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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

I. Prigogine

Stuart A. Rice
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PREFACE

The first attempts to model proteins on the computer began almost 30 years ago.

Over the past three decades, our understanding of protein structure and dynamics

has dramatically increased as a result of rapid advances in both theory and

experiment. The Protein Data Bank (PDB) now contains more than 10,000 high-

resolution protein structures. The human genome project and related efforts

have generated an order of magnitude more protein sequences, for which we do

not yet know the structure. Spectroscopic measurement techniques continue to

increase in resolution and sensitivity, allowing a wealth of information to be

obtained with regard to the kinetics of protein folding and unfolding, comple-

menting the detailed structural picture of the folded state. In parallel to these

efforts, algorithms, software, and computational hardware have progressed to

the point where both structural and kinetic problems may be studied with a fair

degree of realism.

Despite these advances, many major challenges remain in understanding

protein folding at both a conceptual and practical level. There is still significant

debate about the role of various underlying physical forces in stabilizing a

unique native structure. Efforts to translate physical principles into practical

protein structure prediction algorithms are still at an early stage; most successful

prediction algorithms employ knowledge-based approaches that rely on

examples of existing protein structures in the PDB, as well as on techniques

of computer science and statistics. Theoretical modeling of the dynamics of

protein folding faces additional difficulties; there is a much smaller body of

experimental data, which is typically at relatively low resolution; carrying out

computations over long time scales requires either very large amounts of

computer time or the use of highly approximate models; and the use of

statistical methods to analyze the data is still in its infancy.

The importance of the protein folding problem—underscored by the recent

completion of the human genome sequence—has led to an explosion of

theoretical work in areas of both protein structure prediction and kinetic

modeling. An exceptionally wide variety of computational models and

techniques are being applied to the problem, due in part to the participation

of scientists from so many different disciplines: chemistry, physics, molecular

biology, computer science, and statistics, to name a few. This has made the field

very exciting for those of us working in it, but it also poses a challenge; how can

the key issues in state of the art research be communicated to different

audiences, given the interdisciplinary nature of the task at hand and the methods

being brought to bear on it?

ix



The objective of this volume of Advances in Chemical Physics is to discuss

recent advances in the computational modeling of protein folding for an audience

of physicists, chemists, and chemical physicists. Many of the contributors to this

volume have their roots in chemical physics but have committed a significant

fraction of their resources to studying biological systems. The chapters thus

address the target audience but incorporate approaches from other areas because

they are relevant to the methods that the various authors have developed in their

laboratories. While some of the chapters contain review sections, the principal

focus is on the authors’ own research and recent results.

When modeling protein folding the key questions are (a) the nature of the

physical model to be used and (b) the questions that the calculations are aimed

at answering. It is impossible in a single volume to cover all of the different

approaches that are currently being used in research on protein folding. Never-

theless, a reasonably broad spectrum of computational methods is represented

here, as is briefly described below. The volume is organized so as to group

together contributions in which similar approaches are adopted.

The simplest models of proteins involve representations of the amino acids as

beads on a chain (typically taken to be hydrophobic or hydrophilic, depending

upon the identity of the amino acid) embedded in a lattice. Primitive models of

this type employ a simple lattice such as a cubic lattice, and they use a single

center to represent each amino acid. These models are very fast computation-

ally, but lack a level of detail (both structurally and in their potential energy

function) to permit prediction of protein structure from the amino acid sequence.

On the other hand, they can be extremely valuable in providing conceptual

insight into the general thermodynamic and kinetic issues as to why and how

proteins fold into a unique native state; they can also be profitably used to model

folding kinetics, as well as to make testable predictions for such kinetics that

can be compared with experimental data. The contributions of Thirumulai et al.

and Dinner et al. discuss models of this type, presenting both conceptual

insights into the basis of protein folding and results for modeling of specific

protein folding events.

Reduced models of proteins (i.e., models not containing complete atomic

detail) can be used to make structural predictions, either by allowing assessment

of the fitness of a protein structure already in the PDB as a model for an

unknown sequence (‘‘threading’’) or by carrying out Monte Carlo simulations

using the model and a suitable potential energy function. The contribution by

Meller and Elber describes a classical threading approach in which the amino

acid sequence is ‘‘threaded’’ in an optimal fashion onto a set of candidate

template structures using dynamic programming techniques, and the suitability

of the template is evaluated by a potential energy function. These authors have

worked out new methods for optimizing such functions, which are discussed in

detail in their chapter.
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If a reduced (or other) model is used to predict protein structure via

simulation, without direct reference to structures in the PDB, this is referred to

as ‘‘ab initio protein’’ structure prediction. Potential energy functions for ab

initio prediction can be derived either from physical chemical principles or from

a ‘‘knowledge-based’’ approach based on statistics from the PDB (e.g., the

probability of observing a residue–residue distance for a given pair of amino

acids). For reduced models, the use of knowledge-based potential of some sort

is mandated. The contributions of Eyrich et al., Skolnick and Kolinsiki, and

L’Heureux et al. derive originally from an ab initio approach using reduced

models. However, all of these groups have in the past several years increasingly

incorporated empirical elements from threading and other such approaches, so

that what is described in these contributions is more of an attempt to integrate

reduced model simulations with additional information and techniques that can

improve practical structure prediction results. Several of these research groups

have entered the CASP (Critical Assessment of Protein Structure Prediction)

blind test experiments, which allow a comparative evaluation of the prediction

accuracy of the different methods employed by the participants; results from

the most recent such experiment, CASP4 (not reported in this volume because

the results were available subsequent to submission of most of the chapters),

were encouraging with regard to the ability of these hybrid methods to provide

improvement in many cases over methods not incorporating simulations.

The use of models employing an atomic level of detail (e.g. a molecular

mechanics potential function) in addressing the protein folding problem

presents significant difficulties for two reasons: (1) A large expenditure of

computation time is required to evaluate the model energy at each configuration;

(2) the quality of the potential energy functions and solvation model are critical

in being able to accurate compare the stability of alternative structures. The

contribution by Klepeis et al. discusses both algorithms designed to reduce the

required computational effort by sampling phase space more efficiently and a

wide variety of applications of atomic level models using these more efficient

sampling techniques. The contribution from Wallqvist et al. is more narrowly

focused on a single problem: the use of detailed atomic potential functions in

conjunction with a continuum solvation model to distinguish native and

‘‘native-like’’ protein structures from ‘‘decoys’’—alternative structures gener-

ated by various means and intended to challenge the model’s accuracy. Both of

these contributions demonstrate that considerable progress is being made in the

application of atomic level models with regard to improving both accuracy and

efficiency.

In the end, a thorough description of all aspects of protein folding will

require the use of the full range of models and methods discussed in this

volume. In the simplest hierarchical picture, one can imagine using inexpensive

reduced models to generate low-resolution structures that can then be refined
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using more detailed (and computationally expensive) approaches. Although

progress will undoubtedly continue in the development of physical chemical

models, empirical information and phenomenological approaches will always

provide additional speed and reliability if practical results are desired. How to

best combine all of these elements represents one of the principal issues facing

those working in the field; it also exemplifies the need for new ideas and

approaches.

Columbia University Richard A. Friesner

New York, New York

xii preface



CONTENTS

Statistical Analysis of Protein Folding Kinetics 1

By Aaron R. Dinner, Sung-Sau-So, and Martin Karplus

Insights into Specific Problems in Protein Folding Using

Simple Concepts 35

By D. Thirumalai, D. K. Klimov, and R. I. Dima

Protein Recognition by Sequence-to-Structure Fitness:

Bridging Efficiency and Capacity of Threading Models 77

By Jaroslaw Meller and Ron Elber

A Unified Approach to the Prediction of Protein Structure

and Function 131

By Jefferey Skolnick and Andrzej Kolinski

Knowledge-Based Prediction of Protein Tertiary Structure 193

By Pierre-Jean L’Heureux, Benoit Cromp,
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Figure 7. (See Chapter 2.) The native-state conformation of the

bovine pancreatic trypsin inhibitor (BPTI). The figure was produced

with the program RasMol 2.7.1 [126] from the PDB entry 1bpi. There

are three disulfide bonds in this protein: Cys5–Cys55 shown in red,

Cys14–Cys38 shown in black, and Cys30–Cys51 shown in blue. The

corresponding Cys residues are in the ball-and-stick representation and

are labeled. The two helices (residues 2–7 and 47–56) are shown in

green.

Figure 8. (See Chapter 2.) (a) The ground-state

conformation of the two-dimensional model sequence

with M ¼ 23 beads and four covalent (S) sites. The red,

green, and black circles represent, respectively, the

hydrophobic (H), polar (P), and S sites.

Figure 9. (See Chapter 2.) (a) Rasmol [126] view of one of the two rings of GroEL, from the

PDB file 1oel. The seven chains are indicated by different colors. The amino acid residues forming

the binding site of the apical domain of each chain (199–204, helix H: 229–244 and helix I: 256–

268) are shown in red. The most exposed hydrophobic amino acids that are facing the cavity and are

implicated in the binding of the substrate as indicated by mutagenesis experiments [112, 127] are:

Tyr199, Tyr203, Phe204, Leu234, Leu237, Leu259, Val263, and Val264. (b) A schematic sketch of

the hemicycle in the GroEL–GroES-mediated folding of proteins. In step 1 the substrate protein is

captured into the GroEL cavity. The ATPs and GroES are added in step 2, which results in doubling

the volume, in which the substrate protein is confined. The hydrolysis of ATP in the cis-ring occurs

in a quantified fashion (step 3). After binding ATP to the trans-ring, GroES and the substrate protein

are released that completes the cycle (step 4).
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Figure 4. (See Chapter 4.) For the predicted protein structure of 2sarA (2cmd_) generated by

GeneComp using a template provided by the Fischer Database [34], the red-colored ligand

represents the superposition of the ligand bound to the native receptor. The highest-scored match is

colored in yellow.

Figure 7. (See Chapter 6.) Comparison of raw data and clustered results (red dots: raw

simulation data, black circles: cluster representatives, green square: locally minimized native

structure).
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I. INTRODUCTION

Experimental and theoretical studies have led to the emergence of a unified

general mechanism for protein folding that serves as a framework for the design

and interpretation of research in this area [1]. This is not to suggest that the

details of the folding process are the same for all proteins. Indeed, one of the

most striking computational results is that a single model can yield qualitatively

different behavior depending on the choice of parameters [1–3]. Consequently, it

remains to determine the behavior of individual sequences under given

environmental conditions and to identify the specific factors that lead to the

manifestation of one folding scenario rather than another. Although doing so

requires investigation of the kinetics of particular proteins at the level of

individual residues, for which protein engineering [4] and nuclear magnetic

resonance (NMR) [5] experiments are very useful, complementary information

about the roles played by the sequence and the structure can also be obtained by a

statistical analysis of the folding rates of a series of proteins.

Statistical methods have been applied for many years in attempts to predict

the structures of proteins (for a review of progress in this area, see the chapter

by Meller and Elber, this volume), but their use in the analysis of folding kinetics

is relatively recent. The first such investigations focused on ‘‘toy’’ protein models

in which the polypeptide chain is represented by a string of beads restricted to

sites on a lattice. It was found that the ability of a sequence to fold correlates

strongly with measures of the stability of its native (ground) state (such as the

Z-score or the gap between the ground and first excited compact states) [6–9],

but the native structure also plays an important role for longer chains [10,11].

While lattice models are limited in their ability to capture the structural features

of proteins, they have the important advantage that the results of statistical

analyses can be compared with calculated folding trajectories to determine the

physical bases of observed correlations. Consequently, studies based on such

models are particularly useful for the quantitation of observed effects, the

generalization from individual sequences, the identification of subtle relation-

ships, and ultimately the design of additional sequences that fold at a given rate.

Analogous statistical analyses of experimentally measured folding kinetics

of proteins were hindered by the fact that complex multiphasic behavior was

exhibited by most of the proteins for which data were available (e.g., barnase

and lysozyme). In recent years, an increasing number of proteins that lack
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significantly populated folding intermediates and thus exhibit two-state folding

kinetics have been identified, and a range of data have been tabulated for them

[12–14]. The initial linear analyses of such proteins indicated that their folding

rates are determined primarily by their native structures [12,14]. More recently,

a nonlinear, multiple-descriptor approach revealed that there is a significant

dependence on the stability as well [15]. These and related studies are discussed

in Section IV.A, after an overview of the statistical methods employed in this

area (Section II) and a review of the results from lattice models (Section III).

An in-depth analysis of a database of 33 proteins that fold with two- or

weakly three-state kinetics is presented in Sections IV.B through V. We explore

one-, two-, and three-descriptor nonlinear models. A structurally based cross-

validation scheme is introduced. Its use in conjunction with tests of statistical

significance is important, particularly for multiple-descriptor models, due to the

limited size of the database. Consistent with the initial linear studies [12,14], it

is found that the contact order and several other measures of the native structure

are most strongly related to the folding rate. However, the analysis makes clear

that the folding rate depends significantly on the size and stability as well. Due

to the importance ascribed to the stability by analytic [16–18] and simulation

[2,3,6–11] studies, as well as its recent use in one-dimensional models for fitting

and interpreting experimental data [19,20], we examine its connection to the

folding rate in more detail. The unfolding rate, which correlates more strongly

with stability, is considered briefly. The relation of the statistical results to

experiments and the model studies is discussed in Sections VI and VII.

II. STATISTICAL METHODS

Before reviewing the results for specific systems, we introduce the statistical

methods that have been used to analyze folding kinetics. Perhaps the simplest

such method is to group sequences; here, one categorizes each sequence in a

database according to one or more of its native properties (‘‘descriptors’’) and its

folding behavior. Visualization can be used to identify patterns, and averages and

higher moments of the distributions of descriptors can be used to quantitate

differences between groups. For properties on which the folding kinetics depend

strongly, such as the energy gap in lattice models, this type of analysis has proven

effective [6].

However, simple grouping is often insufficient to identify weaker but still

significant trends and makes it difficult to determine the relative importance of

relationships. Consequently, more quantitative methods are necessary. One stati-

stic that is employed widely is the Pearson linear correlation coefficient (rx;yÞ:

rx;y ¼
s2

xy

sxsy

¼
P

i xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i xi � �xð Þ2

P
iðyi � �yÞ2

q ð1Þ
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Typically, the xi are a set of values of a particular descriptor, such as the sequence

length, and the yi are a set of values for a measure of the folding kinetics, such as

the logarithm of the folding rate constant (log kf ) [9,10,12]. The magnitude of rx;y

determines its significance, and its sign indicates whether xi and yi vary in the

same or opposite manner: rx;y ¼ 1 corresponds to a perfect correlation, rx;y ¼ �1

to a perfect anticorrelation, and rx;y ¼ 0 to no correlation. In spite of its

popularity, this statistic has several shortcomings when used by itself. It is

limited to the identification of linear relationships between pairs of properties; it

is not straightforward to test or cross-validate those relationships, which is

important, as discussed below; and it cannot be used directly to predict the

behavior of additional sequences.

These limitations can be overcome by constructing models to predict folding

behavior and then quantifying their accuracy. For the latter step, the Pearson

linear correlation coefficient can be used with xi as the observed values and yi as

the predicted ones (for which we introduce the shorthand notations rtrn, rjck, and

rcv, described below). Alternatively, one can calculate the root-mean-square

error or the closely related fraction of unexplained variance:

q2 ¼ 1�
P

i yi � xið Þ2P
i xi � �xð Þ2

ð2Þ

Again, xi (yi) are the observed (predicted) values. Typically, r and q2 behave

consistently. The latter is useful for quantitating the improvement obtained upon

extending a model with N descriptors to one with N þ 1 with Wold’s statistic:

E ¼ ð1� q2
Nþ1Þ=ð1� q2

NÞ [21,22]. A value of less than 1.0 for the latter shows

that q2 increases upon adding a descriptor. The statistical significance of a

particular value of E depends on the specific data, but E ¼ 0:4 has been

suggested to correspond typically to the 95% confidence interval [23].

For constructing the models themselves, linear regression (on one or more

descriptors) is attractive in that the best fit for a set of data can be determined

analytically, but, as its name implies, it is limited to detecting linear relation-

ships. While fits with higher-order polynomials are possible, a general and

flexible alternative is to use neural networks (NNs). The latter are computational

tools for model-free mapping that take their name from the fact that they are

based on simple models of learning in biological systems [24,25]. Neural

networks have been used extensively to derive quantitative structure–property

relationships in medicinal chemistry (for a review, see Ref. 26) and were first

used to analyze folding kinetics in Ref. 11. A schematic diagram of a neural

network is shown in Fig. 1. In this example, there are three inputs (indicated by

the rectangles on the left); in the present study these would each contain the

value of a descriptor, such as the free energy of unfolding or the fraction of
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helical contacts. The circles represent sigmoidal functions (nodes). There are

many possible choices for the specific form of these functions; we use

f ¼ 1

1þ exp �y�
P

i wi pi

� � ð3Þ

where the sum ranges over the previous layer (to the left in the diagram), pi

are the values of the elements of that layer, wi are the weights for each of

those elements (represented by the connecting lines in the diagram), y is an

arbitrary constant, and the data are assumed to be normalized for clarity. Thus, to

‘‘fire’’ the network in Fig. 1, a weighted sum over the three inputs to each hidden

node is made, the resulting sums are used to calculate the values of the sigmoidal

functions associated with those nodes, a weighted sum of those values is then

made, and the final sigmoidal function of the output node is calculated. To fit

data, the wi are initialized to random values and adjusted with standard

optimization techniques to maximize the accuracy of the output for the (training)

set. In the present study, we varied the weights with the scaled conjugate gradient

method [27].

When one wishes to test many different possible descriptors, the number of

possible NN input combinations can be very large. One can avoid making an

exhaustive search by using a genetic algorithm (GA) to select the descriptors to

test. This tool is also biologically motivated—in this case, by evolution. A

population is created in which each individual consists of a particular set of

descriptors. Repeatedly, each such set (a ‘‘parent’’) is duplicated (‘‘asexual repro-

duction’’), the new copy (a ‘‘child’’) is changed by one descriptor (‘‘mutated’’),

and then only the best (‘‘fittest’’) individuals in the combined pool of parents

and children are kept. Here, ‘‘best’’ means that a linear regression or NN model

employing those descriptors yields the greatest accuracy for the training set.

Alternative schemes that involve combining features from different individuals

(‘‘sexual reproduction’’) also exist but are not employed here; for a compre-

hensive review of the use of GAs in medicinal chemistry see Ref. 28. In the

present study, we used 40 individuals with 20 genetic cycles; a few trials with

200 individuals and 50 cycles did not yield significantly different results.

predicted log kf

descriptor 1

descriptor 2

descriptor 3

output layerinput layer hidden layer

Figure 1. Schematic of a neural network.
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An important point concerning neural networks, and indeed any multiple

parameter model, is that it is possible to overfit the data. For small sample sizes

(here, a small number of proteins), even relatively simple neural networks can

memorize the examples in the training set at the expense of learning more

general rules. Thus, it is important to test a model on novel data not used during

the fitting process. One approach is cross-validation, in which one partitions the

existing data into a series of training and test sets. In the special case of

jackknife cross-validation, all possible combinations are formed in which a

single protein is used to test the network and the remainder are used to train it.

While jackknife cross-validation is straightforward to automate, it is not

appropriate if any members of the database are significantly related (e.g.,

homologous proteins) because the inclusion of the similar data in the training

set can bias the test. A structurally based partitioning scheme is presented in

Section IV.B. Throughout, care is taken to distinguish statistics (r and q2) for fits

of the entire (training) set (denoted ‘‘trn’’) from those for predictions obtained

with either jackknife or structurally based cross-validation (denoted ‘‘jck’’ and

‘‘cv,’’ respectively).

III. LATTICE MODELS

The first study in which a large number of unrelated sequences were analyzed to

identify the factors that determine their folding kinetics was based on a 27-

residue chain of beads subject to Monte Carlo dynamics on a simple cubic lattice

[6]. In this and the subsequent studies of 125-residue sequences [10,11], folding

rate constants were calculated for only a few sequences due to the large number

of trajectories required to obtain accurate results. Folding ‘‘ability’’ was

measured by either (a) the fraction of Monte Carlo trials that reached the native

state within the allotted simulation time or (b) the average fraction of native

contacts in the lowest energy states sampled. When the results for the 27-residue

sequences were grouped according to the former, it was found that the stability of

the native (ground) state is the only feature that distinguishes those that folded

repeatedly within the simulation time from those that did not. If the native state is

maximally compact, the stability criterion can be simplified to a consideration of

the difference in energy between the ground state and the first fully compact

(3� 3� 3) excited state [6]. These criteria have been used in the design of fast

folding sequences [29] and are consistent with similar studies which focus on

exhaustive enumeration of folding paths for two-dimensional chains [7,30] or on

the ratio of the folding and the ‘‘glass’’ transition temperatures for the (three-

dimensional) 27-residue model [8].

In a number of subsequent studies of the 27-residue model, it was argued that

the kinetic folding behavior is determined by factors other than the energy gap

6 aaron r. dinner et al.



[31–33]. Unger and Moult [31] suggested that the dependence on the energy gap

derived from the variation in the simulation temperature in Ref. 6 and identified

the structure of the ground state as the primary determinant of the folding

kinetics of this system. However, in a study of 15- and 27-residue three-dimensional

chains that employed the Pearson linear correlation coefficient to quantitate the

relationships between various sequence factors and the logarithm of the mean

first passage time, the correlation with the Z-score was robust to use of a single

temperature [9]. Examination of Ref. 31 showed that sequences were designed

to have strong short-range contacts without mandating a certain fraction of long-

range contacts, so that the resulting ground states were more appropriate for

modeling a helix-coil transition than protein folding. Nevertheless, as will be

discussed below, native structure does play a role for certain lattice models

[10,11] as it does for proteins [12,14,15]. Klimov and Thirumalai [32,33]

introduced the parameter s ¼ 1� Tf =Ty, where Tf is the temperature at which

the fluctuation of the order parameter is at its maximum and Ty is the

temperature at which the specific heat is at its maximum. They found that s
is positively correlated with the logarithm of the mean first passage time (i.e.,

small sigma gives fast folding). However, the interpretation of Ty as the collapse

transition temperature is not correct in general, and the correlation described

above arises from the fact that s is related to the energy gap [9]. These

statistical studies of short chains are discussed in detail in Ref. 9.

The correlation of the folding time with the energy gap can be understood in

terms of its effect on the energy surface. For random 27-residue sequences,

folding proceeds by a fast collapse to a semicompact disordered globule,

followed by a slow, nondirected search through the relatively small number

of semicompact structures for one of the many transition states that lead rapidly

to the native conformation [2]. A large energy gap results in a native-like

transition state that is stable at a temperature high enough for the folding

polypeptide chain to overcome barriers between random semicompact states. As

the energy gap increases to the levels obtainable in designed sequences, the

model exhibits Hammond behavior [34] in that there is a decrease in the fraction

of native contacts required in the transition state from which the chain folds

rapidly to the native state. Random sequences with relatively small gaps must

form about 80% of the native contacts [2], whereas designed sequences with

large gaps need form only about 20% [35]. This shift increases the ratio of the

number of transition states to the number of semicompact states and results in a

nucleation mechanism [35].

The first study to employ the Pearson linear correlation coefficients between

various individual sequence properties and measures of folding ability concerned

the analysis of 125-residue lattice model simulations [10]. It revealed that, in

addition to the stability, the native structure plays an important role in determining

statistical analysis of protein folding kinetics 7



folding ability for chain lengths comparable to that typical of certain well-

studied proteins (e.g., barnase and lysozyme); that is, a strong correlation was

observed between the frequency of reaching the native state within the

simulation time and the number of native contacts in tight turns or antiparallel

sheets. On the lattice, these are the cooperative secondary structural elements

that have the shortest sequential separations between contacts; lattice ‘‘helices,’’

which typically consist only of i; iþ 3 contacts, are noncooperative and thus do

not accelerate folding. The physical basis of the relation between structure and

kinetics in lattice models and in proteins is discussed in Section IV.E.

The initial linear analysis of the 125-residue model also made clear that one

descriptor can compensate for others, so that it is necessary to consider more

than one simultaneously [10]. Accordingly, the functional dependence of the

folding ability on sets of sequence properties was derived with an artificial

neural network, and a genetic algorithm was used to select the sets that

maximize the accuracy of the predictions. Not only did the nonlinear, multi-

ple-descriptor method increase the correlation coefficients between the observed

folding abilities and the cross-validated predictions from about 0.5 to greater

than 0.8, but it revealed (in addition to the strong dependences on the stability

and structure of the native state) a role for the spatial distribution of strong and

weak pairwise interactions within the native structure. Sequences with native

structures that have more labile contacts between surface residues were found to

fold faster in general because misfolded subdomains are less likely to form and

lead to off-pathway traps [10,11,36]. This observation indicates that, as one goes

to longer sequences, the relationship between the folding rate and the native

state descriptors becomes more complex.

The genetic neural network (GNN) method was further validated by use of

one of the resulting quantitative structure–property relationships (QSPRs) to

design additional fast-folding 125-residue sequences [37]. The target native

structure and the pairwise interaction energies were varied to maximize the

output of a network trained on the original set of sequences to predict the aver-

age fraction of native contacts in the lowest energy structure sampled in each of

10 Monte Carlo simulations [10,11]. The specific descriptors employed were the

number of contacts in antiparallel sheets, the estimated gap in energy between

the native state and the lower limit of the quasi-continuous spectrum [38], and

the total energy of the contacts between surface residues. On average, the

designed sequences folded more rapidly than those for which only the stability

of the native state was optimized [29,39]. The studies of the 125-residue lattice

models thus make clear that simultaneous consideration of multiple descriptors

can improve our understanding of protein folding and our ability to extrapolate

from the analysis to predict the behavior of novel sequences. The utility of the

statistical approach for obtaining a better understanding of the folding rates of

proteins is described in the following section.
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IV. FOLDING RATES OF PROTEINS

In this section we describe statistical analyses of measured rates of protein

folding. Earlier studies are reviewed and an analysis of currently available experi-

mental data is presented. The physical bases of the results are then discussed.

A. Review

As mentioned in the Introduction, statistical analyses of the folding kinetics of

proteins were delayed until a sufficient number of proteins that fold with two-

state kinetics overall were identified [12,13]. Plaxco et al. [12] carried out an

analysis much like the initial 125-mer lattice model study mentioned above [10]

for a set of 12 two-state proteins (extended to 24 proteins in Ref. 14); that is, they

calculated linear correlation coefficients between several individual sequence

properties and the logarithm of the measured folding rate constants (log kf ). The

only descriptor examined that exhibited a high correlation (rc=n;log kf
¼ 0:81) was

the structure of the native state as measured by the normalized contact order

(c=n), the average sequential residue separation of atoms in contact divided by

the length of the sequence (see the footnote to Table III for the exact definition of

c=n employed here). It is important to note that the contact order does not include

any information about the energies of the interactions in the native state; it is only

a measure of the structure (we use the term ‘‘structure’’ rather than ‘‘topology’’

[12,14] because, according to the standard mathematical meaning of the latter,

all proteins that lack disulfide bonds have the same topology).

We used a neural network to carry out a nonlinear, two-descriptor analysis of

the database of 33 proteins described in Section IV.B [15] and demonstrated that

the stability contributes significantly to determining folding rates for a given

contact order. Moreover, for 14 slow-folding proteins with high contact orders

(mixed-a/b and b-sheet proteins), the free energy of unfolding can be used by

itself to predict folding rates. By contrast, the folding rates of a-helical proteins

show essentially no dependence on the stability. The variation in behavior

observed for the structural classes suggests that, although there is a general

mechanism of folding (see the Introduction), its expression for individual

proteins can lead to very different behavior.

A number of simple physically motivated one-dimensional models have been

introduced recently to fit and interpret data on peptide and protein folding [19,

20,40–42]. These models, which use only native state data, have elements in

common with earlier theoretical treatments by Zwanzig, Wolynes, and their co-

workers [16,17,43]. The conformation of a protein is represented by a series of

binary variables (based on one or two residues), each of which can be either

native or random coil. Pairwise interactions (which are assumed to be entirely

favorable, as in a G�o model [44,45]) are counted if and only if both the sequence

positions involved are native. Often, an additional approximation is made in

statistical analysis of protein folding kinetics 9



which the formation of the native structure is limited to one or two sequential

segments [46]. Independent of this assumption, the one-dimensional character

of these models and the choice of energy functions typically force the native

structure to propagate in an essentially sequential manner. By adjusting

parameters, one of these models was shown to fit log kf with an accuracy of

0:83 � rtrn � 0:87 for 18 proteins [20]. The fact that this correlation is some-

what higher than that obtained using only the contact order (Table I and Refs.

12,14, and 20) has been used as evidence for the physical basis of the model;

that is, it provides an ‘‘explanation’’ of the empirical relationship between the

folding rate and the contact order. However, the improvement appears to be due

to the incorporation of the protein stabilities into the model. These were

introduced by adjusting the pairwise interactions separately for each protein

such that the model yielded free energies for folding that matched experimental

�G values. Using the methods described in Section II and applied in

Section IV.B, we were able to obtain rtrn ¼ 0.93 with two descriptors (�G

and qa, described in Table I) and rtrn ¼ 0:98 with three (�G, c, and b) for the

same set of 18 proteins; for c=n, and �G=n, rtrn ¼ 0:85, which is very similar to

the correlations reported in Ref. 20 (0:83 � rtrn � 0:87). Thus, further work is

required to show that such simple phenomenological models can predict aspects

of the folding reaction that go beyond the experimental data used in the fitting

procedures. Although these model studies consider the prediction of f values

[4], it appears from the published results and statements in the text of Ref. 20

that the correlation is poor. This suggests that quantitative comparisons of

predicted f-values with the observed ones could serve as a meaningful test of

such phenomenological models.

An alternative phenomenological model was developed by Debe and God-

dard [47]. In essence, they assumed a sequence of events which is, in a certain

sense, the reverse of the diffusion–collision model [48,49]: the correct overall

(tertiary) structure is formed at low-resolution first by a random search and then

local (secondary) refinement takes place within the manifold of states in that

fold. Thus, the factor that determines the relative rate of folding for a series of

proteins is the probability of randomly sampling a structure with the known

native contacts (estimated by a Monte Carlo procedure); the distance at which a

contact was counted was adjusted to optimize the fit. For mixed-a/b and b-sheet

proteins, an accuracy of rtrn ¼ 0:78 was obtained. This statistic is comparable to

the correlation coefficients associated with the contact order (Table I and Refs.

12 and 14), which could suggest that this model is a rather complex procedure

for reproducing the simple (essentially linear) dependence of log kf on that

descriptor. For a-helical proteins, the folding rates were considerably under-

estimated, which led Debe and Goddard to conclude that hose proteins must

instead fold by a diffusion–collision mechanism [48,49]. The discussion in the

present section shows that phenomenological models can be useful for
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interpreting the observed statistical correlations. However, it is important to

keep in mind that the ability to fit a particular set of data is not sufficient to

demonstrate that the folding mechanism on which the model is based is correct.

B. Database

To illustrate the methods described in Section II and to show that simultaneous

consideration of multiple descriptors improves prediction of protein folding

kinetics, we describe a detailed analysis of the available data for the folding rates

of two- and weakly three-state proteins. The descriptors tested are listed in Table I

and can be divided into several categories: native state stability (0 and 1), size (2

to 5), native structure (8 to 15), and the propensity for a given structure (16 to 23).

Definitions and sources for the descriptors as well as the data themselves are

given in Tables II and III. Although certain descriptors are significantly

TABLE I

Descriptors Tested as Inputs to the GNN and Their Correlationsa

Index Symbol Description rx;log kf
rtrn rcv q2

cv

0 �G Stability 0.29 0.40 0.06 �0.16

1 �G=n Normalized stability 0.37 0.42 �0.00 �0.13

2 m Buried surface area �0.04 0.38 �0.16 �0.40

3 m=n Normalized surface area �0.04 0.24 �0.29 �0.21

4 n Sequence length �0.10 0.35 �0.52 �0.19

5 nc Number of atomic contacts �0.08 0.34 �0.32 �0.18

6 c Contact order �0.73 0.74 0.67 0.45

7 c=n Normalized contact order �0.79 0.83 0.74 0.54

8 h a-Helix content 0.63 0.64 0.39 0.11

9 e b-Sheet content �0.67 0.71 0.59 0.34

10 t H-bonded turn content 0.04 0.34 �0.07 �0.21

11 s Bend content �0.11 0.31 �0.25 �0.26

12 g 310-Helix content �0.01 0.35 �0.47 �0.28

13 b b-Bridge content �0.15 0.30 �0.36 �0.32

14 o Other 2� structure �0.05 0.27 �0.32 �0.44

15 a Total helix content (hþ g) 0.63 0.67 0.28 �0.04

16 Ph Predicted a-helix 0.47 0.49 0.05 �0.10

17 Pe Predicted b-sheet �0.48 0.57 0.29 0.01

18 Po Predicted other 2� �0.27 0.43 �0.39 �0.32

19 ph a-Helix propensity 0.51 0.55 0.21 �0.03

20 pe b-Sheet propensity �0.47 0.64 0.42 0.14

21 po Other 2� propensity �0.40 0.50 �0.20 �0.16

22 qe Expected 2� prediction accuracy 0.21 0.42 0.07 �0.14

23 qa Actual 2� prediction accuracy 0.40 0.45 �0.14 �0.45

aHere rtrn and rcv are correlation coefficients between observed and calculated values of log kf for

training set fits and cross-validated predictions, respectively. Correlations are the maximum ones

observed for 10 independent trials, each with a different random number generator seed. Statistics

for linear regression are available in Table V.

statistical analysis of protein folding kinetics 11
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correlated with others (Table IV), consideration of all of them is useful because

exhaustive enumeration or a genetic algorithm (GA) is employed to determine

which to include for optimal fitting and prediction.

The database consists of 33 proteins. Twenty-four of these fall into six struc-

turally related groups, and nine are structurally unique. The former are SH3

domains [1NYF (82 to 148), 1PKS, 1SHG, and 1SRL], Ig-like b-sandwiches

[1FNF (1326 to 1415), 1FNF (1416 to 1509), 1HNG, 1TEN (802 to 891), 1TIT,

and 1WIT], members of the acylphosphatase family (1APS, 1HDN, 1PBA,

1URN, and 2HQI), cytochromes (1HRC, 1HRC-oxidized, 1YCC), cold shock

proteins [1CSP and 1MJC (2 to 70)], l-repressor variants (1LMB wild type and

G46A/G48A), and ubiquitin variants (1UBQ wild type and V26A). The remain-

der of the proteins are 1COA (20 to 83), 1DIV (1 to 56), 1FKB, 1IMQ, 2ABD,

2AIT, 2PDD, 2PTL (94 to 155), and 2VIK. Numbers in parentheses indicate the

residue numbers of the domain or fragment studied.

To cross-validate the results, each group of structurally related proteins is left

out of the training set in turn and used to test the network. Such a partitioning

scheme (in contrast to a jackknife one, for example) minimizes the likelihood of

biasing the results in favor of structural descriptors (see Section II). Its use

yields true predictions (denoted ‘‘cv’’) in contrast to fits of the data, in which all

the proteins are included during the training (denoted ‘‘trn’’). The latter tend to

yield inflated accuracy statistics, but we describe them here as well for

comparison with earlier studies [12,13,20,47], which failed to cross-validate

their results [however, it should be noted that the relationship in Ref. 12 has been

used successfully for blind predictions (K. W. Plaxco and D. Baker, personal

communication)].

C. Single-Descriptor Models

We begin by examining the relationship between log kf and each individual

descriptor.
1. Linear Correlations

The first column of statistics given in Table I contains the Pearson linear

correlation coefficients between the descriptor values (x) and log kf ðrx;log kf
Þ. This

is the statistical measure used by Plaxco et al. in their analysis of a subset of the

descriptors considered here [12,14]. Consistent with their results, the two

coefficients with the largest magnitudes are associated with the contact order

(c and c=n). Several descriptors not examined by Plaxco et al. [12,14] exhibit

jrx;log kf
j > 0:5 as well: the a-helix content and propensity (h and ph), total helix

content (a), and b-sheet content (e). Additional linear statistics are provided in

Table V. Physical interpretations of the results are given in Section IV.E.

2. Neural Network Predictions

The second and third columns of statistics in Table I measure the ability of a

single-input neural network to predict the folding rate. They contain Pearson

16 aaron r. dinner et al.
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linear correlation coefficients (rtrn and rcv) between observed and calculated

values of log kf ; thus, only positive values of r are significant. Because there are

only 24 different input possibilities, it is feasible to consider each one in turn, so

that use of a genetic algorithm is not necessary at this stage. However, the NN

weights depend on the random number generator seed through the training pro-

cedure. Consequently, for each descriptor, the network was trained indepen-

dently with ten different seeds. The maximum correlation coefficient for each set

of 10 networks corresponding to a particular descriptor is listed in Table I; the

average standard deviation for a given descriptor was 0.03 for rtrn and 0.06 for rcv.

As stated above, the coefficients denoted ‘‘trn’’ are for results obtained with

networks trained on all 33 proteins; in other words, they are not true predictions

since all the data are included in the training set. For descriptors that are linearly

related to log kf ; rtrn is expected to be comparable in magnitude to rx;log kf

(in fact, for linear regression, rtrn ¼ jrx;log kf
j), whereas, for ones that are

non-linearly related, it should be higher. Thus, rtrn can be viewed as essentially

a nonlinear version of the statistic employed in Ref. 12. Accordingly, most of

the descriptors that exhibit high rtrn were included in the analysis of rx;log kf
.

TABLE V

Linear Regression Statistics for log kf

Index Symbol rtrn rcv q2
cv

0 �G 0.29 �0.02 �0.09

1 �G=n 0.37 0.13 �0.05

2 m 0.04 �0.65 �0.19

3 m=n 0.04 �0.52 �0.20

4 n 0.10 �0.53 �0.27

5 nc 0.08 �0.60 �0.24

6 c 0.73 0.70 0.48

7 c=n 0.79 0.77 0.59

8 h 0.63 0.55 0.30

9 e 0.67 0.59 0.34

10 t 0.04 �0.76 �0.23

11 s 0.11 �0.52 �0.19

12 g 0.01 �0.75 �0.41

13 b 0.15 �0.43 �0.26

14 o 0.05 �0.74 �0.31

15 a 0.63 0.57 0.32

16 Ph 0.47 0.29 0.06

17 Pe 0.48 0.31 0.08

18 Po 0.27 �0.27 �0.28

19 ph 0.51 0.37 0.13

20 pe 0.47 0.28 0.05

21 po 0.40 0.07 �0.09

22 qe 0.21 �0.21 �0.14

23 qa 0.40 0.12 �0.07
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The coefficients denoted ‘‘cv’’ are for the predictions obtained with the

structurally based cross-validation scheme. Negative values of rcv indicate that

the accuracy of the network is lower than that which would be obtained from

random guesses. If a network fails in this way when confronted with novel test

data, it has derived a spurious relationship by memorizing the information in the

training set at the expense of learning more general rules. The highest rcv do

correspond to the highest rtrn, but overall the cross-validated coefficients are

much lower. The large differences between rtrn and rcv in many cases (Table I)

make clear that the former is a relatively indiscriminate statistic for such a small

database. If linear regression is used, rtrn and rcv are often closer due to the

decreased flexibility of the fitting method (Table V). However, such an approach

fails to identify nonlinear relationships and can hide complexities in the results.

In summary, the contact order yields relatively good prediction of log kf but

is not alone in doing so. Several measures of the propensity of the sequence for

a given structure also exhibit significant relationships with the folding rate.

Although rcv values for the various descriptors obtained from the secondary

structure prediction program (indices 16 to 21 in Table I) are lower than those

for measures of the known native structure (indices 6 to 15), the former

correlations may be sufficiently high that the calculated descriptors could be

used to identify particularly fast or slow proteins without the need for high-

resolution structures. The stability, which has been suggested to be of im-

portance based on model studies, exhibits no clear relation to the folding rate.

An essential additional point of the single-descriptor analysis is that large

differences are observed between most of the values obtained with and without

cross-validation. This highlights the need for care in assessing the significance

of correlations when working with small numbers of sequences.

D. Multiple-Descriptor Models

We present results for two- and three-descriptor models; addition of a fourth

descriptor yielded no significant improvement in predictive accuracy. In the two-

descriptor case there are only 276 possible input combinations, so we examine

each explicitly, whereas, in the three-descriptor case there are 2024, so we use the

genetic algorithm (GA) to optimize the descriptor selection. Use of the GA in the

two-descriptor case gives models of comparable quality to the exhaustive search,

but this test of the algorithm is not very stringent because the space of input

combinations is small. Because both the GA and the NN depend on the random

number generator seed, several trials were performed in each case (as detailed in

Section IV.D.2).

1. Two Descriptors

The best five two-descriptor models are shown in Table VI, and selected

examples to illustrate the types of behavior that are observed are shown in Fig. 2.
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There is a significant increase in fitting ability (training) and, more importantly,

in predictive accuracy (cross-validation) upon adding a second descriptor. In

Figure 2, we see that the squares (&) tend to be closer to the ideal line than the

circles (
), particularly for lower log kf (slower-folding proteins). To quantitate

the improvement, we calculated Wold’s E statistic from the q2
cv values (Table VI).

While these figures suggested to us that the additional descriptors significantly

improve the accuracies of the cross-validated predictions, general confidence

limits are not straightforward to calculate. Consequently, we did the following.

We shuffled the values of each secondary descriptor (other than c=n) 10 times

and then trained neural networks to predict log kf as for the actual data. Averages

and standard deviations of the correlation coefficients are reported in Table VII.

We see that, even though the rtrn values are comparable to those in Table VI, the
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Figure 2. Comparison of observed and calculated values of log kf for selected models. (a and

b) c=nð
Þ; c=n and �G=n (&); and c=n;�G=n and peð4Þ. (c and d) c=nð
Þ; c=n and nc (&); and

c=n; nc; and �Gð4Þ. (a and c) Training set fits. (b and d) Cross-validated predictions.
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rcv values are close to that for c=n by itself (Table I); the NN ignores the

randomized descriptor. The fact that the rcv values for the actual data are two to

four standard deviations above the average rcv values for the randomized data

demonstrates that the improvement is significant and is not due to the increase in

the number of fitting parameters.

The best predictions are obtained with �G=n paired with c=n (�G with c is

the sixth best set of inputs with rcv¼ 0.77 and E ¼ 0.76) This combination of

input descriptors was investigated previously [15], but it is of interest that it

ranks first in the exhaustive search performed here. To better understand the

physical basis for the correlations, we show the dependence of log kf on c=n and

�G=n in Fig. 3a. When c=n is small (c=n � 19; mainly a-helical proteins),

folding is always fast (kf > 400 s�1), whereas when c=n is large (c=n � 25;

either mixed-a/b or b-sheet proteins), the rate spans over three orders of

magnitude. Thus, proteins with lower contact orders fold fast regardless of

their stabilities, whereas for those with higher contact orders, the rate increases

with �G=n. As described in Ref. 15, a single-input neural network can be

trained to predict log kf from �G for the 14 proteins with c > 21 (Fig. 4);

rtrn ¼ 0:81, and rcv ¼ 0:64, which confirms that stability plays a significant role

in determining the folding rates of mixed-a/b and b-sheet proteins. For these 14

TABLE VI

The Best (as Measured by rcv) Five Two-Descriptor Models Obtained by Examining All Possible

Combinations for Ten Different Random Number Generator Seedsa

Descriptors rtrn rcv q2
cv E

c=n �G=n 0.89 0.81 0.66 0.74

c=n Ph 0.87 0.80 0.63 0.81

c=n nc 0.89 0.79 0.62 0.82

c=n ph 0.86 0.77 0.57 0.93

c=n qa 0.84 0.77 0.59 0.89

aFor the calculation of E, q2
cv was compared with that for c=n. Statistics for linear regression and

additional measures of the predictive accuracy are available in Tables VII and VIII.

TABLE VII

Randomization Tests for the Models in Table VIa

Descriptors rtrn rcv q2
cv

c=n �G=n 0:83
 0:01 0:71
 0:03 0:49
 0:04

c=n Ph 0:84
 0:03 0:68
 0:07 0:43
 0:12

c=n nc 0:87
 0:02 0:69
 0:04 0:46
 0:05

c=n ph 0:84
 0:02 0:68
 0:06 0:42
 0:10

c=n qa 0:84
 0:00 0:68
 0:07 0:44
 0:11

aIn each case, the second descriptor listed was shuffled 10 times, and the networks were trained as

for the original data. Values shown are averages for the 10 trials; ranges indicate standard deviations.

statistical analysis of protein folding kinetics 21



proteins, r�G;log kf
¼ 0:80 while rc;log kf

¼ �0:22;E ¼ ð1� q2
c;�GÞ=ð1� q2

cÞ
¼ 0:23.

Two of the other models in Table VI combine the contact order with a

measure of the a-helical propensity: c=n with either Ph or ph: These pairings

essentially reflect the results of the previous section. The remaining model

couples c=n with nc, which reveals a secondary dependence on protein size.

Consistent with the sign of rnc;log kf
(Table I), the functional dependences of

log kf on these descriptors for the models in Table VI indicate that shorter

proteins fold faster than longer ones (Fig. 3b).

2. Three Descriptors

As mentioned above, there are 2024 possible combinations of three descriptors,

so we use a GA to identify the inputs that are likely to yield the greatest

predictive accuracy. Use of the GA requires selection of a particular measure of

predictive accuracy to decide which models to keep at each cycle. Because we

are interested primarily in cross-validated predictions, rcv is a natural choice.

However, the structurally based partitioning scheme is less straightforward to

automate than a jackknife one. Consequently, for the GNN, we used the Pearson

linear correlation coefficient for the jackknife cross-validated outputs (rjck) and

subsequently tested each selected combination of descriptors with the

structurally based cross-validation scheme (rcv). We performed five GNN trials,

from each of which we saved the best 20 models. Of these 100 models, 46 were

unique, and each of these was subjected to 10 trials with the structurally based

cross-validation scheme.

In general, the GA combines the descriptors that were identified above by the

two-dimensional exhaustive search (c; c=n;�G;�G=n; and nc) to further refine

the predictions (Tables IX to XI and Fig. 2). The propensity for sheet structure

ðpeÞ appears in two of the five models; not surprisingly, it is strongly anti-

correlated with the propensity for helical structure, which appeared in Table VI

(rpe;ph
¼ �0:89). In considering these results, it is necessary to keep in mind that

the database is small, so that there is a danger of overfitting (but see Table X).

Nevertheless, given this disclaimer, we see that simultaneous consideration of

multiple descriptors improves prediction of the folding rate and that both the

TABLE VIII

Linear Regression Statistics for the Models in Table VI

Descriptors rtrn rcv q2
cv E

c=n �G=n 0.81 0.72 0.47 1.27

c=n Ph 0.79 0.75 0.57 1.04

c=n nc 0.82 0.79 0.62 0.92

c=n ph 0.79 0.75 0.56 1.05

c=n qa 0.80 0.77 0.60 0.97
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Figure 3. Functional dependence of calculated folding rate (kf , in s�1) on the normalized

contact order (c=n) and either (a) the normalized stability (�G=n in kcal/mol) or (b) the total number

of atomic contacts ðncÞ.
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size and the stability play significant secondary roles that could not have been

anticipated from the single-descriptor analyses.

E. Physical Bases of the Observed Correlations

Consistent with earlier, single-descriptor linear analyses of protein folding

[12,13,50], the primary determinants of the folding rate are measures that

characterize the native structure; that is, proteins with more sequentially local

interactions tend to fold faster. As discussed below, the equilibrium structure and

the kinetics are connected by the fact that the structure of the transition state

resembles that of the native state in many small proteins [50]. Thus, the kinetics

and the underlying thermodynamics of the reaction are affected in a similar way,

in accord with linear free energy relations.

The microscopic origin for the statistical dependence of the folding kinetics

on the structure is the stochastic diffusive search that is required to find the
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Figure 4. Observed (points)

and calculated (line) log kf as a

function of the stability in kcal/

mol for the 14 proteins in the

database with c > 21:

TABLE IX

The Best (as Measured by rcv) Five Unique Three-Descriptor Models Obtained from the GNN

Protocol for Ten Different Random Number Generator Seedsa

Descriptors rtrn rjck rcv q2
cv E

c=n �G=n pe 0.92 0.84 0.86 0.74 0.76

c=n �G nc 0.93 0.84 0.84 0.70 0.80

c=n �G=n nc 0.92 0.81 0.83 0.67 0.97

c=n �G c 0.90 0.83 0.83 0.66 0.81

c=n �G pe 0.91 0.80 0.83 0.67 0.72

aFor the calculation of E, q2
cv was compared with the highest observed q2

cv of the six possible two-

descriptor models that could be formed from the three selected inputs (corresponding to the

unshuffled pair in Table X). Statistics for linear regression and additional measures of the predictive

accuracy are available in Table X and XI.
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transition state. As described in the formulation of the ‘‘hydrophobic zipper

hypothesis’’ [51,52] and in the statistical analyses of 125-residue lattice models

[10,11], having sequentially short-range contacts in the transition state should

increase the folding rate for two reasons. First, such contacts are found more

readily because there are fewer conformations to search (the number grows ex-

ponentially with loop length). Second, making sequentially long-range contacts

costs more entropy because they constrain the chain to a greater degree. These

advantages correspond to different components of the macroscopic rate law

[kf ¼ AðTÞexp ��G=kBTð Þ]. In this regard, it is necessary to keep in mind that

the preexponential factor can be nontrivial for protein folding [53,54]. If AðTÞ is

sufficiently large, there is a separation of time scales; the protein reaches an

effective equilibrium within the unfolded state rapidly, and the rate is dominated

by the time required to surmount the barrier [55]. In this case, the observed

statistical dependence on the structure implies that the barrier is entropic (as in

Fig. 3a of Ref. 1 and Figs. 6 and 7 of Ref. 36). Based on these ideas, Fersht

recently derived a simple relationship to show that changes in contact order are

directly proportional to changes in log kf [50]. On the other hand, if AðTÞ is

small, there is no separation of time scales. Because a dependence on the

structure enters through the preexponential factor in this case, the barrier, if

there is one, could be either entropic or energetic (as in Fig. 3b of Ref. 1).

Free energy surfaces for folding have now been determined for high-

resolution (all-atom) models of several peptides and proteins [72–77]. For

both a-helical and b-hairpin peptides, decomposition of the surfaces into

contributions from the effective energies (which include the full solvent free

TABLE X

Randomization Tests for the Models in Table IX

Descriptors Randomized rtrn rcv q2
cv

c=n �G=n pe pe 0:89
 0:02 0:80
 0:03 0:61
 0:07

c=n �G nc �G 0:88
 0:02 0:72
 0:05 0:48
 0:10

c=n �G=n nc nc 0:89
 0:01 0:74
 0:04 0:49
 0:09

c=n �G c c=n 0:89
 0:01 0:71
 0:04 0:46
 0:08

c=n �G pe �G 0:88
 0:01 0:69
 0:06 0:41
 0:10

TABLE XI

Linear Regression Statistics for the Models in Table IX

Descriptors rtrn rcv q2
cv E

c=n �G=n pe 0.83 0.71 0.46 1.57

c=n �G nc 0.84 0.73 0.46 1.42

c=n �G=n nc 0.84 0.76 0.55 1.29

c=n �G c 0.83 0.71 0.41 1.40

c=n �G pe 0.82 0.69 0.38 1.34
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energies) and configurational entropies indicated that the free energy barriers

derive primarily from the fact that the entropy decreases more rapidly than the

energy [75–77], as in Ref. 36 discussed above. However, consistent with the

statistical analyses of proteins, differences in secondary structure content

correspond to differences in the general shapes of the free energy surfaces.

For a-helical sequences, the transition states tend to be less folded, and

secondary and tertiary structure form concurrently [72,77]. For peptides and

proteins which contain b-hairpins and b-sheets, a collapse to a native-like radius

of gyration occurs first, and rearrangement to the native state follows wihout

significant expansion [73–75]. At least for peptides at elevated temperatures

[76,77], determination of the rate of diffusion on the free energy surfaces, which

relates directly to the pre-exponential factor in the rate law [53], should now be

possible but has not been done and would be of interest.

In connecting these ideas with earlier phenomenological models, it is not

obvious how to reconcile the dependence of the rate on the structure with a

nucleation mechanism, as in Ref. 50. The statistical relationship suggests that

the transition state contains a considerable amount of native structure, while a

nucleus, in the classic sense of the word, is a small part of the structure.

However, it could be that a limited number of native contacts (i.e., those in the

nucleus) are sufficient to confine the transition state ensemble to a native-like

fold. This idea is supported by a recent analysis of the folding transition state of

acylphosphatase in which key residues, as determined by a f value analysis,

play a critical role [56].

V. UNFOLDING RATES OF PROTEINS

To function, a protein must not only fold (kinetic criterion) but populate its native

state for a significant fraction of the time (thermodynamic criterion). The

unfolding rate (ku) as well as kf contribute to the equilibrium constant, which

determines to what degree the latter condition is satisfied. To find the factors that

affect the unfolding rate, we carried out an analysis for log ku. Rate data for

unfolding in water were not available for three of the proteins (2HQI, 1YCC, and

1HRC-oxidized), so these were excluded from the analysis; the choice of

descriptors was the same.

For single-descriptor models, the best cross-validated predictions are ob-

tained with the contact order (c and c=n ), the free energy of unfolding (�G and

�G=n), and the buried surface area (m) (Table XII). The strong dependence of

the unfolding rate on the contact order for these proteins is somewhat surprising

because no significant correlation was observed in a previous study of a

database of 24 proteins [14], 19 of which are included here. For those 19 proteins

we have r�G;logku
¼ �0:61, rc;logku

¼ �0:56 and rc=n;logku
¼ �0:45, whereas for

the 11 additional proteins included in the present analysis of the unfolding rate

we have r�G;logku
¼ �0:64, rc;logku

¼ �0:85, and rc=n;logku
¼ �0:83. The proteins
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that appear to be primarily responsible for decreasing the correlation with the

free energy of unfolding and increasing the correlation with the contact order

are the helical proteins—in particular, 2PDD and 1LMB. Because for the 30

proteins considered in this section there is no significant correlation between the

contact order and either the free energy of unfolding (r�G;c ¼ 0:28) or the

amount of buried surface area (rm;c ¼ 0:23), higher predictive accuracy is

obtained by combining these descriptors (Table XIII). Only a slight improve-

ment was observed upon adding a third descriptor.

We end this section by noting that, for these 30 proteins, there is a significant

correlation between the folding and unfolding rates (rlog kf ;log ku
¼ 0:59). At least

in the case that kf and ku are determined by an entropic barrier (Section IV.E),

this relationship can be understood in the following way. Because all the

proteins are roughly the same size, the stability of the native state does not

depend on contact order (for the overall reaction, �S / n). Changes to c that

raise or lower the free energy of the transition state (TS) relative to the fixed

endpoints (U and F) will change �U�TS and �GF�TS in the same manner. This

dependence of the activation free energies is the basis not only for the correlation

of log ku with log kf but also that with c.

TABLE XII

Single-Input Correlations for Unfolding Rates

Index Symbol rx;log ku
rtrn rcv q2

cv

0 �G �0.64 0.69 0.53 0.21

1 �G=n �0.45 0.55 0.40 0.12

2 m �0.41 0.61 0.45 0.14

3 m=n �0.31 0.36 0.08 �0.11

4 n �0.43 0.58 0.09 �0.09

5 nc �0.40 0.53 0.09 �0.05

6 c �0.68 0.77 0.67 0.44

7 c=n �0.58 0.69 0.52 0.20

8 h 0.40 0.49 �0.57 �0.86

9 e �0.34 0.53 0.16 �0.06

10 t �0.01 0.39 �0.25 �0.12

11 s �0.08 0.26 �0.19 �0.24

12 g 0.03 0.36 �0.16 �0.32

13 b �0.27 0.27 �0.19 �0.23

14 o �0.20 0.55 0.15 �0.08

15 a 0.40 0.50 �0.27 �0.27

16 Ph 0.29 0.53 �0.64 �0.32

17 Pe �0.28 0.30 �0.38 �0.47

18 Po �0.20 0.52 �0.22 �0.20

19 ph 0.29 0.50 �0.31 �0.42

20 pe �0.23 0.50 �0.38 �0.40

21 po �0.27 0.49 �0.56 �0.11

22 qe 0.14 0.35 �0.11 �0.14

23 qa 0.24 0.48 0.19 �0.06
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VI. HOMOLOGOUS PROTEINS

Information about the transition state of a protein can be obtained from protein

engineering experiments in which one compares the effects of mutations on the

folding rate to their effects on the overall stability (f values). Several proteins

have been mutated extensively, and their kinetics have been measured. The fact

that proteins with related structures but low sequence homologies are found to

have similar transition states has been taken to support the relation between

native structure and folding behavior; this is the case for the transition states of

the src [57] and a-spectrin [58] SH3 domains, which have 36% sequence homo-

logy. A particularly interesting transition state comparison involves acylphos-

phatase (AcP) [59] and procarboxypeptidase A2 [60]. These two proteins fold to

sandwich structures with two a-helices packed against a five- or four-stranded

antiparallel sheet, respectively. Although their sequences have only 13% identity,

the average f values for all elements of secondary structure (except one, b-strand

4) are almost the same. Moreover, it has been suggested that the reason

that procarboxypeptidase A2 folds about 4000 times faster than AcP is that the

transition state of the latter involves longer loops and secondary structure

elements; consistent with this observation, there is a strong correlation between

log kf and the contact order for proteins with this fold [59].

The dependence of the folding rate on the stability can be evaluated by

measuring the kinetics of a family of proteins with native states that have

similar structures but different �G values. Such an analysis was made recently

for a set of six immunoglobulin-like b-sandwich domains [61]. They have

stabilities that are distributed relatively uniformly over the range 1:2 � �G �
9:4 kcal/mol (in contrast to the AcP family discussed above, for which four of

the five members have 3:8 � �G � 5:4 kcal/mol). Although there is some

variation in the detailed structures of these six proteins, using the definition of

the contact order given in Section II, all of them have c=n > 28 (for these six,

28:22 � c=n � 32:53; for the five members of the AcP family, 25:83 � c=n �
35:08; for all 33 proteins, 12:21 � c=n � 37:32). In accord with the functional

dependence on �G shown in Figs. 3a and 4, a strong positive correlation

between log kf and �G was observed for this family (r�G;log kf
¼ 0:99). The data

TABLE XIII

The Best (as Measured by rcv) Five Two-Descriptor Models for the Unfolding Rates

Descriptors rtrn rcv q2
cv E

c �G=n 0.90 0.85 0.71 0.53

c �G 0.88 0.81 0.66 0.62

c=n �G 0.89 0.80 0.61 0.49

c m 0.83 0.73 0.53 0.85

c m=n 0.90 0.71 0.49 0.92

28 aaron r. dinner et al.



suggest that for a given structural family with significant variation in �G, the

folding rates of individual sequences are determined by their stabilities.

This conclusion is consistent with the fact that both log kf and log ku typically

vary linearly with the stability of the native state as a protein is mutated. Such

Brønsted behavior has been used in protein engineering studies to argue that

fractional f values derive from partial structure formation rather than multiple

parallel folding pathways [62]. Correlation coefficients for published folding

rates of mutants of six two-state proteins are given in Table XIV. For the most

part, there is a strong, essentially linear relation that is reasonably robust to

jackknife cross-validation. For all the sequences, increases in stability tend to

accelerate folding. Similar behavior is obtained simply by varying the condi-

tions to affect the stability of a protein (for example, see Fig. 2a of Ref. 14).

This analysis thus confirms that the stability is an important secondary factor in

determining folding rate. As described in Ref. 9, in accord with the Hammond

postulate [34], stabilizing the native state of a protein in most cases also lowers

the energy of its transition state relative to the unfolded state and thus increases

the folding rate.

VII. RELATING PROTEIN AND LATTICE MODEL STUDIES

The fact that the folding (and unfolding) kinetics of relatively small, two-state

proteins can be predicted with reasonable accuracy from global features of the

native state like the contact order, stability, and number of contacts supports the

idea that the details of protein structure are not required to capture the key

features of protein folding, so that reduced representations should be adequate.

However, the most widely used simple heteropolymer models, those restricted to

a simple cubic lattice, predict that stability is more important than native

structure, in contrast to the experimental data for proteins. In this section we seek

to understand why lattice models differ from proteins in this regard. Doing so is

of importance because complete details of the folding trajectories of such models

TABLE XIV

Relation Between Stability and Folding Rate for Six Two-State Proteins That

Have Been Mutated Extensivelya

Protein Reference c Number of Mutants r�G;log kf
rtrn rjck

Acylphosphatase 59 34.4 25 0.614 0.667 0.386

Procarboxypeptidase A2 60 20.7 19 0.531 0.712 0.464

src SH3 57 20.5 58 0.552 0.556 0.408

a-Spectrin SH3 58 18.0 18 0.481 0.476 0.099

CI2 71 16.1 86 0.554 0.606 0.519

l-Repressor 64 9.8 9 0.720 0.760 0.307

aThe coefficients rtrn and rjck are for single-input (�G) neural networks. The a-spectrin SH3 domain

values are those for pH 7; the src SH3 domain values are for pH 6. The l-repressor values are for

2 M urea.
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can be obtained and used to test phenomenological models like those described

in Section IV.A.

In the case of the 27-residue model described in Section III [6,9], it is likely

that the chain length is too short for there to be contacts that are sufficiently long

range to slow-folding. In the case of the 125-residue model, which is larger than

all but one (2VIK) of the proteins considered in the present study, significant

correlations between various measures that characterize the native structure and

the folding behavior were observed [10,11] (it should be mentioned that, in

contrast to the number of antiparallel sheet contacts discussed in Section III, the

contact order is a poor measure for characterizing lattice model structure;

18:7 � c � 31:0 for the 100 helical proteins in Refs. 10 and 11, whereas

17:2 � c � 32:0 for the 100 sheet proteins). However, in the lattice model, the

functional dependence of the folding stability is essentially the same regardless

of the native structure; at a particular threshold value of the stability (which

varies only slightly with the number of antiparallel sheet contacts), the folding

ability rises rapidly and then levels off [11,37]. There are two likely reasons that

the functional dependence is much simpler than that for proteins (Fig. 3a). First,

the 125-residue sequences were energetically optimized to observe folding on

the time scale of feasible simulations and are thus expected to correspond to the

more stable region in Fig. 3a. Second, due to the highly restricted confor-

mational space of the lattice and the choice of move set, helices that form in

isolation cannot diffuse as semirigid units [49]; as a result, lattice models cannot

correctly capture the lower contact order region of Fig. 3a. Once one restricts

oneself to the remaining part of Fig. 3a, the behaviors observed in the lattice

models and proteins are consistent; in both, the folding ability increases

sigmoidally with the stability [compare Fig. 4 with Fig. 16 of Ref. 11 and

Fig. 1 of Ref. 37]. It should be noted, however, that an exact correspondence is

not expected because, in the lattice model [2,6–11] and related analytic [16–18]

studies, the stability descriptors are calculated from effective energies that

include solvent effects implicitly rather than from full free energies, while the

experimental �G values include the protein configurational entropy as well. It

would be useful in this regard to have experimental enthalpies of folding for the

proteins considered.

VIII. CONCLUSIONS

In the present study a nonlinear, multiple-descriptor method was applied to the

prediction of the logarithm of the folding rate constant for a set of 33 two- and

weakly three-state proteins. With two (three) descriptors, the Pearson linear

correlation coefficient between the observed values and the training set and

cross-validated predictions reach 0.89 (0.93) and 0.81 (0.86), respectively. These

results are to be compared with those obtained by using the contact order by

itself: rtrn ¼ 0:83 and rcv ¼ 0:74. In addition to the contact order, some measures
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of the propensity of the sequence for a given structure also exhibited significant

relationships with the folding rate; for example, rcv ¼ 0:42 for pe. Although the

propensity correlations are somewhat lower than those for measures obtained

from the observed native structure, the sequence-based predictions may be

sufficient to identify fast- or slow-folding proteins without the need for high-

resolution structures. For example, using n and pe, the folding rates for all 33

proteins, which range over almost six orders of magnitude, are predicted within a

factor of 200; these (cross-validated) predictions are to be compared with those

based on nc and c=n, which are accurate within a factor of 60. In addition to the

contact order, the size and stability play significant roles and are selected

frequently for two- and three-descriptor models. Of particular interest is the

finding that, for mixed-a/b and b-sheet proteins with higher contact orders

(c> 21), the stability not only significantly improves the accuracy of multiple-

descriptor models but gives excellent predictions by itself. The explicit or

implicit inclusion of the stability in phenomenological models accounts for

recent improvements in fitting experimental kinetic data [19,20,42]. Given the

high quality of predictions that are obtained with the present analysis, further

investigation of such correlations and their physical origins appear worthwhile,

as has been suggested elsewhere [50].
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I. INTRODUCTION

Protein folding is a process by which a polypeptide chain made up of a linear

sequence of amino acids adopts a well-defined three-dimensional native structure

[1]. Single-domain proteins reach their biologically active native conformations

on time scales that are typically on the order of 10–1000 milliseconds [2]. Since

Anfinsen’s pioneering experiments it has been known that protein folding is a

self-assembly process in which the information needed to determine the three-

dimensional native structure is contained in the primary sequence [3]. Given this,

the next important question is how the native state is kinetically reached in such a

short time scale [4]. This issue was first emphasized by Levinthal, who wondered

how a protein of a reasonable length can navigate the astronomically large

conformational space so efficiently [5]. Seeking to resolve the paradox,

Levinthal suggested that certain preferred pathways must guide the chain to

the native state. For years the Levinthal paradox has served as an intellectual

impetus in our quest to understand the mechanisms by which a polypeptide chain

reaches the native conformation.

The last decade has witnessed considerable advances in our understanding of

how a polypeptide chain folds starting from an ensemble of denatured states [6–

13]. In recent years, protein folding kinetics has become increasingly important,

largely because misfolding (i.e., errors in refolding) has been implicated in a

number of diseases [14]. As a result, several advances have been made to probe

the factors that govern the normal folding of proteins. Fast-folding experiments

[2,8,15–19] and single-molecule methods [20–24] are beginning to provide

direct glimpse into the early events in the assembly of proteins. Protein

engineering in conjunction with the �-value analysis has become the corner-

stone technique in deciphering the structures of the elusive transition state

ensemble of two-state folders [25–27]. Although these tools have helped us to

understand folding of individual proteins, considerable progress still needs to be

made before the complex processes in misfolding and assembly of proteins with

increasing complexity are well understood. In particular, to translate the

functional genomics efforts into practical applications, it is important to solve

rapidly the proteomics problem, namely, the determination of protein structures.

36 d. thirumalai, d. k. klimov, and r. i. dima



These multifaceted activities have ushered all aspects of protein folding at the

center stage of molecular biology.

The major focus has been in understanding the folding mechanisms of

proteins that display two-state behavior [28]. A variety of factors that determine

the plausible folding scenarios have been identified [6,9–12,29–36]. A number

of distinct folding mechanisms emerge depending on the characteristics

temperatures that determine the phases of the polypeptide chain [10,34]. These

findings explicitly link the underlying thermodynamic properties of proteins

and their folding mechanisms. Several studies have focused on the factors

that determine the folding rates of two-state proteins. Plausible relation-

ships between folding rates and the contact order [37] (which emphasizes

the role of structures involving proximal residues), stability [34,38], and Z

score [34] have been established. Because many of these conceptual ideas

have been described in recent reviews [6,9–12,33,39–41], we will not discuss

these here.

A variety of computational and phenomenological approaches have been

employed to obtain the general principles that control the folding rates and

mechanisms of single-domain globular proteins [6,10,33]. It may be naively

thought that the computational protocol for describing protein folding is

straightforward. Indeed, the folding dynamics is well-described by the classical

Newton equations of motion, and folding may be directly monitored from an

appropriately long trajectory. However, there are two drastic limitations that

prevent this approach to study the folding of proteins. First, the force fields for

such a complex system are not precisely known. As a result, one needs to rely

on the transferability hypothesis that interactions derived for small molecules

can be used in larger systems, such as proteins. The second problem is simple:

the limitations of current CPU power. Repeated folding of even a single-domain

protein requires generating of multiple trajectories in a millisecond time scale.

Even creative use of massively parallel simulations does not entirely solve this

severe numerical constraint [42].1

In light of these difficulties, various simplified models of proteins have been

suggested [10,39,41]. Most of the insights from computations came from the

systematic studies of folding using coarse-grained models. The main rationale

for their use is that a detailed study of such models will reveal general principles,

if any, that govern the folding of proteins [10,39,41,43,44]. Such an approach

1We have recently achieved extraordinary speed-up of folding simulations for several b-hairpin

sequences using distributed computing. In collaboration with Parabon Computations Inc., we have

shown that distinct folding scenarios emerge even in the formation of b-hairpins. For the hairpin

taken from the C-terminal of the immunoglobulin binding protein (GB1), the folding mechanisms

and the time scales depend on the location of the hydrophobic cluster (D. Klimov, D. Newfield, and

D. Thirumalai, unpublised results).
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has yielded considerable insights into the mechanisms, time scales, and path-

ways in the folding of polypeptide chains.

The purpose of this chapter is to describe applications of simple concepts and

computations to three specific problems in protein folding: (i) Are the re-

quirements that folded states of proteins be compact and have low energy

sufficient to explain the emergence of the finite number of folds from a very

dense sequence space? An affirmative answer to this question, at the conceptual

level, can be given using lattice models of proteins [44]. (ii) Phenomenological

theory and lattice model computations are used to clarify the role of disulfide

bonds in protein folding. The theory based on the proximity rule [45] and the

lattice models investigating disulfide bonds formation [46] provided clarifica-

tions of the expected pathways in the refolding of bovine pancreatic trypsin

inhibitor (BPTI). Recent calculations have explained quantitatively the effect of

intact S–S bonds on the folding and stability of barnase. (iii) We describe a

simple model of chaperonin-assisted folding [47]. Specific predictions about the

coupling between conformational change of the chaperone molecule and the

folding of the substrate protein emerge from the calculations. These predictions

were subsequently tested experimentally.

To make this chapter as self-contained as possible, we briefly describe lattice

models and the commonly employed computational methods. This is followed

by a brief description of how a monomeric protein folds. The contents of this

section are important to better appreciate the role of chaperones in the rescue of

proteins. The chapter is concluded with brief comments about the challenges we

face in the straightforward all-atom simulations of protein folding.

II. LATTICE REPRESENTATIONS OF PROTEINS

A. Basic Assumptions

Lattice models (LM) of single chains have long been used in polymer physics to

obtain a number of universal properties (scaling of the size of the polymer with

N, distribution of end-to-end distances, etc.) of real homopolymer chains [48].

For these issues the universal properties are unaffected by the precise interactions

between monomers as long as they are short-ranged. It is not clear a priori that

lattice models can be used to investigate general features of folding (e.g.,

cooperativity of transition from unfolded U to native N states). Single-domain

proteins are finite-sized with the number of amino acid residues, N, not typically

exceeding much beyond 200. Specific interactions that leads to the unique

architecture of the N state cannot be fully represented using LM. The dynamics

of the folding process can clearly depend on the precise move sets, so that the

correspondence between the Monte Carlo simulations and the kinetics in
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aqueous solution is ambiguous at best. Nevertheless, a series of studies from

several groups have yielded a number of predictions many of which have been

affirmed experimentally [6,39,41,47].

In the context of protein folding, lattice models were first introduced by G�o
and co-workers [49]. The insights brought by Dill and Chan in the late 1980s

have had a great influence on the development of LM for understanding protein-

folding kinetics [50]. Dill and co-workers argued that protein folding can be

studied using short enough chains so that exact enumeration of all allowed confor-

mations becomes possible. Exact enumeration enables precise computations of

thermodynamic characteristics. Monte Carlo (MC) simulations, based on

physically motivated move sets, can be used to monitor folding kinetics.

In the simplest LM, amino acids are represented by a single atom (treated as

a backbone a-carbon) and the side chains are not explicitly considered. As a

result, only a few basic interactions found in real proteins can be modeled. In

the most popular version of LM the polypeptide chain adopts a self-avoiding

walk on a cubic lattice [32,51,52]. The heterogeneity of interactions in amino

acids is mimicked by having several interaction energy scales between the beads

of the chain. In general, only short-range interactions between nonbonded

residues that are nearest neighbors on the cubic lattice are taken into account.

Thus, a generic energy function for such a model includes three components:

(i) connectivity of the chain is preserved through rigid bonding of successive

beads; (ii) a self-avoidance condition is imposed by the restriction that a given

lattice site can be occupied only once; (iii) the contact interactions between the

side chain beads i and j Bi jðji� j j � 1Þ are given by pairwise potentials. The

energy of a conformation is

E ¼
X
i< j

Bijdj~ri�~rjj;a ð1Þ

where dr;a is the Kronecker delta function and a (¼3.8 Å) is the lattice spacing.

1. Contact Energies

There are several models for the interaction matrix elements Bij which take into

account the diversity of interactions between amino acids. Because these models

are at best a simple representation of the potentials in real proteins, it is not a

priori clear that any particular model is better than the other. In the literature

several different interaction schemes have been utilized [32,34,39,47,51,52].

These include HP model [39,51], random bond (RB) model [32], and the

pairwise potentials derived from the statistical analysis of contacts between

different amino acids in the protein structures [53–55]. In what follows we give a

brief description of these models.
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2. HP Model

This model reduces the set of 20 naturally occurring amino acids to two kinds,

namely, hydrophobic (H) and polar (P) [39,51]. A sequence is given by the

nature of the amino acid residue at a given position. For example, HPHPH is a

sequence with N ¼ 5. There are 2N total sequences for a given N. In the HP

model the interactions are given by a 2� 2 matrix, whose elements are

BHH ¼ �E and zeros, otherwise. Despite the simplicity of the model, it is not

exactly solvable due to the chain connectivity and excluded volume effects. Be-

cause the HP model can lead to microphase separation, variations in the inter-

action energies have been introduced. Various aspects of folding observed in the HP

model (two-letter code) have been investigated by Dill et al. [39] and others [51].

3. Random Bond Model

In the RB model [32] the interaction elements are drawn from the Gaussian

distribution

PðBijÞ ¼
1ffiffiffiffiffiffi
2p
p

B
exp �ðBij � B0Þ2

2B2

 !
ð2Þ

where B0 is the average interaction that specifies the strength of the drive toward

forming compact structures at low temperatures, and the dispersion B gives the

extent of diversity of the interactions among beads. Energy is measured in

terms of B which is set to unity. The choice of B0 ¼ �0:1 [32] ensures that the

fraction of hydrophobic residues in a sequence (specified by the interaction

matrix elements Bi j) is about 0.55, which roughly coincides with the fraction of

hydrophobic residues in real proteins. A sequence is specified by the matrix of

contact energies Bi j.

4. Statistically Derived Pairwise Potentials

In this case, the energies Bi j are given by pairwise statistical potentials computed

by analyzing the frequency of amino acids interactions in the experimentally

determined protein structures. Several sets of such potentials are currently

available. These includes the potentials calculated by Miyazawa and Jernigan

(MJ) [53], Kolinski, Godzik, and Skolnick (KGS) [54], Mirny and Shakhnovich

[56], Tobi and Elber [57], and Betancourt and Thirumalai [55]. The major

advantage of the such potential sets is that the model lattice sequence may now

be described in terms of ‘‘real’’ amino acid composition, assuming that the

contact energies reproduce the nature of interactions between amino acids.

5. G�o Model

The G�o model does not directly introduce a new force field, but modifies the

existing energy function by tuning it to the known native structure [58].

Specifically, the G�o model considers only the interactions between residues
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(beads on the lattice) that are present in the native (ground) state. In other words,

only native contacts are taken into account. The major advantage of the G�o
model is almost a complete elimination of frustration in a model protein and, as a

result, a substantial increase in the folding rates [59]. The severe shortcoming is

that the energy function and the native structure cannot be decoupled; conse-

quently the G�o model, despite being topologically frustrated, is ‘‘foldable’’ by

definition.

B. Lattice Models with Side Chains

The cubic lattice models described above is the simplest version of the coarse-

grained model. One obvious way to make it more realistic is to incorporate the

explicit representation of side chains [60]. In this case, a polypeptide chain is

modeled by a sequence of N backbone beads, representing the Ca carbons of a

protein backbone. Side-chain beads, which mimic amino acid residues, are

attached to each backbone bead. In all, there are 2N beads in the model, all of

which occupy the vertices of cubic lattice. The conformation of a protein is

specified by 2N vectors~rb;i;~rs;i; i ¼ 1; 2; . . . ;N ¼ 15, where~rb;i and~rs;i are the

positions of backbone and side-chain beads, respectively. The energy function

used for the side-chain model is typically the same as employed in the model

without side chains. These models provide a more realistic description of

cooperativity of folding, because they include effects of side-chain packing [39].

C. Computational Methods

1. Exhaustive Enumeration

The conformational space of short lattice sequences can be exhaustively

enumerated. All conformations for a polypeptide chains with N920 on a cubic

lattice can be enumerated using the Martin algorithm [61]. This algorithm

successively generates all self-avoiding conformations for a given N, which

allows exact calculation of any thermodynamic quantity. In order to reduce the

sixfold symmetry on the cubic lattice, the direction of the first monomeric bond

may be fixed in all conformations. The remaining conformations are still related

by the eightfold symmetry on the cubic lattice (excluding the cases when

conformations are completely confined to a plane or straight line). To decrease

further the number of conformations, the Martin algorithm may be modified to

reject all conformations related by this symmetry [32]. For longer model

sequences the CPU time required to enumerate all conformations becomes

prohibitively long. With constant upgrade in computer power this limitation is

being steadily overcome.

2. Monte Carlo Method

The standard method for studying thermodynamics and kinetics of folding in the

context of lattice models is the Monte Carlo (MC) algorithm [62]. Several types
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of moves are commonly used [32]. These are (i) corner moves (a flip of the

residue across the diagonal of the square formed by the neighboring bonds), (ii)

crankshaft rotations (rotation of the beads iþ 1 and iþ 2, while keeping the

adjacent beads i and iþ 3 fixed), and (iii) rotation of the end beads. Although the

precise choice of moves or their probabilities affects the local structural

dynamics, it is commonly believed that the general thermodynamic properties

and even kinetic characteristics remain unchanged as long as the moves are

ergodic. Even with the choice of physically motivated move sets their influence

on the results must be tested.

3. Multiple Histogram Technique

The thermodynamic quantities for longer chains may be effectively computed

using the multiple histogram method [51,60,63]. The method is based on the

collection of a set of histograms at different values of the external parameter and

combining them by reweightening the contribution from individual histograms.

The thermal average of any quantity may then be calculated. Technically,

multiple slow-cooling MC trajectories, each starting from different conditions,

are needed to obtained the histograms. Each trajectory starts at a high temperature

(Th > Ty) and ends at the temperature Tl < TF , where Ty and TF are the collapse

and folding temperatures, respectively. In the course of a trajectory the

temperature is changed periodically by small decrements, and the portions of

simulations at a given fixed temperature (after quick equilibration intervals) are

used for histogram collection. Usually, histograms for the values of energy,

number of native contacts, radius of gyration, and so on, are obtained. There is no

general prescription for choosing the lengths of the trajectory and of the equili-

bration interval because they depend strongly on the sequence and on the

temperature. The number of trajectories is determined by the condition that the

thermodynamics of the system should not change significantly with subsequent

increase in sampling. Thus, by using multiple histogram technique, one can

completely characterize the thermodynamics of the system by calculating the

average of any quantity as a function of external parameter as well as the free

energy profiles. Using the histograms, we can generate free energy profiles,

provided that a useful reaction coordinate is chosen.

4. Folding Kinetics

The kinetics of folding of a lattice sequence is obtained using multiple

folding trajectories at a fixed temperature. Each trajectory starts from a different

high-temperature conformation. After a sudden quench of the temperature to Ts,

the chain kinetics is monitored. Typically, the folding kinetics is characterized by

time dependence of folding probes averaged over the total number of trajectories

considered. The first passage to the native structure t1i is also recorded. From the

distribution of t1i Pfp, the fraction of trajectories that have not reached the native
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conformation at a time t is calculated using

PuðtÞ ¼ 1�
ðt

0

PfpðsÞ ds ð3Þ

The integral of PuðtÞ determines the average passage time tF as

tF ¼
ð1

0

PuðtÞ dt ð4Þ

Accurate results require generation of hundreds of folding events.

III. REDUCTION IN CONFORMATIONAL SPACE

A. Importance of Excluded Volume Interactions

The impetus to examine the size of the conformational space of proteins comes

from Levinthal [5], who wondered how can a polypeptide chain, even though it is

relatively small, navigate the vast number of allowed conformations in search of

the unique native state? A popular resolution of this argument suggests that

fundamental constraints, notably the excluded volume (EV) interactions between

atoms, so vastly reduces the conformations that only a very limited number is

ever sampled. This idea can be precisely tested using appropriate models.

The number of independent conformations for a chain with N beads on a

cubic lattice is CIND ¼ ZN , where Z (¼6) is the lattice coordination number. If

excluded volume interactions (also referred to as steric clashes [64]) are taken

into account, then the number of allowed conformations is

CEV ’ ZN
eff Ng�1 ð5Þ

where the universal exponent g � 1:16, and Zeff ¼ 4.684 in a cubic lattice. Both

CIND and CEV scale exponentially with N. However, it might be argued that the

finite size of the proteins might make the reduction, due to EV interactions, so

significant that the ‘‘entropy price’’ to adopt native-like conformations is not

very large. In a cubic lattice the entropy change, �S, upon going from SIND to SEV

is �S=kB � N lnðZ=Zeff Þ: For N ¼ 10;�S � 12:8 eu, which is substantial.

However, the absolute entropy associated with SEV is N ln Zeff. Neglecting

logarithmic corrections we get SEV ¼ kB ln CEV � 15:4 eu: Thus, considering

steric clashes alone does substantially reduce the size of the conformational

space. However, this reduction is not sufficiently large to solve the ‘‘search

problem’’ envisioned by Levinthal.

In a recent interesting article, Pappu et al. [64] have reemphasized the

importance of excluded volume interactions by enumerating the allowed

conformations for blocked all-atom polyalanine chains, Al–(Ala)n–N0-methylamide
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for n � 7. By coarse graining the ðf;cÞ angles, they showed that the con-

formational space due to EV interactions is less than it would be if the ðf;cÞ
angles are considered independent as suggested by Flory. This result is in

qualitative accord with the estimates for lattice models given above. As pointed

out above, this reduction is not sufficient to provide a qualitative explanation of

the central kinetic issue raised by Levinthal.

Pappu et al. [64] suggest that EV interactions or steric clashes ‘‘bias’’ the

conformations so that even in the unfolded state there is a significant tendency

to form local structures. This is certainly the case in off-lattice models of

proteins [10]. Typically, these fluctuating structures are stabilized by additional

interactions (say, hydrogen bonding). If the favorable biasing interactions are too

strong (greater than 2–3 kBT), then the local interactions would become incom-

patible with the tertiary interactions. This has been shown to increase the topo-

logical frustration [65] see below, which in turn can lead to the dominance of

kinetic traps. Thus, arguments that are based solely on the reduction of

conformational space of proteins cannot account for the global folding mechan-

isms. Harmony (or consistency) between local and nonlocal interactions is

necessary for efficient folding of proteins.

If only EV interactions are included in polypeptide chains, the chain cannot

undergo a ‘‘phase transition’’ to any specific conformation. The effective mean-

field one-body potential describing EV interactions is known to be long-ranged

(scaling as r�4=3). Consequently the polypeptide chain would adopt a random

coil state at all temperatures, if only EV interactions are included. However, the

chain can be induced to adopt a preferred structure (native conformation), if an

additional attractive energy �E between residues (hydrogen bond interactions,

for example) is introduced. This is the basis of the popular HP model for

proteins [39]. In a model, which takes into account the EV and attractive

interactions, a phase transition into a native-like structure can occur at T such

that T � CNE=SU , where CN is the number of favorable native interactions and

SU is the entropy of the unfolded state. Pappu et al. [64] showed that by

including an attractive energy term to mimic backbone hydrogen bonding, an

apparent two-state transition from a stretched state to a contracted state takes

place (Fig. 1). This kind of apparent two-state transitions, similar to those found

in proteins, has been observed in simple lattice models as well [6]. The

interesting feature of the calculations by Pappu et al. [64] is that a realistic

model of even a short polypeptide chain with only one attractive energy scale

can exhibit protein-like behavior.

IV. EMERGENCE OF STRUCTURES FROM THE
DENSE SEQUENCE SPACE

The sequence space of proteins is extremely dense as the number of possible

sequences for proteins of length N scales as 20N. However, not all these
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sequences encode for foldable protein structures, which for functional purposes

are constrained to have specific physical characteristics. How do viable protein

structures emerge from the dense sea of sequence space [66]? The extraordinary

thinning of the sequence space as one gets to the structure space may be

understood purely on the basis of accepted physical properties of proteins. To

this end, two interrelated physical features of folded proteins must be taken into

account. (i) Native proteins are compact. (ii) The interior of proteins consists

mainly of hydrophobic residues, while the hydrophilic residues are typically

found on the surface. This gives rise to a maximum number of favorable

interactions making the native state very low in energy.

Lattice models are remarkably useful in answering the conceptual question

posed above. To infer the sequence to structure mapping, we performed an

exhaustive enumeration of all self-avoiding conformations for the sequences

confined to cubic lattice with N ¼ 15 [44]. The RB model has been used in the

energy function with the parameters B0 ¼ �0:1 and B ¼ 1. Protein-like struc-

tures are not only compact but also have low energy. We first computed the
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Figure 1. Dependence of the radius of gyration hRgi for polyalanyl chain of length n = 7 [64]

on the hydrogen bond length E. As E increases, compact conformations are populated preferentially.

The transition from the extended conformations at higher values of E to the contracted conformations

occurs rather cooperatively in an apparent ‘‘two-state’’ manner. The radius of gyration is computed

using a coarse-grained thermally weighted density of states (see Ref. 64 for details). Conformations

that make the most significant contributions at different values of E are also shown.
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number of compact structures (CSs) for a given N;CN , (CS). The number of

CSs, in its most general form, is expected to scale as

CNðCSÞ ’ �ZNZ
Nd�1

d

1 Ngc�1 ð6Þ

where ln �Z is the conformational free energy (in units of kBT), Z1 is the surface

fugacity, d is the spatial dimension, and gc measures possible logarithmic

corrections to the free energy. The number of natural protein folds is limited

(perhaps a few thousands), and their number is expected to grow at rates much

smaller than those predicted in Eq. (2). To explore this we calculated by exact

enumeration the number of minimum energy structures (MES), CN(MES), as a

function of N.

We define MES as those conformations whose energies lie within the energy

interval � above the lowest energy E0, corresponding to the native state. Several

values for � (1.2 or 0.6) were used to ensure that no qualitative changes in the

results are observed. We also tested another definition for � ¼ 1:3jE0 � tB0j=N,

where t is the number of nearest-neighbor contacts in the ground state. It is

worth noting that in the latter case � increases with N. Nevertheless, both

definitions yield equivalent results. The computational technique involves

exhaustive enumeration of all self-avoiding conformations for N� 15 on a

cubic lattice. We calculated the energies of all conformations according to Eq.

(1) and then determined the number of MES and CS. Each quantity, such as

CN(MES), CN (CS), the lowest energy E0, or the number of nearest-neighbor

contacts t in the lowest energy structures, is averaged over 30 sequences. To test

the reliability of the computational results, an additional sample of 30 RB

sequences was generated. Note that in the case of C(MES) we computed the

quenched average as CNðMESÞ ¼ exp ½ ln ½cðMESÞ��, where c is the number of

MES for one sequence.

The number of MES C(MES) is plotted as a function of the number of

residues N in Fig. 2 for � ¼ 0.6. A pair of squares for a given N represents

C(MES) computed for two independent runs of 30 sequences each. For

comparison, the number of self-avoiding walks C(SAW) and the number of

CS C(CS) are also plotted in this figure (diamonds and triangles, respectively).

As expected on general theoretical grounds, C(SAW) and C(CS) grow expo-

nentially with N, whereas the number of MES C(MES) exhibits drastically

different scaling behavior. There is no variation in CN (MES) (normally, associ-

ated with the variation of shapes of compact structures) and its value remains

steady within the entire interval of N starting with N ¼ 7. We find (see Fig. 2)

that CN (MES)� 101. This result further validates our earlier finding for the two-

dimensional model [46]. The results strongly suggest that CN (MES) scales only

as ln N. Thus, the dual restriction of compactness and low energy of the native

states may impose an upper bound on the number of distinct protein folds.
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A. Designability of Protein Folds

The computations described above indicate that minimal restrictions on the

structures (compactness and low energies) make the structure space sparse.

Consequently, each basin of attraction in the structure space must contain

numerous sequences [66]. The way these sequences are distributed among the

very slowly growing number (with respect to N) of conformations—that is, the

density of sequences in structure space—is another important question. Li et al.

[67] considered a three dimensional cubic lattice proteins with N ¼ 27. By using

the HP model and restricting themselves to only maximally compact structures

as tentative candidates for protein native states, they showed that certain folds

(i.e., structures) accommodate much larger number of sequences (see Fig. 3a)

than the others. In one example, they found the NBA (the structure) that serves

as a ground state for 3794(!) (when the total number is 227) sequences and, hence,

was considered most designable. The precise distribution of sequences among

NBAs is a function of the particular energy function.

An important conclusion of Li et al. [67] is that one can define, at least

operationally, a designability index for every fold found in PDB. The structural

characteristics of a given fold determine its designability. Several authors have

suggested that if the fold has even an approximate symmetry, then it would be

more designable [67,68]. This might explain the preponderance of TIM barrel
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structures. If the symmetry argument is extended to RNAs, then we would

conclude that certain symmetries should be hidden at the sequence level of

mRNAs and ultimately the genes themselves encoding a given protein [44].

Because the number of NBA for the entire sequence space is very small, it is

likely that proteins could have evolved randomly. Natural folds must correspond

to one of the native basins of attraction in the structure space so that many

sequences have these folds as the native conformations. In other words, natural

protein folds, especially those with approximate symmetries, represent highly

designable structures [67]. Further support for these ideas comes from the

study of Lindgard and Bohr [69]. These authors showed that among maximally

compact structures there are only very few folds that have protein-like charac-

teristics. It was also estimated that the number of distinct protein folds is on the

order of 103. Thus, each fold can be designed by many candidate sequences.

However, there is also evolutionary pressure for sufficiently rapid folding to

avoid aggregation. This kinetic requirement further restricts the possible

sequences that can serve as biologically viable proteins (Fig. 3b).

V. PROTEIN FOLDING MECHANISM

Using lattice models with side chains we describe the most commonly found

scenarios observed in protein folding. Because this topic has been subject of

numerous reviews [6,9–12,41], we will stress a few points that are relevant in

considering chaperonin-mediated protein folding that is discussed in Section VII.

A. Two-State Folders

Thermodynamics for the sequence with the native state shown in Fig. 4 with the

contact interaction potentials Bij taken from Table III of Ref. 54 reveals that it

folds cooperatively in an apparent two-state manner. This is also reflected in the

thermal distribution of the overlap function values h(w) at the folding transition

temperature TF (Fig. 4). A nearly bimodal distribution of h(w) with the peaks at

w9 0:2 (NBA) and w � 0.6 (unfolded state) is observed. There is also

nonnegligible contribution from the intermediate values of w representing

partially folded structures. Experiments that probe in more detail the thermal

unfolding of proteins are beginning to reveal the possible importance of these

Figure 3. (a) A log–log plot of the histogram for number of structures with respect to the

number of associated sequences Ns for 27-mer maximally compact cubic lattice conformations [67].

The plot illustrates a dramatic heterogeneity among structures in terms of their ability to encode

protein sequences. (b) Schematic illustration of the mapping of vast sequence space onto the limited

number of protein folds. This mapping involves drastic reduction in sequence space as polypeptide

sequences evolve into functionally competent proteins.
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conformations [70]. Due to substantial contribution from the partially folded

structures, thermal unfolding cannot be quantitatively described as two-state.

The folding kinetics can be probed using the distribution of the first passage

times, t1i. Several hundred (�600) folding events are used to obtain the

distribution of t1i, from which the fraction of unfolded molecules PuðtÞ may

be readily obtained. In addition to PuðtÞ, we have computed the time depen-

dence of the radius of gyration hRgðtÞi, where the average is taken over 100

folding trajectories.

The sequence, whose native state is shown in Fig. 4, displays two-state

kinetics for the temperatures T � 0:8TF; that is, PuðtÞ � expð� t
tF
Þ, where tF is

the folding time. To probe the sequence of events en route to the native

conformation, we computed hRgðtÞi, which reveals two stages in collapse.

Initial rapid burst phase is followed by a gradual chain compaction (Fig. 5). The

overall collapse time tc is associated with the second characteristic time. From

the approach to the native conformation we draw the following general

conclusions regarding two-state folders:

(a) The ratio tF=tc for two-state folders is typically less than 10. This is

consistent with the fast-folding experiments on several two-state folders, which

0.0
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Figure 4. Native structures of sequences A generated using [126] is shown in the left panel.

Backbone and side-chain beads are shown in light and dark gray, respectively. Native conformation

is compact and has a well-defined hydrophobic core. The figure is generated using program RasMol

[126]. The right panel displays the thermal distribution of states hðwÞ calculated at T � TF for

sequence A. hðwÞ is approximately bimodal so that only NBA ðw9 0:2Þ and unfolded state

Uðw � 0:6Þ are significantly populated. Although small, the population of intermediate states

nevertheless makes a sizable contribution to thermodynamics (affecting mainly cooperativity of

folding).

50 d. thirumalai, d. k. klimov, and r. i. dima



show that proteins rapidly collapse and reconfigure themselves to reach the

native state. For the sequence in Fig. 4, tF=tc � 3. This ratio is in the range

5–10 for proteins.

(b) Analysis of the collapsed conformations shows that they are native-like;

that is, the initial collapse in two-state folders is ‘‘specific’’ with very few

nonnative interactions present. The overall scheme for reaching the NBA for

two-state folders, which was predicted using theoretical arguments, is

U! fINg ! N ð7Þ

where fINg is a collection of native-like structures. Fast-folding experiments on

cyt-c and tendamistat [71] have been interpreted using this picture. Because the

initial collapse is specific, the ensemble of native-like intermediates can

be likened to an ‘‘on-pathway’’ intermediate. Lattice simulations (without side

chains) using G�o model have come to a similar conclusion [72]. In the G�o model

the only possible nonnative ‘‘interaction’’ comes from the topological entangle-

ments, which are highly unlikely given the relatively small (48-mer) well-

designed sequence.
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Figure 5. The time dependence of the normalized radius of gyration hRgðtÞi and the fraction of

unfolded molecules PuðtÞ for sequence A at T ¼ 0.94TF . Data are averaged over 100 [for hRgðtÞi]
and 600 [for PuðtÞ] trajectories. PuðtÞ decays exponentially with the time scale tF ¼ 2:07�
106 MCS. The approach of hRgðtÞi to equilibrium is biexponential with the times scales 0:083�
106 MCS and 0:698� 106 MCS. The first time scale is due to extremely rapid burst-phase partial

collapse. The second time scale, which is associated with the collapse time tc, corresponds to the

final compaction. The ratio tF=tc is approximately 3.0.
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B. Moderate Folders, Topological Frustration, and
Kinetic Partitioning Mechanism

Many qualitative aspects of the folding kinetics of moderate folders can

be understood in terms of the concept of topological frustration [10]. On

average, about 55% of residues in proteins are hydrophobic, and their density

along the sequence is roughly constant. As a result, on any local length scale

there is a propensity for the hydrophobic residues to form tertiary contacts

(structures) under folding conditions; that is, proximal residues adopt preferred

structures. The assembly of the resulting structures would most likely be in

conflict with the global native fold. The incompatibility of the low free-energy

structures on local and global scales leads to a phenomenon called topological

frustration. Topological frustration is an intrinsic property of all foldable

sequences and arises due to the polymeric nature of proteins and the

heterogeneity of amino acids. It follows that even the G�o model is topologically

frustrated because residue connectivity can render certain favorable local

structure incompatible with the global fold. An important physical outcome of

topological frustration is that the free-energy folding landscape is rough,

consisting of many minima that are separated by barriers of varying heights.

One of the principal consequences of topological frustration is that the fold-

ing kinetics follows the kinetic partitioning mechanism (KPM) [10]. Imagine an

ensemble of unfolded molecules in search of the native conformation (Fig. 6).

Due to the heterogeneity of folding pathways, a fraction of molecules, �, would

reach the NBA (or N) rapidly without being kinetically trapped in the low-lying

free-energy competing basins of attraction (CBA). The remaining fraction,

{U}

{ { II i}

I

N

N

}NSC

Φ

1 − Φ

Figure 6. The sketch of the protein folding pathways. The fast (upper) folding pathway

includes the formation of native-like collapsed states {IN}, which rapidly convert into the native

state N. The fraction of protein molecules, folding along this pathway, is �. For two-state folders,

� � 1. The lower track (followed by 1� � molecules) represents slow pathway(s), which fold by a

three-stage kinetic mechanism. At the first stage, nonspecific collapse species INSC form, which later

convert into a collection of discrete native-like intermediates {Ii}. The transition from {Ii} to the

native state is slow and represents the rate-limiting step in the slow pathway. The degree of

heterogeneity in the folding pathways depends on the sequence and external conditions.
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(1��), would be trapped, and only on longer time scales would thermal

fluctuations enable the chain to reach the NBA through an activated process.

The value of the partition factor � depends on the sequence and external

conditions. Thus, topological frustration leads to a separation of the initial

ensemble of denatured molecules into fast- and slow-folding phases (Fig. 6).

For two-state folders, which have a funnel-like free energy landscape, � ¼ 1.

According to the KPM PuðtÞ [see Eq. (3)] is given by

PuðtÞ ¼ � exp � t

tN

� �
þ
X

k

ak exp � t

tk

� �
ð8Þ

where tN is the time scale for reaching the native state by the fast (direct) process

(presumably by the nucleation-collapse), and tk is the time scale for indirect

folding pathways, in which the native state is reached after escaping a local free-

energy minimum (trap) k. Prefactors ak are related to the ‘‘volumes’’ associated

with the kth CBA. Thus, folding trajectories can be divided into those that reach

the native conformation rapidly (their fraction or partition factor is �) and those

that follow indirect off-pathway routes (Fig. 6).

The validity of the KPM has been demonstrated in several protein-like

models beginning with the studies of Guo and Thirumalai [73]. More impor-

tantly, refolding experiments, on lysozyme [74] and large ribozymes [75] have

confirmed the KPM. Using interrupted folding experiments, Kiefhaber [74] was

the first to show that � � 0:15 in lysozyme. Subsequent studies of lysozyme by

Dobson and coworkers [76] show that � � 0:25 in lysozyme. The difference is

presumably due to changes in folding conditions. Perhaps the most direct

demonstration of the validity of the KPM comes from the single-molecule

FRET measurements on the L-21 Sca I ribozyme [77]. The results of these

experiments analyzed by us showed that � � 0:06, which is consistent with the

estimates from ensemble measurements. These experiments show that KPM

offers an unified picture of folding for a class of proteins and RNA [78].

VI. DISULFIDE BONDS IN FOLDING

A. Refolding of BPTI

Bovine pancreatic trypsin inhibitor (BPTI), a small protein with 56 amino acid

residues (Fig. 7), is the first one for which a detailed map of the refolding

pathways was deciphered. The native state of BPTI contains three disulfide (S–S)

bonds formed between six Cys residues. Native state is specified by [30–51;

5–55;14–38] bonds. This notation indicates that Cys30 forms an S–S bond with

Cys51, and so on. Reduction of the S–S bonds unfolds BPTI. By using S–S bond

formation as a ‘‘progress variable,’’ Creighton [79–83] devised ingenious

methods to trap the disulfide-bonded intermediates along the folding pathway.
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The refolding pathways were described in terms of the nature of the inter-

mediates that accumulate during folding. There are 75 distinct intermediates

containing one or more disulfide bonds that can be formed from six Cys residues.

On the time scale of the experiments, Creighton discovered that only eight inter-

mediates could be detected. These experiments were among the earliest to show

that in the folding reaction only a small number of partially folded intermediates

accumulates.

The most surprising discovery made by Creighton [79–83] was that in the

refolding of BPTI, three non-native states—namely, the intermediates with

disulfide bonds not present in the native state—are well-populated. More im-

portantly, two of the non-native species, [30–51;5–14] and [30–51;5–38], are

involved in the productive pathway; that is, folding proceeds through either of

these two kinetically equivalent intermediates. The detection method employed

by Creighton involves quenching the folding reaction using chemistry to stop

the reaction. To isolate only the intermediate that would naturally occur in the

refolding process, the quench rate must exceed rates of formation of other

products. The chemistry of the quench method determines the time required to

stop the reaction from progressing. Creighton’s findings were challenged by

Figure 7. See also color insert. The native-state

conformation of the bovine pancreatic trypsin

inhibitor (BPTI). The figure was produced with the

program RasMol 2.7.1 [126] from the PDB entry

1bpi. There are three disulfide bonds in this protein:

Cys5–Cys55 shown in red, Cys14–Cys38 shown in

black, and Cys30–Cys51 shown in blue. The

corresponding Cys residues are in the ball-and-stick

representation and are labeled. The two helices

(residues 2–7 and 47–56) are shown in green.
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Weissman and Kim (WK) [84–87], who used pH changes (acid quenching) to

disrupt the folding reaction. The most glaring difference between the two series

of studies is that WK showed that, in the productive pathway, only native

intermediates play a significant role. Non-native intermediates may only be

involved as required by disulfide chemistry in the last stages of folding of BPTI;

that is, they play a role in the formation of the precursor [30–51;5–55] from

[30–51;14–38] (denoted by Nsh
sh and N0, respectively).

In an attempt to resolve the apparent controversy between the findings of

Creighton and WK, we introduced a phenomenological theory, referred to as the

proximity rule [45], to predict the folding pathways in globular proteins. Our

theory accounts for entropic effects analytically and energetic effects only

approximately. The premise of the proximity rule is that local events, governed

mainly by entropic considerations, dictate the initial events in protein folding.

The importance of local events is the basis of the hierarchic mechanism of

folding [11,12] and is also emphasized in the notion that contact order [37] is

the primary determinant of folding rates of proteins. Just as in the applications

of proximity rule, we expect that theories that rely largely on local events can

only account for the early processes in folding. However, such theories often

‘‘work’’ in regimes for which they are not, in principle, applicable.

B. Proximity Rule

The major conformational changes in disulfide bonded proteins, such as BPTI

and ribonuclease A [88], can be understood in terms of disulfide bond

rearrangement. Thus, the conformations of the intermediates that determine

the folding pathways are specified in terms of the S–S bonds. In such proteins

the S–S bonds serve as a surrogate ‘‘reaction coordinate.’’ These observations

enable us to develop the proximity rule based on the following general principles.

1. Loop Formation Probability

We assume that the initial intramolecular disulfide bond rearrangement is a

random process governed largely by entropic considerations. The probability of

forming a disulfide bond under oxidizing conditions depends only on the loop

length l ¼ ji� j j; where i and j are the positions of the Cys residues along the

polypeptide chain. The probability of simultaneous loop formation of lengths l1
and l2, P(l1, l2), is assumed to be proportional to P(l1)P(l2). The absence of

correlation limits the theory to the prediction of only the earliest events in BPTI

refolding. Similarly, theories that are based on local propensities alone can only

describe the formation of secondary structures and initial tertiary structures in the

folding of globular proteins. Despite this limitation, the utility of the proximity

rule to predict the refolding pathways of BPTI was extended using parameters

determined from experiments [45]. The loop formation probability P(l) may be

computed by modeling the polypeptide chain as a semiflexible chain.
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2. Folding Kinetics

For slow-folding proteins, which require reconfiguration of partially folded

structures, folding follows a three-stage kinetics [45]. These stages are as

follows: (i) There is a rapid collapse of the chain to a set of compact confor-

mations. At this stage, most of the free energy arises from a competition between

hydrophobic forces and loop entropy. In BPTI this stage is characterized by the

need to have proper loop contacts between Cys residues, so that a single S–S

bond can form. At the end of this stage the most stable single disulfide species

accumulate. (ii) The rearrangement of the single disulfide bonds leads to the

formation of the native two-disulfide species. (iii) The rate-determining step

involves the transition from the stable two-disulfide species to the native

conformation. In this sequential progression bifurcations in the folding pathways

are possible resulting in the parallel pathways to the native state.

Loop formation probability PðlÞ may be obtained approximately using

statistical mechanics of stiff chains [89]. Here, we provide the physical

requirements. For chains with an effective persistence length lp, we expect

PðlÞ to be negligible for l < lp.2 This is because the requisite self-avoidance

criterion, bond angle, and dihedral angle constraints are violated for the loop

lengths less than lp. In the denatured conformations, excluded volume inter-

actions are predominant; therefore for large enough l we expect P(l) to decay as

� l�y3 with y3 � 2:2. Combining these requirements, we write P(l) as

PðlÞ � 1� expð�l=lpÞ
ly3

ð9Þ

Experiments by Darby and Creighton [91], who measured the rates of formation

of single disulfide intermediates in BPTI, can be understood using Eq. (9) for

PðlÞ. The higher probability of forming loops between the ends of the chain is

neglected in obtaining PðlÞ. This approximation should not have an effect in

predicting the rates of single S–S bond formation in BPTI, but will be relevant in

getting estimates of time scales for forming loops in polypeptide chains.

The general scheme described above has been applied to obtain approxi-

mately the refolding pathways in BPTI using experimentally determined

rearrangement time ti for the transition from the single S–S intermediates to

the double S–S species. Our results showed [45] that on a relatively long time

scale, comparable to that used in the experiments by Creighton or WK, only

native-like species should be populated. It may be that in the process of forming

these native-like intermediates, certain non-native species identified by

Creighton are transiently involved. Based on our estimate of ti, the transient

2In certain protein structures, loops with l < lp can form. However, such loops are stiff and often

have very high strain energy [90].
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population of non-native intermediates occurs on the time scales less than

30 seconds.

Because our theory is most accurate for predicting the ordering of single

disulfide species, we focus on their rates and extents of accumulation. Consi-

derations based on P(l) suggest that only a small subset of the single disulfide

intermediates can form. From P(l) it follows that the probability of forming [14–

38] is considerably greater than that of [5–55]. However using the kinetic

constraints we have shown that although [14–38] forms rapidly and early in the

folding process, its concentration decreases rapidly at subsequent times,

whereas those of [30–51] and [5–55] increase. This specific prediction is one

of the striking outcomes of the proximity rule [45]. The distinct kinetic behavior

of the native [14–38] compared to the other two native single S–S intermediates

is related to stability reasons [45,92]. The partially folded solvent-exposed state

[14–38], which perhaps is the molten globule form of BPTI, can form without

burying the hydrophobic core of the protein. On the other hand, the interme-

diates [5–55] and [30–51], in which the four Cys residues are in the interior,

require the formation of the hydrophobic core of the protein (Fig. 7). The burial

of hydrophobic residues that brings the Cys residues in proximity so those S–S

bonds can form requires overcoming free energy barriers. This delays their

formation compared to that of [14–38].

