the
structures in the family. Both the local and global alignments are generated for
each sequence—structure pair, and the results are compared in terms of the sum of
Z scores for global and local alignments. Thus we employ here a simplified
version of the double Z-score filter discussed before. The THOM?2 results are
compared to the results of the TE pairwise potential, which was trained on the
same set of 594 proteins using the LP protocol. The difference in the LP protocol
was that an objective function was optimized.

The alignments due to the pairwise potential are computed using the first
iteration of the frozen environment approximation (FEA) [22]. That is, when
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evaluating fitness of a query sequence into a structure, we assume that types
of contacts are fixed according to the native identities of sites making contacts
to a primary site occupied by a query residue. Such an approach is in fact a
different profile approximation to the “true” pair energies. In THOM2, the
number of neighbors to a secondary site approximates its identity, whereas in
FEA it is approximated by the identity of the native residue at that site. In
principle, the FEA should be iterated until self-consistency is achieved [22].
Purely structural characterization of contact types in THOM?2 avoids this
problem.

In order to compute optimal alignments with the FEA, we need to set the gap
penalties for the TE potential. After some experimentation the insertion
penalties are chosen to be proportional to the number of neighbors to a site,
e_(n) =0.2- (n+ 1). This choice is consistent with the THOM2 gap energies,
which also penalize sites of no neighbors. The proportionality coefficient was
gauged using the same families that were used to train THOM2 gap energies.
However, no LP training was attempted. The deletion penalties are also
consistent with the THOM?2 model, and they are defined in the way described
in Section V.

Figures 9a to 9f show the joint histograms of the sum of Z scores for local
and global threading alignments versus the RMS deviations between super-
imposed (according to our novel structure-to-structure alignments; see Section
III.A) side-chain centers. Figures 9a, 9c, and 9e show the results for THOM2
(for globins, immunoglobins, and POU-like domains, respectively), whereas
Figs. 9b, 9d, and 9f show the corresponding results for TE potential with FEA.
The vertical lines in the figures correspond to the sum of global and local Z
scores equal to 5, which roughly discriminates the high confidence matches
(with higher Z scores) and lower confidence matches that might be obscured by
the false positives.

The population of matches that are difficult to identify by pairwise sequence-
to-sequence alignments is represented by the filled squares. Sequence align-
ments are generated using Smith—Waterman algorithm with the BLOSUMS50
substitution matrix (with the signs inverted) and structurally biased gap
penalties [e_(n) = 8 + (n — 5), where n is the number of neighbors to a site].
Confidence of matches is estimated using Z scores defined, analogously to
threading alignments, by the distribution of scores for shuffled sequences. We
find that structurally biased gap penalties improve the recognition in case of
weak sequence similarity. We do not observe false positives with more than
50% of the query sequence aligned and with a Z score larger than 8 (the
distribution of Z scores for sequence substitution matrices is vastly different
from that of threading potentials, with very high Z score for homologous
sequences). All the matches represented by circles can be identified with high
confidence by pairwise sequence-to-sequence alignments.
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Figure 9. Comparison of family recognition by THOM?2 and pair energies. The results of
THOM2 for families of globins, immunoglobins (Fv fragments), and POU-like domains are compared
to the results of Tobi—Elber (TE) pairwise potential. TE potential was optimized using LP protocol
(with different target function) and the same training set. The first iteration of the so-called frozen
environment approximation is performed to obtain approximate alignments for the TE potential. Parts
a—f show the joint histograms of the sum of Z scores for local and global threading alignments versus
the RMS deviations between superimposed (according to structure-to-structure alignments; see text for
details) side-chain centers. Parts a, ¢, and e show the results for THOM?2 (for globins, immunoglobins,
and POU-like domains, respectively), whereas parts b, d, and f show the corresponding results for TE
potential and the frozen environment approximation. The population of matches that are difficult to
identify by pairwise sequence-to-sequence alignments is represented by the filled squares (see text for
details). Note that the number of low THOM?2 Z scores (for example, smaller than 5) is, on the average,
smaller for families of globins and POU-like proteins. This is further highlighted in parts g and h, which
show one-dimensional histograms of the sum of Z scores for local and global threading alignments for
globins and POU-like domains. On the other hand, the TE potential and FEA perform better for
immunoglobins family, which is also easier for sequence alignment methods (see text for details).
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Figure 9 (Continued)

Nearly all pairs differing by less than 3 A RMSD can be identified by
THOM?2 threading alignments. Most of the matches in the range between 3 and
5 A can be still identified with high confidence. However, the number of
confident matches (to the right with respect to vertical lines representing our
cutoff of 5 in terms of sum of local and global Z scores) quickly decreases with
the growing RMS distance. Essentially all the pairs with RMSD smaller than 3 A
can be also identified by pairwise sequence alignments. Below this threshold,
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Figure 9 (Continued)

however, we observe many matches that can be still identified by threading but
not by sequence alignment (filled rectangles corresponding to threading Z score
higher than 5).

On the other hand, there are many matches due to the sequence alignment
that are not detected by threading. Because we do not incorporate family
profiles in our threading protocol, we do not include here a systematic
comparison with the results of PsiBLAST [59]. However, we found examples



PROTEIN RECOGNITION BY SEQUENCE-TO-STRUCTURE FITNESS 125

2000 -
"histo_tom" —
/ \ "histo_eij" ----
1500 | / K
9]
Qo
£ 1000 [
>
P4
500 |
0 " " " " " " " " "
0o 2 4 6 8 10 12 14 16 18 20
Z score (global + local)
()
350
300 [\ *histo_tom™ —
| histo_eij" ----
250 >
@
Qo
g 200
=)
P4

150

100

50

0 2 4 6 8 10 12 14 16 18 20
Z score (global + local)
(h)

Figure 9 (Continued)

of matches detected with high confidence by threading and not detected by
PsiBLAST in each of the families considered here (e.g, globins 1flp and lash or
POU-like proteins lakh and 1mbg).

Note that for the families of globins and POU-like domains the number of
low THOM?2 Z scores (for example smaller than 5) is, on the average, smaller
than the number of low Z scores obtained with the TE potential and FEA. This
is further highlighted in Figs. 9g and 9h showing one-dimensional histo-
grams for the sum of Z scores for local and global threading alignments for
globins and POU-like domains. For example, the number of low confi-
dence matches (Z < 5) for globins increases from 2851 in case of THOM?2 to
3265 in case of the TE potential. One can also notice that the distribution of Z
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scores is different, with many very high Z scores for alignments into very close
homologs as opposed to lower scores for more divergent pairs, in case of the TE
potential.

Interestingly, FEA with the TE potential fails also for a larger number of
native alignments. This is especially clear for the family of DNA binding
proteins (see Figs. 9e and 9f). The number of native alignments with very low Z
scores (smaller than 4) is equal to 7 in case of pairwise model and only 2 in case
of THOM2. Because DNA binding proteins may be stabilized by contacts that
are not included in our model, the energies of native alignments are quite poor.
One striking example is the lhdp. According to TE potential, 1hdp has the
native energy equal to —0.42. An alternative alignment into its native structure
with one insertion and one deletion in the sequence improves the energy to
—0.63 despite the cost of gaps. On the other hand, THOM2 model seems to be
capable of compensating for that using the information about the shape of the
protein as encoded in the contact (solvation) shell characterization of each
contact. The THOM?2 native alignment for lhdp is the lowest in energy and
leads to higher Z scores.

The relatively worse performance of the pairwise model may result from the
suboptimality of alignments that we generate using FEA, especially that our gap
penalties for the TE potential were not optimized by LP protocol and we did not
attempt to converge the FEA until self-consistency is achieved. However, as
discussed above, in many instances it is clear that even better gap penalties will
not be able to improve the observed scores. The specific functional form of our
new profile model contributes to the relatively better performance too.

On the other hand, there are families for which the pairwise model works
better. As can be seen from Figs. 9c and 9d, one such example is the family of
immunoglobins. The FEA is expected to perform well when the sequence
similarity is sufficiently high, because the information about the native
sequences is used to generate optimal alignments. The divergence in terms of
what can be detected by sequence similarity is larger for globins and POU-like
proteins than for immunoglobins. For example, contrary to other families
considered here, all the immunoglobins with RMSD smaller than 4 A can be
detected by sequence alignments. Therefore, good performance of the FEA with
the TE potential is expected in this case.

VIII. CONCLUSIONS AND FINAL REMARKS

In the present chapter we proposed and applied an automated procedure for the
design of threading potentials. The strength of the procedure, which is based on
linear programming tools, is the automation and the ability of continuous exact
learning. The LP protocol was used to evaluate different energy functions for
accuracy and recognition capacity. Keeping in mind the necessity for efficient
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threading algorithms with gaps, we selected the THOM2 model as our best
choice.

Statistical filters based on local and global Z scores were outlined. We observe
that, while using very conservative Z scores that essentially exclude false
positives, the new protocol recognizes correctly (without any information about
sequences) most of the family members with the RMS distance between the
superimposed side chain centers of up to 4 A. We also observe many instances
of successful recognition of family members that cannot be confidently recog-
nized by pair energies with the so-called frozen environment approximation.

The present approach is based on fitness of sequences into structures.
Nevertheless, it is easily extendable to include also sequence similarity, family
profiles, secondary structures, and other relevant signals. Because the THOM2
model provides an effective and comparable in performance alternative to
pairwise potentials, it can be used as a fast component of fold recognition
methods employing pair energies. It is the target of a future work.

The algorithms and threading potentials presented in this chapter are
available in the program LOOPP (Learning, Observing, and Outputting Protein
Patterns). The program (including the source code and sets of proteins for
training and recognition) is available from the web [48]. It is also possible to
submit sequences directly to our server.
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I. INTRODUCTION

In this postgenomic era, a key challenge is to interpret the information provided
by the knowledge of the proteome, the set of protein sequences found in a given
organism. Unfortunately, having a list of protein sequences in and of itself
provides little insight; the key question is, What is the function of all of the
proteins? Function covers many levels, ranging from molecular to cellular or
physiological to phenotypical. By employing sequence-based methods that
exploit evolutionary information, between 40% and 60% of the open reading
frames (ORFs) in a given genome can be assigned some aspect of function
ranging from physiological to biochemical function. Indeed, because of their
considerable success, sequence alignment methods such as PSI-BLAST [1,2]
and sequence motif (that is, local sequence descriptors) methods such as Prosite
[3], Blocks [4], Prints [5,6], and Emotif [7] set the standard against which all
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alternative approaches must be measured. However, sequence-based approaches
increasingly fail as the protein families become more diverse [8]. The remaining
unassigned ORFs, termed ORFans, represent an important challenge and
represent an area where structure-based approaches to function prediction can
play a significant role. One structure-based method combines one-dimensional
information about sequence and structure and has had some success [9]. An
alternative structure-based approach to function prediction that employs the
sequence—structure—function paradigm has recently been developed [8,10-15].
Here, low-resolution models predicted by threading or ab initio folding are
screened for matches to known active sites; if a match is found, then a functional
assignment is made. However, this method requires a predicted structure of
appropriate resolution. Structure prediction techniques will also play an
important role in probe selection in structural genomics, where the ultimate
goal is to experimentally determine the structure of all possible protein folds
such that any newly found sequence is within modeling distance of an already
solved structure. Thus, in this review, we examine the status of contemporary
structure prediction approaches and demonstrate that the resulting (quite often
low-resolution) models can be used both to identify the biochemical function of
the protein and to dock known ligands to the correct binding sites.

Presently, there exist three approaches to protein structure prediction:
homology modeling, threading, and ab initio folding. In homology modeling,
the probe and template sequences are clearly evolutionarily related, and the
structures of the probe and template are quite close to each other. The second
structure prediction method is threading, where one attempts to find the closest
matching structure in a library of already solved structures but where the
structures can be analogous; that is, the two proteins are not necessarily
evolutionarily related, but they adopt very similar structures. Ideally, threading
should extend sequence-based approaches. Threading and homology modeling
suffer from the fundamental disadvantage that an example of the fold of
the sequence of interest must already have been solved in order for the method
to be successful. Finally, there is ab initio folding where one attempts to fold a
protein from a random conformation; obviously this is the hardest of the three
methods of structure prediction, but it has the advantage that an example of the
fold need not have been seen before. As detailed in what follows, a number of
variants of ab initio folding use extensive information from threading. Such
information might include local secondary structure information, supersecond-
ary structure information, and/or predicted tertiary contacts. Indeed, the major
focus of this review is to describe a unified approach to protein structure
prediction that reduces to threading plus structure refinement when an example
of the probe sequence is found; but if not, it incorporates information from
weakly significant probe sequence—template structure matches and then does ab
initio folding with the structural information gleaned from such matches. It has
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the advantage that it can predict a novel fold even though some of the
information comes from threading on already solved structures.

II. OVERVIEW AND HISTORICAL PERSPECTIVE

A. Comparative Modeling Methods

Comparative modeling can be used to build the structure of those proteins whose
sequence identity is above 30% or so with a protein template structure [16]. This
usually consists of three steps: (1) Search for sequence similarity to a member of
a set of carefully selected sequences with known three-dimensional structure; (2)
use the detected structural template to build a molecular model; and (3) carefully
validate the resulting models. In the recent CASP3 prediction experiment [17],
encouraging results were reported by Bates and Sternberg [18], Blundell and co-
workers [19], Yang and Honig [20], Dunbrack [21], and Fischer [22]. While the
automated approach of Sali’s MODELLER [23,24] did not do as well as others, it
is nevertheless a widely used comparative modeling package. The results of
CASP3 suggest that the key to a good model is to generate the best possible
initial sequence alignment and to modify it as little as possible [25,26]. Thus, as
the sequence identity of the probe and template moves into the twilight zone,
sequence alignments degrade with a comparable degradation in the quality of the
model structures.

As an example of genome-scale comparative modeling using standard se-
quence alignment algorithms and MODELLER, Sanchez and Sali [27] recently
scanned a portion of the yeast genome, S. cerevisiae [28]. They found homolog-
ous proteins of known structure for about 17% of the proteins (1071 sequences),
and they built three-dimensional models for these yeast proteins. Only 40 of
these modeled proteins had a previously determined experimental structure, and
236 proteins were related to a protein of known structure for the first time.

An obvious limitation of the above approach is that it requires a homologous
protein whose structure is known. Depending on the genome, 15-25% of all
sequences now have a homologous protein of known structure [29]. This
percentage is slowly increasing as new structures are being solved at an
increasing rate. Interestingly, the majority of newly solved structures exhibit
an already known fold. At this point, it is still uncertain whether this indicates
that proteins can adopt a limited number of folds or if it simply indicates a bias
toward certain types of protein folds that crystallize relatively readily.

B. Threading

Threading is another means of predicting the tertiary structure of proteins. Here,
for the sequence of interest, one attempts to find the closest matching structure in
a library of known folds [30,31]. The paradigm of homology modeling is still
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followed with its three steps: (1) identifying the structural template, (2) creating
the alignment, and (3) building the model. Thus, threading has limitations that
are similar to classical homology modeling. First and foremost, an example of
the correct structure must exist in the structural database that is being screened. If
not, the method will fail. Second, the quality of the model is limited by the extent
of actual structural similarity between the template and the probe structure. Until
recently [32], one could not readjust the template structure to more correctly
accommodate the probe sequence. While the quality of alignments generated by
threading algorithms improved from CASP1 to CASP3 [17], it nevertheless
remains problematic. Another question is whether threading recognizes distant
homologies (i.e., a protein that is evolutionarily distant but still related to the
template protein) as opposed to pure fold recognition targets (where the two
proteins are evolutionarily unrelated, but have converged to the same fold). We
note that for sequences that are evolutionarily very distant, convergent versus
divergent evolution is very difficult to prove. Nevertheless, we still have the
problem of identifying two proteins as having the same fold, when only about
65% of their sequences share a common core, with the possibility that the
remainder of the fold differs significantly.

Next, we describe the features of existing threading algorithms that per-
formed well in CASP3 as well as in the intervening period prior to CASP4. In
the construction of a threading algorithm, one is faced with three choices: the
type of energy used to assess the probe sequence—template structure suitability,
the degree of detail used to describe interaction centers if multibody interactions
are included, and the conformational search scheme employed to find the
optimal sequence-structure alignment. In what follows, we address each of these
three features in turn.

The first step in constructing a threading algorithm involves the choice of the
potential used to describe the sequence-structure fitness and the potential for
scoring functions containing more than one term; weights must be established.
Among the kinds of energy terms that have been previously considered are the
burial status of residues, secondary structure propensities and/or predicted
secondary structure, additional penalty terms [33,34] (for example, those that
compensate for different protein lengths), and the inclusion of pair or higher-
order interactions between side chains. Contemporary algorithms often include
an evolutionary component related to the sequence similarity between the
template and the probe sequence [35]. Inclusion of such sequence-based terms
improves the ability of the algorithm to recognize the correct structural template
as well as the quality of the predicted alignment in the structural template [34,
36-39]. While such terms should not be needed in a structure-based approach,
in practice they are found to be quite important.

If pair interactions are included, then the interaction centers must be selected,
with common choices being the Cas [40,41], the CBs [42,43], the side-chain
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centers of mass, specially defined interaction centers [30,44], or any side-chain
atom [45]. This defines the protein representation. Then, one must again choose
the form of the interaction. Contact potentials [45,46], continuous distance-
dependent potentials [42,47], and interaction environments [48] are the choices
that have been made for the functional form of the pair energy.

Third, given an energy function, the optimal alignment between the probe
sequence and each structural template must be found. Dynamic programming
[49] is the best choice when local interaction schemes are used (e.g., when the
energy consists of mutation matrices and secondary structure propensities). The
situation when a nonlocal scoring function is used (e.g., pair interactions) is not
as straightforward. Here, the problem is to update the interactions in the
template structure to include the actual partners present in the probe sequence.
To retain speed (a crucial feature if entire genomes are to be scanned), some
workers employ dynamic programming with the “frozen approximation
(where the interaction partners or a set of local environmental preferences are
taken from the template protein in the first threading pass) [45,50]. Iterative
updating might follow this [45,48,51]. Still others employ double dynamic
programming, which updates a subset of interactions recognized as being the
most important in the first pass of the dynamic programming algorithm [42].
Other, more computationally intensive approaches evaluate the nonlocal scoring
function directly and search for the optimal probe—template alignment by Monte
Carlo [44] or branch-and-bound search strategies [30]. These have the advan-
tage that the correct energy is evaluated, but unfortunately they are very CPU-
intensive.

A problem with almost all threading search protocols is that they do not
allow the actual template structure to adjust to reflect the actual structural
modifications relative to the template structure that are actually present in the
native conformation of the probe. For example, Monte Carlo and branch-and-
bound strategies allow the partner from the probe sequence provided by the
current probe—template alignment to be used, but they do not allow the
template’s backbone structure to readjust to accommodate the probe sequence.
Such structural modifications should be quite important when the probe and
template structure are analogous. As a simple example, when the probe’s TYR
replaces a GLY in the template protein, then the contacts associated with the
amino acid at that position in the structure would be radically different. Yet, this
effect is not accounted for at all in threading. However, the potential ability to
recognize analogous structures is precisely the realm where threading should be
the most valuable as compared to pure sequence-based methods.

As indicated above, because threading uses structure, it should be superior to
sequence-based approaches that are one-dimensional and that assess the evolu-
tionary relationship between sequences and thereby, by inference, their struc-
tural relationship. In practice, however, many of the most successful
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fold-recognition approaches in CASP3 were pseudo one-dimensional and used
evolutionary information that contributed a significant fraction of the selectivity
[52] (typically implemented in the form of sequence profiles) plus predicted
secondary structure. In particular, the Jones [53] and the Koretke groups [39]
employed this type of approach, where secondary structure played an ancillary
role. The Nishikawa group [54] also employed a hierarchy of local scoring
functions to describe hydration, secondary structure, hydrogen bonding, and
side-chain packing.

There were other successful approaches in CASP3 where structure played a
more prominent role. For example, the Sippl group [55] employed burial energy
and the frozen approximation to evaluate pair interactions, but unlike many
others, they used a single sequence rather than sequence profiles or other
implementations of multiple sequence information. While the Sippl approach is
more structure-based, in order for dynamic programming to be used all inter-
actions were made pseudo one-dimensional. The Bryant group [56] was unique
in that they explicitly treated pair interactions within a structural core identified
from the evolutionary conservation of structure across each protein family. In
order for the core to be identified, a number of structures in the protein family
must be solved. While this approach embodies the original idea of threading,
they too employ a PSI-BLAST sequence-profile component. Indeed, they
conclude that the combination of both sequence profiles and contact potentials
improves the success rate relative to that when either of the terms is used alone.
Because the Bryant group employs a nonlocal scoring function that a priori
precludes dynamic programming, a Monte Carlo search procedure was used to
find the best sequence—structure fitness. Unfortunately, these calculations are
very CPU-intensive, thereby precluding the application of this approach on a
genomic scale unless there are very substantial computer resources.

The general consensus was that CASP3 saw some progress in threading, with
alignment quality improving from CASP2 [17,26,52], but, as pointed out by
Murzin [52], threading “performs better on distant homology recognition
targets than on ‘pure’ folding recognition targets. This bias probably resulted
from the implementation of ‘distant homology’ filters.” Thus, techniques that
extend the ability of threading techniques to address “pure” fold recognition
situations are still required. But, as Bryant and co-workers [35] have pointed
out, the best results are found when a sequence—profile term is combined with
threading potentials. These observations motivated the development of a new
threading algorithm, PROSPECTOR (PROtein Structure Predictor Employing
Combined Threading to Optimize Results) [57], where it was demonstrated that
pair interactions could significantly improve the sequence—structure specificity
over that when only sequence—profile terms are used. However, when multiple
scoring functions are combined, the resulting recognition ability is even larger.
In Section IV, we discuss the results of this new approach in some detail,
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because it is a key component of a recently developed unified approach to
protein structure prediction. But here we note that while considerable progress
has been made in threading by a number of workers, we will have to await the
results of CASP4 to assess the full extent of this progress as well as the
limitations of such approaches.

C. Ab Initio Protein Structure Prediction

Due to the time scale of the protein folding process, which takes from
milliseconds to minutes, at present, it is rather impractical to attempt protein
structure assembly using all-atom detailed models. Indeed, contemporary
computers allow classical molecular dynamics simulations of a protein
surrounded by an appropriate number of water molecules over a much shorter
period of time, corresponding to tens or hundreds of nanoseconds (depending on
protein size). This inability to routinely access longer time scales stimulated
numerous attempts to simplify the problem by reducing the number of explicitly
treated degrees of freedom of the polypeptide chain and by simplifying the model
of intra and intermolecular interactions. Such a reduction of the number of
degrees of freedom could be achieved by assuming a united-atom representation
of entire amino acid residues, by assuming a single-atom representation of the
main chain and a similar representation of the side groups. The internal degrees
of freedom of the side groups were frequently ignored in such models or were
treated in an approximate fashion. Such a simplified protein representation also
led to simplifications in the interaction scheme; for example, all reduced models
either ignored the effect of water or implicitly treated it.

The first attempts at the reduced modeling of protein folding were under-
taken about 25 years ago. In their classical work, Levitt and Warshel [58]
proposed a model that later inspired other analogous simplifications of protein
representation. They assumed two centers of interaction per residue, one
associated with the alpha carbon and the second with the center of mass of
the side group. There was a single degree of freedom per amino acid—the
rotation around the Co—Ca virtual bond—while the planar angle for the Ca
trace was assumed to be constant [59]. A knowledge-based potential controlled
the short-range interactions, while the interactions between the side groups were
in the form of a Lennard-Jones potential (partially corrected for the hydrophobic
effect). The sampling was done by means of classical molecular dynamics.
Simulations of a small protein bovine pancreatic trypsin inhibitor sometimes
produced structures resembling the native fold. The best structures had a root-
mean-square-deviation (RMSD), from native in the range of 6.5 A. Later, Kuntz
et al. [60,61], Hagler and Honig [62], and Wilson and Doniach [63] studied
somewhat similar continuous models. The results were of comparable quality;
some qualitative features of small protein folds were sometimes recovered in
their simulations.
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More recently, continuous-space models with more structural details were
proposed and investigated with respect to their ability to predict the native
conformation of a protein. Sun [64] examined models with an all-atom
representation of the main chain and a single united atom representation of
the side groups. Knowledge-based statistical potentials described the interac-
tions between the side groups. Interestingly, his study demonstrated that a
genetic algorithm could quite efficiently sample the conformational space of the
chain. For small peptides (mellitin, pancreatic polypeptide inhibitor, and
apamin), proper structures were predicted whose accuracy ranged from 1.66
Ato45A, depending on peptide size. A similar model, but with two united
atoms per side chain (for the larger amino acids), was studied by Wallqvist and
Ullner [65]. Results for pancreatic polypeptide inhibitor were slightly more
accurate, probably due to the better packing of the model side chains. Such
reduced continuous models were explored not only as a means of protein
structure prediction but also as a tool for investigating the general aspects of
protein folding dynamics and thermodynamics [66,67].

Pedersen and Moult [68] proposed a very interesting approach to protein
structure prediction. They assumed an all-heavy atom representation of the
protein with knowledge-based potentials describing intraprotein interactions. As
a sampling method, they used a combination of Monte Carlo (MC) and genetic
algorithms. The MC runs produced a set of structures for the starting population
of the genetic algorithm (GA). The crossover points were selected in the regions
of the largest structural flexibility, as detected during the MC runs. MC
simulations were also performed between crossover events in the GA scheme.
Low- to moderate-resolution protein fragments and the approximate folds of
small proteins have been successfully predicted by this method. Unfortunately,
it appears that the applicability of this method is limited to rather small proteins.

Even reduced models of proteins have a large number of conformational
degrees of freedom, and an effective sampling of the long-time processes for
larger proteins in a continuous space could be very difficult if not impossible. To
further simplify the problem, discrete or lattice models were proposed and
examined. Early studies of the lattice proteins focused not on structure
prediction but rather on understanding the fundamentals of protein folding
thermodynamics and some aspects of the folding dynamics. These works were
pioneered by Go et al. [69], and then followed by Krigbaum and Lin [70,71],
Skolnick and Kolinski [72—-84], Sikorski and Skolnick [85-88], Chan and Dill
[89-92], Dill et al. [93-96], Sali et al. [97,98], Shakhnovich et al. [99-105], and
others [106-111]. Since the subject of this chapter is protein structure prediction
and due to the existence of excellent reviews on the subject, we refrain from a
more detailed review of these works.

Probably the first attempt to predict the native structure of a protein in an
ab initio fashion within the framework of a lattice representation is due to
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Dashevskii [112]. A diamond lattice chain was used to approximate the poly-
peptide conformations. A chain growth algorithm executed the sampling of
conformational space. Compact structures resembling native folds of small
polypeptides were generated and identified by a simple force field. Next, Covell
investigated a simple cubic lattice model of real proteins [113]. The behavior
was controlled by the force field that consisted entirely of long-range interac-
tions that included a pairwise, knowledge-based potential, a surface term, and a
potential that corrects the local packing of the model chain. The quality of crude
folds generated by this method were not worse than the quality of folds obtained
using early continuous models. Covell and Jernigan [114] studied five small
globular proteins by the enumeration of all possible compact conformations of a
body-centered cubic lattice chain. They found that the closest to native
conformation could always be found within the top 2% of the lowest-energy
structures, as assessed by a knowledge-based interaction scheme.

Hinds and Levitt [115] proposed an interesting lattice model of proteins. In a
diamond lattice chain, a single lattice vertex represents several residues of a real
protein. An elaborate statistical potential was employed to mimic the mean
interactions between such defined protein segments. Frequently, correct folds of
low resolution were generated among the compact structures enforced by the
sampling scheme.

Kolinski and Skolnick [75-84,116-120] developed a series of high-coordi-
nation lattice models of globular proteins. Lattices of various resolution were
employed to mimic the conformation of the Ca trace of real proteins, from
three-dimensional “‘chess-knight”-type lattices to a high coordination lattice
with 90 lattice vectors to represent possible orientations of the Ca—Ca virtual
bonds. The models employed in the test structure predictions [118,121-123] had
additional interaction centers to represent the side groups. For each side chain, a
single-sphere, multiple rotamer representation was assumed. The force field of
each of these models contained several terms mimicking the short-range
interactions, explicitly cooperative hydrogen bonds, one body, and pairwise
and multibody long-range interactions with an implicit averaged effect of the
water molecules. It has been shown for several cases of small globular proteins
[118] and simple multimeric molecular assemblies [124—126] that such models
can generate correct low- to moderate-resolution (high-resolution in the case of
leucine zippers) folds during Monte Carlo simulated annealing computer
experiments.

