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Foreword

This Cargèse school of Particle physics is meant to bridge the narrow-
ing gap between astrophysical observations and particle physics. The
lectures supply the students with a theoretical background which covers
several aspects of the cosmological scenario: matter-antimatter asymme-
try, the nature of dark matter, the acceleration of the expansion and the
cosmological constant and the geometry of the universe as well as mod-
ern views on particle physics including supersymmetry, extra dimensions
scenarii and neutrino oscillations.

ix



Preface

The investigation of nuclear abundances by Alpher, Bethe, and Gamow
(1948) was the first intrusion of subatomic physics into cosmology. In
contrast with their assumption, most nuclear species are now known to
be produced in stars, but their bold step led to predictions which have
largely been proven to be right:
-a crude estimate of the densities during primordial nucleosynthesis
-the presence of a residual 3K radiation today.
the issues they addressed are still relevant. The origin of matter is not
fully understood,and the CMB has grown into a powerful tool to inves-
tigate the early eras of the universe.

The progress of cosmological observations has now led to a ’standard’
slow-roll inflation model, which accounts quantitatively for many ob-
served features of the universe. As the lectures will show, it still leaves
large unchartered areas, and the underlying particle physics aspects are
yet to be elucidated.

At the same time despite the unprecedented success of the Stan-
dard Model of fundamental interactions there are still remaining ”white
spots”. Possible physics beyond the SM may have its manifestation
in astrophysics and cosmology which may serve as a sky laboratory to
reveal the new features of the microworld.

The present volume contains the collection of lectures on the hottest
topics in particle physics and cosmology given by the experts which
describe the modern status and the perspectives of development of ex-
perimental and theoretical activities in these fields.
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ELECTROWEAK SYMMETRY BREAKING
AS OF 2003, ON THE WAY TO THE LARGE
HADRON COLLIDER∗

Riccardo Barbieri
Scuola Normale Superiore and INFN, Pisa, Italy
riccardo.barbieri@sns.it

Abstract I review the status of the ElectroWeak Symmetry Breaking problem.
The lectures are naturally divided into two parts. The first is mostly de-
voted to overview the impact of current data on the issue of EWSB. The
tools are known, the latest data are included. Always in the first part,
I say why I care about the ”little hierarchy” problem and I summarize
how some proposals for EWSB, recent and less recent, are confronted
with this problem. Motivated by these considerations, in the second
part I describe the essential features of a proposal for breaking super-
symmetry, and consequently the electroweak symmetry, by boundary
conditions on an extra dimension.

Keywords: Electroweak, Symmetry, Breaking, Higgs mass, Supersymmetry, Kaluza-
Klein, MSSM

The data (their interpretation) summarized
There are several good reasons for being interested in the problem

of how the electroweak symmetry gets broken. Above all, the physical
origin of the Fermi scale has not been identified, yet. Consequently, and
not less importantly, this ignorance acts as a cloud on every attempt
to design a theory of the fundamental interactions beyond the Standard
Model (SM). Last, but not least, the exploration of the TeV scale of
energy expected at the Large Hadron Collider (LHC) should finally allow

∗Lectures given at the Cargese School of Physics and Cosmology - August 2003 - Cargese -
France
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2 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

a direct comparison with experiment of every theoretical idea on this
matter.

These are not the first lectures on the subject of ElectroWeak Sym-
metry Breaking (EWSB). Nevertheless, I find that it may be useful to
overview the present status of the subject when we still have a few years
before the start of the LHC and when the program of the ElectroWeak
Precision Tests (EWPT), in particular with the completion of most of
the data analyses by the LEP experiments, is in a mature stage.

The EWPT are still the most important source of experimental in-
formation, although indirect, on EWSB. It so happens that I already
lectured in Cargese on the EWPT in 1992, when the accumulation of
significant experimental results on the EWPT was about to start and
the top quark had not yet been discovered. At that time the bulk of
the radiative effects seen in the data was still of electromagnetic origin.
Now we know that several per-mil effects of pure electroweak nature are
crucial in allowing an effective description of the data and that these
effects are contained in the SM. Things might have gone differently.

What is it then that we learn on the EWSB problem? Among the
conclusions of my 92 lectures, I argued that the program of the EWPT
should have made possible to discriminate between a perturbative and
a strongly interacting picture of EWSB, the prototype examples for the
two cases being respectively supersymmetry and technicolor. It is now
pretty clear that the data support a perturbative more than a non per-
turbative description of EWSB, as illustrated more precisely later on.
Inside this framework, a relevant piece of information, also coming from
the EWPT is the indication for a light Higgs, most likely lighter than
about 200 GeV. All this seems in fact to make a rather coherent picture
of EWSB, and maybe it does. I will argue, however, that the direct
lower limit on the Higgs mass, mH > 115 GeV [1], and the absence so
far on any deviation from the expectations of the SM may also require
some interpretation with a possible impact on the picture of EWSB.

The lectures are naturally divided into two parts, to be found in Sec-
tions 2 and 3 respectively. The first is mostly devoted to overview the
impact of current data on the issue of EWSB. The tools are known,
the latest data are included. Always in the first part, I will illustrate
why I care about the ”little hierarchy” problem and I will summarize
how some proposals for EWSB, recent and less recent, are confronted
with this problem. Motivated by these considerations, in the second
part I will describe the essential features of a proposal for breaking su-
persymmetry, and consequently the electroweak symmetry, by boundary
conditions on an extra dimension. In Section 4 I summarize the line of
reasoning that motivates mostly these lectures and I conclude.
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1. Un updated overview

1.1 The data (their interpretation) summarized
Experiment versus theory with generic ”oblique” corrections.

I begin by referring to the data on the EWPT from the LEP, TEVA-
TRON and SLC experiments, as summarized by the LEP ElectroWeak
Working Group in the summer of 2003 [2]. These data allow a stringent
test of the SM, sensitive to the radiative corrections of electroweak na-
ture. The test is successful, with no serious reason of concern, in my
view, for those measurements that appear in some tension with the SM
prediction.

The EWSB sector of the SM has some impact on this test. For this
very reason, taking into account that this is the physics whose nature
we are wondering about, one has advocated since the beginning of the
experimental program an analysis valid in a broader class of theories.
Such are those theories that differ from the SM only in the so called
”oblique” corrections [3], i.e. those corrections that come from vacuum
polarization amplitudes of the vector bosons. To this purpose one has de-
fined three dimensionless experimental quantities, εi, i = 1, 2, 3, [4] with
the property that they encapsulate, among other effects, the ”oblique”
corrections. Furthermore, since one of them, ε2, is unlikely to contain
new physics, one often freezes it to its SM value 1. Fig. 1 shows the
determination of the two remaining parameters, ε1 and ε3, with their
correlation, as obtained from the set of data mentioned above. In the
same Figure, the SM prediction is indicated for different values of the
Higgs mass.

The ”oblique” contributions to ε1 and ε3 can be expressed in terms of
the transverse components of the usual vacuum polarization amplitudes
Πa,b(q2), with a, b = 1, 2, 3 for the SU(2) or a, b = B for the U(1) gauge
bosons, as

∆ε1 =
Π33(0) − Π11(0)

M2
W

, (1)

∆ε3 =
g

g′
Π′

3B(0), (2)

where g and g′ are the SU(2) and U(1) gauge couplings.
The data speak by themselves. The agreement with the SM is remark-

able and constitutes indirect evidence for the existence of the Higgs. It
has even become difficult, if not impossible at all, to try to reconcile

1The slight dependence of ε2 on mH is practically irrelevant. Here ε2 is taken at mH =
115 GeV .
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Figure 1. ε1 and ε3, with their correlation, as determined from the EWPT. The
SM prediction is indicated for different values of the Higgs mass.

with the data a heavy Higgs, in the TeV range of mass where the very
concept of the Higgs becomes elusive, by adding an extra negative con-
tribution to ε3. As commented below, a positive extra effect on ε1, or a
combination of two effects, would appear more useful in this respect. On
the other hand, and always with a heavy Higgs, a positive extra contri-
bution to ε3 above 2 units in 10−3 is excluded, no matter what ε1 does.
If there is a Higgs, which seems more likely, Fig. 1 makes also clear the
preference of the EWPT for a low mass value, close to the direct lower
bound of 115 GeV.

Constraining the cut-off of the SM. An alternative way to try to
appreciate the impact of the EWPT is to view the Lagrangian of the SM
as an effective low energy theory with possible modifications introduced
by operators O(4+p)

i of dimension (4 + p),

Leff (E < Λ) = LSM +
∑
i,p

ci

Λp
O(4+p)

i . (3)

How does this modified Lagrangian compare with the most recent EWPT
[5]? Table 1 gives a list of some gauge invariant operators, together with
the lower limit that the same EWPT set on the scale Λ that multiplies
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Dimension six operator ci = −1 ci = +1

OWB = (H+σaH)W a
µνBµν 9.0 13

OH = |H+DµH)|2 4.2 7.0

OLL = 1
2
(L̄γµσaL)2 8.2 8.8

OHL = i(H+DµH)(L̄γµL) 14 8.0

Table 1. 95% lower bounds on Λ/TeV for the individual operators (and the coeffi-
cients ci as indicated) with mH = 115 GeV . σa are the Pauli matrices acting on the
SU(2)L doublets.

each of them. One operator at a time is taken, with the dimensionless
coefficients ci = +1 or ci = −1 (the interference with the SM amplitude
matters) and the Higgs mass (which affects the SM amplitude) at 115
GeV.

Table 1 gives a feeling on the possible lowest energy at which a change
of regime can intervene relative to the SM physics, called the ”cut-off ”
of the SM. To be able to make a more precise statement, the coefficients
ci would have to be known. On general grounds, the most important
conclusion from Table 1 is that, if a new strong interaction intervenes at
Λ, it is unlikely that this scale be lower than about 10 TeV. A different
statement might be defendable, but only on a case by case basis.

In the case of the operators OWB and OH , but only in these cases,
there is a direct connection of Table 1 with Fig. 1, since these operators
affect the EWPT only by contributing to the ε-coefficients, via

δε3(OWB) =
2g

g′
cWB

v2

Λ2
, (4)

δε1(OH) = −cH
v2

Λ2
. (5)

It is also clear therefore that a theory capable of modifying the SM by
the inclusion of a single dominant operator OH would allow a fit to the
EWPT with a heavier Higgs (with cH = −1 and a corresponding scale
lower than in Table 1) [6, 5].

1.2 The ”little hierarchy” problem
It is generally believed by many, including myself, that the discovery

of the Higgs would not identify, per se, the physical origin of the Fermi
scale. It is also a widespread opinion that the LHC experiments will
reveal new phenomena related to EWSB and not included in the SM. Let
us review the argument that supports this view. The general argument
is old. Its numerical terms are new inasmuch as one uses in an essential
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way the precise knowledge of the top mass and the indirect information
on the Higgs mass, as just described.

For a fixed value of the Higgs vacuum expectation value (vev) or of
the Fermi scale, the physical Higgs mass can either be computed from
the quartic Higgs coupling or from the curvature of the Higgs potential
at zero field. Using this last quantity, the one loop radiative correction
to the squared Higgs mass in the SM is

δm2
H =

6GF√
2π2

(m2
t − 1/2m2

W − 1/4m2
Z − 1/4m2

H)
∫ Λ

EdE, (6)

where E =
√

k2, k is the momentum running in the loop, and terms
of relative order (m/Λ)2 for any particle mass are neglected. For the
cut-off of the integral, taken equal for all the individual contributions,
the use of the same symbol as the one employed for the cut-off of the SM
is not without reason. As apparent from eq. (6), if one accepts that the
Higgs mass is below 200 GeV, as I do in the following unless otherwise
stated, the top loop contribution, proportional to the top mass squared,
is clearly dominant. Furthermore it becomes numerically significant for
a pretty low value of Λ, since, using mt = 174GeV ,

δm2
H,top(SM) ∼ (115GeV )2(

Λ
400GeV

)2. (7)

It will be useful for later use to define a kind of ”Higgs mass spectral
function” ∆m2

H(E) which enters the expression of the radiative Higgs
squared mass as

δm2
H ≡

∫ Λ dE

E
∆m2

H(E). (8)

In the SM, ∆m2
H(E) grows quadratically with E, it becomes rapidly

large and it gives the main contribution to the Higgs mass for E close
to the cut-off where it cannot be trusted.

Eq. (7) is the main argument for expecting new physics to show up
at the LHC. How can it possibly be that ∆m2

H(E) keeps growing un-
modified up to energies unaccessible to the LHC, when already at 400
GeV the radiative correction to the Higgs mass is around the best value
implied by the EWPT as discussed above? Note that this is not an
inconsistency of the SM. Since the curvature of the Higgs potential is a
free parameter of the SM Lagrangian, it only takes a little counterterm
to subtract away the loop effect that we are discussing. I prefer to think
- or to assume, or to hope, as one prefers - that the Higgs mass is what
it is not as a result of a fortuitous cancellation between δm2

H,top and
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the counterterm or any other effect. For this to be the case, a physical
mechanism must prevent ∆m2

H(E) from growing. In turn, this physical
mechanism, not included in the SM, should give effects observable at the
LHC.

Ideally, one would like to be quantitative here and be able to estimate
at which energy these new phenomena should show up, since this is
likely to be crucial for a test at the LHC. This is possible in specific
models and, if it is the case, for a given amount of fine tuning that
one is willing to tolerate. On general grounds, however, it is possible
to say that the physical mechanism that dumps ∆m2

H(E) has to pass
a nontrivial test: it must not disturb the agreement of the SM with
the EWPT, as summarized in the previous Section. To find such a
mechanism, involving a minimum amount of tuning among otherwise
uncorrelated parameters, is to solve the ”little hierarchy” problem [7].
The hierarchy is between the Higgs mass, supposedly close to 100 GeV ,
and the lower limit on the cut-off of the SM, as elaborated upon always
in the previous Section.

1.3 Some ideas on EWSB with a light Higgs
In this overview, I find it useful to comment on two proposal for

EWSB, since they may accommodate or even imply a light Higgs, while
addressing at the same the ”little hierarchy” problem. One is EWSB
triggered by supersymmetry breaking, as in the Minimal Supersymmet-
ric Standard Model (MSSM). The other assumes some new strong force
which gives rise to a pseudo-Goldstone boson with the quantum numbers
of the standard Higgs, supplemented with the mechanism that goes un-
der the name of ”little Higgs”. A general overview of these two schemes
goes beyond the scope of these lectures. Rather I concentrate my atten-
tion on the way they tackle the ”little hierarchy” problem.

The Minimal SuperSymmetric Standard Model. The MSSM
neatly implies a light Higgs and a perturbative dynamics of EWSB. The
Higgs is light because the quartic Higgs coupling is a gauge coupling.
The perturbative dynamics gives, in principle, the easiest way to solve
the little hierarchy problem. The MSSM has indeed no special problem
in preserving the success of the SM in describing the EWPT. The effort
that has gone and will possibly go in MSSM studies appears therefore
well justified. The most important question nevertheless remain. Where
are the supersymmetric particles? Even more concretely, which are the
chances that they will be seen at the LHC? The possible answer, at
the present state of knowledge, goes inevitably back to the fine tuning
problem in the curvature of the Higgs potential [8].
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As well known, the MSSM involves two Higgs doublets. For the
present purposes, however, there is no essential loss in assuming that
the vev taken by one of them, the one that couples to the up quarks,
is far bigger than the vev of the other, i.e., in the familiar notation,
tanβ � 1. In this case the previous discussion applies unaltered and we
can focus, as before, on ∆m2

H,top(E).
The way taken by the MSSM in dumping ∆m2

H(E) is almost too well
known to be recalled here. In the case of ∆m2

H,top(E), the exchange
of the stops freeses it when E crosses their masses and keeps it cons-
tant up to the scale - call it ΛSB - where these masses are generated by
the specific mechanism of supersymmetry breaking and supersymme-
try breaking transmission. In this way, in logarithmic approximation,
δm2

H,top is modified into 2

δm2
H,top(MSSM) ∼ 6GF m2

t√
2π2

m2
ST log

ΛSB

mST
∼ 0.15 m2

ST log
ΛSB

mST
, (9)

where mST is a suitable average of the stop masses. and can be sizeable
if mST is big enough. But a big mST brings back the problem in eq. (9),
since δm2

H,top grows quadratically with it. Recent studies [9] in the
complex space of the MSSM parameters in its supergravity version [14]
(but the situation in gauge-mediated models [11] is not better) confirm
this simple argument and set in at least a factor of 20 the cancellation
required against the term in eq. (9) - or its counterpart - with a favorable
choice of various parameters ( At, tanβ, etc.). Ref. [12], as updated in
[13], has a rather striking pictorial representation of this problem.

The current limits on generic sparticle masses from direct searches
or from the EWPT, as mentioned, are somewhat less constraining. The
portion of parameter space of the MSSM explorable at the LHC by direct
sparticle production, a primary goal of the machine, is still sizeable.
Nevertheless, in the spirit of the argument discussed above, the need
of a significant cancellation in the curvature of the Higgs potential due
to the present limit on the Higgs mass weakens any statement about
where supersymmetry should be found, which is unfortunate. This may
be irrelevant, with the MSSM around the corner of the parameter space
explored so far. Alternatively it may indicate the necessity to go beyond

2This, as the one that follows, is a symplified discussion. To the least, when the energy range
of interest is large compared to the Fermi scale, the influence on the stop masses of the gluino
exchange is significant and has to be taken into account.
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the MSSM 3 or, more drastically, the need of some variation on the
current picture of supersymmetry breaking.

The little Higgs A neat way to have a light scalar, i.e. a candi-
date Higgs, from a strong dynamics is to arrange its symmetries and
the pattern of symmetry breaking in such a way that this scalar comes
out to be a pseudo-Goldstone boson, like a π in QCD [17]. The pre-
fix pseudo is mandatory since a genuine Goldstone could neither get a
mass nor it could have a Yukawa coupling to the fermions. Both could
arise, however, from a ”weak” explicit breaking of the original global
symmetry.

Let us concentrate on the top Yukawa coupling which is the major
source of the growing ∆m2

H(E), as defined in Sect. 1.2. If this coupling
between the top and the Goldstone boson were directly introduced in
the Lagrangian, no change would have occurred in ∆m2

H,top(E) relative
to the SM up to the scale Λ of the strong dynamics. Based on Sect. 1.1,
this could hardly be considered, however, as a satisfactory solution of the
”little hierarchy” problem: ∆m2

H,top(E) needs to be cut-off well before
getting to such a scale. In ”little Higgs” models [18] this is achieved
by adding another top-like quark which also couples to the Goldstone-
Higgs in a globally symmetric way but has a non-symmetric, although
gauge invariant, mass term. In this way, and without any adjustment of
uncorrelated parameters, when E crosses the mass of the heavy top, mT ,
∆m2

H,top(E) gets frozen and stays constant up to Λ, where it eventually
dies out. Consequently, up to non-logarithmic terms, eq. (7) is replaced
by

δm2
H,top(LH) ∼ 6GF m2

t√
2π2

m2
T log

Λ
mT

. (10)

This is a significant step forward in the direction of solving the ”little
hierarchy” problem. With some caveats, though. Le me denote by f the
”pion decay constant” of the strong dynamics at Λ, so that Λ ∼ 4πf . It
is mT > 2λtf ∼ 2f , where λt is the usual top Yukawa coupling, so that,
from eq. (10),

δm2
H,top(LH) >∼ 1.2f2. (11)

Now the minimal value that f can attain without undoing the EWPT
is very much model dependent [19, 20]. However, taking f > 1 TeV as
a minimum limit in suitably designed models gives already quite a big

3To correct the Higgs mass prediction at tree level by suitable F-term [14] or D-term [15]
effects or by higher dimensional operators [16] are examples in this direction.
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contribution to the Higgs mass, that has to be cancelled away. I would
care less about this problem if the model could be tested at the LHC
even for f significantly greater than 1 TeV, but this may not be the case
[21, 20]. And I do not see any strong reason for insisting on f ∼ 1 TeV,
given that quite a significant cancellation needs anyhow to be swallowed.

Needless to say, in spite of this warning, I believe that possible signals
of the ”little Higgs” should be carefully looked for.

2. Relating GF to an extra dimension at the
weak scale

2.1 Motivations and the basic setup
To contemplate the possibility that there exist one or more extra

space dimensions may undoubtedly give a new twist to several of the
basic problems in fundamental physics. As remarkable examples it suf-
fices to mention the possible connection between the weakness of gravity
and a large extra dimension [22] or the interpretation of the ”big” hie-
rarchy, the one between MW and MP l, as a gravitational blue-shift by
a warp factor with a non trivial dependence on a 5th coordinate [23].
Here I am specifically concerned with the EWSB problem and with the
proposition that the Fermi scale be related to the inverse radius of a
compactified extra dimension [24–26]. Even this qualification, however,
leaves open several possibilities whose description goes beyond the scope
of these lectures. In the following I concentrate on a proposal that aims
at pushing as far as possible the calculability of the Higgs potential. As
it should be clear by now, I look for an optimal solution of the ”little
hierarchy” problem. To the least, I expect that this will maximize the
chances of having this solution tested at the LHC.

The aspect of extra-dimensional theories that interests me most and
could have phenomenological applications is the possibility, intrinsically
extra-dimensional, of breaking symmetries by boundary conditions on
the various fields at the borders of the extra dimension(s). It is in fact
even possible to break the same electroweak symmetry in such a way [27],
but it is doubtful whether one would improve over 4-dimensional (4D)
theories [28]. On the contrary, breaking supersymmetry by boundary
conditions on an extra dimension [29] looks more promising for reasons
that will appear shortly.

All the SM fields are meant to depend also on an extra coordinate y,
Ψ(xµ, y), ranging from 0 to L ≡ πR/2, and are extended to incorporate
supersymmetry in the full 5D space. The physics will depend upon the
conditions given to the various fields at the boundaries of the y-segment
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(0, πR/2). Take (even, even) boundary conditions for all the SM fields4,
so that each of them has a constant mode in y, with vanishing momentum
in the fifth direction, which would otherwise appear as a mass term
from the 4D point of view. These ”zero modes” are massless. On the
contrary, give (even, odd), (odd, even) or (odd, odd) boundary conditions
to the extra fields implied by Poincar invariance and supersymmetry in
5D, consistently with the parities at the two boundaries. In this way all
these extra fields give massive excitations: from the 4D point of view
all their modes have masses which, in the simplest case, are multiple
integers of 1/R.

This simple construction [26] has a remarkable property. While super-
symmetry is manifestly broken in a global way, since there is no super-
symmetry in the spectrum - which makes it closer to experiment -, su-
persymmetry is locally unbroken. This will be spelled out more clearly in
the next Section, but is already now intuitively clear. At each boundary
all fields can be grouped into doublets of 4D N=1 supersymmetry (one
boson and one fermion) with the same boundary conditions, even or odd,
inside each supermultiplet. This is unavoidable, given the parities at the
two boundaries. On the other hand, the N=1 supermultiplets at the two
boundaries are different from each others because of our choice of bound-
ary conditions. At every point of the segment (0, πR/2) there is at least
one 4D supersymmetry, but this supersymmetry changes from point to
point since it is different at the two boundaries. This is the basis for the
finiteness properties of the loop calculations that have been performed
and we are about to describe. All the divergent local counterterms have
to respect this residual symmetry. The change of supersymmetry at the
two boundaries - and, as such, of the corresponding supermultiplets -
also allows to describe the Yukawa couplings of the up and down quarks
to a single Higgs field as in the SM and unlike in the MSSM, which is
not a negligible simplification.

2.2 The 5D → 4D projection and the residual
symmetries

To realize the setup outlined above the fields, organized in N=1 super-
multiplets in 5D, are the gauge fields (Aµ, λ1, λ2, φΣ), the matter fields
(ψM , φM , ψc

M , φc
M ) and the Higgs fields (φH , ψH , φc

H , ψc
H). The indices

of the SU(3)xSU(2)xU(1) gauge group are left understood, as the flavor
indices for matter fields. The boundary conditions assigned to each of

4The y-segment (0, L) is fictitiously extended at y < 0 and y > L and the equations of motion
are meant to be solved in the whole covering space.



12 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

ψM , φH , Aµ φM , ψH , λ1 φc
M , ψc

H , λ2 ψc
M , φc

H , φΣ

(+, +) (+,−) (−, +) (−,−)

Table 2. Boundary conditions for gauge, matter and Higgs fields at y = 0 and y = L.

these fields, (+ ≡ even,− ≡ odd), as already indicated, are given in Ta-
ble 2. Only one Higgs supermultiplet (in 5D) appears in Table 2, since
only one Higgs scalar will get a vev. The model defined in this way has
no gauge anomaly (See App. A). The opportunity to introduce a second
Higgs supermultiplet, without a vev, to cancel a Fayet Iliopoulos (FI)
term (See App. B) will be discussed later on in Sect. 2.6.

The supersymmetry transformations for the vector fields, splitted in
Aµ, µ = 1, 2, 3, 4, and A5, are, as an example,

δAµ = iξ+
i σµλi + h.c., δA5 = εijξiλj + h.c., (12)

where ξi, (i, j = 1, 2) are the two spinorial transformation parameters
associated with the 2 supersymmetries in 4D implied by the N=1 su-
persymmetry in 5D. It is manifest from eqs. (12) that the boundary
conditions in Table 2 are, in general, not compatible with the supersym-
metry transformations, since fields with different boundary conditions
transform into each other under (12). Hence we cannot expect that su-
persymmetry remains unbroken. Nevertheless the consistency between
boundary conditions and supersymmetry transformations is kept if the
y-dependent ξi are also restricted to satisfy appropriate boundary con-
ditions, i.e. (+,−) and (−, +) respectively for ξ1 and ξ2. This defines
the residual supersymmetry that remains intact after the 5D → 4D
projection, as alluded to in the previous section. The same restricted
supersymmetry transformations determine the appropriate supermulti-
plets at the two boundaries. For instance, the two N=1 supermulti-
plets that contain the Higgs field φH are Ĥ = (φH , ψH) at y = 0 and
Ĥ ′

c = (φ+
H , ψc

H) at y = L. Accordingly, the total 5D Lagrangian is

L = L5 + δ (y)L4 + δ

(
y − πR

2

)
L′

4, (13)

where L5, the so called ”bulk” Lagrangian, respects a full N=1 super-
symmetry in 5D, whereas L4 and L′

4 are 4D Lagrangians invariant under
the (different) relevant supersymmetries. Among other things, L4 and
L′

4 will contain, the first, the Yukawa coupling of the up quarks to Ĥ
and, the second, the Yukawa couplings of the down quarks and of the lep-
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tons to Ĥ ′
c. These couplings could not be placed anywhere else without

spoiling the residual supersymmetry.

2.3 Spectrum of the Kaluza Klein modes
The solution of the free equations of motion, with the assigned bound-

ary conditions, gives the spectrum of the various modes. This spectrum
is particularly simple when one ignores possible kinetic terms localized
at the boundaries or gauge invariant ”bulk” masses for the matter (or
Higgs) supermultiplets. Corresponding to the wave functions the spec-
trum is shown in Fig. 2.

(+, +) : cos 2n
R y;

(+,−) : cos 2n+1
R y;

(−, +) : sin 2n+1
R y;

(−,−) : sin 2n
R y, (14)

Figure 2. Tree-level KK mass spectrum of a multiplet (vector, matter or Higgs)
with the boundary conditions as indicated.

Of special interest for the following is the deformation of the spectrum
of matter supermultiplets, and of the corresponding wave functions, in
presence of a bulk mass term, consistent both with gauge invariance and
with the residual supersymmetry. This mass term, in general, can have
a y-dependence and, for consistency with the parities at the two bound-
aries, must be (odd, odd). Considering a constant mass term M inside the
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segment (0, L), all the KK modes become heavier, with a mass growing
like M for MR >> 1, except for the fermionic zero mode, which remains
massless, and one of the two lightest states in the towers of scalars, a
sfermion, whose mass decreases from 1/R and tends asymptotically to
zero as MR increases [30]. The wave functions are modified accordingly.
For the massless fermion, taking, e.g., M > 0, the corresponding wave
function is

ξ0(y) = [
2
M

(1 − exp (−πMR))]−
1
2 exp (−My), (15)

giving rise to a partial localization towards one of the boundaries (y = 0
for M > 0), as it happens similarly for the lightest scalar. The phys-
ical interpretation is the following: when M becomes larger than 1/R,
supersymmetry is progressively recovered in the spectrum, with a light
quasi-supersymmetric multiplet at one boundary and a tower of mas-
sive supermultiplets in the bulk. From a theoretical point of view, the
bulk mass M is a new parameter, but with a special status: it does not
undergo any renormalization.

2.4 A first attempt: the Constrained Standard
Model

What happens of the EWSB with the simplest setup described in
Sect. 2.2 ignoring, for the time being, bulk masses and boundary kinetic
terms? Needless to say, we are mostly interested in the loop corrections
to the Higgs mass from the towers of top-stop states. There are several
ways of doing this calculation, either involving a sum over the towers of
intermediate KK states [26] or by working with propagators in mixed
(pµ, y) space for the different components of the superfields [31]. With
a notation appropriate to this second case, the relevant diagrams are
shown in Fig. 3, where h0(x) is the y-independent component of the
Higgs field and Fu, Ft are the auxiliary components of the û and t̂ su-
permultiplets, which we have not eliminated.

The result can best be seen by means of the function ∆m2
H,top(E)

introduced in Sect. 1.2. It is [26, 31]
The result can best be seen by means of the function ∆m2

H,top(E)
introduced in Sect. 1.2. It is [26, 31]

∆m2
H,top(E) =

3
√

2
4 R2

GF m2
t x4
[
coth2

(πx

2

)
− tanh2

(πx

2

)]
(16)
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Figure 3. One-loop irreducible diagrams contributing to the mass squared of the
Higgs boson.

where x = ER. For E << 1/R, ∆m2
H,top(E) goes to the SM expression,

as it should, whereas in the opposite limit, above the compactification
scale, 1/R, ∆m2

H,top(E) gets exponentially dumped to

∆m2
H,top(E) ∼ 6

√
2GF m2

t E
4R2 exp (−πER). (17)

In this way a finite δm2
H,top is obtained

δm2
H,top(CSM) =

63ζ(3)√
2π4

GF m2
t

R2
=

0.19
R2

, (18)

where ζ(3) = 1.20. I find this an interesting step forward relative to eq.
(7) or even to eq. (9), which justifies a further exploration of the general
idea.

It is possible to go over a complete calculation of the Higgs potential
in this simplest case where the top has a flat wave function in y. This
requires a straightforward extension of the previous calculation to the
entire Higgs potential [26]. Such a calculation is relevant both because of
the corrections to the quartic Higgs coupling and because of the higher
order terms (h0)4(h0R)n 5. This corresponds to the minimal implemen-
tation of the idea, which we have called Constrained SM [26], since the
relevant part of the full Higgs potential involves a single parameter, R,
instead of two, as in the SM. Consequently, given the physical value of
the Fermi scale, the Higgs mass is determined to be about 130 GeV and
the inverse radius is in the 400 GeV range. Note in particular that,
although eq. (18) gives the dominant term in the curvature of the Higgs

5With a single Higgs supermultiplet, a quadratically divergent tadpole term in the auxiliary
field of the hypercharge vector supermultiplet, a FI term (See App. B) appears [32]. However,
for a sensible cut-off, as determined below in Sect. 2.7, this term is of little numerical signifi-
cance to the Higgs potential [36]. Alternatively (see Sect. 2.6) a second Higgs supermultiplet
can be introduced which cancels the divergent FI term and is prevented from getting a vev
by a bulk mass, small relative to 1/R.
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potential at zero field, the relation between the Higgs mass and 1/R
cannot be simply read from eq. (18). The curvature of the potential has
the standard relation with the Higgs mass only when the powers of h0

higher than four in the potential are unimportant, which is not the case
here.

2.5 Localizing the top: the physical picture
The properties of the top wave function in the fifth dimension are

crucial to the numerical determination of the EWSB parameters [30, 33].
In the CSM the top wave function is y-independent. As discussed below
in Sect. 2.7, consistency with the EWPT may require the top to be
partly localized in y, which introduces an extra parameter. The Higgs
mass becomes then a function of 1/R which is, in turn, not determined
[34, 35].

As already mentioned, in the CSM the one loop top correction to
the Higgs mass squared dominates over the gauge corrections, which
contribute as [24]

δm2
H,ew(CSM) = −7ζ(3)(3g2 + g′2)

8π4R2
= −1.5

10−2

R2
, (19)

i.e. one order of magnitude less than eq. (18) and with opposite sign.
Note that the relative size between the top and the electroweak con-
tributions is approximately maintained as in the SM with a universal
cut-off, eq. (6).

Compared with this situation, what one should expect with a localized
top, through a bulk mass term M , is intuitively clear. The progressive
localization of the top at one boundary, as M increases, makes it feel
less and less the global breaking of supersymmetry through appropriate
conditions at the two boundaries. Consequently the top contribution
to the curvature of the potential, which vanishes in the supersymmetric
limit, decreases its numerical significance. Hence a cancellation takes
place between the top and the electroweak contributions, which becomes
more and more significant as M increases. In turn, for the physical value
of the Fermi scale, this results in an increase of 1/R from the relatively
low value of the CSM.

To clarify even further the physical picture, it is useful to see what
happens in the extreme case of exact localization of the top at the y = 0
boundary, by which I mean that the left handed doublet, Q̂, and the
right handed singlet, û, that contain the top quark, only appear as 4D
N=1 supermultiplets in L4, eq. (13), with no KK towers. In this case,
no supersymmetry breaking enters the diagrams of Fig. 3, which do
not contribute, therefore, to the curvature of the potential. To see a
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supersymmetry breaking effect one needs the exchange of a vector or
a Higgs supermultiplet, through any of their components, which only
occurs at two loops. An explicit two loop calculation gives in fact the
following contribution to the Higgs mass, through the curvature of the
potential, (LT for ”localized top”) [35]

δm2
H,top(LT ) =

3GF m2
t√

2π2
(m2

Q log
c

RmQ
+ m2

U log
c

RmU
), (20)

where
m2

U =
7ζ(3)
24π

8αs + 6αt

L2
, m2

Q =
7ζ(3)
24π

8αs + 3αt

L2
(21)

are the stop squared masses induced at one loop [25], αS = g2
S/4π,

αt = λ2
t /4π and c = 1.24. Note again the finite result, as expected.

Note also the connection between eq. (21), and the MSSM result, eq.
(9). Numerically it is

δm2
H,top(LT ) = 1.4

10−2

R2
, (22)

quite close to δm2
H,ew(CSM), eq. (19), up to the opposite sign. The one

loop electroweak contribution goes through unchanged from the CSM to
the top localized case. The near cancellation between eq. (19) and eq.
(22) could be at the origin of a significant increase in 1/R from the CSM
value of about 400 GeV without fine tunings in the Higgs potential. In
turn, as we shall discuss, this may help addressing the ”little hierarchy”
problem.

2.6 The Higgs potential in detail
To complete the analysis of EWSB, we need the Higgs potential for

an arbitrary top localization, as determined by the continuous mass
parameter M . There are at least two reasons for doing that, other than
the logical one. At least the left handed doublets cannot be exactly
localized at y = 0 if one wants to use only one Higgs with a nonzero
vev to describe both the Yukawa couplings to the up and to the down
quarks, necessarily sitting at two different boundaries (See Sect. 2.2).
Furthermore, the sum of eq. (19) and eq. (22) gives an overall negative
contribution which, literally taken, means no EWSB.

The Higgs potential with a partial top localization has been studied
in Refs. [34, 35]. There we consider the Q̂ and û supermultiplets in 5D
with an equal bulk mass M . We also take two Higgs supermultiplets
in 5D with opposite boundary conditions and an equal bulk mass MH ,
so as to cancel any FI term. A mass term MH is necessary to stabilize
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Figure 4. Range of the Higgs mass for a partially localized top as function of 1/R.
The full line is for mpole

t = 174.3 GeV . The dotted line is for mpole
t = 174.3 ±5.1GeV

the second Higgs scalar when MR becomes small. For MR = 0 this is
therefore a variant with respect to the CSM, although still with a non
localized top. On the contrary, for a sizable MR, MH is progressively
negligible.

As already mentioned, the introduction of the parameter M and the
near cancellation noticed in the previous Section between the top and
the electroweak contributions to the slope of the potential for MR >> 1
allow 1/R to vary as a free parameter in a wide range, from a few
hundreds of GeV for low MR up to several TeV for MR > 1, without
any significant fine tuning. In Fig 4 I show the range of the physical Higgs
mass for 1/R below 5 TeV and MH limited by a maximum cancellation
in the slope of the potential at about 10% level. The raise of mH at
low values of 1/R is an effect of the KK modes of the top-stop towers.
In the upper range of values for 1/R, MH is irrelevant. Values of 1/R
above 5 TeV would imply a seemingly accidental cancellation between
the top and the electroweak contributions by more than a factor of 10.
Note that, for 1/R above about 1.5 TeV, mH must be always close to
the experimental lower limit of 115 GeV. It must also be said that the
calculation of the Higgs potential in Ref. [35], upon which Fig. 4 is
based, is accurate for low 1/R, below about 1 TeV, where the one loop
top contribution dominates, and for high 1/R, above 3 ÷ 4 TeV, where
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a quasi-localized approximation for the top allows an analytic two loop
calculation of the potential. In the transition region a better calculation
might be necessary.

2.7 Constraints from Electroweak Precision
Tests

Dominant effects. In general one expects effects on the EWPT
from three different sources:

- Tree level effects from exchanges of heavy KK modes;

- Tree level effects from supersymmetric operators localized on the
boundaries;

- Calculable effects from radiatively-generated non-supersymmetric
operators.

In the following, for concreteness, I do not consider any localization
parameter for the first two generations of matter6. In this case, if one
neglects the operators on the boundaries, there is no tree level effect on
the EWPT from the exchanges of heavy KK modes, because discrete
momentum conservation on the 5th direction forbids any coupling bilin-
ear in the SM particles (the zero modes) to a single KK state [26]. There
are, on the contrary, calculable loop effects which are there only to the
extent that supersymmetry is broken. A contribution to ε3 would be the
best example, as there are several other similar effects on observables
not traditionally included among the EWPT, but not less important,
like b → s + γ or the muon g − 2. Explicit calculations done in the last
two cases (but not yet for ε3 [37]) show that these effects are below the
current sensitivity for 1/R above 400 ÷ 500 GeV [38]. Let me there-
fore concentrate on the effects produced by supersymmetric operators
localized on the boundaries.

The coefficients of these operators, all with negative dimension in
mass, are pure parameters, as would be pure parameters the coeffi-
cients of the higher dimensional operators added to the SM Lagrangian.
The most important difference among the two cases is that the SM La-
grangian is perturbative up to very high energy whereas the physics

6When the third generation is localized, this is a source of flavor violation, mostly through a
difference between the coupling of the KK gluons to the first two generations and to the third
[39]. If one assumes mixing angles and phases of the down-quark Yukawa coupling matrix
comparable to those of the Cabibbo-Kobayashi-Maskawa matrix, the strongest bound arises
from the CP-violating ε-parameter in K physics and is about 1/R > 1.5 TeV.
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described by L5 in eq. (13) is not. As a consequence, while it is con-
sistent to take arbitrarily small coefficients for the higher dimensional
operators in the SM, this is not naturally the case for the theory under
consideration. The operators allowed by the symmetries would at least
be generated by quantum corrections, with maximal strenght of their
coefficients, at the scale where perturbation theory breaks down. There-
fore I consider the operators in the sector where perturbation theory
breaks down first, at the lowest energy, i.e. the operators generated by
loops involving the top Yukawa coupling, and I require that their coeffi-
cients, as estimated by means of naive dimensional analysis adapted to
5D, saturate perturbation theory at the scale Λ. A theory constructed in
this way is trustable and predictive, although only at energies sufficiently
lower than Λ.

With this assumption, the operators of interest to the EWPT are
(the supersymmetric extension of) the Higgs kinetic term and (of) the
operator OH in Table 1, both localized at y = 0,

δL4 = ZH |DµH|2 + CH |H+DµH|2 + . . . (23)

where the dots stand for their supersymmetric completion. Note that
H in eq. (23), although taken at y = 0, is a 5D field with a canonically
normalized kinetic term in L5. As such, since H has mass dimension
3/2, ZH and CH have dimension −1 and −4 respectively. From naive
dimensional analysis, taking into account the angular integration factors∫

d4p

(2π)4
=

1
16π2

∫
p3dp,

∫
d5p

(2π)5
=

1
24π3

∫
p4dp (24)

in 4D and 5D respectively, one has

ZH ∼ 24π3

16π2

1
Λ

, CH ∼ (24π3)2

16π2

1
Λ4

. (25)

What is the impact of these operators on the EWPT? The answer is
immediate for OH , being

H =
1√
2πR

h0 + . . . , (26)

where h0 is the standard Higgs field, canonically normalized in 4D. In
this way, from the 5D coefficient CH , one obtains the 4D coefficient
cH/Λ2 = CH/(2πR)2 in eq. (3) and therefore, from eq. (5)

∆ε1(OH) ∼ 9π2

(ΛR)2
v2

Λ2
. (27)
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The effect of ZH on the EWPT is more involved since it gives rise both
to a mixing of the W and the Z with their KK modes and to a nonzero
vev of the scalar partner of the W , i.e. an SU(2) triplet, in the 5D vector
supermultiplet (generically denoted by φΣ in Table 2 ). The net overall
effect on the EWPT of this term is again only a contribution to the
parameter ε1, which can be read from Ref. [39],(but note the different
definition of R)

∆ε1(ZH) ∼ z2
H

π2

12
m2

ZR2 ∼ 3π2

64
m2

Z

Λ2
, (28)

valid for small zH = ZH/(2πR).

Where is the cut-off?. To determine the numerical significance of
these effects on the EWPT, but not only for this reason, one needs to
know where the cut-off is, or rather its connection with the compactifi-
cation scale 1/R. As already said, this is related to the energy scale at
which perturbation theory breaks down. In the case of a 5D gauge cou-
pling, g5, taking into account the angular integration factor as before,
perturbation theory is approximately lost at Λg ∼ 24π3/g2

5, i.e., from
the relation between the 4D and the 5D couplings g2

4 = g2
5/2πR,

ΛgR ∼ 12π2

g2
4

. (29)

Even in the strong gauge sector therefore, Λg is higher than 1/R by about
two orders of magnitude. When the top quark is non localized, however,
perturbation theory in its Yukawa coupling at the y = 0 boundary

δL4,top = λt,5 QuH (30)

gets saturated at a lower scale Λ, since, from naive dimensional analysis,

λt,5 ∼ (24π3)3/2

16π2

1
Λ3/2

(31)

and λt = λt,5/(2πR)3/2, so that

ΛR ∼ 4.5

λ
2/3
t

∼ 4.5. (32)

With the progressive localization of the top, ΛR increases up to ΛR ∼
12π2/λ2

t for an exactly localized top.
We can now get back to the estimate of the effects on the EWPT of

∆ε1(ZH) and ∆ε1(OH). We have

∆ε1(ZH) ∼ 2 · 10−4(
4.5
ΛR

)2(R TeV )2 (33)



22 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

1/R 360 ± 70

h 133 ± 10

t̃1, ũ1 210 ± 20

χ±, χ0, g̃, q̃, l̃ 360 ± 70

t̃2, ũ2 540 ± 30

A1, q1, l1, h1 720 ± 140

Table 3. The particle spectrum and 1/R in the CSM. All entries are in GeV.

and

∆ε1(OH) ∼ 6 · 10−3(
4.5
ΛR

)4(R TeV )2. (34)

Note incidentally that zH = ZH/(2πR) is indeed small, since it is

zH ∼ 0.15(
4.5
ΛR

). (35)

If we now require |∆ε1| < 2 · 10−3, the estimate in eq. (33) allows a
low 1/R, whereas eq. (34), taken at face value, wants 1/R above 1.5
TeV. Note in eq. (34), however, the high power of ΛR, which makes the
estimate highly uncertain. Note also that 1/R increases from the 400
GeV range of the CSM by a progressive localization of the top, which,
as we said, rapidly increases ΛR and therefore suppresses ∆ε1(OH) .

From all this I conclude that values of 1/R of about 1 TeV are com-
patible with the EWPT. Lower values, such as those required by the
CSM, seem to need, at the present state of knowledge, an adjustment in
∆ε1 by about one order of magnitude.

2.8 Spectrum and phenomenology
The most characteristic feature of the spectrum of the superpartners

is the relative heaviness of gauginos and higgsinos, all approximately
degenerate at about 1/R. The Lightest Supersymmetric Particle (LSP)
is therefore a sfermion. In the CSM the LSP is a stop. The relevant
spectrum of the CSM is shown in Table 3 with an estimate of the uncer-
tainties. The lightest stop is stable or quasi stable if a relevant U(1)R

symmetry is slightly broken.
Particle localization alters the spectrum of sfermions but does not

change the fact that one of them is the LSP. The masses of the sfermions
of charge Q and hypercharge Y are given by

m2(Q, Y ) = m2
tree + m2

rad(Q, Y ) + Y m2
Z − Qm2

W (36)
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Q̃ ũ d̃ L̃ ẽ

R mrad 0.24 0.24 0.20 0.09 0.05

Table 4. Radiative masses in units of 1/R for the different sfermions. Q̃ = (ũL, d̃L),

L̃ = (ν̃L, ẽL).

where mtree is the tree level mass, including the Yukawa contribution,
and mrad is the one loop contribution, as in eq. (21). Both mtree
and mrad depend upon the corresponding localization parameter MR
[30, 35]. For MR = 0, mtree = 1/R, up to the Yukawa term which
is important for the stops. For MR > 1, mrad dominates and rapidly
approaches the localized limit given in Table 4.

Who is the LSP depends therefore upon the localization parameters
of the different multiplets. Exact cancellation of the FI term (See App.
B) is guaranted by taking equal localization parameters for the quarks
within one generation, Mq, and, independently, equal localization para-
meters for the leptons, Ml. Remember that these masses are unrenor-
malized parameters, so it make sense to set them equal. Suppose that
only the third generation quarks are partly localized. Then the LSP is a
stop for low 1/R and a sbottom for higher 1/R, due to the difference in
mrad (mrad(d̃) < mrad(Q̃), mrad(ũ)). The LSP may also be a slepton
for a sizable MlR. The difference in mrad (mrad(ẽ) < mrad(L̃))) makes
it definitely more likely to be a charged slepton (in spite of the D-term
effects in eq. (36)).

A stable or metastable charged LSP is a striking phenomenological
feature. For definiteness, take it to be a stop (but a sbottom would
not make any difference in the experimental signal). By picking up a
quark, once pair produced in a high energy collision, it would make any
of the two super-hadrons T+ = t̃d or T 0 = t̃u (and their charge con-
jugates T−, T

0), which should be detectable as stable particles, since
their possible decay into one another is slow enough to let them both
cross the detector. T± could appear as a stiff charge track with little
hadron calorimeter activity, hitting the muon chambers and distinguish-
able from a muon via dE/dx and time-of-flight. The neutral states,
on the contrary, could be identified as missing energy since they would
traverse the detector with little interaction [40].

3. Summary and conclusions
The mechanism of EWSB is one of the greatest mysteries in particle

physics. Not the only one, but the one with the greatest chances of
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being clarified by the experimentation at the LHC. For the time being,
the SM provides a successful phenomenological description of EWSB
in terms of a Higgs doublet with a mexican hat potential. This is in
fact an understatement. The experiments of the ninethies have shown
that there must be some fundamental truth in the Higgs description of
EWSB. A Higgs boson is very likely to exist. It is likely to be a weakly
interacting, narrow state. It is pretty likely, although not certain, that
its mass is in the 100÷ 200 GeV range. The LHC will tell if this is true
or not.

As I said in Sect. , this goal of the LHC, although clearly important, is
not, however, the very reason for expecting that the LHC will clarify the
mechanism and the dynamics of EWSB. There are two aspects to this
statement. First there is the uneasiness with the fact that the curvature
at zero field of the Higgs potential, crucially negative, is just an input
to the theory without any deeper understanding. Discovering the Higgs
would not shed light on this problem. Second, there is the extreme
ultraviolet sensitivity of the curvature of the potential: in the SM the
Higgs mass depends on the ”Higgs mass spectral function” ∆m2

H , defined
in Sect. 1.2, which is rapidly growing with energy and contributes to the
Higgs mass mostly where it cannot be trusted. While the first aspect is
generic, the second one is the basis for thinking that the LHC will reveal
new phenomena related to EWSB and not included in the SM. At the
LHC we should see what dumps ∆m2

H at energies well within the range
explored by the machine. In this way we might also understand what
triggers EWSB by giving the Higgs a negative mass squared.

If this view is right and we are not misguided in a way or another,
we are faced with a problem. Why haven’t we seen yet any manifes-
tation of this dumping mechanism anywhere in direct or indirect ex-
periments? The straigthest interpretation of the data, mostly from the
EWPT, points to a significant gap between the Higgs mass and the effec-
tive scale that parametrizes a generic deviation from the SM in terms of
higher dimensional operators, taken maximally symmetric. This is the
”little hierarchy”problem. More precisely the tension is between this
scale and the energy at which the dumping mechanism advocated above
should become operative. Finding a theory that dissolves this tension is
to solve the ”little hierarchy”problem. As I have tried to make it clear,
there are assumptions (and ”judgements”) in the line of reasoning that
leads to the formulation and the very existence of this problem. To the
point that I am sometimes asked why do I care about it at all. To me
the answer looks obvious. If these assumptions are valid, the expectation
that the LHC will clarify the mechanism and the dynamics of EWSB
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is well justified. Since they are also reasonable, I prefer to take them
seriously.

At least in part, this problem is at the basis of the revival of theo-
retical interest in EWSB. Without pretending to be exhaustive, I have
summarized two attempts at addressing this problem, the MSSM and
the ”little Higgs”, and I have described more at lenght a third one, based
on supersymmetry breaking by extra dimensions. Needless to say, there
is a great physical difference between the first and the two other cases.
While the first can be extended up to very high energy, like the GUT
or even the Planck scale, this in not true for the little Higgs or the ex-
tradimensional theories. Quite on the contrary, the gap between the
dumping scale of ∆m2

H and the cut-off of little Higgs and extradimen-
sional models is not more than a decade or so. Is this a step backward?
Conceptually it may look to be the case. Incidentally this motivates to
search for possible ”ultraviolet completions” of these models. On the
issue, however, I prefer to keep an open mind and leave it to the LHC
experiments to decide what is relevant and what is not. From a theo-
retical point of view, I find that looking for neat solutions of the ”little
hierarchy” problem is a well motivated (and difficult) task. I suspect
that the search will continue.

4. Gauge anomalies
A gauge theory of fermions in 5D is vector-like. Hence no gauge

anomaly is expected. To make contact with phenomenology, however,
chiral fermionic zero modes are needed, which is obtained by suitable
boundary conditions (BC) on the segment associated with the extra
dimension[41, 42]. In turn, this can generate anomalies localized on the
boundaries.

In Sect. 2.2 I have considered two types of BC for the fermions in a
5D supermultiplet:

- Matter-like BC: Ψ(+, +) and Ψc(−,−);

- Higgsino-like BC: Ψ(+,−) and Ψc(−, +).

In the first case, equal FI terms are generated in general at the two
boundaries. The condition for their vanishing is equivalent to the con-
dition TrY = 0, restricted to the fermionic zero modes in the associated
supermultiplets. Again, this condition is fulfilled by the fermions of the
SM. In the case of Higgs-like BC, the FI terms at the two boundaries are
equal in magnitude and opposite in sign [32, 45]. As such, they are of
a particular nature, only possible in 5D. With a 4D superfield notation,
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their contribution to the action may be written as

δSFI = ξ

∫
d4x

∫ L

0
dy

∫
d4θ(δ5V − Φ − Φ̄), (37)

where V is the N=1 vector multiplet and Φ is the chiral multiplet in
the same 5D hypermultiplet. Eq. (37) and the gauge transformations
of the various fields make explicit the gauge invariance of the integrand
factor (δ5V −Φ− Φ̄), unlike what happens for a 4D FI term, where the
θ-integration is essential to achieve gauge invariance. This is the basis
for the property of a FI term like in eq. (37) of maintaining both gauge
invariance and supersymmetry in the vacuum [45].

A sufficient condition for avoiding a divergent FI term in the case of
5D multiplets with Higgs-like BC is to have TrY = 0 for the (+, +)
components of the 5D supermultiplets. In this case even a finite FI term
is absent at all if the 5D multiplets have equal bulk masses.
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34, F-91898 Orsay Cedex
stocchi@lal.in2p3.fr

Abstract
These lectures give an introduction and the current status of flavour
physics in the quark sector, with special attention to the CKM matrix
and CP violation. We describe the measurements which contribute to
the determination of the CKM matrix elements and how, together with
important theoretical developments, they have significantly improved
our knowledge on the flavour sector of the Standard Model. These
lectures are complemented by the seminar of U. Mallik (see these pro-
ceedings) which describes in more details the most recent CP-violating
related measurements by the B-factories.
The results presented are up-to-date till winter 2004.

Keywords: CKM matrix, CP violation, Beauty (B) hadrons, B decays, Unitarity
Triangle

1. Introduction
Accurate studies of the production and decay properties of beauty

and charm hadrons are exploiting a unique laboratory for testing the
Standard Model in the fermion sector, for studying QCD in the non-
perturbative regime and for searching for New Physics through virtual
processes.

In the Standard Model, weak interactions among quarks are encoded
in a 3 × 3 unitary matrix: the CKM matrix. The existence of this
matrix conveys the fact that quarks, in weak interactions, act as linear
combinations of mass eigenstates [1, 2].
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The CKM matrix can be parametrized in terms of four free parameters
which are measured in several physics processes.

In a frequently used parametrization, these parameters are named: λ,
A, ρ and η1. The Standard Model predicts relations between the dif-
ferent processes which depend upon these parameters. CP violation is
accommodated in the CKM matrix and its existence is related to η �= 0.
The unitarity of the CKM matrix can be visualized as a triangle in the
(ρ, η) plane. Several quantities, depending upon ρ and η can be mea-
sured and they must define compatible values for the two parameters, if
the Standard Model is the correct description of these phenomena. Ex-
tensions of the Standard Model can provide different predictions for the
position of the apex of the triangle, given by the ρ and η coordinates.
The most precise determination of these parameters is obtained using B
decays, B0 − B0 oscillations and CP asymmetry in the B and in the K
sectors.

Many additional measurements of B meson properties (mass, branch-
ing fractions, lifetimes...) are necessary to constrain the Heavy Quark
theories [Operator Product Expansion (OPE) /Heavy Quark Effective
Theory (HQET) /Lattice QCD (LQCD)] to allow for precise extraction
of the CKM parameters. In addition, to be able to extract the Standard
Model parameters, it is also necessary to control and measure the back-
grounds, and to acquire a detailed understanding of the experimental
apparatus. All these aspects are important because they propagate as
systematic errors attached to the values extracted for the CKM para-
meters. For instance, the values and the uncertainties of the B hadron
lifetimes enter in many important quantities. Experimental progress in
various B physics measurements has been crucial in the determination
of the CKM matrix elements. These last aspects are not treated in these
lectures.

2. Short story: from strangeness to the CKM
Matrix

The discovery of the strange particle in 1947 was totally unexpected
and can be seen as the beginning of a new era in particle physics which
has not ended yet. Just after the pion discovery by C.M.G. Lattes,
H. Muirhead, C.F. Powell and G.P. Occhialini [4], in 1947, the same
year, C.C. Butler and G.D. Rochester [5] reveal, having exposed a cloud
chamber to cosmic rays, the existence of a still-heavier unstable particle
decaying in a typical V-topology; this earlier name could be ascribed

1ρ = ρ(1 − λ2

2
) ; η = η(1 − λ2

2
)[3].
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to the characteristic topology of the tracks which were produced when
a neutral particle decays into two charged particles. At the same time
there were also events in which a charged particle trajectory had a sharp
break indicating a decay (V±) (corresponding to the decay K+ → µ+νµ).
In fact, the first example of such particles was reported by L. Leprince-
Ringuet and M. Lhéritier in 1944 [6]. They observed a secondary cosmic
ray particle, in a cloud chamber placed at the Laboratoire de l’Argentière
(Hautes-Alpes), producing a recoil electron (energetic delta ray). From
the measured curvatures of the ongoing and outgoing particles and using
the value of the scattering angle of the electron it was possible to de-
termine the mass of the incident particle which was found to be of 495
± 60 MeV/c2. It is today clear that this particle is the charged Kaon,
nevertheless this discovery came too early, since even the pion was not
discovered at that time!

It took two years to confirm the result of Rochester and Butler.
These experiments were continued at higher altitude and with high de-
gree of precision [7]. The results unambiguously established the exis-
tence of two states: Λ → pπ− and K0 → π+π−. In 1953 it became
possible to produce those V-particles in accelerators2 and it was then
clear that they were produced in reactions mediated by the strong in-
teraction; furthermore those particles were always produced in pairs
(associated production). On the other hand their typical lifetime was
of about 10−10 s which is a typical time scale of the weak interac-
tion3. These particles are then “strange”, as they are produced through
the strong interaction whereas they decay through weak interaction
processes. The solution was proposed, after several unfruitful tentative,
by M. Gell-Mann [8], to introduce a new additive quantum number: the
strangeness4. The strangeness was assigned to be -1 for the Λ, the K0

and the K− ( and +1 for the corresponding antiparticles ), -2 for the
Ξ− and 0 for all non-strange particles and making the hypothesis that
this new quantum number is conserved by strong and electromagnetic
interactions and is not conserved by the weak interaction. This allows

2The Brookhaven 3 GeV Cosmotron was the first accelerator delivering strange particles,
followed by the Berkeley 6 GeV Bevatron.
3The scattering cross section of events like π−p → K0Λ corresponds to the geometrical
cross section of hadrons (� 10−13 cm)2 which indicates that the Λ and the K0 are produced
through strong interactions. The natural lifetime of the strong interaction can be estimated
using the relationship τst = (had.radius)/c � 10−23s.
4The observation of events such as Ξ− → Λπ−, the so-called cascade events, and the non-
observation of events such as Ξ− → nπ−, closed up the option that the strangeness could be
a multiplicative quantum number (a kind of “strange parity”) being +1 for strange particles
and -1 for non-strange ones. It was in fact the first indication of the existence of double
strange particles.
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to “explain”, a posteriori, why strange particles are always produced in
pairs (by strong interactions ∆S=0) and have a relatively long lifetime
(decay through weak interactions ∆S=1).

In the decay, the strangeness changes by one unit and these transitions
were classified as ∆S = 1. An intense experimental activity on strange
particles shown, in the fifties, that the absolute decay rate for these
transitions was suppressed by a factor of about 20 as compared with the
corresponding rate measured in ∆S =0 decays.

In the early 60’s the existence of new constituents of matter was pos-
tulated: they were called quarks. They were independently introduced
by M. Gell-Mann[9] and G. Zweig [10] and they should transform accord-
ing to the fundamental representation of SU(3). They were supposed to
have spin 1/2 and to exist in three varieties: the quark u with charge
+2/3, the quarks d and s with charge -1/3. By analogy with leptons it
was suggested that the quarks were also organized into doublets and the
existence of a new quark of charge 2/3 was proposed [11].

In 1963, N. Cabibbo proposed [1] a model to account for the suppres-
sion of ∆S=1 transitions. In this model the d and s quarks, involved in
weak processes, are rotated by a mixing angle θc: the Cabibbo angle.
The quarks are organized in a doublet:(

u
dc

)
=

(
u

d cosθc + s sinθc

)
(1)

the small value of sin θc (� 0.22) is responsible for the suppression of
strange particle decays (the coupling being proportional to sin2θc). In
this picture the slight suppression of n → p e−νe with respect to the
rate of µ− → e−νµνe is also explained by the fact that the coupling in
the neutron decay is proportional to cos2θc.

In this model, the neutral current coupling can be written5:

uu + dd cos2θc + ss sin2θc + (sd + ds) cosθcsinθc. (2)

The presence of the (sd + ds) term implies the existence of a flavour
changing neutral current (FCNC). This was a serious problem for the
Cabibbo model, since these couplings would produce contributions to
∆mK and KL → µ+µ− decays which are larger by several order of
magnitude.

5More formally. The charged currents are described by the operators J
+(−)
µ . The existence

of the neutral current is needed to complete the group algebra (obtained by commuting the
operators J+

µ and J−
µ ) and necessarily contains ∆S=± 1 terms.
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In 1970 S. Glashow, J. Iliopoulos and L. Maiani [12] (GIM) proposed
the introduction of a new quark, named c, of charge 2/3 and the in-
troduction of a new doublet of quarks formed by the c quark and by a
combination of the s and d quarks orthogonal to dc (eq. 1):(

c
sc

)
=

(
c

s cosθc − d sinθc

)
. (3)

In this way the (sd + ds) term (in Eq. 2), in the neutral current, is
cancelled.

The discovery of the charm quark in the form of cc bound states [13]
and the observation of charmed particles decaying into strange particles
[14] (the cs transitions which are proportional to cos2θc dominate over
the cd transitions which are proportional to sin2θc) represent a tremen-
dous triumph of this picture.

It should be reminded that a candidate event for the decay of a charm
hadron was first observed in 1971, in Japan, in an emulsion detector
exposed to cosmic rays [15]: X± → h±π0. The lifetime of h± and its
mass were found to be 10−14 sec and 1.8 GeV respectively ! (see [16]
and [17] for more details).

The charge current, mediated by the emission of a W boson, can then
be written:

(uc)γµ(1 − γ5)V
(

d
s

)
(4)

where γµ(1 − γ5) is the V − A current, which accounts also for parity
violation, u, d, s, c are the mass eigenstates and V is defined as:

V =
(

cosθc sinθc

−sinθc cosθc

)
. (5)

V is the Cabibbo unitary matrix which specifies the quark states which
are involved in weak interactions. In 1975 the Mark I group at SPEAR
discovered the third charged lepton: the τ [18]. Two years later the fifth
quark, the b, was found at FNAL [19]. The indirect existence for the
top quark t from the observation of B0

d − B0
d oscillations [20] suggested

the existence of an heavier version of the doublets (u,d) and (c,s)6. The
t quark was finally discovered in 1995 at Fermilab [21] in pp collisions.

The existence of three quark doublets was already proposed by M.
Kobayashi and K. Maskawa in 1973 [2] as a possible explanation for CP

6Another indirect piece of evidence for the existence of top was the measurement of the Z0

coupling to a bb pairs, which shown that the b quark is a member of an doublet with partner
that cannot be a u or a c quark.
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violation. Their proposal is a generalization of the Cabibbo rotation
and implies that the weak flavour changing transitions are described by
a 3 × 3 unitary matrix:⎛⎝ u

c
t

⎞⎠ → V

⎛⎝ d
s
b

⎞⎠ , V =

⎛⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎠ . (6)

This matrix conveys the fact that there is an arbitrary rotation, usu-
ally applied to the -1/3 charged quarks, which is due to the mismatch be-
tween the strong and the weak eigenstates. This matrix can be parame-
trized using three real parameters and one phase which cannot be re-
moved by redefining the quark field phases. This phase leads to the
violation of the CP symmetry. In fact since CPT is a good symmetry
for all quantum field theories, the complexity of the Hamiltonian im-
plies that the time reversal invariance T and thus CP is violated7. In
this picture the Standard Model includes CP violation in a simple way.

3. The Standard Model in the fermion sector
and the CKM matrix

The Standard Model is based on the SU(2)L×U(1)Y gauge symmetry,
where the index L stands for left, since only the left handed particles
are implied in the charged weak current. In a Lagrangian the mass term
of a fermionic field is of the type8

mψψ = m(ψRψL + ψLψR). (7)

Thus the mass implies a left − right coupling9 which is not gauge
invariant. An economical approach for introducing fermion masses, in

7The time is an anti-linear operator: T (λ1|ψ1 > +λ2|ψ2 >) = λ∗
1 < Tψ1| + λ∗

2 < Tψ2|. It
can be simply understood, recalling that ψ(x, t) and ψ∗(x,−t) (and not ψ(x,−t)) obey to the
same Schrodinger equation. If the operator T is applied to the Standard Model Lagrangian
and thus to the CKM matrix: T V (CKM)|.. >= V ∗(CKM) < T...|. If V (CKM) is
complex, V (CKM) �= V (CKM)∗. In this case the Hamiltonian does not commute with T,
thus T is not conserved and, since CPT is conserved, CP is violated.
8The Euler-Lagrange equation implies the following correspondence between motion equa-
tions and Lagrangians:
L = ∂µψδµψ − m2ψ2 → (∂µ∂µ + m2)ψ → (E2 = p2 + m2) (Einstein equation).

L = iψ̄γµ∂µψ − mψψ → (iγµ∂µ − m)ψ = 0 (Dirac equation).
9It simply follows from the properties of projection operators and using the equalities
ψR = ψPL and ψL = ψPR. It follows that:
mψψ = mψ(PL + PR)ψ = mψ(PLPL + PRPR)ψ = m[(ψPL)(PLψ) + (ψPR)(PRψ)] =
m(ψRψL + ψLψR)
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a gauge-invariant way, is to consider Yukawa couplings in which con-
tributes a weak iso-doublet field φ:

ψLφψR ; with φ =
(

φ+

φ0

)
, Iφ = 1/2, Yφ = 1 , (8)

where the quantum numbers of the new doublet (φ) are exactly those
needed to restore the gauge invariance of the interaction vertex giving
the mass to fermions.

In the Standard Model, the Lagrangian corresponding to charged
weak interactions can be written as:

LW =
g

2
Q

Int.
Li

γµσaQInt.
Li

W a
µ ; QInt.

Li
=
(

uLi

dLi

)
, LInt.

Li
=
(

νLi

�Li

)
, (9)

the index Int. indicates the weak interaction basis, σa are the Pauli ma-
trices (a=1,2,3), W a

µ are the SU(2)L gauge bosons and i is the quark

index. It can be noted that: Q
Int.
Li

QInt.
Li

= Q
Int.
Li

1ijQ
Int.
Lj

. The charged
weak interactions are family blind (the quantum numbers of the Stan-
dard Model are I3 and Y which do not “feel” the family index).

In the interaction basis the Yukawa interaction is:

LY = Y d
ijQ

Int.
Li

φdInt.
Rj

+ Y u
ijQ

Int.
Li

φ̃uInt.
Rj

+ Y �
ijL

Int.
Li

φ�Int.
Rj

+ H.C. , (10)

where φ̃ = iσ2φ
∗. In the most general case the matrices Yij are complex.

The presence of two independent matrices Yij , for the up-type and down-
type quark, is due to the behaviour of the Yukawa coupling itself.

After spontaneous symmetry breaking (SSB):

φ =
1√
2

(
0
v

)
, (11)

and the Yukawa interaction can be written:

LM = d
Int.
Li

Md
ijd

Int.
Rj

+ uInt.
Li

Mu
iju

Int.
Rj

+ �
Int.
Li

M �
ij�

Int.
Rj

+ H.C. (12)

where Mu = (v/
√

2)Y u and Md = (v∗/
√

2)Y d. Physical masses are
obtained by finding transformations of the fields such that the corre-
sponding mass matrices become real and diagonal:

Mf (diag) = V f
L Mf (V f

R )† . (13)

Therefore, the mass eigenstates are

dLi = (V d
L )ijd

Int.
Lj

; dRi = (V d
R)ijd

Int.
Rj

(14)

uLi = (V u
L )iju

Int.
Lj

; uRi = (V u
R )iju

Int.
Rj

�Li = (V �
L)ij�

Int.
Lj

; �Ri = (V �
R)ij�

Int.
Rj

νLi = (V ν
L )ijν

Int.
Lj
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In this basis the Lagrangian for the weak interaction can be written as:

LW =
g

2
uLiγ

µ
[
V u

L (V d
L )†
]
dLjW

a
µ + h.c. (15)

where
V (CKM) = V u

L (V d
L )† . (16)

V(CKM) is the CKM matrix. The phenomenon of flavour changing can
be appreciated in two different ways (different basis). If we use the
basis in which the mass matrices are diagonal, the Lagrangian for the
interactions is not anymore family blind. The interaction among quarks
belonging to different families are possible and the couplings are encoded
in the CKM matrix.

If the same procedure is applied in the lepton sector it follows that:

V (leptons) = (V ν
L (V �

L)†) = (V �
L(V �

L)†) = 1 , (17)

since the mass matrix of the neutrinos is arbitrary (the neutrinos are
massless in the SM), we can always choose V ν

L = V �
L.

There is freedom in parametrising the CKM matrix:
- a permutation between the different generations (it is normally chosen
to order the quarks by increasing value of their mass (u, c, t and d, s, b),
- the presence of phases in the CKM matrix. It is clear that M(diag) is
unchanged if the matrices VL(R) are multiplied by a matrix containing
only phases: Ṽ f

L(R) = P fV f
L(R), it follows V (CKM) = P uV (CKM)P ∗d.

As long as some of these phases are not observable, one has to require
that the CKM matrix contains the minimal number of phases, all the
others being absorbed in the definition of quark wave functions.

The 2 × 2 matrix can be used to illustrate the contribution of these
arbitrary phases in the CKM matrix:

V =
(

V11 V12

V21 V22

)
→
(

e−iφ1 0
0 e−iφ2

) (
V11 V12

V21 V22

)
× · · · (18)

· · · ×
(

e+iχ1 0
0 e+iχ2

)
=
(

V11e
−i(φ1−χ1) V12e

−i(φ1−χ2)

V21e
−i(φ2−χ1) V22e

−i(φ2−χ2)

)
It can be noted that:

(φ2 − χ2) = (φ2 − χ1) + (φ1 − χ2) − (φ1 − χ1) (19)

Among the four phases, corresponding to the four quark flavours, only
three can be chosen in an arbitrary way, since one phase difference is
obtained as a linear sum of the other three. In the general case, the
number of arbitrary phases is: 2n(families) − 1.
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The CKM matrix is a rotation matrix and, in a complex plane, can be
parametrized in terms of a given number of angles (real numbers) and
phases (complex numbers) as indicated in Table 1.

Family of quarks num. of Angles num. Phases Irreducible Phases

n n(n − 1)/2 n(n + 1)/2 n(n − 1)/2 − (2n − 1)
= (n − 1)(n − 2)/2

2 1 3 0
3 3 6 1
4 6 10 3

Table 1. Numbers of angles and phases parametrising a complex rotation matrix.
The last column gives the number of phases which cannot be reabsorbed into the quark
fields.

It results that a 2× 2 matrix (the Cabibbo matrix) is parametrized
in terms of one real parameter and contains no phase. The 3× 3 matrix
(CKM) is parametrised in terms of three real parameters and one irre-
ducible phase. The presence of this complex number in the Lagrangian,
as explained at the end of Section 2 (footnote 7), is responsible, and
it is the only one, of the fact that the CP symmetry is violated in the
Standard Model.

4. The CKM Matrix
Many parametrizations of the CKM matrix have been proposed in

the literature. The most popular are the standard parametrization [22]
recommended by [23] and a generalization of the Wolfenstein parame-
trization [24] as presented in [3].

With cij = cos θij and sij = sin θij (i, j = 1, 2, 3), the standard para-
metrization is given by:

VCKM =

⎛⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13

⎞⎠ ,

(1)
where δ is the phase necessary for CP violation. cij and sij can all be
chosen to be positive and δ may vary in the range 0 ≤ δ ≤ 2π. However,
measurements of CP violation in K decays force δ to be in the range
0 < δ < π. s13 and s23 are small numbers: O(10−3) and O(10−2), re-
spectively. Consequently, from phenomenological applications, the four
independent parameters are taken to be:

s12 = |Vus|, s13 = |Vub|, s23 = |Vcb|, δ. (2)
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The first three quantities can be extracted from tree level decays me-
diated by the s → u, b → u and b → c transitions, respectively. The
phase δ can be obtained from CP violating or loop processes sensitive
to the Vtd matrix element.

The absolute values of the elements of the CKM matrix show a hier-
archical pattern with the diagonal elements being close to unity: |Vus|
and |Vcd| being of order 0.2, |Vcb| and |Vts| of order 4 · 10−2 and |Vub|
and |Vtd| of order 5 · 10−3. The Wolfenstein parametrization is useful
to illustrate this structure. It shows that the matrix is almost diagonal,
namely that the coupling between quarks of the same family is close to
unity, and is decreasing as the separation between families increases:

VCKM =

⎛⎝ 1 − λ2

2 λ Aλ3(ρ − iη)
−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞⎠ +O(λ4).

(3)
The set (2) is replaced by:

λ, A, ρ, η , (4)

known as the Wolfenstein parameters. To obtain the exact expression of
the CKM parameters in the Wolfenstein parametrization, it is convenient
to go back to the standard parametrization and to make the following
change of variables in (1) [3, 25]:

s12 = λ , s23 = Aλ2 , s13e
−iδ = Aλ3(ρ − iη). (5)

At order λ5, the obtained CKM matrix in the extended Wolfenstein
parametrization is:

VCKM =

⎛⎜⎜⎜⎜⎝
1 − λ2

2 − λ4
8 λ Aλ3(ρ − iη)

−λ + A2λ5
2 (1 − 2ρ) − iA2λ5η 1 − λ2

2 − λ4( 1
8 + A2

2 ) Aλ2

Aλ3
[
1 − (1 − λ2

2 )(ρ + iη)
]

−Aλ2(1 − λ2
2 )

[
1 + λ2(ρ + iη)

]
1 − A2λ4

2

⎞⎟⎟⎟⎟⎠
+O(λ6).

(6)

By definition, the expression for Vub remains unchanged relative to
the original Wolfenstein parametrization and the corrections to Vus and
Vcb appear only at O(λ7) and O(λ8), respectively. The advantage of
this generalization of the Wolfenstein parametrization, over other gener-
alizations found in the literature, is the absence of relevant corrections
in Vus, Vcd, Vub and Vcb. It can be noted that the element Vtd can be
re-expressed as:

Vtd = Aλ3(1 − ρ − iη)
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where [3]

ρ = ρ(1 − λ2

2
), η = η(1 − λ2

2
). (7)

This elegant change in Vtd, with respect to the original Wolfenstein
parametrization, allows a simple generalization of the so-called unitarity
triangle to higher orders in λ [3] as discussed below.

4.1 The Unitarity Triangle
From the unitarity of the CKM matrix (V V † = V †V = 1), non di-

agonal elements of the matrix products corresponding to six equations
relating its elements can be written. In particular, in transitions involv-
ing b quarks, the scalar product of the third column with the complex
conjugate of the first row must vanish:

V ∗
udVub + V ∗

cdVcb + V ∗
tdVtb = 0 (8)

V
ud

V
cd

V
td

* * *
+ + =  0V

us
V

cs
V

ts

V
ud

V
cb

V
tb

* * *+ + =  0V
ub

V
cd V

td

V
us

V
cs

V
ts

* * *
+ + =  0V

ub
V

cb V
tb

V
ud

V
us

V
ub

* * *
+ + =  0V

td
V

ts V
tb

V
ud

V
us

V
ub

* * *
+ + =  0V

cd
V

cs V
cb

λ λ λ
5

λ λ λ
3

λ λ λ
2

λ λ λ
3

λ λ λ
5

3 3

4 2

3 3

V
td

V
ts

V
tb

* * *
+ + =  0V

cd
V

cs V
cb λ λ λ

24 2

Figure 1. The six triangle equations from the unitarity condition of the CKM
matrix.

Using the parametrization given in Equation (6), and neglecting con-
tributions of order O(λ7), the different terms, in this expression, are
respectively:

VudV
∗
ub = Aλ3(ρ + iη), (9)
VcdV

∗
cb = − Aλ3,

VtdV
∗
tb = Aλ3(1 − ρ − iη)

The three expressions are proportional to Aλ3, which can be factored
out, and the geometrical representation of Eq. (8), in the (ρ, η) plane,
is a triangle with summit at C(0, 0), B(1, 0) and A(ρ, η).
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The lengths CA and BA, to be denoted respectively by Rb and
Rt, are given by

AC ≡ Rb ≡
|VudV

∗
ub|

|VcdV
∗
cb|

=
√

ρ2 + η2 = (1 − λ2

2
)
1
λ

∣∣∣∣Vub

Vcb

∣∣∣∣ , (10)

AB ≡ Rt ≡
|VtdV

∗
tb|

|VcdV
∗
cb|

=
√

(1 − ρ)2 + η2 =
1
λ

∣∣∣∣Vtd

Vcb

∣∣∣∣ . (11)

ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Figure 2. The Unitarity Triangle.

The angles β and γ = δ of the unitarity triangle are related di-
rectly to the complex phases of the CKM-elements Vtd and Vub,
respectively, through

Vtd = |Vtd|e−iβ, Vub = |Vub|e−iγ . (12)

Each of the angles is the relative phase of two adjacent sides (a
part for possible extra π and minus sign) so that:

β = arg( VtdV ∗
tb

VcdV ∗
cb

) = atan( η
1−ρ) (13)

γ = arg(VudV ∗
ub

VcdV ∗
cb

) = atan(η
ρ ) (14)

The unitarity relation (Eq. 8) can be rewritten as

Rbe
iγ + Rte

−iβ = 1 (15)

The angle α can be obtained through the relation α+β+γ = 180◦

expressing the unitarity of the CKM-matrix.

The triangle shown in Figure 2 -which depends on two parameters
(ρ, η))-, plus |Vus| and |Vcb| gives the full description of the CKM matrix.

The Standard Model, with three families of quarks and leptons, pre-
dicts that all measurements have to be consistent with the point A(ρ, η).
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4.2 General Introduction to Oscillation and CP
Violation

In this section we give a general introduction to the oscillation and CP
violation formalism in view of their impact on the CKM matrix element
determination.

A general system which satisfies the coupled Schrodinger equation can
be written as:

i
d

dt

(
B0

B
0

)
= H

(
B0

B
0

)
(16)

H =
(

H11 H12

H21 H22

)
; Hij = Mij − iΓij/2

The B0 and the B
0 are the flavour eigenstates. Transitions between

B0 and B
0 are then possible and the Hamiltonian has to be diagonalized

to find the new eigenstates which are:

|B0
L >= p|B0 > +q|B0

> ; |B0
H >= p|B0 > −q|B0

> (17)

where |q|2 + |p|2 = 1. Solving the eigenvalues equation (supposing that
CPT is conserved) and defining ∆m = MH −ML and ∆Γ = ΓH −ΓL it
follows:

∆m2 − 1/4∆Γ2 = 4|M12|2 − |Γ12|2 (18)
∆m∆Γ = 4Re(M12Γ∗

12)

In the Standard Model, B0 − B0 transitions occur through a second-
order process -a box diagram- with a loop that contains W and up-type
quarks. The exchange of the top quark dominates the part relative to the
mass difference (M12), while light quarks contribute to the part relative
to the decay (Γ12) (only common states to B0 and B

0 contribute). It
results that : Γ12/M12 = m2

b/m2
t << 1. The relations (18) simplify to:

∆m = 2|M12| (19)

∆Γ = 2Re(M12Γ12∗)
|M12|

q

p
= − |M12|

M12

The last expression is valid at leading approximation10. We are now
interested in the time evolution of the flavour eigenstates in the

10Beyond the leading approximation the expression becomes : q
p

= −∆m−i/2∆Γ
2M12−iΓ12
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hypothesis (∆Γ << ∆m):

|B0
phys.(t) >= e−imt e−Γ/2 t(cos ∆m/2t |B0 > + i

q

p
sin∆m t/2 |B0

>)

|B0
phys.(t) >= e−imt e−Γ/2t(cos ∆m/2t |B0

> + i
q

p
sin∆mt/2 |B0 >)

It follows:

< f |H|B0
phys.(t) > |2 = (20)

e−Γt

2
[(1 + cos∆mt)| < f |H|B0(t) > |2 +

(1 − cos∆mt)|q
p
|2| < f |H|B0(t) > |2 +

2Im ( |q
p
| sin ∆mt < f|H|B0(t) >< f|H|B0(t) >∗)]

The probability that a meson B0 produced (by strong interaction) at
time t = 0 transforms (by weak interaction) into a B

0 (or stays as a B0)
at time t is given by:

Prob(B0
phys.(t) → B0

phys.(t)(B
0
phys.(t))) =

1
2
e−Γt(1 + (−)cos∆mt) (21)

Defining:

λ =
q

p

< f |H|B0
>

< f |H|B0 >
=

q

p

Af

Af
; λ =

p

q

< f |H|B0 >

< f |H|B0
>

=
p

q

Af

Af

(22)

the equation becomes:

| < f |H|B0
phys.(t) > |2 = (23)

e−Γt

2
| < f |H|B0(t) > |2

[ (1 + cos∆mt) +
(1 − cos∆mt)|λ|2

−2Im(λ)sin∆mt ]

and similarly for | < f |H|B0
phys.(t) > |, | < f |H|B0

phys.(t) > | and

| < f |H|B0
phys.(t) > |. We concentrate here on the two cases of CP

violation which are the most relevant for CKM physics.