Proximity rule also predicts that the ratio of the maximum concentration of

[30–51] to that of [5–55] is about 7 :1, whereas the concentration of [14–38] is

negligible on the same time scale. This ratio is in excellent agreement with the

experiments of WK, who found a ratio of 6 :1, and is in disagreement with

Creighton’s estimate of 20 :1.

The theoretical prediction that [14–38] should be the first intermediate to

accumulate was subsequently confirmed by Dadlez and Kim [92]. Using

oxidized glutathione (GSSH) to initiate disulfide bond formation and acid

quenches to trap intermediates, they noted that the earliest intermediate that

accumulates is [14–38]. The tenfold rearrangement of [14–38] compared to

[30–51] or [5–55] was rationalized in terms of stability (see arguments given

above). These findings are also consistent with the results for synthetic models,

in which the Cys except at the positions 14 and 38 were replaced by a-amino-n-

butryic acid (Abu) [93]. The folding of [14–38]Abu is similar to the formation of

[14–38] in the wild type. This reinforces the notion that entropic considerations

and overall hydrophobicity of BPTI rather than specific native interactions

between the remaining cysteines, perhaps on the collapse time scale, determine

the early formation of [14–38].

Despite being intensively studied, there are several major questions in the

refolding of BPTI that are not understood. We mention two of them: (a) The in

vitro folding pathways show that there are dead-end kinetic traps [84], which

completely block the folding reaction. Weissman and Kim [87] showed that
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such kinetic traps are completely eliminated when the disulfide bonds rearran-

gements are catalyzed by protein disulfide isomerase (PDI). The presence of

PDI, which may be viewed as an intramolecular chaperone, enhances the

folding rate by several thousands. The mechanism of action of PDI has not

been elucidated. (b) In a beautiful experiment, Zhang and Goldenberg [94]

showed that the dead-end kinetic traps in the wild-type BPTI are entirely

eliminated by a single amino acid substitution. The mutant Y35L (tyrosine at

position 35 is replaced by leucine) results in a rapid sequential pathway in

which only native intermediates are populated. The simplistic explanation of

this spectacular experiment is that the nonproductive intermediates in this

mutant are destabilized. A fuller molecular explanation is required.

C. Modeling the Role of S–S Bonds

A key disagreement between the early works [79–83] and the more recent studies

WK on the refolding of BPTI is the role of non-native intermediates in directing

the folding of BPTI. Creighton argued that not only were two non-native

intermediates ([30–51;5–14] and [30–51;5–38]) accumulated substantially, but

also they were equally involved in the productive folding pathways. WK showed

that non-native states were not obligatory intermediates, and the only inter-

mediates in the folding were native. Non-native intermediates may be involved in

the transition state in the late stages of folding.

To clarify the relevance of non-native intermediates in the folding of proteins

dictated by the formation of disulfide bonds Camacho and Thirumalai [45] used

lattice models. While these models are merely caricatures of proteins, they

contain the specific effects that can be studied in microscopic detail. We used a

two-dimensional lattice sequence consisting of hydrophobic (H), polar (P), and

Cys (C) residues. If two C beads are near neighbors on the lattice, they can form

a S–S bond with an associated energy gain of �Es with Es > 0. Thus, topological

specificity is required for native S–S bond formation in this model. We have

studied the folding kinetics of this model, which is perhaps the simplest model

that can probe the characteristics of native and non-native disulfide bonded

intermediates.

The sequence studied consists of M ¼ 23 monomers, of which four represent

C sites. The native conformation corresponds to [2–15;9–22] (Fig. 8a). The

model sequence has six possible single and two disulfide intermediates including

the native state. There are three native intermediates and two non-native inter-

mediates. Even though the number of such intermediates are far less than

the corresponding number in BPTI, it is sufficient to examine the crucial

distinction between the roles played by native and non-native intermediates

in the folding kinetics. Some of the questions that arise in the experimental

studies of refolding of BPTI can be precisely answered using these simple

models.
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Figure 8. (See also color insert.) (a) The ground-state conformation of the two-dimensional

model sequence with M ¼ 23 beads and four covalent (S) sites. The red, green, and black circles

represent, respectively, the hydrophobic (H), polar (P), and S sites. (b) Diagram of representative

time snapshots along the main pathways of folding of the sequence in panel (a). The S sites are

shown as black circles. Dotted lines delineate the three main folding regimes (random collapse,

kinetics ordering and all-or-none). The arrows indicate the various transitions occurring in the

system: the double-headed continuous arrows indicate backward and forward reactions where there

is no substantial re-arrangement of the chain; the single-headed arrows indicate that the native-state

is stable on the time scale of the simulations (�109 MCS); the dashed arrows are for indirect

transitions which occur by breaking the disulfide bonds and partial unfolding of the structure. The

percentages indicate the concentration of the native and two native-like intermediates at the end of

the second regime of kinetic ordering.
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To probe the dynamical role played by the intermediates, we computed the

time dependence of the concentration of the six species. The folding pathways

are characterized in terms of the appearance of these intermediates (Fig. 8b).

There are pathways that lead directly to N exclusively via native-like inter-

mediates. In others, non-native intermediates are involved early in the folding

process. For purposes of ascertaining the importance of the intermediates, all

times are measured in terms of tF , the folding time. At the earliest time,

t < 10�5tF single disulfide species accumulate, whose probabilities of forma-

tion are determined by P(l). At times that are roughly tenfold longer, the

rearrangement of the nonnative single disulfide intermediates leads to the

formation of two stable native single disulfide ([9–22] and [2–15]) species.

These early intermediates act as seeds (nucleating sites) for subsequent forma-

tion of the native state [45]. At times on the order of about 10�4tF , which

coincide with the time at which native single disulfide species form, the

concentration of these intermediates cannot be determined based on entropic

considerations alone. Energetic considerations, such as favorable hydrophobic

interactions, affect the formation of single disulfide intermediates.

In the second stage of the assembly we find that non-native two disulfide

intermediate [2–9;15–22] can form transiently (Fig. 9b). Because this inter-

mediate is unstable, it quickly rearranges to the more stable native N state. On

relatively long time scales (t � 0:01tF) we find that there are two native-like

intermediates, in which the disulfides are in place but some other parts of the

structure are not yet fully formed. This may be the analogue of the Nsh
sh state in

BPTI which only needs the nearly solvent-exposed [14–38] bond to form. In the

final stage of folding, structural fluctuations that transiently break the native S–S

bonds enable the transition to N. This transition involves the transient formation

of the non-native intermediate [2–9;15–22]. The two native-like intermediates I1

and I2 (Fig. 8b) rearrange almost exclusively via [2–9;15–22].

Even with an extremely simple model, several conclusions have been

reached, which help clarify some of the issues in the refolding of BPTI.

(1) Non-native species can form early in the folding process when bulk of the

ordering is determined by entropic considerations. The current experiments on

BPTI are far too slow to detect these early intermediates. On the time scale of

collapse the more stable single disulfide species, which are native-like, form.

(2) As the folding reaction progresses, native-like intermediates tend to form so

that the productive pathways largely contain native-like intermediates. (3) The

rate-determining step involves an activated transition from native-like species,

via a high free-energy non-native transition state, to N. The transitions appear to

involve rearrangement of the structure that does not involve the S–S bonds.

These calculations suggest that although the folding pathways of BPTI can be

described in terms of the disulfide intermediates, a complete description

requires accounting for hydrophobic and charge effects as well. At present,
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these effects have not been completely examined experimentally or theoreti-

cally. The profound effect of point mutations [94] in altering the folding rates

and the pathways of BPTI folding suggests that there are strong couplings

between S–S bond formation and other forces that drive the native structure

formation.
D. Engineering Disulfide Bonds in Barnase

To probe the folding pathways in BPTI the S–S bonds were initially reduced that

results in unfolding. Refolding is initiated under oxidizing conditions that enable

S–S bond formation and restoration of the native state. Alternatively, the impact

of S–S bonds can be studied by engineering them at specific locations. With the

S–S bonds intact, protein can be unfolded using denaturants such as urea. The

folding kinetics can be initiated by diluting the denaturant. The latter procedure,

which was first used by Clarke and Fersht [95], enables the study of the effect of

intact S–S bonds on the stability and kinetics of folding. Clarke and Fersht used

this procedure to engineer S–S bonds at two specific locations in barnase, whose

folding without disulfide bonds has been well-characterized. This allows for a

comparison of folding characteristics of proteins with and without disulfide

bonds.

Two positions in barnase were constrained by S–S bonds that were left intact

[95a]. One of them, between residues 85 and 102, connects two loops that

apparently form early in the folding pathway of the wild type protein. A second

disulfide between residues 43 and 80 connects two secondary structural

elements. Barnase containing disulfide bonds is more stable than the wild

type because the introduction of the S–S bond increases the free energy of the

unfolded states. From the native state of barnase it is clear that the enhanced

stability upon introduction of the disulfide bond between 43 and 80 cannot

be accounted for solely by lowered entropy of the unfolded state compared to

the WT. Using the Flory estimate we expect that stability of [43–80]Bar should

be 1:5 RT ln 38 � 3:2 kcal/mol, whereas that of [85–102]Bar is �2:6 kcal/mol.

These estimates do not compare favorably with the experimental values, which

are 2.1 kcal/mol and 4.3 kcal/mol for [43–80]Bar and [85–102]Bar , respectively.

This suggests that the introduction of S–S bonds could also stabilize the native

state to some extent.

Refolding kinetics of the mutated barnase depends strongly on the location of

the S–S bond. Assuming that reduction in the conformation space leads to rate

enhancement, we would predict that [43–80]Bar should fold faster than [85–

102]Bar . However, the opposite trend is found experimentally. The mutant with

the shorter loop folds about five times more rapidly, whereas barnase with the

disulfide between 43 and 80 folds two times slower than the wild type. Using

lattice simulations, Abkevich and Shakhnovich [95b] argued that if S–S bonds

are engineered into the regions highly structured in the transition state, refolding

rates can be increased compared to the WT. The presence of S–S bonds
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elsewhere in the protein can either increase or decrease folding rates depending

on the external conditions. Because the region containing residues 83 and 102

forms early in the folding process, it may be part of the folding nuclei. This

explains the enhanced rate of folding of [85–102]Bar compared to WT. Because

residues 43 and 80 are not part of the folding nuclei, the folding of [43–80]Bar is

about 1.7 times slower than the WT. Thus, the simulations of Abkevich and

Shakhnovich using simple lattice models are consistent with experiments.

VII. CHAPERONIN-FACILITATED PROTEIN FOLDING

According to the Anfinsen’s hypothesis [88] natural proteins fold spontaneously

to their lowest free energy states. By analyzing the weights of proteins and

protein synthesis rates under glucose feeding conditions, Lorimer [96] estimated

that in Escherichia coli more than 90% of proteins fold to their native states as

envisaged by Anfinsen. This is remarkable because one might imagine that trafic

(due to other macromolecules) in the crowded cellular environment might lead to

strong intermolecular interactions which could potentially interfere with

monomeric folding. Nevertheless, it appears that many proteins assemble

spontaneously to their functionally competent states in vivo as envisioned by

Anfinsen. However, there are some proteins that require the assistance of

molecular chaperones to fold to the native conformation. The functions of the

class I chaperonins belonging to heat shock protein family are the most

extensively studied [97–100]. In this chapter we focus on insights into their

function using simple lattice models [47,101,102].

The chaperonin family of proteins, namely GroEL and GroES, that function

as a nanomachine by utilizing ATP, assist misfolded substrate proteins to reach

their native states [100,103,104]. The crystal structures of GroEL [105], GroES

[106], and the complex GroEL/GroES/ADP [107] have provided considerable

insights into the chaperonin action. The chaperonin GroEL is a double-ringed

oligomer consisting of two back-to-back stacked heptameric rings. It has an

overall cylindrical structure divided into two nonconnected cavities, in which

the substrate protein (SP) can be sequestered. Each subunit of the GroEL

particle consists of three domains, namely, the equatorial domain, the inter-

mediate domain, and the apical domain [100]. The heaviest of these is the

equatorial domain, which contains more than half of the molecular weight of

GroEL. We have argued that the concentration of dense inertial mass in

the equatorial domain is necessary to generate the requisite force to peel the

initially captured substrate protein (SP) from the apical domain. The concentric

assembly of the subunits produces a ring structure having an architecture with

an unusual sevenfold symmetry (Fig. 9a).

The co-chaperonin GroES, containing seven subunits [106], caps the GroEL

particle as a dome. A remarkable feature, which has mechanistic implications, is

62 d. thirumalai, d. k. klimov, and r. i. dima



that upon binding of GroES and ATP the volume of the cavity doubles [100].

This enhanced volume is accompanied by a series of concerted allosteric

transition that the GroEL particle undergoes [108–110]. Because of the non-

specificity of GroEL-SP interactions [111–113] and the plasticity of the

architecture of the GroEL particle, this system acts as a ‘‘one size fits all’’

nanomachine.

Considerable progress in understanding the mechanism of this nanomachine

has become possible due to a combination of an extraordinary body of

experimental work [98,100] and some contributions from theoretical studies

[114,115]. The hemicycle, which constitutes the fundamental functioning cycle

of the GroEL machine [110], is schematically sketched in Fig. 9b. The process

is initiated by the capture of the SP by the apical domain of the GroEL particle.

To a first approximation, the mouth of the cavity can be thought of as a

continuous hydrophobic surface formed by the helices in the apical domain. The

nonspecific, but favorable, interaction between the SP and GroEL is due to

the attraction between the exposed hydrophobic residues of the SP and the

hydrophobic surface of the apical domain. Upon binding of ATP and GroES (in

this specific order), significant concerted transitions occur in the GroEL particle.

The series of transitions alters, in a fundamental way, the nature of interaction

between GroEL and the SP [100]. Whereas in the process of capture the SP-

GroEL interaction is attractive, the interaction is either neutral or even repulsive

after encapsulation (step 2 in Fig. 9b). The surface remains hydrophilic until the

restoration of GroEL to the initial state. This alteration between hydrophobic

(H) and hydrophilic (P) surface enables this system to function as an annealing

machine. The release of GroES and the encapsulated SP occurs when ATP and/

or another SP molecule binds to the trans-ring [107].

Although the underpinnings of the cycle (Fig. 9b) are based on a number of

experiments and theoretical arguments, several outstanding questions remain. A

key issue is related to the coupling between the concerted allosteric transitions

that the GroEL particle undergoes and the SP folding rate [47,116]. Consider

the cycle displayed in Fig. 9b. Upon binding ATP to the upper ring, a

cooperative transition T $ R takes place. The terminology T and R are

borrowed from the Monod–Wyman–Changeaux model [117] describing the

binding of oxygen to hemoglobin. The tense state T has a higher afinity for ATP

than the relaxed R state [109]. Upon binding ATP, the intermediate domain

moves 25� toward the equatorial domain, which closes the ATP binding sites.

Even with this relatively minor rigid body movement of the intermediate

domain, the interaction between the SP and the walls (the apical domain) are

weakened [108,109]. The weakened interaction is sufficient to enable the SP

protein to unfold at least partially [118]. Subsequent binding of ATP and GroES

leads to much larger domain movements in the GroEL particle. In particular, the

apical domain moves upward by 60� and twists, with respect to the equatorial
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domain, by 90� [100]. This large segmental motion, which results in the

encapsulation of the SP, doubles the volume of the cavity. Upon encapsulation,

the interaction between the SP and the walls is either neural or repulsive

depending on the size of SP. At least five independent rate constants are required

to describe these large-scale concerted allosteric transitions in the GroEL

particle [110]. This makes the description of the coupling between allostery

of GroEL and the SP folding rate very difficult.

To examine the coupling between the allosteric transitions and SP folding

rates, a model system may be considered in which the action of GroEL and ATP

Figure 9. (See also color insert.) (a) Rasmol [126] view of one of the two rings of GroEL from

the PDB file 1oel. The seven chains are indicated by different colors. The amino acid residues

forming the binding site of the apical domain of each chain (199–204, helix H: 229–244 and helix I:

256–268) are shown in red. The most exposed hydrophobic amino acids that are facing the cavity

and are implicated in the binding of the substrate as indicated by mutagenesis experiments [112,

127] are : Tyr199, Tyr203, Phe204, Leu234, Leu237, Leu259, Val263, and Val264. (b) A schematic

sketch of the hemicycle in the GroEL–GroES-mediated folding of proteins. In step 1 the substrate

protein is captured into the GroEL cavity. The ATPs and GroES are added in step 2, which results in

doubling the volume, in which the substrate protein is confined. The hydrolysis of ATP in the cis-

ring occurs in a quantified fashion (step 3). After binding ATP to the trans-ring, GroES and the

substrate protein are released that completes the cycle (step 4).

64 d. thirumalai, d. k. klimov, and r. i. dima



on SP can be investigated without the complication of the GroES interaction

[116]. Many in vitro studies on the interaction between the GroEL and the SP

have used only this subset [98]. In this reduced model system the equilibrium

constant between T and R states and the time constants characterizing the SP

folding are the only relevant parameters [110,116]. To examine the coupling in

the reduced nanomachine, we modeled the central cavity as a cubic box, and a

lattice model representation of the polypeptide chain was employed [47]. This,

of course, is a highly simplified representation the GroEL–SP system. However,

qualitative testable predictions of the coupling between allostery and the SP can

be made using this caricature. Initially the interior walls of the GroEL particle

(in the T state) are assumed to be hydrophobic. This description is reasonable,

because in the T state the arrangement of the apical domain offers the SP a

continuous lining of hydrophobic residues (Fig. 9a). We vary the wall hydrophobicity

Figure 9 (Continued)
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of GroEL by letting one particular residue (leucine) describe the wall character.

Thus, the interactions between the wall and the SP protein is

Ec ¼
X

i

hEwi ð10Þ

where h ð0 � h � 1Þ gives the strength of the interaction, and Ewi is the contact

interaction between the ith residue of the SP and the wall. The total energy of

the encapsulated SP is given by the sum of Eq. (10) and the ‘‘internal’’ energy

of the SP [Eq. (1)].

The key annealing action of the GroEL particle arises due to the changes in

the hydrophobicity of its inner walls during the hemicycle [47]. In other words,

during a single turnover the cavity changes from being able to capture the SP to

that is which binding is not favored. This change in the wall character is

accompanied by the allosteric transition of GroEL, resulting in the encapsula-

tion of the SP. The effect of changing hydrophobicity is mimicked in our

simplified model by letting the hydrophobicity of the confining cavity vary

during the turnover time, ti. We divide ti into two subintervals. During a period

tP the wall remains hydrophilic (P), and for the remainder ti � tP the cavity is

hydrophobic. Because the model does not include GroES, the situation we

consider may serve as a model for the coupling between T $ R transition and

the SP folding. Here we have tP=ðti � tPÞ � L, where L is the equilibrium

constant between T and R [116]. By examining the effect of changing values of

L on the rates of the SP folding the dependence of the SP folding rate on the

allosteric equilibrium transitions can be examined. Simulations of the simplified

lattice representation of the GroEL–SP system shows that there is an inverse

correlation between the extent of the T $ R transition and the folding rate of

the SP. In other words, as the cooperativity of the T $ R transition increases

(higher values of L), the slower is the SP folding rate.

A. Unfolding Activity of GroEL

Although it is accepted that the GroEL nanomachine rescues the SP by

stochastically enabling it to sample the rough free-energy landscape, the

microscopic action on the SP has only recently become clear. A few experiments

have shown that upon change in the wall characteristics of GroEL the SP unfolds

partially, if not globally. Using hydrogen exchange labeling, Zahn et al. [118]

showed that GroEL accelerates the exchange of highly protected amide protons.

Because highly protected protons (high protection factor) are typically buried in

the core of the SP, it follows that the SP unfolds in the presence of GroEL.

Nieba-Axmann et al. [119] also examined the plausible structural fluctua-

tions in GroEL-bound cyclophilin A (CypA) using amide-proton exchange
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measurements. In the absence of nucleotides and GroES, folding of CypA is

extremely sluggish. Upon addition of ADP, the rate increases by a factor of

about 2.5, whereas the addition of ATP leads to a threefold enhancement in the

folding rate. However, when GroES is added, the rate increases by a factor of 14

at 6�C and by nearly 30-fold at T ¼ 30�C. The near independence of the

refolding on nucleotides suggests that the full recovery of CypA occurs within a

single turnover.

Upon binding of ATP and GroES, the domain moves upward and twists by

90� about the equatorial domain [100]. This results in the weakening of the

interaction between the SP and the walls of the cavity. The simple lattice model

described above, in which the character of the wall changes from H to P, can

model the chaperonin-assisted folding provided the folding reaction is complete

in a single turnover. To examine the structure of the polypeptide chain due to

alterations in the wall character, we computed the inherent structures of the

chain in the on state (hydrophobic wall) and in the off state (hydrophilic wall).

According to the iterative annealing mechanism [103,104], upon going from the

on state to the off state the polypeptide chain should undergo kinetic parti-

tioning [Eq. (8)]. The inherent structures prior to and immediately following the

change in the cavity characteristics allows us to compute the degree of com-

mitment of the SP to folding. Because the GroEL machine operates stochas-

tically, there ought to be a distribution of states of the SP that are populated

as the on–off transition takes place. The simulations show (see Fig. 9 of Ref. 47)

that before the transition in the cavity, a fraction of molecules is committed to

folding, while most of the conformations fall into basins of attraction corres-

ponding to misfolded or unfolded states. After the transition to the off state the

chain is largely unfolded. This shows that upon weakening of the SP–GroEL

interaction, which occurs as the GroEL particle undergoes the allosteric

transitions, the polypeptide chain globally unfolds. In other words, the chief

mechanism operative in the GroEL-mediated folding is that chaperonins help

fold proteins by globally unfolding them! This is consistent with the predictions

of IAM and is also affirmed by several experiments [118–120].

The simulations using simplified models are entirely consistent with several

experiments including the one reported by Nieba-Axmann et al. [119], who

noted that amide protons that are highly protected from hydrogen exchange in

the native state of CypA in the absence of GroEL become much less protected

when bound to the chaperonin. The protection factor decreases by nearly two

orders of magnitude upon binding to GroEL. Thus binding to GroEL shifts the

equilibrium from compact native-like states to globally unfolded conformations.

In this dynamical picture of GroEL action, as opposed to the static Anfinsen

cage model, chaperonins unfold the SP. It also follows that efficient folding can

be induced by repeated unfolding of the chain.
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B. Unfolding by Stretching

If, in the course of the allosteric transitions of the GroEL particle, the SP is

unfolded, a natural question is, what is the mechanism of the GroEL-SP

interaction that globally unfolds the protein? Lorimer and co-workers [120]

have explored this issue using hydrogen–tritium exchange experiments in

chaperonin-assisted folding of RUBISCO. They observed that within the time

scale of a single turnover (approximately 13 seconds), complete exchange of

tritiums takes place. This shows that RUBISCO unfolds at least partially, if not

globally. From the crystal structures of GroEL and the GroEL–ADP–GroES

complex, it is known that upon undergoing a series of concerted allosteric

transitions, two adjacent subunits that are about 25 Å apart in the T state are about

33 Å apart in the R00 state [107,120]. This large-scale movement is presumed to

generate force on the SP [99]. Recent pulling experiments on several proteins

[121] show that the native state can be fully unfolded if a force exceeding a

threshold value is applied. The magnitude of the threshold force depends on the

SP [122].

To estimate the value of the force imparted to the SP, it is necessary to obtain

the interaction energy between the SP and the apical domain of the GroEL

particle. The SP–GroEL interaction energy must exceed 3
2

kBTSmis, where Smis

is the translational entropy of the misfolded chain molecule for capture by

GroEL to occur. Assuming that the subunits move apart by about 0.2 nm, we

estimate that the minimum force required to peel off the SP from the apical

domain is about 35 pN. A more precise estimate of the interaction energy

between the SP and GroEL can be made by assuming that the inner lining of the

GroEL cavity can be modeled as a hydrophobic wall onto which the SP is

adsorbed [114]. By balancing the free energy gain due to favorable hydrophobic

interaction between GroEL and SP and the entropy loss due to the pinning of the

SP, we estimate that the interaction energy should not exceed about 10 kBT

[114]. The force needed to overcome this interaction is about 200 pN. This

value is large enough to unfold immunoglobin proteins with b-sandwich

topology [121]. We suspect that at these values of the forces most substrate

proteins can at least partially unfold. These estimates give credence to the

notion that it is the generation of force in the power stroke of the chaperonin

machinery that unfolds the SP [120].

The estimate of the force given above is only an average force. A given SP

molecule can bind to a subset of the seven subunits [123]. Because of the

heterogeneity of the conformations of the misfolded SP, we expect variations in

the binding states from molecule to molecule. Thus, there should be a

distribution of unfolding forces. Recent AFM experiments [124] show that

this distribution is very broad, indicating that there is a large sample to sample

variation in the unbinding forces. Such large variations for other SP can only

68 d. thirumalai, d. k. klimov, and r. i. dima



be measured using single-molecule measurements. Surely, these sample-to-

sample variations in lifetimes of the complexes [125] and forces imparted to SP

will require revisions of the iterative annealing mechanism [103].

VIII. CONCLUSIONS

Protein folding presents significant challenges because the parameter space is

extremely large. From the myriad of experimental and theoretical studies it is not

clear that there are many general principles that govern the kinetics of folding.

Nevertheless, using simple models, several precise predictions have been made.

In this chapter we have described the utility of simple lattice models and

phenomenological theories in answering very specific questions in protein

folding. It is remarkable that these simple ideas have been fruitful in enabling us

to formulate conceptual questions such as the physical basis for the emergence of

structures and their designability. Lattice models can also be used to understand

qualitatively the importance of intermediates in the folding of proteins that are

controlled by the stability of disulfide bonds. Experimentally testable predictions

in the field of assisted folding also have been made using caricatures of the

chaperonin systems. These practical applications attest to the utility of these

models in providing a conceptual understanding of the basic principles in a

variety of problems.

None of the applications described here can be tackled using a ‘‘realistic’’

all-atom representation of proteins. The precise predictions that we and others

have made using coarse-grained models of proteins are currently beyond the

reach of molecular dynamics simulations. In this sense, we hope that this

chapter serves as a challenge to the practitioners of all-atom simulations. Even

assuming that the interaction potentials are adequate, the severe restriction on

the simulation time scales acts as a major constraint. The lack of reliable

potentials and the accessible computer times has prevented straightforward

use of molecular dynamics calculations from being a predictive tool. There is

hope that, in the next few years, unlimited computer power may be unleashed to

obtain a detailed picture of how proteins fold. This potential comes from

developments in distributed computing that can, in principle, be used to

generate several long trajectories. In the applications that we have carried

out, a rather detailed picture of b-hairpin assembly for several sequences has

been obtained (D. K. Klimov, D. Newfield, and D. Thirumalai, unpublished

results). A different, but related, approach has also been undertaken by Pande

and co-workers (V. Pande, private communication). The development of a high-

performance computer by IBM also has raised the specter of hope that

computational bottlenecks may be overcome in the next few years so

that challenging problems such as biomolecular folding can be undertaken.

Even if these tolls are routinely available, simple concepts will play a pivotal
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role in formulating the issues in the study of biomolecules, because in the

ultimate analysis protein folding (or any other problem in molecular biology) is

not merely a computational problem.
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I. INTRODUCTION

The threading approach [1–8] to protein recognition is a generalization of the

sequence-to-sequence alignment. Rather than matching the unknown sequence

Si to another sequence Si (one-dimensional matching), we match the sequence Si

to a shape X j (three-dimensional matching). Experiments found a limited set of

folds compared to a large diversity of sequences. A shape has (in principle) more

detectable ‘‘family members’’ compared to a sequence, suggesting the use of

structures to find remote similarities between proteins. Hence, the determination

of overall folds is reduced to tests of sequence fitness into known and limited

number of shapes.

The sequence–structure compatibility is commonly evaluated using reduced

representations of protein structures. Assuming that each amino acid residue is

represented by a point in three-dimensional space, one may define an effective

energy of a protein as a sum of inter-residue interactions. The effective pair

energies can be derived from the analysis of contacts in known structures.

Knowledge-based pairwise potentials proved to be very successful in fold

recognition [2,3,6,9–11], ab initio folding [11–13], and sequence design [14–15].

Alternatively, one may define the so-called ‘‘profile’’ energy [1,5] taking the

form of a sum of individual site contributions, depending on the structural

environment (e.g., the solvation/burial state or the secondary structure) of a site.

The above distinction is motivated by computational difficulties of finding

optimal alignments with gaps when employing pairwise models.

Consider the alignment of a sequence S ¼ a1a2 . . . an of length, n, where ai is

one of the 20 amino acids, into a structure X ¼ ðx1; x2; . . . ; xmÞ with m sites,

where x j is an approximate spatial location of an amino acid (taken here to be

the geometric center of the side chain). We wish to place each of the amino

acids in a corresponding structural site fai ! x jg. No permutations are allowed.

In order to identify homologous proteins of different length, we need to consider

deletions and insertions into the aligned sequence. For that purpose we

introduce an ‘‘extended’’ sequence, �S which may include gap ‘‘residues’’

(spaces, or empty structural sites) and deletions (removal of an amino acid,

or an amino acid corresponding to a virtual structural site).

Our goal is to identify the matching structure Xj with the extended sequence
�Si. The process of aligning a sequence S into a structure X provides an optimal
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score and the extended sequence �S. This double achievement can be obtained

using dynamic programming (DP) algorithm [16–19]. In DP the computatio-

nal effort to find the optimal alignment (with gaps and deletions) is proportional

to n� m, as compared to exponential number ð�2nþmÞ of all possible align-

ments.

In contrast to profile models, the potentials based on pair interactions do not

lead to optimal alignments with dynamic programming. A number of heuristic

algorithms that provide approximate alignments have been proposed [20]. These

algorithms cannot guarantee an optimal solution with less than exponential

number of operations [21]. Another common approach is to approximate the

energy by a profile model (the so-called frozen environment approximation) and

to perform the alignment using DP [22]. In this work, we are aiming at deriving

systematic approximations to pair energies that would preserve the computa-

tional simplicity of profile models.

Threading protocols that are based exclusively on pairwise models were

shown to be too sensitive to variations in shapes [23]. Therefore, pairwise

potentials are often employed in conjunction with various complementary

‘‘signals,’’ such as sequence similarity, secondary structures, or family profiles

[9–11,24–28]. Such additional signals enhance the recognition when the tertiary

contacts are significantly altered. In GenTHREADER [9], for example, se-

quence alignment methods are employed as the primary detection tools. A

pairwise threading potential is then used to evaluate the consistency of the

sequence alignments with the underlying structures. Bryant and co-workers use,

in turn, an energy function which is a weighted sum of a pairwise threading

potential and a sequence substitution matrix [10].

Distant-dependent pair energies are expected to be less sensitive to variations

in shapes than simple contact models, in which inter-residues interactions are

assumed to be constant up to a certain cutoff distance and are set to zero at

larger distances. A number of distance-dependent pairwise potentials have been

proposed in the past [29,30]. We consider both simple contact models and

distance-dependent power law potentials and compare their performance with

that of novel profile models.

We compute the energy parameters by linear programming (LP) [31–33].

There are a number of alternative approaches to derive the energy parameters.

For example, statistical analysis of known protein structures makes it possible to

extract ‘‘mean-force’’ potentials [34–38]. Another approach is the optimization

of a single target function that depends on the vector of parameters such as

Tf =Tg [39], the Z score [1], or the s parameter [40]. We note also that

optimization of the gap energies has been attempted in the past [22,41]. The

statistical analysis is the least expensive computationally. The optimization

approaches have the advantage that misfolded structures can be made part of

the optimization, providing a more complete training. The LP approach is
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computationally more demanding compared to other protocols. However, it has

important advantages, as discussed below.

In LP training we impose a set of linear constraints (for energy models linear

in their parameters) of the general form

�Edec; nat 
 Edecoy � Enative > 0 ð1Þ

where Enative is the energy of the native alignment (of a sequence into its native

structure) and Edecoy represents the energies of the alignments into non-native

(decoy) structures. In other words, we require that the energies of native

alignments be lower than the energies of alignments into misfolded (decoy)

structures.

While optimization of the Z; Tf =Tg; and s scores led to remarkably

successful potentials [1,39,40], it focuses at the center of the distribution of

the �Edec; nat’s and does not solve exactly the conditions of Eq. (1). For

example, the tail of the distribution of the �Edec; nat may be slightly wrong,

and a fraction f of the �Edec; nat’s may ‘‘leak’’ to negative values. If f is small, it

may not leave a significant impression on the first and second moments of the

distribution; that is, the value of the Z score remains essentially unchanged.

‘‘Tail misses’’ is not a serious problem if we select a native shape from a small

set of structures. However, when examining a large number of constraints, even

if f is small, the number of inequalities that are not satisfied can be very large,

making the selection of the native structure difficult if not impossible.

In contrast to the optimization of average quantities, the LP approach

guarantees that all the inequalities in Eq. (1) are satisfied. If the LP cannot

find a solution, we get an indication that it is impossible to find a set of

parameters that solve all the inequalities in Eq. (1). For example, we may obtain

the impossible condition that the contact energy between two ALA residues

must be smaller than 5 and at the same time must be larger than 7. Such an

infeasible solution is an indicator that the current model is not satisfactory, and

more parameters or changes in the functional form are required [31–33]. Hence,

the LP approach, which focuses on the tail of the distribution near the native

shape, allows us to learn continuously from new constraints and improve further

the energy functions, guiding the choice of their functional form.

In the present chapter we evaluate several different scoring functions for

sequence-to-structure alignments, with parameters optimized by LP. Based on a

novel profile model, designed to mimic pair energies, we propose an efficient

threading protocol of accuracy comparable to that of other contact models. The

new protocol is complementary to sequence alignments and can be made a part

of more complex fold recognition algorithms that use family profiles, secondary

structures, and other patterns relevant for protein recognition.

The first half of the chapter is devoted to the design of scoring functions. Two

topics are discussed: the choice of the functional form (Section II) and the
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choice of the parameters (Section III). The capacity of the energies is explored

and optimal parameters are determined (Section IV). High capacity indicates

that a large number of protein shapes are recognized with a small number of

parameters.

The second part of the manuscript deals with optimal alignments. We design

gap energies (Section V) and introduce a double Z-score measure (from global

and local alignments) to assess the results (Section VI). Presentation of

extensive tests of the algorithm (Section VII) is followed by the conclusions

and closing remarks.

II. FUNCTIONAL FORM OF THE ENERGY

In a nutshell there are two ‘‘families’’ of energy functions that are used in

threading computations, namely the pairwise models (with ‘‘identifiable’’ pair

interactions) and the profile models. In this section we formally define both

families and we also introduce a novel THreading Onion Model (THOM), which

is investigated in the subsequent sections of the chapter.

A. Pairwise Models

The first family of energy functions is of pairwise interactions. The score of the

alignment of a sequence S into a structure X is a sum of all pairs of interacting

amino acids,

Epairs ¼
X
i< j

fijðai; b j; ri jÞ ð2Þ

The pair interaction model, fi j, depends on the distance between sites i and j and

also depends on the types of amino acids, ai and b j. The latter are defined by the

alignment, because certain amino acid residues ak; al 2 S are placed in sites i and

j, respectively.

We consider two types of pairwise interaction energies. The first is the

widely used contact potential. If the geometric centers of the side chains are

closer than 6.4 Å, then the two amino acids are considered in contact. The total

energy is a sum of the individual contact energies:

fijðai; b j; ri jÞ ¼ eab; 1:0 < rij < 6:4
0; otherwise

� �
ð3Þ

where i, j are the structure site indices (contacts due to sites in sequential vicinity

are excluded, i ¼ 3 < j), a, b are indices of the amino acid types (we drop the

subscripts i and j for convenience), and eab is a matrix of all the possible contact

types. For example, it can be a 20� 20 matrix for the twenty amino acids.

Å
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Alternatively, it can be a smaller matrix if the amino acids are grouped together

to fewer classes. Different groups that are used in the present study are

summarized in Table I. The entries of eab are the target of parameter optimization.

The advantage of the single-step potential is its simplicity. This is also its

weakness. From a chemical physics perspective the interaction model is over-

simplified and does not include the (expected) distance-dependent interaction

between pairs of amino acids. To investigate a potential with more ‘‘realistic’’

shape we also consider a ‘‘distance power’’ potential:

fi jðai; bj; ri jÞ ¼
Aab

rm
i j

þ Bab

rn
i j

ð4Þ

Here two matrices of parameters are determined: one for the m power, Aab,

and one for the n power, Bab ðm > nÞ. The signs of the matrix elements are

determined by the optimization. In ‘‘physical’’ potentials like the Lennard-Jones

model we expect Aab to be positive (repulsive) and Bab to be negative (attrac-

tive). The indices m and n cannot be determined by LP techniques and have to

be decided on in advance. A suggestive choice is the widely used Lennard-Jones

[LJ(12,6)] model ðm ¼ 12; n ¼ 6Þ. In contrast to the square well, the LJ(12,6)

form does not require a prespecification of the arbitrary cutoff distance, which is

determined by the optimization. It also presents a continuous and differentiable

function that is more realistic than the square well model.

We show in Section IV that the LJ(12,6), commonly employed in atomistic

simulations, performs poorly when applied to inter-residue interactions. Therefore

other continuous potentials of the type described in Eq. (5) were investigated.

We propose a shifted LJ potential (SLJ) that has significantly higher capacity

compared to LJ and is closer in performance to that of the square well potential.

TABLE I

The Definitions of Different Groups of Amino Acids That Are Used in the Present Studya

Hydrophobic (HYD) ALA CYS HIS ILE LEU MET PHE PRO TRP TYR VAL

Polar (POL) ARG ASN ASP GLN GLY LYS SER THR

Charged (CHG) ARG ASP GLU LYS

Negatively charged (CHN) ASP GLU

aNote that 10 types of amino acids are found to be sufficient to solve the Hinds–Levitt set either by

pairwise interaction models or by THOM2 (in the case of continuous LJ models, HIS was replaced

by CYS). The amino acid types are HYD, POL, CHG, CHN, GLY, ALA, PRO, TYR, TRP, and HIS.

The list implies that when an amino acid appears explicitly, it is excluded from other groups that

may contain it. For example, HYD includes in this case CYS, ILE, LEU, MET, and VAL, while

CHG includes ARG and LYS only, since the negatively charged residues form a separate group.
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The SLJ is based on the replacement of Aab=r12
ij by Aab=ðrij þ aÞ12

, where a is a

constant that we set to 1 Å.

The SLJ is a smoother potential with a broader minimum. An alternative

potential that also creates a smoother and wider minimum is obtained by

changing the distance powers. We also optimized a potential with the (unusual)

(m ¼ 6; n ¼ 2) pair. This choice was proven most effective and with the largest

capacity of all the continuous potentials that we tried (Fig. 1).

B. Profile Models

The second type of energy function assigns ‘‘environment’’ or a profile to each of

the structural sites [1]. The total energy Eprofile is written as a sum of the energies

of the sites:

Eprofile ¼
X

i

fiðai; XÞ ð5Þ

As previously, ai denotes the type of an amino acid ak of S that was placed at site

i of X. For example, if ak is a hydrophobic residue and xi is characterized as a

hydrophobic site, the energy fiðai;XÞ will be low (score will be high). If ak is

charged, then the energy will be high (low score). The total score is given by a

sum of the individual site contributions.

0

6 9 12

E
ne

rg
y

 Distance (angstroms)

 HH 
 HP 
 PP 

Figure 1. A sample plot of the Lennard-Jones-like potential that we developed. The functional

form is Aab=r6
ij þ Bab=r2

ij (LJ(6,2)), where the indices a and b denote the amino acid types and the

indices i and j are the positions along the chain. Aab and Bab are optimized using the LP approach.

The plot includes interactions of the types HH, HP, and PP, where H stands for hydrophobic and P

stands for polar residues, respectively. The coefficients A and B are given in Table 7a. Note that the

usual Lennard-Jones potential (LJ(12,6)) has a poor recognition capacity.
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We consider two profile models. The first, which is very simple, was used in

the past as an effective solvation potential [1,2,42]. We call it THOM1 (THread-

ing Onion Model 1), and it suggests a clear path to an extension (which is our

prime model), namely, THOM2. The ‘‘onion’’ level denotes the number of

contact shells used to describe the environment of the amino acid. The THOM1

model uses one ‘‘contact’’ shell of amino acids. The more detailed THOM2

energy model (to be discussed below) is based on two layers of contacts.

In the ‘‘profile’’ potential THOM1, the total energy of the protein is a direct

sum of the contributions from m structural sites and can be written as

E THOM1 ¼
X

i

eai
ðniÞ ð6Þ

The energy of a site depends on two indices: (a) the number of neighbors to the

site, ni [a neighbor is defined as for pairwise interaction—Eq. (2)], and (b) the

type of the amino acid at site i, ai. For 20 amino acids and a maximum of 10

neighbors we have 200 parameters to optimize, a number that is comparable to

the detailed pairwise model.

THOM1 provides a nonspecific interaction energy, which, as we show in

Section IV, has relatively low prediction ability when compared to pairwise

interaction models. THOM2 is an attempt to improve the accuracy of the

environment model, making it more similar to pairwise interactions. In order to

mimic pair energies, we first define the energy eai
ðni; njÞ of a contact between

structural sites i and j, where ni is the number of neighbors to site i and nj is the

number of contacts to site j (see Fig. 2). The type of amino acid at site i is ai.

Only one of the amino acids in contact is ‘‘identifiable.’’ The total contribution

due to a site i is then defined as a sum over all contacts to this site fi ;THOM2

ðai;XÞ ¼
P0

j eai
ðni; njÞ, with the prime indicating that we sum only over sites j

that are in contact with i (i.e., over sites j satisfying the condition 1:0 <
ri j < 6:4 Å and ji� jj � 4). The total energy is finally given by a double sum

over i and j:

E THOM2 ¼
X

i

X
j

0eai
ðni; njÞ ð7Þ

Consider a pair of sites (i, j) which are in contact and occupied by amino

acids of types ai and aj. Let the number of neighbors of site i be ni, and let for

site j be nj. The effective energy contribution of the (i, j) contact is

V
eff
ij ¼ eai

ðni; njÞ þ eaj
ðnj; niÞ ð8Þ

Hence, we can formally express the THOM2 energy as a sum of approximate

pair energies ETHOM2 ¼
P

i< j V
eff
ij .
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The effective energy mimics the formalism of pairwise interactions. How-

ever, in contrast to the usual pair potential the alignments with THOM2 can be

done efficiently. Structural features alone (the number of the contacts) deter-

mine the ‘‘identity’’ of the neighbor. The structural features are fixed during the

computations, making it possible to use dynamic programming. This is in

contrast to pairwise interactions for which the identity of the neighbor may vary

during the alignment. For 20 amino acids, the number of parameters for this

model can be quite large. Assuming a maximum of 10 neighbors, we have

20� 10� 10 ¼ 2000 entries to the parameter array. In practice we use a coarse-

grained model leading to a reduced set of structural environments (types of

contacts) as outlined in Table II.

The use of a reduced set makes the number of parameters (300 when all 20

types of amino acids are considered) comparable to that of the contact potential.

Further analysis of the new model is included in Section IV.

III. OPTIMIZATION OF THE ENERGY PARAMETERS

Here we consider the amino acid interactions (the gap energies are discussed in

Section V). In order to optimize the energy parameters, we employ the so-called

∈LYS = 1.08

∈VAL = −1.32

∈LYS = 0.48

∈VAL = −0.66

∈LYS = −0.15

∈VAL = −0.64

Figure 2. A schematic representation of the interactions with the THOM2 potential. THOM2

assigns scores according to two contact shells. As an example we show a sample of contacts to a site

and the associated energies for valine and lysine. As expected, the hydrophobic residue (valine)

strongly prefers to be at a site with a large number of neighbors in the first and second shells. Lysine

is the extreme case on the polar side.
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gapless threading in which the sequence Si is fitted into the structure Xj with no

deletions or insertions. Hence, the length of the sequence (n) must be shorter or

equal to the length of the protein chain (m). If n is shorter than m, we may try

m� nþ 1 possible alignments varying the structural site of the first residue

fa1 ! x1; x2; . . . ; xm�nþ1g.
The energy (score) of the alignment of S into X is denoted by E(S,X,p),

where X stands (depending on the context) either for the whole structure or only

for a substructure of length n, relevant for a given gapless alignment. The energy

function, E(S,X,p), depends on a vector p of q parameters (so far undetermined).

A proper choice of the parameters will get the most from a specific functional

form, where we restrict the discussion below to knowledge-based potentials.

Consider the sets of structures fXig and sequences fSjg. There is a correspon-

ding energy value for each of the alignments of the sequences fSjg into the

structures fXig. A good potential will make the alignment of the ‘‘native’’

sequence into its ‘‘native’’ structure the lowest in energy. If the exact structure is

not in the set, alignments into homologous proteins are also considered

‘‘native.’’ Let Xn be the native structure. A condition for an exact recognition

potential is

EðSn;Xj; pÞ � EðSn;Xn; pÞ > 0; 8 j 6¼ n ð9Þ

TABLE II

Definitions of Contact Types for the THOM2 Energy Modela

Type of Siteb n¼1,2; �1 n¼3,4,5,6; �5 n� 7; �9

n¼1,2; �1 (�1,�1) (�1,�5) (�1,�9)

n¼3,4; �3 (�3,�1) (�3,�5) (�3,�9)

n¼5,6; �5 (�5,�1) (�5,�5) (�5,�9)

n¼7,8; �7 (�7,�1) (�7,�5) (�7,�9)

n� 9; �9; (�9,�1) (�9,�5) (�9,�9)

aThe THOM2 model defines an energy of a site as a sum of contributions due to contacts to this site.

A contact between two amino acids is ‘‘on’’ if their distance is smaller than 6.4 Å. Different types of

contacts are defined by the number of neighbors to the two sites involved in contact i.e., the

information about the first and second contact layer of a site is used (see Fig. 2). We consider five

types of sites in the first layer (primary site i occupied by an amino acid of known type) and three

types of sites in the second layer (secondary site j with no amino acid type assigned). Therefore,

there are 5� 3 ¼ 15 types of contacts. The primary site i may be occupied by any of the 20 amino

acids, leading to 20� 15 ¼ 300 different energy terms. A reduced set of amino acids is associated

with a smaller number of parameters to optimize (for 10 types of amino acids, the number of

parameters is 10� 15 ¼ 150). The notation we used for each type of site is based on a representative

number of neighbors. The number of neighbors n in a given class and its representative are given in

the first column (for different classes of sites in the first layer) and in the first row (for different

classes of sites in the second layer). The intersections between columns and rows correspond to

contacts of different types: a contact between two sites of medium number of neighbors is denoted

by (�5; �5), for example.
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In the set of inequalities (9) the coordinates and sequences are given and the

unknowns are the parameters that we need to determine. We first describe the sets

used to train the potential and then describe the technique to solve the above

inequalities.
A. Learning and Control Sets

Two sets of protein structures and sequences are used for the training of

parameters in the present study. Hinds and Levitt developed the first set [43] that

we call the HL set. It consists of 246 protein structures and sequences. Gapless

threading of all sequences into all structures generated the 4,003,727 constraints

[i.e., the inequalities of Eq. (8)]. The gapless constraints were used to determine

the potential parameters for the 20 amino acids. Because the number of

parameters does not exceed a few hundred, the number of inequalities is larger

than the number of unknowns by many orders of magnitude.

The second set of structures consists of 594 proteins and was developed by

Tobi et al. [32]. It is called the TE set and is considerably more demanding. It

includes some highly homologous proteins (up to 60% sequence identity) and

poses a significant challenge to the energy function. For example, the set is

infeasible for the THOM1 model, even when using 20 types of amino acids (see

Section IV). The total number of inequalities that were obtained from the TE set

using gapless threading was 30,211,442. The TE set includes 206 proteins from

the HL set.

We developed two other sets that are used as control sets to evaluate the new

potentials in terms of both gapless and optimal alignments. These control sets

contain proteins that are structurally dissimilar to the proteins included in the

training sets. The degree of dissimilarity is specified in terms of the RMS

distance between the structures. The structure-to-structure alignments (neces-

sary for RMS calculations) were computed according to a novel algorithm [45].

The new structural alignment is based on dynamic programming and

provides for closely related structures results that are comparable to the

DALI program [44]. Contrary to DALI, we employ (consistently with our

threading potentials) the side-chain coordinates, and not the backbone (Ca)

atoms, while overlapping two structures (in fact, in analogy with THOM2, we

overlap the contact shells, disregarding however the identities of amino acids).

Thus, the results of our structure-to-structure alignments refer to superimposed

side-chain centers. Our cutoff for structural dissimilarity is 12 Å RMSD.

The first control set, which is referred to as S47, consists of 47 proteins

representing families not included in the training. This includes 25 structures

used in the CASP3 competition [46] and 22 related structures chosen randomly

from the list of VAST [47] and DALI [44] relatives of CASP3 targets. None of

the 47 structures has homologous counterparts in the HL set, and only three

have counterparts in the TE set. As measured by our novel (both global and

local) structure-to-structure alignments, the remaining proteins differ from those
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in the training sets by at least 12 Å with respect to HL set and 9.3 Å with respect

to TE set (the RMS distance is larger than 12 Å for all but seven shorter

proteins), respectively.

The second control set, referred to as S1082, consists of 1082 proteins that

were not included in the TE set and which are different by at least 3 Å RMSD

(measured, as previously, between the superimposed side chain centers) with

respect to any protein from the TE set and with respect to each other. Thus, the

S1082 set is a relatively dense (but nonredundant up to 3 Å RMSD) sample of

protein families. The training and control sets are available from the web [48].

B. Linear Programming Protocol

The ‘‘profile’’ energies and the pairwise interaction models that were discussed

in Section II can be written as a scalar product:

E ¼
X
g

ngpg 
 n � p ð10Þ

where p is the vector of parameters that we wish to determine. The index of the

vector, g, is running over the types of contacts or sites. For example, in the

pairwise interaction model the index g is running over the identities of the amino

acid pairs (e.g., a contact between alanine and arginine). In the THOM1 model it

is running over the types of sites characterized by the identity of the amino acid

at the site and the number of its neighbors. ng is the number of contacts, or sites of

a specific type found in a fold. The ‘‘number’’ may include additional weight. For

example, the number of alanine–alanine contacts in a protein is (of course) an

integer. However, in the Lennard-Jones model, the contact type Aa;b 
 pg is

associated with additional geometric weight hidden in a continuous ‘‘number’’

function, ng / 1=rm.

In the pairwise contact model, there are 210 types of contacts for the 20

amino acids. We have experimented with different representations and different

numbers of amino acid types. While the Hinds–Levitt set can be solved with a

reduced number of parameters, the more demanding requirements of the larger

set necessitates (for all models presented here) the use of at least 210

parameters.

We wish to emphasize that the linear dependence of the potential energies on

their parameters is not a major formal restriction. Any potential energy E(X) can

be expanded in terms of a basis set (say fngðXÞg1g¼1) in which the coefficients

are unknown parameters:

EðS;X; pÞ ¼
X1
g¼1

pgngðXÞ ð11Þ
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Note that we deliberately used a similar notation to Eq. (11) and that the

information on X and S is ‘‘buried’’ in ng(X). A good choice of the basis set will

converge the sum to the right solution with only a few terms. Of course, such a

choice is not trivial to find, and one of the goals of the present chapter is to

explore different possibilities.

The linear representation of the energy simplifies Eq. (9) as follows:

EðSn;Xj; pÞ � EðSn;Xn; pÞ ¼
X
g

pgðngðXjÞ � ngðXnÞÞ

¼ p ��nj > 0 8 j 6¼ n ð12Þ

Hence, the problem is reduced to the condition that a set of inner vector products

will be positive. Standard linear programming tools can solve Eq. (12). We use

the BPMPD program of C. S. Meszaros [49], which is based on the interior point

algorithm. We seek a point in parameter space that satisfies the constraints, and

we do not optimize a function in that space. In this case, the interior point

algorithm places the solution at the ‘‘maximally feasible’’ point, which is at the

center of the accessible volume of parameters [50].

The set of inequalities that we wish to solve includes tens of millions of

constraints that could not be loaded into the computer memory directly (we

have access to machines with two to four gigabytes of memory). Therefore, the

following heuristic approach was used. Only a subset of the constraints is

considered, namely, fp ��n < CgJ
j¼ 1, with a threshold C chosen to restrict the

number of inequalities to a manageable size (which is about 500,000 inequal-

ities for 200 parameters). Hence, during a single iteration, we considered only

the inequalities that are more likely to be significant for further improvement by

being smaller than the cutoff C.

The subset fp ��n < CgJ
j¼ 1 is sent to the LP solver ‘‘as is.’’ If proven

infeasible, the calculation stops (no solution possible). Otherwise, the result is

used to test the remaining inequalities for violations of the constraints [Eq.

(12)]. If no violations are detected, the process was stopped (a solution was

found). If negative inner products were found in the remaining set, a new subset

of inequalities below C was collected and sent to the LP solver. The process was

repeated, until it converged. Sometimes convergence was difficult to achieve,

and human intervention in the choices of the inequalities was necessary.

Nevertheless, all the results reported in the present chapter were iterated to a

final conclusion. Either a solution was found or infeasibility was detected.

IV. EVALUATION OF PAIR AND PROFILE ENERGIES

In this section we analyze and compare several pairwise and profile potentials,

optimized using the LP protocol. As described in the previous section, given the
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training set (HL or TE) and the sampling of misfolded (decoy) structures

generated by gapless threading, either we obtain a solution (perfect recognition

on the training set) or the LP problem proves infeasible.

We use the infeasibility of a set to test the capacity of an energy model. We

compare the capacity of alternative energy models by inquiring how many

native folds they can recognize (before hitting an infeasible solution). Next,

using the control sets, we further test the capacity of the models in terms of

generalization and the number of inequalities in Eq. (9) that can be still satisfied,

although they were not included in the training. We use the same sets of proteins

and about the same number of optimal parameters. The larger the number of

proteins that are recognized with the same number of parameters, the better the

energy model. We focus on the capacity of four models: the square well and the

distance power-law pairwise potentials, as well as THOM1 and THOM2

models. We find that the ‘‘profile’’ potentials have in general lower capacity

than the pairwise interaction models.

A. Parameter-Free Models

Perhaps the simplest comparison that we can make is for zero-parameter models,

and this is where we start. Zero-parameter models have nothing to optimize.

They suggest an immediate and convenient framework for comparison,

independent of successful (or unsuccessful) optimization of parameters.

An example of pair interaction energy with no parameters is the famous H/P

model [51]. In H/P the interactions of pairs of amino acids of the type HP and

PP are set to zero and the HH interaction is �l. The total energy of a structure is

the number of HH contacts (ni) of structure i times �l; that is, Ei ¼ �nil. The

positive parameter l determines the scale of the energy, however, it does not

affect the ordering of the energies of different structures. The difference

Ei � En ¼ �lðni � nnÞ is positive or negative, regardless of the magnitude

of jlj. The existence of a solution of the inequalities in (9) is therefore

independent of l.

For the HL protein set with 246 structures, the HP model predicts the correct

fold of 200 proteins. For the larger TE set, the HP recognizes correctly 456 of

the 594 proteins. This result is quite remarkable considering the simplicity of

the model used, and it raises hopes for even more remarkable performance of

the pairwise interaction model once more types of pair interactions are

introduced. It is therefore disappointing that the addition of many more

parameters to the pairwise interaction model did not increase its capacity as

significantly as one may hope, though gradual increase is still observed.

A simple, parameter-free THOM1 model can be defined as follows. As in the

pairwise interaction, we consider two types of amino acids: H and P. The energy

of a hydrophobic site is defined as eHðnÞ ¼ �ln. For a polar site it is eP ¼ 0. It

is evident from the above definitions that the parameter-free THOM1 cannot
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possibly do better than the HP model, because neighbors of the type HH and HP

are counted on equal footing. Indeed the parameter-free THOM1 is doing

poorly in both HL and TE sets (only 118 of 246 proteins were solved for HL and

211 of 594 for TE).

B. ‘‘Minimal’’ Models

The parameter-free models are insufficient to solve exactly even the HL set. By

‘‘exact’’ we mean that each of the sequences picks the native fold as the lowest in

energy using a gapless threading procedure. Hence, all the inequalities in Eq.

(12), for all sequences Sn and structures X j, are satisfied and the LP problem of

Eq. (12) is feasible. This section addresses the question; What is the minimal

number of parameters that is required to obtain an exact solution for the HL and

for the TE sets? The feasibility of the corresponding sets of inequalities [Eq.

(12)] is correlated with the number of model parameters, as listed in Table III.

Consider first the training on the HL set (the solution of the TE set will be

discussed in Section IV.D). For the square well potential we require the smallest

number of parameters (i.e., 55) to solve the HL set exactly. Only 10 types of

TABLE III

Comparing the Capacity of Different Threading Potentialsa

Potential Hinds–Levitt Set Tobi–Elber Set

SWP, HP model, par-free 200 456

SWP, 10 aa, 55 par 246* 504

SWP, 20 aa, 210 par 246* 530

SWP, 20 aa, 210 par 237 594*

LJ 12-6, 10 aa, 110 par 246* 125

SLJ 12-6, 10 aa, 110 par 246* 488

LJ 6-2, 10 aa, 110 par 246* 530

THOM1, HP model, par-free 118 221

THOM1, 20 aa, 200 par 246* 474

THOM2, 10 aa, 150 par 246* 478

THOM2, 20 aa, 300 par 246* 428

THOM2, 20 aa, 300 par 236 594*

aCapacity for recognition of pairwise and profile threading potentials is measured by gapless

threading on Hinds–Levitt and Tobi–Elber representative sets of proteins. We compare the capacity

of ‘‘parameter-free’’ models (such as the HP and the HP variant of THOM1), demonstrating the

superiority of pair potential on profile model in the simplest possible case. We also show that the

square well potential and the LJ(6,2) potential are significantly better than THOM1. THOM2,

however, is showing comparable performance and is able to learn the TE set (see also Table IV).

SWP stands for square well pairwise potential, and SLJ stands for shifted Lennard-Jones potential.

For each potential the number of amino acids types used and the resulting number of parameters are

reported. The training set used (either HL or TE) is indicated by an asterisk in the second or third

column, respectively. The number of correct predictions for structures in HL and TE sets is given in

the second and third columns as well.
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amino acids were required: HYD, POL, CHG, CHN, GLY, ALA, PRO, TYR,

TRP, HIS (see also Table I). The above notation implies that an explicit

mentioning of an amino acid excludes it from other, broader subsets. For

example, HYD includes now only CYS ILE LEU MET PHE and VAL, whereas

CHG includes ARG and LYS only because the negatively charged residues form

a separate group, CHN. The LJ, THOM1, and THOM2 models require 110, 200,

and 150 parameters, respectively, to provide an exact solution of the same (HL)

set (see table IV). It is impossible to find an exact potential for the HL set

without (at least) 10 types of amino acids.

Smaller number of parameters led to infeasibility. The optimized models are

then used ‘‘as is’’ to predict the folds of the proteins at the TE set. Again, we

find that the pairwise interaction model is doing the best and is followed by

THOM2 and THOM1, with LJ(12,6) closing.

The above test of the models optimized on the HL set gives an ‘‘unfair’’

advantage to the THOM models that are using more parameters. Nevertheless,

even this head start did not change the conclusion that the pairwise square well

model better captures the characteristics of sequence fitness into structures.

Without the need for efficient treatments of gaps (see Section V), the pairwise

interaction model should have been our best choice. Moreover, so far THOM2 is

not significantly better than THOM1.

C. Evaluation of the Distance Power-Law Potentials

The LJ(12,6) model, which is a continuous representation of the pairwise

interaction, performs poorly. The model trained exactly on the HL set predicts

correctly only 125 structures from the 594 structures of the TE set. This result is

surprising because the LJ is continuous and differentiable (and more realistic),

and has more parameters.

A possible explanation for the failure of LJ(12,6) is the following. The

LJ(12,6) is describing successfully atomic interactions. The shape of atoms

is much better defined than the shape of amino acid side chains. Amino acids

may have flexible side chains and alternative conformations, making the

range of acceptable distances significantly larger. To represent alternative con-

figurations of the same type of side chains, potentials with wide minima are

required.

To test the above explanation and in a search for a better model, we also tried

a shifted LJ function (SLJ) as well as an LJ-like potential with different powers

(m ¼ 6; n ¼ 2, LJ(6,2); see also Fig. 1). As can be seen from Table IV, the

‘‘softer’’ potentials are performing better than the steep LJ(12,6) potential. For

example, a LJ(6,2) potential trained on the HL set with 110 parameters (only 10

types of amino acids were used) recognizes correctly 530 proteins of the TE set.

Thus, LJ(6,2) has a similar capacity to a square well potential, trained on the

same set with 210 parameters.
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This suggests that in ab initio off-lattice simulations of protein folding,

which employ ‘‘residue’’-based potentials, LJ(6,2) may be more successful than

commonly used LJ(12,6) [12]. Finally, we comment that the training of the LJ

type potential was numerically more difficult than the training of the square well

potential.

D. Capacity of the New Profile Models

We turn our attention below to further analysis of the new profile models. An

indication that THOM2 is a better choice than THOM1 is included in the next

comparison: the number of parameters that is required to solve exactly the TE set

(see Table III). It is impossible to find parameters that will solve exactly the TE

set using THOM1 (the inequalities form an infeasible set). The infeasibility is

obtained even if 20 types of amino acids are considered. In contrast, both

THOM2 and the pairwise interaction model led to feasible inequalities if the

number of parameters is 300 for THOM2 and 210 for the square well potential

(SWP). Note that the set of parameters that solved exactly the TE set does not

solve exactly the HL set because the latter set includes proteins not included in

the TE set.

We have also attempted to solve the TE set using SWP and THOM2 with a

smaller number of parameters. For square well potential the problem was

proven infeasible even for 17 different types of amino acids and only very

similar amino acids grouped together (Leu and Ile, Arg and Lys, Glu and Asp).

TABLE IV

Comparison of Performance of THOM2 and Knowledge-Based Pairwise

Potentials Using Gapless Threadinga

Potential Recognized Structures Nonsatisfied Inequalities [mln]

BT 1447 (87.3%) 0.28

HL 1412 (85.2%) 3.53

MJ 1410 (85.1%) 0.48

THOM2 1396 (84.3%) 0.38

TE 1353 (81.7%) 0.33

SK 1293 (78.0%) 0.16

aThe results of gapless threading on the TE set with 20 redundant structures excluded and extended

by the S1082 set (see text for details) are reported. The resulting set of 1656 proteins generates about

226 million inequalities. The results of THOM2 potential are compared to five other knowledge-

based pairwise potentials by Betancourt and Thirumalai (BT) [37], Hinds and Levitt (HL) [36],

Myazawa and Jerningan (MJ) [34], Godzik, Kolinski, and Skolnick (GKS) [38] and Tobi and Elber

(TE) [32]. The latter potential was trained using LP protocol and the same (TE) training set.

Potentials are ordered according to the number of proteins recognized exactly (out of 1656), given in

the second column (values in parentheses indicate the percentage of proteins recognized exactly).

The third column contains the number of inequalities (out of 226 mln) that are not satisfied. Note

lack of correlation between the number of proteins that are missed and the number of inequalities

that are not satisfied.
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Similarly, we failed to reduce the number of parameters by grouping together

structurally determined types of contacts in THOM2. Enhancing the range of a

‘‘dense’’ site to be a site of seven neighbors or more also results in infeasibility.

Although the rare ‘‘crowded’’ sites need to be considered explicitly to solve

the TE set with THOM2, a reduced form of the full THOM2 potential trained on

the TE set is doing quite well. Consider the contacts (�9; �1), (�9; �5), and (�9; �9).

These contacts are very rare and are therefore merged with the contact types

(�7; �1), (�7; �5), and (�7; �9). After the merging the number of parameters drops to

200 (instead of 300). The ‘‘new’’ potential recognizes 540 proteins out of 594 of

the TE set. Only 324 inequalities are not satisfied. Hence, adding 100

parameters increases the capacity of the potential only by a minute amount.

To make a comparison to potentials not designed by the LP approach and to

test at the same time the generalization capacity of THOM2, we consider the set

of 1656 proteins obtained by adding the S1082 set to the TE set (with 20

redundant structures i.e., structures differing by less than 3 Å with respect to

other structures in the TE set removed. This is a demanding test because it

contains many homologous pairs and many short proteins that may be similar to

fragments of larger proteins. Using the gapless threading protocol, we evaluate

the performance of five knowledge-based pairwise potentials. As can be seen

from Table IV, the Betancourt–Thirumalai (BT) potential [37] recognized

exactly the largest number of proteins, followed by the Hinds–Levitt (HL)

[36], Miyazawa–Jernigan (MJ) [34], THOM2, Tobi–Elber (TE) [32], and

Godzik–Skolnick–Kolinski (GSK) [38] potentials. However, in terms of the

number of inequalities that are not satisfied, the GSK potential is the best,

followed by BT, TE, THOM2, MJ, and HL potentials.

The performance of THOM2 potential (84.3% accuracy) is comparable to the

performance of other square well potentials (including the TE potential trained

on the same set). Because most of the proteins used in this test were not

included in the training, we conclude that the perfect learning on the training set

avoids overfitting the data.

E. Dissecting the New Profile Models

The THOM1 potential is the easiest to understand and we therefore start with it.

In Fig. 3 we examined the statistics of THOM1 contacts from the HL learning

set. The number of contacts to a given residue is accumulated over the whole set

and is presented by a continuous line. We expect that polar residues have a smaller

number of neighbors compared to hydrophobic residues, which is indeed the

case. The distributions for hydrophobic and polar residues are shown in Figs. 3a

and 3b, respectively. The distributions make the essence of statistical potentials

that are defined by the logs of the distribution (appropriately normalized).

The statistical analysis employs only native structures, whereas our LP

protocol is using sequences threaded through wrong structures (misthreaded)
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during the process of learning. As a result, the LP has the potential for

accumulating more information, attempting to put the energies of the mis-

threaded sequence as far as possible from the correct thread. In Fig. 4 we show

the results of the LP training for valine, alanine, and leucine that are in general

agreement with the statistical data above. Nevertheless, some interesting and
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Figure 3. Statistical analysis of contacts for the THOM1 model. (a) Distribution of the number

of contacts for hydrophobic residues. (b) Distribution of the number of contacts for (c) Data for

alanine and glycine.
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significant differences remain. For example, very rare valine residues with 10

neighbors obtain positive energies.

A plausible interpretation of this result is that these rare sites are used to

enhance recognition in some cases, due to specific ‘‘homologous features.’’

In Table Va we examined the type of contacts (in terms of the number of

neighbors) for native and decoy structures.
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Figure 3 (Continued)
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Figure 4. Potentials for THOM1 energy as extracted from LP training. Three residues are

shown: alanine, lysine, and valine. Note that the minimum of the potential for valine is at seven

neighbors. Note also that lysine has a minimum at zero neighbors.
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TABLE V

Characterization of Native and Decoy Structuresa

(a)

Type of Siteb Native (HYD/POL) Decoys (HYD/POL)

(1) 16.97 (4.89/12.09) 24.20 (11.72/12.48)

(2) 17.30 (6.06/11.24) 21.72 (10.52/11.20)

(3) 17.72 (8.29/9.43) 18.70 (9.06/9.64)

(4) 16.60 (9.68/6.92) 15.00 (7.28/7.73)

(5) 14.62 (10.16/4.47) 10.79 (5.24/5.55)

(6) 9.96 (7.66/2.30) 6.04 (2.94/3.10)

(7) 4.95 (4.02/0.92) 2.63 (1.28/1.35)

(8) 1.57 (1.32/0.25) 0.77 (0.38/0.40)

(9) 0.26 (0.21/0.05) 0.12 (0.06/0.06)

(10) 0.04 (0.04/0.00) 0.02 (0.01/0.01)

(b)

Type of Contact Native (HYD/POL) Decoys (HYD/POL)

(�1,�1) 5.09 (1.59/3.50) 11.34 (5.48/5.85)

(�1,�5) 9.02 (2.99/6.04) 12.69 (6.15/6.54)

(�1,�9) 0.41 (0.15/0.26) 0.35 (0.17/0.18)

(�3,�1) 6.25 (2.88/3.37) 9.51 (4.60/4.91)

(�3,�5) 24.09 (13.01/11.08) 26.59 (12.91/13.68)

(�3,�9) 3.23 (1.88/1.35) 2.29 (1.12/1.18)

(�5,�1) 2.77 (1.81/0.96) 3.18 (1.54/1.64)

(�5,�5) 28.36 (20.96/7.40) 22.09 (10.75/11.34)

(�5,�9) 6.85 (5.11/1.74) 3.84 (1.87/1.96)

(�7,�1) 0.40 (0.31/0.09) 0.34 (0.16/0.17)

(�7,�5) 9.56 (8.00/1.56) 5.84 (2.85/3.00)

(�7,�9) 3.21 (2.60/0.61) 1.54 (0.75/0.79)

(�9,�1) 0.01 (0.01/0.00) 0.01 (0.01/0.01)

(�9,�5) 0.52 (0.44/0.08) 0.29 (0.15/0.14)

(�9,�9) 0.23 (0.19/0.04) 0.09 (0.05/0.05)

aFrequencies of different types of sites (relevant for the training of THOM1) found in the native

structures of HL set as opposed to decoy structures generated using the HL set are presented in part a.

In THOM1 the type of site is defined by number of its neighbors (n). Frequencies are defined by the

percentage from the total number of 53,012 native sites in HL set and 556.14 millions of decoy sites

generated using HL set, respectively. Frequencies of different types of contacts (appropriate for the

training of THOM2) found in the native structures of TE set as opposed to decoy structures

generated using TE are given in Table Vb. Different classes of contacts are specified in Table II.

Frequencies are defined by the percentage from the total number of 439,364 native contacts in TE set

and 10,089.19 millions of decoy contacts generated using TE set, respectively. The comparable site

and contact distributions separated for hydrophobic and polar residues (as defined in Table I) are

given in parentheses.
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It is evident that native structures tend to have more contacts but that the

difference is not profound. The deviations are the result of threading short

sequences through longer structures (we have more threading of this kind). Such

threading suggests a small number of contacts for the set of decoy structures. A

sharper difference between native and decoy structures is observed when the

contacts are separated to hydrophobic and polar (Table Vb). The difference in

hydrophobic and polar contacts is very small at the decoy structures and much

more significant for the native shapes.

Another reflection of the same phenomenon is the statistics of pair contacts.

For the native structures we find that 42.6% of the contacts are of HH type,

38.2% are HP, and 19.3% are PP. This statistics is of the HL set that has a total

of 93,823 contacts. For the decoy structures the statistics of pair contacts is

vastly different. Only 23.5% of the contacts are HH, HP contacts are 50% of the

total, and 26.5% are PP. The number of contacts that were used is 833.79

million. More details can be found in Tables Va and Vb.

THOM2 has significantly higher capacity, however the double layer of

neighbors makes the results more difficult to understand. In Fig. 2 we showed

the energy contributions of a few typical structural sites as defined by the

THOM2 model. For example, the ‘‘lowest’’ picture in Fig. 2 is a site with six

neighbors in the first contact shell and a wide range of neighbors in the second

shell. The second shell includes a site with just two neighbors as well as a site

with nine neighbors. The overall large number of neighbors suggests that this

site is hydrophobic, and the corresponding energies of lysine and valine indeed

support this expectation.

In Fig. 5 we present a contour plot of the total contributions to the energies of

the native alignments in the TE set, as a function of the number of contacts in

the first shell, n, and the number of secondary contacts to a primary contact, n0,
respectively. The results for two types of residues, lysine and valine, are

presented. The contribution of a type of site to the native alignment is twofold:

its energy eaðn; n0Þ and the frequency of that site f . It is possible to find a very

attractive (or repulsive) site that makes only negligible contribution to the native

energies because it is extremely rare (i.e., f is small). For specific examples see

Table VI. By plotting f � eaðn; n0Þ we emphasize the important contributions.

Hydrophobic residues with a large number of contacts stabilize the native

alignment, as opposed to polar residues that stabilize the native state only with a

small number of neighbors.

It has been suggested that pairwise interactions are insufficient to fold

proteins and higher-order terms are necessary [30]. It is of interest to check if

the environment models that we use catch cooperative, many-body effects. As

an example we consider the cases of valine–valine and lysine–lysine interac-

tions. We use Eq. (8) to define the energy of a contact. In the usual pairwise
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interaction the energy of a valine–valine contact is a constant and independent

of other contacts that the valine may have.

In Table VI we list the effective energies of contacts between valine residues

as a function of the number of neighbors in the primary and secondary sites. The

energies differ widely from �1.46 to þ3.01. The positive contributions refer,
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Figure 5. Contour plots of the total energy contributions to the native alignments in the TE set

for valine and lysine residues as a function of the number of neighbors in the first and second shells.

Part a shows that contacts involving valine residues with five to six neighbors with other residues of

medium number of neighbors stabilize most the native alignments. On the other hand, as can be seen

from part b, only contacts involving lysine residues with a small number of neighbors stabilize native

alignments.
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however, to very rare types of contacts, and the energies of the probable contacts

are negative as expected. Hence, the THOM2 model is compensating for

missing information on neighbor identities by taking into account significant

cooperativity effects.

To summarize the study of the potentials we provide, in Table VII, the

optimal parameters for LJ(6,2), THOM1, and THOM2 potentials.

V. THE ENERGIES OF GAPS AND DELETIONS

In the present section we discuss the derivation of the energy for gaps (insert-

ions in the sequence) and deletions. A gap residue is denoted by a � , and a

deletion is denoted by a v. For example, the extended sequence �S ¼
a1 � va3 . . . an has a gap at the second structural position (x2) and a deletion at

the second amino (a2).

TABLE VI

Cooperativity in Effective Pairwise Interactions of the THOM2 Potentiala

(a)

V(�1) V(�3) V(�5) V(�7) V(�9)

V(�1) �0.56 �0.41 �0.17 �1.46 3.01

V(�3) �0.41 �0.34 �0.44 �0.30 �0.07

V(�5) �0.17 �0.44 �0.54 �0.61 �0.38

V(�7) �1.46 �0.30 �0.61 �0.49 �0.76

V(�9) 3.01 �0.07 �0.38 �0.76 �1.03

(b)

K(�1) K(�3) Kð�5Þ K(�7) K(�9)

K(�1) �0.03 �0.03 �0.19 1.18 0.69

K(�3) �0.03 0.28 0.40 0.58 0.61

K(�5) �0.19 0.40 0.52 0.83 0.86

K(�7) 1.18 0.58 0.83 1.34 0.38

K(�9) 0.69 0.61 0.86 0.38 �0.59

aFor a pair of two amino acids a and b in contact, we have 25 different possible types of contacts

(and consequently 25 different effective energy contributions) because a and b may occupy sites that

belong to one of the five different types characterized by the increasing number of contacts in the

first contact shell (see Table II). Moreover, the 5� 5 interaction matrix will, in general, be

asymmetric. The effective energies of contact between two VAL residues with a different number of

neighbors are given in part a, whereas the energies of contacts between two LYS residues are given

in part b.
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A. Protocol for Optimization of Gap Energies

The gap (an unoccupied structural site) is considered to be an (almost) normal

amino acid. We assigned to it a score (or energy) according to its environment,

like any other amino acid. Here we describe how the energy function of the gap

was determined. The parameters were optimized for THOM1 and THOM2,

because these are the models accessible to efficient alignment with gaps.

Gap training is similar to the training of other amino acid residues. Only the

database of ‘‘native’’ and decoy structures is different. To optimize the gap

parameters we need ‘‘pseudo-native’’ structures that include gaps. We construct

such ‘‘pseudo-native’’ conformations by removing the true native shape Xn of

the sequence Sn from the coordinate training set and by putting instead a

homologous structure, Xh. The best alignment of the native sequence into the

homologous structure is �Sn into Xh, and it includes gaps. We require that the

TABLE VII

Parameters of Some of the Threading Potentials Trained Using the LP Protocola

(a)

HYD POL CHG CHN GLY ALA PRO TYR TRP CYS

HYD 9.32 1.45 �0.44 �0.4 7.35 �1.09 2.17 �0.54 2.29 9.93

POL 1.45 �1.19 �1.07 �0.95 �1.55 �0.75 �1.12 1.41 2.7 0.49

CHG �0.44 �1.07 2.62 �0.44 �0.35 �1.23 �0.67 0.21 �2.47 �2.51

CHN �0.4 �0.95 �0.44 1.89 �0.01 3.58 1.32 6.73 8.92 �1.61

GLY 7.35 �1.55 �0.35 �0.01 �1.15 �1.11 2.23 �1.39 �1.17 �1.52

ALA �1.09 �0.75 �1.23 3.58 �1.11 2.9 �1.53 5.64 �2.43 3.59

PRO 2.17 �1.12 �0.67 1.32 2.23 �1.53 6.51 8.86 8.64 �2.68

TYR �0.54 1.41 0.21 6.73 �1.39 5.64 8.86 4.98 7.19 �2.55

TRP 2.29 2.7 �2.47 8.92 �1.17 �2.43 8.64 7.19 9.95 �3.74

CYS 9.93 0.49 �2.51 �1.61 �1.52 3.59 �2.68 �2.55 �3.74 �0.12

HYD POL CHG CHN GLY ALA PRO TYR TRP CYS

HYD �2.34 0.47 1.71 1.11 �0.21 �0.35 1.22 �1.33 �0.98 �5.11

POL 0.47 0.01 �0.02 0.48 �0.07 �0.7 2.38 �0.81 �0.87 0.57

CHG 1.71 �0.02 0.23 �1.65 �0.51 1.13 0.05 �1.93 1.29 3.73

CHN 1.11 0.48 �1.65 0.12 0 1.58 �2.26 0.33 4.91 3.35

GLY �0.21 �0.07 0.51 0 1.35 0.41 �0.82 0.47 �1.93 �3.59

ALA �0.35 �0.7 1.13 1.58 0.41 �1.59 1.3 �2.38 2.12 1.19

PRO 1.22 2.38 0.05 �2.26 �0.82 1.3 �4.08 �3.2 �7.25 �1.37

TYR �1.33 �0.81 �1.93 0.33 0.47 �2.38 �3.2 �2.9 �5.13 1.67

TRP �0.98 �0.87 1.29 4.91 �1.93 2.12 �7.25 �5.13 �2.73 �0.2

CYS �5.11 0.57 3.73 3.35 �3.59 1.19 �1.37 1.67 �0.2 �7.87
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alignment �Sn into the homologous protein will yield the lowest energy compared

to all other alignments of the set. Hence, our constraints are

Eð�Sn;Xj; pÞ � Eð�Sn;Xh; pÞ ¼
X
g

pgðngðXjÞ � ngðXhÞÞ > 0 8 j 6¼ h; n

ð13Þ

Equation (13) is different from Eq. (12) in two ways. First, we consider the

‘‘extended’’ set of ‘‘amino acids’’—�S instead of S. Second, the native-like

structure is Xh—a coordinate set of a homologous protein and not Xn.

The number of inequalities that we may generate (alignments with gaps

inserted into a structure and deletions of amino acids) is exponentially large in

the length of the sequence, making the exact training more difficult. Some

compromises on the size of samples for inequalities with gaps have to be made.

To limit the scope of the computations, we optimize here the scores of the gaps

only. Thus, we do not allow the amino acid energies (computed previously by

gapless threading; see Section III) to change while optimizing parameters for

gaps. Moreover, the sequence �S (obtained by prior alignment of the native

sequence against a homologous structure) is held fixed, and gapless threading

against all other structures in the set is used to generate a corresponding set of

inequalities [Eq. (13)]. By performing gapless threading of �Sn into different

structures, we consider only a small subset of all possible alignments of �Sn,

because we fixed the number and the position of the gaps that we added to the

native sequence Sn.

Pairs of homologous proteins from the following families were considered in

the training of the gaps: globins, trypsins, cytochromes and lysozymes (see

Table VIII). The families were selected to represent vastly different folds with a

TABLE VIII

Pairs of Homologous Structures Used for the Training of Gap Penaltiesa

Native Homologous Similarity

1mba (myoglobin, 146) 1lh2 (leghemoglobin, 153) 20%, 2.8 Å, 140 res

1mba (myoglobin, 146) 1babB (hemoglobin, chain B, 146) 17%, 2.3 Å, 138 res

1ntp (b-trypsin, 223) 2gch (g-chymotrypsin, 245) 45%, 1.2 Å, 216 res

1ccr (cytochrome c, 111) 1yea (cytochrome c, 112) 53%, 1.2 Å, 110 res

1lz1 (lysozyme, 130) 1lz5 (1lz1 þ 4 res insert, 134) 99%, 0.5 Å, 130 res

1lz1 (lysozyme, 130) 1lz6 (1lz1 þ 8 res insert, 138) 99%, 0.3 Å, 129 res

aFor each pair the native and the homologous structures are specified by their PDB codes, names,

and lengths in the first and second column, respectively. In the third column the similarity between

the native and the homologous proteins is defined in terms of sequence identity (%), RMS distance

(angstroms), and length (number of residues) of the FSSP structure-to-structure alignment, obtained

by submitting the corresponding pairs to the DALI server [44].
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significant number of homologous proteins in the database. The globins are

helical, trypsins are mostly b-sheets, and lysozymes are a/b proteins. Note also

that the number of gaps differs appreciably from a protein to a protein. For

example, Sn includes only one gap for the alignment of 1ccr (sequence) versus

1yea (structure), and 22 gaps for 1ntp versus 2gch.

The energy functional form that we used for the gaps is the same as for other

amino acids. The ‘‘pseudo-native’’ structures with extended sequences are

added to the HL set (while removing the original native structures). Gapless

threading into other structures of the HL set results in about 200,000 constraints

for the gap energies. Because we did not consider all the permutations of the

gaps within a given sequence and our sampling of protein families is limited,

our training for the gaps is incomplete. Nevertheless, even with this limited set

we obtain satisfactory results. A representative set of homologous pairs that we

used allows us to arrive at scores that can detect very similar proteins (e.g., the

cytochromes 1ccr and 1yea) and also related proteins that are quite different

(e.g., the globins 1lh2 and 1mba); see Table VIII.

The process of generating pseudo-native is as follows: For each pair of native

and homologous proteins the alignment of the native sequence �Sn into the

homologous structure Xh is constructed. This alignment uses an initial guess for

the gap energy, which is based on the THOM1 potential and was based on the

following observations.

* The gap penalty should increase with the number of neighbors. For

example, we require that e ðnþ 1Þ > e ðnÞ for the THOM1 gap energy.

* The energy of a gap with contacts must be larger than the energy of an

amino acid with the same number of contacts. The gap energy must be

higher; otherwise, gaps will be preferred to real amino acids. For example,

the THOM1 energy of the proline residue with one neighbor is 0.29.

Therefore the gap energy must be larger than 0.29; or in general,

e ðnÞ > ekðnÞ, where k ¼ 1; . . . ; 20 (types of amino acids) and

n ¼ 1; . . . ; 10 (number of neighbors).

* The energy of amino acids without contacts is set to zero. The gap energy

is therefore greater than zero.

In Table IX we provide the initial guess for the gaps (used to determine

pseudo-native states) and the final optimal gap values for THOM1 and THOM2.

The value of 10 is the maximal penalty allowed by the optimization protocol

that we used. However, this value is not a significant restriction. A solution vector p
can be used to generate another scaled solution lp, where l is a positive constant.

Nevertheless, note that the maximal value is reached rather quickly. This

may indicate that our sampling of inequalities is still insufficient from the

perspective of native alignment. The values of gaps that are found only in decoy

states are increasing without limit in the LP protocol. For example, it is so rare
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to find a gap at the hydrophobic core of a protein that our protocol assigns to it

the maximal penalty.

The gaps are favored in sites with a small number of contacts. This observa-

tion is expected, because gaps are usually found in loops with significant solvent

exposure. Note that THOM2 is penalized for a gap for each individual contact.

In Table X we show the results of optimal threading with gaps (using

dynamic programming) for myoglobin (1mba) against leghemoglobin (1lh2)

structure. We show the initial alignment (with the adhoc gap parameters from

Table IXa) defining the pseudo-native state, and we also show the results for

optimized gap penalties for THOM1 and THOM2. These alignments are largely

consistent with the DALI [44] structure–structure alignment (see Table X). Note

that the gaps appear (as expected) in loop domains (e.g., the CD, EF, and GH

loops). The only ‘‘surprising’’ gap is at position 9. Further tests of alignments

with gaps for proteins that we did not learn are given in Section VI.

TABLE IX

The Gap Penalties for THOM1 and THOM2 Models as

Trained by the LP Protocol with the Limited Set of

Homologous Structures from Table VIIIa

(a)

Type of Site Initial Penalty Optimized Penalty

(0) 0.1 2.7

(1) 0.3 3.9

(2) 0.6 9.0

(3) 0.9 10.0

(4) 2.0 10.0

(5) 4.0 10.0

(6) 6.0 10.0

(7) 8.0 10.0

(8) 9.0 10.0

(9) 10.0 10.0

(b)

Type of Contact Penalty

(0) 1.0

(�1,�1) 8.9

(�1,�5) 5.7

(�1,�9) 10.0

aInitial and optimized gap penalties for different types of

sites in the THOM1 model are given in part a. Optimized gap

penalties for different types of contacts in the THOM2 model

are given in part b. Penalties that are not specified explicitly

are equal to the maximum value of 10.0.
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TABLE X

An Example of Output from the Program LOOPP for Sequence-to-Structure Alignments [48]a

(a)

. . . . . . . . . 1. . . . . . . . . 2. . . . . . . . . 3. . . . . . . . . 4. . . . . . . . . 5. . . . . . . . . 1–59

SLSAAEADLAGKSWAPVFANKNANGLDFLVALFEKFPDSANFFADFKGKSVADIKASPK 1mba

GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE 1lh2

. . . . . . . . . 1. . . . . . . . . 2. . . . . . . . . 3. . . . . . . . . 4. . . . . . . . . 5. . . . . . . . . 1–59

6. . . . . . . . . 7. . . . . . . . . 8. . . . . . i i . . . 9. . . . . . . . . 0. . . . . . . . . 1. . . . . . 60–116

LRDVSSRIFTRLNEFVNNAANAGKMSA–MLSQFAKEHVGFGVGSAQFENVRSMFPGFV 1mba

LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI 1lh2

6. . . . . . . . . 7. . . . . . . . . 8. . . . . . . . . 9. . . . . . . . . 0. . . . . . . . . 1. . . . . . . . 60–118

. . . 2 . . i . . i . . . . . 3 . . . . . . . . . 4 . . i . . . i . i 117–146

ASVAAP-PA-GADAAWTKLFGLIIDALK-AAG-A- 1mba

KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 1lh2

. 2. . . . . . . . . 3. . . . . . . . . 4. . . . . . . . . 5. . . 119–153

(b)

. . . . . . . . i. 1. . . . . . . . i . 2. i . . . . . . . . 3. . . . . i. . . . 4. . . . . . . . . 5. . . . . 1–55

SLSAAEAD-LAGKSWAPVF-ANK-NANGLDFLVALFEK-FPDSANFFADFKGKSVADIK 1mba

GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE 1lh2

. . . . . . . . . 1. . . . . . . . . 2. . . . . . . . . 3. . . . . . . . . 4. . . . . . . . . 5. . . . . . . . . 1–59

. . . . 6 . . . . . . . . . 7. . . . . i . . . . 8 . . i . . . . . . . 9 . . . . . . . . . 0. . . . . . . . . 1. . 56–112

ASPKLRDVSSRIFTRLNEFV-NNAANAG-KMSAMLSQFAKEHVGFGVGSAQFENVRSMF 1mba

LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI 1lh2

6. . . . . . . . . 7. . . . . . . . . 8. . . . . . . . . 9. . . . . . . . . 0. . . . . . . . . 1. . . . . . . . 60–118

. . . . i . . . 2 . . . . . . . . . 3 . . . . . . . . . 4 . . . . . . 113–146

PGFV-ASVAAPPAGADAAWTKLFGLIIDALKAAGA 1mba

KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 1lh2

. 2. . . . . . . . . 3 . . . . . . . . . 4 . . . . . . . . . 5. . . 119–153

(c)

. . . . . . . . i. 1. . . . . . . . . 2. . . . . . . . . 3. . . . . . . . . 4. . . . . . . . . i . . . . i . i. 1–55

SLSAAEAD-LAGKSWAPVFANKNANGLDFLVALFEKFPDSANFFADFKGK-SVAD-I-K 1mba

GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSEVPQNNPE 1lh2

. . . . . . . . . 1. . . . . . . . . 2. . . . . . . . . 3. . . . . . . . . 4. . . . . . . . . 5. . . . . . . . . 1–59

. . . . 6 . . . . . . . . . 7 . . . . . . . . i . 8. i . . . . . . . . 9 . . . . . . . . . 0 . . . . . . . . . 1 . . 56–112

ASPKLRDVSSRIFTRLNEFVNNA-ANA-GKMSAMLSQFAKEHVGFGVGSAQFENVRSMF 1mba

LQAHAGKVFKLVYEAAIQLEVTGVVVTDATLKNLGSVHVSKGVADAHFPVVKEAILKTI 1lh2

6. . . . . . . . . 7. . . . . . . . . 8. . . . . . . . . 9. . . . . . . . . 0. . . . . . . . . 1. . . . . . . . 60–118
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B. Deletions

Yet another technical comment is concerned with ‘‘deletions’’ that were

mentioned above. A single deletion makes the native sequence shorter by one

amino acid, leaving the structure unchanged. In sequence–sequence alignment,

deletions can be made equivalent to insertion of gaps. In threading, however, the

sequence and the structure are asymmetric. Deleting of residues (amino acids

with no corresponding structural sites) or the insertion of gap residues (empty

structural sites) is not the same operation.

Nevertheless, in the present chapter we exploit an assumed symmetry

between insertion of a gap residue to a sequence and the placement of a

‘‘delete’’ residue in a ‘‘virtual’’ structural site. The deletions are assigned an

environment dependent value that is equal to the averaged gap insertion penalty

for the mirror image problem (shorter sequence instead of longer). The deletion

penalty is set equal to the cost of insertion averaged over two nearest structural

sites. No explicit dependence on the amino acid type is assumed.

While optimization for deletions is not performed in the present chapter, such

an optimization is similar to the optimization of gaps. Consider a partial

alignment of the sequence �Sn ¼ . . . aj0�1vj0aj0þ1 . . . into a homologous structure,

Xh ¼ ð. . . ; x j; x jþ1; . . .Þ, in which aj0�1 is placed into xj; aj0þ1 is placed into xjþ1,

and vj0 is a deletion. What is the energetic cost associated with deleting vj0? An

estimate would be based on an analogous formulation to the gap residue:

ev j
ð�Sn;XhÞ ¼ evðx j; x jþ1Þ ð14Þ

TABLE X (Continued)

. . . . . . . 2 . i . . . . . . . . 3 . . . . . . . . . 4 . . . . . . 113–146

PGFVASVAA-PPAGADAAWTKLFGLIIDALKAAGA 1mba

KEVVGAKWSEELNSAWTIAYDELAIVIKKEMDDAA 1lh2

. 2. . . . . . . . . 3 . . . . . . . . . 4 . . . . . . . . . 5 . . . 119–153

aWe compare alignments of myoglobin (1 mba) sequence into leghemoglobin (1lh2) structure using

the intial (part a) and trained gap penalties (part b for THOM1 and part c for THOM2). Note that the

location of insertions in the initial alignment (which is used for training of gap energies) is to a large

extent consistent with the DALI structure to structure alignment [44], which aligns: residues 2–50 of

1 mba to 3–51 of 1lh2 (helices A, B, and C), residues 53–56 of 1 mba to 52–55 of 1lh2 (implying

deletions at positions 51 and 52 in 1 mba), residues 59–80 of 1 mba to 56–77 of 1lh2 (E helices),

residues 81–86 of 1 mba to 82–87 of 1lh2, residues 87–121 of 1 mba to 89–123 (with the implied

insertion at position 88 in 1 lh2), residues 122–139 of 1 mba to 126–143 of 1lh2 (implying two

insertions at positions 124 and 125 in 1lh2) and residues 140–145 of 1 mba to 145–150 of 1lh2 (with

an insertion at position 144 in 1lh2), respectively. Note also that F and G helices are shifted

considerably in the DALI alignment (there is no counterpart of the D helix in 1lh2). The initial

THOM1 alignment (part a) is in perfect agreement with the DALI superposition between residues 88

and 150 of 1lh2, except for two insertions at positions 128 and 147 (shifted by three residues with

respect to the DALI alignment). The insertions at positions 88, 125, 151, and 153 coincide with the

DALI alignment. The THOM2 alignment, with trained gap penalties (part c), is in perfect agreement

with the DALI superposition for residues 10 to 50 of 1lh2 and then departs from the DALI

alignment, overlapping E, F, and G helices with a smaller shift.
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We denoted the ‘‘deletion’’ residue by ‘‘v’’ because it corresponds to a virtual

site inserted into the structure. The deletion is designed as a special energy term

that depends on the nearest structural sites: xj and xjþ1. The optimization of the

new energy function is the target of a future work.

VI. TESTING STATISTICAL SIGNIFICANCE OF THE RESULTS

In the following we will consider optimal alignments of an extended sequence �S
with gaps into the library structures X j. We focus on the alignments of complete

sequences to complete structures (global alignments [16]) and alignments of

continuous fragments of sequences into continuous fragments of structures (local

alignment [17]). In global alignments, opening and closing gaps (gaps before the

first residue and after the last amino acid) reduce the score. In local alignments,

gaps or deletions at the C and N terminals of the highest scoring segment are

ignored. Only one local segment, with the highest score, is considered.

Threading experiments that are based on a single criterion (the energy) are

usually unsatisfactory. While we do hope that the (free) energy function that we

design is sufficiently accurate so that the native state (the native sequence

threaded through the native structure) is the lowest in energy, this is not always

the case. Our perfect training is for the training set and for gapless threading

only. The results were not extended to include (a) perfect learning with gaps or

(b) perfect recognition of shapes of related proteins that are not the native.

Despite significant efforts to eliminate all ‘‘false-positive’’ signals, the

present authors are not aware of any energy function that can achieve this

goal. Tobi and Elber [30] conjectured, based on significant numerical evidence,

that it is impossible to use a general pair interaction model and to make the

native structure the lowest in energy from a set of protein-like structures. The

evidence was given for the (simpler) problem of gapless threading. In the

present chapter we discuss the more complex problem of threading with gaps

that makes the robust detection of the native state even more difficult.

Other investigators use the Z score as an additional filter or as the primary

filter [18,52,4,6], and we follow their steps. The novelty in the present protocol

is the combined use of global and local Z scores to assess the accuracy of the

prediction. This filtering mechanism was found to provide improved discrimi-

nation as compared with a single Z score test.

A. The Z-Score Filter

The Z score, which may be regarded as a dimensionless, ‘‘normalized’’ score, is

defined as

Z ¼ hEi � Epffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE2i � hEi2

q ð15Þ
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The energy of the current ‘‘probe’’—that is, the energy of the optimal alignment

of a query sequence into a target structure—is denoted by Ep. The averages,

h. . .i, are over ‘‘random’’ alignments (that still need to be defined). The Z score is

designed as measure of the deviation of our ‘‘hits’’ from random alignments. The

larger the value of Z, the more significant the alignment. This is because the score

is far from the ‘‘random’’ average value.

A nontrivial question is how we define a random alignment. The randomness

can come from two sources: random structure or random sequence. It is

common in ab initio folding to assess the correctness of a given structure by

comparing its energy to the energies of other structures assumed random. This

approach is useful if the number of structures is much larger than the number of

sequences (typical of ab initio computations). However, in threading protocols

the number of structures is relatively small and the number of sequences (with

gaps) is significantly larger.

It is therefore suggestive to use a measure, which is based on random

sequences instead of random structures. Following the common practice [52–

54] we generate this distribution numerically, employing sequence shuffling of

the probe sequence. Let Sp ¼ a1a2 . . . an be the probe sequence. We consider the

family of sequences that is obtained by permutations of the original sequence.

The set of shuffled sequences has the same amino acid composition and

length as the native sequence. This leads to a deviation from ‘‘true’’ randomness

(no constraints) that is used in analytical models. Nevertheless, the constraints

are convenient to ‘‘solve’’ the problem of the energy of the unfolded state. In the

unfolded state all amino acids are assumed to have no contacts with other amino

acids. Therefore all the shuffled sequences have the same energy in the unfolded

state.

We address the convergence of the Z score in Fig. 6. How many shuffled

sequences do we need before we get a reliable estimate? For example, after 100

shuffles the Z score of the global alignment of 1pbxA into 2lig (two different

families) suggests that the result is significant. However, enlarging the sample to

include 1000 random probes significantly reduces the Z score below the

‘‘cutoff’’ of 3. Hence, especially when the signal is not very strong, it is

important to fully converge the value of the Z score. The large number of

alignments that are performed for the shuffled sequences (between 50 and 1000)

makes the process computationally demanding and underlines the need of an

efficient algorithm for genomics scale threading experiments.

An essential decision needed is what is a ‘‘good’’ score and what is a ‘‘bad’’

score. Intuitively, negative energies are assumed ‘‘good.’’ Negative energies are

lower than the state with no contacts—that is, contacts with water molecules as

in the unfolded state. However, no such intuition is obvious for the Z score. To

establish a cutoff for the Z score that eliminates false positives, we consider the

probability PðZpÞ of observing a Z score larger than Zp by chance. Clearly our
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Figure 6. The convergence of the Z scores as a function of the number of shuffled sequences.

The results for global and local alignments are presented in the parts a and b, respectively. The

sequence of the aspartate receptor protein 2lig (not included in the training set) is aligned to all the

structures of the HL set, and the best matches are shown. Note that hemoglobin 1pbxA is found

among the good matches (false positive) with a global Z score of about 3 when using only 100

shuffled sequences to estimate the distribution for random sequences. Converging the Z scores makes

it possible to better separate the native alignment with respect to incorrect alternatives. The Z score

for local alignment of 2lig into 1pbxA is small (about 1) and suggests that this match is indeed a

false positive. The initial values in the figure correspond to scaled energies of the alignments.

110 jaroslaw meller and ron elber



results will be statistically significant only if PðZpÞ is very small. The expecta-

tion value of the number of occurrences of false positives in N alignments with a

Z score larger than Zp is N � PðZpÞ.
To estimate PðZpÞ, we thread sequences of the S47 set through structures

included in the Hinds–Levitt set. The probe sequences of known structures were

selected to ensure no structural similarity between the HL set and the structures

of the probe sequences (see Section III.A). Therefore any significant hit in this

set may be regarded as a false positive.

Z scores of local alignments are employed to estimate PðZpÞ. In local

alignments the number of ‘‘good’’ energies (significantly lower than zero) is

large, underlining the need for an additional selection mechanism to eliminate

false positives. It also makes it possible for us to estimate PðZpÞ for a population

of alignments with ‘‘good’’ scores. For each probe sequence, Z scores are

calculated for 200 structures with the best energies. Only alignments with

matching segments of at least 60% of the total sequence length are considered.

One hundred shuffled sequences are used to compute the averages required for a

single Z-score evaluation. A histogram of the resulting 6813 pairwise align-

ments is presented in Fig. 7.

−3 −2 −1 0 1 2 3 4 5
0
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Figure 7. The probability distribution function of the Z scores computed for the population of

false positives. A set of 47 sequences from the 547 set of proteins with known structures without

homologs in the HL set is used to sample the distribution of Z scores for false positives. Each of the

sequences is aligned to all the structures included in HL set. The Z scores are calculated for the 200

best matches (according to energy) using 100 shuffled sequences. The observed distribution of Z

scores is represented by þ. The dashed line shows the attempted analytical fit to a Gaussian

distribution, whereas the solid line the analytical fit to the expected extreme value (double

exponential) distribution. Note the significant tail to the right, which is the probability of obtaining a

relatively large Z score by chance. See text for more details.
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Let us denote by p̂ðZÞ the probability density of finding a Z-score value

between Z and Z þ dZ. Hence, PðZpÞ is given by PðZpÞ ¼
Ð Zp

�1 p̂ðZÞ dZ. We

approximate the observed distribution (‘þ ’) by an analytical fit to the extreme

value distribution (represented by a continuous line in Fig. 6), which is defined

by [55]

p̂ðZÞ ¼ 1=s � exp½�ðZ � aÞ=s� eðZ�aÞ=s� ð16Þ

In the realm of sequence comparison, the extreme value distribution has been

used to model scores of random sequence alignments for local, ungapped

alignments [56] as well as for local alignments with gaps [57].

The observed distribution is asymmetric and has a long tail toward high

Z-score values (which is the tail that we are mostly interested in). Note,

however, that there are significant differences between the numerical data and

the analytical fit (and of course from the symmetric Gaussian distribution;

dotted line in Fig. 7). Some deviations are expected because the distribution we

extracted numerically differs from a random distribution. As discussed above,

we use, for example, only alignments with negative energies. Hence, the energy

filter was already employed.

Using analytical fit, we find that PðZpÞ ¼ 1� exp½�expð�1:313 � ðZpþ
0:466ÞÞ� with the 98% confidence intervals 1:313� 0:112 and 0:466� 0:079.

For example, we estimate that the probability of observing a random Z score

that is larger than 4 is 0.003. We emphasize, however, that the analytical fit is an

upper bound as is shown in Fig. 6. For example, the observed number of Z

scores larger than 4.0 is equal to 3—as opposed to the expected number of

finding a Z score larger than 4.0, which is equal to (according to the analytical

fit) 6813 � 0:003 ¼ 20:4.

We observe similar discrepancy for global threading alignments of all the

sequences from the HL set into all the structures in the HL set. For each probe

sequence we select the 10 best matches (with lowest energies) that are

subsequently subject to the statistical significance test, resulting in a sample

of 2460 Z scores. Only five of the calculated Z scores, which are larger than 3.0,

correspond to false positives. Using the analytical fit from Fig. 7 the expected

number of observing by chance Z scores larger than 3.0 is equal to 24.6. Thus, it

seems that the conservative estimate of the tail of the extreme value distribution

indeed provides an upper bound for the probability of observing a false positive

with a low energy and a high Z score.

B. Double Z-Score Filter

When searching large databases, the probability of observing false positives is

growing, because the expected number of false positives is N � PðZpÞ, where N is

the number of structures in the database. Therefore, only relatively high Z
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scores may result in significant predictions. Unfortunately, there are many

correct predictions with low Z scores that overlap with the population of false

positives. A high cutoff will therefore miss many true positives. Restricting the Z

score test to only best matches (according to energy) is still insufficient.

Therefore we propose an additional filtering mechanism, based on a combination

of Z scores for global and local alignments. The double Z-score filter eliminates

false positives, missing much smaller number of correct predictions.

Global alignments (in contrast to local alignments) are influenced signifi-

cantly by a difference in the lengths of the structure and the threaded sequence.

The matching of lengths was considered too restricted in previous studies [58].

However, at our hands and using environment-dependent gap penalty, the Z
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Figure 8. The joint probability distribution for the Z scores of global and local alignments. The

distribution at the lower left corner (circles) is the result of the alignments of the 547 set sequences

against all structures in HL set. The Z scores for the false positives are computed using 1000 shuffled

sequences for both global and local alignments to ensure convergence. Only weak energy constraint

are used; that is, 100 best global and 200 best local matches are subject to a Z score test, and then a

given pair (global Z score, local Z score) is included if the energy of the global alignment is negative.

The resulting 1081 pairs are included in the figure. The best pair in this population is slightly below

the threshold (3.0,2.0). The population in the right upper corner represents (square boxes) 331 pairs

of HL sequences aligned to HL structures with global Z scores larger than 2.5 and local Z scores

larger than 1 [some of the Z scores fall beyond the (10,10) range). This set includes 236 native

alignments and 95 non-native alignments. There are 10 matches that are false positives (filled

squares), and they are all below the threshold (3, 2). Four of them are marginally so. The Z scores of

this distribution were generated using 1000 shuffled sequences for global alignments, but only 50 for

local alignments. Stiffer energy constraints were employed in which only the 10 best matches

(according to energy) for global alignments and with 200 best matches for local alignments were

considered. Of course, there is still a population of matches below (2.5,1.0) threshold (including 10

native alignments). However, the number of false positives below this threshold grows quickly,

making predictions with Z scores in this range difficult.
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score of the global alignment was proven a useful independent filter. This filter

is an addition to the use of energy (of local and global alignments) and of the Z

score of local alignments.

In Fig. 8 we present the joint probability distribution for global and local Z

scores for a population of false positives versus a population of correct

predictions. The squares at the upper right corner represent correct predictions,

resulting from 331 native alignments (of a sequence into its native structure) and

homologous alignments (of a sequence into a homologous structure) of the HL

set proteins. The circles at the left lower corner are false positives obtained from

the alignments of the sequences of the S47 set against all structures in the HL.

The procedure is the same as the one used previously to generate the probability

density function for the Z scores of local alignments (see Fig. 7). However, the Z

scores are computed using 1000 shuffled sequences for both global and local

alignments, which is sufficient to converge the values of the Z scores. The

converged results reduce somewhat the tails of the distribution. For example, the

number of false positives with a global Z score larger than 2.5 and a local Z

score larger than 1.0 is equal to 3, as compared to 7 with only 100 shuffled

sequences.

Figure 8 shows that the thresholds of 3.0 for global Z scores and of 2.0 for

local Z scores are sufficient to eliminate all the false predictions. These cutoffs

result in a number of misses, for example, 23 native alignments are dismissed as

insignificant (see also the next section). However, this is a price we have to pay

for high confidence levels in our predictions. The total number of pairwise

alignments for which we compute the global and the local Z scores, and

subsequently test for the presence of false positives, is about 10,000. Hence, we

estimate that the probability of observing a single false positive with a global

and a local Z score larger than the 3.0 and 2.0 thresholds is smaller than 0.0001.

VII. TESTS OF THE MODEL

There are three tests that we perform in this section on the THOM2 potential. We

use optimal alignments and the double Z-score test proposed in Section VI. First,

we analyze the results of threading the sequences of the HL set into all the

structures of the HL set. Self-recognition and family recognition are discussed.

Next, threading of the CASP3 sequences into an extended TE set is used to test

the performance of the new threading protocol on the set of folds that were not

included in the training. Finally, further tests of family recognition are presented,

including the comparison of THOM2 results with those of a pairwise model

using the frozen environment approximation.

A. The HL Test

The HL set was partially learned (using gapless threading). The first test verifies

that the additional flexibility of gaps and deletion maintain good prediction
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ability such as self- and family recognition. We note that our training did not

include the Z score, so successful predictions based on only the Z score are useful

tests even if performed on the training set of structures. The second test is a

prediction experiment on proteins not included in the learning set. There are 40

new proteins that are included in Table XIa.