Various recently developed methods for ab initio protein structure predic-
tions were tested during the CASP3 (Critical Assessment of Techniques for
Protein Structure Prediction) exercises, concluded in December 1998 in Asilo-
mar, California [127]. A number of new techniques have been developed before
that time, and a number of them constitute qualitative progress in ab initio
prediction with respect to the previous CASPs (held every two years).
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The ROSETTA method proposed by Baker and co-workers [128] is very
innovative. The method consists of several steps. First, a multiple sequence
alignment for a sequence of interest was prepared, and the secondary structure
prediction is made using the PHD server based on Rost and Sander’s [129-131]
secondary prediction technique. Secondary structure predictions and sequence
alignments were then used to extract the most plausible 3- to 9-residue
structural fragments (25 fragments for each segment of the query sequence)
from the structural database (according to the secondary structure prediction
and the sequence similarity). Then a Monte Carlo algorithm employing a
random insertion of fragments into the structure was used to build the three-
dimensional structure. The scoring function contained a hydrophobic burial
term, elements of electrostatics, a disulfide bond bias, and a sequence-indepen-
dent term that evaluates the packing of secondary structure elements. The top 25
(of 1200 generated) structures frequently contained the proper fold. The best
five structures exhibiting a single hydrophobic core were selected by ““visual
inspection.” This could be considered to be a flaw of the method (at this stage of
development). It would be difficult to do a manual evaluation of the predictions
on a massive scale. Nevertheless, for 18 targets, four predictions were globally
correct (with an RMSD range of 4-6 A for the native structure), and the
majority of their predictions contained significant fragments of structure that
were correct. It should be noted that a somewhat similar idea of protein structure
assembly using predefined fragments and the Monte Carlo method was also
pursued in the method developed by Jones [132] and tested during the CASP2
exercise.

A number of other groups made good predictions on a fraction of difficult ab
initio target proteins. Ortiz et al. [133] applied a high coordination lattice model
developed by Kolinski and Skolnick [122,123] to a number of small target
proteins. Monte Carlo simulated annealing calculations started from random
expanded conformations of the target proteins. The model assumed a 90-basis
vector representation of the alpha carbon trace that has a 1.2 A resolution due to
the spacing of the underlying cubic lattice grid. Off-lattice single-sphere side
chains could assume multiple orientations with respect to the backbone, thereby
mimicking the distribution of rotamers for particular amino acids. The generic
force field of the model consisted of knowledge-based potentials (derived from
the statistics of the regularities seen in known protein structures) for short-range
interactions, one body burial, pairwise and multibody surface long-range
interactions, and terms simulating the regularity and cooperativity of the
main-chain hydrogen bond network. Additionally, a weak bias toward predicted
secondary structure (obtained from multiple sequence alignments + secondary
structure prediction from PHD [129-131]) and weak theoretically predicted
long-range contact restraints from correlated mutation analysis were implemen-
ted in the interaction scheme [134—-138]. Contact prediction was based on the
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analysis of correlated mutations in sequences detected by multiple sequence
alignments. For some targets, the globally correct fold or large fragments of the
structure were correctly predicted. The method was capable of assembling low-
resolution novel folds. The level of success during the CASP3 exercise was on
the same level as reported for test predictions made for a series of small globular
proteins prior to CASP3 [137].

A similar methodology, but one based on a completely different protein
representation [139,140] (that are discussed in Sections V and VI), was
employed by Kolinski and co-workers with a similar fraction of correctly
predicted structures [133]. An important advantage of this method was its
computational speed and nicer scaling of computational cost against protein
chain length. Thus, the prediction of structures of larger proteins via ab initio
folding became possible.

Osguthorpe [141] employed a continuous model and molecular dynamics
simulated annealing. In spite of the use of a quite detailed model (main chain
united atoms and up to three united atoms per residue), its very flexible chain
geometry enabled efficient sampling. The potentials were derived from the
statistics of known protein structures. The method enabled us to obtain correct
predictions of substantial fractions of the structure of the attempted targets, and
for one of the difficult targets, the prediction resulting from this method was the
most accurate.

A very interesting hierarchical procedure has been used by Samudrala et al.
[142]. First, as previously proposed by Hinds and Levitt [143], all compact
conformations of test proteins were enumerated using the diamond lattice model
with multiple residues per chain unit. The best (according to the force field of
the lattice model) structures were then selected for further consideration.
Subsequently, the all-atom structures were reconstructed by fitting the predicted
secondary structure fragments to the lattice models. These structures were
subject to energy minimization using an all-atom force field and spatial
restraints of the lattice models. The optimized structures were scored by a
combination of all-atom and residue-based knowledge-based potentials [144].
Then, distance geometry [145] was used to generate a number of possible
“consensus”” models. The local geometry of predicted secondary structure was
again fitted to the resulting models. Finally, the resulting all-atom models were
optimized and rank-ordered according to energy. A number of qualitatively
correct protein fragments of significant size were correctly predicted. The
method appears to be very robust and (as pointed out by the authors) it was
likely that it could be further improved. Probably the major weakness of the
method in its present form is in the small fraction of good structures in the
initial pool of lattice models.

The method developed by Scheraga and co-workers [146] and used in
CASP3 is based on the global optimization of the potential energy of a united
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atom model [147]. Due to the force-field design of the model, which is based on
basic physical principles, this method is very close to a purely thermodynamic
approach. In this respect, it qualitatively differs from the previously outlined
methods. This off-lattice protein model has a united atom representation of the
alpha carbons, side groups, and peptide bond group, with fixed bond lengths and
variable bond angles. The interaction potentials between united atoms describe
the mean free energy of interactions and account in an implicit way for the
average solvent effect and cooperativity of the hydrogen bonds [148]. The
optimization is performed by means of the Conformational Space Annealing
technique [147], which subsequently narrows the search regions and finally
finds distinct families of low-energy conformations. The lowest-energy, reduced
model conformations are subsequently converted into the all-atom models and
optimized by electrostatically driven Monte Carlo simulations [149]. For a
fraction of CASP3 targets, this method produced exceptionally good predic-
tions. The method seems to perform much better on helical proteins than on 3 or
o/ proteins.

D. Choice of Sampling Scheme

In the past, different methods of sampling of protein model conformational space
have been employed with various degrees of success. Traditional molecular
dynamics can be used only in the case of continuous models. Other sampling
schemes, including a variety of Monte Carlo methods, genetic algorithms, and
combinations of these methods, could be applied to continuous as well as to the
discrete (including lattice representation) models.

In general, the choice of the simulation/optimization algorithm depends on
the aim of the studies. Different procedures are needed for the study of protein
dynamics and folding pathways from those procedures that are just targeted to
find the lowest-energy conformations of model polypeptides.

Monte Carlo procedures for chain molecules [150] use a wide spectrum of
strategies for conformational updating. In some algorithms, the updates are
global, as in the chain growth algorithms, whereas other algorithms employ
pivot moves of a large part of the model chain. In other algorithms, the trial
modifications are local, involving only a small portion of the chain or a small
distance displacement of a larger part of the chain. Sometimes, the local and
global modifications were combined in the same algorithm.

What is the relationship between the molecular dynamics simulations of a
continuous model and an isothermal Monte Carlo trajectory of an otherwise
similar discretized (or lattice) model? When only local (and small distance)
moves are applied in a properly controlled random (or rather pseudorandom)
scheme, the discrete models mimic the coarse-grained Brownian dynamics of
the chain. The Monte Carlo trajectory could be then interpreted as the numerical
solution to a stochastic equation of motion. Of course, the short-time dynamics
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(the time scale of a single elementary move in the Monte Carlo scheme) of the
discrete model has no physical meaning. However, the long-time dynamics
should be qualitatively correct, albeit with possible distortions of the time scale
of various dynamic events. Such an equivalence of the molecular dynamics and
stochastic dynamics of equivalent off-lattice and lattice-simplified protein
models has been demonstrated in the past by Rey and Skolnick [151], and by
Skolnick and Kolinski [152]. Recent studies have shown that Monte Carlo
folding pathways observed for high-coordination lattice models reproduce the
qualitative picture of folding dynamics seen in experiments [153]. Thus, it could
be rather safely assumed that Monte Carlo lattice dynamics can be used in
meaningful studies of protein dynamics, folding pathways, the mechanism of
multimeric protein assembly and other aspects of biopolymer dynamics. The
validity of protein dynamics studies using discrete models depends more on
the assumed accuracy of the protein representation and its force field than on the
particular sampling scheme. However, some oversimplified discrete models may
face serious ergodicity problems. This aspect of Monte Carlo simulations
always needs to be carefully examined.

Isothermal simulations (molecular dynamics or Monte Carlo) provide charac-
teristics of the system’s properties at a single temperature. Numerous simu-
lations at various temperatures (above and below the folding transition
temperature) are needed to gain some insight into the thermodynamics of the
folding process. There is a very serious problem associated with the extremely
slow relaxation of protein models in the dense globular state. The local barriers
in the energy landscape near the folded state are high and the sampling becomes
ineffective. Thus the computer studies employing straightforward MD or
canonical MC algorithms became prohibitively expensive. Essentially, the
same applies to various simulated annealing strategies. In all cases, the design
of sampling details could be very important. For example, properly designed
local moves can ‘“‘jump over” the high local energy barriers, thereby speeding
up the sampling of the entire conformational space.

Mulicanonical [154] (or entropy sampling Monte Carlo [108-110]) simul-
ations provide more complete data on folding thermodynamics [116,155-157].
Due to their differently defined transition probabilities in the sampling scheme,
energy barriers became much less important, but are substituted by entropic
barriers. From a single series of simulations, it is possible to obtain an estimation
of all thermodynamic functions (energy, free energy, and entropy) over a wide
range of temperatures. However, the cost of such computations grows rapidly
with the system size and its complexity.

A somewhat simpler, but by no means trivial, task is to find the lowest energy
state of the model polypeptide. Due to the thermodynamic hypothesis [158],
which postulates that native proteins are in the global minimum of the confor-
mational energy, the minimum energy state of a properly designed protein
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model should closely mimic the folded conformation. A variety of strategies
have been developed to solve this global minimum problem [159]. For a
relatively simple system, when the total energy could be expressed in the
analytical form, it is possible to solve the problem in a deterministic fashion
[160]. For more complex (i.e., realistic models of proteins) systems, existing
methods do not guarantee that the lowest energy conformation will be found.
The number of possible conformations and the rugged energy landscape make a
systematic search impractical.

Simulated annealing, ESMC [108,109,161], Monte Carlo with minimization
[162], genetic algorithms [64,163—165], and the combination of genetic algori-
thms with Monte Carlo sampling have been successfully used in the past to find
the near-native conformations of reduced models of small proteins [68].

Recently, a number of studies have focused on the comparison of various
Monte Carlo strategies for finding the global minimum of a protein model [166—
168]. Probably the most straightforward of these search strategies is simulated
annealing, where the system temperature is gradually lowered during the
simulations, starting from a relatively high temperature (above the folding
transition) and ending at a low temperature below the folding temperature
(usually well below due to thermal fluctuations). When on repeated runs starting
from different initial states, the same conformation is recovered; one may
assume that there is a good chance that the global minimum has indeed been
found. However, for difficult problems, simulated annealing runs (or at least a
substantial fraction of the runs) could be trapped in local energy minima. Some
of the local minima could be close to the model’s representation of the native
state, whereas others could correspond to conformations that are far away from
the properly folded state. There is no simple test of convergence in the
simulated annealing method. The efficiency of the simulated annealing method
could be considerably improved by a certain modification of transition accep-
tance criteria. For instance, one may perform local minimization before and
after the transition and then apply the Metropolis criterion to the locally lowest
energy pairs or conformations [16]. This way, the sampling procedure can avoid
visits to a large fraction of irrelevant local energy minima.

In contrast to simulated annealing, sampling techniques within the multi-
canonical ensemble have some internal convergence tests. In a version of this
technique, called entropy sampling Monte Carlo [108-110], the estimation of
the system’s entropy is built by a sampling process that is controlled by the
density of states of particular discretized levels of conformational energy. When
converged, all energy levels, including the lowest energy, should be sampled
with the same frequency. The ESMC method is “‘quasi-deterministic”’: The data
from the preceding simulations could be used to improve the accuracy in the
successive runs. In principle, when converged, ESMC should find the lowest
energy state. In practice, the energy spectrum near the lowest energy state could
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be associated with large entropy barriers, and the lowest energy state could be
not detected in spite of the apparent convergence—that is a constant density of
visited states in the remaining low-energy portion of the energy spectrum. The
rate of convergence of the ESMC method into the low-energy portion of
the energy landscape could be accelerated by the artificial deformation of the
entropy curve (artificial increase of the density of states) in the less important,
high-energy range [156].

The replica exchange Monte Carlo method [169] addresses the problem of
local minima in a different way. A number of copies of the model system are
simulated by means of a standard Metropolis scheme at various temperatures.
The temperature range covers temperatures from a temperature well above the
folding temperature down to a temperature below the folding transition tem-
perature. Occasionally, the replicas are randomly swapped according to a criter-
ion that depends on temperature difference and the energy difference. Thus, the
low-energy conformations at a higher temperature have a chance to be moved to
a lower temperature. As a result, the copies of the system sample not only the
conformational space but also move between various temperatures. At high
temperatures, the energy barriers could be surmounted easily; at low tempera-
tures the vicinities of energy landscape ‘““valleys” are efficiently sampled.

Comparison of the computational cost of finding the lowest energy state for a
simple protein-like copolymer model [168] shows that replica exchange Monte
Carlo (REMC) is much more efficient than simple Metropolis sampling with a
simulated annealing protocol in spite of the fact that multiple copies of the
system have to be simulated. The REMC method also finds the low-energy
conformations many times faster than the ESMC method. Thus, it appears that
the REMC method (or its variants) could be a method of choice for use in the ab
initio folding of reduced protein models, where finding the lowest energy state is
the main goal of computational experiment. Due to the very efficient sampling
by the REMC method, the samples at various temperatures could be used for the
“umbrella”-type estimation of the system entropy. That may extend the
applications of the REMC method into cost-efficient studies of protein folding
thermodynamics.

III. OVERVIEW OF THE UNIFIED FOLDING METHOD

When faced with the problem of predicting the tertiary structure of an unknown
sequence, one typically runs PSI-BLAST [170] over sequences from the
structures in the protein data bank [171]. Then, if this does not work, one runs
a threading program to see if it detects a significant probe—template match. Even
if either of these two cases is successful, for nontrivial cases often the alignments
of the probe sequence may be in error, and there may be gaps in the alignment of
the probe sequence to the template structure and/or sometimes there are long
unaligned regions. If both methods fail, then ab initio folding is the requisite
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structure prediction method. Thus, ideally one would like to have a unified
approach that automatically treats these possibilities. In what follows, we
describe one recently developed unified approach.

An overview of the idea is given in Fig. 1. First, one runs our threading
algorithm, PROSPECTOR [57], and establishes if there is a significant probe
sequence—template structure match. If so, the template is used as a soft bias in a
generalized comparative modeling approach that involves ab initio folding in
the vicinity of the template in a reduced protein model. Threading also provides
predicted secondary structure and tertiary contacts that are not restricted to the
template structure but can be extracted from other structures. This allows
the possibility of fold prediction in those regions absent in the alignment of
the probe sequence to the template structure. The advantage of this generalized
comparative modeling is that it can improve the initial alignment generated by
the threading algorithm and can provide a structure prediction for the unaligned
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Figure 1. Flow chart describing the unified approach to protein structure prediction. First,
threading is done. If a significant hit to a template is found, then generalized comparative modeling
in the vicinity of the template but supplemented by predicted secondary structure and contacts
possibly from other templates is done. If no significant probe sequence—template structure match is
found, then consensus contacts and sets of local distances in the top 20 scoring structures are
extracted and employed as restraints in an ab initio folding algorithm. Once a sufficient number of
simulations (typically 100) are done, the structures are clustered, full atomic models are built in the
refinement step; and then using a new, distant-dependent atomic pair potential [204], the top five
scoring structures are selected.
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regions of the probe sequence. On the other hand, if there is no significant match
to a template, then the predicted secondary structure and tertiary contacts
extracted from threading are passed to an ab initio folding algorithm that uses
the same reduced protein model. Then, for both generalized comparative
modeling and ab initio folding, the resulting structures are clustered, atomic
detail is added and the results are reported.

IV. THREADING RESULTS

A. First-Pass Threading

Recently, to build on the strengths and address the weaknesses of existing
threading approaches, we have developed a new threading algorithm called
PROSPECTOR (PROtein Structure Predictor Employing Combined Threading
to Optimize Results) [57], which runs sufficiently quickly so that entire genomes
can be scanned in the matter of several days on a standard workstation or PC.
During the course of the development of this program, we noticed that sequence
profiles generated from the BLOSUM 62 matrix [172] often generated
reasonable alignments between the probe and template sequences, even when
the alignment score was insignificant. This suggested that the first stage of a
hierarchical approach to threading should employ a sequence-profile [170,173,
174] (using a sequence profile plus a three-state secondary structure prediction
scheme gave worse results) to generate the initial probe sequence to template
structure alignment. We call this the “partly thawed” approximation. Then, the
resulting alignment of the probe sequence in the template structure is used to
calculate the partners for the evaluation of the pair interactions. Previously, in the
first iteration of the frozen approximation [45], the partners were taken from the
template structure. This worked well only when the environments in the probe
and template structures were similar, but more often than not the environments
were quite different. On successive iterations, in the so-called defrosted approxi-
mation [45] where the partners were taken from the previous alignment, there
were times when the resulting algorithm never converged. Here, after the first
initial alignment, quite good results were obtained.

The database for multiple sequence alignment (MSA) generation used in the
construction of the sequence profile combines Swissprot (http://www.expasy.ch/
sprot/) and the genome sequence database (ftp://kegg.genome.ad.jp/genomes/
genes). First, a profile for relatively closely related sequences, whose sequence
identity lies between 35% and 90%), is calculated. These sequences are selected
from the composite database by FASTA [175,176]. Then, pairwise sequence
alignments with the probe sequence are generated using CLUSTALW [177],
and a sequence profile is generated. We term this the “closely” related set of
alignments. To this set, we add additional sequences whose E value in FASTA is
less than 10, use CLUSTALW to generate pairwise alignments, and then generate
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a profile for distantly related sequences; these are termed the “distantly’” related
set of alignments. The goal here is to have two sequence profiles: one that is
more sensitive to more closely related sequences and another that can some-
times detect more distantly related sequences.

The first step of the threading protocol is to independently scan the structural
database of interest using each of the sequence-profiles with a Needleman—
Wunsch type of global alignment program [49]. Each of the two sequence pro-
files generates an alignment of the sequence in each of the template structures.
Each alignment is used to identify the partners in the probe sequence to be used
in the calculation of the pair interactions. Here we use our previously developed
side-chain contact potential averaged over all homologs which includes a
contribution from contacting fragments that have weak sequence similarity to
each member of the close set of probe sequences [178]. Furthermore, we also
use a pseudo energy term that describes the preferences for consecutive types of
amino acids to adopt a given type of secondary structure. This secondary struc-
ture propensity term is also averaged over homologs, and thus it results in a
secondary structure propensity profile. For each scoring function, close
(distant) sequence profile, and close (distant) sequence plus pair interactions
plus the secondary structure propensity profile, we scan the structural database
and output the top five scoring structures. Thus, a total of 20 possible structures
are output, along with their alignments.

B. Application to the Fischer Database

As a test case, we have focused on the Fischer database [179] that is comprised of
301 template structures and 68 probe sequences. We tried a variety of approaches
on this database before deciding on the aforementioned combination of para-
meters. We just summarize the results of these studies here. For a given scoring
function, the Needleman—Wunsch global alignment algorithm recognized more
correct probe—template pairs than did the Smith—Waterman [180] local alignment
algorithm. We also tried using the secondary structure profiles as the initial step
in generating the probe-template alignment for pair evaluation. Secondary
structure profiles alone only correctly recognize 18 cases in the first position,
whereas secondary structure profiles plus pair profiles correctly assign 29 cases.
This clear improvement shows the utility of pair potentials in this approach;
nevertheless, even 29 recognized pairs is rather poor performance. The major
improvement in fold recognition comes, as others have observed, when sequence
profiles are used. Even if the sequence profile is turned off completely but is used
to generate the alignment, the number of correctly recognized pairs increases to
35 correct probe—template pairs in the top position. In all cases, inclusion of pair
interactions improves the yield of correct probe—template matches.

We summarize our results using PROSPECTORI in Table I (the first pass of
PROSPECTOR). One of the best alternative methods is that of Gonnet, which
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TABLE 1
Summary of Threading Results on the Fischer Database for Different Scoring Functions®
Number of Number of Fischer Number of Fischer
Fischer Pairs in the Pairs in the Top Pairs in the
Method First Position 5(4) Positions Top 10(8) Positions
PROSPECTORI1

“Close” sequence profile 44 46(46) 49(47)
“Close” sequence profile plus 45 55(53) 56(55)

secondary structure plus pair profile
“Distant” sequence profile 46 53(51) 53(53)
“Distant” sequence 52 56(56) 59(57)

profile plus secondary

structure plus pair profile
Hierarchy of four scoring methods 59 63(62) 65(63)
Hierarchy of three scoring 58 62 64

functions (as above but

without the “distant”

sequence-profiles)

PROSPECTOR2

“Close” PROSPECTOR2. 48 51(51) 58(58)

sequence profile plus protein
specific pair and secondary
structure potentials profile
“Distant” sequence profile 51 59(59) 59(59)
plus protein specific pair
and secondary structure potentials
Hierarchy of four scoring methods 61 64(64) 65(65)
Hierarchy of three scoring functions 60 64 65
(as above but without the
“Distant” sequence profiles)

Other Methods

Simple Blast' 27 — —

PSI-BLAST restricted to the 24 37(36) 40(39)
Fischer database [170,182]

PSI-BLAST using extensive 41 46(46)_ 47(46)

sequence database and PSSM
constructured using IMPALA [247]

Original GKS threading program [45] 22 30 34
Hybrid threading [181] 52 57 60
Best UCLA benchmark results as of 52 (56) (58)

2/4/00 which is prediction of secondary
structure plus mult-gonnet [34]

“Results are reported in both the top 5(4) and top 10(8) positions [181], with the number in paren-
thesis given by the UCLA benchmark website (http://www.doembi.ucla.edu/people/fischer/BENCH/
table1.html).
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recognizes 52 proteins in the top position, the same number as the distant profile
plus pair interactions recognizes, but if a hierarchical method is used, then ours
is clearly the best, because 59 proteins are recognized in the top position. It is
clearly superior to all our early efforts as well as to the alternative hybrid
method [181], BLAST [1], and PSI-BLAST [170,182]. It might be argued that
because we use four scoring functions while the hybrid method uses only three,
this is not a strictly fair comparison. If we eliminate those results obtained from
the “distant” sequence profiles, then we obtain 58, 62, and 64 cases in the top 1,
5, and 10 position as compared to 52, 57, and 60, respectively, of Gonnet.

We then applied the method to a second Fischer benchmark comprised of 29
probe—template pairs and scanned each probe sequence against the original
Fischer structural database plus an additional 19 template structures (http://
www.doembi.ucla.edu/people/fischer/BENCH/tablepairs2.html). We have only
been able to find 27 of the 29 probe sequences and have reported our results
accordingly. PROSPECTORI1 places 17 correct pairs in the top position, and it
also places 21 and 22 in the top four and eight positions, respectively. This is the
same as the best reported results of 17 correctly identified pairs. However, in our
case one probe, ‘““stel,” which is supposed to be matched to 2azaA, selects 2pcy
in the top position, which has the same core as 2azaA. Then, we have 18, 19
(19), and 20 (20) correct matches in the top position and top five (four) and ten
(eight) positions, respectively. Thus, we have somewhat better results than
previous workers.

C. [Iterative Threading
1. General Idea

Just as PSI-BLAST [170] can increase its specificity by iteration, so can
threading. In fact, the set of structures selected by PROSPECTOR contains
additional information even beyond providing for a structural match. If we look
at the set of 20 structures that are selected as being the best scoring sequence—
template structure pairs, it is possible to extract additional information by
looking for consensus predictions. By way of illustration, we consider the
prediction of tertiary contacts. We focus on all contacts between residues that
are at least five residues apart, and we count the predicted contacts generated by
the aligned regions of structure. If there is a consensus (i.e., at least three contacts
are consistently predicted), then we employ this information in two ways: (1) to
enhance the specificity of threading by constructing a protein-specific, threading-
based pair potential and (2) as described in Section IV.F, to predict tertiary
contacts.

Using a previously derived formalism to convert contacts into a pair potential
[178], we derive a set of protein-specific potentials, where the contacts are not
only extracted from fragments with weak sequence similarity, but rather are
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generated by consensus contacts in the threaded structures. We use the
arithmetic average of this potential and the previous iteration’s pair potential
in the next iteration of threading. This case is termed the “close’” and “distant”
protein-specific potentials, and we call the threading method that employs these
terms PROSPECTOR2.

2. Application of PROSPECTOR? to the Fischer Database

The results from PROSPECTOR?2 are also reported in Table I. The “close’ case
now recognizes 48 proteins as compared to 45 in the top position. The “distant”
case recognizes 51 as compared to 52 previously, but the composite of the four
scoring functions now recognizes 61, 64, and 65 proteins in the top position as
compared to 59, 63, and 65 in the top, top five, and top ten positions, respectively,
for PROSPECTORR2. In all cases, the method improves when pair potentials are
used as compared to that when the corresponding sequence profile alone is used.
Similarly for in the second Fischer database, a total of 17, 20, and 20 proteins are
recognized in the top, top five, and top ten positions, respectively.

D. Genome-Scale Iterative Threading

In tests on genome scale threading, we found that the optimum number of
correctly recognized folds was found on the third iteration, PROSPECTOR3.
However, because of the computational cost of constructing pair potentials that
used local sequence fragment similarity, in our preliminary study and in the
interest of computational tractability we employed the best quasi-chemical pair
scale [183]. We term this PROSPECTORQUASI1-3. Furthermore, to deal with
the problem of very large proteins that may contain more than one domain, in
addition to threading the entire sequence, we also threaded 150 residue
fragments, starting at the first residue and then shifting by 25 residues until
the final fragment of possibly shorter length is scanned. This allows for the
detection of domains. For genome-scale threading, our structure library consists
of 2466 sequences constructed so that no pair of proteins has greater than 35%
sequence identity between them.

1. M. genitalium

This genome consists of 480 ORFs [184]. The first pass of PROSPECTOR,
PROSPECTORQUASII assigns 153 proteins to a structure in the protein data-
bank. The second pass, PROSPECTORQUASI2, assigns 182, and the third pass,
PROSPECTORQUASI3, assigns 194. This constitutes an assignment of 40% of
the genome. All assignments are made using an automated protocol based on the
score significance. Of these 194 structural predictions, all but three are correct. In
contrast, several years ago Fischer and Eisenberg [185] assigned the folds of 103
out of a total of 468 proteins by their threading algorithm. Gerstein has reported
identification of 211 proteins using PSI-BLAST [186,187]. Genethreader assigns
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200 proteins, but for 15 of them the assignment appears to be incorrect [188] as
assessed by a consensus of Gerstein’s results (http://bioinfo.mbb.yale.edu/
genome/MG/) and PROSPECTORQUASI3.

2. E. coli

The E. coli genome contains 4289 ORFs [189], for which PROSPECTOR-
QUASI3 assigns 1716 ORFs to structures in the Protein Data Bank. This
constitutes about 40% of the genome. Interestingly, this is the same percentage of
structures as was assigned in M. genitalium. In contrast, without the use of active
site filters, a total of 1250 confident structure predictions have been made, using a
sequence profile-based method [190].

E. Extension of PROSPECTOR to Include an
Orientation-Dependent Pair Potential

To enhance specificity, we next replaced the pair potential by one that is
orientation dependent and again perform three iterations of modified PRO-
SPECTOR, PROSPECTORIENT1-3. In applications to the Fischer database, we
found that, on average, PROSPECTORIENS3 generates the most accurate probe—
template alignments. The resulting set of structures constitutes the initial model
that will be subjected to the generalized comparative modeling described in
Section V.

F. Threading-Based Prediction of Tertiary Contacts

For a given iteration, the set of 20 top-scoring structures can also be used to
predict the tertiary contacts in the probe protein. Again we demand that a given
pair of contacts occurs in at least 25% of the top-scoring structures. For each
interaction of PROSPECTOR1-3 and PROSPECTORIENI1-3, we collect the
predicted contacts. The sets of contacts are then pooled.