B0 sector: direct CP Violation and CP Violation in the interference
between mixing and decays.
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CP violation can occur because Imλ �= Imλ and/or when |λ|, |λ̄| are
different from unity. In this case the four quantities Prob(B0

phys. →
f), P rob(B0

phys. → f), P rob(B0
phys. → f) and Prob(B0

phys. → f) (see eq.
23) have to be studied and thus |λ|2, |λ|2, Imλ, Imλ are determined. The
simplest case is when the final state f is a specific CP state. In this case
λ = 1/λ ≡ λf and the previous conditions simplify to Imλf �= 0 and/or
|λf | �= 1. The following asymmetry can be studied:

ACP (mixing − decay) =
Prob(B0

phys(∆t)→f)−Prob(B
0
phys(∆t)→f)

Prob(B0
phys(∆t)→f)+Prob(B

0
phys(∆t)→f)

(24)

= Cf cos∆md ∆t + Sf sin∆md ∆t ,

where

Cf =
1 − |λf |2
1 + |λf |2

; Sf = − 2 Imλf

1 + |λf |2
(25)

Cf corresponds to direct CP violation, since it is related to differences
in the decay amplitudes, while Sf is related to the interference between
the mixing and decays, involving the imaginary parts of p/q and of the
decay amplitudes. It is important to note that, also in case |λf |=1, CP
violation is possible if Imλf �= 0. This case is particularly interesting.
When only one amplitude dominates the decay process, |λf | = 1, imply-
ing Cf = 0 and Sf = −Imλf . We will see in the following that −Imλf is
the sine of twice an angle of the unitarity triangle.

B+ sector: the direct CP Violation.
The transition amplitudes can be written as:

| < f |H|B+ > | = v1A1e
iθ1 + v2A2e

iθ2 (26)
| < f |H|B− > | = v∗1A1e

iθ1 + v∗2A2e
iθ2

where v1,2 are the weak-CKM couplings and A1,2(θ1,2) are the modulus
and the strong phase respectively. The weak phase changes sign under
CP (the strong phase do not). It follows:

aCP (direct) =
| < f |H|B+ > |2 − | < f |H|B− > |2
| < f |H|B+ > |2 + | < f |H|B− > |2

(27)

=
2rBsin(arg(v1/v2))sin(θ1 − θ2)

1 + r2
B + 2rBcos(arg(v1/v2))cos(θ1 − θ2)

; rB = |v1|A1

|v2|A2

The basic conditions to have direct CP violation are the presence of
two competing amplitudes, rB �= 0, and of nonzero weak phase and
strong phase differences.
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The weak phase difference is related to one of the unitarity triangle
angles. To be more explicit, if for instance we consider a process which
can occur through Vub and Vcb mediated transitions, arg(v1/v2) = γ.

CP Violation in the Kaon sector.
Historically the parameter characterizing CP violation was defined as

ε given in:

|KS >=
|K1 > +εK2 >√

(1 + |ε|2)
; |KL >=

|K2 > +εK1 >√
(1 + |ε|2)

(28)

K1,2 are the CP eigenstates and the previous equation can be written in
terms of flavour eigenstates:

|KS >=
1√

2
√

(1 + |ε|2)
[(1 + ε)|K0 > +(1 − ε)|K0

>]

|KL >=
1√

2
√

(1 + |ε|2)
[(1 + ε)|K0 > −(1 − ε)|K0

>]

where ε is related to p, q parameters by: ε = p−q
p+q .

Two CP violating quantities are measured in the neutral Kaon sector:

η00 =
< π0π0|H|KL >

< π0π0|H|KS >
; η± =

< π+π−|H|KL >

< π+π−|H|KS >
(29)

Defining

A00 =< π0π0|H|K0 > ; A00 =< π0π0|H|K0
>

A+− =< π+π−|H|K0 > ; A+− =< π+π−|H|K0
>

λ00 =
q

p

A00

A00
; λ+− =

q

p

A+−
A+−

which implies

η00 =
1 − λ00

1 + λ00
; η+− =

1 − λ+−
1 + λ+−

(30)

The ππ final states can have isospin I=0,2. Experimentally it is ob-
served that AI=2/AI=0 � 1/20 (known has the ∆ I=1/2 rule). In the
approximation that only the I=0 amplitude contributes -no direct CP
violation- it follows:

εK =
< π0π0

I=0 |H|KL >

< π0π0
I=0 |H|KS >

= η00 (31)
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and similarly for the η+−.
Contrarily to B mesons, in case of Kaon physics ∆Γ � ∆M . Using

the expression of q/p (eq. 18) it follows that:

εK =
eiπ/4

√
2∆mK

(ImM12 + 2ζReM12) (32)

where ζ = Im(A(K → ππ)I=0)/Re(A(K → ππ)I=0). The contribu-
tion, proportional to ζ, which is of about 2% correction to |εK | can be
neglected.

4.3 Standard Model formulae relating ρ and η
to experimental and theoretical inputs

Five measurements restrict, at present, the possible range of variation
of the ρ and η parameters:

B hadrons can decay through the b → c and b → u transitions.
Semileptonic decays offer a relatively large branching fraction (�
10 %) and corresponding measurements can be interpreted using a
well established theoretical framework. The relative rate of charm-
less over charmed b-hadron semileptonic decays is proportional to
the square of the ratio:∣∣∣∣Vub

Vcb

∣∣∣∣ = λ

1 − λ2

2

√
ρ2 + η2 , (33)

and it allows to measure the length of the side AC of the triangle
(Figure 3).

In the Standard Model, B0−B0 oscillations occur through a second-
order process -a box diagram- with a loop that contains W and up-
type quarks. The box diagram with the exchange of a top quark
gives the dominant contribution. The oscillation probability is
given in eq. (21) and the time oscillation frequency, which can be
related to the mass difference between the light and heavy mass
eigenstates of the B0

d − B0
d system (eq. 19, ∆m = 2|M12| ), is

expressed, in the SM, as11:

∆md =
G2

F

6π2
m2

W ηbS(xt) A2λ6 [(1−ρ)2 +η2] mBd
f2

Bd
B̂Bd

, (34)

11∆mq is usually expressed in ps−1 unit. 1 ps−1 corresponds to 6.58 10−4eV.
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where S(xt) is the Inami-Lim function [26] and xt = m2
t /M

2
W , mt

is the MS top quark mass, mMS
t (mMS

t ), and ηb is the perturbative
QCD short-distance NLO correction. The value of ηb = 0.55±0.01
has been obtained in [27] and mt = (167 ± 5) GeV is used, as de-
duced from measurements by CDF and D0 Collaborations [21].
The remaining factor, f2

Bd
B̂Bd

, encodes the information of non-
perturbative QCD. Apart for ρ and η, the most uncertain parame-

ter in this expression is fBd

√
B̂Bd

(6.4).
In the vacuum saturation approximation the matrix element of the
V-A current is calculated between the vacuum and the pseudoscalar
meson and only the axial current contributes. The constant fBd

translates the probability that the quark and the antiquark meet
to decay or the size of the B meson wave function at the origin.
Another parameter is also introduced: the bag factor B̂Bd

which
is inserted to take into account all possible deviation from vacuum
saturation approximation. The values of the bag factors are ex-
pected to be close of the unity.
The measurement of ∆md gives a constraint on the length of the
side AB of the triangle (Figure 3).

The B0
s − B0

s time oscillation frequency, which can be related to
the mass difference between the light and heavy mass eigenstates
of the B0

s − B0
s system, is proportional to the square of the |Vts|

element. Neglecting terms, having a small contribution, | Vts | is
independent of ρ and η. The measurement of ∆ms would then
give a strong constraint on the non-perturbative QCD parameter
f2

Bs
B̂Bs . In any case, the ratio between the values of the mass

difference between the mass-eigenstates, measured in the B0
d and

in the B0
s systems can be used:

∆md

∆ms
=

mBd
f2

Bd
B̂Bd

mBsf
2
Bs

B̂Bs

(
λ

1 − λ2

2

)2
(1 − ρ)2 + η2(

1 + λ2

1−λ2

2

ρ

)2

+ λ4η2

. (35)

The advantage in using the ratio ∆md
∆ms

, instead of only ∆md, is

that the ratio ξ = fBs

√
B̂Bs/fBd

√
B̂Bd

is expected to be better
determined from theory than the individual quantities entering
into its expression. The measurement of the ratio ∆md/∆ms gives
a similar type of constraint as ∆md, on the length of the side AB
of the triangle.



Current Status of the CKM Matrix and the CP Violation 49

Indirect CP violation in the K0 − K0 system is usually expressed
in terms of the |εK | parameter (as defined in Section 4.2) which
is the fraction of CP violating component in the mass eigenstates.
In the SM, the following equation is obtained

|εK | = Cε A2λ6 η × (36)[
−η1S(xc)

(
1 − λ2

2

)
+ η2S(xt)A2λ4 (1 − ρ) + η3S(xc, xt)

]
B̂K

where Cε = G2
F f2

KmKm2
W

6
√

2π2∆mK
.

S(xi) and S(xi, xj) are the appropriate Inami-Lim functions [26]
depending on xq = m2

q/m2
W , including the next-to-leading order

QCD corrections [27, 28]. The most uncertain parameter is B̂K

(6.4).
The constraint brought by the measurement of |εK | corresponds
to an hyperbola in the (ρ, η) plane (Figure 3).

The measurement of CP violation in the B sector.

The mixing induced CP asymmetry, aJψKS
, in B0

d → J/ψKS or
(→ J/ψKL) decays allows to determine the angle β of the Uni-
tarity Triangle essentially without any hadronic uncertainties. As
explained before, a possible manifestation of the CP asymmetry
could appear in the interference between amplitudes describing
decays with and without mixing. The process B0 → J/ΨK0 is
dominated by tree diagram12 and it follows that:

q

p
=
(

V ∗
tbVtd

VtbV
∗
td

)
from B mixing

< J/ΨK0|H|B0 >

< J/ΨK0|H|B0 >
=
(

V ∗
csVcb

VcsV ∗
cb

)
from B decay amplitudes(

V ∗
cdVcs

VcdV ∗
cs

)
from K mixing

|λf |2 = 1 ; Im λf = ηCPsin2β

12The same process could be described by a Penguin diagram (with a ts transition) and a
J/Ψ emitted from gluons. This process is proportional to VtsV ∗

tb. It is important to note that
the amplitude associated to this process has the same phase, at order O(λ2), as the dominant
tree-level one. At order O(λ4), Vts is complex and differs from Vcb. Thus the correction to
β is suppressed by a factor O(λ4) and by an extra factor because the J/Ψ must be emitted
by at least three gluons.
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where ηCP is the CP eigenvalue of the final state. The asymmetry
defined in eq. 24 gives:

ACP (J/ΨKS) = −2 sin (2β) sin∆md ∆t , (37)

The measurement of ACP (J/ΨK0) gives a constraint correspond-
ing to sin (2β), in the (ρ, η) plane (Figure 3).

-1

0

1

2

-1 0 1 2

ρ
_

η_

εK

∆md (∆md/∆ms)

Vub
Vcb

sin2β

βγ
αA

C

AB

Figure 3. Unitarity Triangle. Constraints from |Vub| / |Vcb|, |εK |, ∆md or
∆md/∆ms and sin (2β) are shown.

Constraints on ρ and η are obtained by comparing present measure-
ments with theoretical expectations using the expressions given above
and taking into account the different sources of uncertainties. In addi-
tion to ρ and η, these expressions depend on other quantities. Additional
measurements or theoretical determinations have been used to provide
information on the values of these parameters; details are given in the
next sections.

To illustrate the different constraints described in the present section,
in Figure 3, the uncertainty bands for the quantities, obtained using
Eqs. (33)–(37), are presented. Each band, corresponds to only one of
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the constraints and contains 95% of the events obtained by varying the
input parameters.

In the first column of Table 2 the different measured quantities are
listed, with their explicit dependence on ρ and η given in the third
column.

Measurement CKM×other Constraint

Br(b → u�ν)/ Br(b → c�ν) |Vub/Vcb|2 ρ2 + η2

∆md |Vtd|2f2
Bd

BBdf(mt) (1 − ρ)2 + η2

∆md
∆ms

∣∣∣Vtd
Vts

∣∣∣2 f2
Bd

BBd

f2
Bs

BBs
(1 − ρ)2 + η2

|εK | f(A, η, ρ, BK) ∝ η(1 − ρ)
ACP (J/ΨK0) sin (2β) 2ηρ/

[
(1 − ρ)2 + η2

]
Table 2. Different measurements contributing in the determination of ρ and η, with
their functional dependences.

The values and errors of the relevant quantities used in the fit of the
CKM parameters are summarized in Table 3.

For the extraction of the CKM parameters we use the Bayesian ap-
proach [37]. In these lectures we do not enter into any details related to
the statistical method. Here we want just to explain the splitting of the
errors as given in Table 3. We take a Gaussian distribution (G(x − x0))
when the uncertainty is dominated by statistical effects, or when there
are several contributions of similar importance to systematic errors, so
that the central limit theorem applies. We take a uniform p.d.f. if the
parameter value is believed to be (almost) certainly within a given inter-
val, and the points inside this interval are considered as equally probable.
The second model is used for theoretical uncertainties. U(x) = 1/2σtheo

for x ∈ [x0 − σtheo, x0 + σtheo] and U(x) = 0 elsewhere. The combined
p.d.f. (P) is obtained by convoluting the Gaussian p.d.f. (G) with the
uniform p.d.f. (U): P = G ⊗ U . When several determinations of the
same quantity are available the final p.d.f, in the Bayesian approach, is
obtained by taking the product of individual p.d.f.s (and normalizing the
obtained distribution to unity). For more details on statistical methods
see [29].

5. B Physics at different facilities
In this chapter we will discuss B physics at different machines. The

main contributors in B hadron studies are:

the e+e− colliders
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Parameter Value Gaussian (σ) Uniform Ref.
(half-width)

λ 0.2241 0.0036 - [30]

|Vcb|(excl.) 42.1 × 10−3 2.2 × 10−3 - Section 6.1
|Vcb|(incl.) 41.4 × 10−3 0.7 × 10−3 0.6 × 10−3 Section 6.1
|Vub|(excl.) 33.0 × 10−4 2.4 × 10−4 4.6 × 10−4 Section 6.2
|Vub|(incl.) 40.9 × 10−4 4.6 × 10−4 3.6 × 10−4 Section 6.2

∆md 0.502 ps−1 0.007 ps−1 - Section 6.3
∆ms > 14.5 ps−1 sensitivity 18.3 ps−1 Section 6.3

at 95% C.L.
mt 167 GeV 5 GeV - [21]

fBd

√
B̂Bd 223 MeV 33 MeV ±12 MeV Section 6.4

ξ =
fBs

√
B̂Bs

fBd

√
B̂Bd

1.24 0.04 ±0.06 Section 6.4

ηb 0.55 0.01 - [27]

B̂K 0.86 0.06 0.14 Section 6.4
|εK | 2.280 × 10−3 0.019 × 10−3 - [23]
η1 1.38 0.53 - [28]
η2 0.574 0.004 - [27]
η3 0.47 0.04 - [28]
fK 0.159 GeV fixed [23]
∆mK 0.5301 ×10−2 ps−1 fixed [23]

sin (2β) 0.739 0.048 - Section 6.5

mb 4.21 GeV 0.08 GeV – Section 6.1
mc 1.3 GeV 0.1 GeV – Section 6.1
αs 0.119 0.03 – [28]
GF 1.16639 fixed [23]

×10−5GeV−2

mW 80.23 GeV fixed [23]
mB0

d
5.2794 GeV fixed [23]

mB0
s

5.3696 GeV fixed [23]

mK 0.493677 GeV fixed [23]

Table 3. Values of the relevant quantities used in the fit of the CKM parameters. In
the third and fourth columns the Gaussian and the flat parts of the uncertainty are
given (see text), respectively. The central values and errors are those adopted at the
end of the “CKM Unitarity Triangle” Workshops ([29],[30]) and by HFAG [31] and
are given and explained in the following sections (as indicated in the last column).
The averages for the non perturbative QCD parameters are made by the CKM-LDG
group [32]

– the symmetric-B factories operating at Υ(4S) (ARGUS/
CRYSTAL BALL and CLEO/CUSB experiments running at
DORIS and CESR, respectively, from 1979 to 2002)
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– the asymmetric-B factories operating at Υ(4S) (Belle at KEK
and BaBar at PEP experiments running from 1999)

– the Z0 resonance experiments (the LEP collaborations which
run from 1989 to 1995 and the SLD collaboration at SLC
which run from 1989 to 1998).

the pp collider

– the TeVatron collider, operating at
√

s = 1.8 TeV - phase
I (D0 and CDF experiment from 1987 to 2000). They are
presently running with an improved luminosity at

√
s � 1.9

TeV -phase II.

An overview of these experiments, operating at different facilities, is
given in Table 4.

At the Υ(4S), pairs of B± and B0
d

(
B0

d

)
mesons are produced on top

of the hadronic background continuum from lighter qq pairs. The two
B mesons are created simultaneously in a L=1 coherent state, such that
before the first decay the final state contains a B and a B; at the time of
the decay of the first B meson, the second one is in the opposite flavour
eigenstate. The production cross section is about 1.2 nb. Because of the
energy available, only B± and B0

d mesons are emitted. In symmetric B-
factories B particles are produced almost at rest while at the asymmetric
factories they have a boost of βγ = 0.56 (0.44) (for BaBar (Belle)). It is
important to note that, in both cases, the average B momentum in the
Υ(4S) rest frame is of the order of about 350 MeV/c.

Considering that the B lifetime is of the order of 1.6 ps, the flight dis-
tance of a B hadron, defined as L = γβcτ is, on average, at asymmetric
B-factories, of the order of 250 µm. This distance is measurable and
highlights the greatest advantage of asymmetric B-factories where time
dependent analyses, necessary for CP violation studies, are possible.

The B decay products are the only tracks produced in the events, there
is no accompanying additional hadron. As a consequence the energy
taken by each B meson is equal to the half the total energy in the e+e−

center-of-mass frame; this constraint is, for instance, very important in
rejecting the non-B events. The decay products of the two B particles are
spread isotropically over the space and such events can be distinguished
from the continuum which are more jetty-like.

At the Z0 resonance, B hadrons are produced from the coupling of the
Z0 to a bb quark pair. The production cross section is of ∼ 6 nb, which is
five times larger than at the Υ(4S). Hadronic events account for about
70 % of the total production rate; among these, the fraction of bb events



54 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

is ∼ 22%13, which is rather similar to the one observed when running at
the Υ(4S) energy (∼ 25 %). B hadrons are thus copiously produced14.
The produced bb pair picks up from the vacuum other quark-antiquarks
pairs and hadronizes into B hadrons plus few other particles. Therefore,
not only B± and B0

d mesons are produced, but also B0
s mesons or b-

baryons can be present in the final state. The b and b quarks hadronize
independently. b quarks fragment differently from light quarks, because
of their high mass as compared with ΛQCD. As a result, B hadrons
carry, on average, about 70% of the available beam energy, whereas the
rest of the energy is distributed among the other particles emitted in
the fragmentation process. As a consequence, the two B hadrons fly in
opposite directions and their decay products belong to jets situated in
two different hemispheres.

The hard fragmentation and the long lifetime of the b quark make that
the flight distance of a B hadron at the Z pole, defined as L = γβcτ , is
on average of the order of 3 mm.

At pp colliders, the situation is rather different. Here b quarks are
produced mainly through the gluon-gluon fusion process gg → bb. At
the Fermilab Collider (

√
s = 1.8 TeV), the differential b-production cross

section depends on the rapidity and on the transverse momentum. In
total, it is typically of the order of 50µb, which is large. B decay products
are situated inside events having an average multiplicity which is much
larger than the multiplicity at the Z pole. Furthermore the ratio σbb/σtot

is of the order of a few per mill. As a consequence, only specific channels
e.g. with fully reconstructed final states, or semileptonic decays, can be
studied with a reasonable signal to background ratio.

Registered data sets from experiments operating at different facilities
are summarized in Table 4.

6. Evaluation of the parameters entering in the
determination of the CKM parameters.

This section gives a short summary on the determination of the quan-
tities entering in Unitarity Triangle fits. The discussion on the central
values and attributed errors for these quantities has been extensively
done and agreed values were adopted during the First Workshop on the

13whereas the fraction of cc events is ∼ 17%.
14In the intermediate energy region (“continuum”) where the annihilation through one photon
is dominant (V-coupling) the cross section scales with the energy available in the center of
mass (squared), being of the order of 30 pb at 30 GeV and of about 10 pb at 60 GeV. In
this energy range the fraction of bb events is ∼ 9% whereas the fraction of cc events is ∼ 35%
(being the coupling proportional to the square of the electric charge.
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Experiments Number of bb Environment Characteristics
events (×106)

LEP Coll. ∼ 1 per expt. Z0 decays back-to-back 45 GeV b-jets,
(4 expts.) (σbb ∼ 6nb) all B hadron produced.

SLD ∼ 0.1 Z0 decays back-to-back 45 GeV b-jets,
(σbb ∼ 6nb) all B hadron produced,

beam polarized.

ARGUS ∼ 0.2 Υ(4S) decays mesons produced at rest,
(σbb ∼ 1.2nb) B0

d and B+.

CLEO ∼ 9 Υ(4S) decays mesons produced at rest,
(σbb ∼ 1.2nb) B0

d and B+.

BaBar ∼ 130 Υ(4S) decays asymmetric B-factories
Belle (σbb ∼ 1.2nb) B0

d and B+.

CDF ∼ several pp collider-Run I events triggered with leptons,√
s = 1.8 TeV all B hadron produced.

((σbb ∼ 50µb)

Table 4. Summary of recorded statistics by experiments operating at different facil-
ities and main characteristics.

“Unitarity Triangle Parameters Determination” held at CERN from the
12-15 February 2002 [29]. More recent values are taken from the updates
done during the Second Workshop on the “Unitarity Triangle Parame-
ters Determination” held at Durahm from the 5-9 April 2003 [30]. Many
of the experimental averages have been calculated by the HFAG (Heavy
Flavour Averaging Group) and can be found in [31].

6.1 Determination of |Vcb|
The |Vcb| element of the CKM matrix can be accessed by studying the

decay rate of inclusive and exclusive semileptonic b-decays.

Determination of |Vcb| using inclusive analyses. The first
method to extract |Vcb| makes use of B-hadrons inclusive semileptonic
decays and of the theoretical calculations done in the framework of the
OPE (Operator Product Expansion). The inclusive semileptonic width
Γs.l. is expressed as:

Γs.l. =
BR(b → clν)

τb
= γtheory|Vcb|2;

γtheory = f(αs, mb, µ
2
π, 1/m3

b ...). (38)
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From the experimental point of view the semileptonic width has been
measured by the LEP/SLD and Υ(4S) experiments with a relative pre-
cision of about 2%:

Γsl = (0.431 ± 0.008 ± 0.007)10−10MeV Υ(4S)
Γsl = (0.439 ± 0.010 ± 0.007)10−10MeV LEP/SLD
Γsl = (0.434 × (1 ± 0.018))10−10MeV average (39)

Using the theoretical determinations of the parameters entering into the
expression of γtheory in Eq. (38), the uncertainty on |Vcb| comes out to be
of the order of 5%(2.0 10−3). Thus the precision on the determination
of |Vcb| is limited by theoretical uncertainties which are mainly related
to the non perturbative QCD parameters.

These parameters can be experimentally determined using the fact
that OPE gives expressions in terms of operators whose averaged values
are universal when considering different aspects of the same reaction.

Moments of the hadronic mass spectrum, of the lepton energy spec-
trum and of the photon energy in the b → sγ decay are sensitive to the
same non perturbative QCD parameters contained in the factor γtheory

of Eq. (38) and, in particular, to the mass of the b and c quarks and to
the Fermi motion of the heavy quark inside the hadron, µ2

π
15. For more

details, see for instance [34],[35].
First measurements have been done by CLEO and preliminary results

have been obtained by BaBar and DELPHI.
As an example, DELPHI data have been used for the determination

of these non perturbative QCD parameters and an illustration of the
obtained results is given in Figure 4.

Using the experimental results on Γsl, Eq. (39), and on the determi-
nation of the non perturbative QCD parameters, the following value for
|Vcb| is obtained:

|Vcb| = (41.4 ± 0.7 ± 0.6theo.) 10−3(inclusive) (40)

This result brings an important improvement in the determination of
the |Vcb| element. The dominant part of the initial theoretical errors is
now accounted for as experimental uncertainties, using the fitted non
perturbative quantities (mb, mc, µ2

π and 1/m3
b contributions) and the

remaining theoretical error has been reduced by more than a factor three
(previously the quoted theoretical error was ± 2.0 10−3).

15In another formalism, based on pole quark masses, the Λ and λ1 parameters are used, which
can be related to the difference between hadron and quark masses and to µ2

π , respectively.
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Figure 4. The moments analysis performed by DELPHI Collaboration [34]. The
projection of the constraints, brought by six measured moments, over the mb − µ2

π

(left) and mb−ρ3
D (right) planes (ρD being related to the corrections corresponding to

1/m3
b terms). The bands correspond to the total measurement accuracy and are given

by keeping all other parameters fixed at their central values. The ellipses represent
the 1σ contour.

Determination of |Vcb| using B → D∗�ν analyses. An alter-
native method to determine |Vcb| is based on exclusive B0

d → D∗+�−νl

decays. Using HQET (Heavy Quark Effective Theory), an expression
for the differential decay rate can be derived:

dΓ
dw

=
G2

F

48π2
|V 2

cb||F (w)|2G(w) ; w = vB.vD (41)

w is the 4-product of the B (vB) and the D meson (vD) velocities. G(w) is
a kinematical factor and F(w) is the form factor describing the transition.
At zero recoil (w=1) and for infinite quark masses, F(1) goes to unity.
The strategy is then to measure dΓ/dw, to extrapolate at zero recoil and
to determine F (1) × |Vcb|.

The world average result (as given in PDG 2004) [31] is:

|Vcb| = (42.1±1.1±1.9F (1)) 10−3 = (42.1±2.2) 10−3 (exclusive) (42)

To evaluate |Vcb|, the value of F(1) = 0.91 ± 0.04 have been used [39, 40].

Determination of |Vcb| using inclusive and exclusive methods.
Combining these two determinations of |Vcb| gives:

|Vcb| = (41.5 ± 0.8)10−3 (exclusive + inclusive) (43)

The average has been obtained neglecting possible correlations be-
tween the two methods to determine of |Vcb|. This assumption is safe
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from the experimental point of view, whereas detailed studies are still
missing from theory side. It should be noted that the inclusive method
is dominating the final precision on |Vcb|.

To conclude, it is important to remind that, as |Vcb| = Aλ2, the
measurement of |Vcb| allows the determination of A one of the four free
parameters of the CKM matrix. Furthermore |Vcb| gives the scale of the
Unitarity Triangle.

It is important to note also that |Vcb|, today, is known with 2% accu-
racy. This achievement has to be considered as a legacy from LEP and
CLEO experiments.

6.2 Determination of |Vub|
The measurement of |Vub| is rather difficult because one has to sup-

press the large background coming from the more abundant semileptonic
b to c quark transitions.

Several new determinations of the CKM element |Vub| are now avail-
able [31].

Determination of |Vub| using inclusive analyses. As for |Vcb|,
the extraction of |Vub| from inclusive semileptonic decays is based on
HQET implemented through OPE.

By using kinematical and topological variables, it is possible to select
samples enriched in b → u�−ν� transitions. There are, schematically,
three main regions in the semileptonic decay phase space to be consid-
ered:

the lepton energy end-point region: E� >
M2

B−M2
D

2MB
(which was at

the origin for the first evidence of b → u transitions)

the low hadronic mass region: MX < MD (pioneered by the DEL-
PHI Coll. [41])

the high q2 region: M2
�ν = q2 > (MB − MD)2.

in which the background from b → c�−ν� decays is small.
A summary of the different determinations of |Vub| is given in Figure 5.

For the extraction of the CKM parameters we use the average calculated
in [29], presented in [41] and given in Table 3 :

|Vub| = (40.9 ± 4.6 ± 3.6) × 10−4 LEP-CLEO (inclusive) (44)

Determination of |Vub| using exclusive analyses. The second
method to determine |Vub| consists in the reconstruction of charmless
semileptonic B decays: B → π(ρ)�ν.
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]-3 10×|  [ub|V
2 4 6

]-3 10×|  [ub|V
2 4 6

ALEPH
 0.76± 0.67 ±4.12

L3
 1.40± 1.00 ±5.70

DELPHI
 0.61± 0.65 ±4.07

OPAL
 0.71± 0.71 ±4.00

LEP Average 
 0.56± 0.37 ±4.09

CLEO (endpoint) 
 0.61± 0.22 ±4.08

BABAR (endpoint) 
 0.67± 0.26 ±4.43

)
2

 - Q XCLEO  (m
 0.65± 0.61 ±4.05

 tag) νl* with D XBELLE (m
 0.53± 0.64 ±5.00

)
2

 - Q XBELLE (m
 0.52± 0.47 ±3.96

) XBABAR (m
 0.49± 0.38 ±4.62

BELLE (endpoint) 
 0.59± 0.25 ±3.99

Figure 5. Summary of |Vub| inclusive measurements [31]. For the extraction of the
CKM parameters we use the average calculated in [29], presented in [41] and given in
Table 3.

Experimentally, the use of exclusive final states provides extra kine-
matical constraints for background suppression. Theoretically, the un-
certainties are of a different nature as those already described in the
inclusive analysis. The probability that the final state quarks form a
given meson is described by form factors and, to extract |Vub| from ac-
tual measurements, the main problem rests in the determination of these
hadronic form factors. As there is no heavy quark in the final state,
symmetry arguments which were helpful to determine the form factor
in B → D∗�ν decays cannot be invoked. Light-Cone Sum Rules can
provide an evaluation at the 15-20% accuracy level. Lattice QCD calcu-
lations give a similar precision but these uncertainties are expected to be
reduced in the near future. The main limitation in lattice calculations
is that, at present, they can be used only in the high q2 region.
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Figure 6. Differential branching fraction for B0 → π−�+ν measured as a function
of q2, by the CLEO Coll., and compared with predicted values (histograms) for three
models used to extract |Vub|.

A summary of the different determinations of |Vub| can be found in
[29] and [30]. The combined value of |Vub| is obtained by assuming that
systematic uncertainties, attached to individual measurements, can be
composed quadratically, for their uncorrelated components, and have
correlated contributions, of similar size. This correlated part of the
systematics arises mainly from the modelling of the b → u background.
The relative theoretical error is similar for all measurements and, for the
time being, the error from the BaBar measurement is used. The result
is

|Vub| = (33.8 ± 2.4+3.7
−5.4) × 10−4 (45)

= (33.0 ± 2.4 ± 4.6) × 10−4

The accuracy on the determination of |Vub| using exclusive decays is
limited by the theoretical uncertainty on hadronic form factor determi-
nation. An interesting analysis has been presented by the CLEO Col-
laboration at ICHEP02 [41], using the B0

d → π−�+ν� decay mode, which
consists in extracting the signal rates in three independent regions of q2.
In this way it is possible to discriminate between models. The fit shows
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that the ISGW II model is compatible with data at only 1% probability
level. This approach could be used, in future, to reduce the importance
of theoretical errors, considering that the ISGW II gave, at present, the
further apart Vub determination [41].

Determination of |Vub| using inclusive and exclusive methods.
Combining the two determinations of |Vub| (44,45), we obtain, in prac-
tice, almost a Gaussian p.d.f. corresponding to:

|Vub| = (35.7 ± 3.1) × 10−4. (46)

New and more precise results from Belle and Babar Collaborations
will much improve the present situation.

6.3 Measurements of B0 − B0 oscillations
Measurements of the B0

d − B0
d oscillation frequency: ∆md.

The probability that a B0 meson oscillates into a B0 or remains as a B0

is given in Eq. 21.
The measurement of ∆md has been the subject of an intense exper-

imental activity during the last ten years. Results are available which
correspond to the combination of 27 analyses, using different event sam-
ples, performed by the LEP Coll./SLC/CDF/B-Factories experiments.

A typical proper time distribution is shown in Figure 8. The oscillat-
ing behaviour is clearly visible.

Figure 7 gives the results for ∆md, obtained by each experiment and
the overall average [31]:

∆md = (0.502 ± 0.007) ps−1. (47)

The accuracy is of about 1%. The B-factories have the main contri-
bution to this accuracy. Improvements can still be expected from these
facilities and they are expected to reach a few per mill precision.

Search for B0
s − B0

s oscillations. As the B0
s meson is expected

to oscillate more than 20 times faster than the B0
d (∆ms/∆md ∝ 1/λ2)

and as B0
s mesons are less abundantly produced, the search for B0

s − B0
s

oscillations is more difficult. The observation of fast oscillations requires
the highest resolution on the proper time and thus on the B0

s decay
length.

for B0
s − B0

s oscillations has been observed so far.
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* working group average
   without adjustments

Figure 7. Summary of ∆md measurements [31].

The method used to measure or to put a limit on ∆ms consists in
modifying Eq. (21) in the following way [42]:

1 ± cos (∆mst) → 1 ±A cos (∆mst). (48)

A and its error, σA, are measured at fixed values of ∆ms, instead of
∆ms itself. In case of a clear oscillation signal, at a given frequency, the
amplitude should be compatible with A = 1 at this frequency. With this
method it is easy to set a limit. The values of ∆ms excluded at 95%
C.L. are those satisfying the condition A(∆ms) + 1.645 σA(∆ms) < 1.

With this method, it is easy also to combine results from different ex-
periments and to treat systematic uncertainties in the usual way since,
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Figure 8. The plots show the B0
d − B

0
d oscillations (Belle Coll.). The points with

error bars are the data. The result of the fit gives the value for ∆md.

for each value of ∆ms, a value for A with a Gaussian error σA, is
measured. Furthermore, the sensitivity of a given analysis can be de-
fined as the value of ∆ms corresponding to 1.645 σA(∆ms) = 1 (using
A(∆ms) = 0), namely supposing that the “true” value of ∆ms is well
above the measurable value.

During last years, impressive improvements in the analysis techniques
allowed to increase the sensitivity of the search for B0

s −B0
s oscillations.

Figure 9 gives details of the different ∆ms analyses. The combined result
of LEP/SLD/CDF analyses [31] (Figure 10) corresponds to:

∆ms > 14.5 ps−1 at 95% C.L.

with a sensitivity : ∆ms = 18.3 ps−1. (49)

The present combined limit implies that B0
s oscillate at least 30 times

faster than B0
d mesons. Taking into account only the λ dependence of the

ratio ∆md/∆ms (eq. 35), this factor would be about 20. The present
limit gives strong constraints on the ρ parameter whose value ends up
to be about 0.2.
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Figure 9. B0
s oscillation results. Values of the fitted amplitude at ∆ms = 15 ps−1

and of the sensitivity obtained by each experiment [31].

The significance of the “bump” appearing around 17 ps−1 is about 2.2
σ and no claim can be made for the observation of B0

s −B0
s oscillations.

Tevatron experiments are expected to measure soon these oscillations.

6.4 Some theoretical inputs: BK, fB

√
B̂B and ξ

Constraints on ρ and η depend also upon three parameters which
are related to the strong interaction operating in the non-perturbative
regime: fB

√
B̂B, ξ and BK .

Expressions for these constraints have been given, respectively, in Eqs.
(34), (35) and (36). Important improvements have been achieved during
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the last few years in the evaluation of these parameters in the framework
of Lattice QCD and a world-wide effort is organized in view of having
precise determinations of these parameters. As a consequence, in this
phenomenological analysis, only most recent results from Lattice QCD
are used.

Brief introduction to Lattice QCD (LQCD) . Lattice QCD
(LQCD) was invented about 25 years ago by K. Wilson [43].
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Perturbation theory can be seen as a tool to perform functional in-
tegrals by which all vacuum expectation values of the quantum fields
can be expressed. LQCD approach consists in a numerical evaluation of
the functional integrals. It needs a discretization of the four-dimensional
space-time by introducing a basic length, the lattice spacing (often indi-
cated as a). So LQCD does not introduce new parameters or field vari-
ables in the discretization and it retains the same properties as QCD. In
this sense, it is correct to say, that LQCD is not a model, as quark mod-
els for example, and therefore physical quantities can be computed from
first principles without arbitrary assumptions. The only input parame-
ters are the strong coupling constant and the six quark current masses.

Statistical errors.
Considering N points in each direction, the lattice will have a volume
(N a)4 ( having so two natural cutoffs: a finite space resolution and a
finite volume ). The standard integrals are sampled over a finite net of
points, whereas the functional integrals are sampled over a finite set of
functions (or configurations). The vacuum expectation values are ob-
tained by “averaging” over all the configurations. Those evaluations are
done using MonteCarlo techniques. In this spirit, LQCD simulations
are theoretical experiments carried out by numerical integration of the
functional integral by MonteCarlo techniques. In this respect uncertain-
ties on output quantities are evaluated following criteria which are very
close to those used in experimental measurements. Results are obtained
with “statistical errors”, i.e. uncertainties originated by stochastic fluc-
tuations, which may be reduced by increasing the sample of gluon-field
configurations on which averages are performed. It is very reasonable to
assume that the statistical fluctuations have a Gaussian distribution.
For several quantities statistical errors have been reduced to the percent
level (or even less). However most of the results are affected by system-
atic effects.
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Systematic errors.
Systematic uncertainties come from discretization effects, finite volume
effects, the treatment of heavy quarks, chiral extrapolation and quench-
ing. Errors coming from the discretization and from the finite volume
can be addressed by brute-force improvements of numerical simulations
or by improvements in the discretization procedures.
The quenched approximation is obtained by turning off virtual quark
loops. An important consequence of this approximation is that the po-
tential between a quark/antiquark pair depends on this approximation.
In the full theory, at large distance, there is a screened potential between
two hadrons because the string breaks by the creation of a qq pair. In
quenched LQCD the string does not couple to such pairs and the long
distance behaviour of the two theories is rather different. This problem
is not so important since, for the long distance scale which matters in
hadronic physics, and in which we are interested, there is a “natural”
cutoff of about one Fermi due to confinement.
It is reasonable to expect that quenching corrections are lying between
10-20% for most of evaluated physical quantities.
Because of computing limitations, most numbers have been obtained in
the quenched approximation. Theoretical estimates and some prelimi-
nary results in the (partially) unquenched case are also available and are
used to estimate the corresponding systematic error of quenched results.
These calculations are usually performed with two light quarks in the
fermion loops, at values of the light-quark masses larger than the physi-
cal values and an extrapolation in these masses is required. Calculations
are generally made at few values of the lattice spacing and thus contain
discretization errors. An estimate of quenching errors is obtained by
comparing quenched and unquenched results at similar values of the lat-
tice spacing.
Another important issue is related to the chiral extrapolation. In fact
it is difficult to simulate realistically light quarks, with their physical
masses, and calculations are usually made for a set of (valence) quark
masses, ranging from about ms/2 to 2 ms. The results need then to be
interpolated or extrapolated. Similar extrapolation needs to be done,
in partially quenched calculations, considering the range of sea quark
masses used. The problem arises since there are logarithmic depen-
dences in physical quantities as the valence and/or the sea quark mass
are extrapolated to their physical values (divergences in some cases if
masses vanish). In practice different extrapolations can be performed if
one considers or not these terms. The JLQCD collaboration finds [44]
that these different extrapolations tend to decrease the value of fBd

rel-
ative to fBs . At present a reasonable view [45, 39] is to allow a decrease
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of fBd
by -10% and a negligible change in fBs .

For the present phenomenological analysis, the following values and
errors have been used

fBd

√
B̂Bd

= (223 ± 33 ± 12) MeV (50)

ξ =
fBs

√
B̂Bs

fBd

√
B̂Bd

= 1.18 ± 0.04 ± 0.06

B̂K = 0.86 ± 0.06 ± 0.14

These estimates have to be considered as conservative, since they
assume a maximal effect due to chiral extrapolation, reflected in the last
error. These last errors are taken as flat distributions.

A detailed description on how these values have been obtained can
be found in [29]. The CKM-LDG Group [32] is taking care of these
averages.

6.5 Determination of sin (2β) from CP
asymmetry in J/ψK0 decays.

BaBar and Belle collaborations have recently updated their measure-
ments. The world average is [31]:

sin (2β) = 0.739 ± 0.048 (51)

All details concerning the analyses techniques are described in these
proceeding by the seminar corresponding to U. Mallik.

7. Determination of the Unitarity Triangle
parameters

In this section we give the results for the quantities defining the Uni-
tarity Triangle, assuming the validity of the Standard Model: ρ, η,
sin (2β), sin (2α) and γ as well as for other quantities as ∆ms, fB and
B̂K . The inputs used are summarised in Table 3 (see Section 4.3).
For more details and concerning latest results see [46].

7.1 Fundamental test of the Standard Model in
the fermion sector

The most crucial test consists in the comparison between the region
selected by the measurements which are sensitive only to the sides of the
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Figure 11. The allowed regions for ρ and η (contours at 68%, 95%) as selected by the
measurements of |Vub| / |Vcb|, ∆Md, and by the limit on ∆Ms/∆Md are compared with
the bands (at 68% and 95% C.L.) from the measurements of CP violating quantities
in the kaon (|εK |) and in the B (sin (2β)) sectors.

Unitarity Triangle (semileptonic B decays and B0 −B0 oscillations) and
the regions selected by the direct measurements of CP violation in the
kaon (|εK |) or in the B (sin (2β)) sectors. This test is shown in Figure 11.
It can be translated quantitatively through the comparison between the
values of sin (2β) obtained from the measurement of the CP asymmetry
in J/ψK0 decays and the one determined from “sides“ measurements:

sin (2β) = 0.685 ± 0.047 [0.547 − 0.770] at 95% C.L. sides only
sin (2β) = 0.739 ± 0.048 [0.681 − 0.787] at 95% C.L. J/ψK0. (52)

The spectacular agreement between these values illustrates the con-
sistency of the Standard Model in describing CP violation phenomenon
in terms of one single parameter η. It is also an important test of the
OPE, HQET and LQCD theories which have been used to extract the
CKM parameters.

It has to be noted that this test is significant provided the errors on
sin (2β) from the two determinations are comparable.

Corresponding results, for the unitarity triangle parameters, are given
in Table 5:
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Figure 12. Allowed regions for ρ and η using the parameters listed in Table 3. The
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95% probability regions for the constraints, given by the measurements of |Vub| / |Vcb|,
|εK |, ∆md, ∆ms and sin (2β). The dotted curve corresponds to the 95% upper limit
obtained from the experimental study of B0

s − B0
s oscillations.

Parameter 68% 95% 99%

η 0.346 +0.039
−0.043 (0.227-0.416) (0.099-0.437)

ρ 0.153 ± 0.061 (0.030-0.325) (-0.012-0.368)
sin (2β) 0.685 ± 0.047 (0.547-0.770) (0.280-0.806)
sin (2α) -0.01 ± 0.35 (-0.85-0.83) -

γ[◦] 65.3 ± 9.5 ( 38.9-84.8) (15.8-90.0)

Table 5. Values and probability ranges for the unitarity triangle parameters when the
constraints from |εK | and sin (2β) measurements are not used.

7.2 Determination of the Unitarity Triangle
parameters : η, ρ, sin (2β), sin (2α), γ

By using all five available constraints (|Vub| / |Vcb|, ∆md, ∆ms/∆md,
|εK | and sin (2β)), the results given in Table 6 are obtained.
Figures 12 and 13 show, respectively, the corresponding selected region
in the (ρ, η) plane and the p.d.f. for the Unitarity Triangle parameters.
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Figure 13. From top left to bottom, the p.d.f. for η, ρ, sin (2α), sin (2β) and γ.
The red (darker) and the yellow (clearer) zones correspond respectively to 68% and
95% of the normalised area. All available constraints have been used.

Parameter 68% 95% 99%

η 0.342 ± 0.026 (0.291-0.396) (0.272-0.415)
ρ 0.174 ± 0.047 (0.076-0.260) (0.045-0.293)

sin (2β) 0.697 ± 0.035 (0.637-0.761) (0.619-0.781)
sin (2α) -0.15 ± 0.25 (-0.62-0.34) (-0.73-0.50)

γ[◦] 61.1 ± 7.8 (48.6-76.0) (43.2-82.9)

Table 6. Values and probability ranges for the unitarity triangle parameters ob-
tained by using all five available constraints: |Vub| / |Vcb|, ∆md, ∆ms/∆md, |εK |
and sin (2β).

Indirect versus direct determination of the Unitarity Trian-
gle angles. The value of sin (2β) was predicted, before its first di-
rect measurement was obtained, by using all other available constraints,
(|Vub| / |Vcb|, |εK |, ∆md and ∆ms). The “indirect” 16 determination has
improved regularly over the years. Figure 14 shows this evolution for
the “indirect” determination of sin2β which is compared with the recent
determinations of sin (2β) from direct measurements.

16in the following, for simplicity, we will note as “direct”(“indirect”), the determination of
sin (2β) from ACP (J/ψK0) (other constraints).
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Figure 14. Evolution of the “indirect” determination of sin (2β) over the years.
From left to right, they correspond to the following papers [38]: DDGN90, LMMR92,
AL94, CFMRS95, BBL95, AL96, PPRS97, BF97, BPS98, PS98, AL99, CFGLM99,
CPRS99, M99, CDFLMPRS00, B.et.al.00, HLLL00 and the value presented in this
document. The dotted lines correspond to the 95% C.L. regions (the only information
given in those papers). The larger bands (from year ’99) correspond to values of
sin (2β) from direct measurements (±1σ).

This test should be repeated with other constraints.
The values for γ and sin2α given in Table 6 has to be taken as predic-

tions for future measurements. A strong message is given for instance
for the angle γ. The indirect determination of the angle γ is known
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with an accuracy of about 10%. It has to be stressed that, with present
measurements, the probability that γ is greater than 90◦ is only 0.003%.

7.3 Determination of other important quantities
In previous sections we have seen that we can get distributions for the

different unitarity triangle parameters and how it can be instructive to
remove from the fitting procedure the external information on the value
of one (or more) of the constraints.

In this section we get the distributions for the values of other quan-
tities, entering into the Standard Model expressions for the constraints,
such as the hadronic parameters, or of a constraint as ∆ms. In case of
the hadronic parameters, for instance, it is instructive to remove, from
the fit, in turn, their external information. The idea is to compare the
uncertainty on a given quantity, determined in this way, to its present
experimental or theoretical error. This comparison allows to quantify
the importance of present determinations of the different quantities to
define the limits of the allowed region for the unitarity triangle parame-
ters.
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Figure 15. The allowed regions for ρ and η using the constraints given by the
measurements of |εK |, |Vub| / |Vcb|, ∆md and sin (2β) at 68% and 95% probability
are shown by the closed contour lines. The different continuous circles correspond to
fixed values of ∆ms. Dashed circles, drawn on each side of the curve corresponding
to ∆ms = 18.0 ps−1, indicate the effect of a variation by ±0.08 on ξ.
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The expected distribution for ∆ms. Figure 15 shows the al-
lowed region for ρ and η obtained with all the constraints and how the
constraint coming from the study of B0

s–B0
s mixing acts in this plane.

A lower limit at 95% C.L. on ∆ms will exclude, at that degree of con-
fidence, the ρ-η region situated on the left of the corresponding curve.

Parameter 68% 95% 99%

∆ms( including ∆ms ) [ps−1] 18.4±1.6 (15.4-21.2) (14.6-25.4)
∆ms( without including ∆ms ) [ps−1] 20.2 ± 3.0 (14.4-26.8) (13.2-29.2)

Table 7. ∆ms central values and ranges corresponding to defined levels of probabil-
ity, obtained when including or not the information from the experimental amplitude
spectrum A(∆ms).
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Figure 16. ∆ms probability distributions. The information from B0
s−B0

s oscillations
is not used.

It is also possible to extract the probability distribution for ∆ms,
which is shown in Figure 16. Corresponding results are given in Table
7. Present analyses at LEP/SLD, with a sensitivity at 19.2 ps−1 are
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situated in a high probability region for a positive signal (as the “signal
bump” appearing around 17.5 ps−1).

Accurate measurements of ∆ms are thus expected soon from the
TeVatron.

Determination of fBd

√
B̂Bd and B̂K. The value of fBd

√
B̂Bd

can
be obtained by removing 17 the theoretical constraint coming from this
parameter in the expression of the B0

d–B0
d oscillation frequency ∆md.

The main conclusion of this study is that fBd

√
B̂Bd

is measured with an
accuracy which is better than the current evaluation from lattice QCD,
given in Section 6.4. Results are summarized in Table 8. This shows
that the present CKM fit, when all the available constraints are used,
is, in practice, weakly dependent on the exact value assumed for the

uncertainty on fBd

√
B̂Bd

.

The parameter B̂K can be also determined. Results are also summa-
rized in Table 8. They indicates that values of B̂K smaller than 0.5 (0.3)
correspond to 0.6% (5 × 10−6) probability while large values of B̂K are
compatible with the other constraints over a large domain. The present
estimate of B̂K , from lattice QCD, with a 15% relative error (Table 3)
has thus a large impact in the present analysis.

Parameter 68% 95% 99%

fBd

√
B̂Bd(MeV) 217 ± 12 (196-245) (190-258)

B̂K 0.69+0.13
−0.08 (0.53-0.96) (0.49-1.09)

Table 8. Values and probability ranges for the non perturbative QCD parameters,
if the external information (input) coming from the theoretical calculation of these
parameters is not used in the CKM fits

7.4 Evolution on the precision on ρ and η over
the last 15 years

The evolution of our knowledge concerning the allowed region in the
(ρ, η) plane is shown in Figure 17. The reduction of the size of these
regions, from years 1995 to 2000, is essentially due to the measurements
of the sides of the Unitarity Triangle and to the progress in OPE, HQET

17Technically we assume a uniform distribution in a range which is much larger than the
possible values taken by the parameters.
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Figure 17. Evolution during the last 15 years of the allowed regions for ρ and η
(contours at 68% and 95% probability are indicated). The very last results (updated
till Winter 2004) are shown in Figure 12 and in Table 6.
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and lattice QCD theoretical parameters determinations. The additional
reduction, from years 2000 to 2003, which mainly concerns η, is essen-
tially driven by the measurement of sin (2β) through the CP violation
asymmetry in J/ψ K0 decays.

7.5 Dulcis in fundo : the new-comers
The huge statistics collected the B-factories allow the measurements

of new CP-violating quantities. Direct measurements of γ, sin(2β + γ)
and sin2α are now available :

determination of sin2α using charmless ππ events,

determination of sin(2β + γ) using D(∗)π events,

determination of γ using DK events.

We do not enter in any details for these analyses which are described in
U. Mallik lectures.

The Figure 18 shows the impact of these new measurements to provide
additional constraints in the ρ− η plane. More details are given in [46].

These plots show the potentialities of B-factories, considering that
additional measurements will be available, in a near future (about 2
years), with more than four times the statistics.

8. Conclusions
Flavour physics in the quark sector is entered in its mature age. Many

and interesting results have been produced during the last 15 years.
Traditional main players (LEP/SLD/CLEO) delivered results until this
year, while B factories are moving B studies into the era of precision
physics.

Many quantities have already been measured with a good precision.
|Vcb| is today known with a relative precision better than 2%. In this
case, not only, the decay width has been measured, but also some of the
non-perturbative QCD parameters entering into its theoretical expres-
sions. It is a great experimental achievement and a success of the theory
description of the non-perturbative QCD phenomena in the framework
of the OPE. Many different methods, more and more reliable, are now
available for determining the CKM element |Vub|. The relative precision,
today, is of about 10% and will be certainly improved in a near future at
B-factories. The time dependence behaviour of B0 − B̄0 oscillations has
been studied and precisely measured in the B0

d sector. The oscillation
frequency ∆md is known with a precision of about 1%. B0

s − B̄0
s oscil-

lations have not been measured sofar, but this search has pushed the
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Figure 18. From top to bottom, the allowed region on the ρ − η plane as selected
by the direct measurement of γ, sin(2β + γ) and sin2α The red (darker), the yellow
(clear) and green (clearer) zones correspond respectively to 68%, 95% and 99% of the
normalised area. Contours at 68% and 95% probability selected using all the other
available constraints are also shown.
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experimental limit on the oscillation frequency ∆ms well beyond any
initial prediction. Today we know that B0

s oscillate at least 30 times
faster than B0

d mesons. The frequency of B0
s − B̄0

s oscillations should be
soon measured at the TeVatron. Nevertheless, the impact of the actual
limit on ∆ms for the determination of the unitarity triangle parameters
is crucial.

Many B decay branching fractions and relative CP asymmetries have
been measured at B-factories. The outstanding result is the determina-
tion of sin 2β from B hadron decays into charmonium-K0 final states. On
the other hand many other exclusive hadronic rare B decays have been
measured and constitute a gold mine for weak and hadronic physics, al-
lowing to already extract different combinations of the unitarity triangle
angles.

The unitarity triangle parameters are today known with a good pre-
cision. A crucial test has been already done: the comparison between
the unitarity triangle parameters, as determined with quantities sensi-
tive to the sides of the triangle (semileptonic B decays and oscillations),
and the measurements of CP violation in the kaon (εK) and in the B
(sin2β) sectors. The agreement is “unfortunately” excellent. The Stan-
dard Model is “Standardissimo”: it is also working in the flavour sector.
This agreement is also an important test of the OPE, HQET and LQCD
theories which have been used to extract the CKM parameters.

The good news is that all these tests are at best at about 10% level.
The current and the next facilities can surely push these tests to a 1%
accuracy. It is important to note that charm physics can play an im-
portant role in this respect (providing a laboratory for LQCD) and the
Charm-factory (CLEO-C) will play a central role for these issues.
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Abstract After a review of masses in the Standard Model ν, a gauge invariant
effective was term is introduced. The Dirac and Majorana contribu-
tions the see-saw mechanism, are discussed and the observable effects
described.
A discussion of the quantum corrections is presented, with an implica-
tion on neutrinos masses.
A brief summary of neutrino masses in the context of GUT is then given.

Keywords: Electroweak symmetry, Dirac masses, Majorana masses, Effective inter-
actions, Supersymmetry, See-saw mechanism

1. Introduction
It is instructive to discuss the theory of neutrino masses from the

perspective of the Standard Model [1]. So let us have a look at the basic
structure of the electroweak theory. Its underlying principles are:

1 local SU(2)L×U(1)Y gauge symmetry and electroweak unification

2 spontaneous breaking of SU(2)L × U(1)Y symmetry to U(1)EM

gauge symmetry

3 matter content (chiral fermions, Higgs doublet (s), absence of the
right-handed neutrino)

4 renormalizability

The principles (1) - (4) imply global U(1) symmetries of the theory:
baryon and lepton number conservation ∆B = ∆L = 0. In fact, for
leptons the implication is even stronger, namely Ue(1)×Uµ(1)×Uτ (1) is
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a global symmetry of the electroweak lagrangian and the lepton flavour
numbers are separately conserved: ∆Le = ∆Lµ = ∆Lτ=0. For quarks,
quark mixing explicitly breaks quark flavour U(1)′s and only the total
baryon number is conserved. However, the structure of the theory as-
sures that flavour changing neutral currents(FCNC ) are absent at the
tree level. They are generated at the one-loop level but suppressed with
respect to the generic one-loop prediction O (αEMGF ) due to the GIM
mechanism (generalized to three families of quarks).
Renormalizability of the theory assures that quantum corrections can be
calculated in terms of a small number of free parameters and they are in
perfect agreement with the LEP precisions data. This is a very powerful
test of the theory, and in particular of its basic structure (1)-(4), with
precision O (one per mille). Equivalently, the theory is tested up to non-
renormalizable corrections O(E2/Λ2) with the scale Λ ∼ O(1 TeV ).
Renormalizability requires that only Lorentz and gauge invariant op-
erators of at most dimension four can be present in the electroweak
lagrangian. Only the theories with at most dimension four operators
in the lagrangian can be renormalizable. This theorem is heuristically
obvious but we shall not discuss it in more detail here. The important
examples of dimension less than or equal to four operators are field ki-
netic terms, mass terms for bosons and fermions, the interaction terms
for four scalar fields and the interaction term for a scalar with a fermion
(Yukawa coupling). For instance, the Fermi interaction (four-fermion
interaction) is an example of a (non-renormalizable) dimension six op-
erator and cannot be present in a renormalizable theory.

2. Chirality and fermion masses in the
electroweak theory

The particles of the Standard Model (SM) include the Higgs doublet

H =
(

H+

H0

)
with the hypercharge Y = +1/2 (Y = Q − T 3) and the

chiral fermions. Massless chiral fermions are the fundamental objects
of matter: left-handed, with helicity λ = −1/2, and right-handed, with
helicity λ = 1/2. It is so because parity and charge conjugation are not
the symmetries of our world. The left-handed fermions carry different
weak charges from the right-handed fermions. Chiral fermion fields are
two-component (Weyl) spinors (see the Appendix for some details on
the two-component spinor notation):

SU(2) doublets
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q1 ≡
(

u
d

)
q2 ≡

(
c
s

)
q3 ≡

(
t
b

)
(1)

l1 ≡
(

νe

e

)
l2 ≡

(
νµ

µ

)
l3 ≡

(
ντ

τ

)
(2)

with the electric charge and the hypercharge

u d ν e

Q 2/3 -1/3 0 -1

Y 1/6 1/6 -1/2 -1/2

These are left-handed chiral fields in the representation (0, 1/2) of the
SL(2, C) (see the Appendix), each describing two massless degrees of
freedom: a particle with the helicity λ = −1/2 and its antiparticle with
λ = +1/2. (The chiral fields can also be written as four-component
spinors (see e.g. [1]) but in the following we shall be using the Weyl
notation).

Right-handed fields [(1/2, 0) of SL(2, C)] in the same representations
of SU(2) × U(1)Y as the left-handed fields (1) and (2) do not exist in
Nature. Instead, we have

SU(2) singlets

uR, cR, tR
dR, sR, bR

eR, µR, τR

in (1, +2/3), (1,−1/3) and (1,−1) of SU(2) × U(1)Y , respectively.
These are right-handed chiral fields in the (1/2, 0) representation of the
group SL(2, C). For constructing a Lorentz invariant Lagrangian, it
is more convenient to take as fundamental fields only the left-chanded
chiral fields. Thus, we introduce left-handed chiral fields, e.g

uc, cc, tc (3)

in (1,−2/3) of SU(2) × U(1)Y , such that

ūc ≡ CPuc(CP )−1 = uR (4)

Indeed, CP transformation results in the simultaneous change of chi-
rality and charges (representation R → R∗ for internal symmetries).
Moreover, we see that the electric charge Q = T3 + Y satisfies, e.g.
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Qec = +1 = −Qe (5)

and the two left-handed fields e and ec become charge conjugate to each
other when UEM (1) remains the only unbroken symmetry:

CecC−1 = e (6)

Only at this point we can define Dirac fermions

Ψ =
(

e
ēc

)
≡

(
eL

eR

)
(7)

We note that the matter chiral fields of the SM do not include a
right-handed neutrino field νR in (1, 1) of SU(2)×U(1)Y (such a charge
assignement preserves the relation Q = T3 + Y ) or equivalently, a left-
handed field νc such that

νR = CPνc(CP )−1 (8)

However, since the neutrino electric charge Qν = 0, after sponta-
neous breaking of SU(2) × U(1)Y to U(1)EM , we can construct a four-
component spinor, namely a Majorana spinor ΨM , from the left-handed
neutrino field ν alone:

ΨM =
(

ν
ν̄

)
(9)

where ν̄ = CPν(CP )−1.
Once the only unbroken symmetry is U(1)EM the following mass

terms are Lorentz and U(1)EM invariant:
Dirac masses

m(λλc + λ̄λ̄c) ≡ mDΨ̄Ψ (10)

where λ = u, d, .. and λc = uc, dc, .... They can be represented by the
diagram,shown in Fig.1, which has a very simple interpretation (see the
Appendix): in the λλc coupling, the field λ annihilates e.g. an incoming
electron with helicity λ = −1/2 and momentum k and the field λc creates
an outgoing electron with λ = +1/2 and momentum k. Thus, mass term
means helicity flip. Note that the λλc coupling is not SU(2) × U(1)Y
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Figure 1.

invariant, so mass terms can appear only in the low energy effective the-
ory. Majorana mass

m(νν + ν̄ν̄) ≡ mM Ψ̄MΨM , (11)

is possible because ν is an U(1)EM singlet; the corresponding diagram
is shown in Fig. 2

Figure 2.

and, again, the λλ coupling has the following interpretation: the first
ν annihilates an incoming neutrino with λ = −1/2 and momentum k
and the second ν creates an outgoing anti-neutrino (=neutrino) with
λ = +1/2 and momentum k. Majorana neutrino is a particle with two
helicity states and is invariant under charge conjugation.

Such mass terms, if present in the effective low energy theory, must
originate in the SM , before the breaking of the gauge symmetry, from
the Lorentz and SU(2) × U(1)Y scalars. For the charged fermions, we
can write down the following Yukawa couplings to the Higgs doublet:

LY ukawa = −Y BA
l H∗

i liAec
B −Y BA

d H∗
i qiAdc

B −Y BA
u εijHiqiAuc

B +hc (12)

where i is the SU(2) index and A, B are generation indices. We use the
fact that the two-dim representation of SU(2) is real and iτ2H trans-
forms as H∗, i.e. as 2∗(≡ 2) of SU(2). Therefore, (iτ2Hq) = εijHiqj is
also an invariant of SU(2). After spontaneous breaking of SU(2)×U(1)Y

to U(1)EM by the Higgs boson vacuum expectation value v we obtain
the earlier introduced Dirac masses



88 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

Lmass = −v(Y BA
l eAec

B + Y BA
d dAdc

B + Y BA
u uAuc

B) + hc (13)

However, at the level of the full, SU(2) × U(1)Y invariant theory,
there is no renormalizable term that would give neutrino mass. It is so
because νc is absent from the spectrum of the SM . Thus, in the SM ,
neutrinos are massless.

The interactions (12,13) are written in some ”electroweak” basis de-
fined by eigenvectors of the SU(2) × U(1) symmetry group. In such a
basis, both the fermion masses and the Yukawa couplings are in general
non-diagonal in the flavour indices (A, B). However, we can introduce
another set of fields (say, primed fields) describing physical particles
(mass eigenstates). The flavour of the primed fields is defined in the
mass eigenstate basis. The two sets of fields are related to each other by
unitary transformations:

u = ULu′ d = DLd′

uc = u′cU †
R dc = d′CD†

R

e = ELe′

ec = e′cE†
R

(14)

which, of course, do not commute with the SU(2) × U(1) gauge trans-
formations and can be performed only after the spontaneous breakdown
of the gauge symmetry. In eq.(14), the fields u, d , e denote three-
dimensional vectors in the flavour space.

The transformations (14) diagonalize the mass terms and the Yukawa
couplings defined by (12). After diagonalization we can combine the
chiral fields into Dirac fields, according to eq.(7), which are the mass
eigenstates. The weak currents can be expressed in terms of the physical
(mass eigenstates) fields:

J−
µ =

∑
A,B

ū′
Aσ̄µ(VCKM )ABd′B

+
∑
A

ν̄ ′
Aσ̄µe′A (15)

where the Cabibbo-Kobayashi-Maskawa matrix VCKM = U †
LDL. Note

that the lepton current is diagonal in flavour (defined in the charged
lepton mass eigenstate basis) because the massless neutrino field can be
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redefined by the transformation νA = EL
ABν ′

B where EL
AB is the trans-

formation diagonalizing the charged lepton mass matrix (see(14)).
Thus, for the lepton current, VCKM = EL†EL =1.
It is important to remember that in the SM (with only one Higgs

doublet) the Yukawa couplings to the physical Higgs boson (and, in
fact, also the couplings to the Z0) and the mass terms are diagonalized
by the same unitary rotations. So they are flavour diagonal. The only
source of flavour non-conservation resides in VCKM . In particular, not
only the global lepton number but also each flavour lepton number is
separately conserved.

The experimentally measured VCKM matrix looks ”natural”: the big-
ger the differences between quark mass eigenvalues the smaller the mix-
ing between them. The generic structure of 2×2 mass matrix with such
properties is (

0 ε
ε 1

)
with λ1,2 = ε2, 1 and θ ∼ ε

3. Neutrino masses in the effective SM

There is at present strong experimental evidence for neutrino oscilla-
tions whose most obvious and most natural explanation is that neutrinos
are massive and the mass eigenstates are different from the weak inter-
action eigenstates. This is the first experimental evidence for physics
beyond the Standard Model and we must consider going beyond the
principles sketched in the previous chapter.

A very natural attitude is to regard the Standard Model as the low
energy effective theory which is an approximation to a deeper, still un-
known and hopefully renormalizable theory. Then, non-renormalizable
corrections to the Standard Model are acceptable as the remnants and
traces of a deeper theory. They can be the most general higher dimen-
sion operators invariant under the Standard Model gauge symmetry and
consistent with the Higgs doublet pattern, suppressed by the appropri-
ate power of the scale Λ of the new (unknown) physics. Such corrections
can describe various small effects absent in the (renormalizable) Stan-
dard Model but eventually established experimentally. This is then a
window to discover before formulating in detail the deeper theory. Ac-
tive neutrino Majorana masses are one example of such corrections.

In an extention of the SM that admits non-renormalizable correc-
tions, gauge and Lorentz invariant neutrino mass terms may appear as
dimension five operator

1
M

(HlA)λAB(HlB) (16)
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where now cut-off scale to the SM is denoted by M (later on, in the
see-saw mechanism, it will be identified with the right-handed neutrino
Majorana mass) and we use the following notation: (Hl) ≡ εijH

ilj

denotes SU(2) contraction and ll ≡ εαβlαlβ denote Lorentz contraction.
After spontaneous SM gauge symmetry breaking by the Higgs boson vev
the operator (11) gives indeed a Majorana mass matrix for the active
neutrinos:

νAmABνB + hc, mAB =
v2

M
λAB (17)

The matrix m is complex and symmetric. It can be diagonalized by
a unitary matrix U :

νB = UBaν ′
a (18)

where ν ′
a are neutrino mass eigenstates. We get

νmν = ν ′UT mUν ′ (19)

where
UT mU = diag(m1, m2, m3) (20)

The weak current can be written in the mass eigenstate basis (of charged
leptons and neutrinos):

ēAσ̄µνA = EAb
L e′bσ̄µUAcν ′

c (21)

and the matrix
VMNS = E†

LU (22)

is the so-called Maki-Nakagava-Sakata neutrino mixing matrix. In the
charged lepton mass eigenstate basis we get then

VMNS = U (23)

and the most general form of the 3×3 Majorana neutrino mixing matrix
can be written as

U = V ×

⎛⎝ 1 0 0
0 eiα2 0
0 0 eiα3

⎞⎠ (24)

where V can be parametrized in the same way as the VCKM matrix and
we use the convention that the neutrino Majorana mass eigenvalues are
real. [One should keep in mind that the physical masses are defined
by the poles of the propagators which are at ma

ph = |ma|, no matter
if the mass matrix parameters are complex or real.] In our convention
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the phases α1, α2 in eq. (24) are physical. They originate from the fact
that, for the Majorana mass term mνν, there is no freedom of rotation
of the neutrino fields ν by a phase because there is no right-handed fields
rotation to compensate it. Indeed, for (we omit the primes)

(ν1 ν2 ν3)

⎛⎝ m1

m2

m3

⎞⎠⎛⎝ ν1

ν2

ν3

⎞⎠ (25)

we have
νa → eiαaν ⇒ ma → mae

i2αa (26)
in contradiction to our convention. We note that the Majorana mixing
matrix is real (CP conserved) when the V phase δ = 0 mod π and
α1,2 = 0 mod π/2. However, for αi = π/2 we can absorb the phase into
real mass eigenvalues with ma → −ma. Thus, the sign of the Majorana
mass has physical sense: different signs mean different CP parities. We
recall that the physical mass defined by the pole in the propagator is
always positive ma

ph = |ma|. The sign of the neutrino mass plays the
role in its interactions.

It is worth putting that view at the Standard Model (or MSSM) as an
effective low energy theory into the better known perspective. We know
now that Quantum Electrodynamics (QED) is a renormalizable theory
and at the same time it is the low energy approximation to the elec-
troweak theory. Its renormalizability means calculability with arbitrary
precision. But it is only an effective theory so we know that its pre-
dictions disagree with experiment at the level ∼ O(E/Mw), where the
energy E is the characteristic energy for a given process. For example,
let us have a look at the lepton magnetic moment. It gets contributions
from the diagrams depicted in Fig.3.

Figure 3.

Thus, for the effective interaction with the magnetic field we get

e

2ml
ū�σ · �Hu (1 +

α

2π
+ O

(
α

m2
l

M2w

)
+ . . .) (27)

where the role of the energy scale is played by the lepton mass ml. The
”weak” correction is calculable in the full electroweak theory, but at
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the level of QED as an effective theory it has to be added as a new
non-renormalizable (but U(1)EM invariant) interaction

Figure 4.

Leff =
ml

M2w
ψ̄σµνψFµν (dim 5) (28)

This would have been a way to discover weak interactions (and to mea-
sure the weak scale) in purely electromagnetic processes: we extend
QED to a non-renormalizable theory by adding higher dimension op-
erators and look for their experimental manifestation in purely elec-
tromagnetic processes once the experimental precision is high enough.
Luckily enough for us, effective QED may also contain other than (28)
non-renormalizable corrections, U(1)EM invariant but violating the con-
servation of quantum numbers that are accidentally conserved in QED,
for instance flavour. Such corrections manifest themselves as different
type of interactions - weak interactions - and were easy to discover exper-
imentally. Next, insisting on renormalizability led us to the electroweak
theory. The situation with the Standard Model can be expected to be
quite analogous and we now hope to make a similar next step.

The main virtue of a renormalizable theory is that it can describe
with good approximation the physics in some energy range, without
any knowledge of the deeper theory. However, at the same time, once
a renormalizable field theory has been formulated to describe certain
phenomena, it is difficult to make the next step. One either needs the
precision O(E/Λ), to see the need for non-renormalizable corrections,
or energies E ∼ Λ, to directly discover new particles with the masses
M ∼ Λ. The neutrino sector provides us the first experimental evidence
for non-renormalizable corrections to the Standard Model viewed as an
effective theory.
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4. More on the origin of neutrino masses
The description of the neutrino masses in the low energy effective

theory is provided by the operator (11). It is interesting, however, to
discuss how such an operator can potentially originate from renormaliz-
able interactions of a deeper theory, with the characteristic scale M of its
heavy particles, and can we explain that way the smallness of the neu-
trino masses. Imagine, we supplement the SM with another left-handed
particle νc, a singlet of SU(2) × U(1)Y , i.e. a field such that

CPνc(CP )−1 ≡ νR (29)

can be interpreted as a right-handed neutrino field. A right-handed
Majorana mass term can then be added to the SM

(νc)AMAB
MAJ(νc)B + hc (30)

Moreover, we can construct Yukawa interactions

εijHi(νc)BY BA
ν lAj + hc (31)

with a new set of (neutrino) Yukawa couplings Y BA
ν . Both terms are

SU(2)×U(1)Y invariant and renormalizable. We can consider then the
diagram shown in Fig. 5.

Figure 5. Diagram generating the dimension 5 operator.

At the electroweak scale v, if MMAJ � v, we obtain the effective
interaction shown in Fig. 6

described by the operator

εijHil
A
j Y DA

ν (M−1
MAJ)DCY CBεijHil

B
j (32)

We recognize the previously introduced operator (11) with

λAB

M
= (Y T

ν M−1
MAJYν)AB (33)

This is the so-called see-saw mechanism for neutrino masses.
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Figure 6. Effective dimension 5 operator.

With the Yukawa couplings (31) present in the Lagrangian, we can
also contemplate the possibility that there is no right-handed Majorana
neutrino mass term. The masses of the three active neutrinos would
then be simply Dirac neutrino masses. In general both terms should
be included in the theory defined by the SUL(2) × UY (1) gauge sym-
metry and renormalizability. The Majorana mass term (III.23) can be,
however, eliminated by imposing the additional global U(1) symmetry
ensuring conservation of the lepton number L. The fields νc must then
have L = −1, opposite to L of the leptonic doublets lA. Neutrinos are
then Dirac particles like the other fermions. There are two reasons why
Dirac masses are not so attractive. One is the need for very small nu-
merical values of the Yukawa couplings Yν . The other is that the lepton
number conservation has to be imposed as an additional global symme-
try (remember that in the SM it is a consequence of the field content
and of the renormalizability and not an additional assumption).

The presence of the Majorana mass term (III.23), which breaks the
global U(1) symmetry, inevitably makes neutrinos Majorana particles (in
fact what allows to interpret in the SM the two helicity states described
by the ν field as a particle and an antiparticle is just the lepton number!)

This discussion gives us the opportunity to distinguish between the
Dirac and Majorana neutrinos. It is interesting to ask if those two possi-
bilities can be distinguish experimentally. Unfortunately , the question:
are ν and ν̄ two helicity states of a Majorana neutrino or differ also in
some other way, by some quantum numbers (L) which would justify to
call them particle and antiparticle, cannot be easily settled experimen-
tally. The conservation of the lepton number and the Dirac nature of
neutrinos imply that neutrinoless double-β decay is forbidden but the
effects predicted with Majorana neutrinos are generically very small.
One may wonder if there are other physical effects that can distinguish
theories of neutrino masses with L conserved (Dirac neutrinos) from
those with ∆L �= 0 (Majorana neutrinos). Unfortunately, one sees that
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the effects that can be explained by assigning the lepton number and
conserving it, can also be obtained from helicity structure of the weak
lagrangian (one can see that by, for instance, considering the processes
π+ → µ+νµ and π− → µ−ν̄µ). The above is true up to corrections
proportional to neutrino masses and with the masses < O(1eV ) no ob-
servable effects can be expected.

In our discussion of the renormalizable extensions of the Standard
Model based on both terms eq. (III.23) and (31) we could have assumed
that the Dirac mass (31) and Majorana mass (III.23) are of the same
order of magnitude . This is again unattractive as a natural value for
the Majorana mass M is at least of the order of the cut-off to the Stan-
dard Model (its value is not protected by any known low energy sym-
metry). Finally, there is also a possibility to couple two lepton SUL(2)
doublets to a SUL(2) Higgs triplet (singlets would violate the electric
charge conservation). This possibility is not particularly attractive for
several reasons. The smallness of the neutrino masses would require ei-
ther vtriplet  vdoublet or the triplet couplings orders of magnitude
smaller than the other Yukawa couplings. Moreover, the introduction of
the triplet would make the parameter ρ a free parameter of the theory
(hence not calculable) with its own counterterm allowing to adjust its
value at will. Note that the mass term obtained from the coupling of
two lepton SU(2)L doublets with a Higgs triplet would be a Majorana
mass term, too. It would violate the lepton number by ∆L = 2.

Our summary on neutrino masses is as follows: Majorana masses
for the three active neutrinos can be generated by extended Higgs sector
(Higgs triplets). Another possibility is to supplement the SM with right-
handed neutrinos νR. If only their Yukawa interactions are present,
neutrinos are Dirac particles. If νR s have also Majorana masses, all
neutrinos are Majorana particles. With small M ∼ MW , in addition to
Majorana (ν + ν̄) there are also light sterile Majorana (νc + ν̄c). None of
those possibilities looks particularly attractive, for the reasons discussed
above.

If the scale M is high enough, the effects of the Majorana masses for
the three active neutrinos can be discussed in the SM or MSSM supple-
mented by the operator (11). We should also stress that this operator
(11) is the only one of dimension 5 contributing to the neutrino Majo-
rana mass matrix. Other possible contributions are of higher dimension.
Thus, one may expect that in the effective SM or MSSM the neutrino
masses are indeed described by that operator, even if its origin is differ-
ent form the see-saw mechanism.
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We end this section by stressing that the see-saw mechanism with
some large scale M in eq.(11) looks like the most plausible explanation
of small neutrino masses. Indeed

i) the smallness of mν is then related to its zero electric charge

ii) the smallness of mν is also related to lepton number violation at the
scale M

iii) with mν ∼ Y 2 v2

M , v=240 GeV and for Y ∼ 0(1) we get mν ∼
(0.01 − 0.1)eV for M ∼ (1015 − 1013)GeV So, the scale M fits
nicely with the GUT scales and is natural (a cut-off to the SM or
MSSM)

iv) νc completes the spinor representation of S0(10)

v) heavy νc can play important role in bariogenesis via leptogenesis.

In the rest of these lectures we take therefore the point of view that
neutrino masses are a manifestation of new physics at high energy scale
and can be effectively described by the operator (11). We do not know
yet the theory that gives (11) but we can read off the structure of (11)
from experimental data and try to look for theories that can explain it.

5. Phenomenology of neutrino masses
We shall discuss now in more detail phenomenology of neutrino masses

in the effective theory defined by the SM or MSSM with three light
neutrinos and supplemented by the dimension five operator (11). They
are described by 9 real parameters: m1, m2, m3, θ12, θ23, θ13 and the
phases δ, α1, α2 (see eq.(III.16,24)). The angles θij parametrize the V
matrix present in eq.(24):

V =

⎛⎝ c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞⎠ (34)

Let us order the neutrino masses so, that m3 is the most splitted mass
and m2 > m1. Also, we define

∆m2
ij = m2

j − m2
i (35)

The experimental data then tell us that ∆m2
23, θ23 are “atmospheric”

parameters, and ∆m2
12, θ12 are “solar” parameters. We have reasonably

good knowledge of ∆m2
12, |∆m2

23|, θ23, θ12 and a limit on θ13. These
parameters are accesible in neutrino oscillation experiments.
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Unless otherwise explicitly stated, we shall always work in the weak
eigenstate basis which is the charged lepton mass eigenstate basis i.e.
after the unitary transformation EL (see(14)) performed on the lepton
doublets lA defined in (2).

According to the present experimental information (and assuming CP
conservation) the most plausible approximate form of the mixing matrix
is:

U =

⎛⎜⎝ c12 s12 0
− s12√

2
c12√

2
1√
2

s12√
2

− c12√
2

1√
2

⎞⎟⎠ (36)

The maximal atmospheric mixing and small (1,3) mixing with θ13 < 0.2
follow from the Super-Kamiokonde and Chooz experiments, respectively.
The most recent SNO data strongly favour also a large solar mixing angle
(LA solution). Moreover, all oscillation patterns are consistant with two
independent mass squared differences

|∆m2
23| ∼ 10−3eV 2 (atmospheric)

∆m2
12 ∼ 10−5eV 2 (solar) (37)

Recent results on the large scale structure formation and anisotropies
in the temperature of the cosmic background radiation obtained by the
WMAP experiment give upper bound Σma ∼ 0.7 eV, i.e. for degenerate
neutrinos we get ma ∼ 0.2 eV.

Since the mass eigenvalues are not measured, contrary to the quark
and charged lepton case, several mass eigenvalue patterns are possible,
consistently with the values (37 ). These are:

I hierarchical
|∆m2

23| ∼ m2
3 � m2

2 > m2
1; (38)

here we expect |m3| ∼
√
|∆m2

23| and

| m3

m2,1
| ∼
√

|∆m2
23|

∆m2
12

∼ 10 (39)

II inversly hierarchical

|∆m2
23| ≈ m2

2, m
2
1 � m2

3 (40)

with m2
1, m

2
2 � ∆m2

12
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III degenerate

m2
3 ≈ m2

2 ≈ m2
1 � |∆m2

23| 0.05 eV ∼ |ma| ∼ 0.2 eV (41)

In summary,we have already got a good deal of experimental informa-
tion enabling us to reconstruct from eq. (III.16 ) the low energy mass
matrix m̂, however up to several important ambiguities which are absent
for the charged lepton masses. These are: the three different acceptable
sets of absolute values of mass eigenvalues

|m3|, |m2|, |m1| ∼

⎧⎨⎩ 5 · 10−2, 5 · 10−3, 0
0, 5 · 10−2, 5 · 10−2

0.1 0.1 0.1

⎫⎬⎭ eV (42)

where the numbers mean orders of magnitude, and the relative signs of
the masses are not fixed. Thus, using eq. (III.16 ) we get a number
of acceptable possibilities for m̂. Also, one should stress that the two
large mixing angles make the neutrino mixing different from the quark
mixing.