TABLE XI

A Summary of the THOM2 Threading Alignments of All the Sequences of the HL

Set Into All the Structures of the HL Seta

(a)

1bbt1, 1gp1A, 1grcA, 1ipd, 1lap, 1lpe, 1phd, 1prcL, 1prcM, 1rbp, 1rhd,

1rnh, 1stp, 1wsyB, 2cna, 2cts, 2gbp, 2snv, 2wrpR, 3sicE, 4dfrA, 4gcr,

4rcrH, 4rcrL, 4rcrM, 7acn, 8adh, 4cms, 4i1b, 5fd1, 1atnA, 1tfd, 2aaiA,

2aaiB, 2bbkA, 2bbkB, 2lig, 2mnr, 2plv1, 2sas

(b)

Energy Z Score N

First First 234

First Second 4

First Fourth 1

Second Second 3

Weak Weak 4

(c)

Z Score N

First 177

Second or Third 35

Fourth and lower 14

Weak 11

Very Weak 9

aA list of proteins of the HL set that were not included in the training (TE) set is given in part a. A

summary of the native global alignments is included in part b. Part c contains a summary for the

native local alignments. The number of native alignments N, with ranks specified in terms of

energies (first column in part b) and Z scores (second column in part b and the first column in part c),

is given in the last column. For global alignments, ‘‘weak’’ is used to mark alignments with a weak

energy or Z-score signals. There are four weak alignments corresponding to the photosynthetic

centers membrane domains that were not included in the training set. Only five out of the remaining

242 native alignments obtain Z scores smaller than 3.0 (four alignments with Z scores larger than 2.5

and one alignment with a Z score smaller than 2.5). For local alignments, ‘‘very weak’’ denotes

native alignments with Z scores smaller than 1.0, whereas ‘‘weak’’ marks alignments having Z scores

larger than 1.0 and smaller than 2.0. There are 226 local native alignments with Z scores larger than

2.0. Note also that energy is not used to filter local alignments (beyond the initial restriction to 200

best candidates).
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The self-recognition of the HL set proteins in terms of optimal alignments

and Z-score filters is summarized in Tables XIb and XIc (see also Fig. 8). In

Table XIb we provide the data for the global alignment. Energy and Z-score

filters are considered. Of the total of 246 proteins, 234 are clear-cut cases (the

energy and the Z scores of the native alignment are at the top). The four failures

are membrane proteins (photosynthetic reaction centers) that were not included

in the training set. In Table XIc the data for the local alignments are provided.

We use only the Z score as a filter because there are many incorrect alignments

with good (negative) energies. Among nine native alignments that are clear

failures (Z < 1:0), six refer to structures that were included in the training set.

As examples of protein families, represented in the HL set, we discuss

cytochromes, dehydrogenases, and acid proteases. Cytochromes were included

in the training of the gaps, so we might expect that identification of cytochromes

will be easy. Yet, this is not the case and we report a ‘‘bad’’ case scenario for

some of the members of the family in Table XIIa. The Z-score values are below

what we usually consider as a significant hit. Even though the correct proteins

make it to the top, the global Z scores are too low (1.3–1.4) to confirm the

prediction. The successful recognition of dehydrogenases and acid proteases

families is shown in Tables XIIb and XIIc. We comment that most of the family

members of the HL set are recognized irrespective of the choice of the probe

sequence, as long as it belongs to a given family. More extensive tests of family

recognition are discussed in Section VII.C.

Global Z scores reported in Tables XI and XII are converged using 1000

shuffled sequences. Local Z scores are, however, computed using only 50

shuffled sequences. The constraint here is of computational resources. Global Z

scores are computed only for 10 energy-best structures and can be done

TABLE XII

Examples of Predictions for Families of Homologous Proteinsa

(a)

Query srequence: 5cytR Structure Energy Z score RMS

Global alignments 5cytR �22.1 4.1 0.0

1ccr �10.4 1.4 6.9

3c2c �10.4 1.4 4.9

1rro �11.2 1.3 —

256bA �12.0 1.0 —

Local alignments 5cytR �31.0 3.9 0.0

1ccr �35.6 3.2 1.9

1yea �23.9 3.2 1.9

2ccyA �22.8 3.0 —

2fox �27.6 2.3 —
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TABLE XII (Continued)

(b)

Query Sequence: 1llc Structure Energy Z Score RMS

Global alignments 1llc �80.0 7.0 0.0

1lldA �60.7 4.4 5.3

1ldnA �52.9 4.2 4.6

4mdhA �47.4 2.1 6.7

6ldh �45.8 1.6 4.6

Local alignments 1ldnA �73.4 5.2 4.1

1llc �89.8 5.2 0.0

1lldA �74.1 4.4 5.0

6ldh �73.4 4.3 4.4

1ipd �82.7 2.8 —

(c)

Query Sequence: 1pplE Structure Energy Z Score RMS

Global alignments 1pplE �77.3 9.5 0.0

2er7E �61.4 7.3 2.9

3aprE �51.9 4.3 3.9

4cms �45.0 4.2 5.4

4pep �43.1 3.6 5.7

Local alignments 1pplE �79.2 12.9 0.0

2er7E �68.6 8.3 2.9

3aprE �59.6 4.5 5.2

4pep �55.4 3.3 5.7

1prcH �46.6 2.2 —

aThe results of global and local threading alignments for representatives of three families in the HL

set are reported. The families are cytochromes (part a), lactate and malate dehydrogenases (part b),

and pepsin-like acid proteases (part c). Five best alignments, ordered according to their Z scores

(fourth column), are reported. The names of the query sequences are specified in the first column,

target structures in the second, and the energy of the alignment in the fourth column, respectively. In

the last column the RMS distance between the (known) structure of the probe (query) and the target

structure, according to a novel structure-to-structure alignment (Meller and Elber [45]), is provided.

RMS distances larger than 12 Å are indicated by a dash. Note that in a ‘‘bad’’ case scenario a

distance of about 5 Å between the superimposed side-chain centers of 5cytR and 3c2c is sufficient to

make threading identification virtually impossible because the Z score is too low (see part a). The

local alignment provides a significantly improved Z score in this case. On the other hand, there are

homologous structures that are not detected by the local alignments, although their global Z scores

are high. Examples are malate dehydrogenase 4mdh (see part b) and acid protease 4cms (see part c).

The structures with the PDB codes 1rro and 2fox (part a), 1ipd (part b) and 1prcH (part c) do not

belong to the families of interest.
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accurately. Local Z scores are computed for 200 alignments. The number of

alignments with negative energies, which needs to be probed by an additional

filter, is much larger for local alignments. With limited computational resources

and/or a large-scale alignment project, it may be necessary to use Z scores that

are not fully converged. For example, when aligning a 1pplE sequence into a

1prcH structure, a Z score of 1.8 with 1000 shuffled sequences is obtained, as

opposed to 2.2 with only 100 shuffles sequences.

Finally, we remark that we were able to find alignments (with gaps) that have

energies lower that the energy of the native state. Moreover, even aligning a

sequence into its own structure may result in lower energy than the native if the

addition of gaps and deletions is favorable. One such example is the alignment

(with gaps) of 1llc onto its native shape.

B. Recognition of Folds Not Included in the Training

In order to assess the generalization capacity of THOM2 in terms of optimal

alignments, we use the S47 set again. Let us recall that the S47 set is composed of

CASP3 [46] targets and their relatives. Using CASP3-related structures is a

convenient way of finding protein shapes that are not sampled in the training. The

experiment we perform is for self-recognition and is not aimed at finding remote

relatives (as in CASP). The results are summarized in Table XIII. The native and

TABLE XIII

Self-Recognition for Folds That Were Not Learneda

FSSP THOM2 THOM2

PDB Code (len) Z-score (RMS) Global Z score Local Z score

1HKA (158) 33.0 (0.0) 7.1 7.1

1VHI (139) 4.3 (5.2) 0.2 0.3

2A2U (158) 33.8 (0.0) 2.5 4.0

1BBP (173) 11.6 (3.3) 3.5 3.0

2EZM (101) 55.3 (0.0) 3.7 3.2

1QGO (257) 46.0 (0.0) 5.6 7.6

1ABE (305) 6.4 (3.4) 0.5 0.4

1BYF (123) 29.5 (0.0) 1.8 2.8

1YTT (115) 16.4 (2.2) �0.1 1.4

1JWE (114) 26.9 (0.0) 2.6 2.3

1B79 (102) 18.7 (1.3) 0.3 1.3

1B7G (340) 61.5 (0.0) 8.7 8.8

1A7K (358) 25.1 (2.9) �0.4 �0.9

1EUG (225) 43.0 (0.0) 3.4 3.0

1UDH (244) 30.8 (1.7) �1.0 2.9

1D3B (72) 18.4 (0.0) 3.5 2.8

1B34 (118) 13.4 (1.1) 1.9 2.0

1DPT (114) 24.8 (0.0) 6.2 6.0

1CA7 (114) 18.7 (1.2) 4.0 2.5

1BG8 (76) 19.1 (0.0) 3.4 3.5
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TABLE XIII (Continued)

FSSP THOM2 THOM2

PDB Code (len) Z-score (RMS) Global Z score Local Z score

1DJ8 (79) 16.2 (0.7) 5.1 3.9

1QFJ (226) 42.7 (0.0) 8.1 8.4

1VID (214) 7.1 (3.1) �2.0 0.5

1BKB (132) 25.1 (0.0) 2.7 1.5

1EIF (130) 17.4 (1.6) 3.5 2.0

1B0N (103) 19.5 (0.0) 4.7 5.0

1LMB (87) 8.0 (5.3) 0.3 0.1

1BD9 (180) 38.8 (0.0) 4.5 5.8

1BEH (180) 36.0 (0.3) 7.4 5.8

1BHE (376) 70.2 (0.0) 6.7 0.6

1RMG (422) 36.9 (2.2) 0.9 —

1B9K (237) 39.7 (0.0) 8.1 8.2

1QTS (247) 36.1 (0.7) 3.5 6.4

1EH2 (95) 24.3 (0.0) 6.0 6.5

1QJT (99) 7.6 (2.5) 3.6 3.7

1BQV (110) 20.9 (0.0) 3.5 2.3

1B4F (82) 3.2 (3.3) 0.0 1.7

1CK2 (104) 26.0 (0.0) 5.2 4.3

1CN8 (104) 14.3 (2.2) 5.3 2.0

1BL0 (116) 24.9 (0.0) 0.5 0.5

1JHG (101) 3.4 (6.6) 1.1 1.0

1BNK (100) 24.9 (0.0) 5.4 6.3

1B93 (148) 31.4 (0.0) 4.0 3.2

1MJH (143) 6.1 (3.4) 0.3 1.3

1BK7 (190) 37.2 (0.0) 7.7 9.0

1BOL (222) 19.7 (2.3) 0.1 �1.0

1BVB (211) 37.3 (0.0) 5.3 4.3

aTwenty-two pairs of CASP3 targets and their structural relatives, as well as an additional three

singleton targets, are added to the TE set. Their PDB codes are given in the first column (with

lengths in parentheses). The actual CASP3 targets are given as the first structure of each pair (e.g.,

1HKA from the pair 1HKA, 1VHI). If the domain is not specified and one refers to a multidomain

protein, then the A (or first) domain is used. The results of global and local THOM2 threading of the

25 CASP3 sequences into an extended TE set (594 þ 47 structures) are reported in the third and

fourth column, respectively. Two of 25 native alignments gave weak signals (DNA-binding protein

1BLO and glycosidase 1BHE). Four other native alignments (2A2U, 1BYF, 1JWE, and 1BKB)

provide global Z scores somewhat smaller than 3. The DALI Z scores and RMS deviations for

structure-to-structure alignments into native and homologous structures are reported in the second

column (the native structures have RMS distances of zero). Note that low Z scores indicate that only

short fragments of the respective structures are aligned and the resulting RMS deviation may not be

representative. Nine related structures, among the 14 pairs with the DALI Z score larger than 10,

obtain Z scores larger than 3.0 and 2.0 for the global and local THOM2 threading alignments,

respectively. The alignment of 2A2U sequence into the 1BBP structure was the only significant hit of

any of the target sequences into the structures included in the training (TE) set. Thus, no false

positives with scores above our confidence cutoffs were observed. All the predictions that can be

made with a high degree of confidence are indicated by Z scores printed using boldface type.
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homologous shapes were embedded in the structures of the TE set, and the

sequences of CASP targets were aligned into all the structures of such extended

set. We provide in the table the results of the native alignments and the

alignments into related homologous structure, irrespective of their rank.

One encouraging observation is that the native structures are found with high

probability. Twenty of 25 structures would have been found if the native

structure was included in the set. A less encouraging observation is the

sensitivity of the results to structural fluctuations. The THOM2 model can

identify related structures only if their distance is not too large. Nine out of 14

homologous structures with the DALI [44] Z score for structure-to-structure

alignment larger than 10 are detected with high confidence. Only one homo-

logous structure with the DALI Z score lower than 10 is detected.

Only three among the 25 structures of the CASP3 targets included in Table XIII

had homologous counterparts in the training set. These are 2a2u, 1byf, and 1eug

with their respective homologous proteins 1bbp, 2msb, and 1akz. It is therefore

reassuring that most of the native structure and a significant fraction of relatives

are recognized in terms of both their energies and the Z scores. Also, there are

no further significant hits into other structures from the TE set. Hence, no false

positives above our confidence thresholds are observed in this test. We conclude

that our nearly perfect learning (on a training set) preserves significant capacity

for identification of new folds using optimal alignments with gaps.

Note also that good scores with the global alignment are obtained for length

differences (between sequence and structure) that are on the order of 10%. This

was made possible by using environment-dependent gaps. When the differences

in length are profound (e.g., 1bqv versus 1b4f), it is obvious and expected that

the global alignment will fail. Large differences are clearly focused on

identification of domains and not a whole protein. This is a different problem,

which the present chapter does not address.

C. Recognition of Protein Families: THOM2 Versus Pair Energies

Three families are considered here: globins (92 proteins), immunoglobins (Fv

fragments, 137 proteins), and the DNA-binding, POU-like domains (26

proteins). Sequences of all family members are aligned optimally to all the

structures in the family. Both the local and global alignments are generated for

each sequence–structure pair, and the results are compared in terms of the sum of

Z scores for global and local alignments. Thus we employ here a simplified

version of the double Z-score filter discussed before. The THOM2 results are

compared to the results of the TE pairwise potential, which was trained on the

same set of 594 proteins using the LP protocol. The difference in the LP protocol

was that an objective function was optimized.

The alignments due to the pairwise potential are computed using the first

iteration of the frozen environment approximation (FEA) [22]. That is, when
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evaluating fitness of a query sequence into a structure, we assume that types

of contacts are fixed according to the native identities of sites making contacts

to a primary site occupied by a query residue. Such an approach is in fact a

different profile approximation to the ‘‘true’’ pair energies. In THOM2, the

number of neighbors to a secondary site approximates its identity, whereas in

FEA it is approximated by the identity of the native residue at that site. In

principle, the FEA should be iterated until self-consistency is achieved [22].

Purely structural characterization of contact types in THOM2 avoids this

problem.

In order to compute optimal alignments with the FEA, we need to set the gap

penalties for the TE potential. After some experimentation the insertion

penalties are chosen to be proportional to the number of neighbors to a site,

e�ðnÞ ¼ 0:2 � ðnþ 1Þ. This choice is consistent with the THOM2 gap energies,

which also penalize sites of no neighbors. The proportionality coefficient was

gauged using the same families that were used to train THOM2 gap energies.

However, no LP training was attempted. The deletion penalties are also

consistent with the THOM2 model, and they are defined in the way described

in Section V.

Figures 9a to 9f show the joint histograms of the sum of Z scores for local

and global threading alignments versus the RMS deviations between super-

imposed (according to our novel structure-to-structure alignments; see Section

III.A) side-chain centers. Figures 9a, 9c, and 9e show the results for THOM2

(for globins, immunoglobins, and POU-like domains, respectively), whereas

Figs. 9b, 9d, and 9f show the corresponding results for TE potential with FEA.

The vertical lines in the figures correspond to the sum of global and local Z

scores equal to 5, which roughly discriminates the high confidence matches

(with higher Z scores) and lower confidence matches that might be obscured by

the false positives.

The population of matches that are difficult to identify by pairwise sequence-

to-sequence alignments is represented by the filled squares. Sequence align-

ments are generated using Smith–Waterman algorithm with the BLOSUM50

substitution matrix (with the signs inverted) and structurally biased gap

penalties [e�ðnÞ ¼ 8þ ðn� 5Þ, where n is the number of neighbors to a site].

Confidence of matches is estimated using Z scores defined, analogously to

threading alignments, by the distribution of scores for shuffled sequences. We

find that structurally biased gap penalties improve the recognition in case of

weak sequence similarity. We do not observe false positives with more than

50% of the query sequence aligned and with a Z score larger than 8 (the

distribution of Z scores for sequence substitution matrices is vastly different

from that of threading potentials, with very high Z score for homologous

sequences). All the matches represented by circles can be identified with high

confidence by pairwise sequence-to-sequence alignments.
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Figure 9. Comparison of family recognition by THOM2 and pair energies. The results of
THOM2 for families of globins, immunoglobins (Fv fragments), and POU-like domains are compared
to the results of Tobi–Elber (TE) pairwise potential. TE potential was optimized using LP protocol
(with different target function) and the same training set. The first iteration of the so-called frozen
environment approximation is performed to obtain approximate alignments for the TE potential. Parts
a–f show the joint histograms of the sum of Z scores for local and global threading alignments versus
the RMS deviations between superimposed (according to structure-to-structure alignments; see text for
details) side-chain centers. Parts a, c, and e show the results for THOM2 (for globins, immunoglobins,
and POU-like domains, respectively), whereas parts b, d, and f show the corresponding results for TE
potential and the frozen environment approximation. The population of matches that are difficult to
identify by pairwise sequence-to-sequence alignments is represented by the filled squares (see text for
details). Note that the number of low THOM2 Z scores (for example, smaller than 5) is, on the average,
smaller for families of globins and POU-like proteins. This is further highlighted in parts g and h, which
show one-dimensional histograms of the sum of Z scores for local and global threading alignments for
globins and POU-like domains. On the other hand, the TE potential and FEA perform better for
immunoglobins family, which is also easier for sequence alignment methods (see text for details).



Nearly all pairs differing by less than 3 Å RMSD can be identified by

THOM2 threading alignments. Most of the matches in the range between 3 and

5 Å can be still identified with high confidence. However, the number of

confident matches (to the right with respect to vertical lines representing our

cutoff of 5 in terms of sum of local and global Z scores) quickly decreases with

the growing RMS distance. Essentially all the pairs with RMSD smaller than 3 Å

can be also identified by pairwise sequence alignments. Below this threshold,
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Figure 9 (Continued)
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however, we observe many matches that can be still identified by threading but

not by sequence alignment (filled rectangles corresponding to threading Z score

higher than 5).

On the other hand, there are many matches due to the sequence alignment

that are not detected by threading. Because we do not incorporate family

profiles in our threading protocol, we do not include here a systematic

comparison with the results of PsiBLAST [59]. However, we found examples
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Figure 9 (Continued)
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of matches detected with high confidence by threading and not detected by

PsiBLAST in each of the families considered here (e.g, globins 1flp and 1ash or

POU-like proteins 1akh and 1mbg).

Note that for the families of globins and POU-like domains the number of

low THOM2 Z scores (for example smaller than 5) is, on the average, smaller

than the number of low Z scores obtained with the TE potential and FEA. This

is further highlighted in Figs. 9g and 9h showing one-dimensional histo-

grams for the sum of Z scores for local and global threading alignments for

globins and POU-like domains. For example, the number of low confi-

dence matches (Z < 5) for globins increases from 2851 in case of THOM2 to

3265 in case of the TE potential. One can also notice that the distribution of Z
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scores is different, with many very high Z scores for alignments into very close

homologs as opposed to lower scores for more divergent pairs, in case of the TE

potential.

Interestingly, FEA with the TE potential fails also for a larger number of

native alignments. This is especially clear for the family of DNA binding

proteins (see Figs. 9e and 9f). The number of native alignments with very low Z

scores (smaller than 4) is equal to 7 in case of pairwise model and only 2 in case

of THOM2. Because DNA binding proteins may be stabilized by contacts that

are not included in our model, the energies of native alignments are quite poor.

One striking example is the 1hdp. According to TE potential, 1hdp has the

native energy equal to �0.42. An alternative alignment into its native structure

with one insertion and one deletion in the sequence improves the energy to

�0.63 despite the cost of gaps. On the other hand, THOM2 model seems to be

capable of compensating for that using the information about the shape of the

protein as encoded in the contact (solvation) shell characterization of each

contact. The THOM2 native alignment for 1hdp is the lowest in energy and

leads to higher Z scores.

The relatively worse performance of the pairwise model may result from the

suboptimality of alignments that we generate using FEA, especially that our gap

penalties for the TE potential were not optimized by LP protocol and we did not

attempt to converge the FEA until self-consistency is achieved. However, as

discussed above, in many instances it is clear that even better gap penalties will

not be able to improve the observed scores. The specific functional form of our

new profile model contributes to the relatively better performance too.

On the other hand, there are families for which the pairwise model works

better. As can be seen from Figs. 9c and 9d, one such example is the family of

immunoglobins. The FEA is expected to perform well when the sequence

similarity is sufficiently high, because the information about the native

sequences is used to generate optimal alignments. The divergence in terms of

what can be detected by sequence similarity is larger for globins and POU-like

proteins than for immunoglobins. For example, contrary to other families

considered here, all the immunoglobins with RMSD smaller than 4 Å can be

detected by sequence alignments. Therefore, good performance of the FEA with

the TE potential is expected in this case.

VIII. CONCLUSIONS AND FINAL REMARKS

In the present chapter we proposed and applied an automated procedure for the

design of threading potentials. The strength of the procedure, which is based on

linear programming tools, is the automation and the ability of continuous exact

learning. The LP protocol was used to evaluate different energy functions for

accuracy and recognition capacity. Keeping in mind the necessity for efficient
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threading algorithms with gaps, we selected the THOM2 model as our best

choice.

Statistical filters based on local and global Z scores were outlined. We observe

that, while using very conservative Z scores that essentially exclude false

positives, the new protocol recognizes correctly (without any information about

sequences) most of the family members with the RMS distance between the

superimposed side chain centers of up to 4 Å. We also observe many instances

of successful recognition of family members that cannot be confidently recog-

nized by pair energies with the so-called frozen environment approximation.

The present approach is based on fitness of sequences into structures.

Nevertheless, it is easily extendable to include also sequence similarity, family

profiles, secondary structures, and other relevant signals. Because the THOM2

model provides an effective and comparable in performance alternative to

pairwise potentials, it can be used as a fast component of fold recognition

methods employing pair energies. It is the target of a future work.

The algorithms and threading potentials presented in this chapter are

available in the program LOOPP (Learning, Observing, and Outputting Protein

Patterns). The program (including the source code and sets of proteins for

training and recognition) is available from the web [48]. It is also possible to

submit sequences directly to our server.
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I. INTRODUCTION

In this postgenomic era, a key challenge is to interpret the information provided

by the knowledge of the proteome, the set of protein sequences found in a given

organism. Unfortunately, having a list of protein sequences in and of itself

provides little insight; the key question is, What is the function of all of the

proteins? Function covers many levels, ranging from molecular to cellular or

physiological to phenotypical. By employing sequence-based methods that

exploit evolutionary information, between 40% and 60% of the open reading

frames (ORFs) in a given genome can be assigned some aspect of function

ranging from physiological to biochemical function. Indeed, because of their

considerable success, sequence alignment methods such as PSI-BLAST [1,2]

and sequence motif (that is, local sequence descriptors) methods such as Prosite

[3], Blocks [4], Prints [5,6], and Emotif [7] set the standard against which all
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alternative approaches must be measured. However, sequence-based approaches

increasingly fail as the protein families become more diverse [8]. The remaining

unassigned ORFs, termed ORFans, represent an important challenge and

represent an area where structure-based approaches to function prediction can

play a significant role. One structure-based method combines one-dimensional

information about sequence and structure and has had some success [9]. An

alternative structure-based approach to function prediction that employs the

sequence–structure–function paradigm has recently been developed [8,10–15].

Here, low-resolution models predicted by threading or ab initio folding are

screened for matches to known active sites; if a match is found, then a functional

assignment is made. However, this method requires a predicted structure of

appropriate resolution. Structure prediction techniques will also play an

important role in probe selection in structural genomics, where the ultimate

goal is to experimentally determine the structure of all possible protein folds

such that any newly found sequence is within modeling distance of an already

solved structure. Thus, in this review, we examine the status of contemporary

structure prediction approaches and demonstrate that the resulting (quite often

low-resolution) models can be used both to identify the biochemical function of

the protein and to dock known ligands to the correct binding sites.

Presently, there exist three approaches to protein structure prediction:

homology modeling, threading, and ab initio folding. In homology modeling,

the probe and template sequences are clearly evolutionarily related, and the

structures of the probe and template are quite close to each other. The second

structure prediction method is threading, where one attempts to find the closest

matching structure in a library of already solved structures but where the

structures can be analogous; that is, the two proteins are not necessarily

evolutionarily related, but they adopt very similar structures. Ideally, threading

should extend sequence-based approaches. Threading and homology modeling

suffer from the fundamental disadvantage that an example of the fold of

the sequence of interest must already have been solved in order for the method

to be successful. Finally, there is ab initio folding where one attempts to fold a

protein from a random conformation; obviously this is the hardest of the three

methods of structure prediction, but it has the advantage that an example of the

fold need not have been seen before. As detailed in what follows, a number of

variants of ab initio folding use extensive information from threading. Such

information might include local secondary structure information, supersecond-

ary structure information, and/or predicted tertiary contacts. Indeed, the major

focus of this review is to describe a unified approach to protein structure

prediction that reduces to threading plus structure refinement when an example

of the probe sequence is found; but if not, it incorporates information from

weakly significant probe sequence–template structure matches and then does ab

initio folding with the structural information gleaned from such matches. It has
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the advantage that it can predict a novel fold even though some of the

information comes from threading on already solved structures.

II. OVERVIEW AND HISTORICAL PERSPECTIVE

A. Comparative Modeling Methods

Comparative modeling can be used to build the structure of those proteins whose

sequence identity is above 30% or so with a protein template structure [16]. This

usually consists of three steps: (1) Search for sequence similarity to a member of

a set of carefully selected sequences with known three-dimensional structure; (2)

use the detected structural template to build a molecular model; and (3) carefully

validate the resulting models. In the recent CASP3 prediction experiment [17],

encouraging results were reported by Bates and Sternberg [18], Blundell and co-

workers [19], Yang and Honig [20], Dunbrack [21], and Fischer [22]. While the

automated approach of Sali’s MODELLER [23,24] did not do as well as others, it

is nevertheless a widely used comparative modeling package. The results of

CASP3 suggest that the key to a good model is to generate the best possible

initial sequence alignment and to modify it as little as possible [25,26]. Thus, as

the sequence identity of the probe and template moves into the twilight zone,

sequence alignments degrade with a comparable degradation in the quality of the

model structures.

As an example of genome-scale comparative modeling using standard se-

quence alignment algorithms and MODELLER, Sanchez and Sali [27] recently

scanned a portion of the yeast genome, S. cerevisiae [28]. They found homolog-

ous proteins of known structure for about 17% of the proteins (1071 sequences),

and they built three-dimensional models for these yeast proteins. Only 40 of

these modeled proteins had a previously determined experimental structure, and

236 proteins were related to a protein of known structure for the first time.

An obvious limitation of the above approach is that it requires a homologous

protein whose structure is known. Depending on the genome, 15–25% of all

sequences now have a homologous protein of known structure [29]. This

percentage is slowly increasing as new structures are being solved at an

increasing rate. Interestingly, the majority of newly solved structures exhibit

an already known fold. At this point, it is still uncertain whether this indicates

that proteins can adopt a limited number of folds or if it simply indicates a bias

toward certain types of protein folds that crystallize relatively readily.

B. Threading

Threading is another means of predicting the tertiary structure of proteins. Here,

for the sequence of interest, one attempts to find the closest matching structure in

a library of known folds [30,31]. The paradigm of homology modeling is still
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followed with its three steps: (1) identifying the structural template, (2) creating

the alignment, and (3) building the model. Thus, threading has limitations that

are similar to classical homology modeling. First and foremost, an example of

the correct structure must exist in the structural database that is being screened. If

not, the method will fail. Second, the quality of the model is limited by the extent

of actual structural similarity between the template and the probe structure. Until

recently [32], one could not readjust the template structure to more correctly

accommodate the probe sequence. While the quality of alignments generated by

threading algorithms improved from CASP1 to CASP3 [17], it nevertheless

remains problematic. Another question is whether threading recognizes distant

homologies (i.e., a protein that is evolutionarily distant but still related to the

template protein) as opposed to pure fold recognition targets (where the two

proteins are evolutionarily unrelated, but have converged to the same fold). We

note that for sequences that are evolutionarily very distant, convergent versus

divergent evolution is very difficult to prove. Nevertheless, we still have the

problem of identifying two proteins as having the same fold, when only about

65% of their sequences share a common core, with the possibility that the

remainder of the fold differs significantly.

Next, we describe the features of existing threading algorithms that per-

formed well in CASP3 as well as in the intervening period prior to CASP4. In

the construction of a threading algorithm, one is faced with three choices: the

type of energy used to assess the probe sequence–template structure suitability,

the degree of detail used to describe interaction centers if multibody interactions

are included, and the conformational search scheme employed to find the

optimal sequence-structure alignment. In what follows, we address each of these

three features in turn.

The first step in constructing a threading algorithm involves the choice of the

potential used to describe the sequence-structure fitness and the potential for

scoring functions containing more than one term; weights must be established.

Among the kinds of energy terms that have been previously considered are the

burial status of residues, secondary structure propensities and/or predicted

secondary structure, additional penalty terms [33,34] (for example, those that

compensate for different protein lengths), and the inclusion of pair or higher-

order interactions between side chains. Contemporary algorithms often include

an evolutionary component related to the sequence similarity between the

template and the probe sequence [35]. Inclusion of such sequence-based terms

improves the ability of the algorithm to recognize the correct structural template

as well as the quality of the predicted alignment in the structural template [34,

36–39]. While such terms should not be needed in a structure-based approach,

in practice they are found to be quite important.

If pair interactions are included, then the interaction centers must be selected,

with common choices being the Cas [40,41], the Cbs [42,43], the side-chain
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centers of mass, specially defined interaction centers [30,44], or any side-chain

atom [45]. This defines the protein representation. Then, one must again choose

the form of the interaction. Contact potentials [45,46], continuous distance-

dependent potentials [42,47], and interaction environments [48] are the choices

that have been made for the functional form of the pair energy.

Third, given an energy function, the optimal alignment between the probe

sequence and each structural template must be found. Dynamic programming

[49] is the best choice when local interaction schemes are used (e.g., when the

energy consists of mutation matrices and secondary structure propensities). The

situation when a nonlocal scoring function is used (e.g., pair interactions) is not

as straightforward. Here, the problem is to update the interactions in the

template structure to include the actual partners present in the probe sequence.

To retain speed (a crucial feature if entire genomes are to be scanned), some

workers employ dynamic programming with the ‘‘frozen’’ approximation

(where the interaction partners or a set of local environmental preferences are

taken from the template protein in the first threading pass) [45,50]. Iterative

updating might follow this [45,48,51]. Still others employ double dynamic

programming, which updates a subset of interactions recognized as being the

most important in the first pass of the dynamic programming algorithm [42].

Other, more computationally intensive approaches evaluate the nonlocal scoring

function directly and search for the optimal probe–template alignment by Monte

Carlo [44] or branch-and-bound search strategies [30]. These have the advan-

tage that the correct energy is evaluated, but unfortunately they are very CPU-

intensive.

A problem with almost all threading search protocols is that they do not

allow the actual template structure to adjust to reflect the actual structural

modifications relative to the template structure that are actually present in the

native conformation of the probe. For example, Monte Carlo and branch-and-

bound strategies allow the partner from the probe sequence provided by the

current probe–template alignment to be used, but they do not allow the

template’s backbone structure to readjust to accommodate the probe sequence.

Such structural modifications should be quite important when the probe and

template structure are analogous. As a simple example, when the probe’s TYR

replaces a GLY in the template protein, then the contacts associated with the

amino acid at that position in the structure would be radically different. Yet, this

effect is not accounted for at all in threading. However, the potential ability to

recognize analogous structures is precisely the realm where threading should be

the most valuable as compared to pure sequence-based methods.

As indicated above, because threading uses structure, it should be superior to

sequence-based approaches that are one-dimensional and that assess the evolu-

tionary relationship between sequences and thereby, by inference, their struc-

tural relationship. In practice, however, many of the most successful
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fold-recognition approaches in CASP3 were pseudo one-dimensional and used

evolutionary information that contributed a significant fraction of the selectivity

[52] (typically implemented in the form of sequence profiles) plus predicted

secondary structure. In particular, the Jones [53] and the Koretke groups [39]

employed this type of approach, where secondary structure played an ancillary

role. The Nishikawa group [54] also employed a hierarchy of local scoring

functions to describe hydration, secondary structure, hydrogen bonding, and

side-chain packing.

There were other successful approaches in CASP3 where structure played a

more prominent role. For example, the Sippl group [55] employed burial energy

and the frozen approximation to evaluate pair interactions, but unlike many

others, they used a single sequence rather than sequence profiles or other

implementations of multiple sequence information. While the Sippl approach is

more structure-based, in order for dynamic programming to be used all inter-

actions were made pseudo one-dimensional. The Bryant group [56] was unique

in that they explicitly treated pair interactions within a structural core identified

from the evolutionary conservation of structure across each protein family. In

order for the core to be identified, a number of structures in the protein family

must be solved. While this approach embodies the original idea of threading,

they too employ a PSI-BLAST sequence-profile component. Indeed, they

conclude that the combination of both sequence profiles and contact potentials

improves the success rate relative to that when either of the terms is used alone.

Because the Bryant group employs a nonlocal scoring function that a priori

precludes dynamic programming, a Monte Carlo search procedure was used to

find the best sequence–structure fitness. Unfortunately, these calculations are

very CPU-intensive, thereby precluding the application of this approach on a

genomic scale unless there are very substantial computer resources.

The general consensus was that CASP3 saw some progress in threading, with

alignment quality improving from CASP2 [17,26,52], but, as pointed out by

Murzin [52], threading ‘‘performs better on distant homology recognition

targets than on ‘pure’ folding recognition targets. This bias probably resulted

from the implementation of ‘distant homology’ filters.’’ Thus, techniques that

extend the ability of threading techniques to address ‘‘pure’’ fold recognition

situations are still required. But, as Bryant and co-workers [35] have pointed

out, the best results are found when a sequence–profile term is combined with

threading potentials. These observations motivated the development of a new

threading algorithm, PROSPECTOR (PROtein Structure Predictor Employing

Combined Threading to Optimize Results) [57], where it was demonstrated that

pair interactions could significantly improve the sequence–structure specificity

over that when only sequence–profile terms are used. However, when multiple

scoring functions are combined, the resulting recognition ability is even larger.

In Section IV, we discuss the results of this new approach in some detail,
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because it is a key component of a recently developed unified approach to

protein structure prediction. But here we note that while considerable progress

has been made in threading by a number of workers, we will have to await the

results of CASP4 to assess the full extent of this progress as well as the

limitations of such approaches.

C. Ab Initio Protein Structure Prediction

Due to the time scale of the protein folding process, which takes from

milliseconds to minutes, at present, it is rather impractical to attempt protein

structure assembly using all-atom detailed models. Indeed, contemporary

computers allow classical molecular dynamics simulations of a protein

surrounded by an appropriate number of water molecules over a much shorter

period of time, corresponding to tens or hundreds of nanoseconds (depending on

protein size). This inability to routinely access longer time scales stimulated

numerous attempts to simplify the problem by reducing the number of explicitly

treated degrees of freedom of the polypeptide chain and by simplifying the model

of intra and intermolecular interactions. Such a reduction of the number of

degrees of freedom could be achieved by assuming a united-atom representation

of entire amino acid residues, by assuming a single-atom representation of the

main chain and a similar representation of the side groups. The internal degrees

of freedom of the side groups were frequently ignored in such models or were

treated in an approximate fashion. Such a simplified protein representation also

led to simplifications in the interaction scheme; for example, all reduced models

either ignored the effect of water or implicitly treated it.

The first attempts at the reduced modeling of protein folding were under-

taken about 25 years ago. In their classical work, Levitt and Warshel [58]

proposed a model that later inspired other analogous simplifications of protein

representation. They assumed two centers of interaction per residue, one

associated with the alpha carbon and the second with the center of mass of

the side group. There was a single degree of freedom per amino acid—the

rotation around the Ca–Ca virtual bond—while the planar angle for the Ca
trace was assumed to be constant [59]. A knowledge-based potential controlled

the short-range interactions, while the interactions between the side groups were

in the form of a Lennard-Jones potential (partially corrected for the hydrophobic

effect). The sampling was done by means of classical molecular dynamics.

Simulations of a small protein bovine pancreatic trypsin inhibitor sometimes

produced structures resembling the native fold. The best structures had a root-

mean-square-deviation (RMSD), from native in the range of 6.5 Å. Later, Kuntz

et al. [60,61], Hagler and Honig [62], and Wilson and Doniach [63] studied

somewhat similar continuous models. The results were of comparable quality;

some qualitative features of small protein folds were sometimes recovered in

their simulations.
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More recently, continuous-space models with more structural details were

proposed and investigated with respect to their ability to predict the native

conformation of a protein. Sun [64] examined models with an all-atom

representation of the main chain and a single united atom representation of

the side groups. Knowledge-based statistical potentials described the interac-

tions between the side groups. Interestingly, his study demonstrated that a

genetic algorithm could quite efficiently sample the conformational space of the

chain. For small peptides (mellitin, pancreatic polypeptide inhibitor, and

apamin), proper structures were predicted whose accuracy ranged from 1.66

Å to 4.5 Å, depending on peptide size. A similar model, but with two united

atoms per side chain (for the larger amino acids), was studied by Wallqvist and

Ullner [65]. Results for pancreatic polypeptide inhibitor were slightly more

accurate, probably due to the better packing of the model side chains. Such

reduced continuous models were explored not only as a means of protein

structure prediction but also as a tool for investigating the general aspects of

protein folding dynamics and thermodynamics [66,67].

Pedersen and Moult [68] proposed a very interesting approach to protein

structure prediction. They assumed an all-heavy atom representation of the

protein with knowledge-based potentials describing intraprotein interactions. As

a sampling method, they used a combination of Monte Carlo (MC) and genetic

algorithms. The MC runs produced a set of structures for the starting population

of the genetic algorithm (GA). The crossover points were selected in the regions

of the largest structural flexibility, as detected during the MC runs. MC

simulations were also performed between crossover events in the GA scheme.

Low- to moderate-resolution protein fragments and the approximate folds of

small proteins have been successfully predicted by this method. Unfortunately,

it appears that the applicability of this method is limited to rather small proteins.

Even reduced models of proteins have a large number of conformational

degrees of freedom, and an effective sampling of the long-time processes for

larger proteins in a continuous space could be very difficult if not impossible. To

further simplify the problem, discrete or lattice models were proposed and

examined. Early studies of the lattice proteins focused not on structure

prediction but rather on understanding the fundamentals of protein folding

thermodynamics and some aspects of the folding dynamics. These works were

pioneered by G�o et al. [69], and then followed by Krigbaum and Lin [70,71],

Skolnick and Kolinski [72–84], Sikorski and Skolnick [85–88], Chan and Dill

[89–92], Dill et al. [93–96], Sali et al. [97,98], Shakhnovich et al. [99–105], and

others [106–111]. Since the subject of this chapter is protein structure prediction

and due to the existence of excellent reviews on the subject, we refrain from a

more detailed review of these works.

Probably the first attempt to predict the native structure of a protein in an

ab initio fashion within the framework of a lattice representation is due to
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Dashevskii [112]. A diamond lattice chain was used to approximate the poly-

peptide conformations. A chain growth algorithm executed the sampling of

conformational space. Compact structures resembling native folds of small

polypeptides were generated and identified by a simple force field. Next, Covell

investigated a simple cubic lattice model of real proteins [113]. The behavior

was controlled by the force field that consisted entirely of long-range interac-

tions that included a pairwise, knowledge-based potential, a surface term, and a

potential that corrects the local packing of the model chain. The quality of crude

folds generated by this method were not worse than the quality of folds obtained

using early continuous models. Covell and Jernigan [114] studied five small

globular proteins by the enumeration of all possible compact conformations of a

body-centered cubic lattice chain. They found that the closest to native

conformation could always be found within the top 2% of the lowest-energy

structures, as assessed by a knowledge-based interaction scheme.

Hinds and Levitt [115] proposed an interesting lattice model of proteins. In a

diamond lattice chain, a single lattice vertex represents several residues of a real

protein. An elaborate statistical potential was employed to mimic the mean

interactions between such defined protein segments. Frequently, correct folds of

low resolution were generated among the compact structures enforced by the

sampling scheme.

Kolinski and Skolnick [75–84,116–120] developed a series of high-coordi-

nation lattice models of globular proteins. Lattices of various resolution were

employed to mimic the conformation of the Ca trace of real proteins, from

three-dimensional ‘‘chess-knight’’-type lattices to a high coordination lattice

with 90 lattice vectors to represent possible orientations of the Ca–Ca virtual

bonds. The models employed in the test structure predictions [118,121–123] had

additional interaction centers to represent the side groups. For each side chain, a

single-sphere, multiple rotamer representation was assumed. The force field of

each of these models contained several terms mimicking the short-range

interactions, explicitly cooperative hydrogen bonds, one body, and pairwise

and multibody long-range interactions with an implicit averaged effect of the

water molecules. It has been shown for several cases of small globular proteins

[118] and simple multimeric molecular assemblies [124–126] that such models

can generate correct low- to moderate-resolution (high-resolution in the case of

leucine zippers) folds during Monte Carlo simulated annealing computer

experiments.

Various recently developed methods for ab initio protein structure predic-

tions were tested during the CASP3 (Critical Assessment of Techniques for

Protein Structure Prediction) exercises, concluded in December 1998 in Asilo-

mar, California [127]. A number of new techniques have been developed before

that time, and a number of them constitute qualitative progress in ab initio

prediction with respect to the previous CASPs (held every two years).
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The ROSETTA method proposed by Baker and co-workers [128] is very

innovative. The method consists of several steps. First, a multiple sequence

alignment for a sequence of interest was prepared, and the secondary structure

prediction is made using the PHD server based on Rost and Sander’s [129–131]

secondary prediction technique. Secondary structure predictions and sequence

alignments were then used to extract the most plausible 3- to 9-residue

structural fragments (25 fragments for each segment of the query sequence)

from the structural database (according to the secondary structure prediction

and the sequence similarity). Then a Monte Carlo algorithm employing a

random insertion of fragments into the structure was used to build the three-

dimensional structure. The scoring function contained a hydrophobic burial

term, elements of electrostatics, a disulfide bond bias, and a sequence-indepen-

dent term that evaluates the packing of secondary structure elements. The top 25

(of 1200 generated) structures frequently contained the proper fold. The best

five structures exhibiting a single hydrophobic core were selected by ‘‘visual

inspection.’’ This could be considered to be a flaw of the method (at this stage of

development). It would be difficult to do a manual evaluation of the predictions

on a massive scale. Nevertheless, for 18 targets, four predictions were globally

correct (with an RMSD range of 4–6 Å for the native structure), and the

majority of their predictions contained significant fragments of structure that

were correct. It should be noted that a somewhat similar idea of protein structure

assembly using predefined fragments and the Monte Carlo method was also

pursued in the method developed by Jones [132] and tested during the CASP2

exercise.

A number of other groups made good predictions on a fraction of difficult ab

initio target proteins. Ortiz et al. [133] applied a high coordination lattice model

developed by Kolinski and Skolnick [122,123] to a number of small target

proteins. Monte Carlo simulated annealing calculations started from random

expanded conformations of the target proteins. The model assumed a 90-basis

vector representation of the alpha carbon trace that has a 1.2 Å resolution due to

the spacing of the underlying cubic lattice grid. Off-lattice single-sphere side

chains could assume multiple orientations with respect to the backbone, thereby

mimicking the distribution of rotamers for particular amino acids. The generic

force field of the model consisted of knowledge-based potentials (derived from

the statistics of the regularities seen in known protein structures) for short-range

interactions, one body burial, pairwise and multibody surface long-range

interactions, and terms simulating the regularity and cooperativity of the

main-chain hydrogen bond network. Additionally, a weak bias toward predicted

secondary structure (obtained from multiple sequence alignments þ secondary

structure prediction from PHD [129–131]) and weak theoretically predicted

long-range contact restraints from correlated mutation analysis were implemen-

ted in the interaction scheme [134–138]. Contact prediction was based on the
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analysis of correlated mutations in sequences detected by multiple sequence

alignments. For some targets, the globally correct fold or large fragments of the

structure were correctly predicted. The method was capable of assembling low-

resolution novel folds. The level of success during the CASP3 exercise was on

the same level as reported for test predictions made for a series of small globular

proteins prior to CASP3 [137].

A similar methodology, but one based on a completely different protein

representation [139,140] (that are discussed in Sections V and VI), was

employed by Kolinski and co-workers with a similar fraction of correctly

predicted structures [133]. An important advantage of this method was its

computational speed and nicer scaling of computational cost against protein

chain length. Thus, the prediction of structures of larger proteins via ab initio

folding became possible.

Osguthorpe [141] employed a continuous model and molecular dynamics

simulated annealing. In spite of the use of a quite detailed model (main chain

united atoms and up to three united atoms per residue), its very flexible chain

geometry enabled efficient sampling. The potentials were derived from the

statistics of known protein structures. The method enabled us to obtain correct

predictions of substantial fractions of the structure of the attempted targets, and

for one of the difficult targets, the prediction resulting from this method was the

most accurate.

A very interesting hierarchical procedure has been used by Samudrala et al.

[142]. First, as previously proposed by Hinds and Levitt [143], all compact

conformations of test proteins were enumerated using the diamond lattice model

with multiple residues per chain unit. The best (according to the force field of

the lattice model) structures were then selected for further consideration.

Subsequently, the all-atom structures were reconstructed by fitting the predicted

secondary structure fragments to the lattice models. These structures were

subject to energy minimization using an all-atom force field and spatial

restraints of the lattice models. The optimized structures were scored by a

combination of all-atom and residue-based knowledge-based potentials [144].

Then, distance geometry [145] was used to generate a number of possible

‘‘consensus’’ models. The local geometry of predicted secondary structure was

again fitted to the resulting models. Finally, the resulting all-atom models were

optimized and rank-ordered according to energy. A number of qualitatively

correct protein fragments of significant size were correctly predicted. The

method appears to be very robust and (as pointed out by the authors) it was

likely that it could be further improved. Probably the major weakness of the

method in its present form is in the small fraction of good structures in the

initial pool of lattice models.

The method developed by Scheraga and co-workers [146] and used in

CASP3 is based on the global optimization of the potential energy of a united
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atom model [147]. Due to the force-field design of the model, which is based on

basic physical principles, this method is very close to a purely thermodynamic

approach. In this respect, it qualitatively differs from the previously outlined

methods. This off-lattice protein model has a united atom representation of the

alpha carbons, side groups, and peptide bond group, with fixed bond lengths and

variable bond angles. The interaction potentials between united atoms describe

the mean free energy of interactions and account in an implicit way for the

average solvent effect and cooperativity of the hydrogen bonds [148]. The

optimization is performed by means of the Conformational Space Annealing

technique [147], which subsequently narrows the search regions and finally

finds distinct families of low-energy conformations. The lowest-energy, reduced

model conformations are subsequently converted into the all-atom models and

optimized by electrostatically driven Monte Carlo simulations [149]. For a

fraction of CASP3 targets, this method produced exceptionally good predic-

tions. The method seems to perform much better on helical proteins than on b or

a=b proteins.

D. Choice of Sampling Scheme

In the past, different methods of sampling of protein model conformational space

have been employed with various degrees of success. Traditional molecular

dynamics can be used only in the case of continuous models. Other sampling

schemes, including a variety of Monte Carlo methods, genetic algorithms, and

combinations of these methods, could be applied to continuous as well as to the

discrete (including lattice representation) models.

In general, the choice of the simulation/optimization algorithm depends on

the aim of the studies. Different procedures are needed for the study of protein

dynamics and folding pathways from those procedures that are just targeted to

find the lowest-energy conformations of model polypeptides.

Monte Carlo procedures for chain molecules [150] use a wide spectrum of

strategies for conformational updating. In some algorithms, the updates are

global, as in the chain growth algorithms, whereas other algorithms employ

pivot moves of a large part of the model chain. In other algorithms, the trial

modifications are local, involving only a small portion of the chain or a small

distance displacement of a larger part of the chain. Sometimes, the local and

global modifications were combined in the same algorithm.

What is the relationship between the molecular dynamics simulations of a

continuous model and an isothermal Monte Carlo trajectory of an otherwise

similar discretized (or lattice) model? When only local (and small distance)

moves are applied in a properly controlled random (or rather pseudorandom)

scheme, the discrete models mimic the coarse-grained Brownian dynamics of

the chain. The Monte Carlo trajectory could be then interpreted as the numerical

solution to a stochastic equation of motion. Of course, the short-time dynamics
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(the time scale of a single elementary move in the Monte Carlo scheme) of the

discrete model has no physical meaning. However, the long-time dynamics

should be qualitatively correct, albeit with possible distortions of the time scale

of various dynamic events. Such an equivalence of the molecular dynamics and

stochastic dynamics of equivalent off-lattice and lattice-simplified protein

models has been demonstrated in the past by Rey and Skolnick [151], and by

Skolnick and Kolinski [152]. Recent studies have shown that Monte Carlo

folding pathways observed for high-coordination lattice models reproduce the

qualitative picture of folding dynamics seen in experiments [153]. Thus, it could

be rather safely assumed that Monte Carlo lattice dynamics can be used in

meaningful studies of protein dynamics, folding pathways, the mechanism of

multimeric protein assembly and other aspects of biopolymer dynamics. The

validity of protein dynamics studies using discrete models depends more on

the assumed accuracy of the protein representation and its force field than on the

particular sampling scheme. However, some oversimplified discrete models may

face serious ergodicity problems. This aspect of Monte Carlo simulations

always needs to be carefully examined.

Isothermal simulations (molecular dynamics or Monte Carlo) provide charac-

teristics of the system’s properties at a single temperature. Numerous simu-

lations at various temperatures (above and below the folding transition

temperature) are needed to gain some insight into the thermodynamics of the

folding process. There is a very serious problem associated with the extremely

slow relaxation of protein models in the dense globular state. The local barriers

in the energy landscape near the folded state are high and the sampling becomes

ineffective. Thus the computer studies employing straightforward MD or

canonical MC algorithms became prohibitively expensive. Essentially, the

same applies to various simulated annealing strategies. In all cases, the design

of sampling details could be very important. For example, properly designed

local moves can ‘‘jump over’’ the high local energy barriers, thereby speeding

up the sampling of the entire conformational space.

Mulicanonical [154] (or entropy sampling Monte Carlo [108–110]) simul-

ations provide more complete data on folding thermodynamics [116,155–157].

Due to their differently defined transition probabilities in the sampling scheme,

energy barriers became much less important, but are substituted by entropic

barriers. From a single series of simulations, it is possible to obtain an estimation

of all thermodynamic functions (energy, free energy, and entropy) over a wide

range of temperatures. However, the cost of such computations grows rapidly

with the system size and its complexity.

A somewhat simpler, but by no means trivial, task is to find the lowest energy

state of the model polypeptide. Due to the thermodynamic hypothesis [158],

which postulates that native proteins are in the global minimum of the confor-

mational energy, the minimum energy state of a properly designed protein
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model should closely mimic the folded conformation. A variety of strategies

have been developed to solve this global minimum problem [159]. For a

relatively simple system, when the total energy could be expressed in the

analytical form, it is possible to solve the problem in a deterministic fashion

[160]. For more complex (i.e., realistic models of proteins) systems, existing

methods do not guarantee that the lowest energy conformation will be found.

The number of possible conformations and the rugged energy landscape make a

systematic search impractical.

Simulated annealing, ESMC [108,109,161], Monte Carlo with minimization

[162], genetic algorithms [64,163–165], and the combination of genetic algori-

thms with Monte Carlo sampling have been successfully used in the past to find

the near-native conformations of reduced models of small proteins [68].

Recently, a number of studies have focused on the comparison of various

Monte Carlo strategies for finding the global minimum of a protein model [166–

168]. Probably the most straightforward of these search strategies is simulated

annealing, where the system temperature is gradually lowered during the

simulations, starting from a relatively high temperature (above the folding

transition) and ending at a low temperature below the folding temperature

(usually well below due to thermal fluctuations). When on repeated runs starting

from different initial states, the same conformation is recovered; one may

assume that there is a good chance that the global minimum has indeed been

found. However, for difficult problems, simulated annealing runs (or at least a

substantial fraction of the runs) could be trapped in local energy minima. Some

of the local minima could be close to the model’s representation of the native

state, whereas others could correspond to conformations that are far away from

the properly folded state. There is no simple test of convergence in the

simulated annealing method. The efficiency of the simulated annealing method

could be considerably improved by a certain modification of transition accep-

tance criteria. For instance, one may perform local minimization before and

after the transition and then apply the Metropolis criterion to the locally lowest

energy pairs or conformations [16]. This way, the sampling procedure can avoid

visits to a large fraction of irrelevant local energy minima.

In contrast to simulated annealing, sampling techniques within the multi-

canonical ensemble have some internal convergence tests. In a version of this

technique, called entropy sampling Monte Carlo [108–110], the estimation of

the system’s entropy is built by a sampling process that is controlled by the

density of states of particular discretized levels of conformational energy. When

converged, all energy levels, including the lowest energy, should be sampled

with the same frequency. The ESMC method is ‘‘quasi-deterministic’’: The data

from the preceding simulations could be used to improve the accuracy in the

successive runs. In principle, when converged, ESMC should find the lowest

energy state. In practice, the energy spectrum near the lowest energy state could
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be associated with large entropy barriers, and the lowest energy state could be

not detected in spite of the apparent convergence—that is a constant density of

visited states in the remaining low-energy portion of the energy spectrum. The

rate of convergence of the ESMC method into the low-energy portion of

the energy landscape could be accelerated by the artificial deformation of the

entropy curve (artificial increase of the density of states) in the less important,

high-energy range [156].

The replica exchange Monte Carlo method [169] addresses the problem of

local minima in a different way. A number of copies of the model system are

simulated by means of a standard Metropolis scheme at various temperatures.

The temperature range covers temperatures from a temperature well above the

folding temperature down to a temperature below the folding transition tem-

perature. Occasionally, the replicas are randomly swapped according to a criter-

ion that depends on temperature difference and the energy difference. Thus, the

low-energy conformations at a higher temperature have a chance to be moved to

a lower temperature. As a result, the copies of the system sample not only the

conformational space but also move between various temperatures. At high

temperatures, the energy barriers could be surmounted easily; at low tempera-

tures the vicinities of energy landscape ‘‘valleys’’ are efficiently sampled.

Comparison of the computational cost of finding the lowest energy state for a

simple protein-like copolymer model [168] shows that replica exchange Monte

Carlo (REMC) is much more efficient than simple Metropolis sampling with a

simulated annealing protocol in spite of the fact that multiple copies of the

system have to be simulated. The REMC method also finds the low-energy

conformations many times faster than the ESMC method. Thus, it appears that

the REMC method (or its variants) could be a method of choice for use in the ab

initio folding of reduced protein models, where finding the lowest energy state is

the main goal of computational experiment. Due to the very efficient sampling

by the REMC method, the samples at various temperatures could be used for the

‘‘umbrella’’-type estimation of the system entropy. That may extend the

applications of the REMC method into cost-efficient studies of protein folding

thermodynamics.

III. OVERVIEW OF THE UNIFIED FOLDING METHOD

When faced with the problem of predicting the tertiary structure of an unknown

sequence, one typically runs PSI-BLAST [170] over sequences from the

structures in the protein data bank [171]. Then, if this does not work, one runs

a threading program to see if it detects a significant probe–template match. Even

if either of these two cases is successful, for nontrivial cases often the alignments

of the probe sequence may be in error, and there may be gaps in the alignment of

the probe sequence to the template structure and/or sometimes there are long

unaligned regions. If both methods fail, then ab initio folding is the requisite
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structure prediction method. Thus, ideally one would like to have a unified

approach that automatically treats these possibilities. In what follows, we

describe one recently developed unified approach.

An overview of the idea is given in Fig. 1. First, one runs our threading

algorithm, PROSPECTOR [57], and establishes if there is a significant probe

sequence–template structure match. If so, the template is used as a soft bias in a

generalized comparative modeling approach that involves ab initio folding in

the vicinity of the template in a reduced protein model. Threading also provides

predicted secondary structure and tertiary contacts that are not restricted to the

template structure but can be extracted from other structures. This allows

the possibility of fold prediction in those regions absent in the alignment of

the probe sequence to the template structure. The advantage of this generalized

comparative modeling is that it can improve the initial alignment generated by

the threading algorithm and can provide a structure prediction for the unaligned

SEQUENCE

THREADING

PREDICTED CONTACTS &
SECONDARY STRUCTURE

PREDICTED CONTACTS &
SECONDARY STRUCTURE
STRUCTURAL TEMPLATE

AB INITIO FOLDING GENERALIZED
COMPARATIVE
MODELING

CLUSTERING

REFINEMENT

FINAL MODELS

Figure 1. Flow chart describing the unified approach to protein structure prediction. First,

threading is done. If a significant hit to a template is found, then generalized comparative modeling

in the vicinity of the template but supplemented by predicted secondary structure and contacts

possibly from other templates is done. If no significant probe sequence–template structure match is

found, then consensus contacts and sets of local distances in the top 20 scoring structures are

extracted and employed as restraints in an ab initio folding algorithm. Once a sufficient number of

simulations (typically 100) are done, the structures are clustered, full atomic models are built in the

refinement step; and then using a new, distant-dependent atomic pair potential [204], the top five

scoring structures are selected.
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regions of the probe sequence. On the other hand, if there is no significant match

to a template, then the predicted secondary structure and tertiary contacts

extracted from threading are passed to an ab initio folding algorithm that uses

the same reduced protein model. Then, for both generalized comparative

modeling and ab initio folding, the resulting structures are clustered, atomic

detail is added and the results are reported.

IV. THREADING RESULTS

A. First-Pass Threading

Recently, to build on the strengths and address the weaknesses of existing

threading approaches, we have developed a new threading algorithm called

PROSPECTOR (PROtein Structure Predictor Employing Combined Threading

to Optimize Results) [57], which runs sufficiently quickly so that entire genomes

can be scanned in the matter of several days on a standard workstation or PC.

During the course of the development of this program, we noticed that sequence

profiles generated from the BLOSUM 62 matrix [172] often generated

reasonable alignments between the probe and template sequences, even when

the alignment score was insignificant. This suggested that the first stage of a

hierarchical approach to threading should employ a sequence-profile [170,173,

174] (using a sequence profile plus a three-state secondary structure prediction

scheme gave worse results) to generate the initial probe sequence to template

structure alignment. We call this the ‘‘partly thawed’’ approximation. Then, the

resulting alignment of the probe sequence in the template structure is used to

calculate the partners for the evaluation of the pair interactions. Previously, in the

first iteration of the frozen approximation [45], the partners were taken from the

template structure. This worked well only when the environments in the probe

and template structures were similar, but more often than not the environments

were quite different. On successive iterations, in the so-called defrosted approxi-

mation [45] where the partners were taken from the previous alignment, there

were times when the resulting algorithm never converged. Here, after the first

initial alignment, quite good results were obtained.

The database for multiple sequence alignment (MSA) generation used in the

construction of the sequence profile combines Swissprot (http://www.expasy.ch/

sprot/) and the genome sequence database (ftp://kegg.genome.ad.jp/genomes/

genes). First, a profile for relatively closely related sequences, whose sequence

identity lies between 35% and 90%, is calculated. These sequences are selected

from the composite database by FASTA [175,176]. Then, pairwise sequence

alignments with the probe sequence are generated using CLUSTALW [177],

and a sequence profile is generated. We term this the ‘‘closely’’ related set of

alignments. To this set, we add additional sequences whose E value in FASTA is

less than 10, use CLUSTALW to generate pairwise alignments, and then generate
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a profile for distantly related sequences; these are termed the ‘‘distantly’’ related

set of alignments. The goal here is to have two sequence profiles: one that is

more sensitive to more closely related sequences and another that can some-

times detect more distantly related sequences.

The first step of the threading protocol is to independently scan the structural

database of interest using each of the sequence-profiles with a Needleman–

Wunsch type of global alignment program [49]. Each of the two sequence pro-

files generates an alignment of the sequence in each of the template structures.

Each alignment is used to identify the partners in the probe sequence to be used

in the calculation of the pair interactions. Here we use our previously developed

side-chain contact potential averaged over all homologs which includes a

contribution from contacting fragments that have weak sequence similarity to

each member of the close set of probe sequences [178]. Furthermore, we also

use a pseudo energy term that describes the preferences for consecutive types of

amino acids to adopt a given type of secondary structure. This secondary struc-

ture propensity term is also averaged over homologs, and thus it results in a

secondary structure propensity profile. For each scoring function, close

(distant) sequence profile, and close (distant) sequence plus pair interactions

plus the secondary structure propensity profile, we scan the structural database

and output the top five scoring structures. Thus, a total of 20 possible structures

are output, along with their alignments.

B. Application to the Fischer Database

As a test case, we have focused on the Fischer database [179] that is comprised of

301 template structures and 68 probe sequences. We tried a variety of approaches

on this database before deciding on the aforementioned combination of para-

meters. We just summarize the results of these studies here. For a given scoring

function, the Needleman–Wunsch global alignment algorithm recognized more

correct probe–template pairs than did the Smith–Waterman [180] local alignment

algorithm. We also tried using the secondary structure profiles as the initial step

in generating the probe–template alignment for pair evaluation. Secondary

structure profiles alone only correctly recognize 18 cases in the first position,

whereas secondary structure profiles plus pair profiles correctly assign 29 cases.

This clear improvement shows the utility of pair potentials in this approach;

nevertheless, even 29 recognized pairs is rather poor performance. The major

improvement in fold recognition comes, as others have observed, when sequence

profiles are used. Even if the sequence profile is turned off completely but is used

to generate the alignment, the number of correctly recognized pairs increases to

35 correct probe–template pairs in the top position. In all cases, inclusion of pair

interactions improves the yield of correct probe–template matches.

We summarize our results using PROSPECTOR1 in Table I (the first pass of

PROSPECTOR). One of the best alternative methods is that of Gonnet, which
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TABLE I

Summary of Threading Results on the Fischer Database for Different Scoring Functionsa

Number of Number of Fischer Number of Fischer

Fischer Pairs in the Pairs in the Top Pairs in the

Method First Position 5(4) Positions Top 10(8) Positions

PROSPECTOR1

‘‘Close’’ sequence profile 44 46(46) 49(47)

‘‘Close’’ sequence profile plus 45 55(53) 56(55)

secondary structure plus pair profile

‘‘Distant’’ sequence profile 46 53(51) 53(53)

‘‘Distant’’ sequence 52 56(56) 59(57)

profile plus secondary

structure plus pair profile

Hierarchy of four scoring methods 59 63(62) 65(63)

Hierarchy of three scoring 58 62 64

functions (as above but

without the ‘‘distant’’

sequence-profiles)

PROSPECTOR2

‘‘Close’’ PROSPECTOR2. 48 51(51) 58(58)

sequence profile plus protein

specific pair and secondary

structure potentials profile

‘‘Distant’’ sequence profile 51 59(59) 59(59)

plus protein specific pair

and secondary structure potentials

Hierarchy of four scoring methods 61 64(64) 65(65)

Hierarchy of three scoring functions 60 64 65

(as above but without the

‘‘Distant’’ sequence profiles)

Other Methods

Simple Blast1 27 — —

PSI-BLAST restricted to the 24 37(36) 40(39)

Fischer database [170,182]

PSI-BLAST using extensive 41 46(46)_ 47(46)

sequence database and PSSM

constructured using IMPALA [247]

Original GKS threading program [45] 22 30 34

Hybrid threading [181] 52 57 60

Best UCLA benchmark results as of 52 (56) (58)

2/4/00 which is prediction of secondary

structure plus mult-gonnet [34]

aResults are reported in both the top 5(4) and top 10(8) positions [181], with the number in paren-

thesis given by the UCLA benchmark website (http://www.doembi.ucla.edu/people/fischer/BENCH/

table1.html).
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recognizes 52 proteins in the top position, the same number as the distant profile

plus pair interactions recognizes, but if a hierarchical method is used, then ours

is clearly the best, because 59 proteins are recognized in the top position. It is

clearly superior to all our early efforts as well as to the alternative hybrid

method [181], BLAST [1], and PSI-BLAST [170,182]. It might be argued that

because we use four scoring functions while the hybrid method uses only three,

this is not a strictly fair comparison. If we eliminate those results obtained from

the ‘‘distant’’ sequence profiles, then we obtain 58, 62, and 64 cases in the top 1,

5, and 10 position as compared to 52, 57, and 60, respectively, of Gonnet.

We then applied the method to a second Fischer benchmark comprised of 29

probe–template pairs and scanned each probe sequence against the original

Fischer structural database plus an additional 19 template structures (http://

www.doembi.ucla.edu/people/fischer/BENCH/tablepairs2.html). We have only

been able to find 27 of the 29 probe sequences and have reported our results

accordingly. PROSPECTOR1 places 17 correct pairs in the top position, and it

also places 21 and 22 in the top four and eight positions, respectively. This is the

same as the best reported results of 17 correctly identified pairs. However, in our

case one probe, ‘‘stel,’’ which is supposed to be matched to 2azaA, selects 2pcy

in the top position, which has the same core as 2azaA. Then, we have 18, 19

(19), and 20 (20) correct matches in the top position and top five (four) and ten

(eight) positions, respectively. Thus, we have somewhat better results than

previous workers.

C. Iterative Threading

1. General Idea

Just as PSI-BLAST [170] can increase its specificity by iteration, so can

threading. In fact, the set of structures selected by PROSPECTOR contains

additional information even beyond providing for a structural match. If we look

at the set of 20 structures that are selected as being the best scoring sequence–

template structure pairs, it is possible to extract additional information by

looking for consensus predictions. By way of illustration, we consider the

prediction of tertiary contacts. We focus on all contacts between residues that

are at least five residues apart, and we count the predicted contacts generated by

the aligned regions of structure. If there is a consensus (i.e., at least three contacts

are consistently predicted), then we employ this information in two ways: (1) to

enhance the specificity of threading by constructing a protein-specific, threading-

based pair potential and (2) as described in Section IV.F, to predict tertiary

contacts.

Using a previously derived formalism to convert contacts into a pair potential

[178], we derive a set of protein-specific potentials, where the contacts are not

only extracted from fragments with weak sequence similarity, but rather are
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generated by consensus contacts in the threaded structures. We use the

arithmetic average of this potential and the previous iteration’s pair potential

in the next iteration of threading. This case is termed the ‘‘close’’ and ‘‘distant’’

protein-specific potentials, and we call the threading method that employs these

terms PROSPECTOR2.

2. Application of PROSPECTOR2 to the Fischer Database

The results from PROSPECTOR2 are also reported in Table I. The ‘‘close’’ case

now recognizes 48 proteins as compared to 45 in the top position. The ‘‘distant’’

case recognizes 51 as compared to 52 previously, but the composite of the four

scoring functions now recognizes 61, 64, and 65 proteins in the top position as

compared to 59, 63, and 65 in the top, top five, and top ten positions, respectively,

for PROSPECTOR2. In all cases, the method improves when pair potentials are

used as compared to that when the corresponding sequence profile alone is used.

Similarly for in the second Fischer database, a total of 17, 20, and 20 proteins are

recognized in the top, top five, and top ten positions, respectively.

D. Genome-Scale Iterative Threading

In tests on genome scale threading, we found that the optimum number of

correctly recognized folds was found on the third iteration, PROSPECTOR3.

However, because of the computational cost of constructing pair potentials that

used local sequence fragment similarity, in our preliminary study and in the

interest of computational tractability we employed the best quasi-chemical pair

scale [183]. We term this PROSPECTORQUASI1-3. Furthermore, to deal with

the problem of very large proteins that may contain more than one domain, in

addition to threading the entire sequence, we also threaded 150 residue

fragments, starting at the first residue and then shifting by 25 residues until

the final fragment of possibly shorter length is scanned. This allows for the

detection of domains. For genome-scale threading, our structure library consists

of 2466 sequences constructed so that no pair of proteins has greater than 35%

sequence identity between them.

1. M. genitalium

This genome consists of 480 ORFs [184]. The first pass of PROSPECTOR,

PROSPECTORQUASI1 assigns 153 proteins to a structure in the protein data-

bank. The second pass, PROSPECTORQUASI2, assigns 182, and the third pass,

PROSPECTORQUASI3, assigns 194. This constitutes an assignment of 40% of

the genome. All assignments are made using an automated protocol based on the

score significance. Of these 194 structural predictions, all but three are correct. In

contrast, several years ago Fischer and Eisenberg [185] assigned the folds of 103

out of a total of 468 proteins by their threading algorithm. Gerstein has reported

identification of 211 proteins using PSI-BLAST [186,187]. Genethreader assigns
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200 proteins, but for 15 of them the assignment appears to be incorrect [188] as

assessed by a consensus of Gerstein’s results (http://bioinfo.mbb.yale.edu/

genome/MG/) and PROSPECTORQUASI3.

2. E. coli

The E. coli genome contains 4289 ORFs [189], for which PROSPECTOR-

QUASI3 assigns 1716 ORFs to structures in the Protein Data Bank. This

constitutes about 40% of the genome. Interestingly, this is the same percentage of

structures as was assigned in M. genitalium. In contrast, without the use of active

site filters, a total of 1250 confident structure predictions have been made, using a

sequence profile-based method [190].

E. Extension of PROSPECTOR to Include an
Orientation-Dependent Pair Potential

To enhance specificity, we next replaced the pair potential by one that is

orientation dependent and again perform three iterations of modified PRO-

SPECTOR, PROSPECTORIEN1-3. In applications to the Fischer database, we

found that, on average, PROSPECTORIEN3 generates the most accurate probe–

template alignments. The resulting set of structures constitutes the initial model

that will be subjected to the generalized comparative modeling described in

Section V.

F. Threading-Based Prediction of Tertiary Contacts

For a given iteration, the set of 20 top-scoring structures can also be used to

predict the tertiary contacts in the probe protein. Again we demand that a given

pair of contacts occurs in at least 25% of the top-scoring structures. For each

interaction of PROSPECTOR1-3 and PROSPECTORIEN1-3, we collect the

predicted contacts. The sets of contacts are then pooled.

Next we report our results for the set of 18 small proteins that constituted part

of the validation set for the MONSSTER ab initio folding algorithm [191]. Of

course, in this 18-protein test set, care is taken to remove all homologous

proteins to the probe sequence from our structural database, and all proteins

whose global root-mean-square deviations (RMSD) from native that are less

than 8.5 Å are also excluded. On average, 28% of the contacts are correct, and

69% are correct within two residues. The correlated mutation analysis gives, on

average, 34% correct and 82% correct within �2 residues [191–193]. While the

threading-based method has somewhat lower accuracy, in contrast to the

correlated mutation analysis, it can be readily automated. Note that a contact-

prediction accuracy of about 70% correct within �2 residues is sufficient for the

successful assembly of the global fold using the MONSSTER ab initio structure

prediction program [191,193].
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Turning to the results of CASP3, the correlated mutation analysis performed

considerably poorer, whereas threading-based contact prediction was better

[133]. In Table II, for four of these proteins, we show the predicted contact

results and compare them to correlated mutation analysis. Now, within �2

residues, 63% of the contacts are correct as predicted by the threading-based

method as compared to 43% from the correlated mutation analysis; this is a

qualitatively significant improvement. Within �3 residues, correlated mutation

analysis is slightly more accurate at 66% versus 62% from the threading-

based contact predictions. Here again, we excluded all analogous and homo-

logous proteins in the prediction of contacts from the analysis of consensus

contacts in the alignments generated by PROSPECTOR1-3 and PROSPEC-

TORORIEN1-3.

In Table III we present the set of predicted contact results for 28 proteins that

that will be subject to ab initio folding in Section VI. Again the requisite contact

prediction accuracy is achieved, with 31% of the contacts exactly predicted on

average and 73% correctly predicted on average within �2 residues. If we use

the threshold of 70% prediction accuracy as indicative that the folding simula-

tion will be successful, then, as shown in Section IV, 20 of these 28 proteins

should be foldable. The asterisk indicates those proteins that are foldable, as

assessed by the presence of a cluster of structures whose RMSD from native is

less than 6.5 Å. In practice, of the 28 proteins, 13 are foldable. In addition,

another two whose contact prediction accuracy is less than 70% correct within

�2 residues are also foldable. Of course, the presence of reasonably accurate

contacts in and of themselves do not guarantee that the native topology will be

found; but in all cases of accurate contacts, if there are a sufficient number of

such contacts, then rather low RMSD structures are found in the pool; see

Table VI. Thus, this is a reasonably effective method of predicting acceptably

accurate tertiary contacts.

TABLE II

Comparison of Contact Prediction Accuracy for CASP3 Targets for Threading and Correlated

Mutation Based Approachesa

Number of d ¼ 0 d ¼ 0 d ¼ 2 d ¼ 2 d ¼ 3 d ¼ 3

Name of Contacts From Mutation From Mutation From Mutation

Protein Predicted Threading Analysis Threading Analysis Threading Analysis

1jwe_ 16 0.19 0.14 0.5 0.44 0.5 0.65

1eh2_ 22 0.68 0.14 0.91 0.73 0.91 0.98

1bqv_ 19 0.05 0 0.53 0.13 0.53 0.5

1ck5B 22 0.14 0.02 0.59 0.4 0.55 0.51

Average 0.265 0.075 0.63 0.43 0.62 0.66

a% of contacts correct with d ¼ 1m1 residues of a correctly predicted contact.

154 jeffrey skolnick and andrzej kolinski



V. GENERALIZED COMPARATIVE MODELING

Quality sequence-to-structure alignments generated by the threading procedure

depend on the level of sequence identity of the target and the template proteins.

In the cases of high sequence similarity, the protein folds are very similar, and

classical methods of comparative modeling [194,195] led to good-quality

models, frequently to models of similar quality to those obtained from the

refinement of the X-ray data or good NMR data. When the sequence similarity

TABLE III

Predicted Contact Accuracy from Threading for 28 Proteins Used in an Ab Initio Folding Testa

Number of Contacts

Name of Protein Predicted d ¼ 0 d ¼ 1 d ¼ 2b d ¼ 3

1stfI 25 0.28 0.48 0.8* 0.88

1poh_ 37 0.3 0.54 0.7* 0.7

1pou_ 30 0.33 0.47 0.73* 0.9

1ife_ 56 0.18 0.39 0.54 0.79

2azaA 47 0.38 0.53 0.79* 0.85

256bA 1 0 0 1.* 1

1tlk_ 53 0.81 0.94 1.* 1

2pcy_ 45 0.4 0.51 0.91* 0.91

1tfi_ 52 0.19 0.35 0.60 0.79

2sarA 29 0.21 0.55 0.76 0.86

5fd1_ 23 0 0.17 0.30 0.52

1cewI 7 0.57 0.86 0.86 0.86

1ctf_ 46 0.11 0.3 0.50 0.7

1mba_ 12 0.58 0.67 0.67 0.75

1shaA 41 0.34 0.66 0.85* 0.88

1thx_ 53 0.23 0.55 0.72* 0.83

1shg_ 42 0.19 0.57 0.76 0.86

1ubi_ 23 0.61 0.65 0.78 0.83

6pti_ 54 0.26 0.56 0.61 0.8

1cis_ 19 0.21 0.58 0.95 0.95

1fas_ 22 0.27 0.59 0.77 0.86

1ftz_ 18 0.5 0.72 0.78* 0.89

1c5a_ 20 0.1 0.3 0.4* 0.5

1fc2C 18 0.44 0.78 0.83* 1

1gpt_ 19 0.37 0.53 0.79 0.89

1hmdA 33 0.18 0.36 0.52* 0.73

1ixa_ 14 0.43 0.64 0.79* 0.86

1lea_ 23 0.3 0.52 0.74* 0.96

Average 0.31 0.53 0.73 0.83

ad ¼ m is the number of contacts predicted within �m residues of a correctly predicted contact.

Correlated mutation analysis is from the CASP3 predictions of Ortiz et. al. [133].
bAn asterisk indicates that this protein is foldable by ab initio (see Section VI).
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becomes low or nondetectable by sequence comparison methods, the template

proteins could be weakly homologous or just analogous—that is having similar

folds without any obvious evolutionary relations. As a consequence, the resulting

alignments are usually incomplete, with a substantial number of gaps and

insertions. A fraction of residues of the probe protein, which is sometimes

substantial, are not aligned to the template. Moreover, in the aligned parts of the

structure, the true structure of the probe protein may differ in many important

details from the structure resulting from the alignment to the template. Also, an

optimal structural alignment of the two structures could be quite far from the

threading-based alignment. Due to low sequence similarity, the threading

alignment might not be the optimal one.

Is it possible to build a good-quality model based on poor alignments?

Usually, it is not possible by means of contemporary procedures for comparative

modeling. When the template structure differs substantially from the probe

structure, the resulting models are typically much closer to the template

structure than to the true structure of the probe protein [196]. The models do

not move (in conformational space) in the direction of the probe structure, but

instead wander around the template structure. Moreover, in the cases of large

gaps in the alignment, the filled-in pieces of structure are sometimes completely

nonphysical (non-protein-like).

A recently proposed method is described in the next sections that attempt to

address this problem. The idea is to perform a kind of ab initio folding in the

vicinity of the template structure, with the model force field controlling details

of the folding. The template is used only to reduce the searchable portion of

conformational space and loosely defines the general topology of the probe

protein fold. The lattice model employed in these procedures has a limited

resolution and accuracy. Consequently, the obtained models, in general, cannot

achieve the accuracy of the experimental structures. As a result, it is rather

pointless to apply the proposed methodology to those cases when the alignments

are very good and complete. In such cases, the obtained structures would be

slightly worse than structures built by classical comparative modeling tools.

Such situations could be easily detected. In the remaining cases of low

homology (or just analogy of the folds), the method is robust in the sense

that it does not do any ‘‘harm’’ to the initial threading-based models and, for a

substantial fraction of cases, leads to a qualitative improvement of the models.

The resulting structures move toward the true probe structure. Because this

approach bears some similarity to the comparative modeling, we call this

method of homology/analogy-based structure prediction generalized compara-

tive modeling (GeneComp, GC). The applied methodology is essentially the

same for the template-restrained folding as for purely ab initio folding, the

crossover is smooth, and there is no sharp boundary between threading-based

and ab initio approaches.
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A. Description of the Method

The method of generalized comparative modeling consists of several steps,

which sequentially transform the threading alignment into a full-atom model of

the probe protein. They are the following:

1. Build the threading alignment by a method described in the previous

sections.

2. Construct the starting lattice model using the partial template from the

threading as a structural scaffold.

3. Fold/optimize the lattice model using the threading alignment as a loosely

defined structural template.

4. Cluster the lattice folding results [197] and/or calculate a mean structure

by means of distance geometry (DG).

5. Refine the averaged model by Monte Carlo simulated annealing of an

intermediate resolution off-lattice continuous model.

6. Reconstruct atomic details.

B. The Lattice Model and Its Force Field

Before describing the particular steps of the comparative modeling methodology,

we outline the lattice model employed in all coarse-grained simulations (res-

trained or ab initio). Due to assumed reduced representation, we have named this

protein model the side-chain-only (SICHO) model [139,198]. Technical details

of the model design and its force field could be found elsewhere [199]. Here, an

outline is provided for the reader’s convenience. Most of the reduced models of

proteins assume a more or less explicitly reduced (all-complete) representation

of the main-chain backbone [200]. Frequently the alpha-carbon trace is used to

represent the main-chain conformations, and the side chains are neglected or

represented on various levels of simplification. When designing the present

model, two partially contradictory goals were taken into consideration. First, for

computational simplicity, there should just be a single degree of conformational

freedom per residue. Second, the model should enable straightforward imple-

mentation of as accurate and selective a force field as possible. Thus, we assumed

a single center of interactions that corresponds to the center of mass of the side

group and the alpha carbon atoms.

This side-chain representation has several advantages over the alpha-carbon

reduced representation. It is known that the sequence-specific interactions in

proteins are due to different character of the side chains. The interactions of the

main chain are rather generic. Then, having the coordinates of the side chains, it

is very easy to reconstruct the main chain-coordinates [200]. In contrast, the

reconstruction of the side-chain positions from the positions of the main chain is

not trivial [201] and requires extensive optimization. Additionally, the side
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chains are bigger and their size varies between amino acids. Thus, this side-

chain representation provides for better and more protein-like packing, with a

well-defined first coordination shell.

The model chain is restricted to an underlying simple cubic lattice with the

lattice spacing 1.45 Å. The set of possible virtual bonds between consecutive

side chains is defined by a set of 646 lattice vectors. The shortest are of the

vector type |�3,0,0| and |�2,�2,�1| while the longest are of the type

|�5,�2,�1|, expressed in lattice units. The distribution of the length of the

chain bond covers the majority (except for the wings) of the distribution seen

in proteins. The main excluded volume is simulated by a cluster of the 19

closest (to the center of the model side chain) points on the underlying cubic

lattice. This hard core of the chain is supplemented by soft-core repulsion

spheres for the larger amino acids. The size of these spheres is adjusted in such a

way that the folded model chains mimic average packing density of globular

proteins.

The force field of the model consists of three types of potentials. First are the

generic contributions that are independent of sequence and enforce the protein-

like chain stiffness and internal packing. Potentials of the second type are amino

acid-dependent and are used to reproduce the short-range interactions describ-

ing secondary structure propensities and orientation-dependent pair interactions.

The potentials of the third type (short-range potentials identical in form to that

described above and pairwise potentials [202]) are protein-dependent. Their

derivation involves multiple sequence alignments of the sequence of interest,

and the strength of interactions depends on the sequence similarity of protein

fragments.

C. Construction of the Starting Lattice Chain

The threading alignment was used as a template to construct the initial lattice

models. First, the aligned parts of the probe sequence were fitted to the template,

and pieces of the lattice chain were built by taking into consideration the

excluded volume of the model chain and the necessity of ‘‘stretching’’ the chain

between the gaps in the template. Then, starting from the shortest loop, the loops

and nonaligned chain ends were randomly inserted, again taking into account the

excluded volume. The proper geometry of the model chain (avoiding

nonphysical distances between side groups close along the chain) was preserved

during the chain-building procedure. For good alignments, this procedure

produces good models that need very little refinement. For extremely bad

alignments, it may fail; in these (very rare) cases a less restrictive algorithm that

allows for a larger deviation from the template could be used.

D. Restrained Lattice Folding: Optimization of the Initial Model

As discussed in Section II. D, the replica exchange Monte Carlo method appears

to be an efficient tool for searching the conformational space of reduced protein
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models. This technique was therefore used for the restrained folding (or

refinement) of the probe proteins using the threading alignments as loosely

defined structural templates. In the beginning of the procedure, a number of

copies of the initial model are created and placed at various temperatures,

according to the REMC scheme. Two subsequent runs were performed. In the

first run, the range of temperatures is wider and shifted toward higher tem-

peratures to allow for the fast equilibration of all replicas. In the subsequent

longer run, the temperature range was smaller so that approximately half of the

replicas run below the folding temperature and half above. About 20 replicas

were usually simulated. This number of copies guarantees very fast and efficient

swapping of conformations between the various temperature levels (the

temperature increment between replicas has been assumed to be temperature-

independent—a linear temperature set). A somewhat larger number of replicas

may be required for fast convergence of larger proteins—250 residues or more.

The conformations seen at the lowest temperature of the REMC scheme rapidly

find the global energy minimum.

Three types of restraints are used to keep the sampling process in a broad

conformational neighborhood of the template conformation.

The first is the most straightforward. The aligned portion of the template

structure is placed at the center of the Monte Carlo working box. Then, at the

beginning of the simulation, the starting chains are superimposed on the

template. During the simulations, there are weak and somewhat ambiguous

attractions (linear with distance) between aligned (according to the threading

results) residues of the template and the moving probe chain. Thus during the

simulation, the initial alignments have the chance to be corrected or even

overridden by the model force field.

The set of tertiary contacts predicted by threading comprise the second set of

restraints. Because only about one-third are correct and a much larger fraction

are ‘‘almost’’ correct (i.e., they are shifted by �1 or �2 residues), the energy of

attraction between the two residues of the probe predicted to be in contact grows

linearly with the closest distance between the �2 segments of the model chain.

For very good alignments, the predicted contacts are, to a large extent, consistent

with the template structure, and this set of restraints is essentially redundant to

the restraints of the first type. For poorer alignments, a number of other locally

similar proteins may contribute to the contact prediction. Consequently, the

predicted contacts may significantly modify the resulting structures of the probe

with respect to the template; that is, an averaged effect of other weak

‘‘templates’’ is introduced.

The third set of restraints contains the probe distances predicted from the

fragment threading procedure. The distance restraints are limited to the pairs of

residues that are no farther away than the length of the largest secondary

structure element in the protein, which is equivalent to the estimated diameter

(from the number of residues) of the probe protein.
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E. Building the Average Models

For each probe protein, several independent simulations (10–20) were executed.

From each simulation in the second pass, 200 conformations were stored in a

constant interval of simulation time. The collected structures were averaged using

a two-step distance geometry (DG), procedure. After the first pass, those struc-

tures far away from the average were rejected, and the final DG conformation

was constructed from the remaining set of structures. Interestingly, DG averaging

always led to a lower RMSD from the native than the average RMSD for the

original set of conformations from the lattice simulations. Sometimes the

structures from DG were close to the best structures seen in the folding

simulations. Alternatively, our recently developed clustering procedure [197]

could be used to identify clusters of the lowest energy conformations. The

centroid of this cluster can then be treated as an averaged model. In the case of

generalized comparative modeling, the two approaches are essentially equiva-

lent. However, for ab initio folding, the clustering procedure is more powerful in

identifying the most plausible fold from the sometimes-diverse results of ab initio

lattice-folding simulations.

F. Reconstruction of Detailed Atomic Models

A very fast procedure was designed for reconstruction of the atomic details from

the known positions of the alpha carbons and the side chains. The only

constraints are the positions of the side-chain centers of mass. The initial local

alpha-carbon trace geometry that is approximately reconstructed from the

SICHO center-of-mass positions is not perfect. Therefore, the positions of alpha

carbons are optimized in the first step. This is done by a gradient-optimization

procedure using a very simple force field to improve the local geometry. At the

next stage, positions of backbone atoms are reconstructed according to the local

Ca trace conformation. In this step, the vector normal to the plane defined by

three consecutive alpha carbons is calculated. This vector is almost parallel to a

peptide bond plane. Thus, the remaining atoms of the peptide bond can be

positioned quite accurately. Next, positions of side chain atoms are rebuilt. The

conformations of the side chains are chosen from a representative database of

rotamers. For rigid amino acids (e.g., phenylalanine), there is a single

conformation in the database. There are up to 20 conformations for large,

flexible side chains (e.g., lysine). The conformation of the rotamer depends on (a)

the distance between the Ca atom and the center of mass of the side chain and (b)

local chain conformation (i.e., Ca–Ca–Ca angle). Next, as a final stage of the

reconstruction procedure, the side chains are rotated around a virtual Ca—

center-of-mass bond—to avoid excluded volume conflicts. This procedure

produces reasonable structures; however, the packing of side chains after all-

atom reconstruction is not optimized. This can be done by one of the standard
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procedures of molecular mechanics. For the data reported in this work, this step

was omitted.

G. Summary of Results on Fischer Database and Comparison with an
Earlier Version of Generalized Comparative Modeling

Fischer’s database of protein sequences and structures [34] is a standard

benchmark set for validation of threading approaches. As mentioned previously,

PROSPECTOR recognizes a majority of the related sequences correctly. Here,

we would like to test our generalized comparative modeling approach on the

same test set. Probably, Fischer’s database [34] provides a very good test for the

method. It contains closely related pairs of proteins (typical of homology

modeling cases), pairs of weakly related proteins, and some pairs of very weakly

similar ones. As suggested above, one may expect that for very closely

homologous pairs of proteins, our method is not recommended. Indeed, the

geometrical fidelity of the lattice model is in the range of 1 Å, and the model

accuracy (due to deficiencies of the force field and to other factors associated

with the reduced character of the model) is probably significantly lower and

could be estimated to be about 2–3 Å. Also, for very weakly analogous proteins,

where the template structure is far away from the probe structure and when the

alignment is sparse or when alignment covers only a small fraction of the probe

sequence, the method applied here will not provide good models: The restraints

from the template prohibit the requisite large-scale rearrangements of the

modeled structure. In most intermediate cases, one may expect a qualitative

improvement of the model with respect to the quality of the initial threading-

based models.

The above expectations are based on an earlier version of the generalized

homology modeling with lattice folding in the neighborhood of the template

structure [199]. The test results of the earlier approach are summarized in

Table IV where an automated modeling by Modeller [203] (using the threading

templates as starting points) is compared with lattice modeling refined by

Modeller. While the number of cases given in this table is small, one may

conclude that in a fraction of cases the improvement of the threading models is

of a qualitative nature. Also, as expected, already-good models (see the example

of 1aba_) do not improve. The threading procedure [181] used to generate the

initial alignments for these 12 pairs produced worse alignments on average than

the PROSPECTOR threading algorithm employed for the more massive test

involving Fischer’s database. To make the comparison more complete, for the

few pairs that were not properly detected by PROSPECTOR, the match (and

resulting alignments) was enforced, that is, the highest-scoring structural match

was not taken as a template, but rather the correct structural template was used.

The results for the proteins from Fischer’s database are compiled in Table V.
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Similar to the earlier version [199] of the comparative homology modeling,

there are essentially three possibilities. First, when the threading model is very

good the lattice modeling does not improve the overall quality of the molecular

model; however, ‘‘no harm’’ to the quality of the model by application of the

entire methodology could be assumed. Then, there are cases of topologically

correct templates with moderate overall distance from the true probe structure.

Here, in most cases a qualitative improvement of the model quality could be

observed. Finally, for very bad initial models the final models are still not

satisfactory; the accuracy is too low to be sure that the overall fold has been

properly recovered. Some of these models can even contain topological errors.

A number of very interesting observations can be extracted from analysis of

the data compiled in Table V. The first is that the lowest energy criterion for

selection of the final model is not the best one. On the contrary, the distance

geometry averaging or clustering procedures almost always provide models of

better accuracy. The two methods (DG and clustering) lead to essentially the

same (on average) quality of molecular models and are quite consistent. At the

same time, it should be pointed out that the structure selection is not perfect.

Usually the structures generated by clustering or DG are worse than the best

structures observed in simulations. Definitely, better methods of selection (for

example, based on all-atom structures) of the best structures from the lattice

folding trajectories need to be developed.

TABLE IV

a-Carbon RMSD from Native for Models Built from the Initial Threading Alignments and Refined

by Lattice Simulationsa

Probe/Template Proteins Threading þ Modeller SICHO þ Modeller

1aba_/1ego_ 4.43 4.86

1bbhA/2ccy_ 6.77 6.82

1cewI/1molA 14.96 14.38

1hom_/1lfb_ 7.82 3.70

1stfI/1molA 6.40 5.95

1tlk_/2rhe_ 7.23 4.17

256bA/1bbh_ 6.09 4.36

2azaA/1paz_ 21.95 10.77

2pcy_/2azaA 6.56 4.41

2sarA/9rnt_ 10.28 7.83

3cd4_/2rhe_ 6.74 6.39

5fd1_/2fxd_ 25.67 12.40

aThe first column gives the PDB codes of the probe and template proteins detected by the threading

algorithm. The second column gives the results of automated comparative modeling using the

threading alignments as a template definition. The RMSD is given for the alpha-carbon trace. The

right column contains the results of SICHO modeling followed by a refinement using the Modeller

program. In the refinement stage the lattice models were used as a ‘‘template’’ for Modeller. Original

alignments are the same for both approaches compared in the table.
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TABLE V

Compliation of Results of Generalized Comparative Modeling on Proteins from the Fischer

Databasea

Alignment Aligned Best Lowest First

Target Template Coverage Part RMSD Energy DG Cluster

1aaj_ 1paz_ 82.86 6.74 6.15 9.26 9.37 9.00

1aba_ 1ego_ 90.81 6.52 3.55 5.90 4.75 3.95

1aep_ 256bA 64.05 18.36 18.31 18.36 21.45 22.38

1arb_ 4ptp_ 80.99 16.32 15.78 17.47 17.46 17.69

1atnA 1atr_ 75.27 12.42 12.00 13.25 13.16 13.04

1bbhA 2ccyA 93.89 2.74 2.71 3.65 3.07 2.99

1bbt1 2plv1 93.59 12.55 9.57 10.81 10.70 10.80

1bgeB 1gmfA 66.67 7.89 4.93 6.27 5.45 5.71

1c2rA 1ycc_ 85.35 4.35 4.31 5.75 5.34 5.30

1cauB 1cauA 89.63 5.18 4.04 5.69 5.45 5.41

1cewI 1molA 70.37 4.85 4.10 8.00 7.79 7.83

1chrA 2mnr_ 92.97 3.50 3.77 5.35 4.90 4.78

1cid_ 2rhe_ 55.93 19.76 14.05 18.88 18.44 16.97

1cpcL 1colA 81.40 15.71 12.30 13.43 13.58 13.17

1crl_ 1ede_ 47.75 20.01 21.35 24.21 24.09 24.93

1dsbA 2trxA 51.65 12.46 11.58 15.94 16.47 15.30

1dxtB 1hbg_ 92.52 2.74 2.91 3.54 3.01 3.08

1eaf_ 4cla_ 78.13 13.25 9.27 10.09 10.32 10.10

1fc1A 2fb4H 96.62 12.99 2.63 3.21 13.12 2.74

1fxiA 1ubq_ 61.46 10.94 8.53 10.28 10.18 10.14

1gal_ 3cox_ 74.01 15.03 14.03 17.74 17.80 17.38

1gky_ 3adk_ 85.48 6.68 6.13 8.75 6.36 8.87

1gp1A 2trxA 54.89 11.48 9.08 14.75 13.74 15.06

1hip_ 2hipA 80.00 3.55 3.92 4.86 4.26 4.13

1hom_ 1lfb_ 97.73 1.62 1.50 2.30 1.57 1.70

1hrhA 1rnh_ 91.30 7.15 4.90 5.50 5.07 5.07

1isuA 2hipA 95.16 6.06 3.20 4.35 5.07 4.08

1lgaA 2cyp_ 77.60 12.45 12.44 17.14 15.59 16.53

1ltsD 1bovA 59.00 9.99 8.11 12.16 10.21 9.47

1mdc_ 1ifc_ 96.97 2.62 2.55 3.12 2.66 2.65

1mioC 1minB 88.38 14.48 14.05 15.19 14.71 14.94

1mup_ 1rbp_ 93.63 5.56 4.14 4.89 4.38 4.51

1npx_ 3grs_ 92.17 14.56 13.61 14.15 14.12 14.09

1onc_ 7rsa_ 98.08 3.81 3.08 3.53 3.51 3.29

1osa_ 4cpv_ 70.27 16.84 16.56 18.02 17.90 17.81

1pfc_ 3hlaB 89.22 3.84 3.81 4.69 4.28 4.46

1rcb_ 1gmfA 71.32 6.28 3.91 5.51 6.09 4.25

1sacA 1ayh_ 76.47 18.13 16.89 18.52 18.81 18.93

1stfI 1molA 69.47 8.46 4.97 7.38 7.07 8.11

1tahA 1tca_ 56.92 19.00 18.90 21.60 21.51 20.96

1ten_ 3hhrB 93.33 5.60 3.14 3.98 3.62 3.45

1tie_ 4fgf_ 66.87 7.88 7.88 8.80 8.60 8.94

1tlk_ 2rhe_ 95.83 4.61 2.35 3.49 3.42 3.03

2afnA 1aozA 95.83 25.27 22.60 23.68 25.05 23.50
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H. Comparison to Modeller

Recently, several tools were developed for the fast building of all-atom models of

proteins by various means of comparative modeling. Probably, the most efficient

is Modeller, developed by Sali and Blundel [195]. Modeller allows for the high-

throughput modeling of protein structures on a genomic scale. The method

TABLE V (Continued)

Alignment Aligned Best Lowest First

Target Template Coverage Part RMSD Energy DG Cluster

2ak3A 1gky_ 78.26 15.63 14.65 15.51 15.46 15.27

2azaA 1paz_ 62.79 7.60 6.33 8.40 7.87 7.30

2cmd_ 6ldh_ 95.83 5.02 4.22 4.74 4.44 4.49

2fbjL 8fabB 94.37 10.30 7.04 7.72 8.78 8.37

2gbp_ 2liv_ 80.94 10.72 9.50 10.66 10.07 10.35

2hhmA 1fbpA 71.69 15.26 15.99 18.30 17.57 17.83

2hpdA 2cpp_ 85.33 6.44 5.41 6.75 5.83 5.81

2mnr_ 4enl_ 95.52 14.92 13.55 14.07 14.28 14.27

2mtaC 1ycc_ 65.31 14.35 14.04 16.01 16.49 16.51

2omf_ 2por_ 82.06 23.61 21.82 23.51 23.45 24.17

2pia_ 1fnr_ 79.44 15.72 15.64 17.29 16.77 18.24

2pna_ 1shaA 46.55 10.69 7.27 11.31 8.92 10.89

2sarA 9rnt_ 91.67 6.36 4.88 6.11 5.76 5.84

2sas_ 2scpA 86.49 6.45 5.51 6.42 6.11 5.95

2sga_ 4ptp_ 98.82 17.74 9.78 11.87 10.49 11.94

2sim_ 1nsbA 66.14 14.34 16.52 19.79 18.57 17.47

2snv_ 4ptp_ 84.11 14.28 12.78 14.07 13.84 13.31

3cd4_ 2rhe_ 92.78 7.02 5.98 7.40 7.15 7.05

3chy_ 4fxn_ 86.72 6.07 3.58 4.91 4.36 4.59

3hlaB 2rhe_ 83.15 10.30 4.72 9.76 8.63 8.62

3rubL 6xia_ 74.13 20.91 22.26 24.19 24.15 23.71

4sbvA 2tbvA 97.49 18.68 17.73 18.47 18.53 18.97

5fd1_ 2fxb_ 55.66 10.95 10.70 12.13 11.99 11.61

8i1b_ 4fgf_ 73.97 11.31 10.77 12.58 12.88 12.65

aThe first two columns contain the PDB codes of the target and template proteins, respectively. The

percentage of a target sequence aligned to a template is given in column 3. The fourth column

provides RMSD (all values for alpha-carbon traces) for the aligned part of the template from ‘‘true’’

structure of the target—a measure of the alignment quality. The fifth column gives the best RMSD

for the model chains observed in a set of sparely written trajectories (a few hundred photographs).

The sixth column gives the RMSD for the lowest energy (according to the SICHO force field)

conformation observed in the trajectories. The RMSD values in the two last columns correspond to

the average structures obtained via distance geometry and clustering algorithm. The two methods of

averaging are almost equivalent, with slightly better performance of the DG approach. In number of

cases, the final models for the entire structure are better (as measured by RMSD from the

crystallographic structure) than the initial threading models—that is the aligned part.
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proposed here is more complex and more computationally demanding; however,

it is still feasible in large-scale applications. The key question is, Are the results

worth the increased computational cost? To answer this question, we compared

various models for the Fischer database proteins [34] in Table VI, where the

results of generalized comparative modeling described in this contribution are

compared with models generated by Modeller. Both procedures started from

exactly the same templates and the same alignments generated by PROSPEC-

TOR. If we consider all models, then GeneComp performs better than Modeller

in 53 cases, worse in 13, and the same in two cases. If only templates whose

RMSD is less than 10 Å are considered, then GeneComp performs better in 29

cases, Modeller performs better in five cases, and they perform the same in one

case. However, in the latter, the two structures differ by a small amount. In many

cases of very good (or good) templates, the two methods generate models of

similar quality. The situation changes when the homology becomes weaker and

when, consequently, the threading models become more distant from the probe

structure. In these cases, the models generated by GeneComp are almost always

of noticeably better accuracy. We can most likely ignore the cases when both

methods lead to very bad models. It is safe to say that there is usually no

difference between models 12 and 14 Å from the true probe structure. The utility

of such models for structural genomics is at least problematic (of course, it

depends somewhat on protein size—a very large protein may still be of a correct

overall topology with this high RMSD). However, there is quite a difference

between a model that is 4 Å from the true structure and a 6 Å model (or even

more between a 6 Å model and 10 Å model). As can easily be seen from the data

compiled in Table VI, in the range of 4–8 Å, the GeneComp models are in most

cases significantly more accurate than the models generated by Modeller. The

typical difference is 1–2 Å; however, in a few cases it is as much as 4–5 Å.

Interestingly, the models generated by GeneComp frequently have a lower

RMSD for the entire structure than the RMSD of the original aligned fragments.

These are the cases when a qualitative improvement with respect to simple

comparative modeling was observed. The lattice simulations improve entire

structures. Thus, on average the proposed method leads to qualitatively better

molecular models with pronounced consequences for structure-based protein

function prediction and other aspects of proteomics.

VI. AB INITIO FOLDING

A. Description of the Method

The method for ab initio folding of small globular proteins employs the same

modeling tools as in generalized comparative modeling. There are, how-

ever, some differences. Of course, now there is no template to restrict the
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TABLE VI

Comparison of Generalized Comparative Modeling with Automated Modeling via Modellera

Target GeneCompþDG Modeller GeneCompþDGþModeller

1aaj_ 9.37 10.13 9.30

1aba_ 4.75 6.66 4.73

1aep_ 21.45 21.56 21.32

1arb_ 17.46 18.56 17.35

1atnA 13.16 15.61 13.15

1bbhA 3.07 3.02 3.03

1bbt1 10.70 10.21 10.68

1bgeB 5.45 10.34 5.42

1c2rA 5.34 5.84 5.30

1cauB 5.45 5.93 5.93

1cewI 7.79 8.47 7.76

1chrA 4.90 4.57 4.91

1cid_ 18.44 20.19 18.44

1cpcL 13.58 15.62 13.52

1crl_ 24.09 25.89 23.98

1dsbA 16.47 16.37 16.45

1dxtB 3.01 3.05 3.00

1eaf_ 10.32 10.82 10.18

1fc1A 13.12 15.02 12.48

1fxiA 10.18 11.27 10.11

1gal_ 17.80 18.86 17.66

1gky_ 6.36 11.82 6.45

1gp1A 13.74 15.22 13.66

1hip_ 4.26 4.06 4.09

1hom_ 1.57 1.73 1.57

1hrhA 5.07 6.95 5.05

1isuA 5.07 5.84 5.20

1lgaA 15.59 14.72 15.68

1ltsD 10.21 10.88 10.22

1mdc_ 2.66 2.66 2.71

1mioC 14.71 16.78 14.68

1mup_ 4.38 4.93 4.40

1npx_ 14.12 14.48 14.05

1onc_ 3.51 5.14 3.50

1osa_ 17.90 16.89 17.91

1pfc_ 4.28 4.39 4.49

aThe same alignments (see Table V) were used as starting templates for GeneComp (RMSD for the

DG averaged models) and Modeller. The last column provides RMSD for the models generated by

Modeller starting from the complete models obtained by GeneComp. In almost all cases the models

generated by GeneComp are more accurate than the models generated by Modeller, and in 15–20

cases the improvement is of a qualitative nature (see the text for explanation). Refinement of the

GeneComp models by Modeller (compare columns 2 and 4) leads to marginal changes of the

molecular models, indicating the consistency of the GeneComp models, with local atomic details of

the PDB structures.
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conformational search. The generic and protein-independent components of the

force field for the lattice models are the same, and the protein-specific potentials

have a similar form [202]. The difference is that in ab initio folding they are less

specific. For the test purposes, all homologous (and analogous) proteins have

been excised from the structural database used to derive the potentials. As a

result, the number and accuracy of the predicted contacts are lower, as is the

accuracy of the short-range terms. As before, a conservative prediction of

the regular elements of secondary structure was used to bias the short-range

interactions. Thus the requirements for the folding simulations are much higher.

A much larger number of independent simulations were executed to check the

reproducibility of the results and to provide a representative sample for the

clustering procedure and final fold selection.

The selection of the initial conformations for the REMC simulations requires

some comment. In principle, random expanded conformations could be used.

However, this slows down the convergence of the process. For this reason, a

different strategy was adopted. Having a prediction of secondary structure,

gapless threading of structures of comparable size is performed using the

matching fractions of the predicted secondary structure to the actual secondary

structure of the templates as a scoring function. Of course, all homologous and

analogous proteins were removed from the pool. Fifty lattice chains were built

using the 50 best scoring structures as templates. While these starting structures

are different from the probe fold, they may have the proper element(s) of

secondary structure that may serve as a fast nucleation site for the folding

process. In the preliminary simulation runs, 50 replicas were used. The second

iterations used the top 20 (20 lowest-energy replicas) as the input pool. The

simulation results from the last iteration of the lattice-folding algorithm were

subject to a clustering procedure [197] that was also used to make the final fold

selection.

B. Results of Ab Initio Folding on 28 Test Proteins

Sequences of 28 globular proteins were selected as the test set for the ab initio

folding protocol. The set is representative of single-domain small proteins. It

contains alpha proteins with a=b-; aþ b-, and b-type folds. In about 50% of the

cases, low-resolution folds of correct topology were obtained as one of a number

of clusters. The results are compiled in Table VII that also contains the RMSD

for the best structures observed during simulations at the lowest temperature

replica of the system as well as the RMSD of all structures that cluster [197]. It is

clear that simulations generate a small subset of very good structures for the

majority (22 of 28) of the tested proteins. Unfortunately, the fold selection

procedure rarely selects structures close to the very best ones. The discrepancy is

more drastic than in the case of template-restricted folding. It could be proven

rigorously that to obtain a 3 Å structure by random in a set of trajectories
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containing a few thousand photographs is practically impossible. Thus, the

model force field and the sampling scheme do a reasonably good job in sampling

protein-like regions of conformational space, including the neighborhood of the

native state. At the same time, the force field lacks a sufficient discriminatory

ability to select the closest-to-native fold generated from a large number of

competing protein-like structures. These competing structures have elements of

native topology with misfolded fragments of structure; sometimes they are

mirror images of native-like folds.