Next we report our results for the set of 18 small proteins that constituted part
of the validation set for the MONSSTER ab initio folding algorithm [191]. Of
course, in this 18-protein test set, care is taken to remove all homologous
proteins to the probe sequence from our structural database, and all proteins
whose global root-mean-square deviations (RMSD) from native that are less
than 8.5 A are also excluded. On average, 28% of the contacts are correct, and
69% are correct within two residues. The correlated mutation analysis gives, on
average, 34% correct and 82% correct within £2 residues [191-193]. While the
threading-based method has somewhat lower accuracy, in contrast to the
correlated mutation analysis, it can be readily automated. Note that a contact-
prediction accuracy of about 70% correct within 2 residues is sufficient for the
successful assembly of the global fold using the MONSSTER ab initio structure
prediction program [191,193].
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TABLE II
Comparison of Contact Prediction Accuracy for CASP3 Targets for Threading and Correlated
Mutation Based Approaches”

Number of 6=0 =0 d=2 d=2 3=3 8=3

Name of Contacts From Mutation From Mutation  From Mutation
Protein Predicted Threading Analysis  Threading Analysis Threading Analysis
ljwe_ 16 0.19 0.14 0.5 0.44 0.5 0.65
leh2_ 22 0.68 0.14 0.91 0.73 0.91 0.98
Ibqv_ 19 0.05 0 0.53 0.13 0.53 0.5
1ck5B 22 0.14 0.02 0.59 0.4 0.55 0.51
Average 0.265 0.075 0.63 0.43 0.62 0.66

“% of contacts correct with 6 = 1m1 residues of a correctly predicted contact.

Turning to the results of CASP3, the correlated mutation analysis performed
considerably poorer, whereas threading-based contact prediction was better
[133]. In Table II, for four of these proteins, we show the predicted contact
results and compare them to correlated mutation analysis. Now, within 42
residues, 63% of the contacts are correct as predicted by the threading-based
method as compared to 43% from the correlated mutation analysis; this is a
qualitatively significant improvement. Within £3 residues, correlated mutation
analysis is slightly more accurate at 66% versus 62% from the threading-
based contact predictions. Here again, we excluded all analogous and homo-
logous proteins in the prediction of contacts from the analysis of consensus
contacts in the alignments generated by PROSPECTORI1-3 and PROSPEC-
TORORIEN1-3.

In Table III we present the set of predicted contact results for 28 proteins that
that will be subject to ab initio folding in Section VI. Again the requisite contact
prediction accuracy is achieved, with 31% of the contacts exactly predicted on
average and 73% correctly predicted on average within +2 residues. If we use
the threshold of 70% prediction accuracy as indicative that the folding simula-
tion will be successful, then, as shown in Section IV, 20 of these 28 proteins
should be foldable. The asterisk indicates those proteins that are foldable, as
assessed by the presence of a cluster of structures whose RMSD from native is
less than 6.5 A. In practice, of the 28 proteins, 13 are foldable. In addition,
another two whose contact prediction accuracy is less than 70% correct within
+2 residues are also foldable. Of course, the presence of reasonably accurate
contacts in and of themselves do not guarantee that the native topology will be
found; but in all cases of accurate contacts, if there are a sufficient number of
such contacts, then rather low RMSD structures are found in the pool; see
Table VI. Thus, this is a reasonably effective method of predicting acceptably
accurate tertiary contacts.
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TABLE III
Predicted Contact Accuracy from Threading for 28 Proteins Used in an Ab Initio Folding Test®

Number of Contacts

Name of Protein Predicted 5=0 5=1 5=20 5=3
1stfl 25 0.28 0.48 0.8 0.88
Ipoh_ 37 0.3 0.54 0.7* 0.7
Ipou_ 30 0.33 0.47 0.73%* 0.9
life_ 56 0.18 0.39 0.54 0.79
2azaA 47 0.38 0.53 0.79% 0.85
256bA 1 0 0 1 1
1tlk_ 53 0.81 0.94 1* 1
2pey_ 45 0.4 0.51 0.91%* 0.91
1t 52 0.19 0.35 0.60 0.79
2sarA 29 0.21 0.55 0.76 0.86
5fdl_ 23 0 0.17 0.30 0.52
lcewl 7 0.57 0.86 0.86 0.86
Letf_ 46 0.11 0.3 0.50 0.7
Imba_ 12 0.58 0.67 0.67 0.75
IshaA 41 0.34 0.66 0.85%* 0.88
Ithx_ 53 0.23 0.55 0.72% 0.83
Ishg_ 42 0.19 0.57 0.76 0.86
lubi_ 23 0.61 0.65 0.78 0.83
6pti_ 54 0.26 0.56 0.61 0.8
Icis_ 19 0.21 0.58 0.95 0.95
Ifas_ 22 0.27 0.59 0.77 0.86
1ftz_ 18 0.5 0.72 0.78%* 0.89
lc5a_ 20 0.1 0.3 0.4% 0.5
1fc2C 18 0.44 0.78 0.83* 1
lgpt_ 19 0.37 0.53 0.79 0.89
1hmdA 33 0.18 0.36 0.52% 0.73
lixa_ 14 0.43 0.64 0.79% 0.86
1lea_ 23 0.3 0.52 0.74% 0.96
Average 0.31 0.53 0.73 0.83

“3 = m is the number of contacts predicted within +m residues of a correctly predicted contact.
Correlated mutation analysis is from the CASP3 predictions of Ortiz et. al. [133].
b An asterisk indicates that this protein is foldable by ab initio (see Section VI).

V. GENERALIZED COMPARATIVE MODELING

Quality sequence-to-structure alignments generated by the threading procedure
depend on the level of sequence identity of the target and the template proteins.
In the cases of high sequence similarity, the protein folds are very similar, and
classical methods of comparative modeling [194,195] led to good-quality
models, frequently to models of similar quality to those obtained from the
refinement of the X-ray data or good NMR data. When the sequence similarity
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becomes low or nondetectable by sequence comparison methods, the template
proteins could be weakly homologous or just analogous—that is having similar
folds without any obvious evolutionary relations. As a consequence, the resulting
alignments are usually incomplete, with a substantial number of gaps and
insertions. A fraction of residues of the probe protein, which is sometimes
substantial, are not aligned to the template. Moreover, in the aligned parts of the
structure, the true structure of the probe protein may differ in many important
details from the structure resulting from the alignment to the template. Also, an
optimal structural alignment of the two structures could be quite far from the
threading-based alignment. Due to low sequence similarity, the threading
alignment might not be the optimal one.

Is it possible to build a good-quality model based on poor alignments?
Usually, it is not possible by means of contemporary procedures for comparative
modeling. When the template structure differs substantially from the probe
structure, the resulting models are typically much closer to the template
structure than to the true structure of the probe protein [196]. The models do
not move (in conformational space) in the direction of the probe structure, but
instead wander around the template structure. Moreover, in the cases of large
gaps in the alignment, the filled-in pieces of structure are sometimes completely
nonphysical (non-protein-like).

A recently proposed method is described in the next sections that attempt to
address this problem. The idea is to perform a kind of ab initio folding in the
vicinity of the template structure, with the model force field controlling details
of the folding. The template is used only to reduce the searchable portion of
conformational space and loosely defines the general topology of the probe
protein fold. The lattice model employed in these procedures has a limited
resolution and accuracy. Consequently, the obtained models, in general, cannot
achieve the accuracy of the experimental structures. As a result, it is rather
pointless to apply the proposed methodology to those cases when the alignments
are very good and complete. In such cases, the obtained structures would be
slightly worse than structures built by classical comparative modeling tools.
Such situations could be easily detected. In the remaining cases of low
homology (or just analogy of the folds), the method is robust in the sense
that it does not do any ‘“harm” to the initial threading-based models and, for a
substantial fraction of cases, leads to a qualitative improvement of the models.
The resulting structures move toward the true probe structure. Because this
approach bears some similarity to the comparative modeling, we call this
method of homology/analogy-based structure prediction generalized compara-
tive modeling (GeneComp, GC). The applied methodology is essentially the
same for the template-restrained folding as for purely ab initio folding, the
crossover is smooth, and there is no sharp boundary between threading-based
and ab initio approaches.
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A. Description of the Method

The method of generalized comparative modeling consists of several steps,
which sequentially transform the threading alignment into a full-atom model of
the probe protein. They are the following:

1. Build the threading alignment by a method described in the previous
sections.

2. Construct the starting lattice model using the partial template from the
threading as a structural scaffold.

3. Fold/optimize the lattice model using the threading alignment as a loosely
defined structural template.

4. Cluster the lattice folding results [197] and/or calculate a mean structure
by means of distance geometry (DG).

5. Refine the averaged model by Monte Carlo simulated annealing of an
intermediate resolution off-lattice continuous model.

6. Reconstruct atomic details.

B. The Lattice Model and Its Force Field

Before describing the particular steps of the comparative modeling methodology,
we outline the lattice model employed in all coarse-grained simulations (res-
trained or ab initio). Due to assumed reduced representation, we have named this
protein model the side-chain-only (SICHO) model [139,198]. Technical details
of the model design and its force field could be found elsewhere [199]. Here, an
outline is provided for the reader’s convenience. Most of the reduced models of
proteins assume a more or less explicitly reduced (all-complete) representation
of the main-chain backbone [200]. Frequently the alpha-carbon trace is used to
represent the main-chain conformations, and the side chains are neglected or
represented on various levels of simplification. When designing the present
model, two partially contradictory goals were taken into consideration. First, for
computational simplicity, there should just be a single degree of conformational
freedom per residue. Second, the model should enable straightforward imple-
mentation of as accurate and selective a force field as possible. Thus, we assumed
a single center of interactions that corresponds to the center of mass of the side
group and the alpha carbon atoms.

This side-chain representation has several advantages over the alpha-carbon
reduced representation. It is known that the sequence-specific interactions in
proteins are due to different character of the side chains. The interactions of the
main chain are rather generic. Then, having the coordinates of the side chains, it
is very easy to reconstruct the main chain-coordinates [200]. In contrast, the
reconstruction of the side-chain positions from the positions of the main chain is
not trivial [201] and requires extensive optimization. Additionally, the side
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chains are bigger and their size varies between amino acids. Thus, this side-
chain representation provides for better and more protein-like packing, with a
well-defined first coordination shell.

The model chain is restricted to an underlying simple cubic lattice with the
lattice spacing 1.45 A. The set of possible virtual bonds between consecutive
side chains is defined by a set of 646 lattice vectors. The shortest are of the
vector type |£3,0,0l and |£2,£2,£1| while the longest are of the type
|£5,£2,%11, expressed in lattice units. The distribution of the length of the
chain bond covers the majority (except for the wings) of the distribution seen
in proteins. The main excluded volume is simulated by a cluster of the 19
closest (to the center of the model side chain) points on the underlying cubic
lattice. This hard core of the chain is supplemented by soft-core repulsion
spheres for the larger amino acids. The size of these spheres is adjusted in such a
way that the folded model chains mimic average packing density of globular
proteins.

The force field of the model consists of three types of potentials. First are the
generic contributions that are independent of sequence and enforce the protein-
like chain stiffness and internal packing. Potentials of the second type are amino
acid-dependent and are used to reproduce the short-range interactions describ-
ing secondary structure propensities and orientation-dependent pair interactions.
The potentials of the third type (short-range potentials identical in form to that
described above and pairwise potentials [202]) are protein-dependent. Their
derivation involves multiple sequence alignments of the sequence of interest,
and the strength of interactions depends on the sequence similarity of protein
fragments.

C. Construction of the Starting Lattice Chain

The threading alignment was used as a template to construct the initial lattice
models. First, the aligned parts of the probe sequence were fitted to the template,
and pieces of the lattice chain were built by taking into consideration the
excluded volume of the model chain and the necessity of “‘stretching” the chain
between the gaps in the template. Then, starting from the shortest loop, the loops
and nonaligned chain ends were randomly inserted, again taking into account the
excluded volume. The proper geometry of the model chain (avoiding
nonphysical distances between side groups close along the chain) was preserved
during the chain-building procedure. For good alignments, this procedure
produces good models that need very little refinement. For extremely bad
alignments, it may fail; in these (very rare) cases a less restrictive algorithm that
allows for a larger deviation from the template could be used.

D. Restrained Lattice Folding: Optimization of the Initial Model

As discussed in Section II. D, the replica exchange Monte Carlo method appears
to be an efficient tool for searching the conformational space of reduced protein



A UNIFIED APPROACH TO THE PREDICTION OF PROTEIN STRUCTURE 159

models. This technique was therefore used for the restrained folding (or
refinement) of the probe proteins using the threading alignments as loosely
defined structural templates. In the beginning of the procedure, a number of
copies of the initial model are created and placed at various temperatures,
according to the REMC scheme. Two subsequent runs were performed. In the
first run, the range of temperatures is wider and shifted toward higher tem-
peratures to allow for the fast equilibration of all replicas. In the subsequent
longer run, the temperature range was smaller so that approximately half of the
replicas run below the folding temperature and half above. About 20 replicas
were usually simulated. This number of copies guarantees very fast and efficient
swapping of conformations between the various temperature levels (the
temperature increment between replicas has been assumed to be temperature-
independent—a linear temperature set). A somewhat larger number of replicas
may be required for fast convergence of larger proteins—250 residues or more.
The conformations seen at the lowest temperature of the REMC scheme rapidly
find the global energy minimum.

Three types of restraints are used to keep the sampling process in a broad
conformational neighborhood of the template conformation.

The first is the most straightforward. The aligned portion of the template
structure is placed at the center of the Monte Carlo working box. Then, at the
beginning of the simulation, the starting chains are superimposed on the
template. During the simulations, there are weak and somewhat ambiguous
attractions (linear with distance) between aligned (according to the threading
results) residues of the template and the moving probe chain. Thus during the
simulation, the initial alignments have the chance to be corrected or even
overridden by the model force field.

The set of tertiary contacts predicted by threading comprise the second set of
restraints. Because only about one-third are correct and a much larger fraction
are “almost” correct (i.e., they are shifted by 1 or £2 residues), the energy of
attraction between the two residues of the probe predicted to be in contact grows
linearly with the closest distance between the 42 segments of the model chain.
For very good alignments, the predicted contacts are, to a large extent, consistent
with the template structure, and this set of restraints is essentially redundant to
the restraints of the first type. For poorer alignments, a number of other locally
similar proteins may contribute to the contact prediction. Consequently, the
predicted contacts may significantly modify the resulting structures of the probe
with respect to the template; that is, an averaged effect of other weak
“templates’ is introduced.

The third set of restraints contains the probe distances predicted from the
fragment threading procedure. The distance restraints are limited to the pairs of
residues that are no farther away than the length of the largest secondary
structure element in the protein, which is equivalent to the estimated diameter
(from the number of residues) of the probe protein.
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E. Building the Average Models

For each probe protein, several independent simulations (10-20) were executed.
From each simulation in the second pass, 200 conformations were stored in a
constant interval of simulation time. The collected structures were averaged using
a two-step distance geometry (DG), procedure. After the first pass, those struc-
tures far away from the average were rejected, and the final DG conformation
was constructed from the remaining set of structures. Interestingly, DG averaging
always led to a lower RMSD from the native than the average RMSD for the
original set of conformations from the lattice simulations. Sometimes the
structures from DG were close to the best structures seen in the folding
simulations. Alternatively, our recently developed clustering procedure [197]
could be used to identify clusters of the lowest energy conformations. The
centroid of this cluster can then be treated as an averaged model. In the case of
generalized comparative modeling, the two approaches are essentially equiva-
lent. However, for ab initio folding, the clustering procedure is more powerful in
identifying the most plausible fold from the sometimes-diverse results of ab initio
lattice-folding simulations.

F. Reconstruction of Detailed Atomic Models

A very fast procedure was designed for reconstruction of the atomic details from
the known positions of the alpha carbons and the side chains. The only
constraints are the positions of the side-chain centers of mass. The initial local
alpha-carbon trace geometry that is approximately reconstructed from the
SICHO center-of-mass positions is not perfect. Therefore, the positions of alpha
carbons are optimized in the first step. This is done by a gradient-optimization
procedure using a very simple force field to improve the local geometry. At the
next stage, positions of backbone atoms are reconstructed according to the local
Ca trace conformation. In this step, the vector normal to the plane defined by
three consecutive alpha carbons is calculated. This vector is almost parallel to a
peptide bond plane. Thus, the remaining atoms of the peptide bond can be
positioned quite accurately. Next, positions of side chain atoms are rebuilt. The
conformations of the side chains are chosen from a representative database of
rotamers. For rigid amino acids (e.g., phenylalanine), there is a single
conformation in the database. There are up to 20 conformations for large,
flexible side chains (e.g., lysine). The conformation of the rotamer depends on (a)
the distance between the Co atom and the center of mass of the side chain and (b)
local chain conformation (i.e., Ca—Co—Co angle). Next, as a final stage of the
reconstruction procedure, the side chains are rotated around a virtual Co—
center-of-mass bond—to avoid excluded volume conflicts. This procedure
produces reasonable structures; however, the packing of side chains after all-
atom reconstruction is not optimized. This can be done by one of the standard
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procedures of molecular mechanics. For the data reported in this work, this step
was omitted.

G. Summary of Results on Fischer Database and Comparison with an
Earlier Version of Generalized Comparative Modeling

Fischer’s database of protein sequences and structures [34] is a standard
benchmark set for validation of threading approaches. As mentioned previously,
PROSPECTOR recognizes a majority of the related sequences correctly. Here,
we would like to test our generalized comparative modeling approach on the
same test set. Probably, Fischer’s database [34] provides a very good test for the
method. It contains closely related pairs of proteins (typical of homology
modeling cases), pairs of weakly related proteins, and some pairs of very weakly
similar ones. As suggested above, one may expect that for very closely
homologous pairs of proteins, our method is not recommended. Indeed, the
geometrical fidelity of the lattice model is in the range of 1 A, and the model
accuracy (due to deficiencies of the force field and to other factors associated
with the reduced character of the model) is probably significantly lower and
could be estimated to be about 2-3 A. Also, for very weakly analogous proteins,
where the template structure is far away from the probe structure and when the
alignment is sparse or when alignment covers only a small fraction of the probe
sequence, the method applied here will not provide good models: The restraints
from the template prohibit the requisite large-scale rearrangements of the
modeled structure. In most intermediate cases, one may expect a qualitative
improvement of the model with respect to the quality of the initial threading-
based models.

The above expectations are based on an earlier version of the generalized
homology modeling with lattice folding in the neighborhood of the template
structure [199]. The test results of the earlier approach are summarized in
Table IV where an automated modeling by Modeller [203] (using the threading
templates as starting points) is compared with lattice modeling refined by
Modeller. While the number of cases given in this table is small, one may
conclude that in a fraction of cases the improvement of the threading models is
of a qualitative nature. Also, as expected, already-good models (see the example
of laba_) do not improve. The threading procedure [181] used to generate the
initial alignments for these 12 pairs produced worse alignments on average than
the PROSPECTOR threading algorithm employed for the more massive test
involving Fischer’s database. To make the comparison more complete, for the
few pairs that were not properly detected by PROSPECTOR, the match (and
resulting alignments) was enforced, that is, the highest-scoring structural match
was not taken as a template, but rather the correct structural template was used.
The results for the proteins from Fischer’s database are compiled in Table V.
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TABLE IV
a-Carbon RMSD from Native for Models Built from the Initial Threading Alignments and Refined
by Lattice Simulations”

Probe/Template Proteins Threading + Modeller SICHO + Modeller
laba_/lego_ 4.43 4.86
1bbhA/2ccy_ 6.77 6.82
1cewl/1molA 14.96 14.38
lhom_/11fb_ 7.82 3.70
1stfl/ImolA 6.40 5.95
1tlk_/2rhe_ 7.23 4.17
256bA/1bbh_ 6.09 4.36
2azaA/lpaz_ 21.95 10.77
2pcy_/2azaA 6.56 441
2sarA/9rnt_ 10.28 7.83
3cd4_/2rhe_ 6.74 6.39
Sfd1_/2fxd_ 25.67 12.40

“The first column gives the PDB codes of the probe and template proteins detected by the threading
algorithm. The second column gives the results of automated comparative modeling using the
threading alignments as a template definition. The RMSD is given for the alpha-carbon trace. The
right column contains the results of SICHO modeling followed by a refinement using the Modeller
program. In the refinement stage the lattice models were used as a “template” for Modeller. Original
alignments are the same for both approaches compared in the table.

Similar to the earlier version [199] of the comparative homology modeling,
there are essentially three possibilities. First, when the threading model is very
good the lattice modeling does not improve the overall quality of the molecular
model; however, “no harm” to the quality of the model by application of the
entire methodology could be assumed. Then, there are cases of topologically
correct templates with moderate overall distance from the true probe structure.
Here, in most cases a qualitative improvement of the model quality could be
observed. Finally, for very bad initial models the final models are still not
satisfactory; the accuracy is too low to be sure that the overall fold has been
properly recovered. Some of these models can even contain topological errors.

A number of very interesting observations can be extracted from analysis of
the data compiled in Table V. The first is that the lowest energy criterion for
selection of the final model is not the best one. On the contrary, the distance
geometry averaging or clustering procedures almost always provide models of
better accuracy. The two methods (DG and clustering) lead to essentially the
same (on average) quality of molecular models and are quite consistent. At the
same time, it should be pointed out that the structure selection is not perfect.
Usually the structures generated by clustering or DG are worse than the best
structures observed in simulations. Definitely, better methods of selection (for
example, based on all-atom structures) of the best structures from the lattice
folding trajectories need to be developed.
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TABLE V
Compliation of Results of Generalized Comparative Modeling on Proteins from the Fischer
Database“
Alignment Aligned Best Lowest First
Target Template Coverage Part RMSD Energy DG  Cluster
laaj_ Ipaz_ 82.86 6.74 6.15 9.26 9.37 9.00
laba_ lego_ 90.81 6.52 3.55 5.90 4.75 3.95
laep_ 256bA 64.05 18.36 18.31 18.36 21.45 22.38
larb_ 4ptp_ 80.99 16.32 15.78 17.47 17.46 17.69
latnA latr_ 75.27 12.42 12.00 13.25 13.16 13.04
1bbhA 2ccyA 93.89 274 271 3.65 3.07 2.99
1bbtl 2plvl 93.59 12.55 9.57 10.81 10.70 10.80
1bgeB lgmfA 66.67 7.89 4.93 6.27 5.45 5.71
Ic2rA lycc_ 85.35 435 431 5.75 5.34 5.30
IcauB lcauA 89.63 5.18 4.04 5.69 5.45 5.41
Icewl ImolA 70.37 4.85 4.10 8.00 7.79 7.83
IchrA 2mnr_ 92.97 3.50 3.77 5.35 4.90 4.78
lcid_ 2rhe_ 55.93 19.76 14.05 18.88 18.44 16.97
lepcL IcolA 81.40 15.71 12.30 13.43 13.58 13.17
lerl_ lede_ 47.75 20.01 21.35 2421 24.09 24.93
1dsbA 2trxA 51.65 12.46 11.58 15.94 16.47 15.30
1dxtB lhbg_ 92.52 2.74 291 3.54 3.01 3.08
leaf_ 4cla_ 78.13 13.25 9.27 10.09 10.32 10.10
1fclA 2fb4H 96.62 12.99 2.63 3.21 13.12 2.74
1fxiA lubq_ 61.46 10.94 8.53 10.28 10.18 10.14
lgal_ 3cox_ 74.01 15.03 14.03 17.74 17.80 17.38
1gky_ 3adk_ 85.48 6.68 6.13 8.75 6.36 8.87
1gplA 2trxA 54.89 11.48 9.08 14.75 13.74 15.06
lhip_ 2hipA 80.00 3.55 3.92 4.86 4.26 4.13
Thom_ 11fb_ 97.73 1.62 1.50 2.30 1.57 1.70
1hrhA Irnh_ 91.30 7.15 4.90 5.50 5.07 5.07
lisuA 2hipA 95.16 6.06 3.20 4.35 5.07 4.08
11gaA 2cyp_ 77.60 12.45 12.44 17.14 15.59 16.53
11tsD IbovA 59.00 9.99 8.11 12.16 10.21 9.47
Imdc_ lifc_ 96.97 2.62 2.55 3.12 2.66 2.65
1mioC IminB 88.38 14.48 14.05 15.19 14.71 14.94
Imup_ Irbp_ 93.63 5.56 4.14 4.89 4.38 451
Inpx_ 3grs_ 92.17 14.56 13.61 14.15 14.12 14.09
lonc_ Trsa_ 98.08 3.81 3.08 3.53 3.51 3.29
losa_ 4epv_ 70.27 16.84 16.56 18.02 17.90 17.81
1pfc_ 3hlaB 89.22 3.84 3.81 4.69 4.28 4.46
Ircb_ 1gmfA 71.32 6.28 391 5.51 6.09 425
IsacA layh_ 76.47 18.13 16.89 18.52 18.81 18.93
1stfI 1molA 69.47 8.46 4.97 7.38 7.07 8.11
1tahA Itca_ 56.92 19.00 18.90 21.60 21.51 20.96
Iten_ 3hhrB 93.33 5.60 3.14 3.98 3.62 3.45
Itie_ Afgf 66.87 7.88 7.88 8.80 8.60 8.94
1tlk_ 2rhe_ 95.83 4.61 2.35 3.49 3.42 3.03
2afnA laozA 95.83 25.27 22.60 23.68 25.05 23.50
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TABLE V  (Continued)

Alignment Aligned Best Lowest First
Target Template Coverage Part RMSD Energy DG  Cluster
2ak3A Igky_ 78.26 15.63 14.65 15.51 15.46 15.27
2azaA Ipaz_ 62.79 7.60 6.33 8.40 7.87 7.30
2cmd_ 6ldh_ 95.83 5.02 422 4.74 4.44 4.49
2fbjL 8tabB 94.37 10.30 7.04 7.72 8.78 8.37
2gbp_ 2liv_ 80.94 10.72 9.50 10.66 10.07 10.35
2hhmA 1fbpA 71.69 15.26 15.99 18.30 17.57 17.83
2hpdA 2cpp_ 85.33 6.44 5.41 6.75 5.83 5.81
2mnr_ 4enl_ 95.52 14.92 13.55 14.07 14.28 14.27
2mtaC lycc_ 65.31 14.35 14.04 16.01 16.49 16.51
2omf_ 2por_ 82.06 23.61 21.82 23.51 23.45 24.17
2pia_ Ifnr_ 79.44 15.72 15.64 17.29 16.77 18.24
2pna_ IshaA 46.55 10.69 7.27 11.31 8.92 10.89
2sarA 9rnt_ 91.67 6.36 4.88 6.11 5.76 5.84
2sas_ 2scpA 86.49 6.45 5.51 6.42 6.11 5.95
2sga_ 4ptp_ 98.82 17.74 9.78 11.87 10.49 11.94
2sim_ InsbA 66.14 14.34 16.52 19.79 18.57 17.47
2snv_ 4ptp_ 84.11 14.28 12.78 14.07 13.84 13.31
3cdd_ 2rhe_ 92.78 7.02 5.98 7.40 7.15 7.05
3chy_ 4fxn_ 86.72 6.07 3.58 491 4.36 4.59
3hlaB 2rhe_ 83.15 10.30 4.72 9.76 8.63 8.62
3rubL 6xia_ 74.13 2091 22.26 24.19 24.15 23.71
4sbvA 2tbvA 97.49 18.68 17.73 18.47 18.53 18.97
S5fd1_ 2fxb_ 55.66 10.95 10.70 12.13 11.99 11.61
8ilb_ Afgt 73.97 11.31 10.77 12.58 12.88 12.65

“The first two columns contain the PDB codes of the target and template proteins, respectively. The
percentage of a target sequence aligned to a template is given in column 3. The fourth column
provides RMSD (all values for alpha-carbon traces) for the aligned part of the template from “true”
structure of the target—a measure of the alignment quality. The fifth column gives the best RMSD
for the model chains observed in a set of sparely written trajectories (a few hundred photographs).
The sixth column gives the RMSD for the lowest energy (according to the SICHO force field)
conformation observed in the trajectories. The RMSD values in the two last columns correspond to
the average structures obtained via distance geometry and clustering algorithm. The two methods of
averaging are almost equivalent, with slightly better performance of the DG approach. In number of
cases, the final models for the entire structure are better (as measured by RMSD from the
crystallographic structure) than the initial threading models—that is the aligned part.