In principle, accessible in oscillation experiments also are: sign(∆m2
23)

and the phase δ. For instance, the earth matter corrections to νµ → νe

transition depend on the sign of ∆m2
23. The CP violating phase δ can

be measured by measuring P (νe → νµ) − P (ν̄e → ν̄µ). Finally, the Ma-
jorana phases are in principle accessible by measuring the rates for the
neutrinoless double β decays. The chances for observing experimentally
all those, so far, unaccessible effects strongly depend on the value of θ13

and on the pattern of mass eigenvalues.
We can illustrate that latter point by discussing in more detail the

feasibility of experimental observation of the 2β0ν decay, for various
patterns of neutrino masses. The elementary diagram for such decays is
shown in Fig. 7:

where the neutrino couplings are ēσ̄µνe (in the charged lepton eigen-
state basis) and the neutrino mass insertion is meeνeνe. Hence, the rate
for the decay is proportional to

|mee| = |ΣU2
eimi| (43)

and is sensitive to the Majorana phases:

|mee| = | cos2 θ13(m1 cos2 θ12 +m2e
2iα2 sin2 θ12)+m3e

2iα3 sin2 θ13| (44)

The inspection of (44) helps to understand that, as it has been shown
by detailed calculations, with the hierachical neutrino mass pattern (and
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Figure 7. Neutrinoless double β decay.

LA solution) the 2β0ν decays can be accessible experimentally only for
the angle θ13 close to the CHOOZ bound. Furthermore, for the inverted
hierachy we get

(∆m2
32)

1/2 cos2 2θ12 < |mee| < (∆m2
32)

1/2 ≈ 5 × 10−2 eV (45)

Finally, for the degenerate neutrinos with |m| < 0.23 eV and tan2 θ12 =
0.45 ± 0.06 we have

|mee| = |m| cos2 θ12(1 + e2iα2 tan2 θ12) < 0.15eV (46)

still below the present experimental limit (0.3 − 0.5)eV.

5.1 Quantum corrections to neutrino masses
and mixing

We have discussed the low energy effective description of Majorana
masses for the three active neutrinos. The present experimental neutrino
data is consistent with such a description and the low energy Majorana
mass matrix can be reconstructed from eq. (III.16), up to several impor-
tant ambiguities, which are absent in the charged fermion mass sector.
Those ambiguities were discussed at the end of the previous section. Ef-
fectively, they mean that, even with high precision data we shall always
be left with a number of candidate low energy mass matrices consistent
with the data. We have also argued that most likely the origin of the
Majorana neutrino masses is some physics at high scale M (eq.(11)).
A very important question is how the low energy ”measured” (up to
the ambiguties) mass matrices are related to the physics at the scale
M. More precisely, we ”measure” the Majorana mass matrix m̂(Mw) at
the scale, say, Mw and the high energy physics will hopefully give us
m̂(M). It is well known that in order to relate to each other the values
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of the parameters of a theory at different energy scales one has to in-
clude quantum corrections. They are unambigous in the SM or MSSM,
so from m̂(Mw), we can indeed infer the shape of m̂(M), provided the
correct theory below the scale M is SM or MSSM. Thus, under the latter
assumption we can obtain from the set of acceptable matrices m̂(Mw)
the matrices m̂(M), to be understood in a deeper theory. Or vice versa,
given a prediction fo m̂(M), to relate it to experimental observations we
have to calculate m̂(Mw) by inclusion of quantum corrections. It has
recently been understood that, contrary to the quark sector where such
quantum corrections are generically small, the same may not be true
for the quantum corrections (particularly in the MSSM) to the neutrino
mass matrices. Thus, it is important to check their role in the theory of
neutrino masses.

The standard technique to calculate the energy scale dependence of
various lagrangian parameters are the Renormalization Group Equations
(RGE). This technique can be used also to calculate the energy scale de-
pendence of the neutrino mass matrix m̂(Q). One-loop RGE’s sum up
the so-called leading logarithmic contribution

∑
n gnlnn(M

Q ) from quan-
tum corrections. Such contributions may be significant when M � Q.

There are several ways to write down the RGE’s for the neutrino mass
matrix. The most transparent approach is to use the RGE’s written
directly for the mass eigenvalues and for the mixing matrix U, i.e. for
the physical observables. With t = 1

16π2
M
Q , in the SM and MSSM they

read:
for the mass eigenvalues ma

d

dt
ma(t) = −

∑
i=e,µ,τ

(K + 2YiU
2
ia)ma(t) (47)

where K is some universal (neutrino flavour independent) factor and Yi

are charged lepton Yukawa couplings, and for the mixing matrix U

d

dt
Uia(t) =

∑
b�=a

mb + ma

mb − ma
Uib(UT Y 2U)ba (48)

where Y is the charged lepton Yukawa coupling matrix.
We see two important qualitative facts. One is that only the charged

lepton Yukawa couplings can be relevant for changing the pattern of
m̂(Q) by quantum corrections. In fact, the effects of Ye and Yµ are
negligible and it is only Yτ which is important. This is why the effects
can be stronger for MSSM than for SM and in the MSSM, stronger for
large than for low tg β.
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The second point is even more crucial. We see that the evolution of
the angles depends on the coefficient

Aba ≡
∑
b�=a

mb + ma

mb − ma
(49)

One can expect that when |Aba| � 1 i.e. for the degenerate or inversly
hierarchical structures, with the same CP parity m1 ≈ +m2, the quan-
tum corrections generated by Yτ could become important and destabilize
the initial pattern m̂(M) (for a review see ref.[2]). It has been shown
that in those cases, independently of the initial structure of the m̂(M),
the Yτ generated quantum corrections drive the mixing angles to the
so-called quasi-fixed point relation (one relation for the three mixing
angles) at the scale Mw:

sin2 2θ12 =
sin2 θ13 sin2 2θ23

(sin2 θ23 cos2 θ13 + sin2 θ13)2
(50)

where θ12, θ13 and θ23 are the solar, Chooz and atmospheric mixing an-
gles, respectively. Using the present experimental information about θ23

and θ13, the relation (50) predicts small solar mixing and is in contra-
diction with experiment, which favours the LA solution for the solar
angle.

The significance of that result depends, of course, on the range of
parameters for which the quasi-fixed point (50) is reached. This is shown
in Fig. 8.

We note that the evolution of the angles depends on the paremeters
Aijε where Aij is given by eq.(49) and ε = tan2 β × 10−5, with the
most relevant variable being A21. Clearly, there are three regions in
A21ε. For A21ε � 1 the RG evolution is negligible. For A21ε � 3 the
limit (50) is reached and, therefore, such models are excluded by the
data. In the small range 1 � A21ε � 3 there is a strong dependence
of the renormalized angles on their boundary values and the low energy
mixing pattern is very unstable under small changes of the initial values
of the angles at the large scale M . So, the question is how constraining
is the bound A21ε � 1 for neutrino mass models. Using experimental
value ∆m2

12 ≈ 5 × 10−5eV2 and for tanβ = 10 we get the condition
m1 + m2 < 0.25 eV. WMAP gives us |m| < 0.23 eV (for degenerate
neutrinos). We conclude that quantum corrections can be important
for large values of tanβ and then they make the neutrino mass models
with degenerate neutrinos or with inversly hierarchical neutrinos with
m1 ≈ +m2 incompatible with the data.
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Figure 8. Approach to the IR fixed point for the angle θ1 (θ1 ≡ θ12) as a function
of A21ε(M) for two different values of s13: a) s2

13 = 0.2 and the hierarchy |m3| �
|m2| ∼ |m1|, b) s2

13 = (0.025)2 and the hierarchy |m2| ∼ |m1| � |m3|.

6. Models of neutrino masses and mixing
We conclude these lectures with a brief discussion of models for neu-

trino masses and mixing (for a more extensive discussion see e.g. [3]). In
the bottom-up approach, one can reconstruct the neutrino mass matri-
ces in the charged lepton diagonal basis and then try to understand how
can they be obtained, e.g. by the see-saw mechanism, in a ”natural”
way. In the top-down approach one postulates some theories of fermion
masses, including neutrinos, and compares them with the data. One
interesting possibility is to base such theories on Grand Unification and
some flavour (horizontal) symmetries. We begin our discussion with the
bottom-up approach.

The attractive criterion of stability of neutrino mass textures with re-
spect to quantum corrections selects the hierarchical mass pattern and
the inversly hierarchical pattern with the two degenerate neutrinos of
different CP parties, m1 ≈ −m2, as the most plausible candidates for
such textures. For several reasons, the hierarchical pattern looks partic-
ularly natural and we shall focus on it. The question is then whether
the hierarchical pattern of the mass eigenvalues is compatible with two
large mixing angles and whether both can be explained by the see-saw
mechanism.
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Under the assumption of a hierarchical structure, the neutrino mass
matrix reconstructed from the data is:

m̂ = U

⎛⎝ ε1
ε2

m

⎞⎠UT (51)

where U is the measured mixing matrix with two large mixing angles,
small θ13 and ε1,2/m ∼ 1

10 . Thus, we get

m̂ = m

⎛⎝ δ ε ε
ε 1 + η 1 + η
ε 1 + η 1 + η

⎞⎠ (52)

where δ , ε , η 1 and they can differ from each other by factors
0(1). The zeroth order approximation to the matrix (52 ) reads

m̂0 =

⎛⎝ 0 0 0
0 1 1
0 1 1

⎞⎠ (53)

Its eigenvalues are λ1,2,3 = 0, 0, 2 and the mixing angles θ23 = π/4,
θ13 = 0 and θ12 is undefined. The first question to address is whether we
can get the matrix ( 53) by the see-saw mechanism, with its eigenvalues
and the mixing angles stable without a fine-turning in the underlying
high energy physics. Note that for the hierarchy of the eigenvalues in
(53 ) it is not sufficient that the non-zero entries are of order 1. They
must be fine-tuned to be very close to one or must have the structure(

a2 ab
ab b2

)
(54)

which also gives det=0, now with no fine-turning of the parameters a
and b. The see-saw mechanism gives

m = Y T 1
M

Y (55)

and taking a diagonal matrix 1
M and a Yukawa coupling matrix

Y =

⎛⎝ 0 0 0
0 0 0
0 Yµ Yτ

⎞⎠ (56)

we indeed get

m̂ =
1
M

⎛⎝ 0 0 0
0 Y 2

µ YµYτ

0 YµYτ Y 2
τ

⎞⎠ (57)
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Thus, the stability of the hierarchy of the mass eigenvalues is assured
by the see-saw mechanism provided only one right-handed neutrino has
large Yukawa couplings to only the two active neutrinos νµ and ντ .(The
same effect can be obtained by making other right-handed neutrinos
very heavy.) The structure (57) does not assure a large mixing angle
yet. For that we need Yµ ≈ Yτ but no excessive fine-tuning is needed.
To reproduce the full matrix (52) we need some corrections to the ap-
proximation (53) and (57). We can get some information about the
needed structure of such corrections by rotating the matrix (52), first,
by an angle θ23 close to π/4 and then by θ13 ∼ ε. An inspection of the
mass matrix in that new basis shows that for a large solar angle one
needs |η − δ| < ε. To avoid cancellations, let us take δ < ε and η < ε.
One can consider then several possibilities. Taking δ ≈ ε and η < ε
one gets ∆m2

23 ≈ 4m2, ∆m2
12 ≈ m2ε2, mee ≈

√
∆m2

12, θ12 ∼ O(1) but
smaller than π/4, θ13 ≈

√
∆m2

12/∆m2
23. With η ≈ ε, δ  ε we obtain

∆m2
12/∆m2

23 ≈ ε2 and θ13 ≈
√

∆m2
12/∆m2

23 (as before) but mee ≈ 0. If
δ, η  ε, e.g. η = 0, δ ≈ ε2 we have ma = ±mε, m, sin2 2θ12 ≈ 1 − ε/4,
∆m2

12 ≈ m2ε2, which are difficult to be reconciled with the LA solution.
Those examples show the importance of small parameters.

Consider, for instance,

Y =

νe νµ ντ

0 0 0 νR
1

Y 2
e Y 2

µ Y 2
τ νR

2

Y 3
e Y 3

µ Y 3
τ νR

3

One can easily check that the matrix (55) has det m = 0 and its
structure is of the form (52 ) with δ ∼ (Y i

e )2, ε ∼ Y i
e Y i

µ,τ . So, with
Y i

e  Y i
µ, Y i

τ and Y 2
µ  Y 3

µ , Y 2
τ  Y 3

τ we indeed get small parameters
δ  ε. Moreover, the 2 × 2 large submatrix now reads:(

(Y 2
µ )2

M2
+ (Y 3

µ )2

M3

Y 2
µ Y 2

τ

M2
+ Y 3

µ Y 3
τ

M3

Y 2
τ

M2
+ Y 3

τ Y 3
µ

M3

(Y 2
τ )2

M2
+ (Y 3

τ )2

M3

)
(58)

Its det = 1
M2M3

(Y 2
µ Y 3

τ − Y 3
µ Y 2

τ )2 ≡ η < ε. The masses M2 and M3

are the Majorana masses of the right-handed neutrinos νR
2 , νR

3 respec-
tively. So, with the hierarchical couplings of the active neutrinos to
two right-handed neutrinos we can obtain a stable hierarchy of the mass
eigenvalues mi = 0, η, 2, and two large mixing angles (for more details
see ref. ([3] )). The see-saw mechanism can explain the hierarchical pat-
tern of masses and the observed large mixings provided there are some
hierarchies in the neutrino Yukawa couplings and/or the right-handed
neutrino Majorana masses.
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We conclude these lectures with a few more remarks on the top-down
approach to neutrino masses. Usually, that problem is addressed as
part of a more general question about the theory of fermion masses. It
seems that the most attractive possibility is some family (horizontal)
symmetry combined with the Froggatt-Nielsen mechanism. In super-
symmetric models, horizontal symmetries may also correlate the fermion
and sfermion masses and could solve the fermion mass and the super-
symmetric FCNC problems, simultaneously. The simplest possibility is
the horizontal U(1) symmetry, assumed to be a spontaneously broken
gauge symmetry. The scalar field that breaks spontaneously the gauge
symmetry is often called the Froggatt-Nielsen field.

We shall consider U(1) models with single U(1) horizontal symmetry
and one Froggatt-Nielsen field Φ which, we assume carries the charge
qΦ = −1 of the horizontal U(1). Furthermore, we assume that all U(1)
matter charges are non-negative, with the third generation fermion dou-
blets and the Higgs doublets (we talk about MSSM) having charge zero,
q3 = h1 = h2 = 0. Acceptable fermion masses and mixings (including
the neutrino sector) can be obtained from a superpotential of the form

W ∼ yu
ijΘ(qi + uj + h2)(

Φ
Λ

)qi+uj+h2QiU jH2 (59)

plus similar terms for the down quarks, charged leptons, Dirac neu-
trino terms and RH neutrino Majorana masses. The neutrino masses
are obtained from the see-saw mechanism. Here Φ/Λ ∼ λ (the Cabibbo
angle), Λ is some fundamental scale and Φ is the vaccum expectation
value of the scalar component of a chiral superfield Φ. The constants yij

are arbitrary O(1) coefficients, not predicted by the model. The Yukawa
couplings then read Yij = yijλ

qi+uj+h2 etc. Yukawa interactions and the
RH Majorana masses are constrained by the family U(1) charges, once
we demand the U(1) invariance of the theory. With a proper U(1) charge
assignement one can ”explain” the observed pattern of masses and mix-
ing. We get, e.g. mui ∼ vλqi+uj+h2 and V CKM

ij ∼ λ|qi−qj |.

An interesting and ambitious approach is to consider theories that
are GGUT ×GFLAV OUR invariant. For a very nice discussion of neutrino
mass models based on those ideas we refer the reader to ([3]).

7. Summary and outlook
The evidence for neutrino masses and mixing is the first experimen-

tal indication for physics beyond the Standard Model. There are strong
theoretical arguments suggesting that this is an evidence for new physics
at high energy scale, close to the Grand Unification scale. The SM or
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its supersymmetric extension should then be viewed as the effective low
energy theory, with the active neutrino Majorana masses described by
additional (non-renormalizable) terms in the effective theory.

The reconstruction of the neutrino mass matrix from experimental
data is subject to a number of ambiguities, not only related to the present
experimental precision, but following from the fact that only the mass
squared differences and mixing angles are accessible experimentally. In
consequence, several different textures can be considered in agreement
with the data. If the origin of the neutrino mass is at a large energy
scale M , the ”measured” textures are obtained by evolving the original
mass matrices from the scale M to low energies, i.e. by the inclusion of
quantum corrections. An attractive requirement of small quantum cor-
rections may be a constraint on the acceptable textures of the neutrino
mass matrices.

A very plausible source of small neutrino masses is see-saw macha-
nism, with very heavy right-handed (sterile) neutrinos. It can naturally
accommodate a hierarchical pattern of the neutrino masses and the two
large mixing angles.

Horizontal (flavour) symmetries are likely to play a role in under-
standing the fermion masses (including neutrinos). Such models can be
predictive (and tested) in other sectors (e.g. leptogenesis, FCNC and
CP violation in supersymmetric models).
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Appendix
The two-component Weyl spinor notation is particularily convenient

for dealing with Majorana particles. Here we explain this notation
shortly. More details can be found in modern textbooks on QFT (see
e.g. [1, 4]).

In four dimensions, the Lorentz group or more precisely its covering
group SL(2, C) has two non-equivalent complex two-dimensional repre-
sentations denoted as (1/2, 0) and (0, 1/2). The Grassmann fields (or
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fermionic field operators) transforming according to these representa-
tions are conventionally written as λα and χ̄α̇ and called left- and right-
handed spinors, respectively. Since the complex conjugation of a left-
handed spinor λα transforms as a right-handed one ((λα)∗ ∼ λ̄α̇), the
fermion content of any Lagrangian can be specified by listing only the
left-handed spinors used for its construction.

If the two left-handed fields λα and χβ transform as representations
R and R∗, respectively under some symmetry group (global or local) of
the theory, they can be combined to form a Dirac bispinor:

ψ(λ) =
(

λα

χ̄β̇

)
, ψ̄(λ) =

(
χα, λ̄β̇

)
, (60)

transforming as R and R∗, respectively. The raising and lowering of
Weyl spinor indices is done with the help of the antisymmetric tensors
εαβ , εαβ , εα̇β̇ and εα̇β̇ :

λα = εαβλβ , λα = λβεβα, χ̄α̇ = εα̇β̇χ̄β̇ , χ̄α̇ = χ̄β̇εβ̇α̇. (61)

The two kinetic terms for λ and χ can be then rewritten in the familiar
form

Lkin = iλ̄σ̄µ∂µλ + iχ̄σ̄µ∂µχ

= iλ̄σ̄µ∂µλ + iχσµ∂µχ̄ + (total der) = iψ̄(λ)γ
µ∂µψ(λ) (62)

where the Dirac matrices γµ in the Weyl representation are constructed
as

γµ =
( 0 σµ

αβ̇

σ̄µα̇β 0

)
(63)

with σµ ≡ (I,σ), σ̄µ ≡ (I,−σ) (σ’s are the Pauli matrices). For such a
pair of Weyl fields also a Dirac mass term can be constructed

Lmass = −m
(
λαχα + λ̄α̇χ̄α̇

)
= −mψ̄(λ)ψ(λ) (64)

If the field λ (χ) has no left-handed partner transforming in the complex
conjugate representation R∗ (R), it is convenient to introduce chiral
Dirac bispinors

ψ(λ)L =
(

λα

0

)
, ψ(χ)R =

(
0

χ̄α̇

)
. (65)

For chiral Dirac bispinors e.g. ψ(λ)L = PLψ(λ)L etc., where PL ≡ (1 −
γ5)/2. Note that (see eq.(60)),

ψ(λ)L = ( 0 λ̄α̇ ) , ψ(χ)R = ( χα 0 ) . (66)
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The typical Yukawa coupling of a scalar field φ in the representation
Rφ and two left-handed Weyl spinors λ and χ transforming as represen-
tations Rλ and Rχ, respectively (such that 1 ⊂ Rφ × Rλ × Rχ) can be
written as (we omit the Clebsch-Gordan coefficients)

LYuk = −Y φλχ − Y ∗φ†λ̄χ̄

= −Y φψ(χ)Rψ(λ)L − Y ∗φ†ψ(λ)Lψ(χ)R (67)

The Yukawa part (12) of the SM Lagrangian and the mass terms (10)
are the example of (67) and (64), respectively, with fields uc, dc and ec

playing the role of χ, and q and l (or u, d and e) playing the role of λ.
Finally, Weyl spinor fields λα which are singlets of all unbroken sym-

metries of the theory can form 4-component Majorana bispinors

ψ(λ)Maj =
(

λα

λ̄β̇

)
. (68)

Of course in this case ψ(λ) = Cψ̄T
(λ) ≡ ψc

(λ) which means that the field is
self-conjugate. For such a field a Majorana mass term can be formed

LMaj = −1
2
m(λλ + λ̄λ̄) = −1

2
m
(
ψ(λ)Rψ(λ)L + ψ(λ)Lψ(λ)R

)
≡ −1

2
mψ̄(λ)ψ(λ) ≡ −1

2
mψT

(λ)Cψ(λ) (69)

where C is the charge conjugation matrix. The Majorana mass term
(11) is precisely of this form.

A quantum field λα, say in representation R of a symmetry group
reads:

λα ∼
∑∫

d3k[bL(k)aα(k)e−ikx + d†R(k)bα(k)eikx] (70)

It annihilates particle (charges R) with helicity λ = −1/2 and mo-
mentum k, and creates antiparticle (charges R∗) with λ = +1/2 and
momentum k. The field λ† ∼ λ̄ gives opposite effects. The fields λ and
λ̄ are connected to each other by the CP transformation:

CPλ(CP )−1 = λ̄ (71)

Parity and charge conjugation can be separately defined on the set
(λ) = λi + λc

i such that the fields λi(λc
i ) are in representation R(R∗)

of the symmetry group, or if λ is neutral under all unbroken internal
symmetries.
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Abstract We give an overview of the experimental activities on neutrino proper-
ties, with an emphasis on the mass of the neutrino. After a historical
introduction, we review the present experimental situations and describe
the projects foreseen in future years.
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Introduction
These lectures are focused on the determination of the properties of

the neutrinos, with a strong emphasis on their mass, and mainly from
an experimental point of view. Neutrinos were postulated in 1930 by
W. Pauli, discovered only 26 years later, and have slowly revealed some
of their properties, while some still remain unknown. This is of course
due to the difficulty of detecting these particles, the only ones in nature
which only feel the weak interaction, so that their detection necessarily
involves large detectors to get a useful signal, and these detectors have to
be efficiently shielded against any backgrounds which would very quickly
overwhelm the faint neutrino signals.

This explains for example why the massive character of neutrinos
has only been proven in the last few years (more than 40 years after
their discovery), although we still ignore the value of their masses, or
are unable to tell if neutrinos and antineutrinos are or not the same
particle.

The first chapter gives a brief historical survey of neutrino physics.
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The second chapter describes attempts to directly determine the neu-
trino masses and related properties.

Chapters 3 to 5 are devoted to the flavor oscillations of neutrinos;
the observation of these oscillations has definitely proven that neutrinos
have mass, but more experiments are needed to completely describe the
mass pattern. Chapter 3 focusses on solar neutrinos, chapter 4 on at-
mospheric neutrinos and chapter 5 on future projects trying to measure
a still unobserved flavor oscillation, between νe and νµ; its observation
would open the exciting possibility to study CP symmetry in the lep-
tonic sector, which, if violated, would have fundamental cosmological
consequences.

Finally, the chapter 6 gives the prospects to determine the absolute
mass scale for the neutrinos.

For those interested in neutrino physics and their latest developments,
I recommend to consult the following web page :
http://www.hep.anl.gov/ndk/hypertext/nu industry.html
which has links to most experiments and neutrino meetings.

Some recent reviews on neutrinos can be found in the litterature [1].

1. Neutrinos : a historical survey

1.1 The continuous beta spectrum
When in 1914, J. Chadwick measured the beta spectrum of radium E

(that is 210Bi), its continuous character came as a big surprise (as other
types of radioactivity were characterized by monoenergetic lines, inter-
preted as the energy difference between initial and final states). This
led to many speculations which were refuted one after the other by very
smart experiments.

It was first supposed that each radioactive transition emitted sev-
eral beta rays. But in 1924, K.G. Emeleus [2], using a Geiger
counter, was able to count separately beta and alpha emissions of
the Bismuth-Polonium cascade and found equality.

The explanation pushed forward by Lise Meitner was that the beta
rays were secondary particles carrying away only part of the total
energy. C.D. Ellis [3], in 1927, made a calorimetric experiment to
measure the heat deposited by a radium E source, and found that
the temperature increase (1 milli degree) corresponded exactly to
the mean beta energy (390 keV) and not to the end-point energy
(1.05 MeV).

So the mystery remained : A single beta ray was emitted with the full
energy detectable in a calorimeter.



Neutrinos 113

1.2 The neutrino hypothesis
Two equally challenging hypotheses were formulated to explain this

energy crisis :

N. Bohr suggested that energy was not conserved in beta decays,
and that could explain the mysterious (at that time) source of
energy in stars.

W. Pauli, on the contrary, insisted on the necessity of energy con-
servation and proposed, in a celebrated letter [4], that the missing
energy was carried away by a hypothetical, light and very pene-
trating particle, which he nicknamed neutron (and that Fermi re-
named neutrino when the neutral partner of the proton was later
discovered by Chadwick).

1.3 Early attempts at detection
The first attempts at neutrino detection relied on the possibility for

this particle to ionize atoms owing to a magnetic moment (which Pauli
estimated 1/100 or less than that of the electron, due to the high pen-
etrating power of the neutrino). Nahmias [5] in particular made careful
measurements and to get rid of the cosmic background, installed its
detector in the deepest station of London subway : this was the first un-
derground neutrino experiment. Negative results allowed Nahmias to
put a limit of 2 10−4 Bohr magneton on the neutrino magnetic moment.

Other approaches consisted in proving that beta decays obeyed stan-
dard 3 body kinematics, with energy and momentum conservation :

Henderson [6], following an idea by Ellis, showed that the 2 cas-
cades 212Bi →212 Po →208 Pb (βα) and 212Bi →208 T l →208 Pb
(αβ) gave the same energy balance when taking the maximal elec-
tron energy, while using the mean energy gave inconsistent results

Crane and Halpern [7], using 38Cl produced by the newly born
cyclotron, showed in 1938 that the decays observed in a cloud
chamber were consistent with the 3 body kinematics by building
what we now call a Dalitz plot

In 1951, Sherwin could show the equality, with a 10 % accuracy,
of missing energy and momentum in 52P decays [8].

However, these tests could not logically refute the non-conservation of
energy. The only real proof of existence was to detect a neutrino far
away from its production. Theoreticians (Bethe, Peierls [9]) had however
estimated cross-sections of neutrinos on nuclei in the absence of magnetic
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moment and found desperately low values around 10−44 cm2, which,
according to them, made impossible any neutrino detection. One should
however mention the unsuccessful attempt by Crane in 1939 [10] who
put a 1 millicurie source of radium inside a bag filled with 3 pounds of
salt (NaCl) with the hope to observe the transmutation of some 35Cl
atoms into 35S, which has a half-lifetime of 87 days. After 3 months
of irradiation followed by a chemical extraction of sulfur, he found no
signal of 35S decay and could put an upper limit of 10−30 cm2 on the
capture cross-section : this certainly was the very first radiochemical
experiment for neutrino detection, and the same principle was later used
in the first solar neutrino experiment in 1968.

1.4 The neutrino discovery
Things became more favorable for neutrino hunters after the second

world war, with the appearance of nuclear reactors. It was soon realized
(actually by Fermi) that they were extremely strong sources of neutrinos
(a fission dissipates 200 MeV and gives 6 neutrinos through cascade
decays of fission products, so that a reactor with a thermal power of
1 GW produces isotropically 2 1020 neutrinos per second !)

The most favorable reaction to detect these neutrinos (actually anti-
neutrinos) was to use the inverse beta decay reaction on free protons,

ν̄ + p → e+ + n

since this reaction has a threshold of 1.8 MeV while the neutrino spec-
trum goes up to 8 MeV (thresholds for other atoms are much higher).
A few such interactions could thus be observed every hour in a detector
with several tens of kilograms of hydrogen-rich material, if located close
enough to the nuclear core.

This is how Cowan and Reines finally discovered neutrinos in 1956
[11]. Their detector, located 11 meters from the core, consisted in layers
of cadmium-loaded water used as neutrino target sandwiched with layers
of liquid scintillator observed by photomultipliers. The signal consisted
in, first 2 synchronous signals in the upper and lower layers of scintillator
produced by the two 511 keV gammas emitted by the positron annihila-
tion, followed a few microseconds later by gammas in the 2 same layers
produced by the capture of the final neutron on cadmium after it was
thermalized in the water.

This very specific signature helped a lot in discriminating against
backgrounds, which were also reduced by strong passive shieldings against
gammas and neutrons surrounding the detector. The candidate events
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increased from 1/hour when the reactor was off to 4/hour when it was
on. A true neutrino signal of 3/hour (which did not vary when the
shielding was increased, but decreased when normal water was replaced
by heavy water) had been seen.

This technique is still basically used to detect neutrinos from reactors:
It has been improved over the years so that the signal efficiency is now
above 50% rather than the few % in the pioneer experiment.

1.5 Neutrinos and antineutrinos
After Dirac produced his theory of spin 1/2 particles and predicted

the existence of antiparticles with opposite charges, it was natural to
wonder if neutrinos and antineutrinos were or not different particles. As
neutrinos have no electric charge, there is a possibility that they are truly
neutral and carry no charge of whatever nature. This possibility has
been put forward by E. Majorana, after whom self-conjugate neutrinos
are now named. If some internal charge (such as a leptonic charge) is
carried by neutrinos, antineutrinos will carry the opposite charge and be
different : they will be so-called Dirac neutrinos.

Before answering the question, one has to label what would be a
neutrino and what would be an antineutrino : one has decided to call
antineutrinos those which are produced together with an electron, while
neutrinos are produced by β+ decays together with a positron (so that
β decays produce a lepton-antilepton pair, one electrically charged and
the other neutral). In a nucleus, the transition between a neutron and a
proton produces an antineutrino. This antineutrino is thus able to turn
a proton into a neutron (this is the discovery detection). Now neutrinos
will for the same reason certainly be able to transform a neutron into a
proton inside a nucleus. But will neutrinos be also able to transform a
proton into a neutron, or equivalently antineutrinos be able to transform
a neutron into a proton ? If yes, one would tend to admit that neutrinos
are their own antiparticle, while they would be different particles if the
answer is no. (But as we will see later, this reasoning happens to be
too näıve and is wrong). Anyhow, an experimental test was done, where
a tank filled with chlorine, a prototype done by R. Davis for his solar
neutrino experiment, was brought near the Savannah River reactor (used
by Reines) to eventually observe the transmutation of 37Cl into 37Ar by
the reactor antineutrinos. No such transmutation was observed, and it
was concluded that neutrinos and antineutrinos actually were different
particles, carrying a leptonic charge (1 for neutrinos and electrons, -1 for
antineutrinos and positrons) which was conserved in interactions. This
meant that neutrinos were Dirac particles.
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But things became much more complicated when parity conservation
was shown to be violated in weak interactions by Miss Wu in her cel-
ebrated experiment [12]. This violation was found to be maximal, and
this meant that spin was playing an essential role in weak interactions:
amplitudes depend upon the helicity of the (anti)neutrino produced in
beta decays. As the parity violation was found to be maximal, it meant
that only left-handed helicity neutrinos were produced in β− decays, and
conversely β+ decays were producing neutrinos of right helicity.

This peculiarity had been guessed by Lee and Yang [13] who modi-
fied the Fermi theory by adding a factor (1 − γ5) in the current-current
Hamiltonian describing beta decays. This factor actually selects a given
chirality for the neutrino, and the opposite one for the antineutrino.
When these neutrinos are relativistic, chirality and helicity are nearly
the same, and this so-called V-A theory could explain Miss Wu’s obser-
vations.

But this imposes a reconsideration of the difference between neutrinos
and antineutrinos : is the observed difference between them when looking
at Chlorine transmutation due to an intrinsic difference (leptonic charge)
or just a spin effect ? It could well be that neutrinos and antineutrinos
are the same particle, but that due to V-A, only left-handed neutrinos
are produced with electrons and right-handed neutrinos are produced
with positrons. As long as neutrinos stay ultrarelativistic, so that chi-
rality and helicity are nearly equivalent, V-A prevents left-helicity neu-
trinos from interacting with protons and right-helicity neutrinos from
interacting with neutrons.

In the limit where neutrinos are massless, chirality and helicity are
intrinsic conserved quantities, and the distinction between the two van-
ishes : neutrinos are described as Weyl particles (2-component massless
spinors) and the Dirac or Majorana descriptions become mathemati-
cally equivalent. This is actually the way neutrinos enter the minimal
standard model of electroweak interactions : neutrinos are left-handed,
antineutrinos are right-handed, and the two other degrees of freedom,
which would be anyway perfectly sterile due to V-A, simply do not exist.
The apparent lepton number conservation is just a consequence of V-A.

When neutrinos have a mass, the alternative between Majorana and
Dirac descriptions could in principle be tested : for example, a neutrino
beam impinging on a fixed nucleus target will be described as left helicity
particles, while a nucleus beam with a higher speed than the neutrino
beam, and going in the same direction, would see them as right helicity
particles provided we use the same helicity convention in the center-of-
mass frame; then Dirac neutrinos would produce electrons in the first
case and be sterile in the second case, while Majorana neutrinos would
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produce electrons in the first case and positrons in the second case (all
this being true up to correction factors of order (mν/Eν)2). Such a
gedanken experiment is evidently totally unrealistic and in practice, only
neutrinoless beta decays, addressed in the last chapter, could allow us
to determine whether neutrinos are Dirac or Majorana particles.

1.6 Three families of neutrinos
W. Pauli, when postulating the neutrino, increased the elementary

bricks of the microscopic world from 2 (proton and electron) to 3. But
as we all know, the zoology of ”elementary” particles showed an expo-
nential increase with the experimental progress. The neutron and the
positron (the first antiparticle) were soon discovered. The muon was seen
in cosmic rays, and it took some time to realize it was not the hypothetic
pion mediating the nuclear force, although it had the expected mass, but
rather a heavy electron. Pions were copiously produced with the start of
GeV accelerators, and the study of their decays was puzzling. Why was
the main decay into a muon and a neutral light particle (a neutrino so
that the lepton number was conserved) rather than electron-neutrino ?
The V-A theory had the explanation: lepton-neutrino decay is forbidden
by V-A for spin 0 particles like pions in the limit of massless leptons.
And this interdiction is only violated due to the helicity-chirality mis-
match for massive charged leptons. So, although the phase space for
electron-neutrino is much higher than for muon-electron, V-A rule dom-
inates and the electron-neutrino branching ratio is only 1.2 10−4 due to
the much lower electron mass. But a question was to be answered: was
this νπ neutrino the same as the νβ emitted in radioactive decays ? If
yes, this neutrino, when interacting with nuclei, should produce muons
and electrons roughly in equal numbers. If it was a second neutrino va-
riety, specifically related to the muon, it should produce only muons and
no electrons. The absence of radiative decays of muons into electrons,
but rather in electron and two neutrinos, suggested that there were 2
species of neutrinos associated with two species of charged leptons, with
different lepton numbers between the two lepton families. But this had
to be tested. The new accelerator at Brookhaven was used to produce
a secondary pion beam which after decay, sent neutrinos to a detector
placed behind a very thick steel shielding to absorb all charged parti-
cles [14]. 34 interactions producing a muon were observed, while only
6 electron or gamma showers were observed. The νπ was different from
the νβ , and the two neutrino species were labelled νµ and νe, referring
to their associated charged lepton.
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When the third charged lepton (the τ) was discovered at slac, it be-
came natural to link it with a third variety of neutrino, the ντ . The direct
proof of the ντ existence was brought only in 2000, when the Donut
experiment [15], using the beam dump technique with the high energy
proton beam at Fermilab, could produce a so-called prompt neutrino
beam. Among all secondary particles produced by proton interactions
in a thick shielding, only those containing a charm quark, having a very
short lifetime, decayed quickly enough to emit high energy decay parti-
cles, and among them tau-ντ pairs, while pions and kaons, being much
more longlived, lost their energy before decaying and emitted only very
low energy νe’s and νµ’s. A detector consisting of photographic emulsions
could observe the interactions of these high energy neutrinos producing
τ leptons, recognized by their short path of hundreds of microns inside
the emulsion before their decay.

The existence of 3 families of neutrinos had previously been proven
indirectly by LEP experiments, which deduced from the width of the Z0

gauge boson that it has to decay into 3 different varieties of ν-ν̄ pairs,
each contributing 110 MeV to the total width.

1.7 Checking the standard model with neutrinos
The latest result relies on the so-called standard model of electroweak

interactions, which was slowly built from experimental observations and
theoretical progress during the 60’s and the 70’s. The success of this
theory culminated with the discovery at Cern of the 2 gauge bosons W
and Z. The study of neutrino interactions played an important role in
the conception of this standard model, which unifies weak and electro-
magnetic interactions in a single theoretical frame.

1.8 The discovery of neutral currents
As we have seen, neutrino species are linked to the charged lepton

with which they are associated. This association can be in a decay, a
hadron decaying leptonically or semi-leptonically (that is together with
other hadrons) into a charged lepton l and an antineutrino ν̄l (or an
antilepton l̄ and a neutrino νl); or it can be in so-called charged current
interactions (mediated by W) where a νl interacts with a hadron to give
a lepton l together with hadrons. This association defines the neutrino
flavor as the flavor of the associated charged lepton.

An important discovery was done in 1973 when an experiment with
the bubble chamber Gargamelle submitted to a νµ beam observed first
one [16], then several events [17] interpreted as the elastic diffusion of a
neutrino upon an electron. Kinematically, these knocked electrons keep
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Figure 1. Exchange diagrams describing the diffusion of neutrinos on electrons : a)
Z0 neutral current diagram, valid for all neutrino flavors; b and c) W charge current
exchange diagrams, only present for νe (resp. ν̄e)

the direction of the beam when the neutrino energy is much higher than
the electron mass. But such a diffusion is impossible if the neutrino
interactions are charged-current interactions, since necessarily a muon
should appear in the final state (as for example νµ + e− → µ− + νe ).
This new way of interacting can only be explained if there exists neutral
currents, mediated by the boson Z0, as shown on fig. 1, where the initial
neutrino appears also in the final state.

This observation was an important step towards electroweak unifica-
tion, since at the time several scenarios were possible, with or without
neutral currents. The existence of these neutral currents was later con-
firmed in neutrino interactions on nuclei in which no final charged lepton
was observed.

A more precise measurement of νµ and ν̄µ cross-sections on electrons
was performed by experiments like Charm at Cern and gave a quanti-
tative estimate of the so-called Weinberg angle, θW , the free parameter
in the Weinberg-Salam scenario of unification, corresponding to the ”di-
rection” of the spontaneous breaking of SU(2)xU(1). These reactions
being purely leptonic do not suffer from hadronic corrections and are
readily computable [18]. Cross-sections can be expressed as functions of
two vector and axial coupling constants, gV and gA, whose values are
gSM
V = −0.5 + 2 sin2 θW and gA = −0.5 in the standard electroweak

model. The interpretation of these measurements is shown on figure 2.
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Figure 2. Determination of vector and axial coupling constants gV and gA from
neutrino cross-sections on electrons. The cross sections for νµ, ν̄µ and νe define
3 different ellipses which should intersect on the standard model line and allow to
determine the Weinberg angle θW (the curves are drawn for sin2 θW = 0.3) For clarity,
experimental errors are omitted, their effect is to give some thickness to the ellipses

1.9 The W-Z interference
Once neutral currents were established, it was important to check if

they were correctly described by the Weinberg-Salam model. One very
clean way to test the model was to measure the diffusion of νe on elec-
trons, since no strong interaction corrections are necessary. In this case,
both charged-current and neutral current interactions are possible (see
figure 1), and since they can contribute to the same helicity amplitudes,
one should see the interference term between the 2 processes in the total
cross-section.

The standard model actually predicts σW , σZ and σI corresponding
to W exchange, Z exchange and the interference term, to be in the
ratio 4 : 0.35 : -2.1 . An experiment was performed in Los Alamos in
1990 [19]. It sent the high intensity proton beam on a heavy target
in which produced pions were stopped and either decayed into µ+ and
νµ for π+’s or were absorbed by a nucleus for π−’s, the subsequent
µ+ decaying into ν̄µ and νe. The νe diffusion on electrons dominates,
due to the possibility of charged-currents, while νµ’s and ν̄µ’s give a
small computable background due to the neutral currents. The extracted
signal (234 ± 35 events) proved the significant presence of a negative
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interference term for νe diffusion with the expected intensity (within the
20% precision). As shown on fig. 2, this result conforted the Weinberg-
Salam model.

2. Are neutrinos massless or massive ?
It was realized from the beginning that neutrinos had to be light

particles. ¿From the difference observed in beta decays between the
electron and the missing (that is neutrino) mean energies, F. Perrin
suggested that mean momenta were probably equal, and that implied a
neutrino mass much lighter than the electron mass. In a 1936 review,
Bethe and Bacher wrote that “the neutrino mass ... was probably zero”.

The standard model was built with the explicit hypothesis of massless
neutrinos; the grand unified theories based on SU(5) made the same
hypothesis, since there was no room for a νR in the 15-plets, while SO(10)
unified theories could accomodate massive neutrinos in the 16-plets.

But the solar neutrino problem (in 1968, see below), was the main
reason for reconsidering the massless feature of the neutrino. Flavor
oscillations, by analogy to the K − K̄ oscillations, was a possible expla-
nation for the solar νe deficit, but this implied massive neutrinos. These
oscillations were actively searched for, specially near nuclear reactors,
after Reines claimed in 1980 a positive signal from a CC/NC anomaly
in neutrino interactions on deuterium [20], which was later refuted.

A non-zero mass for the neutrinos has a strong impact for cosmology,
as these particles could then explain the dark matter in the Universe.
For some time, the best models for the apparition of large scale struc-
tures preferred a mixture of cold dark matter (weakly interacting heavy
particles, or WIMPs) and hot dark matter (for which neutrinos with few
eV masses were perfect candidates). This is no longer true after a non
zero cosmological constant has been introduced in these models. But
this triggered experiments in the 90’s searching for νµ - ντ oscillations
in the few eV range, such as Nomad [21] and Chorus [22] at Cern.

The see-saw mechanism, proposed in 1979 [23], brought a natural ex-
planation for light neutrinos in grand unified theories. More recently,
the CP violation induced by a complex neutrino mixing matrix is con-
sidered as the best candidate to explain matter-antimatter asymmetry in
our Universe, through leptogenesis. All these theoretical arguments are
developped in other lectures in this school. They explain how neutrino
properties can shed light on physics at the grand unification energy scale,
and this is why the determination of neutrino properties is considered
nowadays of fundamental importance.
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2.1 Direct determinations of the mass
Soon after the neutrino was postulated by Pauli, the neutron was

discovered and in 1934, Fermi proposed his theory of beta decay where
a neutron decays into a proton, an electron and a neutrino. This ef-
fective theory was successful in explaining the electron spectrum, rates
were determined by the Fermi constant and a phase space factor. In his
original publication [24], Fermi noticed that the shape of the electron
spectrum near the end point depends crucially upon the neutrino mass,
and offers a possibility of determining it, or at least of putting an upper
limit. The experimental challenge is however enormous, since one needs
a very strong source to study the tiny part at the end of the spectrum
with sufficient statistics. Moreover, the detector energy response (mea-
sured electron energy versus true energy at emission) has to be perfectly
understood, since it creates spectral distorsions which, if not properly
accounted for, would translate into a fake m2

ν , either positive or negative,
when fitting the spectrum. As a matter of fact, many experiments each
published in the 80’s and 90’s neutrino masses compatible with zero,
but adding up all results gave a m2

ν negative at 2 sigmas ! This was
due to improper accounting of some experimental effects. To list but a
few, electron energy losses by ionization in the source, backscattering of
electrons on walls, energy resolution, and so on.

The most precise results come from two experiments, Troitsk [25]
and Mainz [26], which both use a tritium source (long-lived isotope
with a very low energy end point around 18 keV) for which molecular
and atomic effects are easy to compute with precision, and a so-called
solenoid retarding spectrometer (see figure 3a) which uses both an adi-
abatic guiding magnetic field for bigger acceptance of electrons and an
electrostatic barrier to let only the highest energy emitted electrons to
get to the detecting device. This detector measures the rate of elec-
trons above the barrier energy, and the spectrum is deduced by varying
the electrostatic barrier potential (so called integral measurements, as
opposed to differential measurements using sophisticated topologies of
magnetic fields aimed at measuring the electron momentum, and which
were used for some time with less success).

Both experiments encountered many problems before being able to
reach a good sensitivity on the neutrino mass. For example, Mainz got
for some time neutrino mass values depending upon the energy range
below end point used for fitting, with a tendancy to get negative square
masses: it was discovered that the effect was due to a roughening transi-
tion of the tritium source, made of solid tritium deposited on a substrate;
the thickness of the source was originally well defined, but later became



Neutrinos 123

Figure 3. a) left : schematics of the Mainz solenoid retarding spectrometer, which
adiabatically suppresses the transverse electron momentum for maximal acceptance
b) right : Mainz beta spectrum of tritium, before and after detector improvements
(lower temperature of the source, spectrometer modifications). Notice the improve-
ment in background level, and the good fit to mν = 0

chaotic, leading to an energy loss of the electron in the source vary-
ing with time and location; this was finally corrected by lowering the
temperature of the source below 2 K, freezing out this unwanted transi-
tion. It took also several years to lower the background of electrons to
a sufficiently low level (see figure 3b).

Troitsk using a gaseous molecular source of Tritium did not encounter
this problem, but unfortunately found in its data a monochromatic spu-
rious energy line just below the end point, with intensity and location
fluctuating with time (with some sinusöıdal pattern which gave birth
to lot of speculations on a possible cloud of relic neutrinos around our
Sun). This line was not seen by Mainz when both experiments took
data at the same time, and the consensus is now that the Troitsk line
is an instrumental artefact of unknown origin. When Troitsk removes
this line before fitting its spectrum, they get a result totally compati-
ble with Mainz: both experiments announce a neutrino mass below 2.2
eV at 95 % CL. The sensitivity of both experiments is limited by the
stiffness of the acceptance for electrons, varying typically from 0 to 1
over a few eV around the value of the barrier potential. To improve this
stiffness, directly related to the energy resolution, the only solution is
to build a bigger spectrometer : this has led to the Katrin project [27],
proposed by a collaboration containing Troitsk and Mainz experts, and
which aims at a neutrino mass sensitivity of 0.3 - 0.4 eV and is due to
start in 2007. The proposed spectrometer is a scaling-up of the present
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ones, with a 20 m length and 7 m maximal diameter, and is designed
to use both gaseous and frozen tritium sources. It will run at Karlsruhe
near a facility producing the needed tritium.

2.2 Electromagnetic properties
Another way of proving that neutrinos are massive is to exhibit their

electromagnetic properties. For example, a magnetic moment would
prove their massive character. In the minimal standard model with a
neutrino mass put by hand, the predicted magnetic moment is com-
putable and found desperately low, but higher magnetic moments could
be possible in case of new physics induced for example by grand unified
scenarios. Since the early days, the limit on this magnetic moment has
improved, and now reaches 10−10 µB.

In order to determine the neutrino magnetic moment, one studies the
diffusion of neutrinos on electrons at low energy. If the neutrino has a
magnetic moment, the cross section contains 2 terms :

σ = σW + σem

the weak cross section σW is the usual one.
the electromagnetic cross section σem, which does not interfere with σW

since it contributes to different helicity amplitudes, shows a pole in 1/Ee

where Ee is the energy of the final electron :

dσ/dy = (µν/µB)2πα2/m2
e[1/y − 1]

where y = Ee/Eν .
Thus, if one integrates on the electron energy from a threshold energy
Ethr up to the kinematic limit, σW grows like Eν while σem grows like
log(Eν/Ethr). This means that one should use as low a threshold as
possible to get high sensitivity on the electromagnetic part, and stay
at low energy so that the weak cross section does not overwhelm the
electromagnetic cross-section. In order to keep the background low,
one should avoid hydrogenated targets so that the CC cross-section on
proton is absent. Best experiments as of today have been run at nuclear
reactors (as neutrino energies are only a few MeV).

The best result comes from the Munu experiment at Bugey reactor
[28], where the target was the freon gas inside a 1 m3 TPC surrounded
by an active shielding of liquid scintillator. Recoil electrons give sizeable
tracks and are easily recognized compared to heavy particles (recoil nu-
clei induced by fast neutrons or alphas from radioactivity) giving highly
ionizing and very short tracks. A difference of electron spectra, start-
ing at 900 keV, between reactor ON and reactor OFF periods gives the
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neutrino signal, which is found compatible with σW and translates into
a limit of 10−10µB on the electronic neutrino magnetic moment 1.

A new idea, recently proposed, would use a spherical TPC filled with
a noble gas (for example Helium) [29]. The drift field would be radial,
and the reading would be done at the center of the sphere using a Mi-
cromegas detector. Sub-keV thresholds are technically possible, and if
the background is manageable at such low energies (where it was never
measured), then the sensitivity on the neutrino magnetic moment could
be improved by 1 to 2 orders of magnitude near a nuclear reactor. R & D
is presently performed on such a detector.

3. The phenomenon of flavor oscillations
Attempts at a direct proof of neutrino masses have been up to now

unsuccessful. But there is an indirect way to prove their massive charac-
ter, which consists in looking for flavor oscillations. This phenomenom
is predicted by standard quantum mechanics, and based on the fact that
if neutrinos are massive, the 3 flavor eigenstates (νe, νµ, ντ ) need not
cöıncide with the 3 mass eigenstates (ν1, ν2, ν3). We have then 2 dis-
tinct bases connected through a unitary 3x3 matrix. The Schrödinger
equation describing the free propagation of a neutrino predicts the ap-
pearance of different flavors with time. We will first see the 2 flavor
case, technically simpler, and postpone the 3 flavor case, which is more
intricate.

3.1 2-flavor formalism
Let us restrict to a world where only 2 flavors (νe, νµ) are present so

that we have 2 mass eigenstates (ν1, ν2) with masses m1 and m2. The
unitary matrix linking the 2 bases is just a rotation by an angle θ.

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉

|νµ〉 = −sin θ |ν1〉 + cos θ |ν2〉

Let us consider a νe produced with momentum p at t=0.
After a time t, it will be :∣∣ν(t)〉 = cosθ e−iE1t

∣∣ν1〉 + sinθ e−iE2t |ν2〉

with

1only Dirac neutrinos may have intrinsic magnetic moments. But both Dirac and Majorana
neutrinos may have transition magnetic moments, when the initial and final neutrinos have
different flavors



126 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

Ei =
√

p2 + m2
i

The probability to interact as a νµ at time t is given by :

|〈νµ|ν(t)〉|2 = 4 sin2θ cos2θ sin2 (E1 − E2) t

2

If the neutrino is relativistic (which is always the case) then
E1 − E2 = m2

1−m2
2

2p and we can write :

P (νe → νµ, t) = sin22θ sin2 ∆m2

4p
t

As can be seen on figure 4a, the νµ component and the νe component
(which add up to 1) oscillate sinusöıdally with time with a period
T = 4π p

∆m2 , corresponding to an oscillation length

Losc = cT = 2.5 meters × Eν(MeV)
∆m2(eV2)

the maximal amplitude of the oscillation being given by sin22θ.
Actually, the correct way to derive this formula implies to describe

localized neutrinos with wave packets, but the result is the same [30]. As
a bonus, one finds however that the oscillation pattern fades away after
p/σp oscillations, where σp is the width in momentum of the wave packet.
In practice, the pattern is not experimentally observable after p/σexp

oscillations, where σexp is the experimental resolution on the neutrino
momentum, or the natural width of the source if this momentum is not
measured. After this damping has occured, the transition probability
becomes constant at 0.5 sin2 2θ.

3.2 Oscillation experiments, exclusion plots
As we have seen, there are two possible ways to look for an oscillation.

Flavors are observable through charge currents on nuclei, the produced
charge lepton identifying the flavor of the interacting neutrino. Either
one looks for a deficit in the initial flavor (disappearance experiment) or
for the appearance of a flavor initially absent (appearance experiment).
For small oscillation amplitudes, appearance is certainly better since
in case of no background and a pure flavor source (for example νe),
a single interaction producing a muon will prove the oscillation, while
for disappearance the sensitivity to the oscillation amplitude, sin2 2θ, is
limited by statistical fluctuations on the number of νe interactions.

But appearance is not always possible. In the previous example, if
the neutrino energy is below the muon production threshold, it will not
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be possible to sign νµ appearance and we have to limit ourselves to
disappearance experiments : this will be the case for low energy νe like
those from the Sun or from nuclear reactors.

The principle of oscillation searches is to use a detector far from the
source. But this distance is to be compared to the oscillation length,
which goes like the inverse of ∆m2. Any experiment will then be sensitive
to ∆m2 values above a lower limit defined by the distance of the detector
and the energy of the neutrinos. An experimental complication arises
when the flux, or the flavor composition of the source (in neutrino beams,
mainly νµ from π decays, there is always a small νe component from µ
or K decays) is not perfectly known. In this case, a remedy consists
in using two detectors, one near and the other far from the source, and
compare observations at the 2 locations. Any difference in flavor content
will prove the presence of flavor oscillations. This will however work only
if the oscillation length is higher than the near location distance from
the source; this means that such comparisons will be blind to oscillations
of too high frequency, that is too high ∆m2. The sensitivity on ∆m2

will then be limited from below and from above.
In the design of an experiment looking for neutrino oscillations, one

always has to think beforehand to all the possible backgrounds which
could mimick the signal. To decrease the background, shieldings have
to be used. The best shielding against cosmic rays is to go deep un-
derground. Furthermore, local backgrounds due to radioactivity, and
specially gammas and neutrons, impose in the case of low energy neutri-
nos to design passive and/or active shieldings surrounding the detector.
In some cases, the remaining background can be measured when the neu-
trino source (beam, reactor) is off. But it is not always possible (think
of the Sun !).

Finally, when the result is obtained, it is translated into an acceptance
(in case of a positive result) or into an exclusion (in case of negative
result) domain in the plane of the 2 physical parameters, sin2 2θ and
∆m2 (see figure 4b).

One should however keep in mind that there are 3 neutrino flavors in
nature, so that actual oscillations are governed by more than 2 parame-
ters. Fortunately, nature has been kind enough so that these 2-flavor
parameters are easily reinterpreted in the 3-flavor case.

3.3 An example : the Chooz experiment
As an example of oscillation searches, I recommend to read the pub-

lication of the Chooz experiment [31], which has looked for the disap-
pearance, 1 km away from the source, of nuclear reactor antineutrinos.
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Figure 4. a) Left : oscillation pattern between two neutrino flavors for a given neu-
trino energy
b) Right : Typical result of an oscillation experiment with a negative result. The
dash-dotted curve corresponds to an appearance experiment, the dotted curve to
a disappearance experiment, showing the better sensitivity to small oscillations for
appearance experiments. The vertical line at high ∆m2 corresponds to oscillation
lengths smaller than the distance between source and detector, while the lower line
with a slope corresponds to oscillation lengths larger than this distance. The contin-
uous curve shows a typical exclusion domain obtained from the comparison of a near
and a far detector, and shows a loss in sensitivity for high ∆m2 when the oscillation
length becomes much smaller than the distance between source and near detector

Previous experiments have measured the initial neutrino energy spec-
trum with precision, so that a single far detector (see figure 5a) was
judged sufficient. It was placed 100 meters below ground in order to re-
duce the cosmic ray induced backgrounds. The active target was 5 tons
of gadolinium-loaded liquid scintillator, shielded with unloaded scintil-
lator between the target and the photomultipliers.

As in Reines experiment, thermalized neutrons are identified by their
capture on Gadolinium (the capture cross-section is 160 000 barns !)
which emits several gammas of 8 MeV total energy (above natural ra-
dioactivity energies). A first scintillation signal of at least 1 MeV, due
to the positron and its annihilation in the target, followed within 100
µs by a neutron capture, will identify a neutrino interaction. The rate
of accidental coincidences can be computed from single rates, and is
about 2 candidates per day; true coincidences due to backgrounds (so-
called correlated events), coming mainly from fast neutrons entering the
detection volume, was kept at about 1 candidate per day. These acci-
dental and correlated backgrounds could actually be measured while the
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2 nuclear cores were off. The true neutrino signal was then obtained by
substracting this background from measurements done during reactor
on periods. It was found around 25 events per day, consistent with the
expectation in case of no oscillation. Figure 5b shows data during ON
and OFF periods, and figure 5c shows the deduced neutrino spectrum
together with the Monte Carlo expectation. The agreement is perfect
both for rate and for energy shape. The observed flux compared to the
expectation with no oscillation gives a ratio :

R = 1.01 ± 2.8%(stat) ± 2.7%(syst)

The systematic error is dominated by the uncertainty on the neutrino
flux and the target fiducial mass. An exclusion domain for oscillation
parameters was deduced from this absence of signal (see figure 5d), which
is relevant for the interpretation of the atmospheric neutrino anomaly
(see below).

4. The solar neutrinos

4.1 Neutrinos from the Sun
The Sun gets its energy by burning its hydrogen into helium. In

this process, 2 protons are transformed into 2 neutrons and 27 MeV
are released. This energy is radiated away as photons, typically that
of a black body radiation at 6000 K, its surface temperature. In each
fusion process, 2 electronic neutrinos are emitted. The majority of these
neutrinos come from the fusion of 2 protons into deuterium, and their
maximal energy is 420 keV. But there are many possible branches leading
to helium, some of which emit neutrinos of higher energy (see figure 6a).
The neutrino spectrum is actually dominated by 3 contributions

the pp neutrinos, νpp mentionned above

the Be neutrinos, νBe, which are monoenergetic, corresponding to
the electron capture by 7Be (the dominant line is at 860 keV)

the boron neutrinos, νB, corresponding to the beta decay of 8B
into 8Be, with a maximal energy of 14 MeV.

The flux of pp neutrinos can be deduced from the Sun luminosity with
few percent precision. The other components are more sensitive to the
details of the Sun modelization, and are known with a precision around
10% for νBe and 20 to 30 % for νB. Other cycles (such as CNO) are
believed to play a minor role in neutrino production.
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Figure 5. a) upper left : schematics of the Chooz detector
b) upper right : positron spectra measured during reactor ON and OFF periods
c) lower right : net neutrino signal and its ratio to Monte Carlo prediction in the
absence of oscillations
d) lower left : Chooz exclusion contour, containing the domain obtained from a fit [33]
of Superkamioka atmospheric data in the νµ ↔ νe hypothesis
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Figure 6. a) Left : Energy spectrum of neutrinos produced in the Sun (the kinematic
thresholds for CC interactions on Ga and Cl, and the experimental threshold of
Superkamioka and SNO are shown)
b) Right : Angular distribution with respect to the Sun direction of single electron
ring events of energy between 5 and 20 MeV. Notice the forward peak proving the
detection of solar νe’s above an isotropic background

4.2 The pioneer experiment at Homestake
R. Davis started in 1968 the first experiment [32] to detect solar neutri-

nos. It consisted in a big tank located deep underground in the Home-
stake mine and filled with 390 m3 of C2 Cl4 (liquid used for cleaning
clothes). Solar neutrinos of energy above 814 keV should transform 37Cl
into 37Ar, a radioactive isotope of argon with a half-lifetime of 35 days.
It was a radiochemical experiment, since the target is totally passive,
and every 45 days the tank was flushed during 1 day with helium to
extract the few radioactive atoms of Argon, while less than 1 cm3 of
36Ar had been added beforehand into the tank in order to extract a
macroscopic volume of argon (it also provides a check of the extraction
efficiency). The extracted argon is separated from other gases by using
charcoal traps and gas chromatography, and then stored inside a small
proportional counter; 2.8 keV Auger electrons coming from the decays
of 37Ar by electronic capture are searched for for several months.

After less than one year, it became evident that a signal corresponding
to the production of 0.5 37Ar per day was seen, but the prediction was
three times larger !
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After more than 20 years of running, the final result gives an observed
neutrino flux of 2.5 ± 0.25 SNU 2 while modern solar models predict 7.5
± 1 SNU. This gave birth to the so-called solar neutrino problem.

4.3 Gallium experiments
The threshold for production of 37Ar is 814 keV, so that Davis’ ex-

periment is not sensitive to the most abundant νpp. This is why, at the
beginning of the 90’s, two similar experiments, Gallex [34] and Sage
[35], were launched respectively at Gran Sasso underground laboratory
in Italy and in Baksan underground laboratory in the USSR. Both are
radiochemical experiments and use Gallium as neutrino target, because
the threshold for conversion of 71Ga into 71Ge is only 233 keV, well
below the νpp maximal energy of 420 keV, so that the observed signal
should be dominated by these neutrinos. The principle of operation is
exactly the same as in Davis’ experiment. Sage uses 55 tons of liquid
metal of Gallium in several containers, while Gallex uses a GaCl3 so-
lution with 30 tons of gallium in a single tank. After about 1 month,
Gallex flushes its tank with nitrogen, taking out the GeCl4 which is
gazeous, and after chemical treatment, fills small proportional counters
with GeH4, a suitable gas for detection of X-rays and/or Auger elec-
trons emitted by the electron capture of 71Ge, which has a half-lifetime
of 11 days. After 6 years (corresponding to 65 extractions), Gallex
published an observed neutrino flux of 71 ± 6 SNU, while solar mod-
els predict between 125 and 130 SNU. The deficit was confirmed, even
when the main νpp component is detected. Sage, which uses different
extraction procedures, found after 10 years the same result (70.9 ± 6.5
SNU). Two very important checks were performed in Gallex :

An artificial source of 51Cr, which emits neutrinos of 870 keV, was
manufactured using several kg of 50Cr irradiated with a high flux
of neutrons in a research reactor, and the achieved activity was
60 PBq. Brought to Gran Sasso (its half-lifetime is 25 days), this
source, playing the role of an artificial sun with a ”luminosity”
10 times higher than our Sun, was placed in the middle of the
tank and several extractions were done within a few weeks : the
source induced signal was found (within a 10% uncertainty), totally
consistent with expectations. This exercise was repeated twice
during the experiment [36].

2The solar neutrino unit (SNU) corresponds to 1 interaction per second on 1036 atoms, and
was devised for this experiment so that numbers get close to unity.
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At the end of the experiment, 71As was introduced into the tank.
It decays into 71Ge, and the extraction of this germanium was
found consistent with expectations at the 1% level [37].

These two tests have proven that ions of 71Ge produced in microscopi-
cal quantities inside the tank are extracted as efficiently as macroscopic
quantities of neutral atoms added in the liquid: the hypothesis of exotic
hot chemistry for these ions which would prevent their efficient extrac-
tion, and put forward to explain Davis’ result, was definitely ruled out.

4.4 Real-time detection: the Superkamioka
experiment

A third result on the solar neutrinos came from an experiment in
Japan, Superkamiokande, using a large cylindrical tank (40 m diameter,
40 m high) filled with 50 kilotons of water (preliminary results had been
obtained with a smaller detector, Kamiokande, containing 1 kton of wa-
ter). The walls of this cylinder are covered (coverage of 40%) with large
photomultipliers detecting the Cerenkov light induced by charged par-
ticles propagating in water. At energies below 100 MeV, only electrons
(or converted gammas) can give such a signal. The Cerenkov light cone
gives both the energy and the direction of the particle. After several
years, the purification of water was brought to such a high level that
an experimental threshold at 5 MeV could be achieved. It was then
possible to observe the electrons diffused by the higher energy solar neu-
trinos, that is the νB. By kinematics, such electrons point away from
the Sun within a few degrees, and can be discriminated against isotropic
backgrounds (see figure 6b). The observed neutrino flux [38] (the latest
result is
2.35 ± 0.02 (stat) ± 0.08 (syst) 106 cm−2 s−1) shows a strong deficit com-
pared to the solar model prediction of 5 ± 1 in the same units. Thus, the
first real-time detection of solar neutrinos confirmed the deficit observed
by radiochemical experiments. This new type of detection gives more
than a total flux : the energy spectrum, its possible distorsion and/or
its potential variations with time, can equally be studied.

4.5 Are solar models reliable ?
Starting with the pioneer work of J. Bahcall [39], solar models have

been developped for more than 30 years [40]. They consist in describing
the Sun evolution from its formation to its present state, based on some
simplifying hypotheses (spherical symmetry, no rotation, no magnetic
field), and evolution equations (energy transport by radiation in the in-
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ner part, by convection in the outer part, thermal equilibrium between
produced and emitted energy, hydrostatic equilibrium between radiative
pressure and gravity). The actual evolution depends upon physical in-
puts such as nuclear cross-sections and their corrections (screening), and
opacities depending upon the chemical composition and the temperature
for energy transport. An iterative procedure has to converge towards a
present Sun compatible with observations (mass, radius, surface temper-
ature and luminosity). A recent very important input concerns heliosis-
mology data, as measured by Golf [41] on the satellite soho, which give
access to the sound speed along the radius of the Sun (down to 0.1 solar
radius). Model builders have converged towards a somewhat standard
solar model, and discrepancies are now very small. In particular, such
models reproduce the sound speed at the 1 per thousand level (except
in the transition zone between radiative and convective transport near
0.6 solar radius, where some turbulence is supposed to occur). With
such a maturity, the precision on expected neutrino fluxes has reached
1 % on νpp, 10 % on νBe and 20 % on νB. More recently, there are
some attempts at determining possible effects of magnetic fields inside
the Sun on neutrino transport, in case they have a magnetic moment
near the experimental limit [42].

After the results of Homestake, Gallex and Sage, and Superkamiokande,
some attempts were done to reconcile observations with solar models, by
changing drastically some parameters (such as opacities). These ad-hoc
models were not very successful, and we now know that they fail totally
to reproduce (by several %) the heliosismological constraints. It was ac-
tually shown by Hata and Langacker [76] that the 3 results of Chlorine,
Gallium, and of diffusion on electrons, together with the Sun luminosity,
were enough to extract in a ”solar model independant way” the 3 domi-
nant fluxes of neutrinos, νpp, νBe and νB, using only the known shape of
their energy spectrum. The surprising output is that one then obtains a
significantly negative νBe flux, and this stays true even if one discards
any one of the 3 measurements. There was no hope to reconcile solar
neutrino measurements on Earth with solar models, unless one accepts
new neutrino properties.

4.6 Oscillations and matter effects
The straightforward explanation, as already suggested by several au-

thors [44], was to suppose that neutrinos are massive and subjected
to oscillations 3, so that they arrive on Earth with different flavors :

3the possibility of decay for an unstable massive neutrino was also proposed [45].
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Chlorine and Gallium experiments measure only the νe flux, while Su-
perkamiokande measures a pseudo νe flux equal to νe + 0.15 (νµ + ντ ),
due to the smaller cross-section on electron of the 2 latter flavors.

But solar neutrinos begin their travel to the Earth inside very dense
matter, and it was realized by Wolfenstein in 1978 [46] that the pres-
ence of electrons would modify the oscillation pattern of νe compared
to what happens in vacuum. Although neutrinos have negligible inter-
actions with matter, these interactions will however generate an index
of refraction, linked to the elastic amplitude in the forward direction.
All flavors have the same amplitude on nuclei, but not on electrons (see
figure 1). νµ and ντ will be subjected to the same refractive index, but
this index will be different for νe. The effect of this refractive index,
which acts as a potential to be added to the vacuum Hamiltonian , has
to enter the Schrödinger equation. This potential is diagonal in flavor
basis, while the free Hamiltonian is diagonal in the mass basis. Adding
both will define propagation eigenstates which are different from any one
of these 2 bases, and are labelled ν1m, ν2m and ν3m. This matter basis
will be constant in matter of constant electronic density, but will vary
with time when the electronic density varies along the path of the neu-
trino (as it is the case inside the Sun from its center to its surface). We
will study in the following the 2 cases of constant and varying electronic
densities, restricted to the 2 flavor case.

Constant density. In vacuum, the Hamiltonian is diagonal is the
mass basis :

HV | ν1〉 = E1| ν1〉

HV | ν2〉 = E2| ν2〉

When neutrinos go through matter, a potential has to be added to the
vacuum Hamiltonian. This potential is diagonal in the flavor basis :

V | νe〉 =
(
C +

√
2 G ρe

)
|νe〉

V | νµ〉 = C| νµ〉

The term C describes the neutral current interactions on nuclei (or nu-
cleons) and electrons, it is common to all flavors (if only C was present,
oscillations would not be modified). The extra term for νe, proportional
to the Fermi constant G and the electron number density ρe corresponds
to charge currents of νe on electrons. Please note that this extra term
changes its sign when going from neutrinos to antineutrinos.
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The total Hamiltonian is diagonal in a new basis ν1m and ν2m deduced
from the flavor basis by a rotation θm given by 4

tan(2θm) =
(E2 − E1) sin(2θ)

(E2 − E1) cos(2θ) −
√

2 G ρe

When the electron density is constant, the oscillation formula has the
same structure as in vacuum, but the mixing angle θ is replaced by θm

and the oscillation length is multiplied by sin(2θm)/ sin(2θ).
One sees immediately that oscillation amplitudes will be enhanced

with respect to vacuum for neutrinos and damped for antineutrinos when
E2 > E1, that is m2 > m1. If m2 < m1, oscillations will be enhanced for
antineutrinos and damped for neutrinos. Notice also that the oscillation
length increases with respect to vacuum for the enhanced oscillation
and decreases for the damped oscillation. Thus matter effects create an
asymmetry between neutrinos and antineutrinos which should not be
confused with CP violation; it is just due to the fact that this matter
is not CP symmetric. This effect, if detected, gives access to the mass
hierarchy between m1 and m2.

One can also compute the density of electrons for which the enhanced
oscillation becomes maximal; it is

ρR = ∆m2 cos(2θ)/2
√

2GEν

Varying density. When neutrinos travel through matter with a
varying electron density, the propagation equations cannot be solved
analytically in the general case, so that one has to resort to numeri-
cal simulations. However, there is a special case, called the adiabatic
case, where the solution is simple. It happens when variations of density
are small over one oscillation length, so that evolution equations can be
rewritten in the variable basis of instantaneous propagation eigenstates
while neglecting terms induced by its varying character. This is legiti-
mate when the rotation speed of these eigenstates in the fixed basis of
mass or flavor is negligible compared to the oscillation frequency. We ac-
tually are familiar with this simplification, when studying how the spin
of a particle at rest evolves in space when the particle is submitted to a
slowly varying (in direction and in strength) magnetic field; one knows
that the spin will precess around the magnetic field (Larmor precession)
and the axis of this precession will stay aligned with the magnetic field

4we need a convention to label m2 and m1; here we decide that the m1 component is the
dominant mass component in νe, or equivalently that θ is between 0 and π/4
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direction : this is how one rotates the polarisation direction of a polar-
ized target. The analogy is perfect when instead of using the standard
orthogonal bases ν1, ν2 or νe, νµ, one uses the so-called Poincaré repre-
sentation where a neutrino state | ν >= cos θ | νe > +e−iφ sin θ | νµ >
is ascribed a point on a sphere of unit radius with a polar angle 2θ and
an azimuth φ. One notices that orthogonal states (like νe, νµ or ν1,
ν2) will be represented by 2 points opposite on the sphere, so that any
orthogonal basis corresponds to a given direction on the sphere. (Fur-
thermore, the probability for a state P to be observed in the state M is
just (1 + �OP . �OM)/2, O being the center of the sphere). The equations
for neutrino evolution become the same as the evolution of a spin in a
magnetic field, with the following correspondances : the field direction
corresponds to the direction of the instantaneous neutrino propagation
eigenstates, and the strength of the magnetic field (mutliplied by the
particle magnetic moment) is replaced by the difference in energy eigen-
values of the two neutrino propagation eigenstates. To summarize, in the
adiabatic approximation, a neutrino propagating through matter with
slowly varying density will precess (on the sphere) around the axis of
instantaneous eigenstates and follow it (see figure 7).

Interpretation of solar data. The matter in the Sun corresponds
to the case of varying electron density. The adiabatic approximation
will hold when the ”Larmor frequency” on the Poincaré sphere is higher
than the rotation speed of the direction of the propagation eigenstates.
Taking into account the known exponential decrease of electron density
with solar radius, this condition will hold when

∆m2(eV 2) sin 2θ tan 2θ � 5 10−9Eν(MeV )

We produce νe near the center of the Sun, and the matter effect will
dominate over ∆m2 in the energy splitting if

∆m2(eV 2) cos 2θ  1.5 10−5Eν(MeV )

If this second condition holds, νe and νµ are the propagation eigenstates
at the production point.
When both conditions are fulfilled, the νe born as a propagation eigen-
state will stay at all times a propagation eigenstate up to its exit from
the Sun, so that it will leave the Sun either as a ν1 (if m1 > m2) or a
ν2 (if m1 < m2). The second case is the most interesting (remember
that the main mass component in νe is ν1) and is called the msw effect,
after the name of the 2 russian physicists (Mykheyev and Smirnov) who
first noticed this effect [47], the W standing for Wolfenstein who had ex-
hibited the importance of matter effects. It corresponds to an adiabatic
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Figure 7. upper left : matter with constant density. The neutrino state precesses
around the fixed axis of propagation eigenstates in matter
Upper right : evolution of propagation eigenstates, starting from νe at infinite density
and ending for null density either as ν2 if m1 < m2 or ν1 if m1 > m2

Middle : matter with decreasing density (as in Sun) : evolution of an initial νe state
between Sun center and surface for m1 < m2 when the adiabaticity condition is less
and less satisfied, from top left to bottom right; the driving towards ν2 becomes less
and less efficient.
Bottom : neutrino spectral distorsion when the msw effect is fully active between
E1 and E2; below E1, the central solar density is too small for matter effects to be
sizeable, and above E2, we have a slow loss of the adiabatic condition; the dotted line
is for detection during the night when νe’s are partially regenerated in the Earth
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driving in the Sun of a νe into a ν2 (actually no oscillation takes place),
which will be predominantly a νµ (the smaller θ is, the bigger the νµ

component will be). The neutrino exiting the Sun as a ν2 will arrive at
Earth as a ν2, since it is a propagation eigenstate in vacuum. This msw
effect will be effective for a span in neutrino energy given by the 2 above
conditions (see figure 7), and can explain naturally as big a νe deficit as
requested, while vacuum oscillations would be at pain to explain large
deficits (that is factors bigger than 3).

When fitting the above-mentionned experiments (Homestake, Gallex
and Sage, Superkamioka) [48], several scenarios could explain these data
(see figure 8) and were labelled sma (small vacuum mixing angle, the
real archetype of an msw effect), lma (large vacuum mixing angle, with
a sizeable msw effect), low (with large vacuum mixing angle but with
smaller ∆m2 than lma, and requiring also some msw effect) and finally
the vac solution where ∆m2 is much smaller, no sizeable matter effects
occur and large vacuum oscillations develop between Sun and Earth.

Figure 8. Solar oscillation fits to Homestake, Gallex, Sage, Superkamioka (with
day and night energy spectra, to be sensitive to potential regeneration in the Earth).
sma, lma, low are different solutions where the msw effect is active on part of the
spectrum, while vac and Just-So are vacuum oscillations between Sun and Earth,
with no sizeable matter effects. See footnote 5 for an explanation on the abcissa.
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In order to discriminate between these scenarios, some observables can
help, like diurnal νe flux variations (at night, neutrinos travel through
the Earth and matter effects - with nearly constant density - take place
inside our planet, and might produce some νe regeneration), seasonal
variations for vac due to the eccentricity of the Earth orbit, and spec-
tral distorsions. But most of these effects could only be seen in Su-
perkamioka, the only real-time experiment; unfortunately, these effects
are bigger at sub-MeV energies and much smaller above the 5 MeV
threshold of Superkamiokande, and this prevented any definite discrim-
ination (although with accumulation of data, the lma solution seemed
to be slightly preferred).

4.7 The direct proof : the SNO experiment
The direct proof of flavor change for the solar neutrinos was obtained

in 2001 by the SNO experiment [49]. Like Superkamiokande, the detec-
tor is a water Cerenkov, but filled with heavy water. The detector is
spherical and its mass is 1 kiloton. Replacing hydrogen by deuterium
has fundamental consequences : apart from their diffusion on electrons,
it offers two new ways of detecting solar neutrinos, by their charged
current and their neutral current on deuterium. In the first case, deu-
terium nucleus is transformed into 2 protons, and the emitted electron
has a characteristic angular distribution proportional to 1- 1/3 cos(θ),
where θ is the angle of the electron with respect to the opposite of the
Sun direction. This reaction will be triggered only by the electronic
flavor. In the second case, the deuterium is simply broken into a pro-
ton and a neutron; this is invisible, since nucleons are far below their
Cerenkov threshold. The signature comes from the subsequent capture
of the neutron by deuterium, giving a tritium and a gamma of 6.25 MeV.
This monoenergetic (but energy resolution is poor at this energy) and
isotropic gamma is the signature for this reaction, which measures the
total flux of neutrinos (above the threshold of 2.2 MeV), independant
of their flavor.

The first 2 processes are measured using the angular distribution of
the electron with respect to the direction of the Sun (more precisely
its opposite), described by 3 components: Forward peak for electron
scattering, 1- 1/3 cos(θ) for charge current, flat for backgrounds.

The third process is obtained from the neutron capture gamma rate.
And the result was magnificent: the 3 measurements gave a total flux

3 times larger than the νe flux : for each νe arriving on earth, there are
also 2 νµ or ντ . The flavor conversion was proven (see figure 9).
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Figure 9. a) Left : electron and gamma angular distribution with respect to the
Sun measured by SNO in its second phase (salt added) with the fit of the different
components.
b) Right : Flavor composition of the solar neutrino flux as deduced from SNO mea-
surements : νe in abcissa, νµ + ντ in ordinate.

In a second period, salt was added to the heavy water, in order to
obtain a better signature of neutral currents on deuterium, since the
capture of neutrons on Chlorine releases 8.6 MeV in gammas, much eas-
ier to observe above backgrounds. The first result was confirmed and
made more precise [50]. When adding this result to the other experi-
ments, the lma solution becomes strongly favoured, although the low
solution survives with very low probability.

4.8 The ultimate proof : the Kamland
experiment

But was the oscillation mechanism really proven ? some alternative
scenarios, like resonant spin-flavor precession in the Sun in presence of
strong magnetic fields, could equally describe all the solar data [51]. One
had to observe the oscillation implied by the lma solution with neutrinos
travelling in vacuum, to get rid of all the matter effects complicating
the interpretation. This was achieved by another experiment in Japan,
Kamland [52]. This experiment did not try to detect the solar neutrinos
(they hope to be able to do it in the future), but rather detected the
electronic antineutrinos emitted by the japanese nuclear reactors. At
the location chosen for Kamland (the Kamioka site), the nearest reactor
is at 80 km, and more than 30 reactors are within a distance of less
than 200 km. If lma is right, these neutrinos have time to oscillate on
their way to Kamland, and a significant deficit should be observed. The
detection technique is standard : it uses 1 kiloton of liquid scintillator
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and triggers on the delayed coincidence between a positron and a neutron
capture (on protons, since no doping is added to the scintillator). The
result, published in december 2002 and shown on figure 10, speaks for
itself. 54 events have been seen while 87 were expected. Furthermore,
although statistics are low, the observed spectrum is compatible with
the expected distorsion due to oscillations. Oscillation fits select an area
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gether with the lma domain (in red or shaded) from solar experiments (LMA). There
are two allowed bands for the intersection, but since then, the salt data from SNO
have killed the higher ∆m2 alternative.

of parameters compatible with (and only with) the lma solution from
previous experiments. When fitting all data, one obtains [53]
∆m2 = 7.3+0.4

−0.6 10−5eV 2 and tan2 θ = 0.41 ± 0.04
A maximal oscillation in vacuum, corresponding to tan2 θ = 1, is

excluded at more than 2 sigmas 5.

5Notice that here tan2 θ is used instead of sin2 2θ ; this allows to cover in the same plot the
two cases m1 < m2 and m1 > m2 by redefining θ as the angle between νe and the lighter
of ν1 and ν2, so that θ will be smaller than π/4 when m1 < m2 and between π/4 and π/2
when m1 > m2. The msw effect will then occur in the Sun when tan2 θ is smaller than 1.
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The interpretation of the solar neutrino deficit becomes unambiguous :
it is due to oscillations driven by these parameters, with the msw effect
acting on this oscillation. The solar problem is finally solved.

4.9 Future projects
Before SNO and Kamland results, many projects were proposed to

measure in real-time the low energy part (νpp and/or νBe) of the neu-
trino spectrum, as the different possible scenarios (sma, lma, low, vac)
differ most in this low energy region. As of today, only one such experi-
ment, Borexino [54], is due to start soon at the Gran Sasso underground
laboratory. It aims at measuring the diffusion on electrons of νBe, in a
spherical tank filled with 300 tons of ultrapure liquid scintillator. The
purity requirements are formidable, since the signal is a single electron
below 500 keV that any gamma from radioactivity can mimmick. It was
proven in a prototype that the 10−16 g/g of Uranium, and 10−18 g/g of
14C / 12C could be achieved.