Overall, though, if one defines a successful simulation as one with a native

topology whose backbone RMSD is less than 6.5 Å, then in 15/28 cases (i.e.,

TABLE VII

Summary of Ab Initio Folding Results

Protein Best Lowest-Energy RMSD of Centroid

Namea RMSD RMSD of Each Cluster

1c5a_ 4.86 10.87 11.20 11.63 5.70 8.75

1cewI 6.71 10.08 8.77 13.84 15.29 12.00 11.66

1cis_ 4.98 11.52 10.41 10.34 9.36 9.67 10.43 6.81 7.25

1ctf_ 7.10 11.06 10.72 11.40 11.54

1fas_ 5.30 8.55 9.30 7.47 11.68 10.15 11.89 6.36 12.87

1fc2C 2.91 7.34 7.21 7.61 3.35

1ftz_ 2.65 8.79 8.78 6.52 3.05 7.11 6.50 8.18

1gpt_ 4.92 7.45 7.58 8.66 9.70 9.59

1hmdA 5.02 10.57 10.36 12.95 14.20 12.52 5.51

1ife_ 6.53 9.23 11.57 9.24 13.64 11.71 12.12 11.41

1ixa_ 4.02 6.62 6.36 6.92 9.28 10.65 10.53

1lea_ 3.23 11.85 10.93 9.95 8.32 8.44 5.82

1mba_ 9.61 12.72 12.63 15.28 12.01 15.44 13.51

1poh_ 2.90 12.63 12.76 11.91 3.87

1pou_ 2.70 4.98 3.95 9.88 9.93 10.93 11.61

1shaA 3.94 13.07 13.82 12.08 12.75 9.00 10.49 6.00

1shg_ 4.40 9.00 8.99 9.06

1stfI 5.47 10.19 8.06 12.86 11.17 13.68 11.99 16.74

1tfi_ 7.62 9.48 10.15 8.88 10.56 10.20

1thx_ 2.97 12.72 12.83 11.27 3.89 13.04 14.40

1tlk_ 3.13 7.38 11.02 6.35

1ubi_ 3.05 10.98 10.71 10.51 11.57 12.07 8.13 10.54

256bA 3.09 3.73 3.52 8.38 14.88 10.01 14.91 12.13

2azaA 3.83 7.20 5.75 12.86 13.01 14.00 13.30 13.30

2pcy_ 3.72 7.75 5.56 7.12 11.39 13.46 13.19

2sarA 8.45 13.11 10.71 11.92 12.18 12.71 14.10 13.93 14.10 13.79

5fd1_ 8.67 12.53 12.20 10.84 12.48 10.94 14.35 14.26

6pti_ 5.36 7.36 6.68 10.81 10.99 10.14 9.14

aBold indicates that this protein is foldable; that is, one of the clusters has an average RMSD from

native less than 6.5 Å.
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about 54% of the cases) the simulations are successful. Again, a different, more

efficient fold selection method needs to be developed; such efforts are currently

underway. An alternative recently being explored is the method of inserting

atomic detail and then scoring the structures using a recently developed

distance-dependent potential of mean force [204]. If this is done, then 1stfI is

not foldable, but 1fas_,1gpt_,1mba_ are foldable, giving a total of 17 (i.e., 61%)

of the test set proteins successfully folded.

VII. COMPATIBILITY OF REDUCED AND ATOMIC MODELS

A. Reproducibility of Structural Details

Reduced models have a long history. Some reproduce just the overall fold of

globular proteins, whereas other (more complex) models maintain some details

of protein structure. The SICHO model, based on just a single center of

interaction per residue, appears at first glance to be a drastic simplification.

However, due to its flexibility, the model is more accurate than it may appear at

first. First of all, the mesh size of the underlying cubic lattice is equal to 1.45 Å,

which means that a simple fit of the lattice model to a detailed PDB [171]

structure has an average accuracy of 0.7–0.8 Å with respect to the side-chain

centers of mass. Due to the coarse-grained character of the potentials, correctly

folded (say, by a pure ab initio approach) structures are of somewhat lower

accuracy. Very small proteins or peptides could be folded to 1.5 Å to 2.0 Å from

the native structure. The accuracy of larger proteins decreases due to an

accumulation of errors across the structure. For 100-residue proteins, properly

folded structures have an RMSD in the range of 3.5–6.5 Å from native. When

looking for elements of secondary structure as helices and b-hairpins, the

accuracy is of the same range as for very small proteins or slightly better and

ranges between 1.0 and 2.0 Å. The above numbers are given for the side-chain

centers of mass. Our model employs a very crude and simple reconstruction of

the a-carbon coordinates as a simple combination (with the coefficients extracted

from a statistical analysis of the structural database) of the positions of three

consecutive side-chain centers. This estimation is contaminated by a small

systematic error (there is no correction from deviation of the a-carbon from the

plane defined by three corresponding side-chain united atoms) and by some

statistical error related to errors in the side-chain positions. Compensating for

this is a statistical reduction of the absolute error of Cas because the main-chain

units are ‘‘inside’’ the secondary structure elements defined by the side-chain

centers of mass. Consequently, errors in the side-chain positions translate into a

slightly smaller error in the positions of the a-carbons. As a result, the accuracy

of the crude a-carbon trace is the same or slightly better than the accuracy of the

explicit virtual chain of the side groups.
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The level of local (and global) accuracy of the model is sufficient to allow for

quite accurate reproductions of the most important structural details. First, the

contact maps of the side chains extracted from the model are very similar to

the contact maps calculated from the crystallographic structures, assuming a

4.5 Å cutoff for contacts between heavy atoms of the side chains (side groups

are considered to be in contact when any pair of their heavy atoms are at a

distance smaller than the above cutoff). The overlap with native for properly

folded structures is 85–90%. There are some excess contacts in the lattice

models, and some contacts are missed due to the spherical shape of the model

side chains and the statistical character of the cutoff distances for the model

residues. More interestingly, the model hydrogen bond network (properly

calculated from the estimated coordinates of alpha carbons) of the main chain

coincides with similar (85–90%) accuracy with the main-chain hydrogen bonds

assigned by the DSSP procedure [205] to the corresponding native structures.

Bifurcated hydrogen bonds (the weaker ones) are ignored in this comparison,

because the model does not allow for H-bond bifurcation. As in real proteins,

the model structures have very regular networks of hydrogen bonds. Helices,

except for their ends, exhibit a regular pattern of two hydrogen bonds per

residue. The same is observed for internal b-strands in b-sheets. The edge

strands usually have a single model H-bond per residue. Sometimes, even

patterns characteristic of b-bulges are reproduced with high fidelity. The model

network of H-bonds is explicitly cooperative. This leads to protein-like

cooperative folding. Interestingly, misfolded structures also look very protein-

like unless they violate some ‘‘rules’’ of protein folding—for example, the

handedness of the b–a–b connections [206].

The protein-like geometry of such a simple model is enforced by the proper

design of the force field that has two distinct types of components: sequence-

dependent (or even protein-specific), which drive folding toward a specific fold,

and generic, which strongly bias the model chain toward the average protein-

like local conformational stiffness. The force field also has packing preferences.

This way a vast majority of the irrelevant portion of the conformational space of

the high coordination lattice (containing 646 possible side-chain–side-chain

virtual bonds) model is efficiently avoided during the sampling process.

B. Reconstruction of Atomic Details

The lattice SICHO model exhibits good compatibility with detailed all-atom

models. Projection of the all-atom structures onto the lattice model is trivial, and

the accuracy of the projection is about 0.8 Å RMSD for the side-chain centers of

mass or for the coarse reconstruction of all the a-carbon positions. More

interesting, and certainly more challenging, is the reconstruction of the atomic

details from the lattice models. A couple of similar procedures have recently

been developed for this purpose [200]. In one, the crude estimated coordinates of
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the a-carbons are refined using the distance restraints typical for proteins and

simple potentials for optimization of the backbone geometry. In the next stage,

the remaining atoms of the main chain are reconstructed using a library of

backbone fragments. Finally, a library of side-chain rotamers is employed to

build the side-group conformations that are the most consistent with the lattice

model. The side-group geometry and packing can be optimized relatively easily

because the gross overlaps are by definition excluded by placing the rotamers as

close as possible to the lattice chain (which itself exhibits a reasonable

approximation of the packing in a protein). When starting from the lattice fit

to the crystallographic structure, this reconstruction process returns a full atom

structure that differs on average by about 1 Å RMSD from the original one.

Further minimization by the CHARMM force field [207] leads to a small

improvement of the model. The same accuracy of all-atom reconstruction is

expected for all conformations generated during the lattice simulations.

A somewhat different procedure that has an advantage of computational

speed leads to structures that are about 1.5 Å from the original all-atom model.

Thus, there is the possibility of multiscale simulations of protein systems. The

computational speed of the SICHO model enables simulations that correspond

to the time-scales characteristic of real protein folding. At specific interesting

points of MC trajectory, one can perform all-atom reconstruction, followed by

detailed MD simulations. Another possibility that is now being explored is to

use the all-atom models (derived from lattice structures) as a means of selecting

the ‘‘best,’’ possibly closest to native, structures generated in lattice folding

simulations by the SICHO model.

C. Feasibility of Structural Refinement

As discussed in other parts of this chapter (see Sections VIII and IX), low-

resolution models could be successfully employed in the functional annotation of

new proteins and even for docking ligands. Of course, the more accurate the

model, the wider its applications. The SICHO model is of limited resolution.

Typical, well-folded structures have an RMSD that is 2 to 6.5 Å from native. Is it

possible to improve such models using more a detailed representation and a more

exact force field? Is it possible to include the solvent successfully in an explicit

way at this stage? It appears that at least for moderately small proteins with a

reasonable starting lattice structure, sometimes the models can be refined to

a resolution close to that of experimental structures. Successful refinement of a

small protein, CMTI, from a low-resolution MONSSTER folding algorithm [137]

to a structure close to the experimental one was recently done by Simmerling

et al. [208]. Earlier, for similar low-resolution lattice models, several structures

of leucine zippers were also successfully refined to experimental resolution

[124,125]. These studies were subsequently extended using ESMC to provide a

treatment of the GCN4 leucine zipper folding thermodynamics as well as the
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prediction of the native state [209], and it was subsequently shown that the

CHARMM force field, when supplemented by a generalized Born/surface area

treatment, is highly correlated with the lattice-based force field [210]. These

studies are extremely encouraging, although it is now unclear how soon the gap

between low-resolution lattice folds and high-resolution all-atom structures for

larger proteins will be closed.

VIII. FROM STRUCTURE TO BIOCHEMICAL FUNCTION

A. Does Knowledge of Protein Structure Alone Imply Protein Function?

Because proteins can have similar folds but different functions [211,212], deter-

mining the structure of a protein does not necessarily reveal its function. The

most well-studied example is the (a/b)8 barrel enzymes, of which triose

phosphate isomerase (TIM) is the archetypal representative. Members of this

family have similar overall structures but different functions, including differing

active sites, substrate specificities, and cofactor requirements [213,214]. An

analysis of the 1997 SCOP database [211] shows that the five largest fold families

are the ferredoxin-like, the (a/b) barrels, the knottins, the immunoglobulin-like,

and the flavodoxin-like fold families with 22, 18, 13, 9, and 9 subfamilies, respec-

tively. In fact, 57 of the SCOP fold families consist of multiple superfamilies

[15]. These data only show the tip of the iceberg: Each superfamily is further

composed of protein families, and each individual family can have radically

different functions. For example, the ferredoxin-like superfamily contains

families identified as Fe–S ferredoxins, ribosomal proteins, DNA-binding

proteins, and phosphatases, among others. More recently, a much more detailed

analysis of the SCOP database has been published [215], which finds broad

function–structure correlation for some structural classes, but also finds a number

of ubiquitous functions and structures that occur across a number of families.

The article provides a useful analysis of the confidence with which structure and

function can be correlated [215]. For a number of functional classes, knowledge

of protein structure alone is insufficient information to assign the specific details

of protein function.

B. Active Site Identification

It has been suggested that the active sites in proteins are better conserved than the

overall fold [27]. If so, then one should be able to identify not only distant

ancestors with the same global fold and same biochemical activity, but also

proteins with similar functions but different global folds. Nussinov and co-

workers empirically demonstrated that the active sites of eukaryotic serine

proteases, subtilisins, and sulfhydryl proteases exhibit similar structural motifs

[216]. Furthermore, in a recent modeling study of S. cerevisiae proteins, active
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sites were found to be more conserved than other regions [27]; this was also seen

in the study of the catalytic triad of the a/b hydrolases [11]. Kasuya and Thornton

[217] have created structural analogs of a number of Prosite sequence motifs and

showed, for the 20 most frequent Prosite patterns, that the associated local

structure is rather distinct [3]. These results provide clear evidence that enzyme

active sites are structurally more highly conserved than other regions of a protein.

C. Identification of Active Sites in Experimental Structures

Several groups have identified functional sites in proteins with the goal of

engineering or inserting functional sites into new locations, and success has been

achieved for several metal-binding sites [218–226]. However, because highly

accurate site descriptors of backbone and side-chain atoms were used, this fueled

the idea that significant atomic detail is required if protein structure is to be used

to identify protein function. Similarly, detailed side-chain active site descriptors

of serine proteases and related proteins were employed to identify functional

sites [227], while more automated methods for finding spatial motifs in protein

structures have been developed [37,216,228–233].

Unfortunately, such methods require the exact placement of atoms within

protein side chains and are inapplicable to the inexact, low-resolution predicted

structures generated by the state-of-the-art ab initio folding and threading

algorithms (see Sections IV–VI). These methods are required when the

sequence identity of the sequence of interest to solved structures is too low to

use comparative modeling. To address this need, Skolnick and Fetrow have

recently developed ‘‘fuzzy,’’ inexact descriptors of protein functional sites [8].

They are applicable to both high-resolution, experimental structures and low-

resolution (backbone RMSD 4–6 Å from native) structures. These descriptors

are a-carbon-based, ‘‘fuzzy functional forms’’ (FFFs). Initially, they created

FFFs for the disulfide oxidoreductase [8,10] and a/b-hydrolase catalytic active

sites [11] (an additional 198 have now been built, with comparable results

[234]).

The disulfide oxidoreductase FFF was originally applied to screen 364 high-

resolution structures from the Brookhaven protein database [235]. For the true

positives, the proteins used to create the FFF have different structures and low

sequence identity to those proteins used to build the FFF, but the active sites are

quite similar [8]. Here, the FFF accurately identified all disulfide oxidoreduc-

tases [8]. In a larger dataset of 1501 proteins, the FFF again accurately identified

all of the disulfide oxidoreductases, but it also selected another protein, 1fjm, a

serine-threonine phosphatase. Initially this was a discouraging result, but

subsequent examination of the sequence alignments combined with an analysis

of the subfamily clustering strongly suggested that this putative active site might

indeed be a site of redox regulation in the serine-threonine phosphatase-1 family

[12]. If experimentally verified, this would highlight the advantages of using
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structural descriptors to analyze multiple functional sites in proteins. In

particular, function prediction would not be restricted to the ‘‘primordial’’

function that characterizes the sequence family, but could also include addi-

tional functions gained during the course of evolution.

D. Requirements of Sequence–Structure–Function Prediction Methods

Any sequence–structure–function method that does function prediction by

analogy relies on three key features. First, the function of the template protein

must be known. Second, the active site residues must be identified and associated

with the function of the protein. Third, a crystal structure of a protein that

contains the active site must be solved so one can excise the active site for

constructing the corresponding three-dimensional active site motif. Evolutionary

approaches to function prediction often just require that the first criterion be

satisfied, but for more distant homologs the second should be checked as well,

because functions can be modified during evolution. The third requirement is

unique to structure-based approaches to function prediction. Based on studies to

date [8,10–12,14,15], identification of an enzyme’s active site requires a model

whose backbone RMSD from native near the active sites is about 4–6 Å for

structures generated by ab initio folding. This predicted structure quality is due

to the fact that the errors in the active site geometry found in the predicted

structure tend to be systematic rather than random. However, threading does not

suffer from this problem because, in the predicted structure, if the alignment does

not include the active site residues, no functional prediction is made. If it does,

the local geometry is the same as in the template’s native structure. Threading

can have alignment problems, but locally—at least in the vicinity of the active

site—these can often be overcome if the threading score includes a sequence

similarity component or if Generalized Comparative Modeling is done. Never-

theless, in practice, for both ab initio and threading models, the quality of the

predicted structures is better in the core of the molecule than in the loops, so

prediction of the function of a protein whose active site is in loops may be

problematic. Currently, the method has only been applied to identify enzyme

active sites. Recent work described in Section VIII suggests that at least in some

situations, low-resolution structures can also be used to at least partially address

the problem of substrate and ligand binding. But in general, techniques that will

further refine inexact protein models will be necessary to extend the approach.

E. Use of Predicted Structures from Ab Initio Folding

As noted above, the recent CASP3 results suggest that for small proteins, current

tertiary structure prediction schemes can often (but far from always) create

inexact protein models of the global fold. Are these structures useful for

identifying functional sites in proteins? To explore this issue, using the ab initio

structure prediction program MONSSTER [191,193], the tertiary structure of the
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glutaredoxin, lego, was predicted whose backbone RMSD from the crystal

structure was 5.7 Å. To determine if this inexact model could be used for function

identification, the set of correctly folded structures and a set of 55 incorrectly

folded structures were screened with the FFF for disulfide oxidoreductase

activity [8,10]. The FFF uniquely identified the active site in the correctly folded

structure but not in a library of incorrectly folded ones [15]. This is a proof-of-

principle demonstration that inexact models produced by the ab initio prediction

of structure from sequence can be used for the prediction of biochemical

function.

F. Use of Threaded Structures to Predict Biochemical Function

In a very important paper, Lathrop demonstrated that use of functionally

conserved residues could filter threading predictions to correctly identify globins

even when the threading score was insignificant [30]. While suggestive, the key

question was whether or not this result could be generalized on a genomic scale.

Over the past few years, we have been exploring this issue in great detail [8,10–

15], and, as discussed below, we demonstrate that the use of the sequence–

structure–function paradigm, when appropriately employed, allows one to

predict biochemical function with a much smaller false-positive rate than

BLOCKS [236,237], the best competing sequence-based approach. Indeed, we

have developed a very promising approach to the problem of genome-scale

function annotation.

The methodology is as follows: We use PROSPECTOR1 [57] (although, any

threading algorithm could, in principle, be used) to identify the set of 20

structures that are the best scoring matches between the probe sequence and the

template structure (four scoring functions times five best scoring structures for

each function). Then, each structure was searched for matches to the active site

residues and geometry of the FFF. If a match to the FFF is found, then for those

sequences for which homologous sequences are available, a sequence-conserva-

tion profile was constructed [11]. If the putative active site residues are not

conserved in the sequence subfamily to which the protein belongs, that

sequence is eliminated as having the predicted function; otherwise the sequence

is predicted to have the function. Using this sequence–structure–function

method, 99% of the proteins in the eight genomes that have known disulfide

oxidoreductase activity were found [15]; 10% to 30% more correct functional

predictions are made than in alternative sequence-based approaches [15];

similar results are seen for the a/b-hydrolases [11].

In Fig. 2, we show the distribution of scores (blue) for the E. coli genome

[238] when any of the 11 disulfide oxidoreductases in our structural database

was selected as being in the top five scoring structures using the ‘‘close’’

sequence plus secondary structure plus pair profile scoring function. Similarly,

those proteins identified on application of the disulfide oxidoreductase FFF to
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these threading models (all are known true positives) are indicated in red.

Clearly, the use of the FFF allows one to extract proteins (e.g., those to the

immediate right of the maximum) when their raw threading score would require

one to also include a significant (in this case overwhelming) number of false

positives. We note that full use of PROSPECTOR1-3 identifies all the known

disulfide oxidoreductases in the E. coli and M. genitalium genomes. Note that,

in general, structures whose Z-score is greater than 1 can be successfully

searched for a match to a known active site.

Importantly, using structural information, the false-positive rate is much less

than that found using sequence-based approaches. This conclusion arises from a

detailed comparison of the FFF structural approach and the Blocks sequence-

motif approach [15]. Here, the sequences in eight genomes, including B. subtilis

[239], were analyzed for disulfide oxidoreductase function using the disulfide

oxidoreductase FFF, the blocks thioredoxin block 00194 [236], and the blocks

glutaredoxin block 00195 [236]. In Fig. 3 we plot the distribution of scores

when the B. subtilis genome is threading through these two blocks. By way of

example, if we assume that those sequences identified by both the FFF and

Blocks [236] are ‘‘true positives,’’ we find 13 such sequences in the B. subtilis
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Figure 2. For the E. coli genome, the distribution of threading scores for the ‘‘close’’ sequence

plus secondary structure/pair profile scoring function is shown in dark gray and those proteins

identified by use of the disulfide oxidoreductase FFF are shown in light gray.
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genome. (Recognize that the experimental evidence validating all of these ‘‘true

positives’’ is lacking; thus, they are more accurately termed ‘‘consensus

positives.’’) To find these 13 ‘‘consensus positive’’ sequences, the FFF hits 7

false positives. In contrast, Blocks hits 23 false positives. It was previously

suggested that the use of a functional requirement adds information to threading

and reduces the number of false positives [30]. These data validate this claim on

a genome-wide basis. Similarly, using active site descriptors as a filter, one can

identify the true positives even when the threading score is barely significant (as

in Fig. 2) and where selection of the structure based on the threading score alone
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Figure 3. For the B. subtilis genome, the distribution of Blocks scores [236, 237] for the

thioredoxin block and glutaredoxin blocks are presented. FFF indicates that the threaded structure

satisfies the disulfide oxidoreductase active site descriptor, CP indicates that the sequence identified

by threading and FFF satisfies the conservation profile, and ? indicates that there is just one sequence

so that a CP analysis cannot be done.
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would yield a significant number of false positives. Thus, what we require is a

method that places such structures where their score is sufficiently significant

that on subsequent filtration by a functional descriptor, they can be reliably

identified. This is the origin of use of multiple scoring functions in PROSPEC-

TOR1, which, in combination, selects 59 of 68 Fischer pairs in the top scoring

position.

Surprisingly, despite the fact that threading algorithms have problems

generating good sequence–structure alignments, we have found that active sites

are often accurately aligned, even for very distant matches. This observation

would agree with the above-mentioned experimental results that active sites are

well-conserved in protein structures. Of course, because no genome has the

function of all its proteins experimentally annotated, it is impossible to know

how many proteins with the specified biochemical function are missed, nor is

there yet experimental characterization of most of these predictions.

IX. USE OF LOW-RESOLUTION STRUCTURES
FOR LIGAND IDENTIFICATION

One of the important elements of protein function is the ability of a protein to

interact with and bind various ligands. This ability is closely related to the three-

dimensional structure of the protein. Because the quality of theoretical structure

prediction methods has recently improved considerably, we are developing a

docking procedure that will utilize these relatively low-quality models of

proteins for the prediction of plausible conformations of receptor-small ligand

complexes as well as for the prediction of interactions between particular

subunits of a protein in the quaternary structures.

Our approach to the problem of low-resolution docking focuses on the steric

and quasi-chemical complementarity between the ligand and the receptor

molecules. Because the predicted structures that result from theoretical predic-

tions usually resemble very low-resolution experimental structures, in our

method we use only approximate models of both the ligand and its receptor.

Vakser et al. [240] have demonstrated that by averaging the structural details of

interacting molecules it is possible to drive the docking procedure toward the

real binding site, thus avoiding, in many cases, the local minima problem. It also

turns out in our case that this averaging procedure allows for the compensation

of the numerous structural inaccuracies that result from the theoretical predic-

tions of the receptor structure.

In the first stage of our docking procedure, structures of both molecules, the

receptor and the ligand, are projected onto a uniform cubic lattice, thus giving

two clusters of adjacent cubes. These two clusters approximate the shapes of

both molecules with the accuracy of the grid size. Some of the receptor cubes

(‘‘surface’’ cubes) can be penetrated by the ligand, leading to favorable
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interactions when overlapped with the ligand, whereas others (interior cubes)

contribute to the repulsive contacts. As elegantly demonstrated by Vakser et al.

[240], when such a procedure is correctly implemented, this simple steric matching

protocol is often quite successful in rebuilding correctly docked complexes.

While the steric method described above is very efficient, in many cases,

geometric criteria alone are insufficient to correctly dock the two molecules.

This is especially true when the structure of the receptor is of poor quality or a

ligand molecule is relatively small so that shape complementarity is insufficient

to specify the correct conformation. To overcome this problem, we decided to

build a statistical potential that could be used for additional evaluation of the

quality of the match. In order to build the potential, we defined 20 general atom

types and built the contact statistics on the basis of the structures of known

complexes available in the PDB [171]. After projection of the two molecules

onto the grid, every cube is additionally labeled with the properties defined by

the atom types that were projected onto it. Once the approximate representation

of the system is ready, the best match of these two cube-clusters is determined

by exhaustive scanning over the six-dimensional conformational space of the

three relative translations and the three rotations. Calculating the value of the

correlation function between these two sets of cubes and the value of the potential

function, the quality of the particular ligand-receptor orientation is scored.

We applied this algorithm to predict (actually postdict) the structures of

several complexes available in the protein data bank. These complexes include

members of the Fischer database that had co-crystallized ligands that were

generated by the procedure that was described in Section V. In most cases, not

only is the location of the binding site on the receptor surface correctly

identified, but the proper orientation of the bound ligand was reasonably well

recovered as well, within the level of accuracy of the modeled receptor itself. In

many cases, even structures of receptors as far as 5–6 Å away from native

turned out to be accurate enough for the docking procedure to succeed.

Table VIII below shows five examples of the homology-modeled structures

that were used in our docking calculations. The quality of the modeled receptor

TABLE VIII

Results of Docking Ligands to Low-resolution Predicted Structuresa

RMSD of the Receptor Relative Shift of the

Structure Name from Native Ligand from Native

2sarA 5.99 3.1

2cmd_ 5.57 1.3

1bbhA 3.16 1.6

1mdc_ 4.92 2.6

1c2rA 4.94 3.3

aAll dimensions are in angstroms.
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(in RMSD) and shift of the docked ligand relative to its position in the

superimposed native complex are also shown.

Two examples of docked ligands to the generalized homology modeled

receptors are shown in Fig. 4. The red is the native orientation of the ligand, and

the yellow is the best scoring match. As is immediately evident, the algorithm

does a reasonably good job in docking the ligand to the correct binding site in

the correct orientation. While our method is still under active development, it

has already revealed its usefulness in the successful docking calculations of

even small ligands to the theoretically modeled receptors. When complete, this

methodology could hopefully be used for the large-scale screening of the

potential ligands for the receptors predicted from genomic sequences.

X. OUTLOOK FOR THE FUTURE

A. Possible Improvements of the Structure Prediction Methodology

The methodology for protein structure prediction outlined in this contribution,

while partially successful, needs further improvement. First of all, some elements

of the force field of the lattice model are not yet satisfactory. The threading

algorithm PROSPECTOR, which forms the core of this approach, needs im-

provement. For example, it currently uses a very simple sequence profile, and

more powerful techniques for generating more sensitive sequence profiles [241]

need to be exploited. PROSPECTOR also generates high-scoring local sequence

fragments that are often, but not always, quite accurate. This information needs

to be incorporated into subsequent threading iterations as well as into partial seed

structures in ab initio folding, akin to ROSETTA [242,243]. Better means of

assessing the quality of the alignments also need to be developed.

The most promising way to improve generalized homology modeling is to

couple the strength of template restraints to the quality of the template. Now, for

all tested cases, the template-related restraints are of the same strength. Much

better results may be possible if, for the templates that are close to the probe’s

structure, the restraints were very strong. For templates that are far from the

probe’s structure, the restraints should be very weak. The template should be

used only for a loose definition of the fold topology. This requires an up-front

estimation of the template quality in a semiquantitative fashion. Better scoring of

the threading results and comparison with related cases (size of protein, perce-

ntage of alignment, comparison of the template alignments to other related pro-

teins, etc.) might provide necessary data for the case-dependent scaling of the

template-related restraints in the generalized homology modeling procedures.

Turning to issues associated with ab initio folding and, to a lesser extent,

generalized comparative modeling, some elements of the force field of the

lattice model are not yet satisfactory. The scaling of various contributions to the
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Figure 4. (See also color insert.) For the predicted protein structure of 2sarA (2cmd_)

generated by GeneComp using a template provided by the Fischer Database [34], the red-colored

ligand represents the superposition of the ligand bound to the native receptor. The highest-scored

match is colored in yellow.
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interaction scheme is now to a large extent arbitrary and adjusted essentially by

a trial-and-error method. A more precise scaling will be attempted by an

automated procedure targeted to generating strong (as strong as possible)

correlations between RMSD from correct folds and energy. A large set of

decoys (lattice structures at various distances from native) will be used for this

purpose. The weakest elements of the force field will be reexamined. Probably

the largest improvement of the model could be achieved via introduction of

approximate electrostatics into the interaction scheme. This should include

more implicit treatment of the solvent and other than intra-main-chain hydrogen

bonds.

For ab initio folding, a better means of the fold selection is needed. As

mentioned above, for the majority of small proteins, the SICHO simulations

produce a fraction of very good low-to-moderate resolution structures. Un-

fortunately, the model force field is capable of selecting these good folds in only

a fraction of cases. Perhaps the folding simulations and the fold selection

procedures should be separated in a more radical way. It appears to make sense

that different force fields may be more efficient for folding simulations than

those used for the fold selection. Indeed, folding requires an interaction scheme

that discriminates not only against the wrong folds but also against a huge part

of model-chain conformational space that does not correspond to any protein

structures. The fold selection stage needs potentials that essentially discriminate

between various protein-like conformations. Fortunately, fold selection involves

a few hundred structures. Thus, more detailed, including all-atom, interaction

schemes could be employed.

B. In Combination with Experiment

A variety of fragmentary experimental data could be used to increase the

accuracy and to extend the range of applicability of the described methodology

for protein structure prediction. The ab initio folding procedure employs

predicted secondary structure (in a three-letter code) and predicted contacts

between side groups. None of these predictions are exact; this has a consequence

for the overall performance of the method. Knowledge of the exact protein

secondary structure or some elements of secondary structure significantly

increases the precision and accuracy of the three-dimensional structure

predictions. Also, the exact knowledge of a few side-chain contacts increases

the applicability of the method. As demonstrated recently [139] for an older

version of the SICHO model, knowledge of secondary structure and as few as

N=7 to N=5 side-chain contacts (where N is the number of residues in the protein)

enable reproducible structure assembly for proteins up to 240 residues. The

larger the number of known contacts, the better the accuracy of the predicted

structures. Such fragmentary structural data could be extracted from NMR

experiments. When more extensive data are difficult (or impossible) to obtain,
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the lattice folding provides a low-to-moderate resolution molecular model of the

protein of interest. In those cases where a lot of NMR-based restraints are

collected, the possibility of obtaining of an approximate model from just a few

identified long-range contacts may aid with assignment processes for the other

signals. Such a procedure can be iterated. Alternately, such constraints could be

implemented in PROSPECTOR as a potential to help improve the quality of fold

selection as well as the quality of alignments. Structural restraints for the ab

initio folding can originate not only from NMR data but also from electron

microscopy. Fluorescence data or crosslinking experiments could also provide

some information about the side-chain contacts. Sometimes, mutation experi-

ments can identify residues that are involved with ligand binding. Information

about the spatial arrangement of these residues could be easily incorporated into

the folding algorithm. Another type of possible connection with experiment is

probably worth mentioning. Sometimes, as a result of ab initio folding

simulations, not one but a few plausible folds are generated. When compared

with experiments required for structure determination from scratch, a much

simpler experiment could be designed and executed for the selection between a

few possible structures.

C. Improvement of Structure-Based Biochemical Function Prediction

A key component of the ability to predict the biochemical function of a protein

using a structure-based approach is the availability of an extensive active site

library. Once this is available, then the assignment of biochemical function can

be done with a far smaller false-positive rate than alternative sequence-based

approaches [15,244]. While active site FFFs can be built by hand, such a process

is very time consuming, and automated approaches to active site identification

must be developed. One such approach used PDB descriptors to assign active site

residues [14], but more recent work using conservation profile analysis of these

site descriptors indicates a significant false-positive rate [245]. However, if the

identified active site residues are conserved, then one can tentatively build a

functional descriptor on this basis. Alternatively, one could use BLOCKS [236]

to identify conserved positions and attempt to build a three-dimensional

descriptor on a unique subset of highly conserved residues [246]. We are

currently undertaking such an approach.

To date, no large-scale refinement of the alignments generated by threading

has been undertaken. If the alignment is in error and active site residues are not

correctly aligned, then a false negative will result. Thus, we plan to apply

GeneComp to demonstrate the stability of correct alignments (i.e., to show that

true positives do not become false negatives). Next we plan to test the method

on the weakly significant alignments (Z score > 1) first for M. genitalium and

then for E. coli. If our results on the Fischer database are a guide, not only will

this provide a set of better models for a significant fraction of both genomes, but
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perhaps, using a more complete active site library, additional ORFans can be

assigned.

D. Improvement of Low-to-Moderate Resolution Docking of Ligands

Thus far we have demonstrated that in roughly 50% of the cases, the binding

conformation of a known ligand can be identified using a low-resolution

(backbone RMSD from native up to about 6 Å) predicted structure. While these

results are encouraging, much more must be done. The energetic description

describing the interaction of ligand and receptor must be improved so that the

accuracy of the method is enhanced, and systematic clustering of the results

using our clustering algorithm [197] must be done. Moreover, it remains to be

demonstrated that unknown ligands can be identified using such an approach.

Even if it turns out that in a library of several hundred thousand to millions of

compounds, one could only place true ligands in the 500th position or so (a

realistic goal for a low-resolution model), this would be quite valuable. Future

work is proceeding along these lines.

The low-resolution description could also be used to dock macromolecular

complexes. We have had very encouraging preliminary results on correctly

docking the dimer in the tobacco mosaic virus, but clearly much more thorough

benchmarking is required. One might imagine predicting the tertiary structure of

two molecules and then docking them, but such studies are in the very

preliminary stage.

E. Summary

In this review, we have described a number of approaches to the prediction of

protein structure and biochemical function. A key theme of this review is that

low-to-moderate resolution structures by state-of-the-art techniques are quite

valuable. If the structure has a backbone RMSD from native in the range of

4–6 Å, it can be used to identify the biochemical function of a protein, and known

ligands can be docked to identify the binding site as well as a low-resolution

prediction of the location of the ligand in the receptor. The question then is, What

are contemporary techniques for low-resolution protein structure prediction?

After having reviewed the state of the field, which includes a number of

promising ab initio studies [128,133,141,142,146] and threading algorithms [39,

53–56], we then introduced a unified approach to protein structure prediction.

This methodology involves the use of a newly developed, iterative threading

algorithm, PROSPECTOR [57], where one threads first (see Fig. 1). If there is no

significant match to a template structure, the consensus contacts and secondary

structure in the top 20 scoring structures are used as restraints in an ab initio

folding algorithm. On average, this contact prediction predicts about one-third of

the contacts correctly and predicts above 70% correctly within two residues.

Application of this methodology to a representative test set of 28 structures
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results in the native state (of low-resolution structures up to 6.5 Å) being in one

of the well-defined clusters in 15 cases. If fold selection is done not in the

reduced model but in an atomic model, then 17 cases are foldable. Conversely, if

PROSPECTOR identifies a global template, then we perform generalized

comparative modeling, GeneComp, to refine the structures. This procedure uses

the template alignment, as well as predicted contacts and secondary structure

(not necessarily from the template structure), as restraints. In practice, when

applied to representative probe proteins in the Fischer database [34,179],

GeneComp tends to perform better on average than Modeller [23,27]. Moreover,

it does no harm, that is, the quality of the model is either left the same or

improves. Thus, it can be used with impunity. As in ab initio folding, the

resulting structures are clustered and representative folds selected.

PROSPECTOR itself has been used to predict the tertiary structures of the

proteins in two genomes, M. genitalium and E. coli, and successfully matches

about 40% of the sequences to a known fold. Application of the three-

dimensional active site descriptors designed for low-resolution structures,

FFFs [8,10], allows one to select all known true positives, even when the Z

score is close to 1. Furthermore, threading followed by application of the FFF

has a far smaller false-positive rate than alternative sequence-based approaches

such as BLOCKS [236,246]. Such approaches need to be generalized from

treating enzymes to more generalized binding and macromolecular recognition.

This review describes one such way to use low-resolution structures to

identify the binding site and conformation when one has a known ligand. The

methodology was applied to those probe structures in the Fischer database that

co-crystallized with ligands. As shown in Table VIII, it is possible to identify

the binding conformation with moderate accuracy, even when the backbone

RMSD from native is 6 Å. This opens up the possibility of genome scale

screening of low resolution predicted structures for ligand binding.

While considerable progress has been made, there are significant challenges

remaining. The generalized comparative modeling approach, GeneComp, needs

to be extended so that it can treat highly homologous as well as analogous

structures. Furthermore, given that ab initio folding algorithms quite often

generate native-like structures, as also seen in generalized comparative model-

ing, development of better protein representations and energy functions that can

select native folds from misfolded states is more crucial than ever. Clustering

helps to reduce the problem by selecting representative folds, but routine

unequivocal selection of native-like structures is not yet possible. It seems

that the most promising approach is to convert the reduced models to full-atom

models and then use either physics or knowledge-based energy functions to

select the native structure. Use of active site descriptors can also help in this

regard, because they act like a filter. Because of their utility in biochemical

function assignment, better techniques for the construction of functionally
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relevant active sites is a must. Finally, while considerable progress has been

made in the docking of known small-molecule ligands to low-resolution

structures, methods must be developed that can identify such ligands, at the

least by enriching the yield of true positives. Work in this direction is underway.

In conclusion, while techniques for the prediction of low-resolution struc-

tures have improved, they still have a way to go before structure prediction

becomes routine. Nevertheless, this is a very laudable goal because low-

resolution structures are of considerable utility both in the identification of

biochemical function and in ligand docking. Such efforts will have to be applied

on a genomic scale if structure-based approaches to function prediction are to

play a role in the post genomic era. A number of such efforts are underway, and

doubtless there will be more in the future.
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and Protein Engineering Network of Centers of Excellence,

Edmonton, Alberta, Canada

JOHN R. GUNN

Schrödinger, Inc., New York, NY, U.S.A.; Centre de Recherche en Calcul
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I. INTRODUCTION

Under the general heading of ‘‘protein folding’’ there is an ever-increasing body

of methodology that has been rapidly evolving over the past few years. The

simply stated objective of computationally determining the three-dimensional

atomic coordinates of a protein starting from knowledge of the amino acid

sequence remains a somewhat idealistic academic challenge, but it has led to the

development of a technology base that is gaining in practical applicability. This

corresponds to some extent to a shift in philosophy in which a fundamental

understanding of the folding process is of less immediate interest than obtaining

the best model possible with whatever means are available. Fundamental

questions are of course still important and are being actively pursued [1–5], but

the field is being driven more and more by the pragmatic approach [6,7]. This is

highlighted by the effort being devoted to the CASP experiments, where the

emphasis is placed squarely on the bottom line [8]. In this context, the methods

used must be tailored to the particular problem at hand, and no available

information can be left unused. Much work therefore has been devoted to

making use of prior information and accumulated knowledge in the generation
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of computer models of proteins. This review will describe some of the ways in

which such methods are being incorporated within the traditional ab initio

framework.

A. The Knowledge-Based Approach

The label of ‘‘knowledge-based’’ is to some extent artificial, in that there is a

spectrum of methodologies and it is not always easy to draw a clear distinction.

The intended contrast is with a purist’s ab initio approach in which one seeks a

numerical solution to the fundamental laws of physics (as one would like to do

in quantum chemistry) with no theoretical limit on the problems that can be

addressed. A knowledge-based method, on the other hand, requires some form

of a priori knowledge and is therefore limited in its applicability by the data that

are available. If the term is used in its broadest sense, referring to methods that

make explicit use of the Protein Data Bank (PDB) of known structures, this

would still cover a range extending from methods which require there to be a

similar structure in the PDB to those that apply observed patterns in a more

general way. In principle, this includes virtually all methods because even the

most determined ab initio practitioner still has recourse to an empirical force

field that typically uses the PDB in its parameterization [9]. Even though such

force fields are as general as possible, the reliance on the PDB does represent a

real limitation, as anyone who has ever tried to use one to fold a membrane

protein can attest.

In the context of the CASP experiments [8], the distinction is drawn between

ab initio and ‘‘fold recognition’’ predictions, but there as well some overlap

occurs [7]. Fold recognition often involves some refinement to model parts of

the structure not found by homology, and conversely many ab initio methods

make some use of structural fragments from the PDB. It is precisely this middle

ground where the different categories are converging that is of interest and

where much recent success can be found. It has become clear that there is a

great deal of information to be had in the PDB and that progress is being made

by extending the ways in which it can be used. The knowledge-based approach

is therefore to develop methods to take advantage of what is there, even if the

underlying physical principles are not fully understood.

B. Recent Trends

One of the patterns that has emerged from the CASP experiments is the relative

success of the fold-recognition methods in identifying distant homologies, even

in some cases where none was originally thought to exist [8]. Until recently, ab

initio methods lagged far behind, but significant progress is now being made [7].

As mentioned above, however, this is coming from knowledge-based methods

that have incorporated some of the methods that have proven successful in

comparative modeling and fold recognition. It has been shown that so-called
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‘‘hybrid’’ methods can outperform more traditional fold-recognition and

ab initio techniques [10]. The more general methods of fold-recognition have

also been shown to outperform direct homology modeling in cases of weak

homology [11], suggesting that a flexible approach has the potential to cover a

broad spectrum of possible targets.

Another pattern that is emerging is an increased recognition that the PDB can

be used to identify structural motifs at different scales, not just individual

residues (as used to derive contact potentials) or entire domains (as used in

traditional fold recognition). Much recent work has gone into using the PDB to

develop databases of smaller fragments which can be used to construct protein

models [12], and an approach based on using local homology with a fragment

library has been shown to be quite successful at generating new folds [13]. This

building-block approach has also been used to generate improved sensitivity and

more accurate alignments when applied to fold recognition [14].

The trend toward a more generalized approach is also reflected in recent work

on scoring functions. It has been shown that traditional empirical potentials

perform poorly at discriminating the correct structure [15] and that the

functional form of pairwise contact energies is not even sufficient in principle

[16]. The importance of evolutionary relationships has also been established,

and information from multiple sequences can be used to improve recognition of

misfolded structures [17]. This idea has led to the use of conformational

tendencies and contact predictions from multiple sequence alignments [18]

and the development of scoring functions which take into account sequence

homology [19]. Scoring functions can therefore be constructed as a set of

complementary components: contributions that are unique to a given sequence,

those that depend on a family or class of sequences, and those that apply to all

proteins.

C. Practical Considerations

The bottom line in structure prediction is to provide a useful answer to a

question that is actually being posed. Ab initio predictions alone are rarely

accurate enough to be useful; however, as NMR spectroscopy is being used to

obtain structures for larger and larger proteins, there is a great practical benefit

in using computational methods to aid in this process. Structure prediction

methods, when coupled with experimental data, can be used to obtain higher-

quality structures [20] and even to help in interpreting and assigning the spectra

[21]. For this reason there is a great interest in developing methods that can

make the best use of various types of experimental data (often in the form of

constraints) in addition to that gleaned from the PDB.

The enormous progress that has been made in genome sequencing has also

led to increased efforts in functional genomics; that is, it has enabled the use

of prediction techniques to assign probable functions to newly discovered
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sequences [22]. In this case, the emphasis is less on obtaining accurate

coordinates and more on being able to detect weak homologies in distantly

related families of structures. Improved prediction methods therefore have an

important role in improving the sensitivity of fold-recognition techniques,

providing better alignments, and ultimately allowing weaker relationships to

be detected thereby classifying more of the genome. Even though the protein

folding problem may still be a long way from being fully solved, there is a great

opportunity for knowledge-based methods to have a significant impact in

improving structure prediction’s bottom line.

II. PROTEIN MODELING

The most direct approach to modeling protein folding would be to carry out a

simulation that replicates the actual folding process as it occurs in nature.

Although some progress has been made in pursuing that approach [23–25], it

remains impractical in most cases for two reasons: The time scale of the folding

transition for moderately sized proteins exceeds that which can be attained in

simulations, and the physical forces involved are not modeled with sufficient

accuracy to ensure the desired outcome. Because highly simplified models are

unsuitable for predicting structural details, a different point of view is needed to

carry out tractable simulations of realistic models. If one is not interested in the

thermodynamics of folding and wishes only to produce the folded structure, any

number of nonphysical buildup or pattern-generation techniques could be

imagined; however, many methods retain the basic model of a molecular

simulation, albeit with a number of simplifying approximations.

A. The Computational Model

The principal simulation paradigm is based on the thermodynamic hypothesis,

namely that the equilibrium structure corresponds to the global minimum of the

thermodynamic free energy. Whether or not this is strictly true for a given

sequence is not known; however, for the purposes of the simulation it is

generally assumed that some sort of energy-like function can in principle be

constructed for which the native structure is a minimum. This can be thought of

as some sort of modified free energy or as a purely empirical scoring function;

either way the mathematical problem is the same, namely to find the global

minimum. The general problem of global minimization is nontrivially difficult,

and therefore additional approximations are required in order to obtain a

solution in a reasonable time. The thermodynamic analogy is often used to

model this as an annealing process; however, in general any minimization

method can be applied.

In its general formulation, a simulation within the framework of global

function minimization consists of three basic elements. As mentioned above, the
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target function of the minimization must be defined so as to allow comparison of

different possible structures. Secondly, there must be a procedure to search

through the possible conformations in order to find the global minimum (or

other acceptable solution). Finally, the conformational space—that is, the range

of conformations that can be constructed and the means to transform one

conformation into another—must be specified in order to constrain the search.

Clearly, these elements are not independent and must fit together in order to

form a coherent model. For example, an energy function need not evaluate a

conformation that is not part of the allowable space. Nonetheless, each of the

three components offers a different means to incorporate empirical information

into the simulation.

B. Geometrical Representations

In order to reduce the number of degrees of freedom, most simulations use a

reduced model description of the protein in which only a subset of the atoms are

present. There are many variations on this theme, most of which have been

previously reviewed [26]. The most common approach is to represent the main-

chain N–Ca–C0 atoms explicitly, with the side chain either being represented by

the Cb atom or by an extended model atom corresponding to the approximate

center of mass of the side chain. The bond distances and bond angles are usually

fixed to standard values, thereby leaving the backbone dihedral angles f and c
as the only degrees of freedom (with the conjugated peptide dihedral angle fixed

at 180�, in some cases allowing 0� as well for proline residues). The dihedral

angles can either be restricted to a limited number of allowable conformations

or be allowed to continuously vary within a specified region, and both of these

approaches have been explored in our group and others.

Another method we are currently developing divides the molecule into

segments based on the assigned secondary structure. The relative positions of

the segments and the positions of the residues within each segment are optimized

in distinct steps, thereby allowing the overall topology to evolve using a long-

range potential with the detailed atomic coordinates to be adapted accordingly.

The protein backbone is initially not required to be continuous from one

segment to the next; and each segment can be deformed as the topology changes,

creating unnatural bond lengths and angles. The correct covalent connectivity,

rather than being rigid from the start, is gradually annealed in using a special

constraint potential during the course of the simulation.

The details of side-chain conformation are generally determined by local

interactions and have relatively little influence on the overall topology of the

fold. Methods have been developed to assign probable side-chain conformations

based on backbone dihedral angles and observed preferences in the PDB, and

this technique has been shown quite effective in correctly placing side-chain

atoms on a fixed backbone [27]. The task becomes more difficult if there are
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significant deviations in the backbone, because the details of the side-chain

contacts will no longer be the same [28]. In a recent approach, the side-chain

conformations are represented by specifying a distribution of discrete rotamer

states without actually including any additional coordinates. The ability of the

backbone conformation to adequately accomodate the side chains can be eva-

luated using a rotamer-dependent mean-field energy and a conformational

entropy [29].

C. Search Algorithms

The most common minimization technique is based on the principle of

simulated annealing, which involves generating an ensemble of structures which

is slowly converged toward the lowest-energy region of the conformational

space. This method requires that the conformational sampling be able to avoid

becoming trapped in a local minimum, and a number of techniques have been

developed to overcome this problem [9,30]. Other successful approaches

include using a branch-and-bound algorithm to limit the scope of local searches

[31], as well as combining discrete Monte Carlo trial moves with local gradient

minimizations [32].

Lattice models have also been used in order to discretize the conformational

space in three dimensions. A relatively fine-grained model can be searched

using methods similar to those described above [33], or a coarser model can

be used to generate a set of possible topologies which can then be further refined

using a more detailed model [34]. Further refinement can be carried out by using

consensus inter-residue contacts from simulations to generate new structures

that attempt to reproduce as many as possible [35,36]. Searches can even be

carried out directly in terms of inter-residue contacts and then used to generate

three-dimensional coordinates [37]. Another means to simplify the conforma-

tional search is to increase the range of the potential interactions during the

simulation in order to build up larger-scale features of the structure [38].

Our approach is the hierarchical algorithm [39,40], in which trial moves are

generated and evaluated in three different steps. At the simplest level, segments

of three residues (triplets) are generated by choosing three sets of ðf;cÞ values

at random from an allowed list. Each triplet is immediately accepted or rejected

according to whether or not the orientation of its endpoints falls into an allowed

region of triplet conformational space. The second level consists of complete

loop segments as determined by the secondary structure. These loops are

evolved from previously existing structures by using the set of triplets from

the first level as trial moves and by evaluating new loops based on the difference

in overall geometry from the starting loop. The final level then corresponds to

the entire molecule, for which the trial moves consist of substituting entire loops

with the new loops generated in the second level. It is only at this final level that

the structure is evaluated by calculating the full scoring function, which is then
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minimized using a genetic algorithm consisting of separate mutation, hybridiza-

tion, and selection steps.

D. Scoring Functions

In most current prediction methods, the objective of the scoring function is not

to reproduce the physical properties of the system, but to provide the best possi-

ble recognition of the native structure. These functions can be parameterized

strictly on a statistical basis to optimize their performance [41]. Although there

is some correlation between statistical potentials and those developed from

physical principles [42], the former generally provide better results for

predictions [43]. The energetic point of view is often used to motivate the

development of a scoring function, but in practice the goal is simply to evaluate

the relative probability that a given structure corresponds to a real protein. A

typical energy can be defined as

E ¼
X

ij

Eij

where the pairwise residue–residue energy is

Eij ¼ �kT0 ln PijðrijÞ

and Pij is the relative probability of finding residue pair i–j at a distance rij. If one

then uses the Metropolis test to accept or reject a trial move from initial energy Ei

to final energy Ef according to the value of expð�ðEf � EiÞ=kTÞ, the same

algorithm could be equivalently formulated in terms of accepting moves with a

probability of ðPf =PiÞa, where a ¼ T=T0 and

P ¼
Y

ij

PijðrijÞ

In principle, one could try to maximize the probability, its logarithm, or for that

matter any other monotonic function of it.

Empirical scoring functions generally consist of multiple components, both

sequence-independent and sequence-dependent [44,45]. The former include

terms to control the overall size and shape of the molecule, as well as charac-

teristic features of local structure depending on the geometrical model being

used, whereas the latter take into account the specific interactions among

residues. Some scoring functions are based on physical principles, such as

electrostatic interactions [38] and van der Waals forces [46], with additional

parameterization based on the PDB. The most common type of scoring function,

however, is based directly on observed distances between different amino acid

200 pierre-jean l’heureux et al.



pairs in the PDB, and it is formulated as a table of (possibly distance-dependent)

pairwise contact probabilities between amino acid types [47,48]. They differ

mainly in the functional form to which they are fit, as well as in the details of the

normalization of the probabilities, which is a nontrivial task for a heterogeneous

data set like the PDB [48,49]. The scoring functions used in our group are of this

type, the details of which have been published elsewhere [32,39].

Additional specificity can be built into the scoring function in several ways.

Specialized pattern-recognition and multibody terms can be included to generate

more realistic secondary and supersecondary structural motifs [45,50]. The

secondary structure can also be explicitly taken into account when calculating

residue contact probabilities, in order to distinguish interactions between amino

acids in different secondary-structure units [51]. In a more sophisticated

approach, the local sequence homology is used to adjust the statistics for a

particular target sequence [19]. The trend toward more explicit pattern recogni-

tion and sequence specificity in the generation of scoring functions allows more

of the subtle homologies in the PDB to be exploited, although some chemical

insight is still required to express it in an appropriate functional form.

III. CONSTRAINT METHODS

Constraints provide a very direct means to add information to a simulation—

simply requiring all generated structures to satisfy certain additional conditions.

This approach has been used extensively to generate three-dimensional

structures from NMR spectra [52], which provide data in the form of inter-

atomic distances. In principle, if one had enough distance constraints, the

problem would be overdetermined and could be solved mathematically with no

further information required. It has been shown, however, that the use of

knowledge-based simulations based on homologous structures or fragment

libraries from the PDB provides more accurate models than constraint-based

methods alone [20,53].

In the case where the constraints alone are insufficient to determine the

structure, they can still be used to supplement energy-based simulations. The

goal in this case is to make the most effective use of the constraint information

and to obtain good results with a minimum of additional information required.

Because the source of the constraints is typically experimental spectra that must

be assigned and interpreted, or theoretical methods (such as multiple sequence

alignments) that may be incorrect, it is also important to take into account errors

especially in difficult cases where the input data is incomplete or uncertain.

Under these conditions, the constraints can be regarded as an additional

component of the scoring function, expressing the probabilities of different

structures, rather than as a rigid requirement. In many implementations, these

interpretations are in fact equivalent.
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A. Types of Constraints

Constraints can in principle be applied to any property of the structure where

some sort of prefered value can be determined; however, the most common

are those that correspond to experimental information. Some common types are

outlined in the following sections.

1. Distance Constraints

Although the use of distance constraints to determine structures from NMR

spectroscopy is well-established [52], these are experimentally determined

structures rather than predictions in the sense used here. Applying a limited

number of distance constraints to the simulation of an unknown structure in

order to determine the gross topology rather than the detailed coordinates is a

more recent approach [54]. This work showed, however, that the number of

distances required for this purpose was at least an order of magnitude less than

that needed for a complete structure determination. The emphasis in recent

years has therefore been to reduce this number even further and to increase the

size of protein that can be studied, with the goal of obtaining better

structural information while requiring fewer experiments. In practice, tests are

usually carried out on known structures where a given number of distances can

be chosen at random to simulate such data.

2. Angle Constraints

There are currently experimental techniques to extract dihedral angles from

NMR chemical shifts and coupling constants [55,56]. There is, however, a

considerable margin of error on the order of �45� in the actual values, which

varies according to secondary structure [57]. These values are therefore

insufficient for purposes of constructing the backbone by a sequential buildup;

however, the target values and corresponding uncertainties can be applied as

constraints in a torsional scoring function. The same applies to local backbone

distance constraints, which in a reduced model are more conveniently expressed

as limits on the dihedral angles rather than as specific interatomic distances.

Although the dihedral angles in principle determine the structure directly, it is

possible to have significant local variations in f and c without appreciably

changing the overall fold. The goal is therefore to use local dihedral constraints

to bias the simulation toward the native structure while maintaining sufficient

flexibility to avoid propagating errors due to incorrect values. Angle constraints

can also be effectively combined with distance constraints to obtain greater

precision from experimental data [58].

3. Other Types of Constraint

Data from NMR experiments which measure residual dipolar coupling [59] and

paramagnetic relaxation [60] can be used to derive long-range geometrical
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constraints and global features of the structure. These methods allow one to

determine the relative orientation of N–H bonds relative to a common

(unknown) reference frame, although not directly to one another. Although it

is difficult to extract detailed information from this type of data due to the

inherent degeneracy of the relative orientations, it is complementary to the types

of constraints mentioned above and therefore can be very useful in folding

simulations to screen out incorrect structures. This type of constraint lends itself

well to a scoring-function approach, because it is easier to calculate the values

that would be produced by a predicted structure and compare them with the

experimental data than to impose a priori constraints in generating the structure.

Although this type of constraint shows considerable promise, its use in

simulating larger proteins is still less well developed than the more traditional

distance and angle constraints.

B. Deriving Constraints from Predictions

Although the emphasis so far has been mostly on experimentally determined

constraints, the same techniques that have been developed, especially in the case

of uncertain or ambiguous constraints, can be just as well applied to

theoretically predicted data. In cases where this is derived from sequence

homology and/or multiple sequence alignments, the use of predicted constraints

effectively generates a sequence-specific scoring function where any additional

information is added to the generic scoring function already in place. Probable

contacts can be derived from correlated mutations in a family of aligned

sequences [18,61]. If a structure is known for at least one member of the family,

contacts that are observed in the known structure which are likely to be

conserved can be identified by looking at correlated mutations across the

sequences, using the hypothesis that pairs of sites which have an increased

probability of changing in concert are more likely to be in physical contact.

Because there is a large number of possible pairs in a given sequence, as well as

a relatively low signal-to-noise ratio in evaluating correlations, this method is

less effective when based solely on sequence data without a reference to identify

pairs that are likely to be in contact at all. On the other hand, extracting probable

contact pairs can provide better results than direct homology modeling when the

homology is weak and the structural alignment is uncertain.

Probable backbone dihedral angles can be predicted using sequence-based

methods similar to those used in predicting secondary structure [62,63].

Although this could be considered a simple torsional potential, it is included

in this section because it nonetheless incorporates sequence-specificity into the

potential and can be implemented using the techniques of flexible angle

constraints. In another method, contact distances between residues in different

helices were determined by first selecting likely hydrophobic residues to form

helix–helix contacts and then using a distance range typical of observed helix
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pairs in the PDB [36]. Distance constraints can also be generated directly from

the simulation results themselves [35]. In an ensemble of predicted structures,

the frequencies of inter-residue contacts can be analyzed to identify those that

are observed across a range of structures. These ‘‘consensus’’ contacts can then

be imposed as constraints and used to generate structures that are better than any

of those used to derive the constraints. A similar approach has been used in our

group to correctly identify inter-residue contacts using an ensemble of structures

in which no structure individually had the correct topology.

C. Constraint Implementation

Constraints are typically applied as a penalty function that is added as an extra

term in the scoring function, often as some simple function (e.g., harmonic) of

the difference between the actual and target values. Other strategies are possible,

however, and constraints have also been used systematically in the construction

of model structures. This can be applied to distance constraints, where a buildup

procedure is used to generate structures that satisfy all constraints [64]. Angle

constraints can also be used to systematically search the conformational space,

both using a branch-and-bound procedure [65] or in a tree-search algorithm in

combination with distance constraints [66].

In the case of sparse constraints, however, it has been shown that there is an

advantage to using more flexible, or ‘‘floppy’’ constraints that allow for a more

effective conformational search [67]. In our work, we apply inter-residue cons-

traints to the Cb–Cb distances, regardless of the atoms involved in the original

data. This is partly due to the practical problem of not representing side-chain

atoms, but it also serves to simplify the calculation. The range of possible Cb–

Cb distances consistent with the data is accounted for by using generous limits

on the constraints. Rather than corresponding to a loss of precision, this actually

improves the efficiency of the minimization.

We have studied a variety of functional forms for the constraint penalty

functions and have found that a flat-bottom well with an exponential tail

provides the best results. This penalty function has the form

UðrÞ ¼ �1; r < c

�expð�r=dÞ; r > c

�

where c is the maximum constraint distance and d is the width of the tail. The

best results are obtained with a square-well width of 8 Å and a tail width of 3 Å.

The width is held constant independent of the actual constraint distance, because

this allows greater flexibility and gives better scores to nearly correct structures.

In fact, even for distances known to be less than 6 Å, setting c to 8 Å gave better

results than a c of 6 Å, due to the fact that correct contacts are better recognized

204 pierre-jean l’heureux et al.



despite local errors in the structure. For the same reason, no inner cutoff was used

other than the usual excluded volume term.

In cases where the constraints are known to be accurate, good results can also

be obtained for penalty functions that become large at long distances, such as

linear or quadratic tails. This gives a large energy for any structure that severely

violates any constraint. This is fatal, however, in cases where some constraints

are incorrect or even contradictory. It is therefore important to ensure that while

there is a favorable score for satisfied constraints and an attractive force in their

vicinity, in the limit of grossly violated constraints the corresponding score goes

to zero and is simply ignored.

1. Ambiguous Constraints

Ambiguous constraints arise in working with NMR NOE data that haven’t been

completely assigned [68]. In cases where similar residues have virtually the

same chemical shifts, it can be difficult to identify which sites in the sequence

are responsible for an observed contact. The same principle also applies to

cysteine (S–S) linkages where several different pairings of cysteine residues

may be possible. In such cases, carrying out a simulation with simultaneous

constraints corresponding to each possibility can be used to determine the cor-

rect pairings [69]. The results of simulations with conflicting distance constraints

have even been used to eliminate incorrect assignments for subsequent simula-

tions and eventually deduce the correct contacts [21,70]. Another approach that

gives rise to ambiguous constraints is the simulation of predicted secondary

structure, where the different possible assignments can be expressed as a

weighted combination of short-range distance constraints [71].

In our implementation, ambiguous distance constraints are simply expressed

as a linear combination of all possibilities; in other words, all constraints are

treated equally. As the penalty function goes to zero for violated constraints, the

score is essentially the same for a residue that satisfies any one of the possible

constraints, and the structure as a whole is optimized to satisfy as many as

possible. An optional weighting factor can be included to represent the relative

probabilities associated with different assignments.

D. Results

In order to test some of the ideas discussed above, we have carried out a number

of experiments on known structures by artifically generating constraints from

the PDB coordinates. Although this is far removed from real-world applications,

having precise control over the quantity and quality of the supplemental data

allows the methods to be carefully evaluated and allows their limits to be better

determined. In the following sections, some representative examples are pre-

sented to illustrate the progress that has been made, and comparisons are shown

with similar work from other groups.

knowledge-based prediction of protein tertiary structure 205



1. Distance Constraints

The implementation of distance constraints was tested using two small globular

proteins that have been previously studied in the literature: calcium-binding

protein (3ICB), an a protein with 72 residues, and tendamistat (3AIT), a

b protein with 62 residues [72]. In each case, a total of 10 constraints were

chosen at random from among the eligible pairs of residues in the crystal

structure. This was repeated for 20 simulations, each using a different set of

constraints, and compared with earlier literature results [73]. The results are

summarized in Tables I and II. For 3ICB, 10 constraints are sufficient to find as

good a structure as was found using all of the constraints. Because of the use of

ideal b-strands without any sort of strand-pairing potential, 3AIT proved to be

much more difficult, although the addition of 10 constraints does also lead to a

significant improvement. Other published simulations [74] show better results

when all of the constraints are used, but fail completely for small numbers of

constraints. A test was also carried out with a larger molecule, myoglobin

(1MBA), an a protein with 140 residues, the results of which are shown in

Table III. Using 20 constraints in this case, a structure with an RMS deviation of

4.5 Å was obtained, comparable to 4.9 Å reported elsewhere for the same set

TABLE I

Results of Simulations with Constraints for 3ICB

Standard

Constraints Low RMS Average RMS Deviation

Present work 0 4.6 9.8 1.9

10 3.0 4.9 1.3

89 3.0 3.3 0.2

Aszódi et al. 0 10.0 1.5

10 6.3 2.0

86 2.9 0.2

TABLE II

Results of Simulations with Constraints for 3AIT

Standard

Constraints Low RMS Average RMS Deviation

Present work 0 8.4 9.7 0.4

10 4.8 8.4 1.3

116 3.6 6.8 1.6

Aszódi et al. 0 9.4 0.7

10 5.8 0.6

120 3.7 0.2
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of constraints [75]. This result improved to 3.2 Å with a random selection of 30

constraints, which was essentially equivalent to results obtained with larger

numbers of constraints.

2. Angle Constraints

Within our hierarchical model, it is more convenient to implement angle

constraints in a different manner. Instead of using a scoring-function approach,

we introduce the constraint information at the level of the list of allowed f–c
pairs. Because the pairs are selected randomly, the number of values in each

region will determine the corresponding bias in the simulation. Test calculations

were carried out for myoglobin (1MBO) in which part of the dihedral list

corresponded to the usual distribution and the other part was limited to a region

with a width of 30� around the target values. Clearly, if the weight of the latter

region is 100%, this represents a rigid constraint, however, in order to maintain

the flexibility of the simulation and allow for the possibility of incorrect data, it

is useful to retain some of the original distribution. Simulation results are

summarized in Table IV as a function of the relative weight of the constraint

region. Good results are obtained with a 50% weighting, indicating that there is

TABLE III

Results with Constraints for 1MBO

Low Average Standard

Constraints RMS RMS Deviation

Present work 0 7.1 12.3 1.8

20 4.5 10.3 1.8

30 3.2 5.7 1.2

50 3.6 5.3 1.6

100 2.9 4.5 1.0

Skolnick et al. 20 4.9 5.6

TABLE IV

Results of Simulations of 1MBO Using Angle Constraints with Different Relative Weights

Constraint Weight (%) Low RMS Average RMS Average Score

0 8.1 11.1 �172

6 7.4 11.7 �172

20 4.9 9.8 �173

30 5.1 6.5 �218

50 2.5 4.1 �226

100 1.7 2.7 �226
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a strong cooperative selection. On the other hand, a control experiment was

carried out also with 50% weighting, in which the target values were chosen at

random, thus giving a nonsensical structure if taken together. The results in this

case were essentially the same as those with no constraints at all, showing that

the simulation is nonetheless able to ignore incorrect data.

3. Ambiguous Constraints

In order to test the sensitivity of the simulation with respect to incorrect data, a

series of experiments was carried out in which the total number of distance

constraints was held fixed, but the number of which were correct was varied. In

a first trial, again with myoglobin (1MBO), 100 constraints were used. The

correct constraints were derived by randomly selecting from among the possible

contacts observed in the PDB structure, and the remaining number were ran-

domly selected from pairs of residues known to be at least 20 Å apart in the

correct structure. This was repeated with several different sets of constraints, to

avoid any bias due to a lucky choice of correct constraints. The results are

shown in Table V. Compared with the results in Table III, there is clearly a loss

in performance due to the presence of incorrect constraints; however, reasonable

results can still be obtained in cases where the nonsensical constraints actually

outnumber the real ones. A similar experiment using flavodoxin (2FX2), a

mixed a=b protein with 143 residues, is shown in Table VI. Although there is an

increasing number of misfolded structures, as indicated by the average RMS

TABLE V

Results for 1MBO with 100 Total Constraints

Number of Good Number of False

Constraints Constraints Low RMS Average RMS

100 0 2.6 4.7

75 25 3.7 5.2

50 50 4.0 6.8

30 70 5.3 8.9

20 80 6.0 10.8

TABLE VI

Results for 2FX2 with 100 Total Constraints

Number of Good Number of False

Constraints Constraints Low RMS Average RMS

100 0 4.6 7.2

75 25 5.2 9.4

50 50 5.2 11.9
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deviation, the simulation is still able to find reasonable structures with only half

of the constraints correct. A further experiment on myoglobin with 150

constraints, shown in Table VII, shows that the constraints remain useful with as

few as 20% correct. Values in parentheses are actually higher than in a

comparable simulation with no constraints at all. These results support the idea

that, up to a certain limit, more data is better even if it becomes less reliable.

4. Predicting Constraints

The most promising method for predicting distance constraints is based on

correlated mutations in multiply aligned sequences. This approach has been

used in folding simulations with on average about 25% of tertiary contacts

predicted to within �1 residue in the sequence, and it was shown that this is

sufficient to generate reasonable fold predictions [18,61]. In experiments carried

out in our group, summarized in Table VIII, the predicted constraints were

found to be more than sufficient to generate reasonable structures. Predictions in

this case are considered correct if the two Cb atoms are in fact within the 8 Å

TABLE VII

Results for 1MBO with 150 Total Constraints

Number of Good Number of False

Constraints Constraints Low RMS Average RMS

100 50 4.0 5.9

50 100 3.7 7.7

30 120 6.1 10.7

20 130 (9.2) (13.2)

TABLE VIII

Contact Prediction Accuracy

Target: 1CCR 2LHB 1MIL

Sequence length: 107 134 84

Aligned sequences: 10 7 6

Maximum indentity: 62 31 29

Low Sensitivity

Predicted contacts: 88 81 84

Percent accurcy: 93 89 88

High Sensitivity

Predicted contacts: 33 47 45

Percent accuracy: 100 89 87
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well used in the simulation. Results are shown for both low and high sensitivity,

meaning that the criterion used to predict contacts based on the statistical

significance of the sequence correlations was more strict in the latter case.

Although this improves slightly the accuracy of the predictions, the larger

number of total contacts provides a clear advantage for the low sensitivity

predictions. In particular, in the case of 1MIL where there are relatively few

aligned sequences with low homology, the selection criterion was of little use

and yet the overall quality of the predictions was quite good.

IV. LIMITING THE SEARCH SPACE

Generic information about protein structure can be incorporated in a simulation

by restricting a priori the conformations that can be generated. If the simulation

is only capable of producing structures with certain realistic properties, the odds

of finding the correct fold are greatly enhanced. In the extreme case, the choices

would consist of a limited number of compact folded structures for the entire

sequence. In such a ‘‘simulation’’ the global minimization problem is trivial

(exhaustive enumeration becomes feasible) and the scoring function need only

distinguish among topologicaly different structures without reproducing any of

the interactions that stabilize such structures in the first place. Clearly, all the

work is being done in the initial definition of possible trial structures, which

therefore becomes the determining element of the algorithm. There is a

necessary tradeoff between using the characteristics of known folds to limit the

search and running the risk of incorrectly excluding a structure that had not been

previously seen.

A trivial application of this principle, however, is the use in the hierarchical

algorithm of a list of allowed f–c pairs in generating new segments. This

eliminates the need for a scoring function to penalize unfavorable regions of the

Ramachandran map, as well as the need to sample such unlikely regions of the

conformational space. Although the definition of this list is entirely empirical,

based on observation of the PDB, it still represents real interactions that a new

structure would be very unlikely to violate.

A. The Principle of Threading

The most obvious way to select realistic structures is to simply use those that are

already known in the PDB, and this is the basis of what is commonly known as

threading. Threading is normally associated with the problem of fold

recognition—that is, identifying homologous structures in the PDB—rather

than in the context of simulation. It is included here as the limiting case of a

restricted search in order to establish a relationship between the ab initio and

fold-recognition approaches and also to provide a framework for describing

various intermediate methods that have been developed.
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In its simplest incarnation, threading consists of attempting to map the target

sequence onto the backbone coordinates of all structures in the PDB of equal or

greater length. This can be visualized as stringing a flexible chain of amino

acids along the fixed scaffold of a known structure—hence the name threading.

In this simple approach, the number of possible alignments (mappings of the

target sequence onto the corresponding residues of a known structure) is limited,

and most empirical scoring functions are capable of recognizing truly homo-

logous structures. The method fails, however, to identify distant structural

homologs and is obviously incapable of generating any new folds. More realistic

methods allow the connectivity of the template structures to be modified [76]

and allow gaps and insertions to be introduced in the alignments. This, however,

greatly increases the number of possible alignments and makes the problem of

recognizing homologous structures that much more difficult [77].

B. Local Threading and Fragment Lists

One way to overcome the combinatorial problem is to divide the problem into

smaller local alignments. This can be done as a first step in generating a global

alignment to a single known structure [14], or alternatively to identify shorter

segments that align to parts of different structures. The structure of a known fold

can be described by specifying the local environment of each residue: secondary

structure, polarity, and solvent exposure [78]. This allows the threading to be

carried out locally, aligning a linear sequence to a series of profiles by the same

methods used for sequence–sequence alignments, independently of the rest of

the molecule.

The resulting local alignments lead to a large number of possible combina-

tions that must still be reassembled into a single structure. In this situation,

rather than attempting to either select the best local homologs or carry out an

exhaustive enumeration, it is more effective to return to a stochastic simulation

where the local templates act as lists of trial structures for each segment. In this

way, the principle of using a restricted set of conformations can be extended

across various levels of structure: from individual amino acids (as in a typical

simulation) to multiresidue fragments, loop and secondary structure elements,

supersecondary motifs, and ultimately entire domains (as in a typical threading

calculation).

1. Using a Motif Library

A set of commonly occurring structural motifs, along with their associated

sequence profiles (the probability for each amino acid to occupy each site in the

structure), have been extracted from the PDB using local sequence and structure

alignments [13]. Experimental evidence has even shown that some peptides do

in fact adopt the corresponding motif structure in isolation and that strong fits to

the sequence profile can possibly be used to identify sites of folding initiation
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[79]. These motifs have been successfully used in a simulation algorithm to

predict new folds, providing one of the more impressive achievements in the

CASP-3 experiment (see Simons et al. in Ref. 8). This motif library has now

been united into a global prediction scheme using a hidden Markov model to

encode extended sequence profiles [63]. A similar library of loop motifs has

also been used to model loop regions in homology models using the flanking

secondary structure as a guide [80].

2. Mapping Conformational Space

Rather than attempt to identify common motifs, another approach is to try to

identify a minimal set of building blocks that can be used to represent any

known structure [12]. This essentially corresponds to a redefinition of the

geometrical model in which the smallest unit of structure becomes a five- or six-

residue fragment. The result of using this model is a greatly reduced number of

degrees of freedom and a more efficient exploration of conformational space.

C. Fragment Screening and Enrichment

As an alternative to using preselected fragment lists to build up a model

structure, a more general approach is to use the characteristics of homologous

structures to screen possible conformations. The idea is still to allow arbitrary

conformations, as in a traditional simulation, but to increase selectively the

proportion of generated structures with the desired protein-like qualities. By

using homologous motifs from the PDB to define the selection criteria,

sequence-dependent conformational preferences can be introduced into the

simulation without reducing the flexibility of the model.

1. The Hierarchical Approach

In the hierarchical algorithm [40], the structures of the residue triplets are

generated from independent residue conformations which are determined by the

three amino acid types. These triplets are then screened according to the relative

orientations of the end residues, which determine the positions of the flanking

segments. For a given target sequence, the distribution of triplet geometries is

calculated for segments in the PDB which have a local sequence homology

greater than a specified cutoff. This distribution is used to accept or reject

randomly generated triplets so as to reproduce the observed probabilities of

finding a triplet with a given geometry. This generates a sequence-specific list of

triplet conformations which can then be used to generate larger fragments. In

preliminary tests using this method on a set of test proteins, both the average

energy and deviation from the native structures was found to decrease as the

selectivity of the screening (the homology threshold) was increased. In these

tests, any structure with significant global homology to the target sequence was

excluded from the fragment database.

212 pierre-jean l’heureux et al.



Loop segments of varying lengths are then built up by randomly selecting

from the lists of triplet conformations. Loops are again selected by comparing

the end-to-end distances and rotations with homologous loops in the PDB.

Although the internal structure of the loops is free to vary, the goal is to generate

structures that are more likely to produce a favorable positioning of the flanking

segments. Because this type of selection is applied successively at three

different levels of structure, the overall process is quite efficient and the cutoff

parameters can be freely adjusted to give the desired level of structural

similarity and sequence homology at various stages of the simulation.

D. Modeling Secondary Structure

Due to its well-characterized regular motifs, secondary structure is an obvious

candidate for fragment-based modeling. Indeed, a common approach, and the

one traditionally used in our group, is to simply hold the secondary structure

fixed during the calculation, which is an extreme application of the principles

described in this section. In cases where the secondary structure is predicted

from the sequence, this is a crude application of fragment selection by sequence

profile. This effectively removes a large number of degrees of freedom and

eliminates the need to use the scoring function to stabilize a-helix and b-sheet

conformations.

This approach can be generalized, and some flexibility reintroduced into the

structure, by developing specific models to reproduce the observed variability

within the regular structures. A list of strand or helix structures can be

assembled from the PDB, with associated error tolerances on the dihedral

angles to account for kinks and imperfections, and this can be used to define the

possible conformations of an arbitrary helix as a single unit. Sheets are in

general more complex and show more natural variability; however, the possible

collective structures have been extensively studied and characterized [81,82].

Using the generic properties of b-sheets, a library of conformations with varying

twist and curvature can be constructed for an arbitrary sequence.

As a preliminary test, we have carried out a series of simulations with a range

of possible helix and strand geometries to determine if the tertiary contacts

would be sufficient to identify the native structure. The list of trial structures

consisted of a continuous deformation from an ideal geometry to the (known)

native geometry, with the same deformation vector extended to also generate

even more deformed structures. The results for a set of test sequences are shown

in Figs. 1 and 2 for helices and sheets, respectively. The deformations are

grouped into discrete bins, and in each case the corresponding native structure

falls into bin number six. For helices, which have a smaller average deforma-

tion, the distribution is relatively smooth with a maximum at the native

geometry. In the case of b-strands, the distribution is more-or-less flat with a
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more pronounced peak at the native geometry, suggesting that the correct

deformation does in some sense better ‘‘fit together’’ and is energetically favored.

V. HOMOLOGY AND STRUCTURAL TEMPLATES

For homologous proteins, a threading alignment as described in the previous

section can be used to provide a template for the entire structure. In the absence

of global homology, however, local alignments can still be used to extract
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Figure 1. Helix selection frequency as a function of relative deformation for a set of test

proteins. In each case, bin 1 corresponds to an ideal structure, bin 6 corresponds to the native

structure, and the other bins correspond to a linear extrapolation.
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Figure 2. Strand selection frequency as a function of relative deformation for a set of test

proteins. The bin deformations are as in Fig. 1.
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localized structural constraints. This approach, unfortunately, results in the loss

of any information about the overall topology of the tertiary structure, which is

the most difficult part of the folding problem. An alternative is try to identify a

smaller number of aligned residues, possibly with significant gaps, in order to

provide key reference points for determining the overall structure. In this case,

much local information will be missing, and local structure must still be

determined using standard simulation methods; however, the relative three-

dimensional positions of different parts of the structure can be controlled. This

is consistent with the chemical interpretation of a relatively small number of

conserved residues playing an important role in both fold stability and function

(although of course there are many exceptions to this picture.) When the

homology is weak, it may be more effective to try to identify the most probable

conserved residues than to rely on a global alignment that is likely incorrect.

A. Identifying Structural Templates

The most straightforward approach is to carry out a standard threading

calculation and exclude regions with a poor alignment score. Template residues

can also be excluded in regions where the target is not predicted to have a

regular secondary structure, or where the template secondary structure differs

from that predicted for the target. In this way, the parts of the alignment most

likely to correspond to a stable core can be identified and the simulation can be

used to fill in the gaps. In our implementation, the superposition of the selected

residues with their corresponding coordinates in the aligned template structure

is then used as an additional contribution to the scoring function. Another

approach is to constrain the simulation to follow the template structure, but to

allow the specific alignment to change during the simulation [83].

Positions likely to be conserved in a sequence can also be identified by

searching through a database of known sequence patterns such as PROSITE

[84]. In our approach, patterns identified in the target sequence were then used

to search the PDB for structures containing the same patterns. The coordinates

of the conserved residues were then averaged over all matching structures to

generate a composite template that was then used in the simulation. An experi-

ment was carried out for the myoglobin sequence (1MBO) using coordinates

from seven structures in the PDB having less than 20% sequence identity with

1MBO to obtain the template coordinates. The results of the simulation are

shown in Table IX as a function of the number of template sites used. Good

structures were obtained using a template with a relatively small number of

aligned residues.

B. Multiple Templates

In many cases there may be more than one possible template for a given target

sequence. This can arise from different choices of reference structure, or for the
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same reference structure different alignments and choices of predicted secondary

structure. In addition, different parts of the target sequence might align well to

different structures in the PDB. In such cases, the simulation can be used to

choose among conflicting alignments and to combine different templates.

1. Template Competition

In our implementation, the same philosophy is used as in the case of distance

constraints. The scoring function is a spline-fit switching function of the actual

superposition RMS deviation with the template coordinates. This function is

equal to �1 below a lower cutoff value, equal to zero above an upper cutoff

value, and varies smoothly in between the two. Conflicting templates can there-

fore be used simultaneously, and a favorable score will be obtained for structures

that superpose well on any one or more of them and no penalty is assessed for

distant templates. The simulation can therefore be used to identify which of the

possible templates gives the best fit consistent with the connectivity of the

sequence and the generic scoring function.

2. Results

This methodology was used in the most recent CASP experiment, from which

two representative examples will be described which illustrate how the methodo-

logy was applied. For sequence T0089, threading results suggested eight

possible templates for the N-terminal region, four possible templates for the

C-terminal region, and three or four different alignments and secondary-

structure assignments in each case. None of the alignments had a sequence

identity greater than 15%, and in addition there was a gap of about 120 residues

between the two templates. Simulations were run using all possible combi-

nations of two templates, and the final prediction was selected based on the fit

to the templates, the overall energy, and the ability of the connecting segment

to fold.

The situation was reversed in the case of sequence T0087, where instead of a

gap there was an overlap of over 100 residues between the two proposed

templates. In this case, 11 choices for the N-terminal region and six choices for

TABLE IX

Performance as a Function of Template Size for 1MBO

Size of Template Low RMS Average RMS

0 9.5 13.8

11 4.7 9.4

25 3.0 4.2

50 2.4 3.3

146 2.1 3.0
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the C-terminal region were identified, all with about 10–15% sequence identity.

For each possible combination the two templates were used simultaneously,

thereby generating a conflicting set of constraints for the region in which the

two overlapped. The final prediction was selected as that which provided the

best simultaneous fit for both templates, thus hopefully giving a relative

orientation of the two domains consistent with the context of each.

Unfortunately, the preliminary results indicate that none of the proposed

templates was correctly aligned to the native structure, so it is difficult to judge

the performance of the simulation methodology. In each case, however, the

submitted structures were correctly ranked, with the best one selected as the first

choice.

C. Local Templates

The use of multiple simultaneous templates can also be extended to model

generic structural motifs. In contrast to the method of segment libraries dis-

cussed earlier, these are structural relationships which are nonlocal in sequence;

rather than describing the local backbone conformation, the goal is to describe

the relative spatial orientations of different structural elements. The use of

multiple templates allows different possibilities to be considered, thereby provi-

ding a library of three-dimensional relationships. This use of generic structural

templates provides a general alternative to local multibody scoring functions

that recognize specific structural motifs.

1. b-Strand Pairing

Generating realistic b-sheet structures is a notoriously difficult problem due

to the specific relative orientation of noncontiguous backbone segments

produced by the H-bonding pattern. The H-bonds themselves, however, are

short-range interactions that are difficult to simulate and often fail to produce

the desired overall structure. Specific multibody interactions that take into

account strand orientation are therefore often used to overcome this problem

[45,85–87].

An alternative approach for correctly aligning two b-strands is to extract a

template of a similar strand pair from the PDB, which can then be used to

superimpose the target strands. A library of possible pairings can be generated

based on sequence homology, and the technique of multiple templates described

above can be used to select a suitable candidate for each interacting strand pair.

To determine whether or not templates derived from unrelated structures could

provide correct strand-pairing geometries, the closest structural homologs in the

PDB were identified for a number of strand pairs, along with the best super-

position in a list of the top 10 sequence homologs. Shown in Table X are the

results of this experiment for the mixed a=b protein ribonuclease A (2RAT).

(Sequences with more than 20% overall similarity to the target were excluded
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from the calculation.) Reasonable models can be obtained for each pair, despite

the lack of global homology.

2. Hydrophobic Contacts

A similar approach can also be applied to helix pairs, which, despite being

linked only by hydrophobic contacts, tend to pack in well-defined relative

orientations. It has been shown that by identifying conserved hydrophobic

contacts between different helices, a model can be found in the PDB which

reproduces the correct helix–helix packing and can be used to reconstruct the

tertiary structure [88]. Because the helix structure is very regular, a single

contact geometry is sufficient to generate a helix template of arbitrary length

using a standard backbone conformation.

VI. NEW DIRECTIONS

The next logical step in the evolution of structure prediction is to generalize

further the knowledge-based methods described so far in order to make

maximum use of the motifs in the PDB, even in the absence of any detectable a

priori homology, and to eventually replace the physically motivated idea of a

universal energy function. Local structure will be modeled using fragment

libraries, inter-residue interactions through generalized distance constraints, and

multibody correlations through localized motif templates. The scoring function

will become a moving target that adapts itself to the results of the simulation,

adding a knowledge-based component to the already sophisticated search

methods currently in use.

A. Sequence-Specific Potentials

Flexible distance constraints can be used to express the probability of forming

different specific contacts in the structure, based on the context of each residue.

Conceptually, if contact probabilities were to be predicted solely on the basis of

amino acid type (hydrophobic residues are more likely to be in contact with

other hydrophobic residues), this simply reduces to a traditional generic energy

TABLE X

Strand-Pairing Templates for 2RAT

Strand Pair Length Best Possible Homologous

1–4 5, 8 0.64 Å (1BIA.1) 0.99 Å (1ZXQ)

4–5 8, 8 0.82 Å (1BYT) 1.93 Å (2MEV.2)

2–3 3, 3 0.08 Å (8FABA.A) 0.16 Å (2ENG)

3–6 3, 6 0.34 Å (1EFT) 0.81 Å (1BLI.A)

6–7 6, 8 0.91 Å (1A62) 2.56 Å (1CBJ.A)
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function. Pair potentials have already been developed which derive contact

probabilities based on local sequence [19], local secondary structure [51], and

b-strand pairing [50]; any other observed correlation can be combined and

expressed in the same way. Generalized sequence-based methods (such as in

Ref. 63) can also be used to derive sequence-specific scoring functions for local

conformation and structural context, allowing for a customized selection of

fragments and templates.

B. Constraint Refinement

The results of the simulation itself can also be used to improve the prediction of

inter-residue contacts, thus allowing an iterative series of simulations to

generate successively more specific scoring functions. This is analogous to the

use of iterative simulations in assigning NOE signals in NMR spectroscopy

[21], except with purely theoretical input. It has been shown, however, that the

statistical analysis of an ensemble of predicted structures can be used to derive

more accurate contact information than any of the structures individually [35].

Preliminary experiments in our group have shown that it is possible to start with

a large number of possible contacts and, by successively eliminating those that

are observed less frequently in the ensemble, to eventually identify the correct

native contacts.

VII. CONCLUSION

Considerable progress has been made over the past few years in developing

practical tools for structure prediction. Geometrical models, empirical scoring

functions, and global minimization algorithms have all evolved together to

increase the efficiency and selectivity of simulation-based methods. Different

techniques have advantages and disadvantages: Discretized models gain in

sampling efficiency at the expense of resolution, template models carry more

three-dimensional information, constraint-based methods are less sensitive to

alignments, and so on. The result, however, is an increasingly complete

spectrum of methods that are beginning to achieve meaningful results in a

variety of real-world applications. As more and more information is being

added to sequence and structure databases, there is every reason to expect this

trend to continue.
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I. INTRODUCTION

In previous work [1–4], we have investigated the ability of simple potential

functions, derived from statistics in the Protein Data Bank (PDB [5,6]), to gen-

erate correct predictions of protein tertiary structure given the native secondary

structure as input. Most recently [2], we studied an unbiased sample of 95

proteins in the size range of 30–160 residues, and we were able to locate native-

like low energy structures in a significant number of cases. However, there were

also many examples of unsatisfactory performance; furthermore, the utilization

of native secondary structure derived from PDB coordinates is an obvious

limitation in terms of the utility of the method for protein structure prediction.

Thus, a significant improvement in the potential function, along with tests under

more realistic conditions, were required before one could consider applying the

methodology to problems of practical interest.

A principal reason for carrying out the studies described above was to

generate a large database of plausibly misfolded structures in the hope of

elucidating systematic flaws in the database potential function that we em-

ployed, a principal component of which is the pairwise potential of mean force

developed by Sippl and co-workers [7]. We have recently uncovered one

systematic error in the Sippl formulation of the statistical pair potential, and

we remedied this deficiency in a straightforward fashion: The potential function,

at least as applied to the problems discussed here, should be dependent upon the

size of the protein, a feature that has also been uncovered in other, more

theoretical work [8]. To this end, we developed a statistical potential that is

derived from proteins that are similar in size to the protein for which a

prediction is to be made. The result is a new type of statistical pair potential

with qualitatively improved predictive properties in tertiary folding simulations.

While the new potential function is still not rigorously predictive of the native

structure in all cases, application to actual protein structure prediction problems

is now a much more feasible goal.

Having achieved this advance in the potential function, we relaxed the

assumption of accurate knowledge of native secondary structure and examined

the capabilities of the methodology with more realistic types of input data. In

the present chapter, we approach this objective in two stages. First, we carry out

simulations using ideal, rather than crystallographic, representations of the
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secondary structure elements (while still deriving the location and length of the

various elements from the PDB). For a-helices, the use of ideal helices leads in

some (but not all) cases to a quantitative degradation of the quality of the results;

in general, however, qualitatively similar success is achieved. For all a- and

mixed a/b-proteins, there is an occasional substantial diminishment of the rank-

ing of the lowest energy low RMSD structure, when idealized strands are used.

Second, we carry out computational experiments using secondary structure

assignments derived from secondary structure prediction methods in conjunc-

tion with ideal secondary structural elements. This protocol constitutes an actual

attempt at ab initio protein structure prediction; no experimental data other than

sequence information is input into the calculations (other than, of course, the

input of PDB statistics to derive the tertiary folding potential and secondary

structure prediction algorithms). Because secondary structure prediction meth-

ods have not yet reached a high degree of robustness, we perform calculations

using several different predictions generated by a variety of alternative second-

ary structure prediction methods (which are conveniently available on Web-

based servers). While there are nontrivial cases where the native-like fold is

uniquely determined by the algorithm, our objective at present is not to

demonstrate successful ab initio prediction. Instead, we ask whether the

protocol is capable of generating a prediction with a good RMSD that is highly

ranked (e.g., within the top five predictions, a condition compatible with the

rules of the CASP3 prediction contest). For a significant number of cases, this

goal has been accomplished. Furthermore, in most cases where our algorithm

fails to generate a native-like fold in the top five predictions, we are able to

rationalize the results in terms of limitations of our model and propose

straightforward extensions to generalize and improve the model. These pro-

posed extensions are briefly discussed at the end of this chapter.

We have chosen in this chapter to focus our efforts on a-helical and mixed

a/b-proteins below 100 residues in size. In previous work [2] we showed that b-

strand proteins present more of a challenge to our prediction methodology than

a-helical or mixed a/b-proteins [9–12]; the modified size-dependent potential

function discussed above improves the results of earlier work on b-strand

containing proteins, but does not change the basic conclusion. For larger

systems, our results are quite promising but not yet at the stage of completeness

that we have been able to achieve for the smaller proteins. Consequently, we

defer discussion of these cases to a subsequent publication.

The chapter is organized as follows. Section II describes the new potential

function, discussing its novel qualitative features and presenting an algorithm

for optimization of parameters using a large training set derived from the PDB.

Section III briefly reviews the computational methodology used to carry out the

tertiary folding simulations (previously described in detail [2]) and then presents

simulation results using native secondary structure and ideal secondary
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structure. As a test set in this section, we employ a subset of the proteins studied

previously [2] so that comparisons can be made with the results reported in that

publication, and improvements in the potential functions quantified. In

Section IV, we utilize predicted secondary structure lengths and positions and

ideal secondary structure elements to carry out ab initio prediction experiments;

we focus in this chapter on helical proteins, and include, in addition to proteins

from the test set of Section IV, two targets from CASP3 [13]. Section V, the

conclusion, summarizes our efforts.

II. DEVELOPMENT OF A SIZE-DEPENDENT POTENTIAL
ENERGY FUNCTION

A. Identification of Systematic Errors in Previous
Tertiary Folding Simulations

Although the tertiary structure prediction protocol employed in our previous

work [2] was more or less able to consistently generate native-like structures for

a- and mixed a/b-proteins, the energetic rank of these structures was not always

satisfactory. An analysis of high-RMSD, low-energy structures obtained from

those simulations reveals a systematically incorrect behavior of the statistical

potential function of Sippl and co-workers [7] at large separations, most

prominently for pairs of hydrophilic residues. This feature of statistical potentials

has been uncovered in several other computational experiments [8,14].

The hydrophobicity term developed by Sippl was originally used only for

recognition (i.e., threading), so it is not surprising that some modifications

would be required for the asymptotic large-distance parts of the energy surface.

It remains to be seen whether or not the general type of systematic errors

uncovered in our tertiary structure predictions are present in the threading

studies of others using similar potentials. A complete derivation of the

coefficients by Sippl and co-workers can be found in Ref. 7. The two key

elements of interest in the derivation of the hydrophobicity function are the

inclusion of proteins of many sizes in the definition of a statistical ‘‘potential of

mean force’’ (PMF) and the asymptotic behavior of these potentials when they

are linearly extrapolated to large distances.

In Ref. 7 an individual PMF for residues i and j, separated by a distance d, is

defined as

Eij ¼ �kT ln
p1

ijðdÞ
p2ðdÞ

 !
ð1Þ

where p1
ijðdÞ is the normalized distribution of d for all i; j pairs in a training set

and p2ðdÞ is the normalized distribution of d of irrespective of residue pair. The
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training set Sippl used consisted of 88 proteins that ranged in length from 46 to

374 residues. Note also that Eq. (1), which is sometimes known as the ‘‘quasi-

chemical approximation,’’ applies only to residues separated in sequence by

more than 20 amino acids (at least in Ref. 7).

Equation (1) is only defined for distances that correspond to nonzero values

of both distribution functions. For this set of distances, Eij is well-approximated

by a linear function

E
hyd
ij ¼ ðHij þ H0Þd ð2Þ

where Hij is one of 400 ‘‘pairwise hydrophobicities’’ and H0 is an adjustable

‘‘average hydrophobicity,’’ for which Sippl suggest the value 0.36. (In our own

simulations, H0 was increased if local minimization starting from the native

structure yielded noncompact structures.)

The basic idea inherent in the development of the Sippl hydrophobicity

potential, that of extracting a potential of mean force using PDB statistics, is an

essential component of our empirical tertiary folding potential. However, based

on our analysis of the low-energy misfolded structures generated in our previous

experiments [2] described above, we propose to improve upon the detailed

methodology for construction of the PMF by implementing the following

modifications:

1. The derivation of an individual PMF for tertiary structure prediction of

protein P is to be based only on proteins of roughly the same size as P.

2. In the large and small distance limits, a functional form other than Eq. (1)

is to be used. The precise representation of the potential that we use to

accomplish this is described below.

The first of these objectives appears rather straightforward to implement.

However, a reduction in the number of proteins used to derive the distributions

means we will most likely reduce the signal to noise ratio in the PMF. We

addressed this problem in the following fashion. At short range, where no

systematic errors were observed, we generated the usual distance statistics for

each amino acid pair, averaging over proteins of various sizes. In addition to

considering amino acid type, we also took into account the secondary structure

type (a-helix, b-strand, loop/coil) of the residue pair for short-range statistics.

At a pair separation larger than a cutoff distance R0 (a value of 15 Å was used in

all calculations), we grouped the amino acids together according to hydro-

phobicity. A total of four classes are defined (Table I). The statistics of residue

pair i; j were grouped together with those of pair j; i so the total number of pairs

was given by Nclass½Nclass � 1�=2þ Nclass.

The reduction in the number of pairs from 210 to only 10 offsets the

reduction in the number of proteins well enough that we can obtain an adequate
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signal-to-noise ratio. The justification for this approach is that at large separa-

tion the probability distribution should not be sensitive to the specifics of the

amino acid pair (e.g., the size of the side chain) but only to the propensity to

reside on the surface of the protein as opposed to the interior. Support for this

idea comes from the work of Yue and Dill [15], who carried out tertiary folding

simulations with fixed secondary structure for a series of small proteins, many

of which were also studied by us using a Sippl-based potential. What is striking

is that, although Yue and Dill used only a two-letter code (hydrophobic and

hydrophilic), in many cases their results were qualitatively similar to the ones

we obtained using a much higher level of detail in the amino acid pair functions.

This suggests that the considerably less drastic simplification we are making

(including the retention of a fully detailed pair distribution for short distances,

allowing packing effects to be described more accurately) is plausible, although

this must of course be validated by the actual results.

The proteins are binned according to radius of gyration using the following

formula

size ¼ intð15Rg1=3 � 29Þ ð3Þ

where int(x) is the largest integer that is less than or equal to the real number x.

Once the long- and short-range pair statistics are accumulated, they can be

spliced together to generate a complete distribution for each amino acid pair. The

assumption is that in the region around R0, the individual pair distributions have

already converged toward the hydrophobicity class pair distributions. By

appropriately scaling the data, a potential valid over all distance ranges is

generated for each amino acid pair in each size class.

The second modification was implemented by setting the PMF to a constant

at distances outside of the observable range:

Eij ¼

�kT lnðe1Þ

�kT ln
p1

ijðdÞ
p2ðdÞ

h i

�kT lnðe2Þ

ðd < dminÞ
ðdmin < d < dmaxÞ
ðd > dmaxÞ

8>><
>>:

ð4Þ

TABLE I

Hydrophobicity Classa

Class Amino Acids

Weakly hydrophobic Ala, Cys, His, Leu, Met, Phe, Tyr

Strongly hydrophobic Ile, Trp, Val

Weakly hydrophilic Asn, Gln, Gly, Pro, Ser, Thr

Strongly hydrophilic Arg, Asp, Glu, Lys

aThe definitions used to bin long-range distance statistics according

to hydrophobicity are listed.
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where dmin and dmax are the lower and upper bounds, respectively, on the distance

range over which we were able to collect good distance statistics (the distribution

function had to be greater than or equal to 0.001). The parameters E1and E2 were

also set to 0.001. In addition to the residue pair potential above, we included a

second long-range energy term that is somewhat analogous to the average

hydrophobicity H0 in the linear case, in that it ensures compactness. This term,

which we will refer to as the density profile, is given by

Eij ¼
�kT lnðp2ðdxÞÞ
�kT lnðp2ðdÞÞ
�kT lnðe2Þ

ðd < dxÞ
ðdx < d < dmaxÞ
ðd > dmaxÞ

8><
>:

ð5Þ

where dx is the distance at which the residue independent distribution function

p2ðdÞ is a maximum. The final long-range energy is a linear combination of

Eqs. (4) and (5) (with weights 1 and 0.6, respectively). The optimization of the

density profile in the scoring function is a key ingredient in properly constraining

the potential in the large separation limit.

In Eqs. (1)–(5) inter-residue distances are defined in terms of a single side-

chain interaction point. This point, which we will refer to for simplicity as Cb,

is actually the projection of the average side-chain geometric center onto the

Ca–Cb bond vector.

The only function that depends on distances other than Cb–Cb is the excluded

volume potential, which depends on Ca–Ca, Ca–Cb, and Cb–Cb distances. The

functional form of the excluded volume term is the same as in previous work

[16]:

Eexvol
ij ¼ exp � dij

d0
ij

 !10
0
@

1
A

where the width of the excluded volume region d0 is derived from the distance of

closest approach for the residue pair in question in the training set.

Equations (4) and (5) are not evaluated explicitly in the minimization

program, but are fit using a combination of spline [17] methods, which provide

stability, the ability to filter noise easily, and the flexibility to describe an arbi-

trarily shaped potential curve. Moreover, the final functional form is inexpen-

sive to evaluate, making it amenable to global minimization. The initial step in

our methodology is to fit the statistical pair data for each amino acid and for the

density profile to Bezier splines [17]. In contrast to local representations such as

cubic splines, the Bezier spline imposes global as well as local smoothness and

hence effectively eliminates the random oscillatory behavior observed in our

data.
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While Bezier splines are an optimal approach for smoothing noisy data, they

cannot be rapidly evaluated using local interpolation methods. We therefore

next fit a cubic spline to the Bezier spline curve. Figure 1 compares the Bezier

spline and cubic spline curves for the same dataset; it can be seen that there is

no meaningful difference between the two. Cubic splines can be evaluated

rapidly at an arbitrary value of the residue pair separation using a standard

interpolation formula (see, e.g., Ref. 17 for details). The spline coefficients

needed for carrying out the interpolation are preprocessed and stored in fast

memory during the simulation; the computational effort required to evaluate the

spline potential is not much larger than that, for example, to determine the inter-

residue distance.

B. Further Improvement of the Potential Energy Function

As Eq. (5) shows, the original form of the PMF used by Sippl and co-workers (1)]

remains essentially intact in regions where good statistics are available, although

more weight is given to the density distribution. The validity of treating different

amino acid pairs as essentially independent, as in Eq. (1), has recently been

questioned by Thomas and Dill [18]. They proposed an improved approach

based on an iterative algorithm, the goal of which is to have the Boltzmann

distribution of distance pairs associated with the potential energy function agree

with the distribution derived from native structures. The following are the
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Figure 1. Data smoothing via Bezier and cubic splines. Bezier splines are shown as circular

data points which approximate a typical noisy density profile (black line). Cubic splines (dashed

line) are then fit to the Bezier data points (at a higher resolution than is shown here).
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components of the iterative cycle:

1. Initialize the potential to values obtained from the quasi-chemical

approximation.

2. Use this potential to generate structures; determine the relevant

distribution functions (in our case, residue pair separation probabilities)

from the simulated data.

3. If there are deviations between the two, the potential is corrected so as to

minimize them.

4. A simulation is carried out with the new potential, and a new set of

statistics is generated.

5. Steps 3 and 4 are repeated until the deviation between the statistics from

the simulated data and the experimental data have been reduced to an

acceptable level.

For tertiary folding, there are three major problems in implementing this

strategy. First, generation of simulated data is computationally expensive if a

large training set is to be used. Second, one has to define the ensemble of

simulated structures from which to extract statistics. For example, does one

keep, only the lowest-energy structure for each protein or keep an ensemble of

low-energy structures? Third, there is the question of how to update the potential

function. In what follows, we adopt a heuristic approach to these issues; the

protocols presented here represent preliminary explorations of this strategy and

no doubt can be improved upon. In the present work we have chosen to optimize

the potential function by comparing the distribution of locally minimized native

structures with that of the native structure itself. The idea is that if the mini-

mized native structure is as close to the native structure as possible, the basin of

attraction associated with the minimized native will yield acceptable low RMSD

predictions. From numerous computational experiments that we have carried

out, resemblance of the minimized native structure to the native structure is

clearly a necessary condition for obtaining useful predictive results; if the

minimized native structure has, for example, a high RMSD from the native, one

typically will fail to locate anything reasonable in a full-scale tertiary folding

simulation starting from an unfolded state. Whether this is a sufficient condition

for robust results in such simulations is one of the principal subjects of the

present chapter. We briefly summarize here the entire optimization cycle,

drawing on the results of the previous sections as well as on the basic idea

described above. The steps of the optimization cycle are outlined as follows:

1. Initialization:

a. The training set of native structures, with secondary structure assigned

by DSSP [19], is read into the optimization program.
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b. Proteins are sorted into size bins according to their radius of gyration

using Eq. (3).

c. The iteration counter is initialized to zero ðit ¼ 0Þ.
d. A potential energy function E0 is computed from distance distribution

functions based on the native structures.

2. All native proteins are locally minimized using Eit.

3. A potential energy function Emin is computed for each size bin based on

statistics derived from the minimized structures.

4. The difference between Emin and E0 is calculated:

Ediff ¼ E0 � Emin

5. The iteration counter is incremented and Eit is updated by adding a

correction that is proportional to Ediff :

it ¼ it þ 1

Eit ¼ Eit�1 þ kdiffEdiff

(A proportionality constant equal to 0.1 was chosen empirically so as to

damp oscillations in the optimization procedure.)

6. Steps 2–5 are repeated until substantive improvements are no longer

produced in the RMSDs of the minimized native structures.

In addition to the RMSD, the energy gap between the native and the minimized

native was monitored. The smaller this energy gap, the better in general we have

observed the performance of the potential to be in tertiary folding simulations. In

our initial efforts we utilized a more elaborate short-range potential function that,

in addition to the Cb–Cb term described in Section II A (above), included both

Cb–Ca and Ca–Ca terms. The additional terms involving Ca were included in the

iteration process described above. Subsequently, however, the extra terms in the

short-range potential were not used in the tertiary structure predictions, because

we did not see an overall improvement in the results when they were included.

Another important difference between the potential energy function used in the

above iterative procedure and the one used in actual tertiary structure predictions

involves the density profile function. In the iterative procedure, this function was

not flattened at d < dx [see Eq. (5)]. However, we found that we could improve

the ranking of native-like structures with this simple modification. Thus the

improvement of the potential energy function was ultimately achieved by a

combination of the iterative algorithm described above and manual inspection of

the individual terms after parameter optimization.

Because it is computationally expensive to carry out global minimizations on

a large test set, we are unable to objectively determine the amount of improve-

ment with respect to the zeroth-order potential (E0) realized by the optimization
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procedure outlined above. But given the fact that several proteins, which were

unstable in local minimizations starting from the native using E0, yield

acceptable RMSDs using the optimized potential, we believe that parameter

optimization can effectively remedy some of the deficiencies of reduced model

approaches. The issue of parameter optimization along the lines of the procedure

outlined above as well as other approaches in the literature (for a review see

Ref. 20) will be the subject of future work.

C. Resulting Potential Energy Function

Table II lists the proteins used in the training set, a subset of the PDB Select

database of nonhomologous proteins [21]. We avoided inclusion of proteins that

form dimers (or other oligomers) in solution because one would expect the

distributions in this case to be significantly altered due to the oligomerization

process. For each protein we list the PDB code, number of residues, radius of

gyration, and classification in our size bin scheme.

Figures 2–4 show the size dependence of three representative terms in Eq.

(4) (after being fit to splines, as described below) for the amino acid pairs

arginine–arginine, arginine–isoleucine, and isoleucine–isoleucine for the first

six size bins (the bins relevant to the prediction results discussed in this

chapter). Figure 5 shows the density profile [Eq. (5)] for the same size bins.