H. Comparison to Modeller

Recently, several tools were developed for the fast building of all-atom models of
proteins by various means of comparative modeling. Probably, the most efficient
is Modeller, developed by Sali and Blundel [195]. Modeller allows for the high-
throughput modeling of protein structures on a genomic scale. The method
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proposed here is more complex and more computationally demanding; however,
it is still feasible in large-scale applications. The key question is, Are the results
worth the increased computational cost? To answer this question, we compared
various models for the Fischer database proteins [34] in Table VI, where the
results of generalized comparative modeling described in this contribution are
compared with models generated by Modeller. Both procedures started from
exactly the same templates and the same alignments generated by PROSPEC-
TOR. If we consider all models, then GeneComp performs better than Modeller
in 53 cases, worse in 13, and the same in two cases. If only templates whose
RMSD is less than 10 A are considered, then GeneComp performs better in 29
cases, Modeller performs better in five cases, and they perform the same in one
case. However, in the latter, the two structures differ by a small amount. In many
cases of very good (or good) templates, the two methods generate models of
similar quality. The situation changes when the homology becomes weaker and
when, consequently, the threading models become more distant from the probe
structure. In these cases, the models generated by GeneComp are almost always
of noticeably better accuracy. We can most likely ignore the cases when both
methods lead to very bad models. It is safe to say that there is usually no
difference between models 12 and 14 A from the true probe structure. The utility
of such models for structural genomics is at least problematic (of course, it
depends somewhat on protein size—a very large protein may still be of a correct
overall topology with this high RMSD). However, there is quite a difference
between a model that is 4 A from the true structure and a 6 A model (or even
more between a 6 A model and 10 A model). As can easily be seen from the data
compiled in Table VI, in the range of 4-8 A, the GeneComp models are in most
cases significantly more accurate than the models generated by Modeller. The
typical difference is 1-2 A; however, in a few cases it is as much as 4-5 A.
Interestingly, the models generated by GeneComp frequently have a lower
RMSD for the entire structure than the RMSD of the original aligned fragments.
These are the cases when a qualitative improvement with respect to simple
comparative modeling was observed. The lattice simulations improve entire
structures. Thus, on average the proposed method leads to qualitatively better
molecular models with pronounced consequences for structure-based protein
function prediction and other aspects of proteomics.

VI. AB INITIO FOLDING

A. Description of the Method

The method for ab initio folding of small globular proteins employs the same
modeling tools as in generalized comparative modeling. There are, how-
ever, some differences. Of course, now there is no template to restrict the
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TABLE VI
Comparison of Generalized Comparative Modeling with Automated Modeling via Modeller”
Target GeneComp + DG Modeller GeneComp + DG + Modeller
laaj_ 9.37 10.13 9.30
laba_ 475 6.66 473
laep_ 21.45 21.56 21.32
larb_ 17.46 18.56 17.35
latnA 13.16 15.61 13.15
1bbhA 3.07 3.02 3.03
1bbtl 10.70 10.21 10.68
1bgeB 5.45 10.34 5.42
1c2rA 5.34 5.84 5.30
IcauB 5.45 5.93 5.93
Icewl 7.79 8.47 7.76
IchrA 4.90 4.57 491
lcid_ 18.44 20.19 18.44
lepcL 13.58 15.62 13.52
lerl_ 24.09 25.89 23.98
1dsbA 16.47 16.37 16.45
1dxtB 3.01 3.05 3.00
leaf_ 10.32 10.82 10.18
1fc1A 13.12 15.02 12.48
1fxiA 10.18 11.27 10.11
1gal_ 17.80 18.86 17.66
lgky_ 6.36 11.82 6.45
lgplA 13.74 15.22 13.66
1hip_ 4.26 4.06 4.09
lhom_ 1.57 1.73 1.57
1hrhA 5.07 6.95 5.05
lisuA 5.07 5.84 5.20
11gaA 15.59 14.72 15.68
11tsD 10.21 10.88 10.22
Imdc_ 2.66 2.66 2.71
ImioC 14.71 16.78 14.68
Imup_ 4.38 4.93 4.40
Inpx_ 14.12 14.48 14.05
lonc_ 3.51 5.14 3.50
losa_ 17.90 16.89 17.91
1pfc_ 4.28 4.39 4.49

“The same alignments (see Table V) were used as starting templates for GeneComp (RMSD for the
DG averaged models) and Modeller. The last column provides RMSD for the models generated by
Modeller starting from the complete models obtained by GeneComp. In almost all cases the models
generated by GeneComp are more accurate than the models generated by Modeller, and in 15-20
cases the improvement is of a qualitative nature (see the text for explanation). Refinement of the
GeneComp models by Modeller (compare columns 2 and 4) leads to marginal changes of the
molecular models, indicating the consistency of the GeneComp models, with local atomic details of
the PDB structures.
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conformational search. The generic and protein-independent components of the
force field for the lattice models are the same, and the protein-specific potentials
have a similar form [202]. The difference is that in ab initio folding they are less
specific. For the test purposes, all homologous (and analogous) proteins have
been excised from the structural database used to derive the potentials. As a
result, the number and accuracy of the predicted contacts are lower, as is the
accuracy of the short-range terms. As before, a conservative prediction of
the regular elements of secondary structure was used to bias the short-range
interactions. Thus the requirements for the folding simulations are much higher.
A much larger number of independent simulations were executed to check the
reproducibility of the results and to provide a representative sample for the
clustering procedure and final fold selection.

The selection of the initial conformations for the REMC simulations requires
some comment. In principle, random expanded conformations could be used.
However, this slows down the convergence of the process. For this reason, a
different strategy was adopted. Having a prediction of secondary structure,
gapless threading of structures of comparable size is performed using the
matching fractions of the predicted secondary structure to the actual secondary
structure of the templates as a scoring function. Of course, all homologous and
analogous proteins were removed from the pool. Fifty lattice chains were built
using the 50 best scoring structures as templates. While these starting structures
are different from the probe fold, they may have the proper element(s) of
secondary structure that may serve as a fast nucleation site for the folding
process. In the preliminary simulation runs, 50 replicas were used. The second
iterations used the top 20 (20 lowest-energy replicas) as the input pool. The
simulation results from the last iteration of the lattice-folding algorithm were
subject to a clustering procedure [197] that was also used to make the final fold
selection.

B. Results of Ab Initio Folding on 28 Test Proteins

Sequences of 28 globular proteins were selected as the test set for the ab initio
folding protocol. The set is representative of single-domain small proteins. It
contains alpha proteins with o/f3-, & + -, and B-type folds. In about 50% of the
cases, low-resolution folds of correct topology were obtained as one of a number
of clusters. The results are compiled in Table VII that also contains the RMSD
for the best structures observed during simulations at the lowest temperature
replica of the system as well as the RMSD of all structures that cluster [197]. It is
clear that simulations generate a small subset of very good structures for the
majority (22 of 28) of the tested proteins. Unfortunately, the fold selection
procedure rarely selects structures close to the very best ones. The discrepancy is
more drastic than in the case of template-restricted folding. It could be proven
rigorously that to obtain a 3 A structure by random in a set of trajectories
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TABLE VII

Summary of Ab Initio Folding Results
Protein Best Lowest-Energy RMSD of Centroid
Name* RMSD RMSD of Each Cluster
1c5a_ 4.86 10.87 11.20 11.63 5.70 8.75
Icewl 6.71 10.08 8.77 13.84 15.29 12.00 11.66
leis_ 4.98 11.52 10.41 10.34 9.36 9.67 10.43 6.81 7.25
letf_ 7.10 11.06 10.72 11.40 11.54
1fas_ 5.30 8.55 9.30 7.47 11.68 10.15 11.89 6.36 12.87
1fc2C 291 7.34 7.21 7.61 3.35
1ftz_ 2.65 8.79 8.78 6.52 3.05 7.11 6.50 8.18
lgpt_ 4.92 7.45 7.58 8.66 9.70 9.59
1hmdA 5.02 10.57 10.36 12.95 14.20 12.52 5.51
life_ 6.53 9.23 11.57 9.24 13.64 11.71 12.12 11.41
lixa_ 4.02 6.62 6.36 6.92 9.28 10.65 10.53
1lea_ 3.23 11.85 10.93 9.95 8.32 8.44 5.82
Imba_ 9.61 12.72 12.63 15.28 12.01 15.44 13.51
1poh_ 2.90 12.63 12.76 11.91 3.87
1pou_ 2.70 4.98 3.959.88 9.93 10.93 11.61
1shaA 3.94 13.07 13.82 12.08 12.75 9.00 10.49 6.00
Ishg_ 4.40 9.00 8.99 9.06
Lstfl 5.47 10.19 8.06 12.86 11.17 13.68 11.99 16.74
1tfi_ 7.62 9.48 10.15 8.88 10.56 10.20
1thx_ 297 12.72 12.83 11.27 3.89 13.04 14.40
1tlk_ 3.13 7.38 11.02 6.35
lubi_ 3.05 10.98 10.71 10.51 11.57 12.07 8.13 10.54
256bA 3.09 3.73 3.52 8.38 14.88 10.01 14.91 12.13
2azaA 3.83 7.20 5.75 12.86 13.01 14.00 13.30 13.30
2pcey_ 3.72 7.75 5.56 7.12 11.39 13.46 13.19
2sarA 8.45 13.11 10.71 11.92 12.18 12.71 14.10 13.93 14.10 13.79
Sfdl_ 8.67 12.53 12.20 10.84 12.48 10.94 14.35 14.26
6pti_ 5.36 7.36 6.68 10.81 10.99 10.14 9.14

“Bold indicates that this protein is foldable; that is, one of the clusters has an average RMSD from
native less than 6.5 A.

containing a few thousand photographs is practically impossible. Thus, the
model force field and the sampling scheme do a reasonably good job in sampling
protein-like regions of conformational space, including the neighborhood of the
native state. At the same time, the force field lacks a sufficient discriminatory
ability to select the closest-to-native fold generated from a large number of
competing protein-like structures. These competing structures have elements of
native topology with misfolded fragments of structure; sometimes they are
mirror images of native-like folds.

Overall, though, if one defines a successful simulation as one with a native
topology whose backbone RMSD is less than 6.5 A, then in 15/28 cases (i.e.,
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about 54% of the cases) the simulations are successful. Again, a different, more
efficient fold selection method needs to be developed; such efforts are currently
underway. An alternative recently being explored is the method of inserting
atomic detail and then scoring the structures using a recently developed
distance-dependent potential of mean force [204]. If this is done, then 1stfT is
not foldable, but 1fas_,1gpt_,Imba_ are foldable, giving a total of 17 (i.e., 61%)
of the test set proteins successfully folded.

VII. COMPATIBILITY OF REDUCED AND ATOMIC MODELS

A. Reproducibility of Structural Details

Reduced models have a long history. Some reproduce just the overall fold of
globular proteins, whereas other (more complex) models maintain some details
of protein structure. The SICHO model, based on just a single center of
interaction per residue, appears at first glance to be a drastic simplification.
However, due to its flexibility, the model is more accurate than it may appear at
first. First of all, the mesh size of the underlying cubic lattice is equal to 1.45 A,
which means that a simple fit of the lattice model to a detailed PDB [171]
structure has an average accuracy of 0.7-0.8 A with respect to the side-chain
centers of mass. Due to the coarse-grained character of the potentials, correctly
folded (say, by a pure ab initio approach) structures are of somewhat lower
accuracy. Very small proteins or peptides could be folded to 1.5 A102.0 A from
the native structure. The accuracy of larger proteins decreases due to an
accumulation of errors across the structure. For 100-residue proteins, properly
folded structures have an RMSD in the range of 3.5-6.5 A from native. When
looking for elements of secondary structure as helices and B-hairpins, the
accuracy is of the same range as for very small proteins or slightly better and
ranges between 1.0 and 2.0 A. The above numbers are given for the side-chain
centers of mass. Our model employs a very crude and simple reconstruction of
the a-carbon coordinates as a simple combination (with the coefficients extracted
from a statistical analysis of the structural database) of the positions of three
consecutive side-chain centers. This estimation is contaminated by a small
systematic error (there is no correction from deviation of the a-carbon from the
plane defined by three corresponding side-chain united atoms) and by some
statistical error related to errors in the side-chain positions. Compensating for
this is a statistical reduction of the absolute error of Cas because the main-chain
units are “inside’ the secondary structure elements defined by the side-chain
centers of mass. Consequently, errors in the side-chain positions translate into a
slightly smaller error in the positions of the o-carbons. As a result, the accuracy
of the crude a-carbon trace is the same or slightly better than the accuracy of the
explicit virtual chain of the side groups.
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The level of local (and global) accuracy of the model is sufficient to allow for
quite accurate reproductions of the most important structural details. First, the
contact maps of the side chains extracted from the model are very similar to
the contact maps calculated from the crystallographic structures, assuming a
4.5 A cutoff for contacts between heavy atoms of the side chains (side groups
are considered to be in contact when any pair of their heavy atoms are at a
distance smaller than the above cutoff). The overlap with native for properly
folded structures is 85-90%. There are some excess contacts in the lattice
models, and some contacts are missed due to the spherical shape of the model
side chains and the statistical character of the cutoff distances for the model
residues. More interestingly, the model hydrogen bond network (properly
calculated from the estimated coordinates of alpha carbons) of the main chain
coincides with similar (85-90%) accuracy with the main-chain hydrogen bonds
assigned by the DSSP procedure [205] to the corresponding native structures.
Bifurcated hydrogen bonds (the weaker ones) are ignored in this comparison,
because the model does not allow for H-bond bifurcation. As in real proteins,
the model structures have very regular networks of hydrogen bonds. Helices,
except for their ends, exhibit a regular pattern of two hydrogen bonds per
residue. The same is observed for internal B-strands in B-sheets. The edge
strands usually have a single model H-bond per residue. Sometimes, even
patterns characteristic of B-bulges are reproduced with high fidelity. The model
network of H-bonds is explicitly cooperative. This leads to protein-like
cooperative folding. Interestingly, misfolded structures also look very protein-
like unless they violate some “rules” of protein folding—for example, the
handedness of the B—o—f connections [206].

The protein-like geometry of such a simple model is enforced by the proper
design of the force field that has two distinct types of components: sequence-
dependent (or even protein-specific), which drive folding toward a specific fold,
and generic, which strongly bias the model chain toward the average protein-
like local conformational stiffness. The force field also has packing preferences.
This way a vast majority of the irrelevant portion of the conformational space of
the high coordination lattice (containing 646 possible side-chain—side-chain
virtual bonds) model is efficiently avoided during the sampling process.

B. Reconstruction of Atomic Details

The lattice SICHO model exhibits good compatibility with detailed all-atom
models. Projection of the all-atom structures onto the lattice model is trivial, and
the accuracy of the projection is about 0.8 A RMSD for the side-chain centers of
mass or for the coarse reconstruction of all the o-carbon positions. More
interesting, and certainly more challenging, is the reconstruction of the atomic
details from the lattice models. A couple of similar procedures have recently
been developed for this purpose [200]. In one, the crude estimated coordinates of
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the o-carbons are refined using the distance restraints typical for proteins and
simple potentials for optimization of the backbone geometry. In the next stage,
the remaining atoms of the main chain are reconstructed using a library of
backbone fragments. Finally, a library of side-chain rotamers is employed to
build the side-group conformations that are the most consistent with the lattice
model. The side-group geometry and packing can be optimized relatively easily
because the gross overlaps are by definition excluded by placing the rotamers as
close as possible to the lattice chain (which itself exhibits a reasonable
approximation of the packing in a protein). When starting from the lattice fit
to the crystallographic structure, this reconstruction process returns a full atom
structure that differs on average by about 1 A RMSD from the original one.
Further minimization by the CHARMM force field [207] leads to a small
improvement of the model. The same accuracy of all-atom reconstruction is
expected for all conformations generated during the lattice simulations.

A somewhat different procedure that has an advantage of computational
speed leads to structures that are about 1.5 A from the original all-atom model.
Thus, there is the possibility of multiscale simulations of protein systems. The
computational speed of the SICHO model enables simulations that correspond
to the time-scales characteristic of real protein folding. At specific interesting
points of MC trajectory, one can perform all-atom reconstruction, followed by
detailed MD simulations. Another possibility that is now being explored is to
use the all-atom models (derived from lattice structures) as a means of selecting
the “best,” possibly closest to native, structures generated in lattice folding
simulations by the SICHO model.

C. Feasibility of Structural Refinement

As discussed in other parts of this chapter (see Sections VIII and IX), low-
resolution models could be successfully employed in the functional annotation of
new proteins and even for docking ligands. Of course, the more accurate the
model, the wider its applications. The SICHO model is of limited resolution.
Typical, well-folded structures have an RMSD that is 2 to 6.5 A from native. Is it
possible to improve such models using more a detailed representation and a more
exact force field? Is it possible to include the solvent successfully in an explicit
way at this stage? It appears that at least for moderately small proteins with a
reasonable starting lattice structure, sometimes the models can be refined to
a resolution close to that of experimental structures. Successful refinement of a
small protein, CMTI, from a low-resolution MONSSTER folding algorithm [137]
to a structure close to the experimental one was recently done by Simmerling
et al. [208]. Earlier, for similar low-resolution lattice models, several structures
of leucine zippers were also successfully refined to experimental resolution
[124,125]. These studies were subsequently extended using ESMC to provide a
treatment of the GCN4 leucine zipper folding thermodynamics as well as the
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prediction of the native state [209], and it was subsequently shown that the
CHARMM force field, when supplemented by a generalized Born/surface area
treatment, is highly correlated with the lattice-based force field [210]. These
studies are extremely encouraging, although it is now unclear how soon the gap
between low-resolution lattice folds and high-resolution all-atom structures for
larger proteins will be closed.

VIII. FROM STRUCTURE TO BIOCHEMICAL FUNCTION

A. Does Knowledge of Protein Structure Alone Imply Protein Function?

Because proteins can have similar folds but different functions [211,212], deter-
mining the structure of a protein does not necessarily reveal its function. The
most well-studied example is the (a/B)g barrel enzymes, of which triose
phosphate isomerase (TIM) is the archetypal representative. Members of this
family have similar overall structures but different functions, including differing
active sites, substrate specificities, and cofactor requirements [213,214]. An
analysis of the 1997 SCOP database [211] shows that the five largest fold families
are the ferredoxin-like, the (a/B) barrels, the knottins, the immunoglobulin-like,
and the flavodoxin-like fold families with 22, 18, 13, 9, and 9 subfamilies, respec-
tively. In fact, 57 of the SCOP fold families consist of multiple superfamilies
[15]. These data only show the tip of the iceberg: Each superfamily is further
composed of protein families, and each individual family can have radically
different functions. For example, the ferredoxin-like superfamily contains
families identified as Fe-S ferredoxins, ribosomal proteins, DNA-binding
proteins, and phosphatases, among others. More recently, a much more detailed
analysis of the SCOP database has been published [215], which finds broad
function—structure correlation for some structural classes, but also finds a number
of ubiquitous functions and structures that occur across a number of families.
The article provides a useful analysis of the confidence with which structure and
function can be correlated [215]. For a number of functional classes, knowledge
of protein structure alone is insufficient information to assign the specific details
of protein function.

B. Active Site Identification

It has been suggested that the active sites in proteins are better conserved than the
overall fold [27]. If so, then one should be able to identify not only distant
ancestors with the same global fold and same biochemical activity, but also
proteins with similar functions but different global folds. Nussinov and co-
workers empirically demonstrated that the active sites of eukaryotic serine
proteases, subtilisins, and sulfhydryl proteases exhibit similar structural motifs
[216]. Furthermore, in a recent modeling study of S. cerevisiae proteins, active
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sites were found to be more conserved than other regions [27]; this was also seen
in the study of the catalytic triad of the o/ hydrolases [11]. Kasuya and Thornton
[217] have created structural analogs of a number of Prosite sequence motifs and
showed, for the 20 most frequent Prosite patterns, that the associated local
structure is rather distinct [3]. These results provide clear evidence that enzyme
active sites are structurally more highly conserved than other regions of a protein.

C. Identification of Active Sites in Experimental Structures

Several groups have identified functional sites in proteins with the goal of
engineering or inserting functional sites into new locations, and success has been
achieved for several metal-binding sites [218-226]. However, because highly
accurate site descriptors of backbone and side-chain atoms were used, this fueled
the idea that significant atomic detail is required if protein structure is to be used
to identify protein function. Similarly, detailed side-chain active site descriptors
of serine proteases and related proteins were employed to identify functional
sites [227], while more automated methods for finding spatial motifs in protein
structures have been developed [37,216,228-233].

Unfortunately, such methods require the exact placement of atoms within
protein side chains and are inapplicable to the inexact, low-resolution predicted
structures generated by the state-of-the-art ab initio folding and threading
algorithms (see Sections IV-VI). These methods are required when the
sequence identity of the sequence of interest to solved structures is too low to
use comparative modeling. To address this need, Skolnick and Fetrow have
recently developed “‘fuzzy,” inexact descriptors of protein functional sites [8].
They are applicable to both high-resolution, experimental structures and low-
resolution (backbone RMSD 4-6 A from native) structures. These descriptors
are o-carbon-based, “fuzzy functional forms’ (FFFs). Initially, they created
FFFs for the disulfide oxidoreductase [8,10] and o/B-hydrolase catalytic active
sites [11] (an additional 198 have now been built, with comparable results
[234]).

The disulfide oxidoreductase FFF was originally applied to screen 364 high-
resolution structures from the Brookhaven protein database [235]. For the true
positives, the proteins used to create the FFF have different structures and low
sequence identity to those proteins used to build the FFF, but the active sites are
quite similar [8]. Here, the FFF accurately identified all disulfide oxidoreduc-
tases [8]. In a larger dataset of 1501 proteins, the FFF again accurately identified
all of the disulfide oxidoreductases, but it also selected another protein, 1fjm, a
serine-threonine phosphatase. Initially this was a discouraging result, but
subsequent examination of the sequence alignments combined with an analysis
of the subfamily clustering strongly suggested that this putative active site might
indeed be a site of redox regulation in the serine-threonine phosphatase-1 family
[12]. If experimentally verified, this would highlight the advantages of using
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structural descriptors to analyze multiple functional sites in proteins. In
particular, function prediction would not be restricted to the ‘“‘primordial”
function that characterizes the sequence family, but could also include addi-
tional functions gained during the course of evolution.

D. Requirements of Sequence-Structure—Function Prediction Methods

Any sequence-structure—function method that does function prediction by
analogy relies on three key features. First, the function of the template protein
must be known. Second, the active site residues must be identified and associated
with the function of the protein. Third, a crystal structure of a protein that
contains the active site must be solved so one can excise the active site for
constructing the corresponding three-dimensional active site motif. Evolutionary
approaches to function prediction often just require that the first criterion be
satisfied, but for more distant homologs the second should be checked as well,
because functions can be modified during evolution. The third requirement is
unique to structure-based approaches to function prediction. Based on studies to
date [8,10-12,14,15], identification of an enzyme’s active site requires a model
whose backbone RMSD from native near the active sites is about 4-6 A for
structures generated by ab initio folding. This predicted structure quality is due
to the fact that the errors in the active site geometry found in the predicted
structure tend to be systematic rather than random. However, threading does not
suffer from this problem because, in the predicted structure, if the alignment does
not include the active site residues, no functional prediction is made. If it does,
the local geometry is the same as in the template’s native structure. Threading
can have alignment problems, but locally—at least in the vicinity of the active
site—these can often be overcome if the threading score includes a sequence
similarity component or if Generalized Comparative Modeling is done. Never-
theless, in practice, for both ab initio and threading models, the quality of the
predicted structures is better in the core of the molecule than in the loops, so
prediction of the function of a protein whose active site is in loops may be
problematic. Currently, the method has only been applied to identify enzyme
active sites. Recent work described in Section VIII suggests that at least in some
situations, low-resolution structures can also be used to at least partially address
the problem of substrate and ligand binding. But in general, techniques that will
further refine inexact protein models will be necessary to extend the approach.

E. Use of Predicted Structures from Ab Initio Folding

As noted above, the recent CASP3 results suggest that for small proteins, current
tertiary structure prediction schemes can often (but far from always) create
inexact protein models of the global fold. Are these structures useful for
identifying functional sites in proteins? To explore this issue, using the ab initio
structure prediction program MONSSTER [191,193], the tertiary structure of the
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glutaredoxin, lego, was predicted whose backbone RMSD from the crystal
structure was 5.7 A. To determine if this inexact model could be used for function
identification, the set of correctly folded structures and a set of 55 incorrectly
folded structures were screened with the FFF for disulfide oxidoreductase
activity [8,10]. The FFF uniquely identified the active site in the correctly folded
structure but not in a library of incorrectly folded ones [15]. This is a proof-of-
principle demonstration that inexact models produced by the ab initio prediction
of structure from sequence can be used for the prediction of biochemical
function.

F. Use of Threaded Structures to Predict Biochemical Function

In a very important paper, Lathrop demonstrated that use of functionally
conserved residues could filter threading predictions to correctly identify globins
even when the threading score was insignificant [30]. While suggestive, the key
question was whether or not this result could be generalized on a genomic scale.
Over the past few years, we have been exploring this issue in great detail [8,10—
15], and, as discussed below, we demonstrate that the use of the sequence—
structure—function paradigm, when appropriately employed, allows one to
predict biochemical function with a much smaller false-positive rate than
BLOCKS [236,237], the best competing sequence-based approach. Indeed, we
have developed a very promising approach to the problem of genome-scale
function annotation.

The methodology is as follows: We use PROSPECTORI1 [57] (although, any
threading algorithm could, in principle, be used) to identify the set of 20
structures that are the best scoring matches between the probe sequence and the
template structure (four scoring functions times five best scoring structures for
each function). Then, each structure was searched for matches to the active site
residues and geometry of the FFF. If a match to the FFF is found, then for those
sequences for which homologous sequences are available, a sequence-conserva-
tion profile was constructed [11]. If the putative active site residues are not
conserved in the sequence subfamily to which the protein belongs, that
sequence is eliminated as having the predicted function; otherwise the sequence
is predicted to have the function. Using this sequence—structure—function
method, 99% of the proteins in the eight genomes that have known disulfide
oxidoreductase activity were found [15]; 10% to 30% more correct functional
predictions are made than in alternative sequence-based approaches [15];
similar results are seen for the o/p-hydrolases [11].

In Fig. 2, we show the distribution of scores (blue) for the E. coli genome
[238] when any of the 11 disulfide oxidoreductases in our structural database
was selected as being in the top five scoring structures using the ‘“‘close”
sequence plus secondary structure plus pair profile scoring function. Similarly,
those proteins identified on application of the disulfide oxidoreductase FFF to
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Figure 2. For the E. coli genome, the distribution of threading scores for the “close’ sequence
plus secondary structure/pair profile scoring function is shown in dark gray and those proteins
identified by use of the disulfide oxidoreductase FFF are shown in light gray.

these threading models (all are known true positives) are indicated in red.
Clearly, the use of the FFF allows one to extract proteins (e.g., those to the
immediate right of the maximum) when their raw threading score would require
one to also include a significant (in this case overwhelming) number of false
positives. We note that full use of PROSPECTORI1-3 identifies all the known
disulfide oxidoreductases in the E. coli and M. genitalium genomes. Note that,
in general, structures whose Z-score is greater than 1 can be successfully
searched for a match to a known active site.

Importantly, using structural information, the false-positive rate is much less
than that found using sequence-based approaches. This conclusion arises from a
detailed comparison of the FFF structural approach and the Blocks sequence-
motif approach [15]. Here, the sequences in eight genomes, including B. subtilis
[239], were analyzed for disulfide oxidoreductase function using the disulfide
oxidoreductase FFF, the blocks thioredoxin block 00194 [236], and the blocks
glutaredoxin block 00195 [236]. In Fig. 3 we plot the distribution of scores
when the B. subtilis genome is threading through these two blocks. By way of
example, if we assume that those sequences identified by both the FFF and
Blocks [236] are ‘“‘true positives,” we find 13 such sequences in the B. subtilis
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Figure 3. For the B. subtilis genome, the distribution of Blocks scores [236, 237] for the
thioredoxin block and glutaredoxin blocks are presented. FFF indicates that the threaded structure
satisfies the disulfide oxidoreductase active site descriptor, CP indicates that the sequence identified
by threading and FFF satisfies the conservation profile, and ? indicates that there is just one sequence
so that a CP analysis cannot be done.

genome. (Recognize that the experimental evidence validating all of these “‘true
positives” is lacking; thus, they are more accurately termed ‘‘consensus
positives.””) To find these 13 ‘“‘consensus positive” sequences, the FFF hits 7
false positives. In contrast, Blocks hits 23 false positives. It was previously
suggested that the use of a functional requirement adds information to threading
and reduces the number of false positives [30]. These data validate this claim on
a genome-wide basis. Similarly, using active site descriptors as a filter, one can
identify the true positives even when the threading score is barely significant (as
in Fig. 2) and where selection of the structure based on the threading score alone
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would yield a significant number of false positives. Thus, what we require is a
method that places such structures where their score is sufficiently significant
that on subsequent filtration by a functional descriptor, they can be reliably
identified. This is the origin of use of multiple scoring functions in PROSPEC-
TORI1, which, in combination, selects 59 of 68 Fischer pairs in the top scoring
position.

Surprisingly, despite the fact that threading algorithms have problems
generating good sequence—structure alignments, we have found that active sites
are often accurately aligned, even for very distant matches. This observation
would agree with the above-mentioned experimental results that active sites are
well-conserved in protein structures. Of course, because no genome has the
function of all its proteins experimentally annotated, it is impossible to know
how many proteins with the specified biochemical function are missed, nor is
there yet experimental characterization of most of these predictions.