Other more ambitious projects have become less urgent, and in view
of their difficulty, it is not clear if they will ever be done, as their initial
aim, selecting the solution, has been fulfilled by SNO and Kamland.

5. The atmospheric neutrinos
Large underground detectors were initially built to search for proton

decay, as predicted by grand unified theories. Going underground was
a must for such a rare process. But after some depth, an irreducible
background will dominate, generated by interactions of GeV neutrinos
produced by cosmic rays in the atmosphere. It was thus very important
to study the flux of such neutrinos. While the proton decay signal was
never seen, the study of this background turned out to be extremely
interesting.

5.1 The Superkamioka observations
Neutrinos are produced in hadronic showers induced in the high at-

mosphere by pion decays, followed (if the energy is not too high) by the
subsequent decay of the muon. Thus one should observe a ratio of νµ

over νe equal or higher to 2 (here, we do no distinction between neutrinos
and antineutrinos). In Superkamiokande, νe and νµ interacting on nuclei
are identified by the topology of the Cerenkov ring of the final lepton.
Muons suffer little multiple scattering, so that the edge of the Cerenkov
ring is sharply defined. On the contrary, electrons will give an electron
shower inside water, with many secondary electrons, and the resulting
Cerenkov ring will be fuzzy. Beam tests have shown that is is possible to
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separate almost perfectly single ring events produced by electrons and by
muons. It is also possible to determine whether or not the muon leaves
the detector : in case it leaves, all photomultipliers inside the Cerenkov
cone (drawn from the muon starting point) will receive light; for stop-
ping muons, photomultipliers inside the smaller Cerenkov cone drawn in
the same direction from the muon stopping point will receive no light; of
course, the energy of muons leaving the detector cannot be determined.

Superkamiokande found the surprizing result [55] that the observed
ratio νµ over νe was nearly 1, instead of 2. This ratio depends little
on the exact modelization of neutrino production in the atmosphere.
Furthermore, owing to the high statistics accumulated over the years by
Superkamioka, it was possible to study this ratio as a function of the
zenithal angle of the final lepton (which is nearly that of the neutrino),
and it was found that the anomaly increased when going from vertical
downgoing neutrinos to vertical upgoing neutrinos (see figure 11).

Figure 11. Zenithal distributions of Superkamioka atmospheric data ( cos θ = 1 for
vertical downgoing, cos θ = −1 for vertical upgoing); the left column corresponds to
electron-like events, the right column to muon-like events. The first line is for low
energy events (E < 1.4 GeV), while the second is for high energy events (E > 1.4
GeV)

As the zenithal angle is directly related to the path length of the
neutrino, this suggested strongly a possible flavor oscillation of the neu-
trinos. Actually, such an hypothesis gives a perfect fit to the data if one
supposes an oscillation between νµ and ντ with a maximal amplitude
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Figure 12. Acceptance domain in νµ ↔ ντ oscillation parameters from Su-
perkamiokande atmospheric data.

(sin2 2θ = 1) and a frequency given by ∆m2 between 2 and 3 10−3 eV2

(see figure 12). Why is the oscillation supposed to occur between νµ and
ντ , and not between νµ and νe ? There are several reasons :

in case of an oscillation between νµ and νe, the anomaly is de-
creased due to the partial compensation of flavor conversions (if
νµ and νe fluxes were equal in flux and energy spectrum, there
would be perfect compensation and no anomaly would be seen),
and the observed anomaly is too important.

the observed νe flux is consistent with Monte Carlo simulations of
cosmic ray hadronic showers in the atmosphere, while there is a
deficit of observed νµ.

The Chooz experiment excludes any sizeable νe oscillation at the
frequency needed to explain the atmospheric anomaly.

Superkamioka has tried to prove that ντ are actually produced by the
oscillation mechanism. At typical energies around 1 GeV, ντ cannot
produce charged current interactions, as the τ is too heavy. But they
can produce neutral currents. The idea was then to select events with
2 electron rings compatible with the decay of a π0 produced by neutral
current. With this method, a significant excess in the NC rate compared
to the CC rate has actually been observed. This conforts the νµ - ντ

hypothesis and also puts strong constraints on an alternative hypoth-
esis, in which νµ would oscillate into a sterile neutrino which has no
interactions with matter.
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It would seem rather strange to suppose the existence of a fourth
family of sterile neutrinos for which there is no experimental evidence.
But this hypothesis has been proposed to explain the results of an ex-
periment at Los Alamos, Lsnd [56], which claimed evidence for ν̄µ - ν̄e

oscillations. This result, although marginally consistent with a similar
experiment, Karmen [57], which found no signal, cannot presently be
disproved. The need for a fourth neutrino comes from the fact that the
required oscillation frequency for Lsnd corresponds to a ∆m2 above 0.1
eV2, inconsistent in the 3-neutrino case with the 2 values of ∆m2 ob-
tained for solar and atmospheric neutrinos, since the biggest ∆m2 value
should be the sum of the 2 others. It should be added that models with
4 neutrinos give poor fits to the data on solar neutrinos, atmospheric
neutrinos and Lsnd. An experiment called MiniBooNE [58] is presently
running at FermiLab to check the Lsnd result, and its result is (impa-
tiently) awaited for 2005.

5.2 Checking oscillation with accelerators
Although the evidence for atmospheric neutrinos is now very strong,

it was not so when first anomalies were reported by experiments pre-
ceeding Superkamiokande (like Kamiokande, IMB, Soudan, Frejus) and
the community, in order to clarify the situation (there were debates over
the way cosmic showers were simulated, experiments like Frejus saw no
effect,...) decided to check this result using νµ beams from accelerators.
At the time, the preferred value of ∆m2 was rather around 10−2 eV2, and
this is with this value that accelerator projects were designed. But, as
time went on, and with the much higher statistics of Superkamiokande,
the value of ∆m2 shifted down to 2.5 10−3, so that the projects had to
adjust to this much lower value. Lower ∆m2 value means longer oscilla-
tion length for a given energy, or a lower neutrino energy if the distance
between source and detector cannot be modified.

There have been 3 such projects around the world :

In Japan, the K2K experiment started in 1999 [59]. It uses a 1.3
GeV neutrino beam made with the 12 GeV protons at KEK and
shot towards the Superkamiokande detector, 250 km away. Near
detectors, among them a 1 kiloton water Cerenkov, help in deter-
mining the characteristics of the beam and predict the expected
number of νµ CC interactions in Superkamiokande. ¿From data
taken between 1999 and 2001, a confirmation of the νµ disappear-
ance suggested by the atmospheric anomaly could be obtained,
since only 56 events were observed while 80 ± 6 were expected.
The energy spectrum suggests the distorsion implied by the os-
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Figure 13. a) Left : The νµ energy spectrum measured by K2K (points with error
bars); the dotted line is the predicted spectrum in the absence of oscillations, while
the solid (red) line is the oscillation best fit
b) Right : Accepted domain for νµ disappearance deduced from K2K data (68, 90
and 99 % confidence levels). The star corresponds to the best fit.

cillation (but contains only 29 muon-like single-ring events), see
figure 13. This experiment will take data until march 2005, and
expects to prove the deficit at the 3 σ level. This experiment is
mainly limited by its very low statistics, and illustrates the need
for much higher intensity beams.

In the US, the Minos experiment [60] is due to start in 2005. It
is installed in the Soudan mine, 730 km away from Fnal. The
detector has been completed in 2003, and waits for the neutrino
beam. It consists of 5 kilotons of magnetized iron equipped with
trackers to reconstruct neutrino interactions. The beam was tuned
to a lower energy than previously planned, and the neutrino energy
will be below 5 GeV. This experiment should clearly see the neu-
trino deficit and measure the oscillation frequency (that is ∆m2)
much better than Superkamiokande.

In Europe, a high energy neutrino beam produced by the SPS is be-
ing built and should be ready in 2006. The choice was made to be
complementary to Minos, namely to explicitely sign the appear-
ance of ντ (At Minos energies, ντ cannot give CC interactions).
Two detectors are being installed in Gran Sasso underground lab-
oratory, 730 km away from Cern. As the beam mean energy is
around 17 GeV, the oscillation is still far from its maximum at
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Gran Sasso, but nevertheless each detector expects to see around
10 ντ events in 5 years running.

Opera [61] is a detector using lead and emulsions, and will look
for τ → µ decays. If a ντ interacts in the lead, the final τ lepton
will be either seen in emulsion foils before and after its decay,
so that a distinctive kink in the track will sign the τ ; or the τ
will decay inside the lead before the first emulsion foil and only
its decay track (a muon) will be reconstructed : in this case, the
signature will be based on the mismatch between this decay track
and the vertex determined from the hadronic shower produced
by the neutrino interaction. In order to avoid the background
from decays of charmed particles, the detector has dipole magnets
measuring the sign of the candidate muon : it will be negative for
τ decay and positive for charm decay.

Icarus [62] uses a new technology, issued from many years of
R & D, using a liquid argon TPC. In a TPC, the ionization left by
charged particles in the medium is drifted by a transverse electric
field towards a reading plane, made of wires where electrons shower
and give a strong signal (as in proportional chambers). Pads placed
behind these wires will observe a signal by influence and locate the
2 coordinates of the shower. The third coordinate is deduced from
the drift time (the time it took to the electron to reach the wire).
Usual TPC’s are filled with gas. Here the medium is liquid, and
needs to be extremely pure to avoid attachment (that is capture
of the drifting electron by electronegative impurities). Drifts over
more than 1 meter without sizeable loss has been achieved in liquid
argon. A 600 ton module has been built and Icarus will use 5
such detectors, reaching a mass of 3 kilotons. Such TPC’s give
a very precise visualization of the interactions (comparable to the
old bubble chambers), but spatial resolution will not be sufficient
to explicitely see the short τ track before its decay. The ντ CC
signal is thus selected by topological and kinematic cuts mainly
based on the missing transverse momentum in the final state.

To conclude this part, let us give the results obtained on atmospheric
oscillation parameters from 3-family global fits to solar data, Kamland,
Superkamiokande atmospheric data and Chooz [63] :

∆m2
atm = (2.6 ± 0.4) 10−3eV 2 and sin2(2θatm) = 1 ± 0.05
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6. Towards a full determination of the mixing
matrix

If we stick to 3 flavors of neutrinos, we already know the possible
oscillation frequencies. In the following, we will develop the formalism
for 3 neutrino mixing, and see how it is possible to determine completely
the mixing matrix.

6.1 The mixing for 3 families
The unitary matrix linking mass and flavor eigenstates can be written :

⎛⎝ νe

νµ

ντ

⎞⎠ =

⎛⎝ Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

⎞⎠⎛⎝ ν1

ν2

ν3

⎞⎠ = U

⎛⎝ ν1

ν2

ν3

⎞⎠ (1)

This unitary matrix U can be decomposed as the product of 3 rotations,
complemented with extra phases responsible for CP violation :⎛⎝ 1 0 0

0 c23 s23
0 −s23 c23

⎞⎠⎛⎝ c13 0 eiδs13
0 1 0

−e−iδs13 0 c13

⎞⎠⎛⎝ c12 s12 0
−s12 c12 0

0 0 1

⎞⎠×· · ·

· · · ×

⎛⎝ eiφ1 0 0
0 eiφ2 0
0 0 1

⎞⎠
where cij and sij stand for cosine and sine of θij .

The rightmost matrix is only present if neutrinos are Majorana par-
ticles, but these phases φ1 and φ2 do not enter oscillation formulae, so
they are irrelevant for oscillation experiments. They are however impor-
tant for other processes such as neutrinoless double beta decays. The 3
other matrices are the quasi standard representation of a rotation in 3-D
space with 3 Euler angles, corresponding to successive rotations (from
right to left) around ν3 axis by θ12, then around the transform of ν2

by θ13, and finally around the transform of ν1, (that is νe) by an angle
θ23 (see figure 14). One sees however that the θ13 rotation matrix is
modified by a phase δ which will enter oscillation formulae and induce,
if non zero, a CP violation in oscillations.
When switching from neutrinos to antineutrinos, it is enough to change
the sign of the CP phases.
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Figure 14. Definition of the 3 angles used in the neutrino mixing matrix

By convention, mass indices 1 and 2 will be used for solar oscillations,
while the mass index 3 is used for atmospheric oscillations. This does
not imply that m3 is the highest mass.

From this matrix, one can derive oscillation formulae between an
initial flavor l and a final flavor l′ ; we note ∆ij the oscillating term
(m2

i − m2
j ) t / (4Eν) :

Pll′ = δll′−4Re
∑
i<j

U∗
l′iUl′jUliU

∗
lj sin2 ∆ij +2Im

∑
i<j

U∗
l′iUl′jUliU

∗
lj sin 2∆ij

We deduce the formulae for the already observed oscillations, taking
into account the fact that the solar frequency is much smaller than the
atmospheric one and the smallness of θ13 as deduced from Chooz :

For atmospheric oscillations, neglecting ∆12 terms and equating
∆13 and ∆23 :

Pµτ = 4c4
13s

2
23c

2
23 sin2 ∆23

which is exactly the 2-family formula, except for the c4
13 factor

which is bigger than 0.92 according to Chooz.
The νe disappearance relevant for Chooz can also be written with
the same approximations :

Pee = 1 − 4s2
13c

2
13 sin2 ∆23

that is exactly the 2-family formula (taking into account the very
beginning of the solar oscillation would modify this probability by
less than half a percent)

For solar oscillations in vacuum (relevant for KamLand), we must
first take into account the damping of the fast (atmospheric) os-
cillations and replace sin2 ∆23 and sin2 ∆13 by 0.5 :

Pee = (1 − 2s2
13c

2
13) − 4c4

13s
2
12c

2
12 sin2 ∆12
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which, taking into account the fact that θ13 is small can be rewrit-
ten :

Pee = (1 − 2θ2
13)(1 − sin2 2θ12 sin2 ∆12)

that is , apart from an overall factor between 0.92 and 1, the same
formula as in the 2-family case

These formulae explain why the 2-family fits for the observed oscillations
are relevant and have allowed to determine the splittings in squared
masses, ∆m2

12 = 7 10−5eV 2 and ∆m2
23 = 2.5 10−3eV 2, and the angles

θ12 � 35o and θ23 � 45o.
θ13 is the only unknown mixing angle, while the CP phase δ creates

no sizeable effect in the above-mentionned oscillations. The only way to
determine these 2 parameters is to look for oscillations involving νe at the
atmospheric oscillation frequency. The formula for νµ to νe transition,
which in practice will be the searched for oscillation, at distances where
the atmospheric oscillation is fully developped while the solar oscillation
is just at its very beginning will be more intricate, as on the one hand
the terms for atmospheric and solar frequencies will be both small and
may well be of the same order of magnitude, and on the other hand
the CP violating phase δ will explicitely appear and may create big
asymmetries. An additional complication is due to matter effects which
will be important for neutrino beams above 1 GeV, since the detectors
will then be located at typical distances of 1000 km or more.

General formulae can be found in the litterature [64]. We will here
restrict to the vacuum case, and write the formula developped in the 2
small parameters ε = θ13 and ε′ = ∆12, while ∆ will be a shorthand for
∆13 and ∆23 (the derivation needs some care as the difference between
∆13 and ∆23 is ε′)

Pµe =(2εs23 sin∆)2+(2ε′c12s12c23)2+2(2εs23 sin∆)(2ε′c12s12c23) cos(∆+δ)

this formula exhibits the positivity of Pµe which is of the form
X2 + Y 2 + 2XY cos(φ)

To best determine θ13, a detector should be placed in a neutrino beam
so that the distance roughly corresponds to the first atmospheric oscil-
lation maximum; this optimal distance is approximately 500 km ×Eν

(GeV). It is then interesting to rewrite the formula when the atmospheric
oscillation phase ∆ is exactly π/2, and use the fact that θ23 = π/4 :

Pmax
µe = A2 + S2 + 2AS sin(δ)

where A =
√

2θ13 is the ”atmospheric” term,
and S = ∆12 sin(2θ12)/

√
2 is the ”solar” term.
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One clearly sees how the CP violating term comes from an interference
between the 2 oscillation amplitudes (solar and atmospheric). When
these two terms are equal (which happens for θ13 � 1o as S � 0.03), a
maximal CP violation will totally cancel one of the oscillations (either ν
or ν̄), while the other is twice the expected value without CP violation.
When A and S are different, the maximal asymmetry becomes smaller.
From this it follows that the sensitivity on δ is roughly constant as soon
as A is bigger than S (the bigger is A, the higher the statistics but the
smaller the asymmetry, and both variations compensate each other).

In order to extract the 2 unknown parameters θ13 and δ, it is neces-
sary to do several measurements, for example with νµ and ν̄µ. A single
measurement will be sensitive to a given area in the 2-dimensional plot
of these 2 parameters, as shown in fig. 15. By convention, it is often
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Figure 15. Sensitivity domain in the θ13 sin δCP plane of an appearance experiment.
A significant effect will be present whatever the value of δ could be for θ13 > θm, but
one sees that the actual sensitivity (as defined by a significant excess of events, to the
right of curve A, or deficit, below curve B), goes well below this value. In contrast,
a disappearance experiment (not sensitive to δ) having a sensitivity on θ13 above
θd, even though θd is smaller than θm, will not cover areas of the plane where the
appearance experiment has sensitivity.

quoted a sensitivity on θ13 for a single measurement : in this case, δ
is fixed at zero by convention (to compare easily different projects); we
implicitely use this convention in the following. Some authors [65] prefer
to quote the value of θ13 above which an oscillation signal will be seen
whatever the value of δ; this more conservative value might be labelled
as pessimistic, since for some values of δ, a significant oscillation signal
might still be seen for θ13 values smaller than this limit.
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6.2 The ultimate tool : the neutrino factory
In order to be sensitive to the small νµ - νe oscillation, one needs very

intense neutrino beams. For 5 years now, physicists have studied the
so-called neutrino factory. This facility was derived from a much more
ambitious project, the muon collider, which is an a priori surprising
alternative to the electron colliders which would follow LHC. In case
LHC finds Higgs particle(s), one would like to study them with high
statistics in a clean environment. In the same way as LEP was the
perfect machine to study the gauge bosons W and Z, e+ e− machines
would copiously produce Higgs accompanied only by Z0. At high energies
however, it will be impossible to make electron rings, as the energy loss
in the arcs would be tremendous (by synchrotron radiation). One has
to resort to linear accelerators of electrons,but in order to avoid lengths
of reaching hundreds of kilometers, new acceleration schemes have to be
designed, and a lot of R & D is presently going on. For muons however,
circular rings are still possible 6. The challenge is also formidable, as one
has to produce a lot of muons, collect and accelerate them before they
decay, and also cool them so that beam densities, whose square enters
the collider luminosity, is sufficiently high. The R & D has started
on such machines, and it was quickly realized that with more modest
demands, it would be possible, in a first stage, to produce very intense
neutrino beams from the decay of muons stored at a few tens of GeV in
a single storage ring. The concept of neutrino factories was born, and
the european design for such a machine is shown on fig. 16a.

With neutrino factories, the typical baselines for θ13 and δCP studies
would be 1000 to 7000 kilometers. As muon decays produce both νµ and
ν̄e, the best strategy is then to use magnetized detectors to observe ν̄µ

CC interactions, producing wrong sign muons, that is opposite in charge
to those produced by CC interactions of the initial νµ; these wrong sign
muon events would then prove the oscillation of the initial ν̄e into ν̄µ.
To study CP, it is enough to switch from muons to antimuons in the
storage ring. But at so big distances and large neutrino energies (10
GeV or more), matter effects will be very strong and dominate over
genuine CP violation induced by δ, as can be see on fig. 16b. This is
why more than one distance between source and detector is necessary,
and these distances must be carefully chosen to improve the sensitivity
to δ. Lots of groups work on this problem, and a somewhat preferred

6Furthermore, with muon colliders, the formation of Higgs, by tuning the collider energy
to its mass, becomes possible, contrary to electron machines due to the tiny coupling of the
Higgs to electrons (Higgs couplings to xx̄ fermion pairs are proportional to mx)
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Figure 16. a) left : schematics of the european neutrino factory as envisionned at
Cern. The SPL produces 4 MW of protons impinging on a target, muons ring sending
neutrino beams towards a far detector.
b) right : Matter and CP violation effects as a function of the distance to the neutrino
sources. The two branches correspond to matter effects which allow to determine the
mass hierarchy between m2 and m3. The thickness of these bands is due to genuine
CP violations created by the phase δCP ; the lines in each band correspond to δCP = 0

.

scenario would use 2 detectors located at roughly 3000 and 7000 km
from the neutrino source. For details on neutrino factories, I refer to the
proceedings of the annual NuFact conference [66].

The fake CP asymmetry due to the matter effects complicates the
study of the real CP asymmetry (induced by δ), but it has a very strong
advantage, as it will solve the question of mass hierarchy. We have seen
that matter effects either enhance or decrease the oscillation vacuum
amplitude and length. This will be also true in νµ to νe oscillation at the
atmospheric frequency, and the enhancement will happen for neutrinos
or for antineutrinos depending upon what is called the mass hierarchy
of the neutrinos :

If m3 is higher than m1 and m2 (normal hierarchy), matter effects
will enhance the νe to νµ oscillation.

If on the contrary, m3 is the lowest mass, while m1 and m2 are
nearly degenerate (the splitting between m2

1 and m2
2 is given by

the solar oscillation frequency, and the ordering m1 < m2 is im-
posed by the necessity of an msw effect for solar neutrinos), the



Neutrinos 155

hierarchy is called inverted and νe to νµ oscillation amplitude will
be decreased

Although the sensitivity reach on θ13 of neutrino factories is impres-
sive (about 1/10 of a degree), the price of such a machine is such that
it will not be financed unless one is sure that a sizeable oscillation sig-
nal will be seen so that useful physics is ascertained. This imposes to
improve beforehand our sensitivity on θ13 with other less expensive fa-
cilities; projects using very intense, but conventional, neutrino beams,
nicknamed superbeams, will allow to explore θ13 values down to 1 degree
in the next 10 to 15 years. The construction of a neutrino factory will
then depend on the fact that the νµ ↔ νe oscillation is discovered or
not.

6.3 Present beams and detectors
Although Minos , Opera and Icarus have not been designed to

look at νe appearance, these detectors should have some sensitivity to
θ13. Monte Carlo studies show that the 90% CL sensitivity on θ13 will
not go below 5 degrees (which however leaves room for discovery !). The
Cngs beam is produced by 170 kW of protons, so that the sensitivity is
limited mainly by statistics (too few events), keeping in mind that the
distance to the source is too short by roughly a factor of 10 to match the
oscillation maximum. The Fnal beam uses 400 kW of protons and the
distance of Minos better matches the required distance, but here the
main problem will be the π0 produced by neutral currents and mimicking
an electron in the detector.

6.4 A better reactor experiment ?
The present best limit on θ13 is given by Chooz (see above). Is it

possible to improve this result ? The answer is yes : a higher detector
mass and a longer running time would easily increase statistics so that
the statistical error can be made much smaller. It is less straightfor-
ward to decrease at the same time the systematic error, which was 2.7%
in Chooz. This systematic error comes mainly from uncertainties on
the neutrino flux (known with 1% accuracy), the number of effective
protons in the target (mainly due to the fiducial cut) and the detector
efficiency on the neutrino signal. The only way to get rid of these uncer-
tainties is to build two identical detectors, one near the reactor(s) and
the other at the far distance. The disappearance of νe will be looked
for by comparing the νe rates and spectra at the 2 locations. The near
detector will in first order measure the same flux of neutrinos (in case
of no oscillations) with the same target mass and the same efficiency as
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the far detector, so that the remaining systematic error is the precision
with which one can ascertain this identity (knowing that counting rates
for signal and for background will be different at the 2 locations, the
dead times generated by cosmics crossing the detector will be different,
energy calibrations will be done at each detector independantly with
a finite precision,...). Present studies conclude that a 0.5% systematic
error should be reachable.

There are presently several projects worldwide, but the most advanced
seems to be the european project double-Chooz [67] : it would run
near Chooz reactors, using the existing underground cavity for the far
detector while a near location has to be prepared 100 m to 200 m from
the reactor cores. This location will be much shallower, but an artificial
mound on top of it will reduce the cosmic rate to an acceptable level.
The detector design has been improved to get a higher target mass, a
higher efficiency on neutron capture together with a better definition of
the fiducial volume, by adding, between the central target filled with
scintillator loaded with Gadolinium and the photomultiplier wall, two
layers (first a layer of unloaded liquid scintillator, called γ-catcher, to
detect some of the γ emitted by the neutron capture on Gd, and then
of a non scintillating liquid which absorbs without giving any signal the
majority of the radioactivity induced by the photomultipliers, mainly
the γ’s from potassium). As in Chooz, a final scintillator layer outside
the photomultipliers, optically separated from the target, serves as a
veto against cosmic activity. Simulations show that a sensitivity on θ13

of 5 degrees could be reached after 3 years of data taking.

6.5 The first generation of superbeams
A first series of projects is due to start within a few years. They will

use neutrino superbeams produced by proton beams with a power below
1 MW.

At Fnal the NOνA project [68] will use the same beam as Minos,
but with a different detector. There are two reasons for this

1 The Minos detector is not optimized to detect electrons, as it is
a calorimeter with rather low granularity, so that it is difficult to
distinguish electrons and π0 decays. The new detector will on the
contrary be a calorimeter with high granularity

2 The new detector will be installed off-axis, that is at an angle with
respect to the neutrino beam axis. This trick takes advantage of
the fact that if a π decays by emitting a neutrino at angle θ in
the decay tunnel, this neutrino will have a maximal energy given
by 30 MeV/θ (θ in radians); furthermore, the neutrino spectrum
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will show a strong peak at this energy, and very few neutrinos
above this maximal energy (this small tail at high energy being
due to imperfect focusing of the pions along the beam axis or due
to neutrinos coming from µ or K decays). By tuning the angle θ, it
is then possible to choose the peak energy and optimize it to have
the maximum of the oscillation at the detector. This has also the
advantage of reducing the νe background under the energy peak of
the νµ, as νe from µ or K decays will keep a wide energy spectrum.

This new detector, 50 kton in mass, should be ready for physics around
2010. The expected sensitivity on θ13 is 2.5 degrees at 90% CL.

In Japan a new proton accelerator, with an energy of 50 GeV and a
power of 800 kW, is being built (mainly for nuclear physics) at Tokai,
north of Tokyo. It has been proposed to produce with this accelera-
tor a very intense neutrino beam aimed at Superkamiokande, 300 km
away. This is the T2K (for Tokai to Kamioka) project [69]. The off-axis
trick mentionned above will be used to concentrate the neutrino energy
around its optimal value of 700 MeV or so. The beam should be ready
for 2009, and after 5 years of data taking, a sensitivity on θ13 of 2.5
degrees should be achieved.

The two above-mentionned experiments will not have sensitivity on
δ, mainly by lack of statistics. But the situation will improve with the
next generation of superbeams.

6.6 The second generation of superbeams
The natural way to improve on the first generation superbeam exper-

iments is to increase both the beam intensity and the target mass.
In Japan, the strategy is the following : after 2012, increase to power of

the proton accelerator to 4 MW and then, replace Superkamiokande by a
bigger detector, 1 megaton in mass, Hyperkamiokande. This new detec-
tor is just a scaling-up of Superkamiokande, it will be a huge horizontal
cylinder, 50 meters in diameter, and several hundred meters long. A site
for this detector has already been selected, not far from Superkamioka,
and the off-axis neutrino beam at Tokai will be built so that it makes the
same angle with Superkamiokande and Hyperkamiokande. But in the
japanese strategy, Hyperkamiokande will not be proposed unless T2K
sees an appearance signal. It means that Hyperkamiokande will not be
ready before 2020-2025.

In Europe, the Superconducting Linac (SPL), accelerating 4 MW of
protons to 2.2 GeV, will be the first accelerating device of the neutrino
factory; by hitting a target, pions will be produced and focused by a
magnetic system; their subsequent decay will produce the muons for
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the neutrino factory, but also a very intense νµ beam, with a mean
energy of 270 MeV. The optimal distance for νe appearance is thus
around 130 km, that is precisely the distance between Cern and the
existing underground Frejus laboratory, on the franco-italian boundary
in the road tunnel between Modane and Bardonecchia. The idea is to
excavate a cavity able to house a water Cerenkov detector of the megaton
class (or alternatively a liquid argon detector of 100 kilotons). A second
gallery will be dug parallel to the existing tunnel in the next few years
(for safety reasons), and one could use this opportunity to make the
cavity less expensive, due to the presence of all the required machinery.
This cavity could be ready around 2012, so that ideally, a big detector
could start doing physics as soon as 2015. It has to be emphasized that
such a detector, apart from receiving a neutrino superbeam from Cern,
will address equally fundamental questions, such as proton decay (with
a strong potential for its discovery) and supernova explosion searches.
Monte-Carlo studies show a sensitivity on θ13 of 1 degree (90% CL)
after 5 years (see fig. 18a). Running both in neutrinos and antineutrinos
would give sensitivity to CP violation at 3 σ down to θ13 values of 40 if
CP violation is maximal (see fig. 18d). But this imposes to run longer
in antineutrinos than in neutrinos, due to several factors : less intensity
in ν̄µ as less π−’s are produced on target, and smaller ν̄ cross-section
(by nearly a factor 5 at these low energies). This is why, for 10 years of
running time, 8 have to be spent in ν̄µ and only 2 in νµ.

For this second generation of experiments, statistics will be much
higher (by a factor 250 for Hyperkamioka), which imposes a very good
control and understanding of the backgrounds. These backgrounds are
dominated first by the intrinsic contamination of νe (or ν̄e) in the beam,
and second by the confusion between π0’s produced by neutral current
interactions in the detector and genuine electrons. The lower the en-
ergy, the lower this last background will be, as less π0’s will be pro-
duced, while their decay will more often give two distinctive Cerenkov
rings rather than a single one. Near detectors will be necessary in all
projects to measure this background before the oscillation develops, so
that it is known at the required percent level. Such near detectors are
actually already foreseen for the first generation experiments NOνA and
T2K, and will allow to experimentally assess if the required precision on
backgrounds is reachable (in these experiments, a 10% precision on the
background is sufficient).



Neutrinos 159

6.7 A new idea : the beta beams
As we have seen, the sensitivity on CP violation in superbeam projects

of second generation is limited by the strong asymmetry in running
time between neutrinos and antineutrinos. However, a new idea has
been recently proposed [70] which avoids such a limitation, based on the
concept of beta beams.

Beta beams start from the same idea as neutrino factories, but replace
muons by radioactive nuclei. Producing radioactive ions is routinely
done by nuclear physicists, in facilities like Ganil in France, Isolde at
Cern, at GSI, etc..The Isolde technique consists in sending protons
on a suitable target to produce radioactive ions, with lifetimes around
1 second. These ions are collected and accelerated for further studies
of nuclear structure far from stability, nuclear processes in stars, and so
on. If one were able to accelerate these ions up to relativistic γ factors
of 100, and store them in a decay ring with long straight sections, one
would obtain neutrino beams which are :

purely ν̄e (in case of β− decays) or νe (for β+ decays), with impu-
rities in νµ in the 10−4 range.

strongly collimated due to the very limited transverse momentum
of produced neutrinos (so-called Q value).

of perfectly known energy spectrum as it is just a boosted beta
spectrum.

The best candidate ions are 18Ne for νe and 6He for ν̄e; these rare gases
are most easily extracted from the target since they are chemically inert.

Recently, nuclear physicists have proposed a new facility called Eu-
risol which would use a SPL-like proton driver to increase ion produc-
tion by 2 orders of magnitude compared to the present state of the art.
It has been found that one could then produce neutrino beta beams of
at least equal if not superior quality than the SPL superbeam. The
general scheme for such beta beams is shown on fig. 17. It makes use
of the Eurisol design at low energy, and then takes advantage of the
existing accelerator Cern complex (ps and sps) to accelerate ions to the
required energy and finally store them into a decay ring which has to be
built. Monte Carlo studies show that running in ν̄e would give results
similar to the νµ SPL superbeam. But a big advantage of beta beams is
the possibility to store at the same time 18Ne and 6He in the decay ring
(in different bunches), so that the detector receives (alternately) the νe

and ν̄e beams, which is excellent to avoid systematics linked to any slow
evolution of the detector, contrary to superbeams which would switch
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Figure 17. Conceptual design of a beta beam at CERN. At left, the low energy part
where radioactive ions are produced using protons from SPL. Middle, acceleration by
existing CERN accelerators PS and SPS. Right, the storage and decay ring producing
νe and ν̄e beams sent to Frejus.

polarity at most a few times per year. Studies show that after running
the beta beams during 10 years, a 90% CL sensitivity on θ13 of 0.50 can
be achieved (for δ =0), while the 90% CL sensitivity to maximal CP
violation extends down to θ13 = 10 (see fig. 18c). If we can run both the
superbeam (2 years of νµ, 8 years of ν̄µ) and the beta beam with both
types of ions during the same 10 years, the 3 σ potential for discovery of
CP violation extends down to θ13 = 0.80 for maximal violation, but is
fulfilled for δ above 200 when θ13 is above 2.50 (see fig. 18d). This would
be by far the best project in the timescale of these second generation
projects (see fig. 18b).

6.8 A european strategy
From the preceeding, Europe has a good opportunity to make a lead-

ing contribution to the determination of θ13 and δCP , provided that
SPL can be built at Cern for both Neutrino and Eurisol communities.
Fruitful contacts have been taken between these two communities, and
beta beams are now part of the design studies of the Eurisol project.
Concerning the Frejus site, italian and french institutions have recently
agreed to jointly push forward the new cavity, which could become to-
gether with Gran Sasso a european (multisite) facility open to the world
community. Contacts have also been taken with our american colleagues,
who propose a Cerenkov detector (called Uno [71]) of half a megaton
which could be located in a Colorado mine. But in their case, it is
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Figure 18. All these figures are based on a detector with 440 kton fiducial mass.
a) upper left : expected 90% CL sensitivity on θ13 (for δ = 0) after 5 years of running
with νµ from the SPL superbeam (SPL-SB), or with the beta-beam running 5 years
with both νe and ν̄e, compared to the present limit from Chooz and the expected
sensitivities after 5 years of νµ runs for Minos, Opera and Icarus (curve cngs) and
T2K phase 1 (curve J-Parc)
b) upper right : expected 90% CL sensitivity on θ13 as a function of δ for the different
projects, in the same conditions (the lower curve corresponds to the combined analysis
of beta-beam and SPL-superbeam results). Notice the strong dependance on the sign
of δ for superbeams running with only ν beams, while the effect is much smaller for
the betabeam running with both ν and ν̄
c) lower left : Fits to θ13 and δ after a 10 year betabeam run, in the case of maximal
CP violation. Stars represent the true parameters, and contours are fit results for
68%, 90%, 99% and 99.7% CL.
d) lower right : 3 σ discovery potential domain in the sin2 θ13 δ plane after 10 years
of running. The discovery potential is above and to the right of the curves; curve 1 :
SPL superbeam (2 year νµ and 8 year ν̄µ); curve 2 : beta-beam; curve 3 : combined
superbeam and betabeam data; curve 4 : as curve 3, but for a detector with a 1 Mton
fiducial mass
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Figure 19. This figure shows how our sensitivity to θ13 will improve in the coming
years, first with current long baseline and reactor experiments (down to 50), then
with superbeams of first generation (down to 2.50) [NuMI-off stands for NOνA] and
finally with superbeams of second generation and beta beams (10 and lower).

not clear when and where a neutrino superbeam could be built, and
whatever the site (Fnal or Bnl), the large distances involved (much
bigger than 1000 km) impose multiGeV neutrinos, for which the water
Cerenkov technique has problems (π0 background).

If the cavity in Frejus can be financed and a worldwide community
agrees to run there a detector of the megaton class, such a detector could
start doing physics on proton decay (this will have to run at least for
20 years) and expect a supernova explosion (which would give 100 000
neutrino events within a few seconds) around 2015. And as soon as Cern
has built the spl, a superbeam could be sent to Frejus. If furthermore,
the Eurisol complex is located at Cern, it would boost the possibility
to send beta beams to Frejus, hopefully before 2020.

Figure 19 shows how our search for θ13 will progress in the coming
years. If one wants to look further in the future, precision measurements
on neutrino mixings could be performed using a neutrino factory or
alternatively a new generation of very high energy beta beams (with
ions accelerated with relativistic γ of 600 or higher). Neutrino mixing
studies will then reach the degree of precision which is now achieved in
the quark sector.
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7. The absolute mass scale
Of course, oscillations will not answer all the open questions on neu-

trinos. Two main questions will have to be answered :

what is the absolute mass scale, and the exact ordering of mass
eigenstates ?

are neutrinos Dirac or Majorana particles ?

Concerning the mass hierarchy, only neutrino superbeams above 1 GeV
or even better the neutrino factory would bring the answer, as we have
already seen. But the absolute mass scale will stay unknown. To deter-
mine this mass scale, one could hope for a possible answer from Katrin,
if neutrino masses are bigger than 0.4 eV. Due to the small splittings
already measured, that would mean that the 3 masses are nearly equal
(degenerate case). But from these splittings, we can only say that the
highest mass has to be bigger than roughly 50 meV (the square root
of ∆m23 given by the atmospheric oscillation). This leaves room for
a negative result from Katrin. The only hope would then reside in
two other experimental approaches, the neutrinoless beta decay and the
cosmological observations.

7.1 Double beta experiments
Double beta decays occur for some nuclei for which the single beta

decay is energetically forbidden, while the simultaneous transformation
of 2 neutrons into 2 protons, with the emission of 2 electrons and 2
antineutrinos, is possible. This is a second order process for weak inter-
actions, which is allowed by standard theory but very rare (very long
lifetimes). It was however directly observed within the 10 last years for
some isotopes. A more exotic process would be the neutrinoless double
beta decay, with only 2 electrons being emitted and no neutrinos. In
this process, the 2 neutrinos normally emitted stay virtual and annihi-
late each other. For this to occur, the neutrino should bear no charge
at all, that is be a Majorana neutrino (which can annihilate with itself
since it is its own antiparticle). But we must take also into account the
spin structure of the neutrinos. An antineutrino emitted with right chi-
rality at one vertex has to be absorbed at the other vertex as a neutrino
with left chirality, according to V-A. Chirality has to be violated, which
means that neutrino has to be massive, and actually the amplitude for
this diagram will vanish for a massless neutrino. For massive neutrinos,
one should add 3 such diagrams for the 3 mass eigenstates, and the cou-
plings at each vertex will be proportional to Uei while the propagator



164 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

will have a factor mi at the numerator. The total amplitude is thus
proportional to an effective neutrino mass m eff given by :

m eff =
3∑

i=1

U2
eimi

One has to remember that the mixing matrix elements Uei will in gen-
eral be complex, so that cancellations may occur and | m eff | be smaller
than the highest eigenmass. Actually, if neutrinoless double beta decay
is observed, | m eff | can be deduced from the observed decay rate and a
direct consequence is that at least one value mi will be bigger than m eff .
In order to deduce the effective mass from the decay rate, one has to
know the nuclear amplitude describing the overlap between the nucleus
initial and final states. This cannot be done exactly and one has to rely
on models of nuclear structure. One can say that our present under-
standing of nuclear physics allows to compute m eff with an uncertainty
not bigger than a factor 2.

The signal of neutrinoless double beta decay is a monoenergetic line
at the end point location for the energy sum of the 2 electrons. The
challenge of such experiments is to use ultrapure material to avoid as
much as possible radioactive activity at the energy of interest. More-
over, as the allowed normal double beta decay will certainly occur, its
tail will produce an irreducible background which will increase with the
energy resolution σE on the energy sum. Excellent resolution is a plus
to decrease this background. There are two main types of experiments :

the calorimetric type, where only the total energy deposit is mea-
sured. The best example is the Germanium crystal, used as a
semiconductor, which measures with high precision the energy sum
of double beta decays of 76Ge. Actually, this type of experiment
has given the best present limit on m eff at 0.3-0.5 eV obtained
by the Heidelberg-Moscow collaboration [72], which used crystals
of enriched 76Ge for a total exposure of 40 kg years. Recently, it
was even claimed that a positive signal was seen in this experi-
ment [73], but this announcement created a lot of questions and
criticisms [74].

tracking devices, where both electron tracks are measured (for ex-
ample by a TPC, or a system of Geiger or proportional tubes).
Two subcategories may be defined in this second type of devices,
depending on whether the source is or not the detecting medium.
Xenon TPC’s are an example of the first category [75] (the xenon
gas being also the emitter, as 136Xe is a double beta isotope) while
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the Nemo3 experiment [76] tracks electrons emitted by a foil on
which the emitter isotopes are deposited with a system of Geiger
tubes and scintillator calorimeters.

The Nemo3 experiment, which is presently running in the underground
Frejus laboratory, is expected to improve the m eff sensitivity down to 0.2
eV by using, among other isotopes, 7 kg of enriched 100Mo. Visualizing
and measuring each electron helps in rejecting some backgrounds (such
as single electrons) and also allows to compare electron energies and
angles with models of double beta decays. Nemo3 has already measured
normal double beta decays for 100Mo with very high statistics, allowing
for tests of nuclear matrix element computations, and also for 82Se, 116Cd
and 150Nd with lower statistics. The only drawback of this experiment is
the relatively poor energy resolution compared to Germanium devices.

More ambitious projects, with masses of emitting isotopes reaching
1 ton, have been proposed and are at the prototyping level. Let us cite
the Genius project [77], where 1 ton of naked 76Ge crystals are im-
mersed in a large tank of liquid nitrogen acting as a veto against outside
radioactivity, or the Cuore [78] project which plans to use bolometers
made of 760 kg of Te O2. If the background counting rate can be kept as
low as in previous experiments despite the fact that masses have been
increased by more than one order of magnitude, a sensitivity of few tens
of meV on m eff could ultimately be achieved by these experiments.

The fig. 20 shows, as a function of the lightest neutrino mass, what
could be the value of m eff . Bands in this plot are due to the effect of
the unknown Majorana phases; it is interesting to notice that a positive
signal should be seen above 10 meV if the mass hierarchy is inverted,
while prospects are less favorable in case of a normal hierarchy. For a
comprehensive survey of double beta projects, see [80].

7.2 Constraints from cosmology
The formation of large structures in the early Universe depends on

its matter composition, and neutrinos play a role in this evolution [81].
Relativistic neutrinos tend to stream freely in the gravitational potential
and erase density fluctuations. For neutrino masses between 10−3 and
0.3 eV, the transition to a non-relativistic regime for neutrinos will take
place during structure formation, so that matter density fluctuations
will be affected by neutrinos, in a way which depends upon their mass.
Briefly speaking, smaller scale structures will be damped while larger
will not, and the typical transition scale is roughly proportional to the
sum of neutrino masses Σmi. The study of large scale structures in the
Universe (galaxies, galaxy clusters), as obtained by 2dFGRS (2 degree
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Figure 20. Values of the effective mass for neutrinoless beta decays authorized by
present neutrino data as a function of the lightest mass, for different values of sin θ13.
The labels NH, IH and QD correspond to normal hierarchy, inverted hierarchy and
quasi-degenerate cases for the masses

field galaxy redshift survey) and Sdss (Sloan digital sky survey) exper-
iments, gives the matter power spectrum of our Universe, sensitive to
neutrino masses in a range which covers our expectations. But to de-
rive a value for the neutrino mass, one needs as inputs the cosmological
parameters (Ωm, Λ,...) which are determined from the study of the cos-
mological microwave background (CMB). After the latest measurements
of Wmap [9], it was possible to deduce an upper limit on Σmi which
ranges between 0.6 and 1 eV, depending on the choice of data enter-
ing the analysis and some ”theoretical” priors [83]. With more precise
data on CMB expected from next generation experiments like Planck,
better constraints on neutrino masses will be reached; the estimated un-
certainty on Σmi will be 0.1 eV using Planck and Sdss, and it could
go down to 0.06 eV after using data on CMB polarization [84].

Observational cosmology might therefore very well contribute to the
determination of the absolute mass scale of the neutrinos.
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8. Outlook
We have learnt a lot on neutrinos since they were discovered in 1956,

but many of their properties are still unknown.
In the near future, we will get the result from MiniBooNE (first results

in 2005) which will hopefully clarify the Lsnd result. If confirmed, that
would be a revolution in neutrino world : either we have a fourth family
of neutrinos, or we falsely interpreted one of the oscillation evidences, or
neutrinos are very exotic particles.

The result of Nemo3 is also due to come in the next few years, and
it will be interesting to see if it confirms with 100Mo the recent claim of
a signal seen with 76Ge.

Minos, Opera, Icarus for atmospheric oscillations, and Borexino
for solar oscillations are expected to confirm and precise these oscilla-
tions.

The real challenge will be first to discover the oscillation powered
by θ13, and if is actually observed, determine if CP is violated or not
in the neutrino sector. This program will take at least 10 to 20 years,
which leaves time for other experiments to bring new results or surprises,
concerning for example the absolute mass scale.

Neutrino physics will soon enter the era of precision measurements,
to the level reached today in the quark sector. This delay is quite un-
derstandable, due to the intrinsic difficulties met in the study of this
fantomatic particle, but experimentalists have found ways to circum-
vent them, and the neutrino conferences will continue to bring exciting
results in the coming decades.
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[41] S. Turck-Chièze et al., Ap. J. Lett. 555 (2001) L69 ; A.S. Brun, S.Turck-Chièze
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Abstract The cosmological matter-antimatter asymmetry can be understood as
consequence of CP violating quark and lepton interactions in the early
universe. We review the theoretical foundations and the main baryoge-
nesis mechanisms: electroweak baryogenesis, leptogenesis, Affleck-Dine
baryogenesis.

Keywords: Baryogenesis, CP, electroweak phase transition, flat directions, leptoge-
nesis, neutrino mass, Sphaleron

1. Introduction
The explanation of the cosmological baryon asymmetry is a challenge

for particle physics and cosmology. In an expanding universe, which
leads to departures from thermal equilibrium, C, CP and baryon number
violating interactions of quarks and leptons can generate dynamically a
baryon asymmetry [1].

Possible realisations of these conditions have been studied during the
past 25 years, starting with detailed investigations in the context of
grand unified theories [2]. The classical GUT baryogenesis scenario is
strongly restricted by the connection between baryon and lepton number
in the high-temperature, symmetric phase of the standard model [3].
In many respects, decays of heavy Majorana neutrinos in the thermal
phase of the early universe are an ideal source of the cosmological baryon
asymmetry. This leptogenesis idea [4] leads to a beautiful connection
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between the matter-antimatter asymmetry of the universe and neutrino
properties.

In the following sections the main mechanisms of baryogenesis as well
as some recent developments are reviewed. For each section we list a
few basic papers and review articles which contain further details and
more complete lists of references. This complements the lecture notes
handed out during the school. The goal is to help the interested reader
penetrate the by now extensive literature on the subject.

2. Baryon asymmetry: evidence and conditions
for baryogenesis

One of the main successes of the standard early-universe cosmology
is the prediction of the abundances of the light elements, D, 3He, 4He
and 7Li. Agreement between theory and observation is obtained for
a certain range of the parameter ηB, the ratio of baryon density and
photon density [5],

ηBBN
B =

nB

nγ
= (2.6 − 6.2) × 10−10 , (1)

where the present number density of photons is nγ ∼ 400/cm3. Since no
significant amount of antimatter is observed in the universe, the baryon
density yields directly the cosmological baryon asymmetry, ηB = (nB −
nB̄)/nγ .

On the experimental side, the precision of measurements of the baryon
asymmetry has significantly improved with the observation of the acoustic
peaks in the cosmic microwave background radiation (CMB). The most
recent measurement of the WMAP Collaboration is consistent with the
BBN result,

ηCMB
B = (6.3 ± 0.3) × 10−10 , (2)

with an error of only 5% [6], which is a most remarkable test of the
standard cosmological model.

A matter-antimatter asymmetry can be dynamically generated in an
expanding universe if the particle interactions and the cosmological evo-
lution satisfy Sakharov’s conditions,

baryon number violation,

C and CP violation,

deviation from thermal equilibrium.

Although the baryon asymmetry is just a single number, it provides
an important relationship between the standard model of cosmology, i.e.
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the expanding universe with Robertson-Walker metric, and the standard
model of particle physics as well as its extensions.

At present there exist a number of viable scenarios for baryogene-
sis. They can be classified according to the different ways in which
Sakharov’s conditions are realised. In grand unified theories B and L
are broken by the interactions of quarks and leptons with gauge bosons
and leptoquarks. This is the basis of classical GUT baryogenesis. Analo-
gously, the lepton number violating decays of heavy Majorana neutrinos
lead to leptogenesis.

The crucial deviation from thermal equilibrium can also be realized
in several ways. One possibility is a sufficiently strong first-order elec-
troweak phase transition which is required for electroweak baryogenesis.
For GUT baryogenesis and for leptogenesis the departure from thermal
equilibrium is caused by the deviation of the number density of the de-
caying heavy particles from the equilibrium number density. How strong
this departure from equilibrium is depends on the lifetime of the decay-
ing heavy particles and the cosmological evolution.

3. Equilibrium thermodynamics in the
Friedmann Universe

The description of a thermodynamic system in an expanding universe
is discussed in detail in the books by Bernstein [7] and by Kolb and
Turner [2]. This includes the Robertson-Walker metric, thermal distri-
bution functions of boson and fermions, energy and entropy densities
with the corresponding effective number of degrees of freedom, g∗ and
gS , the relation between asymmetries (ni − n̄i) and chemical potentials
µi, the conditions for chemical and thermal equilibrium etc.

The basis of baryogenesis via leptogenesis is the connection between a
baryon asymmetry B and a lepton asymmetry L in the high-temperature,
symmetric phase of the standard model [8],

B =
8N + 4

22N + 13
(B − L) , (3)

where N is the number of generations.
In Sect. 2 of Ref. [9] a brief derivation is given, and some implications

for extensions of the standard model, consistent with baryogenesis, are
discussed.
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4. Sphaleron processes and electroweak
transition

Due to the chiral nature of the weak interactions B and L are not
conserved. At zero temperature this has no observable effect due to the
smallness of the weak coupling. However, as the temperature approaches
the critical temperature Tc of the electroweak phase transition, B and
L violating processes come into thermal equilibrium [3, 10].

The sphaleron transition rate in the high-temperature, symmetric
phase has been evaluated by combining an analytical resummation with
numerical lattice techniques [11]. The result is, in accord with previous
estimates, that B and L violating processes are in thermal equilibrium
for temperatures in the range

TEW ∼ 100GeV < T < TSPH ∼ 1012GeV (4)

An important ingredient in the theory of baryogenesis is also the na-
ture of the electroweak transition from the high-temperature symmetric
phase to the low-temperature Higgs phase [10, 12, 9]. A first-order
phase transition yields a departure from thermal equilibrium. Since in
the standard model baryon number, C and CP are not conserved, it
is conceivable that the cosmological baryon asymmetry has been gener-
ated at the electroweak phase transition. This possibility has stimulated
a large theoretical activity during the past decade to determine the phase
diagram of the electroweak theory.

For large Higgs masses the nature of the electroweak transition is
dominated by non-perturbative effects of the SU(2) gauge theory at
high temperatures. At a critical Higgs mass mc

H = O(mW ) an intriguing
phenomenon occurs: the first-order phase transition turns into a smooth
crossover, as expected on general grounds. Numerical lattice simulations
have determined the precise value mc

H = 72.1 ± 1.4 GeV. One can also
estimate the critical Higgs mass for supersymmetric extensions of the
standard model, for which one obtains mc

h � 130 . . . 150 GeV (cf. Sect. 1
of Ref. [9]).

5. Electroweak baryogenesis
As already mentioned, the standard model contains all the necessary

ingredients for baryogenesis, i.e., baryon number violation, C and CP
violation, and the required departure from thermal equilibrium could be
generated during the electroweak phase transition [10, 12]. The attrac-
tive feature of electroweak baryogenesis is that the baryon asymmetry
can be calculated in terms of parameters which are measurable in collider
experiments. However, due to the lower bound on the Higgs boson mass
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from LEP, mH > 114 GeV, electroweak baryogenesis is now excluded
in the standard model. In supersymmetric extensions of the standard
model it is still viable for some regions of parameter space [13].

6. Kinetic equations and the standard GUT
scenario

The simplest possibility for a departure from thermal equilibrium is
the decay of heavy, weakly interacting particles in a thermal bath. The
most important processes are decays and inverse decays, which have to
be combined with the appropriate zero-width limit of the related 2 → 2
scattering processes.

A thorough discussion of the basic picture has been given in Ref. [14],
with applications to GUT scenarios. The case of leptogenesis is discussed
in Ref. [15].

7. Leptogenesis and neutrino properties
In its simplest version leptogenesis is dominated by the CP violating

interactions of the lightest of the heavy Majorana neutrinos, the seesaw
partners of the ordinary neutrinos. During the past years this case has
been studied by many groups in considerable detail.

For a given mass M1 of the lightest heavy Majorana neutrino N1, the
CP asymmetry in N1 decays satisfies an upper bound [16, 17]. As a con-
sequence, the maximal baryon asymmetry, which can be generated in the
leptogenesis process, depends on only four parameters: the CP asym-
metry ve1, the heavy neutrino mass M1, the effective light neutrino mass
m̃1 = (m†

DmD)11/M1 and the quadratic mean m =
√

m2
1 + m2

2 + m2
3 of

the light neutrino masses [18].
One can then study the range of parameters for which leptogenesis

can generate the observed baryon asymmetry. It turns out that this
yields the stringent upper bound on all light neutrino masses of 0.1 eV.
Further, if neutrino masses are larger than 10−3 eV, a pre-existing asym-
metry is efficiently erased so that the final baryon asymmetry is almost
independent of initial conditions. Hence, in the neutrino mass window
[19],

10−3 eV < mi < 0.1 eV , (5)

leptogenesis emerges as the unique source of the cosmological matter-
antimatter asymmetry.

Recently, various corrections affecting the final baryon asymmetry
have been studied [20]-[23]. The corresponding upper bound on the
neutrino masses, which is quoted in the literature, varies between 0.12 eV
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and 0.15 eV. For nearly degenerate heavy Majorana neutrinos this bound
can be considerably relaxed [24]. A still open, challenging problem is a
complete quantum mechanical description of the leptogenesis process.

Since leptogenesis is directly related to the pattern of neutrino masses
and mixings, there exists important connections with CP violation in the
lepton sector [25] and lepton flavour changing processes [26].

The large temperature required for thermal leptogenesis has impor-
tant implications for dark matter. In particular, gravitinos rather than
WIMPs are attractive candidates for cold dark matter. Recent discus-
sions are given in Ref. [27].

8. Affleck-Dine baryogenesis
In supersymmetric theories the scalar potential generically has flat

directions. In connection with inflation allows to relate the cosmological
baryon asymmetry to the dynamics of scalar fields associated with these
flat directions [28]. The final baryon asymmetry is then determined
by the value of the scalar field during inflation, the size of CP violating,
supersymmetry breaking terms in the effective lagrangian, higher dimen-
sional operators which lift the flat directions etc. This and interesting
mechanism has been reviewed in Refs. [29, 30].

In particular the LH flat direction has been studied in detail. In this
case the dimension-5 operator which lifts the flat direction is related to
neutrino masses. It has been found that the observed baryon asymmetry
requires an ‘ultralight’ neutrino [31],

m1 � (0.1 − 1) × 10−9 eV . (6)

An important qualitative signature for the Affleck-Dine baryogenesis is
the existence of non-thermal dark matter [32, 29].

9. Alternative mechanisms
Electroweak baryogenesis, leptogenesis and the Affleck-Dine scenario

are all interesting mechanisms for baryogenesis. The simplest, and quan-
titatively best studied mechanism is thermal leptogenesis for which the
consistency with neutrino masses is impressive. However, there are also
other intriguing scenarios of baryogenesis [33, 30]. Here we can just list
a few alternatives with some references:

Inflaton decays
which can induce non-thermal leptogenesis [34, 35],

Baryogenesis at low reheating temperatures
which is important in connection with large extra dimensions [36],
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Quintessence and leptogenesis
which relates baryogenesis to the slow time evolution of a scalar
field [37],

The lepton leaking mechanism
where the baryon asymmetry is due to the small coupling of the
‘visible’ world to a mirror world [38],

Baryogenesis by brane collisions
which produce the heavy particles whose decays generate the baryon
asymmetry [39],

Sneutrino dominated universe
where the scalar partners of the heavy Majorana neutrinos domi-
nate the energy density of the universe before the onset of lepto-
genesis [16],

Coherent baryogenesis
where a nonadiabatically varying fermion mass matrix during re-
heating leads to a baryon asymmetry.

The various baryogenesis mechanisms lead to significantly different
expectations for the nature of dark matter, which may eventually allow
us to identify the true origin of the matter-antimatter asymmetry.
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by brane-collisions, hep-th/0201040

[40] B. Garbrecht, T. Prokopec, M. G. Schmidt, Coherent baryogenesis,
Phys. Rev. Lett. 92 (2004) 061303-1



SCALAR FIELDS IN PARTICLE PHYSICS
IN COSMOLOGY

Pierre Binetruy
Laboratoire de Physique Théorique,
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Abstract We review the role of scalar fields in theoretical models of high energy
and cosmology. We discuss two general classes of light scalar fields: i)
Goldstone bosons (and pseudo-Goldstone bosons) associated with the
spontaneous breaking of symmetry, ii) moduli fields associated with the
flat directions of the scalar potential in supersymmetric theorie. The
latter are discussed in particular in the context of extra dimensions.
Gravitational constraints are discussed. The potential role of a scalar
fields in cosmology investigated: a quantitative analysis of their in path
in the inflation scenario as well as in the understanding of dark energy
is presented.

Keywords: Scalar fields,unitarity,triviality, naturalness, supersymmetry, sponta neous
symmetry breaking,Goldstone bosons, moduli, flat directions, extra di-
mensions, gravitation, inflation.

I. Introduction
Although a fundamental scalar particle (i.e. a fundamental particle

of spin 0) has yet to be discovered, scalar fields have nowadays become
ubiquitous. They play a central role in the symmetry breaking sector
of the Standard Model (Higgs particle). The vacuum energy stored in
their vacuum leads to an exponential growth of the universe in inflation
models. And they might be responsible for the late reacceleration of the
universe.

In many cases, the scalar field is light i.e. its mass is much lighter than
the fundamental scale of the theory (often by many orders of magnitude).

181

D. Kazakov and G. Smadja (eds.), Particle Physics and Cosmology: The Interface, 181–234.

© 2005 Springer. Printed in the Netherlands.



182 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

For example, in the context of the Standard Model, the Higgs particle is
believed to be light on the scale of electroweak symmetry breaking (see
Figure 1).

0
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6

10020 400

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.00036

0.02747±0.00012

Without NuTeV

theory uncertainty

Figure 1. ∆χ2 for the Higgs mass after LEP experiments (LEP Electroweak Work-
ing Group)

On the other hand, the Standard Model is believed to be the effective
theory of a fundamental theory whose typical scale is much higher than
the TeV scale. Indications in this direction come from the unification of
gauge couplings or the lightness of neutrino masses (explained naturally
by the seesaw mechanism which typically involves a large scale). In
such contexts where the typical mass scale of the theory is very large, it
remains to explain why the Higgs mass is much smaller. Indeed, as we
will recall in Section II, scalar fields are special from the point of view
of quantum corrections, which tend to destabilize light masses. This is
the hierarchy problem.

There are basically two known ways of getting light scalars. One uses
the spontaneous breaking of continuous global symmetries: this yields
massless scalars known as Goldstone bosons (the Goldstone theorem is
recalled in Section III). A small addition of an interaction which breaks
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explicitly the symmetry turns them into pseudo-Goldstone bosons: their
mass is then proportional to the amount of breaking.

The other one uses supersymmetry: in supersymmetric theories, the
scalar potential often has flat directions that are valleys of vanishing
potential energy that extend to infinity in field space. Such directions
remain flat to all orders of perturbation theory and one has to resort to
non-perturbative breaking of supersymmetry to lift the corresponding
degeneracy. The fields corresponding to such flat directions are known
as moduli fields. After breaking of supersymmetry they acquire a mass
which is often small because of the non-perturbative nature of the break-
ing. What distinguishes moduli from Goldstone bosons is the fact that
physics depends on the value of the moduli fields.

In what follows, we recall a few facts about naturalness and the prob-
lem of hierarchy in Section II: this leads us to the introduction of su-
persymmetry. We then discuss the physics of Golstone and pseudo-
Goldstone bosons in Section III. We then return to supersymmetry in
Section IV to consider the role of moduli fields, especially in the context
of string theory and more generally of higher-dimensional theories where
they appear extensively. Cosmological aspects are reviewed in Section
V.

II. Naturalness and the problem of hierarchy
The central question that we will address in this section is the ex-

istence of quadratic divergences associated with the presence of a fun-
damental scalar field, such as the Higgs field in the Standard Model.
Before dealing with this, we must have a short presentation of the no-
tion of effective theory.

II-1 Effective theories
In the modern point of view, a given theory (e.g. the Standard

Model) is always the effective theory of a more complete underlying
theory, which adequately describes physics at a energy scale higher than
a threshold M . This threshold is physical in the sense that the complete
physical spectrum includes particles with a mass of order M .

The description in terms of an effective theory, restricted to the light
states, is obviously valid only up to the scale M . The heavy fields (of
mass M or larger) regulate the theory and therefore the scale M acts as
a cut-off Λ on loop momenta.

In quantum field theory, the renormalisation procedure allows to deal
with infinities, i.e. contributions that diverge when the cut-off is sent
to infinity. However, the cut-offs that we consider here are physical and
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thus cannot be sent to arbitrary values. There is then the possibility
that the corrections due to the heavy fields (of mass M) destabilize the
low energy theory. As we will see in the next subsection, this is indeed
a possibility when we are working with fundamental scalars.

In some theories, we may infer some upper bound on the physical
cut-off Λ (which we identify from now on with the scale of new physics
M) from the value of the low-energy parameters. We will discuss briefly
two standard methods used (unitarity and triviality) and illustrate them
on the example of a complex scalar field.

More precisely, we consider, as in the Standard Model, a complex
scalar field φ with Lagrangian

L = ∂µφ†∂µφ − V
(
φ†φ
)

V
(
φ†φ
)

= −m2φ†φ +
λ

2

(
φ†φ
)2

(II-1.1)

The minimization of this potential gives the background value < φ†φ >=
v2 with

v2 ≡ m2/λ (II-1.2)

We thus parametrize φ as:

φ =
(

ϕ+

v + h + iϕ0

)
(II-1.3)

The fields ϕ+ and ϕ0 are massless fields (Goldstone bosons: see Section
III) whereas the mass of the h field is

m2
h = 2m2 = 2λv2 (II-1.4)

This scalar field may have extra couplings to gauge fields or the top
quark for example.

Unitarity[1, 2]

Unitarity of the S-matrix, which is a consequence of the conservation
of probabilities at the quantum level, imposes some constraints on scat-
tering cross sections, especially on their high-energy behavior. This is
usually expressed in terms of partial-wave expansion: if M(s, θ) is the
amplitude for a 2 → 2 scattering process with center of mass energy

√
s

and diffusion angle θ, one defines the J-th partial wave as:

aJ(s) =
1

32π

∫
d cos θ PJ(cos θ)M(s, θ) (II-1.5)
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where PJ is the J-th Legendre polynomial. The constraint coming from
unitarity reads Im aJ ≥ |aJ |2 = (Re aJ)2 + (Im aJ)2, from which we
obtain (Re aJ)2 ≤ Im aJ (1 − Im aJ) Since the right-hand side of this
equation is bounded by 1/4, it implies

|Re aJ | ≤
1
2

(II-1.6)

Such limits were considered in the context of the Fermi model of weak
interactions to introduce an intermediate vector boson. They may also
be applied to the physics of the Standard Model. For example, the
J = 0 tree level amplitude for W+

L W−
L → ZLZL (W±

L , ZL are the
longitudinal components of W± and Z; using the equivalence theorem
[1, 3], they can be identified respectively with ϕ± and ϕ0) simply reads
a0(s) = −GF

√
2m2

h/(16π), in the limit s � m2
h. The unitarity constraint

(II-1.6) thus gives a constraint on the Higgs mass. It turns out that the
most stringent constraint comes from the mixed zero-isospin channel
2W+

L W−
L + ZLZL and reads, in terms of the electroweak breaking scale

v =
(
GF

√
2
)−1/2

,

mh <

√
16π

5
v = 780 GeV (II-1.7)

Triviality[4, 5]

In the renormalization group approach, the scalar self-coupling λ is
turned into a running coupling λ(µ) varying with the momentum scale µ
characteristic of the process considered. The study of one-loop radiative
corrections allows to compute to lowest order (in λ) the evolution of λ(µ)
with the scale µ, i.e. its so-called beta function:

µ
dλ

dµ
=

3
2π2

λ2 + · · · (II-1.8)

where we give here only the dominant one-loop contribution.
We see that the coupling λ(µ) is monotonically increasing. If we want

that the theory described by the Lagrangian (II-1.1) makes sense all the
way up to the scale Λ, we must impose that λ(µ) < ∞ for scales µ < Λ.
If Λ is known, this imposes some bound on the value of λ at low energy,
say λ(v). For example, if we send Λ to infinity, this imposes λ(v) = 0.
This is why a theory described by an action (II-1.1) which would be valid
at all energy scales is known as trivial, i.e. is a free field theory in the
infrared (low energy) regime. In practice, this only means that at some
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Figure 2. The scalar one-loop diagram giving rise to a quadratic divergence

scale Λ smaller than the scale Λ
Landau

where the coupling would explode
(known as the Landau pole, see below), some new physics appears.

The exact value of the Landau pole requires a non-perturbative com-
putation since the running coupling explodes at this scale. Complete
calculations show that it is not unreasonable to use the one-loop result
(II-1.8) to obtain an order of magnitude for the Landau pole. Thus,
solving for λ the differential equation (II-1.8),

λ−1(µ) = λ−1 − 3
2π2

ln
µ

v
(II-1.9)

where λ ≡ λ(v), one obtains, using λ−1(Λ
Landau

) = 0

Λ
Landau

∼ v e2π2/(3λ) (II-1.10)

This is used to put an upper bound, a triviality bound, on the scale of
new physics: Λ < Λ

Landau
. Since λ can be expressed in terms of mh itself

through (II-1.4), one may alternatively say that, for a given value of Λ,
the Higgs mass is bounded by

m2
h <

4π2v2

3 ln(Λ/v)
(II-1.11)

a decreasing function of Λ.

II-2 The concept of naturalness
The presence of fundamental scalar fields leads to the well-known

problem [6–8] of quadratic divergences as soon as one introduces a finite
cut-off Λ in the theory. Indeed a diagram of the type given in Fig. 2
generically contributes to the scalar mass-squared m2

δm2 = λ

∫ Λ d4k

(2π)4
1
k2

∼ λ

16π2

∫ Λ

dk2,
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which is of order λΛ2/16π2, .
Denoting by m0 the bare mass (which, in this context, is the mass of

the scalar field in the absence of underlying physics), we obtain at the
one-loop level a scalar mass-squared

m2 = m2
0 + αλ

Λ2

16π2

where α is a positive or negative number of order one. Taking Λ as a
fundamental mass unit,

m2
0

Λ2
=

m2

Λ2
− α

λ

16π2
(II-2.12)

Plugging typical numbers, say m ∼ 100 GeV and Λ ∼ MP ∼ 1019

GeV, we see that m2
0/Λ2 must be adjusted to more than 30 orders of

magnitude. This is to most people an intolerable fine tuning.
Let us be more precise in the case of the Standard Model. Then, the

Higgs mass receives the following one-loop corrections:

δm2
h =

3Λ2

8π2v2

[(
4m2

t − 2M2
W

− 4M2
Z
− m2

h

)
+ O

(
log

Λ
µ

)]
(II-2.13)

where we recognize the contribution of the diagram of Fig. 2, propor-
tional to m2

h, as well as the contribution of the top quark loop, propor-
tional to m2

t . The latter is leading in the case of a light Higgs. One may
also note that the one-loop quadratically divergent contribution vanishes
if we have the following relation between the masses:

4m2
t = 2M2

W
+ 4M2

Z
+ m2

h (II-2.14)

This relation, known as the Veltman condition [9], is obviously not en-
sured to hold at higher orders.

One may define the amount f of fine tuning discussed above by

δm2
h

m2
h

≡ 1
f

(II-2.15)

Indeed, if δm2
h = 100m2

h, then one needs to fine tune the Higgs bare
mass m2

0 to the per cent level in order to recover the right physical
Higgs mass m2

h. This amount of fine-tuning is represented on a plot
(mh,Λ) [10] in Fig. 3 for values of Λ smaller than 100 TeV. The region
forbidden by the triviality bound discussed in the preceding subsection
is also presented. One may note that, in the region corresponding to
the Veltman condition (II-2.14), there is less need for fine tuning: this
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region does not extend however to very large values of Λ because of the
higher order contributions.

In any case, it is clear that fine tunings more severe than the per cent
level are necessary as soon as the scale of new physics Λ is larger than
100 TeV.
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Figure 3. Plot in the mh – Λ plane showing the triviality (dark region at top) and
stability (dark region at bottom) constraints, as well as the tuning contours. The
darkly hatched region marked “1%” represents tunings of greater than 1 part in 100;
the “10%” region means greater than 1 part in 10. The empty region has less than 1
part in 10 finetuning. [10]

Such a fine tuning goes against the prejudice that the observable prop-
erties of a theory (masses, charges,...) are stable under small variations
of the fundamental parameters (the bare parameters). One talks of the
naturalness of a theory to describe such a behaviour [11].

This does not mean that there cannot be small parameters in a natural
theory. A parameter is naturally small if setting it to zero enhances the
symmetries of the theory. Indeed, in such a case, the symmetry controls
the quantum corrections to the parameter. The best known example is
the mass me of the electron in quantum electrodynamics: in the limit
me → 0, the symmetry of the system is enhanced to include chiral
symmetry, i.e. invariance under ψe → eiαγ5ψe where ψe is the Dirac
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spinor describing the electron. The presence of this symmetry imposes
that the corrections to the electron mass are themselves proportional to
me.

In the case of a complex scalar field with self-coupling λ the fun-
damental high-energy scale of the theory is given by its Landau pole
ΛLandau (II-1.10). But m2/Λ is not naturally small because m2 = 0 does
not correspond to any symmetry enhancement at the quantum level (see
[11] for a more precise statement).

II-3 Supersymmetry as a solution to the
problem of naturalness

We have seen that:

i) setting the mass of a scalar field to zero does not enhance the sym-
metry.

ii) setting the mass of a fermion field to zero enhances the symmetry
(chiral symmetry).

The idea is therefore to relate under a new symmetry a scalar field
with a fermion field. This symmetry – supersymmetry – must be such
that the masses of the scalar and of the fermion fields be equal. It is
therefore related, in some sense to be defined, to the invariance under
the Poincaré group since it connects representations of different spin. In
such a scheme, the relation ms/Λ  1 is natural because mf/Λ  1 is
natural and because the scalar mass ms is related to the fermion mass
mf .

Technically, the contribution of fermions cancels the contribution of
bosons to the quadratic divergence. We will check this result explicitly,
on a model known as the Wess-Zumino model. This model might seem
at first rather contrived. You will see the beauty of it in the lectures by
D. Kazakov. For the time being, it will be an opportunity to familiarize
ourselves with some typical supersymmetric interactions.

The model contains:

a complex scalar field (2 degrees of freedom) : φ = (A + iB)/
√

2,

a fermion field described by a Majorana spinor ψ (two degrees of
freedom) : ψC = Cψ̄T = ψ.
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The Lagrangian decomposes into

i) a kinetic term

Lkin = ∂µφ∗∂µφ+
i

2
ψ̄/∂ψ =

1
2

∂µA∂µA+
1
2

∂µB∂µB +
i

2
ψ̄/∂ψ (II-3.16)

ii) an interaction term which is expressed in terms of a single function
W (φ) known as the superpotential

LW = −
∣∣∣∣dW

dφ

∣∣∣∣2 − 1
2

(
d2W

dφ2
ψ̄RψL +

d2W ∗

dφ∗2 ψ̄LψR

)
(II-3.17)

Explicitly we will take

W (φ) =
1
2
mφ2 +

1
3
λφ3 (II-3.18)

LW = − |mφ + λφ2|2︸ ︷︷ ︸−1
2
[
m
(
ψ̄RψL + ψ̄LψR

)
...

V (φ)
... +2λ

(
φ ψ̄RψL + φ∗ ψ̄LψR

)]
= −1

2
m2
(
A2 + B2

)
− mλ√

2
A
(
A2 + B2

)
− λ2

4
(
A2 + B2

)2
−1

2
m ψ̄ψ − λ√

2
ψ̄ (A − iB γ5) ψ (II-3.19)

We see that the form (II-3.17) ensures that scalar bosons (A, B) and
spinor fermions (ψ) have the same mass (m).

The self-energy diagrams for the scalar field A which contribute at
one loop to the quadratic divergence are given in Fig. 4.

Exercise: Show that the quadratic divergences cancel among the 3
diagrams of Figure 4 (assume that the integrals are properly regular-
ized and thus that there exists a regularization procedure that respects
supersymmetry).

One may show that the cancellation is even larger and that loga-
rithmic divergences are only present in wave function renormalisation.
There are no mass counterterms and, more generally, the parameters of
the superpotential are not renormalized (no finite nor infinite quantum
corrections). This is an example of the famous non-renormalisation the-
orems that have made the success of supersymmetry.
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Figure 4. Quadratically divergent self-energy diagrams for the A scalar field

III. Spontaneous breaking of symmetry
We discuss in this section the appearance of Goldstone bosons in the

case of the spontaneous breaking of a global continuous symmetry. In
presence of small explicit breaking terms, this leads to naturally light
scalars, the pseudo-Goldstone bosons (PGB). We review the scenario of
the little Higgs where the Higgs is such a PGB.

III-1 Example of a global symmetry
We start with the simplest example of a global abelian internal sym-

metry and consider a complex scalar field φ(x) with a Lagrangian density

L = ∂µφ†∂µφ − V (φ†φ) (III-1.20)

This has a global phase invariance φ(x) → φ′(x) = e−iθφ(x). We take,
as in the last Section, the standard Mexican hat potential of Figure 5

V (φ†φ) = −m2 φ†φ +
λ

2
(φ†φ)2 (III-1.21)

where λ > 0 to avoid instability at large values of the field.
The ground state corresponds to a non-vanishing value for the scalar

field: φ†
0φ0 = m2/λ. The equation of motion reads

(�� − m2)φ = j(φ) (III-1.22)

where j(φ) ≡ −λφ(φ†φ) describes the self-interaction of the field φ. In
the limit of vanishing self-interaction (j → 0), the equation is not the
standard Klein-Gordon equation because of the sign in front of m2 and
we thus do not know how to quantize the theory. Writing −m2 = (im)2,
we may identify the origin of this sign as the instability of the system
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for small values of the field, i.e. around φ = 0 (see Figure 5). In other
words, we should evaluate the scalar field φ around one of its stable
values defined by φ†

0φ0 = m2/λ.

Im

φ
Re

φ

φ

φV(  )

0

Figure 5.

We note that the potential has a rotation symmetry corresponding to
φ → e−iθφ. On the other hand, the ground state of the system (which
corresponds to the choice of one point on the set of degenerate minima)
necessarily breaks this symmetry. We are in a situation of spontaneous
symmetry breaking:

the Lagrangian (the Hamiltonian) is invariant under the symmetry

the ground state (the vacuum) is not left invariant by the symme-
try.

Now, following our remark above, let us express the scalar field around
its ground value, say eiθ0

√
m2/λ: we write

φ(x) = ei(γ(x)+θ0)

[
ρ(x) +

√
m2

λ

]
(III-1.23)

Then

V (φ†φ) = V ([ρ +
√

m2/λ]2) = −m4

2λ
+ 2m2ρ2 + 2ρ3

√
λm2 +

λ

2
ρ4

(III-1.24)
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We conclude that the field ρ has mass squared 2m2 (note the normal-
ization of the kinetic term ∂µρ∂µρ) whereas γ is massless. This is a
reflection of the spontaneous breaking of the symmetry. Indeed, it is a
general theorem due to Goldstone [12] that to every continuous global
symmetry spontaneously broken, there corresponds a massless particle.
In the case of internal symmetries such as considered here, it is a boson
called Goldstone boson.

Let us stress one important property of a Goldstone boson. If we
write the global phase transformation φ(x) → φ′(x) = e−iθφ(x) in the
parametrization (III-1.23), we obtain

ρ′(x) = ρ(x) , γ′(x) = γ(x) − θ (III-1.25)

The Goldstone transformation is nonlinear and is characterized by a
constant term 1. This is why a Goldstone boson associated with an
internal symmetry only has derivative interactions.

III-2 Goldstone theorem
We now consider the general case of a group G of continuous global

transformations. The scalar fields are taken to be real and transform
under G as:

φ′(x) = e−iαata φ(x) (III-2.26)

where the ta are the generators of the group, in a n-dimensional repre-
sentation2. Infinitesimally

φ′
m(x) = φm(x) − iαatamnφn(x) (III-2.27)

where m = 1, · · · , n.
Since the potential V (φ) is invariant, we have

∂V

∂φm
αa tamn φn = 0 (III-2.28)

from which we obtain, by differentiating with respect to φ�,

∂2V

∂φm∂φ�
αa tamn φn +

∂V

∂φm
αa tam� = 0 (III-2.29)

At the minimum φ0 of the potential, we thus have

M2
�m αa tamn φ0n = 0 (III-2.30)

1When the symmetry is local (θ(x)), this allows to gauge away the corresponding degree of
freedom.
2The ta are taken to be Hermitian, ta

†
= ta. Since φ is real, (ita)∗ = ita. Hence ta∗ = −ta

and taT = −ta: the generators are antisymmetric.
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where

M2
�m =

∂2V

∂φ�∂φm

∣∣∣∣
φ0

(III-2.31)

is the scalar squared mass matrix. In the case of spontaneous breaking,
the vacuum φ0 is not invariant and thus αatamnφ0n is a non-zero eigenvec-
tor of the squared mass matrix with vanishing eigenvalue: it corresponds
to a Goldstone boson.

It is possible to separate the generators ta (a = 1 · · ·dim G) into:
• generators ti which leave the vacuum invariant: tiφ0 = 0. These

generators correspond to the residual symmetry of gauge group H and
i = 1 · · ·dim H.

• generators θα which do not leave the vacuum invariant: θαφ0 �= 0
(α = 1, · · · , dim G − dim H).

Goldstone bosons are a mixed blessing: as massless particles they
mediate infinite range forces. Since there are no known long range forces
besides gravity and electromagnetism this would mean that a Goldstone
boson has to be extremely weakly coupled to ordinary matter.

Otherwise there are two ways out. If the symmetry is local, the Gold-
stone boson does not appear in the physical spectrum. It provides in-
stead the longitudinal degree of freedom to the gauge boson which be-
comes massive through the Higgs mechanism. Otherwise, a small term
explicitly breaking the symmetry generates a mass for the Goldstone
boson, which becomes what is called a pseudo-Goldstone boson.

III-3 An example of Goldstone boson: the
dilaton field

We illustrate the notion of Goldstone boson on the example of a space-
time symmetry3 which will play a special role in the discussion of the
cosmological constant problem: dilatation or scale invariance.

Scale invariance (and its violations as described by the renormalisation
group approach) plays an important role in some of the applications that
follow. Scale invariance is not observed in our universe. It could be that
this global symmetry is spontaneously broken, in which case we expect
a Goldstone boson. This is the dilaton field.

A dilatation or scaling transformation is a spacetime transformation
of the form

x → x′ = e−αx (III-3.32)

3Beware, so far our discussion of spontaneous breaking has only considered internal symme-
tries, i.e. symmetries that leave spacetime invariant.
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It acts linearly on the fields:

Φ(x) → Φ′(x′) = eαdΦ(x) (III-3.33)

which we may write by keeping spacetime fixed

Φ(x) → Φ′(x) = eαdΦ(eαx) (III-3.34)

The number d is characteristic of the field Φ and is called its scaling
dimension. Infinitesimally,

δΦ(x) = α (d + xµ∂µ) Φ(x) (III-3.35)

At the classical level, the scaling dimension coincides with the canonical
dimension: d = 1 for the scalar fields, 3/2 for spin 1

2 or 3
2 fermions.

We may consider as an example the following action involving a scalar
field φ(x) and a Dirac spinor field Ψ(x):

S = S0 + S1 =
∫

d4xL0(x) +
∫

d4xL1(x) (III-3.36)

L0 =
1
2
∂µφ∂µφ +

i

2
Ψ̄γµ∂µΨ − λY φΨ̄Ψ − λ0

4!
φ4, (III-3.37)

L1 = −1
2
m2

0φ
2. (III-3.38)

Under the dilatation transformation (III-3.35), we have
δL0 = α (4 + xµ∂µ)L0 and thus, by integration by parts,

δS0 = α

∫
d4x∂µ (xµL0) (III-3.39)

Thus S0 is invariant by dilatation. But not S1 and

δS = α

∫
d4x ∆ with ∆ = m2

0φ
2 (III-3.40)

It follows that the dilatation current, or scaling current, Dµ is not con-
served.