Note that because the total energy is a linear combination of Eqs. (4)–(6), the

oscillatory behavior at large distances (>15 Å) of the potentials in Figs. 2–4 is

effectively masked by the density profile; in the short-distance limit, the

excluded volume term serves a similar purpose. The energy plots in Figs. 2–4

show clearly that a linear function is a good approximation over the most

populated distance ranges (10–20 Å). Moreover, the slopes in these regions can

TABLE II

Training Seta

Size PDB Size PDB Size PDB

Bin Name Nres Rg Bin Name Nres Rg Bin Name Nres Rg

1 1chl 36 8.8 5 1svr 94 12.1 7 1bvh 153 14.5

1 1erd 35 8.4 5 1vcc 77 12.1 7 1c25 154 14.8

1 1ret 37 8.8 5 1wkt 88 12.1 7 1cdb 101 14.0

1 2erl 35 8.2 5 2abd 86 12.6 7 1cfe 135 14.0

1 3bbg 40 8.7 5 2bby 69 12.0 7 1chd 198 15.0

2 1bor 52 9.3 5 2ezh 65 11.9 7 1cur 150 14.2

2 1dec 39 9.7 5 2fow 76 11.8 7 1def 147 14.0

2 1gps 47 9.6 5 2hgf 97 12.5 7 1eal 127 14.3

2 1sco 38 8.9 5 2hp8 68 11.7 7 1hfc 157 14.6

2 1zwa 29 9.1 5 2rgf 93 12.5 7 1ido 184 14.9

2 2bds 43 9.3 5 2sxl 88 12.6 7 1jpc 108 14.1

3 1afp 51 9.8 6 1a1x 106 13.5 7 1lcl 141 14.3
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TABLE II (Continued)

Size PDB Size PDB Size PDB

Bin Name Nres Rg Bin Name Nres Rg Bin Name Nres Rg

3 1afp 51 9.8 6 1a1x 106 13.5 7 1lcl 141 14.3

3 1apf 49 9.7 6 1a2p.A 108 13.6 7 1mak 113 14.0

3 1ark 56 9.9 6 1acz 108 13.8 7 1mup 157 14.7

3 1awo 57 10.4 6 1bea 116 13.6 7 1mut 129 14.6

3 1brf 53 10.1 6 1bfg 126 13.0 7 1poa 118 14.3

3 1cka.A 57 10.1 6 1bkf 107 13.3 7 1rcf 169 14.5

3 1tih 53 10.6 6 1btn 106 13.1 7 1svp.A 155 14.8

3 1zaq 44 9.9 6 1buz 116 13.2 7 1vhh 157 14.5

3 2brz 53 10.5 6 1bw3 125 13.7 7 2a0b 118 14.7

3 5pti 55 10.6 6 1c52 131 13.5 7 2ezl 99 14.7

4 1ab7 89 11.6 6 1exg 110 13.6 7 2hbg 147 14.7

4 1ah9 66 10.9 6 1fna 91 13.4 7 2hfh 93 13.9

4 1c5a 65 11.2 6 1hcd 118 13.4 7 2i1b 153 14.7

4 1ehs 48 11.6 6 1irs.A 108 13.4 7 2sns 136 14.4

4 1hoe 74 11.4 6 1jer 110 13.5 7 2vil 126 14.0

4 1kbs 60 11.3 6 1krt 110 13.6 7 3cyr 102 14.2

4 1leb 72 11.3 6 1ksr 100 13.8 7 5p21 166 14.8

4 1msi 66 10.7 6 1kte 105 13.2 8 1amx 150 15.4

4 1nkl 78 11.3 6 1kuh 132 13.6 8 1aqb 175 15.8

4 1opd 85 11.6 6 1lit 131 13.4 8 1atl.A 200 15.9

4 1pih 73 10.9 6 1lou 97 13.2 8 1ble 161 15.1

4 1pou 71 11.2 6 1mai 119 13.7 8 1cex 197 15.2

4 1tpn 45 11.0 6 1pne 139 13.8 8 1cto 109 15.1

4 1ubi 71 10.9 6 1rie 123 13.6 8 1kid 189 16.2

4 1uxd 59 11.5 6 1sfp 111 13.4 8 1knb 186 16.1

4 1vif 60 10.9 6 1tit 89 12.9 8 1np4 184 15.5

4 1vig 67 11.2 6 1tul 102 13.5 8 1pkp 145 15.1

4 2ech 49 11.1 6 1whi 122 13.6 8 1ra9 159 15.5

4 2hqi 72 10.7 6 1wiu 93 13.0 8 1rlw 126 15.3

4 2igd 57 10.7 6 2bb8 71 12.9 8 1sfe 165 15.7

4 2sn3 65 10.8 6 2mcm 112 13.4 8 1std 162 16.0

5 1aba 87 12.5 6 2phy 125 13.3 8 1vhr.A 178 15.5

5 1ag4 103 12.5 6 2pld.A 101 13.7 8 1xnb 185 15.2

5 1aoy 74 12.0 6 2tbd 128 13.3 8 1yua 122 15.2

5 1awd 94 11.7 6 3chy 128 13.3 8 2gdm 149 15.1

5 1awj 77 11.7 6 3nll 138 13.6 8 2pth 193 15.4

5 1bdo 80 11.9 7 153l 185 14.9 8 2rn2 155 15.3

5 1bxa 105 12.6 7 1ahk 129 14.8 8 2sak 121 15.4

5 1cyo 88 12.6 7 1ax3 156 14.3 9 119l 162 16.5

5 1mb1 98 12.3 7 1ayo.A 125 14.9 9 1asx 152 16.6

5 1mzm 86 11.9 7 1b10 104 13.9 9 1gky 186 16.4

5 1put 106 12.2 7 1bc4 110 14.5 9 1pbw.B 195 17.3

5 1spy 85 12.2 7 1be1 137 13.9 9 2ucz 164 16.5

aThe training set listed was used to derive the size-dependent potential. Size bins are defined in terms

of radius of gyration (Rg) rather than number of residues (Nres).
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Figure 2. Size dependence of three representative terms in Eq. (4) for the amino acid pair

arginine–arginine–arginine. Data for the first six size bins are shown.
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Figure 3. Size dependence of three representative terms in Eq. (4) for the amino acid pair

arginine–isoleucine. Data for the first six size bins are shown.
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Figure 4. Size dependence of three representative terms in Eq. (4) for the amino acid pair
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Figure 5. Density profiles for the first six size bins.
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be easily rationalized: The arginine–arginine residues are pushed apart, while

the isoleucine–isoleucine interaction is attractive. The arginine–isoleucine term

is repulsive is well, but the minimum values occur at shorter distances than in

the corresponding arginine–arginine plots, consistent with our intuitive picture of

a spheroid with hydrophilic residues residing primarily on the surface. Not

surprisingly, the basic effect of the density profile is to restrict the interresidue

separation as a function of protein size. Note also that the density profile is the

most sensitive to protein size (although the isoleucine–isoleucine pair potential

clearly decreases with size).

Figure 6 illustrates the effect of adding the excluded volume and density

profile to the arginine–arginine, arginine–isoleucine, and isoleucine-isoleucine

potentials, respectively, for size bin 6. We see here that the linear portions of the

potential are now restricted to a small range in distance (about 6–12 Å), outside

of which the density profile and excluded volume become the dominant terms.

The energies of each of the three residue pairs at large separation (e.g., 25 Å)

relative to their minimum values increase in the expected order (EIle-Ile >
EArg-Ile > EArg-Arg).
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Figure 6. Total energy for three representative residue pairs: arginine–arginine, arginine–

isoleucine, and isoleucine–isoleucine. The data corresponds to size bin 6.
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III. TERTIARY FOLDING SIMULATIONS: PDB DERIVED
AND IDEAL SECONDARY STRUCTURES

A. Physical Model

The physical model of the polypeptide chain we use has been described

previously [2]; a few minor modifications are introduced as noted below. All

bond angles and bond lengths are fixed at ideal values. The variables in the

optimization are the torsional angles f and c of the peptide backbone. Each

residue is represented by a Ca atom and a Cb-like atom. The Cb atom position is

given by the average projection of the side-chain center of mass onto the Ca–Cb

bond vector.

We employ three different methods to describe the location and three-

dimensional structure of secondary structure elements (i.e., a-helices and

b-strands). The first is to take both the sequence location and backbone angles

(which are frozen during the simulation) directly from the PDB entry. This is

obviously not a realistic data set in a predictive situation, but is an essential

computational experiment in that it indicates what level of accuracy is possible

with ‘‘perfect’’ secondary structure information. The second is the replacement

of PDB backbone angles with ideal backbone angles; this separates the effects

of distortion of secondary structural elements from ideal geometries from errors

in location in the sequence or in length. For these two types of calculations the

correct size-dependent potential is selected by evaluating the radius of the

gyration of the corresponding native structure. The third is to employ predicted,

rather than PDB, secondary structure (along with the use of ideal geometries for

the predicted elements) and to select the correct potential by predicting

the radius of gyration from the number of residues of the target [22]. We have

carried out an extensive investigation in this regard, using secondary structure

prediction from various secondary structure prediction servers that are available

over the Internet. These results are then combined to produce genuine ab initio

structural prediction. The results, while far from a robust ab initio methodology

over all protein types, yield important insights into the key obstacles to ab initio

prediction and are in many cases surprisingly accurate. Predictions from the

CASP3 contest are also included so that comparisons can be made with the

work of others. While we are not generating these predictions as a blind test, it

is the case that our CASP3 calculations were carried out using our software in a

completely automated fashion, with no readjustment of parameters after

obtaining results for the CASP3 targets.

B. Simulation Methodology

Our simulation methodology is identical to that presented in previous

publications [2], so we will describe it only briefly here. The algorithm is based
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on the Monte Carlo plus minimization (MCM) strategy proposed by Li and

Scheraga [23]. This approach has proven to be extraordinarily efficacious in our

previous work, and the present results reinforce our conclusions concerning its

robustness and efficiency in enumerating the low-energy basins of attraction for

low-resolution models such as those employed here. As in previous work [2], we

have incorporated several key modifications of the algorithm, the most important

of which is that the number of minimization steps is annealed as a function of the

simulation temperature (i.e., more steps are taken later in the simulation), which

yields a factor of 5–10 times reduction in computational effort. Finally,

calculations are performed using a parallelized version of the code (an MPI

implementation) on a network of PCs using Intel microprocessors and also on a

large SGI Origin at the National Center for Supercomputing Applications.

The MCM procedure produces a large number of low-energy structures. The

structurally unique predictions are extracted from the raw simulation data by a

clustering algorithm. Figure 7 illustrates this process for the protein 1ACP. The

raw simulation data (red dots) are combined into structurally similar clusters

using a procedure discussed in Ref. 24. The criterion for separating structures

into clusters is that the average RMSD between clusters (calculated over all

structures in a particular cluster) be at least 5 Å. Clusters are represented by

their lowest energy structure (black circles), which means that energies and

RMSDs reported for clusters are based on their lowest-energy structure. The
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RMSD between resulting representative structures is usually at least 5 Å, but

this is not guaranteed by the clustering algorithm because we use the average

RMSD as the clustering criterion. For the 10 representative structures lowest in

energy we list energy, RMSD with respect to the native and number of

structures combined into a cluster in Table III, and the RMSD between the

representative structures themselves in Table IV. Derivation of the ranks of

structures (discussed below) is straightforward given the data in Table III.

The lowest-energy structure obtained from the simulations is generally

highly refined, meaning that its energy cannot be lowered significantly by

performing more extensive searches. Refinement of higher-energy structures,

structures that do not rank first, is possible though and in some of the cases,

TABLE III

RMSD with Respect to the Native of the ten Lowest Energy Clusters (Represented by Their Lowest

Energy Member) for the Protein 1acpa

Cluster # RMSD Energy N

1 6.65 5415.43 43

2 5.72 5417.83 58

3 8.64 5420.17 23

4 7.54 5420.80 25

5 11.08 5422.82 31

6 9.65 5424.04 34

7 4.79 5427.21 22

8 5.91 5431.10 16

9 8.27 5431.23 12

10 12.10 5432.68 19

aN gives the number of structures combined into a cluster.

TABLE IV

RMSD Between the Representative Structures from the Ten Lowest-Energy Clusters for the

Protein 1acp

Cluster # 1 2 3 4 5 6 7 8 9 10

1 0.00 2.23 8.73 2.31 9.91 5.01 7.18 9.35 8.20 12.23

2 0.00 8.70 3.41 9.94 6.04 6.08 8.35 8.16 11.93

3 0.00 8.85 11.86 8.63 8.46 8.24 3.04 8.63

4 0.00 9.70 4.08 7.97 9.91 8.53 12.14

5 0.00 8.69 11.31 11.02 11.77 8.40

6 0.00 10.54 11.91 8.45 11.75

7 0.00 3.01 8.27 10.81

8 0.00 8.46 9.91

9 0.00 9.04

10 0.00
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especially the larger proteins, actually results in improved ranks. We have not

yet developed the optimal refinement strategy though and therefore do not

report results for this approach.

C. Comparison of the Size-Dependent Potential with Previous Results
Using PDB-Derived Secondary Structure

As a test set, we employed the subset of the 95 proteins used in Ref. 2 which are

less than 100 residues and are not all b-strand. There is some overlap with the

training set; but in tertiary folding, this is less of a concern than in secondary

structure prediction because the three-dimensional phase space of the protein is

so large that as long as an adequate number of proteins are used to generate the

pair potential statistics, systematic bias of the results coming from the training

set is unlikely to be large. In fact, we see little difference in performance for

proteins depending upon whether they were included in the training set or not (or

for the CASP3 targets we examined). By retaining the test set used in the

previous chapter, we are able to directly compare our new potential with the

older potential lacking size dependence, and thus assess the degree of

progress that has been made by incorporating size dependence into the potential

function.

As discussed above, after the tertiary folding simulations are completed, we

group the resulting structures into clusters (without any reference to the native

structure, which is presumed to be unknown during clustering) and report

the highest-ranking clusters with RMSD from the native below 4 Å , 5 Å, 6 Å,

and 7 Å, respectively.

In Table V, we compare these results for our test set with those obtained in

Ref. 2. Note that Ref. 2 also included postsimulation screening algorithms; we

have not developed such methods for the new potentials because some of the

ideas have been incorporated directly into the energy function. Consequently we

compare only with results taken directly from the simulations in Table V.

However, we note that the overall quality of the results from the new potential is

substantially better than those from the old, even when screening is employed in

the latter. Table VI summarizes performance for various types of proteins and

size classes.

The performance of the new potential function is particularly striking for

proteins in the 50–100 residue size. For a-helical proteins in this category, the

average rank of the best structure less than 7 Å is 3.6; furthermore, in the

overwhelming majority of cases, the rank is 5 or better. This is a sufficient

reduction in the number of possible structures that discrimination among the

resulting structures via more expensive calculations at an atomic level of detail

[25] becomes feasible. The reliability of the results demonstrates that the basic

physics of the low-resolution model have been qualitatively improved as

compared to previous efforts.
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TABLE V

Comparison to Previous Resultsa

‘‘Old’’ Potential Size-dependent Potential

——————— ————————————————————————

PDB—X-RAY PDB—X-RAY PDB—IDEAL

——————— ———————————— ———————————

Nres Na Nb <5 Å <6 Å <7 Å <4 Å <5 Å <6 Å <7 Å LER <4 Å <5 Å <6 Å <7 Å LER

Alpha Proteins (Nres <50)

1ajj 17 6 0 — 1 1 — 1 1 1 4.0 — 1 1 1 4.9

1bgk 27 18 0 4 2 1 2 2 2 1 6.5 2 2 2 1 6.2

1erd 29 25 0 1 1 1 1 1 1 1 3.8 1 1 1 1 3.3

2erl 35 29 0 2 2 2 — 1 1 1 4.9 1 1 1 1 2.8

1res 35 27 0 3 1 1 1 1 1 1 3.5 1 1 1 1 3.8

1roo 17 14 0 1 1 1 1 1 1 1 3.7 1 1 1 1 3.7

1uxd 43 31 0 1 1 1 4 4 4 1 6.0 — 4 4 1 6.4

Mixed Alpha/Beta Proteins (Nres <50)

1aho 31 10 10 5 3 1 7 5 2 1 6.8 3 3 2 2 7.5

1ayj 46 11 15 33 1 1 — — 2 2 7.7 — 3 3 2 8.6

1cmr 26 8 10 3 1 1 3 2 2 1 6.6 4 4 3 1 6.8

1gpt 47 13 19 23 2 2 13 13 12 3 8.1 — — 2 2 8.9

1hev 25 7 11 1 1 1 3 1 1 1 5.0 — 3 2 2 7.1

2ktx 34 11 14 1 1 1 1 1 1 1 3.6 — 1 1 1 4.2

1pce 30 12 10 2 2 2 1 1 1 1 2.8 — — 1 1 5.1

1ptq 43 6 8 732 21 18 — — 20 11 8.6 — — 16 1 6.8

2sn3 48 8 15 94 21 7 — 29 2 2 8.5 — 13 3 3 8.9

2vgh 34 6 12 126 61 21 — — — 4 7.1 — — — 3 8.2

1vtx 36 7 10 — 78 2 — — 34 3 7.8 — — 9 1 7.0

5znf 25 12 11 1 1 1 1 1 1 1 2.6 — — 1 1 6.0

Alpha Proteins (50 Nres< 100)

1acp 73 45 0 256 115 30 — 7 2 1 6.7 — — 11 11 11.3

1ail 67 60 0 5 5 2 1 1 1 1 3.0 1 1 1 1 3.9

1aj3 95 86 0 2 2 2 2 2 2 2 9.3 2 1 1 1 4.6

1am3 57 45 0 — 8 8 — 6 6 2 10.7 — 24 5 1 6.1

1c5a 62 49 0 1 1 1 — 3 3 2 8.2 10 3 3 3 8.0

1cc5 76 41 0 — 78 21 — 6 6 2 8.5 — 18 6 3 7.2

1ddf 87 66 0 — 7 7 — 63 3 2 12.7 — 58 8 8 7.1

2ezh 59 45 0 16 5 2 1 1 1 1 3.8 3 3 3 2 9.7

2ezk 76 64 0 28 8 1 — — 1 1 5.7 — — 1 1 5.9

2hp8 56 44 0 — 4 2 — 2 2 2 9.7 — 2 2 2 7.1

1hsn 62 46 0 88 88 67 — — 19 19 11.4 — — 98 17 8.3

1jvr 74 59 0 5 5 5 31 31 1 1 5.3 — 10 9 7 10.4

1Ifb 69 48 0 — 94 94 — — 5 5 10.4 — 15 11 11 10.6

1mzm 71 54 0 — 8 8 — 5 4 4 10.7 — 3 2 2 11.0

1nkl 70 56 0 — — 2 1 1 1 1 3.9 2 2 2 2 9.6

1nre 66 55 0 22 22 22 22 1 1 1 4.9 19 1 1 1 4.6

2pac 77 26 0 — — 136 — — 53 1 6.4 — — 76 5 11.2

1pou 70 57 0 — 6 6 1 1 1 1 2.3 4 4 4 4 11.2

1r69 61 41 0 46 9 8 — 6 6 3 11.3 — 23 12 5 10.7
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For mixed a/b-proteins, the absolute quality of the results is somewhat

diminished, but the improvement as compared to previous work is even larger.

There are two cases, 1ag2 and 1svq, where the rank obtained for the best low

RMSD structure is above 10, with the 1ag2 result being particularly proble-

matic. We have investigated this case further and show improved results for

1ag2 below. On the other hand, there is a significant number of cases for which

no reasonable structures were recovered previously which now rank in the top 10.

The energies of structures located by the global optimization algorithm are

lower than the native and locally minimized native structures in all cases, a

TABLE V (Continued)

‘‘Old’’ Potential Size-dependent Potential

——————— ————————————————————————

PDB—X-RAY PDB—X-RAY PDB—IDEAL

——————— ———————————— ———————————

Nres Na Nb <5 Å <6 Å <7 Å <4 Å <5 Å <6 Å <7 Å LER <4 Å <5 Å <6 Å <7 Å LER

1utg 62 53 0 4 2 1 — 21 1 1 5.6 — 14 1 1 5.3

5icb 72 52 0 — — — 8 8 2 1 6.1 — — 8 1 6.2

Mixed Alpha/Beta Protein (50 <Nres <100)

1aa3 56 31 8 — — — 19 19 6 3 8.4 7 7 7 5 9.4

2acy 92 24 41 — — 16 — — 5 5 12.0 — — — — 13.0

1ag2 97 58 8 — — 349 — — — 87 10.9 — — — 187 12.3

1bor 52 9 14 187 22 8 — — 17 6 7.2 — — 40 12 8.3

1btb 89 45 19 — 274 24 1 1 1 1 3.8 — — 31 28 8.1

1ctf 67 38 19 15 12 4 1 1 1 1 3.0 — — 4 4 11.1

2fdn 53 8 6 123 4 4 — — 38 6 8.1 — — — 30 10.3

2fow 66 29 8 181 56 8 — — 23 8 10.6 — — 69 4 7.9

1fwp 66 22 17 484 2 2 — 3 3 3 10.3 — 42 10 10 10.3

1gb1 54 13 16 1 1 1 — — 15 1 6.5 — — 2 1 6.5

1pgx 57 15 33 4 4 4 2 2 2 2 9.5 — 35 28 11 8.1

1leb 63 36 6 142 27 4 — 3 3 3 10.9 — 6 6 6 8.7

1orc 56 25 17 2 2 1 8 6 6 6 7.1 46 2 2 1 6.2

5pti 55 16 14 109 16 16 — — 14 4 10.1 — — 47 14 7.1

2ptl 60 15 34 1 1 1 1 1 1 1 3.4 — 35 4 4 8.2

1ris 92 25 42 — 180 11 9 9 9 9 11.1 — — 129 11 11.7

1svq 90 22 34 — — — — 119 117 32 12.5 — — 462 43 9.0

aFollowing global energy minimization, structures are clustered without reference to the native; the

energetic ranks of clusters that have an RMSD close to the native (for old results, three RMSD

cutoffs—5 Å, 6 Å, and 7 Å—were used; for new results, four RMSD cutoffs—4 Å, 5 Å, 6 Å, and

7 Å—were used). Energetic rank was defined so that the lowest-energy structure ranks 1, the second-

lowest ranks 2, and so on. LER refers to the RMSD of the lowest-energy structure. The column

‘‘PDB—X-Ray’’ list’s results of runs using location and configuration of secondary structure derived

from the PDB entry. Column ‘‘PDB-Ideal’’ lists results for calculations where the location of

secondary structure was derived from the PDB, but configuration of secondary structural elements

was assumed to be ideal.
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feature that other groups using similar approaches have also observed [25]. A

very important aspect of the results though, not apparent in the data presented

here, is that for all simulations discussed above, the energy gap between the

lowest-energy misfolded structures and low-energy native-like structures is

quite small, on the order of 5–30 energy units where the energy scale is

TABLE VI

Summary of Ranks Listed in Table Va

(a)

RMSD <4 Å RMSD <5 Å RMSD <6 Å RMSD <7 Å

—————————— ————————— ————————— ————————

Ave Max Ave Max Ave Max Ave Max

Class Nprot Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank

Small a 7 — — — 6 2 4 7 1 2 7 1 2

Small a/b 12 — — — 11 93 732 12 16 78 12 5 21

Medium a 21 — — — 11 43 256 18 26 115 20 21 136

Medium a/b 17 — — — 11 114 484 13 46 274 15 30 349

(b)

RMSD <4 Å RMSD <5 Å RMSD <6 Å RMSD <7 Å

—————————— ————————— ————————— ————————

Ave Max Ave Max Ave Max Ave Max

Class Nprot Nconv Rank Rank Nprot Rank Rank Nconv Rank Rank Nprot Rank Rank

Small a 7 5 2 4 7 2 4 7 2 4 7 1 1

Small a/b 12 7 4 13 8 7 29 11 7 34 12 3 11

Medium a 21 8 8 31 17 10 63 21 6 53 21 3 19

Medium a/b 17 7 6 19 10 16 119 16 16 117 17 10 87

(c)

RMSD <4 Å RMSD <5 Å RMSD <6 Å RMSD <7 Å

——————————— ————————— ————————— ————————

Ave Max Ave Max Ave Max Ave Max

Class Nprot Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank Nconv Rank Rank

Small a 7 5 1 2 7 2 4 7 2 4 7 1 1

Small a/b 12 2 4 4 6 5 13 11 4 16 12 2 3

Medium a 21 7 6 19 16 11 58 21 13 98 21 4 17

Medium a/b 17 2 26 46 6 21 42 14 60 462 16 23 187

aPart a lists old results; part b lists results using the size-dependent potential and X-ray-derived

secondary structure; part c lists results using the size-dependent potential and ideal secondary

structure. The number of proteins Nprot is listed in column 2; the number of cases that converged

within a specified RMSD from the native (<4 Å, <5 Å, <6 Å, or <7 Å) Nconv is listed in columns

3, 6, 9, and 12. (Note that the rank <4 Å was not calculated for the old results, so a ‘‘—’’ is shown).

Also listed are the average and maximum rank of converged clusters within each RMSD range.
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typically thousands of energy units. This is in sharp contrast to the results

obtained with our previous tertiary folding potential, which routinely generated

energy gaps between misfolded and native-like structures that were 5–10 times

larger than those seen here.

D. Effects of Secondary Structure Definition
and Truncation of Terminal Loops

The results presented above employ PDB-defined secondary structure and in

some cases involve truncation of terminal loops, primarily carried out here to

facilitate direct comparisons with the results of Ref. 2. However, the process of

defining secondary structure even with X-ray crystallographic or NMR coor-

dinates in hand is not entirely unambiguous, and the effects of terminal loops

could be favorable or unfavorable. To examine these issues, we selected several

proteins in Table V for which the results with the new potential appeared less

accurate than would have been expected given the difficulty of the case being

considered. Table VII presents results for these selected cases, listing the protein

and identifying what experiments were carried out. Most of the cases examined

are mixed a/b because these displayed the most significant problems. It can be

seen that in some cases the use of a different secondary structure definition (e.g.,

DSSP rather than PDB) and the inclusion or deletion of a terminal loop has a

substantial effect on the ranking of low RMSD structures. Clearly, more work

needs to be done in understanding these effects.

E. Effects of Using Ideal Rather than PDB-Derived Three-Dimensional
Topologies for Secondary Structure Elements

Having established that our new size-dependent potential is quite effective for

generating low-resolution structures of proteins below 100 residues using

secondary structure derived from PDB coordinates, we next ask what the effect is

of using ideal torsional angles for helices and strands as opposed to PDB-derived

TABLE VII

Comparison of Rankings for PDB Secondary Structure and DSSP Secondary Structure for Several

Cases from the Test Set

Protein <4 Å <5 Å <6 Å <7 Å Comments

1ag2 — — — 87 PDB secondary structure, terminal loops deleted

1ag2 — — — 11 DSSP secondary structure, terminal loops included

1hsn — — 19 19 PDB secondary structure, terminal loops deleted

1hsn — — 23 10 DSSP secondary structure, terminal loops deleted

1orc 8 6 6 6 PDB secondary structure, terminal loops deleted

1orc 1 1 1 1 DSSP secondary structure, terminal loops included

1ris 9 9 9 9 PDB secondary structure, terminal loops deleted

1ris — — 3 3 DSSP secondary structure, terminal loops included
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torsion angles. Tables V and VIc summarize results for the entire test set of

proteins utilizing ideal secondary structure elements. The results are surprisingly

good; while there are certainly cases in which quantitative degradation of the

rank of the best low-RMSD structure occurs (particularly with a/b-proteins—for

example, the proteins 2fdn, 1fwp, and 5pti), in general the simulations are able to

find such structures successfully and to rank them reasonably well in terms of

total energy. Even in the case of 5pti, where there is severe distortion of the b-

strands in the native structure, the use of ideal strands produces reasonable

results. While incorporation of strand distortion is possible in our methodology

[4], the reasonable predictive capability using ideal elements is likely to save

considerable computational effort because one can carry out such simulations

initially and then use the results as a starting point from which to incorporate

distortions and other detailed effects.

IV. USE OF PREDICTED RATHER THAN PDB-DERIVED
SECONDARY STRUCTURE ELEMENTS

A. Overview

Secondary structure prediction methods, while they have improved significantly

over the past decade (principally via the use of multiple sequence analysis), still

have nontrivial error rates. The best method at present appears to be the

PSIPRED approach developed by Jones [26], which is claimed to achieve an

accuracy between 76% and 78% on a reasonably large training set (it also

outperformed other methods in the CASP3 contest). This level of reliability

appears to be sufficient for low-resolution ab initio structure prediction and

suggested to us that it was now worth experimenting with tertiary folding

calculations based entirely on predicted, rather than PDB-derived, secondary

structure [27–32]. Using servers set up on the World Wide Web, we are able to

obtain predictions from PSIPRED and other secondary structure prediction

algorithms for proteins in our test set. We have obtained results from a variety of

servers to see what happens in cases where their predictions disagree; it is likely

that ab initio prediction will involve trying a number of secondary structures,

because in some cases the tertiary fold will be critical in selecting among

plausible secondary structures predicted exclusively from sequence data.

Our calculations in this section endeavor to answer the following questions:

1. Can we for some percentage of cases make a successful ab initio predic-

tion? We explore two different approaches below.

2. What are the effects of small errors in secondary structure—for example,

elimination or addition of small elements, incorrect lengths of major

elements and so on?
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3. What is the impact of a major error—for example, replacing a long helix

by a similar strand or missing an important loop?

In the present chapter, we have chosen to focus our ab initio prediction

efforts primarily on a-helical proteins, although one mixed a/b-protein is also

examined. The ab initio prediction calculations presented below are consider-

ably more computationally intensive than those using PDB-derived secondary

structure, because we have investigated a substantial number of secondary

structure predictions for each protein. By studying helical systems intensively,

we are able to draw conclusions concerning the necessary and sufficient

conditions for success for such systems from a significant database of results.

In addition to the a-helical proteins in the 50- to 100-residue range from the data

set above, we also include two helical proteins from the CASP3 prediction

contest. Our results for the CASP3 test cases are similar to those from the PDB-

derived test suite.

B. Secondary Structure Prediction Methods

We use the following secondary structure prediction methods in our ab initio

predictions:

* PSIPRED [26]: A two-stage neural network that predicts protein secon-

dary structure based on the position specific scoring matrices generated by

PSI-BLAST (available at http: //insulin:brunel:ac:uk/psipred/Þ. Average

three-state prediction accuracy is between 76.5% and 78.3%. Currently

the most accurate method.

* PhD [33,34]: Secondary structure is predicted by a system of neural

networks (available at http: //cubic:bioc:columbia:edu/pp/Þ. Overall three-

state prediction accuracy is 72.1%. The default secondary structure

prediction settings were used in all predictions.

* JPRED [35,36]: A methodology that combines a total of six secondary

structure predictions into one consensus prediction (available at http://

jura.ebi.ac.uk:8888/ at the time of this writing). Average ‘‘real world’’

accuracy is 72.9%. Note that the PhD predictions generated by JPRED

differ from the original PhD predictions (denoted: orig_phd) mentioned

above. In addition to using the consensus prediction, we also report results

for the six individual prediction methods included in the JPRED server.

By default, secondary structure prediction accuracies reported here are

determined with DSSP as the reference (for details see Ref. 26). The secondary

structure assignments used in the actual calculation differ from the original

predictions in that helices and strands of less than three residues are eliminated.

N- and C-terminal loops are deleted.
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C. Simulation Protocols

The amino acid sequence of the target represents the only input data for our

methodology. We do not carry out explicit database searches (i.e., threading) of

any sort. Secondary structure predictions from the sources listed above are

parsed and used directly in the structure predictions. In the case of JPRED we

examine individually the results of all predictions that contribute to the

consensus prediction (DSC [37], PhD [33,34], PREDATOR [38,39], NNSSP

[40], Mulpred, and Zpred [41]). Because we do not assume any knowledge of

approximate radius of gyration of the target, which is important for the selection

of the correct potential energy parameters, we predict the radius of gyration via a

simple formula [22] and use this prediction to assign the size bin for the tertiary

folding simulation.

The first stage of our prediction algorithm applies the MCM-based approach

described above to each of the nine secondary structure predictions for each

target. Simulations are usually carried out on two to four nodes of a multi-

processor machine and take between 12 and 24 hours depending on protein size.

To extract the structurally unique predictions, we apply the clustering algorithm

discussed above. Table VIII shows the results of this procedure for the three

targets discussed in more detail below. We list results for every secondary

structure prediction (unless predictions consist only of loop or coil, in which

case we did not believe it worthwhile to carry out the simulation).

Because it is quite possible that simulations utilizing different secondary

structure predictions results in very similar representative low energy structures,

we apply a second level of filtering which basically tries to eliminate structu-

rally similar predictions and ranks the resulting ‘‘unique’’ predictions on a

absolute energy scale. The first step in this process is the determination of the

subset of residues common to all predictions (regardless of whether they belong

to helices or strands). Secondary structure predictions for which the number of

residues included in the simulation is substantially smaller than the average (due

TABLE VIII

Individual Clustering Results for the ab initio prediction Targets Discussed in More Detail in the

Text (Stage 1 of the Composite Prediction Method)a

Protein SSP Q3 Nres <4 Å <5 Å <6 Å <7 Å

1aj3 cons 94.90 93 — — — —

1aj3 dsc 87.76 93 — — — —

1aj3 mul 86.73 92 — — — —

1aj3 nnssp 95.92 98 — — 2 2

1aj3 orig_phd 89.80 89 — — 3 2

1aj3 phd 88.78 88 — — — —

1aj3 pred 88.78 92 — — — —
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TABLE VIII (Continued)

Protein SSP Q3 Nres <4 Å <5 Å <6 Å <7 Å

1aj3 psipred 93.88 94 — — 1 1

1aj3 zpred 93.88 98 — — 2 2

1am3 cons 92.86 58 — — 24 3

1am3 dsc 88.57 57 — — 11 2

1am3 mul 77.14 59 — — 11 11

1am3 nnssp 88.57 60 — 8 8 8

1am3 orig_phd 92.86 58 — 22 8 6

1am3 phd 94.29 58 — 4 4 2

1am3 pred 72.86 57 — — — —

1am3 psipred 88.57 57 — 35 1 1

1am3 zpred 67.14 68 — — — —

1mzm cons 44.09 44 — — 2 2

1mzm dsc 66.67 67 — — 26 3

1mzm mul 37.63 68 — — 243 4

1mzm nnssp 38.71 93 — — — —

1mzm orig_phd 59.14 74 — — 50 3

1mzm phd 38.71 49 — — 9 1

1mzm pred 55.91 44 — — 18 6

1mzm psipred 78.49 78 — 1 1 1

1mzm zpred 34.41 82 — — — —

1eh2 cons 87.37 68 — 12 5 5

1eh2 dsc 80.01 73 — — — —

1eh2 mul 74.74 43 — 3 3 3

1eh2 nnssp 86.32 67 — 6 3 1

1eh2 orig_phd 86.32 68 — 15 1 1

1eh2 phd 85.26 67 15 4 4 4

1eh2 pred 88.42 68 — 1 1 1

1eh2 psipred 95.79 72 — 3 2 1

1eh2 zpred 66.32 72 — — 32 13

1bg8.A cons 57.89 57 — — 11 3

1bg8.A dsc 42.11 55 — — 64 6

1bg8.A mul 51.32 67 — — — 24

1bg8.A nnssp 63.16 67 — — 31 9

1bg8.A orig_phd 57.89 57 — — 52 5

1bg8.A phd 57.89 57 — — 34 8

1bg8.A pred 38.16 56 — — 321 3

1bg8.A psipred 50.01 52 — 92 17 5

1bg8.A zpred 46.05 68 — — — —

aHere Nres refers to the number of residues actually considered for every prediction. (cons: JPRED

consensus prediction; dsc: DSC; mul: MULPRED; nnssp: NNSSP; orig_phd: PhD in its most current

implementation; phd: PhD as run by JPRED; pred: PREDATOR; psipred: PSIPRED; zpred:

ZPRED). Q3 refers to the three-state accuracy of a given prediction.
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to deletion of terminal loops) are not considered at this stage. This set of

residues is then extracted from the 50 clusters lowest in energy for every

secondary structure prediction, and the energies of the resulting substructures

are evaluated. After a second round of clustering, we obtain the final set of

clusters (Table IX). At this point the RMSDs with respect to the native structures

are reevaluated over the subset of common residues to allow a fair comparison

of the tertiary folding results obtained from different secondary structure

predictions. We refer to this method below as the composite energy prediction

method.

D. Final Rankings of Structures for Fully Ab Initio Predictions

We examine the use of two different approaches for producing fully ab initio

predictions for the 22 proteins studied in this section. One approach is simply to

use the secondary structure prediction with the highest calibrated prediction—

accuracy—in this case, PSIPRED. Results for this approach are summarized in

TABLE IX

Final Clustering Results for the Subset of Common Residues for All Ab Initio Prediction Targets

(Stage 2 of the Composite Energy Prediction Method)a

Protein Nres <4 Å <5 Å <6 Å <7 Å

1acp 70 — — 10 5

1aj3 88 — 89 89 89

1am3 56 — 17 17 2

1bg8.A 52 — — 92 1

1c5a 57 — — 4 4

1cc5 68 — 22 12 2

1ddf 85 — — — 7

1eh2 65 — 4 4 3

1hsn 61 — — — 46

1jvr 66 39 12 12 2

1lfb 55 — 114 22 4

1mzm 66 — — 65 4

1nkl 63 — — 31 1

1nre 65 — 89 50 50

1pgx 53 — — — 35

1pou 64 30 3 3 1

1r69 57 — 5 5 1

1utg 56 — — 4 3

2ezh 57 — — 7 4

2ezk 67 — — — —

2hp8 49 — 58 8 7

2pac 53 — 25 7 3

aHere Nres refers to the number of residues for which RMSD and energy are evaluated. We omitted

predictions that were too short as compared to all others and the length of the sequence (1eh2: mul;

1jvr: psipred; 1mzm: cons, phd, pred; 1r69: mul, orig_phd, pred; 2ezh: orig_phd).
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Table X. As above we list the rank of structures below a certain RMSD cutoff.

The second is the composite energy prediction method discussed above. We

summarize statistics for the success rate of each of these two approaches on the

entire test set and CASP3 prediction targets below.

E. Results

1. Summary and Overall Success of Fully Ab Initio Prediction

We begin by summarizing the results for all of the secondary structure prediction

methods (including the composite energy prediction method described above)

and all of the target proteins. As in previous sections of this chapter, the ranks of

the lowest-energy cluster with RMSDs from the native structure of 4 Å, 5 Å, 6 Å,

and 7 Å are reported for both approaches. The first, and most striking, observation

is that both approaches provide a surprisingly good success rate for ab initio

prediction based on criteria used in CASP3. We have observed that for proteins

in the 50–100 residue range, an RMSD below 7 Å typically provides a

TABLE X

Individual Clustering Results for All Ab Initio Prediction Targets Using the PSIPRED Secondary

Structure Predictionsa

Protein Q3 Nres <4 Å <5 Å <6 Å <7 Å

1acp 83.12 72 — — 17 5

1aj3 93.88 94 — — 1 1

1am3 88.57 57 — 35 1 1

1bg8.A 50.01 52 — 92 17 5

1c5a 93.94 63 4 1 1 1

1cc5 74.7 75 — 6 4 4

1ddf 81.1 86 — — 43 9

1eh2 95.79 72 — 3 2 1

1hsn 87.34 62 — — — 20

1jvr 72.26 3 — — — —

1lfb 58.97 59 — — — 34

1mzm 78.49 78 — 1 1 1

1nkl 94.87 71 — — 4 1

1nre 60.49 65 — — — 380

1pgx 77.14 60 — — — —

1pou 73.24 67 7 5 5 5

1r69 84.13 59 — 6 6 3

1utg 85.71 62 — 32 1 1

2ezh 81.54 57 — 15 1 1

2ezk 51.61 77 — — — —

2hp8 64.71 53 — 6 2 1

2pac 70.73 77 — 19 2 2

aHere Nres refers to the number of residues actually considered for every prediction.
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qualitatively reasonable folding topology at low resolution. Similar conclusions

have been reached by Skolnick and co-workers [42] and by Cohen and Sternberg

[43], whose estimates show that the probability of achieving a structure below 6

Å RMSD by chance is vanishingly small. Note also that for a significant fraction

of proteins, structures below 6 Å are found; at this level, the correspondence with

the native structure is quite satisfactory in agreement with the chapters cited

above.

Both proposed fully ab initio prediction methods (composite energy method

and exclusive use of PSIPRED predictions) yield a number of cases in which a

low RMSD structure is ranked first; this would count as a successful prediction

under any criterion. Using the assessment criteria of CASP3—that is, a

maximum of five predictions—the composite energy method would achieve

an RMSD of less than 7 Å in 68% of the cases; there are also four cases where

the RMSD is less than 6 Å. Reliance entirely on PSIPRED would lead to an

RMSD under 7 Å in 64% of the cases; however, 11 of those would have an

RMSD under 6 Å. Thus, the use of the composite energy method appears to

succeed slightly more often, however, the use of PSIPRED exclusively gen-

erates highly accurate predictions in significantly more cases.

We have employed the protocol described above in a completely automated

fashion; but only in an actual blind test can one be sure that the results suffer

from no unconscious bias. If these results hold up under truly blind test

conditions, this would represent a significant advance in ab initio prediction

methodology as judged by other ab initio efforts in CASP3.

While our new potential energy function certainly represents a step forward,

there are also obviously areas where more work needs to be done. Primarily, the

causes of failure to routinely achieve a low-RMSD structure in the top five

predictions in some cases must be analyzed and understood. These failures are

thus more interesting at this point than the successes because they point the way

to development of an improved methodology. We therefore analyze a number of

these cases in detail below so as to reveal the underlying difficulties and

directions in which solutions must be developed.

2. Detailed Analysis of Specific Cases

Figure 8 presents the detailed secondary structure predictions for each of the

cases that we analyze below. In conjunction with the tertiary folding results

summarized in Table VIII, as well as the results using PDB-derived secondary

structure presented above, we can extract insight into how various types of errors

in secondary structure prediction affect tertiary folding accuracy. Due to the large

amount of data, we have selected a subset of interesting examples to analyze in

detail, however, the conclusions, summarized in the discussion following

consideration of individual examples, reflect an examination of the results for

all 22 of the proteins studied.
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1aj3: This is a case for which the average three-state prediction accuracy of

all of the secondary structure prediction methods is quite good, typically in

excess of 85%. However, only four of the secondary structure predictions

yield reasonable tertiary folding results (NNSSP, original PhD, PSIPRED, and

ZPRED). The reason in this case is quite obvious; the successful methods

correctly predict that the region between residues 29 and 67 is a single long

helix, whereas the remaining predictions insert a short loop in the middle of this

part of the sequence. The short loop allows the two helical pieces surrounding it

to fold, producing a very different shape than is enforced by the single long helix.

As we shall see below, in many cases the composite energy scoring method is

capable of selecting the better tertiary architecture where there are qualitative

differences between predictions. In the present example, however, the simple

algorithm that we use to combine the predictions does not work well, for a

completely understandable reason. By introducing a loop into the long helix, the

protein is given greater flexibility. Because we have not explicitly included any

sort of scoring function for secondary structure [44], the only discriminant is the

energy of the tertiary fold, which in this case must favor the more flexible

structure. In the present system, the non-native structures have energies far

below the native-like and native structures.

The problem observed here will be potentially significant whenever the

correct secondary structure is a long helix, and prediction methods have trouble

distinguishing this from a pair of helices with a short loop in the middle—a very

common motif in secondary structure prediction codes. In order to rectify this

problem, it will probably be necessary to combine local energies, which

determine secondary structures, with long-range energy terms. One approach

is to replace fixed secondary structures by torsion angle energy wells, the depth

and breadth of which are functions of the secondary structure prediction

confidences. It may be possible to optimize the balance of torsion and long-

range energy parameters such that correct helix assignments are favored. An

alternative approach is to use an atomic level potential function and continuum

solvation model to compare the energies of the predictions with different

secondary structure assignments. We intend to explore both of these strategies

is future work.

1am3: This example contains the other side of the long helix problem

observed in 1aj3. Again, all of the secondary structure prediction three-state

percentages are reasonable. However, three of the methods (PRED, and Zpred)

predict a single long helix between residues 11 and 42, whereas the DSSP-

derived secondary structure (and the remaining predictions) specify two short

helices. In this case, the methods that incorrectly predict the long helix are

unable to obtain reasonable RMSD structures from the native structure. How-

ever, here the composite prediction method easily eliminates the qualitatively

256 volker a. eyrich, richard a. friesner, and daron m. standley



incorrect predictions, in this case benefiting from the lower energies obtained

due to greater flexibility of the two helical segments as opposed to a single long

helix. Also of interest here is the result obtained from the Mulpred prediction,

which inserts an incorrect short loop splitting the single helix between residues

12 and 26 into two shorter helices. This leads to a degradation in the rank of the

best native-like structure, but does not eliminate the possibility of obtaining a

reasonable prediction. Presumably, the magnitude of the effects of this sort of

insertion are qualitatively larger when the size of the helix in question is large

compared to the radius of gyration of the protein (as is the case in the two

instances discussed here). It is also interesting that this error does not

qualitatively degrade the results of the composite prediction method; it may

be that structures with a significant bend at the short loop are energetically

disfavored in this specific case.

1mzm: This protein is a startling example indicating that in some cases the

tertiary folding potential can survive very large qualitative errors in secondary

structure prediction. The only prediction that is satisfactory in terms of

predicting major elements correctly is that of PSIPRED (and even here, a

b-strand is incorrectly added on at the end), and indeed the PSIPRED results are

certainly the best, particularly in terms of the RMSD of the low-energy structure

which is below 5 Å. However, numerous other predictions are capable of

achieving reasonable results, despite gross errors in the secondary structure of

many different types. We have not analyzed in detail why this is the case; an

initial speculation would be that this protein does not have a large number of

alternative approaches to forming a good hydrophobic core. Also, because the

potential energy function does not include explicit b-strand pairing terms,

incorrect prediction of a strand is a local effect.

3. Summary of the Results for All Proteins

The following is a brief analysis of how the various types of errors identified in

the secondary structure predictions affected the proteins in the test set:

1. Incorrect Prediction of Long Helices. This problem, which amounts to

missing a critical loop, affected at least some predictions in most of the

proteins studied. Fortunately, in most cases at least one of the secondary

structure prediction methods correctly identified the loop in question.

Because the composite energy ranking protocol favors flexibility over

long helices, the presence of several incorrectly predicted long helices

was not, in general, a fatal error.

2. Incorrect Replacement of a Helix by a Strand. This problem most signi-

ficantly affected the proteins 1jvr and 1lfb. In some cases, good low-

energy tertiary folds are obtained despite the replacement of a helix with a
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strand; in other cases, the replacement eliminates any good predictions.

More work is needed to determine under what conditions this type of error

can be overcome, and when it is fatal.

3. Incorrect Replacement of an Important Helix by Loop. Given our current

composite energy ranking scheme, which favors flexibility, this error is in

general fatal. Fortunately, in all but one case (1nre) at least one (and

usually more than one) secondary structure prediction method correctly

identified the important helix. As discussed above, a composite energy

that combines local and long-range energy terms appears necessary in

order to treat long helices. In the short term, simply preventing one

secondary structure assignment from dominating the composite ranking

may sufficiently diversify the resulting low-energy structures.

4. Small Errors in the Prediction (Incorrect Lengths of Secondary Structure,

Small Helix, or Strand Incorrectly Present or Missing). Generally, these

types of errors led to quantitative degradation in the ranking of low-

RMSD structures as opposed to complete elimination of these structures.

4. Results from the CASP3 Prediction Contest

In addition to the test cases discussed above, we have also studied two small

helical proteins that were targets in the CASP3 prediction contest. These studies

allow us to compare our results with those of other groups [11]. The two targets

we have investigated are target T0061 (PDB-code: 1bg8) and target T0074 (PDB

code: 1eh2). Each is a helical protein between 50 and 100 residues and hence is

part of the same general category as most of the proteins in the test set. The

results for these two proteins are presented in detail in Tables VIII and IX and

discussed below. We make explicit comparisons with the results of the Scheraga

[25,45] and Samudrala [29] groups, both of whom carried out ab initio folding on

these targets and used methods similar in spirit to what we present here. Those of

the latter group are in fact quite analogous, because prediction methods are used

to determine secondary structure, followed by tertiary folding simulations to

generate a three-dimensional topology.

It should be noted that a nontrivial aspect of making these comparisons is

that the proteins were truncated differently in the various calculations; we

present all of the relevant information below so that the reader can draw his or

her own conclusion. We do, however, wish to make one point with regard to the

manner in which the comparison sequence is truncated. In our approach,

truncation of terminal loop regions is done automatically using the secondary

structure prediction, without reference to the native structure. In several of the

comparisons we report below, truncation was carried out with the native

structure in hand, presumably to minimize the RMSD obtained. While such

results do indicate partial success of the folding algorithm, from a statistical
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point of view it is much easier to achieve an RMSD of 6–7 Å when an extensive

choice of fragments are available to be optimized as opposed to when a single

fragment is chosen a priori. This is particularly the case when the fragment is

relatively small compared to the total length of the sequence.

1eh2: The secondary structure prediction methods generally performed well

on this protein. The tertiary folding simulations were also quite effective, with

the best results yielding an RMSD of less than 5 Å as the lowest energy

prediction. The composite energy method provides a prediction ranking 3 with

an RMSD of 6.02 Å, a respectable result for a protein in the 50 to 100-residue

range. If the PSIPRED secondary structure method were to be used exclusively,

the best prediction among five submitted predictions would be 4.84 Å; this is an

excellent result, competitive with the best results obtained from threading

methods [46]. We note that in both predictions, a long terminal loop of the

protein was truncated, so that the total number of residues predicted was 72 in

the PSIPRED simulation and 65 in the composite energy method.

In CASP3, results for 1eh2 varied greatly with prediction method. Several

groups were able to identify a remote homolog and hence utilize threading

approaches to structure prediction [46], whereas others use methods based

more on ab initio approaches. When only �80% of the protein structure

was predicted, the best results were in the 5 Å RMSD range; as the percentage

of the protein predicted increased to 100%, the prediction accuracy degraded

to 6.01 Å. Our results using PSIPRED secondary structure are comparable to

the former results; in this case 74% of the residues were predicted to an

accuracy of 4.84 Å.

The Scheraga group submitted a prediction for this target; however, they

included the long terminal loop in their prediction which it is extremely difficult

to predict correctly with ab initio methods. Consequently, their reported RMSD

of 9.99 Å for the entire protein does not constitute a fair evaluation of the

capabilities of their methodology. They also report a 5.8 Å RMSD for a 53-

residue fragment of the protein. The calculations would most likely have been

more successful had the terminal loop been deleted during the simulation, as

was done in our approach. The Samudrala group, who achieved an RMSD of

11.3 Å, also included the terminal loop in their calculations. Their post-CASP3

analysis yielded an optimal fragment prediction of 7.0 Å for a 60-residue

fragment. The results reported above (4.84 Å RMSD for 72 residues predicted)

is qualitatively superior to either of these results, particularly as the truncation

was carried out prior to the simulation.

1bg8—Chain A: 1bg8 is a target for which none of the predictors success-

fully located a remote homolog. The best results (and indeed the only ones that

could be considered even partially successful for a protein this size) were those
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of Scheraga and co-workers, who achieved an RMSD of 7.27 Å (for all 76

residues reported experimentally) as the best result of four submitted predictions

(their remaining predictions had RMSDs of 8.91 Å, 9.08 Å, and 9.23 Å). Their

best results for a postprocessed fragment are 4.2 Å for a 61-residue fragment.

Using the composite energy method, our lowest energy prediction achieves an

RMSD of 6.69 Å, but for only 52 residues obtained after truncating to allow

energetic comparisons among all of the secondary structure predictions. The

PSIPRED calculations yield a 6.07 Å RMSD, again for 52 residues (PSIPRED

incorrectly predicts a long terminal loop, which we truncate). These results are

respectable in terms of RMSD but involve significant truncation in a region

where there is actual secondary structure.

The Samudrala group achieved an RMSD of 10.1 Å for all 76 residues and

7.4 Å for 66 residues after postprocessing. The Scheraga group results in this

case have to be considered best. Much of their success can be attributed to an

impressive 79% accuracy in the secondary structure assembled in their most

successful simulation; in this case, the standard neural-network-based secondary

structure prediction methods that we (and Samudrala and co-workers) employed

have a much poorer performance than they do for the test set, with accuracies

below 65% in all cases.

V. CONCLUSION

We have demonstrated that the inclusion of size dependence in the derivation of a

statistical potential for tertiary protein folding yields substantially improved

results, as compared to previous efforts, for a substantial number of proteins of

less than 100 residues in size. The new potential reliably yields highly ranked

structures with low RMSDs as compared to the native structure (in contrast to

earlier results that displayed occasional failures in this regard) and also provides

a significant quantitative improvement in the energetic ranking of the best low

RMSD cluster. There remain in most cases a small number (5–10) of competing

misfolded structures with low energies; discrimination of these from the native-

like topology, necessary for truly reliable tertiary structure prediction, will be a

major objective of subsequent work. The reduction of the huge phase space of

possible tertiary assemblies to a short list of discrete alternatives does, however,

clearly represent progress in the nature and parameterization of the potential

function.

We next examined the effect of replacing secondary structure elements

derived from the PDB with idealized strands and helices, at the same locations.

This substitution examines the effects of helix and strand distortion from ideal

geometry on the predicted tertiary fold. Our conclusion is that, while there are

occasional cases where substantial effects are observed, particularly for

b-strands where a major distortion in length is manifested, the quality of the
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results is in general comparable to that obtained using PDB-derived secondary

structure elements. This suggests that a folding protocol that initially uses

idealized geometries and subsequently refines these geometries by allowing

distortions is likely to be successful; furthermore, even if it is necessary in some

cases to incorporate distortion directly into the initial simulations, the perturba-

tions induced are relatively small and hence handling them should be compu-

tationally tractable.

Finally, we attempted genuine ab initio prediction by using predicted, rather

than PDB-derived (in either geometry or location), secondary structure,

focusing on small helical proteins. Recent improvements in secondary structure

prediction, as exemplified by the PSIPRED code of Jones [26], allowed

impressively accurate secondary structure predictions to be generated in many

cases. When errors in secondary structure were made, the most difficult to deal

with were cases in which a long helix was incorrectly predicted to be two short

helices, or when two short helices were incorrectly predicted to be a single long

helix. Reliable prediction of tertiary structure for a-helical proteins will clearly

require secondary structure prediction methods than can robustly discriminate

these two cases. Other types of large errors, such as replacement of a helix by a

strand or a loop, produced variable results; in some cases, the predictions were

surprisingly good despite such major errors. Smaller errors—for example, in

length or position of a predicted helix—generally led to relatively minimal

quantitative degradations in accuracy as compared to the use of PDB-derived

secondary structure. Results for two small, helical CASP3 targets were

presented which compared well with the work of other groups [11], including

those employing fold recognition methods [46].

While there is still clearly a lot of work to be done, the above results are

encouraging with regard to the possibility of developing reliable ab initio

methods for protein structure prediction to low resolution, at least for small

helical proteins. A different direction to pursue is the combination of these

methods with fold recognition techniques (threading) and with experimental

data, specifically NMR and X-ray crystallographic information. We have

demonstrated in previous work [16] that the combination of a tertiary folding

potential with sparse NMR constraints can successfully produce structures in

the 2–4 Å resolution regime even for large systems; improvements in the

folding potential will enhance the utility of such methods.
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I. INTRODUCTION

Proteins are some of the most complex and vital molecules in nature. Their

complexity arises from the intricate balance of intra- and intermolecular

interactions that define their native three-dimensional structures and biological

functionalities. Recent advances in genetic engineering and genome projects

have heightened interest in predicting the folding dynamics and equilibrium

structures of proteins and protein–protein complexes. This prediction ability is of

great theoretical interest, especially in the fields of biophysics and biochemistry.

The applications of these predictions promise to be especially valuable. The

ability to predict the structure of individual and complexed protein molecules

would increase our understanding of disease, aid in the interpretation of genome

data, and revolutionize the process of de novo drug design.

Anfinsen’s thermodynamic hypothesis [1] suggests that the native structure

of a protein system is in a state of thermodynamic equilibrium corresponding to

the system with the lowest free energy. Experimental studies have shown that,

under native physiological conditions and after denaturation, globular proteins

spontaneously refold to their unique, native structure [2]. Understanding the

transition of a protein from a disordered state to its native state defines the

protein folding problem. A natural extension of the protein folding problem is

the related problem of predicting protein–protein interactions, also known as

peptide docking. Prediction of protein–protein interactions requires the identi-

fication of equilibrium structures for protein–protein complexes. One part of this

prediction challenge involves identifying the conformation of the binding sites

through which complexed proteins interact, which can be accomplished experi-

mentally or approached as an independent protein folding problem. Another

part of the peptide docking prediction challenge involves identifying equili-

brium structures for a number of candidate ‘‘docking’’ molecules complexed

with a target macromolcule and then quantifying and comparing their relative

binding affinities.

The use of computational techniques and simulations in addressing the

protein folding and peptide docking problems became possible through the

introduction of qualitative and quantitative methods for modeling these systems.

The development of realistic energy models also established a link to the field of

global optimization, where, based on Anfinsen’s hypothesis, the quantity to be

optimized is the free energy of the system. Because the number of local minima
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is vast, the corresponding problem formulation has earned the simple yet

suggestive title of the ‘‘multiple-minima’’ problem. The basis for these

difficulties is best summarized by Levinthal’s paradox [3]. This paradox

suggests a contradiction between the almost infinite number of possible stable

states that the system may sample and the relatively short time scale required for

actual protein folding. Levinthal’s observations suggest that the native state is

the lowest kinetically accessible free energy minimum, which may be different

from the true global minimum. These principles have been used to develop

computational techniques for predicting protein folding pathways [4–8]. Such

techniques attempt to map the shape of the energy hypersurface and determine

whether this surface ‘‘funnels’’ a protein toward a dominant conformational

basin. By invoking the thermodynamic hypothesis, the overall shape of the

energy hypersurface is neglected and the problem can be formulated in terms of

global minimization, which requires the use of effective global optimization

techniques. If this formulation is to reproduce the behavior of realistic systems,

the folding of actual proteins should not be kinetically hindered. This has been

verified for various systems by performing denaturation–refolding experiments.

In addition, by introducing structural characteristics whose formation may act as

kinetic barriers, such as the formation of disulfide bonds, the performance of the

thermodynamic equilibrium model should be improved.

To better understand the dynamics of protein folding, it is also necessary to

examine a protein’s energy hypersurface. The characterization of the energy

surface must include the identification of other stable and metastable config-

urations. Mathematically, these structures correspond to stationary points of the

energy function. In particular, local minima represent stable conformations,

while (first-order or higher-order) saddle points constitute transition states that

connect two stable structures. A folding pathway defines the connection

between two stable conformations (local minima) through a series of transition

states (saddle points). Because the folding pathway may include a number of

intermediates, a rigorous description of the energy surface would require the

identification of all local minima and saddle points of the energy function.

Based on the complexity of the energy hypersurface, there is an obvious need

for the development of efficient global optimization techniques. Although the

energy can be expressed analytically, exhaustive searches are possible for only

the smallest of systems. These observations, along with the importance of the

protein folding and peptide docking problems, have propelled the introduction

of new global search strategies specifically designed for these problems.

In the sequel, we first outline the basics of the deterministic global

optimization approach, aBB, which has been used extensively to study the

protein structure prediction, dynamics of protein–protein folding, and protein

docking problems. This is followed by a comprehensive study of ab initio

modeling for structure prediction of single-chain polypeptides in Section III. An
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extensive comparison of energy modeling, including solvation, entropic effects,

and free energy calculations, is provided for the oligopeptides. The related

problem of restrained structure refinement in the presence of sparse experimen-

tally derived restraints is also discussed. Section IV moves beyond the static

structure prediction problem toward an understanding of the dynamics of

protein folding. An in-depth analysis of the coil-to-helix transition is provided

for the alanine tetrapeptide. This analysis includes the elucidation of folding

pathways and the identification of plausible reaction coordinates. Section V

addresses the peptide docking problem. First, an approach for the determination

of binding site structure is introduced. This is followed by a decomposition-

based approach for the prediction of relative binding affinities. Both approaches

are applied to peptide docking in HLA molecules.

II. DETERMINISTIC GLOBAL OPTIMIZATION

A. Twice Continuously Differentiable NLPs

The generic optimization problem to be addressed has the following form:

min
x

f ðxÞ

subject to gðxÞ � 0

hðxÞ ¼ 0

x 2 ½xL; xU �

ð1Þ

where x is a vector of n continuous variables, f ðxÞ is the objective function, gðxÞ
is a vector of inequality constraints, and hðxÞ is a vector of equality constraints.

Both the objective function and constraint equations are assumed to be twice

continuously differentiable. xL and xU denote the lower and upper bounds on

the x variables, respectively. The constraints define the feasible region for the

problem.

Two main classes of global optimization techniques have been developed to

address problem (1), namely, stochastic and deterministic approaches. Stochastic

methods, such as those based on genetic algorithms [9] and simulated annealing

[10], can be used to treat unconstrained nonconvex problems. However, the

stochastic nature of the search strategy invalidates any claims regarding global

optimality because it is impossible to obtain valid bounds on the solution of the

problem. The addition of nonconvex constraints further complicates these

solution schemes. In contrast, deterministic methods rely on a theoretically

based search of the domain space to guarantee the identification of the global

optimum solution.

A common characteristic of deterministic global optimization algorithms is

the progressive reduction of the domain space until the global solution has been
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found with arbitrary accuracy. The solution is approached from above and

below by generating converging sequences of upper and lower bounds, and the

generation of these bounds on the global optimum solution is an essential part of

all deterministic global optimization algorithms [11–13].

The aBB algorithm has been developed to address general twice continu-

ously differentiable models of type (1) [14–18]. The algorithm is built on a

branch-and-bound framework and can handle generic nonconvex optimization

problems represented by formulation (1). E-Convergence to the global optimum

solution is guaranteed when the functions f ðxÞ, gðxÞ, and hðxÞ are twice

continuously differentiable. The algorithm has been shown to terminate in a

finite number of iterations for this broad class of problems [16,17,19,20].

The aBB global optimization approach is based on the convex relaxation of

the original nonconvex formulation (1). This requires convex lower bounding of

all expressions, and these expressions can be classified as (i) convex terms, (ii)

nonconvex terms of special structure, and (iii) nonconvex terms of general

structure. Obviously, convex lower bounding functions are not required for

original convex expressions (e.g., linear terms). Certain nonconvex terms,

including bilinear, trilinear and univariate concave functions, possess special

structure that can be exploited in developing lower bounding functions. All

other nonconvex terms can be underestimated using a general expression [18].

When applying the aBB approach to the protein folding problem, formula-

tion (1) involves only nonconvex expressions of general structure. For this

reason, the following exposition will briefly cover underestimation for terms of

special structure and then focus on the development of a convex lower bounding

formulation for global optimization involving generic nonconvex objective and

constraint functions.

1. Underestimating Terms of Special Structure

In the case of a bilinear term xy, Ref. 21 showed that the tightest convex lower

bound over the domain ½xL; xU � � ½yL; yU � is obtained by introducing a new

variable wB that replaces every occurrence of xy in the problem and satisfies the

following relationship:

wB ¼ maxfxLyþ yLx� xLyL; xUyþ yUx� xUyUg ð2Þ

This lower bound can be relaxed and included in the minimization problem by

adding two linear inequality constraints:

wB 
 xLyþ yLx� xLyL

wB 
 xUyþ yUx� xUyU
ð3Þ

Moreover, an upper bound can be imposed on w to construct a better approxi-

mation of the original problem [22]. This is achieved through the addition of
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two linear constraints:

wB � xUyþ yLx� xUyL

wB � xLyþ yUx� xLyU
ð4Þ

A trilinear term of the form xyz can be underestimated in a similar fashion

[23]. A new variable wT is introduced and bounded by the following eight

inequality constraints:

wT 
 xyLzL þ xLyzL þ xLyLz� 2xLyLzL

wT 
 xyUzU þ xUyzL þ xUyLz� xUyLzL � xUyUzU

wT 
 xyLzL þ xLyzU þ xLyUz� xLyUzU � xLyLzL

wT 
 xyUzL þ xUyzU þ xLyUz� xLyUzL � xUyUzU

wT 
 xyLzU þ xLyzL þ xUyLz� xUyLzU � xLyLzL

wT 
 xyLzU þ xLyzU þ xUyUz� xLyLzU � xUyUzU

wT 
 xyUzL þ xUyzL þ xLyLz� xUyUzL � xLyLzL

wT 
 xyUzU þ xUyzU þ xUyUz� 2xUyUzU

ð5Þ

Fractional terms of the form x=y are underestimated by introducing a new

variable wF and two new constraints [23] which depend on the sign of the

bounds on x:

wF 

xL=yþ x=yU � xL=yU if xL 
 0

x=yU � xLy=yLyU þ xL=yL if xL < 0

�

wF 

xU=yþ x=yL � xU=yL if xU 
 0

x=yL � xUy=yLyU þ xU=yU if xU < 0

� ð6Þ

For fractional trilinear terms, eight new constraints are required [23]. The

fractional trilinear term xy=z is replaced by the variable wFT and the constraints

for xL; yL; zL 
 0 are given by

wFT 
 xyL=zU þ xLy=zU þ xLyL=z� 2xLyL=zU

wFT 
 xyL=zU þ xLy=zL þ xLyU=z� xLyU=zL � xLyL=zU

wFT 
 xyU=zL þ xUy=zU þ xUyL=z� xUyL=zU � xUyU=zL

wFT 
 xyU=zU þ xUy=zL þ xLyU=z� xLyU=zU � xUyU=zL

wFT 
 xyL=zU þ xLy=zL þ xUyL=z� xUyL=zL � xLyL=zU

wFT 
 xyU=zU þ xUy=zL þ xLy=z� xLyU=zU � xUyU=zL

wFT 
 xyL=zU þ xLy=zL þ xUyL=z� xUyL=zL � xLyL=zU

wFT 
 xyU=zL þ xUy=zL þ xUyU=z� 2xUyU=zL

ð7Þ
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Univariate concave functions are trivially underestimated by their lineariza-

tion at the lower bound of the variable range. Thus the convex envelope of the

concave function utðxÞ over ½xL; xU � is the linear function of x:

utðxLÞ þ utðxUÞ � utðxLÞ
xU � xL

ðx� xLÞ ð8Þ

The generation of the best convex underestimator for a univariate concave

function does not require the introduction of additional variables or constraints.

2. Underestimating General Nonconvex Terms

A general nonconvex term f ðxÞ belonging to the class of twice continuously

differentiable functions can be underestimated over the entire domain

x 2 ½xL; xU� by the function f̂ ðxÞ defined as

f̂ ðxÞ ¼ f ðxÞ þ
Xn

i¼1

aiðxL
i � xiÞðxU

i � xiÞ ð9Þ

where the ai’s are nonnegative scalars.

f̂ ðxÞ is a guaranteed underestimator of f ðxÞ because the original nonconvex

expression is augmented by the addition of separable quadratic functions that

are negative over the entire domain ½xL; xU �. Furthermore, because the quadratic

term is convex, all nonconvexities in the original term f ðxÞ can be overpowered

by using sufficiently large values of the ai parameters.

The convex lower bounding function f̂ ðxÞ, defined over the rectangular

domain of xL � x � xU, possesses a number of important properties that

guarantee the convergence of the aBB algorithm to the global optimum

solution:

(i) f̂ ðxÞ is a valid underestimator of f ðxÞ. That is,

8 x 2 xL; xU
� �

it can be shown that f̂ ðxÞ � f ðxÞ

(ii) f̂ ðxÞ matches f ðxÞ at all corner points.

(iii) f̂ ðxÞ is convex in x 2 xL; xU½ �.
(iv) The maximum separation between the nonconvex term of generic

structure, f ðxÞ, and its convex relaxation, f̂ ðxÞ, is bounded and also

proportional to the positive a parameters and to the square of the

diagonal of the current box constraints:

max
xL�x�xU

½ f ðxÞ � f̂ ðxÞ� ¼ 1

4

Xn

i

aiðxU
i � xL

i Þ
2 ð10Þ
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(v) The underestimators constructed over supersets of the current set are

always less tight than the underestimator constructed over the current

box constraints for every point within the current box constraints.

The key development in the convex lower bounding formulation is the

definition of the a parameters. Specifically, the magnitude of the a parameters

may be related to the minimum eigenvalue of the Hessian matrix of the

nonconvex term f ðxÞ:

a 
 max 0;� 1

2
min

i;xL�x�xU
liðxÞ

� �
ð11Þ

where lðxÞ represent the eigenvalues of the Hessian matrix (Hf ðxÞ) for the

nonconvex term. An explicit minimization problem can be written to find the

minimum eigenvalue (lmin):

min
x;l

l

subject to det Hf ðxÞ � lI
� �

¼ 0

x 2 ½xL; xU �

The solution of this problem is a nontrivial matter for arbitrary nonconvex

functions.

One method for the rigorous determination of a parameters for general twice

differentiable problems involves interval analysis of Hessian matrices to

calculate bounds on the minimum eigenvalue [14,15]. The difficulties arising

from the presence of the variables in the convexity condition can be alleviated

through the transformation of the exact x-dependent Hessian matrix to an

interval matrix ½Hf � such that Hf ðxÞ � ½Hf �; 8 x 2 ½xL; xU �. The elements of the

original Hessian matrix are treated as independent when calculating their

natural interval extensions [24,25]. The interval Hessian matrix family ½Hf � is

then used to formulate a theorem in which the a calculation problem is relaxed

[15]. In other words, a valid lower bound on the minimum eigenvalue can be

used to calculate rigorous a values:

a 
 0; � 1

2
lmin ½Hf �

� �� �
ð12Þ

where lminð½Hf �Þ is the minimum eigenvalue of the interval matrix family ½Hf �.
An Oðn2Þ method to calculate these a values is the straightforward extension

of Gerschgorin’s theorem [26] to interval matrices. For a real matrix A ¼ ðaijÞ,
the well-known theorem states that the eigenvalues are bounded below by lmin
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such that

lmin ¼ min
i

aii �
X
j6¼i

jaijj
 !

ð13Þ

For an interval matrix ½A� ¼ ð½aij; �aij�Þ, a lower bound on the minimum eigen-

value is given by

lmin 
 min
i

aii �
X
j 6¼i

maxðjaijj; j�aijjÞ
" #

This procedure provides a single a value that is valid for all variables.

Nonuniform diagonal shift matrices can be used to calculate a different a
value for each variable in order to construct an underestimator of the form

shown in Eq. (9). The nonzero elements of the diagonal shift matrix can no

longer be related to the minimum eigenvalue of the interval Hessian matrix ½Hf �.
If all elements of the scaling vector are set to 1, the equation for the ai values

becomes

ai ¼ max 0;� 1

2
aii �

X
j6¼i

jajij

 !( )

However, the choice of scaling is arbitrary, and different ai parameters can be

estimated through various scaling techniques.

3. Convexification of Feasible Region

To obtain a valid lower bound on the global solution of the nonconvex problem,

the lower bounding problem generated in each domain must have a unique

solution. This implies that the formulation includes only convex inequality

constraints, linear equality constraints, and an increased feasible region relative

to that of the original nonconvex problem. The left-hand side of any nonconvex

inequality constraint, gðxÞ � 0, in the original problem can simply be replaced

by its convex underestimator ĝðxÞ, constructed according to Eq. (9), to yield the

relaxed convex inequality ĝðxÞ � 0.

For an equality constraint containing general nonconvex terms, the equation

obtained by simple substitution of the appropriate underestimators is also

nonlinear. Therefore, the original equality hðxÞ ¼ 0 must be rewritten as two

inequalities of opposite signs:

hþðxÞ ¼ hðxÞ � 0

h�ðxÞ ¼ �hðxÞ � 0
ð14Þ

These two inequalities must then be underestimated independently to give ĥþðxÞ
and ĥ�ðxÞ.
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4. Convex Lower Bounding Problem Formulation

Summarizing the concepts introduced so far, a convex relaxation for any

nonconvex problem of type (1) belonging to the broad class of twice

continuously differentiable continuous NLPs can be constructed as

min
x

f̂ ðxÞ

subject to ĝðxÞ � 0

ĥþðxÞ � 0

ĥ�ðxÞ � 0

x 2 ½xL; xU �

ð15Þ

where ^ denotes the convex underestimator of the specified function over the

domain x 2 ½xL; xU �. Because the inclusion of convex terms and nonconvex

terms of special structure has been neglected, these functions involve only a-type

underestimating expressions. These underestimators are functions of the size of

the domain under consideration, and because the aBB algorithm follows a

branch-and-bound approach, this domain is systematically reduced at each new

node of the tree. Tighter lower bounding functions can therefore be generated by

updating the underestimating equations. The lower bounds on the problem form

a nondecreasing sequence, and the underestimating strategy is therefore

consistent, as required for convergence.

5. Variable Bound Updates

The quality of the convex lower bounding problem can also be improved by

ensuring that the variable bounds are as tight as possible. These variable bound

updates can be performed either at the onset of an aBB run or at each iteration.

In both cases, the same procedure is followed in order to construct the bound

update problem. Given a solution domain, the convex underestimator for every

constraint in the original problem is formulated. The bound problem for variable

xi is then expressed as

x
L;NEW
i =x

U;NEW
i ¼

min
x

=max
x

xi

subject to ĝðxÞ � 0

xL � x � xU

8<
: ð16Þ

where ĝðxÞ are the convex underestimators of the constraints, and the bounds on

the variables xL and xU are the best calculated bounds. Thus, once a new lower

bound x
L;NEW
i on xi has been computed via a minimization, this value is used in

the formulation of the maximization problem for the generation of an upper

bound x
U;NEW
i .
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Because of the computational expense incurred by an update of the bounds

on all variables, it is often desirable to define a smaller subset of the variables on

which this operation is to be performed. The criterion devised for the selection

of the branching variables can be used in this instance, because it provides a

measure of the sensitivity of the problem to each variable.

6. The aBB Algorithm

The global optimization method aBB deterministically locates the global

minimum solution of (1) based on the refinement of converging lower and

upper bounds. The lower bounds are obtained by the solution of (15), which is

formulated as a convex programming problem. Upper bounds are based on the

solution of (1) using local minimization techniques.

As previously mentioned, the maximum separation between the generic

nonconvex terms and their respective convex lower bounding representations is

proportional to the square of the diagonal of the current rectangular partition. As

the size of the rectangular domains approach zero, this separation also become

infinitesimally small. That is, as the current box constraints ½xL; xU � collapse to a

point, the maximum separation between the original objective function of (1)

and its convex relaxation in (15) becomes zero. This implies that for the positive

numbers E and x there always exists another positive number d which, by

reducing the rectangular region ½xL; xU � around x so that kxU � xLk � d, cause

the difference between the feasible region of the original problem (1) and its

convex relaxation (15) to become less than E. Therefore, any feasible point x
of problem (15), including the global minimum solution, becomes at least

E-feasible for problem (1) by sufficiently tightening the bounds on x around this

point.

Once the solutions for the upper and lower bounding problems have been

established, the next step is to modify these problems for the next iteration. This

is accomplished by successively partitioning the initial rectangular region into

smaller subregions. The number of variables along which subdivision is

required is equal to the number of variables x participating in at least one

nonconvex term of the (1) formulation. The default partitioning strategy used in

the algorithm involves successive subdivision of the original rectangle into two

subrectangles by halving on the midpoint of the longest side of the initial

rectangle (bisection). Therefore, at each iteration a lower bound of the objective

function (1) is simply the minimum over all the minima of problem (15) in each

sub-rectangle of the initial rectangle. In order to ensure lower bound improve-

ment, the subrectangle to be bisected is chosen by selecting the subrectangle

that contains the infimum of the minima of (15) over all the subrectangles. This

procedure guarantees a nondecreasing sequence for the lower bound. A

nonincreasing sequence for the upper bound is found by solving the original

nonconvex problem (1) locally and selecting it to be the minimum over all the

276 john l. klepeis et al.



previously recorded upper bounds. Obviously, if the single minimum of (15) for

any subrectangle is greater than the current upper bound, this subrectangle can

be discarded because the global minimum cannot lie within this subdomain

(fathoming step).

Because the maximum separation between the nonconvex terms and their

respective convex lower bounding functions is both a bounded and a continuous

function of the size of rectangular domain, arbitrarily small feasibility and

convergence tolerance limits are attained for a finite-sized partition element.

The basic steps of the aBB global optimization algorithm are as follows:

1. Initialization. A convergence tolerance, Ec, and a feasibility tolerance, Ef ,

are selected and the iteration counter, I, is set to one. The current variable

bounds ½xL
I ; xU

I � for the first iteration are set equal to the global ones

½xL
0 ; xU

0 �. Lower and upper bounds ½ f L; f U � on the global minimum of (1)

are initialized and an initial current point is selected from the domain.

2. Local Solution of Nonconvex Problem. The nonconvex optimization

problem (1) is solved locally within the current variable bounds ½xL
I ; xU

I �. If

the solution is Ef -feasible, the upper bound f U is updated as follows:

f U ¼ minð f U ; f U
I Þ

where f U
I is the objective function value for the current Ef -feasible solution.

3. Partitioning of Current Rectangle. The current rectangle, ½xL
I ; x

U
I �, is

bisected into two subrectangles ðr ¼ a; bÞ for the variable ðlÞ with the

longest side of the initial rectangle:

lI ¼ arg max
i
ðxU

i;I � xL
i;IÞ

4. Solution of Underestimating Problems. The parameters ai;I;r are updated

for both rectangles ðr ¼ a; bÞ. The convex optimization problem (15) is

solved inside both subrectangles ðr ¼ a; bÞ using a nonlinear solver (e.g.,

MINOS5.4 [27], NPSOL [28]). If a solution f L
I;r is less than the current

upper bound, f U , then it is stored.

5. Update of Lower Bound. The iteration counter is increased by one, and

the lower bound, f L, is updated to be the minimum solution over the

stored solutions from previous iterations. The selected region is erased

from the stored set.

f L ¼ min
I0;r

f L
I0;r; r ¼ a; b; I0 ¼ 1; . . . ; I � 1

6. Update Bounds. The bounds of the current rectangle are updated to those

of the sub-rectangle containing the previously found solution ( f L).
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7. Check for Convergence. If f U � f Lð Þ > Ec, then return to Step 2.

Otherwise, Ec-convergence has been reached, and the global minimum

solution corresponds to point providing f U .

Figure 1 diagrams an unconstrained one-dimensional example of the

approach. The mathematical proof that the aBB global optimization algorithm

Figure 1. One-dimensional illustrative example of the aBB approach. In iteration 1 the overall

domain is bisected, the two convex lower bounding functions are created, and their unique minima

(L1 and L2) are identified. An upper bound is also identified. Because L1 is less than L2, the region

containing L1 is further bisected in iteration 2, whereas the other region is stored. The minimum of

one region (L3) is greater than the new upper bound, so this region can be fathomed. The other

region is stored. In iteration 3 the region with the next lowest lower bound (L2) is bisected and

because both new lower bound minima (L5 and L6) are greater than the current best upper bound, the

entire region is fathomed. Finally, by iteration 4, the region containing L4 is bisected, which results

in a region that can be fathomed (containing L7) and a convex region whose minimum (L8) equals

the current upper bound and is the global minimum.

278 john l. klepeis et al.



converges to the global optimum solution is presented in Ref. 19. In addition to

computational chemistry related problems, the aBB approach has been applied

to a variety of constrained optimization problems [15–18].

B. Enclosure of All Solutions

The aBB algorithm discussed in the previous section was originally designed to

solve global optimization problems. However, this algorithm has also proven to

be effective in the solution of non-linearly constrained systems of algebraic

equations [23], provided only that the constraints are twice continuously

differentiable. The key idea is to reformulate the algebraic system of equations as

a global optimization problem that exhibits multiple global solutions and then

use the aBB approach as a basis for the enclosure of all solutions. In the

following sections, we discuss the enclosure of all solutions.

1. Problem Formulation

In general, a non-linearly constrained system of algebraic equations can be

expressed in the form

fiðxÞ ¼ 0; i ¼ 1; . . . ;Nf

gjðxÞ � 0; j ¼ 1; . . . ;Ng

xL � x � xU

ð17Þ

where fiðxÞ represent the equality constraints (N f is the number of such

constraints) and gjðxÞ represent the inequality constraints (Ng is the number of

such constraints).

In order to apply the aBB algorithm to (17), we must reformulate it as a

global optimization problem. This is accomplished by introducing a slack

variable s and minimizing its value over an augmented variable set ðx; sÞ
subject to a set of relaxed constraints:

min
x;s

s

subject to fiðxÞ � s � 0; i ¼ 1; . . . ;Nf

�fiðxÞ � s � 0; i ¼ 1; . . . ;Nf

gjðxÞ � 0; j ¼ 1; . . . ;Ng

xL � x � xU

ð18Þ

In comparing the two formulations, the following two facts are self-evident:

� If s < 0, the constraints in (18) are infeasible.

� If s ¼ 0, the constraints in (18) reduce to the original problem (17).
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It follows that s ¼ 0 is the global minimum of (26)—provided that (17) has

solutions—and that there is a one-to-one correspondence between global minima

ðx�; s�Þ of (18) and solutions x� of the original problem (17). Therefore, the

problem of finding all solutions to (17) can be reformulated as the problem of

finding all global minima of (18).

In the next section, we will explain how the aBB global optimization

algorithm can be used to enclose all global minima of (18), and hence, all

solutions to (17).

2. Framework for Enclosing All Solutions

In this section, we describe the aBB global optimization algorithm as it is applied

to the general problem of determining all solutions to a system of algebraic

constraints (17). This adaptation is based on the correspondence between

solutions of (17) and global minima of (18) with s ¼ 0. Since the aBB algorithm

can be applied to any problem involving constraints which are twice continuously

differentiable (C2), the only necessary assumptions we need to make are that

fiðxÞ and gjðxÞ are C2 functions for i ¼ 1; . . . ;Nf and j ¼ 1; . . . ;Ng, respectively.

The algorithm proceeds by exploring the configuration space for solutions

to (17). We begin with the full region x 2 ½xL; xU � and subdivide regions into

smaller regions. Each region is tested before it is divided to see if a solution to

(17) can possibly exist there. This is accomplished by finding a lower bound of

the global minimum of (18) over the region in question. If the lower bound is

positive, then s ¼ 0 cannot lead to a feasible point of (18), and hence no solution

to (17) can exist in the given region. The region will be fathomed (i.e.,

eliminated from further consideration). On the other hand, if the lower bound

is negative or zero, there may or may not be a solution to (17) in that region. In

this case, further subdivision and testing will be necessary. If the region size

becomes small enough and the region is still active (i.e., its lower bound is

negative or zero), then a solution to (17) is obtained within that region by a local

search. The algorithm terminates when all regions have been fully processed.

Note that upper bounds of the global minimum need not be determined.

Since we are assuming that the global minimum of (18) is zero, we can set the

upper bound to this value from the start, and thus avoid the effort of solving an

upper bounding problem.

Lower bounds of the global minimum of (18) are determined by solving the

lower bounding problem over the given region:

min
x;s

s

subject to f̂
þ
i ðxÞ � s � 0; i ¼ 1; . . . ;Nf

f̂
�
i ðxÞ � s � 0; i ¼ 1; . . . ;Nf

ĝjðxÞ � 0; j ¼ 1; . . . ;Ng

xL � x � xU

ð19Þ
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where f̂
þ
i ðxÞ, f̂

�
i ðxÞ, and ĝ jðxÞ are convex functions which underestimate fiðxÞ,

�fiðxÞ, and gjðxÞ, respectively. Because the constraints are all convex functions,

any local optimization package should be able to locate its global minimum.

Furthermore, every feasible point of (18) is also a feasible point of (19) because

these functions are underestimators of the original functions. It follows that the

global minimum of (19) is a valid lower bound of the global minimum of (18).

The crux of the aBB algorithm is finding valid convex underestimators,

f̂
�
i ðxÞ and ĝjðxÞ, for the functions �fiðxÞ and gjðxÞ, respectively, over a given

region. An important consideration is that the convex underestimators be as

tight (i.e., close in value to the original constraint functions) as is reasonably

possible, because tighter underestimators lead to better lower bound estimates.

It is important to be able to fathom regions as quickly as possible if they do not

contain any solutions to (17). However, this cannot always be done: It

frequently occurs that a region contains no solution to (17) [i.e., the global

minimum of (18) over that region is positive], but the lower bound obtained

from (19) for that region is negative. Such regions obviously must be explored

further, until positive lower bounds are obtained. A better lower bound estimate

can lead to significant improvement in the efficiency of the algorithm.

When applying this algorithm to the problem of finding all stationary points

of a potential energy surface, the constraint functions, �fiðxÞ and giðxÞ, are

general nonconvex functions. Whenever these constraint functions are C2, they

can be underestimated using the a underestimation described in Section II.A.2.

In this context, the underestimators take the form

f̂
þ
i ðxÞ ¼ fiðxÞ � a f ;þ

i

X
k

ðxU
k � xkÞðxk � xL

k Þ

f̂
�
i ðxÞ ¼ �fiðxÞ � a f ;�

i

X
k

ðxU
k � xkÞðxk � xL

k Þ

ĝjðxÞ ¼ gjðxÞ � ag
j

X
k

ðxU
k � xkÞðxk � xL

k Þ

ð20Þ

where the a parameters satisfy the convexity conditions

a f ;þ
i 
 � 1

2
min

x2½xL;xU �
flkðHfiðxÞÞ; 0g

a f ;�
i 
 þ 1

2
max

x2½xL;xU �
flkðHfiðxÞÞ; 0g

ag
j 
 �

1

2
min

x2½xL;xU �
flkðHgj

ðxÞÞ; 0g

ð21Þ

The discussion in Section II.A.2 applies equally well in this situation.
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3. Geometrical Interpretation

In this section, we give a geometric illustration of how the aBB algorithm works

by showing how it would locate all of the solutions of a single equation f ðxÞ ¼ 0

over the interval x 2 ½0; 4�. The function we use for our illustration is

f ðxÞ¼�2 cos
p
3
ðxþ0:05Þ þ e�20ðx�0:2Þ2 � e�20ðx�1:6Þ2þ e�20ðx�2:4Þ2 � e�20ðx�3:5Þ2

A graph of this function is given in Fig. 2. There are three solutions to f ðxÞ ¼ 0 in

this interval. They are

xsol 2 f0:59014; 1:82399; 3:27691g

The corresponding global optimization problem is obtained by introducing a

slack variable s and minimizing s subject to the constraints

f ðxÞ � s � 0 � f ðxÞ þ s

The feasibility region for fixed s is determined by intersecting the region of space

between f ðxÞ � s and f ðxÞ þ s with the x-axis. This procedure is shown

graphically in Fig. 3. For s > 0, the feasibility region forms intervals around

the actual solutions to f ðxÞ ¼ 0. Minimizing s subject to the constraints above

has the effect of pushing the two graphs together until they both meet at f ðxÞ (at

s ¼ 0). At s ¼ 0, the feasibility region reduces to the solution set for f ðxÞ ¼ 0

Figure 2. Plot of f ðxÞ for x E ½0; 4�.
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(each interval reduces to a point). For s < 0, the graphs cross and the feasibility

region is empty. s ¼ 0 is clearly the global minimum whenever f ðxÞ ¼ 0 has

solutions.

In order to set up the lower bounding problem, we need to find convex

underestimators for �f ðxÞ for each interval under consideration. We begin with

the complete interval ½0; 4�. The function f ðxÞ and a valid set of convex

underestimators f̂
�
½0;4�ðxÞ are plotted in Fig. 4. The convex underestimators

Figure 3. f ðxÞ is shifted by a positive slack variable s ¼ 1. Note that the feasibility region of

f ðxÞ � s � 0 � f ðxÞ þ s forms intervals around the solutions to f ðxÞ ¼ 0.

Figure 4. The functions f̂�ðxÞ are convex underestimators of �f ðxÞ over the interval [0, 4].

Note how f̂þðxÞ and �f̂� ðxÞ form a convex envelope around f ðxÞ.
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f̂
�
½0;4�ðxÞ essentially envelop the graph of f ðxÞ in a convex region. This convex

region contains all the points f̂
þðxÞ � y � �f̂

�ðxÞ, and its intersection with

the x-axis is given by f̂
þðxÞ � 0 � � f̂

�ðxÞ. All solutions to f ðxÞ ¼ 0 in the

region x 2 ½0; 4� must lie in this intersection region because f̂
þðxÞ and �f̂

�ðxÞ
surround the function f ðxÞ (see Fig. 4). If this region had been empty, then no

solution to f ðxÞ ¼ 0 could possibility exist in the interval ½0; 4�. This is not the

case, but see later on when we discuss the interval ½2; 3�.
Determining whether or not the feasibility region of f̂

þðxÞ � 0 � �f̂
�ðxÞ is

empty involves introducing a slack variable and minimizing it subject to

f̂
þðxÞ � s � 0 � �f̂

�ðxÞ þ s ð22Þ

This is the lower bounding problem. For s ¼ 0, (22) reduces to f̂
þðxÞ �

0 � �f̂
�ðxÞ. For s 6¼ 0, the feasibility region of (22) is determined by shifting

the enveloping functions f̂
þðxÞ and �f̂

�ðxÞ by an amount s—away from each

other if s > 0, and toward each other if s < 0 (see Fig. 5). Graphically,

minimizing s subject to (22) involves expanding or shrinking the region between

the underestimators by adjusting s until the region between f̂
þðxÞ � s and

�f̂
�ðxÞ þ s intersects the x-axis at a single point. For the interval ½0; 4�, this

requires moving �f̂
�ðxÞ toward each other, implying smin < 0. The fact that

smin < 0 indicates that there might be solutions to f ðxÞ ¼ 0 in this interval: we

will be forced to explore this region further. Note that the lower bounding

problem is a convex problem, and so any local optimization package should reach

this unique global minimum.

Figure 5. During the solution to the lower bounding problem, the convex underestimators

f̂�ðxÞ are shifted by a slack variable. Two different shifts are shown above: One is positive, sþ ¼ 1;

and the other is negative, smin ¼ �2:135. smin represents the global minimum to the lower bounding

problem: The feasibility region of the lower bounding problem is reduced to a single point

xmin ¼ 1:754, shown above.
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We therefore subdivide the interval ½0; 4� into two subintervals, ½0; 2� and

½2; 4�, and explore each interval for solutions just as we did for ½0; 4�. The convex

underestimators for each interval, f̂
�
½0;2�ðxÞ and f̂

�
½2;4�ðxÞ, are shown in Fig. 6. Note

that each pair of underestimators envelops the corresponding portion of the

function f ðxÞ, and that the underestimators have improved: They are closer to

the function f ðxÞ. This will continue to happen as the intervals become

narrower.

Again, the question we ask in each interval is: Can a solution to f ðxÞ ¼ 0

exist there? The question is answered by solving the lower bounding problem.

In both cases, the region f̂
þðxÞ � 0 � �f̂

�ðxÞ does intersect the x-axis

(see Fig. 6), indicating possible solutions in each interval. This fact is

established by minimizing s subject to (22) within each interval. In both cases,

smin < 0, suggesting that f̂
�ðxÞ must move toward each other to reduce the

feasibility region to a point (see Fig. 7 and 8). Both intervals must be explored

further.

So we subdivide again, and look at the intervals ½0; 1�, ½1; 2�, ½2; 3�, and ½3; 4�.
The underestimators f̂

�
½n;nþ1�ðxÞ are plotted in Fig. 9. For the intervals ½0; 1�,

½1; 2�, and ½3; 4�, the story is the same: s ¼ 0 yields feasible points, smin is

negative, and so we must subdivide those intervals further. But something new

happens for ½2; 3�. The convex envelope f̂
�
½2;3�ðxÞ completely isolates f ðxÞ from

the x-axis. The lower bounding problem (22) is infeasible for s ¼ 0. The region

between f̂
þ
½2;3�ðxÞ and �f̂

�
½2;3�ðxÞ must be expanded before it touches the x-axis

(see Fig. 10), and thus smin will be greater than zero. We have rigorously

concluded that no solution to f ðxÞ ¼ 0 can exist in the interval ½2; 3�, and so we

Figure 6. The interval [0, 4] has been subdivided into [0, 2] and [2, 4]. The convex

underestimators f̂�ðxÞ for each subinterval, shown above, form a convex envelope around f ðxÞ. As

the intervals get smaller, the envelope gets tighter.
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do not need to explore this interval any further. The ability to fathom regions

like this is what distinguishes aBB from a straight gridsearch.

Exploration will continue with the intervals ½0; 1�, ½1; 2�, and ½3; 4�. These

intervals will be subdivided and further tested. As the algorithm progresses,

most intervals will eventually be fathomed. A few intervals (three, in fact) will

survive. Each of these intervals surrounds a solution point, which will be located

by a local search once the interval size is small enough.

Figure 7. This figure represents the solution to the lower bounding problem in the interval

[0, 2]. (xmin; sminÞ ¼ ð0:656;�1:189).

Figure 8. This figure represents the solution to the lower bounding problem in the interval

[2, 4]. (xmin; sminÞ ¼ ð3:154;�1:150).
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III. STRUCTURE PREDICTION OF POLYPEPTIDES

A. Structure Prediction of Oligopeptides

The use of computational techniques and simulations in addressing the protein

folding problem became possible through the introduction of qualitative and

quantitative methods for modeling these systems. Given a sufficiently accurate

Figure 9. The intervals [0, 2] and [2, 4] have been further subdivided into [0, 1], [1, 2], [2, 3],

and [3, 4]. Shown above are the convex envelopes around f ðxÞ formed by convex underestimators in

each of these intervals. Note that the convex envelopes for [0, 1], [1, 2], and [3, 4] intersect the

x-axis, but the convex envelope for [2, 3] does not. This will allow us to conclude rigorously that no

solutions to f ðxÞ ¼ 0 exist in [2, 3].

Figure 10. The lower bounding problem for the interval [2, 3] is solved. Note that the convex

envelope must be expanded before it touches the x-axis, resulting in a positive value for smin. This

interval will be fathomed. (xmin; sminÞ ¼ ð2;þ0:479).

deterministic global optimization and ab initio approaches 287



description of the intramolecular forces, it is in principle possible to predict the

folded conformation by optimization. In our work, we have focused not only on

the development of global optimization methods, but also on the verification of

energy modeling techniques.

In the area of energy modeling, our work has involved the investigation of

numerous detailed representations of protein systems. In addition to the

traditional all-atom potential energy models, our work has explored the effects

of solvation contributions. In fact, although the problem of considering solva-

tion effects in global conformational energy searches has been made tractable

by the development of implicit solvation models, results for such formulations

are essentially nonexistent, and those that have appeared are for limited searches

only. In our work, both solvent accessible area and volume effects have been

considered in the context of global searches for oligopeptides. In addition, we

have examined the effects of several parameterizations for these models and

have been able to identify those that provide the best correspondence between

computational and experimental results.

1. Potential Energy Models

There are a number of approaches that may be used to model protein interac-

tion energies. In reality, the dynamics of atoms are governed by the quantum

theory of their participating electrons. Using the Born–Oppenheimer

approximation, one can determine the energy for fixed atomic nuclei from the

smallest eigenvalue of the Hamiltonian of the electron system. These

approximations and their derivatives are calculated using ab initio methods.

However, due to their computational complexity, such calculations are limited to

extremely small molecules. Less detailed, semiempirical methods are based on

all atom representations of the peptide. In general, these models, also known as

force fields, are expressed as summations of empirically derived potential

functions, with the mathematical form of individual energy terms based on the

phenomenological nature of that term. Other simplified models have been used to

reduce the degrees of freedom associated with the conformational energy

expressions.

A number of empirically based molecular mechanics models have been

developed for protein systems, including AMBER [29–31], CHARMM [32],

DISCOVER [33], ECEPP [34–36], ECEPP/2 [37], ECEPP/3 [38], ENCAD

[39,40], GROMOS [41], MM2 [42], and MM3 [43–45]. A general total energy

equation, such as Eq. (23), includes terms for bond stretching (Ebond), angle

bending (Eangle), torsion (Etor), nonbonded (Enb) and coupled (Ecross) interac-

tions.

Etot ¼ Ebond þ Eangle þ Etor þ Enb þ Ecross ð23Þ
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Bond stretching and angle bending energies are included in those force fields

that allow flexible geometries. A simple representation for both terms is based

on the harmonic approximation, which corresponds to the classical description

of the movement of a spring (by Hooke’s law). The simplest approach, based on

the fact that most bonds are near the minimum of their respective energy well,

employs a quadratic term to model bond stretching and angle bending energies,

as shown in Eqs. (24) and (25):

Ebond ¼
kbond

2
ðl� l0Þ2 ð24Þ

Eangle ¼
kangle

2
ðy� y0Þ2 ð25Þ

These equations act as penalty functions to force bond distances and bond

angles, l and y, to reference bond lengths and distances, l0 and y0, whose values

depend on the specific atoms involved. In actuality, these energy terms are more

complicated. For bond energies cubic terms are often introduced, and angle

energy terms usually include higher power expansions.

Torsional terms are used to describe the internal rotation energy of torsion

angles, which exist between all atoms with a 1–4 relationship (separated by two

other atoms). For rigid geometry force fields, these torsion angles can be used to

define a set of independent variables that effectively describe any protein

conformation. This approximately reduces the number of variables by a factor

of 10 over those force fields that use a Cartesian coordinate system to describe

flexible molecular geometries. In addition, bond and angle energies can be

neglected for rigid geometry force fields. The torsion energy expression is

typically represented by a Fourier series expansion that, as shown in Eq. (26),

includes three terms:

Etor ¼ E1ð1� cos fÞ þ E2ð1� cos 2fÞ þ E3ð1� cos 3fÞ ð26Þ

The parameters involved in this expansion—namely E1, E2, and E3—are

torsional barriers that are usually specified for the pair of atoms around which the

torsion occurs. Each term can be interpreted physically. The 1� x (cosf)

symmetry term accounts for those nonbonded interactions not included in

general nonbonded terms. The 2� x (cos 2f) symmetry term is related to the

interactions of orbitals, while the 3� x (cos 3f) symmetry term describes steric

contributions.

Nonbonded energy terms attempt to model electrostatic and van der Waals

interactions between those atoms that are not connected to each other or through

a common atom. Typically, a Coulombic term is used to represent electrostatic
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energies based on atomic point charges, as shown in Eq. (27):

Eelec ¼
QiQj

ERij

ð27Þ

Here Qi and Qj represent the two point charges, while Rij equals the distances

between these two points. In some force fields, Coulombic interactions are

modified by changing the dependence of the dielectric constant, E. In general,

van der Waals interactions are modeled using a 6–12 Lennard-Jones potential

energy term. This expression, shown in Eq. (28), consists of a repulsion and

attraction term.

Evdw ¼ Eij

R�ij
Rij

� �12

�2
R�ij
Rij

� �6
" #

ð28Þ

The energy minimum for a given atomic pair is described by the potential depth,

Eij, and position, R�ij. Other force fields model van der Waals interactions using a

modified Hill equation, which replaces the twelfth power term in Eq. (28) with an

exponential term [42,43]. Different approaches are also used to describe

nonbonded interactions between those atoms that may form hydrogen bonds.

Some force fields model these interactions using only Coulombic terms, whereas

other force fields employ special functions, such as a modified 10–12 Lennard-

Jones-type potential term [46], as shown in Eq. (29).

Ehbond ¼ Eij 5
R�ij
Rij

� �12

�6
R�ij
Rij

� �10
" #

ð29Þ

The cross term, shown in Eq. (23), accounts for interactions due to the in-

herent coupling between bonds, angles and torsions. Generally, these terms are

small, and in many force fields they are neglected. Correction terms, which vary

for each force field, are also typically added to the general energy equation. For

example, the formation of disulfide bridges can be enforced by adding a penalty

term to constrain the values of specified bond angles and bond lengths. Correc-

tion terms have also been used to adjust conformational energies according to

the configurations of proline and hydroxyproline residues [38].

For a significant portion of this work, the ECEPP/3 (Empirical Conforma-

tional Energy Program for Peptides) [38] potential model is utilized. In this

force field, it is assumed that the covalent bond lengths and bond angles are

fixed at their equilibrium values. Then, the conformation is only a function of
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the independent torsional angles of the system, also known as dihedral angles.

The total conformational energy is calculated as the sum of the electrostatic,

nonbonded, hydrogen bonded, and torsional contributions. There is also a pseudo-

potential for loop closing if the polypeptide contains two or more sulfur-

containing residues. More recent work includes a revised treatment of prolyl

and hydroxyprolyl residues [38]. For each prolyl or hydroxyprolyl residue

contained in the polypeptide a fixed internal conformational energy for the

pyrolidine ring is added. The main energy contributions (electrostatic, non-

bonded, hydrogen bonded) are computed as the sum of terms for each atom pair

(i; j) whose interatomic distance is a function of at least one dihedral angle. The

general potential energy terms of ECEPP/3 are shown in Fig. 11, while the deve-

lopment of the appropriate parameters is discussed and reported elsewhere [38].

2. Solvation Energy Models

Solvation contributions are generally believed to be a significant force in

stabilizing the native conformations of proteins. Explicit methods can be used to

include solvation effects by actually surrounding the polypeptide with solvent

Figure 11. Potential energy terms in ECEPP/3 force field. rij refers to the interatomic distance

of the atomic pair (ij). Qi and Qj are dipole parameters for the respective atoms, in which the

dielectric constant of 2 has been incorporated. Fij is set equal to 0.5 for 1–4 interactions and equal to

1.0 for 1–5 and higher interactions. Aij, Cij, A0ij, and Bij are nonbonded and hydrogen bonded

parameters specific to the atomic pair. Eo;k and Eo;l are parameters corresponding to torsional barrier

energies for a given dihedral angle. yk represents any dihedral angle. ck takes the values �1, 1, and

nk refers to the symmetry type for the particular dihedral angle. The cystine loop-closing term is

calculated as a penalty term of three distances involved in loop-closing, where ril represents the

actual distance and rio represents the required distance. Bi, the penalty parameter, is set equal to 100.

Finally, Ep is a fixed internal energy that is added for each proline residue in the protein. Energy

units are kcal/mol and distance units are Å.
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molecules and calculating solvent–peptide and solvent–solvent interactions.

Although these methods are conceptually simple, explicit inclusion of solvent

molecules greatly increases the computational time needed to simulate the

polypeptide system. Therefore, most simulations of this type are limited to

restricted conformational searches. In addition, it is difficult to quantify the effect

of hydrophobic interactions that result from the ordering of water molecules.

Methods for estimating solvent free energies have also been developed using

both integral equations and continuum models. Integral equation methods can

be used to evaluate solvent structure and thermodynamic properties. Typically,

molecular dynamics or Monte Carlo simulations are used to calculate ensemble

averages from which free energy differences can be obtained. A number of

methods have been proposed to estimate these solvation free energies from

simulations based on molecular dynamics and Monte Carlo averages [47–49].

The integral equation method has also been used to analyze the solvent structure

of a protein system [50]. In contrast, continuum models use a simplified

representation of the solvent environment by neglecting the molecular nature

of the water molecules. Calculations of solvation free energies using electro-

static continuum models rely on numerical solutions to the Poisson–Boltzmann

equation from which dielectric and ionic strength effects are obtained [51].

Other continuum models estimate free energies of solvation as a function of

surface areas and volumes.

In this work, solvation contributions are included implicitly using empirical

correlations with both surface area [52] and volume [53]. The main assumption

of these models is that, for each functional group of the peptide, a hydration free

energy can be calculated from an averaged free energy of interaction of the

group with a layer of solvent known as the hydration shell. In addition, the total

free energy of hydration is expressed as a sum of the free energies of hydration

for each of the functional groups of the peptide; that is, an additive relationship

is assumed.

Accessible surface area methods assume that the free energy of hydration is

proportional to the solvent-accessible surface area of the peptide, as described

by the following equation:

EHYD ¼
XN

i¼1

ðAiÞðsiÞ ð30Þ

In Eq. (30), an additive relationship for N individual functional groups is

assumed. (Ai) represents the solvent-accessible surface area for the functional

group, and (si) is an empirically derived free energy density parameter.

There are a number of ways to define the surface of a peptide. In developing

these surfaces the peptide is represented by a union of spheres, with the radii of
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the spheres set by the van der Waals radii of the constituent atoms. A spherical

test probe is then rolled over these spheres, thereby tracing out a surface. The

molecular surface is set by direct contact between the probe sphere and the

peptide spheres. In areas where the probe cannot make direct contact, the closest

part of the probe is used. The solvent-accessible surface is defined by the

surface traced by the center of the probe as the probe rolls over the peptide

spheres. These areas depend on the radius of the probe sphere; when this radius

is set to zero, both the molecular and solvent–accessible surface areas become

the van der Waals surface of the peptide.

Solvent-accessible surface areas are calculated using the MSEED [52]

program, which employs algorithms developed by Connolly [54]. MSEED

eliminates many unnecessary computations by considering only those convex

faces that are on the accessible surface. Rigorous implementation of Connolly’s

method requires the calculation of interior surface areas, which are ultimately

found to be zero. A full description of the MSEED algorithm is given elsewhere

[52]. A number of other methods for calculating surface areas are also available

[55–57].

One potential problem that may arise when calculating accessible surface

areas is the appearance of gradient discontinuities. This may occur when a new

vertex or edge appears on the surface. If the discontinuity is large, minimization

techniques requiring gradients may fail to converge to the local minimum

conformation. A complete analysis of all situations for which the gradient of the

molecular surface area becomes discontinuous has been reported [58].

Once the solvent–accessible surface areas have been calculated, these values

must be multiplied by the appropriate (si) parameters as shown in Eq. (30). A

variety of parameter sets have been developed to model the transfer of atoms

from a gaseous to a hydrated environment. The parameter values for the five

ASP sets used in this study are given in Table I.

The ASP sets WE1 and WE2, are taken from Table 3 of Ref. 59. These

parameters are both derived from Wolfenden’s measured free energies of

transfer of amino acid side-chain analogs from vapor to water [60]. Both sets

have been adjusted to correct for entropy of mixing effects based on solute and

solvent size differences [61,62], although the applicability of these corrections

has been criticized [63,64]. The parameters for these two sets are negative for

all atoms excluding carbon. Qualitatively, this means that the nitrogen, oxygen,

and sulfur atoms are considered hydrophilic; that is, they favor solvent

exposure. Comparatively, the WE1 and WE2 parameters are similar, with the

largest relative difference being a 3 : 1 ratio (WE1 :WE2) for the sC parameter.

Therefore, the hydrophobic character of these carbon atoms is stronger for the

WE1 ASP set.

The OONS parameter set has been specifically developed to supplement the

ECEPP/2 force field [65]. These parameters were derived by a least squares
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fitting to experimental free energies of gas to water transfer of small aliphatic

and aromatic molecules. The most significant difference from the two previous

ASP sets is a substantial increase in hydrophobic character for carboxyl

(carbonyl) carbon atoms, which corresponds to a hundredfold increase when

compared to the same WE2 parameter. In addition, the free energy parameter

becomes negative for aromatic carbons, which indicates a hydrophilic tendency.

The threefold decrease of the OONS values for carboxyl (carbonyl) and charged

oxygen atom parameters, as compared to both the WE1 and WE2 ASP sets, is

also significant.

Unlike the aforementioned models, the SCKS ASP set is not directly based

on experimental free energies [66]. Instead, it is an optimized parameter set

developed to complement the CHARMM [32] molecular mechanics force field.

Specifically, through the use of experimental and molecular dynamics informa-

tion, the relative weightings of solvation parameters were refined to provide the

best correspondence between minimized and experimental structures. In com-

paring the individual free energy parameters, it is evident that the hydrophobic

character of the carbon atoms is increased approximately three- and eightfold

over the WE1 and WE2 values, respectively. In contrast, the uncharged oxygen

and nitrogen atom parameters are 6.5 times smaller (less hydrophilic) than those

for the WE1 and WE2 ASP sets. This decrease does not apply to charged

oxygen and nitrogen atoms, which possess extremely hydrophilic values.

The JRF ASP set was derived from NMR studies of low energy solvated

configurations of 13 tetrapeptides [67]. This represents an important difference

from other derivations because actual peptides, rather than simple model

compounds, were used to develop the JRF parameters. An ensemble of low-

energy structures for these tetrapeptides was also produced using the ECEPP/2

TABLE I

Free Energy Density of Solvation Parameters for the ASP Set Employed with the Solvent-Accessible

Surface Area Modela

Atom Type WE1 WE2 OONS SCKS JRF

C aliphatic 12.0 4.0 8.0 32.5 216.0

C carboxyl, carbonyl 12.0 4.0 427.0 32.5 �732.0

C aromatic 12.0 4.0 �8.0 32.5 �678.0

N noncharged �116.0 �113.0 �132.0 �17.5 �312.0

N charged �186.0 �169.0 �132.0 �217.5 �312.0

O carboxyl, carbonyl �116.0 �113.0 �38.0 �17.5 �262.0

O hydroxyl �116.0 �113.0 �172.0 �17.5 �910.0

O charged �175.0 �169.0 �38.0 �280.0 �910.0

S all �18.0 �17.0 �21.0 �9.0 �281.0

aThe first column describes the atom type, whereas the remaining columns provide the solvation

parameters in cal/(mol Å2) for the corresponding ASP set.
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potential function. Then, a nonlinear least-squares system was optimized for the

best set of atomic solvation parameters. Although the parameters for oxygen,

nitrogen, and sulfur atoms are negative, their large absolute values indicate

much larger hydrophilicities than corresponding atoms of any other ASP set. In

addition, both the carboxyl (carbonyl) and aromatic carbon atoms possess

strong hydrophilic parameters, which contradicts other free energy parameter

values for these atoms. The single positive value belongs to the aliphatic carbon

atom type, which, although larger than any other parameter for this atom type,

possesses the smallest magnitude for the JRF ASP set. Furthermore, because it

was developed from minimum energy conformations of peptides, the JRF ASP

set has been shown to produce undesirable perturbations during local mini-

mizations if the solvation energy contributions are added at every iteration.

Therefore, unlike the aforementioned ASP sets, the JRF solvation energy effects

are only included at local minimum conformations.