IX. USE OF LOW-RESOLUTION STRUCTURES
FOR LIGAND IDENTIFICATION

One of the important elements of protein function is the ability of a protein to
interact with and bind various ligands. This ability is closely related to the three-
dimensional structure of the protein. Because the quality of theoretical structure
prediction methods has recently improved considerably, we are developing a
docking procedure that will utilize these relatively low-quality models of
proteins for the prediction of plausible conformations of receptor-small ligand
complexes as well as for the prediction of interactions between particular
subunits of a protein in the quaternary structures.

Our approach to the problem of low-resolution docking focuses on the steric
and quasi-chemical complementarity between the ligand and the receptor
molecules. Because the predicted structures that result from theoretical predic-
tions usually resemble very low-resolution experimental structures, in our
method we use only approximate models of both the ligand and its receptor.
Vakser et al. [240] have demonstrated that by averaging the structural details of
interacting molecules it is possible to drive the docking procedure toward the
real binding site, thus avoiding, in many cases, the local minima problem. It also
turns out in our case that this averaging procedure allows for the compensation
of the numerous structural inaccuracies that result from the theoretical predic-
tions of the receptor structure.

In the first stage of our docking procedure, structures of both molecules, the
receptor and the ligand, are projected onto a uniform cubic lattice, thus giving
two clusters of adjacent cubes. These two clusters approximate the shapes of
both molecules with the accuracy of the grid size. Some of the receptor cubes
(“‘surface” cubes) can be penetrated by the ligand, leading to favorable
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interactions when overlapped with the ligand, whereas others (interior cubes)
contribute to the repulsive contacts. As elegantly demonstrated by Vakser et al.
[240], when such a procedure is correctly implemented, this simple steric matching
protocol is often quite successful in rebuilding correctly docked complexes.

While the steric method described above is very efficient, in many cases,
geometric criteria alone are insufficient to correctly dock the two molecules.
This is especially true when the structure of the receptor is of poor quality or a
ligand molecule is relatively small so that shape complementarity is insufficient
to specify the correct conformation. To overcome this problem, we decided to
build a statistical potential that could be used for additional evaluation of the
quality of the match. In order to build the potential, we defined 20 general atom
types and built the contact statistics on the basis of the structures of known
complexes available in the PDB [171]. After projection of the two molecules
onto the grid, every cube is additionally labeled with the properties defined by
the atom types that were projected onto it. Once the approximate representation
of the system is ready, the best match of these two cube-clusters is determined
by exhaustive scanning over the six-dimensional conformational space of the
three relative translations and the three rotations. Calculating the value of the
correlation function between these two sets of cubes and the value of the potential
function, the quality of the particular ligand-receptor orientation is scored.

We applied this algorithm to predict (actually postdict) the structures of
several complexes available in the protein data bank. These complexes include
members of the Fischer database that had co-crystallized ligands that were
generated by the procedure that was described in Section V. In most cases, not
only is the location of the binding site on the receptor surface correctly
identified, but the proper orientation of the bound ligand was reasonably well
recovered as well, within the level of accuracy of the modeled receptor itself. In
many cases, even structures of receptors as far as 5-6 A away from native
turned out to be accurate enough for the docking procedure to succeed.

Table VIII below shows five examples of the homology-modeled structures
that were used in our docking calculations. The quality of the modeled receptor

TABLE VIII
Results of Docking Ligands to Low-resolution Predicted Structures®
RMSD of the Receptor Relative Shift of the
Structure Name from Native Ligand from Native
2sarA 5.99 3.1
2cmd_ 5.57 1.3
1bbhA 3.16 1.6
Imdc_ 4.92 2.6
Ic2rA 4.94 33

“All dimensions are in angstroms.
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(in RMSD) and shift of the docked ligand relative to its position in the
superimposed native complex are also shown.

Two examples of docked ligands to the generalized homology modeled
receptors are shown in Fig. 4. The red is the native orientation of the ligand, and
the yellow is the best scoring match. As is immediately evident, the algorithm
does a reasonably good job in docking the ligand to the correct binding site in
the correct orientation. While our method is still under active development, it
has already revealed its usefulness in the successful docking calculations of
even small ligands to the theoretically modeled receptors. When complete, this
methodology could hopefully be used for the large-scale screening of the
potential ligands for the receptors predicted from genomic sequences.

X. OUTLOOK FOR THE FUTURE

A. Possible Improvements of the Structure Prediction Methodology

The methodology for protein structure prediction outlined in this contribution,
while partially successful, needs further improvement. First of all, some elements
of the force field of the lattice model are not yet satisfactory. The threading
algorithm PROSPECTOR, which forms the core of this approach, needs im-
provement. For example, it currently uses a very simple sequence profile, and
more powerful techniques for generating more sensitive sequence profiles [241]
need to be exploited. PROSPECTOR also generates high-scoring local sequence
fragments that are often, but not always, quite accurate. This information needs
to be incorporated into subsequent threading iterations as well as into partial seed
structures in ab initio folding, akin to ROSETTA [242,243]. Better means of
assessing the quality of the alignments also need to be developed.

The most promising way to improve generalized homology modeling is to
couple the strength of template restraints to the quality of the template. Now, for
all tested cases, the template-related restraints are of the same strength. Much
better results may be possible if, for the templates that are close to the probe’s
structure, the restraints were very strong. For templates that are far from the
probe’s structure, the restraints should be very weak. The template should be
used only for a loose definition of the fold topology. This requires an up-front
estimation of the template quality in a semiquantitative fashion. Better scoring of
the threading results and comparison with related cases (size of protein, perce-
ntage of alignment, comparison of the template alignments to other related pro-
teins, etc.) might provide necessary data for the case-dependent scaling of the
template-related restraints in the generalized homology modeling procedures.

Turning to issues associated with ab initio folding and, to a lesser extent,
generalized comparative modeling, some elements of the force field of the
lattice model are not yet satisfactory. The scaling of various contributions to the
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Figure 4. (See also color insert.) For the predicted protein structure of 2sarA (2cmd_)
generated by GeneComp using a template provided by the Fischer Database [34], the red-colored
ligand represents the superposition of the ligand bound to the native receptor. The highest-scored
match is colored in yellow.
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interaction scheme is now to a large extent arbitrary and adjusted essentially by
a trial-and-error method. A more precise scaling will be attempted by an
automated procedure targeted to generating strong (as strong as possible)
correlations between RMSD from correct folds and energy. A large set of
decoys (lattice structures at various distances from native) will be used for this
purpose. The weakest elements of the force field will be reexamined. Probably
the largest improvement of the model could be achieved via introduction of
approximate electrostatics into the interaction scheme. This should include
more implicit treatment of the solvent and other than intra-main-chain hydrogen
bonds.

For ab initio folding, a better means of the fold selection is needed. As
mentioned above, for the majority of small proteins, the SICHO simulations
produce a fraction of very good low-to-moderate resolution structures. Un-
fortunately, the model force field is capable of selecting these good folds in only
a fraction of cases. Perhaps the folding simulations and the fold selection
procedures should be separated in a more radical way. It appears to make sense
that different force fields may be more efficient for folding simulations than
those used for the fold selection. Indeed, folding requires an interaction scheme
that discriminates not only against the wrong folds but also against a huge part
of model-chain conformational space that does not correspond to any protein
structures. The fold selection stage needs potentials that essentially discriminate
between various protein-like conformations. Fortunately, fold selection involves
a few hundred structures. Thus, more detailed, including all-atom, interaction
schemes could be employed.

B. In Combination with Experiment

A variety of fragmentary experimental data could be used to increase the
accuracy and to extend the range of applicability of the described methodology
for protein structure prediction. The ab initio folding procedure employs
predicted secondary structure (in a three-letter code) and predicted contacts
between side groups. None of these predictions are exact; this has a consequence
for the overall performance of the method. Knowledge of the exact protein
secondary structure or some elements of secondary structure significantly
increases the precision and accuracy of the three-dimensional structure
predictions. Also, the exact knowledge of a few side-chain contacts increases
the applicability of the method. As demonstrated recently [139] for an older
version of the SICHO model, knowledge of secondary structure and as few as
N/7to N/5 side-chain contacts (where N is the number of residues in the protein)
enable reproducible structure assembly for proteins up to 240 residues. The
larger the number of known contacts, the better the accuracy of the predicted
structures. Such fragmentary structural data could be extracted from NMR
experiments. When more extensive data are difficult (or impossible) to obtain,
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the lattice folding provides a low-to-moderate resolution molecular model of the
protein of interest. In those cases where a lot of NMR-based restraints are
collected, the possibility of obtaining of an approximate model from just a few
identified long-range contacts may aid with assignment processes for the other
signals. Such a procedure can be iterated. Alternately, such constraints could be
implemented in PROSPECTOR as a potential to help improve the quality of fold
selection as well as the quality of alignments. Structural restraints for the ab
initio folding can originate not only from NMR data but also from electron
microscopy. Fluorescence data or crosslinking experiments could also provide
some information about the side-chain contacts. Sometimes, mutation experi-
ments can identify residues that are involved with ligand binding. Information
about the spatial arrangement of these residues could be easily incorporated into
the folding algorithm. Another type of possible connection with experiment is
probably worth mentioning. Sometimes, as a result of ab initio folding
simulations, not one but a few plausible folds are generated. When compared
with experiments required for structure determination from scratch, a much
simpler experiment could be designed and executed for the selection between a
few possible structures.

C. Improvement of Structure-Based Biochemical Function Prediction

A key component of the ability to predict the biochemical function of a protein
using a structure-based approach is the availability of an extensive active site
library. Once this is available, then the assignment of biochemical function can
be done with a far smaller false-positive rate than alternative sequence-based
approaches [15,244]. While active site FFFs can be built by hand, such a process
is very time consuming, and automated approaches to active site identification
must be developed. One such approach used PDB descriptors to assign active site
residues [14], but more recent work using conservation profile analysis of these
site descriptors indicates a significant false-positive rate [245]. However, if the
identified active site residues are conserved, then one can tentatively build a
functional descriptor on this basis. Alternatively, one could use BLOCKS [236]
to identify conserved positions and attempt to build a three-dimensional
descriptor on a unique subset of highly conserved residues [246]. We are
currently undertaking such an approach.

To date, no large-scale refinement of the alignments generated by threading
has been undertaken. If the alignment is in error and active site residues are not
correctly aligned, then a false negative will result. Thus, we plan to apply
GeneComp to demonstrate the stability of correct alignments (i.e., to show that
true positives do not become false negatives). Next we plan to test the method
on the weakly significant alignments (Z score > 1) first for M. genitalium and
then for E. coli. If our results on the Fischer database are a guide, not only will
this provide a set of better models for a significant fraction of both genomes, but
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perhaps, using a more complete active site library, additional ORFans can be
assigned.

D. Improvement of Low-to-Moderate Resolution Docking of Ligands

Thus far we have demonstrated that in roughly 50% of the cases, the binding
conformation of a known ligand can be identified using a low-resolution
(backbone RMSD from native up to about 6 A) predicted structure. While these
results are encouraging, much more must be done. The energetic description
describing the interaction of ligand and receptor must be improved so that the
accuracy of the method is enhanced, and systematic clustering of the results
using our clustering algorithm [197] must be done. Moreover, it remains to be
demonstrated that unknown ligands can be identified using such an approach.
Even if it turns out that in a library of several hundred thousand to millions of
compounds, one could only place true ligands in the 500th position or so (a
realistic goal for a low-resolution model), this would be quite valuable. Future
work is proceeding along these lines.

The low-resolution description could also be used to dock macromolecular
complexes. We have had very encouraging preliminary results on correctly
docking the dimer in the tobacco mosaic virus, but clearly much more thorough
benchmarking is required. One might imagine predicting the tertiary structure of
two molecules and then docking them, but such studies are in the very
preliminary stage.

E. Summary

In this review, we have described a number of approaches to the prediction of
protein structure and biochemical function. A key theme of this review is that
low-to-moderate resolution structures by state-of-the-art techniques are quite
valuable. If the structure has a backbone RMSD from native in the range of
4-6 A it can be used to identify the biochemical function of a protein, and known
ligands can be docked to identify the binding site as well as a low-resolution
prediction of the location of the ligand in the receptor. The question then is, What
are contemporary techniques for low-resolution protein structure prediction?
After having reviewed the state of the field, which includes a number of
promising ab initio studies [128,133,141,142,146] and threading algorithms [39,
53-56], we then introduced a unified approach to protein structure prediction.
This methodology involves the use of a newly developed, iterative threading
algorithm, PROSPECTOR [57], where one threads first (see Fig. 1). If there is no
significant match to a template structure, the consensus contacts and secondary
structure in the top 20 scoring structures are used as restraints in an ab initio
folding algorithm. On average, this contact prediction predicts about one-third of
the contacts correctly and predicts above 70% correctly within two residues.
Application of this methodology to a representative test set of 28 structures
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results in the native state (of low-resolution structures up to 6.5 A) being in one
of the well-defined clusters in 15 cases. If fold selection is done not in the
reduced model but in an atomic model, then 17 cases are foldable. Conversely, if
PROSPECTOR identifies a global template, then we perform generalized
comparative modeling, GeneComp, to refine the structures. This procedure uses
the template alignment, as well as predicted contacts and secondary structure
(not necessarily from the template structure), as restraints. In practice, when
applied to representative probe proteins in the Fischer database [34,179],
GeneComp tends to perform better on average than Modeller [23,27]. Moreover,
it does no harm, that is, the quality of the model is either left the same or
improves. Thus, it can be used with impunity. As in ab initio folding, the
resulting structures are clustered and representative folds selected.

PROSPECTOR itself has been used to predict the tertiary structures of the
proteins in two genomes, M. genitalium and E. coli, and successfully matches
about 40% of the sequences to a known fold. Application of the three-
dimensional active site descriptors designed for low-resolution structures,
FFFs [8,10], allows one to select all known true positives, even when the Z
score is close to 1. Furthermore, threading followed by application of the FFF
has a far smaller false-positive rate than alternative sequence-based approaches
such as BLOCKS [236,246]. Such approaches need to be generalized from
treating enzymes to more generalized binding and macromolecular recognition.

This review describes one such way to use low-resolution structures to
identify the binding site and conformation when one has a known ligand. The
methodology was applied to those probe structures in the Fischer database that
co-crystallized with ligands. As shown in Table VIII, it is possible to identify
the binding conformation with moderate accuracy, even when the backbone
RMSD from native is 6 A. This opens up the possibility of genome scale
screening of low resolution predicted structures for ligand binding.

While considerable progress has been made, there are significant challenges
remaining. The generalized comparative modeling approach, GeneComp, needs
to be extended so that it can treat highly homologous as well as analogous
structures. Furthermore, given that ab initio folding algorithms quite often
generate native-like structures, as also seen in generalized comparative model-
ing, development of better protein representations and energy functions that can
select native folds from misfolded states is more crucial than ever. Clustering
helps to reduce the problem by selecting representative folds, but routine
unequivocal selection of native-like structures is not yet possible. It seems
that the most promising approach is to convert the reduced models to full-atom
models and then use either physics or knowledge-based energy functions to
select the native structure. Use of active site descriptors can also help in this
regard, because they act like a filter. Because of their utility in biochemical
function assignment, better techniques for the construction of functionally
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relevant active sites is a must. Finally, while considerable progress has been
made in the docking of known small-molecule ligands to low-resolution
structures, methods must be developed that can identify such ligands, at the
least by enriching the yield of true positives. Work in this direction is underway.

In conclusion, while techniques for the prediction of low-resolution struc-
tures have improved, they still have a way to go before structure prediction
becomes routine. Nevertheless, this is a very laudable goal because low-
resolution structures are of considerable utility both in the identification of
biochemical function and in ligand docking. Such efforts will have to be applied
on a genomic scale if structure-based approaches to function prediction are to
play a role in the post genomic era. A number of such efforts are underway, and
doubtless there will be more in the future.
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I. INTRODUCTION

Under the general heading of “‘protein folding™ there is an ever-increasing body
of methodology that has been rapidly evolving over the past few years. The
simply stated objective of computationally determining the three-dimensional
atomic coordinates of a protein starting from knowledge of the amino acid
sequence remains a somewhat idealistic academic challenge, but it has led to the
development of a technology base that is gaining in practical applicability. This
corresponds to some extent to a shift in philosophy in which a fundamental
understanding of the folding process is of less immediate interest than obtaining
the best model possible with whatever means are available. Fundamental
questions are of course still important and are being actively pursued [1-5], but
the field is being driven more and more by the pragmatic approach [6,7]. This is
highlighted by the effort being devoted to the CASP experiments, where the
emphasis is placed squarely on the bottom line [8]. In this context, the methods
used must be tailored to the particular problem at hand, and no available
information can be left unused. Much work therefore has been devoted to
making use of prior information and accumulated knowledge in the generation
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of computer models of proteins. This review will describe some of the ways in
which such methods are being incorporated within the traditional ab initio
framework.

A. The Knowledge-Based Approach

The label of “‘knowledge-based’ is to some extent artificial, in that there is a
spectrum of methodologies and it is not always easy to draw a clear distinction.
The intended contrast is with a purist’s ab initio approach in which one seeks a
numerical solution to the fundamental laws of physics (as one would like to do
in quantum chemistry) with no theoretical limit on the problems that can be
addressed. A knowledge-based method, on the other hand, requires some form
of a priori knowledge and is therefore limited in its applicability by the data that
are available. If the term is used in its broadest sense, referring to methods that
make explicit use of the Protein Data Bank (PDB) of known structures, this
would still cover a range extending from methods which require there to be a
similar structure in the PDB to those that apply observed patterns in a more
general way. In principle, this includes virtually all methods because even the
most determined ab initio practitioner still has recourse to an empirical force
field that typically uses the PDB in its parameterization [9]. Even though such
force fields are as general as possible, the reliance on the PDB does represent a
real limitation, as anyone who has ever tried to use one to fold a membrane
protein can attest.

In the context of the CASP experiments [8], the distinction is drawn between
ab initio and “fold recognition” predictions, but there as well some overlap
occurs [7]. Fold recognition often involves some refinement to model parts of
the structure not found by homology, and conversely many ab initio methods
make some use of structural fragments from the PDB. It is precisely this middle
ground where the different categories are converging that is of interest and
where much recent success can be found. It has become clear that there is a
great deal of information to be had in the PDB and that progress is being made
by extending the ways in which it can be used. The knowledge-based approach
is therefore to develop methods to take advantage of what is there, even if the
underlying physical principles are not fully understood.

B. Recent Trends

One of the patterns that has emerged from the CASP experiments is the relative
success of the fold-recognition methods in identifying distant homologies, even
in some cases where none was originally thought to exist [8]. Until recently, ab
initio methods lagged far behind, but significant progress is now being made [7].
As mentioned above, however, this is coming from knowledge-based methods
that have incorporated some of the methods that have proven successful in
comparative modeling and fold recognition. It has been shown that so-called
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“hybrid” methods can outperform more traditional fold-recognition and
ab initio techniques [10]. The more general methods of fold-recognition have
also been shown to outperform direct homology modeling in cases of weak
homology [11], suggesting that a flexible approach has the potential to cover a
broad spectrum of possible targets.

Another pattern that is emerging is an increased recognition that the PDB can
be used to identify structural motifs at different scales, not just individual
residues (as used to derive contact potentials) or entire domains (as used in
traditional fold recognition). Much recent work has gone into using the PDB to
develop databases of smaller fragments which can be used to construct protein
models [12], and an approach based on using local homology with a fragment
library has been shown to be quite successful at generating new folds [13]. This
building-block approach has also been used to generate improved sensitivity and
more accurate alignments when applied to fold recognition [14].

The trend toward a more generalized approach is also reflected in recent work
on scoring functions. It has been shown that traditional empirical potentials
perform poorly at discriminating the correct structure [15] and that the
functional form of pairwise contact energies is not even sufficient in principle
[16]. The importance of evolutionary relationships has also been established,
and information from multiple sequences can be used to improve recognition of
misfolded structures [17]. This idea has led to the use of conformational
tendencies and contact predictions from multiple sequence alignments [18]
and the development of scoring functions which take into account sequence
homology [19]. Scoring functions can therefore be constructed as a set of
complementary components: contributions that are unique to a given sequence,
those that depend on a family or class of sequences, and those that apply to all
proteins.

C. Practical Considerations

The bottom line in structure prediction is to provide a useful answer to a
question that is actually being posed. Ab initio predictions alone are rarely
accurate enough to be useful; however, as NMR spectroscopy is being used to
obtain structures for larger and larger proteins, there is a great practical benefit
in using computational methods to aid in this process. Structure prediction
methods, when coupled with experimental data, can be used to obtain higher-
quality structures [20] and even to help in interpreting and assigning the spectra
[21]. For this reason there is a great interest in developing methods that can
make the best use of various types of experimental data (often in the form of
constraints) in addition to that gleaned from the PDB.

The enormous progress that has been made in genome sequencing has also
led to increased efforts in functional genomics; that is, it has enabled the use
of prediction techniques to assign probable functions to newly discovered
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sequences [22]. In this case, the emphasis is less on obtaining accurate
coordinates and more on being able to detect weak homologies in distantly
related families of structures. Improved prediction methods therefore have an
important role in improving the sensitivity of fold-recognition techniques,
providing better alignments, and ultimately allowing weaker relationships to
be detected thereby classifying more of the genome. Even though the protein
folding problem may still be a long way from being fully solved, there is a great
opportunity for knowledge-based methods to have a significant impact in
improving structure prediction’s bottom line.

II. PROTEIN MODELING

The most direct approach to modeling protein folding would be to carry out a
simulation that replicates the actual folding process as it occurs in nature.
Although some progress has been made in pursuing that approach [23-25], it
remains impractical in most cases for two reasons: The time scale of the folding
transition for moderately sized proteins exceeds that which can be attained in
simulations, and the physical forces involved are not modeled with sufficient
accuracy to ensure the desired outcome. Because highly simplified models are
unsuitable for predicting structural details, a different point of view is needed to
carry out tractable simulations of realistic models. If one is not interested in the
thermodynamics of folding and wishes only to produce the folded structure, any
number of nonphysical buildup or pattern-generation techniques could be
imagined; however, many methods retain the basic model of a molecular
simulation, albeit with a number of simplifying approximations.

A. The Computational Model

The principal simulation paradigm is based on the thermodynamic hypothesis,
namely that the equilibrium structure corresponds to the global minimum of the
thermodynamic free energy. Whether or not this is strictly true for a given
sequence is not known; however, for the purposes of the simulation it is
generally assumed that some sort of energy-like function can in principle be
constructed for which the native structure is a minimum. This can be thought of
as some sort of modified free energy or as a purely empirical scoring function;
either way the mathematical problem is the same, namely to find the global
minimum. The general problem of global minimization is nontrivially difficult,
and therefore additional approximations are required in order to obtain a
solution in a reasonable time. The thermodynamic analogy is often used to
model this as an annealing process; however, in general any minimization
method can be applied.

In its general formulation, a simulation within the framework of global
function minimization consists of three basic elements. As mentioned above, the
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target function of the minimization must be defined so as to allow comparison of
different possible structures. Secondly, there must be a procedure to search
through the possible conformations in order to find the global minimum (or
other acceptable solution). Finally, the conformational space—that is, the range
of conformations that can be constructed and the means to transform one
conformation into another—must be specified in order to constrain the search.
Clearly, these elements are not independent and must fit together in order to
form a coherent model. For example, an energy function need not evaluate a
conformation that is not part of the allowable space. Nonetheless, each of the
three components offers a different means to incorporate empirical information
into the simulation.

B. Geometrical Representations

In order to reduce the number of degrees of freedom, most simulations use a
reduced model description of the protein in which only a subset of the atoms are
present. There are many variations on this theme, most of which have been
previously reviewed [26]. The most common approach is to represent the main-
chain N-C,—C’ atoms explicitly, with the side chain either being represented by
the Cp atom or by an extended model atom corresponding to the approximate
center of mass of the side chain. The bond distances and bond angles are usually
fixed to standard values, thereby leaving the backbone dihedral angles ¢ and
as the only degrees of freedom (with the conjugated peptide dihedral angle fixed
at 180°, in some cases allowing 0° as well for proline residues). The dihedral
angles can either be restricted to a limited number of allowable conformations
or be allowed to continuously vary within a specified region, and both of these
approaches have been explored in our group and others.

Another method we are currently developing divides the molecule into
segments based on the assigned secondary structure. The relative positions of
the segments and the positions of the residues within each segment are optimized
in distinct steps, thereby allowing the overall topology to evolve using a long-
range potential with the detailed atomic coordinates to be adapted accordingly.
The protein backbone is initially not required to be continuous from one
segment to the next; and each segment can be deformed as the topology changes,
creating unnatural bond lengths and angles. The correct covalent connectivity,
rather than being rigid from the start, is gradually annealed in using a special
constraint potential during the course of the simulation.

The details of side-chain conformation are generally determined by local
interactions and have relatively little influence on the overall topology of the
fold. Methods have been developed to assign probable side-chain conformations
based on backbone dihedral angles and observed preferences in the PDB, and
this technique has been shown quite effective in correctly placing side-chain
atoms on a fixed backbone [27]. The task becomes more difficult if there are



KNOWLEDGE-BASED PREDICTION OF PROTEIN TERTIARY STRUCTURE 199

significant deviations in the backbone, because the details of the side-chain
contacts will no longer be the same [28]. In a recent approach, the side-chain
conformations are represented by specifying a distribution of discrete rotamer
states without actually including any additional coordinates. The ability of the
backbone conformation to adequately accomodate the side chains can be eva-
luated using a rotamer-dependent mean-field energy and a conformational
entropy [29].

C. Search Algorithms

The most common minimization technique is based on the principle of
simulated annealing, which involves generating an ensemble of structures which
is slowly converged toward the lowest-energy region of the conformational
space. This method requires that the conformational sampling be able to avoid
becoming trapped in a local minimum, and a number of techniques have been
developed to overcome this problem [9,30]. Other successful approaches
include using a branch-and-bound algorithm to limit the scope of local searches
[31], as well as combining discrete Monte Carlo trial moves with local gradient
minimizations [32].

Lattice models have also been used in order to discretize the conformational
space in three dimensions. A relatively fine-grained model can be searched
using methods similar to those described above [33], or a coarser model can
be used to generate a set of possible topologies which can then be further refined
using a more detailed model [34]. Further refinement can be carried out by using
consensus inter-residue contacts from simulations to generate new structures
that attempt to reproduce as many as possible [35,36]. Searches can even be
carried out directly in terms of inter-residue contacts and then used to generate
three-dimensional coordinates [37]. Another means to simplify the conforma-
tional search is to increase the range of the potential interactions during the
simulation in order to build up larger-scale features of the structure [38].

Our approach is the hierarchical algorithm [39,40], in which trial moves are
generated and evaluated in three different steps. At the simplest level, segments
of three residues (triplets) are generated by choosing three sets of (¢, ) values
at random from an allowed list. Each triplet is immediately accepted or rejected
according to whether or not the orientation of its endpoints falls into an allowed
region of triplet conformational space. The second level consists of complete
loop segments as determined by the secondary structure. These loops are
evolved from previously existing structures by using the set of triplets from
the first level as trial moves and by evaluating new loops based on the difference
in overall geometry from the starting loop. The final level then corresponds to
the entire molecule, for which the trial moves consist of substituting entire loops
with the new loops generated in the second level. It is only at this final level that
the structure is evaluated by calculating the full scoring function, which is then
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minimized using a genetic algorithm consisting of separate mutation, hybridiza-
tion, and selection steps.

D. Scoring Functions

In most current prediction methods, the objective of the scoring function is not
to reproduce the physical properties of the system, but to provide the best possi-
ble recognition of the native structure. These functions can be parameterized
strictly on a statistical basis to optimize their performance [41]. Although there
is some correlation between statistical potentials and those developed from
physical principles [42], the former generally provide better results for
predictions [43]. The energetic point of view is often used to motivate the
development of a scoring function, but in practice the goal is simply to evaluate
the relative probability that a given structure corresponds to a real protein. A
typical energy can be defined as

E=>Ej;
i

where the pairwise residue-residue energy is
Eij = —kT() In P,-j(r,-j)

and P;; is the relative probability of finding residue pair i—j at a distance r;;. If one
then uses the Metropolis test to accept or reject a trial move from initial energy E;
to final energy E; according to the value of exp(—(Ef — E;)/kT), the same
algorithm could be equivalently formulated in terms of accepting moves with a
probability of (P;/P;)*, where o = T /T and

P= HPij(rij)
ij

In principle, one could try to maximize the probability, its logarithm, or for that
matter any other monotonic function of it.