Using standard Noether formulas, one obtains from (III-3.32) and
(III-3.33) the general explicit form for the dilatation current

Dµ = xρTρµ +
δL

δ (∂µΦ(x))
dΦ(x) (III-3.41)

where Tµν is the canonical energy-momentum tensor: 4

Tµν =
δL

δ (∂µΦ(x))
∂νΦ − gµνL (III-3.42)

4Under some conditions, it is actually possible to define [13] (without affecting the construc-
tion of the Lorentz generators Pµ and Mµν) a symmetric energy-momentum tensor Θµν such
that Dµ = xρΘρµ
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It is possible to modify the Lagrangian in order to break dilatation
symmetry spontaneously rather than explicitly, as with a mass term.
One must make the Lagrangian invariant: only the fundamental state
breaks the invariance. According to the Goldstone theorem, a massless
boson appears in the spectrum. This Goldstone boson associated with
dilatations is called dilaton. We denote it by σ(x).

In order to construct an invariant Lagrangian describing the inter-
actions of the dilaton with other fields, one may use a method which
is inspired from the construction of chiral Lagrangians describing the
pion interactions (the pion is the Goldstone boson associated with chiral
symmetry breaking).

We consider a scalar field Φ(x) which we write:

Φ(x) = f eσ(x)/f (III-3.43)

The field σ(x) corresponds to fluctuations of Φ(x) around its vacuum
value f , which determines the scale of spontaneous breaking of dilatation
symmetry. Since under dilatations, the scalar field Φ(x) transforms as
(III-3.34), the field σ(x) transforms as:

σ(x) → σ′(x) = σ (eαx) + αf (III-3.44)

or infinitesimally
δσ(x) = α (f + xµ∂µσ) (III-3.45)

We note that the symmetry is realized non-linearly: as we have seen in
subsection III-1, the constant term is a sign that σ(x) is a Goldstone
boson.

One may use factors eσ(x)/f to make dilatation-breaking terms invari-
ant. Thus m2

0φ
2 is replaced by m2

0φ
2e2σ/f since δ

(
φ2e2σ/f

)
=

(4 + xµ∂µ)
(
φ2e2σ/f

)
. One also introduces a kinetic term for σ(x):

L(σ)
kin =

1
2
∂µΦ∂µΦ =

1
2
e2σ/f∂µσ∂µσ (III-3.46)

Then the action corresponding to the Lagrangian

L = L0 +
1
2
e2σ/f∂µσ∂µσ − 1

2
m2

0φ
2e2σ/f (III-3.47)

with L0, given in (III-3.36), is dilatation invariant. Under these condi-
tions, the dilatation current is conserved:

∂µDµ = 0 (III-3.48)

Note that the couplings to standard matter are of order 1/f . Since the
massless dilaton exchange should not generate an observable long range
force, f has to be very large.
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III-4 The Higgs as a pseudo-Goldstone boson:
the little Higgs scenario

Could the Higgs be a Goldstone boson of an internal symmetry?
Problems immediately arise because of the vanishing mass and the non-
derivative couplings which are the trademark of a Goldstone boson. The
solution is to use explicit collective breaking :

• explicit breaking

L = L0 + ε L1 (III-4.49)

where the breaking term ε is much smaller than 1. As we have seen
earlier, we expect a pseudo-Goldstone. Typically, if its mass appears at
one loop, we have

δm2 ∼ ε2

16π2
Λ2 (III-4.50)

For Λ ∼ 10 TeV, ε must be small.
We also expect non-derivative couplings of order ε or ε2. But the

couplings of the Higgs are of order 1, e.g. λtop.
• collective breaking

L = L0 + ε1 L1 + ε2 L2 (III-4.51)

One considers the following situation. In the limit ε1 → 0, L0 + ε2 L2

has a global symmetry which keeps the Higgs massless. Similarly, in the
limit ε2 → 0, L0 + ε1 L1 has a global symmetry which keeps the Higgs
massless. One thus expects

δm2 ∼ ε21
16π2

ε22
16π2

Λ2 (III-4.52)

but non-derivative couplings of order ε1 or ε2.
How to compensate the quadratic divergences? In the model that we

will describe below, the top loop quadratic divergence is cancelled by
the fermion loops given in the second row of Figure 6.

The new colored fermions χL and χR have the following couplings to
the Higgs:

λtf

(
1 − h∗h

2f2

)
χ̄RχL + h.c. (III-4.53)

Hence it is necessary to introduce new particles at a mass scale f of the
order of a TeV. Similarly to cancel gauge and Higgs loops (see Figure
7).

Hence we have three mass scales in the theory:
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• v = 250 GeV where we have the scalar degrees of freedom of the
Standard Model

• f ∼ 1 TeV where there are new colored fermions related to the top
quark, new gauge bosons and new scalars

• Λ ∼ 10 TeV where the effective theory should be replaced by an
underlying fundamental theory still to be determined.
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In the little Higgs model of Arkani-Hamed, Cohen, Katz and Nelson
[14], a global SU(5)global symmetry of dimension 24 is broken into a
global SO(5)global of dimension 10. This leaves us with 14 Goldstone
bosons.

For example, a symmetric tensor field Σij = Σji, i, j = 1 · · · 5 trans-
forms under SU(5) as Σ → UΣUT , where U is a matrix of SU(5). If
this field has a vacuum expectation value,

〈Σ〉 = fδij (III-4.54)

the residual symmetry is given by matrices U such that UUT = 1 i.e.
orthogonal matrices.

One may parametrize the Goldstone bosons as (similar to (III-1.23))

Σ(x) = eiΠa(x)T a〈Σ〉e−iΠa(x)T a
(III-4.55)

The local gauge symmetry consists of two copies of SU(2)×U(1) (see
the lecture on deconstruction by S. Pokorski for motivations)
(SU(2)1 × U(1)1 × SU(2)2 × U(1)2)local broken into (SU(2) × U(1))local
(the symmetry of the Standard Model!). Four Goldstone bosons are
eaten up in the process. The Higgs H is found among the 10 remaining
Goldstone bosons:

ΠaT a ≡

⎛⎝ 0 H† Φ†

H 0 H∗

Φ HT 0

⎞⎠ (III-4.56)

If one shuts off the gauge interactions of SU(2)2×U(1)2, a global SU(3)2
protects the Higgs from getting a mass. Hence the gauge couplings g1, g

′
1

(of SU(2)1 and U(1)1), g2, g
′
2 (of SU(2)2 and U(1)2) play the roles of

the small parameters ε1, ε2 in collective breaking.
Figures 8 and 9 give some constraints on the parameters of the theory:

c = g/g2 and c′ = g′/g′2, with g (resp. g′) coupling of SU(2) (resp. U(1))
[15].

IV. Supersymmetry and moduli fields
In this Section, we explain the concept of modulus field in the frame-

work of supersymmetric theories and we present the most common mod-
uli fields encountered in the context of higher-dimensional field theories
and in string theory.



200 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

0.1 0.3 0.5 0.7 0.9 
c’

  0 

  2 

  4 

  6 

  8 

 10 

 12 

 14 

 16 

lo
w

er
 b

ou
nd

 o
n 

f  
[T

eV
] 

Figure 8. Lower bound on f in TeV versus c′ = g′/g′
2 [15].
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Figure 9. Limits in the (c, c′) plane respectively for Y1 = 3Y/5, Y1 = 4Y/5 and
Y1 = Y , and f < 2 TeV (red), f < 23 TeV (orange), f < 4 TeV (green), f < 5 TeV
(blue) [15].

IV-1 Spontaneous supersymmetry breaking, flat
directions and moduli

We first complete our basic knowledge of supersymmetry. The La-
grangian of the Wess and Zumino model presented in subsection III-1
may be written as

L = ∂µφ∗∂µφ +
1
2
Ψiγµ∂µΨ

−1
2

[
d2W

dφ2
ΨRΨL +

d2W ∗

dφ∗2 ΨLΨR

]
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+
[
F ∗F + F

dW

dφ
+ F ∗dW

dφ∗

]
(IV-1.57)

Indeed, solving for the auxiliary field F yields

F = −dW

dφ∗ (IV-1.58)

and the standard potential

V =
∣∣∣∣dW

dφ

∣∣∣∣2 = F ∗F (IV-1.59)

The introduction of the auxiliary field F = (F1(x) + iF2(x))/
√

2 sim-
plifies the discussion of spontaneous supersymmetry breaking. Indeed,
the Lagrangian (IV-1.56) is invariant under the infinitesimal supersym-
metry transformations:

δSA = ε̄Ψ , δSB = iε̄γ5Ψ
δSΨ = [−iγµ∂µ (A + iBγ5) + F1 − iF2γ5] ε ,

δSF1 = −iε̄γµ∂µΨ , δSF2 = −ε̄γ5γ
µ∂µΨ (IV-1.60)

where ε is the spinor (supersymmetry transforms a scalar into a spinor)
parameter of the supersymmetry transformation.

If, in the ground state, the auxiliary field takes a non-zero value, for
example < F1 >�= 0, then

δΨ =< F1 > ε + · · · (IV-1.61)

This constant term is typical of a Goldstone particle (cf. (III-1.25)).
Indeed, in this case, it is an indication that supersymmetry is sponta-
neously broken: the Goldstone field is the spinor Ψ(the spinor nature of
the Goldstone field is related to the spinor nature of the parameter of
the transformation); one often refers to it as the goldstino.

We then conclude from (IV-1.59) that supersymmetry is spontaneously
broken if (and only if) the vacuum energy is non-vanishing. The result
is very general in global supersymmetry and can be derived from the
supersymmetry algebra5.

All this can easily be extended to n such supermultiplets with scalar
components (φi, ψi, i = 1 · · ·n) and a superpotential W (φi), analytic in
the fields φi. The potential reads:

V (φi) =
∑

i

∣∣∣∣∂W

∂φi

∣∣∣∣2 =
∑

i

|Fi|2 (IV-1.62)

5See D. Kazakov lectures.
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We are now ready to present the notions of flat directions of the scalar
potential and associated modulus field. Let us take as an example

W (χ, φ) =
1
2
µχφ2 +

1
3
λφ3 (IV-1.63)

The scalar potential reads

V (χ, φ) =
1
4
|µ|2|φ|4 + |φ|2|µχ + λφ|2 (IV-1.64)

and the ground state lies at 〈φ〉 = 0, whereas the value of χ remains
undetermined. This is an example of a flat direction of the scalar po-
tential, i.e. a direction in field space, extending to infinite values, and
along which V = 0.

Flat directions are frequent in supersymmetric theories and they play
a specific role. Indeed, the non-renormalization theorems alluded to
at the end of Section II-3 allow to prove that flat directions remain
flat to all orders of perturbation theory (since the parameters of the
potential are not renormalized). Hence the scalar fields corresponding
to these directions remain massless. Such fields are called moduli. Only
non-perturbative effects can lift the degeneracy associated to these flat
directions, and give a smal mass to these moduli fields.

Let us stress an important difference between the Goldstone bosons
discussed in the preceding section and moduli fields. Whereas physical
results do not depend on the actual value of a Goldstone field, they do
depend on the value of moduli. For example, in our example, noticing
that, along the flat direction

〈∂
2W

∂φ2
〉 = µ〈χ〉 〈∂

2W

∂χ2
〉 = 0 〈 ∂2W

∂χ∂φ
〉 = 0 (IV-1.65)

we conclude that the value of the modulus field χ along the flat direction
determines the mass of the φ field (and its fermion partner).

To be complete, we also introduce gauge interactions under the form
of abelian symmetries labelled by a (the corresponding charge of field φi

is qai). The complete scalar potential then takes the form

V =
∑

i

|Fi|2 +
1
2

∑
a

D2
a

=
∑

i

∣∣∣∣∂W

∂φi

∣∣∣∣2 +
1
2

∑
a

(∑
i

qaiφ
∗
i φi − ξa

)2

(IV-1.66)

where ξa is a real parameter called the Fayet-Iliopoulos coupling. The
real field Da is the auxiliary field of the vector supermultiplet describing
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the abelian gauge field Aa
µ and its supersymmetric partner the gaugino

(a Majorana fermion). A non-vanishing Da is also a sign of sponta-
neous supersymmetry breaking (the golstino being then the correspond-
ing gaugino field).

Moduli fields are often encountered in higher-dimensional field the-
ories and in string theories. We will discuss in the next subsections
some of the most commonly used examples of moduli fields. Since the
gravitational couplings of these fields play an important role, we close
this introduction by reviewing the coupling of chiral supermultiplets
Φi = (φi, Ψi, F i) to supergravity (i.e. local supersymmetry)6 . This
coupling is described by three basic functions:

• the superpotential which is an analytic function of the scalar fields
W (φi): it determines the self-interactions of the scalar fields as well as
their Yukawa interactions to fermions.

• the Kähler potential K(φi, φ̄j̄) determines in particular the kinetic
term of scalar fields:

Lkin = gij̄(φi, φ̄j) ∂µφi∂µφ̄j̄ (IV-1.67)

where the so-called Kähler metric gij̄(φiφ̄j) is defined as

gij̄ =
∂2K

∂φi∂φ̄j̄
(IV-1.68)

This is interpreted in a geometric way: the scalar fields φi, φ̄j̄ parame-
trize a complex manifold and the Kähler metric is the metric on this
manifold. One speaks of a flat Kähler metric if gij̄ = δij . If the metric
is non-flat, the non-normalized kinetic term is obviously not renormal-
izable. Non-renormalizable interaction terms are also generated besides
the kinetic term, for example a 4-fermion interaction: they are propor-
tional to derivatives of the Kähler metric.

• a kinetic function f(φi) for the gauge fields which determines the
gauge field kinetic term:

Lkin = −1
4
Refab(φi) F aµνF b

µν − 1
4
Imfab(φi) F aµνF̃ b

µν (IV-1.69)

The scalar potential then reads7

V = eK/m2
P

[
DiWgij̄Dj̄W̄ − 3

|W |2
m2

P

]
+

g2

2
Ref−1

ab DaDb (IV-1.70)

6Their complex conjugates are written Φ̄ı̄ = (φ̄ı̄, Ψ̄ı̄, F̄ ı̄).
7mP is the reduced Planck mass scale defined from Newton’s constant GN : mP =√

�c/(8πGN ) = 2.4 × 1018 GeV/c2
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where

DiW =
∂W

∂φi
+

1
m2

P

∂K

∂φi
W (IV-1.71)

and

Da =
∂K

∂φi
(ta)i

jφ
j (IV-1.72)

The inclusion of a Fayet-Iliopoulos term, in the case of a U(1) symmetry,
requires special care in supergravity [16].

IV-2 Moduli fields from the compactification of
higher-dimensional theories

We start our discussion of moduli fields with theories with more than 3
spatial dimensions. Our illustrative example will be the historical model
of Kaluza and Klein [17, 18] which dates back to the 20’s.

T. Kaluza and O. Klein [17, 18] proposed to unify geometrically elec-
tromagnetism with gravitation by introducing the electromagnetic field
as a component of the metric of a 5-dimensional spacetime. To be
slightly more general, let us consider a theory of gravity in (D ≡ d + 1)-
dimensional spacetime, described by the coordinates xM , M = 0, · · · , d.
The metric is gMN and the signature (+ −−− ...).

We single out the spatial coordinate xd ≡ y and assume that the corre-
sponding dimension is compact of size L = 2πR; the other d dimensions
corresponding to xµ, µ = 0, · · · , d − 1 are noncompact. From the point
of view of d dimensions, gµν is a symmetric tensor interpreted as the
metric, gµd is a vector field and gdd a scalar field. Correspondingly, we
may write the D-dimensional metric as the following ansatz matrix:

gMN ≡
(

gµν(x) Aµ(x)
Aν(x) −e2σ(x)

)
(IV-2.73)

where we have restricted the spacetime dependence of the components
to the non-compact dimensions (xµ).

It turns out that part of the reparametrization invariance of the orig-
inal D-dimensional theory may be interpreted as a gauge invariance
associated with the vector field Aµ(x) ∼ gµd. Thus the D-dimensional
gravitational theory provides a geometric unification of d-dimensional
gravity and of an abelian gauge symmetry such as the one present in the
theory of electrodynamics.

As for the component gdd of the metric, it measures distances in the
compact dimension in (higher-dimensional) Planck units. Thus the d-
dimensional field eσ(x), or more precisely its vacuum value, provides a
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measure of the size of the compact dimension8. It is often called a
breathing mode. From this point of view, its x-dependence reflects the
fluctuations of the compact dimension (along y) in directions transverse
to it (measured by xµ). As we will see below, the purely gravitational
D-dimensional action yields a vanishing potential for this scalar field: it
corresponds to a flat direction of the scalar potential. In a supersymmet-
ric set up this real field becomes part of a complex scalar field associated
with this flat direction. Such a complex field is thus a modulus and is
traditionally written as T in 4 dimensions. Of course, compactification
requires the size of the compact dimension to be determined: some ex-
tra dynamics must be included in order to lift the degeneracy associated
with the flat direction and to determine the vacuum expectation value
of the modulus field.

To be more explicit, let us consider the action of gravity in D ≡ d+1
dimensions:

S = − 1
16πG

(D)

∫
dDx

√
|g| R(D) (IV-2.74)

where R(D) is the curvature scalar associated with the D-dimensional
metric. Following (IV-2.73), we write the D-dimensional line element as
(y ≡ xd):

ds2 = gMNdxMdxN = g(d)
µν dxµdxν − e2σ(x) (dy + Aµdxµ)2 (IV-2.75)

Reparametrizations of the form y → y + α(xµ) lead to gauge transfor-
mations for the field Aµ(x): Aµ(x) → Aµ(x) − ∂µα.

With the ansatz (IV-2.75), we have

R(D) = R(d) − 2Dµ (∂µσ) − 2∂µσ∂µσ +
1
4
e2σFµνFµν (IV-2.76)

where R(d) is the curvature scalar built out of the metric g
(d)
µν . Hence,

introducing
1

G
(d)

≡ 1
G

(D)

∫ L

0
dy =

L

G
(D)

(IV-2.77)

we obtain after integrating by parts

Seff = − 1
16πG

(d)

∫
ddx

√
|g(d)| eσ

[
R(d) +

1
4
e2σFµνFµν

]
(IV-2.78)

8To be accurate, in our notations, the radius of the compact dimension is R〈eσ〉. One may
alternatively set R = 1 in Planck units, in which case the metric coefficient fixes the radius;
or normalize 〈eσ〉 to 1: R is then the radius.
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We see that no potential is generated for the breathing mode eσ: it cor-
responds to a flat direction of the scalar potential. 9. The presence of
the modulus flat direction may be traced back to the dilatation symme-
try y → e−λy, Aµ(x) → e−λAµ(x), σ(x) → σ(x) + λ, which leaves the
line element (IV-2.75) invariant.

We may also introduce matter fields in these higher-dimensional space-
times. Since particles may be associated with waves, and extra compact
dimensions with a multi-dimensional box, we expect standing waves in
this higher-dimensional box. These are called Kaluza-Klein modes; they
should be observed in our 4-dimensional world as particles.

Let us illustrate this on the case of a particle of zero spin and mass m0

in D = 5 dimensions (we use the same notations as above with d = 4).
It is described by a scalar field Φ(xM ) with equation of motion:

∂M∂MΦ = ∂µ∂µΦ + ∂y∂yΦ = −m2
0Φ (IV-2.79)

We may decompose Φ(xµ, y) on the basis of plane waves in the compact
dimension eip5y: because of the identification y ≡ y + 2πR, we have
p5 = n/R , n ∈ Z∠. Thus

Φ(xµ, y) =
1

2πR

∑
n∈Z

φn(xµ)einy/R (IV-2.80)

and the equation of motion yields (we set here g55 = 1 for simplicity)

∂µ∂µφn = −
(

m2
0 +

n2

R2

)
φn (IV-2.81)

Thus the 5-dimensional field is seen as a tower of 4-dimensional particles
with a spectrum characteristic of extra dimensions: particles with the
same quantum numbers at regular mass-squared intervals. The spectrum
has a typical mass scale MC which is given by the inverse of the radius
of the compact manifold

MC ∼ R−1 (IV-2.82)

Clearly a multidimensional manifold may have several “radii” and thus
several T moduli associated.

The fact that no sign of extra dimensions has been found experimen-
tally indicates that MC is large. In this context, it is thus important to
determine the effective theory at energies much smaller than MC . Since

9The absence of a kinetic term for the modulus field σ(x) in (IV-2.78) does not mean that it
is non-dynamical: the kinetic term is present in the Einstein frame i.e. in a frame with a stan-

dard Einstein term
√

gR, obtained by a Weyl rescaling of the metric (g
(d)
µν = e2σ/(2−d)gµν).
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all massive fields (m ∼ MC ) decouple, the task is to find out which are
the “massless” fields (m0 = 0 or m0  MC ) which are present at low
energy. In the simple example that we have chosen, a massless (m0 = 0)
scalar field in D dimensions yields one and only one massless scalar field
in 4 dimensions.10 In the presence of several extra dimensions, there
may be several radii and associated moduli fields.

IV-3 String dualities and branes
Theorists have been working for the last 30 years on the idea that

string theory may provide the long awaited quantum theory of gravity.
Much progress has been made since the early days, although one does
not seem to have yet a complete understanding of string theory, of its
concepts and methods.

We recall here that the fundamental objects are, at the string energy
scale MS (or distance scale M−1

S
), one-dimensional objects: open and

closed strings. For the time being, we will center our attention on the
closed string since its oscillations provide gravitationally coupled fields
(including the graviton itself), among which we will find our moduli
fields.

The oscillation modes in one direction along a closed string (say
left-moving) decouple from the modes oscillating in the other direction
(right-moving). If one introduces the creation operators αI

−1 and α̃I
−1

corresponding respectively to the left-moving and right-moving oscilla-
tions, one finds, among the massless modes of the closed string:

hIJ = 1
2

(
αI
−1α̃

J
−1 + αJ

−1α̃
I
−1 − 2

D−2δIJ
∑

K αK
−1α̃

K
−1

)
|0〉, a sym-

metric traceless tensor (spin 2) field interpreted as the graviton
field (I, J = 1, ..., D − 2, D being the spacetime dimension);

bIJ = 1
2

(
αI
−1α̃

J
−1 − αJ

−1α̃
I
−1

)
|0〉, an antisymmetric tensor field;

eφ =
∑

K αK
−1α̃

K
−1|0〉, a scalar field known as the string dilaton,

which, as we will now see, is a modulus field. Its ground state
value determines the string coupling (see (IV-3.85) below).

We recall that quantum consistency requires to consider supersym-
metric string i.e. superstring theories in D = 10 dimensional spacetime.
There are actually five distinct superstring theories in 10 dimensions,
which we identify briefly.

10The higher-dimensional graviton also has Kaluza-Klein modes. The ansatz that we have
chosen for the metric in (IV-2.73) corresponds to neglecting the massive modes – they have
a non-trivial y dependence – and restricting our attention to the zero modes.
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Left-moving fermions may have the same or the opposite chirality as
the right-moving fermions. Depending on this choice, the closed super-
string theory is called a type IIA or type IIB superstring. One may also
consider open strings together with closed strings (for consistency and
in order to obtain a graviton among the massless modes). In this case
only one supersymmetry charge is allowed and the corresponding theory
is refered to as type I. Open strings may carry gauge charges at their
ends, which allows them to describe gauge theories. Finally, since left-
movers and right-movers may be quantized independently, it has been
realized that one can describe simultaneously the right-movers by a su-
perstring theory (and thus obtain N = 1 spacetime supersymmetry) in
10 dimensions and the left-movers by a standard bosonic string theory
in 26 dimensions. Spacetime obviously has only the standard 10 dimen-
sions. The extra 16 compact dimensions found in the right-movers are
considered as internal and provide gauge degrees of freedom (limited to
SO(32) or E8 × E8 by the cancellation of quantum anomalies). This
gives the heterotic string theory, which has provided the first candidates
for a theory of all fundamental interactions.

If, for the sake of illustration, we write the 10-dimensional effective
supergravity action of the weakly coupled heterotic string, we find that
it includes the following terms:

S = −
∫

d10x

(2π)7
√

|g|e−2φ

[
M8

S

(
R(10) + 4∂µφ∂µφ

)
+ M6

S

1
4
TrF 2 + · · ·

]
(IV-3.83)

We note the presence of the dilaton field eφ with a vanishing potential
(hence a flat direction): it is a modulus field.

Once one compactifies on a 6-dimensional manifold of volume R6, one
obtains

S = −
∫

d4x

(2π)7
√
|g|
(

M8
S
R6e−2φR(4) + M6

S
R6e−2φ 1

4
TrF 2 + · · ·

)
,

= −
∫

d4x
√
|g|
(

1
2
m2

P
R(4) +

1
16παU

TrF 2 + · · ·
)

(IV-3.84)

from which we read the 4-dimensional Planck scale as well as the value
of the gauge coupling αU at the string scale. Introducing the string the
compactification scale MC ≡ R−1, we obtain an expression for the string
scale and the string coupling λS :

M2
S

= 2παU m2
P

, λS ≡ 〈eφ〉 =
α2

U

2π3/2

m3
P

M3
C

(IV-3.85)

This shows that the string scale is of the order of the Planck scale (taking
for αU the value at unification: 1/24). Moreover, if the compact manifold
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is isotropic, MC represents, to a first approximation, the scale where
the theory becomes truly unified and is thus interpreted as the gauge
coupling unification scale MU . It is clear in this context that (IV-3.85)
implies a large string scale MS . One obtains different relations for the
other string theories which allow lower string scales.

Our discussion of mass scales shows the pre-eminent role played by
fundamental scalar fields in string theory: the dilaton fixes the string
coupling, other moduli fields determine the radius (and shape) of the
compact manifold (as we have seen in the preceding subsection). Ob-
viously the low energy physics depends on the value of these moduli
fields.

Before we explain why dilaton and radii correspond to flat directions,
we have to show how these real scalar fields fit into supersymmetric mul-
tiplets. The antisymmetric tensor bIJ which is present among the mass-
less modes of the closed string plays a crucial role to provide the missing
bosonic degrees of freedom (remember for example that the scalar com-
ponent of a chiral supermultiplet is complex).

For example, to form the complex modulus field T , the radius-squared
R2 of the compact manifold is paired up with an imaginary part which is
related to the antisymmetric tensor field bkl (with k and l 6-dimensional
compact indices; hence the corresponding components are 4-dimensional
scalars). Similar interpretations apply to the other radii moduli, known
as Kähler moduli. The gauge invariance of the antisymmetric tensor
(δbIJ = ∂IΛJ − ∂JΛI) induces a Peccei-Quinn symmetry for Im T (Im
T → Im T+ constant) which has only derivative couplings, just like the
axion. Hence the superpotential cannot depend on Im T , and being
analytic in the fields, cannot depend on T as a whole [19].

Through supersymmetry, the string dilaton φ is related to the anti-
symmetric tensor bµν (this time with 4-dimensional indices). Together
with a Majorana fermion, the dilatino, they form what is known as a
linear supermultiplet L, which is real. The superpotential, being an-
alytic in the fields, cannot depend on L. This is related again to the
gauge invariance associated with the antisymmetric tensor. This in turn
ensures that the superpotential cannot depend on φ.

The latter result may be interpreted from the point of view of standard
nonrenormalisation theorems [20, 21]. Indeed, since eφ is the string
coupling, it ensures that the superpotential is not renormalized, to all
orders of string perturbation theory.
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Before we proceed, let us be more explicit on the way the string dilaton
and the T modulus appear in 4 dimensions 11. We work here in the string
frame and the corresponding fundamental mass scale is the the string
scale MS . In order to introduce the degree of freedom associated with
the overall size of the compact manifold, we introduce the “breathing
mode” eσ through the compact space part of the metric:

gkl(x, y) = e2σ(x)g
(0)
kl (y) , k, l = 4, · · · , 9,

∫
d6y
√

|g(0)| = M−6
S

(IV-3.86)
Thus the volumeof the 6-dimensional compactmanifold is R6=

∫
d6y
√

|g|=
M−6

S
〈e6σ〉. Thus 〈e2σ〉 measures R2 in string units.

If we consider specifically the weakly coupled heterotic string, then
the terms in IV-3.83 give, after compactification,

S =
∫

d4x
√
|g(4)| 1

(2π)7
e−2φ+6σ...

...
[
M2

S

(
−R(4) + 12Dµ∂µσ + 42∂µσ∂µσ − 4∂µσ∂µφ

)
...

... − 1
4
TrFµνFµν

]
(IV-3.87)

In terms of the real fields

s =
1

(2π)7
e−2φ+6σ , t =

1
(2π)7

e2σ (IV-3.88)

the action reads, after integrating by parts,

S =
∫

d4x
√
|g(4)| s

[
M2

S

(
−R(4) +

3
2

∂µt∂µt

t2
− ∂µs∂µs

s2

)
− 1

4
TrFµνFµν

]
(IV-3.89)

We conclude that

m2
P

= 2〈s〉M2
S

,
1
g2

= 〈s〉 (IV-3.90)

The couplings of the s field are reminiscent of the Wess-Zumino terms
which restore scale invariance through a dilaton field (see subsection
III-3).

The sign of the kinetic term for s is not a problem because s is coupled
to the spacetime curvature. If we go to the Einstein frame by performing

11The reader who is not interested in these technical details may go directly below Eq. (IV-
3.95).



Scalar Fields in Particle Physics in Cosmology 211

a Weyl transformation on the 4-dimensional metric:

g(4)
µν ≡ 1

2s

m2
P

M2
S

gµν (IV-3.91)

the action takes the standard form

S =
∫

d4x
√
|g|
[
−1

2
m2

P
R +

1
4

∂µs∂µs

s2
+

3
4

∂µt∂µt

t2
− 1

4
s TrFµνFµν

]
(IV-3.92)

The fields s and t appear to be the real parts of complex scalar fields
S and T with Kähler potential

K(S, T ) = − ln
(
S + S̄

)
− 3 ln

(
T + T̄

)
(IV-3.93)

One readily checks, using (IV-1.67) and (IV-1.68) that the corresponding
kinetic terms yield the kinetic terms for s and t just found. The imag-
inary part of S is provided by the pseudoscalar field, or string axion a,
which is equivalent to the antisymmetric tensor field in four dimensions
(∂µa ∼ εµνρσ∂νbρσ).

The Lagrangian (IV-3.92) is invariant under the group SL(2, Z∠) of
modular transformations

T → aT − ib

icT + d
, ad − bc = 1 , a, b, c, d ∈ Z∠ (IV-3.94)

among which we recognize T -duality (T → 1/T ). Indeed, such a trans-
formation corresponds to a Kähler transformation for K:

K → K + F + F̄ , F = 3 ln (icT + d) (IV-3.95)

Type IIA, IIB, I, heterotic SO(32) and E8 × E8 form the five known
types of superstring theories. There are some unexpected equivalences
between them, associated with the presence of the moduli fields just
discussed. These equivalences are basically of 2 types:

large/small compactification radius duality

When we go from a point particle to a string, the physics of com-
pactification becomes incomparably richer. We still find that mo-
menta in the compact dimensions are quantized in units of 1/R:
this yields Kaluza-Klein modes with energies proportional to 1/R.
But compact dimensions allow the possibility of the string wind-
ing around them (think of the string wrapped N times around
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a circle of radius R). The stable configuration thus obtained is
called a winding mode. It has an energy proportional to R, since it
would vanish for zero radius, and to the number m of wrappings:
E ∼ mR.
Hence, when R is large (with respect to M−1

S
), the Kaluza-Klein

modes are light whereas the winding modes are heavy. An effective
low energy theory would include only the Kaluza-Klein states. It
is the contrary when R is small.
It turns out that the two corresponding theories are equivalent.
This can be expressed as a symmetry of the theory associated
with the transformation of the modulus field T ↔ 1/T (a special
case of (IV-3.94)). Under the large/small compactification radius
duality, a theory A with a large compact dimension is equivalent
to a theory B with a small compact dimension. Such a duality is
known as T -duality.

strong/weak coupling duality (or S-duality).
The five string theories discussed above have been defined in their
perturbative regimes. In other words, if λS is the string coupling
for one of these theories, the theory is defined by its perturba-
tive expansion: corresponding amplitudes are expressed as power
series in λS . Non-perturbative effects appear to vanish at small
coupling, as for example an instanton contribution of order e−1/g2

.
Strong/weak coupling duality relates a theory T1 in its strong cou-
pling regime to a theory T2 in its weak coupling regime: an am-
plitude M(1)(λ(1)

S
) in theory T1 can be understood as amplitude

M(2)(λ(2)
S

= 1/λ(1)
S

). Such a type of duality relates for example
type I superstring to the SO(32) heterotic string theory whereas
type IIB string theory is self-dual.
The name S-duality refers to the 4-dimensional scalar field which
has been discussed above. Since 〈S〉 ∼ 1/g2, strong/weak duality
corresponds to the duality S → 1/S.

Duality relations allow to have access to non-perturbative effects in
a given superstring theory by studying perturbatively its dual theory.
The most striking discovery in this respect was the realization that there
exists an eleventh dimension. More precisely, the spectrum of type IIA
superstring theory was found to include states with mass MS/λS at weak
coupling. Supersymmetry helped to solve the problem of the bound state
of N such particles which was found to have precisely a mass of NMS/λS .
This is strongly reminiscent of the mass spectrum of Kaluza-Klein modes
with a radius of compactification R

(11)
≡ λS/MS .
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The reason why this eleventh dimension was not found in the pertur-
bative string approach is that perturbation precisely means an expan-
sion around λS = 0 and thus, at fixed string scale MS , around R

(11)
= 0.

This is why a perturbative expansion does not “see” this eleventh di-
mension. In all generality, one expects the ultimate M-theory to be
eleven-dimensional (at least). It is connected with the five known super-
string theories.

V. Gravitational and cosmological aspects

V-1 Cosmological relevance of scalar fields
We start with a quick reminder on cosmology. The fundamental equa-

tions are Einstein’s equations:

Rµν − 1
2
gµνR = 8πGN Tµν + λgµν (V-1.96)

where Tµν is the energy-momentum tensor of matter and Rµν the Ricci
tensor, which is obtained from the Riemann tensor (constructed from the
metric tensor) measuring the curvature of spacetime. The cosmological
constant λ is of the dimension of an inverse length squared. It was
introduced by Einstein [22] in order to build a static universe model, its
repulsive effect compensating the gravitational attraction.

Assuming that the Universe is homogeneous and isotropic on large
scales, one may take as an ansatz for the metric the Robertson-Walker
form:

ds2 = c2dt2 − a2(t)
[

dr2

1 − kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(V-1.97)

where a(t) is the cosmic scale factor and k = ±1 or 0, depending on
whether the universe is spatially closed, open or flat. We may also
assume that the dominant component of the Universe (radiation or non-
relativistic matter depending on the epoch) is a perfect fluid of energy
density ρ and pressure p.

Inserting the ansatz (II-1.15) into the Einstein’s equations (V-1.96)
yields the Friedmann equation (ȧ = da/dt)

H2 ≡ ȧ2(t)
a2(t)

=
1
3

(
λ +

ρ

m2
P

)
− k

a2
(V-1.98)

The Hubble parameter H gives an estimate of the rate of expansion.
Observation seems to indicate that the Universe is spatially flat: k =

0. In other words, we may write (V-1.98) at present time t0 as follows:

ΩΛ + ΩM = 1 , ΩΛ ≡ λ

3H2
0

, ΩM ≡ ρ

ρc
(V-1.99)
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where we have introduced the critical density ρc ≡ 3m2
P
H2

0 (H0 is the
present value of the Hubble parameter: H0 = h0 × 100 km.s−1Mpc−1

with h0 ∼ 0.7).
The standard explanation for the flatness of the Universe is that it has

undergone at an early stage a period of exponential expansion, known
as inflation [23]. In the standard scenario, this expansion is due to the
presence of a dynamical component whose energy density ρ dominates
and is almost constant. The expansion rate measured by the Hubble
parameter (V-1.98) (with k ∼ 0) is then constant , which yields an
exponential behaviour for the cosmic scale factor: a(t) ∝ eHt.

The energy density of relativistic particles (resp. non-relativistic) par-
ticles goes as a−4 (resp. a−3) and thus does not provide the desired be-
haviour. On the other hand, since bosons can be in the same quantum
state, they can form a coherent superposition in the form of a macro-
scopic field. Isotropy requires to consider only scalar fields. This is why
scalar field play a central role in cosmology!

To be more precise, associated with a scalar field φ of mass m, one
can have the following two realizations:

a Bose gas at non-zero temperature (with the standard Bose-

Einstein distribution nk =
[
exp
(√

k2 + m2/T
)
− 1
]−1

)

a Bose condensate φ0 of non-interacting scalars with vanishing
momentum k (nk = (2π)3φ0mδ3(k))

The Bose condensate corresponds to infinitely large occupation number
(at k = 0) and thus behaves as a classical field. Indeed, it has been shown
[24] that gravitational production of scalar fields amplifies (“squeezes”)
the zero-point quantum fluctuations: a gravitationally produced scalar
field would be left in a squeezed state that acts like a scalar field.

We will see in what follows that the moduli fields discussed in the
preceding Section tend to be extremely light (m < 10−26 eV). This
means that the associated de Broglie wave length (�/p) could reach
cosmological distances. The condensate would span the whole observable
Universe. This allows to use classical scalar field condensates to solve
some of the cosmological problems, as we will see in more details in what
follows.

Recent cosmological observation expressed in the plane (ΩM , ΩΛ) sin-
gles out a region in parameter space centered around the values: ΩM ∼
0.3 and ΩΛ ∼ 0.7. According to (V-1.99), this implies that |λ| ≤ H2

0 . In
other words, the length scale �Λ ≡ |λ|−1/2 associated with the cosmo-
logical constant must be larger than the Hubble length �H0 ≡ cH−1

0 =
h−1

0 .1026 m, and thus be a cosmological distance.
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This is not a problem as long as one remains classical: �H0 provides a
natural cosmological scale for our present Universe. The problem arises
when one tries to combine gravity with the quantum theory of matter.
Indeed, even if one sets λ to zero, one expects, in the context of the
quantum theory, a non-vanishing vacuum (i.e. ground state) energy:
< Tµν >= ρvacgµν ; then the Einstein equations (V-1.96) read

Rµν − 1
2
gµνR = 8πGN Tµν + 8πGN ρvacgµν (V-1.100)

The last term is interpreted as an effective cosmological constant:

λeff = 8πGN ρvac ≡
Λ4

m2
P

(V-1.101)

Generically, ρvac receives a non-zero contribution from symmetry break-
ing: for instance, the scale Λ would be typically of the order of 100 GeV
in the case of the electroweak gauge symmetry breaking or 1 TeV in the
case of supersymmetry breaking. But the constraint |λeff | ≤ H2

0 now
reads:

Λ ≤ 10−30 mP ∼ 10−3 eV (V-1.102)

It is this very unnatural fine-tuning of parameters (in explicit cases ρvac

and thus Λ are functions of the parameters of the theory) that is referred
to as the cosmological constant problem, or more accurately the vacuum
energy problem.

The most natural reason why vacuum energy would be vanishing is a
symmetry argument. Global supersymmetry indeed provides such a ra-
tionale. The problem is that, at the same time, supersymmetry predicts
equal boson and fermion masses and therefore needs to be broken. The
amount of breaking necessary to push the supersymmetric partners high
enough not to have been observed yet, is incompatible with the limit
(V-1.102).

Moreover, in the context of cosmology, we should consider supersym-
metry in a gravity context and thus work with its local version, su-
pergravity. In this context, the criterion of vanishing vacuum energy
is traded for one of vanishing gravitino mass. Local supersymmetry is
compatible with a non-vanishing vacuum energy, preferably a negative
one (although possibly also a positive one).

Dilaton, scalar-tensor theories and tests of general relativity.
We have encountered in the preceding Section moduli fields which couple
to matter with gravitational strength. If these fields remain light they
induce a long rang force similar to gravity which might lead to difficulties
when confronting observation.
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One of the stringent constraints on gravitational-type interactions
comes from the high accuracy at which the equivalence principle has
been tested12. In its weak form, the equivalence principle states the uni-
versality of free fall: two test bodies at the same location and at rest with
respect to each other, fall in the same way in an external gravitational
field, independently of their mass and composition (hence inertial and
gravitational masses are identical). In the Einstein formulation, at every
point of an arbitrary gravitational field, it is possible to define locally
a coordinate system such that the laws of nature take the same form
as in special relativity (see the book by Will [25] for a more detailed
formulation).

Let us consider for example the string dilaton coupling to gauge fields,
as obtained in (IV-3.89),

S = −1
4

∫
d4x
√
|g(4)| s FµνFµν (V-1.103)

As long as the dilaton s is not stabilized, the gauge coupling constants
depend on space and time (1/g2 = s). Since the mass of hadrons is
mostly gluon field energy, it follows that these masses also depend on
space and time and we lose the universality of free fall.

It should be noted that the scalar field dependence in (V-1.103) cannot
be absorbed in a Weyl transformation of the metric,

g(4)
µν = A2(φ)gµν (V-1.104)

because
√

|g(4)|g(4)µρg(4)νσ is Weyl invariant. The easiest way to satisfy
the stringent constraints imposed by the apparent absence of violations
of the equivalence principle is to consider a scalar-tensor theory for which
the matter fields couple to a universal metric of the form (V-1.104) where
φ stands for one or several (φa, a = 1, · · · , n) scalar fields: lengths and
times are measured by rods and clocks in the frame defined by this
unique metric.

It is possible to appeal to the cosmological evolution to account for
the smallness of such coefficients in scalar-tensor theories. For example,
Damour and Nordtvedt [26] have found an attractor mechanism towards
General Relativity.

Time variation of fundamental constants. Since couplings and
scales are often given in terms of moduli fields, it is tempting to con-
sider that, since moduli may not all have been stabilized, some of these

12To give an idea of the orders of magnitude involved, the relative difference in accelera-
tion |∆a|/|a| between two bodies of different composition in the Earth gravitational field is
presently measured to be smaller than 10−12.
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quantities are still presently varying with time or have been doing so in
the course of the cosmological evolution. This leads to the fascinating
possibility that some of the fundamental constants of nature are time-
dependent.

Such an idea was put forward by Dirac [27, 28]. According to him,
a fundamental theory should not involve fundamental dimensionless pa-
rameters (i.e. dimensionless ratios of fundamental parameters) which
are very large numbers. Such numbers should instead be considered as
resulting from the evolution of the universe and the corresponding di-
mensionless parameters be variables characterizing the evolving state of
the universe. Obviously this leads to some time-dependent fundamental
parameters.

In the context of supersymmetric theories where many of these dimen-
sionless ratios are fixed by the values of moduli fields, one may expect
some time dependence. For example, in heterotic string theory we have
seen that the Planck scale (hence Newton’s constant) is given in terms of
the string scale by the vacuum expectation value of the string dilaton.
Similarly for the 4-dimensional coupling, evaluated at the string scale
(close to unification scale). If the dilaton is not properly stabilized at
low energy, that is if the flat direction is not lifted or if its minimum
remains too shallow, one thus expects a possible time dependence of the
dimensionless ratio MP /MS or of the fine structure constant.

There are however some stringent bounds on the possible time evo-
lution of fundamental constants [29]. For example, present limits on∣∣∣ĠN /GN

∣∣∣ are in the 10−12 yr−1 region whereas the presence in the Oklo

uranium in Gabon of a natural fission reactor which operated some 109 yr
ago puts a limit [30] on |α̇/α| in the 10−17 yr−1 region.

Moduli problem. Because moduli are light and have gravitational
interactions, they are long lived. There are then two potential dangers.
If their lifetime is smaller than the age of our universe, their decay
might have released a very large amount of entropy in the universe and
diluted its content. If their lifetime is larger than the age of our universe,
they might presently still be oscillating around their minimum and the
energy stored in these oscillations may overclose the universe. One refers
to these problems as the moduli problem [31–33]. Taken at their face
values, such constraints forbid any modulus field which is not superlight
or very heavy. We now proceed to make these statements quantitative.

We first define two quantities which play a central role in this dis-
cussion. A modulus field φ has typically gravitational interactions and
thus its decay constant Γφ scales like m−2

P
. Since the only available scale
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is the scalar field mass mφ, one infers from simple dimensional analysis
that

Γφ =
m3

φ

m2
P

(V-1.105)

Since the age of the Universe is of order H−1
0 , one deduces that the

modulus will decay at present times if Γφ ∼ H0, that is if its mass mφ

is of order
(
H0m

2
P

)1/3 ∼ 20 MeV.
The other relevant quantity is the initial value fφ of the scalar field

with respect to its ground state value φ0. Presumably at very high en-
ergy (that is above the phase transition associated with dynamical super-
symmetry breaking) the flat direction is restored, one expects generically
that fφ ∼ mP since this is the only scale available.

Let us first consider the case where mφ < 20 MeV, that is a field
which has not yet decayed at present time. The equation of evolution
for the field φ reads

φ̈ + 3Hφ̇ + V ′(φ) = −Γφφ̇ (V-1.106)

where the friction term (proportional to the Hubble parameter H) ac-
counts for the expansion of the universe and the last term comes from
particle creation due to the time variation of φ.

As long as H > mφ, the friction term 3Hφ̇ dominates in the equation
of motion and the field φ remains frozen at its initial value fφ. When
H ∼ mφ, i.e. for TI ∼ (mφmP )1/2 (since H ∼ T 2/mP ), the field φ
starts oscillating around the minimum φ0 of its potential. According
to a standard result, coherent oscillations behave like non-relativistic
matter i.e.

ρφ(T ) = ρφ(TI)
(

T

TI

)3

∼ m2
φf2

φ

(
T

TI

)3

(V-1.107)

Since the radiation energy density ρR(T ) behaves as T 4, ρφ/ρR increases
as the temperature of the universe decreases and one reaches a time
where the energy of the scalar field oscillations dominates the energy
density of the universe. One should then make sure that ρφ(T0) < ρc.
Using (V-1.107) and TI = (mφmP )1/2, one may write this condition as

mφ < mP

(
ρcmP

f2
φT 3

0

)2

∼ 10−26 eV (V-1.108)

where we have set fφ ∼ mP . Thus, if 10−26 eV < mφ < 20 MeV, there
is too much energy stored in the φ field (which has not yet decayed at
present times).
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We next consider the case where mφ > 20 MeV, that is the scalar field
has already decayed at present times. Decay occurs at a temperature
TD when H(TD) ∼ Γφ i.e.

Γ2
φ ∼ ρφ(TD)

m2
P

=
ρφ(TI)
m2

P

(
TD

TI

)3

(V-1.109)

where we have used (V-1.107), assuming that, at TD, the scalar field
energy density dominates over radiation; ρφ(TI) ∼ m2

φf2
φ. At decay, all

energy density is transfered into radiation. Thus, the reheating temper-
ature TRH , that is the temperature of radiation issued from the decay,
is given by the condition ρφ(TD) ∼ T 4

RH . Using (V-1.109) to express
ρφ(TD), we obtain

TRH ∼ m1/2
P

Γ1/2
φ ∼

m
3/2
φ

m
1/2
P

(V-1.110)

The entropy release is

σ ≡ SRH

SD
=
(

TRH

TD

)3

∼ 1

m
1/2
P Γ1/2

φ

ρφ(TI)
T 3

I

(V-1.111)

This gives, using TI ∼ m
1/2
φ m1/2

P
and ρφ(TI) ∼ m2

φf2
φ, σ ∼ f3

φ/(mφm2
P
).

With fφ ∼ mP , this gives a very large entropy release as long as the
modulus mass remains much smaller than the Planck scale.

This entropy release must necessarily precede nucleosynthesis since
otherwise it would dilute away its effects. This condition, namely TRH >
1 MeV, gives mφ > 10 TeV. Thus for 20 MeV < mφ < 10 TeV, the
entropy release following the decay of the modulus field is too large to
be consistent with present observations.

In the absence of other effects, we are left with only superlight moduli
fields (mφ < 10−26 eV) or heavy ones (mφ > 10 TeV).

V-2 Inflation scenarios
As we have seen above, a standard scenario for inflation involves a

scalar field φ evolving slowly in its potential V (φ). The equation of
motion is simply

φ̈ + 3Hφ̇ + V ′(φ) = 0 (V-2.112)
Slow evolution of the scalar field requires the friction term to dominate
on the right-hand side: 3Hφ̇ ∼ −V ′.

The energy density and pressure stored in the scalar field are (we
recognize the kinetic energy φ̇2/2 and the potential energy V (φ))

ρφ =
1
2
φ̇2 + V (φ) , pφ =

1
2
φ̇2 − V (φ) (V-2.113)
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Differentiating with respect to time the Friedmann equation (V-1.98),
which reads here 3m2

P
H2 = ρφ, one obtains Ḣ = −φ̇2/(2m2

P
). Hence,

the condition of almost constancy of H i.e. |Ḣ|  H2 amounts to the
condition φ̇2/2  V (φ) i.e. kinetic energy for the scalar field much
smaller than its potential energy. Using the Friedmann equation and
(V-2.112), this can be written as the following slowroll constraints:

ε ≡ 1
2

(
mP V ′

V

)2

 1 , η ≡
m2

P
V ′′

V
 1 (V-2.114)

In the de Sitter phase i.e. in the phase of exponential growth of the
cosmic scale factor, quantum fluctuations of the scalar field value are
transmitted to the metric. Because the size of the horizon is fixed (to
H−1) in this phase, the comoving scale a/k associated with these fluctu-
ations eventually outgrows the horizon, at which time the fluctuations
become frozen. It is only much later when the universe has recovered
a radiation or matter dominated regime that these scales reenter the
horizon and evolve again. They have thus been protected from any type
of evolution throughout most of the evolution of the universe (this is
in particular the case for the fluctuations on a scale which reenters the
horizon now). Fluctuations in the cosmic microwave background provide
detailed information on the fluctuations of the metric. In particular, the
observation by the COBE satellite of the largest scales puts a important
constraint on inflationary models. Specifically, in terms of the scalar
potential, this constraint known as COBE normalization, reads:

1
m3

P

V 3/2

V ′ = 5.3 × 10−4 (V-2.115)

Using the slowroll parameter introduced above, this can be written as

V 1/4 ∼ ε1/4 6.7 × 1016 GeV (V-2.116)

In most of the models that we will be discussing, ε is very small. However
as long as ε � 10−52, we have V 1/4 � 1 TeV. In other words, the typical
scale associated with inflation is then much larger than the TeV, in which
case it makes little sense to work outside a supersymmetric context.

From the point of view of supersymmetry, one might expect that the
presence of numerous flat directions may ease the search for an inflating
potential13. One possible difficulty arises from the condition (V-2.114)

13although we have seen that this leads to new problems, the solution of which may require
late inflation.
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on η which may be written as a condition on the mass of the inflaton
field

m2  H2 (V-2.117)

Since supersymmetry breaking is expected to set the scale that char-
acterizes departures from flatness, it should control both m and V 1/4.
For example, in the case of gravity mediation, we expect both m2 and
H2 ∼ V/m2

P
to be of the order of m2

3/2
. If one does not want to be

playing with numbers of order one to explain the N = 50 e-foldings of
exponential evolution necessary to a satisfactory inflation scenario, one
should be ready to introduce a second scale into the theory.

Since supersymmetric scalar potentials consist of F -terms and D-
terms, the discussion of suitable potentials for inflation naturally follows
this classification. As we will see in the following, they naturally pro-
vide models for what is known as hybrid inflation which involves two
directions in field space: one is slow-rolling whereas the other ensures
the exit from inflation (and is fixed during slowroll). We conclude this
subsection by returning to the case of moduli fields in this context of
inflation.

F term inflation. Let us start with a simple illustrative model [34].
We consider two chiral supermultiplets of respective scalar components
σ and χ with superpotential

W (σ, χ) = σ
(
λψ2 − µ2

)
(V-2.118)

Writing |σ| ≡ φ/
√

2, one obtains for the scalar potential

V = 2λ2φ2 |ψ|2 +
∣∣λψ2 − µ2

∣∣2 (V-2.119)

The global supersymmetric minimum is found for ψ2 = µ2 and φ = 0
but, for fixed φ, we may write the potential as (ψ ≡ A + iB)

V = µ4 + 2λ(λφ2 −µ2)A2 + 2λ(λφ2 + µ2)B2 + λ2(A2 + B2)2 (V-2.120)

We conclude that, for φ2 > φ2
c ≡ µ2/λ, there is a local minimum at

A = B = 0 for which V = µ4. In other words, the φ direction is flat
for φ > φc with a non-vanishing potential energy. This may lead to
inflation if one is trapped there. Since global supersymmetry is broken
along this direction, one expects that loop corrections yield some slope
which allows slowroll. Once φ reaches φc, ψ starts picking up a vacuum
expectation value and one quickly falls into the global minimum.

This simple example of F -term hybrid inflation may easily be general-
ized. However F -term inflation suffers from a major drawback when one
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tries to consider it in the context of supergravity [34, 35]. We recall the
form of the scalar potential in supergravity, as written in (IV-1.70). In
what follows the crucial role is played by the exponential factor eK/m2

P in
front of the F -terms. Thus, inflation necessarily breaks supersymmetry.
Let us assume for a moment that the inflation is dominated by some of
the F -terms and that the D-terms are vanishing or negligible. Then the
slow roll conditions (V-2.114) can be written as

ε =
1
2

(
KI

mP

+ · · ·
)2

<< 1 η = KIĪ + · · · << 1 (V-2.121)

Here the subscript I denotes a derivative with respect to the inflaton
noted φI . The latter condition is difficult to satisfy. The quantity KIĪ

stands in front of the kinetic term and therefore in the true vacuum it
should be normalized to one. Then it is very unlikely to expect it to
be much smaller during inflation. Indeed, this condition can be written
as (V-2.117) since the mass of the inflaton m2 receives a contribution
KIĪV/m2

P
∼ KIĪH

2.
These arguments indicate that it is not easy to implement F -type

inflation in supergravity theories. All the solutions proposed involve
specific non-minimal forms of the Kähler potential [35].

D term inflation. What is interesting about inflation supported
by D-terms is that the problems discussed above can be automatically
avoided because of the absence of a factor eK/m2

P in front of them. Indeed
for inflation dominated by some of the D-terms the slow roll conditions
can be easily satisfied.

Let us show how such a scenario can naturally emerge in a theory
with a U(1) gauge symmetry [36, 37]. We consider an example with
global supersymmetry. We introduce three chiral superfields φ0, φ+ and
φ− with charges equal to 0, +1 and −1 respectively. The superpotential
has the form

W = λφ0φ+φ− (V-2.122)
which can be justified by several choices of discrete or continuous sym-
metries. The scalar potential in the global supersymmetry limit reads:

V = λ2|φ0|2
(
|φ−|2 + |φ+|2

)
+ λ2|φ+φ−|2 +

g2

2
(
|φ+|2 − |φ−|2 − ξ

)2
(V-2.123)

where g is the gauge coupling and ξ is a Fayet-Iliopoulos D-term (which
we choose to be positive). This system has a unique supersymmetric
vacuum with broken gauge symmetry

φ0 = φ− = 0 , |φ+| =
√

ξ (V-2.124)
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Minimizing the potential, for fixed values of φ0, with respect to other
fields, we find that for |φ0| > φc ≡ g

√
ξ/λ, the minimum is at φ+ = φ− =

0. Thus, for |φ0| > φc and φ+ = φ− = 0 the tree level potential has a
vanishing curvature in the φ0 direction and large positive curvature in the
remaining two directions (m2

± = λ2|φ0|2 ∓ g2ξ). Along the φ0 direction
(|φ0| > φc, φ+ = φ− = 0), the tree level value of the potential remains
constant: V = g2ξ2/2 ≡ V0. Thus φ0 provides a natural candidate for
the inflaton field.

Along the inflationary trajectory all the F -terms vanish and the uni-
verse is dominated by the D-term which splits the masses of the Fermi-
Bose components in the φ+ and φ− superfields. Such splitting results in
a one-loop effective potential. In the present case this potential can be
easily evaluated and for large φ0 it behaves as

Veff =
g2

2
ξ2

(
1 +

g2

16π2
ln

λ2|φ0|2
Λ2

)
≡ V0

(
1 +

Cg2

8π2
ln

λϕ

Λ

)
(V-2.125)

where ϕ ≡ |φ0| and C ∼ 1. Along this potential, the value of ϕ that
leads to the right number N ∼ 50 of e-foldings is:

ϕ

mP

=

√
NCg2

4π2
(V-2.126)

This is safely of order g in the model that we consider. The values of
the slowroll parameters (V-2.114) are correspondingly

ε =
Cg2

32Nπ2
, η = − 1

2N
(V-2.127)

Finally, the COBE normalisation (V-2.116) fixes the overall scale:

ξ1/2 ∼
(

C

N

)1/4

× 1.9 1016GeV (V-2.128)

The model can be generalized to supergravity [16].

V-3 Cosmological constant and dark energy
Late acceleration of the expansion. Over the last years, there has
been an increasing number of indications that the Universe is presently
undergoing accelerated expansion. This appears to be a strong departure
from the standard picture of a matter-dominated Universe. Indeed, the
equation for the conservation of energy,

ρ̇ = −3(p + ρ)H (V-3.129)
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allows to derive from the Friedmann equation (V-1.98), written in the
case of a universe dominated by a component with energy density ρ and
pressure p:

ä

a
= −4πGN

3
(ρ + 3p) (V-3.130)

Obviously, a matter-dominated (pM ∼ 0) universe is decelerating. One
needs instead a component with a negative pressure.

Acosmological constant is associated with a contribution to the energy-
momentum tensor as in (V-1.100)(V-1.101):

Tµ
ν = −Λ4δµ

ν = (−ρ, p, p, p) (V-3.131)

The associated equation of motion is therefore

p = −ρ (V-3.132)

It follows from (V-3.130) that a cosmological constant tends to accelerate
expansion.

We have seen above that the energy density of the Universe seems to
be dominated by a component of the type of a cosmological constant.
This raises a new problem. Since matter and a cosmological constant
evolve very differently, why should they be of the same order at present
times? Indeed, for a component of equation of state p = wρ, we may
rewrite (V-3.129) as

ρ̇

ρ
= −3

ȧ

a
(1 + w) . (V-3.133)

Thus matter (p ∼ 0) energy density evolves as a−3 whereas a cosmologi-
cal constant stays constant, as expected. Why should they be presently
of similar magnitude (see Figure 10)? This is known as the cosmic co-
incidence problem.

This problem seems to indicate that there should be a dynamical
origin to the solution of this late acceleration of the expansion. This
may or may not be related with the solution of the cosmological constant
problem. In the absence of any real clue for this latter problem, one
has assumed that there is an unknown mechanisms that relaxes the
vacuum energy. The reaccelaration of the expansion is then due to a
new dynamical component of the energy density of the universe that
has only emerged recently. This component is called dark energy. Just
as in the case of inflation (which corresponds also to an acceleration), a
natural candidate is provided by scalar fields.

Dark energy. We thus consider a dynamical component X with
negative pressure (to provide acceleration; see (V-3.130)). Its equation
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Figure 10. Evolution od radiation (dashed), matter (full) and cosmological constant
(dot-dashed) energy density with the temperature T of the Universe.

of state thus reads 14:

pX = wXρX , w < 0 (V-3.134)

Experimental data may constrain such a dynamical component, just
as it did with the cosmological constant. For example, in a spatially flat
Universe with only matter and an unknown component X with equation
of state pX = wXρX , one obtains from (V-3.130) with ρ = ρM + ρX ,
p = wXρX the following form for the deceleration parameter

q0 ≡ − 1
H2

0

(
ä

a

)
t=t0

=
ΩM

2
+ (1 + 3wX)

ΩX

2
(V-3.135)

where ΩX = ρX/ρc.
Another important property of dark energy is that it does not appear

to be clustered (just as a cosmological constant). Otherwise, its effects
would have been detected locally, as for the case of dark matter.

14We recall that non-relativistic matter (dust) has an equation of state p ∼ 0 whereas p = ρ/3
corresponds to radiation.
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We consider here a scalar field φ slowly evolving in its potential V (φ).
Indeed, using (V-2.113) we have

wφ =
1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

(V-3.136)

If the kinetic energy is subdominant (φ̇2/2  V (φ)), we clearly obtain
−1 ≤ wφ ≤ 0. A consequence is that the corresponding speed of sound
cs = δp/δρ is of the order of the speed of light: the scalar field pressure
resists gravitational clustering.

We will see below that the scalar field must be extremely light. We
therefore have two possible situations:

a scalar potential slowly decreasing to zero as φ goes to infin-
ity [38–40]. This is often referred to as quintessence or runaway
qintessence.

a very light field (pseudo-Goldstone boson) which is presently re-
laxing to its vacuum state [41].

In both cases one is relaxing to a position where the vacuum energy
is zero. This is associated with our assumption that some unknown
mechanism wipes the cosmological constant out. We discuss the two
cases in turn.

i) Runaway quintessence

A runaway potential is frequently present in models where supersym-
metry is dynamically broken. We have seen that supersymmetric the-
ories are characterized by a scalar potential with many flat directions,
i.e. directions φ in field space for which the potential vanishes. The
corresponding degeneracy is lifted through dynamical supersymmetry
breaking. In some instances (dilaton or compactification radius), the
field expectation value < φ > actually provides the value of the strong
interaction coupling. Then at infinite φ value, the coupling effectively
goes to zero together with the supersymmetry breaking effects and the
flat direction is restored: the potential decreases monotonically to zero
as φ goes to infinity.

Let us take the example of supersymmetry breaking by gaugino con-
densation in effective superstring theories. The value g0 of the gauge
coupling at the string scale MS is provided by the vacuum expectation
value of the dilaton field s (taken to be dimensionless by dividing by mP )
present among the massless string modes: g2

0 =< s >−1. If the gauge
group has a one-loop beta function coefficient b > 0, then the running
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gauge coupling becomes strong at the scale

Λ ∼ MSe−8π2/(bg2
0) = MSe−8π2s/b (V-3.137)

At this scale, the gaugino fields are expected to condense. Through
dimensional analysis, the gaugino condensate < λ̄λ > is expected to
be of order Λ3. Terms quadratic in the gaugino fields thus yield in the
effective theory below condensation scale a potential for the dilaton:

V ∼
∣∣< λ̄λ >

∣∣2 ∝ e−48π2s/b (V-3.138)

The s-dependence of the potential is of course more complicated and one
usually looks for stable minima with vanishing cosmological constant.
But the behavior (V-3.137) is characteristic of the large s region and
provides a potential slopping down to zero at infinity as required in the
quintessence approach. A similar behavior is observed for moduli fields
whose vev describes the radius of the compact manifolds which appear
from the compactification from 10 or 11 dimensions to 4 in superstring
theories.

Let us take therefore the example of an exponentially decreasing po-
tential. More explicitly, we consider the following action

S =
∫

d4x
√

g

[
−

m2
P

2
R +

1
2
∂µφ∂µφ − V (φ)

]
(V-3.139)

which describes a real scalar field φ minimally coupled with gravity and
the self-interactions of which are described by the potential:

V (φ) = V0e
−λφ/m

P (V-3.140)

where V0 is a positive constant.
The energy density and pressure stored in the scalar field are given by

(V-2.113). We will assume that the background (matter and radiation)
energy density ρB and pressure pB obey a standard equation of state
pB = wBρB. The equation of motion for φ is again (V-2.112) with

H2 =
1

3m2
P

(ρB + ρφ) (V-3.141)

It can be rewritten as
ρ̇φ = −3Hφ̇2 (V-3.142)

We are looking for scaling solutions i.e. solutions where the φ energy
density scales as a power of the cosmic scale factor: ρφ ∝ a−nφ or
ρ̇φ/ρφ = −nφH. In this case, one easily obtains from (V-2.113) and
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(V-3.142) that the φ field obeys a standard equation of state pφ = wφρφ,
with

wφ =
nφ

3
− 1 (V-3.143)

Hence
ρφ ∝ a−3(1+wφ) (V-3.144)

If one can neglect the background energy ρB, then (V-3.141) yields a
simple differential equation for a(t) which is solved as:

a ∝ t2/[3(1+wφ)] (V-3.145)

Since φ̇2 = (1 + wφ)ρφ ∼ t−2, one deduces that φ varies logarithmically
with time. One then easily obtains from (V-2.112,V-3.141) that

φ = φ0 +
2
λ

mP ln(t/t0). (V-3.146)

and15

wφ =
λ2

3
− 1 , (V-3.147)

It is clear from (V-3.147) that, for λ sufficiently small, the field φ can
play the role of quintessence. We note that, even if we started with a
small value φo, φ reaches a value of order mP .

But the successes of the standard big-bang scenario indicate that
clearly ρφ cannot have always dominated: it must have emerged from the
background energy density ρB. If we consider initial conditions where
ρB dominates, the attractor solution will generally yield wφ = wB and
thus no dark energy solution.

Ways to obtain a quintessence component have been proposed how-
ever. Let us sketch some of them in turn.

One is the notion of tracker field [42]. This idea also rests on the
existence of scaling solutions of the equations of motion which play the
role of late time attractors, as illustrated above. An example is provided
by a scalar field described by the action (V-3.139) with a potential

V (φ) = λ
Λ4+α

φα
(V-3.148)

with α > 0. In the case where the background density dominates,
one finds an attractor scaling solution [39] φ ∝ a3(1+wB)/(2+α), ρφ ∝

15under the condition λ2 ≤ 6 (wφ ≤ 1 since V (φ) ≥ 0).
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a−3α(1+wB)/(2+α). Thus ρφ decreases at a slower rate than the back-
ground density (ρB ∝ a−3(1+wB)) and tracks it until it becomes of the
same order at a given value aQ. We thus have:

φ

mP

∼
(

a

aQ

)3(1+wB)/(2+α)

, (V-3.149)

ρφ

ρB
∼
(

a

aQ

)6(1+wB)/(2+α)

(V-3.150)

One finds
wφ = −1 +

α(1 + wB)
2 + α

(V-3.151)

Shortly after φ has reached for a = aQ a value of order mP , it satisfies
the standard slow roll conditions and therefore (V-3.151) provides a good
approximation to the present value of wφ. Thus, at the end of the matter-
dominated era, this field may provide the quintessence component that
we are looking for.

Two features are interesting in this respect. One is that this scal-
ing solution is reached for rather general initial conditions, i.e. whether
ρφ starts of the same order or much smaller than the background en-
ergy density [42]. Regarding the cosmic coincidence problem, it can be
rephrased here as follows (since φ is of order mP in this scenario): why
is V (mP ) of the order of the critical energy density ρc? It is thus the
scale Λ which determines the time when the scalar field starts to emerge
and the universe expansion reaccelerates. Indeed, using (V-3.150), the
constraint reads:

Λ ∼
(
H2

0m2+α
P

)1/(4+α) (V-3.152)

We may note that this gives for α = 2, Λ ∼ 10 MeV, not such an atypical
scale for high energy physics.

A model [43] has been proposed which goes one step further: the
dynamical component, a scalar field, is called k-essence and the model is
based on the property observed in string models that scalar kinetic terms
may have a non-trivial structure. Tracking occurs only in the radiation-
dominated era; a new attractor solution where quintessence acts as a
cosmological constant is activated by the onset of matter domination.

Models of dynamical supersymmetry breaking easily provide a model
of the tracker field type just discussed [44]. The corresponding scalar
field is then a condensate of fermions.

Quintessential problems
However appealing, the quintessence idea is difficult to implement in

the context of realistic models [45, 46]. The main problem lies in the
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fact that the quintessence field must be extremely weakly coupled to
ordinary matter. This problem can take several forms:

• we have assumed until now that the quintessence potential monoton-
ically decreases to zero at infinity. In realistic cases, this is difficult to
achieve because the couplings of the field to ordinary matter generate
higher order corrections that are increasing with larger field values, un-
less forbidden by a symmetry argument. Also, because the vev of φ is of
order mP , one must take into account the full supergravity corrections.
One may then argue [47] that this could put in jeopardy the positive
definiteness of the scalar potential, a key property of the quintessence
potential. This may point towards models where < W >= 0 or to
no-scale type models.

• the quintessence field must be very light. If we return to our example
in (V-3.148), V ′′(mP ) provides an order of magnitude for the mass-
squared of the quintessence component:

mφ ∼ Λ
(

Λ
mP

)1+α/2

∼ H0 ∼ 10−33 eV (V-3.153)

using (V-3.152). This might argue for a pseudo-Goldstone boson nature
of the scalar field that plays the rôle of quintessence. This field must
in any case be very weakly coupled to matter; otherwise its exchange
would generate observable long range forces. Eötvös-type experiments
put very severe constraints on such couplings.

• it is difficult to find a symmetry that would prevent any coupling
of the form β(φ/mP )nFµνFµν to the gauge field kinetic term. Since the
quintessence behavior is associated with time-dependent values of the
field of order mP , this would generate, in the absence of fine tuning,
corrections of order one to the gauge coupling. But we have seen in
subsection V-1 that the time dependence of the fine structure constant
for example is very strongly constrained: |α̇/α| < 5 × 10−17yr−1. This
yields a limit [45]:

|β| ≤ 10−6 mP H0

< φ̇ >
(V-3.154)

where < φ̇ > is the average over the last 2 × 109 years.

ii) Pseudo-Goldstone boson

There exists a class of models [41] very close in spirit to the case of
runaway quintessence: they correspond to a situation where a scalar
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field has not yet reached its stable groundstate and is still evolving in
its potential.

More specifically, let us consider a potential of the form:

V (φ) = M4v

(
φ

f

)
(V-3.155)

where M is the overall scale, f is the vacuum expectation value < φ >
and the function v is expected to have coefficients of order one. If we
want the potential energy of the field (assumed to be close to its vev f)
to give a substantial fraction of the energy density at present time, we
must set

M4 ∼ ρc ∼ H2
0m2

P (V-3.156)

However, requiring that the evolution of the field φ around its minimum
has been overdamped by the expansion of the Universe until recently
imposes

m2
φ =

1
2
V ′′(f) ∼ M4

f2
≤ H2

0 . (V-3.157)

Let us note that this is again one of the slowroll conditions familiar to
the inflation scenarios.

From (V-3.156) and (V-3.157), we conclude that f is of order mP (as
the value of the field φ in runaway quintessence) and that M ∼ 10−3 eV
(not surprisingly, this is the scale Λ typical of the cosmological constant,
see (V-1.102)). As we have seen, the field φ must be very light: mφ ∼
h0 × 10−60mP ∼ h0 × 10−33 eV. Such a small value is only natural in
the context of an approximate symmetry: the field φ is then a pseudo-
Goldstone boson. A typical example of such a field is provided by the
string axion field. In this case, the potential simply reads:

V (φ) = M4 [1 + cos(φ/f)] (V-3.158)

All the preceding shows that there is extreme fine tuning in the cou-
plings of the quintessence field to matter, unless they are forbidden by
some symmetry. This is somewhat reminiscent of the fine tuning associ-
ated with the cosmological constant. In fact, and as already stressed, the
quintessence solution does not claim to solve the cosmological constant
(vacuum energy) problem.

To conclude, we hope to have convinced the reader of the wealth of
possibilities offered by fundamental scalar fields. Obviously we are still
waiting for the experimental discovery of such a fundamental scalar.
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But the probable discovery of a Higgs particle at the forthcoming LHC
should provide the decisive argument for the relevance of fundamental
scalars in nature.
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Abstract These lectures are intended to give a pedagogical introduction to the
main current picture of the very early universe. After elementary re-
views of general relativity and of the standard Big Bang model, the
following subjects are discussed: inflation, the classical relativistic the-
ory of cosmological perturbations and the generation of perturbations
from scalar field quantum fluctuations during inflation.

Keywords: Cosmological scalar fields, inflation, slow-roll, potentials, cosmological
perturbations, Bardeen potentials, initial conditions, quantum fluctua-
tions, power spectra.

I. Introduction
The purpose of these lectures is to give an introduction to the present

standard picture of the early universe, which complements the older stan-
dard Big Bang model. These notes are intended for non-experts on this
subject. They start with a very short introduction to General Relativity,
on which modern cosmology is based, followed by an elementary review
of the standard Big Bang model. We then discuss the limitations of this
model and enter into the main subject of these lectures: inflation.

Inflation was initially invented to solve some of the problems of the
standard Big Bang model and to get rid of unwanted relics generically
predicted by high energy models. It turned out that inflation, as it
was realized later, could also solve an additional puzzle of the standard
model, that of the generation of the cosmological perturbations. This
welcome surprise put inflation on a rather firm footing, about twenty
years ago. Twenty years later, inflation is still alive, in a stronger posi-
tion than ever because its few competitors have been eliminated as new
cosmological observations have accumulated during the last few years.
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II. A few elements on general relativity and
cosmology

Modern cosmology is based on Einstein’s theory of general relativity.
It is thus useful, before discussing the early universe, to recall a few
notions and useful formulas from this theory. Details can be found in
standard textbooks on general relativity (see e.g. [1]). In the framework
of general relativity, the spacetime geometry is defined by a metric, a
symmetric tensor with two indices, whose components in a coordinate
system {xµ} (µ = 0, 1, 2, 3) will be denoted gµν . The square of the
“distance” between two neighbouring points of spacetime is given by
the expression

ds2 = gµνdxµdxν . (II-0.1)

We will use the signature (−, +, +, +).
In a coordinate change xµ → x̃µ, the new components of the metric are

obtained by using the standard tensor transformation formulas, namely

g̃µν =
∂xρ

∂x̃µ

∂xσ

∂x̃ν
gρσ. (II-0.2)

One can define a covariant derivative associated to this metric, de-
noted Dµ, whose action on a tensor with, for example, one covariant
index and one contravariant index will be given by

DλTµ
ν = ∂λTµ

ν + Γµ
λσT σ

ν − Γσ
λνT

µ
σ (II-0.3)

(a similar term must be added for each additional covariant or con-
travariant index), where the Γ are the Christoffel symbols (they are not
tensors), defined by

Γλ
µν =

1
2
gλσ (∂µgσν + ∂νgµσ − ∂σgµν) . (II-0.4)

We have used the notation gµν which corresponds, for the metric (and
only for the metric), to the inverse of gµν in a matricial sense, i.e.
gµσgσν = δν

µ.
The “curvature” of spacetime is characterized by the Riemann tensor,

whose components can be expressed in terms of the Christoffel symbols
according to the expression

R ρ
λµν = ∂µΓρ

λν − ∂λΓρ
µν + Γσ

λνΓ
ρ
σµ − Γσ

µνΓ
ρ
σλ. (II-0.5)

Einstein’s equations relate the spacetime geometry to its matter con-
tent. The geometry appears in Einstein’s equations via the Ricci tensor,
defined by

Rµν = R σ
µσν , (II-0.6)
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and the scalar curvature, which is the trace of the Ricci tensor, i.e.

R = gµνRµν . (II-0.7)

The matter enters Einstein’s equations via the energy-momentum tensor,
denoted Tµν , whose time/time component corresponds to the energy
density, the time/space components to the momentum density and the
space/space component to the stress tensor. Einstein’s equations then
read

Gµν ≡ Rµν − 1
2
R gµν = 8πGTµν , (II-0.8)

where the tensor Gµν is called the Einstein tensor. Since, by construc-
tion, the Einstein tensor satisfies the identity DµGµ

ν = 0, any energy-
momentum on the right-hand side of Einstein’s equation must necessarily
satisfy the relation

DµTµ
ν = 0, (II-0.9)

which can be interpreted as a generalization, in the context of a curved
spacetime, of the familiar conservation laws for energy and momentum.

The motion of a particule is described by its trajectory in spacetime,
xµ(λ), where λ is a parameter. A free particle, i.e. which does not
feel any force (other than gravity), satisfies the geodesic equation, which
reads

tσDσtµ = 0, (II-0.10)

where tµ = dxµ/dλ is the vector field tangent to the trajectory (note that
the geodesic equation written in this form assumes that the parameter
λ is affine). Equivalently, the geodesic can be rewritten as

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0. (II-0.11)

The geodesic equation applies both to

massive particles, in which case one usually takes as the parame-
ter λ the so-called proper time so that the corresponding tangent
vector uµ is normalized: gµνu

µuν = −1;

massless particles, in particular the photon, in which case the tan-
gent vector, usually denoted kµ is light-like, i.e. gµνk

µkν = 0.

Einstein’s equations can also be obtained from a variational principle.
The corresponding action reads

S =
1

16πG

∫
d4x

√−g (R − 2Λ) +
∫

d4x
√−gLmat. (II-0.12)
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One can check that the variation of this action with respect to the metric
gµν , upon using the definition

Tµν =
2√−g

δ (
√−gLmat)

δgµν
, (II-0.13)

indeed gives Einstein’s equations

Gµν + Λgµν = 8πGTµν . (II-0.14)

This is a slight generalization of Einstein’s equations (II-0.8) that in-
cludes a cosmological constant Λ. It is worth noticing that the cosmolog-
ical constant can also be interpreted as a particular energy-momentum
tensor of the form Tµν = −(8πG)−1Λgµν .

II-1 Review of standard cosmology
In this subsection, the foundations of modern cosmology are briefly

recalled. They follow from Einstein’s equations introduced above and
from a few hypotheses concerning spacetime and its matter content.
One of the essential assumptions of cosmology (so far confirmed by ob-
servations) is to consider, as a first approximation, the universe as being
homogeneous and isotropic. Note that these symmetries define implicitly
a particular “slicing” of spacetime, the corresponding space-like hyper-
surfaces being homogeneous and isotropic. A different slicing of the
same spacetime will give in general space-like hypersurfaces that are not
homogeneous and isotropic.

The above hypothesis turns out to be very restrictive and the only
metrics compatiblewiththis requirement reduceto theso-calledRobertson-
Walker metrics, which read in an appropriate coordinate system

ds2 = −dt2 + a2(t)
[

dr2

1 − κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (II-1.15)

with κ = 0,−1, 1 depending on the curvature of spatial hypersurfaces:
respectively flat, elliptic or hyperbolic.

The matter content compatible with the spacetime symmetries of ho-
mogeneity and isotropy is necessarily described by an energy-momentum
tensor of the form (in the same coordinate system as for the metric (II-
1.15)):

Tµ
ν = Diag (−ρ(t), p(t), p(t), p(t)) . (II-1.16)

The quantity ρ corresponds to an energy density and P to a pressure.
One can show that the so-called comoving particles, i.e. those parti-

cles whose spatial coordinates are constant in time, satisfy the geodesic
equation (II-0.11).
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II-2 Friedmann-Lematre equations
Substituting the Robertson-Walker metric (II-1.15) in Einstein’s equa-

tions (II-0.8), one gets the so-called Friedmann-Lematre equations:(
ȧ

a

)2

=
8πGρ

3
− κ

a2
, (II-2.17)

ä

a
= −4πG

3
(ρ + 3P ) . (II-2.18)

An immediate consequence of these two equations is the continuity equa-
tion

ρ̇ + 3H (ρ + p) = 0, (II-2.19)

where H ≡ ȧ/a is the Hubble parameter. The continuity equation can be
also obtained directly from the energy-momentum conservation DµTµ

ν =
0, as mentioned before.

In order to determine the cosmological evolution, it is easier to com-
bine (II-2.17) with (II-2.19). Let us assume an equation of state for the
cosmological matter of the form p = wρ with w constant. This includes
the two main types of matter that play an important rôle in cosmology:

gas of relativistic particles, w = 1/3;

non relativistic matter, w � 0.

In these cases, the conservation equation (II-2.19) can be integrated to
give

ρ ∝ a−3(1+w). (II-2.20)

Substituting in (II-2.17), one finds, for κ = 0,

3
ȧ2

a2
= 8πGρ0

(
a

a0

)−3(1+w)

, (II-2.21)

where, by convention, the subscript ’0’ stands for present quantities.
One thus finds ȧ2 ∝ a2−3(1+w), which gives for the evolution of the scale
factor

in a universe dominated by non relativistic matter

a(t) ∝ t2/3, (II-2.22)

and in a universe dominated by radiation

a(t) ∝ t1/2. (II-2.23)
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One can also mention the case of a cosmological constant, which corre-
sponds to an equation of state w = −1 and thus implies an exponential
evolution for the scale factor

a(t) ∝ exp(Ht). (II-2.24)

More generally, when several types of matter coexist with respectively
p(i) = w(i)ρ(i), it is convenient to introduce the dimensionless parameters

Ω(i) =
8πGρ

(i)
0

3H2
0

, (II-2.25)

which express the present ratio of the energy density of some given
species with respect to the so-called critical energy density ρcrit = 3H2

0

/(8πG), which corresponds to the total energy density for a flat universe.
One can then rewrite the first Friedmann equation (II-2.17) as(

H

H0

)2

=
∑

i

Ω(i)

(
a

a0

)−3(1+w(i))

+ Ωκ

(
a

a0

)−2

, (II-2.26)

with Ωκ = −κ/a2
0H

2
0 , which implies that the cosmological parameters

must satisfy the consistency relation∑
i

Ω(i) + Ωκ = 1. (II-2.27)

As for the second Friedmann equation (II-2.18), it implies

ä0

a0H2
0

= −1
2

∑
i

Ω(i)(1 + w(i)). (II-2.28)

Present cosmological observations yield for the various parameters

Baryons: Ωb � 0.05,

Dark matter: Ωd � 0.25,

Dark energy (compatible with a cosmological constant): ΩΛ � 0.7,

Photons: Ωγ � 5 × 10−5.