For volume shell models, the free energy of hydration is assumed to be

proportional to the water-accessible volume of a hydration layer surrounding the

peptide. This can be represented in the form

EHYD ¼
XN

i¼1

ðVHSiÞðdiÞ ð31Þ

An additive relationship for the N individual atoms of the peptide is assumed,

and (VHSi) represents the solvent-accessible volume of hydration shell for each

atom i that is exposed to water. The (di) parameters are empirically determined

free energy of hydration densities for these atoms.

The hydration shell is defined by the volume inside a sphere of radius Rh
i but

outside a sphere of radius Rv
i , with both radii centered on atom i. The larger

radius, Rh
i , corresponds to the radius of the first hydration shell of atom i, while

Rv
i is equal to the van der Waals radius. In order to calculate (VHSi), the volume

of a collection of overlapping hard spheres must be computed using:

VðRÞ ¼
X

i

aiSi �
X

ij

bijDij þ
X

ijk

cijkTijk �
X
ijkl

dijklQijkl ð32Þ

In Eq. (32), Si signifies the volume of a single sphere, while Dij, Tijk and Qijkl

represent the volume of intersection of two, three, and four spheres, respectively.

This is sufficient because all higher-order overlaps can be decomposed into the

three types of intersections included in Eq. (32). Therefore, the solvent-

accessible volume of hydration can be written as

ðVHSiÞ ¼ VðRh
i Þ � VðRv

i Þ ð33Þ
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The first term in Eq. (33) is calculated using Eq. (32) with the radii of all atoms

set equal to their van der Waals radii, whereas the second term is calculated with

the radius of atom i equal to Rh
i and the van der Waals radii of all the other atoms.

A number of methods to compute hydration shell volumes have been proposed

[53,68,69].

The form of Eq. (32) is not suitable for force-field models using pairwise

intramolecular potential, such as ECEPP/3. Furthermore, direct truncation at the

double-overlap term would lead to large errors. In this work, the RRIGS

(reduced-radius independent Gaussian sphere) approximation is used to effi-

ciently calculate the exposed volume of the hydration shell [53]. This method

uses a truncated form of Eq. (32) but also artificially reduces the van der Waals

radii of all atoms other than atom i when calculating (VHSi). These reductions

effectively decrease the contribution of the double-overlap terms, leading to a

cancellation of the error which results from neglecting the triple and higher

overlap terms. In addition, the characteristic density of being inside the overlap

volume of two intersecting spheres is not represented as a step function, but as a

Gaussian function; this provides continuous derivatives of the hydration

potential. Therefore, the solvation energy contributions can easily be added at

every step of local minimizations because the RRIGS approximation has the

same set of interactions as the ECEPP/3 potential.

Free energy density parameters for solvent accessible volumes have been

developed for nonionic and charged organic solute molecules [70–72]. In this

work, RRIGS specific (di) parameters, which were developed by a least-square

fitting of experimental free energy of solvation data for 140 small organic

molecules [53], are used (Table II). The classification of the RRIGS atom types

is more fragmented than for the solvent accessible surface area ASP sets. The

most hydrophilic values belong to the nitrogen and selected oxygen and

hydrogen atom types. In addition, aromatic carbons tend to possess slightly

hydrophilic values, whereas the carbonyl and aliphatic carbon atoms exhibit the

most hydrophobic parameter values.

3. Global Optimization Framework

The energy minimization problem is formulated as a unconstrained nonconvex

global optimization problem, which is fashioned after the general formulation

given in problem (1). Let i ¼ 1; . . . ;NRES be an indexed set describing the

sequence of amino acid residues in the peptide chain. There are fi;ci;oi;
i ¼ 1; . . . ;NRES, dihedral angles along the backbone of this peptide. In

addition, let Ki denote the number of dihedral angles for the side chain of the ith

residue and let JN and JC denote the number of dihedral angles for the amino

and carboxyl end groups, respectively. Using these definitions the optimization
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problem takes the following form:

min Eðfi;ci;oi; wk
i ; y

N
j ; y

C
j Þ

subject to � p � fi � p; i ¼ 1; . . . ;NRES

� p � ci � p; i ¼ 1; . . . ;NRES

� p � oi � p; i ¼ 1; . . . ;NRES

� p � wk
i � p; i ¼ 1; . . . ;NRES; k ¼ 1; . . . ;Ki

� p � yN
j � p; j ¼ 1; . . . ; JN

� p � yC
j � p; j ¼ 1; . . . ; JC

ð34Þ

In general, E represents the total potential energy function and the free energy

of solvation. However, in the case of the JRF ASP set, the potential energy

TABLE II

Free Energy Density of Solvation Parameters Employed in the RRIGS Modela

Atom Type d Rv Rh

H hydroxyl, amino �10.35 1.415 4.17

H acid �3.206 1.415 4.17

H amide �7.714 1.415 4.17

H thiol 2.709 1.415 4.17

C aliphatic CH3 1.319 2.125 5.35

C aliphatic CH2 0.2374 2.225 5.35

C aliphatic CH �1.271 2.375 5.35

C other aliphatic �2.297 2.060 5.35

C cyclic CH 0.2890 2.375 5.35

C aromatic CH �0.2137 2.100 5.35

C aromatic CR �1.713 1.850 5.35

C branched aromatic C �1.910 1.850 5.35

C aromatic COH �0.6063 1.850 5.35

C carbonyl 2.696 1.870 5.35

N primary amine �1.149 1.755 5.05

N secondary amine �10.28 1.755 5.05

N aromatic �10.48 1.755 5.05

N amide �7.332 1.755 5.05

O hydroxyl, ether �7.396 1.620 4.95

O acid, ester 0.07897 1.620 4.95

O ketone, carbonyl �15.70 1.560 4.95

O acid, amide carbonyl �15.56 1.560 4.95

S thiol, disulfide �4.706 2.075 5.37

aThe second column provides the solvation parameters in cal/(mol Å2), and the last two columns

correspond to the van der Waals and hydration radii (Å), respectively.
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function is minimized before adding the hydration energy contributions for this

ASP set. In other words, gradient contributions from solvation are not

considered. This approach is represented by the following equation:

ETotal
JRF ¼ EUnsol

Min þ ESol
JRF ð35Þ

Even after reducing this optimization problem to a function of internal

variables (dihedral angles), the multidimensional surface that describes the

energy function has an astronomically large number of local minima. A large

number of techniques have been developed to search this nonconvex conforma-

tional space. In general, the major limitation is that these methods depend

heavily on the supplied initial conformation. As a result, there is no guarantee

for global convergence because large sections of the domain space may be

bypassed. To overcome these difficulties, the aBB global optimization approach

[15,18,73] has been extended to identifying global minimum energy conforma-

tions of solvated peptides. The aBB global optimization algorithm effectively

brackets the global minimum solution by developing converging sequences of

lower and upper bounds. These bounds are refined by iteratively partitioning the

initial domain. Upper bounds on the global minimum are obtained by local

minimizations of the original energy function, E. Lower bounds belong to the

set of solutions of the convex lower bounding functions, which are constructed

by augmenting E with the addition of separable quadratic terms. The lower

bounding functions, L, of the energy hypersurface can be expressed in the

following manner:

L ¼ E þ
XNRES

i¼1

af;iðfL
i � fiÞðfU

i � fiÞ þ
XNRES

i¼1

ac;iðcL
i � ciÞðcU

i � ciÞ

þ
XNRES

i¼1

ao;iðoL
i � oiÞðoU

i � oiÞ þ
XNRES

i¼1

XKi

k¼1

aw;i;kðwk;L
i � wk

i Þðw
k;U
i � wk

i Þ

þ
XJN

j¼1

aj;yN ðyN;L
j � yN

j Þðy
N;U
j � yN

j Þ þ
XJC

j¼1

aj;yC ðyC;L
j � yC

j Þðy
C;U
j � yC

j Þ

ð36Þ

Here fL
i ;c

L
i ;o

L
i ; w

k;L
i ; yN;L

j ; yC;L
j and fU

i ;c
U
i ; oU

i ; wk;U
i ; yN;U

j ; yC;U
j represent

lower and upper bounds on the dihedral angles fi;ci;oi; wk
i ; y

N
j ; y

C
j . The a

parameters represent nonnegative parameters that must be greater or equal to the

negative one-half of the minimum eigenvalue of the Hessian of E over the

defined domain. The computational requirement of the aBB algorithm depends
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on the number of variables (global) on which branching occurs. Therefore, these

global variables need to be chosen carefully.

The determination of the global minimum energy conformation using aBB

requires the interfacing of a number of programs (aBB [15–18,73], PACK [74],

NPSOL [28] and potential and solvation energy modules). PACK, a peptide

generation program, is called once directly by aBB in order to initialize the

current problem. In subsequent steps PACK is called through NPSOL [28], a

local nonlinear optimization solver used to solve both the upper and lower

bounding problems. PACK internally transforms to and from Cartesian and

internal coordinate systems, and provides potential energy and gradient con-

tributions for the ECEPP/3 potential model at every step of the local minimiza-

tions. When considering surface-accessible solvation, surface areas are calculated

using MSEED [52]; whereas volumes of hydration shells are determined using

the RRIGS module [53]. Finally, an additional module, UBC (upper bound

check), is used to verify the quality of the upper bound solutions. The entire

suite of programs has been combined to form the GLO-FOLD software package

for the prediction of protein structure, as shown in Fig. 12.

The basic steps of the algorithm are as follows:

1. The initial best upper bound is set to an arbitrarily large value. The

original domain is partitioned along one of the global variables.

2. A convex function (L) is constructed in each hyper-rectangle and

minimized using NPSOL, with calls (through PACK) to both ECEPP/3

and one of the two solvation modules. If a solution is greater than the

current best upper bound, the entire subregion can be fathomed; otherwise

the solution is stored.

3. The local minima solutions for L are used as initial starting points for

local minimizations of the upper bounding function (E) in each hyper-

rectangle. Again, the appropriate calls are made to PACK and the

potential and solvation energy modules. In solving the upper bounding

problems, all variable bounds are expanded to [�180, 180]. These

solutions are upper bounds on the global minimum solution in each

hyper–rectangle.

4. The current best upper bound is updated to be the minimum of those thus

far stored. If a new upper bound (from Step 3) is selected, the upper bound

check, UBC, module is called. UBC checks that the absolute value of each

gradient in the objective function gradient vector is below a specified

tolerance (kcal/mol/deg). If a gradient does not satisfy this check the

corresponding variable bounds are incrementally increased and the

problem is solved with the previous point used as the initial starting

point. This process is repeated until the gradient constraints are satisfied

or an iteration limit is exceeded. UBC also employs algorithms to
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calculate the second derivative matrix [75], which is used to verify that the

upper bound solution is a local minimum; that is, the Hessian matrix is

positive semidefinite. If the matrix is not positive semidefinite or the

gradient checks are not satisfied, the upper bound solution is rejected.

5. The hyper-rectangle with the current minimum value for L is selected and

partitioned along one of the global variables.

6. If the best upper and lower bounds are within the E tolerance, the program

will terminate; otherwise it will return to Step 2.

Figure 12. Interface for aBB within GLO-FOLD. The arrows indicate the direction of

information flow. The names of the input, output, and intermediate files are indicated, in addition to

selected source code files. References to ‘‘f & f 0’’ and ‘‘f only’’ describe whether gradient

evaluations or only function evaluations are used in the respective modules.
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4. Computational Studies

Single-residue examples were defined as terminally blocked by using acetyl

(amino) and methyl (carboxyl) end groups. All dihedral angles were treated as

global variables, excluding the three y angles of the end groups. The relative

convergence was set to 10�2. For these examples, all dihedral angles, excluding

those of the end groups, were treated as global variables. The remaining variables

were treated locally; that is, they were allowed to vary during minimization, but

their domain space was not partitioned. When using the RRIGS and JRF models,

the global variables were assigned initial a values of 3.0. For the other solvation

models, the a values were increased to 5.0.

For a number of residues, the JRF global minimum solutions possess o angles

in the range of [�30, 30] with the corresponding f and c angles near the

[�150, 80] region. Additional runs were conducted in which the o angles were

constrained to the range of [160, 200]. In all cases, with the exception of serine,

this constraint led to increases in solvation energies and decreases in potential

energy terms while the structures became either b-sheet-like or a-helical.

Without exception, the o angles for the all other global minimum energy

solutions were within the [160, 200] range. The remaining analysis in this

section refers to these constrained (o within [160, 200]) minima for the JRF

ASP set. This is appropriate not only in comparing the JRF results with other

solvation results, but it also makes the analysis relevant for the oligopeptide

studies because similar o bounds are typically used.

The results of the solvation models are more clearly evaluated when examin-

ing energy differences. For example, �EPOT (�EPOT ¼ EPOT
ASP � EPOT

RRIGS) refers

to the change in potential energy of an area based global minimum (EPOT
ASP) and

the RRIGS global minimum (EPOT
RRIGS) solution for a given terminally blocked

residue. This difference is positive in almost all cases, which indicates that the

potential energy of the RRIGS structure is always lower and provides more

stabilization at the corresponding global minimum solution. In most cases, this

difference is very small, especially for the OONS and SCKS ASP sets. In fact,

for both, of these ASP sets, several residues, most noticeably phenylalanine and

tyrosine, have more potential energy stabilization at their corresponding global

minima. However, for five peptides, namely phenylalanine, serine, threonine,

tyrosine and leucine, the JRF potential energy is more than 10 kcal/mol less

stabilizing. This set of residues includes the three residues (serine, threonine,

and tyrosine) that contain hydroxyl groups among the side-chain atoms, as well

as the two regular aromatic residues (phenylalanine and tyrosine). It is also

interesting to note that these atom types (i.e., hydroxyl oxygen and aromatic

carbon) correspond to two of the most hydrophilic type atoms in the JRF ASP

set. Finally, the leucine �EPOT seems to be abnormally high because of the large

torsional contribution at the JRF global minimum conformation.

deterministic global optimization and ab initio approaches 301



The results for �EHYD (�EHYD ¼ EHYD
ASP � EHYD

RRIGS), which refers to the

change in hydration energy between an area based global minimum (EHYD
ASP )

and the RRIGS global minimum (EHYD
RRIGS) solutions, are especially interesting.

These differences are positive in most cases, which indicates that the hydration

energy of the RRIGS structure is generally lower. However, when examining the

JRF results, �EHYD is negative for four examples, namely histidine, phenyla-

lanine, tryptophan, and tyrosine. Excluding the special case of proline, these

four residues correspond to the naturally occurring residues which possess

ringed side-chain structures. Other trends are also apparent. The most

positive �EHYD values for the JRF ASP set are provided by the aliphatic

residues. In addition, the acidic residues, glutamic and aspartic acid, and the

amide forms of these residues, glutamine and asparagine, have comparable

values for �EHYD.

For the other (gradient inclusive) ASP sets, the �EHYD of different residues

are less varied. However, it is important to consider that for all residues,

excluding tyrosine, the ASP sets follow a WE2, WE1, OONS, and SCKS order

when ranked beginning with the most stabilizing hydration energy. Low

hydration energies are expected for WE2 because of the consistently small

hydrophobic and relatively large hydrophilic parameters. In most cases, the

WE1 �EHYD are only slightly larger than for WE2. This can be directly

attributed to the increased hydrophobicity of the free energy parameter for the

carbon atoms of the WE1 ASP set. When comparing the OONS and WE1 ASP

sets, the increased �EHYD is more noticeable, which is most likely a result of

the combined effects of the strong hydrophobic value of the carboxyl (carbonyl)

carbon parameter and the decreased hydrophilic value of the carboxyl (carbo-

nyl) oxygen parameter for the OONS ASP set. However, for aromatic residues

(i.e., phenylalanine, tryptophan and tyrosine), these effects are partially offset

by introducing a hydrophilic character for aromatic carbons in the OONS ASP

set. In fact, for tyrosine this change is strong enough to cause the OONS ASP set

to produce a more stabilizing hydration energy than the WE1 ASP set. A

comparison between the OONS and SCKS reveals the largest increase in

�EHYD values. This can partly be attributed to the relatively large value of

the free energy parameters for carbon atoms of the SCKS ASP set. The increase

is also enhanced for aromatic residues because of the hydrophilic nature of the

aromatic carbon atoms for the OONS ASP set. In addition, for residues with

nitrogen-containing side chains, the �EHYD increase is heightened because of a

subsequent decrease in the value of the free energy parameter for nitrogen atoms

in the SCKS ASP set. Finally, a comparison of other surface accessible

solvation results to the JRF results is qualitatively similar to those made

between the RRIGS and JRF models. Specifically, the strong hydration energy

stabilization of ring-containing residues, as well as the decreased stabilization

provided by aliphatic residues, is evident.
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A more detailed analysis was performed by generating adiabatically relaxed

f–c maps for N–acetyl–N0–methyl–alanineamide. The adiabatic curves define

regions within a given energy of the global minimum value. The first map

corresponds to an adiabatically relaxed map for the unsolvated form of the

peptide. This was calculated by fixing the f and c angles at 3� increments and

using a local minimization solver to minimize the ECEPP/3 potential energy by

varying the remaining dihedral angles. The other maps were constructed by a

similar procedure, although the minimized energy now included both ECEPP/3

and the appropriate hydration free energy. In generating the data for the JRF, the

ECEPP/3 energy was first minimized in the absence of solvent at each point and

the map was generated by adding the solvation free energy for the JRF model at

the minimized conformation.

These maps reveal several important effects of including solvation. Experi-

mental data for the alanine peptide suggests that more than one conformation is

present in solution, and NMR coupling constants indicate a large population of

conformations with �70 > f > �80 [76]. It is also expected that hydration may

weaken intrapeptide hydrogen bonding. The unsolvated map indicates well-

defined regions for intramolecular hydrogen bonding (C7) and for right-handed

a-helices (aR). The global minimum occurs within the C7 region. The RRIGS

map retains some features of the unsolvated map, with the global minimum in

the C7 region and a very strong aR region. However, there is a broadening of the

b-sheet (C5) region as well as a less distinct C7 minimum. This can be

contrasted with both the WE1 and WE2 adiabatic maps, which exhibit large

C5 regions and significant decreases in the size of both the C7 and aR regions.

The OONS map contains an even larger low-energy region that connects the C5

and C7 domains. The aR low-energy region is also broader than either of those

indicated by the WE1 or WE2 map. In all three cases (WE1, WE2, and OONS)

the global minimum is shifted to the b-sheet domain. In contrast, the SCKS

adiabatic map is more similar to the RRIGS map because of its smaller and

disjoint C5 and C7 regions, as well as the location of the global minimum in the

C7 well. The largest disparity between these maps exists with the JRF adiabatic

map, which indicates a complete shift away from the C7 minimum toward the

C5 region.

Qualitatively, similar trends are observed for the f–c distribution of other

terminally blocked amino acids. The RRIGS model predicts a majority of global

minima in the C7 region, which indicates a tendency to preserve certain

potential energy effects. As expected, the majority of WE1 and WE2 global

minima lie within the C5 domain, with the same distribution for each parameter

set. The most uniform distribution of global minima belongs to the OONS ASP

set, for which there are an almost equal number of C5 and C7 global minimum

structures. This agrees with the large low-energy regions displayed on the N-

acetyl-N0-methyl-alanineamide adiabatic map. The large population of C7 global
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minima for the SCKS ASP set is also suggested by the strong C7 region on the

N-acetyl-N0-methyl-alanineamide map. In accordance with the distinct imple-

mentation of the JRF model, these results are less predictable. Specifically,

although almost half of the JRF global minima lie in the C5 domain, a

significant number also exhibit a-helical type structures, which contrasts with

the f–c map of N-acetyl-N 0-methyl-alanineamide.

Met-enkephalin (H–Tyr–Gly–Gly–Phe–Met–OH) is an endogenous opioid

pentapeptide found in the human brain, pituitary, and peripheral tissues and is

involved in a variety of physiological processes. The peptide consists of 24

independent torsional angles and a total of 75 atoms and has played the role of a

benchmark molecular conformation problem. The energy hypersurface is

extremely complex with the number of local minima estimated on the order

of 1011 [77]. Based on a previous study, the unsolvated global minimum

potential energy conformation, with an ECEPP/3 energy of �11.707 kcal/

mol, was shown to exhibit a type II0 b-bend along the N-C0 peptidic bond of

Gly3 and Phe4 [78].

In studying the effects of solvation on the structure of met-enkephalin, the

results for the unsolvated structure were verified by employing the algorithm

outlined in Section III.A.2. A major difference from the previous implementa-

tion [78] is the addition of the UBC module, as well as the expansion of all

variable bounds (to [�180, 180]) when solving the upper bounding problems.

Because the backbone dihedral angles (i.e., f and c) are the most influential

variables in defining the backbone structure, the corresponding 10 backbone

dihedral angles were treated as global variables for the enkephalin problems.

Although they were not partitioned during the global search, all other variables

(i.e., o and all w) were allowed to vary during local minimizations. The global

variables were assigned initial a values of 5.0 when using the unsolvated,

RRIGS, and JRF models and were assigned values of 10.0 for all other models.

In the case of unsolvated met-enkephalin, the structural and energetic results of

the previously identified global minimum energy structure [78] were confirmed.

Experimental results have indicated that met-enkephalin in aqueous solution

does not possess an unique structure [79]. In general, experimentally determined

aqueous conformations are found to exhibit characteristics of extended random-

coil polypeptide with no discernible secondary structure. When considering the

effects of hydration, the competition for backbone hydrogen bonding (with

water), which contributes to the bending of the unsolvated conformation, should

result in a more extended structure.

The RRIGS model predicts a more extended structure than the global

minimum structure reported for the unsolvated case [78]. In fact, although a

slight turn occurs near the N-terminus, the structure possesses no hydrogen

bonds (<2.2 Å ) and an overall end-to-end Ca distance of 10.16 Å. In addition,

there exists close proximity of the Tyr and Phe aromatic rings, as shown in
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Fig. 13. The centroids of these rings are separated by 4.16 Å, which is slightly

closer than the preferential aromatic–aromatic interaction distance of 4.5 to 7 Å

[80]. Furthermore, the aromatic rings are essentially in a parallel, as opposed to

the more common orthogonal, orientation. This suggests an attempt to balance

the slightly hydrophilic nature of the aromatic carbon atoms, as given by the

RRIGS di, and the favorable hydrophobic interactions between the two rings.

The values of the dihedral angles for the global minimum energy conformation

are given in Table III.

Figure 13. Plot of met-enkephalin conformation (in stereo). Global minimum energy of

�50.01 kcal/mol using the RRIGS model for hydration.

TABLE III

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin, Using the RRIGS

Model for Hydration

f c o w1 w2 w3 w4

Tyr �168.32 �30.81 178.52 �173.58 �101.26 18.83

Gly 78.83 �86.96 182.73

Gly 162.94 91.72 172.83

Phe �150.72 162.32 181.50 66.66 92.68

Met �77.80 106.79 181.63 �67.82 178.91 180.01 �60.01
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The global minimum structures for the area-based hydration models (gra-

dient inclusive) are less extended, as exhibited by Figs. 14 and 15. The lowest

energy structures for the WE1 and WE2 models are very similar, with an

the end-to-end Ca distance of 5.85 Å for both solvation models. In addition, the

bend near the N-termini is stabilized by a hydrogen bond between the CO of the

tyrosine residue and the NH proton of the phenylalanine residue (approximately

1.98 Å). This bend is similar to the type II0 b-bend of the unsolvated global

minimum energy structure, although it is shifted to the Gly2–Gly3 backbone

region. The aromatic ring separation is wider (approximately 6.48 Å for both

models) than for the RRIGS global minimum structure, although the side-chain

orientations are similar. The values of the dihedral angles for the WE1 and WE2

global minimum structures are given in Tables IV and V, respectively.

The lowest energy conformation for the OONS ASP is also similar to

the WE1 and WE2 structures. In this case, the end-to-end Ca distance is again

5.85 Å. The bending near the N-termini is again similar to a type II0 b-bend

along the Gly2–Gly3 backbone, although in this case it is stabilized by a slightly

weaker hydrogen bond between the CO of the tyrosine residue and the NH

proton of the phenylalanine residue (approximately 2.01 Å). The 6.60 Å

aromatic ring separation is also slightly larger, which may be attributed to the

slightly hydrophilic character of the aromatic carbon parameters as compared to

the WE1 and WE2 ASP sets. The values of the dihedral angles for the global

minimum structure are given in Table VI.

Figure 14. Plot of met-enkephalin conformation (in stereo). Global minimum energy of

�30.31 kcal/mol using the WE1 model for hydration.
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TABLE IV

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin, Using the WE1

Model for Hydration

f c o w1 w2 w3 w4

Tyr �162.65 �43.34 �177.43 �173.76 �90.62 2.61

Gly 66.15 �86.62 172.92

Gly �152.31 32.40 �178.49

Phe �157.59 154.87 179.36 52.02 �96.19

Met �90.62 128.89 �179.18 �169.29 176.88 180.14 �59.99

Figure 15. Plot of met-enkephalin conformation (in stereo). Global minimum energy of �0.62

kca/mol using the SCKS model for hydration.

TABLE V

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin, Using the WE2

Model for Hydration

f c o w1 w2 w3 w4

Tyr �162.70 �43.23 �177.47 �173.94 �90.83 2.63

Gly 66.15 �86.59 173.03

Gly �152.49 32.41 �178.55

Phe �157.84 154.97 179.26 52.12 �96.11

Met �89.96 129.19 �179.17 �169.47 176.75 180.13 �59.99
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The SCKS global minimum structure is even less extended, as shown in

Fig. 15. Although the aromatic ring separation becomes wider (8.13 Å), the

overall end-to-end Ca distance decreases to 5.80 Å. In this structure, there are

two stabilizing hydrogen bonds—a 1.86 Å hydrogen bond between the NH

proton of the first glycine residue and the CO of the methionine residue, and a

2.02 Å hydrogen bond between the CO of the first glycine residue and the NH

proton of the phenylalanine residue. This backbone structure exhibits a type II0

b-bend around the Gly3 and Phe4 residues, which is similar to the global

minimum energy conformation for unsolvated met-enkephalin. This compact

structure is consistent with the relatively strong hydrophobic values of all

carbon atom free energy parameters, as well as the relatively weak hydrophobic

values of the oxygen and nitrogen atoms for the SCKS ASP set. The values of

dihedral angles corresponding to the global minimum energy structure are given

in Table VII.

In contrast, the JRF global minimum energy structure resembles a more

extended conformation, with an overall end-to-end Ca distance of 9.56 Å.

The plot of this structure, given in Fig. 16, shows that the residues near the

N-terminus are almost fully extended, although there is slight turn near the

C-terminus. This bending is stabilized by the formation of 2.10 Å hydrogen

bond between the CO of the second glycine residue and the NH proton of the

TABLE VI

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin,

Using the OONS Model for Hydration

f c o w1 w2 w3 w4

Tyr �166.11 �50.84 �176.25 �188.97 �102.81 2.45

Gly 63.86 �86.04 175.39

Gly �151.94 33.86 �178.80

Phe �159.47 153.41 179.46 50.93 �96.43

Met �79.75 148.31 �178.93 �68.16 181.45 178.08 59.70

TABLE VII

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin,

Using the SCKS Model for Hydration

f c o w1 w2 w3 w4

Tyr �82.91 154.09 �176.27 �172.88 79.47 �166.08

Gly �151.61 81.91 168.71

Gly 84.09 �72.41 �169.54

Phe �137.07 18.52 �173.06 57.94 �86.04

Met �162.71 158.63 �179.76 51.94 173.67 179.21 �58.18
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methionine residue. In addition, the structure displays a large 14.87 Å separa-

tion between the centroids of the Phe and Tyr aromatic rings. This can be partly

attributed to the strongly hydrophilic character of the aromatic and carboxyl

(carbonyl) carbons parameters for the JRF ASP set. The values of dihedral

angles corresponding to the global minimum energy are given in Table VIII.

The structures were further analyzed by comparing energy evaluations at

corresponding global minimum solutions. This information is given in Tables

IX and X. In all cases, excluding the SCKS model, the JRF global minimum

energy structure provides that most stabilizing values for the hydration energy.

However, these stabilizing hydration energies are generally offset by the

relatively high value for potential energy at the JRF global minimum con-

formation (5.06 kcal/mol, obtained by calculating ETOT � EHYD from Tables IX

and X). In fact, the high potential energy causes the JRF structure to exhibit the

highest values for overall energy, excluding the case of the JRF model. Only

when considering the JRF model do these stabilizing hydration free energies

tend to dominate the prediction of the global minimum structure. This is

Figure 16. Plot of met-enkephalin conformation (in stereo). Global minimum energy of

�283.76 kcal/mol using the JRF model for hydration.
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evidenced by the fact that the JRF structure provides an overall energy, more

than 100 kcal/mol lower than any other total energy, which can be directly

attributed to the differences in hydration energy. When using the SCKS model,

the only case for which the JRF conformation does not produce the most

stabilizing hydration energy, the JRF structure provides the least stabilizing

TABLE VIII

Dihedral Angles at the Global Minimum Energy Conformation of Met-enkephalin,

Using the JRF Model for Hydration

f c o w1 w2 w3 w4

Tyr �84.96 160.74 179.09 �59.83 100.80 �179.29

Gly �160.26 151.83 �177.53

Gly 159.50 �157.94 178.71

Phe �76.55 76.23 �178.05 �61.87 108.68

Met �132.90 147.47 �179.83 �65.17 �175.99 �84.91 59.38

TABLE IX

Comparison of Hydration Energies for Met-enkephalina

Global of ETOT EHYD ENB EES ETOR (RMSD)

RRIGS RRIGS �50.01 �41.42 21.84 �31.46 1.02 0.00

WE1 �47.87 �38.12 22.09 �32.61 0.78 2.83

WE2 �47.91 �38.14 22.09 �32.63 0.76 2.83

OONS �47.17 �37.95 22.25 �32.13 0.66 2.66

SCKS �47.24 �35.61 21.47 �35.40 2.30 4.04

JRF �41.63 �46.69 23.29 �19.13 0.90 4.83

WE1 RRIGS �26.60 �18.00 21.84 �31.46 1.02 2.83

WE1 �30.31 �20.56 22.09 �32.61 0.78 0.00

WE2 �30.31 �20.53 22.09 �32.63 0.76 0.01

OONS �29.01 �19.79 22.25 �32.13 0.66 0.80

SCKS �27.80 �16.17 21.47 �35.40 2.30 3.33

JRF �19.49 �24.55 23.29 �19.13 0.90 4.33

WE2 RRIGS �29.87 �21.27 21.84 �31.46 1.02 2.83

WE1 �33.26 �23.52 22.09 �32.61 0.78 0.01

WE2 �33.27 �23.49 22.09 �32.63 0.76 0.00

OONS �32.01 �22.79 22.25 �32.13 0.66 0.80

SCKS �30.77 �19.15 21.47 �35.40 2.30 3.33

JRF �22.93 �27.99 23.29 �19.13 0.90 4.32

aThe first column refers to the hydration model used in the function evaluations, which are

performed at the global solutions for the hydration model listed in the second column. The total

energy, ETOT, is provided along with the contributions from hydration, EHYD, nonbonded interactions

(including hydrogen bonding), ENB, electrostatic interactions, EES, and torsion, ETOR. The last

column provides the heavy-atom root-mean-squared deviation between the global minimum energy

structures of the hydration models listed in the first two columns.
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hydration energy. This indicates that unlike the other hydration models, the

SCKS model does not provide more hydration energy stabilization for extended

conformations. This agrees with the prediction of the SCKS global minimum

energy structure, which exhibits the most folded conformation. The SCKS

structure also closely resembles the unsolvated global minimum energy struc-

ture and it exhibits the lowest potential energy contribution, �11.63 kcal/mol,

which is only 0.08 kcal/mol higher than the global minimum potential energy.

This suggests that low potential energy conformations are not only favored but

also enhanced by hydration effects for the SCKS model. Excluding the SCKS

model, the other models predict relatively large hydration energies at the SCKS

structure. In fact, for the RRIGS, WE1 and WE2 models, the SCKS structure

produces the highest values for the hydration energies. For the OONS and JRF

model, the hydration energies are only smaller than those for the RRIGS

structure. This is consistent with the hydrophilic nature of the aromatic carbons

for the OONS and JRF models. Specifically, because the aromatic ring

separation is smallest for the RRIGS structure, the OONS and JRF hydration

TABLE X

Comparison of Hydration Energies for Met-enkephalina

Global of ETOT EHYD ENB EES ETOR (RMSD)

OONS RRIGS �24.18 �15.59 21.84 �31.46 1.02 2.66

WE1 �31.08 �21.33 22.09 �32.61 0.78 0.80

WE2 �31.09 �21.31 22.09 �32.63 0.76 0.80

OONS �31.45 �22.23 22.25 �32.13 0.66 0.00

SCKS �29.57 �17.95 21.47 �35.40 2.30 3.38

JRF �19.60 �24.66 23.29 �19.13 0.90 4.12

SCKS RRIGS 3.43 12.02 21.84 �31.46 1.02 4.04

WE1 0.90 10.65 22.09 �32.61 0.78 3.33

WE2 0.89 10.67 22.09 �32.63 0.76 3.33

OONS 1.66 10.88 22.25 �32.13 0.66 3.38

SCKS �0.62 11.00 21.47 �35.40 2.30 0.00

JRF 17.44 12.38 23.29 �19.13 0.90 3.78

JRF RRIGS �139.36 �130.77 21.84 �31.46 1.02 4.83

WE1 �180.59 �170.84 22.09 �32.61 0.78 4.33

WE2 �180.57 �170.79 22.09 �32.63 0.76 4.32

OONS �181.70 �172.48 22.25 �32.13 0.66 4.12

SCKS �171.67 �160.04 21.47 �35.40 2.30 3.78

JRF �283.76 �288.82 23.29 �19.13 0.90 0.00

aThe first column refers to the hydration model used in the function evaluations, which are

performed at the global solutions for the hydration model listed in the second column. The total

energy, ETOT, is provided along with the contributions from hydration, EHYD, nonbonded interactions

(including hydrogen bonding), ENB, electrostatic interactions, EES, and torsion, ETOR. The last

column provides the heavy-atom root-mean-squared deviation between the global minimum energy

structures of the hydration models listed in the first two columns.
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models tend to provide higher hydration energies for this structure. Although

hydration energies for the RRIGS structure are typically high, the RRIGS model

predicts a stabilizing hydration energy for this structure, second only to the JRF

structure. It is this hydration energy contribution, when coupled with a relatively

low potential energy (�8.59 kcal/mol), that sets the RRIGS global minimum

energy structure. For the other hydration models, low potential energy con-

tributions (�9.77, �9.75, and �9.22 kcal/mol for WE2, WE1, and OONS,

respectively) seem to be more important in the prediction of relatively compact

structures. In these cases the relative weighting of the hydration energy

contributions does not favor extended conformations. However, these models

also do not provide low hydration energies at the most compact structures, such

as the SCKS global minimum energy structure. This indicates an interplay of

hydration and potential energy contributions, although the prediction of rela-

tively compact structures suggest the importance of low potential energy

contributions.

Like met-enkephalin, leu-enkephalin (H–Tyr–Gly–Gly–Phe–Leu–OH) is an

endogenous pentapeptide in which the methionine residue has been replaced by

a leucine residue. Qualitatively, the results for the hydrated forms of leu-

enkephalin are similar to those for met-enkephalin [81].

5. Free Energy Modeling

Locating the global minimum potential energy or the global minimum potential

plus solvation energy conformation is not sufficient because Anfinsen’s thermo-

dynamic hypothesis requires the minimization of the conformational free energy.

Specifically, potential energy minimization neglects the entropic contributions to

the stability of the molecule. An approximation to these entropic contributions

can be developed by using information about low-energy conformations. That is,

once a sufficient ensemble of low-energy minima has been identified, a statistical

analysis can be used to estimate the relative entropic contributions, and thus the

relative free energy, for conformations in the ensemble.

Therefore, the analysis of the free energy of peptides requires efficient

methods for locating not only the global minimum energy structure but also

large numbers of low-energy conformers. A variety of methods have been used

to find such stationary points on potential energy surfaces. For example, periodic

quenching during a Monte Carlo or molecular dynamics trajectory can be used

to identify local minima [82]. However, a drawback of these approaches is their

inherent stochastic nature. In its original form, the aBB deterministic global

optimization algorithm [15–18,73] has been shown to be an efficient method for

finding the global minimum energy conformation for both unsolvated and

solvated peptide systems [78,81,83]. Here, novel methods are proposed within

the framework of the aBB algorithm to optimize the free energy of peptide

systems. These modifications facilitate the generation of ensembles of
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low-energy conformers, which can be used to identify the global minimum free

energy conformation, as well as perform detailed free energy rankings.

In peptide systems, this entropic contribution arises from fluctuations around

a local conformational state. There exist a number of procedures, including both

exact and approximate calculations, that can be used to determine the entropic

contributions, and thus the free energy, of peptide systems.

First, assume that the full conformational space R can be considered as the

union of disjoint basins of attraction, and the conformational space associated

with a given basin (denoted by g) is defined by Rg. The energy, E, is a function

of the variable set y, which corresponds to the set of dihedral angles used to

describe the conformational state of the system. Each basin of attraction is

characterized by a unique local minimum at position y�g, with a corresponding

energy E�g. That is, local minimization starting at any point in Rg will lead to the

local minimum at y�g. It should be noted that this approximation of the

conformational space excludes all maxima and saddle point conformations.

For a given temperature, T , the probability that a peptide occupies the con-

formational space of a given basin (Rg) can be described by a Gibbs–Boltzmann

distribution:

pg ¼
Ð

Rg
expð�bEðyÞÞ dyÐ

R
expð�bEðyÞÞ dy

ð37Þ

Here b is equivalent to 1=kBT . If the numerator is redefined as the partition

function (Zg) for the basin, Eq. (37) can be rewritten as

pg ¼
Zg

Z
ð38Þ

The total partition function for the entire conformational space is represented by

Z. Because this function is described by a disjoint set of basins (Rg), it is

equivalent to the following form:

Z ¼
X
g

Zg ð39Þ

Once the probability is known, the corresponding free energy, Gg, associated

with each basin can also be calculated:

Gg ¼ �
ln pg

b
ð40Þ

Using these definitions, a rigorous procedure can be envisioned for calculat-

ing the exact probability associated with a given basin. First, a sample of

conformations must be generated with initial starting energies Ei, as defined by

the total set I. Each structure is minimized to identify its corresponding basin
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minimum (y�g). These structures define the set IðgÞ (i.e., those structures

associated with basin g). As the sampling goes to infinity, the probability

associated with basin g can be calculated by the following expression:

pexact
g ¼

P
iðgÞ2IðgÞ expð�bEiðgÞÞP

i2I expð�bEiÞ
ð41Þ

Obviously, such a method is intractable for large systems, and this is the impetus

for developing approximate methods.

6. Harmonic Approximation

A tractable method for including entropic effects for proteins relies on the

concept of the harmonic approximation. Initially, the theoretical development of

this approximation for polymer systems generated debate in the literature [84–

86]. In the work of Goldberg [84] a classical rigid model was used to characterize

a partition function based on the fixed bond length and bond angle assumptions.

In contrast, Flory [86] derived a different partition function using a classical

flexible model. Later analysis by G�o and Scheraga [85] actually showed that the

flexible model was also applicable to the fixed bond length and bond angle

system (i.e., a peptide described by the internal coordinate system).

In either case (i.e., rigid or flexible), entropic contributions can be calculated

by employing an harmonic approximation [85]. The fundamental concept is to

characterize the basin of attraction (g) by the properties of its corresponding

local minimum (y�g), and not by a random sampling of conformations. These

properties include the local minimum energy value, E�g, and the convexity

around the local minimum. Essentially, the convexity measure is used to

approximate the basin of attraction region as a hyperparabola centered at the

local minimum. Therefore, the anharmonic nature of the true basin, which

defines the deviation from approximated harmonic behavior, controls the error

associated with this assumption.

At each minimum (y�g) the harmonic approximation to the entropy can be

evaluated using the following expression:

Sapprox
g ¼ � kB

2
ln ½DetðHgÞ� þ f̂ ðTÞ ð42Þ

Here Det Hg
� �

refers to the determinant of the Hessian (second derivative matrix)

evaluated at the local minimum y�g. The function f̂ ðTÞ is an additive term that is

only dependent on temperature. The approximated free energy can then be
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calculated by combining the energetic and entropic contributions through the

follow expression:

Gapprox
g ¼ E�g � TSapprox

g þ �f ðTÞ ð43Þ

By substituting the harmonic entropic approximation from Eq. (42), Eq. (43)

becomes

Gapprox
g ¼ E�g þ

1

2b
ln ½DetðHgÞ� þ ~f ðTÞ ð44Þ

In this equation, it becomes evident that the free energy for a given basin is

estimated using only the properties of the corresponding local minimum—that is,

the local minimum energy (E�g) and a measure of local convexity (DetðHgÞ). A

temperature-dependent term, ~f ðTÞ, is included, although it does not affect

relative free energy comparisons.

Expressions for the probabilities and partition functions can also be devel-

oped. By combining Eqs. (38), (40), and (44), an approximation for the partition

function of a given basin can be written as:

ln Zapprox
g ¼ �bE�g �

ln ½DetðHgÞ�
2

� b~f ðTÞ þ ln Z ð45Þ

A further simplification can be made by realizing that �b ~f ðTÞ and ln Z are

constant for a given temperature (i.e., f ðTÞ ¼ �b~f ðTÞ þ ln Z). Equation (45) can

be rewritten as

Zapprox
g ¼

�
1

½DetðHgÞ�

�1=2

expð�bE�gÞ f ðTÞ ð46Þ

Finally, by using Eq. (39), an approximate probability associated with a given

basin (g) can be calculated using the following equation:

papprox
g ¼

½DetðHgÞ��1=2
expð�bE�gÞPN

i¼1 ½DetðHiÞ��1=2
expð�bE�i Þ

ð47Þ

As expected, the f ðTÞ term disappears, and the statistical weight becomes a

function of only the temperature (through b), the local minimum energy value,
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and the measure of convexity. In order to develop a meaningful comparison of

relative free energies, the total partition function [i.e., the denominator of

Eq. (47)] must include an adequate ensemble of low-energy local minima, as

well as the global minimum energy conformation.

These probabilities can be used to estimate the occupancy of each individual

basin, or summed in order to calculate cumulative probabilities for an ensemble

of structures exhibiting similar physical or energetic properties. It should be

noted that the determination of free energy using the harmonic approximation

does not require the explicit inclusion of a contribution based on the density of

states. That is, the harmonic approximation decomposes the energetic states

within a basin of attraction into one energetic value represented by the local

minimizer of the basin. In contrast to counting methods, which estimate

probabilities based on the density of states, the contribution of each structure

should be accounted for only once. Therefore, using the harmonic approxima-

tion requires a structural comparison of all local minimizers.

The probabilities obtained through the harmonic approximation can also be

used to calculate thermodynamic quantities. Once the set of unique minimizers

has been identified, these structures can be ranked according to their free energy

values and then divided into bins of a specified energy width. Probabilities for

each bin can be calculated by summing the individual probabilities [as defined

in Eq. (47)]:

P
approx
j ¼

Xnj

g¼1

papprox
g ð48Þ

Here P
approx
j signifies the probability for energy bin j. The summation includes

the nj individual probabilities (papprox
g ) belonging to bin j. Average thermo-

dynamic quantities can now be estimated using equations with the following

form:

hEiT ¼
X

j

P
approx
j hEij ð49Þ

Here the total average energy, hEiT , is calculated by summing the bin

probabilities multiplied by the mean energy of bin j, hEij.

7. Free Energy Problem Formulation

As before, the energy minimization problem for proteins is formulated as a

nonconvex nonlinear optimization problem. The inclusion of free energy model-

ing into the protein folding problem does not change the general formulation.

However, an additional condition must be satisfied; that is, an ensemble of local

minimum low-energy conformations must be generated along with the global

minimum energy conformation. Once this ensemble has been compiled, a free
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energy ranking can be performed using the harmonic approximation presented in

the previous section.

Several rigorous methods can be envisioned for locating local minimum

energy conformations using the aBB deterministic global optimization

approach. As an introduction to the ideas used here, two rigorous approaches

for finding all local minimum energy conformations are discussed.

The first method relies on the introduction of a single inequality constraint to

the problem formulation given by (34). The new formulation is:

min Eðfi;ci;oi; wk
i ;f

N
j ;f

C
j Þ

subject to ðE� � EÞ þ E� < 0

�p � fi � p; i ¼ 1; . . . ;NRES

�p � ci � p; i ¼ 1; . . . ;NRES

�p � oi � p; i ¼ 1; . . . ;NRES

�p � wk
i � p; i ¼ 1; . . . ;NRES; k ¼ 1; . . . ;Ki

�p � fN
j � p; j ¼ 1; . . . ; JN

�p � fC
j � p; j ¼ 1; . . . ; JC

ð50Þ

The additional constraint requires that the objective function values be larger

than the energy value at some local (or global) minimum, as denoted by E�, plus

a positive parameter, E�. When E� ¼ 0, the solution of the corresponding global

optimization problem will give the best local minimum energy conformation

with an energy larger than E�. The original formulation given by (34) is actually

a special case of this problem in which E� ¼ �1 and E� ¼ 0. That is, in (34) no

bounds are placed on the value of the objective function, E. The global

minimum energy conformation is only required to take some finite value. In

order to locate all local minima, a set of global optimization problems must be

solved iteratively with updating of the parameter E�.
The problem of finding all local minimum energy conformations can also

be formulated as a single global optimization problem, which can be de-

terministically solved using the aBB algorithm [23]. This method stems from

the idea that all stationary points (i.e., minima, maxima, and transition states)

of the energy hypersurface satisfy the constraint rEðyÞ ¼ 0. This can be

written as:

qEðyÞ
qyi

¼ 0 ; i ¼ 1; . . . ;Ny ð51Þ
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Here Ny represents the total number of dihedral angles defined by the variable set

y. The problem of finding local minima is equivalent to finding all solutions of

Eq. (51) for which the Hessian of E is positive definite.

The problem posed in Eq. (51) involves the solution of a system of nonlinear

equations. The identification of all multiple global solutions requires the use

of a deterministic global optimization method, as outlined in Section II.B. The

application of this method to protein systems will be described fully in

Section IV.B.

Both methods for rigorously locating all local minimum energy confor-

mations have some disadvantages. On one hand, the first approach should

effectively locate low energy conformers in order of increasing energy.

However, locating each minimum requires the solution of a full global

optimization problem. The second approach avoids this drawback because it

can be solved as a single global optimization problem. However, when dealing

with a high-dimensional search space, the number of necessary subdivisions

may be computationally inhibitive. In addition, this method will potentially

locate stationary points other than local minima. Therefore, the development of

other methods for locating low-energy local minimum energy conformations

were pursued.

8. Ensemble of Local Minimum Energy Conformations

Because the number of local minima on a given energy hypersurface may become

astronomically large (e.g., the number of local minima for met-enkephalin is

estimated to be on the order of 1011 [77]), methods that do not necessarily

provide all local minima were developed. Specifically, it was determined that the

generation of ensembles of low-energy conformers is possible through

algorithmic modifications of the general aBB procedure. Rigorous implementa-

tion of the global optimization algorithm requires the minimization of a convex

lower bounding function in each domain. The unique solution y for each lower

bounding minimum can then used as a starting point for the minimization (or

function evaluation) of the original energy function in the current domain. In the

case of local minimization, each partitioned region provides a single minimum

energy conformation as the algorithm proceeds. Using this information, along

with the global minimum energy conformation, a list of low-energy conformers

can be constructed.

A method for increasing the number of local minima produced within each

subdomain would involve the selection of multiple random starting points for

minimizing the upper bounding function. At first, this approach appears to

be equivalent to choosing random points for local minimization. Initially, when

the subdomains constitute significant portions of the original domain space, this

is the case. However, as the separation between lower and upper bounds
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decreases, the subdomains are localized in regions of low energy. Therefore, the

random point selection is localized in regions that contain low-energy local

minima.

However, this approach does not take advantage of the information provided

by the lower bounding functions. Rigorously, these functions possess a single

minimum in each subdomain. Because the choice of a affects the convexity of

the lower bounding functions, the a values can be modified to ensure a certain

nonconvexity in these functions. In this case, the lower bounding functions

possess multiple minima, and these functions can be minimized several times in

each domain. In addition, because the lower bounding functions smooth

the original energy hypersurface, the location of these multiple minima provide

information on the location of low-energy minima for the upper bound-

ing function. Therefore, by using the location of the minima of the lower

bounding function as starting points for local minimization of the upper

bounding function, an improved set of low-energy conformations can be iden-

tified. As before, these conformations are also localized in those domains with

low-energy as the subdomains decrease in size. This Energy-Directed Approach

(EDA) is represented schematically in Fig. 17.

Figure 17. Using multiple lower bound minima to find low-energy conformers of the upper

bounding function.
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The basic steps of the algorithm, which are qualitatively similar to those

outlined in Fig. 12, are as follows:

1. The initial best upper bound is set to an arbitrarily large value. The

original domain is partitioned along one of the global variables. a values

are initially chosen to be constant (a ¼ a0) for all global variables.

2. The lower bounding function (L) is constructed in each hyper-rectangle.

Three local minimization are performed using the following procedure:

a. Fifty random points are generated and used for function evaluations.

b. The point with the minimum value is used as a starting point for local

minimization of L using NPSOL, with calls (through PACK) to ECEPP/

3 and possibly the RRIGS solvation module.

c. The unique solutions are stored.

If the minimum valued solution (of all local minima of L in this sub-

domain) is greater than the current best upper bound the subdomain is

fathomed.

3. The unique local minima (points) for L are used as initial starting points

for local minimizations of the upper bounding function (E) in each hyper-

rectangle. Again, the appropriate calls are made to PACK and the potential

and solvation energy modules. Two additional minimizations are perfor-

med using the following procedure:

a. Fifty random points are generated and used for function evaluations.

b. The point with the minimum value is used as a starting point for local

minimization of E using NPSOL, with calls (through PACK) to

ECEPP/3 and possibly the RRIGS solvation module.

In all cases, the UBC (upper bound check) module is also called. UBC

checks that the absolute value of each gradient in the objective function

gradient vector is below a specified tolerance (10�6 kcal/mol/deg). If a

gradient does not satisfy this check, the corresponding variable bounds are

incrementally increased and the problem is solved with the previous point

used as the initial starting point. This process is repeated until the gradient

constraints are satisfied or an iteration limit is exceeded. UBC also

employs algorithms to calculate the second derivative matrix [75], which

is used to verify that the upper bound solution is a local minimum; that is,

the Hessian matrix must be positive semidefinite. If the matrix is not

positive semidefinite or the gradient checks are not satisfied, the upper

bound solution is rejected. All local minima are stored.

4. The current best upper bound is updated to be the minimum of those thus

far stored.
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5. The hyper-rectangle with the current minimum value for L (this is the

minimum value of all local minima of L in each subdomain) is selected

and partitioned along one of the global variables. All a values are updated

according to the following rule:

a ¼ a0RL ð52Þ

In this equation a0 refer to the initial values from Step 1. R is a reduction

parameter (0 < R � 1), and L refers to the current level in the branch and

bound tree. For R ¼ 1 the a values are kept constant at the initial value, a0.

6. If the best upper and lower bounds are within the E tolerance, or a

maximum iteration limit has been exceeded, the program will terminate,

otherwise it will return to Step 2.

A second approach incorporates free energy information into the branch and

bound algorithm. Specifically, harmonic entropic contributions are calculated

and included at each minima of the upper and lower bounding functions. In this

way, the progression of lower and upper bounds includes a temperature-

dependent entropic term. A similar modification to the Monte Carlo minimiza-

tion method has also been proposed [87] and has been shown to be effective in

locating low-energy conformers of peptides [88,89].

The problem formulation is identical to the one given in (34). That is, the

minimization of E and L are still performed using only potential and solvation

energy contributions. However, once local minima have been located, the free

energy is calculated by the following expression:

G ¼ UMin þ
1

2b
ln ½DetðHMinÞ� ð53Þ

This equation is similar to Eq. (44), although the additive term f ðTÞ has been

omitted because it is a function of temperature only. UMin represents the local

minimum energy of E or L, and DetðHMinÞ is the determinant of the Hessian

evaluated at this local minimum. The specification of a thermodynamic

temperature (b ¼ 1=kBT) is required as an additional input parameter.

A single rigorous application of the aBB algorithm to this problem will result

in the identification of the global minimum free energy at a given temperature.

However, the goal is to identify an ensemble of low energy and, in this case, low

free energy conformers so that a free energy ranking and comparison can be

made. Therefore, the algorithmic steps for the Free Energy-Directed Approach

(FEDA) are similar to those for EDA, with the additional evaluation of the free

energy (G) at each local minima of E and L. The thermodynamic temperature

used in Eq. (53) must be specified as an additional input parameter.
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9. Free Energy Computational Studies

The EDA was first applied to the isolated form of met-enkephalin. All 24

dihedral angles were considered variable, with the 10 dihedral angles of the

backbone residues acting as global variables (variables on which branching

occurs). For both peptides, the EDA algorithm detailed above was applied 10

times. The input conditions correspond to initial a values of 5 and 10, with a

subsequent reduction of these values based on the current level in the branch and

bound tree.

Once the ensemble of local minima had been compiled, a set of distinct

conformations was identified by checking for repeated and symmetric

conformations. In addition, a conformation was only considered unique if at

least one dihedral angle differed by at least 50� when comparing each pair of

conformations. These conformations were then used to generate results and

distributions according to energy and free energy values. Energy bins were used

to characterize a group of distinct structures between a range of energy values

(every 0.5 kcal/mol) relative to the global minimum energy structure. For

example, Bin 1 contains structures that are 0.0–0.5 kcal/mol above the global

minimum energy structure, Bin 2 contains structures that are 0.5–1.0 kcal/mol

above the global minimum energy structure, and so on.

In the case of isolated met-enkephalin, the 10 (EDA) runs generated a total of

83,908 distinct local minima. The potential energy global minimum (PEGM)

conformation for met-enkephalin possesses an energy of �11:707 kcal/mol.

This conformation exhibits a type II0 b-bend along the N–C0 peptidic bond of

Gly3 and Phe4. Essentially, this structure corresponds to the free energy global

minimum (FEGM) conformation for a temperature of 0 K—that is, when

entropic contributions are not included. When considering the harmonic free

energy, the prediction of the FEGM can be calculated over a range of

temperatures. Table XI provides information on the FEGM for temperatures

ranging from 100 K to 500 K.

As Table XI shows, the PEGM persists as the FEGM at a temperature of

100 K. However, at the next three temperature points (i.e., 200 K, 300 K, 400 K)

the FEGM exhibits a potential energy contribution 1.808 kcal/mol higher than

the PEGM. The f and c values for this structure are also significantly different

than those for the PEGM. In fact, the conformational code (B*AAAE) indicates

that the central residues display an a helical configuration. At a temperature of

500 K, the FEGM structure changes again, while the potential energy difference

between the FEGM and PEGM increases to 5.369 kcal/mol. These differences

suggest that the inclusion of entropic contributions greatly affects the relative

stability of individual low energy structures. In addition, as the temperature

increases, the stability offered by entropic contributions offsets substantial

differences in potential energy.
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Table XII provides information on the distribution of distinct low free energy

minima within 8.0 kcal/mol of the FEGM for a range of temperatures. For a

given temperature the general trend indicates a large increase in the number of

minima as the free energy increases above the FEGM. Several exceptions to this

trend occur at high temperature and large bin number. In these cases, the

number of minima remains constant or even decreases slightly. This is most

likely due to an inadequate sampling of higher potential energy minima. For a

given bin, it is also apparent that the clustering of low free energy structures

increases with temperature. This increased density of the free energy bins

indicates that increases in energy are offset by entropic contributions.

TABLE XI

Dihedral Angle Values for PEGM and FEGM Structures of Isolated Met-enkephalin Using EDAa

Residue DA PEGM 100 K 200 K 300 K 400 K 500 K

Tyr1 f �83.4 �83.4 179.8 179.8 179.8 90.2

c 155.8 155.8 �18.2 �18.2 �18.2 149.1

o �177.1 �177.1 �178.1 �178.1 �178.1 177.5

w1 �173.2 �173.2 178.2 178.2 178.2 169.8

w2 79.3 79.3 81.3 81.3 81.3 �108.2

w3 �166.3 �166.3 177.3 177.3 177.3 177.6

Gly2 f �154.3 �154.3 �59.8 �59.8 �59.8 �66.1

c 85.8 85.8 �37.6 �37.6 �37.6 87.5

o 168.5 168.5 �178.8 �178.8 �178.8 �173.4

Gly3 f 83.0 83.0 �67.0 �67.0 �67.0 147.2

c �75.0 �75.0 �40.1 �40.1 �40.1 �36.7

o �170.0 �170.0 179.7 179.7 179.7 175.1

Phe4 f �136.9 �136.9 �70.9 �70.9 �70.9 �92.5

c 19.1 19.1 �39.5 �39.5 �39.5 �34.7

o �174.1 �174.1 �179.8 �179.8 �179.8 �179.1

w1 58.9 58.9 173.9 173.9 173.9 179.1

w2 94.5 94.5 �102.6 �102.6 �102.6 74.7

Met5 f �163.5 �163.5 �161.0 �161.0 �161.0 �154.7

c 160.9 160.9 122.1 122.1 122.1 135.3

o �179.8 �179.8 �178.0 �178.0 �178.0 179.9

w1 52.9 52.9 �174.7 �174.7 �174.7 �172.6

w2 175.3 175.3 174.0 174.0 174.0 175.1

w3 �179.9 �179.9 179.0 179.0 179.0 179.9

w4 �178.6 �178.6 �60.1 �60.1 �60.1 �60.0

G �11.707 �2.499 6.151 14.175 22.200 29.592

E �11.707 �11.707 �9.899 �9.899 �9.899 �6.338

aThe temperatures are provided in the first row. The last two rows indicate the harmonic free energy

(kcal/mol) and the potential energy value (kcal/mol), respectively.
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These observations are also supported by the information shown in Fig. 18.

This plot displays the range of potential energy in free energy bins at

temperatures of 250 and 500 K, with the potential energy bins included for

comparison. As expected, the potential energy values for the free energy bins

increase with increasing temperature. In addition, the range of potential energy

values increases in higher free energy bins. It is interesting to note that this

occurs because the minimum potential energy is relatively (i.e., within a few

kcal/mol of the PEGM) low for each bin, whereas the maximum potential

energy value increases in higher bins. The corresponding differences are

also greater at higher temperature. For example, at 500 K some bins exhibit a

20-kcal/mol range in potential energy. These trends explain the increased

number of low free energy conformers. That is, bins of low free energy contain

conformers of relatively high potential energy because of their more stabilizing

entropic contributions. The plot also implies that the PEGM appears in bins 3

and 10 for temperatures of 250 and 500 K, respectively.

Relative free energies were also calculated for clusters of low-energy

conformers. This analysis is useful because it is difficult to capture the true

accessibility of individual structures based on a pointwise approximation of

entropic effects. That is, the harmonic free energy approximation does not

provide a continuous free energy landscape. By clustering structures into larger

TABLE XII

Number of Distinct Minima in Bins for Isolated Met-enkephalin Using EDAa

Bin 0 K 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K

1 2 1 2 10 6 3 3 4 16 16 8

2 3 5 13 22 12 9 15 24 18 21 31

3 12 25 36 58 52 42 40 40 59 69 77

4 45 48 55 105 105 100 101 115 164 184 184

5 49 69 120 233 199 206 213 249 309 397 475

6 90 125 263 451 435 403 410 491 726 893 918

7 166 292 467 806 763 765 848 1,043 1,438 1,655 1,687

8 303 497 766 1,250 1,297 1,362 1,524 1,906 2,464 2,821 2,695

9 552 776 1,233 1,929 2,079 2,247 2,601 3,069 3,932 4,284 4,111

10 840 1,177 1,710 2,915 3,168 3,475 3,927 4,707 5,774 6,030 5,562

11 1,121 1,675 2,681 3,879 4,355 4,899 5,708 6,655 7,573 7,775 7,116

12 1,618 2,467 3,526 5,303 5,935 6,572 7,364 8,333 9,437 9,448 8,721

13 2,331 3,223 4,491 6,821 7,619 8,360 9,203 10,228 10,730 10,473 9,719

14 2,973 4,050 6,037 8,058 8,834 9,712 10,598 11,244 11,651 11,285 10,630

15 3,747 5,250 7,258 9,031 9,821 10,585 11,504 11,939 11,915 11,396 10,745

16 4,588 6,422 8,053 8,587 9,687 10,958 11,563 11,432 9406 8,482 8,338

aEach bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the

first row.
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groups, it is hoped that the error associated with these estimates will average

out. Typically, structures are clustered by calculating and comparing root-mean-

squared deviations. Because the enkephalin peptide is relatively small, struc-

tures were grouped based on the Zimmerman codes for the central residues of

the peptide [90]. Specifically, for met-enkephalin, structures were said to belong

to the same cluster if the central three residues possessed the same three code

letters based on the Zimmerman classification [90]. The relative free energy of a

cluster was calculated by the following equation:

Gcluster ¼ �
ln
P

i2C p
approx
i

b
ð54Þ

In Eq. (54) the individual p
approx
i , which refers to the statistical weight based on

the harmonic approximation, are summed for the set of conformations belonging

to a particular cluster (C). These individual probabilities were calculated by

normalizing each probability with respect to the overall probability at a given

temperature:

p
approx
i ¼ exp½�bðGapprox

0 � G
approx
i Þ�P

j exp½�bðGapprox
0 � G

approx
j Þ� ð55Þ

Figure 18. Potential energy comparison for isolated met-enkephalin using EDA. Minimum and

maximum potential energies versus bin number are plotted for three temperatures: T = 0 K, 250 K,

500 K.
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A reference free energy, G
approx
0 , was used to normalize the probabilities at each

temperature point. All free energies, G
approx
0 , G

approx
i and G

approx
j , refer to the

harmonic approximation of the free energy as calculated using Eq. (44). The

denominator, which represents the total probability at a given temperature, is

calculated by summing over the set of all conformers.

The relative free energies for clusters of met-enkephalin structures are given

in Table XIII. At each temperature point the Zimmerman code and correspond-

ing data for the top three clusters are listed. The results indicate that the structure

exhibiting the individual lowest free energy does not always belong to the

cluster with lowest free energy. At 100 and 200 K the DC*B and AAA clusters

are consistent with the structures of the FEGM. However, although the FEGM

retains the AAA structure at 300 and 400 K, the group of structures possessing

the lowest Gcluster at these temperatures exhibits a CD*A Zimmerman code. This

is, at least in part, attributable to the large number of structures grouped in this

cluster. In contrast to the a-helical-type structure for the FEGM, the CD*A

structures possess elements of a b-turn conformation. Specifically the lowest

free energy conformer exhibiting a CD*A structure at 300 and 400 K, possesses

a type II b-bend along the Gly2–Gly3 backbone.

TABLE XIII

Clustered Relative Free Energies for Isolated Met-enkephalin Using the EDAa

Temperature (K) Code Number
P

i p
approx
i Gcluster

DC*B 113 0.636 0.0899

100 CC*B 136 0.0794 0.503

C*DE 557 0.0765 0.511

AAA 323 0.230 0.585

200 DC*A 1828 0.213 0.615

C*DE 676 0.192 0.656

CD*A 2685 0.297 0.723

300 DC*A 1843 0.100 1.372

AAA 328 0.0990 1.379

CD*A 2654 0.219 1.209

400 DC*A 1799 0.0452 2.461

AAA 329 0.0380 2.600

CD*A 2449 0.112 2.174

500 C*C*A 1361 0.0256 3.640

C*AE 1463 0.0229 3.752

aFrom left to right, the information provided in this table includes temperature, Zimmerman codei,

number of individual structures in cluster, total probality ð
P

i p
approx
i Þ, and free energy of cluster

ðGclusterÞ.
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FEDA was also applied to the isolated form of met-enkephalin. For this

approach, the thermodynamic temperature appears as an input parameter, and

these values had to be specified along with initial a values. Several methods can

be envisioned for initializing the FEDA. For example, if the goal is to char-

acterize the low free energy conformers at a single temperature, a full set of

FEDA runs could be performed for that temperature. This type of search should

efficiently locate the global and many low free energy conformers for that

temperature. However, the goal was to effectively characterize the FEGM and

low free energy conformers over a range of temperatures. Therefore each of the

10 (FEDA) runs were conducted at a unique temperature point in the range of 50

to 500 K. The details of the conditions for these runs are given in Table XIV.

In total, 87,974 distinct local minima were found after compiling the results

from the 10 (FEDA) runs for isolated met-enkephalin. The PEGM and FEGM

found using the FEDA are displayed in Table XV. It should be noted that when

comparing PEGM for the EDA and FEDA, both structures possess the same

potential energies, but a different set of dihedral angles. However, these

structures are actually the same. That is, the different values of w2 and w3 for

Tyr1 represent a degenerate state for tyrosine, which is generated by rotating

both of these dihedral angles by 180�. An important observation is that at 200 K

the FEDA method predicts a slightly lower FEGM. The structure possesses a

lower potential energy (�10.547 vs. �9.899 kcal/mol) and exhibits a free

energy value that is 0.044 kcal/mol lower than the EDA predicted FEGM. The

remaining FEGM predictions are consistent for the two approaches.

An analysis of the distribution of distinct minima, as given by Table XVI,

reveals that the results are qualitatively consistent with those produced by the

EDA. It should be noted that in all cases the lowest free energy bin is as densely

populated as the corresponding EDA bins, which indicates that each run using

the FEDA was able to find a better distribution of low free energy conformers

near the FEGM. This is not unexpected, considering that the FEDA runs were

TABLE XIV

Input Parameters Used for FEDA Runsa

Run No. a0 R T (K) Run No. a0 R T (K)

1 5 0.90 50 6 5 0.90 300

2 5 0.90 100 7 5 0.90 350

3 5 0.90 150 8 5 0.90 400

4 5 0.90 200 9 5 0.90 450

5 5 0.90 250 10 5 0.90 500

aHere a0 refers to the initial a values used for all global variables. R refers to the reduction rate

applied at each level of the branch and bound tree. T refers to the thermodynamic temperature at

which the free energy was calculated.
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conducted at the same discrete temperature points used in the analysis. However,

when comparing the populations of higher energy bins at low temperatures, the

number of minima is larger for the EDA. Some of this variation, especially near

the 150 to 200 K range, is probably due to the lower FEGM found by the FEDA.

In general, the FEDA seems to provide a denser distribution of distinct minima

at higher temperatures and large bin number.

A comparison of the relative efficiencies for the EDA and FEDA to generate

low-energy local minima can also be made by examining Fig. 19. In this plot the

cumulative fraction of conformers, which is equal to the total number of unique

conformers within the first 8, 12, and 16 energy bins over the total number of

unique conformers, is given as a function of temperature. It is apparent that both

approaches are highly efficient. For example, at 400 K approximately 90% of

TABLE XV

Dihedral Angle Values for PEGM and FEGM Structures of Isolated Met-enkephalin Using FEDAa

Residue DA PEGM 100 K 200 K 300 K 400 K 500 K

Tyr1 f �83.4 �83.4 �163.1 179.8 179.8 �90.2

c 155.8 155.8 �40.5 �18.2 �18.2 149.1

o �177.1 �177.1 �177.7 �178.1 �178.1 177.5

w1 �173.2 �173.2 �172.2 178.2 178.2 169.8

w2 �100.7 �100.7 93.2 81.3 81.3 71.8

w3 13.7 13.7 �177.2 177.3 177.3 �2.4

Gly2 f �154.3 �154.3 65.1 �59.8 �59.8 �66.1

c 85.8 85.8 �89.7 �37.6 �37.6 87.5

o 168.5 168.5 174.1 �178.8 �178.8 �173.4

Gly3 f 83.0 83.0 �152.6 �67.0 �67.0 147.2

c �75.0 �75.0 34.4 �40.1 �40.1 �36.7

o �170.0 �170.0 �178.9 179.7 179.7 175.1

Phe4 f �136.8 �136.8 �155.4 �70.9 �70.9 �92.5

c 19.1 19.1 159.8 �39.5 �39.5 �34.7

o �174.1 �174.1 179.2 �179.8 �179.8 �179.1

w1 58.9 58.9 52.1 173.9 173.9 179.1

w2 �85.5 �85.5 82.9 �102.6 �102.6 74.7

Met5 f �163.5 �163.5 �79.3 �161.0 �161.0 �154.7

c 160.9 160.9 130.4 122.1 122.1 135.3

o �179.8 �179.8 �178.7 �178.0 �178.0 179.9

w1 52.9 52.9 �66.8 �174.7 �174.7 �172.6

w2 175.3 175.3 179.8 174.0 174.0 175.1

w3 �179.9 �179.9 �179.9 179.0 179.0 179.9

w4 �178.6 �178.6 �60.0 �60.1 �60.1 180.0

G �11.707 �2.499 6.107 14.175 22.200 29.592

E �11.707 �11.707 �10.547 �9.899 �9.899 �6.338

aThe temperatures are provided in the first row. The last two rows indicate the harmonic free energy

(kcal/mol) and the potential energy value (kcal/mol), respectively.
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TABLE XVI

Number of Distinct Minima in Bins for Isolated Met-enkephalin Using FEDAa

Bin 0 K 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K

1 2 1 3 10 8 5 5 6 17 15 8

2 3 6 14 9 10 11 16 23 19 23 30

3 12 26 38 52 53 43 42 41 56 63 86

4 46 48 55 87 91 100 97 107 156 188 193

5 47 69 116 180 189 205 208 249 324 407 478

6 87 122 259 373 400 391 403 481 721 898 988

7 161 290 470 654 730 758 846 1,051 1,476 1,801 1,756

8 297 488 760 1,063 1,246 1,368 1,524 1,936 2,576 2,966 3,052

9 543 762 1,182 1,637 1,918 2,188 2,597 3,181 4,136 4,618 4,538

10 828 1,140 1,624 2,413 2,996 3,511 4,032 4,863 6,033 6,481 6,070

11 1,066 1,560 2,569 3,542 4,193 4,852 5,726 6,791 8,047 8,466 7,832

12 1,527 2,404 3,433 4,735 5,785 6,616 7,499 8,630 9,989 10,069 9,426

13 2,244 3,070 4,470 6,288 7,382 8,341 9,315 10,632 11,286 11,130 10,484

14 2,818 4,004 5,833 7,451 8,649 9,727 10,862 11,833 12,430 11,937 11,102

15 3,657 5,064 7,075 8,723 9,617 10,818 12,004 12,606 12,358 11,968 11,238

16 4,472 6,257 7,848 8,718 10,108 11,295 12,167 12,003 9,952 8,640 8,576

aEach bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the

first row.

Figure 19. Plot of cumulative fraction of low energy conformers for isolated met-enkephalin,

which is equal to the number of unique conformers within the first 8, 12, and 16 energy bins over the

total number unique conformers, versus temperature. Both EDA and FEDA data are plotted.
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the total unique conformations identified are in the top 16 free energy bins,

which ranges up to 8 kcal/mol above the FEGM. The lower fractions at lower

temperatures indicate that a relatively large number of conformations have high

potential energies and that these energetic differences are not offset by entropic

effects at low temperatures. A more subtle comparison can be made by

observing that the EDA cumulative fractions are generally higher for tempera-

tures lower than 400 K. Although the total number of unique conformations is

slightly lower for the EDA, this trend indicates that the EDA is more efficient at

filling low-energy bins, especially at lower temperatures.

The results for the cluster analysis of the FEDA met-enkephalin structures

are given in Table XVII. There are some differences between the EDA and

FEDA cluster free energies, although the overall trend is the same. At all tem-

peratures, excluding 200 K, the cluster exhibiting the lowest cluster free energy

is the same as in the EDA analysis. At 200 K, the FEDA predicts the AAA cluster

as having a slightly higher free energy than the C*DE cluster, which only

appears as the third cluster in Table XIII. In both analyses, the transition from

the ground-state DC*B cluster to the CD*A cluster as temperature increases is

evident.

TABLE XVII

Clustered Relative Free Energies for Isolated Met-enkephalin Using the FEDAa

Temperature (K) Code Number
P

i p
approx
i Gcluster

DC*B 107 0.532 0.125

100 C*DE 990 0.232 0.291

CC*A 1604 0.0636 0.547

C*DE 1275 0.331 0.439

200 AAA 322 0.209 0.623

DC*A 1729 0.174 0.694

CD*A 2128 0.263 0.796

300 C*DE 1360 0.125 1.239

AAA 327 0.111 1.309

CD*A 2116 0.192 1.313

400 C*DE 1362 0.0464 2.440

DC*A 1714 0.0429 2.502

CD*A 1966 0.0922 2.368

500 C*AE 2088 0.0308 3.459

C*C*A 1900 0.0279 3.555

aFrom left to right, the information provided in this table includes temperature, Zimmerman codei,

number of individual structures in cluster, total probability ð
P

i p
approx
i Þ, and free energy of cluster

ðGclusterÞ.
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Because both the EDA and FEDA provide large amounts of statistical infor-

mation for the peptide system, these data were used to perform a simple

thermodynamic analysis of the folding process. It is widely accepted that the

folding of peptides progresses successively. The first step of this process is

typically associated with a structural collapse—that is, a transition from random

extended structures to an ensemble of compact structures. This transition should

also be associated by significant changes in the description of the ensemble as

temperature changes. For example, a peak in the specific heat at the transition

temperature indicates a steep decrease in average potential energy of the

ensemble. In order to verify that such a transition occurs for met-enkephalin,

the specific heat was calculated using the following expression:

C ¼ b2ðhE2iT � hEi
2
TÞ

N
ð56Þ

Here N refers to the number of amino acid residues in the peptide. The average

energy and squared energy (hEiT and hE2iT , respectively) were calculated at 10

temperature points using expressions of the form given in Eq. (49). The bin

probabilities were based on an energy width of .015625 kcal/mol. In addition, a

reference free energy, G
approx
0 (the lowest free energy), was used to normalize the

probabilities at each temperature point.

The results for isolated met-enkephalin are shown in Fig. 20. Both the EDA

and FEDA predict a transition temperature in the 250–275 K temperature range.

This is consistent with the increase in bin density and structural diversity at

higher temperatures, and it suggests a sharp increase in the average potential

energy of the system at this temperature. It also supports the transition from the

DC*B ground-state (PEGM) cluster to the higher potential energy CD*A cluster

in this temperature range.

Similar results for characterizing the folding transitions of enkephalins have

also been obtained by multicanonical simulations [91]. This is encouraging

because the two methods possess fundamental differences. In contrast to this

work, the multicanonical approach does not rely on the identification of low-

energy local minima or the concepts of the harmonic approximation. Instead,

thermodynamic quantities are developed by first generating large ensembles of

structures with wide ranging energies and then employing reweighting techni-

ques. In addition, although the multicanonical simulations included detailed

atomistic level modeling, only unsolvated systems were considered.

The EDA was then applied to the RRIGS solvated form of met-enkephalin

using the same protocol and conditions as detailed above. Qualitatively, the

PEGM (in this case, PEGM refers to potentialþsolvation) for solvated met-

enkephalin exhibits a more extended conformation than that which is observed

for the isolated form. As detailed in Table XVIII, the PEGM structure persists as
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the FEGM at 100 K. However, at each subsequent temperature, the FEGM

structure changes, and this change is accompanied by an increase in total energy

(potential and solvation). As with isolated met-enkephalin, the difference in

total energy between the PEGM and FEGM at 500 K is greater than 5 kcal/mol.

This suggests that entropic effects are important in defining the predicted native

structure. When considering individual structures, entropic effects tend to

produce more extended FEGM conformations at higher temperatures, especially

with regard to the placement of the aromatic rings. It is interesting to note that in

a previous study the positioning of aromatic rings was found to be a major

difference when considering the ability of solvation models to predict extended

PEGM conformations for the solvated enkephalin peptides [83]. The sequence

of FEGM structures is illustrated in Fig. 21.

The distribution of the 72784 distinct minima for solvated met-enkephalin

exhibits some important differences from those results obtained for the isolated

form of the peptide. This is evidenced by the information presented in Table XIX

and the plot in Fig. 22. In particular, the low- and intermediate-energy bins are

much denser than the corresponding bins for isolated met-enkephalin, especially

within 4 kcal/mol (8 bins) of the FEGM. In addition, some higher-energy bins

are actually more populated at lower temperatures. One obvious reason for these

differences is the high density of conformers for the original system (at 0 K).

This high density of states causes the original energy differences to be relatively
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Figure 20. Plot of specific heat using EDA and FEDA free energy results for isolated met-

enkephalin.
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small, and the entropic correction tends to induce an even stronger equalization

of the free energy values. This equalization is best illustrated by the data plotted

in Fig. 22, which indicate that the efficiency of locating low-free-energy

conformers is relatively high at all temperatures. In fact, the highest density

of states occurs near the middle of the temperature range, rather than at high

temperatures as predicted for the isolated peptide. This behavior may be due to

a lack of much-higher-energy local minima that would probably populate these

high-temperature, high-energy bins.

Similar conclusions can be drawn by examining the data presented in Fig. 23,

which provides information on the energy extrema for free energy bins at

temperatures of 0, 250, and 500 K. As expected, for both 250, and 500 K, the

TABLE XVIII

Dihedral Angle Values for PEGM and FEGM Structures of Solvated Met-enkephalina

Residue DA PEGM 100 K 200 K 300 K 400 K 500 K

Tyr1 f �168.2 �168.2 �170.9 �168.4 �168.4 �152.5

c �30.9 �30.9 �28.5 �34.3 �34.3 153.2

o 178.6 178.6 177.5 �178.9 �178.9 178.5

w1 �173.5 �173.5 178.8 178.7 178.7 �179.0

w2 �100.9 �100.9 61.3 �100.8 �100.8 �101.2

w3 19.3 19.3 �4.1 179.0 179.0 �179.9

Gly2 f 78.5 78.5 73.8 177.8 177.8 �173.9

c �86.5 �86.5 47.6 �179.9 �180.0 177.1

o �177.3 �177.3 �179.2 180.0 180.0 �179.8

Gly3 f 162.4 162.4 167.6 �180.0 �180.0 179.6

c 92.2 92.2 �145.2 179.9 179.9 �179.3

o 172.6 172.6 175.2 179.7 179.7 179.6

Phe4 f �150.3 �150.3 �149.3 �155.3 �155.4 �155.4

c 159.8 159.8 135.8 147.2 149.5 149.3

o �178.1 �178.1 �176.6 �176.8 �178.3 �178.3

w1 65.8 65.8 177.3 �179.5 �179.5 �179.7

w2 �87.4 �87.4 �108.1 �111.7 �105.6 74.4

Met5 f �75.0 �75.0 �85.5 �78.7 �78.7 �78.9

c 113.9 113.9 �41.1 �51.1 113.4 113.5

o �178.4 �178.4 179.9 179.7 �179.1 �179.1

w1 �172.3 �172.3 �65.6 �67.2 �67.4 �67.4

w2 176.1 176.1 �179.6 �178.8 �178.8 �178.8

w3 �180.0 �180.0 �179.4 �179.9 �179.9 �179.9

w4 60.0 60.0 179.5 �180.0 60.0 �60.0

G �50.060 �41.896 �34.566 �28.604 �22.828 �17.166

E �50.060 �50.060 �48.676 �46.030 �45.780 �44.797

aThe temperatures are provided in the first row. The last two rows indicate the harmonic free energy

(kcal/mol) and the potential energy value (kcal/mol), respectively.
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range of energy values increases for higher-free-energy bins. In addition, for all

bins, the minimum energy is relatively low and generally within a few kcal/mol

of the PEGM. However, unlike the isolated met-enkephalin results, the max-

imum energy values do not become larger at higher temperatures. In fact, the

curves for maximum energy at 250 and 500 K are almost identical. This

indicates that relatively high energy minima may be needed in order to fill out

these high-temperature bins.

A clustering analysis of the low-free-energy conformers was also performed

for solvated met-enkephalin, and the results are shown in Table XX. At 100 K,

the lowest free energy cluster included the FEGM structure, which is also the

PEGM structure. At higher temperatures, the correlation between the extended

FEGM structures and the lowest-free-energy cluster was also evident. In fact, all

low energy clusters at 300, 400, and 500 K possess highly extended backbone

conformations, with nearly all geometries within the E and E* regions on the

Zimmerman conformational map. In fact, although the number of individual

structures in each cluster is not excessively large, many of these extended

conformers reside in the lowest free energy bins.

Figure 21. FEGM structures for solvated met-enkephalin. The top figure is the PEGM and the

FEGM for 100 K. The structures at other temperatures (200 K, 300 K, 400 K, 500 K) are shown left

to right, top to bottom.
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Figure 22. Plot of cumulative fraction of low-energy conformers for solvated met-enkephalin,

which is equal to the number of unique conformers within the first 4, 6, 8, 10, 12, 14, and 16 energy

bins over the total number unique conformers, versus temperature.

TABLE XIX

Number of Distinct Minima in Bins for Solvated Met-enkephalina

Bin 0 K 50 K 100 K 150 K 200 K 250 K 300 K 350 K 400 K 450 K 500 K

1 10 11 16 17 21 18 19 22 21 21 13

2 14 17 35 122 236 149 98 95 97 94 79

3 34 66 299 542 896 607 378 283 223 195 166

4 117 296 668 1589 2075 1496 885 635 520 412 343

5 326 626 1907 3163 3636 2644 1730 1175 814 678 548

6 717 1582 3324 4902 5438 4256 2812 1957 1418 1047 762

7 1440 2865 5393 6733 6816 5790 4451 3061 2172 1623 1202

8 2611 4521 6906 7692 7569 6730 5390 4376 3123 2299 1705

9 3891 6337 7857 7952 7650 7221 6301 4972 4073 3132 2263

10 5567 7342 8094 7304 6858 7158 6736 5925 4699 3788 2903

11 6677 8090 7193 6612 6320 6374 6675 6232 5426 4453 3501

12 7624 7483 6618 5915 5645 6028 6295 6270 5754 5015 4161

13 7650 6920 5726 4864 4582 5279 5756 5972 5822 5328 4577

14 7047 6106 4680 3875 3645 4280 5113 5546 5689 5387 4879

15 6375 5066 3710 3086 2978 3449 4361 4973 5376 5271 5012

16 5534 4090 2848 2237 2140 2796 3437 4233 4809 5141 4964

aEach bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the

first row.
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A specific heat profile was also derived for solvated met-enkephalin in order

to understand how the dominance of these extended cluster geometries affect

the folding transition. These results are shown in Fig. 24. As with isolated met-

enkephalin, a folding transition is indicated by the peak in the specific heat,

which, in this example, occurs between 275 and 300 K. This represents a

significant change in average energy, which accompanies the collapse from an

ensemble of extended conformations (EE*E and E*EE clusters) to the more

compact ground-state cluster. For the solvated met-enkephalin example, this

transition is clearly illustrated by the cluster analysis and the structure plots

given in Fig. 21.

B. Structure Refinement with Sparse Restraints

To effectively determine protein function, it is important to predict the three-

dimensional structure of the macromolecule. Over the last several decades a

number of experimental and theoretical approaches have been developed and

refined in order to achieve this goal. Experimentally, there now exist two basic

techniques used to perform protein structure refinement. The first, X-ray

crystallography, relies on the ability to crystallize the protein so that diffraction

patterns can be used for sufficient resolution. These requirements have limited

Figure 23. Energy comparison for solvated met-enkephalin. Minimum and maximum potential

energies versus bin number are plotted for three temperatures: T ¼ 0 K, 250 K, 500 K.
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TABLE XX

Clustered Relative Free Energies for Solvated Met-enkephalina

Temperature (K) Code Number
P

i p
approx
i Gcluster

C*H*E 139 0.466 0.152

100 C*DF 286 0.224 0.297

C*G*A 205 0.0991 0.459

C*A*E 1112 0.0521 1.174

200 A*E*E 393 0.0468 1.217

E*EE 149 0.0421 1.259

E*EE 148 0.0474 1.818

300 EE*E 152 0.0445 1.856

D*E*E 149 0.0273 2.147

EE*E 151 0.0476 2.419

400 E*EE 145 0.0391 2.575

EEE 159 0.0266 2.883

EE*E 149 0.0460 3.059

500 E*EE 142 0.0327 3.397

EEE 156 0.0299 3.488

aFrom left to right, the information provided in this table includes temperature, Zimmerman codei,

number of individual structures in cluster, total probability ð
P

i p
approx
i Þ and free energy of cluster

ðGclusterÞ.

100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

S
pe

ci
fic

 H
ea

t

Temperature (K)

o

o

o

o

o o

o

o

o

o

Figure 24. Plot of specific heat using free energy results for solvated met-enkephalin.
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the applicability of this technique. A more powerful method, NMR (nuclear

magnetic resonance) spectroscopy, is based on solution measurements of the

system. Several key developments, including multidimensional NMR experi-

ments, have resulted in the ability to determine solution structures for proteins

consisting of over 200 residues.

This section focuses on the development of a novel approach for protein

structure prediction via experimental NMR restraints. Traditionally, the protein

folding global optimization problem involves a progression of unconstrained

minimizations. However, the introduction of experimentally derived or artificial

restraints can be used to recast the fundamental protein folding problem as a

constrained global optimization problem. The constraints, through reduction of

the feasible search space, serve two important purposes: (1) to attempt to correct

any deficiencies of the energy model and (2) to focus the efforts of the global

optimization algorithm.

This constrained approach is applied to the NMR structure prediction

problem, although a variety of restraint information could be used. The

proposed constrained formulation differs from traditional NMR approaches in

several fundamental ways. First, the energy model is represented by a detailed

full atom force field, rather than simplified nonbonded potential terms. This

should make the approach especially effective when the number of NMR

restraints per residue decreases; that is, the accuracy of the energy model

becomes more significant. In addition, traditional solution approaches apply

target function distance geometry or simulated annealing to unconstrained

problem formulations in which restraints are represented by penalty function

approximations. The solution of the constrained formulation requires the use of

constrained local optimization solvers and an overall global optimization

framework for nonlinearly constrained problems. This is accomplished through

the application of the ideas of the aBB deterministic global optimization

approach [15–18,73]. aBB-based global optimization techniques have also

been applied to NMR-type structure prediction problems [92,93].

Because the location of the global minimum relies on effectively solving

constrained local optimization problems, convergence to the global minimum

can be enhanced by consistently identifying low-energy solutions. These

observations illustrate the need for reliably locating low-energy feasible points

for initializing the constrained local optimization routine. Along these lines, a

combined torsion angle dynamics (TAD) and simulated annealing scheme has

been implemented within the context of the global optimization framework.

TAD has recently been shown to be more effective than Cartesian coordinate

dynamics [94,95]. In this case, the degrees of freedom are rotations around

single bonds, which reduces the number of variables by approximately tenfold

because bond lengths, bond angles, chirality, and planarities are kept fixed at

optimal values during the calculation.
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1. Energy Modeling

Basic data obtained from NMR studies consist of distance and torsion angle

restraints. Once resonances have been assigned, nuclear Overhauser effect

(NOE) contacts are selected and their intensities are used to calculate interproton

distances. Information on torsion angles are based on the measurement of

coupling constants and analysis of proton chemical shifts. Together, this infor-

mation is used to formulate a nonlinear optimization problem, the solution of

which should provide the correct protein structure. Typically, a hybrid energy

function of the following form is employed:

E ¼ Eforcefield þWNMRENMR ð57Þ

The energy, E, specified by this target function includes a chemical description of

the protein conformation through the use of a force field, Eforcefield. The force

field potentials are generally much simpler representations of all atom force

fields. The distance and dihedral angle restraints appear as weighted penalty,

ENMR, terms that should be driven to zero.

The second term of Eq. (57) can be rewritten as

ENMR ¼ Edistance þ Edihedral ð58Þ

Here Edistance and Edihedral represent the violation energies based on the distance

and dihedral angle restraints, respectively. These functions can take several

forms, although a simple square well potential is commonly used. The express-

ions also include a summation over both upper and lower distance violations; for

example, Edistance ¼ E
upper
distance þ Elower

distance. When considering upper distance re-

straints, this becomes

E
upper
distance ¼

X
j

Ajðdj � d
upper
j Þ2 if dj > d

upper
j

0 otherwise

�
ð59Þ

The squared violation energy is considered only when the calculated distance dj

exceeds the upper reference distance d
upper
j . This squared violation can then be

multiplied by a weighting factor Aj. A similar contribution is calculated for those

distances that violate a lower reference distance, dlower
j :

Elower
distance ¼

X
j

Ajðdj � dlower
j Þ2 if dj < dlower

j

0 otherwise

�
ð60Þ

For dihedral angle restraints the functional form is similar to that of Eqs. (59)

and (60). As before, the total violation, Edihedral, is a sum over upper and lower
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violations (i.e., Edihedral ¼ E
upper
dihedral þ Elower

dihedral). A dihedral angle oj can be

restrained by employing a quadratic square well potential using upper (oupper
j )

and lower (olower
j ) bounds on the variable values. However, due to the periodic

nature of these variables, a scaling parameter must be incorporated to capture

the symmetry of the system. Furthermore, by centering the full periodic region

on the region defined by the allowable bounds, all transformed values will lie in

the domain defined by [olower
j ��HWoj

; oupper
j þ�HWoj

], where �HWoj
is

equal to half the excluded range of dihedral angle values (i.e., �HWoj
¼ p�

ðoupper
j � olower

j Þ=2). This results in the following set of equations:

E
upper
dihedral ¼

X
j

Aj

�
1� 2

�
oj�oupper

j

2p�ðoupper
j
�olower

j
Þ

�2�
ðoj � oupper

j Þ2 if oj > oupper
j

0 otherwise

8<
:

ð61Þ

Elower
dihedral ¼

X
j

Aj

�
1� 2

�
oj�olower

j

2p�ðoupper
j
�olower

j
Þ

�2�
ðoj � olower

j Þ2 if oj < olower
j

0 otherwise

8<
:

ð62Þ

The force field energy term, Eforcefield of Eq. (57), models the nonbonded

interactions of the protein, which can consist of simple or more detailed energy

functions. In practice, when considering NMR restraints, force field terms are

often simplified to include only geometric energy terms such as quartic van der

Waals repulsions. Such functions neglect rigorous modeling of energetic terms

in order to ensure that experimental distance violations are minimized. In fact, a

basic representation for this target function would be

ES ¼ Edistance þ Edihedral ð63Þ

Here the Edistance function includes additional distance restraints to avoid van der

Waals contacts. Notice that when all restraints are satisfied, the objective

function is driven to zero.

A detailed modeling approach is proposed by using the ECEPP/3 force field

[38]. When considering an unconstrained minimization, this approach provides

the following objective function:

ED ¼ Edistance þ Edihedral þ EECEPP/3 ð64Þ

In contrast to Eq. (63), the detailed energy modeling greatly increases the

complexity of the objective function. It should also be noted that the trans-

formation from Cartesian to internal coordinate space results in highly nonlinear
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functions. That is, there is not a one-to-one correspondence between distances

and internal coordinates. The advantage for working in dihedral angle space is

that the variable set decreases, with the disadvantage being the increased

nonconvexity of the energy hypersurface.

2. Global Optimization

The determination of a three-dimensional protein structure defines an optimiza-

tion problem in which the objective function may correspond to one of the target

functions outlined in the previous section. For the simple case, the formulation

becomes

min
f

ESðfÞ ¼ Edistance þ Edihedral ð65Þ

A standard procedure for addressing this global optimization problem consists of

a combination of simulated annealing and molecular or torsional angle dynamics

[96]. Generally, multiple initial conformers are generated and optimized to

provide a set of acceptable structures. Typically, a set containing on the order of

100 acceptable conformers may be identified, from which a subset of similar

structures (approximately 20) are used to characterize the system. The simulated

annealing protocol is incorporated in an attempt to reduce trapping in local

minimum energy wells.

However, the minimization of complex target functions necessitates the use

of rigorous global optimization techniques. For the detailed target function,

given by Eq. (64), the unconstrained formulation is similar to formulation (65).

Through the use of the constrained optimization approach, the dihedral angle

bounds are implicitly included as box constraints. Furthermore, distance

restraints are treated explicitly. This reformulation removes both Edihedral and

Edistance from the target function, leaving only Eforcefield:

min
f

EECEPP/3

subject to Edistance
l ðfÞ � Eref

l ; l ¼ 1; . . . ;NCON

fL
i � fi � fU

i ; i ¼ 1; . . . ;Nf

ð66Þ

Here i ¼ 1; . . . ;Nf corresponds to the set of dihedral angles, fi, with fL
i and fU

i

representing lower and upper bounds on these dihedral angles. In general, the

lower and upper bounds for these variables are set to �p and p, although

appropriate bounds derived from NMR data are also suitable.

3. Torsion Angle Dynamics

Standard unconstrained molecular dynamics simulations have been used

extensively to model the folding and unfolding of protein systems [97–99]. In
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addition, several methods for NMR structure calculation have been based on

molecular dynamics in Cartesian space [96]. Torsion angle dynamics differs

from traditional molecular dynamics in that bond lengths and bond angles are

fixed at equilibrium values, thereby allowing for a transformation from the

Cartesian to the internal coordinate system. The constraints on the systems also

dampen high-frequency motions, which permits the use of longer time steps

during the numerical integration of the equations of motion. The use of TAD in

place of conventional MD has been found to improve the efficiency of NMR

structure prediction [94,95].

A major disadvantage for employing TAD in place of Cartesian MD is that

the equations of motion become much more complex for the constrained

system. For unconstrained Cartesian MD the accelerations of the atoms can

be calculated independently due to the decoupled nature of the equations of

motion. The addition of constraints to the Cartesian system transforms the

equations from a system of ODEs to a system of differential algebraic equations

(DAEs). The alternative to solving this system of DAEs is to transform the

equations of motion to the internal coordinate reference frame. In this case, the

solution of a linear matrix equation in each time step is required, which, due to

the highly coupled structure of the equations, scales as a cubic function of the

number of degrees of freedom (torsion angles). To avoid the potentially prohi-

bitive computational cost required for the solution of the equations of motion, a

fast recursive algorithm, which scales linearly with the number of torsion

angles, was implemented. The algorithm is based on spatial operator algebra

that has been used to simulate the dynamics of astronautical and robotic

equipment [100].

The algorithm solves for the torsional accelerations, �y:

MðyÞ�yþ Cðy; _yÞ ¼ 0 ð67Þ

In this equation, M is an N � N nonlinear mass matrix and C is the N-

dimensional vector of velocity-dependent (Coriolis and other) forces. y, _y, and �y
represent the torsional position, velocities and accelerations, respectively.

The ability to calculate the accelerations recursively relies on the chainlike

structure of the protein, in which each node of the chain represents a rigid body.

These rigid bodies consist of one atom or a cluster of atoms whose relative

positions are fixed. To simplify the explanation of the algorithm, an unbranched

chain will be considered, although the approach can be easily extended to

branched systems. For this simple case, the first rigid body, at one end of the

chain, defines the base (k ¼ 0), while the last rigid body, at the other end of the

chain, defines the tip (k ¼ N). The rotatable torsion angle between bodies k and

k � 1 is defined as yk.
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The framework of the algorithm to calculate �y can be broken down into three

steps:

Step 1. A recursion from the base to the tip is required to calculate the

positions, spatial velocities, Coriolis and gyroscopic terms for each of the

rigid bodies. To proceed, the 6� 6 spatial transformation matrix, fk,

between rigid bodies k and k � 1 must first be defined:

fk ¼
�

I3
~lðrk � rk�1Þ

03 I3

�
ð68Þ

Here I3 and O3 denote the 3� 3-dimensional identity and zero matrices,

while the ~l operator refers to the cross-product tensor associated with

rk � rk�1, where rk is the position vector that defines the reference frame

for rigid body k. The spatial velocity, Vk, can be computed from the

following relation:
Vk ¼ fT

k Vk�1 þ HT
k
_yk ð69Þ

The spatial velocity is a six-dimensional vector that combines both the

three-dimensional angular, o, and linear, v, velocities:

Vk �
ok

vk

� �
ð70Þ

Hk is also a six-dimensional vector with the first three elements

corresponding to the unit vector, ek, in the direction of the bond forming

the connection between rigid bodies k and k � 1:

Hk �
ek

0

� �
ð71Þ

The Coriolis and gyroscopic terms, ak and bk, respectively, can then be

calculated using the following relationships:

ak ¼
0

~ok�1½vk � vk�1�

� �
þ

~ok 0

0 ~ok

� �
HT

k
_yk ð72Þ

bk ¼
�

~okJk~ok

mk~ok~okYk

�
ð73Þ

Both ak and bk are six-dimensional vectors. mk, Yk, and Jk represent the

mass, the center-of-mass vector, and the 3� 3 inertia matrix for the rigid

body, respectively. Finally, the spatial inertia, Lk, of the rigid body about

the reference frame is given by the following 6� 6 matrix:

Lk ¼
�

Jk mk
~Yk

�mk
~Yk mkI3

�
ð74Þ
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Step 2. The next step requires a backward recursion from the tip, k ¼ N, to

the base, k ¼ 1. The recursion is used to store a number of auxiliary

quantities needed for the final forward recursion to calculate the accelera-

tions. In addition, the gyroscopic terms, bk, and the spatial inertia terms,

Lk, calculated in step 1 can be used to initialize two auxiliary quantities,

zk and Pk, respectively. Both Pk and zk are updated recursively using the

following intermediate terms:

Dk ¼ HkPkHT
k ð75Þ

Gk ¼ PkHT
k D�1

k ð76Þ
Ek ¼ �Hkðzk þ PkakÞ � rEk ð77Þ

Here Dk and Ek denote scalar quantities, whereas Gk is a six-dimensional

vector. The final equation requires the gradient of the potential function,

rEk. The recurrence relationships for Pk�1 and zk�1 are given by:

Pk�1  Pk�1 þ fkðPk �GkHT
k PkÞfT

k ð78Þ
zk�1  zk�1 þ fkðzk þ Pkak þGkEkÞ ð79Þ

Step 3. A final forward recursion from the base to the tip is used to obtain the
�y values. The six-dimensional vector ak is used to store intermediate

quantities, with ak equal to a vector of zeroes for k ¼ 0.

ak ¼ fT
kak�1 ð80Þ

�yk ¼ EkD�1
k � Gkak ð81Þ

The following recursion relation is used to update the values of ak:

ak  ak þHk
�yk þ ak ð82Þ

For branched molecular structures, each node can potentially spawn more

than one child so that both the inward and outward recursions must be modified.

In the case of an inward recursion, the results from each of the child nodes must

be summed up before moving up one level. In the case of the outward recursion,

each of the node branches requires a separate recursion.

The TAD is carried out using simulated annealing, with temperature control

provided by coupling to an external bath [101]. This coupling provides a means

for forcing or damping the torsional velocities using the following scaling factor

at time t:

fT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

b
þ T0

bTðtÞ

s
ð83Þ
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In this equation, b is a force constant, while T0 is the bath temperature and TðtÞ is

the actual temperature. The actual temperature is calculated from the kinetic

energy, Ekinetic, with the following relationship:

TðtÞ ¼ 2EkineticðtÞ
NfkB

ð84Þ

where kB is the Boltzmann constant. The value for fT is used to scale the torsional

velocities:

_yðtÞ  fT
_yðtÞ ð85Þ

Once torsional velocities have been determined, the accelerations, �y, can be

calculated using the recursive algorithm outlined above. A basic leap-frog

technique is then employed to calculate velocities at the half-time step, which

can be used to calculate torsional positions, y, and new estimated velocities at

the full-time step.

4. Algorithmic Steps

The algorithmic steps for the constrained aBB approach can be generalized to

any force field model or routine for solving constrained optimization problems.

Here, the aBB approach is interfaced with PACK [74] and NPSOL [28]. PACK is

used to transform to and from Cartesian and internal coordinate systems, as well

as to obtain function and gradient contributions for the ECEPP/3 force field and

the distance constraint equations. NPSOL is a local nonlinear optimization solver

that is used to locally solve the constrained upper and lower bounding problems

in each subdomain.

The implementation can be broken down into two main phases: initialization

and computation. The basic steps of the initialization phase are as follows:

1. Choose the set of global variables. Because the bounds on these variables

will be refined during the course of global optimization, they should be

selected based on their overall effect on the structure of the molecule. In

this work (and in general) the f and c dihedral angles provide the largest

structural variability and are chosen to constitute the global variable set.

2. Set upper and lower bounds on all dihedral angles (variables). If infor-

mation is not available for a given dihedral angle, the variable bounds are

set to [�p, p]. Because a constrained local optimization solver is used,

these box constraints are strictly enforced.

3. Identify the set of NOE-derived distance restraints to be used in the

constraints. In general, this set can include all intra- and inter-residue

restraints. In this work, only backbone sequential and medium to
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long-range information was used in developing the constraints, because

intra-residue restraints are less likely to affect the overall fold. Although

the formulation can handle multiple constraints, distance restraints were

included as one constraint (NCON ¼ 1) for the computational studies.

4. Choose the value of Eref
l to be used in the constraint equations. This can be

determined by simply performing several local constrained optimizations

or possibly a short global optimization run with simplified energy models.

In this work, information based on X-PLOR [96] results was used to

define the Eref parameter (see below).

5. Identify initial a values for both the objective and constraint functions.

6. Set initial best upper bound to an arbitrarily large value.

The computation phase of the algorithm involves an iterative approach,

which depends on the refinement of the original domain by partitioning along

the global variables. In each subdomain, upper and lower bounding problems

are solved locally and used to develop the sequence of converging upper and

lower bounds. The basic steps are as follows:

1. The original domain is partitioned along one of the global variables.

2. Lower bounding functions for both the objective and constraints are

constructed in both subdomains. A constrained local minimization is

performed using the following procedure:

a. 100 random points are generated and used for evaluation of the lower

bounding objective function and constraints. The point with the

minimum objective function value is used as a starting point for local

minimization using NPSOL.

b. If the minimum value found is greater than the current best upper

bound, the subdomain can be fathomed (global minimum is outside

region); otherwise the solution is stored.

3. The upper bounding problems (original constrained formulation) are then

solved in both subdomains according to the following procedure:

a. 100 random points are generated and used for evaluation of the

objective function and constraints. The point with the minimum

objective function value and feasible constraints is used as a starting

point for local minimization using NPSOL. If a feasible starting point

is not found, local minimization is not performed.

b. All feasible solutions are stored.

4. The current best upper bound is updated to be the minimum of those thus

far stored.

5. The subdomain with the current minimum value of Lforcefield is selected

and partitioned along one of the global variables.
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6. If the best upper and lower bounds are within a defined tolerance, the

program will terminate; otherwise it will return to Step 2.

To enhance the search for low-energy feasible points, the basic procedure

described in Step 3a is modified to include TAD. The following protocol is used:

1. Set counter, c ¼ 1. Perform TAD (1000 high-temperature steps followed

by 3000 annealing steps) using ES as the target function. The torsion angle

bounds of the current subdomain determine the dihedral angle restraint

functions. In addition to the NOE-derived distance restraints, sterically

based distance restraints are added to prevent van der Waals overlaps.

a. If the Edistance
l < Eref

l 8 l ¼ 1; . . . ;NCON, go to Step 2. Else go to

Step 1b.

b. Increment counter, c ¼ cþ 1. If c < 5, reduce weight of sterically

based distance restraints, perform new TAD and go to Step 1a. Else go

to Step 2.

2. Set counter, c ¼ 1. Perform local minimization using NPSOL with

dihedral angle box constraints to implicitly enforce bounds. The objective

function is a weighted combination of forcefield energy and distance

restraint terms:

E ¼ EECEPP/3 þ
X

l

WlE
distance
l ð86Þ

where the weights, Wl, are based on the violation of the distance

constraints:

Wl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Edistance

l

Eref
l

s
ð87Þ

a. If Edistance
l < Eref

l 8 l ¼ 1; . . . ;NCON, go to Step 3. Else go to Step 2b.

b. Increment counter, c ¼ cþ 1. If c < 5, increase weight of distance

restraint terms, perform TAD (100 high-temperature steps followed by

300 annealing Steps) and go to Step 2a. Else go to Step 3.

3. Solve the constrained minimization problem using NPSOL.

5. Computational Study

The global optimization algorithm was tested on Compstatin, a synthetic 13-

residue (ICVVQD WGHHRCT) cyclic peptide (disulfide bridge between the

Cys2 and Cys12 residues) that binds to C3 (third component of complement) and

inhibits complement activation [102]. Two-dimensional NMR techniques [103]

yield a total of 30 backbone sequential (including Hb - backbone), 23 medium-

and long-range (including disulfide), and 82 intra-residue NOE restraints. In
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addition, 7 f angle and 2 w1 angle dihedral restraints are available. In previous

work [103], traditional distance geometry-simulated annealing protocol was

utilized to minimize the associated target function in the Cartesian coordinate

space using the program X-PLOR [96]. NOE distance and dihedral angle

restraints were modeled using a quadratic square well potential, while van der

Waals overlaps were prevented through the use of a simple quartic potential

function.

The NMR refinement protocols resulted in a family of 21 structures with

similar geometries for the Gln5–Gly8 region. A representative structure was

obtained by averaging the coordinates of the individually refined structures and

then subjecting this structure to further refinement to release geometric strain

produced by the averaging process. The formation of a type I b-turn was

identified as a common characteristic for these structures.

The consistency of the ensemble of Compstatin solution structures was

determined by evaluating distance restraints for each of the original 21

structures (accession number 1a1p at the RCSB, http://www.rcsb.org), as well

as for the average Compstatin conformation. In considering distance restraints,

only backbone sequential and medium/long-range NOEs were considered. That

is, the 82 intra-residue restraints were neglected because they are less likely to

effect the overall fold of the Compstatin peptide. This results in a total of 52

restraints, with an additional restraint on the distance between the sulfur atoms

forming the disulfide bridge. In order to quantify these results, the violation

energy, EVIO, which can be calculated by summing Eqs. (59) and (60), was

calculated for each of the original PDB structures. In these calculations, the

value of the weighting factor (Aj) was assumed to be constant and set equal to

50 kcal/mol/Å2.

The results of the analysis, shown graphically in Fig. 25 indicate that the

average structure (Compstatin) possesses the third largest violation energy,

whereas the smallest value is provided by structure 8 (hCompstatini8). These

quantities provide a range of comparison for violation energies and were used to

set the constraint parameter, Eref , to 200 kcal/mol. This value is chosen so that

the sum of the violation energies will necessarily result in an improvement over

the violation energy for the average Compstatin structure.

To measure the performance of the proposed global optimization approach,

the ensemble and average Compstatin structures (hCompstatini and Compstatin)

were then used as starting points for local minimization. Because these

calculations are performed in the torsion angle space, which requires fixing

bond lengths and bond angles to equilibrium values, the corresponding

Compstatin PDB structures could only be used to derive torsion angle values.

These dihedral angles were then used as input to directly evaluate the

corresponding force field energy. Differences in bond lengths and bond angles

propagate through the generation of the corresponding ECEPP/3 structure,
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which produces an inherent RMSD between the PDB structure and the ECEPP/

3-generated structure. For example, when using the set of dihedral angles

calculated from the Compstatin PDB, the ECEPP/3 structure possesses a 0.581

Å all atom RMSD (all heavy atoms in backbone and side chains) with respect to

the original Compstatin structure, with a corresponding ECEPP/3 energy of

519.2 kcal/mol. In addition, due to the differences in bond lengths and angles,

the total distance violation for the ECEPP/3 structure (CompstatinECEPP)

increases from 6.9 to 8.7 Å, which results in a subsequent increase in violation

energy to 315 kcal/mol. The superposition of the original and ECEPP/3

Compstatin conformations is shown in Fig. 26.