Empirical scoring functions generally consist of multiple components, both
sequence-independent and sequence-dependent [44,45]. The former include
terms to control the overall size and shape of the molecule, as well as charac-
teristic features of local structure depending on the geometrical model being
used, whereas the latter take into account the specific interactions among
residues. Some scoring functions are based on physical principles, such as
electrostatic interactions [38] and van der Waals forces [46], with additional
parameterization based on the PDB. The most common type of scoring function,
however, is based directly on observed distances between different amino acid
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pairs in the PDB, and it is formulated as a table of (possibly distance-dependent)
pairwise contact probabilities between amino acid types [47,48]. They differ
mainly in the functional form to which they are fit, as well as in the details of the
normalization of the probabilities, which is a nontrivial task for a heterogeneous
data set like the PDB [48,49]. The scoring functions used in our group are of this
type, the details of which have been published elsewhere [32,39].

Additional specificity can be built into the scoring function in several ways.
Specialized pattern-recognition and multibody terms can be included to generate
more realistic secondary and supersecondary structural motifs [45,50]. The
secondary structure can also be explicitly taken into account when calculating
residue contact probabilities, in order to distinguish interactions between amino
acids in different secondary-structure units [51]. In a more sophisticated
approach, the local sequence homology is used to adjust the statistics for a
particular target sequence [19]. The trend toward more explicit pattern recogni-
tion and sequence specificity in the generation of scoring functions allows more
of the subtle homologies in the PDB to be exploited, although some chemical
insight is still required to express it in an appropriate functional form.

III. CONSTRAINT METHODS

Constraints provide a very direct means to add information to a simulation—
simply requiring all generated structures to satisfy certain additional conditions.
This approach has been used extensively to generate three-dimensional
structures from NMR spectra [52], which provide data in the form of inter-
atomic distances. In principle, if one had enough distance constraints, the
problem would be overdetermined and could be solved mathematically with no
further information required. It has been shown, however, that the use of
knowledge-based simulations based on homologous structures or fragment
libraries from the PDB provides more accurate models than constraint-based
methods alone [20,53].

In the case where the constraints alone are insufficient to determine the
structure, they can still be used to supplement energy-based simulations. The
goal in this case is to make the most effective use of the constraint information
and to obtain good results with a minimum of additional information required.
Because the source of the constraints is typically experimental spectra that must
be assigned and interpreted, or theoretical methods (such as multiple sequence
alignments) that may be incorrect, it is also important to take into account errors
especially in difficult cases where the input data is incomplete or uncertain.
Under these conditions, the constraints can be regarded as an additional
component of the scoring function, expressing the probabilities of different
structures, rather than as a rigid requirement. In many implementations, these
interpretations are in fact equivalent.
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A. Types of Constraints

Constraints can in principle be applied to any property of the structure where
some sort of prefered value can be determined; however, the most common
are those that correspond to experimental information. Some common types are
outlined in the following sections.

1. Distance Constraints

Although the use of distance constraints to determine structures from NMR
spectroscopy is well-established [52], these are experimentally determined
structures rather than predictions in the sense used here. Applying a limited
number of distance constraints to the simulation of an unknown structure in
order to determine the gross topology rather than the detailed coordinates is a
more recent approach [54]. This work showed, however, that the number of
distances required for this purpose was at least an order of magnitude less than
that needed for a complete structure determination. The emphasis in recent
years has therefore been to reduce this number even further and to increase the
size of protein that can be studied, with the goal of obtaining better
structural information while requiring fewer experiments. In practice, tests are
usually carried out on known structures where a given number of distances can
be chosen at random to simulate such data.

2. Angle Constraints

There are currently experimental techniques to extract dihedral angles from
NMR chemical shifts and coupling constants [55,56]. There is, however, a
considerable margin of error on the order of £45° in the actual values, which
varies according to secondary structure [57]. These values are therefore
insufficient for purposes of constructing the backbone by a sequential buildup;
however, the target values and corresponding uncertainties can be applied as
constraints in a torsional scoring function. The same applies to local backbone
distance constraints, which in a reduced model are more conveniently expressed
as limits on the dihedral angles rather than as specific interatomic distances.
Although the dihedral angles in principle determine the structure directly, it is
possible to have significant local variations in ¢ and \y without appreciably
changing the overall fold. The goal is therefore to use local dihedral constraints
to bias the simulation toward the native structure while maintaining sufficient
flexibility to avoid propagating errors due to incorrect values. Angle constraints
can also be effectively combined with distance constraints to obtain greater
precision from experimental data [58].

3. Other Types of Constraint

Data from NMR experiments which measure residual dipolar coupling [59] and
paramagnetic relaxation [60] can be used to derive long-range geometrical
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constraints and global features of the structure. These methods allow one to
determine the relative orientation of N-H bonds relative to a common
(unknown) reference frame, although not directly to one another. Although it
is difficult to extract detailed information from this type of data due to the
inherent degeneracy of the relative orientations, it is complementary to the types
of constraints mentioned above and therefore can be very useful in folding
simulations to screen out incorrect structures. This type of constraint lends itself
well to a scoring-function approach, because it is easier to calculate the values
that would be produced by a predicted structure and compare them with the
experimental data than to impose a priori constraints in generating the structure.
Although this type of constraint shows considerable promise, its use in
simulating larger proteins is still less well developed than the more traditional
distance and angle constraints.

B. Deriving Constraints from Predictions

Although the emphasis so far has been mostly on experimentally determined
constraints, the same techniques that have been developed, especially in the case
of uncertain or ambiguous constraints, can be just as well applied to
theoretically predicted data. In cases where this is derived from sequence
homology and/or multiple sequence alignments, the use of predicted constraints
effectively generates a sequence-specific scoring function where any additional
information is added to the generic scoring function already in place. Probable
contacts can be derived from correlated mutations in a family of aligned
sequences [18,61]. If a structure is known for at least one member of the family,
contacts that are observed in the known structure which are likely to be
conserved can be identified by looking at correlated mutations across the
sequences, using the hypothesis that pairs of sites which have an increased
probability of changing in concert are more likely to be in physical contact.
Because there is a large number of possible pairs in a given sequence, as well as
a relatively low signal-to-noise ratio in evaluating correlations, this method is
less effective when based solely on sequence data without a reference to identify
pairs that are likely to be in contact at all. On the other hand, extracting probable
contact pairs can provide better results than direct homology modeling when the
homology is weak and the structural alignment is uncertain.

Probable backbone dihedral angles can be predicted using sequence-based
methods similar to those used in predicting secondary structure [62,63].
Although this could be considered a simple torsional potential, it is included
in this section because it nonetheless incorporates sequence-specificity into the
potential and can be implemented using the techniques of flexible angle
constraints. In another method, contact distances between residues in different
helices were determined by first selecting likely hydrophobic residues to form
helix—helix contacts and then using a distance range typical of observed helix
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pairs in the PDB [36]. Distance constraints can also be generated directly from
the simulation results themselves [35]. In an ensemble of predicted structures,
the frequencies of inter-residue contacts can be analyzed to identify those that
are observed across a range of structures. These ‘“‘consensus’ contacts can then
be imposed as constraints and used to generate structures that are better than any
of those used to derive the constraints. A similar approach has been used in our
group to correctly identify inter-residue contacts using an ensemble of structures
in which no structure individually had the correct topology.

C. Constraint Implementation

Constraints are typically applied as a penalty function that is added as an extra
term in the scoring function, often as some simple function (e.g., harmonic) of
the difference between the actual and target values. Other strategies are possible,
however, and constraints have also been used systematically in the construction
of model structures. This can be applied to distance constraints, where a buildup
procedure is used to generate structures that satisfy all constraints [64]. Angle
constraints can also be used to systematically search the conformational space,
both using a branch-and-bound procedure [65] or in a tree-search algorithm in
combination with distance constraints [66].

In the case of sparse constraints, however, it has been shown that there is an
advantage to using more flexible, or “floppy’’ constraints that allow for a more
effective conformational search [67]. In our work, we apply inter-residue cons-
traints to the Cg—Cyp distances, regardless of the atoms involved in the original
data. This is partly due to the practical problem of not representing side-chain
atoms, but it also serves to simplify the calculation. The range of possible Cp—
Cp distances consistent with the data is accounted for by using generous limits
on the constraints. Rather than corresponding to a loss of precision, this actually
improves the efficiency of the minimization.

We have studied a variety of functional forms for the constraint penalty
functions and have found that a flat-bottom well with an exponential tail
provides the best results. This penalty function has the form

-1, r<c
u(r) = { —exp(—r/d), r>c

where ¢ is the maximum constraint distance and d is the width of the tail. The
best results are obtained with a square-well width of 8 A and a tail width of 3 A.
The width is held constant independent of the actual constraint distance, because
this allows greater flexibility and gives better scores to nearly correct structures.
In fact, even for distances known to be less than 6 A, setting ¢ to 8 A gave better
results than a ¢ of 6 A, due to the fact that correct contacts are better recognized
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despite local errors in the structure. For the same reason, no inner cutoff was used
other than the usual excluded volume term.

In cases where the constraints are known to be accurate, good results can also
be obtained for penalty functions that become large at long distances, such as
linear or quadratic tails. This gives a large energy for any structure that severely
violates any constraint. This is fatal, however, in cases where some constraints
are incorrect or even contradictory. It is therefore important to ensure that while
there is a favorable score for satisfied constraints and an attractive force in their
vicinity, in the limit of grossly violated constraints the corresponding score goes
to zero and is simply ignored.

1. Ambiguous Constraints

Ambiguous constraints arise in working with NMR NOE data that haven’t been
completely assigned [68]. In cases where similar residues have virtually the
same chemical shifts, it can be difficult to identify which sites in the sequence
are responsible for an observed contact. The same principle also applies to
cysteine (S-S) linkages where several different pairings of cysteine residues
may be possible. In such cases, carrying out a simulation with simultaneous
constraints corresponding to each possibility can be used to determine the cor-
rect pairings [69]. The results of simulations with conflicting distance constraints
have even been used to eliminate incorrect assignments for subsequent simula-
tions and eventually deduce the correct contacts [21,70]. Another approach that
gives rise to ambiguous constraints is the simulation of predicted secondary
structure, where the different possible assignments can be expressed as a
weighted combination of short-range distance constraints [71].

In our implementation, ambiguous distance constraints are simply expressed
as a linear combination of all possibilities; in other words, all constraints are
treated equally. As the penalty function goes to zero for violated constraints, the
score is essentially the same for a residue that satisfies any one of the possible
constraints, and the structure as a whole is optimized to satisfy as many as
possible. An optional weighting factor can be included to represent the relative
probabilities associated with different assignments.

D. Results

In order to test some of the ideas discussed above, we have carried out a number
of experiments on known structures by artifically generating constraints from
the PDB coordinates. Although this is far removed from real-world applications,
having precise control over the quantity and quality of the supplemental data
allows the methods to be carefully evaluated and allows their limits to be better
determined. In the following sections, some representative examples are pre-
sented to illustrate the progress that has been made, and comparisons are shown
with similar work from other groups.
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TABLE I
Results of Simulations with Constraints for 3ICB
Standard
Constraints Low RMS Average RMS Deviation
Present work 0 4.6 9.8 1.9
10 3.0 4.9 1.3
89 3.0 33 0.2
Aszddi et al. 0 10.0 1.5
10 6.3 2.0
86 2.9 0.2

1. Distance Constraints

The implementation of distance constraints was tested using two small globular
proteins that have been previously studied in the literature: calcium-binding
protein (3ICB), an o protein with 72 residues, and tendamistat (3AIT), a
B protein with 62 residues [72]. In each case, a total of 10 constraints were
chosen at random from among the eligible pairs of residues in the crystal
structure. This was repeated for 20 simulations, each using a different set of
constraints, and compared with earlier literature results [73]. The results are
summarized in Tables I and II. For 3ICB, 10 constraints are sufficient to find as
good a structure as was found using all of the constraints. Because of the use of
ideal B-strands without any sort of strand-pairing potential, 3AIT proved to be
much more difficult, although the addition of 10 constraints does also lead to a
significant improvement. Other published simulations [74] show better results
when all of the constraints are used, but fail completely for small numbers of
constraints. A test was also carried out with a larger molecule, myoglobin
(IMBA), an o protein with 140 residues, the results of which are shown in
Table III. Using 20 constraints in this case, a structure with an RMS deviation of
4.5 A was obtained, comparable to 49A reported elsewhere for the same set

TABLE 11
Results of Simulations with Constraints for 3AIT
Standard
Constraints Low RMS Average RMS Deviation
Present work 0 8.4 9.7 0.4
10 4.8 8.4 1.3
116 3.6 6.8 1.6
Aszddi et al. 0 9.4 0.7
10 5.8 0.6

120 3.7 0.2
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TABLE III
Results with Constraints for IMBO

Low Average Standard
Constraints RMS RMS Deviation

Present work 0 7.1 12.3 1.8

20 4.5 10.3 1.8

30 3.2 5.7 1.2

50 3.6 5.3 1.6

100 2.9 4.5 1.0

Skolnick et al. 20 49 5.6

of constraints [75]. This result improved to 3.2 A with a random selection of 30
constraints, which was essentially equivalent to results obtained with larger
numbers of constraints.

2. Angle Constraints

Within our hierarchical model, it is more convenient to implement angle
constraints in a different manner. Instead of using a scoring-function approach,
we introduce the constraint information at the level of the list of allowed ¢—\r
pairs. Because the pairs are selected randomly, the number of values in each
region will determine the corresponding bias in the simulation. Test calculations
were carried out for myoglobin (IMBO) in which part of the dihedral list
corresponded to the usual distribution and the other part was limited to a region
with a width of 30° around the target values. Clearly, if the weight of the latter
region is 100%, this represents a rigid constraint, however, in order to maintain
the flexibility of the simulation and allow for the possibility of incorrect data, it
is useful to retain some of the original distribution. Simulation results are
summarized in Table IV as a function of the relative weight of the constraint
region. Good results are obtained with a 50% weighting, indicating that there is

TABLE IV
Results of Simulations of IMBO Using Angle Constraints with Different Relative Weights
Constraint Weight (%) Low RMS Average RMS Average Score
0 8.1 11.1 —172
6 7.4 11.7 —172
20 49 9.8 —173
30 5.1 6.5 —218
50 2.5 4.1 —226

100 1.7 2.7 —226
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TABLE V
Results for IMBO with 100 Total Constraints
Number of Good Number of False
Constraints Constraints Low RMS Average RMS
100 0 2.6 4.7
75 25 3.7 52
50 50 4.0 6.8
30 70 53 8.9
20 80 6.0 10.8

a strong cooperative selection. On the other hand, a control experiment was
carried out also with 50% weighting, in which the target values were chosen at
random, thus giving a nonsensical structure if taken together. The results in this
case were essentially the same as those with no constraints at all, showing that
the simulation is nonetheless able to ignore incorrect data.

3. Ambiguous Constraints

In order to test the sensitivity of the simulation with respect to incorrect data, a
series of experiments was carried out in which the total number of distance
constraints was held fixed, but the number of which were correct was varied. In
a first trial, again with myoglobin (IMBO), 100 constraints were used. The
correct constraints were derived by randomly selecting from among the possible
contacts observed in the PDB structure, and the remaining number were ran-
domly selected from pairs of residues known to be at least 20 A apart in the
correct structure. This was repeated with several different sets of constraints, to
avoid any bias due to a lucky choice of correct constraints. The results are
shown in Table V. Compared with the results in Table III, there is clearly a loss
in performance due to the presence of incorrect constraints; however, reasonable
results can still be obtained in cases where the nonsensical constraints actually
outnumber the real ones. A similar experiment using flavodoxin (2FX2), a
mixed o/ protein with 143 residues, is shown in Table VI. Although there is an
increasing number of misfolded structures, as indicated by the average RMS

TABLE VI
Results for 2FX2 with 100 Total Constraints
Number of Good Number of False
Constraints Constraints Low RMS Average RMS
100 0 4.6 7.2
75 25 52 9.4

50 50 52 11.9
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TABLE VII
Results for IMBO with 150 Total Constraints
Number of Good Number of False
Constraints Constraints Low RMS Average RMS
100 50 4.0 5.9
50 100 3.7 7.7
30 120 6.1 10.7
20 130 9.2) (13.2)

deviation, the simulation is still able to find reasonable structures with only half
of the constraints correct. A further experiment on myoglobin with 150
constraints, shown in Table VII, shows that the constraints remain useful with as
few as 20% correct. Values in parentheses are actually higher than in a
comparable simulation with no constraints at all. These results support the idea
that, up to a certain limit, more data is better even if it becomes less reliable.

4. Predicting Constraints

The most promising method for predicting distance constraints is based on
correlated mutations in multiply aligned sequences. This approach has been
used in folding simulations with on average about 25% of tertiary contacts
predicted to within +1 residue in the sequence, and it was shown that this is
sufficient to generate reasonable fold predictions [18,61]. In experiments carried
out in our group, summarized in Table VIII, the predicted constraints were
found to be more than sufficient to generate reasonable structures. Predictions in
this case are considered correct if the two Cg atoms are in fact within the 8 A

TABLE VIII
Contact Prediction Accuracy

Target: 1CCR 2LHB IMIL
Sequence length: 107 134 84
Aligned sequences: 10 7 6
Maximum indentity: 62 31 29

Low Sensitivity
Predicted contacts: 88 81 84
Percent accurcy: 93 89 88
High Sensitivity

Predicted contacts: 33 47 45
Percent accuracy: 100 89 87
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well used in the simulation. Results are shown for both low and high sensitivity,
meaning that the criterion used to predict contacts based on the statistical
significance of the sequence correlations was more strict in the latter case.
Although this improves slightly the accuracy of the predictions, the larger
number of total contacts provides a clear advantage for the low sensitivity
predictions. In particular, in the case of IMIL where there are relatively few
aligned sequences with low homology, the selection criterion was of little use
and yet the overall quality of the predictions was quite good.

IV. LIMITING THE SEARCH SPACE

Generic information about protein structure can be incorporated in a simulation
by restricting a priori the conformations that can be generated. If the simulation
is only capable of producing structures with certain realistic properties, the odds
of finding the correct fold are greatly enhanced. In the extreme case, the choices
would consist of a limited number of compact folded structures for the entire
sequence. In such a ““simulation” the global minimization problem is trivial
(exhaustive enumeration becomes feasible) and the scoring function need only
distinguish among topologicaly different structures without reproducing any of
the interactions that stabilize such structures in the first place. Clearly, all the
work is being done in the initial definition of possible trial structures, which
therefore becomes the determining element of the algorithm. There is a
necessary tradeoff between using the characteristics of known folds to limit the
search and running the risk of incorrectly excluding a structure that had not been
previously seen.

A trivial application of this principle, however, is the use in the hierarchical
algorithm of a list of allowed ¢—\ pairs in generating new segments. This
eliminates the need for a scoring function to penalize unfavorable regions of the
Ramachandran map, as well as the need to sample such unlikely regions of the
conformational space. Although the definition of this list is entirely empirical,
based on observation of the PDB, it still represents real interactions that a new
structure would be very unlikely to violate.

A. The Principle of Threading

The most obvious way to select realistic structures is to simply use those that are
already known in the PDB, and this is the basis of what is commonly known as
threading. Threading is normally associated with the problem of fold
recognition—that is, identifying homologous structures in the PDB—rather
than in the context of simulation. It is included here as the limiting case of a
restricted search in order to establish a relationship between the ab initio and
fold-recognition approaches and also to provide a framework for describing
various intermediate methods that have been developed.
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In its simplest incarnation, threading consists of attempting to map the target
sequence onto the backbone coordinates of all structures in the PDB of equal or
greater length. This can be visualized as stringing a flexible chain of amino
acids along the fixed scaffold of a known structure—hence the name threading.
In this simple approach, the number of possible alignments (mappings of the
target sequence onto the corresponding residues of a known structure) is limited,
and most empirical scoring functions are capable of recognizing truly homo-
logous structures. The method fails, however, to identify distant structural
homologs and is obviously incapable of generating any new folds. More realistic
methods allow the connectivity of the template structures to be modified [76]
and allow gaps and insertions to be introduced in the alignments. This, however,
greatly increases the number of possible alignments and makes the problem of
recognizing homologous structures that much more difficult [77].

B. Local Threading and Fragment Lists

One way to overcome the combinatorial problem is to divide the problem into
smaller local alignments. This can be done as a first step in generating a global
alignment to a single known structure [14], or alternatively to identify shorter
segments that align to parts of different structures. The structure of a known fold
can be described by specifying the local environment of each residue: secondary
structure, polarity, and solvent exposure [78]. This allows the threading to be
carried out locally, aligning a linear sequence to a series of profiles by the same
methods used for sequence—sequence alignments, independently of the rest of
the molecule.

The resulting local alignments lead to a large number of possible combina-
tions that must still be reassembled into a single structure. In this situation,
rather than attempting to either select the best local homologs or carry out an
exhaustive enumeration, it is more effective to return to a stochastic simulation
where the local templates act as lists of trial structures for each segment. In this
way, the principle of using a restricted set of conformations can be extended
across various levels of structure: from individual amino acids (as in a typical
simulation) to multiresidue fragments, loop and secondary structure elements,
supersecondary motifs, and ultimately entire domains (as in a typical threading
calculation).

1. Using a Motif Library

A set of commonly occurring structural motifs, along with their associated
sequence profiles (the probability for each amino acid to occupy each site in the
structure), have been extracted from the PDB using local sequence and structure
alignments [13]. Experimental evidence has even shown that some peptides do
in fact adopt the corresponding motif structure in isolation and that strong fits to
the sequence profile can possibly be used to identify sites of folding initiation
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[79]. These motifs have been successfully used in a simulation algorithm to
predict new folds, providing one of the more impressive achievements in the
CASP-3 experiment (see Simons et al. in Ref. 8). This motif library has now
been united into a global prediction scheme using a hidden Markov model to
encode extended sequence profiles [63]. A similar library of loop motifs has
also been used to model loop regions in homology models using the flanking
secondary structure as a guide [80].

2. Mapping Conformational Space

Rather than attempt to identify common motifs, another approach is to try to
identify a minimal set of building blocks that can be used to represent any
known structure [12]. This essentially corresponds to a redefinition of the
geometrical model in which the smallest unit of structure becomes a five- or six-
residue fragment. The result of using this model is a greatly reduced number of
degrees of freedom and a more efficient exploration of conformational space.

C. Fragment Screening and Enrichment

As an alternative to using preselected fragment lists to build up a model
structure, a more general approach is to use the characteristics of homologous
structures to screen possible conformations. The idea is still to allow arbitrary
conformations, as in a traditional simulation, but to increase selectively the
proportion of generated structures with the desired protein-like qualities. By
using homologous motifs from the PDB to define the selection criteria,
sequence-dependent conformational preferences can be introduced into the
simulation without reducing the flexibility of the model.

1. The Hierarchical Approach

In the hierarchical algorithm [40], the structures of the residue triplets are
generated from independent residue conformations which are determined by the
three amino acid types. These triplets are then screened according to the relative
orientations of the end residues, which determine the positions of the flanking
segments. For a given target sequence, the distribution of triplet geometries is
calculated for segments in the PDB which have a local sequence homology
greater than a specified cutoff. This distribution is used to accept or reject
randomly generated triplets so as to reproduce the observed probabilities of
finding a triplet with a given geometry. This generates a sequence-specific list of
triplet conformations which can then be used to generate larger fragments. In
preliminary tests using this method on a set of test proteins, both the average
energy and deviation from the native structures was found to decrease as the
selectivity of the screening (the homology threshold) was increased. In these
tests, any structure with significant global homology to the target sequence was
excluded from the fragment database.
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Loop segments of varying lengths are then built up by randomly selecting
from the lists of triplet conformations. Loops are again selected by comparing
the end-to-end distances and rotations with homologous loops in the PDB.
Although the internal structure of the loops is free to vary, the goal is to generate
structures that are more likely to produce a favorable positioning of the flanking
segments. Because this type of selection is applied successively at three
different levels of structure, the overall process is quite efficient and the cutoff
parameters can be freely adjusted to give the desired level of structural
similarity and sequence homology at various stages of the simulation.

D. Modeling Secondary Structure

Due to its well-characterized regular motifs, secondary structure is an obvious
candidate for fragment-based modeling. Indeed, a common approach, and the
one traditionally used in our group, is to simply hold the secondary structure
fixed during the calculation, which is an extreme application of the principles
described in this section. In cases where the secondary structure is predicted
from the sequence, this is a crude application of fragment selection by sequence
profile. This effectively removes a large number of degrees of freedom and
eliminates the need to use the scoring function to stabilize a-helix and B-sheet
conformations.

This approach can be generalized, and some flexibility reintroduced into the
structure, by developing specific models to reproduce the observed variability
within the regular structures. A list of strand or helix structures can be
assembled from the PDB, with associated error tolerances on the dihedral
angles to account for kinks and imperfections, and this can be used to define the
possible conformations of an arbitrary helix as a single unit. Sheets are in
general more complex and show more natural variability; however, the possible
collective structures have been extensively studied and characterized [81,82].
Using the generic properties of B-sheets, a library of conformations with varying
twist and curvature can be constructed for an arbitrary sequence.

As a preliminary test, we have carried out a series of simulations with a range
of possible helix and strand geometries to determine if the tertiary contacts
would be sufficient to identify the native structure. The list of trial structures
consisted of a continuous deformation from an ideal geometry to the (known)
native geometry, with the same deformation vector extended to also generate
even more deformed structures. The results for a set of test sequences are shown
in Figs. 1 and 2 for helices and sheets, respectively. The deformations are
grouped into discrete bins, and in each case the corresponding native structure
falls into bin number six. For helices, which have a smaller average deforma-
tion, the distribution is relatively smooth with a maximum at the native
geometry. In the case of B-strands, the distribution is more-or-less flat with a
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Figure 1. Helix selection frequency as a function of relative deformation for a set of test
proteins. In each case, bin 1 corresponds to an ideal structure, bin 6 corresponds to the native
structure, and the other bins correspond to a linear extrapolation.
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Figure 2. Strand selection frequency as a function of relative deformation for a set of test
proteins. The bin deformations are as in Fig. 1.

more pronounced peak at the native geometry, suggesting that the correct
deformation does in some sense better “fit together” and is energetically favored.

V. HOMOLOGY AND STRUCTURAL TEMPLATES

For homologous proteins, a threading alignment as described in the previous
section can be used to provide a template for the entire structure. In the absence
of global homology, however, local alignments can still be used to extract



KNOWLEDGE-BASED PREDICTION OF PROTEIN TERTIARY STRUCTURE 215

localized structural constraints. This approach, unfortunately, results in the loss
of any information about the overall topology of the tertiary structure, which is
the most difficult part of the folding problem. An alternative is try to identify a
smaller number of aligned residues, possibly with significant gaps, in order to
provide key reference points for determining the overall structure. In this case,
much local information will be missing, and local structure must still be
determined using standard simulation methods; however, the relative three-
dimensional positions of different parts of the structure can be controlled. This
is consistent with the chemical interpretation of a relatively small number of
conserved residues playing an important role in both fold stability and function
(although of course there are many exceptions to this picture.) When the
homology is weak, it may be more effective to try to identify the most probable
conserved residues than to rely on a global alignment that is likely incorrect.

A. Identifying Structural Templates

The most straightforward approach is to carry out a standard threading
calculation and exclude regions with a poor alignment score. Template residues
can also be excluded in regions where the target is not predicted to have a
regular secondary structure, or where the template secondary structure differs
from that predicted for the target. In this way, the parts of the alignment most
likely to correspond to a stable core can be identified and the simulation can be
used to fill in the gaps. In our implementation, the superposition of the selected
residues with their corresponding coordinates in the aligned template structure
is then used as an additional contribution to the scoring function. Another
approach is to constrain the simulation to follow the template structure, but to
allow the specific alignment to change during the simulation [83].

Positions likely to be conserved in a sequence can also be identified by
searching through a database of known sequence patterns such as PROSITE
[84]. In our approach, patterns identified in the target sequence were then used
to search the PDB for structures containing the same patterns. The coordinates
of the conserved residues were then averaged over all matching structures to
generate a composite template that was then used in the simulation. An experi-
ment was carried out for the myoglobin sequence (1IMBO) using coordinates
from seven structures in the PDB having less than 20% sequence identity with
IMBO to obtain the template coordinates. The results of the simulation are
shown in Table IX as a function of the number of template sites used. Good
structures were obtained using a template with a relatively small number of
aligned residues.

B. Multiple Templates

In many cases there may be more than one possible template for a given target
sequence. This can arise from different choices of reference structure, or for the
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TABLE IX
Performance as a Function of Template Size for IMBO
Size of Template Low RMS Average RMS
0 9.5 13.8
11 4.7 9.4
25 3.0 4.2
50 2.4 33
146 2.1 3.0

same reference structure different alignments and choices of predicted secondary
structure. In addition, different parts of the target sequence might align well to
different structures in the PDB. In such cases, the simulation can be used to
choose among conflicting alignments and to combine different templates.