Observations have not detected so far any deviation from flatness. Ra-
diation is very subdominant today but extrapolating backwards in time,
radiation was dominant in the past since its energy density scales as
ργ ∝ a−4 in contrast with non relativistic matter (ρm ∝ a−3). More-
over, since the present matter content seems dominated by dark energy
similar to a cosmological constant (wΛ = −1), this indicates that our
universe is presently accelerating.
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II-3 The cosmological redshift
An important consequence of the expansion of the universe is the

cosmological redshift of photons. This is in fact how the expansion of
the universe was discovered initially.

Let us consider two light signals emitted by a comoving object at two
successive instants te and te + δte, then received later at respectively to
and to + δto by a (comoving) observer. One can always set the observer
at the center of the coordinate system. All light trajectories reaching
the observer are then radial and one can write, using (II-1.15)∫ re

0

dr√
1 − κr2

=
∫ to

te

dt

a(t)
. (II-3.29)

The left-hand side being identical for the two successive trajectories, the
right-hand side must vanish, which yields

δto
ao

− δte
ae

= 0. (II-3.30)

This implies for the frequencies measured at emission and at reception
a redshift given by

1 + z ≡ νe

νo
=

ao

ae
. (II-3.31)

II-4 Thermal history of the universe
To go beyond a simply geometrical description of cosmology, it is very

fruitful to apply thermodynamics to the matter content of the universe.
One can then define a temperature T for the cosmological photons, not
only when they are strongly interacting with ordinary matter but also
after they have decoupled because, with the expansion, the thermal dis-
tribution for the gas of photons is unchanged except for a global rescaling
of the temperature so that T essentially evolves as

T (t) ∝ 1
a(t)

. (II-4.32)

This means that, going backwards in time, the universe was hotter and
hotter. This is the essence of the hot Big Bang scenario.

As the universe evolves, the reaction rates between the various species
are modified. A detailed analysis of these changes enables to reconstruct
the past thermal history of the universe. Two events in particular play
an essential rôle because of their observational consequences:

Primordial nucleosynthesis
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Nucleosynthesis occured at a temperature around 0.1 MeV, when
the average kinetic energy became sufficiently low so that nuclear
binding was possible. Protons and neutrons could then combine,
which lead to the production of light elements, such that Helium,
Deuterium, Lithium, etc... Within the observational uncertain-
ties, this scenario is remarkably confirmed by the present mea-
surements.

Decoupling of baryons and photons (or last scattering)

A more recent event is the so-called “recombination” of nuclei and
electrons to form atoms. This occured at a temperature of the
order of the eV. Free electrons thus almost disappeared, which
entailed an effective decoupling of the cosmological photons and
ordinary matter. What we see today as the Cosmic Microwave
Background (CMB) is made of the fossil photons, which interacted
for the last time with matter at the last scattering epoch. The
CMB represents a remarkable observational tool for analysing the
perturbations of the early universe, as well as for measuring the
cosmological parameters introduced above.

II-5 Puzzles of the standard Big Bang model
The standard Big Bang model has encountered remarkable successes,

in particular with the nucleosynthesis scenario and the prediction of
the CMB, and it remains today a cornerstone in our understanding of
the present and past universe. However, a few intriguing facts remain
unexplained in the strict scenario of the standard Big Bang model and
seem to necessitate a larger framework. We review below the main
problems:

Homogeneity problem

A first question is why the approximation of homogeneity and
isotropy turns out to be so good. Indeed, inhomogeneities are
unstable, because of gravitation, and they tend to grow with time.
It can be verified for instance with the CMB that inhomogeneities
were much smaller at the last scattering epoch than today. One
thus expects that these homogeneities were still smaller further
back in time. How to explain a universe so smooth in its past ?

Flatness problem
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Another puzzle lies in the (spatial) flatness of our universe. Indeed,
Friedmann’s equation (II-2.17) implies

Ω − 1 ≡ 8πGρ

3H2
− 1 =

κ

a2H2
. (II-5.33)

In standard cosmology, the scale factor behaves like a ∼ tp with p <
1 (p = 1/2 for radiation and p = 2/3 for non-relativistic matter).
As a consequence, (aH)−2 grows with time and |Ω − 1| must thus
diverge with time. Therefore, in the context of the standard model,
the quasi-flatness observed today requires an extreme fine-tuning
of Ω near 1 in the early universe.

Horizon problem

One of the most fundamental problems in standard cosmology is
certainly the horizon problem. The (particle) horizon is the max-
imal distance that can be covered by a light ray. For a light-like
radial trajectory dr = a(t)dt and the horizon is thus given by

dH(t) = a(t)
∫ t

ti

dt′

a(t′)
= a(t)

t1−q − t1−q
i

1 − q
, (II-5.34)

where the last equality is obtained by assuming a(t) ∼ tq and ti is
some initial time.

In standard cosmology (q < 1), the integral converges in the limit
ti = 0 and the horizon has a finite size, of the order of the so-called
Hubble radius H−1:

dH(t) =
q

1 − q
H−1. (II-5.35)

It also useful to consider the comoving Hubble radius, (aH)−1,
which represents the fraction of comoving space in causal contact.
One finds that it grows with time, which means that the fraction
of the universe in causal contact increases with time in the context
of standard cosmology. But the CMB tells us that the Universe
was quasi-homogeneous at the time of last scattering on a scale
encompassing many regions a priori causally independent. How to
explain this ?

A solution to the horizon problem and to the other puzzles is provided
by the inflationary scenario, which we will examine in the next section.
The basic idea is to invert the behaviour of the comoving Hubble radius,
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Figure 1. Evolution of the comoving Hubble radius λH = (aH)−1: during stan-
dard cosmology, λH increases (continuous lines), whereas during inflation λH shrinks
(dashed lines).
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that is to make him decrease sufficiently in the very early universe. The
corresponding condition is that

ä > 0, (II-5.36)

i.e. that the Universe must undergo a phase of acceleration.

III. Inflation
The broadest definition of inflation is that it corresponds to a phase

of acceleration of the universe,

ä > 0. (III-0.37)

In this broad sense, the current cosmological observations, if correctly
interpreted, mean that our present universe is undergoing an inflationary
phase. We are however interested here in an inflationary phase taking
place in the very early universe, with different energy scales.

The Friedmann equations (II-2.17) tell us that one can get acceleration
only if the equation of state satisfies the condition

P < −1
3
ρ, (III-0.38)

condition which looks at first view rather exotic.
A very simple example giving such an equation of state is a cosmolog-

ical constant, corresponding to a cosmological fluid with the equation of
state

P = −ρ. (III-0.39)

However, a strict cosmological constant leads to exponential inflation
forever which cannot be followed by a radiation or matter era. Another
possibility is a scalar field, which we discuss now in some details.

III-1 Cosmological scalar fields
The dynamics of a scalar field coupled to gravity is governed by the

action

Sφ =
∫

d4x
√−g

(
−1

2
∂µφ∂µφ − V (φ)

)
. (III-1.40)

The corresponding energy-momentum tensor, which can be derived using
(II-0.13), is given by

Tµν = ∂µφ∂νφ − gµν

(
1
2
∂σφ∂σφ + V (φ)

)
. (III-1.41)
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If one assumes the geometry, and thus the matter, to be homogeneous
and isotropic, then the energy-momentum tensor reduces to the perfect
fluid form with the energy density

ρ = −T 0
0 =

1
2
φ̇2 + V (φ), (III-1.42)

where one recognizes the sum of a kinetic energy and of a potential
energy, and the pressure

p =
1
2
φ̇2 − V (φ). (III-1.43)

The equation of motion for the scalar field is the Klein-Gordon equation,
which is obtained by taking the variation of the above action (III-1.40)
with respect to the scalar field and which reads

DµDµφ = V ′, (III-1.44)

in general and
φ̈ + 3Hφ̇ + V ′ = 0 (III-1.45)

in the particular case of a FLRW (Friedmann-Lematre-Robertson-Walker)
universe.

The system of equations governing the dynamics of the scalar field
and of the geometry in a FLRW universe is thus given by

H2 =
8πG

3

(
1
2
φ̇2 + V (φ)

)
, (III-1.46)

φ̈ + 3Hφ̇ + V ′ = 0, (III-1.47)
Ḣ = −4πGφ̇2. (III-1.48)

The last equation can be derived from the first two and is therefore
redundant.

III-2 The slow-roll regime
The dynamical system (III-1.46-III-1.48) does not always give an ac-

celerated expansion but it does so in the so-called slow-roll regime when
the potential energy of the scalar field dominates over its kinetic energy.

More specifically, the so-called slow roll approximation consists in
neglecting the kinetic energy of the scalar field , φ̇2/2 in (III-1.46) and
the acceleration φ̈ in the Klein-Gordon equation (III-1.47). One then
gets the simplified system

H2 � 8πG

3
V, (III-2.49)

3Hφ̇ + V ′ � 0. (III-2.50)



Inflation, Quantum Fluctuations and Cosmological Perturbations 247

Let us now examine in which regime this approximation is valid. From
(III-2.50), the velocity of the scalar field is given by

φ̇ � − V ′

3H
. (III-2.51)

Substituting this relation in the condition φ̇2/2  V yields the require-
ment:

εV ≡ m2
P

2

(
V ′

V

)2

 1, (III-2.52)

where we have introduced the reduced Planck mass

mP ≡ 1√
8πG

. (III-2.53)

Similarly, the time derivative of (III-2.51), using the time derivative of
(III-2.49), gives, after substitution in φ̈  V ′, the condition

ηV ≡ m2
P

V ′′

V
 1. (III-2.54)

In summary, the slow-roll approximation is valid when the two conditions
εV , ηV  1 are satisfied, which means that the slope and the curvature
of the potential, in Planck units, must be sufficiently small.

III-3 Number of e-folds
When working with a specific inflationary model, it is important to be

able to relate the cosmological scales observed at the present time with
the scales during inflation. For this purpose, one usally introduces the
number of e-foldings before the end of inflation, denoted N , and simply
defined by

N = ln
aend

a
, (III-3.55)

where aend is the value of the scale factor at the end of inflation and a
is a fiducial value for the scale factor during inflation. By definition, N
decreases during the inflationary phase and reaches zero at its end. In
the slow-roll approximation, it is possible to express N as a function of
the scalar field. Since dN = −d ln a = −Hdt = −(H/φ̇)dφ, one easily
finds, using (III-2.51) and (III-2.49), that

N(φ) �
∫ φend

φ

V

m2
P V ′dφ. (III-3.56)

Given an explicit potential V (φ), one can in principle integrate the above
expression to obtain N in terms of φ. This will be illustrated below for
some specific models.
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Let us now discuss the link between N and the present cosmologi-
cal scales. Let us consider a given scale characterized by its comoving
wavenumber k = 2π/λ. This scale crossed outside the Hubble radius,
during inflation, at an instant t∗(k) defined by

k = a(t∗)H(t∗). (III-3.57)

To get a rough estimate of the number of e-foldings of inflation that
are needed to solve the horizon problem, let us first ignore the transi-
tion from a radiation era to a matter era and assume for simplicity that
the inflationary phase was followed instantaneously by a radiation phase
that has lasted until now. During the radiation phase, the comoving
Hubble radius (aH)−1 increases like a. In order to solve the horizon
problem, the increase of the comoving Hubble radius during the stan-
dard evolution must be compensated by at least a decrease of the same
amount during inflation. Since the comoving Hubble radius roughly
scales like a−1 during inflation, the minimum amount of inflation is sim-
ply given by the number of e-folds between the end of inflation and today
ln(a0/aend) = ln(Tend/T0) ∼ ln(1029(Tend/1016GeV)), i.e. around 60 e-
folds for a temperature T ∼ 1016Gev at the beginning of the radiation
era. As we will see later, this energy scale is typical of inflation in the
simplest models.

This determines roughly the number of e-folds N(k0) between the
moment when the scale corresponding to our present Hubble radius
k0 = a0H0 exited the Hubble radius during inflation and the end of
inflation. The other lengthscales of cosmological interest are smaller
than k−1

0 and therefore exited the Hubble radius during inflation after
the scale k0, whereas they entered the Hubble radius during the standard
cosmological phase (either in the radiation era for the smaller scales or
in the matter era for the larger scales) before the scale k0.

A more detailed calculation, which distinguishes between the energy
scales at the end of inflation and after the reheating, gives for the number
of e-folds between the exit of the mode k and the end of inflation

N(k) � 62 − ln
k

a0H0
+ ln

V
1/4
k

1016GeV
+ ln

V
1/4
k

V
1/4
end

+
1
3

ln
ρ

1/4
reh

V
1/4
end

. (III-3.58)

Since the smallest scale of cosmological relevance is of the order of 1
Mpc, the range of cosmological scales covers about 9 e-folds.

The above number of e-folds is altered if one changes the thermal his-
tory of the universe between inflation and the present time by including
for instance a period of so-called thermal inflation.
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III-4 Power-law potentials
It is now time to illustrate all the points discussed above with some

specific potential. We consider first the case of power-law monomial
potentials, of the form

V (φ) =
λ

p
m4

P

(
φ

mP

)p

, (III-4.59)

which have been abundantly used in the literature. In particular, the
above potential includes the case of a free massive scalar field, V (φ) =
m2φ/2. The slow-roll conditions ε  1 and η  1 both imply

φ � p mP , (III-4.60)

which means that the scalar field amplitude must be above the Planck
mass during inflation.

After subsituting the potential (III-4.59) into the slow-roll equations
of motion (III-2.49-III-2.50), one can integrate them explicitly to get

φ2− p
2 − φ

2− p
2

i = − 2
4 − p

√
pλ

3
m

3− p
2

P (t − ti) (III-4.61)

for p �= 4 and

φ = φi exp

[
−
√

4λ

3
mP (t − ti)

]
(III-4.62)

for p = 4.
One can also express the scale factor as a function of the scalar field

(and thus as a function of time by substituting the above expression for
φ(t)) by using d ln a/dφ = H/φ̇ � −φ/(pm2

P ). One finds

a = aend exp

[
−
(
φ2 − φ2

end

)
2p m2

P

]
. (III-4.63)

Defining the end of inflation by εV = 1, one gets φend = p mP /
√

2 and
the number of e-folds is thus given by

N(φ) � φ2

2pm2
P

− p

4
. (III-4.64)

This can be inverted, so that

φ(N) �
√

2Np mP , (III-4.65)

where we have ignored the second term of the right hand side of (III-
4.64), in agreement with the condition (III-4.60).
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III-5 Exponential potential
If one considers a potential of the form

V = V0 exp
(
−
√

2
q

φ

mP

)
, (III-5.66)

then it is possible to find an exact solution (i.e. valid beyond the slow-
roll approximation) of the system (III-1.46-III-1.48), with a power-law
scale factor, i.e.

a(t) ∝ tq. (III-5.67)

The evolution of the scalar field is given by the expression

φ(t) =
√

2q mP ln

[√
V0

q(3q − 1)
t

mP

]
. (III-5.68)

Note that one recovers the slow-roll approximation in the limit q � 1,
since the slow-roll parameters are given by εV = 1/q and ηV = 2/q.

III-6 Brief history of the inflationary models
Let us now try to summarize in a few lines the history of inflationary

models. The first model of inflation is usually traced back to Alan Guth
[2] in 1981, although one can see a precursor in the model of Alexei
Starobinsky [3]. Guth’s model, which is named today old inflation is
based on a first-order phase transition, from a false vacuum with non
zero energy, which generates an exponential inflationary phase, into a
true vacuum with zero energy density. The true vacuum phase appears
in the shape of bubbles via quantum tunneling. The problem with this
inflationary model is that, in order to get sufficient inflation to solve the
problems of the standard model mentioned earlier, the nucleation rate
must be sufficiently small; but, then, the bubbles never coalesce because
the space that separates the bubbles undergoes inflation and expands too
rapidly. Therefore, the first model of inflation is not phenomenologically
viable.

After this first and unsuccessful attempt, a new generation of infla-
tionary models appeared, usually denoted new inflation models [4]. They
rely on a second order phase transition, based on thermal corrections of
the effective potential and thus assume that the scalar field is in thermal
equilibrium.

This hypothesis of thermal equilibrium was given up in the third gen-
eration of models, initiated by Andrei Linde, and whose generic name
is chaotic inflation [5]. This allows to use extremely simple potentials,
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quadratic or quartic, which lead to inflationary phases when the scalar
field is displaced from the origin with values of the order of several Planck
masses. This is sometimes considered to be problematic from a particle
physics point of view, as discussed briefly later.

During the last few years, there has been a revival of the inflation
model building based on high energy theories, in particular in the context
of supersymmetry. In these models, the value of the scalar field is much
smaller than the Planck mass.

III-7 The inflationary “zoology”
There exist many models of inflation. As far as single-field models are

concerned (or at least effectively single field during inflation, the hybrid
models requiring a second field to end inflation as discussed below), it is
convenient to regroup them into three broad categories:

Large field models (0 < η ≤ ε)
The scalar field is displaced from its stable minimum by ∆φ ∼ mP .
This includes the so-called chaotic type models with monomial
potentials

V (φ) = Λ4

(
φ

µ

)p

, (III-7.69)

or the exponential potential

V (φ) = Λ4 exp (φ/µ) , (III-7.70)

which have already been discussed.
This category of models is widely used in the literature because
of their computational simplicity. It has been claimed, although
it is still a debated issue, that these models are not so well mo-
tivated by particle physics, based on the argument that all non-
renormalizable terms must be included in a generic potential and
are out of control when the scalar field is of order of a few times the
Planck mass [8]. For this reason, some inflationary model builders
prefer to concentrate on models where the scalar field amplitude
is small with respect to the Planck mass, as those discussed just
below.

Small field models (η < 0 < ε)
In this type of models, the scalar field is rolling away from an
unstable maximum of the potential. This is a characteristic feature
of spontaneous symmetry breaking. A typical potential is

V (φ) = Λ4

[
1 −
(

φ

µ

)p]
, (III-7.71)
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Figure 2. Schematic potential for t he three main categories of inflationary models:
a. chaotic models b. symmetry breaking models; c. hybrid models

which can be interpreted as the lowest-order term in a Taylor ex-
pansion about the origin. Historically, this potential shape ap-
peared in the so-called ‘new inflation’ scenario.

A particular feature of these models is that tensor modes are much
more suppressed with respect to scalar modes than in the large-
field models, as it will be shown later.

Hybrid models (0 < ε < η)

This category of models, which appeared rather recently, relies on
the presence of two scalar fields: one plays the traditional rôle of
the inflaton, while the other is necessary to end inflation.

As an illustration, let us consider the original model of hybrid
inflation [6] based on the potential

V (φ, ψ) =
1
2
m2φ2 +

1
2
λ′ψ2φ2 +

1
4
λ
(
M2 − ψ2

)2
. (III-7.72)

For values of the field φ larger than the critical value φc = λM2/λ′,
the potential for ψ has its minimum at ψ = 0. This is the case
during inflation. ψ is thus trapped in this minimum ψ = 0, so that
the effective potential for the scalar field φ, which plays the rôle of
the inflaton, is given by

Veff (φ) = V0 +
1
2
m2φ2, (III-7.73)

with V0 = λM4/4. During the inflationary phase, the field φ slow-
rolls until it reaches the critical value φc. The shape of the potential
for ψ is then modified and new minima appear in ψ = ±M . ψ will
thus roll down into one of these new minima and, as a consequence,
inflation will end.

As far as inflation is concerned, hybrid inflation scenarios corre-
spond effectively to single-field models with a potential character-
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Figure 3. Typical potential V (φ, ψ) for hybrid inflation.
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ized by V ′′(φ) > 0 and 0 < ε < η. A typical potential is

V (φ) = Λ4

[
1 +
(

φ

µ

)p]
. (III-7.74)

Once more, this potential can be seen as the lowest order in a
Taylor expansion about the origin.

In the case of hybrid models, the value φN of the scalar field as a
function of the number of e-folds before the end of inflation is not
determined by the above potential and, therefore, (φN/µ) can be
considered as a freely adjustable parameter.

Many more details on inflationary models can be found in e.g. [7–9].

IV. The theory of cosmological perturbations
So far, we have concentrated our attention on strictly homogeneous

and isotropic aspects of cosmology. Of course, this idealized version,
although extremely useful, is not sufficient to account for real cosmology
and it is now time to turn to the study of deviations from homogeneity
and isotropy.

In cosmology, inhomogeneities grow because of the attractive nature
of gravity, which implies that inhomogeneities were much smaller in the
past. As a consequence, for most of their evolution, inhomogeneities can
be treated as linear perturbations. The linear treatment ceases to be
valid on small scales in our recent past, hence the difficulty to recon-
struct the primordial inhomogeneities from large-scale structure, but it
is quite adequate to describe the fluctuations of the CMB at the time
of last scattering. This is the reason why the CMB is currently the
best observational probe of primordial inhomogeneities. For more de-
tails on the relativistic theory of cosmological perturbations, which will
be briefly introduced in this chapter, the reader is invited to read the
standard reviews [10] in the literature.

From now on, we will be mostly working with the conformal time η,
instead of the cosmic time t. The conformal time is defined as

η =
∫

dt

a(t)
(IV-0.75)

so that the (spatially flat) FLRW metric takes the remarkably simple
form

ds2 = a2(η)
[
−dη2 + δijdxidxj

]
. (IV-0.76)
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IV-1 Perturbations of the geometry
Let us start with the linear perturbations of the geometry. The most

general linear perturbation of the FLRW metric can be expressed as

ds2 = a2
{
−(1 + 2A)dη2 + 2Bidxidη + (δij + hij) dxidxj

}
, (IV-1.77)

where we have considered only the spatially flat FLRW metric.
We have introduced a time plus space decomposition of the pertur-

bations. The indices i, j stand for spatial indices and the perturbed
quantities defined in (IV-1.77) can be seen as three-dimensional tensors,
for which the indices can be lowered (or raised) by the spatial metric δij

(or its inverse).
It is very convenient to separate the perturbations into three cate-

gories, the so-called “scalar”, “vector” and “tensor” modes. For example,
a spatial vector field Bi can be decomposed uniquely into a longitudinal
part and a transverse part,

Bi = ∇iB + B̄i, ∇iB̄
i = 0, (IV-1.78)

where the longitudinal part is curl-free and can thus be expressed as a
gradient, and the transverse part is divergenceless. One thus gets one
“scalar” mode, B , and two “vector” modes B̄i (the index i takes three
values but the divergenceless condition implies that only two components
are independent.

A similar procedure applies to the symmetric tensor hij , which can
be decomposed as

hij = 2Cδij + 2∇i∇jE + 2∇(iEj) + Eij , (IV-1.79)

with E
ij transverse and traceless (TT), i.e. ∇iE

ij = 0 (transverse) and
E

ij
δij = 0 (traceless), and Ei transverse. The parentheses around the

indices denote symmetrization, namely 2∇(iEj) = ∇iEj + ∇jEi. We
have thus defined two scalar modes, C and E, two vector modes, Ei,
and two tensor modes, Ēij .

In the following, we will be mainly interested in the metric with only
scalar perturbations, since scalar modes are the most relevant for cos-
mology and they can be treated independently of the vector and tensor
modes. In matrix notation, the perturbed metric will thus be of the
form

gµν = a2

⎡⎣ −(1 + 2A) ∇iB

∇jB {(1 + 2C)δij + 2∇i∇jE}

⎤⎦ . (IV-1.80)

After the description of the perturbed geometry, we turn to the pertur-
bations of the matter in the next subsection.
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IV-2 Perturbations of the matter
Quite generally, the perturbed energy-momentum tensor can be writ-

ten in the form

Tµ
ν =

⎡⎣ −(ρ + δρ) qj

−qi + (ρ + P )Bi (P + δP )δi
j + πi

j

⎤⎦ , (IV-2.81)

where qi is the momentum density and πi
j is the anisotropic stress tensor,

which is traceless, i.e. πk
k = 0. One can then decompose these tensors

into scalar, vector and tensor components, as before for the metric com-
ponents, so that

qi = ∇iq + q̄i, ∇iq̄
i = 0, (IV-2.82)

and

πij = ∇i∇jπ − 1
3
δij∇k∇kπ + 2∇(iπj) + π̄ij , (IV-2.83)

∇kπ
k = 0, ∇kπ̄

kl = 0, π̄k
k = 0. (IV-2.84)

Fluid. A widely used description for matter in cosmology is that of
a fluid. Its homogeneous part is described by the energy-momentum
tensor of a perfect fluid, as seen earlier, while its perturbed part can be
expressed as

δT 0
0 = −δρ, (IV-2.85)

δT i
0 = − (ρ + p) vi, δT 0

i = (ρ + p) (vi + Bi) (IV-2.86)
δT i

j = δPδi
j + πi

j , (IV-2.87)

with πk
k = 0 as before and where vi is the three-dimensional fluid velocity

defined by

δui =
1
a
vi. (IV-2.88)

It is also possible to separate this perturbed energy-momentum tensor
into scalar, vector and tensor parts by using decompositions for vi and
πij similar to (IV-2.82) and (IV-2.84).

Scalar field. Another type of matter, especially useful in the con-
text of inflation, is a scalar field. The homogeneous description has
already been given earlier and the perturbed expression for the energy-
momentum tensor follows immediately from (III-1.41), taking into ac-
count the metric perturbations as well. One finds

a2δT 0
0 = −a2δρ = −φ′δφ′ − a2V ′δφ + φ′2A, (IV-2.89)
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a2δT 0
i = a2qi = −φ′∂iδφ, (IV-2.90)

a2δT i
j = −δi

j

(
a2V ′δφ + φ′2A − φ′δφ′

)
. (IV-2.91)

The last equation shows that, for a scalar field, there is no anisotropic
stress in the energy-momentum tensor.

IV-3 Gauge transformations
It is worth noticing that there is a fundamental difference between the

perturbations in general relativity and the perturbations in other field
theories where the underlying spacetime is fixed. In the latter case, one
can define the perturbation of a given field φ as

δφ(p) = φ(p) − φ̄(p), (IV-3.92)

where φ̄ is the unperturbed field and p is any point of the spacetime.
In the context of general relativity, spacetime is no longer a frozen

background but must also be perturbed if matter is perturbed. As a con-
sequence, the above definition does not make sense since the perturbed
quantity φ lives in the perturbed spacetime M, whereas the unperturbed
quantity φ̄ lives in another spacetime: the unperturbed spacetime of ref-
erence, which we will denote M̄. In order to use a definition similar to
(IV-3.92), one must introduce a one-to-one identification, ι, between the
points of M̄ and those of M. The perturbation of the field can then be
defined as

δφ(p̄) = φ(ι(p̄)) − φ̄(p̄), (IV-3.93)

where p̄ is a point of M̄.
However, the identification ι is not uniquely defined, and therefore the

definition of the perturbation depends on the particular choice for ι: two
different identifications, ι1 and ι2 say, lead to two different definitions
for the perturbations. This ambiguity can be related to the freedom of
choice of the coordinate system. Indeed, if one is given a coordinate
system in M̄, one can transport it into M via the identification. ι1 and
ι2 thus define two different coordinate systems in M, and in this respect,
a change of identification can be seen as a change of coordinates in M.

The metric perturbations, introduced in (IV-1.77), are modified in a
coordinate transformation of the form

xα → xα + ξα, ξα = (ξ0, ξi). (IV-3.94)

It can be shown that the change of the metric components can be ex-
pressed as

∆ (δgµν) = −2D(µξν). (IV-3.95)
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where ∆ represents the variation, due the coordinate transformation, at
the same old and new coordinates (and thus at different physical points).
The above variation can be decomposed into individual variations for the
various components of the metric defined earlier. One finds

∆A = −ξ0′ −Hξ0 (IV-3.96)
∆Bi = ∇iξ

0 − ξ′i (IV-3.97)
∆hij = −2

(
∇(iξj) −Hξ0δij

)
. (IV-3.98)

The effect of a coordinate transformation can also be decomposed
along the scalar, vector and tensor sectors introduced earlier. The gen-
erator ξα of the coordinate transformation can be written as

ξα = (ξ0,∇iξ + ξ
i), (IV-3.99)

with ξ
i transverse. This shows explicitly that ξα contains two scalar

components, ξ0 and ξ, and two vector components, ξ
i. The transforma-

tions (IV-3.96-IV-3.98) are then decomposed into :

A → A − ξ0′ −Hξ0

B → B + ξ0 − ξ′

C → C −Hξ0

E → E − ξ (IV-3.100)

B
i → B

i − ξ
i′

Ei → Ei − ξ
i
.

The tensor perturbations remain unchanged since ξα does not contain
any tensor component. The matter perturbations, either in the fluid de-
scription or in the scalar field description, follow similar transformation
laws in a coordinate change.

In order to study the physically relevant modes and not spurious
modes due to coordinate ambiguities, two strategies can a priori be en-
visaged. The first consists in working from the start in a specific gauge.
A familiar choice in the literature on cosmological perturbations is the
longitudinal gauge (also called conformal Newton gauge), which imposes

BL = 0, EL = 0. (IV-3.101)

The second approach consists in defining gauge-invariant variables,
i.e. variables that are left unchanged under a coordinate transformation.
For the scalar metric perturbations, we start with four quantities (A, B,
C and E) and we can use two gauge transformations (ξ0 and ξ). This
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implies that the scalar metric perturbations must be described by two
independent gauge-invariant quantities. Two such quantities are

Φ = A + (B − E′)′ + H(B − E′) (IV-3.102)

and
Ψ = −C −H(B − E′), (IV-3.103)

as it can be checked by considering the explicit transformations in (IV-
3.100). It turns out that, in the longitudinal gauge, the remaining
scalar perturbations AL and CL are numerically equivalent to the gauge-
invariant quantities just defined Φ and −Ψ.

In practice, one can combine the two strategies by doing explicit cal-
culations in a given gauge and then by relating the quantities defined
in this gauge to some gauge-invariant variables. It is then possible to
translate the results in any other gauge. In the rest of these lectures, we
will use the longitudinal gauge.

IV-4 The perturbed Einstein equations
After having defined the metric and the matter perturbations, we can

now relate them via the perturbed Einstein equations. We will consider
here explicitly only the scalar sector, which is the most complicated but
also the most interesting for cosmological applications.

Starting from the perturbed metric (IV-1.80), one can compute the
components of Einstein’s tensor at linear order. In the longitudinal
gauge, i.e. with BL = EL = 0, one finds(

δG0
0

)
L

=
2
a2

[
3H2AL − 3HC ′

L + ∇2CL

]
(IV-4.104)(

δG0
i

)
L

=
2
a2

∇i

[
−HAL + C ′

L

]
(IV-4.105)(

δGi
j

)
L

=
1
a2

∇i∇j (−CL − AL) +
1
a2

[
−2C ′′

L − 4HC ′
L + ∇2CL

+2HA′
L + ∇2AL + 2

(
2H′ + H2

)
AL

]
δi
j . (IV-4.106)

Combining with the perturbations of the energy-momentum tensor
given in (IV-2.81), the perturbed Einstein equations yield, in the longi-
tudinal gauge, the following relations: the energy constraint (from (IV-
4.104))

3H2AL − 3HC ′
L + ∇2CL = −4πGa2δρL, (IV-4.107)

the momentum constraint (from (IV-4.105))

C ′
L −HAL = 4πGa2 qL, (IV-4.108)
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the “anisotropy constraint” (from the traceless part of (IV-4.106))

−AL − CL = 8πGa2 πL, (IV-4.109)

and finally

C ′′
L + 2HC ′

L −HA′
L − (2H′ + H2)AL − 1

3
∇2(AL + CL) = −4πGδPL,

(IV-4.110)
obtained from the trace of (IV-4.106).

The combination of the energy and momentum constraints gives the
useful relation

∇2Ψ = 4πGa2 (δρL − 3HqL) ≡ 4πGa2δρc, (IV-4.111)

where we have introduced the comoving energy density perturbation δρc:
this gauge-invariant quantity corresponds, according to its definition, to
the energy density perturbation measured in comoving gauges character-
ized by δT 0

i = qi = 0. We have also replaced CL by −Ψ. Note that the
above equation is quite similar to the Newtonian Poisson equation, but
with quantities whose natural interpretation is given in different gauges.

IV-5 Equations for the matter
As mentioned earlier, a consequence of Einstein’s equations is that

the total energy-momentum tensor is covariantly conserved (see Eq. (II-
0.9)). For a fluid, the conservation of the energy-momentum tensor
leads to a continuity equation that generalizes the continuity equation of
fluid mechanics, and a momentum conservation equation that generalizes
the Euler equation. In the case of a single fluid, combinations of the
perturbed Einstein equations obtained in the previous subsection lead
necessarily to the perturbed continuity and Euler equations for the fluid.
In the case of several non-interacting fluids, however, one must impose
separately the covariant conservation of each energy-momentum tensor:
this is not a consequence of Einstein’s equations, which impose only the
conservation of the total energy-momentum tensor.

In the perspective to deal with several cosmological fluids, it is there-
fore useful to write the perturbation equations, satisfied by a given fluid,
that follow only from the conservation of the corresponding energy-
momentum tensor, and independently of Einstein’s equations.

The continuity equation can be obtained by perturbing uµDνT
ν
µ = 0.

One finds, in any gauge,

δρ′ + 3H (δρ + δP ) + (ρ + P )
(
3C ′ + ∇2E′ + ∇2v

)
= 0. (IV-5.112)
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Dividing by ρ, this can be reexpressed in terms of the density contrast
δ = δρ/ρ:

δ′ + 3H
(

δP

δρ
− w

)
δ + (1 + w)

(
∇2v + 3C ′ + ∇2E′) = 0, (IV-5.113)

where w = p/ρ (w is not necessarily constant here). The perturbed
Euler equation is derived from the spatial projection of δ(DνT

ν
µ ) = 0.

This gives

(v + B)′ +
(
1 − 3c2

s

)
H (v + B) + A +

δP

ρ + P
+

2
3(ρ + P )

∇2π = 0,

(IV-5.114)
where cs is the sound speed, which is related to the time derivatives of
the background energy density and pressure:

c2
s =

p′

ρ′
. (IV-5.115)

There are as many systems of equations (IV-5.113-IV-5.114) as the num-
ber of fluids. If the fluids are interacting, one must add an interaction
term on the right-hand side of the Euler equations.

Finally, let us stress that the fluid description is not always an ade-
quate approximation for cosmological matter. A typical example is the
photons during and after recombination: their mean free path becomes
so large that they must be treated as a gas, which requires the use of the
Boltzmann equation (see e.g. [11] for a presentation of the Boltzmann
equation in the cosmological context).

IV-6 Initial conditions for standard cosmology
The notion of initial conditions depends in general on the context,

since the initial conditions for a given period in the history of the universe
can be seen as the final conditions of the previous phase. In cosmology,
“initial conditions” usually refer to the state of the perturbations during
the radiation dominated era (of standard cosmology) and on wavelengths
larger than the Hubble radius.

Let us first address in details the question of initial conditions in
the simple case of a single perfect fluid, radiation, with equation of
state p = ρ/3 (which gives c2

s = w = 1/3). The four key equations
are the continuity, Euler, Poisson and anisotropy equations, respectively
Eqs (IV-5.113), (IV-5.114), (IV-4.111) and (IV-4.109). In terms of the
Fourier components,

Q(�k) =
∫

d3x

(2π)3/2
e−i�k.�xQ(�x), (IV-6.116)
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and of the dimensionless quantity

x ≡ kη (IV-6.117)

(during the radiation dominated era H = 1/η), the four equations can
be rewritten as

dδ

dx
− 4

3
V + 4

dC

dx
= 0, (IV-6.118)

dV
dx

+
1
4
δ + A = 0, (IV-6.119)

x2C =
3
2

(
δ − 4

x
V
)

(IV-6.120)

C = −A. (IV-6.121)

We have introduced the quantity V ≡ kv, which has the dimension of
a velocity. Since we are interested in perturbations with wavelength
larger than the Hubble radius, i.e. such that x = k/H  1, it is useful
to consider a Taylor expansion for the various perturbations, for instance

V = V(0) + xV(1) +
x2

2
V(2) + . . . (IV-6.122)

One then substitutes these Taylor expansions into the above system of
equations. In particular, the Poisson equation (IV-6.120) gives

V(0) = 0, (IV-6.123)

in order to avoid a divergence, as well as

V(1) =
1
4
δ(0). (IV-6.124)

The Euler equation (IV-6.119) then gives

A(0) = −1
2
δ(0). (IV-6.125)

The conclusion is that the initial conditions for each Fourier mode are
determined by a single quantity, e.g. δ(0), the other quantities being
related via the above constraints.

In general, one must consider several cosmological fluids. Typically,
the “initial” or “primordial” perturbations are defined deep in the ra-
diation era but at temperatures low enough, i.e. after nucleosynthesis,
so that the main cosmological components reduce to the usual photons,
baryons, neutrinos and cold dark matter (CDM). The system (IV-6.118-
IV-6.121) must thus be generalized to include a continuity equation and
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a Euler equation for each fluid. The above various cosmological species
can be characterized by their number density, nX , and their energy den-
sity ρX . In a multi-fluid system, it is useful to distinguish adiabatic and
isocurvature perturbations.

The adiabatic mode is defined as a perturbation affecting all the cos-
mological species such that the relative ratios in the number densities
remain unperturbed, i.e. such that

δ (nX/nY ) = 0. (IV-6.126)

It is associated with a curvature perturbation, via Einstein’s equations,
since there is a global perturbation of the matter content. This is why the
adiabatic perturbation is also called curvature perturbation. In terms of
the energy density contrasts, the adiabatic perturbation is characterized
by the relations

1
4
δγ =

1
4
δν =

1
3
δb =

1
3
δc, (IV-6.127)

They follow directly from the prescription (IV-6.126), each coefficient
depending on the equation of state of the particuler species.

Since there are several cosmological species, it is also possible to per-
turb the matter components without perturbing the geometry. This
corresponds to isocurvature perturbations, characterized by variations
in the particle number ratios but with vanishing curvature perturba-
tion. The variation in the relative particle number densities between
two species can be quantified by the so-called entropy perturbation

SA,B ≡ δnA

nA
− δnB

nB
. (IV-6.128)

When the equation of state for a given species is such that w ≡ p/ρ =
Const, then one can reexpress the entropy perturbation in terms of the
density contrast, in the form

SA,B ≡ δA

1 + wA
− δB

1 + wB
. (IV-6.129)

It is convenient to choose a species of reference, for instance the photons,
and to define the entropy perturbations of the other species relative to
it:

Sb ≡ δb − 3
4δγ , (IV-6.130)

Sc ≡ δc − 3
4δγ , (IV-6.131)

Sν ≡ 3
4δν − 3

4δγ , (IV-6.132)



264 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

thus define respectively the baryon isocurvature mode, the CDM isocur-
vature mode, the neutrino isocurvature mode. In terms of the entropy
perturbations, the adiabatic mode is obviously characterized by Sb =
Sc = Sν = 0.

In summary, we can decompose a general perturbation, described by
four density contrasts, into one adiabatic mode and three isocurvature
mode. In fact, the problem is slightly more complicated because the
evolution of the initial velocity fields. For a single fluid, we have seen that
the velocity field is not an independent initial condition but depends on
the density contrast so that there is no divergence backwards in time. In
the case of the four species mentioned above, there remains however one
arbitrary relative velocity between the species, which gives an additional
mode, usually named the neutrino isocurvature velocity perturbation.

The CMB is a powerful way to study isocurvature perturbations be-
cause (primordial) adiabatic and isocurvature perturbations produce
very distinctive features in the CMB anisotropies [12]. Whereas an adi-
abatic initial perturbation generates a cosine oscillatory mode in the
photon-baryon fluid, leading to an acoustic peak at � � 220 (for a flat
universe), a pure isocurvature initial perturbation generates a sine os-
cillatory mode resulting in a first peak at � � 330. The unambiguous
observation of the first peak at � � 220 has eliminated the possibility of a
dominant isocurvature perturbation. The recent observation by WMAP
of the CMB polarization has also confirmed that the initial perturbation
is mainly an adiabatic mode. But this does not exclude the presence
of a subdominant isocurvature contribution, which could be detected in
future high-precision experiments such as Planck.

IV-7 Super-Hubble evolution
In the case of adiabatic perturbations, there is only one (scalar) dy-

namical degree of freedom. One can thus choose either an energy density
perturbation or a metric perturbation, to study the dynamics, the other
quantities being determined by the constraints.

If one considers the metric perturbation Ψ = Φ (assuming π = 0), one
can combine Einstein’s equations (IV-4.110), with δp = c2

sδρ (for adia-
batic perturbations), and (IV-4.107) to obtain a second-order differential
equation in terms of Ψ only:

Ψ′′ + 3H(1 + c2
s)Ψ

′ +
[
2H′ + (1 + 3c2

s)H
]
Ψ − k2c2

sΨ = 0. (IV-7.133)

Using the background Friedmann equations, the sound speed can be
reexpressed in terms of the scale factor and its derivatives. For scales
larger than the sonic horizon, i.e. such that kcs  H, the above equation
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can be integrated explicitly and yields

Ψ =
H
a2

[
α

∫
dη

a2
(
H′ −H2

)
H2

+ β

]
, (IV-7.134)

where α and β are two integration constants.
For a scale factor evolving like a ∝ tp, one gets

Ψ = − α

p + 1
+ β p t−p−1. (IV-7.135)

They are two modes: a constant mode and a decaying mode. Note that,
in the previous subsection on the initial conditions, we eliminated the
decaying mode to avoid the divergence when going backwards in time.

In a transition between two cosmological phases characterized respec-
tively by the scale factors a ∝ tp1 and a ∝ tp2 , one can easily finds the
relation between the asymptotic behaviours of Ψ (i.e. after the decaying
mode becomes negligible) by using the constancy of α. This gives

Ψ2 =
p2 + 1
p1 + 1

Ψ1. (IV-7.136)

This is valid only asymptotically. In the case of a sharp transition, Ψ
must be continuous at the transition and the above relation will ap-
ply only after some relaxation time. For a transition radiation/non-
relativistic matter, one finds

Ψmat =
9
10

Ψrad. (IV-7.137)

In practice and for more general cases, it turns out that it is much
more convenient to follow the evolution of cosmological perturbations
by resorting to quantities that are conserved on super-Hubble scales. A
familiar example of such a quantity is the curvature perturbation on
uniform-energy-density hypersurfaces, which can be expressed in any
gauge as

ζ = C −Hδρ

ρ′
. (IV-7.138)

This is a gauge-invariant quantity by definition. The conservation equa-
tion (IV-5.113) can then be rewritten as

ζ ′ = − H
ρ + P

δPnad −
1
3
∇2(E′ + v), (IV-7.139)

where δPnad is the non-adiabatic part of the pressure perturbation, de-
fined by

δPnad = δP − c2
sδρ. (IV-7.140)
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The expression (IV-7.139) shows that ζ is conserved on super-Hubble
scales in the case of adiabatic perturbations.

Another convenient quantity, which is sometimes used in the literature
instead of ζ, is the curvature perturbation on comoving hypersurfaces,
which can be written in any gauge as

−R = C +
H

ρ + P
q. (IV-7.141)

It is easy to relate the two quantities ζ and R. Substituting e.g. δρ =
δρc + 3Hq, which follows from the definition (see (IV-4.111)) of the
comoving energy density perturbation, into (IV-7.138), one finds

ζ = −R +
δρc

ρ + P
. (IV-7.142)

Using Einstein’s equations, in particular (IV-4.111), this can be rewrit-
ten as

ζ = −R− 2ρ

3(ρ + P )

(
k

aH

)2

Ψ. (IV-7.143)

The latter expression shows that ζ and R coincide in the super-Hubble
limit k  aH.

The quantity R can also be expressed in terms of the two Bardeen
potentials Φ and Ψ. Using the momentum constraint (IV-4.108) and the
Friedmann equations, one finds

R = Ψ − H

Ḣ

(
Ψ̇ + HΦ

)
. (IV-7.144)

In a cosmological phase dominated by a fluid with no anisotropic stress,
so that Φ = Ψ, and with an equation of state P = wρ with w constant,
we have already seen that Ψ is constant with time. Since the scale factor
evolves like a ∝ tp with p = 2/3(1 + w), the relation (IV-7.144) between
R and Ψ reduces to

R =
5 + 3w

3(1 + w)
Ψ. (IV-7.145)

In the radiation era, R = (3/2)Ψ, whereas in the matter era, R =
(5/3)Ψ, and since R is conserved, one recovers the conclusion given in
Eq. (IV-7.137).

During inflation, w � −1 and

w + 1 =
φ̇2

ρ
� −2

3
Ḣ

H2
(IV-7.146)
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so that

R � −H2

Ḣ
Ψinf . (IV-7.147)

For a scalar field, the perturbed equation of motion reads

δ̈σ + 3H ˙δσ +
(

k2

a2
+ V ′′

)
δσ = σ̇

(
Φ̇ + 3Ψ̇

)
− 2V ′Φ. (IV-7.148)

V. Quantum fluctuations and “birth” of
cosmological perturbations

In the previous section, we have discussed the classical evolution of
the cosmological perturbations. In the classical context, the initial con-
ditions, defined deep in the radiation era, are a priori arbitrary. What
is remarkable with inflation is that the accelerated expansion can con-
vert initial vacuum quantum fluctuations into “macroscopic” cosmologi-
cal perturbations (see [13] for the seminal works). In this sense, inflation
provides us with “natural” initial conditions, which turn out to be the
initial conditions that agree with the present observations.

V-1 Massless scalar field in de Sitter
As a warming-up, it is instructive to discuss the case of a massless

scalar field in a so-called de Sitter universe, or a FLRW spacetime with
exponential expansion, a ∝ exp(Ht). In conformal time, the scale factor
is given by

a(η) = − 1
Hη

. (V-1.149)

The conformal time is here negative (so that the scale factor is positive)
and goes from −∞ to 0. The action for a massless scalar field in this
geometry is given by

S =
∫

d4x
√−g

(
−1

2
∂µφ∂µφ

)
=
∫

dη d3x a4

[
1

2a2
φ′2 − 1

2a2
�∇φ

2
]

,

(V-1.150)
where we have substituted in the action the cosmological metric (IV-
0.76). Note that, whereas we still allow for spatial variations of the scalar
field, i.e. inhomogeneities, we will assume here, somewhat inconsistently,
that the geometry is completely fixed as homogeneous. We will deal later
with the question of the metric perturbations.

It is possible to write the above action with a canonical kinetic term
via the change of variable

u = aφ. (V-1.151)
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After an integration by parts, the action (V-1.150) can be rewritten as

S =
1
2

∫
dη d3x

[
u′2 − �∇u

2
+

a′′

a
u2

]
. (V-1.152)

The first two terms are familiar since they are the same as in the action
for a free massless scalar field in Minkowski spacetime. The fact that
our scalar field here lives in de Sitter spacetime rather than Minkowski
has been reexpressed as a time-dependent effective mass

m2
eff = −a′′

a
= − 2

η2
. (V-1.153)

Our next step will be to quantize the scalar field u by using the stan-
dard procedure of quantum field theory. One first turns u into a quantum
field denoted û, which we expand in Fourier space as

û(η, �x) =
1

(2π)3/2

∫
d3k
{

â�k
uk(η)ei�k.�x + â†�ku

∗
k(η)e−i�k.�x

}
, (V-1.154)

where the â† and â are creation and annihilation operators, which satisfy
the usual commutation rules[

â�k
, â�k′
]

=
[
â†�k, â

†
�k′

]
= 0,

[
â�k

, â†�k′

]
= δ(�k − �k′). (V-1.155)

The function uk(η) is a complex time-dependent function that must
satisfy the classical equation of motion in Fourier space, namely

u′′
k +
(

k2 − a′′

a

)
uk = 0, (V-1.156)

which is simply the equation of motion for an oscillator with a time-
dependent mass. In the case of a massless scalar field in Minkowski
spacetime, this effective mass is zero (a′′/a = 0) and one usually takes
uk = (�/2k)1/2e−ikη (the choice for the normalization factor will be
clear below). In the case of de Sitter, one can solve explicitly the above
equation with a′′/a = 2/η2 and the general solution is given by

uk = αe−ikη

(
1 − i

kη

)
+ βeikη

(
1 +

i

kη

)
. (V-1.157)

Canonical quantization consists in imposing the following commuta-
tion rules on the η =constant hypersurfaces:[

û(η, �x), û(η, �x′)
]

=
[
π̂u(η, �x), π̂u(η, �x′)

]
= 0 (V-1.158)
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and [
û(η, �x), π̂u(η, �x′)

]
= i�δ(�x − �x′), (V-1.159)

where πu ≡ δS/δu′ is the conjugate momentum of u. In the present
case, πu = u′ since the kinetic term is canonical.

Subtituting the expansion (V-1.154) in the commutator (V-1.159),
and using the commutation rules for the creation and annihilation op-
erators (V-1.155), one obtains the relation

uku
′
k
∗ − u∗

ku
′
k = i�, (V-1.160)

which determines the normalization of the Wronskian.
The choice of a specific function uk(η) corresponds to a particular

prescription for the physical vacuum |0〉, defined by

â�k
|0〉 = 0. (V-1.161)

A different choice for uk(η) is associated to a different decomposition
into creation and annihilitation modes and thus to a different vacuum.

Let us now note that the wavelength associated with a given mode
k can always be found within the Hubble radius provided one goes suf-
ficiently far backwards in time, since the comoving Hubble radius is
shrinking during inflation. In other words, for |η| sufficiently big, one
gets k|η| � 1. Moreover, for a wavelength smaller than the Hubble
radius, one can neglect the influence of the curvature of spacetime and
the mode behaves as in a Minkowski spacetime, as can also be checked
explicitly with the equation of motion (V-1.156) (the effective mass is
negligible for k|η| � 1). Therefore, the most natural physical prescrip-
tion is to take the particular solution that corresponds to the usual
Minkowski vacuum, i.e. uk ∼ exp(−ikη), in the limit k|η| � 1. In view
of (V-1.157), this corresponds to the choice

uk =

√
�

2k
e−ikη

(
1 − i

kη

)
, (V-1.162)

where the coefficient has been determined by the normalisation condition
(V-1.160). This choice, in the jargon of quantum field theory on curved
spacetimes, corresponds to the Bunch-Davies vacuum.

Finally, one can compute the correlation function for the scalar field
φ in the vacuum state defined above. When Fourier transformed, the
correlation function defines the power spectrum Pφ(k):

〈0|φ̂(�x1)φ̂(�x2)|0〉 =
∫

d3k ei�k.(�x1−�x2)
Pφ(k)
4πk3

. (V-1.163)
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Note that the homogeneity and isotropy of the quantum field is used
implicitly in the definition of the power spectrum, which is “diagonal”
in Fourier space (homogeneity) and depends only on the norm of �k
(isotropy). In our case, we find

2π2k−3Pφ =
|uk|2
a2

, (V-1.164)

which gives in the limit when the wavelength is larger than the Hubble
radius, i.e. k|η|  1,

Pφ(k) � �

(
H

2π

)2

(k  aH) (V-1.165)

Note that, in the opposite limit, i.e. for wavelengths smaller than the
Hubble radius (k|η| � 1), one recovers the usual result for fluctuations
in Minkowski vacuum, Pφ(k) = �(k/2πa)2.

We have used a quantum description of the scalar field. But the cos-
mological perturbations are usually described by classical random fields.
Roughly speaking, the transition between the quantum and classical (al-
though stochastic) descriptions makes sense when the perturbations exit
the Hubble radius. Indeed each of the terms in the Wronskian (V-1.160)
is roughly of the order �/2(kη)3 in the super-Hubble limit and the non-
commutativity can then be neglected. In this sense, one can see the exit
outside the Hubble radius as a quantum-classical transition, although
much refinement would be needed to make this statement more precise.

V-2 Quantum fluctuations with metric
perturbations

Let us now move to the more realistic case of a perturbed inflaton
field living in a perturbed cosmological geometry. The situation is more
complicated than in the previous problem, because Einstein’s equations
imply that scalar field fluctuations must necessarily coexist with metric
fluctuations. A correct treatment, either classical or quantum, must thus
involve both the scalar field perturbations and metric perturbations.

In order to quantize this coupled system, the easiest procedure consists
in identifying the true degrees of freedom, the other variables being then
derived from them via constraint equations. As we saw in the classical
analysis of cosmological perturbations, there exists only one scalar degree
of freedom in the case of a single scalar field, which we must now identify.

The starting point is the action of the coupled system scalar field
plus gravity expanded up to second order in the linear perturbations.
Formally this can be written as

S[φ̄ + δφ, gµν = ḡµν + hµν ] = S(0)[φ̄, ḡµν ] + S(1)[δφ, hµν ; φ̄, ḡµν ]
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+S(2)[δφ, hµν ; φ̄, ḡµν ], (V-2.166)

where the first term S(0) contains only the homogeneous part, S(1) con-
tains all terms linear in the perturbations (with coefficients depend-
ing on the homogeneous variables), and finally S(2) contains the terms
quadratic in the linear perturbations. When one substitutes the FLRW
equations of motion in S(1) (after integration by parts), one finds that
S(1) vanishes, which is not very surprising since this is how one gets the
homogeneous equations of motion, via the Euler-Lagrange equations,
from the variation of the action.

The term S(2) is the piece we are interested in: the corresponding
Euler-Lagrange equations give the equations of motion for the linear
perturbations, which we have already obtained; but more importantly,
this term enables us to quantize the linear perturbations and to find the
correct normalization.

If one restricts oneself to the scalar sector, the quadratic part of the
action depends on the four metric perturbations A, B, C, E, as well as on
the scalar field perturbation δφ. After some cumbersome manipulations,
by using the FLRW equations of motion, one can show that the second-
order action for scalar perturbations can be rewritten in terms of a single
variable [14]

v = a

(
δφ − φ′

HC

)
, (V-2.167)

which is a linear combination mixing scalar field and metric perturba-
tions. The variable v represents the true dynamical degree of freedom
of the system, and one can check immediately that it is indeed a gauge-
invariant variable.

In fact, v is proportional to the comoving curvature perturbation de-
fined in (IV.5) and which, in the case of a single scalar field, takes the
form

R = −C +
H
φ′ δφ. (V-2.168)

Note also that, if one can check a posteriori that v is the variable de-
scribing the true degree of freedom by expressing the action in terms of
v only (modulo, of course, a multiplicative factor depending only on ho-
mogeneous quantities: the v defined here is such that it gives a canonical
kinetic term in the action), one can identify v in a systematic way by
resorting to Hamiltonian techniques, in particular the Hamilton-Jacobi
equation [15].



272 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

With the variable v, the quadratic action takes the extremely simple
form

Sv =
1
2

∫
dη d3x

[
v′2 + ∂iv∂iv +

z′′

z
v2

]
, (V-2.169)

with

z = a
φ′

H . (V-2.170)

This action is thus analogous to that of a scalar field in Minkowski
spacetime with a time-dependent mass. One is thus back in a situation
similar to the previous subsection, with the notable difference that the
effective time-dependent mass is now z′′/z, instead of a′′/a.

The quantity we will be eventually interested in is the comoving cur-
vature perturbation R, which is related to the canonical variable v by
the relation

v = −zR. (V-2.171)

Since, by analogy with (V-1.164), the power spectrum for v is given by

2π2k−3Pv(k) = |vk|2, (V-2.172)

the corresponding power spectrum for R is found to be

2π2k−3PR(k) =
|vk|2
z2

. (V-2.173)

In the case of an inflationary phase in the slow-roll approximation,
the evolution of φ and of H is much slower than that of the scale factor
a. Consequently, one gets approximately

z′′

z
� a′′

a
, (slow − roll) (V-2.174)

and all results of the previous section obtained for u apply directly to our
variable v in the slow-roll approximation. This implies that the prop-
erly normalized function corresponding to the Bunch-Davies vacuum is
approximately given by

vk �
√

�

2k
e−ikη

(
1 − i

kη

)
. (V-2.175)

In the super-Hubble limit k|η|  1 the function vk behaves like

vk � −
√

�

2k

i

kη
� i

√
�

2k

aH

k
, (V-2.176)
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where we have used a � −1/(Hη). Consequently, on scales larger than
the Hubble radius, the power spectrum for R is found, combining (V-
2.173), (V-2.170) and (V-2.175), to be given by

PR � �

4π2

(
H4

φ̇2

)
k=aH

, (V-2.177)

where we have reintroduced the cosmic time instead of the conformal
time. This is the famous result for the spectrum of scalar cosmologi-
cal perturbations generated from vacuum fluctuations during a slow-roll
inflation phase. Note that during slow-roll inflation, the Hubble para-
meter and the scalar field velocity slowly evolve: for a given scale, the
above amplitude of the perturbations is determined by the value of H
and φ̇ when the scale exited the Hubble radius. Because of this effect,
the obtained spectrum is not strictly scale-invariant.

It is also instructive to recover the above result by a more intuitive
derivation. One can think of the metric perturbations in the radiation
era as resulting from the time difference for the end of inflation at differ-
ent spatial points (separated by distances larger than the Hubble radius),
the shift for the end of inflation being a consequence of the scalar field
fluctuations δφ ∼ H/2π. Indeed,

Ψrad ∼ δa

a
∼ Hδt, (V-2.178)

and the time shift is related to the scalar field fluctuations by δt ∼ δφ/φ̇,
which implies

Ψrad ∼ H2

φ̇
, (V-2.179)

which agrees with the above result since during the radiation era R =
(3/2)Ψ (see Eq. (IV-7.145)). It is also worth noticing that, during infla-
tion, in the case of the slow-roll approximation, the term involving C in
the linear combination (V-2.167) defining v is negligible with respect to
the term involving δφ. One can therefore “ignore” the rôle of the met-
ric perturbations during inflation in the computation of the quantum
fluctuations and consider only the scalar field perturbations. But this
simplification is valid only in the context of slow-roll approximation. It
is not valid in the general case, as can be verified for inflation with a
power-law scale factor.

V-3 Gravitational waves
We have focused so far our attention on scalar perturbations, which

are the most important in cosmology. Tensor perturbations, or pri-
mordial gravitational waves, if ever detected in the future, would be a
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remarkable probe of the early universe. In the inflationary scenario, like
scalar perturbations, primordial gravitational waves are generated from
vacuum quantum fluctuations. Let us now explain briefly this mecha-
nism.

The action expanded at second order in the perturbations contains a
tensor part, which given by

S(2)
g =

1
64πG

∫
dη d3x a2ηµν∂µĒi

j∂νĒ
j
i , (V-3.180)

where ηµν denotes the Minkoswki metric. Apart from the tensorial na-
ture of Ei

j , this action is quite similar to that of a scalar field in a FLRW
universe (V-1.150), up to a renormalization factor 1/

√
32πG. The de-

composition

aĒi
j =

∑
λ=+,×

∫
d3k

(2π)3/2
vk,λ(η)εi

j(�k; λ)ei�k.�x (V-3.181)

where the εi
j(�k; λ) are the polarization tensors, shows that the gravita-

tional waves are essentially equivalent to two massless scalar fields (for
each polarization) φλ = mP Ēλ/2.

The total power spectrum is thus immediately deduced from (V-
1.164):

Pg = 2 × 4
m2

P

× �

(
H

2π

)2

, (V-3.182)

where the first factor comes from the two polarizations, the second from
the renormalization with respect to a canonical scalar field, the last term
being the power spectrum for a scalar field derived earlier. In summary,
the tensor power spectrum is

Pg =
2�

π2

(
H

mP

)2

k=aH

, (V-3.183)

where the label recalls that the Hubble parameter, which can be slowly
evolving during inflation, must be evaluated when the relevant scale
exited the Hubble radius during inflation.

V-4 Power spectra
Let us rewrite the scalar and tensor power spectra, respectively given

in (V-2.177) and (V-3.183), in terms of the scalar field potential only.
This can be done by using the slow-roll equations (III-2.49-III-2.50).



Inflation, Quantum Fluctuations and Cosmological Perturbations 275

One finds for the scalar spectrum

PR =
1

12π2

(
V 3

m6
P V ′2

)
k=aH

(V-4.184)

with subscript meaning that the term on the right hand side must be
evaluated at Hubble radius exit for the scale of interest. The scalar
spectrum can also be written in terms of the first slow-roll parameter
defined in (III-2.52), in which case it reads

PR =
1

24π2

(
V

m4
P εV

)
k=aH

. (V-4.185)

From the observations of the CMB fluctuations,

P1/2
R =

1
2
√

6π

(
V 1/2

m2
P ε

1/2
V

)
� 5 × 10−5. (V-4.186)

If εV is order 1, as in chaotic models, one can evaluate the typical energy
scale during inflation as

V 1/4 ∼ 10−3mP ∼ 1015GeV. (V-4.187)

The tensor power spectrum, in terms of the scalar field potential, is
given by

Pg =
2

3π2

(
V

m4
P

)
k=aH

. (V-4.188)

The ratio of the tensor and scalar amplitudes is proportional to the
slow-roll parameter εV :

r ≡ Pg

PR
= 16εV . (V-4.189)

The scalar and tensor spectra are almost scale invariant but not quite
since the scalar field evolves slowly during the inflationary phase. In
order to evaluate quantitatively this variation, it is convenient to intro-
duce a scalar spectral index as well as a tensor one, defined respectively
by

nS(k) − 1 =
d lnPR(k)

d ln k
, nT (k) =

d lnPg(k)
d ln k

. (V-4.190)

One can express the spectral indices in terms of the slow-roll parameters.
For this purpose, let us note that, in the slow-roll approximation, d ln k =
d ln(aH) � d ln a, so that

dφ

d ln a
=

φ̇

H
� − V ′

3H2
� −m2

P

V ′

V
, (V-4.191)
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where the slow-roll equations (III-2.49-III-2.50) have been used. There-
fore, one gets

ns(k) − 1 = 2ηV − 6εV , (V-4.192)

where εV and ηV are the two slow-roll parameters defined in (III-2.52)
and (III-2.54). Similarly, one finds for the tensor spectral index

nT (k) = −2εV . (V-4.193)

Comparing with Eq. (V-4.189), this yields the relation

r = −8nT , (V-4.194)

the so-called consistency relation which relates purely observable quan-
tities. This means that if one was able to observe the primordial grav-
itational waves and measure the amplitude and spectral index of their
spectrum, a rather formidable task, then one would be able to test di-
rectly the paradigm of single field slow-roll inflation.

Finally, let us mention the possibility to get information on inflation
from the measurement of the running of the spectral index. Introducing
the second-order slow-roll parameter

ξV = m4
P

V ′V ′′′

V 2
, (V-4.195)

the running is given by

dns

d ln k
= −24ε2V + 16εV ηV − 2ξV . (V-4.196)

As one can see, the amplitude of the variation depends on the slow-roll
parameters and thus on the models of inflation.

V-5 Conclusions
To conclude, let us mention the existence of more sophisticated mod-

els of inflation, such as models where several scalar fields contribute to
inflation. In contrast with the single inflaton case, which can generate
only adiabatic primordial fluctuations, because all types of matter are
decay product of the same inflaton, multi-inflaton models can generate
both adiabatic and isocurvature perturbations, which can even be cor-
related [16].

Another recent direction of research is the possibility to disconnect
the fluctuations of the inflaton, the field that drives inflation, from the
observed cosmological perturbations, which could have been generated
from the quantum fluctuations of another scalar field [17].
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From the theoretical point of view an important challenge remains
to identify viable and natural candidates for the inflaton field(s) in the
framework of high energy physics, with the hope that future observations
of the cosmological perturbations will be precise enough to discriminate
between various candidates and thus give us a clue about which physics
really drove inflation.

Alternative scenarios to inflation can also been envisaged, as long as
they can predict unambiguously primordial fluctuations compatible with
the present observations. In this respect, one must emphasize that the
cosmological perturbations represent today essentially the only observa-
tional window that gives access to the very high energy physics, hence
the importance for any early universe model to be able to give firm
predictions for the primordial fluctuations it generates.
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Abstract We review the CMB spectrum and the upper limits on the effects which
would distort the Planck black-body distribution, such as Compton
scattering, reionisation, plasma effects. The experimental analysis of
the angular anisotropies is discussed, as well as the physics pertinent
to the different angular momentum regions. The connection between
cosmology and the observed inhomogeneities and the determination of
the cosmological parameters are summarised, as well as the underly-
ing assumptions. The physical origin of the polarisation of the CMB is
explained, and the first experimental results are recalled.

Keywords: CMB, Cosmology, Sachs-Wolf Plateau, Acoustic peaks, Damping tail,
Polarisation, Foregrounds

I. The CMB Spectrum
The energy content in radiation from beyond our Galaxy is dominated

by the Cosmic Microwave Background (CMB), discovered in 1965 by
Penzias and Wilson[1] The spectrum of the CMB (shown in Figure 1)
is well described by a blackbody function with T = 2.73K. By the late
1970s it was becoming clear that the spectrum was thermal.

The most accurate measurements of the CMB spectrum to date have
come from the Far InfraRed Absolute Spectrophotometer (FIRAS) on
the COsmic Background Explorer (COBE) ([2]). FIRAS is a differen-
tial spectrometer that measured the difference between the sky and an
internal reference source that was very nearly a blackbody. An external
calibrator was periodically moved into the sky horn to replace the sky
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signal with a very, very good blackbody. The FIRAS observations show
that the rms deviation from a blackbody is only 50 parts per million
of the peak Iν of the blackbody ([3]) and a recalibration of the ther-
mometers on the external calibrator yield a blackbody temperature of
2.725 ± 0.001 K ([4]). Upper limits on any deviations from of the CMB
from a blackbody place strong constraints on energy transfer between
the CMB and matter at redshifts less than 2 × 106.

A non-interacting Planckian distribution of temperature Ti at redshift
zi transforms with the universal expansion to another Planckian distrib-
ution at redshift zf with temperature Tf/(1+zf) = Ti/(1+zi). Hence the
thermal spectrum, once established (e.g. at the nucleosynthesis Epoch or
earlier), is preserved by the expansion, in spite of the fact that photons
decoupled from matter at early times.

This spectral form is one of the main pillars of the hot Big Bang
model for the early Universe. The lack of any observed deviations from
a blackbody spectrum constrains physical processes over the history of
the universe (at redshifts z < 108). All viable present cosmological
models predict however a very nearly Planckian spectrum so are not
stringently limited.

The observed cosmic microwave background (CMB) radiation pro-
vides strong evidence for the hot big bang. The success of primordial nu-
cleosynthesis calculations requires a cosmic background radiation (CBR)
characterized by a temperature kT ∼ 1 MeV at a redshift of z � 109.
In their pioneering work, Gamow, Alpher, and Herman[5] realized this
and predicted the existence of a faint residual relic, primordial radia-
tion, with a present temperature of a few degrees. The observed CMB
is interpreted as the current manifestation of the required CBR.

Atomic fine structure line observations along the lines of sight to dis-
tant quasars constrain the temperature out to z ≈ 2 − 3, giving direct
support for the CMB being hotter at early times[7]. Because there are
about 109 photons per nucleon, the transition from the ionized primor-
dial plasma to neutral atoms at z ∼ 1000 does not significantly alter the
CBR spectrum[6]. CMB temperature variations observed at this epoch
provide further support for the hot big bang, as well as for the presence
of primordial density perturbations which grew into today’s cosmological
structure through gravitational instability.

The CMB is very nearly isotropic, but a dipole anisotropy of ampli-
tude 3.346 mK is believed to be due to the motion of the Solar System
barycenter at 368± 2 km/sec relative to the CMB center of momentum
frame and thus likely the center of mass of the observable universe.

Higher order intrinsic inhomogeneities in the Universe existed at the
time of last scattering. While the photons have traveled freely since the
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last scattering, 380,000 years after the initial moments of Big Bang, the
spectrum of the CMB was established very early and has not changed
significantly after one to two months into the Big Bang. On the other
hand, the inhomogeneities traced by the CMB photons have been in
place since the inflationary epoch, 10−35 sec after the Big Bang.

Figure 1. Precise measurements of the CMB spectrum. The line represents a
2.73 K blackbody, which describes the spectrum very well, especially around the peak
of intensity. The spectrum is less well constrained at 10 cm and longer wavelengths.

I-1 The CMB frequency spectrum
The remarkable precision with which the CMB spectrum is fitted by

a Planckian distribution provides limits on possible energy releases in
the early Universe, at roughly the fractional level of 10−4 of the CBR
energy, for redshifts ∼ 107 (corresponding to epochs ∼ 1 year). The fol-
lowing three important classes of theoretical spectral distortions (see fig-
ure CMBdis generally correspond to energy releases at different epochs.
They result from the CBR photon interactions with a hot electron gas
at temperature Te.
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Figure 2. The shapes of expected, but so far unobserved, CMB distortions, resulting
from energy-releasing processes at different epochs.

I-2 Compton distortion (Late energy release
(z ∼ 105)

Compton scattering (γe → γ′e′) of the CBR photons by a hot electron
gas creates spectral distortions by transferring energy from the electrons
to the photons. Compton scattering cannot produce a Planckian spec-
trum for y ∼ 1, where

y =
∫ z

0

kTe(z′) − kTγ(z′)
mec2

σT ne(z′) c
dt

dz′
dz′,

is the integral of the number of interactions, σT ne(z) c dt, times the
mean-fractional photon-energy change per collision[72]. For Te � Tγ y
is also proportional to the integral of the electron pressure nekTe along
the line of sight. For standard thermal histories y < 1 for epochs later
than z � 105.

The resulting CMB distortion is a temperature decrement

∆TRJ = −2y Tγ

in the Rayleigh-Jeans (x ≡ hν/kT  1) portion of the spectrum, and a
rise in temperature in the Wien (hν/kT � 1) region, i.e. photons are
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Figure 3. Observed thermodynamic temperature as a function frequency.

shifted from low to high frequencies. The magnitude of the distortion is
related to the total energy transfer[72] ∆E by

∆E/ECBR = e4y − 1 � 4y.

A prime candidate for producing a Comptonized spectrum is a hot in-
tergalactic medium. A hot (Te > 105 K) medium in clusters of galaxies
can and does produce a partially Comptonized spectrum as seen through
the cluster, known as the Sunyaev-Zel’dovich effect[8]. Based upon X-
ray data and the WMAP estimate on the re-ionization optical depth, the
predicted large angular scale total combined effect of the hot intracluster
medium and the ionized intergalactic medium should produce y ∼ 10−6

[9]. Detection of the S-Z effect through clusters demonstrates that the
CMB is universal and can be used to estimate the Hubble constant,
and counts of such clusters as a function of redshift hold the promise of
constraining the equation of state of the Dark Energy.

I-3 Bose-Einstein or chemical potential
distortion (Early energy release (z ∼ 105–107)

After many Compton scatterings (y >> 1), the photons and electrons
will reach statistical (not thermodynamic) equilibrium, because Comp-
ton scattering conserves photon number. This equilibrium is described
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by the Bose-Einstein distribution with non-zero chemical potential:

n =
1

ex+µ0 − 1
,

where x ≡ hν/kT and µ0 � 1.4 ∆E/ECBR, with µ0 being the dimen-
sionless chemical potential that is required to conserve photon number.
The collisions of electrons with nuclei in the plasma produce free-free
(thermal bremsstrahlung) radiation: eZ → e′Z ′γ. Free-free emission
thermalizes the spectrum to the plasma temperature at long (> centime-
ter) wavelengths and Compton scattering begins to shift these photons
upward.

The equilibrium Bose-Einstein distribution results from the oldest
non-equilibrium processes (105 < z < 107), such as the decay of relic
particles or primordial inhomogeneities. Note that free-free emission
(thermal bremsstrahlung) and radiative-Compton scattering effectively
erase any distortions[10] to a Planckian spectrum for epochs earlier than
z ∼ 107.
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Figure 4. Upper Limits (95% CL) on fractional energy (∆E/ECBR) releases from
processes at different epochs as set by resulting lack of CMB spectral distortions.
These can be translated into constraints on the mass, lifetime and photon branching
ratio of unstable relic particles, with some additional dependence on cosmological
parameters such as ΩB [?]. This figure shows that the observed CMB spectrum is a
relic from z ∼ 107.
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I-4 Free-free distortion (Very late energy release
(z � 103)

Free-free emission can create rather than erase spectral distortion in
the late Universe, for recent reionization (z < 103) and from a warm in-
tergalactic medium. The distortion arises because of the lack of Comp-
tonization at recent epochs. The effect on the present-day CMB spec-
trum is described by

∆Tff = Tγ Yff/x2,

where Tγ is the undistorted photon temperature, x ≡ hν/kT is the di-
mensionless frequency, and Yff/x2 is the optical depth to free-free emis-
sion:

Yff =
∫ z

0

Te(z′) − Tγ(z′)
Te(z′)

8πe6h2n2
e g

3me(kTγ)3
√

6π me kTe

dt

dz′
dz′.

Here h is Planck’s constant, ne is the electron density and g is the Gaunt
factor[11].

I-5 Effect of Reionization of the Universe:
It is well-established that the Universe is nearly fully reionized by a

redshift of z ∼ 6 by the Gunn-Peterson test[12]. The WMAP first year
data indicate that the re-ionization of the universe began earlier and
thus that the Universe was partially ionized back to a redshift of about
20 with an effective optical depth of τ = 0.17 ± 0.04 )[17].

Typically, we might anticipate at during the time of ionization, the
typical temperature of the electrons will be around 104 K. This would
leave us with a typical Compton y-parameter of y ∼ 3 × 10−7, which
is near that expected to be produced by the integrated ionized galactic
cluster medium, yielding our estimate of y ∼ 10−6 for the net of these.

The expected effect in terms of the free-free distortion parameter is
Yff ∼ 10−5. Both of these effects are somewhat below the current level
of detection via spectral measurement.

I-6 Spectrum summary
The CMB spectrum is consistent with a blackbody distribution over

more than three decades of frequency around the peak. The best-fit to
the COBE FIRAS data yields Tγ = 2.725 ± 0.002 K (95% CL)[4]. The
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following table is a summary of all CMB spectrum measurements:

Tγ = 2.725 ± 0.002K (95% CL) ;
nγ = (2ζ(3)/π2)T 3

γ � 411 cm−3 ;
ργ = (π2/15)T 4

γ � 4.64 × 10−34 g cm−3 � 0.260 eV cm−3 ;
|y| < 1.2 × 10−5 (95% CL) ;

|µ0| < 9 × 10−5 (95% CL) ;
|Yff | < 1.9 × 10−5 (95% CL) .

These limits[13] correspond to constraints[13][14] on energetic processes

∆E/ECBR < 2× 10−4 occurring between redshifts 103 and 5× 106 (see
Figure 4).

We notice that the frequency spectrum is extremely well-described
by a Planckian and that the lack of anticipated distortions allow us to
set cosmological limits on processes dissipating energy that eventually ef-
fects the CMB, either directly or through its interactions with the heated
medium. This provides us with a well-defined tool for investigating and
imaging the early universe.

II. Description of CMB Anisotropies
Another observable quantity inherent in the CMB is the variation in

temperature (or intensity) from one part of the microwave sky to another
[15]. Since the first detection of these anisotropies by the COBE satellite
[16], there has been intense activity to map the sky at increasing levels
of sensitivity and angular resolution. A series of ground- and balloon-
based measurements has recently been joined by the first results from
NASA’s Wilkinson Microwave Anisotropy Probe (WMAP)[17]. These
observations have led to a stunning confirmation of the ‘Standard Model
of Cosmology.’ In combination with other astrophysical data, the CMB
anisotropy measurements place quite precise constraints on a number of
cosmological parameters, and have launched us into an era of precision
cosmology.

Observations show that the CMB contains anisotropies at roughly the
10−5 level, over a wide range of angular scales. These anisotropies are
usually expressed by using a spherical harmonic expansion of the CMB
sky:

T (θ, φ) =
∑
�m

a�mY�m(θ, φ).

The vast majority of the cosmological information is contained in the
temperature 2 point function, i.e., the variance as a function of sepa-
ration angle θ. Equivalently, the power per unit Legendre polynominal
number ln � is �

∑
m |a�m|2 /4π = �(2� + 1)C�/4π.
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II-1 The Monopole
The CMB has a mean temperature of Tγ = 2.725 ± 0.001 K (1σ)[4],

which can be considered as the monopole component of CMB maps,
a00. Since all mapping experiments involve difference measurements,
they are insensitive to this average level. Monopole measurements can
only be made with absolute temperature devices, such as the FIRAS
instrument on the COBE satellite[4]. Such measurements of the spec-
trum are consistent with a blackbody distribution over more than three
decades in frequency. A blackbody of the measured temperature cor-
responds to nγ = (2ζ(3)/π2)T 3

γ � 411 cm−3 and ργ = (π2/15)T 4
γ �

4.64 × 10−34 g cm−3 � 0.260 eV cm−3.

II-2 The CMB Dipole Anisotropy
The largest anisotropy is the � = 1 (dipole) first spherical harmonic,

with amplitude 3.346±0.017 mK[17]. The dipole is interpreted to be the
result of the Doppler shift caused by the solar system motion relative
to the nearly isotropic blackbody field, as confirmed by measurements
of the velocity field of local galaxies[18]. The motion of an observer
with velocity β = v/c relative to an isotropic Planckian radiation field
of temperature T0 produces a Doppler-shifted temperature pattern

T (θ) = T0(1 − β2)1/2/(1 − β cos θ)
= T0

(
1 + β cos θ + (β2/2) cos 2θ + O(β3)

)
.

At every point in the sky, the spectrum is essentially blackbody, but
the spectrum of the dipole is the differential of a blackbody spectrum,
as confirmed by [19]. Assuming this to be true, then a combination
of well-calibrated anisotropy measurements traces out the differential of
the blackbody spectrum and can be used to find its temperature. This
has been done by the COBE DMR using the dipole anisotropy and is the
sources of the observations labeled COBE DMR on the spectral plots.

The dipole anisotropy pattern is believed due to the motion of the
observer relative to the rest of the Universe or at least the center of
momentum frame for the CMB. Shortly after the Cosmic Microwave
Background (CMB) was discovered, the first indications of anisotropy in
the CMB were reported ([20]). Additional observations [21] and by [22]
also indicated variations in the observed sky temperature. The definitive
observations of the dipole ([23]) came in the late 1970’s showed a very
definite cosine pattern as expected for a Doppler effect, and placed an
upper limit on any further variations in TCMB and contamination by
Galactic foregrounds. Further improvements in the measurement of the
dipole anisotropy were made by the Differential Microwave Radiometers
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(DMR) experiment on COBE ([24] and by the Wilkinson Microwave
Anisotropy Probe ([25]).

The implied velocity[13][17] for the solar system barycenter is v =
368 ± 2 km s−1, assuming a value T0 = Tγ , towards (�, b) = (263.85◦ ±
0.10◦, 48.25◦±0.04◦). Such a solar system velocity implies a velocity for
the Galaxy and the Local Group of galaxies relative to the CMB. The
derived value is vLG = 627 ± 22 km s−1 toward (�, b) = (276◦ ± 3◦, 30◦ ±
3◦), where most of the error comes from uncertainty in the velocity of
the solar system relative to the Local Group.

The dipole is a frame dependent quantity, and one can thus determine
the ‘absolute rest frame’ of the Universe as that in which the CMB dipole
would be zero. Our velocity relative to the Local Group, as well as the
velocity of the Earth around the Sun, and any velocity of the receiver
relative to the Earth, is normally removed for the purposes of CMB
anisotropy study.

III. Theory
The first theoretical predictions of ∆T/T = 10−2 ([26]) and ∆T/T =

10−3.5 ([27]) were superseded by predictions based on cold dark mat-
ter ([28], [29]). These CDM predictions were consistent with the small
anisotropy seen by COBE and furthermore predicted a series of peaks at
a particular angular scale due to acoustic oscillations in the baryon/photon
fluid prior to recombination. The position of these peaks and other peaks
in the angular power spectrum of the CMB anisotropy depends on a com-
bination of the density parameter Ωm and the vacuum energy density
ΩV , so this peak provides a means to determine the density of the Uni-
verse ([30]). A tentative detection of the first and largest peak at the
position predicted for a flat Universe was made by 1994 ([31]). The peak
was localized to �pk = 229 ± 8.5 ([32]) by the beginning of 2000. Later
the BOOMERanG group claimed to have made a dramatic improvement
in this datum to �pk = 197± 6 ([33]). This smaller value for �pk favored
a moderately closed model for the Universe. However, at the same time
the MAXIMA group found the first peak to be located at �pk = 220±15
[34] In the next year BOOMERanG recalibrated and improved pointing
[35]-[36], MAXIMA reported new results [37], DASI reported its obser-
vations [38] resulting in improved estimates of the first peak location
and the clear establishment of the second and third peaks. Those obser-
vations combined with Supernovae Ia observations of and accelerating
Universe [39] resulted in a standard ΛCDM model of cosmology. More
results came in 2003 including WMAP ([40]) which gives the first peak
location �pk = 220.1±0.8 and higher peaks observed by ACBAR [41] all
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of which are consistent with a flat ΛCDM model and provide improved
cosmological constraints on the parameters of that model.