Due to the relatively large distance violations and energies obtained after

transformation of PDB to PACK (ECEPP/3) structures, the 22 structures were

then subjected to local minimization. The problem formulation for local

minimization uses the set of 53 restraints for the constraint function, a constant

50 kcal/mol/Å weighting factor (Aj), and a constraint parameter, Eref , equal to

200 kcal/mol. In all cases, the corresponding violation energy reached the upper

bound value of 200 kcal/mol. The corresponding total distance violations in-

creased, with an average value of 6.766 Å. The smallest distance violation

(5.873 Å) was reported for structure number 10 (hCompstatiniLocal
10 ), whereas the

corresponding energy for this structure (�41.685 kcal/mol) was only slightly

above the average energy of �47.75 kcal/mol. The lowest energy structures

Figure 25. Violation energy, EVIO, for original Compstatin PDB structures.
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(�71.613 for hCompstatiniLocal
2 , �68.704 kcal/mol for hCompstatiniLocal

21 ,

�67.653 kcal/mol for hCompstatiniLocal
9 ) provided above average values for

total distance violation (6.963 Å, 6.832 Å, 7.120 Å, respectively). In addition,

the conformation obtained from the average Compstatin structure (Compstatin)

exhibited near average values for energy (�52.283 kcal/mol) and total distance

violations (6.392 Å). The range of ECEPP/3 energies after local minimization

are shown in Fig. 27.

The structural characteristics of these locally minimized structures were

quantified using RMSD (root-mean-squared deviation) calculations. For the

original PDB structures, comparison with the average Compstatin structure

provided RMSD values between 1 and 2 Å for only backbone atoms. As

expected, these structures possess common structural features. However,

when comparing original PDB structures and their locally minimized counter-

parts, most RMSD values are larger than 2 Å, indicating that significant

conformational changes occur during local minimization. This is due to both

the reduced set of NOE restraints in the constraint function and the role of the

detailed energy force field. In contrast, the RMSD values for the b-turn region

remain consistently low when comparing the original PDB structures to their

locally minimized counterparts. These results indicate that the b-turn is a

conserved structural feature, even with the addition of the detailed energy

model.

Figure 26. Superposition of (CompstatinOrig) structure (in light gray) and corresponding

ECEPP/3 structure (in black) using calculated dihedral angles (CompstatinECEPP).
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The constrained global optimization approach was first applied to Comp-

statin structure prediction without the use of TAD. A subset of 26 (all f and c)

torsion angles, from a total of 73, were treated globally, whereas the remaining

ones were allowed to vary locally. As was the case for local minimization, the

same set of restraints were used to formulate the nonlinear constraint, with

a constant 50 kcal/mol/Å weighting factor and a constraint parameter equal to

200 kcal/mol. The lowest-energy structure satisfying the constraint functions

provided an ECEPP/3 energy of �85.71 kcal/mol, an energy value more than

15 kcal/mol lower than those values provided by local minimization. The global

minimization required approximately 40 CPU hours on a HP C160. The total

distance violation equaled 6.690 Å, which is near the average distance violation

for the local minimum structures.

RMSD calculations were performed to again quantify the structural differ-

ences between the global minimum energy structure and the other Compstatin

structures. RMSD values between the full backbone and the b-turn segments of

the 22 locally minimized PDB structures and the global minimum energy

structure are plotted in Figs. 28 and 29, respectively. When comparing

full backbone RMSD vcalues, the hCompstatiniLocal
9 , hCompstatiniLocal

21 ,

hCompstatiniLocal
19 and hCompstatiniLocal

17 provide the best agreement with the

global minimum energy structure. These structures also correspond to four of

the lowest energy local minima, indicating that some of the lowest energy

Figure 27. Locally minimized energy, EECEPP=3, for Compstatin structures.
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Figure 28. RMSD values for backbone when comparing global minimum energy structure to

locally minimized PDB structures.

Figure 29. RMSD values for Gln5–Gly8 backbone when comparing global minimum energy

structure to locally minimized PDB structures.
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conformers exhibit similar backbone structural characteristics. In contrast, the

lowest energy local minimum, hCompstatiniLocal
2 , is less similar to the global

minimum energy structure. For the b-turn segment, the correlation between low

RMSD values and low energy local minima does not exist. This observation,

coupled with the relatively low RMSD values between all structures, indicates

that the b-turn structure is a characteristic for all conformers, including the

global minimum energy structure. Plots for superpositioning (backbone atoms)

of the average local minimum energy structure Compstatin
Local

and the

global minimum energy structure are given in Fig. 30.

6. Comparison with TAD: DYANA

A comparison to an independent method for solving distance restraint problems

was also made in order to gauge the performance of the proposed aBB

constrained formulation. Specifically, a torsional angle dynamics (rather than a

Cartesian coordinate dynamics such as X-PLOR) package was used [94]. The

coupled simulated annealing/TAD protocol from DYANA was applied to a

starting sample of 1000 randomly generated structures. The same dihedral angle

constraints and 53 medium- and long-range distance constraints were con-

sidered; that is, no heuristic methods for reducing the variable space were

employed. In the case of unspecified symmetric hydrogens, a pseudoatom

approach, in which the restraint is based on a pseudoatom central to the

symmetric hydrogen atoms, was used. A subset consisting of the 20 conformers

Figure 30. Superposition of global minimum (in black) and Compstatin
Local

(in light gray)

structures. The left panel shows the full (backbone atom) structure, whereas the right panel compares

only the b-turn region.
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exhibiting the best target values were then used as starting points for a second set

of runs. Finally, a set of five conformations (with the smallest violations) were

used for further analysis. Because each method (DYANA vs. ECEPP/3)

employed different structural definitions, based on fixed bond lengths and

bond angles, a direct comparison was not sufficient. Instead, the DYANA-

generated structures were used as starting points for local minimizations using

the local constrained formulation. In all cases, the violations reached the upper

bound of 200 kcal/mol for Eref. The corresponding violation values, including

final local minimum energy values (EECEPP=3), are given in Table XXI.

The results given in Table XXI indicate that although the DYANA con-

formers satisfy the corresponding constraint, their energy values are signifi-

cantly higher than that of the global minimum energy structure (more than

70 kcal/mol). This can be anticipated because the goal of the DYANA algorithm

is to minimize distance restraint violations via penalty term optimization, while

neglecting any detailed force field terms. In fact, an analysis of the structural

characteristics indicate that the type I b-turn does not appear along the Gln5–

Gly8 backbone in these structures. This is verified by the data in Table XXII,

which gives the f and c dihedral angle values for the central b-turn residues.

TABLE XXI

Local Minimization Results for the Best DYANA (TAD)-Generated Conformationsa

Local Minimum DVIO (Å) EVIO (kcal/mol) EECEPP/3 (kcal/mol)

CompstatinDYANA
1 6.234 200.0 �11.945

CompstatinDYANA
2 6.538 200.0 6.782

CompstatinDYANA
3 6.163 200.0 �10.208

CompstatinDYANA
4 5.476 200.0 �14.516

CompstatinDYANA
5 6.927 200.0 5.006

aHere DVIO refers to the total distance violation, EVIO is the corresponding violation, and energy and

EECEPP/3 is the force field energy at the local minima.

TABLE XXII

f and c Values for Central Residues (Asp6 and Trp7) for Anticipated b-Turn Regiona

Local minimum f2 (�) c2 (�) f3 (�) c3 (�)

CompstatinDYANA
1 166.9 �66.07 �80.00 �40.40

CompstatinDYANA
2 165.9 �65.55 �81.02 �33.99

CompstatinDYANA
3 180.0 �60.94 �81.76 �42.43

CompstatinDYANA
4 168.8 �50.32 �80.00 �42.22

CompstatinDYANA
5 165.4 �72.75 �97.79 �39.86

aThe subscripts refer to the second and third residues in the Gln5–Gly8 sequence.
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The problem is evidenced by the Asp6 residue, which has f–c values in a

forbidden region of the Ramachandran plot. It appears that this may be related

to clustering of the side chains in the DYANA-predicted structures.

In order to further examine this deviation from the previous results (which

define a type I b-turn), the DYANA protocol was also tested on the full set of

restraints, including intra-residue distances. The five DYANA-predicted struc-

tures exhibiting the lowest target function values were then subjected to local

minimization using the constrained formulation. As before, only the 53 medium-

and long-range distance restraints were included during the local minimizations.

As the results in Table XXIII show, the average energy has decreased for this set

of conformers. However, the structural analysis of the Gln5–Gly8 region, given

in Table XXIV still indicates that a type I b-turn is not preferred.

An additional comparison between the structural characteristics of these

(DYANA) local minima and the global minimum was also performed using

RMSD calculations, as given in Tables XXV and XXVI. These values are

consistently larger than those between the average (Compstatin
Local

) and local

TABLE XXIII

Local Minimization Results for the Best DYANA (TAD)-Generated

Conformations Using All Restraints.a

Local minimum DVIO (Å) EVIO (kcal/mol) EECEPP/3 (kcal/mol)

CompstatinDYANA
1c 6.222 200.0 24.714

CompstatinDYANA
2c 5.643 200.0 �31.216

CompstatinDYANA
3c 6.527 200.0 �17.569

CompstatinDYANA
4c 7.135 200.0 �27.110

CompstatinDYANA
5c 5.926 200.0 �14.656

aHere DVIO refers to the total distance violation, EVIO is the corresponding violation, and energy and

EECEPP/3 is the forece field energy at the local minima.

TABLE XXIV

f and c Values for Central Residues (Asp6 and Trp7) for Anticipated b-Turn Regiona

Local Minimum f2 (�) c2 (�) f3 (�) c3 (�)

CompstatinDYANA
1c �180.0 �58.61 �80.00 �47.72

CompstatinDYANA
2c 177.5 �63.77 �82.74 �33.53

CompstatinDYANA
3c 180.0 �63.98 �82.18 �23.32

CompstatinDYANA
4c 163.0 �58.56 �109.2 �4.53

CompstatinDYANA
5c �180.0 �70.46 �92.40 �41.22

aThe subscripts refer to the second and third residues in the Gln5– Gly8 sequence.
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minimum solutions structures (hCompstatiniLocal
i ) and global minimum energy

structure. The RMSD values indicate not only that there is significant structural

difference over the entire structure (Table XXV), but also that the b-turn region

(Table XXVI) is not a structural characteristic of the DYANA local minima.

This is evidenced by the superpositioning of the lowest-energy DYANA

structure and the global minimum energy structure, given in Fig. 31.

7. Global Optimization and Torsion Angle Dynamics

The modified constrained global optimization was also applied to the Compstatin

structure prediction problem using the same constraint function and parameters

[104]. The goal of introducing TAD as a component of the upper bound solution

approach is to increase the number of feasible points available for initialization

of the constrained local minimization. Initially, TAD is used in combination with

simple van der Waals overlap restraints to drive the distance violations to zero.

TABLE XXV

RMSD Values for Full Compstatin Structuresa

Local Minimum Heavy Atoms Backbone Atoms

CompstatinDYANA
1c 4.117 2.812

CompstatinDYANA
2c 4.866 3.893

CompstatinDYANA
3c 5.243 3.943

CompstatinDYANA
4c 4.892 2.654

CompstatinDYANA
5c 4.506 3.180

aColumn 2 reports RMSD using all heavy atoms, while column 3 accounts for only backbone atoms

(N, Ca, C0). Both columns compare the DYANA local minimum structures (CompstatinDYANA
i ) to the

global minimum Compstatin PDB structure (CompstatinGlobal).

TABLE XXVI

RMSD Values for the b-Turn Regions (Residues 5 through 8)a

Local Minimum Heavy Atoms Backbone Atoms

CompstatinDYANA
1c 1.163 0.625

CompstatinDYANA
2c 1.473 0.732

CompstatinDYANA
3c 1.607 0.721

CompstatinDYANA
4c 1.327 0.721

CompstatinDYANA
5c 1.277 0.781

aColumn 2 reports RMSD using all heavy atoms, while column 3 accounts for only backbone atoms

(N, Ca, C0). Both columns compare the DYANA local minimum structures (CompstatinDYANA
i ) to the

global minimum Compstatin PDB structure (CompstatinGlobal).
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Taken independently, this methodology is comparable to the typical implemen-

tation of TAD for NMR structure prediction [94]. Although there are potential

deficiences in the independent TAD algorithm; that is, the simplified force field

term is insufficient for sparse sets of distance restraints.

The use of TAD in the context of the global optimization approach surmounts

this difficulty by using an iterative TAD scheme with two forms of the target

function. The first set of TAD runs focuses on the reduction of the distance

violations, while employing a simplified forcefield in the form of additional

distance restraints to avoid atomic overlaps. This approach mimics the effects of

a typical TAD approach for structure prediction. To ensure that these con-

formers provide low energy, this step is then followed by unconstrained

minimization with a hybrid distance and ECEPP/3 energy objective function.

If the ECEPP/3 energy is acceptably low, the algorithm proceeds to the

constrained local minimization step, otherwise an iterative set of TAD runs

are performed with readjustment of the relative weight of the distance and

ECEPP/3 terms. Fig. 32 shows a typical sequence for both the ECEPP/3 and

distance violations energy during one solution of the upper bounding problem

for Compstatin.

The results of the combined constrained global optimization and TAD

algorithm can be assessed by examining the sequence of ECEPP/3 energies

obtained from the solution of the upper bounding problems, as depicted in

Fig. 33. When compared to the original algorithm, the TAD implementation

augments the number of feasible starting points by more than a factor of

two. This enhancement leads to earlier identification of low-energy conformers.

Figure 31. Superposition of global minimum (in black) and CompstatinDYANA
1c (in gray)

structures. The left panel shows the full (backbone atom) structure, whereas the right panel compares

only the b-turn region.
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Figure 32. Log plot of EECEPP/3 and Edistance during a typical solution to the upper bounding

problem for C3.

Figure 33. Energy values for Compstatin conformers obtained from combined constrained

global optimization and TAD algorithm.
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In particular, conformers with energies less than �70 kcal/mol, and thus lower

in energy than the locally minimized PDB structures, are identified within the

first 10 iterations of the global optimization approach. This property has

important algorithmic implications, including the ability to fathom regions

based on the current estimate of the global minimum. In general, the TAD-

enhanced search provides more consistent and denser population of low-energy

conformers.

Both experimental and theoretical methods exist for the prediction of protein

structures. In both cases, additional restraints on the molecular system can be

derived and used to formulate a nonconvex optimization problem. Here, the

traditional unconstrained problem was recast as a constrained global optimiza-

tion problem and was applied to protein structure prediction using NMR data.

Both the formulation and solution approach of this method differ from

traditional techniques, which generally rely on the optimization of penalty-

type target function using SA/ MD protocols.

As a first step, the penalty-type restraint functions were replaced by nonlinear

constraints, which can be individually enumerated for all or subsets of the

distance restraints. In addition, the objective function was transformed to a full

atom force field potential, a modification that should be particularly useful for

systems possessing sparse set of restraints. To solve this reformulated molecular

structure prediction problem, the concepts of a deterministic global optimization

approach, aBB, were applied. This methodology can be used to develop

theoretical guarantees for convergence to the global minimum of nonconvex

constrained problems. The algorithm was further enhanced by modifying the

upper bounding solution approach to include an iterative scheme involving

TAD.

The approach was applied to the Compstatin structure prediction problem

using both the original TAD approach and the coupled aBB-TAD approach.

When considering basic structural features, such as the formation of a type I

b-turn, the predicted structure was found to agree with results based on X-PLOR

[96]. However, constrained global optimization was able to identify conformers

with significantly lower energies than those obtained from either local mini-

mization or independent TAD algorithms. In particular, the coupled aBB-TAD

implementation consistently produced dense populations of low-energy con-

formers.

C. Perspectives and Future Work

1. Structure Prediction of Polypeptides

In spite of pioneering contributions and decades of effort, the ab initio

prediction of the folded structure of a protein remains a very challenging

problem. The approaches for the structure prediction of polypeptides can be
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classified as (i) homology or comparative modeling methods, (ii) fold recogni-

tion or threading methods, (iii) ab initio methods that utilize knowledge-based

information from structural databases (e.g., secondary and/or tertiary structure

restraints), and (iv) ab initio methods without the aid of knowledge-based

information.

Knowledge-based ab initio methods exploit information available from protein

databases regarding secondary structure, introduce distance constraints, and ex-

tract similar fragments from multiple sequence alignments in an attempt to

simplify the prediction of the folded three-dimensional protein structure.

Significant contributions include the work of Levitt and co-workers [40,105],

Skolnick and co-workers [106,107], Baker and co-workers, [108,109], Dill and

co-workers, [110], and Friesner and co-workers, [93,111,112]. Ab initio methods

that are not guided by knowledge-based information represent the most

challenging category. Important advances include the pioneering work of

Scheraga and co-workers [113–115], Rose and co-workers [116], and Dill and

co-workers [117,118]. Orengo et al. (1999) [119] provide a recent assessment

of the current status of both types of ab initio protein structure prediction

approaches.

We have recently developed the novel ASTRO-FOLD approach for the ab

initio prediction of the three-dimensional structures of proteins [120]. The four

stages of the approach are outlined in Fig. 34. The first stage involves the

identification of helical segments and is accomplished by: partitioning the

amino acid sequence into pentapeptides such that consecutive pentapeptides

possess an overlap of four amino acids; atomistic level modeling using the

selected force field; generating an ensemble of low-energy conformations;

calculating free energies that include entropic, cavity formation, polarization

and ionization contributions for each pentapeptide; and calculating helix

propensities for each residue using equilibrium occupational probabilities of

helical clusters.

In the second stage, b-strands, b-sheets, and disulfide bridges are identified

through a novel superstructure-based mathematical framework originally estab-

lished for chemical process synthesis problems [121]. Two types of super-

structure are introduced, both of which emanate from the principle that

hydrophobic interactions drive the formation of b-structure. The first one,

denoted as hydrophobic residue-based superstructure, encompasses all potential

contacts between pairs of hydrophobic residues (i.e., a contact between two

hydrophobic residues may or may not exist) that are not contained in helices

(except cystines that are allowed to have cystine–cystine contacts even though

they may be in helices). The second one, denoted as b-strand-based super-

structure, includes all possible b-strand arrangements of interest (i.e., a b-strand

may or may not exist) in addition to the potential contacts between hydrophobic

residues. The hydrophobic residue-based and b-strand-based superstructures are
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formulated as mathematical models that feature three types of binary variables:

(i) representing the existence or nonexistence of contacts between pairs of

hydrophobic residues; (ii) denoting the existence or nonexistence of the

postulated b-strands; and (iii) representing the potential connectivity of the

postulated b-strands. Several sets of constraints in the model enforce physically

legitimate configurations for antiparallel or parallel b-strands and disulfide

bridges, while the objective function maximizes the total hydrophobic contact

energy. The resulting mathematical models are Integer Linear Programming

(ILP) problems that not only can be solved to global optimality, but also can

provide a rank ordered list of alternate b-sheet configurations.

The third stage serves as a preparative phase for atomistic-level tertiary

structure prediction, and therefore it focuses on the determination of pertinent

information from the results of the previous two stages. This involves the

Figure 34. Overall flowchart for the ab initio structure prediction using ASTRO-FOLD. The

first stage addresses the prediction of helical segments based on free energy calculations of

overlapping oligopeptides. The second stage introduces a superstructure-based framework coupled

with integer-linear optimization for the prediction of a rank-ordered list of b-sheets and disulfide

bridges. The third stage derives lower and upper bounds on the (f;c) dihedral angles of the

secondary structure residues, the distances between pairs of contacts of hydrophobic residues, and

the (f;c) angles of the loop/turn residues. The fourth stage introduces a constrained formulation for

the tertiary structure prediction and its solution via the aBB global optimization approach enhanced

by torsion angle dynamics. An iterative loop over the final three stages allows for analysis of

multiple b-sheet and disulfide bridge configurations.
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introduction of lower and upper bounds on dihedral angles of residues

belonging to predicted helices or b-strands, as well as restraints between the

Ca atoms for residues of the selected b-sheet and disulfide bridge configuration.

Furthermore, for segments that are not classified as helices or b-strands, free

energy runs of overlapping heptapeptides are conducted to identify tighter

bounds on their dihedral angles.

The fourth and final stage of the approach involves the prediction of the

tertiary structure of the full protein sequence. The problem formulation, which

relies on dihedral angle and atomic distance restraints acquired from the

previous stage, is equivalent to the problem outlined in Section III.B. The

generation of low-energy starting points for constrained minimization is

enhanced by introducing torsion angle dynamics [94] within the context of

the aBB global optimization framework, as described in Section III.B.7.

An important question regarding the prediction of the native folded state

of a protein is how the formation of secondary and tertiary structure proceeds.

Two common viewpoints provide competing explanations to this question. The

classical opinion regards folding as hierarchic, implying that the process

is initiated by rapid formation of secondary structural elements, followed by the

slower arrangement of the tertiary fold. The opposing perspective is based on

the idea of a hydrophobic collapse, and it suggests that tertiary and secondary

features form concurrently. This work bridges the gap between the two view-

points by introducing a novel ab initio approach for tertiary structure prediction

in which helix nucleation is controlled by local interactions, while nonlocal

hydrophobic forces drive the formation of b-structure. The agreement between

the experimental and predicted structures validates the use of the ASTRO-

FOLD method for generic tertiary structure prediction of polypeptides.

2. Parallelization Issues

The extension of our global optimization approaches to larger protein systems

requires the use of distributed computing environments. Such implementations

have been developed independently of system architecture, and the code has been

compiled and optimized using the MPI (message passing interface) standard.

On a fundamental level, these parallel implementations exploit the inherent

branch-and-bound structure of the aBB algorithm. A major characteristic of a

branch and bound framework is that as the size of the domain decreases, the

quality of the representation improves, which implies that finer initial domains

result in better approximations. This is equivalent to simultaneously exploring

multiple domains in order to perform a more efficient search, which is the

rationale behind advocating the development of a parallel algorithm.

Distributed frameworks for branch-and-bound algorithms can rely on two

basic protocols. The most simplistic structure consists of a tree hierarchy in

which a master processor directs the overall flow of the algorithm. In this case,

362 john l. klepeis et al.



global communication constructions can be maintained in order to control

termination and domain processing. The second alternative relies on a ring

structure in which all processors act locally and utilize predetermined commu-

nication patterns to relay information and detect termination.

Initial implementations of the aBB algorithm have employed the tree

hierarchy through a master–slave decomposition approach. This requires the

creation of only one communication group in which a single master processor

maintains the list of lower bounds. The initial domains for the slave nodes are

determined by the master through partitioning of the global domain to the appro-

priate level in the branch-and-bound tree, and these regions are sent to the nodes

for further processing. Once the upper and lower bounding problems have been

solved, the relevant information is returned to the master, which extracts and

sends to the idle node the next region from the lower bound list. The local

processing of each domain can also encompass several levels in the branch-and-

bound tree depending on the computational requirements for solving one node

in the tree. This procedure can be efficient for treating large protein systems

because of low communication time overhead. That is, the time spent in solving

the lower and upper bounding problems for each region is long relative to the

time required for communication.

The overall protein folding solution approach also affords other levels of

parallelism. For example, during the helix prediction phase, the full protein is

decomposed into smaller segments. This decomposition allows us to identify the

major secondary structural components (a-helical, b-sheet) of the protein by

solving smaller global optimization subproblems (using aBB) in parallel. The

extent of parallelism depends on the length of these subsegments and the

parallelism of the underlying aBB algorithm.

IV. DYNAMICS OF PROTEIN FOLDING

A. Background

The protein folding problem is a very important problem in computational

chemistry and molecular biology. The ability of a protein to function properly

within the cell depends on its tertiary structure. Considering how precisely and

reliably a protein shapes itself to perform its specific task, very little is

understood about the mechanism of protein folding. Better understanding and

insight on the mechanism of protein folding are of major importance.

In Section III, we discussed the structure prediction problem, in which the

native conformation is sought. In this section, we pursue the protein-folding

problem further by studying the folding mechanism—that is, the pathways

followed by a protein as it proceeds from its initial (extended) conformation to

its native state, as well as the rates associated with these folding processes.
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1. Studying the Dynamics of Secondary Structure Formation

According to the hierarchic model of protein folding, the time scale of formation

of secondary structures, such as a-helices and b-sheets, within a given protein

occurs on a much shorter time scale than the formation of tertiary structure.

Whether this is true or not, there is much evidence—both theoretical and

experimental—that the folding of large proteins begins with the formation of

these secondary structure elements [122,123]. Therefore, an initial step in

understanding protein folding is understanding the folding process of the

secondary structures such as a-helices and b-sheets. Insights can be gained into

the folding mechanism of these structures by studying short peptides that exhibit

the structure we wish to study.

Alpha helices have been studied for a relatively long time [124,125].

Numerous short peptides have been observed in the lab to form a-helices in

solution, and have been the subject of many experimental and theoretical studies

[4,5,126–131]. Our recent analysis of tetra-alanine, the shortest peptide to form

an a-helix, has provided us with enormous insights into the folding mechanism

of these structures and will be presented in Section IV.C.

The situation is very different for b-sheet structures. Until recently, experi-

mental studies of these structures have been mostly unsuccessful, largely due to

the fact that short peptides which fold into a b-sheet conformation tend to

aggregate in solution [125]. These difficulties have finally been overcome with

the recent discoveries of designed sequences, such as Beta-nova [132] and

others [133,134], as well as the second b-hairpin fragment of Protein G

(residues 41–56) [135], thus opening the door to a proper study of b-hairpin

and b-sheet formation [136–144]. Our ongoing efforts to analyze the Protein G

fragment (41–56) will be discussed in Section IV.E.

2. Searching for Stationary Points

A promising approach to understanding protein folding is the study of its

potential energy surface. The first step in the study of any potential energy

surface is the identification of stationary points (local minima and saddle points),

because these points play a crucial role in defining the topography of the surface.

The local minima represent stable configurations of the protein molecule, and the

first-order saddle points generally correspond to transition states that connect two

such configurations. A protein-folding process can be thought of as a transition

between two local minima through a transition state, or a series of such

transitions.

The problem of finding stationary points of a potential energy surface is an

old one, and numerous methods have been developed to solve it. The most

obvious method is applying the Newton–Raphson method to the equation

rV ¼ 0. The Newton–Raphson method tends to yield a solution whenever
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the initial guess is close to a stationary point and the Hessian matrix has the

appropriate signature for the type of stationary point desired (minima, first-order

saddle, etc). It cannot be used, for example, to walk away from a local minimum

towards a first-order saddle point.

The various ‘‘eigenmode-following’’ methods are sophisticated variants of

the Newton–Raphson method [145–150]. The Hessian is diagonalized, and a

modified Newton–Raphson step is generated by ‘‘shifting’’ some of the

eigenvalues of the Hessian, from positive to negative or vice versa, before

applying its inverse. These methods allow one to step away from local minima

in search of transition states, and vice versa.

There are a number of stochastic methods used to find stationary points [151].

Local minima can be obtained by frequent quenching of a constant energy (or

temperature) trajectory [82]. Simulated annealing by running a constant

temperature trajectory simulation, slowly reducing the temperature to zero in

the process, can sometimes lead to good candidates for the global minimum.

The method of ‘‘slowest slides’’ [152] has been used to search for transition

states connecting two given local minima: A constant energy trajectory is

followed during a transition from one local minimum to the other, and the

maximum along that trajectory is taken as an initial guess for the transition state.

The global minimum can also be found by use of genetic algorithms, in

which new conformations are generated from old conformations by random

mutations in the hope of eventually lowering the potential energy. Of particular

interest to us is the Conformation Space Annealing (CSA) algorithm [115,153,

154], which is a combination of genetic, annealing, and buildup methods. This

algorithm can also be used to generate a variety of low-energy conformations.

Other methods exist for searching for the global minimum of a potential

energy surface. Diffusion equation and distance scaling methods have been

applied to the problem of finding the global minimum of a potential energy sur-

face [155]. Smoothing transformations are applied to the potential energy

surface to eliminate the irrelevant local minima. The remaining minima are

tracked back to the original potential energy surface as the transformations

are gradually removed. Another method involves obtaining a large sample of

local minima and forming a ‘‘convex global underestimator’’ of the potential

energy surface based on those sample points [156]. The global minimum of the

original potential energy surface is sought in the vicinity of the global minimum

of the convex global underestimator.

Many dynamical studies of protein folding are carried out these days by

performing molecular dynamics simulations, in which the time evolution of the

protein’s configuration is determined directly by solving Newton’s equations of

motion. Not only is it possible to obtain numerous low-energy minima in the

vicinity of the starting point, but rate and pathway information can also be

inferred directly from the trajectories generated by these simulations. A major
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drawback of these simulations, however, is their computational expense.

Current limitations on simulations are on the order of a few hundred nanose-

conds of real time (a 1-ms simulation has been reported recently [97]), which is

far too short to enable a full simulation of the folding process of even a modest

sized protein.

All of these methods, good in their own right, share one very important

drawback: There is no guarantee that all (or even the most important) local

minima and first- or higher-order transition states will be found. In this chapter,

we propose a method of finding all stationary points of a given potential energy

surface in which we apply the aBB deterministic branch-and-bound global

optimization algorithm to the system of equations qV=qxi ¼ 0. The general

algorithm is discussed in Section II.B, and its specific application to the

stationary point search is discussed in Section IV.B. We have successfully

applied this method to small systems, such as triatomic molecules, alanine,

alanine dipeptide, and tetra-alanine [130,131]. We will discuss tetra-alanine in

Section IV.C.

3. Analyzing the Potential Energy Surface

Once the minima and first-order saddles are determined, the potential energy

surface can be analyzed. The folding mechanism of the protein can be

understood by enumerating the reaction pathways from the extended conforma-

tions to the native state. The first step in constructing the pathways is to

determine for each transition state which two minima it connects. This is

accomplished by performing a downhill search from the transition state along

each of the two reaction coordinate directions. The result is a list of minimum–

saddle–minimum ‘‘triples.’’ The reaction pathways can then be enumerated by

joining these triples together in chains using graph theory techniques.

Transition rates can be calculated using Rice–Ramsperger–Kassel–Marcus

(RRKM) theory [157]. The basic assumptions of RRKM theory is that the

protein can be treated thermodynamically in the vicinity of the minima as well

as the transition state, and that the transition is completed once the transition

state is crossed (i.e., there are no re-crossings). Once the transition rates have

been determined, the Master equation can be solved for the occupation

probabilities of each state as functions of time. This gives us a direct indication

of how long it takes for a protein prepared in a given unfolded state to reach its

native state. It is also possible to use this information to calculate the time

evolution of other quantities, such as (ensemble-averaged) energies, atomic

distances, and dihedral angles.

Becker and Karplus [4] proposed a graphical representation of the topogra-

phy of a potential energy surface based on the connectivity tree originally

introduced by Czerminiski and Elber [5]. They define a finite energy (tempera-

ture) generalization of the ‘‘catchment region.’’ As the energy (temperature) is
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increased, regions that were once disconnected by high barriers begin to merge.

This coalescence process is described by means of a ‘‘energy (temperature)

disconnectivity graph.’’ The shape of the disconnectivity graph reveals an

enormous wealth of dynamical information. We extended this idea by con-

structing a ‘‘rate disconnectivity graph’’ that is based on transition rates, rather

than energy levels or barrier heights.

We have applied these methods to tetra-alanine (an a-helix), which we

discuss in Section IV.C, and to the 41–56 fragment of Protein G (a b-hairpin),

which we discuss in Section IV.E.

B. The aBB Global Optimization Approach

Stationary points of all orders (i.e., minima, maxima, first-order and higher-order

transition states) of a given potential energy surface VðxÞ are determined by the

constraints

qV

qxi

¼ 0 ; i ¼ 1; . . . ;Nx ð88Þ

where Nx is the number of variables: x ¼ ðx1; . . . ; xNx
Þ. Equation (88) is an

example of a nonlinearly constrained system of algebraic equations. Indeed, (88)

can be obtained from (17) in Section II.B.1 by assigning fiðxÞ ¼ qV=qxi for

i ¼ 1; . . . ;Nf ¼ Nx, and Ng ¼ 0.

In Section II.B., we explained how such systems of equations can be solved

using the aBB global optimization algorithm. This algorithm applies whenever

the constraint functions qV=qxi are twice continuously differentiable (C2)—in

other words, whenever the potential energy function itself is C3. Unlike other

methods of locating stationary points, the aBB provides a rigorous theoretical

guarantee of finding all of the stationary points on a potential energy surface.

According to the aBB algorithm, the original problem (88) is first reex-

pressed as a global optimization problem by introducing a slack variable:

min
x;s

s

subject to qV=qxi � s � 0 ; i ¼ 1; . . . ;Nx

�qV=qxi � s � 0 ; i ¼ 1; . . . ;Nx

xL � x � xU

ð89Þ

The global minima of (89) with s ¼ 0 correspond to solutions to the original

problem (88).

Configuration space is searched for stationary points by subdividing the full

conformational space into smaller and smaller regions. At each stage, the
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current region is tested for possible stationary points by solving the lower

bounding problem:

min
x;s

s

subject to qV=qxi�aþi
X

k

ðxU
k � xkÞðxk � xL

k Þ � s � 0

�qV=qxi�a�i
X

k

ðxU
k � xkÞðxk � xL

k Þ � s � 0

xL � x � xU

ð90Þ

The left-hand side of each constraint in (90) is a convex underestimator of the

corresponding term in (89), and it is obtained by subtracting off a sufficiently

large quadratic term. The lower bounding problem (90) is indeed convex,

provided that the coefficients a�i satisfy

aþi 
 �
1

2
min

x2½xL;xU �
flkðHqV=qxi

ðxÞÞ; 0g

a�i 
 þ
1

2
max

x2½xL;xU �
flkðHqV=qxi

ðxÞÞ; 0g
ð91Þ

Assuming that (91) is satisfied, the lower bounding problem is convex and can be

solved to global optimality by any commercial local optimization package. The

global minimum sLB of (90) provides a valid lower bound of the global minimum

of (89), and thus it can be used to check if a stationary point can exist in the

current region ½xL; xU �. If sLB > 0, no such solution exists, and the region can be

fathomed. If sLB � 0, then a solution may or may not exist in ½xL; xU �, and so that

region will be subdivided and both subregions checked by the same procedure.

The aBB algorithm terminates when all regions have either been fathomed, or

reduced sufficiently in size at which point a solution to (88) is obtained by a local

search.

Calculating values of a�i according to (91) is difficult in general because the

Hessian matrices HqV=qxi
depend on x. A simplified method of calculating a�i is

to start with small values of a�i (e.g., a�i ¼ 5) and increase the values of a�i until

no new solutions are found. This can be a practical solution to many problems

where the correct values of a�i are difficult to determine. However, this method

has the one serious drawback in that it sacrifices the theoretical guarantee of

finding all solutions. In spite of this fact, we were able to identify all minima

and first-order transition states using modest values of a�i for alanine, alanine

dipeptide, and tetra-alanine. Tetra-alanine will be discussed in Section IV.C.

A more robust method involves calculating the Hessian matrices HqV=qxi
at

various grid points to get a sample of required a�i values. First we select a grid,
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fxkg. Then we evaluate the Hessian for each constraint at each grid point,

HqV=qxi
ðxkÞ, and use (91) to determine precomputed values of a�i ðxkÞ at each

grid point. During the aBB run, appropriate values of a�i for a given region are

determined by selecting the maximum a�i over all grid points contained in the

region. This method of generating a�i was used when we studied triatomic

molecules, which is discussed in Ref. 130.

C. Dynamics of Coil-to-Helix Transitions

In this section we attempt to elucidate the formation of a-helices by studying

tetra-alanine, which is one of the smallest peptides that can exhibit a full

a-helical turn. Tetra-alanine is depicted in Fig. 35.

In Sections IV.C.1–IV.C.6, we study tetra-alanine in vacuum. We use the

ECEPP/3 potential energy surface [38] (see Section III.A.1 and Fig. 11), which

is an all-atom potential energy function. In Section IV.C.7, we consider tetra-

alanine in solution by adding a solvation free-energy term to the ECEPP/3

potential energy surface. The solvation free energy is modeled by the volume

method using the Reduced Radius Independent Gaussian Sphere (RRIGS)

approximation (see Section III.A.2). To simplify the calculations, we fix bond

lengths and bond angles, allowing only the eight backbone ðf;cÞ dihedral

angles to vary.

1. Stationary Points for Unsolvated Tetra-Alanine

The first step in elucidating the folding process of tetra-alanine is to determine

the local minima and first-order saddles of its potential energy surface. We first

obtained a testbed of minima and first-order saddles by applying a brute-force

eigenmode-following search (Eigenmode III [145]) using a grid of starting

points. Our search results are summarized in Table XXVII. For our initial attempt

Figure 35. Tetra-alanine.

TABLE XXVII

Eigenmode III Results for Unsolvated Tetra-alanine

48 Grid 68 Grid

Local minima 16,125 62,373

First-order saddles 18,902 212,938
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to analyze tetra-alanine [130], we generated a 48 grid of starting points and

performed minimum and first-order saddle searches from each point. The

transition states were then followed down to the minima they connect, resulting

in additional minima found. Given the relative high percentage of starting points

that resulted in unique stationary points, we decided to increase the grid to 68 and

perform first-order saddle searches from each point. Additional minima were

obtained by following each such transition state down to the minima they

connect. After merging these new results with the results from the 48 grid, we had

generated a total of 62,373 minima and 212,938 first-order saddle points [131].

Tetra-alanine is one of the smallest peptides that can exhibit an a-helical

conformation as well as an extended conformation. These two conformation

types can characterized by their ðf;cÞ angle values. Alpha-helical conforma-

tions tend to have ðf;cÞ angle values in the vicinity of ð300�; 300�Þ. On the

other hand, extended conformations tend to have ðf;cÞ values in the vicinity of

ð300�; 120�Þ.
Therefore, to facilitate the classification of tetra-alanine conformations, we

subdivide the ðf;cÞ plane into regions and classify those regions according to

Table XXVIII. Values of ðf;cÞ corresponding to a-helix formation are

classified as ‘‘a,’’ and values of ðf;cÞ corresponding to b-sheet formation are

classified as ‘‘b.’’ Each conformation of tetra-alanine is characterized by four

ðf;cÞ pairs, and hence can be classified by a concatenation of four symbols.

Of the 62,373 minima, we found one a-helical conformation, min.1 (aaaa),

and one extended conformation, min.1587 (bbbb). Their potential energy and

free energy1 values can be found in Table XXIX. The a-helix conformation is

the lowest energy conformation of tetra-alanine. We will be concentrating on the

folding process from the extended conformation to the ground state.

We checked the aBB algorithm described in Section IV.B against the

Eigenmode III search for stationary points by conducting aBB runs on selected

regions of the potential energy surface. Selected results are given in Table XXX.

TABLE XXVIII

Classification Scheme for ðf;cÞ Pair

Symbol c Decoration f

a 270� � c � 335� No prime 270� � f � 330�

i 335� � c or c � 90� Prime 180� � f � 270�

b 90� � c � 150� Double prime Otherwise

j 150� � c � 270�

1By ‘‘free energy,’’ we mean potential energy plus the contributions from vibrational entropy. Free

energy can be calculated using (93) in Section IV.C.2.
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We started with a constant value of a ¼ 20, and then increased a in subsequent

runs until we found all stationary points located by the Eigenmode III search. In

all cases, modest values of a (less than 100) were sufficient to locate all minima

and first-order saddles found by Eigenmode III. In many cases, additional saddle

points were located.

2. Transition Rates and the Master Equation

Having now identified the local minima and first-order transition states, we are

now in a position to enumerate the reaction pathways between states and

calculate transition rates. The connectivity between the various minima is

determined by following each transition state back to the minima they connect.

TABLE XXIX

Ground State and Extended Conformation of Unsolvated Tetra-alanine

Minimum Classification E (kcal/mol) F (kcal/mol)

min.1 aaaa �6.643 �11.798

min.1587 bbbb 4.916 �5.549

TABLE XXX

Selected Results from aBB Tetra-alanine Runs

Region Saddle Type Eigenmode III aBB a

aaaa min 1 1 25

bbbb min 1 1 20

1st 4 4

2nd 6 6

3rd 4 4

4th 1 1

bibi min 1 1 20

1st 1 2

2nd 0 1

bbbj0 min 2 2 20

1st 8 9

2nd 4 17

3rd 3 16

4th 2 7

5th 0 1

aai0i min 2 2 80

1st 1 1
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This is accomplished by perturbing the transition state in each of the two

directions along the reaction coordinate and then using Eigenmode III to locate a

local minimum from that starting point. This gives us a list of (minimum,

transition state, minimum) triples.

We can then calculate the transition rate matrix using Rice–Ramsperger–

Kassel–Marcus (RRKM) theory. According to RRKM theory [130,157,158], the

transition rate for a single transition is given by

Wj0!ts!j ¼
kT

h

Qts

Qj0
ð92Þ

The partition functions at the minima and first-order saddles are related to the

free energies of those stationary points, and they can be evaluated using the

harmonic approximation

Q ¼ e�F=kT ¼ e�E=kT
Y

i

kT

hni

ð93Þ

where E and F are the potential energy and free energy, respectively, of the

stationary point, and ni are the vibrational frequencies of the molecule around the

stationary point. The product over frequencies takes into account the vibrational

entropy of the system. Substituting (93) into (92) yields

Wj0!ts!j ¼
Q

i n
j0

iQ
i6¼r:c: n

ts
i

e�ðEts�Ej0 Þ=kT

Summing over all transition states connecting two particular minima yields the

transition rate matrix

Wjj0 ¼
X

ts

Wj0!ts!j

The time evolution of occupation probabilities can be calculated by solving the

Master equation

dPj

dt
¼ wjj0Pj0 ðtÞ ð94Þ

where

wjj0 ¼
Wjj0 if j 6¼ j0

�
P

j00Wj00j if j ¼ j0

�
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Coupled differential equations like (94) are solved by diagonalizing the matrix

wjj0 , so that

X
j0

wjj0u
ðiÞ
j0 ¼ lðiÞuðiÞj

The general solution to (94) can be written in the form

PjðtÞ ¼
X

i

aie
lðiÞtu

ðiÞ
j ð95Þ

where the coefficients ai are determined by the initial probability distribution at

t ¼ 0.

One of the eigenvalues lð0Þ is zero. The associated eigenvector corresponds

to the equilibrium (t ¼ 1) probability distribution,

u
ð0Þ
j ¼ Pjðþ1Þ ¼ Qj

�X
j0

Qj0

All other eigenvalues are negative, and they correspond to transient probabilities

with a decay time of tðiÞ ¼ �1=lðiÞ.
The time evolution of occupation probabilities for the extended conformation

and the three lowest free energy states of unsolvated tetra-alanine at room

temperature T ¼ 300 K, starting with the extended conformation at t ¼ 0 (i.e.,

Pbbbbð0Þ ¼ 1, all other Pjð0Þ ¼ 0), is given in Fig. 36. It takes tetra-alanine

about 10�10 sec to reach the ground state from the extended conformation.

Figure 36. Time evolution of the extended conformation and the three lowest free energy states

of unsolvated tetra-alanine at T ¼ 300 K.
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3. Pathways

Details of the folding process can be determined by enumerating the pathways

from the extended conformation to the ground state. A pathway is defined as a

sequence of minima joined together by transition states:

initial state! ts! min! ts! min! � � � ! min! ts! final state

Pathways between these two states can be enumerated using graph-theory

techniques. We construct a graph where each node in the graph represents a

minimum and each edge in the graph represents a transition state that connects

two minima. The set of all pathways from one minimum to another can be

generated by an exhaustive search.

If we conduct this exhaustive search without restriction, we would generate

an enormous number of pathways. It is important to restrict the pathways we

generate in a sensible manner. We selected pathways based on two criteria: (1)

We restrict the length of the pathway (i.e., number of minima) to be less than or

equal to some prescribed maximum length, and (2) we also apply a transition

rate cutoff, effectively ignoring transitions whose rates fall below the cutoff

value. The number of pathways from the extended conformation to the ground

state of unsolvated tetra-alanine at T ¼ 300 K for various length and rate cutoffs

is given in Table XXXI. The total number of minima and transition states

involved in such pathways are given in Table XXXII.

These two criteria were applied in an attempt to find the most relevant

pathways. Because the faster pathways are likely to be the most important ones,

it makes sense to eliminate pathways that involve one or more slow transitions

(i.e., transitions which fail to meet the rate cutoff). The length cutoff is chosen

for more practical reasons. Even with a transition rate cutoff, the number of

pathways increases exponentially with the length cutoff (about a factor of 10 for

TABLE XXXI

Number of Pathways from Extended Conformation to Ground State with Given Length Restriction

and Rate Cutoff

Maximum No Rate

Length Cutoff 106 Hz 107 Hz 108 Hz 109 Hz 1010 Hz 1011 Hz

6

7 4

8 38

9 999 421 421 421 421 285 130

10 19963 10836 10828 10828 10733 7443 2099

11 297974 150831 150396 149391 146493 92216 21004

12 4132256 1868821 1859469 1832692 1768736 1002874 221592
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each additional minimum). An exhaustive pathway search would be intractable

if we did not impose a length cutoff. It is assumed that the fastest pathways are

also among the shortest in length. Although we have no proof of this, we will

see evidence later on that suggests that we have found the most relevant

pathways.

We examined in detail the pathways of length 9 and 10 with a transition rate

cutoff of 106 Hz. An example pathway of length 9 is given in Fig. 37. For each

such pathway, we estimated the amount of time it would take for tetra-alanine to

proceed from the extended conformation to the ground state along that

particular pathway by solving the Master equation for a reduced system

consisting only of the minima and transition states involved in the pathway.

The decay time of the longest-lived transient probabilities was used as an

estimate of the overall transition time. The fastest transition times were on the

order of 5� 10�11 sec, and most of the 10; 836 pathways we looked at had

transition times less than 1� 10�9 sec. Clearly, there is no single most

important pathway: there are many pathways which are all equally important.

We also found that the pathways of length 9 tended to be among the fastest of

the pathways of length 10 or less, suggesting that shorter pathways tend to be

faster.

We also studied the pathways of length 10 or less in terms of changes in the

f and c angles. Each ðf;cÞ pair is classified according to Table XXVIII. In

proceeding from the extended conformation to the ground state, each of the four

ðf;cÞ pairs must proceed from ‘‘b’’ to ‘‘a.’’ We observed that this process tends

to follow regular patterns.

We make the following general observations regarding the rotation of the c
angles:

1. Each c angle normally progresses in the sequence b! i! a or

b! j! i! a.

TABLE XXXII

Number of Minima/ Transition States Involved in Pathways from the Extended Conformation to

Ground State with Given Length Restriction and Rate Cutoff

Maximum No Rate

Length Cutoff 106 Hz 107 Hz 108 Hz 109 Hz 1010 Hz 1011 Hz

6

7 12=14

8 26=42

9 236=488 96=183 96=183 96=183 96=183 86=160 65=114

10 886=2339 339=952 339=951 339=951 332=932 287=790 188=466

11 2817=8341 664=2177 663=2173 657=2152 651=2120 526=1696 357=1044

12 6403=21316 943=3405 938=3388 922=3341 913=3291 754=2622 509=1699
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(aaaa, − 6.643)

(biaa, + 1.628)

(bjai′, + 2.975)

(bbi′b, + 5.248)

(bbbb, + 4.916) (bbj′b, + 4.749)

(iaaa, − 2.893)

(bbaa, + 2.875)

(bbai, + 2.719)

Figure 37. One possible pathway from the extended conformation to the ground state of

unsolvated tetra-alanine.
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2. No direct b! a transitions are observed,2 indicating that a rotation of c
from b-sheet to a-helical values is too large for a single transition.

3. Most pathways of length 10 or less involve at least one transition where

more than one c angle changes (cooperative motion).

4. A wide variety of cooperative motion is possible, but the two most

common types are as follows:

bi! ia 36%

bj! ii 14%

5. There is a tendency for one-half of the molecule to fold (nearly)

completely followed by the other half (e.g., bbbb! bbaa! aaaa).

We can analyze the pathway given in Fig. 37 in terms of these observations.

The individual c angles proceed as follows:

c1: b! i! a

c2: b! j! b! i! a

c3: b! j! i! a

c4: b! i! a

Except for a slight backtrack in c2, this pathway is consistent with (1) and (2).

This pathway also exhibits three transitions that involve cooperative motion. Two

of them are in the form bi! ia, which is the most common form observed. The

other cooperative motion, ji! ba (nonadjacent alanines), has also been

observed but is not nearly as common as the two forms listed above. Finally,

it should be remarked that this pathway does pass through a bbaa minimum. In

other words, the right side (the carboxyl terminus) folds completely before the

left side (the amino terminus) folds at all. Not all pathways follow this rule

strictly, although we have found that tetra-alanine tends to fold its right side most

of the way before its left side makes significant progress.

The rotation of the f angles plays less of a role in the folding process than

rotation of c angles. f takes on similar values for a-helical and b-sheet

conformations. We found that the very slowest transitions (on the order of

100 Hz or less) tend to involve rotations of the f angles from inside to outside of

the range 180� � f � 330� and vice versa. In fact, none of the minima involved

2This has been checked rigorously for all pathways length 11 or less with a rate cutoff of 106 Hz.

What we have in fact found is that there are transition states that connect two minima b! a, but

either the transition itself is very slow or else the minima are so high in energy that it seems unlikely

that a fast pathway (of any length) could pass through it. Our conclusion is that b! a is not

observed for all but the very slow pathways.
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in pathways of any length with a rate cutoff of 106 Hz involves f angles outside

this range (they would be indicated in our classification scheme by a double-

prime). This can be proved rigorously by examination of the rate disconnectivity

graph, which we will discuss next.

4. Rate Disconnectivity Graph

We constructed the rate disconnectivity graph for tetra-alanine at T ¼ 300 K. It is

shown in Fig. 38. The rate disconnectivity graph provides us with the rate-

dependent connectivity of the potential energy surface [4,5,130,131]. If we begin

at the top of the graph, with a very small rate cutoff, all of the minima fall into

one group that is represented by a single node. As we increase the rate cutoff,

transitions get eliminated. At some point, a critical transition gets eliminated

which disconnects the minima into two groups. This is represented by the node

splitting into two at the rate cutoff value. As the rate cutoff is increased further,

more and more transitions are eliminated and the graph continues to bifurcate as

bbbb aaaa

1010

105

100

10−5

10−10

Transitionrate (Hz)

Figure 38. Complete rate disconnectivity graph for unsolvated tetra-alanine at T ¼ 300 K. The

a-helical ground state and the extended conformation both lie in the highlighted subtree.
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the groups of minima further subdivide. At the base of the graph, no transitions

remain, and each minimum falls into its own group. The minima can be identified

at the base of the graph.

The rate disconnectivity graph for tetra-alanine shown in Fig. 38 covers 23

orders of magnitude in transition rates and contains 62,357 minima.3 Starting at

the top, we see that a relatively small number of minima break away as the rate

cutoff is increased to around 10 Hz. Between 10 Hz and 100 Hz, a number of

large groups of minima (several thousand minima each) break away from the

main branch, indicating a great deal of interesting dynamics occurring on a time

scale of about 0:1 sec. Between 102 Hz and 1010 Hz, relatively little happens.

There seems to be two well-separated time scales with characteristic times

roughly 0:1 sec and 10�10 sec.

The highlighted section of the rate disconnectivity graph contains a total

of 3713 minima, including the extended conformation and the a-helical

ground state. If we apply a transition rate cutoff anywhere between 102 Hz

and 1010 Hz, we would find that all of the minima in the highlighted region

would be connected to one another and disconnected from all of the rest. In

other words, it would take about 10�10 sec to make transitions between two

minima within this group and would take about 10�2 sec to make transitions

out of this group. This is consistent with our solution of the Master equation (see

Fig. 36).

We looked for a distinguishing characteristic of the minima within this

group. We found that all 3713 minima in this group satisfy the constraints

180� � fi � 330�

for all four f angles. Conversely, we found that all except for one minimum

which satisfies these constraints on all four f angles lies within this group. This

leads us to the following conclusions:

1. Transitions involving large changes in f (from within ½180�; 330�� to

outside this range, or vice versa) tend to be very slow, requiring longer

than 0:01 sec (sometimes much longer). This is no doubt a result of very

high barriers separating these two regions of configuration space.

2. Transitions involving small changes in f (i.e., those that stay within the

range ½180�; 330��) and arbitrary changes in c tend to be much faster,

typically on the order of 10�10 sec. The folding of tetra-alanine from its

extended conformation (bbbb) to the ground state (aaaa) falls into this

catagory.

3The remaining 16 minima are not connected to the main group by any transition states.
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5. Time Evolution of Quantities

Another way of obtaining an overall picture of the folding process of tetra-

alanine is to study the time-evolution of averages of certain quantities, such as

energy, dihedral angles, or distances between specific atoms. If qj is the value of

some quantity at minimum j, then hqi, the average value of q, and sq, the

standard deviation, can be calculated as a function of time with the help of the

Master equation:

hqiðtÞ ¼
X

j

PjðtÞqj ¼
X

i; j

aie
lðiÞtu

ðiÞ
j qj

¼
X

i

ai

�X
j

u
ðiÞ
j qj

�
el
ðiÞt ð96Þ

hq2iðtÞ ¼
X

i

ai

�X
j

u
ðiÞ
j q2

j

�
el
ðiÞt ð97Þ

sqðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq2iðtÞ � hqi2ðtÞ

q
ð98Þ

Plots of hqi and hqi � sq as functions of time for q ¼ E;f1, and c1 are given in

Figs. 39–41.

To obtain the correct time evolution of hqi and sq, it is necessary to solve the

Master equation over all of the minima.4 We can also calculate the approximate

time evolution of hqi and sq by restricting our attention to only a certain subset

of pathways. This is accomplished by restricting the minima and transition

states we use to solve the Master equation to those which are visited by the

selected pathways.

In Figs. 39–41, we compare the overall time evolution of E, f1, and c1 with

the time evolution obtained by restricting our attention to pathways with various

length restrictions. The deviations are rather large for a length cutoff of 10, but

are much smaller for a length cutoff of 11 or 12 (the same holds true for the

other ci and fi angles, not shown). It appears that applying a length cutoff of 11

will yield most of the relevant pathways.

We can also determine the effect of various transition rate cutoffs on the time

evolution of E, fi, and ci. In Fig. 42, we compare the overall time evolution of

E with that obtained by restricting our attention to pathways with a length cutoff

4Actually, we only solve the Master equation over the 3713 minima in the highlighted region of the

rate disconnectivity graph shown in Fig. 38. This is necessary because solving the Master equation

for all 62,373 minima would require diagonalizing a 62; 373� 62; 373 matrix which does not fit in

computer memory. Fortunately, it is also sufficient because the other minima are unreachable during

times on the order of 10�9 sec.
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of 11 and various transition rate cutoffs. We find significant deviation from the

overall time evolution only when the transition rate cutoff is increased to

1011 Hz (the same holds for fi and ci, not shown). It appears that the most

significant pathways are those of length 11 or less which satisfy a transition rate

cutoff of 1010 Hz. There are 92,216 such pathways, and they involve only 526

minima and 1696 transition states. This is significantly less than the 62,373

minima and 212,938 transition states that we started with.

10−13 10−12 10−11 10−10 10−9
t (s)

−8

−6

−4

−2

2

4

E (kcal/mole)

Overall
Length � 10
Length � 11
Length � 12

Figure 39. Time evolution of E as a function of time (average � one standard deviation), given

that the system occupies the extended conformation at t ¼ 0 sec. Various pathway length cutoffs are

employed.

−120

−100

−60

10−13 10−12 10−11 10−10 10−9
t (s)

φ1

Figure 40. Time evolution of f1 as a function of time (average � one standard deviation),

given that the system occupies the extended conformation at t ¼ 0 sec. Various pathway length

cutoffs are employed.
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6. Reaction Coordinates

It would be useful to characterize the folding process by means of determining a

viable reaction coordinate. A reaction coordinate is a quantity that accurately

measures the progress from the initial state to the final state. Ideally, it should be

monotonic and proceed at a uniform rate along each individual pathway. If we

examine the time evolution of E, fi, and ci (Fig. 39–41), we see that the energy

and the c angles seem to make reasonable reaction coordinates, but the f angles

−50

50

100

150

10−13 10−12 10−11 10−10 10−9
t (s)

ψ1

Figure 41. Time evolution of c1 as a function of time (average�one standard deviation),

given that the system occupies the extended conformation at t ¼ 0 sec. Various pathway length

cutoffs are employed.

Overall
Len � 11, rate � 106 Hz
Len � 11, rate � 107 Hz
Len � 11, rate � 108 Hz
Len � 11, rate � 109 Hz
Len � 11, rate � 1010 Hz
Len � 11, rate � 1011 Hz
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Figure 42. Time evolution of E as a function of time (average�one standard deviation), given

that the system occupies the extended conformation at t ¼ 0 sec. A pathway length limit of 11, along

with various transition rate cutoffs, are employed.
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definitely do not. However, these plots only reveal the average progress of these

quantities. What we would really like to know is which, if any, of these quantities

proceeds monotonically and uniformly for each pathway.

To help answer this question, we developed two ‘‘reaction coordinate

indicators’’—one that measures the monotonicity of the reaction coordinate,

and the other that measures the uniformity of the reaction coordinate. For a

given pathway of length N

min1 ! min2 ! � � � ! minN

a certain quantity q takes on values

q1 ! q2 ! � � � ! qN

The two reaction coordinate indicators are d=D and D2=S, where

d ¼
���
XN�1

i¼1

ðqiþ1 � qiÞ
��� (displacement)

D ¼
XN�1

i¼1

jqiþ1 � qij (distance)

S ¼ ðN � 1Þ
XN�1

i¼1

jqiþ1 � qij2 (squared distance)

d=D measures the monotonicity of q along the given pathway, and D2=S

measures the uniformity of q along the given pathway. Both indicators take the

value 1 in the ideal case.

For each of the quantities E, fi and ci, we tabulated the average value and

standard deviation of these two reaction coordinate indicators over the 92,216

relevant pathways in Table XXXIII. As expected, the f angles perform poorly

on the monotonicity test (d=D is very small), whereas the energy and the c
angles perform reasonably well on the monotonicity test. However, none of the

quantities do very well on the uniformity test: the average value of D2=S is

around 0:30 for each of the dihedral angles and around 0:48 for the energy. This

suggests that changes in a given dihedral angle tend to occur in a small number

of big steps, rather than in a large number of small steps. This is consistent with

our earlier pathway analysis, where we found that the c angles tend to change

one or two at a time.

It is clear that progress toward the a-helical ground state should not be

measured in terms of a single c angle, but should reflect the progress of all c
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angles. This suggests that we might look at
P

i ci as a reaction coordinate. The

time evolution of
P

i ci is plotted in Fig. 43, and the average value and standard

deviation of the reaction coordinate indicators are given in Table XXXIII. The

average value of the reaction coordinate indicators, d=D ¼ 0:927 and

D2=S ¼ 0:749, both indicate very strongly that
P

i ci makes a good reaction

coordinate. To confirm this, we constructed a scatter plot of D2=S vs. d=D for

each of the 92,216 pathways, shown in Fig. 44. For most of the pathways, the

reaction coordinate indicators are both near 1, further suggesting that
P

i ci

makes a good reaction coordinate.

Further insight into the folding process may be gained by looking for a more

physically significant reaction coordinate. An a-helix is stabilized by the forma-

tion of hydrogen bonds between the i and iþ 3 residues. Because these residues

tend to be farthest apart in the extended conformation, and must be brought

close together to form the hydrogen bond, it makes sense to use the hydrogen

bonding distance as a reaction coordinate.

We first tried da1;a4
, the distance between the first and fourth a-carbons. This

distance is indicated in Fig. 45. This distance varies from 9:079 Å in the

extended conformation to 4:998 Å in the ground state. The a-helical ground

state is not the only conformation with da1;a4
< 5:0 Å. Of the 526 minima

involved in the 92,216 relevant pathways, 26 of them satisfy this inequality.

TABLE XXXIII

Average and Standard Deviation Values of the Reaction Coordinate Indicators d/D and D2/S for

Various Quantities Over All Pathways of Length 11 or Less with Transition Rates Exceeding 1010 Hz

from the Extended Conformation to the Ground State of Unsolvated Tetra-alanine

d=D D2=S

————————————— ———————————

Quantity Average Standard Average Standard

E 0.796 0.099 0.482 0.144

f1 0.224 0.138 0.291 0.080

c1 0.899 0.120 0.256 0.060

f2 0.032 0.034 0.304 0.077

c2 0.850 0.100 0.283 0.051

f3 0.081 0.081 0.332 0.084

c3 0.867 0.129 0.298 0.071

f4 0.046 0.038 0.302 0.075

c4 0.849 0.132 0.293 0.059P
i ci 0.927 0.066 0.749 0.066

da1, a4 0.674 0.138 0.355 0.115

d1 0.762 0.129 0.467 0.098

d2 0.712 0.111 0.523 0.142

d1 þ d2 0.818 0.103 0.587 0.133
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Figure 43. Time evolution of
P

i ci as a function of time (average�one standard deviation),

given that the system occupies the extended conformation at t ¼ 0 sec. Solid curve shows the overall

time evolution, and dotted line shows time evolution with a pathway length limit of 11 and a

transition rate cutoff of 1010 Hz.
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Figure 44. Scatter plot of reaction coordinate indicators for
P

i ci for each pathway. Only

pathways of length 11 or less with all transition rates exceeding 1010 Hz are used (92,216 pathways).
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The distance between a-carbons is only a crude measure of hydrogen

bonding. A more direct measure is the distance between the nitrogen-bonded

hydrogen atom and the oxygen atom that shares it. It turns out there are two

candidate hydrogen bonding distances, as indicated in Fig. 45. These distances

in the ground state are d1 ¼ 1:934 Å and d2 ¼ 1:921 Å. It turns out that neither

distance alone uniquely determines the ground state. Of the 526 relevant

minima, 9 of them satisfy d1 < 2 Å and 7 of them satisfy d2 < 2 Å. However,

only the ground state satisfies both inequalities. Apparently there are two

hydrogen bonds which stabilize the a-helix in tetra-alanine.

We tabulated the average value and standard deviation of the reaction

coordinate indicators for da1;a4
, d1, d2, and d1 þ d2 in Table XXXIII. The

motivation of including d1 þ d2 among the distance parameters is similar to that

of including
P

i ci. Because there are two hydrogen bonds to form, it makes

sense that reaction progress should be measured by both hydrogen bond

distances. Any of the four distance parameters would make a reasonable

reaction coordinate, but d1 þ d2 is clearly the best with d=D ¼ 0:818 and

D2=S ¼ 0:587. A scatter plot of D2=S vs. d=D for d1 þ d2 is given in Fig. 46.

7. Solvated Tetra-Alanine

We next studied tetra-alanine in solvation. We used the ECEPP/3 potential

energy surface coupled with the volume method for calculating solvation

energies using the Reduced Radius Independent Gaussian Sphere (RRIGS)

approximation.

d1

d2

dα1,α4

Figure 45. Alpha-helical ground state of unsolvated tetra-alanine, with the hydrogen bonds

indicated.
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We determined the minima and first-order saddles by applying a brute force

eigenmode-following search (Eigenmode III) with a 68 grid of start points, just

as we did for unsolvated tetra-alanine. The results of this search can be found in

Table XXXIV.

Of the 66,228 minima, we found one a-helical conformation, min.1 (aaaa),

and one extended conformation, min.874 (bbbb). The potential energy

(which includes the solvation energy) and free energy (which includes

contributions from the vibrational entropy) of these two states can be found

in Table XXXV.
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Figure 46. Scatter plot of reaction coordinate indicators for d1 þ d2 for each pathway. Only

pathways of length 11 or less with all transition rates exceeding 1010 Hz are used (92,216 pathways).

TABLE XXXIV

Eigenmode III Results for Solvated Tetra-alanine

68 Grid

Local minima 66,228

First-order saddles 195,639
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The first thing to notice is that, although the a-helical conformation has the

lowest potential energy (and hence the lowest free energy at T ¼ 0 K), the

extended conformation has a lower free energy at room temperature

(T ¼ 300 K) than the ground state. The result of adding solvation energy

reduces the energy gap from 11:6 kcal/mol to 4:4 kcal/mol. The entropic term

in the free energy is more than enough to overpower this energy gap and reduce

the free energy of the extended conformation below that of the a-helical ground

state. This has significant implications.

We calculated the free energies of all the minima in order to determine the

equilibrium probability distribution (see Section IV.C.2). We found that the

several hundred lowest free energy minima have about the same free energy,

and that no single minimum has an equilibrium occupation probability which

exceeds 0:004. This is in stark contrast with unsolvated tetra-alanine, where the

ground state had an equilibrium occupation probability of 0:748, and the lowest

three potential energy states accounted for 0:936 of the total equilibrium

probability.

As a check, we calculated the transition rate matrix for solvated tetra-alanine

at T ¼ 300 K, and we also solved the Master equation starting with the extended

conformation at t ¼ 0 sec. We plotted the time evolution of the occupation

probabilities of the 300 lowest free energy states. That plot is given in Fig. 47.

The equilibrium probability distribution is achieved in about 10�10 sec.

It seems likely that solvated tetra-alanine exhibits liquid-like behavior at

T ¼ 300 K. To be sure, we need to verify that the several hundred minima

that share the equilibrium probability distribution do not occupy the same

region of configuration space. If that were the case, the potential energy

surface would have one deep basin with a rough bottom. The true characteristics

of a liquid-like molecule is that it randomly (and quickly) samples widely

distinct configurations. By plotting the distribution of minima on four ðf;cÞ
plots (not shown), we reached the conclusion that the minima that share the

equilibrium probability distribution do occupy distinct regions of configuration

space.

If solvated tetra-alanine is to be liquid-like at T ¼ 300 K, then there must be

a phase transition. This should show up as a peak in the heat capacity versus

temperature plot. The heat capacity can be calculated by calculating energy

TABLE XXXV

Ground State and Extended Conformation of Solvated Tetra-alanine

Minimum Classification E (kcal/mol) F (kcal/mol)

min.1 aaaa �35.249 �40.741

min.874 bbbb �30.823 �41.194
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fluctuations at equilibrium

Cv ¼
d

dT
hEieq ¼

hE2ieq � hEi
2
eq

kT2

where equilibrium averages may be calculated from free energies

hqieq ¼
P

i qie
�Fi=kT

P
i e�Fi=kT

We calculated Cv as a function of T for temperatures ranging from (just

above) 0 K to 1000 K for both solvated and unsolvated tetra-alanine. The plots

are given in Figs. 48 and 49. The transition temperatures are given by

Tsolv
sol�liq ¼ 130 K Tunsolv

sol�liq ¼ 395 K

The lower transition temperature for solvated tetra-alanine can be traced back to

the reduction in the energy gap between the a-helical ground-state conformation

and the other higher-energy states, including the extended conformation, and

Figure 47. Time evolution of the extended conformation and the 300 lowest free energy states

of solvated tetra-alanine at T ¼ 300 K. No single state has an equilibrium probability that exceeds

0.004.
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indeed does explain the appearance of liquid-like behavior for solvated tetra-

alanine (but not for unsolvated tetra-alanine) at T ¼ 300 K.

D. Overall Framework and Implementation

In this section we present the methods involved in the dynamical study of a

particular peptide sequence, and we discuss the implementation details of those

methods. The overall framework is summarized in Fig. 50. The dynamical study

of a particular potential energy surface divides into two major parts: (1) the

search for stationary points (minima and first- and higher-order transition states)

and (2) the dynamics analysis.
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Figure 48. Heat capacity as a function of temperature for solvated tetra-alanine.
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Figure 49. Heat capacity as a function of temperature for unsolvated tetra-alanine.
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The stationary point search generally proceeds as follows. First, an initial

sample of minima and or transition states is generated using one of the global

optimization methods (aBB, CSA, or grid search). Additional stationary points

can be generated, if needed, by performing uphill searches from minima to

saddle points, or downhill searches from saddle points to minima, or by

interpolating widely separated minima to locate new minima in between

Figure 50. Overall framework for the dynamical study of a given peptide sequence.
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(‘‘fill’’). Similar minima and transition states may be combined by clustering, if

desired.

Once an adequate sample of minima and transition states has been found, we

begin the dynamical analysis. Connectivity between minima and transition

states has already been determined by the triples calculation (i.e., downhill

searches). The free energy of each stationary point is calculated (using the

vibrational frequencies), and from that the transition rates may be calculated.

Then we can construct a Cv vs. T plot, determine equilibrium probability distri-

butions, solve the Master equation, construct the rate disconnectivity graph, and

perform a full pathway analysis.

1. Local Stationary Point Search Methods

Eigenmode-Following Search. Eigenmode-following search algorithms are

essentially sophisticated variations of the Newton–Raphson method applied to

the equations qV=qxi ¼ 0. We employ the version introduced by Tsai and

Jordan [145]. At each iteration, the Hessian may be updated by direct calcula-

tion, or by BFGS (minimum search only) or Powell updating (with occasional

direct calculation) [159–161]. We generally used the Powell updating for the

uphill searches and a full Hessian calculation for the downhill searches, so as to

ensure that the correct connectivity is determined.

The Newton–Raphson step is given by

�x ¼ �H�1g ¼ �
X

i

gi

bi

ei

where g and H are the gradient and Hessian, respectively, bi and ei are

eigenvalues and eigenvectors of H, respectively, and gi is the component of the

gradient in the direction of ei. The Newton–Raphson algorithm tends to locate

stationary points that have the same signature (i.e., number of negative

eigenvalues) as the Hessian matrix at the starting point. More specifically,

potential energy tends to be minimized along modes for which bi > 0, and it

tends to be maximized along modes for which bi < 0. Eigenmode-following

algorithms circumvent this limitation by ‘‘shifting’’ some of the eigenvalues to

change their sign, so that the ‘‘eigenvalues’’ used to construct the step have the

desired signature. Thus, if a minimum is sought, then all eigenvalues are

rendered positive by shifting the negative bi’s to positive values. If a first-order

saddle is desired, then eigenvalues are shifted as needed so that one specific

eigenvalue is negative. If the Hessian already has the required signature, no

shifting takes place—the search essentially becomes a Newton–Raphson search

in the vicinity of the saddle point. Eigenmode-following searches, when they

converge, virtually always converge to a saddle point of the correct saddle order.
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When searching for a first-order saddle from a starting point in the vicinity of

a minimum, there is some question as to which eigenvalue should be shifted to a

negative value (i.e., which eigenmode to follow ‘‘uphill’’). There are two

possible answers:

1. At each iteration, follow the mode with the smallest eigenvalue.

2. Choose a specific mode at the starting point, and continue to follow that

‘‘same’’ mode as each step is taken. Eigenmodes at each subsequent step

are identified with eigenmodes at previous steps by maximum overlap.

In the first case, it is automatically the case that at any point where the Hessian

has the correct signature, no eigenvalue shifting takes place at all, and the

Newton–Raphson step is taken. In the second case, a specific mode is selected,

which often does not start out as the lowest eigenvalue mode. However, as the

selected mode is driven uphill, its eigenvalue decreases, eventually causing that

mode to overtake the other modes in becoming the lowest eigenvalue mode.

Eventually the eigenvalue is driven to a negative value, after which the first-order

saddle will be found.

SUMSL. The SUMSL algorithm [162], which is made available as part of

ECEPP/3 [38], is designed to find local minima in the vicinity of a starting

point. It employs the BFGS updating method for the Hessian. It is specifically

designed for minimum searches and, as such, is generally much more efficient

than the eigenmode-following algorithm.

2. Methods for Finding Minima and First-Order and

Higher-Order Transition States

aBB Stationary points of all orders are generated by solving the stationary

conditions

qV

qxi

¼ 0 i ¼ 1; . . . ;Nx

using the aBB method described in Sections II.B and IV.B. This algorithm offers

a theoretical guarantee of enclosing all solutions within the starting region in a

finite amount of time.

CSA. The Conformational Space Annealing (CSA) algorithm attempts to reach

the global minimum (free) energy conformation by a combination of genetic,

annealing, and buildup algorithms [115,153,154]. The user provides an initial

bank of minima (usually by locally minimizing randomly selected points). Seed

points are selected from the bank and modified according to prespecified rules.

The modified points are then minimized by local search, and then considered for
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introduction into the bank, possibly replacing a point which is already there. If

the candidate point falls within a certain ‘‘cutoff distance’’ from any other point

in the bank, the candidate point and the bank point closest to it are compared.

Otherwise, the candidate point is considered to be in its own ‘‘class,’’ and it is

compared with all other points in the bank. In either case, the highest (free)

energy point is discarded. The ‘‘cutoff distance’’ is initialized to one-half the

average distance between points in the initial bank, and it is annealed down by a

fixed factor every iteration.

Termination conditions include one or more of the following:

1. Iteration count limit.

2. Round limit. Each round ends after every point in the current bank has

been used as a seed point.

3. (Free) energy lower limit.

4. Update counter limit. The ‘‘update counter’’ is incremented whenever the

fraction of candidate points which actually make it into the bank is

sufficiently small for a given number of minimizations.

5. Stop file. The user can stop the algorithm by creating a special file whose

existence is checked each iteration.

Virtually all of the effort is spent performing the local minimizations of the

modified seed points. The parallel version of this algorithm divides the modified

seed points among all of the processes (including the master process) to be

minimized in parallel. The master process handles the rest of the algorithm.

Grid Search. A sampling of stationary points of a specified order (first-order

saddle or minima, generally) is found by initiating an eigenmode-following

search from each point on a specified grid to a saddle point of the specified

order. After the searches are completed, duplicate points are thrown out. This

algorithm requires one search for each grid point, and thus the time requirements

depend exponentially on the number of variables for which alternative values

are provided for the grid. It is therefore unsuited for large problems, but yields

good results for small problems (e.g., tetra-alanine, discussed in Section IV.C).

The parallel version of this algorithm divides the gridpoints among all of the

processes (including the master process), which then perform the searches. The

results are sent back to the master process.

Uphill Search. First-order saddle points are found by performing eigenmode-

following searches ‘‘uphill’’ from each minimum. For every minimum and

every choice of eigenmode, an initial step is taken along that mode (in each of

the two possible directions), followed by an eigenmode-following search along

that mode to a first-order saddle. A total of 2N searches are required for each

minimum, where N is the number of eigenmodes. One may alternatively restrict
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the number of modes followed for each minimum. The resulting saddles are

collected and duplicates are removed.

The parallel version of this algorithm divides the minima among all of the

processes (including the master process), which then perform all of the required

searches. The results are sent back to the master process.

Triples Calculation. The connection between first-order saddles and the

minima they connect are found by performing a minimization on each side of

the saddle point. An initial step from the saddle point is taken in each of the two

directions along the eigenmode corresponding to the negative eigenvalue, each

followed by a minimization. Minima found this way are compared with minima

that have been found previously, and duplicates are discarded in favor of the

previously found minima. This algorithm may also be used to locate previously

unknown minima by downhill search from a saddle point, in which case the new

minima are retained.

The parallel version of this algorithm divides the saddle points among all of

the processes, which then perform the necessary minimizations. As the saddles

and minima are sent back to the master process, duplicate minima are discarded

in favor of previously determined minima.

Fill. ‘‘Fill’’ refers to the act of filling in a ‘‘scaffolding’’ of minima (such as

might be obtained by a CSA run) by searching for additional minima between

pairs of minima found in the initial set. The reason why this may be necessary is

because the minima generated by the CSA algorithm are often too far apart for

connections between them to develop after a single uphill/downhill search (this

is practically by design of the CSA algorithm, which spreads itself thin so as to

sample a large portion of the conformational space).

A ‘‘distance cutoff’’ and a ‘‘coordination number’’ are provided, along with

an initial set of minima. Ideally, this algorithm will first cluster the points

according to the distance cutoff (i.e., split the points into equivalence classes,

where two points are equivalent if they can be connected to one another by a

‘‘path’’ involving points which are within the cutoff distance from each other).

Then each cluster will be paired with the N clusters closest to it in distance,

where N is the coordination number. For every pair of clusters generated this

way, additional points will be added along the line joining the two clusters

(more specifically, along the line joining the two representative points in the two

clusters which are the least distance apart). The points will be uniformly spaced,

and the number of points chosen is the least number which results in each point

being within the cutoff distance from its nearest neighbor. The new points can

then be used as starting points for minimization.

For practical reasons, the algorithm actually proceeds as follows. Every point

is considered in turn. Distances from that point to every other point are first
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determined and then sorted. Connections between this point and all points

which are within the cutoff distance are noted, so that equivalence classes may

be determined. Then the pairs consisting of this point and each of the next N

points (N is the coordination number), along with their mutual distances, are

added to a ‘‘pairs’’ list. After all points have been considered and the

equivalence classes are determined (class-wise), duplicate pairs are discarded

from the ‘‘pairs’’ list, and then the points are generated as described above.

The most CPU-intensive part of the algorithm is the generation of a list of

distances between a given point and every other point, along with the sorting

of that list. In the parallel version of this algorithm, the master process sends

the set of points to each slave process so that they will know what to do. While

the master process is carrying out the remainder of the algorithm, each slave

process calculates the distances between a given point and every other point and

then sorts the list. As each point is considered in turn, the master process cycles

through the slave processes, receiving the needed distances from each one.

Clustering. The number of minima and transition states can be reduced by

‘‘clustering’’ them—that is, by identifying points that lie within a specified

distance of one another with a single point. The first point in the set of points to

be clustered is selected as a cluster center and compared with every other point.

Points within a certain cutoff distance from the selected cluster center are

identified as belonging to that cluster and taken out of circulation. The next

point in the set that is not yet part of any cluster is selected as the next cluster

center, and it is compared with all other points not yet part of any cluster. The

algorithm continues this way until all points have been assigned to a cluster.

Note that the clusters generated by this algorithm have the property that the

cluster centers used to generate them appear earlier than all of the other points

in the cluster. Thus, by first sorting the set in increasing order of potential

energy, we can guarantee that each cluster will be represented by its lowest-

energy member and, in particular, that the global minimum energy point will be

among the cluster centers.

Minima should be clustered first using the algorithm as described above. The

connectivities between the transition states and the minima they connect should

then be redefined so that transition states connect the cluster centers associated

with the minima they actually connect. Then the transition states can be

clustered using the algorithm as described above with one additional caveat:

One transition state cannot be identified as belonging to a cluster centered by

another transition state unless they connect the same two minima (clusters).

The most CPU intensive part of the algorithm is the calculation of distances

between selected cluster centers and all other nonclustered points. The parallel

version of this algorithm runs as follows. The points are first sorted, and then

they are shipped from the master process to each slave process. The master
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process sends the first cluster center to one of the slave processes which begins

comparing that point to all of the remaining points in the set. As cluster matches

occur, results are reported back to the master process that records the clustering

information. The master process continues sending cluster centers to available

slave processes and awaits reports of clustering until all points have been

clustered.

The situation is complicated by the fact that the master process cannot send a

new cluster center to another slave process until it is established that the

potential cluster center does not belong to a cluster defined by a previous cluster

center. As long as each slave process performs the comparisons in order, the

master process will be able to deduce that the next unclustered point should

be regarded as a new cluster center as soon as all active slave processes have

reported progress beyond that point. To facilitate this process, each slave

process reports its progress back to the master process at well-defined intervals,5

in addition to those instances where a cluster match is found.

3. Methods for Analyzing the Potential Energy Surface

Vibrational Frequencies Calculation. The vibrational frequencies are deter-

mined by solving the generalized eigenvalue problem

ðH � ð2pnÞ2IÞx ¼ 0

where H is the Hessian and I is the generalized inertia tensor, defined so that the

kinetic energy of the system is given by

K ¼ 1

2

X
i; j

dxi

dt
Iij

dxj

dt

The inertia tensor is calculated by first calculating drj=dxi for j ¼ 1; . . . ; 3Na and

i ¼ 1; . . . ;Nx by finite differencing and then using the following formula:

Iii0 ¼
X3Na

j¼1

mj

drj

dxi

drj

dxi0

where mj is the mass of the j=3-th atom.

This makes use of the Cartesian coordinate functions rðxÞ. The form-

ulae above depend on the Cartesian coordinates being physically correct.

5A geometric sequence is used so as to generate a number of early reports without generated an

enormous number of total reports. Thus, reports are sent back after comparing the cluster center to

the next 1, 5, 52, 53, . . . points.
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Unfortunately, most methods of generating Cartesian coordinates from general-

ized coordinates (in our case, dihedral angles) involve fixing the positions and

orientations of specific atoms, which leads to the introduction of unphysical

forces and torques being applied to the molecule. We eliminate these unphysi-

cal forces by augmenting the set of generalized coordinates to include overall

translation and rotation coordinates, calculating the vibrational frequencies

using the above methods, and then discarding the six zero-mode frequencies

(which must exist). The resulting vibrational frequencies are physically correct.

Vibrational frequencies can be computed at the end of an eigenmode-

following search at little cost, because the Hessian has already been generated.

Alternatively, the vibrational frequencies can be calculated all at once after the

minima and saddles have all been found. In the latter case, the calculation can

be run in parallel by distributing the work to each process, having them

calculate the frequencies, and then having them pass the results back to the

master process.

Free Energy Calculation. The free energy for a given stationary point is

defined as follows:

F ¼ E � TSvib

The vibrational entropy is calculated from the vibrational frequencies by

employing the Classical Harmonic Oscillator approximation

Svib ¼ �k ln
Y

i

hni

kT

where the product is taken over all vibrational frequencies. For saddle points of

order 1 or higher, the negative eigenvalue modes are not counted as ‘‘vibrational

modes.’’

Other methods of calculating the vibrational entropy exist, but are not

currently implemented. Perhaps the simplest is the Quantum Harmonic Oscil-

lator approximation:

Svib ¼ �k ln
Y

i

2 sinh
hni

2kT

Anharmonic methods exist in the literature [163,164].

Equilibrium Probabilities. Equilibrium probabilities are calculated from the

contribution to the partition function from each minimum, which can be

expressed in terms of its free energy:

Pi ¼
e�Fi=kT

P
j e�Fj=kT
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The minimum free energy over the entire system is first subtracted off in order to

prevent overflow/underflow problems that could arise from modest nonzero free

energies (positive or negative).

Average values (as well as standard deviations) of any quantity can now be

computed at equilibrium:

hqi ¼
X

i

qiPi

sq ¼ ðhq2i � hqi2Þ1=2

Temperature derivatives are also possible:

dhqi
dT
¼ hqEi � hqihEi

kT2

assuming that qi does not depend explicitly on temperature. In particular, the

specific heat Cv ¼ dhEi=dT can be calculated.

Transition Rates. Transition rates are computed by Rice–Ramsperger–Kassel–

Marcus (RRKM) theory. Each transition state is associated with two rates:

Wi!ts!j ¼
kT

h
e�ðFts�FiÞ=kT

Wj!ts!i ¼
kT

h
e�ðFts�FjÞ=kT

These rates are collected together in a (sparse) matrix:

Wij ¼
X

ts

Wj!ts!i

Time-Dependent Probabilities (Master Equation). The time development of

occupation probabilities can be determined by solving the Master equation:

dPi

dt
¼
X

j

WijPj � ð
X

j

WjiÞPi ¼
X

j

wijPj

where

wij ¼
Wij ðif i 6¼ jÞ
�
P

i0 Wi0i ðif i ¼ jÞ

�
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Solving the Master equation involves determining the eigenvalues and

eigenvectors of the (nonsymmetric, but easily symmetrizable) matrix w:

X
j

wiju
ðkÞ
j ¼ lðkÞuðkÞi

The occupation probabilities as a function of time can be computed (and, e.g.,

plotted):

PjðtÞ ¼
X

k

akel
ðkÞtu

ðkÞ
j

where the coefficients ak are determined from the initial conditions Pjð0Þ. The

time constants are determined from the eigenvalues

tk ¼ �1=lðkÞ

One of the eigenvalues is zero, which corresponds to the equilibrium probability

distribution (t ¼ 1). The remaining eigenvalues will be negative.

Average values (as well as standard deviations) of any quantity can now be

computed as a function of time (and, e.g., plotted):

hqiðtÞ ¼
X

j

qjPjðtÞ ¼
X

k

akð
X

j

qju
ðkÞ
j Þel

ðkÞt

sqðtÞ ¼ ðhq2iðtÞ � hqiðtÞ2Þ1=2

Solving the Master equation requires the diagonalization of a matrix whose

size is the number of minima in the system. This is an extraordinarily expensive

operation and may be prohibitive in both space and time resources required. A

4000� 4000 matrix requires 128 megabytes of storage and generally requires

about a day of CPU time to diagonalize. There is no parallel algorithm available

for this operation.

Pathways. Each transition state connects two minima on the potential energy

surface. A pathway between two minima is defined as a series of such

connections:

initial state! ts! min! ts! � � � ! ts! min! ts! final state

The set of all (nonlooping) pathways from one minimum to another can be found

by an exhaustive search. We begin at the initial state and move to each minimum

that is connected to the initial state. For each such minimum, we recursively
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explore all minima connected to that minimum, taking care not to visit a given

minimum more than once along the same pathway. When the final state is

reached, the pathway is reported. When all possible routes have been explored,

the algorithm terminates.

For any reasonably sized system of minima and transition states, the number

of possible nonlooping pathways between any two minima is likely to be

prohibitively large. There are several criteria that can be applied to reduce the

number of pathways:

1. Monotonicity in any specified quantity (such as energy or free energy).

Transitions are ignored if they violate the proposed monotonicity.

2. Maximum length (i.e., maximum number of minima, including the initial

and final state, visited along the pathway).

3. Minimum transition rate. Transitions are ignored if they are slower than

this cutoff rate.

The following information is available during a pathway calculation:

1. The set of minima and/or transition states visited along the way by at least

one of the pathways.

2. Transition rates for each transition taken along a given pathway.

3. An overall ‘‘transition time’’ for a given pathway. This is determined by

(a) solving the Master equation over the minima and transition states

involved in that one pathway alone and (b) using the lifetime of the

longest-lived transient probability eigenvector.

4. Values of any number of quantities for each minimum visited along a

given pathway.

5. The two reaction coordinate indicator values associated with any number

of quantities along each given pathway (explained below).

6. The average value and standard deviation of any number of quantities

over all pathways, at a fixed position along the pathways.

7. The average value and standard deviation of the two reaction coordinate

indicators over all the pathways (explained below).

For a given pathway

min1 ! min2 ! � � � ! minN

a certain quantity q takes on values

q1 ! q2 ! � � � ! qN

To help determine if q would make a good reaction coordinate, we developed

two ‘‘reaction coordinate indicators’’. They are d=D (monotonicity) and D2=S
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(uniformity), where

d ¼
���
XN�1

i¼1

ðqiþ1 � qiÞ
���

D ¼
XN�1

i¼1

jqiþ1 � qij

S ¼ ðN � 1Þ
XN�1

i¼1

ðqiþ1 � qiÞ2

An ideal reaction coordinate varies both monotonically (same direction) and

uniformly (in equal steps) from its initial value to its final value. Both reaction

coordinate indicators take on the value of 1 in this ideal case. Values less than 1

indicate nonideality.

Less detailed information about the connectivity of the minima is also

available. The level of connection between two minima is defined as the

minimum-length pathway that connects them. The level of connection between

a given minimum and all other minima can be generated iteratively as follows.

First, start off by marking the given minimum as level 1 with all other minima

marked (temporarily) as unreachable. For each level n, starting with n ¼ 1, we

follow each minimum marked as level n to all the minima they are connected to.

For each such connected minimum, if it is yet to be marked as reachable, it is

marked as level nþ 1 (if it is marked already, then a shorter pathway has

already reached it). We continue on with level nþ 1, stopping whenever no

additional minima are marked for a given level.

This procedure may be used to determine the connection component which

contains a given minimum (i.e., the set of minima connected to the given

minimum by any length pathway). By iteratively applying this procedure, the

minima can be divided into connection components.

It should be noted that pathway traversal can be substantially optimized

when a length restriction is given. First, the level of connection between the

final state and all other minima is determined. Then, for every transition consi-

dered during the pathway search, it is determined whether or not the final state

could possibly be reached in the proper number of steps. If it is not possible

according to the precalculated level of connection, the transition is avoided.

Rate Disconnectivity Graph. Minima can be classified into connection

components. If a transition rate cutoff is applied, transition states may be

eliminated if the transitions they represent occur too slowly. In this case, the

number of connection components may increase. The rate-dependent con-

nectivity information can be summarized by drawing a rate disconnectivity
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graph. One starts off at the top of the graph with a low rate cutoff, in which case

the minima are separated into their connection components. As the rate cutoff is

increased, transition states get eliminated from consideration. At some critical

value of the transition rate cutoff, a critical transition state gets eliminated,

causing one of the connection components to divide in two. As the rate cutoff is

increased further, more and more transition states are eliminated from

consideration, causing further bifurcation of connection components. At the

highest rate cutoffs, no transition states remain, and all minima occupy their

own connection component. Minima can be identified at the base of the graph.

The rate disconnectivity graph is built from the bottom up. Each minimum

starts off by occupying the leaf node of its own tree. Connectivities between

pairs of minima are sorted in decreasing order of transition rate, so that the

highest transition rates will be considered first.6 For each such pair of minima,

we locate the subtrees generated so far which contain each of the two minima. If

the two minima already belong to the same subtree, nothing happens. If the two

minima belong to different subtrees, those two subtrees are joined by a

bifurcation node, which is labeled with the transition rate. The rate disconnec-

tivity graph will be completed after each transition has been considered, at

which point there will be one tree for each connection component.

Once the rate disconnectivity graph is constructed, one can walk along the

nodes in the tree, print a subtree in text format, or write Mathematica code

which plots the rate disconnectivity graph in graphical form.

E. Perspectives and Future Work

In this section, we discuss our ongoing efforts to elucidate the folding

mechanism of b-hairpin and b-sheet structures by studying one of the short

peptides that has been recently discovered to form such structures in the native

state.

Our first task centered on the selection of an appropriate peptide sequence

and a potential energy surface. Our initial efforts were focused on a 12-residue

designed sequence using the ECEPP/3 potential energy surface with an addi-

tional solvation term using the volume method. Unfortunately, we were unable

to locate a low-energy hairpin structure and, upon further investigation,

discovered that the lowest-energy state of this system was an a-helix. It seems

that ECEPP/3 is unable to predict the b-hairpin structure of this peptide

sequence. So we checked other peptide sequences as well as other potential

energy surfaces to see if we could predict a b-hairpin fold. We eventually found

success with the second b-hairpin segment of Protein G (residues 41–56) using

6The transition rate associated with a given pair of connected minima is by default the maximum of

the two transition rates associated with that connection. The minimum transition rate can be selected

instead.
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the Effective Energy Function (EEF1) [165], which is the CHARMM potential

plus a solvation term based on a Gaussian solvent exclusion model.

Segment 41–56 of Protein G is a 16-residue peptide that has been determined

experimentally to fold into a b-hairpin in aqueous solution [135]. A schematic

of this hairpin structure is depicted in Fig. 51. The hairpin structure is stabilized

by the formation of three pairs of hydrogen bonds as indicated in Fig. 51. The

corresponding distances between the Ca atoms are designated d1, d2, and d3 and

will play an important role in our analysis of this molecule.

The potential energy surface we employ for this peptide in aqueous solution

is split into two terms:

E ¼ Epep þ Esolv

where Epep includes the peptide intramolecular interactions, and Esolv includes

the peptide–solvent and solvent–solvent interactions.

The intramolecular interaction term, Epep, is modeled with the CHARMM22

potential energy function, an all-atom potential that takes the general form

[32,166]

Epep ¼
X
bonds

Kbðb� b0Þ2 þ
X

Urey�Bradley

KUBðS� S0Þ2 þ
X

angles

Kyðy� y0Þ2

þ
X

dihedrals

Kfð1þ cosðnf� dÞÞ þ
X

improper
dihedrals

Koðo� o0Þ2

þ
X

nonbond

Eij½ðRmin
ij =rijÞ12 � 2ðRmin

ij =rijÞ6� þ ðqiqjÞ=rij

n o
ð99Þ

The quantities b, S, y, f, o are the bond length, Urey–Bradley distance, bond

angle, dihedral angle, and improper dihedral angle, respectively, with the zero

subscript representing equilibrium values. The parameters have been determined

empirically and are given in Ref. [166].

Figure 51. A schematic of Protein G (41–56) in its hairpin conformation. The dotted lines

indicate hydrogen bonds, and the distances d1; d2, and d3 refer to the distances between the Ca

atoms.
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The solvation term, Esolv, is based on the Gaussian solvent exclusion model,

which takes the general form [165]

Esolv ¼
X

i

�Gsolv
i

¼
X

i

�Gref
i �

X
j 6¼i

aie
�ððrij�RiÞ=liÞ2

4pr2
ij

Vi

( )
ð100Þ

where rij is the distance between atoms i and j. The parameters �Gref , ai, Ri, li,

and Vi can be found in Ref. [165]. In addition, partial charges for several atoms in

charged residues have been modified, effectively neutralizing the side chains in

the CHARMM22 potential.

To simplify calculations, we fix the bond lengths and bond angles to their

equilibrium values according to the CHARMM22 parameters, allowing only the

f, c, o, and w dihedral angles to vary. This reduces the number of degrees of

freedom from 3Na � 6 ¼ 735 to Nh ¼ 88. Energy values, as well as the

Cartesian gradient and Hessian matrix, were computed by the TINKER soft-

ware package [167]. The Cartesian gradients and Hessians were converted to

torsional gradients and Hessians by methods developed in our computer lab. All

in all, one Hessian evaluation requires approximately 0:50 sec of CPU time on a

600-MHz pentium machine running linux, where the bulk of the calculations

were performed.

In order to study the folding pathways of Protein G (41–56), we need to

generate an adequate sample of stationary points of the potential energy surface.

Not only do we need to generate conformations that resemble the hairpin native

state, as well as extended conformations, but we also need to find conformations

that lie along the low-lying pathways connecting these two regions of con-

formation space. Thus, we need to find low-lying conformations, as well as

transition states, over a large region of conformation space.

The approach we have chosen to follow is to first generate an initial sampling

of minima, forming a ‘‘scaffolding,’’ and then building upon that scaffolding by

performing uphill and downhill searches using an eigenmode-following algo-

rithm. Before carrying out this search, however, we first want to identify the

global minimum energy conformation on the potential energy surface, which

will serve as the native structure. The results of the global minimum search are

given in Fig. 52. The study of the pathways for the transitions from extended to

b-sheet conformations is currently in progress.

V. PROTEIN–PROTEIN INTERACTIONS

Understanding protein–protein interactions, also known as peptide docking, is

critically important for rational protein engineering and pharmaceutical design.
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Peptide docking is the binding of one protein to another protein, and such

binding is essential to processes ranging from chemotherapy to the communica-

tions between cells. Advances in understanding and predicting how solvation,

electrostatics, and other forces affect the strength, specificity, and kinetics of

peptide docking interactions is vital for discovering new drugs, for developing

tools for characterizing and treating disease, and for designing sensors and other

molecular recognition devices. No comprehensive peptide docking prediction

method yet exists. In this section we review the state of the art in peptide docking

prediction methods.

A. Background

Predicting peptide docking and protein–protein interactions computationally

involves predicting the shapes, characteristics, and interactions of ‘‘target’’

molecules and the ‘‘docking’’ ligand molecules that bind to them. One part

of the prediction challenge involves determining the conformation or structure of

the binding sites in the target molecule. The other part of the prediction challenge

involves determining the binding affinity of different docking molecules for the

target molecule. This includes identifying a set of equilibrium structures for

complexes between different docking molecules and the target molecule and

Figure 52. (a) Overall minimum energy conformation (E ¼ 653:020;F ¼ 602:768). (b)

Overall minimum free energy conformation (E ¼ 654:139;F ¼ 602:647). (c) Minimum energy

extended conformation (E ¼ 673:439;F ¼ 605:342). (d) Minimum free energy extended conforma-

tion (E ¼ 675:854;F ¼ 604:347). Energy and free energy values are expressed in kcal/mol. Free

energy values are at T ¼ 300 K.
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then quantifying and comparing, or ‘‘scoring,’’ the binding affinity of docking

molecule structures. The following two sections discuss methods used for

binding site structure prediction and binding affinity prediction.

1. Prediction of Binding Site Structure

The identification of binding site conformations in target molecules usually

requires experimental structure determination of the binding site. One class of

protiens that has received particular attention is the class of proteins derived from

the major histocompatibility complex (MHC), a set of genes critical in the

immune response [168]. Crystallographic studies have been performed for the

two major classes of MHC molecules, class I [169,170] and Class II [171]. Such

crystallographic information is invaluable. For instance, it can define rigid

binding sites for docking molecules and thus greatly reduce the conformational

space being searched in computational searches for structures of target /docking

molecule complexes.

The determination of high-quality models of protein structure for which no

experimentally determined coordinates exist has received considerable attention

in the literature. A commonly used approach is based on homology modeling, in

which a model for a target protein is generated using the known structure of a

homologous protein. Typically, a backbone model first is constructed for the

structurally conserved regions, and then loops and side chains are added

[172,173]. For the prediction of side-chain conformations, many approaches

based on homology modeling are available. These approaches differ from each

other in (a) the rotamer libraries used, (b) the energy function chosen, and (c)

the search strategy employed. In sampling conformational space through

rotamer libraries, many different approaches have been used, including back-

bone-independent rotamer libraries [174] or rotamer sets that incorporate

backbone–side-chain interactions [175]. Also employed are extended rotamer

libraries derived from cluster analyses of experimentally determined databases

[176], as well as augmented libraries that use discrete values around observed w
angle values �10� [177]. Regarding the energy function used, simplistic local

interactions typically are limited to van der Waals or hard-sphere energies

[178,179]. Finally, the employed search strategies are mainly heuristic methods

involving Monte Carlo techniques [180], genetic algorithms [181], neural

networks [182], mean-field optimization [179], and combinatorial searches

[175].

Recently, a novel decomposition-based approach has been proposed for

predicting binding site structures in the MHC II HLA-DR1 protein [183]. In

this approach, existing MHC II crystal structures are used to predict the binding

site conformations of other MHC II molecules. The approach uses the detailed

potential energy force field ECEPP/3 and an area-based solvation method. A
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global optimization search, based on the aBB algorithm, is used to identify the

global minimum energy conformation of the binding sites. As discussed further

in later sections, the predicted binding sites agree with available crystallo-

graphic data with only small rms deviations.

2. Prediction of Binding Affinity

The development of accurate ‘‘scoring’’ functions to identify and compare

equilibrium structures of target /docking molecule complexes is a challenging

and unsolved problem. A general scoring function is represented in Eq. (101):

�G ¼ �Gcomplex ��Gligand ��Gpocket ð101Þ

Here �Gcomplex, �Gbinder and �Gpocket are the free energies of the target /docking

molecule complex, the free docking ligand molecule, and the free target pocket

or binding site, respectively. �G is then the free energy of binding or binding

affinity.

Due to the computational complexity of rigorous energy calculations, many

methods have relied on qualitative modeling of peptide docking interactions. As

a first approximation, models have been developed which assume that the

docking and target molecules are rigid. In this rigid binding approximation case,

the use of shape complementarity has had some limited success [184]. Such

algorithms model the ligand and target macromolecule according to their

surface topology and attempt to identify which complexes exhibit the best

‘‘fit.’’ Here, scoring functions are based on the complementarity of the

molecules, which, in most cases, is related to their solvent accessible surface

areas [54,185,186]. The strength of these methods is that they can be made

computationally efficient and used to screen large databases of potential ligands.

However, studies comparing the computational results of these methods to

experimentally determined native complexes indicate that rigid models identify

many non-native low-energy structures. The rigid-docking scoring function can

be refined by adding additional components, such as conformational energy and

solvation energy.

On the other end of the flexibility spectrum are fully flexibile, exact models.

It has been demonstrated that exact modeling of binding free energies provides

results in nearly exact quantitative agreement with experimental results

[29,187,188]. In contrast to the rigid description of docking, these methods

allow for flexibility of both the ligand and receptor molecules. However, for

general peptide docking problems, these thermodynamic integration and free

energy perturbation methods are computationally infeasible with current com-

puting power. These problems are only tractable when approximate structures

are known and relatively small. More detail on these methods can be found
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elsewhere [189,190]. A comprehensive theoretical treatment of the thermo-

dynamics of binding processes in macromolecules is also available [191].

More computationally feasible methods are based on calculating binding free

energies using empirically derived free energy functions. Some methods of

approximating free energy functions involve structure-based potentials [192].

Other approximations utilize parameterization of experimental data to construct

scoring functions based on conformational energy, hydrophobic and hydrophilic

surface areas, and hydrogen bonding geometries [193,194]. However, these

methods are generally not transferable from one docking system to another.

A more universal approach, applicable to flexible ligands, is to base

free energy calculations on general force field models, which involve potential

energy functions similar to those described in the preceding sections. This free

energy function must also account for solvation energy, which can be calculated

from structure-based solvation terms or continuum-based models of solvation.

Rigorously, entropic effects of side-chain rotations should also be considered.

Reviews of methods used to evaluate binding free energies can be found

elsewhere [195,196].

Once a method for ‘‘scoring’’ the binding affinity has been selected, the exact

form of the approach for determining and optimizing the target /docking

molecule complex must be developed. Several general approaches have been

employed. The most obvious and most difficult approach would be to optimize

the entire system of the two interacting peptides. To accomplish this, the relative

position of the two peptides, which is defined by six degrees of freedom (three

translation and three rotation), along with the total number of internal degrees of

freedom for the two molecules, must be considered. This problem becomes

intractable for all but the smallest systems. Alternative approaches have

decomposed the problem by considering the binding affinities of shorter

subsequences at different binding sites of the target macromolecule. The

full binding ligand can then be constructed based on the optimally docked

subsequences. This approach relies on the ability to build a suitable ligand.

Another alternative method is based on independently generating conformations

of the isolated ligand. Binding affinities for a number of these rigid conforma-

tions then can be calculated and compared, with the drawback that conforma-

tions with higher binding affinities may be overlooked.

The following discussion classifies peptide docking approaches according to

their treatment of the internal flexibility of the docking ligand molecule. Some

approaches combine aspects of both rigid and flexible methods, and the choice

of scoring function is often closely related to these classifications. For example,

it is implicitly difficult for shape-based approaches to capture internal flexibility

due to their simplified description of the molecular surface. Detailed energy-

based approaches better represent the free energy of the system and can

represent internal conformational changes, but their increased dimensionality
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makes these methods more computationally expensive. The complexity of these

approaches indicates that rigorous global optimization methods are needed to

address the peptide docking prediction challenge.

Rigid Models. The first, and most common, methods used to address the

peptide docking problems were based on the concept of shape complementarity.

These methods employ, at least initially, rigid approximations for both the

docking ligand and target receptor molecules. In the most general case, six

degrees of freedom—three translational and three rotational—must be

optimized to determine the best ‘‘fit’’ for the receptor–ligand complex.

Approximations often are used in practice to reduce the number of degrees of

freedom. In addition, the alignment of each ligand must be optimized within the

binding site. Typically, several screening stages are used to reduce these

optimizations to a manageable number.

One shape-based method utilizes a simplified protein model, which is

generated by representing each amino acid by a single sphere. The scoring

function is based on interfacial areas and a simplified nonbonded potential

energy term. Potential ligand structures are screened by systematically rotating

the ligand and then translating the structure, along only one dimension, into the

pocket [197–199]. These approximations and simplifications are necessary in

order to make the problem tractable, especially in the context of a systematic

search. A recent modification attempts to overcome these computational

limitations by using a simulated annealing, rather than a systematic search, to

screen the ligand structures [200].

Distinctive characteristics of molecular surfaces also have been used to

reduce the number of degrees of freedom for shape-based docking problems.

One study considers local shape functions, which are generated by placing

spheres at surface points along the docking ligand and target receptor surfaces.

The volume within the surface and the unit vector that extends from the center

of the sphere to the surface characterize these functions. A combinatorial

algorithm can then be used to compare these local shape functions at ‘‘knobs

and holes’’ [201] on the ligand and receptor surfaces so that the best alignments

of the two molecules can be identified [202].

More detailed descriptions of molecular surfaces also have been used in

determining shape complementarity. One procedure creates a webbed surface

for the ligand and receptor by using a local coordinate system to define the

surface points for each molecule. After setting the ligand position, a least-

squares method is used to align the surface points of the two molecules. The

method also screens ligands according to a Coulombic scoring function [203].

An alternative approach transforms the problem from identifying comple-

mentary shapes for the receptor and ligand proteins into one of matching similar

shapes for these two molecules. This is accomplished by (a) describing the
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binding site as a collection of spheres that lie on the outside of the receptor

surface and (b) characterizing the ligand as a collection of spheres that lie on the

inside of the ligand surface [84,204,205]. Potential matches are identified by

grouping and comparing distances between the center of spheres for each

molecule. Local refinement of translation and rotation vectors is used for the

highest-ranking matches. The complexity of the problem is to some degree

obscured, because it also depends on the choice of location, size, and number of

spheres used to model the receptor molecule. Other modifications of this

procedure include the addition of hydrogen bonding criteria and the use of

local minimization of the potential energy in order to relax the rigidity of the

ligand molecule [206,207].

The ‘‘soft docking’’ model represents the target and docking molecules as a

collection of cubes rather than spheres. This method combines aspects of

surface complementarity, grid search, and soft potential modeling. The ‘‘cubic’’

representation along with a grid search makes the translational and rotational

searches much more efficient. In addition, the cubes implicitly allow for some

volume overlap, which can be used in combination with surface complemen-

tarity to screen docked complexes [208].

In general, when considering a rigid receptor, the concept of a grid search

can be used to reduce the computational requirements of evaluating scoring

functions. This is accomplished by precomputing values for the receptor based

on points of a three-dimensional grid [209]. The concept is similar to cubic

lattice model approaches in molecular conformation problems, for which a

recently proposed algorithm using a tabu search has been highly effective [210].

This approach has been the basis of a number of recent studies [211,212],

including one that employs a Monte Carlo search in the context of ‘‘knobs and

holes’’ docking [212].

Flexible Models. In the most general case, flexible docking approaches

attempt to optimize the free energy of the entire target /docking molecule

complex, which is described by translational, rotational, and internal variables

of the system. In contrast to most rigid modeling approaches, these methods

typically do not require prior knowledge of ligand conformations. As a result,

their success in predicting ligand binding is highly dependent on the use of

detailed scoring functions to evaluate free energy changes. In addition, although

some studies have considered full macromolecular–ligand systems, most

approaches also depend on effective decomposition strategies of the overall

docking problem.

Several simple approaches have been implemented in an attempt to model

flexible docking. For example, a number of methods have incorporated ligand

flexibility by considering databases of multiple ligand conformations [213,214].

However, these methods require reliable databases and methods for developing
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appropriate ligand conformations, and these typically are not available. On the

other hand, thermodynamic integration and free energy perturbation methods

allow for full flexibility and detailed modeling of binding free energies.

However, these simulations, usually accomplished by molecular dynamics,

effectively explore only a single low-energy minimum. This has led to the

need for global optimization methods that efficiently search the conformational

energy hypersurface associated with peptide docking problems.

One of the most common approaches is based on Monte Carlo (MC)

simulated annealing algorithms. This method was first applied to flexible ligand

docking using molecular affinity potentials [215]. Molecular affinity potentials

increase the computational efficiency of the search by employing precomputed

energy grids [209]. In this case, flexibility is introduced by allowing internal

rotations of torsion angles, along with translational and rotational movement.

However, for each docking example, a set of simulated annealing runs is

necessary in order to increase the confidence of the reported structures.