1.  Template Competition

In our implementation, the same philosophy is used as in the case of distance
constraints. The scoring function is a spline-fit switching function of the actual
superposition RMS deviation with the template coordinates. This function is
equal to —1 below a lower cutoff value, equal to zero above an upper cutoff
value, and varies smoothly in between the two. Conflicting templates can there-
fore be used simultaneously, and a favorable score will be obtained for structures
that superpose well on any one or more of them and no penalty is assessed for
distant templates. The simulation can therefore be used to identify which of the
possible templates gives the best fit consistent with the connectivity of the
sequence and the generic scoring function.

2. Results

This methodology was used in the most recent CASP experiment, from which
two representative examples will be described which illustrate how the methodo-
logy was applied. For sequence TO0089, threading results suggested eight
possible templates for the N-terminal region, four possible templates for the
C-terminal region, and three or four different alignments and secondary-
structure assignments in each case. None of the alignments had a sequence
identity greater than 15%, and in addition there was a gap of about 120 residues
between the two templates. Simulations were run using all possible combi-
nations of two templates, and the final prediction was selected based on the fit
to the templates, the overall energy, and the ability of the connecting segment
to fold.

The situation was reversed in the case of sequence T0087, where instead of a
gap there was an overlap of over 100 residues between the two proposed
templates. In this case, 11 choices for the N-terminal region and six choices for
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the C-terminal region were identified, all with about 10-15% sequence identity.
For each possible combination the two templates were used simultaneously,
thereby generating a conflicting set of constraints for the region in which the
two overlapped. The final prediction was selected as that which provided the
best simultaneous fit for both templates, thus hopefully giving a relative
orientation of the two domains consistent with the context of each.

Unfortunately, the preliminary results indicate that none of the proposed
templates was correctly aligned to the native structure, so it is difficult to judge
the performance of the simulation methodology. In each case, however, the
submitted structures were correctly ranked, with the best one selected as the first
choice.

C. Local Templates

The use of multiple simultaneous templates can also be extended to model
generic structural motifs. In contrast to the method of segment libraries dis-
cussed earlier, these are structural relationships which are nonlocal in sequence;
rather than describing the local backbone conformation, the goal is to describe
the relative spatial orientations of different structural elements. The use of
multiple templates allows different possibilities to be considered, thereby provi-
ding a library of three-dimensional relationships. This use of generic structural
templates provides a general alternative to local multibody scoring functions
that recognize specific structural motifs.

1. B-Strand Pairing

Generating realistic -sheet structures is a notoriously difficult problem due
to the specific relative orientation of noncontiguous backbone segments
produced by the H-bonding pattern. The H-bonds themselves, however, are
short-range interactions that are difficult to simulate and often fail to produce
the desired overall structure. Specific multibody interactions that take into
account strand orientation are therefore often used to overcome this problem
[45,85-87].

An alternative approach for correctly aligning two B-strands is to extract a
template of a similar strand pair from the PDB, which can then be used to
superimpose the target strands. A library of possible pairings can be generated
based on sequence homology, and the technique of multiple templates described
above can be used to select a suitable candidate for each interacting strand pair.
To determine whether or not templates derived from unrelated structures could
provide correct strand-pairing geometries, the closest structural homologs in the
PDB were identified for a number of strand pairs, along with the best super-
position in a list of the top 10 sequence homologs. Shown in Table X are the
results of this experiment for the mixed o/f protein ribonuclease A (2RAT).
(Sequences with more than 20% overall similarity to the target were excluded



218 PIERRE-JEAN L’HEUREUX ET AL.

TABLE X
Strand-Pairing Templates for 2RAT
Strand Pair Length Best Possible Homologous
1-4 5,8 0.64 A (1BIA.1) 0.99 A (1ZXQ)
4-5 8, 8 0.82 A (1IBYT) 1.93 A (2ZMEV.2)
2-3 3,3 0.08 A (8FABA.A) 0.16 A (2ENG)
3-6 3,6 0.34 A (1EFT) 0.81 A (1BLL.A)
6-7 6,8 0.91 A (1A62) 2.56 A (1CBJ.A)

from the calculation.) Reasonable models can be obtained for each pair, despite
the lack of global homology.

2. Hydrophobic Contacts

A similar approach can also be applied to helix pairs, which, despite being
linked only by hydrophobic contacts, tend to pack in well-defined relative
orientations. It has been shown that by identifying conserved hydrophobic
contacts between different helices, a model can be found in the PDB which
reproduces the correct helix—helix packing and can be used to reconstruct the
tertiary structure [88]. Because the helix structure is very regular, a single
contact geometry is sufficient to generate a helix template of arbitrary length
using a standard backbone conformation.

VI. NEW DIRECTIONS

The next logical step in the evolution of structure prediction is to generalize
further the knowledge-based methods described so far in order to make
maximum use of the motifs in the PDB, even in the absence of any detectable a
priori homology, and to eventually replace the physically motivated idea of a
universal energy function. Local structure will be modeled using fragment
libraries, inter-residue interactions through generalized distance constraints, and
multibody correlations through localized motif templates. The scoring function
will become a moving target that adapts itself to the results of the simulation,
adding a knowledge-based component to the already sophisticated search
methods currently in use.

A. Sequence-Specific Potentials

Flexible distance constraints can be used to express the probability of forming
different specific contacts in the structure, based on the context of each residue.
Conceptually, if contact probabilities were to be predicted solely on the basis of
amino acid type (hydrophobic residues are more likely to be in contact with
other hydrophobic residues), this simply reduces to a traditional generic energy
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function. Pair potentials have already been developed which derive contact
probabilities based on local sequence [19], local secondary structure [51], and
B-strand pairing [50]; any other observed correlation can be combined and
expressed in the same way. Generalized sequence-based methods (such as in
Ref. 63) can also be used to derive sequence-specific scoring functions for local
conformation and structural context, allowing for a customized selection of
fragments and templates.

B. Constraint Refinement

The results of the simulation itself can also be used to improve the prediction of
inter-residue contacts, thus allowing an iterative series of simulations to
generate successively more specific scoring functions. This is analogous to the
use of iterative simulations in assigning NOE signals in NMR spectroscopy
[21], except with purely theoretical input. It has been shown, however, that the
statistical analysis of an ensemble of predicted structures can be used to derive
more accurate contact information than any of the structures individually [35].
Preliminary experiments in our group have shown that it is possible to start with
a large number of possible contacts and, by successively eliminating those that
are observed less frequently in the ensemble, to eventually identify the correct
native contacts.

VII. CONCLUSION

Considerable progress has been made over the past few years in developing
practical tools for structure prediction. Geometrical models, empirical scoring
functions, and global minimization algorithms have all evolved together to
increase the efficiency and selectivity of simulation-based methods. Different
techniques have advantages and disadvantages: Discretized models gain in
sampling efficiency at the expense of resolution, template models carry more
three-dimensional information, constraint-based methods are less sensitive to
alignments, and so on. The result, however, is an increasingly complete
spectrum of methods that are beginning to achieve meaningful results in a
variety of real-world applications. As more and more information is being
added to sequence and structure databases, there is every reason to expect this
trend to continue.
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I. INTRODUCTION

In previous work [1-4], we have investigated the ability of simple potential
functions, derived from statistics in the Protein Data Bank (PDB [5,6]), to gen-
erate correct predictions of protein tertiary structure given the native secondary
structure as input. Most recently [2], we studied an unbiased sample of 95
proteins in the size range of 30-160 residues, and we were able to locate native-
like low energy structures in a significant number of cases. However, there were
also many examples of unsatisfactory performance; furthermore, the utilization
of native secondary structure derived from PDB coordinates is an obvious
limitation in terms of the utility of the method for protein structure prediction.
Thus, a significant improvement in the potential function, along with tests under
more realistic conditions, were required before one could consider applying the
methodology to problems of practical interest.

A principal reason for carrying out the studies described above was to
generate a large database of plausibly misfolded structures in the hope of
elucidating systematic flaws in the database potential function that we em-
ployed, a principal component of which is the pairwise potential of mean force
developed by Sippl and co-workers [7]. We have recently uncovered one
systematic error in the Sippl formulation of the statistical pair potential, and
we remedied this deficiency in a straightforward fashion: The potential function,
at least as applied to the problems discussed here, should be dependent upon the
size of the protein, a feature that has also been uncovered in other, more
theoretical work [8]. To this end, we developed a statistical potential that is
derived from proteins that are similar in size to the protein for which a
prediction is to be made. The result is a new type of statistical pair potential
with qualitatively improved predictive properties in tertiary folding simulations.
While the new potential function is still not rigorously predictive of the native
structure in all cases, application to actual protein structure prediction problems
is now a much more feasible goal.

Having achieved this advance in the potential function, we relaxed the
assumption of accurate knowledge of native secondary structure and examined
the capabilities of the methodology with more realistic types of input data. In
the present chapter, we approach this objective in two stages. First, we carry out
simulations using ideal, rather than crystallographic, representations of the
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secondary structure elements (while still deriving the location and length of the
various elements from the PDB). For a-helices, the use of ideal helices leads in
some (but not all) cases to a quantitative degradation of the quality of the results;
in general, however, qualitatively similar success is achieved. For all o- and
mixed o/f-proteins, there is an occasional substantial diminishment of the rank-
ing of the lowest energy low RMSD structure, when idealized strands are used.

Second, we carry out computational experiments using secondary structure
assignments derived from secondary structure prediction methods in conjunc-
tion with ideal secondary structural elements. This protocol constitutes an actual
attempt at ab initio protein structure prediction; no experimental data other than
sequence information is input into the calculations (other than, of course, the
input of PDB statistics to derive the tertiary folding potential and secondary
structure prediction algorithms). Because secondary structure prediction meth-
ods have not yet reached a high degree of robustness, we perform calculations
using several different predictions generated by a variety of alternative second-
ary structure prediction methods (which are conveniently available on Web-
based servers). While there are nontrivial cases where the native-like fold is
uniquely determined by the algorithm, our objective at present is not to
demonstrate successful ab initio prediction. Instead, we ask whether the
protocol is capable of generating a prediction with a good RMSD that is highly
ranked (e.g., within the top five predictions, a condition compatible with the
rules of the CASP3 prediction contest). For a significant number of cases, this
goal has been accomplished. Furthermore, in most cases where our algorithm
fails to generate a native-like fold in the top five predictions, we are able to
rationalize the results in terms of limitations of our model and propose
straightforward extensions to generalize and improve the model. These pro-
posed extensions are briefly discussed at the end of this chapter.

We have chosen in this chapter to focus our efforts on a-helical and mixed
ao/B-proteins below 100 residues in size. In previous work [2] we showed that -
strand proteins present more of a challenge to our prediction methodology than
a-helical or mixed o/f-proteins [9-12]; the modified size-dependent potential
function discussed above improves the results of earlier work on -strand
containing proteins, but does not change the basic conclusion. For larger
systems, our results are quite promising but not yet at the stage of completeness
that we have been able to achieve for the smaller proteins. Consequently, we
defer discussion of these cases to a subsequent publication.

The chapter is organized as follows. Section II describes the new potential
function, discussing its novel qualitative features and presenting an algorithm
for optimization of parameters using a large training set derived from the PDB.
Section III briefly reviews the computational methodology used to carry out the
tertiary folding simulations (previously described in detail [2]) and then presents
simulation results using native secondary structure and ideal secondary
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structure. As a test set in this section, we employ a subset of the proteins studied
previously [2] so that comparisons can be made with the results reported in that
publication, and improvements in the potential functions quantified. In
Section IV, we utilize predicted secondary structure lengths and positions and
ideal secondary structure elements to carry out ab initio prediction experiments;
we focus in this chapter on helical proteins, and include, in addition to proteins
from the test set of Section IV, two targets from CASP3 [13]. Section V, the
conclusion, summarizes our efforts.

II. DEVELOPMENT OF A SIZE-DEPENDENT POTENTIAL
ENERGY FUNCTION

A. Identification of Systematic Errors in Previous
Tertiary Folding Simulations

Although the tertiary structure prediction protocol employed in our previous
work [2] was more or less able to consistently generate native-like structures for
a- and mixed o/B-proteins, the energetic rank of these structures was not always
satisfactory. An analysis of high-RMSD, low-energy structures obtained from
those simulations reveals a systematically incorrect behavior of the statistical
potential function of Sippl and co-workers [7] at large separations, most
prominently for pairs of hydrophilic residues. This feature of statistical potentials
has been uncovered in several other computational experiments [8,14].

The hydrophobicity term developed by Sippl was originally used only for
recognition (i.e., threading), so it is not surprising that some modifications
would be required for the asymptotic large-distance parts of the energy surface.
It remains to be seen whether or not the general type of systematic errors
uncovered in our tertiary structure predictions are present in the threading
studies of others using similar potentials. A complete derivation of the
coefficients by Sippl and co-workers can be found in Ref. 7. The two key
elements of interest in the derivation of the hydrophobicity function are the
inclusion of proteins of many sizes in the definition of a statistical “potential of
mean force” (PMF) and the asymptotic behavior of these potentials when they
are linearly extrapolated to large distances.

In Ref. 7 an individual PMF for residues i and j, separated by a distance d, is

defined as
1
p;(d)
E; = —kT In| -2 1
! (pz(d)> o

where pilj(d) is the normalized distribution of d for all i, pairs in a training set
and p?(d) is the normalized distribution of d of irrespective of residue pair. The
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training set Sippl used consisted of 88 proteins that ranged in length from 46 to
374 residues. Note also that Eq. (1), which is sometimes known as the ‘“‘quasi-
chemical approximation,” applies only to residues separated in sequence by
more than 20 amino acids (at least in Ref. 7).

Equation (1) is only defined for distances that correspond to nonzero values
of both distribution functions. For this set of distances, Ej; is well-approximated
by a linear function

EP" = (Hy+ Ho)d (2)
where H;; is one of 400 “pairwise hydrophobicities” and Hj is an adjustable
“average hydrophobicity,” for which Sippl suggest the value 0.36. (In our own
simulations, Hy was increased if local minimization starting from the native
structure yielded noncompact structures.)

The basic idea inherent in the development of the Sippl hydrophobicity
potential, that of extracting a potential of mean force using PDB statistics, is an
essential component of our empirical tertiary folding potential. However, based
on our analysis of the low-energy misfolded structures generated in our previous
experiments [2] described above, we propose to improve upon the detailed
methodology for construction of the PMF by implementing the following
modifications:

1. The derivation of an individual PMF for tertiary structure prediction of
protein P is to be based only on proteins of roughly the same size as P.

2. In the large and small distance limits, a functional form other than Eq. (1)
is to be used. The precise representation of the potential that we use to
accomplish this is described below.

The first of these objectives appears rather straightforward to implement.
However, a reduction in the number of proteins used to derive the distributions
means we will most likely reduce the signal to noise ratio in the PMF. We
addressed this problem in the following fashion. At short range, where no
systematic errors were observed, we generated the usual distance statistics for
each amino acid pair, averaging over proteins of various sizes. In addition to
considering amino acid type, we also took into account the secondary structure
type (a-helix, B-strand, loop/coil) of the residue pair for short-range statistics.
At a pair separation larger than a cutoff distance R (a value of 15 A was used in
all calculations), we grouped the amino acids together according to hydro-
phobicity. A total of four classes are defined (Table I). The statistics of residue
pair i,j were grouped together with those of pair j, i so the total number of pairs
was giVen by Nclass [Nclass - 1}/2 + Nclass~

The reduction in the number of pairs from 210 to only 10 offsets the
reduction in the number of proteins well enough that we can obtain an adequate
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TABLE 1
Hydrophobicity Class”
Class Amino Acids
Weakly hydrophobic Ala, Cys, His, Leu, Met, Phe, Tyr
Strongly hydrophobic Tle, Trp, Val
Weakly hydrophilic Asn, Gln, Gly, Pro, Ser, Thr
Strongly hydrophilic Arg, Asp, Glu, Lys

“The definitions used to bin long-range distance statistics according
to hydrophobicity are listed.

signal-to-noise ratio. The justification for this approach is that at large separa-
tion the probability distribution should not be sensitive to the specifics of the
amino acid pair (e.g., the size of the side chain) but only to the propensity to
reside on the surface of the protein as opposed to the interior. Support for this
idea comes from the work of Yue and Dill [15], who carried out tertiary folding
simulations with fixed secondary structure for a series of small proteins, many
of which were also studied by us using a Sippl-based potential. What is striking
is that, although Yue and Dill used only a two-letter code (hydrophobic and
hydrophilic), in many cases their results were qualitatively similar to the ones
we obtained using a much higher level of detail in the amino acid pair functions.
This suggests that the considerably less drastic simplification we are making
(including the retention of a fully detailed pair distribution for short distances,
allowing packing effects to be described more accurately) is plausible, although
this must of course be validated by the actual results.

The proteins are binned according to radius of gyration using the following
formula

size = int(15Rg'/® — 29) (3)

where int(x) is the largest integer that is less than or equal to the real number x.
Once the long- and short-range pair statistics are accumulated, they can be
spliced together to generate a complete distribution for each amino acid pair. The
assumption is that in the region around Ry, the individual pair distributions have
already converged toward the hydrophobicity class pair distributions. By
appropriately scaling the data, a potential valid over all distance ranges is
generated for each amino acid pair in each size class.

The second modification was implemented by setting the PMF to a constant
at distances outside of the observable range:

—kT In(g) (d < dinin)
1
Ej=q —kTIn[%3]  (dnin < d < duwr) (4)

—kT'In(e,) (d > dimax)
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where din and dyax are the lower and upper bounds, respectively, on the distance
range over which we were able to collect good distance statistics (the distribution
function had to be greater than or equal to 0.001). The parameters €;and €, were
also set to 0.001. In addition to the residue pair potential above, we included a
second long-range energy term that is somewhat analogous to the average
hydrophobicity Hy in the linear case, in that it ensures compactness. This term,
which we will refer to as the density profile, is given by

—kT'In(p*(d,)) (d < d,)
El“ = —leIl(pz(d)) (dx <d< dmax) (5)
—kT'In(g;) (d > dmax)

where d, is the distance at which the residue independent distribution function
p?(d) is a maximum. The final long-range energy is a linear combination of
Egs. (4) and (5) (with weights 1 and 0.6, respectively). The optimization of the
density profile in the scoring function is a key ingredient in properly constraining
the potential in the large separation limit.

In Egs. (1)—(5) inter-residue distances are defined in terms of a single side-
chain interaction point. This point, which we will refer to for simplicity as Cg,
is actually the projection of the average side-chain geometric center onto the
C,—Cg bond vector.

The only function that depends on distances other than Cpg—Cg is the excluded
volume potential, which depends on C,—C,, C,—Cg, and Cp—Cg distances. The
functional form of the excluded volume term is the same as in previous work

[16]:
d 10
exvol ij
Eij = exp _<d_§>

where the width of the excluded volume region d° is derived from the distance of
closest approach for the residue pair in question in the training set.

Equations (4) and (5) are not evaluated explicitly in the minimization
program, but are fit using a combination of spline [17] methods, which provide
stability, the ability to filter noise easily, and the flexibility to describe an arbi-
trarily shaped potential curve. Moreover, the final functional form is inexpen-
sive to evaluate, making it amenable to global minimization. The initial step in
our methodology is to fit the statistical pair data for each amino acid and for the
density profile to Bezier splines [17]. In contrast to local representations such as
cubic splines, the Bezier spline imposes global as well as local smoothness and
hence effectively eliminates the random oscillatory behavior observed in our
data.
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Figure 1. Data smoothing via Bezier and cubic splines. Bezier splines are shown as circular
data points which approximate a typical noisy density profile (black line). Cubic splines (dashed
line) are then fit to the Bezier data points (at a higher resolution than is shown here).

While Bezier splines are an optimal approach for smoothing noisy data, they
cannot be rapidly evaluated using local interpolation methods. We therefore
next fit a cubic spline to the Bezier spline curve. Figure 1 compares the Bezier
spline and cubic spline curves for the same dataset; it can be seen that there is
no meaningful difference between the two. Cubic splines can be evaluated
rapidly at an arbitrary value of the residue pair separation using a standard
interpolation formula (see, e.g., Ref. 17 for details). The spline coefficients
needed for carrying out the interpolation are preprocessed and stored in fast
memory during the simulation; the computational effort required to evaluate the
spline potential is not much larger than that, for example, to determine the inter-
residue distance.

B. Further Improvement of the Potential Energy Function

As Eq. (5) shows, the original form of the PMF used by Sippl and co-workers (1)]
remains essentially intact in regions where good statistics are available, although
more weight is given to the density distribution. The validity of treating different
amino acid pairs as essentially independent, as in Eq. (1), has recently been
questioned by Thomas and Dill [18]. They proposed an improved approach
based on an iterative algorithm, the goal of which is to have the Boltzmann
distribution of distance pairs associated with the potential energy function agree
with the distribution derived from native structures. The following are the
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components of the iterative cycle:

1. Initialize the potential to values obtained from the quasi-chemical
approximation.

2. Use this potential to generate structures; determine the relevant
distribution functions (in our case, residue pair separation probabilities)
from the simulated data.

3. If there are deviations between the two, the potential is corrected so as to
minimize them.

4. A simulation is carried out with the new potential, and a new set of
statistics is generated.

5. Steps 3 and 4 are repeated until the deviation between the statistics from
the simulated data and the experimental data have been reduced to an
acceptable level.

For tertiary folding, there are three major problems in implementing this
strategy. First, generation of simulated data is computationally expensive if a
large training set is to be used. Second, one has to define the ensemble of
simulated structures from which to extract statistics. For example, does one
keep, only the lowest-energy structure for each protein or keep an ensemble of
low-energy structures? Third, there is the question of how to update the potential
function. In what follows, we adopt a heuristic approach to these issues; the
protocols presented here represent preliminary explorations of this strategy and
no doubt can be improved upon. In the present work we have chosen to optimize
the potential function by comparing the distribution of locally minimized native
structures with that of the native structure itself. The idea is that if the mini-
mized native structure is as close to the native structure as possible, the basin of
attraction associated with the minimized native will yield acceptable low RMSD
predictions. From numerous computational experiments that we have carried
out, resemblance of the minimized native structure to the native structure is
clearly a necessary condition for obtaining useful predictive results; if the
minimized native structure has, for example, a high RMSD from the native, one
typically will fail to locate anything reasonable in a full-scale tertiary folding
simulation starting from an unfolded state. Whether this is a sufficient condition
for robust results in such simulations is one of the principal subjects of the
present chapter. We briefly summarize here the entire optimization cycle,
drawing on the results of the previous sections as well as on the basic idea
described above. The steps of the optimization cycle are outlined as follows:

1. Initialization:

a. The training set of native structures, with secondary structure assigned
by DSSP [19], is read into the optimization program.
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b. Proteins are sorted into size bins according to their radius of gyration
using Eq. (3).

c. The iteration counter is initialized to zero (it = 0).

d. A potential energy function Ey is computed from distance distribution
functions based on the native structures.

2. All native proteins are locally minimized using Ej;.

3. A potential energy function E.;, is computed for each size bin based on
statistics derived from the minimized structures.

4. The difference between E.;, and E, is calculated:
Egitft = Eo — Emin

5. The iteration counter is incremented and Ej is updated by adding a
correction that is proportional to Eg;ss:

it=1it+1
Ei = Ei—1 + kaitrEqise

(A proportionality constant equal to 0.1 was chosen empirically so as to
damp oscillations in the optimization procedure.)

6. Steps 2-5 are repeated until substantive improvements are no longer
produced in the RMSDs of the minimized native structures.

In addition to the RMSD, the energy gap between the native and the minimized
native was monitored. The smaller this energy gap, the better in general we have
observed the performance of the potential to be in tertiary folding simulations. In
our initial efforts we utilized a more elaborate short-range potential function that,
in addition to the Cpg—Cp term described in Section II A (above), included both
Cp—C, and C,—C,, terms. The additional terms involving C, were included in the
iteration process described above. Subsequently, however, the extra terms in the
short-range potential were not used in the tertiary structure predictions, because
we did not see an overall improvement in the results when they were included.
Another important difference between the potential energy function used in the
above iterative procedure and the one used in actual tertiary structure predictions
involves the density profile function. In the iterative procedure, this function was
not flattened at d < d, [see Eq. (5)]. However, we found that we could improve
the ranking of native-like structures with this simple modification. Thus the
improvement of the potential energy function was ultimately achieved by a
combination of the iterative algorithm described above and manual inspection of
the individual terms after parameter optimization.

Because it is computationally expensive to carry out global minimizations on
a large test set, we are unable to objectively determine the amount of improve-
ment with respect to the zeroth-order potential (Ey) realized by the optimization
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procedure outlined above. But given the fact that several proteins, which were
unstable in local minimizations starting from the native using E,, yield
acceptable RMSDs using the optimized potential, we believe that parameter
optimization can effectively remedy some of the deficiencies of reduced model
approaches. The issue of parameter optimization along the lines of the procedure
outlined above as well as other approaches in the literature (for a review see
Ref. 20) will be the subject of future work.

C. Resulting Potential Energy Function

Table II lists the proteins used in the training set, a subset of the PDB Select
database of nonhomologous proteins [21]. We avoided inclusion of proteins that
form dimers (or other oligomers) in solution because one would expect the
distributions in this case to be significantly altered due to the oligomerization
process. For each protein we list the PDB code, number of residues, radius of
gyration, and classification in our size bin scheme.