III-1 Higher Order Multipoles
Excess variance in CMB maps at higher multipoles (� ≥ 2) is inter-

preted as being the result of perturbations in the energy density of the
early Universe, manifesting themselves at the epoch of the last scatter-
ing of the CMB photons. In the hot Big Bang picture, this happens at
a redshift z � 1100, with little dependence on the details of the model.
The process by which the hydrogen and helium nuclei can hold onto their
electrons is usually referred to as recombination[43]. Before this epoch,
the CMB photons are tightly coupled to the baryons, while afterwards
they can freely stream towards us.

Theoretical models generally predict that the a�m modes are Gaussian
random fields, and all tests are consistent with this simplifying assump-
tion [44]. With this assumption, and if there is no preferred axis, then
it is the variance of the temperature field which carries the cosmologi-
cal information, rather than the values of the individual a�ms; in other
words the power spectrum in � fully characterizes the anisotropies. The
power at each � is (2� + 1)C�/(4π), where C� ≡

〈
|a�m|2

〉
, and a sta-

tistically isotropic sky means that all ms are equivalent. We use our
estimators of the C�s to constrain their expectation values, which are
the quantities predicted by a theoretical model. For an idealized full-
sky observation, the variance of each measured C� (the variance of the
variance) is [2/(2�+1)]C2

� . This sampling uncertainty (known as cosmic
variance) comes about because each C� is χ2 distributed with (2� + 1)
degrees of freedom for our observable volume of the Universe. For partial
sky coverage, fsky, this variance is increased by 1/fsky and the modes
become partially correlated.

It is important to understand that theories predict the expectation
value of the power spectrum, whereas our sky is a single realization.
Hence the ‘cosmic variance’ is an unavoidable source of uncertainty when
constraining models; it dominates the scatter at lower �s, while the ef-
fects of instrumental noise and resolution dominate at higher �s.

III-2 Angular Resolution and Binning
There is no one-to-one conversion between the angle subtended by a

particular wavevector projected on the sky and multipole �. However,
a single spherical harmonic Y�m corresponds to angular variations of
θ ∼ π/�. CMB maps contain anisotropy information from the size of the
map (or in practice some fraction of that size) down to the beam-size of
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the instrument, σ. One can think of the effect of a Gaussian beam as
rolling off the power spectrum with the function e−�(�+1)σ2.

For less than full sky coverage, the � modes are correlated. Hence,
experimental results are usually quoted as a series of ‘band powers’,
defined as estimators of �(�+1)C�/2π over different ranges of �. because
of the strong foreground signals in the Galactic Plane, even ‘all-sky’
surveys, such as COBE and WMAP involve a cut sky. The amount of
binning required to obtain uncorrelated estimates of power also depends
on the map size.

IV. Cosmological Parameters
The current ‘Standard Model’ of cosmology contains around 10 free

parameters (some versions are up to about 15 but 10 describes most
of what is currently known). The basic framework is the Friedmann-
Robertson-Walker metric (i.e., a universe that is approximately homo-
geneous and isotropic on large scales), with density perturbations laid
down at early times and evolving into today’s structures. These pertur-
bations can be either ‘adiabatic’ (meaning that there is no change to the
entropy per particle for each species, i.e., δρ/ρ for matter is (3/4)δρ/ρ
for radiation) or ‘isocurvature’ (meaning that, for example, matter per-
turbations compensate radiation perturbations so that the total energy
density remains unperturbed, i.e., δρ for matter is −δρ for radiation).
These different modes give rise to distinct phases during growth, and the
adiabatic scenario is strongly preferred by the data. Models that gen-
erate mainly isocurvature type perturbations (such as most topological
defect scenarios) are no longer considered to be viable.

Within the adiabatic family of models, there, is in principle, a free
function describing how the comoving curvature perturbations, R, vary
with scale. In inflationary models, the Taylor series expansion of lnR(ln k)
has terms of steadily decreasing size. For the simplest models, there are
thus 2 parameters describing the initial conditions for density pertur-
bations: the amplitude and slope of the power spectrum,

〈
|R|2

〉
∝ kn.

This can be explicitly defined, for example, through:

∆2
R ≡ (k3/2π2)

〈
|R|2

〉
,

and using A2 ≡ ∆2
R(k0) with k0 = 0.05 Mpc−1. There are many other

equally valid definitions of the amplitude parameter, and we caution that
the relationships between some of them can be cosmology dependent. In
‘slow roll’ inflationary models this normalization is proportional to the
combination V 3/(V ′)2, for the inflationary potential V (φ). The slope n
also involves V ′′, and so the combination of A and n can, in principle,
constrain potentials.
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Inflationary models can generate tensor (gravity wave) modes as well
as scalar (density perturbation) modes. This fact introduces another
parameter measuring the amplitude of a possible tensor component, or
equivalently the ratio of the tensor to scalar contributions. The tensor
amplitude AT ∝ V , and thus one expects a larger gravity wave contri-
bution in models where inflation happens at higher energies. The tensor
power spectrum also has a slope, often denoted nT, but since this seems
likely to be extremely hard to measure, it is sufficient for now to fo-
cus only on the amplitude of the gravity wave component. It is most
common to define the tensor contribution through r, the ratio of tensor
to scalar perturbation spectra at large scales (say k = 0.002 Mpc−1).
There are other definitions in terms of the ratio of contributions to C2,
for example. Different inflationary potentials will lead to different pre-
dictions, e.g. for λφ4 inflation, r = 0.32, while other models can have
arbitrarily small values of r. In any case, whatever the specific defini-
tion, and whether they come from inflation or something else, the ‘initial
conditions’ give rise to a minimum of 3 parameters: A, n and r.

The background cosmology requires an expansion parameter (the Hub-
ble Constant, H0, often represented through H0 = 100 h km s−1Mpc−1)
and several parameters to describe the matter and energy content of the
Universe. These are usually given in terms of the critical density, i.e.
for species ‘x , Ωx = ρx/ρcrit, where ρcrit = 3H2

0/8πG. Since physical
densities ρx ∝ Ωxh

2 ≡ ωx are what govern the physics of the CMB
anisotropies, it is these ωs that are best constrained by CMB data. In
particular CMB observations constrain ΩBh2 for baryons and ΩMh2 for
baryons plus Cold Dark Matter.

The contribution of a cosmological constant Λ (or other form of Dark
Energy) is usually included through a parameter which quantifies the
curvature, ΩK ≡ 1 − Ωtot, where Ωtot = ΩM + ΩΛ. The radiation con-
tent, while in principle a free parameter, is precisely enough determined
through the measurement of Tγ .

The main effect of astrophysical processes on the C�s comes through
reionization. The Universe became reionized at some redshift long af-
ter recombination, affecting the CMB through the integrated Thomson
scattering optical depth:

τ =
∫ zi

0
σTne(z)

dt

dz
dz,

where σT is the Thomson cross-section, ne(z) is the number density of
free electrons (which depends on astrophysics) and dt/dz is fixed by the
background cosmology. In principle, τ can be determined from the small
scale power spectrum together with the physics of structure formation
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Figure 5. Plot of the theoretical CMB anisotropy power spectrum, using a standard
ΛCDM model from CMBFAST. The x-axis is logarithmic here. The regions are labeled
as in the text: the ISW Rise; Sachs-Wolfe Plateau; Acoustic Peaks; and Damping
Tail. Also shown is the shape of the tensor (gravity wave) contribution, with an
arbitrary normalization.

and feedback processes. However, this is a sufficiently complicated cal-
culation that τ needs to be considered as a free parameter.

Thus we have 8 basic cosmological parameters: A, n, r, h, ΩBh2,
ΩMh2, Ωtot, and τ . One can add additional parameters to this list, par-
ticularly when using the CMB in combination with other data sets. The
next most relevant ones might be: Ωνh2, the massive neutrino contribu-
tion; w (≡ p/ρ), the equation of state parameter for the Dark Energy;
and dn/d ln k, measuring deviations from a constant spectral index. To
these 11 one could of course add further parameters describing addi-
tional physics, such as details of the reionization process, features in
the initial power spectrum, a sub-dominant contribution of isocurvature
modes, etc.
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As well as these underlying parameters, there are other quantities that
can be derived from them. Such quantities include the actual Ωs of the
various components (e.g. ΩM), the variance of density perturbations at
particular scales (e.g.- σ8), the age of the Universe today (t0), the age
of the Universe at recombination, reionization, etc.

V. Physics of Anisotropies
The cosmological parameters affect the anisotropies through the well

understood physics of the evolution of linear perturbations within a back-
ground FRW cosmology. There are very effective, fast, and publicly-
available software codes for computing the CMB anisotropy, polariza-
tion, and matter power spectra, e.g., CMBFAST[45] and CAMB[46]. CMBFAST
is the most extensively used code; it has been tested over a wide range
of cosmological parameters and is considered to be accurate to better
than the 1% level[47].

A description of the physics underlying the Cls can be separated into
3 main regions, as shown in

V-1 The Sachs-Wolfe plateau: l � 100

The horizon scale (or more precisely, the angle subtended by the Hub-
ble radius) at last scattering corresponds to � � 100. Anisotropies at
larger scales have not evolved significantly, and hence directly reflect the
‘initial conditions.’ The combination of gravitational redshift and intrin-
sic temperature fluctuations leads to δT/T � (1/3)δφ/c2, where δφ is
the perturbation to the gravitational potential. This is usually referred
to as the ‘Sachs-Wolfe’ effect[26].

Assuming that a nearly scale-invariant spectrum of density perturba-
tions was laid down at early times (i.e. , n � 1, meaning equal power
per decade in k), then �(� + 1)C� � constant at low �s. This effect is
hard to see unless the multipole axis is plotted logarithmically (as in

Time variation in the potentials (i.e. , time-dependent metric pertur-
bations) leads to an upturn in the Cls in the lowest several multipoles;
any deviation from a total equation of state w = 0 has such an effect.
So the dominance of the Dark Energy at low redshift makes the low-
est �s rise above the plateau. This is sometimes called the ‘integrated
Sachs-Wolfe effect’ (or ISW Rise), since it comes from the line integral
of φ̇. It has been confirmed through correlations between the large-angle
anisotropies and large-scale structure[48]. Specific models can also give
additional contributions at low l (e.g., perturbations in the Dark En-
ergy component itself[49]) but typically these are buried in the cosmic
variance.
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In principle, the mechanism that produces primordial perturbations
would generate scalar, vector, and tensor modes. However, the vector
(vorticity) modes decay with the expansion of the Universe. Tensors
also decay when they enter the horizon, and so they contribute only
to angular scales above about 1◦ (see Hence some fraction of the low
� signal could be due to a gravity wave contribution, although small
amounts of tensors are essentially impossible to discriminate from other
effects that might raise the level of the plateau. However the tensors can
be distinguished using polarization information (section 6).

V-2 The acoustic peaks: 100 � l � 1000

On sub-degree scales, the rich structure in the anisotropy spectrum is
the consequence of gravity-driven acoustic oscillations occurring before
the atoms in the universe became neutral. Perturbations inside the
horizon at last scattering have been able to evolve causally and produce
anisotropy at the last scattering epoch which reflects that evolution.
The frozen-in phases of these sound waves imprint a dependence on
the cosmological parameters, which gives CMB anisotropies their great
constraining power.

The underlying physics can be understood as follows. When the
proton-electron plasma was tightly coupled to the photons, these com-
ponents behaved as a single ‘photon-baryon fluid’, with the photons pro-
viding most of the pressure and the baryons the inertia. Perturbations in
the gravitational potential, dominated by the dark matter component,
are steadily evolving. They drive oscillations in the photon-baryon fluid,
with photon pressure providing the restoring force. The perturbations
are quite small, O(10−5), and so evolve linearly. That means each Fourier
mode evolves independently and is described by a driven harmonic oscil-
lator, with frequency determined by the sound speed in the fluid. Thus,
there is an oscillation of the fluid density, with velocity π/2 out of phase
and having amplitude reduced by the sound speed.

After the Universe recombined the baryons and radiation decoupled,
and the radiation could travel freely towards us. At that point the phases
of the oscillations were frozen-in, and projected on the sky as a harmonic
series of peaks. The main peak is the mode that went through 1/4 of
a period, reaching maximal compression. The even peaks are maximal
under -densities, which are generally of smaller amplitude because the
rebound has to fight against the baryon inertia. The troughs, which do
not extend to zero power, are partially filled because they are at the
velocity maxima.
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An additional effect comes from geometrical projection. The scale
associated with the peaks is the sound horizon at last scattering, which
can be confidently calculated as a physical length scale. This scale is
projected onto the sky, leading to an angular scale that depends on the
background cosmology. Hence the angular position of the peaks is a
sensitive probe of the spatial curvature of the Universe ( i.e. , Ωtot),
�peak ∼ 220/

√
Ωtot with the peaks lying at higher � in open universes

and lower � in closed geometry. A the current level of CMB observation
precision one must take into account second order effects which could in
principle shift the location of the acoustic peaks by a few per cent. The
most important of these include the relative amount dark energy and
dark matter.

One last effect arises from reionization at redshift zi. A fraction of
photons will be isotropically scattered at z < zi, partially erasing the
anisotropies at angular scales smaller than those subtended by the Hub-
ble radius at zi. This corresponds typically to �s above about a few 10s,
depending on the specific reionization model. The acoustic peaks are
therefore reduced by a factor e−2τ relative to the plateau.

These acoustic peaks were a clear theoretical prediction going back to
about 1970[51]. Their empirical existence started to become clear around
1994[31], and the emergence, over the following decade, of a coherent
series of acoustic peaks and troughs is a triumph of modern cosmology.
One can think of these peaks as a snapshot of stochastic standing waves.
And, since the physics governing them is simple, then one can see how
they encode information about the cosmological parameters.

V-3 The damping tail: l � 1000

The recombination process is not instantaneous, giving a thickness to
the last scattering surface. This leads to a damping of the anisotropies
at the highest �s, corresponding to scales smaller than that subtended
by this thickness. One can also think of the photon-baryon fluid as
having imperfect coupling, so that there is diffusion between the two
components, and the oscillations have amplitudes that decrease with
time. These effects lead to a damping of the Cls, sometimes called Silk
damping[28], which cuts off the anisotropies at multipoles above about
2000.

An extra effect at high �s comes from gravitational lensing, caused
mainly by non-linear structures at low redshift. The Cls are convolved
with a smoothing function in a calculable way, partially flattening the
peaks, generating a power-law tail at the highest multipoles, and com-
plicating the polarization signal[54]. This is an example of a ‘secondary
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effect’, i.e. , the processing of anisotropies due to relatively nearby struc-
tures. Galaxies and clusters of galaxies give several such effects, but all
are expected to be of low amplitude and are typically only important
for the highest �s.

VI. Current Anisotropy Data
There has been a steady improvement in the quality of CMB data

that has led to the development of the present-day cosmological model.
Probably the most robust constraints currently available come from the
combination of the WMAP first year data[17] with smaller scale results
from the CBI[55] and ACBAR[41] experiments. We plot these power
spectrum estimates in Other recent experiments, such as ARCHEOPS
[56], BOOMERANG[57], DASI[42], MAXIMA[58] and VSA[52] also give
powerful constraints, which are quite consistent with what we describe
below. There have been some comparisons among data-sets[59], which
indicate very good agreement, both in maps and in derived power spec-
tra (up to systematic uncertainties in the overall calibration for some
experiments). This makes it clear that systematic effects are largely
under control. However, a fully self-consistent joint analysis of all the
current data sets has not been attempted, one of the reasons being that
it requires a careful treatment of the overlapping sky coverage.

Figure 6 shows band-powers from the first year WMAP data[80], to-
gether with CBI and ACBAR data at higher �. The points are in very
good agreement with a ‘ΛCDM’ type model, as described in the previ-
ous section, with several of the peaks and troughs quite apparent. For
details of how these estimates were arrived at, the strength of any corre-
lations between band-powers and other information required to properly
interpret them, turn to the original papers[17][55][41].

VII. CMB Polarization
In Penzias and Wilson’s first paper the CMB was shown to be un-

polarized to the 10% level. Polarization of the CMB was shown to be
< 300 µK ([60]). COBE put a limit of < 15 µK on the polarization
anisotropy. The linear polarization of the CMB was first detected by
DASIPOL ([61]), and the cross-correlation of the temperature and po-
larization anisotropies was confirmed by WMAP ([62]).

The detected polarization level is an order of magnitude lower than the
anisotropy. The observed polarization is caused by electron scattering
during the late stages of recombination on small angular scales and after
reionization on large angular scales. The magnitude of the polarization
on small angular scales depends on the anisotropy being in place at
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Figure 6. Theoretical Curves for C� vs � for a number of cosmological models.

recombination, as is the case for primordial adiabatic perturbations but
not for topological defects; the electron scattering cross-section; and the
recombination coefficient of hydrogen. The detection of this polarization
is a very strong confirmation of the standard model for CMB anisotropy.

Because polarization is a vector field, two distinct modes or patterns
can arise ([63], [64]): the gradient of a scalar field (the “E” mode) or the
curl of a vector field (the “B” mode). Electron scattering only produces
the E mode. Electron scattering gives a polarization pattern that is
correlated with the temperature anisotropy, so the E modes can be de-
tected by cross-correlating the polarization with the temperature. The
B modes cannot be detected this way, and the predicted level of the B
modes is at least another order of magnitude below the E modes, or two
orders of magnitude below the temperature anisotropy.

Since Thomson scattering of an anisotropic radiation field also gen-
erates linear polarization, the CMB is predicted to be polarized at the
roughly 5% level[65]. Polarization is a spin 2 field on the sky, and the
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Figure 7. Band-power estimates from the WMAP, CBI, and ACBAR experiments.
The WMAP data are the points, while squares are CBI and crosses ACBAR. We have
shown only CBI and ACBAR data relevant for l > 500, and both experiments also
probe to higher � than shown. This plot represents only a fraction of experimental
results, with several other data-sets being of similar quality. The multipole axis here
is linear, so the Sachs-Wolfe plateau is hard to see. The acoustic peaks and damping
region are very clearly observed, with no need for a theoretical curve to guide the eye.

algebra of the modes in �-space is strongly analogous to spin-orbit cou-
pling in quantum mechanics[66]. The linear polarization pattern can be
decomposed in a number of ways, with two quantities required for each
pixel in a map, often given as the Q and U Stokes parameters. How-
ever, the most intuitive and physical decomposition is a geometrical one,
splitting the polarization pattern into a part that comes from a diver-
gence (often referred to as the ‘E-mode’) and a part with a curl (called
the ‘B-mode’)[67]. More explicitly, the modes are defined in terms of
second derivatives of the polarization amplitude, with the Hessian for
the E-modes having principle axes in the same sense as the polarization,
while the B-mode pattern can be thought of simply as a 45◦ rotation
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of the E-mode pattern. Globally one sees that the E-modes have (−1)�

parity (like the spherical harmonics), while the B-modes have (−1)�+1

parity.
The existence of this linear polarization allows for 6 different cross

power spectra to be determined from data that measure the full tem-
perature and polarization anisotropy information. Parity considerations
make 2 of these zero, and we are left with 4 potential observables: CTT

� ,
CTE

� , CEE
� , and CBB

� . Since scalar perturbations have no handedness,
the B-mode power spectrum can only be generated by vectors or ten-
sors. Hence, in the context of inflationary models, the determination of
a non-zero B-mode signal is a way to measure the gravity wave contri-
bution (and thus potentially derived the energy scale of inflation), even
if it is rather weak. However, one must first eliminate the foreground
contributions and other systematic effects down to very low levels.

The oscillating photon-baryon fluid also results in a series of acoustic
peaks in the polarization power spectra. The main ‘EE’ power spectrum
has peaks that are out of phase with those in the ‘TT’ spectrum, because
the polarization anisotropies are sourced by the fluid velocity. The cor-
related component of the polarization and temperature patterns comes
from correlations between density and velocity perturbations on the last
scattering surface, which can be both positive and negative. There is
no polarization ‘Sachs-Wolfe’ effect, and hence no large-angle plateau.
However, scattering during a recent period of reionization can create a
polarization ‘bump’ at large angular scales.

The strongest upper limits on polarization are at the roughly 10µK
level from the POLAR[69] experiment at large angular scales and the
PIQUE[70] and COMPASS[71] experiments at smaller scales. The first
measurement of a polarization signal came in 2002 from the DASI exper-
iment[61], which provided a convincing detection, confirming the general
paradigm, but of low enough significance that it lends little constraint
to models. As well as the E-mode signal, DASI also made a statistical
detection of the TE correlation.

More recently the WMAP experiment was able to measure the TE
cross-correlation power spectrum with high precision[62]. The results
are shown in Figure 8. along with some estimates from the DASI ex-
periment. The detected shape of the cross-correlation power spectrum
provides supporting evidence of the adiabatic nature of the perturba-
tions, as well as directly constraining the thickness of the last scattering
surface. Since the polarization anisotropies are generated in this scatter-
ing surface, the existence of correlations at angles above about a degree
demonstrate that there were super-Hubble fluctuations at the recombi-
nation epoch.
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Figure 8. Cross power spectrum of the temperature anisotropies and E-mode po-
larization signal from WMAP (points), together with some estimates from DASI
(triangles) which extend to higher �. Note that the DASI bands are much wider in �
than those of WMAP. Also note that the y-axis is not multiplied by the additional �,
which helps to show both the large and small angular scale features.

Perhaps the most intriguing result from the polarization measure-
ments is at the largest angular scales (l < 10), where there is an excess
signal compared to that expected from the temperature power spectrum
alone. This is precisely the signal expected from an early period of
reionization, arising from Doppler shifts during the partial scattering at
z < zi. It seems to indicate that the first stars (presumably the source
of the ionizing radiation) formed around z = 20.

VIII. Complications
There are a number of issues which complicate the interpretation of

CMB anisotropy data, some of which we sketch out below.
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VIII-1 Foregrounds
The microwave sky contains significant emission from our Galaxy

and from extragalactic sources. Fortunately, the frequency dependence
of these various sources are in general substantially different than the
CMB anisotropy signals. The combination of Galactic synchrotron,
bremsstrahlung and dust emission reaches a minimum at a wavelength
of roughly 3 mm (or about 100 GHz). As one moves to greater angu-
lar resolution, the minimum moves to slightly higher frequencies, but
becomes more sensitive to unresolved (point-like) sources.

At frequencies around 100 GHz and for portions of the sky away from
the Galactic Plane the foregrounds are typically 1 to 10% of the CMB
anisotropies. By making observations at multiple frequencies, it is rela-
tively straightforward to separate the various components and determine
the CMB signal to the few per cent level. For greater sensitivity it is
necessary to improve the separation techniques by adding spatial infor-
mation and statistical properties of the foregrounds compared to the
CMB.

The foregrounds for CMB polarization are expected to follow a similar
pattern, but are less well studied, and are intrinsically more complicated.
Whether it is possible to achieve sufficient separation to detect B-mode
CMB polarization is still an open question. However, for the time being,
foreground contamination is not a major issue for CMB experiments.

VIII-2 Secondary Anisotropies
With increasingly precise measurements of the primary anisotropies,

there is growing theoretical and experimental interest in ‘secondary ani-
sotropies.’ Effects which happen at z  1000 become more important
as experiments push to higher angular resolution and sensitivity.

These secondary effects include gravitational lensing, patchy reion-
ization and the Sunyaev-Zel’dovich (SZ) effect[72]. This is Compton
scattering (γe → γ′e′) of the CMB photons by a hot electron gas, which
creates spectral distortions by transferring energy from the electrons to
the photons. The effect is particularly important for clusters of galaxies,
through which one observes a partially Comptonized spectrum, resulting
in a decrement at radio wavelengths and an increment in the submillime-
ter. This can be used to find and study individual clusters and to obtain
estimates of the Hubble constant. There is also the potential to constrain
the equation of state of the Dark Energy through counts of clusters as
a function of redshift[73].
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VIII-3 Higher-order Statistics
Although most of the CMB anisotropy information is contained in the

power spectra, there will also be weak signals present in higher-order
statistics. These statistics will measure primordial non-Gaussianity in
the perturbations, as well as non-linear growth of the fluctuations on
small scales and other secondary effects (plus residual foreground con-
tamination). Although there are an infinite variety of ways in which the
CMB could be non-Gaussian, there is a generic form to consider for the
initial conditions, where a quadratic contribution to the curvature per-
turbations is parameterized through a dimensionless number fNL. This
weakly non-linear component can be constrained through measurements
of the bispectrum or Minkowski functionals for example, and the result
from WMAP is −58 < fNL < 134 (95% confidence region)[44].

IX. Constraints on Cosmologies
The most important outcome of the newer experimental results is that

the standard cosmological paradigm is in good shape. A large amount
of high precision data on the power spectrum is adequately fit with
fewer than 10 free parameters. The framework is that of Friedmann-
Robertson-Walker models, which have nearly flat geometry, containing
Dark Matter and Dark Energy, and with adiabatic perturbations having
close to scale invariant initial conditions.

Within this framework, bounds can be placed on the values of the
cosmological parameters. Of course, much more stringent constraints
can be placed on models which cover a restricted number of parame-
ters, e.g. assuming that Ωtot = 1, n = 1 or r = 0. More generally, the
constraints depend upon the adopted priors, even if they are implicit,
for example by restricting the parameter freedom or the ranges of pa-
rameters (particularly where likelihoods peak near the boundaries), or
by using different choices of other data in combination with the CMB.
When the data become even more precise, these considerations will be-
come less important, but for now we caution that restrictions on model
space and choice of priors need to be kept in mind when adopting specific
parameter values and uncertainties.

There are some combinations of parameters that fit the CMB anisotro-
pies almost equivalently. For example, there is a nearly exact geometric
degeneracy, where any combination of ΩM and ΩΛ that gives the same
angular diameter distance to last scattering will give nearly identical
C�s. There are also other near degeneracies among the parameters. Such
degeneracies can be broken when using the CMB data in combination
with other cosmological data sets. Particularly useful are complementary
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constraints from galaxy clustering, the abundance of galaxy clusters,
weak gravitational lensing measurements, Type Ia supernova distances
and the distribution of Lyman α forest clouds.

The combination of WMAP, CBI and ACBAR, together with weak
priors (on h and ΩBh2 for example), and within the context of a 6
parameter family of models (which fixes Ωtot = 1), yields the following
results[74]: A = 2.7(±0.3) × 10−9, n = 0.97 ± 0.03, h = 0.73 ± 0.05,
ΩBh2 = 0.023±0.001, ΩMh2 = 0.13±0.01 and τ = 0.17±0.07. Note that
for h, the CMB data alone provide only a very weak constraint, unless
spatial flatness or some other cosmological data are used. For ΩBh2 the
precise value depends sensitively on how much freedom is allowed in the
shape of the primordial power spectrum. The best constraint on Ωtot

is 1.02 ± 0.02. This comes from including priors from h and supernova
data. Slightly different, but consistent results come from using different
data combinations.

The 95% confidence upper limit on r is 0.53 (including some extra
constraint from galaxy clustering). This limit is stronger if we restrict
ourselves to n < 1 and weaker if we allow dn/d ln k �= 0.

There are also constraints on parameters over and above the basic
8 that we have described. But for such constraints it is necessary to
include additional data in order to break the degeneracies. For example
the addition of the Dark Energy equation of state, w adds the partial
degeneracy of being able to fit a ridge in (w, h) space, extending to
low values of both parameters. This degeneracy is broken when the
CMB is used in combination with independent H0 limits, for example
[75], giving w < −0.5 at 95% confidence. Tighter limits can be placed
using restrictive model-spaces and/or additional data.

For the optical depth τ , the error bar is large enough that apparently
quite different results can come from other combinations of data. The
constraint from the combined WMAP CTT

� and CTE
� data is τ = 0.17±

0.04, which corresponds (within reasonable models) to a reionization
redshift 9 < zi < 30 (95% CL)[62]. This is a little higher than some
theoretical predictions and some suggestions from studies of absorption
in high-z quasar spectra[76]. The excitement here is that we have direct
information from CMB polarization which can be combined with other
astrophysical measurements to understand when the first stars formed
and brought about the end of the cosmic dark ages.

X. Particle Physics Constraints
CMB data are beginning to put limits on parameters which are di-

rectly relevant for particle physics models. For example there is a limit
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on the neutrino contribution Ωνh2 < 0.0076 (95% confidence) from a
combination of WMAP and galaxy clustering data from the 2dFGRS
project[77]. This directly implies a limit on neutrino mass, assuming
the usual number density of fermions which decoupled when they were
relativistic.

A combination of the WMAP data with other data-sets gives some
hint of a running spectral index, i.e. , dn/d ln k �= 0[74]. Although this
is still far from resolved[78], things will certainly improve as new data
come in. A convincing measurement of a non-zero running of the index
would be quite constraining for inflationary models [79].

One other hint of new physics lies in the fact that the quadrupole and
some of the other low � modes seem anomalously low compared with the
best-fit ΛCDM model[80]. This is what might be expected in a universe
which has a large scale cut-off to the power spectrum, or is topologically
non-trivial. However, because of cosmic variance, possible foregrounds
etc., the significance of this feature is still a matter of debate[81].

In addition it is also possible to put limits on other pieces of physics
[82], for example the neutrino chemical potentials, time variation of the
fine-structure constant, or physics beyond general relativity. Further
particle physics constraints will follow as the anisotropy measurements
increase in precision.

Careful measurement of the CMB power spectra and non-Gaussianity
can in principle put constraints on high energy physics, including ideas
of string theory, extra dimensions, colliding branes, etc. At the moment
any calculation of predictions appears to be far from definitive. How-
ever, there is a great deal of activity on implications of string theory for
the early Universe, and hence a very real chance that there might be
observational implications for specific scenarios.

XI. Fundamental Lessons
More important than the precise values of parameters is what we

have learned about the general features which describe our observable
Universe. Beyond the basic hot Big Bang picture, the CMB has taught
us that:

• The Universe recombined at z � 1100 and started to become ionized
again at z � 10–30.

• The geometry of the Universe is close to flat.

• Both Dark Matter and Dark Energy are required.

• Gravitational instability is sufficient to grow all of the observed large
structures in the Universe.
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• Topological defects were not important for structure formation.

• There are ‘synchronized’ super-Hubble modes generated in the early
Universe.

• The initial perturbations were adiabatic in nature.

• The perturbations had close to Gaussian ( i.e. , maximally random)
initial conditions.

It is very tempting to make an analogy between the status of the cos-
mological ‘Standard Model’ and that of particle physics. In cosmology
there are about 10 free parameters, each of which is becoming well de-
termined, and with a great deal of consistency between different mea-
surements. However, none of these parameters can be calculated from a
fundamental theory, and so hints of the bigger picture, ‘physics beyond
the Standard Model’ are being searched for with ever more challenging
experiments.

Despite this analogy, there are some basic differences. For one thing,
many of the cosmological parameters change with cosmic epoch, and so
the measured values are simply the ones determined today, and hence
they are not ‘constants’, like particle masses for example (although they
are deterministic, so that if one knows their values at one epoch, they can
be calculated at another). Moreover, the number of parameters is not as
fixed as it is in the particle physics Standard Model; different researchers
will not necessarily agree on what the free parameters are, and new ones
can be added as the quality of the data improves. In addition parameters
like τ , which come from astrophysics, are in principle calculable from
known physical processes, although this is currently impractical. On
top of all this, other parameters might be ‘stochastic’ in that they may
be fixed only in our observable patch of the Universe.

In a more general sense the cosmological ‘Standard Model’ is much
further from the underlying ‘fundamental theory’ which will provide the
values of the parameters from first principles. On the other hand, any
genuinely complete ‘theory of everything’ must include an explanation
for the values of these cosmological parameters as well as the parameters
of the Standard Model.

XII. Future Directions
With all the observational progress in the CMB and the tying down

of cosmological parameters, what can we anticipate for the future? Of
course there will be a steady improvement in the precision and confidence
with which we can determine the appropriate cosmological model and
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its parameters. We can anticipate that the evolution from one year to
four years of WMAP data will bring improvements from the increased
statistical accuracy and from the more detailed treatment of calibra-
tion and systematic effects. Ground-based experiments operating at the
smaller angular scales will also improve over the next few years, pro-
viding significantly tighter constraints on the damping tail. In addition,
the next CMB satellite mission, Planck, is scheduled for launch in 2007,
and there are even more ambitious projects currently being discussed.

Despite the increasing improvement in the results, it is also true that
the addition of the latest experiments has not significantly changed the
cosmological model (apart from a suggestion of higher reionization red-
shift perhaps). It is therefore appropriate to ask: what should we expect
to come from Planck and from other more grandiose future experiments,
including the proposed Inflation Probe or CMBPol? Planck certainly
has the the advantage of high sensitivity and a full sky survey. A detailed
measurement of the third acoustic peak provides a good determination
of the matter density; this can only be done by measurements which are
accurate relative to the first two peaks (which themselves constrained
the curvature and the baryon density). A detailed measurement of the
damping tail region will also significantly improve the determination of
n and any running of the slope. Planck should also be capable of mea-
suring CEE

� quite well, providing both a strong check on the Standard
Model and extra constraints that will improve parameter estimation.

A set of cosmological parameters are now known to roughly 10% ac-
curacy, and that may seem sufficient for many people. However, we
should certainly demand more of measurements which describe the en-
tire observable Universe! Hence a lot of activity in the coming years
will continue to focus on determining those parameters with increasing
precision. This necessarily includes testing for consistency among differ-
ent predictions of the Standard Model, and searching for signals which
might require additional physics.

A second area of focus will be the smaller scale anisotropies and ‘sec-
ondary effects.’ There is a great deal of information about structure
formation at z  1000 encoded in the CMB sky. This may involve
higher-order statistics as well as spectral signatures. Such investigations
can also provide constraints on the Dark Energy equation of state, for
example. Planck, as well as experiments aimed at the highest �s, should
be able to make a lot of progress in this arena.

A third direction is increasingly sensitive searches for specific signa-
tures of physics at the highest energies. The most promising of these
may be the primordial gravitational wave signals in CBB

� , which could
be a probe of the ∼ 1016 GeV energy range. Whether the amplitude
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of the effect coming from inflation will be detectable is unclear, but the
prize makes the effort worthwhile.

Anisotropies in the CMB have proven to be the premier probe of cos-
mology and the early Universe. Theoretically the CMB involves well-
understood physics in the linear regime, and is under very good calcu-
lational control. A substantial and improving set of observational data
now exists. Systematics appear to be well understood and not a limiting
factor. And so for the next few years we can expect an increasing amount
of cosmological information to be gleaned from CMB anisotropies, with
the prospect also of some genuine surprises.
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COSMOLOGY WITH SUPERNOVAE 1A

Smadja Gérard
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Abstract The basic relations between the luminosity distance, the matter den-
sity ΩM , and the cosmological constant ΩΛ are derived. The universal
character of the luminosity of SN1a is described, and the experimental
status of the determinations of the Hubble constant, ΩM , and ΩΛ are
recalled. The large supernovae surveys foreseen in the near future, and
their expected performances are reviewed. Some aspects of the super-
novae explosions are briefly summarised

Keywords: Supernovae, Friedmann’s equation, luminosity distance, Hubble expan-
sion, cosmological constant, matter density, dust, evolution

Introduction
We shall assume that the mean luminosity of Type Ia supernovae does

not change with redshift: they are standard. There is no indication at
present for any such variation, although the bounds are weak. Should
future data contradict this assumption at some level, the present val-
ues of the densities ΩM , ΩΛ should be appropriately corrected, but the
analysis discussed here would not be drastically altered.

The observed luminosity of supernovae is in this context a direct in-
dicator of their distance (using a modified inverse squared law), and the
redshift of the host galaxy lines gives its recession velocity. The rela-
tion between distance and redshift reflects the history of the Hubble
’constant’ between the time of emission of the SN light and its observa-
tion today. In a homogeneous and isotropic universe, this variation with
time (or redshift) can be explicitly obtained from the Friedman equation
which we shall recall. Since the first quantitative results were published
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by [6] and [7], the indications for a finite cosmological constant have
been strengthening.

I. Distances in curved space

I-1 2D Geometry

Figure 1. Distances on the 2D surface of a sphere

The 2D surface of a sphere of radius R0 gives an intuitive introduction
to the relation between the projected cordinates (r, φ) and distances.
The geodesic line element is

dl =
dr

sin θ
=

dr√
1 − r2/R2

0

The translation operation does not preserve the surface, and must
be replaced by a rotation. This will be directly transposed to the 3D
surface of a 4D sphere, which might describe the universe at large scales
(if curved).

I-2 3D curved space : changing the origin
The homogeneity of space at large scales imposes a constant radius.

x2
1 + x2

2 + x2
3 + kx2

4 = kR2
0
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with k = −1, 0, 1 depending on the sign of the curvature (the constant
R0 is related to but not equal to the 3D curvature). Let us stress that
the auxiliary 4th coordinate is NOT time. A change of origin cannot
be described by a translation, but rather by 3D or 4D ’rotations’ which
leave the line element

dl2 = dx2
1 + dx2

2 + dx2
3 + kdx2

4 (I-2.1)

invariant. The usual spherical coordinates can be introduced if k > 0.

x1 = R0 sin χ sin θ cos φ

x2 = R0 sin χ sin θ sin φ

x3 = R0 sin χ cos θ

x4 = R0 cos χ

The line element can be expressed as

dl2 = a(t)2R2
0

[
ra(dθ2 + sin2 θ(dφ)2) +

(dra)2

1 − kr2
a

]
(I-2.2)

with
ra =

r

R0
= sinχ (I-2.3)

The scale factor a(t)R0 converts (comoving) dimensionless coordinates
to distances at time t. A change of origin should be described by a ro-
tation involving the 4th auxiliary coordinate. Assume k = 1

x∗
4 = x4 cos χ + x3 sin χ = R0 cos χ∗

x∗
3 = x3 cos χ − x4 sin χ = R0 sin χ∗ cos θ∗

x∗
2 = x2 = sin χ∗ sin θ∗ = sin χ sin θ

If k = −1 hyperbolic lines should be substituted with cos → ch, sin →
sh, and no minus sign in the formulae. The observed angle of a distant
object is obtained from

θ∗ = π/2, sin θ = R0 sin χ∗/R0 sin χ

and by analogy with the usual relation, an angular distance is defined as
sin θ = LA/dA, where LA = a(te)R0 sin χ∗ is the diameter of the object
(galaxy) at time t = te, the emission time, and dA = a(te)R0 sin χ, its
angular distance.
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II. Luminosity and distance

II-1 The energy flux
We have already introduced the spherical coordinate transformations

associated with a change of origin. The telescope has a diameter D0 =
a(t0)r∗ = a(t0)R0 sin χ∗ with a local origin on the earth, and its area is
∆S = πD2/4. The scale factor a(t0) is the universal scale at the time of
observation t0, today (in contrast with the case of the angular distance),
and is usually set to 1.

Figure 2. Solid angle at emission and Telescope diameter

The number of photons is conserved from emission to observation:

dNγ

dt0dS
dt0∆S =

dNγ

dtedΩe
dte

(
∆S

4πa2(t0)r2(ze)

)
The flux is reduced by two factors equal to (1+z)−1: the time dilata-

tion dte/dt0 and the redshift a(t0)/a(te).

dW0

dt0dS
dt0∆S =

1
(1 + z)2

dWe

dtedΩe
dte

(
∆S

4πa2(t0)r2(ze)

)
Defining the (rest frame) luminosity L as

L =
dWe

dtedΩe

dW0

dt0dS
∆S = L

∆S

4πd2
L

(II-1.4)

with
dL = a(t0)(1 + ze)r(ze) = (1 + ze)r(ze) (II-1.5)

the luminosity distance, while r(ze) = R0 sin χe, the (comoving) coordi-
nate at redshift ze.
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II-2 From redshift to distance
It is seen in figure 3 that along the ray trajectory,

dl = cdt = a(t)
R0dra

1 − k(ra)2
= R0a(t)dχ

(the variable ra = r/R0 is the same as in equation (1.3) of subsection
1.2). One obtains

Figure 3. Propagation of a light ray from the SNIa to an observer

R0dχ =
cdt

a(t)
= c

da

a(da/dt)

R0χ = c

∫ a(t0)

a(te)

da

a(da/dt)
= c

∫ a(t0)

a(te)

da

a2(da/adt)

The ratio ȧ/a = H(z) is the Hubble ’constant’ at redshift z, and we can
switch from the scale variable a(t) to the redshift z with the relation

a(z) =
a0

1 + z
=

a(z = 0)
1 + z

the Doppler formula

so that dz = −da/a2.
The final result is

R0χe = c

∫ ze

z0

dz

H(z)
(II-2.6)

The function H(z) has been derived from Friedmann’s equation in the
lecture of professor D. Langlois:

H(z)2 = H2
0

(
ΩM (z) + ΩR(z) + ΩΛ +

Ωk

a(z)2

)
= H2

0h2(z)

with Ωk = 1−ΩM (z = 0)−ΩR(z = 0)−ΩΛ. The reduced energy densities
are known functions of the redshift z, Ωi(z) = Ωi(0)(1 + z)3(1+wi) where
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wi is the ratio between the partial pressure pi and the energy density
ρi (w1 = 0 for the non relativistic matter, w2 = 1/3 for neutrinos and
photons, and w3 = −1 for the cosmological constant). The luminosity
distance dL is obtained from equations (1.3),(2.1),(2.2) with different
expressions according to the value of k.

dL = (1 + ze)r(ze) = (1 + ze)R0sinχe k = 1
dL = (1 + ze)r(ze) = (1 + ze)R0shχe k = -1
dL = (1 + ze)r(ze) = (1 + ze)R0χe k = 0

dL is a function of the history of the expansion rate (’Hubble cons-
tant’) along the ray trajectory.

a(z = 0) = 1 has been assumed, else, a(0)R0 should be substituted
to R0 in the previous equations.

if k > 0 there is a maximal distance a(0)R0 in the universe (it does
not seem to be the case).

One can define a function sinhχ, with values equal respectively to
sin χ, shχ, χ, depending on the value of the curvature coefficient k =
1,−1, 0.

The spherical (or hyperbolic) coordinate χ is evaluated from the in-
tegral

I(ze) =
c

a0H0

∫ ze

z0

dz

h(z)
(II-2.7)

The comoving coordinate r(ze) can then be expressed as a function of
I(z):

r(ze) = R0sinh

(
I(ze)

a0R0H0

)
(II-2.8)

dL(ze) = (1 + ze)r(ze) (II-2.9)

The integral I(z) is a function of the parameters ΩM , ΩR, ΩΛ via the
Friedman equation. The radiation density is however negligible in the
present universe, as supernovae can only be observed (and produced!)
only up to z ∼ 2. The variation of the luminosity of SNIae as a function
of the redshift z is then directly and simply related to the energy density
and the geometry of the universe on cosmological scales.
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III. The Experimental method

III-1 The Search for Supernovae
Supernovae are found by comparing observed telescope fields with re-

ference fields. After correcting for the variation of the optical properties
of the atmosphere (the seeing, which varies between 0.4” and 1.2” de-
pending on the site and the date), a subtraction allows to select variable
objects, such as supernovae, cepheids, quasars, Active Galactic Nuclei.
An example is given in figure 7. The light curve and the spectral prop-
erties contribute to the identification. The first generation of surveys
accumulated typically 200 supernovae over a period of five years, spread
on a wide variety of instruments. A large angular domain is clearly the
key to an efficient discovery rate at moderate values of z. Below z = 0.8,
a few supernovae can be found each night in a field of a few square
degrees.

Figure 4. The detection of SNIae by subtraction from [1]

III-2 Luminosity dispersion of SNIae and the
time scale

The explosion leading to SNIae is characterised by a fixed mass scale,
the Chandrasekhar mass, of about 1.4 solar mass, and the typical time
scales in the SN rest frame are about 15 days for the rise time, and 20
days for the decline. Thanks to a scaling law to be explained later be-
tween the luminosity and the time evolution of supernovae, this spread
can be impressively reduced when the light curve of the supernova is
taken into account. The time scale for the light curve can be para-
metrised either by ∆M15, the drop in the measured (blue filter) mag-
nitude between the peak, and its value 15 days after maximum, or by
the stretch parameter s, defined by the ratio of time scales between the
observed light curve shape and a reference template. A correction is
then applied to the observed magnitude:

mB = mobs + 0.6(s − 1)
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It is seen in figure 5 that the luminosity dispersion is reduced to 20 %
once the stretch (or ∆M15) corrections have been applied. This can be

Figure 5. Distribution of the peak luminosity without and with stretch correction
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understood semi-quantitatively if the peak luminosity is directly corre-
lated to the mass of 56Ni produced in the explosion. According to [8],[9]
the opacity of the final 56Ni increases the diffusion time of the photons,
and shifts the peak date to later values. It is quite remarkable that as
stressed in [10], the luminosity and the stretch factor are also strongly
correlated to spectral features such as the ratios of neighbouring pairs
of Si and Ca lines in figure 6.

Figure 6. The main features of the SNIa spectrum

III-3 The Colour correction
It is apparent in figure 7 from [2] that there is a relation between the

colour of the SN, as defined by the magnitude difference between two
filters (B-V) or (V-I) at maximum, and the time-scale parameter ∆M15,
which measures the luminosity. Most of this correlation is usually at-
tributed to the galactic extinction in the host galaxy and in ours, without
a compelling case. A significant part may be an intrinsic luminosity-
colour correlation. The extinction correction does reduce the dispersion
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of SN luminosities. In addition, were it not applied, systematic effects
from different extinctions in nearby and distant SNIae might arise.

Figure 7. The correlation between colour and ∆M15

IV. The cosmological parameters

IV-1 The determination of the Hubble constant
The determination of the Hubble constant from the luminosity of

Type Ia supernovae requires the knowledge of their absolute magnitude.
The distance of the host galaxy must then be measured directly without
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using its redshift. The standard tools are Cepheids, surface brightness
fluctuations, or the Tully-Fisher relation for the rotation. This restricts
the distance of the galaxy to our neighbourhood, and the statistics of
supernovae in these galaxies is still quite small today. A recent review
of the Cepheid calibration of the peak brightness can be found in [3],[4],
where the absolute blue magnitude of SNIae is averaged from a sample
of 9 supernovae to be MB = −19.35± 0.24 after application of the time
scale(∆M15) and extinction corrections. Assuming this fixed luminosity,
the value of the Hubble constant is then derived from the apparent
magnitudes in a larger sample with z < 0.2 to be H0(t0) = 59.7 ± 6.3
km/s/Mpc. It is indeed found in [11] that the dispersion around the 1/z2

straight line (for z < 0.1) is reduced to about 13 % after the time scale
and colour corrections. Although the supernovae can be observed at
larger distances than Cepheids, and have a smaller luminosity dispersion,
the benefit they give in the H0 determination is still dependent today
on the knowledge of the distances of a very small sample of SN Ia.

IV-2 Dust and evolution
The observed supernovae are less luminous than they would be in an

empty universe with ΩΛ = ΩM = 0, and by an amount of 30 to 40%.
Some unknown galactic or intergalactic dust might generate a similar
attenuation. Although the present data do not rule out this contribution,
the origin and nature of such a dust would need explanations. The
present data in figure 8 of [12] hints that the z dependence might be
turning around at z > 1, as predicted by cosmology, while the dust
interpretation would favour an ever stronger decrease of the luminosity
at large z, as seen in figure 9.

IV-3 The matter and energy densities
Once the SNIae have been ’standardized’ by the time scale and colour

correction, a fit of the luminosities as a function of redshift, using equa-
tions (2.1) and (2.5) allows the determination of the parameters ΩM and
ΩΛ. A large lever arm in z is needed, and the experiments combine differ-
ent surveys, with different systematics. The probability contours found
by the combination of the data sets available in 2003 are shown in figures
10 and 11 from [12], which includes 200 Supernovae: ΩM = 0.60± 0.55,
ΩΛ = 1.3 ± 0.7, and an w = −1.1 ± 0.3. This result is compatible (to
within 1 standard deviation) with the critical density measured by the
3K radiation (see the lecture of G. Smoot), with ΩM +ΩΛ = 1 (flatness).
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Figure 8. Comparison with an empty universe (from [12])

When the constraint of flatness is included, the contours are modified
as indicated in the small ellipse in figure 10 and 11: the corresponding
values are ΩM = 0.27 ± 0.05, and ΩΛ = 0.73 ± 0.22

The remaining uncertainty concerns a possible evolution of super-
novae from early times (z = 1) to the present era. There are neither
indications for such an evolution, nor strong limits. It is hoped that the
future experiments, with large statistics at low and high z, and good
spectroscopy will give quantitative estimates.

V. Future programmes

V-1 Short term
Up to now, the two main surveys by the HZT and SCP collabora-

tions have been painstakingly gathered over a wide set of telescopes,
distributed all over the world (WHT, VLT, CFHT, Keck,etc...in the
US), with scarce but high quality data from HST. The detection beyond
z = 0.3 up to z = 1 can be performed with instruments of 4m diame-
ter (CFHT,WHT), while the spectral analysis needed for redshifts and
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Figure 9. Comparison of different models with a flat (empty) universe

Figure 10. Contour plots for ΩΛ and
ΩM

Figure 11. Contour plots for ΩΛ and
w

classification requires typically (for z > 0.5) a whole night on an 8m
telescope (VLT, Keck).
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Several dedicated surveys have now been initiated, the SNLS (Super-
novae Legacy Survey) at CFHT and the GOODS ([13]) (Great Observa-
tories Origin Deep Surveys) combining several large space instruments
(Chandra, XMM, SIRTF, Hubble). The SNLS survey should provide
over 5 years 700 SNIae with z > 0.3. It is shown in figure 12 how the
SNLS survey, combined with a nearby supernovae sample obtained by
SNIFS(Supernovae Integral Field Spectrometer)will reduce the statisti-
cal errors on (ΩM , ΩΛ) to (±0.06,±0.02) [14].
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Figure 12. CFHLS contours for
ΩM ,ΩΛ

Figure 13. Combining
SNLS(distant) and SNIFS(nearby)
Supernovae

As has been discussed in the lecture of D. Langlois, the cosmological
constant is only an approximate description of a scalar field with an
equation of state p = w/ρ, where w ∼ −1. All inflation models predict
a variable ratio p/ρ as a function of z for this universal fluid, and the
measurement of w and its variation would bring a crucial constraint
to the elucidation of the properties of the field. A true fixed value of
w = −1 has been assumed in figure 13, and the error is seen to be ±0.1,
decreasing to 0.03 if ΩM is determined from other experiments to an
accuracy of 0.03.

The slope parameter w1 with w(z) = w0 + zw1 will remain how-
ever very poorly known from the combination of the nearby (SNIFS)and
distant (CFHT-LS) samples: space projects are needed to control the
systematical errors to the accuracy needed.

V-2 Long term space projects
The ground observations are subject to large atmospheric corrections,

which differ intrinsically in the blue (nearby SN) and the IR ranges
(remote SN). They will unavoidably limit the quality of high statistics
samples collected from the ground, and a dedicated effort for a large
sample of SN collected in space is justified.



Cosmology with Supernovae 1a 325

The Supernova Acceleration Probe (SNAP) has received support from
NASA and DOE in the frame of the Joint Dark Energy Mission(JDEM),
to be launched within the next ten years. The satellite proposed would
be equipped with a 2m telescope. The focal plane consists of 500 × 106

pixels, covering a field of view of about 1 square degree. It would give
the instrument an outstanding capability to study:
• supernovae up to z = 1.7
• weak lensing
• galactic evolution and clusters
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Figure 15. probability contours for
ΩM ,ΩΛ from CMB [16], galaxy clus-
ters [17], SNIae [18]

The probability contours for ΩM , ΩΛ as known today are shown in
figure 14, and can be compared with the the design accuracy reached by
the SNAP/JDEM project in figure 15. Extreme care is needed to provide
a significant step in the accuracy on the parameter w and its variation
with z, as all calibrations should reach or exceed the 1% accuracy level.
On the other hand, the only other technique with a sensitivity to the
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equation of state parameter w is the measurement weak lensing, which
is also at the edge of experimental analysis.
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Abstract I describe recent challenges in dark matter. I review the budgets for
baryonic and nonbaryonic dark matter. Problems with cold dark mat-
ter in the context of galaxy formation are summarized, and possible
solutions are presented. I conclude with a description of the prospects
for observing cold dark matter.
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I. Challenges of dark matter
We are confronted by a paradox. Baryonic dark matter (BDM) exists

and contributes to Ωb. There are examples of baryonic dark matter, but
we cannot reliably calculate the BDM mass fraction. On the other hand,
cold dark matter (CDM) is motivated by theory and explains much of
the large-scale structure of the universe. CDM dominates Ωm. We can
calculate the relic CDM mass fraction, but no CDM candidate particles
are known to exist.

Current observations have attained considerable precision, as a result
of surveys over much of the sky. These consist of cosmic microwave back-
ground maps, such as WMAP, and galaxy redshift surveys such as 2DF
and SDSS. The combination of CMB and LSS experiments WMAP +
CBI/ACBAR + 2DF, supplemented with the Lyman alpha forest ana-
lysis that probes the density correlations in the intergalactic medium,
provides a measure of the homogeneity of the universe and the flatness
of space: Ωtotal = 1.02 ± 0.02. We infer that the age of the universe
satisfies t0 = 13.7 ± 0.2Gyr. There is known to be dominance of dark
matter Ωm = 0.27±0.02 relative to baryonic matter. The baryon density
amounts to Ωb = 0.044 ± 0.004, and is about 15% of the dark matter.
Dark energy with ΩΛ = 0.70 ± 0.03 dominates over dark matter, but
only contributes to the unclustered component of the density. The pre-
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ceding results are sensitive to the adopted priors. The uncertainties
can be increased by an order of magnitude if more radical priors are
adopted, such as inclusion of an admixture of primordial adiabatic and
isocurvature density fluctuations [1].

Galaxy clustering also provides a powerful probe of the distribution
of dark matter. One constrains the dark matter component by several
independent techniques. These include virial theorem estimates with
optical data on galaxy redshifts, x-ray emission and hydrostatic support
of the hot intracluster gas, and gravitational lensing both of background
galaxies and of cluster members. Strong lensing of remote galaxies via
the formation of giant arcs probes the cluster core, and weak lensing of
distortions to cluster galaxies via gravitationally-induced shear maps the
outer region. The Sunyaev-Zeldovich effect supplements these studies by
measuring the gas pressure.

II. Global baryon inventory
There is a significant but subdominant mass in dark baryons. Spher-

oid stars amount to 10% of the baryons or 0.004 in terms of Ωb. Disk
stars contribute 5% or 0.002 in Ωb. Intracluster gas amounts to 5% or
Ωb = 0.002. The Lyman alpha forest (at z ∼ 0) contains [2] 29±4% of the
baryons or Ωb = 0.008. This is all we actually observe in any quantifiable
amount. In addition, intermediate temperature intergalactic gas, the so-
called warm/hot intergalactic medium (WHIM) has been detected, at a
temperature of 105−106K. It is estimated from simulations (at z ∼ 0) to
amount to 30% of the local baryons or Ωb = 0.012, with however a large
uncertainty. Indeed the WHIM simulations do not resolve the Jeans
mass at the resolution limit, and and the existence of WHIM is purely
a theoretical inference, at least in so far as its quantitative fraction is
concerned.

The total detected baryonic contribution in the universe, including
the hypothesised WHIM, sums to Ωb = 0.028 ± 0.005. The correspond-
ing baryon fraction Ωb/Ωm is 0.10 ± 0.02. This is to be compared with
primordial nucleosynthesis at z ∼ 109: Ωb = 0.04±0.004. In addition the
CMB peak heights at z ∼ 1000 yield a similar value: Ωb = 0.044±0.003.
Finally, Lyman alpha forest modelling at z ∼ 3 suggests that Ωb ≈ 0.04.
There is also the indirect measurement of baryon fraction from the in-
tracluster gas fraction of 15%. From this, combined with Ωm, we also
find that Ωb ≈ 0.04.

I conclude that approximately 25±15% of the baryons could be dark.
If so, and this is far from a robust conclusion, one can pose the following
question: where are they? Intriguingly, the possible shortfall is com-
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parable to the mass observed in stars (∼ Ω∗). Could there be a mass
in dark stars comparable to that in visible stars? Or could early star
formation and death have resulted in the ejection of a comparable mass
of baryons from the galaxy and its halo? Were the situation to rest
here, there would be little reason to take the issue of dark baryons any
further. However there is strong local evidence that there is a baryonic
deficiency.

III. Confirmation via detailed census of
MWG/M31

Observations of our galaxy and also of M31 give direct local measures
of the baryon fraction. The virial mass is Mvirial ≈ 1012M�, whereas
the mostly stellar baryon mass is Mb ≈ 6×1010M�. This yields a baryon
fraction of ∼ 6%, comparable to the global baryon mass fraction mea-
sured in stars and gas at z ∼ 0. A similar amount may be present in the
intracluster medium. However it is the contents of a volume containing
the galaxy, now and at formation, that concern us.

For comparison, the primordial baryon fraction from observations at
high redshift is ∼ 15%. Presumably these baryons were present initially,
when the galaxy formed. Indeed modelling of disk formation requires
an initial baryon fraction of ∼ 10− 15% in order for sufficient cooling to
have occurred to form the disk. The “missing” galactic baryons amount
to a baryon fraction comparable to what is observed, namely around
∼ 5 − 10% of the dark halo.

If these baryons are indeed in the halo, one possibility is that they are
in the form of MACHOs, compact massive objects. The current limit on
halo MACHOs is <∼ 20% of the dark halo mass. The constrained mass
range is 10−8M� -10 M�. If the detection claimed by the MACHO col-
laboration is accepted, the preferred MACHO mass is ∼ 0.5 M�, which
favours old white dwarfs: current searches for halo white dwarfs as faint,
high proper motion red dwarfs are inconclusive. More generally, one
might tolerate a wider mass range for the MACHOs. Theory does not
exclude either primordial brown dwarfs (0.01−0.1 M�), primordial black
holes (mass >∼ 10−16M�) or cold dense H2 clumps <∼ 1 M� (invoked
in the Milky Way halo to account, for example for extreme scattering
events [3] or unidentified Scuba objects [4]). Such solutions are difficult
to justify in any plausible theoretical framework. There is one intrigu-
ing counter-example to the subdominance of H2 that is typical of spiral
galaxies. Diffuse cold molecular gas observed in H2 rotational emission
in the outer disk of NGC 891 could conceivably account for the ”missing”
baryons, amounting to some 10 times the HI in mass [5], although there
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is no evidence for H2 via H2 absorption in another metal-poor galaxy
[6] nor in galaxies with normal abundances where constraints come from
CO emission [7]. The principle alternative is early ejection from the
halo.

This could have occurred as a wind in the early, vigorously star-
forming phase of galaxy evolution. This inference has additional cre-
dence from the facts that the mass in hitherto undetected baryons is
comparable to that observed in stars and that the WHIM is observed to
exist outside of rich clusters where it is enriched. Moreover it could have
a mass comparable to that both in stars and in the colder intergalactic
medium.

Ejection via early winds is inferred in the enriched intracluster medium.
Observations of Mpc-scale “holes” around Lyman break galaxies, de-
tected via studying absorption of the IGM towards background quasars,
support an explanation in terms of early winds from L∗ galaxies. The
so-called cooling catastrophe in galaxy formation theory, which results
in overly luminous massive galaxies can be avoided if early winds eject
an amount of baryons comparable to that retained in stars.

Hence the “‘missing” baryons could be in the WHIM, which would
be correspondingly enriched. Unfortunately such strong winds are not
supported by hydrodynamical simulations. These use supernovae as the
energy source that drives the wind. However the current multiphase
simulations lack sufficient fine-scale resolution, as discussed below.

IV. Hierarchical galaxy formation
Galaxy formation and dark matter are intimately related. Before I dis-

cuss the connection, I first review the current status of galaxy formation
theory. The ab initio approach to large-scale structure has undergone
a revolution in the past twenty years, with an improved understanding
of the initial conditions of structure formation. This has come about as
a confluence of theory and observation. Growth from inflation-boosted
quantum fluctuations provides the current paradigm that sets the point
of departure for virtually all theories of large-scale structure. The the-
ory of structure growth made one notable prediction that has been ver-
ified with outstanding success. This was the existence of fossil cosmic
microwave background temperature fluctuations imprinted on the last
scattering surface of the cosmic microwave background. The fluctua-
tions are on angular scales that correspond to the comoving scales of the
observed large-scale structure in the galaxy distribution. The WMAP
satellite, adding unprecedented precision to many earlier experiments,
most notably those of BOOMERANG, MAXIMA and DASI, has verified
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to within a factor of order unity one of the most remarkable predictions
of cosmology, thereby confirming the growth of structure via the gravi-
tational instability of primordial density fluctuations

With the initial conditions specified, it became possible to simulate
galaxy formation. Three distinct approaches have emerged: numerical,
semi-analytical and hybrid. The fully numerical approach canot yet cope
with the complexities of star formation, but has been instrumental in
guiding us towards an understanding of the dark matter distribution.
The semi-analytical approach has had most success, because it can cope
with a wide dynamic range via the extended Press-Schechter formalism,
to which is added a prescription for star formation based on baryonic
dissipation and plausible but empirical rules. The hybrid approach, com-
bining N-body simulations with a star formation prescription, is partic-
ularly useful for its predictive power in observational cosmology, as it is
ideal for constructing mock catalogues of galaxies.

There have been some notable successes in the theory of semi-analytic
galaxy formation. These include an understanding of the large-scale clus-
tering of galaxies via the primordial density fluctuation power spectrum
P (k), including the two-point correlation function ξ(r) and its higher
moments, the predictions of the existence of filaments and sheets in
the galaxy distribution and of the morphologies of galaxy clusters, the
derivations of the cluster and galaxy mass functions, and the predictions
of large-scale velocity fields and weak lensing optical depths. On smaller
scales, the predictions of galaxy rotation curves and of strong lensing
by massive galaxies and galaxy clusters are generally considered to be
successes of the theory. Global results that have motivated many ob-
servations which are in general agreement with the theory include the
cosmic star formation history and the distribution and evolution of HI
clouds in the intergalactic medium.

There are complications, however, that demonstrate that we have not
yet converged on the ultimate theory of galactic disk formation. There
is no fundamental understanding of the Tully-Fisher correlation that re-
lates galaxy luminosity to maximum rotational velocity. Models consis-
tently give too high a normalisation of mass at a given rotation velocity,
due to the predominance of dark matter in the model galaxies. There
also is some question as to whether the slope is well understood both for
samples of nearby disk galaxies which have been carefully corrected for
inclination effects, and for distant disk galaxies when projected forward
in time for comparison with current epoch samples. This may seem to
be a detail, however the fundamental problems are twofold: most of the
initial angular momentum in the theoretical models is lost to the dark
halo as the disk forms, and the distribution of observed angular momen-
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tum is skewed towards high angular momentum in contrast to the initial
distribution predicted by the simulations.

Nor is there any fundamental star formation theory for dynamically
hot systems such as elliptical galaxies. Appeal must be made to phe-
nomenology. Tidal interactions and mergers are found in simulations to
be very effective at concentrating gas into the inner hundreds of parsecs.
Ultraluminous infrared galaxies are observed to have star formation rates
of hundreds or even thousands of solar masses per year, as inferred if the
stars formed in a monolithic collapse of the system. Post-starburst near-
infrared light profiles are also suggestive of forming spheroids. Since the
ultraluminous infrared galaxies are almost inevitably associated with on-
going mergers or strong tidal interactions with nearby galaxies, it there-
fore seems entirely plausible that these conditions are capable of driving
intense bursts of star formation at the prodigious star formation rates
that are observed. Measurements of the molecular gas masses in several
such systems at high redshift demonstrate that a very high efficiency
indeed of star formation is required, with some 1010M� of stars being
inferred to form in 107 years [39]. This is probably consistent with hier-
archical galaxy formation provided that the efficiency of star formation
was very high during the first major merger. Why star formation was
so efficient is not understood, however.

Colours and spectra of elliptical galaxies at redshift of unity or beyond
are suggestive of a very early formation epoch, at least for the stars [13]
if not for overall assembly. The cosmic star formation history is likely to
be dominated by the precursors of today’s ellipticals at z >∼ 2. Of course
such a probe, which relies on galaxy surveys, is rest frame UV flux-
limited. However the extragalactic diffuse background light from FIR
to optical/UV wavelengths provides a glimpse of all the star formation
that ever occurred in the universe. It seems likely that forming dust-
shrouded ellipticals dominate the far infrared background above 400µm
[14].

V. Unresolved issues in galaxy formation theory

One of the greatest puzzles in galaxy formation theory concerns the
distribution of the dark matter. The cold dark matter concentration is
predicted from N-body simulations to follow a density profile:

ρ =
A

rγ(1 + r/rs)3−γ
.

Here, rs is a scale factor that is incorporated into the concentration
parameter, c ≡ rv/rs, where rv is either the virial radius or the radius at
an overdensity, spherically-averaged, of 200. The profile slope parameter
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γ is measured in high resolution N-body simulations ([15], [16]) to be
γ ≈ 1.2 ± 0.3, and the normalisation parameter A reflects the epoch of
formation, typically defined to be when half of the present mass was at
overdensity of 200.

Unfortunately, observations seem to be in mild disagreement with
this predicted profile [17]. A low CDM concentration is observed in
low surface brightness dwarf galaxies where the rotation curve is well
measured. The predicted dark matter cusp is not usually seen; the
typical profile has a soft core, although the interpretation is compounded
by issues of disk inclination, of the HI distribution which is usually used
to measure the rotation curve, and of the possible mismatch between
baryon and CDM potential well depths.

The case for any discrepancy is weakened by the claim that the high
resolution numerical simulations extrapolate to a core rasther than to a
cusp [43]. This result however is disputed by other simulators who find a
central slope γ = 0.16± 0.14 that holds to 0.3% of the virial radius [19].
In the Milky Way, a low concentration of nonbaryonic dark matter is
inferred, with the argument being forcefully made that no more than 10
percent of the total mass interior to the solar circle can be non-baryonic.
Theory predicts something like 50 percent for a CDM-dominated uni-
verse. However the gravitational microlensing optical depth towards the
bulge of the galaxy is used to assess the stellar contribution to the inner
rotation curve, and this is uncertain by a factor of ∼ 3. This uncertainty
has allowed modellers to fit the rotation curve with an NFW (γ = 1)
halo initial density profile that is further concentrated by the adiabatic
response of the halo to baryon dissipation.

Another issue is that of dark matter clumpiness. Large numbers of
dwarf galaxy halos are predicted at masses comparable to those of the
dwarf galaxies in the Local Group, exceeding the observed numbers by
an order of magnitude or more. If these systems formed stars, they would
be in gross disagreement with observations. If the angular momentum
of the baryons is mostly lost to the dark halo as the baryons contract to
form the disk, according to simulations, then disk sizes of spiral galaxies
are predicted to be smaller by about a factor of 5 than observed. The
baryons are clumped and lose angular momentum as a consequence of
dynamical friction on the dark matter.

A related prediction is that of the galaxy luminosity function. If the
mass in stars tracks that in dark matter, far too many small galaxies
are predicted. Too many massive galaxies are also predicted. This has
been noted both in isolated groups of galaxies at the L∗ level [22] and
for the field luminosity function, where an excessive frequency of super-
L∗ galaxies is expected if a modern value for the initial baryon density
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is adopted [23]. The problem arises because the baryons fall into the
dark matter potential wells, cool and eventually form stars. There are
simply too many cold baryons. If one begins with the baryon fraction
predicted by primordial nucleosynthesis of about 15 percent, one ends
up with about twice as many baryons as are seen even for the Milky
Way galaxy. This issue has been aggravated by recent studies which
show that many of the accreting baryons enter the disk cold, without
shocking to the virial temperature [24]. This appears to be the dominant
form of accretion both for low mass galaxies and at high redshift.

VI. Resurrecting CDM

It would seem that cold dark matter has certain difficulties to over-
come. One approach is to tinker with the particle physics by modifying
the dark matter, for example by introducing self-interacting or fluid dark
matter. This approach is not only non-compelling from the physics per-
spective but it has also resulted in about as many new difficulties as
it purports to resolve. Another strategy is to modify gravity. The less
said about this the better: it seems to this author that one should only
modify the laws of fundamental physics in the case of true desperation.
We are not there yet.

A more promising approach is via astrophysics. The dark matter dis-
tribution is inevitably modified by the impact of astrophysical processes.
These include dynamical feedback, such as via a massive, transient,
rapidly rotating bar. Such gaseous bars are expected to form in the
course of a major merger that preceded the first episode of star forma-
tion in the protogalaxy, and later would settle into the galactic disk.
Indeed up to half of spiral galaxies have significant stellar bars. The
initial tumbling of the bar is slowed by dynamical friction on the dark
matter. This provides a substantial heat source that is capable of soft-
ening the CDM cusp into an isothermal core [25], but see [26] for an
independent appraisal of bar-halo angular momentum exchange. The
converse consequence is that to explain the observed stellar bars that
are generally in rapid rotation, one needs either a deficiency of dark
matter, less than 10 percent of the total mass within the region where
the bar is observed, or to argue that the observed bars are young. Cold
gas infall to disks produces cold stellar disks that can subsequently be-
come bar-unstable [27]. The jury is still out on the history and secular
evolution of bars.

A more radical astrophysical approach appeals to the formation of
supermassive black holes in the protogalaxy. These must have formed
contemporaneously with the oldest stars, as evidenced by the remarkable
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correlation between spheroid velocity dispersion and supermassive black
hole mass that extends over more than 3 orders of magnitude. Gas
accretion onto the supermassive black hole is inevitable in the gas-rich
protogalaxy, and provokes violent outflows. It is these outflows that
are viewed in the spectra of quasars, the most luminous objects in the
universe, and which are powered by accretion onto supermassive black
holes. These massive outflows of baryons could have provoked efficient
star formation and preferentially expelled the low angular momentum
gas. This is a promising, if largely unexplored, source of feedback into
the protogalaxy, which offers a potential clue as to why disks and more
generally galaxies are the sizes they are, why spheroids formed with great
efficiency, why half of the baryons have apparently been expelled from
massive galaxies, and why only high angular momentum gas remained
to form the disk. As for the impact on the dark matter, rapid loss of
more than half the mass in the inner core of the galaxy should leave an
impact by softening the dark matter profile.

It is tempting to argue that the dark halo forms as a consequence of
substructure mergers, thereby resolving part of the substructure prob-
lem if the dwarfs that do not merge are stripped of gas as they become
tidally disrupted in the inner halo. The Sagittarius dwarf galaxy pro-
vides dramatic evidence of ongoing disruption: a substantial fraction of
its mass has already been stripped [29]. Dynamical and chemical evi-
dence from studying tidal debris in the halo of our galaxy suggests that
disrupted dwarfs might have contributed up to as much as ∼ 10% of
the stellar halo [30]. Gravitational lensing provides evidence for the sur-
vival of substructure in massive galaxy halos on ∼ 106M� mass scales,
amounting to a few percent of the halo mass [31].

VII. An astrophysical solution: early winds

Whether one opts for dynamical heating by tumbling bars or black
hole-driven outflows, the impact on the protogalaxy is likely to be dra-
matic. Bars drive gas into the centre to form and eventually to fuel the
SMBH. Mergers of smaller black holes play a subdominant role, espe-
cially in the early stages of black hole growth. Gas accretion onto the
Super Massive Balck Hole (SMBH) is responsible for fueling the jets and
is inferred to be the dominant growth process. This conclusion follows
from consideration of quasar outflows. Simulations demonstrate that
twin radio jets interact with a clumpy interstellar medium to drive pow-
erful winds that plausibly provide strong feedback into the protogalactic
environment. Resolution of the overcooling problem for massive galaxies
may require more energy input then is available with a normal initial
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stellar mass function. A more exotic solution is possible, and may even
be necessary.

There are a number of reasons for believing that massive winds played
an important role in galaxy formation. Enrichment of the intraclus-
ter gas is observed to ∼ Z�/3. This cannot be explained by current
epoch star formation activity, or indeed by past activity unless substan-
tial mass ejection occurred. Intracluster magnetic fields are observed
at a level that is about 10 percent of the typical galactic value. Ejec-
tion of magnetic flux from galaxies early in the lifetime of the galaxies
seems to be the most plausible explanation. At a redshift of about
3, the Lyman break galaxies are inferred to have outflows to velocities
of ∼ 600km/s. More indirectly, absorption against background quasars
near these galaxies has revealed evidence for a proximity effect on the
intergalactic medium. This is in the form of a deficiency of HI that is
observed as an increase in the transparency to Lyα and possibly CIV ab-
sorption extending out to about ∼ 1 Mpc from the Lyman break galaxies
[32].

However numerical simulations of early supernova-driven winds fail
to find any evidence for substantial gas ejection from luminous (∼ L∗)
galaxies [33]. One can ask what is wrong with the hydrodynamic simu-
lations? Certainly, the simulations lack adequate resolution. Rayleigh-
Taylor instabilities enhance wind porosity and Kelvin-Helmholtz insta-
bilities enhance wind loading of the cold interstellar medium. Both ef-
fects are certain to occur and will enhance the wind efficacity. Yet an-
other omission is that one cannot yet resolve the motions of massive stars
before they explode. This means that energy quenching is problematic
and the current results are inconclusive for typical massive galaxies.

An interesting observation from studies of nearby starbursts is that
the mass outflow rate is of the same order of magnitude as the star
formation rate. This result is also motivated by a multiphase interstellar
medium in which supernova explosions provide the main energy and
momentum source [28], and naturally can account for why around half
of the baryons are ejected. This mechanism should be effective for sub-
L∗ galaxies. It is unlikely however that there is sufficient energy available
with a normal initial mass function to drive winds from the most massive
forming galaxies. In fact, the simulation initial conditions assume that
the winds are driven by supernovae produced by massive stars whose
initial mass function is similar to that found in the solar neighbourhood.
This is a dangerous assumption, given that we have no fundamental
theory of the initial mass function, and that conditions both in massive
starbursts and in the early universe may be quite different from anything
sampled locally. A top-heavy initial mass function is one way to boost
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the specific energy and momentum input by up to an order of magnitude.
It has been speculated that a top-heavy initial mass function is necessary
to account for the high efficiencies of star formation observed in certain
very high redshift ultraluminous infrared sources. This option has also
been invoked in order to account for the surprisingly high redshift of
reionisation found by the WMAP satellite [34] and for the intracluster
gas enrichment [35].

Another possibility is that some of the early supernovae may in fact
be hypernovae. A hypernova has up to 1053 ergs of kinetic energy. If
one supernova in 10 at high redshift is in fact a hypernova, the specific
energy input is boosted by as much as an order of magnitude. The case
for an enhanced hypernova fraction at high redshift is based on the nu-
cleosynthetic evidence from abundances measured for the oldest stars
in our halo. The enhancements of zinc and chromium and deficiency of
iron in these stars can be explained in terms of hypernova yields. In
hypernovae, the energy output is boosted by infall of the inner rotating
core onto a black hole, and the corresponding ejecta mass cuts for pre-
cursors of ∼ 25M� reflect the observed abundance anomalies relative to
standard supernova yields [36]. Some subset of hypernovae are also a
possible source of the r-process nuclear enhancement seen in the oldest
stars.

Finally, the ubiquitous AGN, as traced by the presence of supermas-
sive black holes that amount to ∼ 0.001 of the spheroid mass, would in-
evitably have been activated in the gas-rich protogalactic environment.
The supermassive black hole is presumed to achieve most of its growth
by gas accretion from a circumnuclear disk. This would inevitably have
been accompanied by intense jets of relativistic plasma that provide a
means of exerting strong positive feedback onto the protogalactic envi-
ronment [37]. Jet propagation into a clumpy interstellar medium desta-
bilises the jet and generates high porosity in the relativistic jet fluid
that eventually fills the entire diffuse interstellar medium [38]. A likely
consequence is the compression of massive clumps of cold gas and the
subsequent triggering of star formation. Such positive feedback is pre-
cisely what may be required to account for the high efficiency of star for-
mation inferred for massive ellipticals, as characterized by the observed
enhancement in [α/Fe] abundance ratios and by the predominance of
red stellar populations at high redshift.

QSO observations attest to the role of AGN in star formation, with
30% of high redshift QSOs being luminous far infrared sources with
substantial amounts of molecular gas either detected or inferred [39].
The CO and FIR observations are indicative of high star formation rates
of <∼ 1000M� per year, with the star formation efficiency rising for the
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most luminous FIR QSOs [40]. The presence of large amounts of gas,
heavy elements and dust in QSOs at z >∼ 6 argues for a causal connection
between the AGN trigger and the high efficiency of star formation.

VIII. Observing CDM via the WIMP LSP

Assuming that the WIMPS once were in thermal equilibrium, one
finds that the relic WIMP froze out at

nx < σannv > tH
<∼ 1 =⇒ T <∼ mχ/20k.

From this, one infers that the relic CDM density is Ωx ∼ σweak/σann.
It is useful to know the mass range of the WIMPs in order to define
search parameters. Minimal SUSY has many free parameters, and most
of them are generally suppressed in parameter searches. For example,
requiring the relic neutralino density to be within mSUGRA greatly
reduces the parameter space for possible masses [41]. If the WIMP is a
SUSY neutralino, simple scaling arguments yield

< σannv >∝ m2
χ for mχ  Z0

and
< σannv >∝ m−2

χ for mχ � Z0,

thereby defining a window of opportunity for dark matter. Stability
is assumed for the SUSY LSP to be a WIMP candidate, usually via
R-parity conservation. From accelerator limits combined with model
expectations, the allowed mass range is conservatively found to satisfy

50GeV <∼ mχ
<∼ 1TeV.

Accelerator limits set a lower bound, and the inclusion of the extra
degrees of freedom from coannihilations sets an upper bound. Direct
searches may also independently set a model-dependent lower bound.

Indirect searches via halo annihilations of the LSP into γ, p̄, e+, ν have
hitherto been inconclusive. There are hints of an anomalous feature in
the high energy e+ spectrum. However halo detection of e+ requires
clumpiness of order

< n2 > / < n >2∼ 100,

both to get sufficient flux and to allow the possibility of a nearby clump
which might allow the observed spectral feature to be reproduced [42].
Such clumpiness could also boost the predicted gamma ray flux from
annihilations into the range observable by EGRET. Clumpiness of this
order is indeed predicted by galaxy halo simulations. However this gener-
ally applies in the outer halo. The γ-ray flux towards the galactic centre
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is observed to have a hard spectrum (as expected for annihilations), but
the clumps would not survive the tidal disruptions that are inevitable
in the inner galaxy [43]. To account for the observed diffuse gamma ray
flux from the direction of the galactic centre, one would need to have a
very steep density profile (ρ ∝∼ r−1.5). It has been argued that this would
conflict with microlensing observations and the inner rotation curve of
the Galaxy. A detailed attempt at modelling the inner core including
both rotation curve and microlensing constraints concludes however that
the NFW profile combined with adiabatic compression of the dark mat-
ter leads to a consistent model with a potentially detectable gamma ray
signal. Detection could be accomplished with an atmospheric Cerenkov
telescope [45] which has the advantage of good angular resolution and a
threshold that could probe neutralinos with masses as low as ∼ 100GeV.

IX. The future

There are exciting prospects for addressing many of the challenges fac-
ing galaxy formation and dark matter. With regard to directly observing
forming galaxies, we can look forward to sampling the galaxy luminosity
function at redshifts beyond unity with both SIRTF and ground-based
NIR spectroscopy. The theory of multiphase galaxy formation is certain
to be greatly refined, incorporating dynamical feedback and the impact
of supermassive black holes. We will probe scales down to ∼ 106M�
via spectroscopic gravitational lensing. Baryonic dark matter will be
mapped at UV/SXR wavelengths. In the area of indirect detection of
CDM, new experiments will search for high energy halo annihilation
signatures in the form of γ, e+, p̄ and ν. Over the next 5 years, these ex-
periments will include GLAST, HESS, MAGIC, VERITAS, ICECUBE,
ANTARES, PAMELA and AMS. High energy neutrinos from annihila-
tions in the sun (and earth) will be probed, thereby providing a measure
of the cold dark matter density at the solar circle.