A second method, also based on simulated annealing, involves a two-step

procedure to dock flexible oligopeptide ligands [216]. In the first step, a

modified potential energy force field is used to reduce unfavorable intermole-

cular contacts. This energy model is employed in local energy minimizations of

arbitrarily docked ligands, which are needed in order to generate an initial set of

ligand conformations. The scoring function for the second step describes energy

interactions between the flexible ligand and rigid receptor molecules. The set of

minimized conformations is then used to generate starting points for a

Monte Carlo minimization procedure. Although experimental results were not

initially available, later comparison has shown that this method does not

correctly predict MHC binding. These discrepancies are most likely attributable

to incorrect energy modeling (e.g., no inclusion of solvation), along with the

inherent inefficiencies associated with simulated annealing searches.

Another MC-based method employs a multiple-start technique in an attempt

to reproduce the results of a systematic search. The first step involves a

Monte Carlo search with a grid-based scoring function in order to limit steric

overlaps of the ligand and receptor molecules. A second, energy-directed,

simulated annealing search uses a pairwise potential energy function. Rather

than rely on a single search, this method employs a large number of short

simulated annealing runs. Although initial results were based on both rigid

receptor and ligand conformations [217], more recent work has addressed the

issue of flexible ligand docking [218].

Another type of MC method is the scaled collective variable Monte Carlo

method used in the software package PRODOCK [219]. This method performs

energy minimizations after each MC step, which helps to distinguish native

conformations from low-energy non-native conformations. Bezier splines and

other techniques have been incorporated into the method to improve its
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efficiency. In addition, PRODOCK allows different amino acids in the docking

complex to be defined as rigid or flexible.

In a similar way, genetic algorithms recently have been used to dock flexible

ligands. In some cases, scoring functions have been based on potential energy

force fields [220], although some modified potentials also have been used [221].

The results of one method [222], which includes solvation effects, emphasize

the need for developing reliable scoring functions. In general, as with simulated

annealing, the ability to model flexibility is limited as ligand size increases. The

coupling of these effects with the implicit unreliability of both the genetic

algorithm and simulated annealing search techniques must be closely consid-

ered when approaching large-scale docking problems such as de novo drug

design.

Combinatorial methods also have been used to address the difficulties of

modeling full ligand flexibility. In theory, these methods are similar to buildup

methods used for the protein folding problem, although peptide docking also

includes intermolecular interactions. An initial application to the peptide

docking problem was based on rigid ligand models generated from a database

of chemical structures [205]. A more detailed implementation uses libraries of

low-energy conformations for single amino acid residues. These conformations

subsequently are joined and grouped according to scoring functions based on

the intra- and intermolecular energies of the target/docking ligand complex

[223]. More recent methods have employed databases developed for smaller

ligand fragments such as functional groups [224] or even atoms [225]. In

general, these ligand buildups are initialized by selecting a starting point within

the target binding site pocket. As with the protein folding approaches, such

combinatorial techniques must employ effective reduction schemes in order to

limit the number of generated conformations.

Similar approaches combine the ideas of fragment assembly and site

mapping. In contrast to the single anchor requirement of simple buildup

methods, these techniques attempt to identify a number of anchor fragments

or residues that can be joined through a process of fragment assembly. The first

step, site mapping, is equivalent to docking probe fragments at specific sites of

the target macromolecule. Some methods have screened the binding affinities of

these probes using shape-based modeling [226], whereas others have relied on

other energy-based descriptions, such as hydrogen bonding interactions

[227,228]. In general, these site maps are constructed by local minimization,

grid, or library searches of the probe conformations. Other techniques employ a

multiple copy simultaneous search [229,230]. Once anchor positions have been

determined using one of these methods, the resulting segments must be joined

by fragment assembly. Bridges can be formed by searching through molecular

libraries, or in some cases using an exhaustive search over all connections [231].

A recently proposed technique applies a dynamic programming approach, as
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discussed above, to the fragment assembly phase of a nonameric ligand in an

MHC HLA-A2 complex [232]. A molecular dynamics simulation also has been

utilized for studying the binding afinity of the HLA-B*2705 protein [233].

Recently, a novel decomposition-based approach has been proposed for

predicting the binding site structure of and peptide docking to the MHC II

HLA-DR1 protein [234]. The approach performs site mappings of the five

polymorphic pockets of MHC II molecules that accommodate peptide docking

[171]. In one part of the approach, existing MHC II crystal structures are used to

predict the binding site conformations of other MHC II molecules. In another

part of the approach, each naturally occurring amino acid is treated as a probe

molecule for each of the five pockets. The approach uses a deterministic global

optimization search technique to identify the best conformation for each pocket

or residue. The scoring function accounts for both intra- and intermolecular

interactions using the detailed potential energy force field ECEPP/3 along with

several solvation model approaches. The global optimization search, based on

the aBB algorithm, is used to identify the global minimum energy conformation

for the pockets and for both the bound and free residues. The corresponding

energy differences are then used to provide rank-ordered lists of the best binders

for each pocket. As discussed in later sections, results for pocket 1 of the HLA-

DRB1 macromolecule have exhibited good agreement with experimental

binding assays [234].

A recent review of approaches for peptide docking can be found in Floudas

et al. [235]. The main disadvantages of most of these approaches are as follows:

(a) Only a very limited conformational space is considered because usually

fewer than 10 rotamers are used for each residue.

(b) The simplicity of the energy functions is not able to give a realistic

description of the molecular system.

(c) No systematic search methodology exists to guarantee the determination

of the global optimal solution, even in methods using simplified energy

functions.

Thus many current models of binding site structure prediction and binding

affinity prediction in peptide docking are not able to guarantee that they have

found the optimum docking solution because they consider only a few of the

many conformations two docking partners may adopt, because they are not

quantitative, or because they do not fully consider entropic, electrostatic, or other

energetic effects.

B. Prediction of Binding Site Structure

We have developed a theoretical approach that, based on crystallographic data

from MHC II molecules, determines the three-dimensional structure of MHC II

molecule binding sites for which crystallographic data are not available. Class II

histocompatibility molecules are cell surface molecules that form complexes
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with self and nonself peptides and then present them to T cells as part of the

immune response. A number of class II histocompatibility molecules have been

analyzed by crystallography, including HLA-DR1 [171], HLA-DR3 [236], and

I-Ek [237]. Crystal structures are not available, however, for the vast majority of

class II MHC molecules. MHC II molecules for which crystal structures are not

available are important in autoimmune diseases such as diabetes and rheumatoid

arthritis, and being able to predict such structures would advance the

understanding and treatment of these diseases.

Our approach to binding site structure prediction uses the ECEPP/3 potential

energy model for describing the energetics of atomic interactions (as described

in Section III.A.1 above) and employs the rigorous deterministic global

optimization algorithm aBB (as described in Section II.A.6 above) to obtain

the global minimum energy conformation of the binding site. With this

approach, we predicted the binding sites of HLA-DR3 and I-Ek based on the

crystallographic structure of HLA-DR1 [171]. The root mean square differences

(based on all atoms) between the structures we predicted and the actual crystal

structures of the two molecules [236,237] are between 1.09 and 2.03Å. We also

calculated the binding affinity of our predicted structures using the decomposi-

tion approach discussed in Section V.C.2. These binding affinities are in good

agreement with the results obtained by applying the decomposition approach to

the actual crystal structures.

1. Definition of Problem

The recent crystallographic studies of class II HLA molecules [171,236,237]

suggest an overall similarity in their structures. The conformation of HLA-DR3

in the HLA-DR3-CLIP complex is only slightly different from that of HLA-DR1

in HLA-DR1-HA [236], and a comparison of two I-Ek structures with HLA-DR1

identifies that only a few differences in b-chain amino acids exist between I-Ek

and both the HLA-DR1 and HLA-DR3 sequences. However, these few variable

residues are sufficient to explain antigenic differences without recourse to

allosteric transitions or novel conformations.

Consequently, specific information about the structure of the histocompat-

ibility molecules is needed in order to be able to analyze their specificity.

Because crystal structures of class II molecules are not available except for the

human crystals of HLA-DR1-HA and HLA-DR3-CLIP and the murine crystals

I-Ek-HB and I-Ek-Hsp, we propose a novel approach based on decomposition

and deterministic global optimization that enables the prediction of the three-

dimensional structure of the binding sites of class II molecules and can be used

efficiently for the qualitative assessment of their binding affinities.

The question that is addressed is stated as follows: Given the (x, y, z)

coordinates of the atoms in pockets 1, 4, 6, 7, and 9 of HLA-DR1 [171], can we

predict the three-dimensional structures of the corresponding pockets of HLA-

DR3 and I-Ek?
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2. Approach

A systematic approach is presented below for the structure prediction of an

antigen binding site based on the crystallographic data of the HLA-DR1

molecule [171]. The approach examines each of the binding sites separately and

involves the following steps:

1. The binding sites of HLA-DR1 molecule are evaluated. All amino acids

within a radius of R ¼ 5:0 Å of the atoms of the binding amino acid in the

crystallographic studies [171] are identified as shown in Table XXXVI.

The Program for Pocket Definition, as described in Ref. 234 and Section

V.C.3, constructs these pockets through the selection of all residues that

are within a radius R of the atoms of the crystallographic binder.

2. The amino acid substitutions between HLA-DR1 and the HLA-II molecule

(e.g., HLA-DR3, I-Ek) are identified and are shown in Table XXXVII.

Note that pocket 1 of HLA-DR1 requires only one substitution (Gly !
Val in position b86) to give pocket 1 of HLA-DR3. Pockets 4, 6, and 7

involve three substitutions, whereas pocket 9 features only one

substitution, in the representation of the corresponding pockets of HLA-

DR3. Note also that all pockets of HLA-DR1 require three or four

substitutions in order to give the corresponding pockets of I-Ek.

3. For each one of the substituted residues, the intra- and intermolecular

energy interactions are modeled. Specifically, the electrostatic, nonbonded,

torsional, and hydrogen bonding contributions [38] are considered for each

TABLE XXXVI

HLA-DR1 Pocket Compositions for R ¼ 5:0 Å

Pocket

—————————————————————————————————————————

1 4 6 7 9

phea24 glna09 glua11 vala65 asna69

ilea31 glua11 asna62 asna69 leua70

phea32 asna62 vala65 glub28 ilea72

trpa43 pheb13 aspa66 tyrb47 meta73

alaa52 leub26 leub11 trpb61 arga76

sera53 glnb70 pheb13 leub67 trpb09

phea54 argb71 argb71 argb71 aspb57

glua55 alab74 tyrb60

asnb82 tyrb78 trpb61

valb85

glyb86

pheb89

thrb90
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substituted residue, as well as the interactions of the substituted residues

with the rest of the amino acids that constitute the examined binding site.

The solvation energy also is considered through solvent-accessible areas

[52,238] as explained in Section III.A.2. The dihedral angles that define

the three-dimensional structure of the substituted residues are considered

explicitly as variables. The relative position of each amino acid also must

be determined, and this is done through the determination of each amino

acid’s translation vector and Euler angles. Lower and upper bounds are

considered for the N and C0 coordinates of the substituted amino acids,

based on the available crystallographic data [171,236,237].

4. Having the mathematical model that includes the intra- and intermole-

cular energetic interactions and the solvation energy, and which has as

variables the dihedral angles of the substituted amino acids as well as their

translation vectors and Euler angles, we minimize the total potential

energy by employing the aBB deterministic global optimization approach

[14–18] as described in later sections below.

5. The resulting global minimum energy conformer provides information on

the predicted (x; y; z) coordinates of the atoms of the substituted residues.

Structure verification is made by superposition of all atoms of the

predicted structure and the ones derived from crystallographic data. The

superposition is based on the global minimization of the root mean square

TABLE XXXVII

Substitutions for HLA-DR3 and I-Ek Binding Sites

Pocket Substitutions for HLA-DR3 Substitutions for I-Ek

b85: Val ! Ile

1 b86: Gly !Val b86: Gly ! Phe

b90: Thr ! Leu

b13: Phe ! Ser b13: Phe ! Ser

4 b26: Leu ! Tyr b74: Ala ! Glu

b74: Ala ! Arg b78: Tyr ! Val

b71: Arg ! Lys

b11: Leu ! Ser b11: Leu ! Ser

6 b13: Phe ! Ser b13: Phe ! Cys

b71: Arg ! Lys b71: Arg ! Lys

b28: Glu ! Asp b28: Glu ! Val

7 b47: Tyr ! Phe b47: Tyr ! Phe

b71: Arg ! Lys b67: Leu ! Phe

b71: Arg ! Lys

a72: Ile ! Val

9 b9: Trp ! Glu b9: Trp ! Glu

b60: Tyr ! Asn
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differences of the distances between all the atoms involved in the pocket

as described in the computational studies section below (Section III.C.5).

3. Modeling

When bond angles and bond lengths are assumed to be rigid, the geometric shape

of a protein is uniquely determined by its dihedral angles. If more than one

polypeptide is involved, the relative orientations and locations of these different

chains also must be defined. This can most easily be accomplished by defining a

translation vector and a rotation matrix. The translation vector is based on the

Cartesian coordinates of the initial nitrogen atom of each independent chain.

Euler angles specify the rotations necessary to orient a particular polypeptide and

are defined as the angles between the coordinate axes defined by the initial

hydrogen, nitrogen, and alpha carbon of each residue.

The system under study involves all the residues of the binding site. The

substituted amino acids constitute the problem variables, whereas the residues

that remain the same are treated as fixed based on the crystallographic data.

Because there may be multiple amino acid substitutions, the problem variables

are the amino coordinates ðNx;Ny;NzÞ, the Euler angles ðe1; e2; e3Þ, and the di-

hedral angles ðf;c;o; w kÞ of all substituted residues. In contrast to other

existing approaches, the Euler angles and dihedral angles are considered to

span the entire feasible range [�180�;þ180�] and are not restricted to specified

discrete values.

Consequently, the total energy function is defined as

ETotal ¼ EMIN
Unsolvated þ ESolvated ð102Þ

where EMIN
Unsolvated is the potential energy of the system without considering

solvation, ESolvated is the solvation energy of the system, and ETotal is the potential

and solvation energy of the system. Based on the above description the

mathematical formulation can be posed in the following way:

min ETotalðfm;cm;om;wm
k ;Nm

x ;Nm
y ;Nm

z ; e
m
1 ; e

m
2 ; e

m
3 Þ ð103Þ

subject to � p � fm;cm;om; wm
k ; e

m
1 ; e

m
2 ; e

m
3 � p ð104Þ

ðNm
x Þ

L � Nm
x � ðNm

x Þ
U ð105Þ

ðNm
y Þ

L � Nm
y � ðNm

y Þ
U ð106Þ

ðNm
z Þ

L � Nm
z � ðNm

z Þ
U ð107Þ

ðC0mx Þ
L � C0mx ðfm;cm;om; wm

k ;N
m
x ;Nm

y ;N
m
z ; e

m
1 ; e

m
2 ; e

m
3 Þ � ðC0mx Þ

U ð108Þ

ðC0my Þ
L � C0my ðfm;cm;om; wm

k ;N
m
x ;Nm

y ;N
m
z ; e

m
1 ; e

m
2 ; e

m
3 Þ � ðC0my Þ

U ð109Þ

ðC0mz Þ
L � C0mz ðfm;cm;om; wm

k ;N
m
x ;Nm

y ;N
m
z ; e

m
1 ; e

m
2 ; e

m
3 Þ � ðC0mz Þ

U ð110Þ

where m ¼ 1; . . . ;M corresponds to total number of substitutions.
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The additional constraints (105–110) represent the bounds on the N and C0

coordinates and express the binding of the specific residue with the rest of the

pocket [234], because the substituted residue is part of a longer polypeptide and

consequently is not allowed to rotate freely. Because the C0 coordinates can be

evaluated as functions of the independent variables, the restrictions on the

position of C0 are implemented by the incorporation of a penalty function, P, in

the objective function:

P ¼ bfhC0lx � C0xi þ hC0x � C0ux i
þ hC0ly � C0yi þ hC0y � C0uy i

þ hC0lz � C0zi þ hC0z � C0uz ig

The h i function is defined as follows: hAi equals A if A is greater than zero;

otherwise hAi equals zero. Thus, any coordinate value beyond the specified

bounds is multiplied by the penalty parameter b and added to the potential

energy. Consequently, the minimization of the objective function eliminates

solutions in which the C0 position falls outside the specified bounds.

The global optimization formulation is then as follows:

L ¼ ETotal þ a
�XM

m¼1

fmL � fm
� �

fmU � fm
� �

þ cmL � cm
� �

cmU � cm
� �

þ omL � om
� �

omU � om
� �

þ
XK

k¼1

wmL
k � wm

k

� �
wmU

k � wm
k

� �

þ NmL
x � Nm

x

� �
NmU

x � Nm
x

� �

þ NmL
y � Nm

y

� �
NmU

y � Nm
y

� �
þ NmL

z � Nm
z

� �
NmU

z � Nm
z

� �

þ emL
1 � em

1

� �
emU

1 � em
1

� �

þ emL
2 � em

2

� �
emU

2 � em
2

� �
þ emL

3 � em
3

� �
emU

3 � em
3

� ��

where a is a nonnegative parameter that must be greater or equal to the negative

one-half of the minimum eigenvalue of the Hessian of ETotal in the considered

domain defined by the lower and upper bounds (i.e., xL ¼ �p; xU ¼ p) of the

dihedral angles, translation variables, and Euler angles. This parameter can be

rigorously calculated based on the techniques introduced by Adjiman and

Floudas [14] and Adjiman et al. [16,17].

For the problem of determining the binding sites of the unknown HLA

molecules, the global variable set includes the f, c, and wk variables. All of the

dihedral angles of the substituted residues, as well as their translation vectors
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and Euler angles, are continuous variables in the problem and are treated as

local variables.

4. Deterministic Global Optimization

The implementation of the approach involves the connection of the conforma-

tional energy program PACK [74], which allows the evaluation of all energy

interactions when more than one protein chain is involved in the system, to the

deterministic global optimization framework aBB. PACK evaluates all energy

components through repeated calls to the ECEPP/3 potential energy function

program. The local optimization solver NPSOL is used for the minimization of

the overall potential energy provided by PACK and for the minimization of the

convexified potential function (L) provided by aBB. MSEED [52], the program

for the determination of solvation energy, is interfaced to aBB to allow the

consideration of the solvation energy at the local minima. The algorithmic

procedure is represented graphically in Fig. 53.

The implementation of the proposed approach is illustrated in Fig. 54 and

involves the following steps:

1. The Program for Pocket Definition (PPD) uses the input files residue.pdb

and pocket.pdb to generate the coordinates of the residues involved in the

considered pocket.

2. The program ARAS is used to determine the translation vectors, Euler

angles and dihedral angles of the residues in the pocket given their (x; y; z)

coordinates. This information and the initial values for the translation

vector, Euler angles, and dihedral angles of the substituted residues are

incorporated within the input file name.input.

3. The program prePACK utilizes the residue.data file (a set of initial atomic

coordinates that are based on fixed bond lengths, fixed bond angles, and

each variable dihedral angle initially set to 180�), the mol.in file for each

one of the amino acids involved in the pocket, and the prep.name.abb file

(which specifies the fixed and substituted residues) to create a name.date

file. The name.date file is the standard input for the potential function

program, PACK.

4. The global optimization program aBB requires a name.abb file that

defines the optimization problem, including the variable bounds. aBB also

uses the name.input file and the name.bounds file, which contains the C
0

bounds used to evaluate the coordinates of C0 as a function of the

independent variables.

5. The program PACK uses the name.date file and is connected with ECEPP/3

in order to evaluate the potential function, which is minimized by the local

optimization solver NPSOL.
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6. The MSEED solvation energy program uses the JRF.dat file, which

defines the solvation parameters si and evaluates the solvation energy at

the current local minimum structure.

5. Computational Studies

Comparison with Crystallographic Data. To compare the predicted structure of

the pockets accurately with the crystallographic data, the best rotation and

translation to relate the two different sets of atomic positions must be obtained.

Given two proteins A and B with Natom atoms, the best superposition is the one

that minimizes the sum of squared distances between each B atom and the

PACK

Initial Structure

NPL local solver
NPSOL

αBB

MSEED

STOP
optimal structure

YES

NO Check for
convergence
UB - LB < ∈

?

Lower Bound

Upper Bound

NLP local solver
NPSOL

Contruct Lower
Bound Problem

Figure 53. Deterministic global optimization algorithm for binding site structure prediction.
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corresponding A atom. Existing approaches to this problem are based on the

following:

ii(i) Iterative minimization using rotation angles [239,240].

i(ii) The use of decomposition approaches, where the transformation matrix

L is determined by calculating the best unrestricted linear transforma-

tion that converts A into B using the least-squares matrix method [241];

or the formation of a generalized inverse of the molecular structure

[242], and then the decomposition L ¼ RS where R is a rotation matrix

and S is a symmetric distortion matrix.

(iii) The construction of a matrix U which yields an orthogonal rotation

directly [243–246].

As pointed out by McLachlan [246], the rotation angles method is very slow,

while the rotation matrix methods depend on whether A is fitted to B or vice

versa and do not minimize the RMS distance. McLachlan [246] proposed an

approach to improve the speed and accuracy of determining the matrix U and

moreover to cover all special cases which arise when U is degenerate or

singular.

We formulated and solved the problem of obtaining the best fit of two protein

structures as a global optimization problem. The best rotation and translation

matrices that minimize the ‘‘fitting distance’’ for the two protein structures are

name.abb
name.bounds

name.input

name.date

residue.pdb
pocket.pdb

prep.name.abb
residue.data

PACK

prePACK

PPD

NPL local solver
NPSOL

ECEPP/3

MSEED

αBB

Initialize
αBB

Figure 54. Implementation of the binding site structure prediction approach.
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guaranteed to be found in all special cases without having to perform any

additional tests and calculations.

Consider two protein structures A and B, with A obtained from the crystal-

lographic data and B determined from our methodology. Both structures involve

Natom atoms with Cartesian coordinates ðxcðiÞ; ycðiÞ; zcðiÞÞ for the crystal and

ðxpðiÞ; ypðiÞ; zpðiÞÞ for the predicted structure. The mathematical formulation of

the best-fitting problem can then be posed as follows:

min RMS¼ð1=NatomÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNatom

i¼1

ðxcðiÞ�x0ðiÞÞ2þðycðiÞ�y0ðiÞÞ2þðzcðiÞ�z0ðiÞÞ2
vuut

subject to

x0ðiÞ
y0ðiÞ
z0ðiÞ

2
64

3
75 ¼ R

xpðiÞ
ypðiÞ
zpðiÞ

2
64

3
75þ T ð111Þ

R ¼
r11 r12 r13

r22 r22 r22

r31 r32 r33

2
64

3
75; T ¼

t1

t2

t3

2
64

3
75

RR> ¼ I

where R and T are the required rotation and translation vectors that translate

the predicted binding sites that correspond to ðxpðiÞ; ypðiÞ; zpðiÞÞ coordinates

to the Cartesian system of the crystal ðxcðiÞ; ycðiÞ; zcðiÞÞ. The coordinates

ðx0ðiÞ; y0ðiÞ; z0ðiÞÞ correspond to the transformed system following the rotation

and translation.

Formulation (111) constitutes a special case of global optimization problems

because it involves the minimization of a convex function subject to a set of

linear equality and nonconvex equality constraints RR> ¼ I. The deterministic

global optimization algorithm aBB [14–18], presented briefly in previous

sections, is used for the solution of this global optimization problem. The

results obtained for the superposition of the predicted HLA-DR3 and I-Ek

binding sites with the crystallographic data are presented in the following

sections. Four tests are performed in order to evaluate the prediction accuracy of

our methodology.

i(i) For each predicted binding site the root-mean-square deviations of

Cartesian coordinates of all the atoms (cRMSD) and the Ca atoms are

evaluated.

(ii) For each one of the substituted residues, the cRMSD is evaluated

considering all the atoms.
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(iii) For each one of the substituted residues, a relative cRMSD is evaluated

based on the following formula:

R� cRMSD

¼ 1

Natom

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

i2Natom

1

3

ðxpðiÞ � xcðiÞÞ
xcðiÞ

2

þ ðypðiÞ � ycðiÞÞ
ycðiÞ

2

þ ðzpðiÞ � zcðiÞÞ
zcðiÞ

2
" #vuuuut

to measure the relative predictive error of the procedure.

(iv) Computational binding studies are performed to compare the

energetic-based rank ordering of the amino acids in the predicted

binding site versus the rank ordering of the amino acids in the binding

site based on the crystallographic data, as discussed in later sections.

Prediction of HLA-DR3 Binding Sites. We applied our approach to the predic-

tion of the three-dimensional structure of HLA-DR3 binding sites.

As presented in Table XXXVII, by substituting Gly to Val in position b86

in pocket 1 of HLA-DR1, the pocket 1 of HLA-DR3 is formulated. The

predicted pocket of HLA-DR3 is shown in Fig. 55 with the crystallographically

obtained pocket superposition. The cRMSD difference between these two

pockets is found to be 1.09 Å based on the differences of the coordinates of

Figure 55. Superposition of the predicted pocket 1 of HLA-DR3 versus crystallographic data.
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all the atoms involved in the pocket. The relative cRMSD for the whole binding

site is 0.0425, which corresponds to 4.25% difference of the predicted Cartesian

coordinates of the binding site and the crystallographic data. The cRMSD

difference based on the a carbons is 0.55 Å. The cRMSD for the substituted

residue (Val) is 1.584 Å and the relative-cRMSD is 0.04601, which indicates a

4.6% difference between the predicted valine and the valine determined based

on the crystallographic data of the HLA-DR3 molecule [236].

To generate pocket 4 of HLA-DR3, three substitutions are made on the

composition of the pockets of HLA-DR1 at the positions b13: Phe ! Ser;

b26: Leu ! Tyr; and b74: Ala ! Arg. The cRMSD difference for all the

residues in the pocket is 1.11 Å, and the overall relative difference of the

predicted pocket compared to the crystallographic data is 2.08%. The cRMSD

difference based on the a carbons is 0.49 Å. The cRMSD for each one of the

substituted residues is 1.67 Å for Ser, 0.83 Å for Tyr, and 1.46 Å for Arg and

correspond to relative differences of 3.2%, 1.2% and 2.3%, respectively.

For pocket 6 of HLA-DR3, the substitutions are at positions b11: Leu to Ser;

b13: Phe to Ser; and b71: Arg to Lys. The cRMSD difference for this pocket is

1.22 Å based on all atom deviations, which corresponds to a relative cRMSD of

4.9%. The cRMSD difference based on the a carbons is 0.61 Å. The individual

cRMSD for Serb11 is 1.26 Å, for Serb13 it is 1.62 Å, and for Lys b71 it is

1.82 Å, which correspond to relative predictive errors of 7.4%, 3.7% and 3.2%,

respectively.

For pocket 7 of HLA-DR3, three substitutions are made at the positions b28:

Glu to Asp; b47: Tyr to Phe, and b71: Arg to Lys. The cRMSD difference for

this pocket is 1.94 Å based on all atom deviations, which corresponds to a

4.69% deviation. The cRMSD difference based on the a carbons is 0.71 Å. The

cRMSD for each one of the substituted residues are 1.08 Å for Phe, 3.08 Å for

Asp, and 3.4 Å for Arg and correspond to relative differences of 1.4%, 5.1%,

and 4.7%, respectively.

Finally, for pocket 9 only one substitution is needed, namely Trp to Glu in

position b9 to obtain pocket 9 of HLA-DR3 from pocket 9 of HLA-DR1. The

resulting pocket is found to have a cRMSD difference of 1.03 Å based on all

atoms and 0.56 Å based on the Ca atoms. The relative cRMSD based on all

atom deviations is 37.2%. Considering only the substituted residue, the cRMSD

is 1.67 Å. The large predictive deviation in this pocket is due to the large

inherent deviation between the HLA-DR1 and the HLA-DR3 crystallographic

data. This cRMSD difference for pocket 9 is 1.05 Å, which corresponds to an

inherent relative cRMSD of 20.7%.

The results of our prediction approach for all the pockets are summarized in

Table XXXVIII. Note that the percentage predictive error is less than 5%,

except for pocket 9 where the large inherent deviation between the two crystals

prohibits a more accurate prediction.
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The coordinates of N and C0 are variables in this formulation with bounded

ranges for their values around the corresponding atoms in HLA-DR1. Based on

the differences observed in the N and C0 (x, y, z) coordinates of the HLA-DR1,

HLA-DR3, and I-Ek crystals [171,236,237] after superposition, tight bounds in

the range of 0.3–1.0 suffice. To study further the effect of the bounds, we

considered bound variations of (�0:5Þ; ð�0:7Þ and ð�1:0). The predicted

structures of pocket 1 exhibited small cRMSD differences of 1.18, 1.11, and

1.09 Å, respectively, calculated based on all atoms.

Our prediction approach considers the simultaneous substitution of all amino

acids responsible for the differences of MHC class II molecules. The required

substitutions usually involve 2, 3, or 4 residues and give rise to a global

optimization problem that includes as variables the dihedral angles of each

residue as well as the translation vector and Euler angles defining the relative

position of each residue. In order to reduce the size of the resulting global

optimization problem, the following two simplifying alternative procedures also

were explored. The first approach is sequential in nature. Instead of considering

all amino acids substitutions simultaneously, we considered them sequentially.

In particular, the conformation of the first considered substituted amino acid was

determined by minimizing the intra- and intermolecular interactions between

the specific amino acid and the other residues of the HLA-DR1 binding site.

Then, this residue was considered as part of the pocket, and the structure of the

second substituted residue was determined. In the second alternative approach

TABLE XXXVIII

Results for HLA-DR3 Prediction

Substituted

Pocket Residues

——————————— ———————————————————

cRMSD (Å) Relative cRMSD (%)

——————————— —————————

Pocket All Atoms Ca All Atoms cRMSD (Å)

1 1.09 0.55 4.6 Val: 1.58

Ser: 1.67

4 1.11 0.49 2.1 Tyr: 0.83

Arg: 1.46

Ser: 1.26

6 1.22 0.61 4.9 Ser: 1.62

Lys: 1.82

Asp: 3.08

7 1.94 0.71 4.7 Phe: 1.08

Lys: 3.40

9 1.32 0.56 37.2 Glu: 1.67
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we considered each of the substituted amino acids independently and deter-

mined their conformations based on minimized energy interactions with the rest

of amino acids involved in the pocket of HLA-DR1 molecule. The results

obtained for the case of pocket 1 of HLA-DR3 are better than that of the

sequential approach having an cRMSD of 2.17 Å compared to 2.51 Å of the

sequential procedure but worse than that of the simultaneous approach

(cRMSD¼1.09 Å). The reason is that in the sequential approach the error

from the first determined amino acid conformation is accumulated as its con-

formation affects greatly the conformation of the other sequentially considered

amino acids.

Prediction of I-Ek Binding Sites. Pocket 1 of I-Ek requires three substitutions:

b85: Val! Ile; b86: Gly! Phe, and b90: Thr! Leu. The predicted pocket is

illustrated in Fig. 56 with the crystallographic data of I-Ek [78]. The cRMSD

difference based on all atoms deviations is 1.67 Å and corresponds to 9.2%

relative predictive error. The cRMSD differences for the individual substituted

residues are 2.45, 3.36, and 1.76 Å, for Ile, Phe, and Leu, respectively.

For pocket 4 of I-Ek there are four substitutions needed, as shown in

Table XXXVII (b13: Phe to Ser; b74: Ala to Glu; b78: Tyr to Val; and b:71

Arg to Lys). The cRMSD difference is 1.58 Å, which corresponds to 3.49%

predictive error. For the individual substituted residues the cRMSD differences

Figure 56. Superposition of the predicted pocket 1 of I-Ek versus crystallographic data.
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are 0.78, 1.35, 2.88, and 1.61 Å, for Ser, Glu, Val, and Lys, respectively. These

individual differences correspond to relative predictive errors of 1.59%, 2.16%,

4.48%, and 2.03%.

For pocket 6 of I-Ek, three substitutions are required at the positions b11:

Leu ! Ser, b13: Phe ! Cys; and b71: Arg ! Lys. The cRMSD difference is

1.28 Å based on all atoms, which corresponds to 5.19% relative predictive error.

For the individual substituted residues, the cRMSD differences are 1.89, 2.67,

and 1.64 Å for Ser, Cys, and Lys, respectively. These differences correspond to

4.41%, 14.06%, and 2.82% relative predictive error.

Pocket 7 of I-Ek requires four substitutions, as shown in Table XXXVII (b28:

Glu to Val; b47: Tyr to Phe; b67: Leu to Phe; and b71: Arg to Lys). The cRMSD

difference is 2.03 Å and corresponds to 4.33% relative predictive deviation. For

the individual residues the cRMSD differences are 2.89, 2.15, 2.20, and 3.23 Å

for Val, Pheb47, Pheb67, and Lys, respectively, and correspond to 3.95%, 3.1%,

5.28%, and 4.41% relative predictive deviation.

Finally, pocket 9 of I-Ek features three substitutions: a72: Ile to Val; b9: Trp

to Glu; and b60: Tyr to Asn. The cRMSD difference is 1.35 Å, which

corresponds to 23.3% relative predictive deviation. For the individual residues

the cRMSD differences are 1.56, 2.46, and 1.56 Å for Val, Glu, and Asn,

respectively. The larger relative predictive deviation for this pocket is mainly

due to the large relative error for Val at position a72, and the large deviation

between the crystals HLA-DR1 and HLA-DR3 gives a cRMSD of 1.09 Å and a

21.4% relative deviation. The results for all the pockets are summarized in

Table XXXIX.

In order to study the effect of considering different bounds on N and C0

coordinates, the proposed approach was applied to all the pockets for �0:5 and

�0:3 Å bounds around the coordinates of the corresponding atoms of HLA-DR1

molecule. The results are shown in Table XL. As was found from the crystal-

lographic data of the I-Ek molecule binding with different peptides (i.e., a

peptide derived from murine hemoglobin Hb(64–76), or a peptide from murine

heat shock protein 70 Hsp(236–248)), there is some inherent variability in the

range of 0.01–0.4 Å for N and C0 coordinates. These differences correspond to

pocket flexibility to accommodate different peptides.

The obtained cRMSD data for all predicted pockets show good agreement

with the crystallographic data considering that there is an inherent difference

between the crystals, as shown in Table XLI. The cRMSD differences shown in

Table XLI represent the differences in the common atoms of the pockets of

HLA-DR1 and HLA-DR3 crystals, as well as the differences between HLA-

DR1 and I-Ek crystals. These cRMSD differences serve as a reference point in

the evaluation of the predicted pockets. For instance, for pocket 1 of HLA-DR3

the predicted structure via the proposed approach has a cRMSD difference of

1.09 Å, whereas the crystallographic data of pocket 1 for HLA-DR1 and
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pocket 1 of HLA-DR3 exhibit a cRMSD of 1.03 Å among their common atoms.

Comparing the results shown in Tables XXXVIII, XXXIX, and XLI, it is

evident that the predicted structures are close to their reference points, even for

pocket 9.

TABLE XL

Effect of Different Bounds on N and C0 Coordinates (I-Ek)

Pocket Bounds cRMSD (Å)

1 �0.5 2.26

�0.3 1.67

4 �0.5 1.81

�0.3 1.58

6 �0.5 1.28

�0.3 1.44

7 �0.5 3.17

�0.3 2.41

9 �0.5 1.84

�0.3 1.77

TABLE XXXIX

Results for I-Ek Prediction

Substituted

Pocket Residues

——————————— ———————————————————

cRMSD (Å) Relative cRMSD (%)

——————————— —————————

Pocket All Atoms Ca All Atoms cRMSD (Å)

Ile: 2.45

1 1.67 0.47 9.2 Phe: 3.36

Leu: 1.76

Ser: 0.78

4 1.58 0.83 3.5 Glu: 1.35

Val: 2.88

Lys: 1.61

Ser: 1.89

6 1.28 0.65 5.2 Cys: 2.67

Lys: 1.64

Val: 2.89

7 2.03 0.93 4.3 Phe: 2.15

Phe: 2.20

Lys: 3.23

Val: 1.56

9 1.35 0.63 23.3 Glu: 2.46

Asn: 1.56
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Our approach couples the modeling of energetic interactions and determi-

nistic global optimization approaches and can predict the pockets of HLA-DR3

and I-Ek with small (RMS) differences.

C. Prediction of Relative Binding Affinities

We have developed a theoretical approach that determines the relative binding

affinities of amino acids binding to the five pockets of the MHC II molecule

HLA-DR1. MHC II molecules such as HLA-DR1 are cell surface glycoproteins

that play a pivotal role in the development of an effective immune response. An

important function of HLA molecules is to bind and present antigen peptides to T

cells. Presently there is no comprehensive way of predicting and energetically

evaluating peptide binding for HLA molecules.

To determine quantitatively the relative binding affinities of different pep-

tides for HLA molecules, we developed a decomposition approach based on

deterministic global optimization that takes advantage of the topography of the

HLA binding groove. Our computational results for binding the 20 naturally

occurring amino acids in the five pockets of the HLA allele HLA-DRB1*0101

are in excellent agreement with experimental binding assays and with X-ray

crystallography data.

1. Definition of Problem

Class II histocompatibility molecules are cell surface molecules that form

complexes with self and nonself peptides and then present them to T cells as part

of the immune response. MHC II molecules are important in autoimmune

diseases such as diabetes and rheumatoid arthritis, and being able to predict and

design the sequences and affinities of peptides which bind to MHC II molecules

would increase our understanding of these diseases as well as our ability to

design drugs to treat them.

The question that is addressed is stated as follows: Given the (x,y,z)

coordinates of the atoms in HLA-DR1 [171], can we predict the affinity and

conformation of the peptides which bind to it?

TABLE XLI

cRMSD Differences Between HLA-DR1, HLA-DR3, and I-Ek Crystals

HLA-DR1 vs. HLA-DR3 HLA-DR1 vs. I-Ek-HB

Crystals—All Atoms Crystals—All Atoms

Pocket cRMSD (Å) cRMSD (Å)

1 1.03 1.24

4 0.84 1.23

6 0.84 0.84

7 0.996 0.997

9 1.05 1.092
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2. Approach

We have developed a decomposition approach for predicting the binding affinity

and conformation of peptides binding to HLA-DR1. Our decomposition

approach takes advantage of the fact that the binding affinity of a peptide for

HLA-DR1 molecules is determined primarily by the binding affinity of

individual amino acid residues for HLA-DR1’s five binding pockets. Our

approach uses a sequence of three steps [234]:

III: Consideration of each binding pocket individually

III: Evaluation of the binding of one amino acid at a time to a given pocket

III: Creation of a rank-ordered list of strong, average, and weak amino acid

binders for each pocket

Step I involves determining which residues of the HLA-DR1 molecule

compose a given pocket. This process is discussed in Section V.C.3 below.

Step II involves formulating a mathematical model for the potential and

solvation energy of the pocket and the binding amino acid and then using

this model to predict the amino acid conformation which corresponds to the

global minimum potential and solvation energy state of the system. This global

minimum energy state is considered to be the system’s most stable state. The

mathematical model used to describe the energy of the HLA-DR1/peptide

system is discussed in Section V.C.3 below, while the global minimization

algorithm used to find the peptide conformation corresponding to the global

minimum energy is discussed in Section V.C.4 below. Step III involves

comparison of the amino acids binding to a given pocket. The comparison

standard used is the change in potential and solvation energy of an amino acid

on binding, �E. This quantity is defined as the difference between the global

minimum potential and solvation energy of an amino acid when it is bound in

the pocket (ETotal) and the global minimum potential and solvation energy of a

free amino acid far from the pocket or any other interactions (E0
Res):

�E ¼ ETotal � E0
Res ð112Þ

The quantity �E can be thought of as the difference between the final (bound)

and initial (free) states of an amino acid. Thermodynamics predicts that events

will proceed in the direction that lowers the total energy of their components.

Thus �E is a measure of the tendency of an amino acid to bind with the pocket of

the HLA-DR1 molecule. A very negative �E corresponds to very strong binding.

3. Modeling

Pocket Definition. Consideration of each of HLA-DR1’s five binding pockets

independently, which corresponds to Step I in Section V.C.2 above, involves
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determining which residues of the HLA-DR1 molecule compose a given pocket.

X-ray crystallography data are available that provide the (x,y,z) Cartesian

coordinates of the atoms in the complex of HLA-DRB1*0101 and the influenza

peptide HA [171]. The Program for Pocket Definition (PPD) is able to define a

given HLA-DR1 pocket from this crystallographic data by calculating which

HLA-DR1 amino acids have atoms within a radius R of the atoms of the

influenza peptide amino acid bound to the pocket [234]. The HLA-DR1 residues

that do have atoms within this radius constitute the pocket. The inputs required

for PPD operation are the value of R, the crystallographic data for the entire

HLA-DR1/peptide complex [171], and the crystallographic data for the peptide

amino acid bound in the HLA-DR1 pocket. The crystallographic coordinates of

the pocket residues are given in an output file. A range of R values has been

evaluated [234] in order to determine an appropriate radius which represents a

pocket realistically but which does not include so many residues in the pocket

that energy minimization is computationally intractable. Table XLII presents the

residues defining each of HLA-DR1’s five pockets at different radii. The general

trends of this table include increased pocket complexity with increased radius

(such as in Pocket 1), constant pocket complexity despite increased radius (such

as in Pocket 7), and the much larger number of amino acids in Pocket 1 in

comparison to the other four pockets [234]. Based on the results in Table XLII,

a radius of 5 Å was used to define Pockets 1, 4, 6, and 7 of HLA-DR1, whereas a

radius of 4.5 Å was used to define Pocket 9.

Problem Formulation. The position of a particular peptide or amino acid chain

in space can be described completely by a translation vector, a rotation matrix,

and a set of dihedral angles. The translation vector is defined as the coordinates

of the backbone nitrogen atom on the first residue of a chain. The rotation

matrix is defined by the Euler angles of the first chain residue. In our work, the

HLA-DR1 pockets are considered rigid and fixed. Thus the variables are the

nitrogen coordinates, Euler angles, and dihedral angles of the amino acid which

is attempting to bind to a pocket.

Because the decomposition approach described in Section V.C.2 above

implicitly assumes that the binding residue is part of a longer peptide, the

Cartesian coordinates of the carboxyl carbon atom (C0) must be constrained.

The decomposition approach is based on the assumption that the rest of the

peptide, although not explicitly modeled, is binding normally, and thus that the

backbone atoms of the binding peptide do not vary greatly from their crystal-

lographic positions. Because the optimization problem is formulated on internal

coordinates, the Cartesian coordinates of C0 are implicit variables defined as

functions of the translation vector, Euler angles, and dihedral angles of the

peptide [234].
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With these variables in mind, formulation of the energy minimiza-

tion problem proceeds as follows [234]. Let E be the function which calculates

the potential and solvation energy of the HLA-DR1 pocket /binder system.

Let the Cartesian coordinates of the nitrogen translation vector be defined by

the variables Nx, Ny, and Nz. Let the Euler angles be represented by e1, e2,

and e3. Let k ¼ 1; . . . ;K, where K is the total number of side-chain dihedral

angles of the amino acid residue binding to a pocket. The set of variable

dihedral angles then includes the backbone dihedral angles f, c, and o, and

the side chain angles wk. The Cartesian coordinates of the backbone

carboxyl carbon (C0) are defined by C0x, C0y, and C0z. Utilizing these variable

definitions, the potential energy minimization problem can be formulated as

TABLE XLII

PPD Pocket Compositions for R ¼ 4:0–5:0 Å

Pocket R ¼ 4.0 R ¼ 4.5 R ¼ 5.0

1 ilea31 phea32 ilea31 phea32 ilea31 phea32

trpa43 alaa52 trpa43 alaa52 trpa43 alaa52

sera53 phea54 sera53 phea54 sera53 phea54

valb85 glyb86 valb85 glyb86 valb85 glyb86

pheb89 pheb89 phea24 pheb89 phea24

asnb82 asnb82 glua55

thrb90

4 glna09 asna62 glna09 asna62 glna09 asna62

pheb13 glnb70 pheb13 glnb70 pheb13 glnb70

argb71 alab74 argb71 alab74 argb71 alab74

tyrb78 tyrb78 glua11 tyrb78 glua11

leub26 leub26

6 glua11 asna62 glua11 asna62 glua11 asna62

vala65 aspa66 vala65 aspa66 vala65 aspa66

leub11 leub11 leub11 pheb13

argb71

7 vala65 asna69 vala65 asna69 vala65 asna69

glub28 tyrb47 glub28 tyrb47 glub28 tyrb47

trpb61 leub67 trpb61 leub67 trpb61 leub67

argb71 argb71 argb71

9 ilea72 asna69 ilea72 asna69 ilea72 asna69

meta73 arga76 meta73 arga76 meta73 arga76

trpb09 aspb57 trpb09 aspb57 trpb09 aspb57

tyrb60 tyrb60 trpb61 tyrb60 trpb61

leua70
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follows:

min Eðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ ð113Þ
subject to � p � f � p ð114Þ

�p � c � p ð115Þ
�p � o � p ð116Þ
�p � wk � p; k ¼ 1; . . . ;K ð117Þ
�p � e1 � p ð118Þ
�p � e2 � p ð119Þ
�p � e3 � p ð120Þ
Nl

x � Nx � Nu
x ð121Þ

Nl
y � Ny � Nu

y ð122Þ

Nl
z � Nz � Nu

z ð123Þ
C0lx � C0xðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ � C0ux ð124Þ
C0ly � C0yðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ � C0uy ð125Þ

C0lz � C0zðf;c;o; wk;Nx;Ny;Nz; e1; e2; e3Þ � C0uz ð126Þ

In the formulation above, the superscripts u and l denote upper and lower

bounds, respectively, for the Cartesian coordinates of both the amino nitrogen

and the carboxyl carbon.

Although the constraints on the amino nitrogen in the formulation above can

be considered directly as problem variables, the C0 coordinates are not explicit

variables and consequently must be defined as a function of the other variables

[234]. Because the energy minimization problem described above involves these

implicit constraints on the location of C0, a penalty function must be added to

the function E in order to implement these constraints. The modified form of the

function E is then [234]:

E0 ¼ E þ bfhC0lx � C0xi þ hC0x � C0ux i ð127Þ
þ hC0ly � C0yi þ hC0y � C0uy i ð128Þ
þ hC0lz � C0zi þ hC0z � C0uz ig ð129Þ

The h i function has the following definition: hAi equals A if A is greater than

zero; otherwise hAi equals zero. Therefore, if the coordinates of C0 are within

their respective bounds, the function E will not be modified. If, however, a

particular coordinate falls outside of its bounds, the function will be increased by
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an arbitrarily large constant b. The conformation’s energy then would be

arbitrarily large, and the conformation would be discarded as a choice for the

minimum energy conformation.

Note that E in the formulation above is a nonconvex function involving

numerous local minima that correspond to metastable states of the specific

amino acid binding to the pocket. A single global minimum defines the energe-

tically most favorable peptide conformation. In establishing a ranked-order list

of binding peptides, one needs to identify rigorously the best conformation of (i)

the binding residue far from the pocket and (ii) the complex of Pocket 1 with the

binding residue. Consequently, there is a need for a method that can guarantee

convergence to the global minimum potential energy conformation and which is

capable of solving large-scale constrained optimization problems. The global

optimization approach aBB [18,20,247] is one such method.

GLO-DOCK. The aBB algorithm is interfaced and supported with several other

programs in the overall energy minimization scheme, and the entire collection

of programs is known as GLO-DOCK. The additional programs include

MSEED, RRIGS, NPSOL, and PACK. The MSEED program is discussed in

Section III.A.2 above and calculates solvent-accessible surface areas, and the

RRIGS program is discussed in Section III.A.2 above and calculates solvent-

accessible volumes. Only one of these programs is utilized for calculating

solvent energies during a given peptide docking optimization. The program

NPSOL [28] is a nonlinear local optimization solver used in the calculation of

upper and lower bounds for aBB. The PACK program [74], and its associated

program prePACK, is a peptide calculation program. The prePACK program

initializes PACK by converting the amino acid residue data supplied by the

program’s user into the format required by the ECEPP/3 potential energy model.

The prePACK program also generates the parameter values used by PACK in

calculating energy potentials. The PACK program transforms Cartesian

coordinates into internal (dihedral angle) coordinates and uses the ECEPP/3

potential energy model to provide function and gradient evaluations to aBB.

The PACK program is able to keep track of data for several peptides and make

appropriate calls to ECEPP/3 for calculation of their interaction energies [74].

As discussed below, solvation contributions based on solvent-accessible area are

added only at local minima, so the program MSEED is called from aBB through

PACK once a local minimum has been found. The program RRIGS is called

from aBB though PACK at each local minimization step.

Several supporting programs generate the input files used in this overall

minimization scheme. These programs include PPD and ARAS. PPD, the

Program for Pocket Definition, was discussed above and defines a given pocket

from crystallographic data. The output file from PPD is then used as an input file

for the program ARAS, the Amino acid Residue Angle Solver. ARAS converts
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the crystallographic data from the PPD output file into translation vectors, Euler

angles, and dihedral angles for each amino acid in the file. An ARAS output file

(name.input in Figure 57) is then used as an input file for PACK. Three other

input files are required for peptide docking optimizations: name.abb and

prep.name.abb, which provide the bounds on the initial nitrogen atom and

other information needed by aBB; and name.bounds, which provides the bounds

on C0 for the penalty function. The (x,y,z) nitrogen and C0 bounds for each

pocket binder are determined by examining the crystallographic data for the

corresponding peptides in the HLA-DRB1*0101/influenza virus peptide com-

plex presented by Stern et al. [171]. These bounds are set at �0.7 Å from the

crystallographic coordinates. A schematic diagram for the overall global

optimization scheme is given in Fig. 57.

Figure 57. Schematic diagram for peptide docking global optimization. The arrows indicate

the direction of information flow. The names of input, output, and source code files are indicated.

References to ‘‘f & f 0’’ and ‘‘f only’’ describe whether gradient evaluations or only function

evaluations are used.
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Solvation Methods. Because the polar, cohesive nature of water profoundly

affects all molecular interactions in biological systems [248], the effects of

solvation on the conformation of a protein must be included in an accurate

protein model.

There are many types of solvation models. Explicit solvation models arrange

individual water molecules around peptides and calculate solvent–peptide

interactions with potential models similar to those discussed in Section

III.A.1 above. These explicit models are prohibitively expensive computation-

ally because of the large number of water molecules involved and because a

given peptide conformation has a large number of equivalent possible water

molecule arrangements, making it necessary to calculate the energy of many

solvent arrangements and average them together [83]. Neglecting the molecular

nature of water molecules yields much simpler, implicit solvation models.

Models of this type often estimate energies of solvation as functions of solvent-

accessible surface areas or volumes.

Our work is based on two separate implicit methods of determining solvation

potentials. One method involves solvent-accessible area calculations, and the

other involves solvent-accessible volume calculations. These models are based

on two assumptions: that a solvation energy can be calculated for each

functional group of a peptide by calculating an averaged energy of interaction

between the group and a layer of solvent known as the solvation shell, and that

these solvation energies are additive. Thus the model assumes that the total

energy of solvation of a peptide can be expressed as the sum of the energies of

solvation for each of the functional groups of the peptide [83].

The solvent-accessible area solvation model used in our work is based on a

program called MSEED [52]. This model assumes that the energy of solvation is

proportional to the solvent-accessible surface area of the peptide, as discussed in

Section III.A.2 above. MSEED area calculations have some limitations, how-

ever. First, MSEED does not always search effectively for the peptide’s surface

areas. The error incurred by this ineffective search, however, has been shown to

be less than 2% for a number of test problems [52]. Second, changes in peptide

conformations produced by minimization of the total energy of the peptide

proceed continuously but not necessarily smoothly, and surface area gradients

may thus have discontinuities. Large discontinuities may cause minimization

techniques that require calculation of first derivatives to fail to converge. This

problem is avoided in our work because gradients for area-accessible solvation

contributions are not calculated and surface-accessible solvation energies are

included in the total energy only at local minimum energy conformations and

are not part of local minimization processes.

The solvent-accessible volume model used in our work is based on a program

called RRIGS, which stands for Reduced Radius Independent Gaussian Sphere

[53]. This model assumes that the energy of solvation of a peptide is
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proportional to the solvent-accessible volume of a solvation layer or shell

around the peptide, as discussed in Section III.A.2 above. This method provides

continuous derivatives of the solvation potential, so solvation contributions to

total energy can be added at every step of local minimizations and not just at the

local minimum itself. Thus the RRIGS solvation model interfaces well with the

ECEPP/3 potential energy model [83].

Combining the ECEPP/3 potential energy model with a solvation model

creates an expression for the total potential and solvation energy (ETotal) of the

system: ETotal ¼ EPotential þ ESolvation, where EPotential is calculated from ECEPP/3

and ESolvation is calculated from either the MSEED or RIGGS solvation models.

With this mathematical model for the potential and solvation energy of the

pocket and the binding amino acid in place, the next step in evaluating the

binding of one amino acid at a time to a given HLA-DR1 pocket is finding the

amino acid conformation that corresponds to the global minimum potential and

solvation energy of the system.

4. Deterministic Global Optimization

The first step in implementing a global optimization algorithm like aBB is the

formulation of the optimization problem. This involves choosing the functions

that will be optimized (either minimized or maximized), choosing the variables

that will be optimized, and choosing the constraints that will be included in the

problem. For the peptide docking prediction problem, implementing a global

optimization algorithm also involves deciding whether to minimize the total

energy function based on the Cartesian coordinates of the peptide atoms or based

on the dihedral angles of the peptide. Because optimization constraints are more

easily applied to internal coordinates like dihedral angles than to Cartesian

coordinates [20], we used internal coordinates for our work. The problem

formulation is developed in Section V.C.3 above. The function E shown in

Section V.C.3 is difficult to minimize because it is nonlinear and nonconvex and

has multiple local minima. These local minima correspond to metastable states

of the amino acid binder being modeled, but the single global minimum is the

minimum that defines the energetically most stable peptide conformation.

Our minimization scheme determines the peptide conformation that corre-

sponds to the global minimum total potential and solvation energy through a

series of steps [83,234]:

1. Upper bound calculation: The local solver NPSOL identifies a local

minimum of the potential energy function supplied by PACK in a region

(rectangle) defined by the lower and upper bounds of the variables. These

bounds are supplied by aBB. If solvent-accessible volume is being consi-

dered, potential energy evaluations during local minimization are made
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using the ECEPP/3 model and RRIGS. If solvent-accessible surface area

is being considered, potential energy evaluations are made using only the

ECEPP/3 model and the solvation energy is calculated by MSEED and

added only at the local minimum.

2. The current best upper bound is updated to be the minimum of those

stored thus far.

3. The current rectangle (region) is partitioned by bisecting its longest side.

4. Lower bound calculation: The convex underestimator function L is

minimized in each new rectangle using NPSOL and PACK (with ECEPP/3). If

solvent-accessible volume is being considered, potential energy evalua-

tions are also made using RRIGS. If solvent-accessible surface area is

being considered, potential energy evaluations are not made with MSEED,

and the solvation contributions are added only at the local minimum. If a

minimum is greater than the best upper bound, the corresponding rectangle

will be eliminated from the search. Otherwise, the local minimum value is

stored.

5. The rectangle with the current minimum value for L is selected for further

partitioning.

6. If the best upper and lower bounds are within the user-specified tolerance

E, the program will finish; otherwise it will proceed back to Step 1.

We then introduced an energetic-based criterion to evaluate the energy of

interaction between a given pocket and each naturally occurring amino acid.

This measure, which we denote as �E, corresponds to the difference between

(i) the global minimum total potential and solvation energy that considers all the

energetic atom-to-atom interactions—classified as inter-interactions between

the atoms of the residues that define the pocket of HLA-DR1 protein and the

atoms of the considered naturally occurring amino acid, and classified as intra-

interactions among the atoms of the considered naturally occurring amino

acid—and (ii) the global minimum potential and solvation energy of the

considered naturally occurring amino acid when it is far away from the pocket.

Equation (130) illustrates this criterion:

�E ¼ E0
Total � E0

Res ð130Þ

where E0
Total is the global minimum of the potential energy of the complex of the

pocket and the binding peptide or amino acid, and E0
Res is the global minimum of

the potential energy of the peptide or amino acid away from the pocket. Note that

�E does not represent a difference in the free energies of the complex and

isolated amino acids. Instead, it denotes the difference between potential and

solvation energy for the complex and the isolated amino acids.
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Repeating this optimization scheme for each naturally occurring amino acid

in each of HLA-DR1’s five binding pockets and then listing each pocket’s amino

acid binders in order of increasing global minimum potential and solvation

energy (decreasing binding affinity) creates a rank-ordered list of strong,

average, and weak amino acid binders for each pocket.

5. Computational Studies

Binding Affinity Evaluation in HLA-DR1 Pockets. The area and volume

solvation methods correctly predict the binding affinity and conformations of

the strongest binders to Pockets 1, 4, and 6. Neither the area nor the volume

solvation methods correctly predict the crystallographic binder conformations

for Pocket 7 and 9, perhaps due the pockets’ incomplete definition.

The volume solvation method appears to be a stronger method for consider-

ing solvation than the area solvation method. The area solvation method does

not use separate parameters for charged and neutral atoms, and its structure does

not permit consideration of area contributions at each step of local minimiza-

tions of the total energy. Solvation energy contributions in the volume method

are of the same order of magnitude as nonbonded contributions, whereas

solvation energy contributions are an order of magnitude larger than nonbonded

energy contributions in the area solvation method. The domination of total

energy values by solvation in the area solvation method may not distinguish

amino acid binders sufficiently from one another in rank-ordered binding lists.

Our global optimization results are in excellent agreement with available

experimental data. Experimental data [234] for amino acids binding to Pocket 1

are shown in Fig. 58. We were able to reproduce the relative binding affinities

shown in the figure, and all of our other relative binding affinity results agree

with literature data. The results for Pocket 1 and Pocket 4 are especially

encouraging, because Pocket 1 is considered to be the most discriminating and

most important pocket for successful peptide binding [249] and Pocket 4 is

considered to be one of the most important pockets in T-cell recognition

interactions [250]. This agreement indicates that our approach is an accurate,

effective tool for approaching the peptide docking problem.

The need for determining the conformation of a binding amino acid which

corresponds to its global minimum total energy instead of to a local minimum

total energy is illustrated in Fig. 59. Figure 59 shows a local minimum

conformation and the global minimum conformation of tyrosine in Pocket 1

for the volume solvation method. The volume solvation method’s local mini-

mum conformation of tyrosine has a �E of �17.349 kcal/mol and is shown in a

lighter shade, whereas the global minimum conformation of tyrosine has a �E

of �20.155 and is shown in darker shade. There is only a 13.9% difference

between these two �E values, but there is a significant difference in their

conformations. The global minimum conformation corresponds closely to the
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crystallographically determined conformation, highlighting the necessity of not

mistaking a local solution for the global solution. This comparison also high-

lights the need for global optimization methods in approaches to the peptide

docking prediction challenge.

Binding Affinity Evaluation After Structure Prediction. Our prediction of the

structures of MHC class II binding sites has significant implications for the

evaluation of peptide binding to HLA molecules. We applied our binding

affinity prediction methodology to the binding pocket structures we predicted in
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Figure 58. Pocket 1 competitive binding assays.

Figure 59. Global (darker) versus local (lighter) tyrosine conformations in pocket 1, volume

solvation.
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Section V.B.5. We then compared the results of predicting binding affinities for

predicted versus crystallographic pockets.

We applied our methodology to the pocket we predicted for pocket 1 of

HLA-DR3 and to the pocket obtained from crystallographic data [221] for the

binding amino acids Phe, Ile, and Met. Based on the energy differences we

found that Phe is a better binder than Met by 1.1 kcal/mol and that Met is a

better binder than Ile by 3.9 kcal/mol for the predicted pocket. For pocket 1

based on the crystallographic data, our binding studies determined the same

sequence (i.e., Phe followed by Met and Met by Ile) with corresponding

differences of 2.37 kcal/mol for Phe to Met and 2.06 for Met to Ile. Application

of our predictive binding approach [12] to the predicted, as well as to the

crystallographicaly obtained, pocket 4 of HLA-DR3 for the binding amino acids

Asp, Glu, Ile, and Phe showed that the negatively charged Asp and Glu are very

strong binders. In contrast, Ile and Phe were weaker binders than Asp and Glu.

We also applied our predictive binding approach to the predicted pocket 1 of

I-Ek for the binding amino acids Ile, Val, and Phe. Our results showed that Phe

is a better binder than Ile by an energy difference of 6.1 kcal/mol, and that Ile

binds better than Val by an energy difference of 2.8 kcal/mol. We obtained

similar results from the crystallographic data, with Phe being a better binder

than Ile and Ile being a better binder than Val with energy differences of 4.4 and

0.7 kcal/mol, respectively.

In order to verify further the correct prediction of the binding sites of HLA

molecules, we used the crystal of HLA-DR3 [78] to predict pocket 1 of HLA-

DR1. We compared the results obtained using the predicted pocket to those

found with the crystallographically obtained pocket [221]. As shown in Table

XLIII, the binding studies using the predicted pocket illustrate the same trends

as the binding studies using the crystallographic pocket. Therefore, our

approach not only predicts the binding site structure of class II HLA molecules,

but also provides results consistent with the binding studies of individual amino

acids based on the crystallographic data.

D. Perspectives and Future Work

We currently are expanding and extending our binding site structure and binding

affinity prediction methods. We are expanding our methods to incorporate

rigorous calculation of free energies. Our approach to these free energy

calculations involves the terms in the following equation:

ETotal ¼ EVacuum � TSVacuum þ ECavity þ ESolvation þ EIonize ð131Þ

where ETotal is the total free energy of a protein–protein system. In this approach,

as in our earlier approach discussed above, EVacuum is the potential energy of a

protein system conformation in a vacuum calculated from the ECEPP/3 force
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field. In our expanded approach, SVacuum is the entropy of a protein conformation

in a vacuum. In order to calculate this term, we generate a large set of unique

conformers and then apply a harmonic approximation to obtain the entropy of

each conformation. The ECavity term in this approach is the energy required to

form a protein conformation’s cavity in aqueous solvent. This cavity energy is

estimated to be proportional to the surface area of the protein system exposed to

water. We calculate the ESolvation term in this expanded approach with Poisson–

Boltzmann electrostatics by using the DELPHI software package [251–253]. The

ESolvation term is the difference in a protein system conformation’s polarization

energy in solvent (dielectric constant e ¼ 80) and in a vacuum (dielectric

constant e ¼ 1), as shown in the equation below:

ESolvation ¼
1

2

X
i

X
s

qiss;e¼80

jri � rsj
� 1

2

X
i

X
s

qiss;e¼1

jri � rsj
ð132Þ

where qi is the charge associated with atom i, and ss is the surface charge

induced by each charge s other than i. The EIonize term is the energy due to the

ionization state of a protein system at a given pH. These expansions to our

binding site structure and binding affinity prediction methods will allow us to

TABLE XLIII

Comparison of Binding Studies in Predicted Binding Sites Versus Crystallographic Binding Sites in

Pocket 1 of HLA-DRI (R ¼ 5:0 Å), Area Solvation

�E Crystal �E Prediction Difference Difference

Residue (kcal/mol) (kcal/mol) (kcal/mol) (%)

Tyr �20.000 �18.850 �1.15 5.75

Phe �19.625 �18.040 �1.58 2.95

Trp �16.950 �17.754 0.80 4.72

Gln �15.396 �15.916 0.52 3.37

Met �13.943 �13.928 �0.02 0.14

Asn �13.784 �14.644 0.86 6.24

Thr �13.297 �13.297 0.00 0.00

Leu �12.481 �12.399 �0.08 0.64

Ile �12.465 �12.486 0.02 0.16

Ser �11.557 �11.187 �0.37 3.20

Cys �11.280 �11.087 �0.19 1.68

Val �11.209 �11.324 0.12 1.07

Ala �10.355 �10.338 �0.02 0.19

Gly �10.091 �9.996 �0.09 0.89

Glu- �7.744 �6.891 �0.85 10.97

Asp- �2.431 �2.594 0.16 6.58
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model solvent effects more rigorously and more accurately, as well as allowing

the study of ionization effects. We then will have the ability to calculate and

predict not only relative binding affinities, but accurate, quantitative binding

affinitites. The drawback of employing the entropic and Poisson–Boltzmann

calculations discussed above is the large increase in computational time they

require. We are exploring ways of parallelizing our algorithm to address this

issue.

In addition to expanding our methods, we are extending them to the

investigation of larger systems. We are examining the role of the peptide

residues intermediate to the pocket-binding residues in peptides that bind to

HLA molecules, as well as modeling the docking of entire peptides to HLA

molecules. Our future plans include extending our methods to the examination

of T-cell interactions with HLA molecules and bound peptides.

Our computational and experimental results demonstrate that applying

atomistic level modeling and deterministic global optimization is a promising

approach to a systematic framework for peptide docking prediction. The

strengths of our peptide docking prediction model are its guaranteed conver-

gence to the global minimum energy, its detailed modeling of entropic,

electrostatic, and other energetic interactions, and its quantitative prediction

of binding free energy.

The predictive power of protein–protein interaction and peptide docking

models is of significant and increasing importance. Accurate prediction will

lead to the more efficient and effective design of drugs and devices. Peptide

docking and protein–protein interaction prediction thus will play a valuable role

in capitalizing on the data provided by the mapping of human and other

genomes.

VI. CONCLUSIONS

The intense worldwide experimental and theoretical research effort directed

toward solving the protein folding and peptide docking problems underscores

their importance. The ability to predict computationally the folding of proteins

and the formation of protein–protein complexes would support and help direct

experimental work in biology, chemistry, biophysics, and pharmaceutical

development. In this review we have shown that molecular modeling and global

optimization are the dominant factors that will provide solutions to these

problems.

In particular, this review has focused on the use of ab initio models, which

give rise to a series of complex mathematical problems. A second important

component has been the application of deterministic global optimization,

namely the aBB algorithm, for solving the resulting problems. In this review

we have analyzed and discussed many issues related to the modeling of protein
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folding and peptide docking systems. These observations have highlighted the

extraordinary difficulty of these problems and the crucial interdependence of ab

initio modeling and deterministic global optimization approaches.
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I. INTRODUCTION

The ability to distinguish native protein conformations from misfolded ones is a

problem of fundamental importance in the development of methods designed

to predict protein structure. To this end, several empirical functions for scoring

protein conformations have been proposed. [1–6]. Some of these empirical

scoring functions implement knowledge-based statistical potentials that are

‘‘trained’’ to recognize native conformations. Knowledge-based potentials are

best suited for ‘‘threading’’ applications where the best conformation of a protein

is selected from a database of known protein conformations. Scoring functions

applicable to ab initio folding studies, which require differentiable potentials and

the inclusion of excluded volume terms, have also been developed. These are

based on combinations of knowledge-based potentials and reduced atomic

models sometimes augmented by simplified solvation models based on hydro-

phobic or hydrophilic exposure [7].

Physics-based all-atom molecular mechanics force fields have not been

generally considered practical for fold detection because they are parameterized

on small molecule data rather than on proteins directly; the level of atomic detail

contained in these models is considered poorly matched to the fold detection

problem with respect to both accuracy and computational cost. Recent studies

have shown, however, that a scoring function based on the potential energy from

an all-atom molecular mechanics force field can recognize native protein con-

formations among a set of decoys as well as the best available knowledge-based

scoring functions [6].

The use of an all-atom force-field minimizes the assumptions that are inherent

in an empirical scoring function; and, as will be shown, the inclusion of more

refined solvation models enhances our ability to discriminate native folds. An

additional value of the all-atom potential lies in its suitability for modeling

proteins at higher resolution. This is an important feature for applications in

structure–function relation studies such as homology modeling, drug design,

and protein–protein recognition.

Although all-atom force fields allow for explicit simulations of solvent, the

cost required to appropriately sample solvent configurations rapidly becomes

prohibitive. Simplified solvation models are more computationally efficient

while preserving a reasonably accurate representation of the interactions

between the protein and the water solvent. Although no continuum model can

wholly account for the explicit inclusion of solvation [8,9], free energies of

solvation of small molecules have been obtained accurately to within a fraction

of a kcal/mol relative to experiments using these methods [10–15].

Solvation effects have been included using a variety of simple models [16–

23]. These models have been based on exposed surface area, dielectric con-

tinuum methods, and screened or modified Coulomb interactions. The validity
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of a continuum representation of the solvent based on the Poisson–Boltzmann

equation has been studied extensively for small and large molecules [24–30].

Continuum solvation models that treat solute and solvent as two dielectric

regions with different dielectric constants have been used successfully to

account for solute free energies of hydration [11,31–34]. Dielectric models

based on the Born model [35] have been developed for which the free energies

of hydration are comparable to the predictions of Poisson–Boltzmann and

explicit solvent models [36–42].

The inclusion of solvation effects with an all-atom molecular mechanics

force field has been shown to be important for the recognition of the native state

[16,17,43–45]. Scheraga and co-workers [46,47] used explicit all-atom protein

models in conjunction with solvation models based on the molecular exposed

surface area. A similar approach by Wang et al.[48,49] showed that inclusion of

solvation effects can be successful in discriminating native from non-native

structures. Vieth et al. [50] generated structures of the small 33-residue GCN4

leucine zipper proteins using a simplified lattice model; promising structures

were then converted to all-atom models and evaluated using a molecular

mechanics force field. A hierarchical method of generating large numbers of

protein folds was also employed by Monge et al. [20] to select and evaluate

structures using the AMBER all-atom force field model [51]. The generalized

Born continuum solvent model of Still et al. [37] has been used in this context to

represent the aqueous environment. For decoy sets of three different proteins the

protocol performed reasonably well in distinguishing the native structure. All-

atom models with continuum solvent were also used as the basis for discrimina-

tion of non-native states for a small set of 12 deliberately misfolded proteins

studied by Vorobjev et al. [52]. In their protocol, conformations for each protein

are first sampled from a molecular dynamics trajectory in order to capture

micro-states of the protein; this is followed by an evaluation using a dielectric

continuum model. Lazaridis and Karplus [22] used the CHARMM19 protein

force field together with a Gaussian solvation shell model for the solvation free

energy to distinguish deliberately misfolded from native conformations con-

sidered on a pairwise basis and in large decoy sets.

Given the complexity of the protein potential surface, it is virtually im-

possible to consistently find the global minimum starting from an arbitrary point

on the surface. Instead, tests have been designed whereby the scoring function is

‘‘challenged’’ to find the native conformation among an ensemble of conforma-

tions, most of which are compact but non-native. Many empirical energy

functions have been used to identify the correct native structure among a

collection of known protein structures using threading techniques [1,53–58].

Scoring functions are also used to identify native-like conformations from a

large set containing native and decoy non-native conformers [22,59–63]. Due to

the large ensemble of conformations available, the use of large decoy sets to
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evaluate scoring functions is a more demanding test than threading and is

well-suited for the evaluation of scoring functions based on an all-atom force

field.

In this work we show that the all atom (OPLS-AA) force field for proteins

[64] together with a surface integral formulation of the generalized Born model

(SGB) [40,42] is capable of discriminating between native and non-native folds

among large sets of compact decoy structures. Validation of the scoring protocol

is performed on a large database of well-packed misfolded and near-native

protein conformations generated by an algorithm designed to cover exhaustively

the relevant parts of conformational space [65,60,66]. The inclusion of near-

native decoys in these sets is important in determining whether the scoring

function is well-behaved in the vicinity of an idealized native conformation,

because it is unlikely that any ab initio method of generating conformations will

generate that state exactly. In any case, the native state actually represents an

ensemble of closely related conformations.

Two additional decoy data sets of misfolded proteins [17] and of predicted

protein structures from the Critical Assessment of Techniques for Protein

Structure Prediction (CASP) [67] are also used to illustrate the method and its

utility. Individual components of the energy perform worse than the total

energy; for example, for the bulk of the well-packed decoys, the van der Waals

energy provides very little information about structural similarity between a

well-packed non-native structure and the native state. It is also shown that some

aspects of the SGB model results can be mimicked by a screened electrostatic

energy, although the SGB approximation provides a better discriminatory

measure between non-native and native states.

II. METHODS

A. Details of the Calculations

The energy of each protein structure investigated was calculated using the

OPLS-AA/SGB force field implemented in the IMPACT modeling program

(Schrödinger, Inc.) [68]. Initial structures were first minimized in order to

remove any artifacts that result from the coordinates being generated with a

different energy function; only minimized energies are reported here. All non-

native coordinates were taken from independently generated data sets as

described below; native protein coordinates were obtained from the Protein

Data Bank (PDB) [69]. The force field employed in the calculation of the atomic

interactions was the OPLS all-atom force field [64], including parameters for all

intramolecular degrees of freedom. The surface formulation of the generalized

Born model [37,39] (SGB) as coded in IMPACT was used to estimate the

solvation energy [40,70].
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The total energy for a protein in vacuum is given by

Uvac
tot ¼ Ubond þ Uangle þ Utorsion þ UCoulomb þ UvdW ð1Þ

where the first three terms refer to intramolecular interactions arising from the

connectivity of the molecule, and the last terms reflect nonlocal interactions

within the protein. The van der Waals energy, UvdW, is modeled by the standard

6-12 Lennard-Jones interaction. The energy of the protein in water calculated

according to the SGB continuum solvent model is

Ucon
tot ¼ Uvac

tot þ USGB þ Ucav ð2Þ

where USGB denotes the electrostatic contribution to the solvation energy

calculated using the SGB method, and the cavity term Ucav is taken as gA where

A is the accessible surface area of the molecule and g ¼ 5 cal/(Å2 mole) [40].

The SGB model is the surface implementation [40,42] of the generalized

Born model [37]. The generalized Born equation

USGB ¼ �
1

2

1

Ein

� 1

Ew

� �X
ij

qiqj

fijðrijÞ
ð3Þ

(where qi is the charge of atom i, and rij is the distance between atoms i and j)

gives the electrostatic component of the free energy of transfer of a molecule

with interior dielectric Ein from vacuum to a continuum medium of dielectric

constant Ew, by interpolating between the two extreme cases that can be solved

analytically: one in which the atoms are infinitely separated and the other in

which the atoms are completely overlapped. The interpolation function fij in

Eq. (3) is defined as

fij ¼ ½r2
ij þ aiaj expð�r2

ij=4aiajÞ�1=2 ð4Þ

where ai is the Born radius of atom i defined as the effective radius that re-

produces through the Born equation

Ui
single ¼ �

1

2

1

Ein

� 1

Ew

� �
q2

i

ai

ð5Þ

the electrostatic free energy, Ui
single, of the molecule when only the charge of

atom i is turned on. The SGB method estimates Ui
single by integrating the

interaction between atom i and the charge induced on the molecular surface by

the Coulomb field of this atom:

Ui
single ¼ �

1

8p
1

Ein

� 1

Ew

� �ð

S

ðr� riÞ
r� rij j4

	 nðrÞd2 r ð6Þ
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The SGB method has been shown to compare well with the exact solution of the

Poisson–Boltzmann (PB) equation. The SGB implementation used in this work

includes further correction terms that bring the SGB reaction field energy even

closer in agreement with exact PB results [40].

To help assess the ability of the energy function to discriminate between non-

native and native protein conformations, the energy gaps between the decoy

conformations and the native are evaluated:

�U ¼ U
decoy
tot � Unative

tot ð7Þ

Energy gaps of individual energy terms have also been examined [see Eqs. (1)

and (2)]. Unless explicitly noted, all results presented below were performed

without energy cutoffs; that is, all possible non-bonded interactions are included

in the total energy. The structural similarity between two protein conformations

is expressed as a root mean square deviation (RMSD) between the best overlap of

the alpha-carbon (Ca) atoms of the two conformations.

B. Data Sets of Decoys

Although we are probing various energy functions for their ability to differenti-

ate between native and non-native structures, none of the coordinate sets

were originally generated by these functions. The vastness of the conformational

space and the complexity of an all-atom potential energy function effectively

hinders the full sampling of the appropriate degrees of freedom. Scoring

conformations with the OPLS/SGB potential may be considered as a last step in

the process of generating protein folds; that is, only at the end would it be

appropriate to spend the time and effort to evaluate a complex all-atom potential

energy function. For this study we focus on existing decoy data sets as our

conformational space. These data sets have proven to be highly nontrivial to

score correctly.

The first data set contains structure decoys for seven small proteins compiled

by Park and Levitt [60]. The protein structures were generated by exhaustively

enumerating the backbone rotamers states of 10 selected residues in each protein

using an off-lattice model with four discrete dihedral angle states per rotatable

bond. From this data set, containing hundreds of thousand of conformations, the

authors selected for further evaluation only compact structures that scored well

using a variety of scoring functions as well as those having a reasonable RMSD

from the native [60]. The coordinates, available on the internet (http://dd.

stanford.edu), are all-atom models built from the Ca atoms with the program

SEGMOD [71]. No further refinement of these coordinates was done except for

minimizing the structures using our energy function (see Eqs. 1 and 2). The

decoy data sets are summarized in Table I and encompass a range of small

proteins from 54 to 75 residues with varying topological folds. The number of
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decoys in these sets ranged from 630 for 1ctf (the carboxy-terminal domain of

L7/L12 50s ribosomal protein from Escherichia coli) to 687 for 4pti (bovine

pancreatic trypsin inhibitor).

An extended data set for the calcium-binding protein calbindin D9K from

bovine intestine (4icb) was also investigated using 2000 best-scoring conforma-

tions constructed using an ab initio procedure [72]. These structures were

generated from an exhaustive enumeration on a tetrahedral lattice [73,74] and

selected using a combination of scoring functions.

A third data set consists of 26 misfolded protein coordinates constructed by

threading the original sequence on to non-native folds with the same number of

residues [17]. These structures were generated by swapping main chains

between folds and placing the side chains using an annealing protocol. From

this data set we selected 25 misfolded structures with continuous backbone

coordinates for analysis. These latter coordinate sets were also taken from the

internet site listed above.

A fourth data set derived from the CASP3 [67] targets and model sub-

missions was also investigated. CASP3 is the third experiment run by the

Protein Structure Prediction Center at Lawrence Livermore National Laboratory

to test how well protein structures can be predicted from amino acid sequence.

Results are available on the internet at http://predictioncenter.llnl.gov/casp3/

Casp3.html. For our calculations, submitted targets were chosen for which

coordinates of the native structure were available from the PDB. For each target,

models were chosen which had predictions over all residues given in the PDB

file. We selected 11 targets and a total of 167 models, with RMS deviations

ranging from 1.3 Å to 22.9 Å. The target structures investigated are given in

Table IV.

The energy of each native and model structure was minimized using the full

atomic model with and without the SGB dielectric continuum solvation energy

term.

TABLE I

The Sequence Length, Nres, the Number of Decoys, Ndecoy, and Total Charge of the Seven Proteins

of the Park and Levitt Set [60]

PDB Name Nres Ndecoy q (e)

1ctf 68 630 �2

1r69 63 675 þ4

1sn3 65 660 þ1

2cro 65 674 þ6

3icb 75 653 �7

4pti 58 687 þ6

4rxn 54 677 �12
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III. RESULTS AND DISCUSSION

The problem of differentiating non-native states from native-like states can be

expressed as the ability of a scoring function, depending only on the coordinates

of each structure, to score the native states better than any other structures. If

such a scoring function were used also to generate structures, a further desirable

property would be that in the vicinity of the native state the structural similarity

to the native state would be a monotonically increasing function of improved

scores.

A. Park and Levitt Decoys

Examination of minimized energies for the seven extensive data sets of protein

decoys (see Fig. 1) shows that using the OPLS-AA/SGB potential, no decoy

scores better than the X-ray structure. The correlation between structural

similarity and score is strong only for structures with low RMSD. For RMSD>
4 Å this correlation breaks down. Native-like states appear around 2 Å at low

energies, with the bulk of the decoys being in non-native-like conformations with

RMSD above 4 Å.

In Table II we report the statistical indicators of the quality of the scoring

function. Some of the indicators depend on defining the reference structure as

the native X-ray structure. It has been verified that similar results are obtained

by selecting any native-like decoy as the reference structure. A global view of

the results for the Park and Levitt sets is given in Fig. 2. The fraction, Pð�UÞ,
of native-like decoys with an energy gap from the native less than �U is

shown. A decoy conformation with an RMS less than 3 Å is considered

native-like. Figure 2 indicates, for example, that structures with an energy

gap from the native less than 100 kcal/mol have a 
90% chance of being native-

like, whereas a decoy with a +200 kcal/mol energy gap from the native has only

a 20% chance of being native-like. For these data sets there are no decoy

structures with a total energy, Ucon
tot , below that of the native state (i.e., energy-

minimized X-ray coordinates; see Fig. 1). This suggests that if a fold prediction

program can generate protein structures within 100 kcal/mol of the native

state, there should be a high (>90%) chance of finding native-like states in this

data set.

Another measure of the fitness of the scoring functions is to evaluate the

RMSD of the lowest-energy structure in each decoy set. The results are sum-

marized in Table II. The RMSD of the lowest-energy decoy range from 0.94 Å

to 2.20 Å with an average RMSD of 1.9 Å. These decoys fall within the native-

like designation. The average energy deviation from the native energy is

þ79.5 kcal/mol, which represents an average deviation of þ2% from the native

total energy values. As we shall see below, not all scoring functions examined

yield decoy energies consistently higher than the native energy.
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Figure 1. OPLS-AA/SGB: Energy gap/RMS correlation plots for the Park and Levitt decoy

sets.
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In Table II we also report the native Z score, Znat, and the average Z score of

the native-like decoys, �Znat-like. The Z score of conformation i is defined as

Zi ¼
Ei � �E

s
ð8Þ

where Ei is the energy of the particular conformation, �E is the average score and

s is the standard deviation of the distribution of scores in the set. The average Z

score, �Znat-like; is obtained by averaging the Z scores of the native-like decoys. A

decoy is defined as native-like if its RMSD with respect to the native is less than

TABLE II

OPLS-AA/SGB Results: The Minimized energy, Unative, of the Native Conformation; the Energy

Gap, min (�U), and the RMS Devition Between the Best-Scoring Decoy and the Native

Conformation; the Native Z-Score Znat and the Average Z-Score �Znat-like of the

Native-like Conformations of the Park and Levitt Decoy Sets [60]

PDB Name Unative min(�U) RMSD Znat
�Znat-like

1ctf �4213.92 þ65.55 1.69 �3.24 �1.08

1r69 �3499.46 þ107.16 2.30 �4.03 �1.01

1sn3 �3467.53 þ96.08 2.19 �4.22 �1.04

2cro �3628.30 þ72.55 0.94 �3.69 �0.95

3icb �4694.45 þ18.08 1.84 �2.18 �1.34

4pti �3055.04 þ105.07 1.89 �4.53 �1.15

4rxn �3363.51 þ92.06 2.16 �3.76 �1.29
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3 Å. The Z score measures the ability of the scoring function to recognize native

conformations. Assuming the distribution of scores is approximately Gaussian, a

native Z score of, say, �2 indicates that the native structure is ranked in the best

1% in the decoy set. In general, the more negative the Z score, the better. The

values of the native Z scores range from�3:2 to�4:5; indicating that the scoring

function is extremely successful in finding the native structure among the decoys.

The native-like average Z score represents the ability of the scoring function to

discriminate the native-like conformations from the non-native conformations.

The more negative the average native-like Z score, the larger the probability that

a low-energy conformation is a conformation structurally similar to the native.

The calculated values of the Z scores ranging from �0:95 to �1:34 indicate that,

although on average the native-like conformations have lower energies than the

non-native conformations, a significant number of native-like structures have a

favorably low Z score. This can also be seen from Fig. 1 by looking at the vertical

position of the low-RMSD structures with respect to the bulk of the decoys. This

does not necessarily indicate a deficiency of the energy function but rather that

for native-like conformations (i.e., those with the correct fold) the energy is also

sensitive to the position and orientation of the amino acid side chains. An

incorrect placement of a side chain may be enough to increase the energy of a

native-like fold to the level of the misfolded conformations. A native-like energy

is achieved only when all of the structural elements of the protein are placed

correctly [22].

Park and Levitt [60] have evaluated six simple empirical scoring functions

using the same decoy sets examined in this work. A comparison between the

native and native-like Z scores calculated here with those obtained by Park and

Levitt shows that the OPLS-AA/SGB energy model clearly outperforms the six

empirical scoring functions examined in the Park and Levitt work. Moreover,

none of the empirical scoring functions examined by Park and Levitt was able to

consistently rank first the native conformation, whereas the OPLS/SGB model

does.

It is instructive to evaluate the importance of each component of the OPLS-

AA/SGB energy function in recognizing native conformations. Because all the

decoys are well-packed, there is very little discrimination based on packing (as

measured by the van der Waals energies) of the non-native states from the near-

native conformations. In order to establish the role of intramolecular and solvent

electrostatic interactions, we have calculated the energy scores in vacuum, Uvac
tot ,

using the same protocol used for the calculations in continuum solvent. The

results are summarized in Table III. For several proteins the native conformation

does not correspond to the minimum energy, and decoys with large RMSD from

the native have very favorable scores. The native Z score and the near-native

average Z scores have also significantly degraded (compare Tables II and III).

This can be clearly seen in Fig. 3 showing the energy RMSD correlation plots
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for the seven proteins studied. The gain achieved by including the solvation

term is particularly noticeable for the 3icb data set. Figure 4 shows the

distribution of energy gaps from the native for the 3icb decoys using either

the vacuum OPLS-AA energy or the OPLS-AA/SGB energy. A shift of the

distribution to positive values indicates that no decoy structures have energies

lower than the native structure. Vacuum energies are scattered above and below

the native state energy with little correlation between energy and structural

similarity. The OPLS-AA/SGB energies produce a sharper distribution than the

vacuum energies. It is clear that for this decoy set the vacuum energy is

significantly poorer than the energy in solution in discriminating native folds.

An important contribution to protein stability arises from the tendency for

packing nonpolar side-chains in the interior of the proteins and placing polar

residues on the solvent exposed surface of the protein [75,76]. These tendencies

are not represented well by the intramolecular potential in vacuum, which in

general is equal to the strength of interaction between two nonpolar residues and

between a nonpolar residue and polar residue and does not particularly favor the

placement of a polar residue on the protein surface. The solvation energy

calculated using the SGB model, however, reproduces hydrophobic interactions

and favors the placement of polar residues on the protein surface where they can

interact strongly with the solvent. The presence of a hydrophobic core and a

polar surface is a key feature of the native protein conformation in solution.

Several empirical scoring function have been designed to recognize these

features [20,60,65,66,62]. A model that does not take into account solvation

effects is likely to perform poorly in native fold recognition among large

numbers of compact decoys.

Another important function of dielectric continuum models is to dampen the

strength of the electrostatic interactions between polar and charged residues.

Conformations having salt bridges and intramolecular hydrogen bonds are

TABLE III

Vacuum OPLS-AA Results: The Minimized Energy, Unative, of the Native Conformation; the Energy

Gap, min (�U), and the RMS Devition Between the Best-Scoring Decoy and the Native

Conformation; the Native Z-Score Znat and the Average Z-Score �Znat-like of the

Native-like Conformations of the Park and Levitt Decoy Sets [60]

PDB Name Unative min(�U) RMSD Znat
�Znat-like

1ctf �2795.74 þ43.68 6.49 �2.62 �0.51

1r69 �2489.72 þ76.49 1.65 �3.03 �0.42

1sn3 �2495.10 þ0.04 1.42 �3.10 �0.59

2cro �1122.06 �35.12 0.93 �2.37 �0.68

3icb �2795.74 �282.69 1.19 �0.63 �0.84

4pti �1324.06 þ37.53 6.21 �2.97 �0.71

4rxn �3581.88 �8.95 1.60 �2.47 �1.13
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Figure 3. Vacuum OPLS-AA: Energy gap/RMS correlation plots for the Park and Levitt decoy

sets.
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strongly favored in vacuum, but much less so in solution. The SGB implicit

solvent model provides a mechanism to filter out non-native conformations with

artificially low intramolecular electrostatic energies that would be otherwise

given a favorable score.

In these calculations, all charged interactions are included in the total energy;

employing a cutoff for atom–atom interactions destroys the correlation between

low energy values and native-like structures. Figure 4 shows that the proper

evaluation of the long-range Coulomb interactions is crucial in selecting native

conformations. If the electrostatic interactions are spatially truncated, many

non-native structures assume lower total energies than do the native structure.

As shown in Fig. 4, the correlation between energy and structural similarity

using the OPLS-AA/SGB force field with a nonbonded cutoff of 9 Å is poor.

This is a direct consequence of neglecting the long-range part of Coulomb

interactions and is aggravated by the highly charged nature of some of the

proteins examined (see Table I).

B. Holm and Sander Single Decoys

Recognizing single misfolded structures that have been carefully selected or

devised as possible alternate folds poses a different challenge than distinguishing

native-like states in large decoy data sets. Instead of picking native-like

conformations among a large set of decoys, the challenge is to differentiate

between two well-folded proteins, one of which corresponds to the native state.

In the decoy set of Holm and Sander [17], misfolded conformations were

constructed by swapping parts of the polypeptide chains with segments from
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Figure 4. The distribution of energy gaps from the native for the 3icb data set of the Park and

Levitt decoys using various energy functions.
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known crystal structures. The proteins in the Holm and Sander set cover a wide

range of sizes, from 36 residues for the smallest protein to over 300 residues for

the largest protein. Figure 5 reports the energy gaps from the native of the

misfolded proteins using the vacuum OPLS-AA energy and the OPLS-AA/SGB

energy. The misfolded conformations are compact and have RMSDs from the

native of 8 Å or more. Both the vacuum OPLS-AA and the OPLS-AA/SGB

models are successful in ranking the native structures higher then the corres-

ponding misfolded decoys; the only exception is for the avian pancreatic

polypeptide (1ppt), a small 36 residue polypeptide, using the vacuum OPLS-AA

model. Although smaller energy differences are generally correlated with higher

structural similarity (see Fig. 5), the smallest (
8 Å) RMSD structure in this

data set is well above the RMSD threshold of 
4 Å, above which energy and

structural similarity were no longer correlated for the proteins in the Park and

Levitt set.

The apparent correlation between RMSD and energy gap visible in Fig. 5 is

mostly due to the fact that the RMSDs and the energy gaps increase with

increasing protein size. As shown in Fig. 6, the energy gaps grow roughly

linearly with the sequence length of the protein (a slightly better correlation is

observed when using the OPLS-AA/SGB model). The energy gaps calculated

using the OPLS-AA/SGB model are generally of the same relative magnitude,

when normalized by size, as the energy gaps calculated for the Park and Levitt

set. This confirms that the energy function used here can discriminate between

native and misfolded structures over a wide range of protein sizes.
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ponding native conformations, using the vacuum OPLS-AA and the OPLS-AA/SGB potentials.
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C. CASP3 Targets

We have also analyzed some of the structures submitted to the CASP3 competi-

tion [67]. The target proteins are listed in Table IV. Our results are shown in

Fig. 7, which shows the differences between the energy of each predicted

structure and the energy of the corresponding native conformation. The targets

can be divided into two groups: the ‘‘easy’’ targets for which the majority of the

predicted models have an RMS deviation from the native of 3 Å or less, and the
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Figure 6. Protein size dependence of the energy gaps from the native of the misfolded protein

structures from the Holm and Sander [17] data set.

TABLE IV

A Summary of the CASP3 Target Evaluated in this Studya

Target Nres Resolution (Å) Nres Predicted Models Class RMS (Å) PDB

T0043 158 1.5 158 8 a/b 14.2–16.8 1hka

T0047 162 2.5 158 14 mostly b 1.3–1.9 1a2u

T0052 101 NMR 101 8 all b 13.7–17.1 2ezm

T0055 125 2.0 123 17 mostly b 2.8–7.4 1byf a

T0058 229 1.6 225 10 a/b 1.6–3.3 1eug

T0060 117 1.54 117 17 a/b 1.3–5.2 1dpt

T0064 111 1.9 103 22 All a 7.8–19.1 1b0n a

T0065 57 1.9 31 49 All a 2.7–10.1 1b0n b

T0068 376 1.9 376 4 Mainly b 8.9–18.5 1bhe

T0082 190 1.75 190 12 aþ b 4.6–19.3 1bk7

T0085 211 2.6 211 6 Mostly a 17.8–22.9 1bvb

aOut of the structures predicted by the participants in CASP, we have selected those that have near-

or full-length predictions only and whose PDB coordinates were available at the time of this study.
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difficult targets in which none of the predicted models is native-like (RMS

deviations from the native of 10 Å or more). For a few of the targets the

predictions ranged from near-native (<3 Å) to non-native (>3 Å).

As shown in Fig. 7, the OPLS-AA/SGB model achieves nearly 100%

discrimination of the native conformations. Only a few predictions, structurally

similar to the native, score slightly better than the native. The vacuum OPLS-

AA energy function does not perform as well as the OPLS-AA/SGB energy

function; several high-RMS predictions for the T0055, T0058, T0064, and

T0065 targets have scores significantly lower than the native. As observed for

the Park and Levitt [60] decoy set, neither the vacuum OPLS-AA nor OPLS-

AA/SGB energy functions are able to differentiate between models with large

RMS deviations from the native; that is, a 15 Å structure can easily score better

than a 10 Å structure.

D. Energy Components

The ability of a scoring function to discriminate between native and non-native

conformations depends on the delicate balance between the components of the

scoring function [1,20,60,66,62]. As described in this section, we find that,

although some combinations of energy components show improvement over
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T0085 (1bvb).
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each individual component, the total OPLS-AA/SGB energy is the best scoring

function overall.

An analysis of the energy components of Eqs. (1) and (2) presented in Fig. 8

shows that for the Park and Levitt data set (Table I), containing only well-

packed structures, the van der Waals energy difference with respect to the native

is positive for most of the decoys. The van der Waals energy, however, does not

strongly correlate with structural similarity to the native. This point is illustrated

in Fig. 9, which shows the distribution of energy gaps from the native of both

the native-like (RMSD <3 Å) and misfolded (RMSD >3 Å) 3icb decoys. In

contrast, the discriminating power of the total OPLS-AA/SGB energy is

indicated by the relatively small overlap between the native-like and misfolded

distributions of energy gaps (see Fig. 9). A similar separation is not achieved

with the van der Waals energy, indicating that the van der Waals energy alone

does not provide good discrimination when used as a scoring function.

The electrostatic energy components, the intramolecular Coulomb energy,

and the solvation energy, taken individually, are not effective scoring functions;

the sum of the two, however, is significantly better as indicated in Figs. 10

and 11 (Ew ¼ 1 distribution). As shown in Fig. 10, the solvation energy is

strongly anticorrelated with the electrostatic energy. A positive intramolecular

electrostatic energy gap from the native is counteracted by a negative solvation

energy gap, and vice versa. Because the solvation energy does not completely

offset the intramolecular electrostatic energy, decoys having an intramolecular

electrostatic energy less favorable than the native will generally continue to
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have a less favorable total electrostatic energy (intramolecular þ solvation)

with respect to the native. The contribution of the solvation energy term,

however, is large enough to reverse the sign of the energy gap for those decoys

having an intramolecular energy more favorable than the native, for which there

are many examples in the Park and Levitt set (see Fig. 11). The native state
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corresponds to a balance between optimizing the intramolecular Coulomb

interactions and the intermolecular protein–solvent interactions.

Monge et al. [20] have also studied various energy decompositions of an all-

atom force field supplemented by a continuum solvation model. They analyzed

a decoy data set generated by a simplified model employing a fixed, known

secondary structure. The authors observe that the relative differences of both

van der Waals and Coulomb energies are about 1–2% above the native values,

but the total electrostatic component is the dominant factor in distinguishing

non-native states from the native ones. They found that a fraction of the decoys

had vdW energies lower than that of the native. Their model performed

reasonably well, though some non-native conformations had better scores

than the native state. This was not observed in the data sets we studied using

the OPLS-AA/SGB scoring function.

E. Approximate Effective Dielectric Models

1. Screened Coulomb Approximation

As shown in Fig. 10, the solvation energy gaps with respect to the native are

strongly correlated with the intramolecular Coulomb energy gaps. The equation

�USGB ¼ aþ b�UCoulomb ð9Þ

can be fitted obtaining b ¼ �0:82 with a regression coefficient of 0:94. If we

collate the total electrostatic interaction energy �Uele as the sum of the Coulomb
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and solvation energies, we find

�Uele � �UCoulomb þ�USGB ffi 0:18�UCoulomb ð10Þ

This suggests that it might be possible to employ a screened Coulomb model to

account for solvation effects.

The screened Coulomb effective electrostatic interaction between two

charges q a distance r apart is

UCoulombðrÞ
Ew

¼ q2

Ewr
ð11Þ

The effect of the surrounding medium is accounted for by the value of Ew, usually

taken as 80 for water. Figure 11 shows the energy distributions for the 3icb decoy

set relative to the native state for the vacuum case and for various values of the

effective dielectric constant. A good energy function should only produce energy

gap values in the positive range. It is clear that for this decoy set, a simple

electrostatic energy evaluation in vacuum (Ew ¼ 1) results in many decoy

structures with energies substantially below the native values. Moreover, no

correlation between the RMSD from the native and the energy is observed.

Increasing the value of the effective dielectric constant removes some of the

negative energy gaps and increases the propensity for the low-energy decoy

structures to have low RMSD (not shown). None of the effective dielectric

constants used, however, was able to differentiate all of the decoys from the

native structure. This point is also illustrated in Fig. 2, which depicts the fraction

of native-like structures with energy gaps from the native less than �U using

Ew ¼ 5:5 as suggested by the relation in Eq. (10). It is clear that the screened

Coulomb scoring function provides less discrimination between decoys and

native structures than does the SGB solvation model.

If a simple relationship between the reaction field energy calculated via the

SGB model and the Coulomb energy as in Eq. (11) could be found, there would

be no need to employ more complicated continuum models. Although the bulk

of the correlation between these two terms can be explained by a screened

Coulomb interaction, the discrimination between native and non-native states is

degraded by such an approximation. The dispersion in the reaction field energy

versus the Coulomb energy, which is not contained in the screened Coulomb

model, provides a more detailed description of solvation effects which aids the

discrimination of native-like conformations from misfolded ones.

Although the SGB solvation energy is correlated with the intramolecular

Coulomb energy, it is not clear that the best values to use for an effective

dielectric constant is given by Eq. (10). The fraction of native-like structures

with energy gap less than a given energy difference calculated over all the data
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sets in Table I, reported in Fig. 12, shows the efficiency achieved using different

values of Ew. None of the effective dielectric models achieves 100% discrimina-

tion for energy values within 20 kcal/mol of the native state energy. Using

Ew ¼ 1 yields a broad range of energies for both native-like and non-native

states as discussed above. In comparison, using a value of Ew either 5:5 or 80:0
yields distributions of energies that are like those given in Fig. 11 for the

calbindin data set. The fraction of native-like structures with energies similar to

the native state is around 60% for an effective dielectric constant of 80.0. This

fraction increases to about 75% for an Ew value of 5.5.

2. Distance-Dependent Dielectric Approximation

An alternative to the simple screened Coulomb interaction in protein modeling is

the distance-dependent dielectric function [51]. In this approximation the

effective electrostatic interaction between two partial charges q at distance r is

written as

UCoulombðrÞ
Ewr

¼ q2

Ewr2
ð12Þ

Although unphysical in nature, it has been suggested that the extra screening

afforded by the 1=r2 function can capture some of the additional polarization

effects contained in higher-level implicit solvent models [51]. By calculating
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the energies of the decoy conformers in Table I using the distance-dependent

dielectric approximation, we obtain energy distributions similar to those

obtained using the simple screened Coulomb model. Moreover, as shown in

Fig. 2, both effective dielectric models produce qualitatively similar results.

For both values of Ew studied, 1.0 and 5.5, the fraction of native-like structures

with energy similar to the native energy, is significantly less than 100%.

Comparison between the distance-dependent dielectric and the non-distance-

dependent dielectric function in Figs. 12 and 2 demonstrate that the distance-

dependent function is less discriminatory for the decoy data sets studied here.

While the distance-dependent dielectric constant has been successfully

employed in some cases [77], we find that, though it is better than the vacuum

Coulomb potential, a simple non-distance-dependent screened Coulomb model

is more effective (Fig. 12). None of the screened Coulomb models are as

effective as the SGB solvation potential for the protein decoy data sets investi-

gated here.

F. Dependence on the Interior Dielectric Constant

The SGB solvent model requires the separation of space into an exterior region

containing the solvent medium and an interior region containing the protein

charge distribution. In the current implementation of the SGB model, the van der

Waals surface of the protein is used to define the dividing surface. The default

value for the dielectric constant of the solvent is 80, corresponding to pure water

at room temperature. Up to this point, the dielectric constant of the interior

region, Ein, has been set at the value of 1, corresponding to the vacuum dielectric

constant. We have also examined the cases Ein ¼ 2 and 5.5 to see whether the

OPLS-AA/SGB results can be further improved. The energy components

obtained for the native conformations contained in the Park and Levitt set are

given in Table V. A larger interior dielectric constant results in a lower total

energy of the system due to the increase of the dielectric shielding inside the

protein. The Coulomb energy and the reaction field contributions are both

reduced in an amount roughly proportional to the interior dielectric constant. The

van der Waals energy partly compensates for the reduction in electrostatic

energy, but the variation in Unative
vdW is relatively small.

The fraction of native-like decoys of the Park and Levitt set as a function

of energy gap is shown in Fig. 13 for the values of Ein examined. The number

of native-like conformations (RMSD <3 Å) with an energy score similar to

the native increases as we decrease the dielectric constant of the interior

region. It is only with an interior dielectric of 1.0 that all misfolded conforma-

tions can be eliminated based on energy alone. The discriminatory power of the

OPLS-AA/SGB energy model in this fold recognition test is optimal for this

choice of the internal dielectric, though it may not be optimal in other modeling

contexts.
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Figure 13. Fraction of the Park and Levitt decoys with energy gap from the native less than

�U which are native-like (RMSD from native < 3 Å), using the OPLS-AA/SGB potential with

various values of the interior dielectric constant.

TABLE V

Selected Energy Components from Eqs. (1) and (2) for the Native State Using the Continuum Model

ðEw ¼ 80:0Þ as a Function of Interior Dielectric Constant, Ein

Unative
total Unative

vdW Unative
Coulomb Unative

SGB Unative
cav

PDB Ein (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

1ctf 1.0 �4213.9 �475.5 �5340.3 �1367.6 þ37.9

2.0 �2065.9 �519.7 �2595.2 �688.3 þ38.4

5.5 �730.6 �532.8 �925.5 �244.0 þ38.7

1r69 1.0 �3499.5 �497.2 �3722.9 �1168.9 þ37.2

2.0 �1709.9 �539.0 �1781.7 �593.3 þ37.7

5.5 �599.5 �554.3 �627.9 �210.8 þ38.1

1sn3 1.0 �3467.5 �465.1 �4784.2 �972.8 þ36.3

2.0 �1688.1 �499.8 �2315.2 �500.3 þ36.8

5.5 �585.3 �511.8 �821.5 �180.1 þ37.1

2cro 1.0 �3628.3 �522.4 �3514.8 �1462.2 þ40.4

2.0 �1763.1 �567.2 �1662.8 �749.7 þ41.0

5.5 �604.8 �578.9 �585.2 �264.8 þ41.4

3icb 1.0 �4694.5 �587.3 �5163.5 �2350.6 þ45.4

2.0 �2271.4 �641.0 �2466.5 �1195.6 þ46.1

5.5 �766.8 �656.8 �865.7 �427.2 þ46.4

4pti 1.0 �3055.0 �423.9 �2542.0 �1366.9 þ34.1

2.0 �1464.2 �448.4 �1208.6 �686.6 þ34.6

5.5 �473.2 �455.1 �425.0 �240.9 þ34.8

4rxn 1.0 �3363.5 �373.6 �2496.6 �2791.5 þ31.3

2.0 �1598.8 �399.3 �1190.1 �1389.9 þ31.6

5.5 �498.1 �407.6 �410.9 �489.1 þ31.8
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IV. CONCLUSIONS

The OPLS-AA molecular mechanics energy function coupled with the surface

generalized Born solvation model is found to be able to discriminate the native

structures of several proteins from their decoys. The results show that for a

number of cleverly constructed decoys the OPLS-AA/SGB scoring function

correctly singles out native-like states from the bulk of the non-native confor-

mations. Not all of the native-like structures were clearly separated in the data

sets; indeed some distant non-native conformations score better than some native-

like (RMSD <3 Å) conformations. This suggests that if the current scoring

method is to be applied to a set of ab initio generated structures, it is critical that

the algorithm for constructing native-like structures be such that a broad range of

the relevant parts of the native-like conformational space are sampled.

The ability of the OPLS-AA/SGB model to recognize native conformations

is found to be comparable, and in many cases superior, to the best knowledge-

based scoring functions. Other studies have shown the usefulness of molecular

mechanics force fields augmented by implicit solvation models in this area [6].

Lazaridis and Karplus [22] have shown that the CHARMM protein force field

combined with their EEF1 effective solvation free energy model [78] is able to

achieve 100% discrimination of the native conformations in a large decoy data

set and in the single decoy data set they examined. They also observe, in

agreement with our findings, that significantly poorer results are obtained by

omitting the solvation free energy term. They obtain these results despite the use

of a computationally fast solvation model which has the form of an effective

pair potential and is simpler than the SGB solvation model. Recently, Petrey and

Honig [79] have applied the CHARMM protein force field, together with a

dielectric continuum model based on the Poisson–Boltzmann equation, to the

problem of native fold recognition in the single decoy data set [17] (also

examined in this work) achieving a discrimination level close to 100%. They

also applied a simplified solvation model containing only the intramolecular

electrostatic energy and a hydrophobic residue burial estimator to evaluate the

Park and Levitt decoy sets. In two cases (3icb and 4rxn) their method does not

clearly rank the X-ray conformation favorably. Petrey and Honig observe that

the solvation energy often favors the misfolded conformation in the single-

decoy sets, concluding that the solvation energy is not useful in recognizing the

native conformation. However, even though the solvation energy generally

favors misfolded conformations, these structures tend to be disfavored relative

to the native conformation when the total electrostatic energy (sum of the direct

Coulomb and solvation term) is considered. In contrast, the SGB solvation term

is essential for destabilizing the relatively large number of Park and Levitt

decoys for which the direct Coulomb energy is more favorable than the

corresponding value for the native.
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The OPLS-AA/SGB scoring function was also compared with the screened

Coulomb OPLS-AA scoring function. Whereas a significant fraction of the

decoys with scores within 100 kcal/mol from the native are misfolded using a

screened Coulomb potential, essentially all of the decoys within 100 kcal/mol

from the native are native-like using the OPLS-AA/SGB scoring function.

The ability to discriminate native-like protein conformations from non-native

conformations is one of the fundamental problems in theoretical protein

structure prediction. The use of knowledge-based scoring potentials, derived

from a combination of structural and thermodynamic data, is currently the most

widely used method. It is often assumed that such models are inherently better

than all-atom force fields. This work shows the importance of correctly

modeling the physical forces underlying protein folding. Thanks to their

simplicity, knowledge-based scoring schemes are less costly to evaluate com-

pared to all-atom models. In the future it should be possible to combine the best

features of the two approaches to rapidly generate plausible protein conforma-

tions using knowledge-based potentials more reliably, and then discriminate

between conformers using all-atom scoring functions.
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