Figures 2—4 show the size dependence of three representative terms in Eq.
(4) (after being fit to splines, as described below) for the amino acid pairs
arginine—arginine, arginine—isoleucine, and isoleucine—isoleucine for the first
six size bins (the bins relevant to the prediction results discussed in this
chapter). Figure 5 shows the density profile [Eq. (5)] for the same size bins.
Note that because the total energy is a linear combination of Egs. (4)—(6), the
oscillatory behavior at large distances (>15 A) of the potentials in Figs. 2—4 is
effectively masked by the density profile; in the short-distance limit, the
excluded volume term serves a similar purpose. The energy plots in Figs. 2—4
show clearly that a linear function is a good approximation over the most
populated distance ranges (10-20 A). Moreover, the slopes in these regions can

TABLE II
Training Set”

Size PDB Size PDB Size PDB

Bin  Name N, R, Bin Name N R, Bin Name Nres R,
1 Ichl 36 8.8 5 1svr 94 12.1 7  lbvh 153 14.5
1 lerd 35 8.4 5 lvee 77 12.1 7 1c25 154 14.8
1 Iret 37 8.8 5 1wkt 88 12.1 7  lcdb 101 14.0
1 2erl 35 8.2 5 2abd 86 12.6 7 Icfe 135 14.0
1 3bbg 40 8.7 5 2bby 69 12.0 7  Ichd 198 15.0
2 1bor 52 9.3 5 2ezh 65 11.9 7  lcur 150 14.2
2 ldec 39 9.7 5 2fow 76 11.8 7 ldef 147 14.0
2 lgps 47 9.6 5 2hgf 97 12.5 7 leal 127 14.3
2 Isco 38 8.9 5 2hp8 68 11.7 7  lhfc 157 14.6
2 lzwa 29 9.1 5 2rgf 93 12.5 7  lido 184 14.9
2 2bds 43 9.3 5 2sx1 88 12.6 7 ljpc 108 14.1
3 lafp 51 9.8 6 lalx 106 13.5 7 el 141 14.3
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TABLE II (Continued)

Size  PDB Size PDB Size PDB
Bin  Name N, R, Bin Name N R, Bin Name Ny R,

lafp 51 9.8
lapf 49 9.7
lark 56 9.9
lawo 57 104
Ibrf 53 10.1
Icka.A 57 10.1
1tih 53 10.6
1zaq 44 9.9
2brz 53 105
Spti 55 10.6
lab7 89 11.6
1ah9 66 109
1c5a 65 11.2
lehs 48 11.6
lhoe 74 114
1kbs 60 11.3
1leb 72 113
1msi 66 10.7
Inkl 78 113
lopd 85 11.6
1pih 73 109
1pou 71 112
Itpn 45 11.0
lubi 71 109
luxd 59 115
1vif 60 10.9
1vig 67 112
2ech 49 11.1
2hqi 72 10.7
2igd 57 10.7
2sn3 65 10.8
laba 87 125
lagd 103 125
laoy 74 12.0
lawd 94 11.7
lawj 77 117
1bdo 80 119
lbxa 105 12.6
lcyo 88 12.6
Imbl 98 123
Imzm 86 11.9
1put 106 122
Ispy 85 122

lalx 106 13.5
la2p.A 108 13.6
lacz 108 13.8
Ibea 116 13.6
Ibfg 126 13.0
1bkf 107 13.3
Ibtn 106 13.1
Ibuz 116 13.2
Ibw3 125 13.7
1c52 131 13.5
lexg 110 13.6
1fna 91 13.4
lhed 118 134
lirs. A 108 13.4
ljer 110 13.5
Lkt 110 13.6
Iksr 100 13.8
1kte 105 132
lkuh 132 13.6
11it 131 13.4
llou 97 13.2
1mai 119 13.7
Ipne 139 13.8
Irie 123 13.6
Isfp 111 13.4
1tit 89 12.9
Itul 102 13.5
1whi 122 13.6
Iwiu 93 13.0
2bb8 71 12.9
2mem 112 13.4
2phy 125 13.3
2pld. A 101 13.7
2tbd 128 133
3chy 128 13.3
3nll 138 13.6
1531 185 14.9
lahk 129 14.8
lax3 156 14.3
layo. A 125 14.9
1b10 104 139
1bc4 110 14.5
Ibel 137 13.9

1lcl 141 14.3
Imak 113 14.0
Imup 157 14.7
Imut 129 14.6
1poa 118 14.3
1rcf 169 14.5
Isvp.A 155 14.8
1vhh 157 14.5
2a0b 118 14.7
2ezl 99 14.7
2hbg 147 14.7
2hth 93 13.9
2ilb 153 14.7
2sns 136 14.4
2vil 126 14.0
3cyr 102 14.2
5p21 166 14.8
lamx 150 154
lagb 175 15.8
latl,A 200 15.9
1ble 161 15.1
lcex 197 15.2
Icto 109 15.1
1kid 189 16.2
1knb 186 16.1
Inp4 184 15.5
1pkp 145 15.1
1ra9 159 15.5
1rlw 126 15.3
1sfe 165 15.7
1std 162 16.0
IvhrA 178 15.5
1xnb 185 15.2
lyua 122 15.2
2gdm 149 15.1
2pth 193 15.4
2rn2 155 15.3
2sak 121 15.4
1191 162 16.5
lasx 152 16.6
1gky 186 16.4
Ipbw.B 195 17.3
2ucz 164 16.5

[ BNV RV SRV, B R RV BV R R Y R N N N T T s T ST S T S G S S SN SN SN SN SN SN SN~ US I UC R USSR UV R U B US R OSSOV IR U ROV )
B N M I e e e e Wie Wie ) We W Nie Wie) Jle e Wie lie) Wi e Ne e N N e Mo Nl Mo N« Nl e N N e Nle e N e Nl e N Yo o N
O O O O O 00 0 00 00 00 0 0 0 0 0 0 0 00 00 00 0 OO0 0000 00 1 1 1 0 30 0 990900099992

“The training set listed was used to derive the size-dependent potential. Size bins are defined in terms
of radius of gyration (R,) rather than number of residues (Nes).
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Figure 2. Size dependence of three representative terms in Eq. (4) for the amino acid pair
arginine—arginine—arginine. Data for the first six size bins are shown.
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Figure 3. Size dependence of three representative terms in Eq. (4) for the amino acid pair
arginine—isoleucine. Data for the first six size bins are shown.
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Figure 4. Size dependence of three representative terms in Eq. (4) for the amino acid pair

isoleucine—isoleucine. Data for the first six size bins.
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Figure 5. Density profiles for the first six size bins.
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be easily rationalized: The arginine—arginine residues are pushed apart, while
the isoleucine—isoleucine interaction is attractive. The arginine—isoleucine term
is repulsive is well, but the minimum values occur at shorter distances than in
the corresponding arginine—arginine plots, consistent with our intuitive picture of
a spheroid with hydrophilic residues residing primarily on the surface. Not
surprisingly, the basic effect of the density profile is to restrict the interresidue
separation as a function of protein size. Note also that the density profile is the
most sensitive to protein size (although the isoleucine—isoleucine pair potential
clearly decreases with size).

Figure 6 illustrates the effect of adding the excluded volume and density
profile to the arginine—arginine, arginine—isoleucine, and isoleucine-isoleucine
potentials, respectively, for size bin 6. We see here that the linear portions of the
potential are now restricted to a small range in distance (about 6-12 A), outside
of which the density profile and excluded volume become the dominant terms.
The energies of each of the three residue pairs at large separation (e.g., 25 A)
relative to their minimum values increase in the expected order (Epeqe >

EArg—lle > EArg—Arg) .

Energy

L 'ARG.ARG.6' ——
oL 'ARG.ILE6' ---
ILE.ILE.6' ----

1'5 1 1 1 1 1 1 1 1 1
0O 5 10 15 20 25 30 35 40 45 50

Distance

Figure 6. Total energy for three representative residue pairs: arginine-arginine, arginine—
isoleucine, and isoleucine—isoleucine. The data corresponds to size bin 6.
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III. TERTIARY FOLDING SIMULATIONS: PDB DERIVED
AND IDEAL SECONDARY STRUCTURES

A. Physical Model

The physical model of the polypeptide chain we use has been described
previously [2]; a few minor modifications are introduced as noted below. All
bond angles and bond lengths are fixed at ideal values. The variables in the
optimization are the torsional angles ¢ and \/ of the peptide backbone. Each
residue is represented by a C,, atom and a Cg-like atom. The Cg atom position is
given by the average projection of the side-chain center of mass onto the C,—Cg
bond vector.

We employ three different methods to describe the location and three-
dimensional structure of secondary structure elements (i.e., o-helices and
B-strands). The first is to take both the sequence location and backbone angles
(which are frozen during the simulation) directly from the PDB entry. This is
obviously not a realistic data set in a predictive situation, but is an essential
computational experiment in that it indicates what level of accuracy is possible
with “perfect” secondary structure information. The second is the replacement
of PDB backbone angles with ideal backbone angles; this separates the effects
of distortion of secondary structural elements from ideal geometries from errors
in location in the sequence or in length. For these two types of calculations the
correct size-dependent potential is selected by evaluating the radius of the
gyration of the corresponding native structure. The third is to employ predicted,
rather than PDB, secondary structure (along with the use of ideal geometries for
the predicted elements) and to select the correct potential by predicting
the radius of gyration from the number of residues of the target [22]. We have
carried out an extensive investigation in this regard, using secondary structure
prediction from various secondary structure prediction servers that are available
over the Internet. These results are then combined to produce genuine ab initio
structural prediction. The results, while far from a robust ab initio methodology
over all protein types, yield important insights into the key obstacles to ab initio
prediction and are in many cases surprisingly accurate. Predictions from the
CASP3 contest are also included so that comparisons can be made with the
work of others. While we are not generating these predictions as a blind test, it
is the case that our CASP3 calculations were carried out using our software in a
completely automated fashion, with no readjustment of parameters after
obtaining results for the CASP3 targets.

B. Simulation Methodology

Our simulation methodology is identical to that presented in previous
publications [2], so we will describe it only briefly here. The algorithm is based
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on the Monte Carlo plus minimization (MCM) strategy proposed by Li and
Scheraga [23]. This approach has proven to be extraordinarily efficacious in our
previous work, and the present results reinforce our conclusions concerning its
robustness and efficiency in enumerating the low-energy basins of attraction for
low-resolution models such as those employed here. As in previous work [2], we
have incorporated several key modifications of the algorithm, the most important
of which is that the number of minimization steps is annealed as a function of the
simulation temperature (i.e., more steps are taken later in the simulation), which
yields a factor of 5-10 times reduction in computational effort. Finally,
calculations are performed using a parallelized version of the code (an MPI
implementation) on a network of PCs using Intel microprocessors and also on a
large SGI Origin at the National Center for Supercomputing Applications.

The MCM procedure produces a large number of low-energy structures. The
structurally unique predictions are extracted from the raw simulation data by a
clustering algorithm. Figure 7 illustrates this process for the protein 1ACP. The
raw simulation data (red dots) are combined into structurally similar clusters
using a procedure discussed in Ref. 24. The criterion for separating structures
into clusters is that the average RMSD between clusters (calculated over all
structures in a particular cluster) be at least 5 A. Clusters are represented by
their lowest energy structure (black circles), which means that energies and
RMSDs reported for clusters are based on their lowest-energy structure. The
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Figure 7. (See also color insert.) Comparison of raw data and clustered results (red dots: raw
simulation data, black circles: cluster representatives, green square: locally minimized native
structure).
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TABLE III
RMSD with Respect to the Native of the ten Lowest Energy Clusters (Represented by Their Lowest
Energy Member) for the Protein lacp®

Cluster # RMSD Energy N
1 6.65 5415.43 43
2 5.72 5417.83 58
3 8.64 5420.17 23
4 7.54 5420.80 25
5 11.08 5422.82 31
6 9.65 5424.04 34
7 4.79 5427.21 22
8 591 5431.10 16
9 8.27 5431.23 12

10 12.10 5432.68 19

“N gives the number of structures combined into a cluster.

RMSD between resulting representative structures is usually at least 5 A, but
this is not guaranteed by the clustering algorithm because we use the average
RMSD as the clustering criterion. For the 10 representative structures lowest in
energy we list energy, RMSD with respect to the native and number of
structures combined into a cluster in Table III, and the RMSD between the
representative structures themselves in Table IV. Derivation of the ranks of
structures (discussed below) is straightforward given the data in Table III.

The lowest-energy structure obtained from the simulations is generally
highly refined, meaning that its energy cannot be lowered significantly by
performing more extensive searches. Refinement of higher-energy structures,
structures that do not rank first, is possible though and in some of the cases,

TABLE IV
RMSD Between the Representative Structures from the Ten Lowest-Energy Clusters for the
Protein lacp

Cluster # 1 2 3 4 5 6 7 8 9 10
1 0.00 223 873 231 9.91 5.01 7.18 935 820 1223
2 0.00 870 3.41 9.94 6.04 6.08 835 8.16 1193
3 0.00 885 11.86 8.63 846 824 3.04 8.63
4 0.00 9.70 4.08 797 991 853 12.14
5 0.00 8.69 11.31 11.02 11.77 8.40
6 0.00 10.54 1191 845 11.75
7 0.00 3.01 827 10.81
8 0.00 8.46 9.91
9 0.00 9.04
10 0.00
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especially the larger proteins, actually results in improved ranks. We have not
yet developed the optimal refinement strategy though and therefore do not
report results for this approach.

C. Comparison of the Size-Dependent Potential with Previous Results
Using PDB-Derived Secondary Structure

As a test set, we employed the subset of the 95 proteins used in Ref. 2 which are
less than 100 residues and are not all B-strand. There is some overlap with the
training set; but in tertiary folding, this is less of a concern than in secondary
structure prediction because the three-dimensional phase space of the protein is
so large that as long as an adequate number of proteins are used to generate the
pair potential statistics, systematic bias of the results coming from the training
set is unlikely to be large. In fact, we see little difference in performance for
proteins depending upon whether they were included in the training set or not (or
for the CASP3 targets we examined). By retaining the test set used in the
previous chapter, we are able to directly compare our new potential with the
older potential lacking size dependence, and thus assess the degree of
progress that has been made by incorporating size dependence into the potential
function.

As discussed above, after the tertiary folding simulations are completed, we
group the resulting structures into clusters (without any reference to the native
structure, which is presumed to be unknown during clustering) and report
the highest-ranking clusters with RMSD from the native below 4 A ,5 A 6 1&,
and 7 A, respectively.

In Table V, we compare these results for our test set with those obtained in
Ref. 2. Note that Ref. 2 also included postsimulation screening algorithms; we
have not developed such methods for the new potentials because some of the
ideas have been incorporated directly into the energy function. Consequently we
compare only with results taken directly from the simulations in Table V.
However, we note that the overall quality of the results from the new potential is
substantially better than those from the old, even when screening is employed in
the latter. Table VI summarizes performance for various types of proteins and
size classes.

The performance of the new potential function is particularly striking for
proteins in the 50-100 residue size. For a-helical proteins in this category, the
average rank of the best structure less than 7A is 3.6; furthermore, in the
overwhelming majority of cases, the rank is 5 or better. This is a sufficient
reduction in the number of possible structures that discrimination among the
resulting structures via more expensive calculations at an atomic level of detail
[25] becomes feasible. The reliability of the results demonstrates that the basic
physics of the low-resolution model have been qualitatively improved as
compared to previous efforts.
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TABLE V
Comparison to Previous Results®
“Old” Potential Size-dependent Potential
PDB—X-RAY PDB—X-RAY PDB—IDEAL

Nes N, Ny <5A <6A <7A <4A <5A <6A <7A LER <4A <5A <6A <7A LER

Alpha Proteins (Nyes <50)

1ajj 17 6 0 — 1 1 — 1 1 1 4.0 — 1 1 1 49
Ibgk 27 18 0 4 2 1 2 2 2 1 6.5 2 2 2 1 6.2
lerd 29 25 0 1 1 1 1 1 1 1 3.8 1 1 1 1 33
2erl 35 29 0 2 2 2 — 1 1 1 4.9 1 1 1 1 2.8
Ires 35 27 0 3 1 1 1 1 1 1 35 1 1 1 1 3.8
Iroo 17 14 0 1 1 1 1 1 1 1 3.7 1 1 1 1 3.7
luxd 43 31 0 1 1 1 4 4 4 1 6.0 — 4 4 1 6.4
Mixed Alpha/Beta Proteins (Nyes <50)
laho 31 10 10 5 3 1 7 5 2 1 6.8 3 3 2 2 75
layj 46 11 15 33 1 1 —  — 2 2 7.7 — 3 3 2 8.6
lemr 26 8 10 3 1 1 3 2 2 1 6.6 4 4 3 1 6.8
Igpt 47 13 19 23 2 2 13 13 12 3 8.1 — 2 2 8.9
lhev 25 7 11 1 1 1 3 1 1 1 5.0 — 3 2 2 7.1
2ktx 34 11 14 1 1 1 1 1 1 1 3.6 — 1 1 1 4.2
Ipce 30 12 10 2 2 2 1 1 1 1 2.8 - — 1 1 5.1
Iptq 43 6 8 732 21 18 —_ - 20 11 8.6 — — 16 1 6.8
2sn3 48 8 15 94 21 7 — 29 2 2 8.5 — 13 3 3 8.9
2vgh 34 6 12 126 61 21 —_- - — 4 7.1 —_ - — 3 8.2
Ivtx 36 7 10 — 78 2 — - 34 3 7.8 — = 9 1 7.0
Szof 25 12 11 1 1 1 1 1 1 1 2.6 - — 1 1 6.0
Alpha Proteins (50 Ny < 100)
lacp 73 45 0 256 115 30 — 7 2 1 6.7 — — 11 11 113
lail 67 60 0 5 5 2 1 1 1 1 3.0 1 1 1 1 39
1aj3 95 86 0 2 2 2 2 2 2 2 9.3 2 1 1 1 4.6
lam3 57 45 0 — 8 8 — 6 6 2 107 — 24 5 1 6.1
Ic5a 62 49 0 1 1 1 — 3 3 2 8.2 10 3 3 3 8.0
lee5 76 41 0 — 78 21 — 6 6 2 8.5 — 18 6 3 7.2
lddf 87 66 0 — 7 7 — 63 3 2 127 — 58 8 8 7.1
2ezh 59 45 0 16 5 2 1 1 1 1 3.8 3 3 3 2 9.7
2ezk 76 64 0 28 8 1 —  — 1 1 5.7 — — 1 1 5.9
2hp8 56 44 0 — 4 2 — 2 2 2 9.7 — 2 2 2 7.1
lhsn 62 46 0 88 88 67 — 19 19 114 — — 98 17 8.3
Ijvr 74 59 0 5 5 5 31 31 1 1 53 — 10 9 7 104
1Ifb 69 48 0 — % 94 — - 5 5 104 — 15 11 11 106
Imzm 71 54 0 — 8 8 — 5 4 4 107 — 3 2 2 110
Inkl 70 56 0 — - 2 1 1 1 1 3.9 2 2 2 2 9.6
Inre 66 55 0 22 22 22 22 1 1 1 4.9 19 1 1 1 4.6
2pac 77 26 0 —  — 136 — - 53 1 6.4 — — 76 5 112
lpou 70 57 0 — 6 6 1 1 1 1 23 4 4 4 4 112
169 61 41 0 46 9 8 — 6 6 3 113 — 23 12 5 107
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TABLE V  (Continued)

“Old” Potential Size-dependent Potential

PDB—X-RAY PDB—X-RAY PDB—IDEAL

Nes Ny Ny <5A <6A <7A <4A <5A <6A <7A LER <4A <5A <6A <7A LER

lutg 62 53 0 4 2 1 — 21 1 1 5.6 — 14 1 1 53
Sicb 72 52 O —_- — — 8 2 1 6.1 —_- — 8 1 6.2

=)

Mixed Alpha/Beta Protein (50 < N5 < 100)

laa3 56 31 8 - — — 19 19 6 3 8.4 7 7 7 5 9.4
2acy 92 24 41 —- — 16 —_ — 5 5 120 —- — — — 130
lag2 97 58 8 — — 34 —_- - = 87 109 — — — 187 123
Ibor 52 9 14 187 22 8 —_ — 17 6 72 — — 40 12 8.3
Ibtb 89 45 19 — 274 24 1 1 1 1 38 — — 31 28 8.1
letf 67 38 19 15 12 4 1 1 1 3.0 — — 4 4 111
2fdn 53 8 6 123 4 4 —_ — 38 6 8.1 — — — 30 103
2fow 66 29 8 181 56 8 - — 23 8 10.6 — — 69 4 79
Ifwp 66 22 17 484 2 2 — 3 3 103 — 42 10 10 103
Igbl 54 13 16 1 1 1 —_ - 15 1 6.5 - — 2 1 6.5
Ipgx 57 15 33 4 4 4 2 2 2 2 9.5 — 35 28 11 8.1
lleb 63 36 6 142 27 4 — 3 3 3 109 — 6 6 6 8.7
lorc 56 25 17 2 2 1 8 6 6 6 7.1 46 2 2 1 6.2
Spti. 55 16 14 109 16 16 —_ - 14 4 10.1 — — 47 14 7.1
2ptl 60 15 34 1 1 1 1 1 1 1 3.4 — 35 4 4 8.2
Iris 92 25 42 — 180 11 9 9 9 9 111 — — 129 11 117
Isvqg 90 22 34 —_- — — — 119 117 32 125 — — 462 43 9.0

“Following global energy minimization, structures are clustered without reference to the native; the
energetic ranks of clusters that have an RMSD close to the native (for old results, three RMSD
cutoffs—5 /n\, 6 A, and 7 A—were used; for new results, four RMSD cutoffs—4 &, 5 A, 6 A, and
7 A—were used). Energetic rank was defined so that the lowest-energy structure ranks 1, the second-
lowest ranks 2, and so on. LER refers to the RMSD of the lowest-energy structure. The column
“PDB—X-Ray” list’s results of runs using location and configuration of secondary structure derived
from the PDB entry. Column “PDB-Ideal” lists results for calculations where the location of
secondary structure was derived from the PDB, but configuration of secondary structural elements
was assumed to be ideal.

For mixed o/B-proteins, the absolute quality of the results is somewhat
diminished, but the improvement as compared to previous work is even larger.
There are two cases, lag2 and 1svq, where the rank obtained for the best low
RMSD structure is above 10, with the lag2 result being particularly proble-
matic. We have investigated this case further and show improved results for
lag2 below. On the other hand, there is a significant number of cases for which
no reasonable structures were recovered previously which now rank in the top 10.

The energies of structures located by the global optimization algorithm are
lower than the native and locally minimized native structures in all cases, a
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TABLE VI
Summary of Ranks Listed in Table V*
(a)
RMSD <4 A RMSD <5 A RMSD <6 A RMSD <7 A

Ave Max Ave Max Ave  Max Ave Max
Class Nprot  Neonv Rank Rank  Neony, Rank  Rank N, Rank Rank N, Rank Rank
Small o 7 —_ = = 6 2 4 7 1 2 7 1 2
Small o/f3 12 —_ - — 11 93 732 12 16 78 12 5 21
Medium o0~ 21 —_ - = 11 43 256 18 26 115 20 21 136
Medium o/f 17 —_ - — 11 114 484 13 46 274 15 30 349

(b)

RMSD <4 A RMSD <5 A RMSD <6 A RMSD <7 A

Ave Max Ave Max Ave  Max Ave Max
Class Nprot  Neonv Rank Rank  Np Rank  Rank N, Rank Rank Ny, Rank Rank
Small o 7 5 2 4 7 2 4 7 2 4 7 1 1
Small o/f 12 7 4 13 8 7 29 11 7 34 12 3 11
Medium oo 21 8 8 31 17 10 63 21 6 53 21 3 19
Medium o/f 17 7 6 19 10 16 119 16 16 117 17 10 87

(©

RMSD <4 A RMSD <5 A RMSD <6 A RMSD <7 A

Ave Max Ave Max Ave Max Ave Max
Class Nprot  Neonv Rank Rank  Neony Rank  Rank N, Rank  Rank N, Rank Rank
Small o 7 5 1 2 7 2 4 7 2 4 7 1 1
Small o/f3 12 2 4 6 5 13 11 4 16 12 2 3
Medium oo 21 7 6 19 16 11 58 21 13 98 21 4 17
Medium o/f 17 2 26 46 6 21 42 14 60 462 16 23 187

“Part a lists old results; part b lists results using the size-dependent potential and X-ray-derived
secondary structure; part c lists results using the size-dependent potential and ideal secondary
structure. The number of proteins Ny is listed in column 2; the number of cases that converged
within a specified RMSD from the native (<4 A, <5 ;\, <6 A, or <7 /ﬂ\) Neony 18 listed in columns
3,6,9, and 12. (Note that the rank <4 A was not calculated for the old results, so a “—" is shown).
Also listed are the average and maximum rank of converged clusters within each RMSD range.

feature that other groups using similar approaches have also observed [25]. A
very important aspect of the results though, not apparent in the data presented
here, is that for all simulations discussed above, the energy gap between the
lowest-energy misfolded structures and low-energy native-like structures is
quite small, on the order of 5-30 energy units where the energy scale is
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TABLE VII
Comparison of Rankings for PDB Secondary Structure and DSSP Secondary Structure for Several
Cases from the Test Set

Protein  <4A <5A <6A <7A Comments

lag2 — — — 87  PDB secondary structure, terminal loops deleted
lag2 — — — 11 DSSP secondary structure, terminal loops included
1hsn — — 19 19  PDB secondary structure, terminal loops deleted
1hsn — — 23 10 DSSP secondary structure, terminal loops deleted
lorc 8 6 6 6  PDB secondary structure, terminal loops deleted
lorc 1 1 1 1 DSSP secondary structure, terminal loops included
1ris 9 9 9 9  PDB secondary structure, terminal loops deleted

Iris — — 3 3 DSSP secondary structure, terminal loops included

typically thousands of energy units. This is in sharp contrast to the results
obtained with our previous tertiary folding potential, which routinely generated
energy gaps between misfolded and native-like structures that were 5-10 times
larger than those seen here.

D. Effects of Secondary Structure Definition
and Truncation of Terminal Loops

The results presented above employ PDB-defined secondary structure and in
some cases involve truncation of terminal loops, primarily carried out here to
facilitate direct comparisons with the results of Ref. 2. However, the process of
defining secondary structure even with X-ray crystallographic or NMR coor-
dinates in hand is not entirely unambiguous, and the effects of terminal loops
could be favorable or unfavorable. To examine these issues, we selected several
proteins in Table V for which the results with the new potential appeared less
accurate than would have been expected given the difficulty of the case being
considered. Table VII presents results for these selected cases, listing the protein
and identifying what experiments were carried out. Most of the cases examined
are mixed o/ because these displayed the most significant problems. It can be
seen that in some cases the use of a different secondary structure definition (e.g.,
DSSP rather than PDB) and the inclusion or deletion of a terminal loop has a
substantial effect on the ranking of low RMSD structures. Clearly, more work
needs to be done in understanding these effects.

E. Effects of Using Ideal Rather than PDB-Derived Three-Dimensional
Topologies for Secondary Structure Elements

Having established that our new size-dependent potential is quite effective for
generating low-resolution structures of proteins below 100 residues using
secondary structure derived from PDB coordinates, we next ask what the effect is
of using ideal torsional angles for helices and strands as opposed to PDB-derived
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torsion angles. Tables V and VIc summarize results for the entire test set of
proteins utilizing ideal secondary structure elements. The results are surprisingly
good; while there are certainly cases in which quantitative degradation of the
rank of the best low-RMSD structure occurs (particularly with o/p-proteins—for
example, the proteins 2fdn, 1fwp, and Spti), in general the simulations are able to
find such structures successfully and to rank them reasonably well in terms of
total energy. Even in the case of 5pti, where there is severe distortion of the -
strands in the native structure, the use of ideal strands produces reasonable
results. While incorporation of strand distortion is possible in our methodology
[4], the reasonable predictive capability using ideal elements is likely to save
considerable computational effort because one can carry out such simulations
initially and then use the results as a starting point from which to incorporate
distortions and other detailed effects.

IV. USE OF PREDICTED RATHER THAN PDB-DERIVED
SECONDARY STRUCTURE ELEMENTS

A. Overview

Secondary structure prediction methods, while they have improved significantly
over the past decade (principally via the use of multiple sequence analysis), still
have nontrivial error rates. The best method at present appears to be the
PSIPRED approach developed by Jones [26], which is claimed to achieve an
accuracy between 76% and 78% on a reasonably large training set (it also
outperformed other methods in the CASP3 contest). This level of reliability
appears to be sufficient for low-resolution ab initio structure prediction and
suggested to us that it was now worth experimenting with tertiary folding
calculations based entirely on predicted, rather than PDB-derived, secondary
structure [27-32]. Using servers set up on the World Wide Web, we are able to
obtain predictions from PSIPRED and other secondary structure prediction
algorithms for proteins in our test set. We have obtained results from a variety of
servers to see what happens in cases where their predictions disagree; it is likely
that ab initio prediction will involve trying a number of secondary structures,
because in some cases the tertiary fold will be critical in selecting among
plausible secondary structures predicted exclusively from sequence data.

Our calculations in this section endeavor to answer the following questions:

1. Can we for some percentage of cases make a successful ab initio predic-
tion? We explore two different approaches below.

2. What are the effects of small errors in secondary structure—for example,
elimination or addition of small elements, incorrect lengths of major
elements and so on?
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3. What is the impact of a major error—for example, replacing a long helix
by a similar strand or missing an important loop?

In the present chapter, we have chosen to focus our ab initio prediction
efforts primarily on a-helical proteins, although one mixed o/f-protein is also
examined. The ab initio prediction calculations presented below are consider-
ably more computationally intensive than those using PDB-derived secondary
structure, because we have investigated a substantial number of secondary
structure predictions for each protein. By studying helical systems intensively,
we are able to draw conclusions concerning the necessary and sufficient
conditions for success for such systems from a significant database of results.
In addition to the a-helical proteins in the 50- to 100-residue range from the data
set above, we also include two helical proteins from the CASP3 prediction
contest. Our results for the CASP3 test cases are similar to those from the PDB-
derived test suite.

B. Secondary Structure Prediction Methods

We use the following secondary structure prediction methods in our ab initio
predictions:

e PSIPRED [26]: A two-stage neural network that predicts protein secon-
dary structure based on the position specific scoring matrices generated by
PSI-BLAST (available at hitp: //insulin.brunel.ac.uk/psipred/). Average
three-state prediction accuracy is between 76.5% and 78.3%. Currently
the most accurate method.

e PhD [33,34]: Secondary structure is predicted by a system of neural
networks (available at http: //cubic.bioc.columbia.edulppl). Overall three-
state prediction accuracy is 72.1%. The default secondary structure
prediction settings were used in all predictions.

e JPRED [35,36]: A methodology that combines a total of six secondary
structure predictions into one consensus prediction (available at http://
jura.ebi.ac.uk:8888/ at the time of this writing). Average ‘“‘real world”
accuracy is 72.9%. Note that the PhD predictions generated by JPRED
differ from the original PhD predictions (denoted: orig_phd) mentioned
above. In addition to using the consensus prediction, we also report results
for the six individual prediction methods included in the JPRED server.

By default, secondary structure prediction accuracies reported here are
determined with DSSP as the reference (for details see Ref. 26). The secondary
structure assignments used in the actual calculation differ from the original
predictions in that helices and strands of less than three residues are eliminated.
N- and C-terminal loops are deleted.
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C. Simulation Protocols

The amino acid sequence of the target represents the only input data for our
methodology. We do not carry out explicit database searches (i.e., threading) of
any sort. Secondary structure predictions from the sources listed above are
parsed and used directly in the structure predictions. In the case of JPRED we
examine individually the results of all predictions that contribute to the
consensus prediction (DSC [37], PhD [33,34], PREDATOR [38,39], NNSSP
[40], Mulpred, and Zpred [41]). Because we do not assume any knowledge of
approximate radius of gyration of the target, which is important for the selection
of the correct potential energy parameters, we predict the radius of gyration via a
simple formula [22] and use this predictio