The Galactic Centre could provide a “smoking gun” with radio syn-
chrotron, γ-ray and ν data: annihilations measure cold dark matter
where Milky Way formation began “inside-out”, some 12 Gyr ago. Ac-
cretion models onto the central black hole fail to give sufficient low fre-
quency radio or gamma ray emission to account for the observed fluxes
from SagA∗, and it is tempting to invoke a more exotic alternative. For
example, the low frequency radio emission can be explained by spike-
enhanced self-absorbed synchrotron emission, contrary to recent claims.
Even choice of equipartition magnetic fields is allowed with appropriate
choice of a suitable initial dark matter density profile. In fact this choice
depends on uncertain astrophysics that includes the past history of the



342 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

formation of the SMBH, including mergers and associated heating and
radiation recoil.

However even if the history of the supermassive black hole at the cen-
tre of the galaxy were to disfavour a significant cold dark matter spike, as
a consequence of something as mundane as dynamical heating by stellar
encounters [44], one might expect lesser spikes to survive around other
relic masssive black holes. The central supermassive black hole and the
bulge of the galaxy most likely formed from the mergers of protogalac-
tic dwarf galaxies that themselves contained smaller black holes. It is
the seed black holes that formed by accretion which should retain initial
CDM spikes. Dynamical mergers of black holes, if they occur, result in
black hole ejection from shallow potential wells as a consequence both
of formation of unstable 3-body systems and radiation recoil in 2-body
mergers. This model suggests that there should be relic “naked” inter-
mediate mass black holes in the inner halo [20]. The adiabatic growth
of these seed black holes should have generated local spikes in cold dark
matter that could have survived and maintained a density profile

ρ ∝ r−γ ⇒ ρ ∝ r−γ′
, with γ′ =

9 − 2γ

4 − γ
.

Annihilation fluxes would be enhanced, to a level where such sources
could possibly account for a subset of the unidentified EGRET gamma
ray sources.

The preceding interpretation rests heavily on the hypothesis that the
dark matter consists primarily of the lightest N = 1 SUSY neutralinos.
This is well motivated, but as has often been emphasized, the most
compelling and elegant explanation of any natural phenomenon is often
false. Of course, if accelerator evidence were found for SUSY, the odds in
favour of a neutralino explanation of dark matter would be dramatically
increased.

Another intriguing option is that of N = 2 SUSY, which could al-
low the possibility of two CDM relic candidate particles. One might
take the dominant, heavier species to be the conventional WIMP, with
a light, subdominant, counterpart with a correspondingly larger cross-
section. The mass scaling of the gamma ray flux( ∝< σv > m−2

χ )
allows the light dark matter candidate to be subdominant for a given
flux and relic density (or equivalently, annihilation cross-section), if the
cross-section is S-wave suppressed. A recent interpretation [46] of 511
keV line emission from the Galactic centre and bulge region detected
by the INTEGRAL gamma ray satellite appeals to MeV dark matter.
These particles annihilate via e+e− pair production, and the positrons
decelerate in the interstellar medium to generate a narrow annihilation
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line that simultaneously matches the observed flux and angular profile.
There are alternative explanations, and potential tests include search-
ing for 511 keV line emission from the Sagittarius dwarf galaxy as well
as from the brightest low mass x-ray binary stars. The former would
confirm this idea, the latter would support an alternative, more con-
ventional explanation in terms of astrophysical accelerators. Low mass
x-ray binaries are accreting neutron stars that have a spatial distribu-
tion which is similar to that of Population II, and generate weak radio
jets that are a possible injection source of energetic positrons into the
interstellar medium.

Despite our failure to converge on a dark matter candidate, dark mat-
ter is here to stay. It is exceedingly difficult to construct a theory of
galaxy formation without some compelling evidence for the nature of
the dark matter. We assume that the dark matter is cold and stable,
and this results in beautiful simulations of cosmic structure that meet
many, but by no means all, of the observational challenges. Our hope
is that with increasingly refined probes of galaxies near and far, we will
be able to construct a strong inferential case for the required properties
of the dark matter. Indeed, even now we are not far from this goal in so
far as our modelling of large-scale structure is concerned.

On smaller scales, however, the picture, and the corresponding role of
dark matter, is much less clear. It is particularly disconcerting that we
know so little about the fundamental physics of star formation, despite
decades of detailed observations. It is only too tempting to assume that
conditions in the distant universe, while being far more extreme than
those encountered locally, nevertheless permit us to adopt similar rules
and inputs for star formation. We may be easily misled. Galaxy forma-
tion moreover rests on knowledge of the initial conditions that seeded
structure formation, and that we measure in the cosmic microwave back-
ground. Here too it is worth recalling that our conclusions are only as
robust as the initial priors. Change these substantially, and new modes
of fluctuations are allowed that can, for example, permit a much earlier
epoch of massive galaxy formation than in the standard model. It is
clear that only increasingly refined and precise observations will guide
us: if evidence were to be confirmed for a hypothesis that was far from
our current prejudices, theory would rapidly adapt. We should bear in
mind that Nature has more surprises than we can imagine, otherwise
physics would be hopelessly dull.

I thank my colleagues especially at Oxford for their unwavering enthu-
siasm in discussions about many of the topics covered here. In particular
I acknowledge the contributions of Reba Bandyopadhay, Celine Boehm,
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SUPERSYMMETRIC EXTENSION OF THE
STANDARD MODEL

Dimitri Kazakov
BLTP, JINR, Dubna and ITEP, Moscow
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Abstract The present lectures contain an introduction to supersymmetry, a new
symmetry that relates bosons and fermions, in particle physics. The
motivation to introduce supersymmetry is discussed. The main notions
of supersymmetry are introduced. The supersymmetric extension of
the Standard Model - the Minimal Supersymmetric Standard Model -
is considered in more detail. Phenomenological features of the MSSM
as well as possible experimental signatures of SUSY are described.

Keywords: Supersymmetry, unification, MSSM, hierarchy, R-parity

I. Introduction: What is supersymmetry
Supersymmetry is a boson-fermion symmetry that is aimed to unify

all forces in Nature including gravity within a singe framework [1]-[4].
Modern views on supersymmetry in particle physics are based on string
paradigm, though the low energy manifestations of SUSY can be possibly
found at modern colliders and in non-accelerator experiments.

Supersymmetry emerged from the attempts to generalize the Poincaré
algebra to mix representations with different spin [1]. It happened to be
a problematic task due to the no-go theorems preventing such genera-
lizations [5]. The way out was found by introducing the so-called graded
Lie algebras, i.e. adding the anti-commutators to the usual commutators
of the Lorentz algebra. Such a generalization, described below, appeared
to be the only possible one within relativistic field theory.

If Q is a generator of SUSY algebra, then acting on a boson state it
produces a fermion one and vice versa

Q̄|boson >= |fermion > and Q|fermion >= |boson > .

Since bosons commute with each other and fermions anticommute,
one immediately finds that SUSY generators should also anticommute,
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they must be fermionic, i.e. they must change the spin by a half-odd
amount and change the statistics. Indeed, the key element of SUSY
algebra is

{Qα, Q̄α̇} = 2σµ
α,α̇Pµ, (I.1)

where Q and Q̄ are SUSY generators and Pµ is the generator of trans-
lation, the four-momentum.

In what follows we describe SUSY algebra in more detail and construct
its representations which are needed to build a SUSY generalization of
the Standard Model of fundamental interactions. Such a generalization
is based on a softly broken SUSY quantum filed theory and contains the
SM as a low energy theory.

Supersymmetry promises to solve some problems of the SM and of
Grand Unified Theories. In what follows we describe supersymmetry as
a nearest option for the new physics on a TeV scale.

II. Motivation of SUSY in particle physics

II.1 Unification with gravity
The general idea is a unification of all forces of Nature including quan-

tum gravity. However, the graviton has spin 2, while the other gauge
bosons (photon, gluons, W and Z weak bosons) have spin 1. Therefore,
they correspond to different representations of the Poincaré algebra. To
mix them one can use supersymmetry transformations. Starting with
the graviton state of spin 2 and acting by SUSY generators we get the
following chain of states:

spin 2 → spin 3/2 → spin 1 → spin 1/2 → spin 0.

Thus, a partial unification of matter (fermions) with forces (bosons)
naturally arises from an attempt to unify gravity with other interactions.

Taking infinitesimal transformations δε = εαQα, δ̄ε̄ = Q̄α̇ε̄α̇, and using
eq.(I.1) one gets

{δε, δ̄ε̄} = 2(εσµε̄)Pµ, (II.1)

where ε is a transformation parameter. Choosing ε to be local, i.e. a
function of a space-time point ε = ε(x), one finds from eq.(II.1) that
an anticommutator of two SUSY transformations is a local coordinate
translation. And a theory which is invariant under local coordinate
transformation is General Relativity. Thus, making SUSY local, one
naturally obtains General Relativity, or a theory of gravity, or super-
gravity [2].
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II.2 Unification of gauge couplings
According to the Grand Unification hypothesis, gauge symmetry in-

creases with energy [6]. All known interactions are different branches of
a unique interaction associated with a simple gauge group. The unifica-
tion (or splitting) occurs at high energy. To reach this goal one has to
consider how the couplings change with energy. This is described by the
renormalization group equations. In the SM the strong and weak cou-
plings associated with non-Abelian gauge groups decrease with energy,
while the electromagnetic one associated with the Abelian group on the
contrary increases. Thus, it becomes possible that at some energy scale
they become equal.

After the precise measurement of the SU(3)×SU(2)×U(1) coupling
constants, it has become possible to check the unification numerically.
The three coupling constants to be compared are

α1 = (5/3)g′2/(4π) = 5α/(3 cos2 θW ),
α2 = g2/(4π) = α/ sin2 θW , (II.2)
α3 = g2

s/(4π)

where g′, g and gs are the usual U(1), SU(2) and SU(3) coupling cons-
tants and α is the fine structure constant. The factor of 5/3 in the
definition of α1 has been included for proper normalization of the ge-
nerators.

In the modified minimal subtraction (MS) scheme, the world averaged
values of the couplings at the Z0 energy are obtained from a fit to the
LEP and Tevatron data [7]:

α−1(MZ) = 128.978 ± 0.027
sin2 θMS = 0.23146 ± 0.00017 (II.3)

αs = 0.1184 ± 0.0031,

that gives

α1(MZ) = 0.017, α2(MZ) = 0.034, α3(MZ) = 0.118 ± 0.003. (II.4)

Assuming that the SM is valid up to the unification scale, one can then
use the known RG equations for the three couplings. In the leading
order they are:

dα̃i

dt
= biα̃

2
i , α̃i =

αi

4π
, t = log(

Q2

µ2
), (II.5)

where for the SM the coefficients are bi = (41/10,−19/6,−7).
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The solution to eq.(II.5) is very simple

1
α̃i(Q2)

=
1

α̃i(µ2)
− bilog(

Q2

µ2
). (II.6)

The result is demonstrated in Fig.1 showing the evolution of the inverse
of the couplings as a function of the logarithm of energy. In this presen-
tation, the evolution becomes a straight line in first order. The second
order corrections are small and do not cause any visible deviation from
a straight line. Fig.1 clearly demonstrates that within the SM the cou-
pling constant unification at a single point is impossible. It is excluded
by more than 8 standard deviations. This result means that the unifica-
tion can only be obtained if new physics enters between the electroweak
and the Planck scales.
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Figure 1. Evolution of the inverse of the three coupling constants in the Standard
Model (left) and in the supersymmetric extension of the SM (MSSM) (right).

In the SUSY case, the slopes of the RG evolution curves are modified.
The coefficients bi in eq.(II.5) now are bi = (33/5, 1,−3). The SUSY
particles are assumed to effectively contribute to the running of the
coupling constants only for energies above the typical SUSY mass scale.
It turns out that within the SUSY model a perfect unification can be
obtained as is shown in Fig.1. From the fit requiring unification one
finds for the break point MSUSY and the unification point MGUT [8]

MSUSY = 103.4±0.9±0.4 GeV,

MGUT = 1015.8±0.3±0.1 GeV, (II.7)
α−1

GUT = 26.3 ± 1.9 ± 1.0,
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The first error originates from the uncertainty in the coupling constant,
while the second one is due to the uncertainty in the mass splittings
between the SUSY particles.

This observation was considered as the first ”evidence” for supersym-
metry, especially since MSUSY was found in the range preferred by the
fine-tuning arguments.

II.3 Solution of the hierarchy problem
The appearance of two different scales V � v in a GUT theory,

namely, MW and MGUT , leads to a very serious problem which is called
the hierarchy problem. There are two aspects of this problem.

The first one is the very existence of the hierarchy. To get the desired
spontaneous symmetry breaking pattern, one needs

mH ∼ v ∼ 102 GeV
mΣ ∼ V ∼ 1016 GeV

mH

mΣ
∼ 10−14  1, (II.8)

where H and Σ are the Higgs fields responsible for the spontaneous
breaking of the SU(2) and the GUT groups, respectively. The question
arises of how to get so small number in a natural way.

The second aspect of the hierarchy problem is connected with the
preservation of a given hierarchy. Even if we choose the hierarchy like
eq.(II.8) the radiative corrections will destroy it! To see this, consider
the radiative correction to the light Higgs mass given by the Feynman di-
agram shown in Fig.2. This correction proportional to the mass squared

Figure 2. Radiative correction to the light Higgs boson mass

of the heavy particle, obviously, spoils the hierarchy if it is not can-
celled. This very accurate cancellation with a precision ∼ 10−14 needs a
fine tuning of the coupling constants.

The only known way of achieving this kind of cancellation of quadratic
terms (also known as the cancellation of the quadratic divergencies) is
supersymmetry. Moreover, SUSY automatically cancels quadratic cor-
rections in all orders of PT. This is due to the contributions of superpart-
ners of ordinary particles. The contribution from boson loops cancels
those from the fermion ones because of an additional factor (-1) coming
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Figure 3. Cancellation of quadratic terms (divergencies)

from Fermi statistics, as shown in Fig.3. One can see here two types
of contribution. The first line is the contribution of the heavy Higgs
boson and its superpartner. The strength of interaction is given by the
Yukawa coupling λ. The second line represents the gauge interaction
proportional to the gauge coupling constant g with the contribution
from the heavy gauge boson and heavy gaugino.

In both the cases the cancellation of quadratic terms takes place. This
cancellation is true up to the SUSY breaking scale, MSUSY , which should
not be very large (≤ 1 TeV) to make the fine-tuning natural. Indeed, let
us take the Higgs boson mass. Requiring for consistency of perturbation
theory that the radiative corrections to the Higgs boson mass do not
exceed the mass itself gives

δM2
h ∼ g2M2

SUSY ∼ M2
h . (II.9)

So, if Mh ∼ 102 GeV and g ∼ 10−1, one needs MSUSY ∼ 103 GeV
in order that the relation (II.9) is valid. Thus, we again get the same
rough estimate of MSUSY ∼ 1 TeV as from the gauge coupling unification
above.

That is why it is usually said that supersymmetry solves the hierarchy
problem. We show below how SUSY can also explain the origin of the
hierarchy.

II.4 Astrophysics and Cosmology
The shining matter is not the only one in the Universe. Considerable

amount consists of the so-called dark matter. The direct evidence for the
presence of the dark matter are the rotation curves of galaxies (see Fig.4).
To explain these curves one has to assume the existence of galactic halo
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made of non-shining matter which takes part in gravitational interaction.
According to the latest data [9] the matter content of the Universe is

Figure 4. Rotation curves for the solar system and galaxy

the following:
Ωh2 = 1 ⇔ ρ = ρcrit

Ωvacuum ≈ 73%, ΩDarkMatter ≈ 23%, ΩBaryon ≈ 4%

There are two possible types of the dark matter: the hot one, consis-
ting of light relativistic particles and the cold one, consisting of massive
weakly interacting particles (WIMPs). The hot dark matter might con-
sist of neutrinos, however, this leads to problems with galaxy formation.
As for the cold dark matter, it has no candidates within the SM. At
the same time, SUSY provides an excellent candidate for the cold dark
matter, namely neutralino, the lightest superparticle.

II.5 Beyond GUTs: superstring
Another motivation for supersymmetry follows from even more radical

changes of basic ideas related to the ultimate goal of construction of
consistent unified theory of everything. At the moment the only viable
conception is the superstring theory [10]. In the superstring theory,
strings are considered as fundamental objects, closed or open, and are
nonlocal in nature. Ordinary particles are considered as string excitation
modes. String interactions, which are local, generate proper interactions
of usual particles, including gravitational ones.

To be consistent, the string theory should be conformal invariant in
D-dimensional target space and have a stable vacuum. The first re-
quirement is valid in classical theory but may be violated by quantum
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anomalies. Cancellation of quantum anomalies takes place when space-
time dimension of a target space equals to a critical one which is Dc = 26
for bosonic string and Dc = 10 for a fermionic one.

The second requirement is that the massless string excitations (the
particles of the SM) are stable. This assumes the absence of tachyons,
the states with imaginary mass, which can be guaranteed only in super-
symmetric string theories!

III. Basics of supersymmetry

III.1 Algebra of SUSY
Combined with the usual Poincaré and internal symmetry algebra the

Super-Poincaré Lie algebra contains additional SUSY generators Qi
α and

Q̄i
α̇ [3]

[Pµ, Pν ] = 0,
[Pµ, Mρσ] = i(gµρPσ − gµσPρ),
[Mµν , Mρσ] = i(gνρMµσ − gνσMµρ − gµρMνσ + gµσMνρ),
[Br, Bs] = iCt

rsBt,
[Br, Pµ] = [Br, Mµσ] = 0,
[Qi

α, Pµ] = [Q̄i
α̇, Pµ] = 0,

[Qi
α, Mµν ] = 1

2(σµν)β
αQi

β , [Q̄i
α̇, Mµν ] = −1

2Q̄i
β̇
(σ̄µν)

β̇
α̇,

[Qi
α, Br] = (br)i

jQ
j
α, [Q̄i

α̇, Br] = −Q̄j
α̇(br)i

j ,

{Qi
α, Q̄j

β̇
} = 2δij(σµ)αβ̇Pµ,

{Qi
α, Qj

β} = 2εαβZij , Zij = ar
ijbr, Zij = Z+

ij ,

{Q̄i
α̇, Q̄j

β̇
} = −2εα̇β̇Zij , [Zij , anything] = 0,

α, α̇ = 1, 2 i, j = 1, 2, . . . , N.

(III.1)

Here Pµ and Mµν are four-momentum and angular momentum
operators, respectively, Br are the internal symmetry generators, Qi

and Q̄i are the spinorial SUSY generators and Zij are the so-called cen-
tral charges; α, α̇, β, β̇ are the spinorial indices. In the simplest case
one has one spinor generator Qα (and the conjugated one Q̄α̇) that cor-
responds to an ordinary or N=1 supersymmetry. When N > 1 one has
an extended supersymmetry.

A natural question arises: how many SUSY generators are possible,
i.e. what is the value of N? To answer this question, consider massless
states. Let us start with the ground state labeled by energy and helicity,
i.e. projection of a spin on the direction of momenta, and let it be
annihilated by Qi

Vacuum = |E, λ >, Qi|E, λ >= 0.



Supersymmetric Extension of the Standard Model 357

Then one and more particle states can be constructed with the help of
a creation operators as

State Expression # of States

vacuum |E, λ > 1

1 − particle state Q̄i|E, λ >= |E, λ + 1/2 >i

(
N
1

)
= N

2 − particle state Q̄iQ̄j |E, λ >= |E, λ + 1 >ij

(
N
2

)
= N(N−1)

2

... ... ...

N − particle state Q̄1Q̄2...Q̄N |E, λ >= |E, λ + N
2 >

(
N
N

)
= 1

Total # of states:
N∑

k=0

(
N
k

)
= 2N = 2N−1 bosons + 2N−1 fermions.

The energy E is not changed, since according to (III.1) the operators Q̄i

commute with the Hamiltonian.
Thus, one has a sequence of bosonic and fermionic states and the total

number of bosons equals that of fermions. This is a generic property of
any supersymmetric theory. However, in CPT invariant theories the
number of states is doubled, since CPT transformation changes the sign
of helicity. Hence, in CPT invariant theories, one has to add the states
with opposite helicity to the above mentioned ones.

Consider some examples. Let us take N = 1 and λ = 0. Then one
has the following set of states:

helicity 0 1/2 helicity 0 −1/2
N = 1 λ = 0 CPT=⇒

# of states 1 1 # of states 1 1

Hence, a complete N = 1 multiplet is

N = 1 helicity −1/2 0 1/2
# of states 1 2 1

which contains one complex scalar and one spinor with two helicity
states.

This is an example of the so-called self-conjugated multiplet. There
are also self-conjugated multiplets with N > 1 corresponding to ex-
tended supersymmetry. Two particular examples are the N = 4 super
Yang-Mills multiplet and the N = 8 supergravity multiplet

N = 4 SUSY YM helicity −1 −1/2 0 1/2 1
λ = −1 # of states 1 4 6 4 1
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N = 8 SUGRA −2 −3/2 −1 −1/2 0 1/2 1 3/2 2
λ = −2 1 8 28 56 70 56 28 8 1

One can see that the multiplets of extended supersymmetry are very
rich and contain a vast number of particles.

The constraint on the number of SUSY generators comes from a re-
quirement of consistency of the corresponding QFT. The number of su-
persymmetries and the maximal spin of the particle in the multiplet are
related by

N ≤ 4S,

where S is the maximal spin. Since the theories with spin greater than
1 are non-renormalizable and the theories with spin greater than 5/2
have no consistent coupling to gravity, this imposes a constraint on the
number of SUSY generators

N ≤ 4 for renormalizable theories (YM),
N ≤ 8 for (super)gravity.

In what follows, we shall consider simple supersymmetry, or N = 1
supersymmetry, contrary to extended supersymmetries with N > 1.
In this case, one has two types of supermultiplets: the so-called chiral
multiplet with λ = 0, which contains two physical states (φ, ψ) with
spin 0 and 1/2, respectively, and the vector multiplet with λ = 1/2,
which also contains two physical states (λ, Aµ) with spin 1/2 and 1,
respectively.

III.2 Superspace and superfields
An elegant formulation of supersymmetry transformations and inva-

riants can be achieved in the framework of superspace [4]. Superspace
differs from the ordinary Euclidean (Minkowski) space by adding of two
new coordinates, θα and θ̄α̇, which are Grassmannian, i.e. anticom-
muting, variables

{θα, θβ} = 0, {θ̄α̇, θ̄β̇} = 0, θ2
α = 0, θ̄2

α̇ = 0, α, β, α̇, β̇ = 1, 2.

Thus, we go from space to superspace

Space ⇒ Superspace
xµ xµ, θα, θ̄α̇

A SUSY group element can be constructed in superspace in the same
way as an ordinary translation in the usual space

G(x, θ, θ̄) = ei(−xµPµ + θQ + θ̄Q̄). (III.2)
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It leads to a supertranslation in superspace

xµ → xµ + iθσµε̄ − iεσµθ̄,
θ → θ + ε, θ̄ → θ̄ + ε̄,

(III.3)

where ε and ε̄ are Grassmannian transformation parameters. From
eq.(III.3) one can easily obtain the representation for the supercharges
(III.1) acting on the superspace

Qα =
∂

∂θα
− iσµ

αα̇θ̄α̇∂µ, Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµ

αα̇∂µ. (III.4)

To define the fields on a superspace, consider representations of the
Super-Poincaré group (III.1) [3]. The simplest one is a scalar superfield
F (x, θ, θ̄) which is SUSY invariant. Its Taylor expansion in θ and θ̄
has only several terms due to the nilpotent character of Grassmannian
parameters. However, this superfield is a reducible representation of
SUSY. To get an irreducible one, we define a chiral superfield which
obeys the equation

D̄α̇F = 0, where D̄α̇ = − ∂

∂θ α̇
− i(θσµ)α̇∂µ (III.5)

is a superspace covariant derivative.
For the chiral superfield Grassmannian Taylor expansion looks like

(y = x + iθσθ̄)

Φ(y, θ) = A(y) +
√

2θψ(y) + θθF (y) (III.6)

= A(x) + iθσµθ̄∂µA(x) +
1
4
θθθ̄θ̄�A(x)

+
√

2θψ(x) − i√
2
θθ∂µψ(x)σµθ̄ + θθF (x).

The coefficients are ordinary functions of x being the usual fields. They
are called the components of a superfield. In eq.(III.6) one has 2 bosonic
(complex scalar field A) and 2 fermionic (Weyl spinor field ψ) degrees
of freedom. The component fields A and ψ are called the superpartners.
The field F is an auxiliary field, it has the “wrong” dimension and has
no physical meaning. It is needed to close the algebra (III.1). One can
get rid of the auxiliary fields with the help of equations of motion.

Thus, a superfield contains an equal number of bosonic and fermionic
degrees of freedom. Under SUSY transformation they convert into one
another

δεA =
√

2εψ,

δεψ = i
√

2σµε̄∂µA +
√

2εF, (III.7)

δεF = i
√

2ε̄σµ∂µψ.
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Notice that the variation of the F -component is a total derivative, i.e.
it vanishes when integrated over the space-time.

One can also construct an antichiral superfield Φ+ obeying the equa-
tion

DαΦ+ = 0, with Dα =
∂

∂θα
+ i(σµθ̄)α∂µ.

The product of chiral (antichiral) superfields Φ2, Φ3, etc is also a chiral
(antichiral) superfield, while the product of chiral and antichiral ones
Φ+Φ is a general superfield.

For any arbitrary function of chiral superfields one has

W(Φi) = W(Ai +
√

2θψi + θθF ) (III.8)

= W(Ai) +
∂W
∂Ai

√
2θψi + θθ

(
∂W
∂Ai

Fi −
1
2

∂2W
∂Ai∂Aj

ψiψj

)
.

The W is usually referred to as a superpotential which replaces the usual
potential for the scalar fields.

To construct the gauge invariant interactions, one needs a real vector
superfield V = V +. It is not chiral but rather a general superfield with
the following Grassmannian expansion:

V (x, θ, θ̄) = C(x) + iθχ(x) − iθ̄χ̄(x) +
i

2
θθ[M(x) + iN(x)]

− i

2
θ̄θ̄[M(x) − iN(x)] − θσµθ̄vµ(x) + iθθθ̄[λ(x) +

i

2
σ̄µ∂µχ(x)]

− iθ̄θ̄θ[λ +
i

2
σµ∂µχ̄(x)] +

1
2
θθθ̄θ̄[D(x) +

1
2
�C(x)]. (III.9)

The physical degrees of freedom corresponding to a real vector superfield
V are the vector gauge field vµ and the Majorana spinor field λ. All other
components are unphysical and can be eliminated. Indeed, under the
Abelian (super)gauge transformation the superfield V is transformed as

V → V + Φ + Φ+,

where Φ and Φ+ are some chiral superfields. In components it looks like

C → C + A + A∗,

χ → χ − i
√

2ψ,

M + iN → M + iN − 2iF,

vµ → vµ − i∂µ(A − A∗), (III.10)
λ → λ,

D → D,
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and corresponds to ordinary gauge transformations for physical com-
ponents. According to eq.(III.10), one can choose a gauge (the Wess-
Zumino gauge) where C = χ = M = N = 0, leaving one with only
physical degrees of freedom except for the auxiliary field D. In this
gauge

V = −θσµθ̄vµ(x) + iθθθ̄λ̄(x) − iθ̄θ̄θλ(x) +
1
2
θθθ̄θ̄D(x),

V 2 = −1
2
θθθ̄θ̄vµ(x)vµ(x),

V 3 = 0, etc. (III.11)

One can define also a field strength tensor (as analog of Fµν in gauge
theories)

Wα = −1
4
D̄2eV Dαe−V , W̄α̇ = −1

4
D2eV D̄αe−V , (III.12)

which is a polynomial in the Wess-Zumino gauge. (Here Ds are the
supercovariant derivatives.)

The strength tensor is a chiral superfield

D̄β̇Wα = 0, DβW̄α̇ = 0.

In the Wess-Zumino gauge it is a polynomial over component fields:

Wα = T a

(
−iλa

α + θαDa − i

2
(σµσ̄νθ)αF a

µν + θ2(σµDµλ̄a)α

)
, (III.13)

where

F a
µν = ∂µva

ν − ∂νv
a
µ + fabcvb

µvc
ν , Dµλ̄a = ∂λ̄a + fabcvb

µλ̄c.

In Abelian case eqs.(III.12) are simplified and take form

Wα = −1
4
D̄2DαV, W̄α̇ = −1

4
D2D̄αV.

III.3 Construction of SUSY Lagrangians
Let us start with the Lagrangian which has no local gauge invari-

ance. In the superfield notation SUSY invariant Lagrangians are the
polynomials of superfields. Having in mind that for component fields
one should have ordinary terms and the above mentioned property of
SUSY invariance of the highest dimension components of a superfield,
the general SUSY invariant Lagrangian has the form

L = Φ+
i Φi|θθθ̄θ̄ + [(λiΦi +

1
2
mijΦiΦj +

1
3
gijkΦiΦjΦk)|θθ + h.c.]. (III.14)
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Hereafter the vertical line means the corresponding term of a Taylor
expansion.

The first term is a kinetic term. It contains both the chiral and an-
tichiral superfields Φi and Φ+

i , respectively, and is a function of Grass-
mannian parameters θ and θ̄. Being expanded over θ and θ̄ it leads to
the usual kinetic terms for the corresponding component fields.

The terms in the bracket form the superpotential. It is composed of
the chiral fields only (plus the hermitian conjugated counterpart com-
posed of antichiral superfields) and is a chiral superfield. Since the pro-
ducts of a chiral superfield and antichiral one produce a general super-
field, they are not allowed in a superpotential. The last coefficient of
its expansion over the parameter θ is supersymmetrically invariant and
gives the usual potential after getting rid of the auxiliary fields.

The Lagrangian (III.14) can be written in a much more elegant way
in superspace. The same way as an ordinary action is an integral over
space-time of Lagrangian density, in supersymmetric case the action is
an integral over the superspace. The space-time Lagrangian density then
is [3, 4]

L =
∫

d2θd2θ̄ Φ+
i Φi +

∫
d2θ [λiΦi +

1
2
mijΦiΦj +

1
3
yijkΦiΦjΦk] + h.c.

(III.15)
where the first part is a kinetic term and the second one is a super-
potential W. Here instead of taking the proper components we use
integration over the superspace according to the rules of Grassmannian
integration [11] ∫

dθα = 0,

∫
θα dθβ = δαβ .

Performing explicit integration over the Grassmannian parameters, we
get from eq.(III.15)

L = i∂µψ̄iσ̄
µψi + A∗

i �Ai + F ∗
i Fi (III.16)

+ [λiFi + mij(AiFj −
1
2
ψiψj) + yijk(AiAjFk − ψiψjAk) + h.c.].

The last two terms are the interaction ones. To obtain a familiar form
of the Lagrangian, we have to solve the constraints

∂L
∂F ∗

k

= Fk + λ∗
k + m∗

ikA
∗
i + y∗ijkA

∗
i A

∗
j = 0, (III.17)

∂L
∂Fk

= F ∗
k + λk + mikAi + yijkAiAj = 0. (III.18)
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Expressing the auxiliary fields F and F ∗ from these equations, one finally
gets

L = i∂µψ̄iσ̄
µψi + A∗

i �Ai −
1
2
mijψiψj −

1
2
m∗

ijψ̄iψ̄j

−yijkψiψjAk − y∗ijkψ̄iψ̄jA
∗
k − V (Ai, Aj), (III.19)

where the scalar potential V = F ∗
k Fk. We will return to the discussion

of the form of the scalar potential in SUSY theories later.
Consider now the gauge invariant SUSY Lagrangians. They should

contain gauge invariant interaction of the matter fields with the gauge
ones and the kinetic term and the self-interaction of the gauge fields.

Let us start with the gauge field kinetic terms. In the Wess-Zumino
gauge one has

WαWα|θθ = −2iλσµDµλ̄− 1
2
FµνF

µν +
1
2
D2 + i

1
4
FµνF ρσεµνρσ, (III.20)

where Dµ = ∂µ + ig[vµ, ] is the usual covariant derivative and the last,
the so-called topological θ term, is the total derivative.

The gauge invariant Lagrangian now has a familiar form

L =
1
4

∫
d2θ WαWα +

1
4

∫
d2θ̄ W̄ α̇W̄α̇

=
1
2
D2 − 1

4
FµνF

µν − iλσµDµλ̄. (III.21)

To obtain a gauge-invariant interaction with matter chiral superfields,
consider their gauge transformation (Abelian)

Φ → e−igΛΦ, Φ+ → Φ+eigΛ+
, V → V + i(Λ − Λ+),

where Λ is a gauge parameter (chiral superfield).
It is clear now how to construct both the SUSY and gauge invariant

kinetic term (compare with the covariant derivative in a usual gauge
theory)

Φ+
i Φi|θθθ̄θ̄ ⇒ Φ+

i egV Φi|θθθ̄θ̄ (III.22)

A complete SUSY and gauge invariant Lagrangian then looks like

Linv =
1
4

∫
d2θ WαWα +

1
4

∫
d2θ̄ W̄ α̇W̄α̇ +

∫
d2θd2θ̄ Φ+

i egV Φi

+
∫

d2θ (
1
2
mijΦiΦj +

1
3
yijkΦiΦjΦk) + h.c. (III.23)
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The non-Abelian generalization is straightforward

LSUSY Y M =
1
4

∫
d2θ Tr(WαWα) +

1
4

∫
d2θ̄ T r(W̄αW̄α) (III.24)

+
∫

d2θd2θ̄ Φ̄ia(egV )a
bΦ

b
i +
∫

d2θ W(Φi) +
∫

d2θ̄ W̄(Φ̄i),

where W is a superpotential, which should be invariant under the group
of symmetry of a particular model.

In terms of component fields the above Lagrangian takes the form

LSUSY Y M = −1
4
F a

µνF
aµν − iλaσµDµλ̄a +

1
2
DaDa (III.25)

+ (∂µAi − igva
µT aAi)†(∂µAi − igva

µT aAi) − iψ̄iσ̄
µ(∂µψi − igva

µT aψi)

− DaA†
iT

aAi − i
√

2A†
iT

aλaψi + i
√

2ψ̄iT
aAiλ̄

a + F †
i Fi

+
∂W
∂Ai

Fi +
∂W̄
∂A†

i

F †
i − 1

2
∂2W

∂Ai∂Aj
ψiψj −

1
2

∂2W̄
∂A†

i∂A†
j

ψ̄iψ̄j .

Integrating out the auxiliary fields Da and Fi, one reproduces the usual
Lagrangian.

III.4 The scalar potential
Contrary to the SM, where the scalar potential is arbitrary and is

defined only by the requirement of the gauge invariance, in supersym-
metric theories it is completely defined by the superpotential. It consists
of the contributions from the D-terms and F -terms. The kinetic energy
of the gauge fields (recall eq.(III.21) yields the 1/2DaDa term, and the
matter-gauge interaction (recall eq.(III.23) yields the gDaT a

ijA
∗
i Aj one.

Together they give

LD =
1
2
DaDa + gDaT a

ijA
∗
i Aj . (III.26)

The equation of motion reads

Da = −gT a
ijA

∗
i Aj . (III.27)

Substituting it back into eq.(III.26) yields the D-term part of the po-
tential

LD = −1
2
DaDa =⇒ VD =

1
2
DaDa, (III.28)

where D is given by eq.(III.27).
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The F -term contribution can be derived from the matter field self-in-
teraction eq.(III.16). For a general type superpotential W one has

LF = F ∗
i Fi + (

∂W

∂Ai
Fi + h.c.). (III.29)

Using the equations of motion for the auxiliary field Fi

F ∗
i = −∂W

∂Ai
(III.30)

yields
LF = −F ∗

i Fi =⇒ VF = F ∗
i Fi, (III.31)

where F is given by eq.(III.30). The full potential is the sum of the two
contributions

V = VD + VF . (III.32)

Thus, the form of the Lagrangian is practically fixed by symmetry
requirements. The only freedom is the field content, the value of the
gauge coupling g, Yukawa couplings yijk and the masses. Because of the
renormalizability constraint V ≤ A4 the superpotential should be limited
by W ≤ Φ3 as in eq.(III.15). All members of a supermultiplet have the
same masses, i.e. bosons and fermions are degenerate in masses. This
property of SUSY theories contradicts the phenomenology and requires
supersymmetry breaking.

III.5 Spontaneous breaking of SUSY
Since supersymmetric algebra leads to mass degeneracy in a super-

multiplet, it should be broken to explain the absence of superpartners
at present energies. There are several ways of supersymmetry breaking.
It can be broken either explicitly or spontaneously. Performing SUSY
breaking one has to be careful not to spoil the cancellation of quadratic
divergencies which allows one to solve the hierarchy problem. This is
achieved by spontaneous breaking of SUSY.

Apart from non-supersymmetric theories in SUSY models the energy
is always nonnegative definite. Indeed, according to quantum mechanics

E =< 0| H |0 >

and due to SUSY algebra eq.(III.1) {Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, taking into
account that tr(σµPµ) = 2P0, one gets

E =
1
4

∑
α=1,2

< 0|{Qα, Q̄α}|0 >=
1
4

∑
α

|Qα|0 > |2 ≥ 0.
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Hence

E =< 0| H |0 >�= 0 if and only if Qα|0 >�= 0.

Therefore, supersymmetry is spontaneously broken, i.e. vacuum is
not invariant (Qα|0 > �= 0), if and only if the minimum of the potential
is positive (i.e. E > 0) .

Spontaneous breaking of supersymmetry is achieved in the same way
as the electroweak symmetry breaking. One introduces the field whose
vacuum expectation value is nonzero and breaks the symmetry. How-
ever, due to a special character of SUSY, this should be a superfield
whose auxiliary F and D components acquire nonzero v.e.v.’s. Thus,
among possible spontaneous SUSY breaking mechanisms one distin-
guishes the F and D ones.

i) Fayet-Iliopoulos (D-term) mechanism [12].
In this case the, the linear D-term is added to the Lagrangian

∆L = ξV |θθθ̄θ̄ = ξ

∫
d4θ V. (III.33)

It is gauge and SUSY invariant by itself; however, it may lead to spon-
taneous breaking of both of them depending on the value of ξ. We show
in Fig.5a the sample spectrum for two chiral matter multiplets. The

Figure 5. Spectrum of spontaneously broken SUSY theories

drawback of this mechanism is the necessity of U(1) gauge invariance.
It can be used in SUSY generalizations of the SM but not in GUTs.
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The mass spectrum also causes some troubles since the following sum
rule is always valid ∑

bosonic states

m2
i =

∑
fermionic states

m2
i , (III.34)

which is bad for phenomenology.
ii) O’Raifeartaigh (F -term) mechanism [13].

In this case, several chiral fields are needed and the superpotential should
be chosen in a way that trivial zero v.e.v.s for the auxiliary F -fields be
absent. For instance, choosing the superpotential to be

W(Φ) = λΦ3 + mΦ1Φ2 + gΦ3Φ2
1,

one gets the equations for the auxiliary fields

F ∗
1 = mA2 + 2gA1A3,

F ∗
2 = mA1,

F ∗
3 = λ + gA2

1,

which have no solutions with < Fi >= 0 and SUSY is spontaneously
broken. The sample spectrum is shown in Fig.5b.

The drawbacks of this mechanism is a lot of arbitrariness in the choice
of potential. The sum rule (III.34) is also valid here.

Unfortunately, none of these mechanisms explicitly works in SUSY
generalizations of the SM. None of the fields of the SM can develop
nonzero v.e.v.s for their F or D components without breaking SU(3)
or U(1) gauge invariance since they are not singlets with respect to
these groups. This requires the presence of extra sources of spontaneous
SUSY breaking, which we consider below. They are based, however, on
the same F and D mechanisms.

IV. SUSY generalization of the Standard
Model. The MSSM

As has been already mentioned, in SUSY theories the number of
bosonic degrees of freedom equals that of fermionic. At the same time,
in the SM one has 28 bosonic and 90 fermionic degrees of freedom (with
massless neutrino, otherwise 96). So the SM is to a great extent non-
supersymmetric. Trying to add some new particles to supersymmetrize
the SM, one should take into account the following observations:

• There are no fermions with quantum numbers of the gauge bosons;
• Higgs fields have nonzero v.e.v.s; hence they cannot be superpartners

of quarks and leptons since this would induce spontaneous violation of
baryon and lepton numbers;
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• One needs at least two complex chiral Higgs multiplets to give
masses to Up and Down quarks.

The latter is due to the form of a superpotential and chirality of mat-
ter superfields. Indeed, the superpotential should be invariant under the
SU(3) × SU(2) × U(1) gauge group. If one looks at the Yukawa inter-
action in the Standard Model, one finds that it is indeed U(1) invariant
since the sum of hypercharges in each vertex equals zero. In the last
term this is achieved by taking the conjugated Higgs doublet H̃ = iτ2H

†

instead of H. However, in SUSY H is a chiral superfield and hence a
superpotential, which is constructed out of chiral fields, can contain only
H but not H̃ which is an antichiral superfield.

Another reason for the second Higgs doublet is related to chiral anom-
alies. It is known that chiral anomalies spoil the gauge invariance and,
hence, the renormalizability of the theory. They are canceled in the SM
between quarks and leptons in each generation. However, if one intro-
duces a chiral Higgs superfield, it contains higgsinos, which are chiral
fermions, and contain anomalies. To cancel them one has to add the
second Higgs doublet with the opposite hypercharge. Therefore, the
Higgs sector in SUSY models is inevitably enlarged, it contains an even
number of doublets.

Conclusion: In SUSY models supersymmetry associates known bosons
with new fermions and known fermions with new bosons.

IV.1 The field content
Consider the particle content of the Minimal Supersymmetric Stan-

dard Model [14]. According to the previous discussion, in the minimal
version we double the number of particles (introducing a superpartner
to each particle) and add another Higgs doublet (with its superpartner).

Thus, the characteristic feature of any supersymmetric generalization
of the SM is the presence of superpartners (see Fig.6) [15]. If super-
symmetry is exact, superpartners of ordinary particles should have the
same masses and have to be observed. The absence of them at modern
energies is believed to be explained by the fact that their masses are very
heavy, that means that supersymmetry should be broken. Hence, if the
energy of accelerators is high enough, the superpartners will be created.
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Figure 6. The shadow world of SUSY particles

The particle content of the MSSM then appears as

Particle Content of the MSSM

Superfield Bosons Fermions SU(3) SU(2 UY (1)

Gauge
Ga gluon ga gluino g̃a 8 0 0

Vk Weak W k (W±, Z) wino, zino w̃k (w̃±, z̃) 1 3 0

V′ Hypercharge B (γ) bino b̃(γ̃) 1 1 0

Matter

Li

Ei
sleptons

{
L̃i = (ν̃, ẽ)L

Ẽi = ẽR
leptons

{
Li = (ν, e)L

Ei = eR

1
1

2
1

−1
2

Qi

Ui

Di

squarks

⎧⎨⎩
Q̃i = (ũ, d̃)L

Ũi = ũR

D̃i = d̃R

quarks

⎧⎨⎩
Qi = (u, d)L

Ui = uc
R

Di = dc
R

3
3∗

3∗

2
1
1

1/3
−4/3

2/3

Higgs

H1

H2
Higgses

{
H1

H2
higgsinos

{
H̃1

H̃2

1
1

2
2

−1
1

Hereafter, tilde denotes a superpartner of an ordinary particle.
The presence of an extra Higgs doublet in SUSY model is a novel

feature of the theory. In the MSSM one has two doublets with the
quantum numbers (1,2,-1) and (1,2,1), respectively:

H1 =
(

H0
1

H−
1

)
=

(
v1 + S1+iP1√

2

H−
1

)
, H2 =

(
H+

2
H0

2

)
=

(
H+

2

v2 + S2+iP2√
2

)
,
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where vi are the vacuum expectation values of the neutral components.
Hence, one has 8=4+4=5+3 degrees of freedom. As in the case of

the SM, 3 degrees of freedom can be gauged away, and one is left with 5
physical states compared to 1 in the SM. Thus, in the MSSM, as actually
in any of two Higgs doublet models, one has five physical Higgs bosons:
two CP-even neutral, one CP-odd neutral and two charged. We consider
the mass eigenstates below.

IV.2 Lagrangian of the MSSM
The Lagrangian of the MSSM consists of two parts; the first part

is SUSY generalization of the Standard Model, while the second one
represents the SUSY breaking as mentioned above.

L = LSUSY + LBreaking, (IV.1)

where
LSUSY = LGauge + LY ukawa (IV.2)

and

LGauge =
∑

SU(3),SU(2),U(1)

1
4

(∫
d2θ TrWαWα +

∫
d2θ̄ T rW̄ α̇W̄α̇

)

+
∑

Matter

∫
d2θd2θ̄ Φ†

ie
g3V̂3 + g2V̂2 + g1V̂1Φi, (IV.3)

LY ukawa =
∫

d2θ (WR + WNR) + h.c. (IV.4)

The index R in a superpotential refers to the so-called R-parity [16]
which adjusts a ”+” charge to all the ordinary particles and a ”−”
charge to their superpartners. The first part of W is R-symmetric

WR = εij(yU
abQ

j
aU

c
b H i

2 + yD
abQ

j
aD

c
bH

i
1 + yL

abL
j
aE

c
bH

i
1 + µH i

1H
j
2), (IV.5)

where i, j = 1, 2, 3 are the SU(2) and a, b = 1, 2, 3 are the generation
indices; colour indices are suppressed. This part of the Lagrangian al-
most exactly repeats that of the SM except that the fields are now the
superfields rather than the ordinary fields of the SM. The only difference
is the last term which describes the Higgs mixing. It is absent in the SM
since there is only one Higgs field there.

The second part is R-nonsymmetric

WNR = εij(λL
abdL

i
aL

j
bE

c
d + λL′

abdL
i
aQ

j
bD

c
d + µ′

aL
i
aH

j
2) + λB

abdU
c
aDc

bD
c
d.

(IV.6)
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These terms are absent in the SM. The reason is very simple: one can
not replace the superfields in eq.(IV.6) by the ordinary fields like in
eq.(IV.5) because of the Lorentz invariance. These terms have a different
property, they violate either lepton (the first 3 terms in eq.(IV.6)) or
baryon number (the last term). Since both effects are not observed in
Nature, these terms must be suppressed or be excluded. One can avoid
such terms if one introduces special symmetry called the R-symmetry.
This is the global U(1)R invariance

U(1)R : θ → eiαθ, Φ → einαΦ, (IV.7)

which is reduced to the discrete group Z2, called the R-parity. The
R-parity quantum number is given by R = (−1)3(B−L)+2S for particles
with spin S. Thus, all the ordinary particles have the R-parity quantum
number equal to R = +1, while all the superpartners have R-parity
quantum number equal to R = −1. The R-parity obviously forbids
the WNR terms. However, it may well be that these terms are present,
though experimental limits on the couplings are very severe

λL
abc, λL′

abc < 10−4, λB
abc < 10−9.

IV.3 Properties of interactions
If one assumes that the R-parity is preserved, then the interactions

of superpartners are essentially the same as in the SM, but two of three
particles involved into an interaction at any vertex are replaced by super-
partners. The reason for it is the R-parity. Conservation of the R-parity
has two consequences

• the superpartners are created in pairs;
• the lightest superparticle (LSP) is stable. Usually it is photino γ̃,

the superpartner of a photon with some admixture of neutral higgsino.
Typical vertices are shown in Figs.7. The tilde above a letter denotes

the corresponding superpartner. Note that the coupling is the same in
all the vertices involving superpartners.

IV.4 Creation and decay of superpartners
The above-mentioned rule together with the Feynman rules for the

SM enables one to draw diagrams describing creation of superpartners.
One of the most promising processes is the e+e− annihilation (see Fig.8).

The usual kinematic restriction is given by the c.m. energy mmax
sparticle ≤√

s
2 . Similar processes take place at hadron colliders with electrons and

positrons being replaced by quarks and gluons.
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Figure 7. Gauge-matter interaction, Gauge self-interaction and Yukawa-type inter-
action

Creation of superpartners can be accompanied by creation of ordinary
particles as well. We consider various experimental signatures for e+e−

and hadron colliders below. They crucially depend on SUSY breaking
pattern and on the mass spectrum of superpartners.

The decay properties of superpartners also depend on their masses.
For the quark and lepton superpartners the main processes are shown
in Fig.9.

When the R-parity is conserved, new particles will eventually end
up giving neutralinos (the lightest superparticle) whose interactions are
comparable to those of neutrinos and they leave undetected. There-
fore, their signature would be missing energy and transverse momentum.
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Figure 8. Creation of superpartners

Figure 9. Decay of superpartners

Thus, if supersymmetry exists in Nature and if it is broken somewhere
below 1 TeV, then it will be possible to detect it in the nearest future.

V. Breaking of SUSY in the MSSM
Since none of the fields of the MSSM can develop non-zero v.e.v. to

break SUSY without spoiling the gauge invariance, it is supposed that
spontaneous supersymmetry breaking takes place via some other fields.
The most common scenario for producing low-energy supersymmetry
breaking is called the hidden sector one [17]. According to this scenario,
there exist two sectors: the usual matter belongs to the ”visible” one,
while the second, ”hidden” sector, contains fields which lead to breaking
of supersymmetry. These two sectors interact with each other by ex-
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change of some fields called messengers, which mediate SUSY breaking
from the hidden to the visible sector. There might be various types of
messenger fields: gravity, gauge, etc. The hidden sector is the weakest
part of the MSSM. It contains a lot of ambiguities and leads to uncer-
tainties of the MSSM predictions considered below.

So far four main mechanisms there are known to mediate SUSY break-
ing from a hidden to a visible sector:

Gravity mediation (SUGRA) [18];
Gauge mediation [19];
Anomaly mediation [20];
Gaugino mediation [21].

All four mechanisms of soft SUSY breaking are different in details but
are common in results. Predictions for the sparticle spectrum depend
on the mechanism of SUSY breaking. For comparison of four above-
mentioned mechanisms we show in Fig.10 the sample spectra as the
ratio to the gaugino mass M2 [22].

Figure 10. Superparticle spectra for various mediation mechanisms

In what follows, to calculate the mass spectrum of superpartners, we
need an explicit form of SUSY breaking terms. For the MSSM and
without the R-parity violation one has

−LBreaking =
∑

i

m2
0i|ϕi|2 +

(
1
2

∑
α

Mαλ̃αλ̃α + BH1H2 (V.1)

+ AU
abQ̃aŨ

c
b H2 + AD

abQ̃aD̃
c
bH1 + AL

abL̃aẼ
c
bH1 + h.c.

)
,
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where we have suppressed the SU(2) indices. Here ϕi are all scalar fields,
λ̃α are the gaugino fields, Q̃, Ũ , D̃ and L̃, Ẽ are the squark and slepton
fields, respectively, and H1,2 are the SU(2) doublet Higgs fields.

Eq.(V.1) contains a vast number of free parameters which spoils the
prediction power of the model. To reduce their number, we adopt the so-
called universality hypothesis, i.e., we assume the universality or equality
of various soft parameters at a high energy scale, namely, we put all the
spin 0 particle masses to be equal to the universal value m0, all the spin
1/2 particle (gaugino) masses to be equal to m1/2 and all the cubic and
quadratic terms, proportional to A and B, to repeat the structure of the
Yukawa superpotential (IV.5). This is an additional requirement moti-
vated by the supergravity mechanism of SUSY breaking. Universality
is not a necessary requirement and one may consider nonuniversal soft
terms as well. However, it will not change the qualitative picture pre-
sented below; so for simplicity, in what follows we consider the universal
boundary conditions. In this case, eq.(V.1) takes the form

−LBreaking = m2
0

∑
i

|ϕi|2 +

(
1
2
m1/2

∑
α

λ̃αλ̃α (V.2)

+ A[yU
abQ̃aŨ

c
b H2 + yD

abQ̃aD̃
c
bH1 + yL

abL̃aẼ
c
bH1] + B[µH1H2] + h.c.

)
,

The soft terms explicitly break supersymmetry. As will be shown
later, they lead to the mass spectrum of superpartners different from
that of ordinary particles. Remind that the masses of quarks and leptons
remain zero until SU(2) invariance is spontaneously broken.

V.1 The soft terms and the mass formulas
There are two main sources of the mass terms in the Lagrangian: the

D terms and soft ones. With given values of m0, m1/2, µ, Yt, Yb, Yτ , A,
and B one can construct the mass matrices for all the particles. Knowing
them at the GUT scale, one can solve the corresponding RG equations,
thus linking the values at the GUT and electroweak scales. Substi-
tuting these parameters into the mass matrices, one can predict the
mass spectrum of superpartners [23, 24].

Gaugino-higgsino mass terms. The mass matrix for gauginos, the
superpartners of the gauge bosons, and for higgsinos, the superpartners
of the Higgs bosons, is nondiagonal, thus leading to their mixing. The
mass terms look like

LGaugino−Higgsino = −1
2
M3λ̄aλa −

1
2
χ̄M (0)χ − (ψ̄M (c)ψ + h.c.), (V.3)
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where λa, a = 1, 2, . . . , 8, are the Majorana gluino fields and

χ =

⎛⎜⎜⎝
B̃0

W̃ 3

H̃0
1

H̃0
2

⎞⎟⎟⎠ , ψ =
(

W̃+

H̃+

)
(V.4)

are, respectively, the Majorana neutralino and Dirac chargino fields.
The neutralino mass matrix is

M (0) =

⎛⎜⎝ M1 0 -MZ cos β sinW MZ sin β sinW

0 M2 MZ cos β cosW -MZ sin β cosW

-MZ cos β sinW MZ cos β cosW 0 -µ
MZ sin β sinW -MZ sin β cosW -µ 0

⎞⎟⎠ ,

(V.5)
where tanβ = v2/v1 is the ratio of two Higgs v.e.v.s and sinW = sin θW is
the usual sinus of the weak mixing angle. The physical neutralino masses
Mχ̃0

i
are obtained as eigenvalues of this matrix after diagonalization.

For charginos one has

M (c) =
(

M2

√
2MW sin β√

2MW cos β µ

)
. (V.6)

This matrix has two chargino eigenstates χ̃±
1,2 with mass eigenvalues

M2
1,2 =

1
2
[
M2

2 + µ2 + 2M2
W (V.7)

∓
√

(M2
2 − µ2)2 + 4M4

W cos2 2β + 4M2
W (M2

2 + µ2 + 2M2µ sin 2β)
]

.

Squark and slepton masses. Non-negligible Yukawa couplings
cause a mixing between the electroweak eigenstates and the mass eigen-
states of the third generation particles. The mixing matrices for m̃2

t , m̃
2
b

and m̃2
τ are (

m̃2
tL mt(At − µ cot β)

mt(At − µ cot β) m̃2
tR

)
, (V.8)

(
m̃2

bL mb(Ab − µ tan β)
mb(Ab − µ tan β) m̃2

bR

)
, (V.9)

(
m̃2

τL mτ (Aτ − µ tan β)
mτ (Aτ − µ tan β) m̃2

τR

)
(V.10)
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with

m̃2
tL = m̃2

Q + m2
t +

1
6
(4M2

W − M2
Z) cos 2β,

m̃2
tR = m̃2

U + m2
t −

2
3
(M2

W − M2
Z) cos 2β,

m̃2
bL = m̃2

Q + m2
b −

1
6
(2M2

W + M2
Z) cos 2β,

m̃2
bR = m̃2

D + m2
b +

1
3
(M2

W − M2
Z) cos 2β,

m̃2
τL = m̃2

L + m2
τ − 1

2
(2M2

W − M2
Z) cos 2β,

m̃2
τR = m̃2

E + m2
τ + (M2

W − M2
Z) cos 2β

and the mass eigenstates are the eigenvalues of these mass matrices. For
the light generations the mixing is negligible.

The first terms here (m̃2) are the soft ones, which are calculated using
the RG equations starting from their values at the GUT (Planck) scale.
The second ones are the usual masses of quarks and leptons and the last
ones are the D terms of the potential.

V.2 The Higgs potential
As has already been mentioned, the Higgs potential in the MSSM

is totally defined by superpotential (and the soft terms). Due to the
structure of W the Higgs self-interaction is given by the D-terms while
the F -terms contribute only to the mass matrix. The tree level potential
is

Vtree(H1, H2) = m2
1|H1|2 + m2

2|H2|2 − m2
3(H1H2 + h.c.)

+
g2 + g

′2

8
(|H1|2 − |H2|2)2 +

g2

2
|H+

1 H2|2, (V.11)

where m2
1 = m2

H1
+ µ2, m2

2 = m2
H2

+ µ2. At the GUT scale m2
1 = m2

2 =
m2

0 + µ2
0, m2

3 = −Bµ0. Notice that the Higgs self-interaction coupling
in eq.(V.10) is fixed and defined by the gauge interactions as opposed to
the SM.

The potential (V.10), in accordance with supersymmetry, is positive
definite and stable. It has no nontrivial minimum different from zero.
Indeed, let us write the minimization condition for the potential (V.10)

1
2

δV

δH1
= m2

1v1 − m2
3v2 +

g2 + g′2

4
(v2

1 − v2
2)v1 = 0, (V.12)

1
2

δV

δH2
= m2

2v2 − m2
3v1 +

g2 + g′2

4
(v2

1 − v2
2)v2 = 0, (V.13)
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where we have introduced the notation

< H1 >≡ v1 = v cos β, < H2 >≡ v2 = v sin β, v2 = v2
1+v2

2, tan β ≡ v2

v1
.

Solution of eqs.(V.12),(V.13) can be expressed in terms of v2 and sin 2β

v2 =
4(m2

1 − m2
2 tan2 β)

(g2 + g′2)(tan2 β − 1)
, sin 2β =

2m2
3

m2
1 + m2

2

. (V.14)

One can easily see from eq.(V.14) that if m2
1 = m2

2 = m2
0+µ2

0, v2 happens
to be negative, i.e. the minimum does not exist. In fact, real positive
solutions to eqs.(V.12),(V.13) exist only if the following conditions are
satisfied:

m2
1 + m2

2 > 2m2
3, m2

1m
2
2 < m4

3, (V.15)

which is not the case at the GUT scale. This means that spontaneous
breaking of the SU(2) gauge invariance, which is needed in the SM to
give masses for all the particles, does not take place in the MSSM.

This strong statement is valid, however, only at the GUT scale. In-
deed, going down with energy, the parameters of the potential (V.10)
are renormalized. They become the “running” parameters with the en-
ergy scale dependence given by the RG equations. The running of the
parameters leads to a remarkable phenomenon known as radiative spon-
taneous symmetry breaking to be discussed below.

Provided conditions (V.15) are satisfied, the mass matrices at the tree
level are
CP-odd components P1 and P2 :

Modd =
∂2V

∂Pi∂Pj

∣∣∣∣
Hi=vi

=
(

tan β 1
1 cot β

)
m2

3, (V.16)

CP-even neutral components S1 and S2:

Mev =
∂2V

∂Si∂Sj

∣∣∣∣ = ( tan β −1
−1 cot β

)
m2

3 +
(

cot β −1
−1 tan β

)
MZ

sin 2β

2
,

(V.17)
Charged components H− and H+:

Mch =
∂2V

∂H+
i ∂H−

j

∣∣∣∣∣
Hi=vi

=
(

tan β 1
1 cot β

)
(m2

3 + MW cos β sin β).

(V.18)
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Diagonalizing the mass matrices, one gets the mass eigenstates:{
G0 = − cos βP1 + sinβP2, Goldstone boson → Z0,
A = sinβP1 + cos βP2, Neutral CP = −1 Higgs,{
G+ = − cos β(H−

1 )∗ + sinβH+
2 , Goldstone boson → W+,

H+ = sin β(H−
1 )∗ + cos βH+

2 , Charged Higgs,{
h = − sin αS1 + cos αS2, SM Higgs boson CP = 1,
H = cos αS1 + sinαS2, Extra heavy Higgs boson,

where the mixing angle α is given by

tan 2α = tan 2β
(

m2
A + M2

Z

m2
A − M2

Z

)
.

The physical Higgs bosons acquire the following masses [14]:

CP-odd neutral Higgs A : m2
A = m2

1 + m2
2,

Charge Higgses H± : m2
H± = m2

A + M2
W , (V.19)

CP-even neutral Higgses H, h:

m2
H,h =

1
2

[
m2

A + M2
Z ±

√
(m2

A + M2
Z)2 − 4m2

AM2
Z cos2 2β

]
, (V.20)

where, as usual,

M2
W =

g2

2
v2, M2

Z =
g2 + g′2

2
v2.

This leads to the once celebrated SUSY mass relations

mH± ≥ MW , mh ≤ mA ≤ MH ,

mh ≤ MZ | cos 2β| ≤ MZ , m2
h + m2

H = m2
A + M2

Z .
(V.21)

Thus, the lightest neutral Higgs boson happens to be lighter than the
Z boson, which clearly distinguishes it from the SM one. Though we
do not know the mass of the Higgs boson in the SM, there are several
indirect constraints leading to the lower boundary of mSM

h ≥ 135 GeV.
After including the radiative corrections, the mass of the lightest Higgs
boson in the MSSM, mh, however increases. We consider it in more
detail below.
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V.3 Renormalization group analysis
To calculate the low energy values of the soft terms, we use the corre-

sponding RG equations. The one-loop RG equations for the rigid MSSM
couplings are [25]

dα̃i

dt
= biα̃

2
i , t ≡ log Q2/M2

GUT

dYU

dt
= −YL

(
16
3

α̃3 + 3α̃2 +
13
15

α̃1 − 6YU − YD

)
,

dYD

dt
= −YD

(
16
3

α̃3 + 3α̃2 +
7
15

α̃1 − YU − 6YD − YL

)
,

dYL

dt
= −YL

(
3α̃2 +

9
5
α̃1 − 3YD − 4YL

)
, (V.22)

where we use the notation α̃ = α/4π = g2/16π2, Y = y2/16π2.
For the soft terms one finds
dMi

dt
= biα̃iMi.

dAU

dt
=

16
3

α̃3M3 + 3α̃2M2 +
13
15

α̃1M1 + 6YUAU + YDAD,

dAD

dt
=

16
3

α̃3M3 + 3α̃2M2 +
7
15

α̃1M1 + 6YDAD + YUAU + YLAL,

dAL

dt
= 3α̃2M2 +

9
5
α̃1M1 + 3YDAD + 4YLAL,

dB

dt
= 3α̃2M2 +

3
5
α̃1M1 + 3YUAU + 3YDAD + YLAL.

dm̃2
Q

dt
= −

[
(
16
3

α̃3M
2
3 + 3α̃2M

2
2 +

1
15

α̃1M
2
1 )

− YU (m̃2
Q + m̃2

U + m2
H2

+ A2
U ) − YD(m̃2

Q + m̃2
D + m2

H1
+ A2

D)
]
,

dm̃2
U

dt
= −

[
(
16
3

α̃3M
2
3 +

16
15

α̃1M
2
1 ) − 2YU (m̃2

Q + m̃2
U + m2

H2
+ A2

U )
]

,

dm̃2
D

dt
= −

[
(
16
3

α̃3M
2
3 +

4
15

α̃1M
2
1 ) − 2YD(m̃2

Q + m̃2
D + m2

H1
+ A2

D)
]

,

dm̃2
L

dt
= −

[
3(α̃2M

2
2 +

1
5
α̃1M

2
1 ) − YL(m̃2

L + m̃2
E + m2

H1
+ A2

L)
]

,

dm̃2
E

dt
= −

[
(
12
5

α̃1M
2
1 ) − 2YL(m̃2

L + m̃2
E + m2

H1
+ A2

L)
]

,

dµ2

dt
= −µ2

[
3(α̃2 +

1
5
α̃1) − (3YU + 3YD + YL)

]
, (V.23)
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dm2
H1

dt
= −

[
3(α̃2M

2
2 +

1
5
α̃1M

2
1 ) − 3YD(m̃2

Q + m̃2
D + m2

H1
+ A2

D)

−YL(m̃2
L + m̃2

E + m2
H1

+ A2
L)
]
,

dm2
H2

dt
= −

[
3(α̃2M

2
2 +

1
5
α̃1M

2
1 ) − 3YU (m̃2

Q + m̃2
U + m2

H2
+ A2

U )
]

.

Having all the RG equations, one can now find the RG flow for the
soft terms. Taking the initial values of the soft masses at the GUT scale
in the interval between 102 ÷ 103 GeV consistent with the SUSY scale
suggested by unification of the gauge couplings (II.7) leads to the RG
flow of the soft terms shown in Fig.11. [23, 24]
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Figure 11. An example of evolution of sparticle masses and soft supersymmetry
breaking parameters m2

1 = m2
H1 + µ2 and m2

2 = m2
H2 + µ2 for low (left) and high

(right) values of tan β

One should mention the following general features common to any
choice of initial conditions:

i) The gaugino masses follow the running of the gauge couplings and
split at low energies. The gluino mass is running faster than the others
and is usually the heaviest due to the strong interaction.

ii) The squark and slepton masses also split at low energies, the stops
(and sbottoms) being the lightest due to relatively big Yukawa couplings
of the third generation.

iii) The Higgs masses (or at least one of them) are running down very
quickly and may even become negative.

Typical dependence of the mass spectra on the initial conditions (m0)
is also shown in Fig.12 [26]. For a given value of m1/2 the masses
of the lightest particles are practically independent of m0, while the
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heavier ones increase with it monotonically. One can see that the lightest
neutralinos and charginos as well as the stop squark may be rather light.
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Figure 12. The masses of sparticles as functions of the initial value m0

V.4 Radiative electroweak symmetry breaking
The running of the Higgs masses leads to the phenomenon known as

radiative electroweak symmetry breaking. Indeed, one can see in Fig.11
that m2

2 (or both m2
1 and m2

2) decreases when going down from the
GUT scale to the MZ scale and can even become negative. As a result,
at some value of Q2 the conditions (V.15) are satisfied, so that the
nontrivial minimum appears. This triggers spontaneous breaking of the
SU(2) gauge invariance. The vacuum expectations of the Higgs fields
acquire nonzero values and provide masses to quarks, leptons and SU(2)
gauge bosons, and additional masses to their superpartners.

In this way one also obtains the explanation of why the two scales are
so much different. Due to the logarithmic running of the parameters,
one needs a long ”running time” to get m2

2 (or both m2
1 and m2

2) to be
negative when starting from a positive value of the order of MSUSY ∼
102 ÷ 103 GeV at the GUT scale.

VI. Constrained MSSM

VI.1 Parameter space of the MSSM
The Minimal Supersymmetric Standard Model has the following free

parameters: i) three gauge couplings αi; ii) three matrices of the Yukawa
couplings yi

ab, where i = L, U, D; iii) the Higgs field mixing parameter
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µ; iv) the soft supersymmetry breaking parameters. Compared to the
SM there is an additional Higgs mixing parameter, but the Higgs self-
coupling, which is arbitrary in the SM, is fixed by supersymmetry. The
main uncertainty comes from the unknown soft terms.

With the universality hypothesis one is left with the following set of
5 free parameters defining the mass scales

µ, m0, m1/2, A and B ↔ tan β =
v2

v1
.

While choosing parameters and making predictions, one has two possible
ways to proceed:

i) take the low-energyparameters like superparticlemasses m̃t1, m̃t2, mA,
tan β, mixings Xstop, µ, etc. as input and calculate cross-sections as func-
tions of these parameters.

ii) take the high-energy parameters like the above mentioned 5 soft
parameters as input, run the RG equations and find the low-energy
values. Now the calculations can be carried out in terms of the initial
parameters. The experimental constraints are sufficient to determine
these parameters, albeit with large uncertainties.

VI.2 The choice of constraints
When subjecting constraints on the MSSM, perhaps, the most re-

markable fact is that all of them can be fulfilled simultaneously. In our
analysis we impose the following constraints on the parameter space of
the MSSM:

• Gauge coupling constant unification;
This is one of the most restrictive constraints, which we have discussed
in Sect 2. It fixes the scale of SUSY breaking of an order of 1 TeV.

• MZ from electroweak symmetry breaking;
Radiative EW symmetry breaking (see eq.(V.14)) defines the mass of
the Z-boson

M2
Z = 2

m2
1 − m2

2 tan2 β

tan2 β − 1
. (VI.1)

This condition determines the value of µ for given values of m0 and m1/2.
• Yukawa coupling constant unification;

The masses of top, bottom and τ can be obtained from the low energy
values of the running Yukawa couplings via

mt = yt v sin β, mb = yb v cos β, mτ = yτ v cos β. (VI.2)

They can be translated to the pole masses with account taken of the
radiative corrections. The requirement of bottom-tau Yukawa coupling



384 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

unification strongly restricts the possible solutions in mt versus tan β
plane [27] as it can be seen from Fig.13.
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Figure 13. The upper part shows the top quark mass as a function of tan β for
m0 = 600 GeV, m1/2 = 400 GeV. The middle part shows the corresponding values of
the Yukawa couplings at the GUT scale and the lower part of the χ2 values.

• Precision measurement of decay rates;
We take the branching ratio BR(b → sγ) which has been measured
by the CLEO [28] collaboration and later by ALEPH [29] and yields
the world average of BR(b → sγ) = (3.14 ± 0.48) · 10−4. The Standard
Model contribution to this process gives slightly lower result, thus leaving
window for SUSY. This requirement imposes severe restrictions on the
parameter space, especially for the case of large tan β.

• Anomalous magnetic moment of muon.
Recent measurement of the anomalous magnetic moment indicates small
deviation from the SM of the order of 2 σ. The deficiency may be easily
filled with SUSY contribution, which is proportional to µ. This requires
positive sign of µ that kills half of the parameter space of the MSSM [30].

• Experimental lower limits on SUSY masses;
SUSY particles have not been found so far and from the searches at LEP
one knows the lower limit on the charged lepton and chargino masses
of about half of the centre of mass energy [31]. The lower limit on the
neutralino masses is smaller. There exist also limits on squark and gluino
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masses from the hadron colliders [32]. These limits restrict the minimal
values for the SUSY mass parameters.

• Dark Matter constraint;
Recent very precise astrophysical data restrict the amount of the Dark
matter in the Universe up to 23%. Assuming h0 > 0.4 one finds that the
contribution of each relic particle species χ has to obey Ωχh2

0 ∼ 0.1÷0.3,.
This serves as a very severe bound on SUSY parameters [33].
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Having in mind the above mentioned constraints one can find the
most probable region of the parameter space by minimizing the χ2 func-
tion [24]. We first choose the value of the Higgs mixing parameter µ
from the requirement of radiative EW symmetry breaking, then we take
the values of tanβ from the requirement of Yukawa coupling unifica-
tion (see Fig.13). One finds two possible solutions: low tanβ solution
corresponding to tanβ ≈ 1.7 and high tanβ solution corresponding to
tan β ≈ 30 ÷ 60.

What is left are the values of the soft parameters A, m0 and m1/2.
However, the role of the trilinear coupling A is not essential. In what
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follows, we consider the plane m0, m1/2 and find the allowed region in this
plane. Each point at this plane corresponds to a fixed set of parameters
and allows one to calculate the spectrum, the cross-sections, etc.

We present the allowed regions of the parameter space for low and
high tanβ scenarios in Fig.14. This plot demonstrates the role of various
constraints in the χ2 function and the contours shown correspond to the
different constraints included in the analysis [34].

VI.3 The mass spectrum of superpartners
When the parameter set is fixed, one can calculate the mass spectrum

of superpartners. Below we show the predicted mass spectrum corre-
sponding to the best fit values indicated by stars in Fig.14 (see Table
1) [24].

SUSY masses in [GeV]

Symbol low tan β high tan β

χ̃0
1(B̃), χ̃0

2(W̃
3) 214, 413 170, 322

χ̃0
3(H̃1),χ̃

0
4(H̃2) 1028, 1016 481, 498

χ̃±
1 (W̃±), χ̃±

2 (H̃±) 413, 1026 322, 499

g̃ 1155 950

ẽL, ẽR 303, 270 663, 621

ν̃L 290 658

q̃L, q̃R 1028, 936 1040, 1010

τ̃1, τ̃2 279, 403 537, 634

b̃1, b̃2 953, 1010 835, 915

t̃1, t̃2 727, 1017 735, 906

h, H 95, 1344 119, 565

A, H± 1340, 1344 565, 571

Table 1. Values of the SUSY mass spectra for the low and high tan β solutions.

VI.4 Experimental signatures at e+e− colliders
Experiments are finally beginning to push into a significant region

of supersymmetry parameter space. We know the sparticles and their
couplings, but we do not know their masses and mixings. Given the mass
spectrum one can calculate the cross-sections and consider the possibi-
lities of observing new particles at modern accelerators. Otherwise, one
can get restrictions on unknown parameters.
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We start with e+e− colliders and, first of all, with LEP II. In the
leading order creation of superpartners is given by the diagrams shown in
Fig.8 above. For a given center of mass energy the cross-sections depend
on the mass of created particles and vanish at the kinematic boundary.
Experimental signatures are defined by the decay modes which vary with
the mass spectrum. The main ones are summarized below.

Production Key Decay Modes Signatures

• l̃L,R l̃L,R l̃±R → l±χ̃0
i ↘ cascade acomplanar pair of

l̃±L → l±χ̃0
i ↗ decays charged leptons +

/
ET

• ν̃ν̃ ν̃ → l±χ̃0
1

/
ET

• χ̃±
1 χ̃±

1 χ̃±
1 → χ̃0

1l
±ν, χ̃0

1qq̄
′ isol lept + 2 jets +

/
ET

χ̃±
1 → χ̃0

2ff̄ ′ pair of acomplanar
χ̃±

1 → lν̃l → lνlχ̃
0
1 leptons +

/
ET

χ̃±
1 → νl l̃ → νllχ̃

0
1 4 jets +

/
ET

• χ̃0
i χ̃

0
j χ̃0

i → χ̃0
1X, χ̃0

j → χ̃0
1X

′ X = νlν̄l invisible
= γ, 2l, 2 jets

2l +
/
ET , l + 2j +

/
ET

• t̃it̃j t̃1 → cχ̃0
1 2 jets +

/
ET

t̃1 → bχ̃±
1 → bf f̄ ′χ̃0

1 2 b jets + 2 leptons +
/
ET

2 b jets + lepton +
/
ET

• b̃ib̃j b̃i → bχ̃0
1 2 b jets +

/
ET

b̃i → bχ̃0
2 → bf f̄ ′χ̃0

1 2 b jets + 2 leptons +
/
ET

2 b jets + 2 jets +
/
ET

A characteristic feature of all possible signatures is the missing energy
and transverse momenta, which is a trade mark of a new physics.

Numerous attempts to find superpartners at LEP II gave no positive
result thus imposing the lower bounds on their masses [31]. Typical LEP
II limits on the masses of superpartners are

mχ0
1

> 40 GeV mẽL,R > 105 GeV mt̃ > 90 GeV

mχ±
1

> 100 GeV mµ̃L,R > 100 GeV mb̃ > 80 GeV

mτ̃L,R > 80 GeV

(VI.3)
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VI.5 Experimental signatures at hadron
colliders

Experimental signatures at hadron colliders are similar to those at
e+e− machines; however, here one has much wider possibilities. Besides
the usual annihilation channel identical to e+e− one with the obvious re-
placement of electrons by quarks (see Fig.8), one has numerous processes
of gluon fusion, quark-antiquark and quark-gluon scattering (see Fig.15).

Experimental SUSY signatures at the Tevatron (and LHC) are

Production Key Decay Modes Signatures

• g̃g̃, q̃q̃, g̃q̃
g̃ → qq̄χ̃0

1

qq̄′χ̃±
1

gχ̃0
1

⎫⎬⎭mq̃ > mg̃

/
ET + multijets

(+leptons)
q̃ → qχ̃0

i

q̃ → q′χ̃±
i

}
mg̃ > mq̃

• χ̃±
1 χ̃0

2 χ̃±
1 → χ̃0

1l
±ν, χ̃0

2 → χ̃0
1ll Trilepton +

/
ET

χ̃±
1 → χ̃0

1qq̄
′, χ̃0

2 → χ̃0
1ll, Dilepton + jet +

/
ET

• χ̃+
1 χ̃−

1 χ̃+
1 → lχ̃0

1l
±ν Dilepton +

/
ET

• χ̃0
i χ̃

0
i χ̃0

i → χ̃0
1X, χ̃0

i → χ̃0
1X

′
/
ET + Dilept+(jets)+lept

• t̃1t̃1 t̃1 → cχ̃0
1 2 acollinear jets +

/
ET

t̃1 → bχ̃±
1 , χ̃±

1 → χ̃0
1qq̄

′ single lepton +
/
ET + b′s

t̃1 → bχ̃±
1 , χ̃±

1 → χ̃0
1l

±ν, Dilepton +
/
ET + b′s

• l̃l̃, l̃ν̃, ν̃ν̃ l̃± → l ± χ̃0
i , l̃

± → νlχ̃
±
i Dilepton +

/
ET

ν̃ → νχ̃0
1 Single lept +

/
ET + jets/

ET

Note again the characteristic missing energy and transverse momenta
events. Contrary to e+e− colliders, at hadron machines the background
is extremely rich and essential.

VI.6 The lightest superparticle
One of the crucial questions is the properties of the lightest superpar-

ticle. Different SUSY breaking scenarios lead to different experimental
signatures and different LSP.
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Figure 15. Gluon fusion, qq̄ scattering, quark-gluon scattering

• Gravity mediation
In this case, the LSP is the lightest neutralino χ̃0

1, which is almost 90%
photino for a low tanβ solution and contains more higgsino admixture
for high tanβ. The usual signature for LSP is missing energy; χ̃0

1 is
stable and is the best candidate for the cold dark matter in the Universe.
Typical processes, where the LSP is created, end up with jets +

/
ET , or

leptons +
/
ET , or both jest + leptons +

/
ET .

• Gauge mediation
In this case the LSP is the gravitino G̃ which also leads to missing

energy. The actual question here is what the NLSP, the next lightest
particle, is. There are two possibilities:

i) χ̃0
1 is the NLSP. Then the decay modes are: χ̃0

1 → γG̃, hG̃, ZG̃.

As a result, one has two hard photons +
/
ET , or jets +

/
ET .

ii) l̃R is the NLSP. Then the decay mode is l̃R → τG̃ and the signature
is a charged lepton and the missing energy.

• Anomaly mediation
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In this case, one also has two possibilities:
i) χ̃0

1 is the LSP and wino-like. It is almost degenerate with the NLSP.
ii) ν̃L is the LSP. Then it appears in the decay of chargino χ̃+ → ν̃l

and the signature is the charged lepton and the missing energy.
• R-parity violation
In this case, the LSP is no longer stable and decays into the SM

particles. It may be charged (or even colored) and may lead to rare
decays like neutrinoless double β-decay, etc.

Experimental limits on the LSP mass follow from non-observation of
the corresponding events. Modern lower limit is around 40 GeV .

VII. The Higgs boson mass in the MSSM
One of the hottest topics in the SM now is the search for the Higgs

boson. It is also a window to a new physics. Below we consider properties
of the Higgs boson in the MSSM.

It has already been mentioned that in the MSSM the mass of the
lightest Higgs boson is predicted to be less than the Z-boson mass. This
is, however, the tree level result and the masses acquire the radiative
corrections. With account taken of the one-loop radiative corrections
the lightest Higgs mass is

m2
h ≈ M2

Z cos2 2β +
3g2m4

t

16π2M2
W

log
m̃2

t1m̃
2
t2

m4
t

. (VII.1)

One finds that the one-loop correction is positive and increases the mass
value. Two loop corrections have the opposite effect but are smaller [36].

The Higgs mass depends mainly on the following parameters: the top
mass, the squark masses, the mixing in the stop sector and tan β. The
maximum Higgs mass is obtained for large tanβ, for a maximum value
of the top and squark masses and a minimum value of the stop mixing.

The lightest Higgs boson mass mh is shown as a function of tanβ in
Fig. 16 [35]. The shaded band corresponds to the uncertainty from the
stop mass and stop mixing for mt = 175 GeV. The upper and lower lines
correspond to mt=170 and 180 GeV, respectively.

Combining all the uncertainties the results for the Higgs mass in the
CMSSM can be summarized as follows:

• The low tan β scenario (tan β < 3.3) of the CMSSM is excluded by
the lower limit on the Higgs mass of 113.3 GeV [7].

• For the high tanβ scenario the Higgs mass is found to be [35]:

mh = 115 ± 3 (stopm) ± 1.5 (stopmix) ± 2 (theory) ± 5 (topm) GeV,

where the errors are the estimated standard deviations around the cen-
tral value.
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Figure 16. The mass of the lightest Higgs boson in the MSSM as a function of tan β

However, these SUSY limits on the Higgs mass may not be so re-
stricting if non-minimal SUSY models are considered. However, more
sophisticated models do not change the generic feature of SUSY theories,
the presence of the light Higgs boson.

VIII. Perspectives of SUSY observation
With the LEP shut down, further attempts to discover supersymmetry

are connected with the Tevatron and LHC hadron colliders.

Tevatron

Tevatron Run II has the c.m. energy of 2 TeV with planned luminosity
almost 10 times greater than in RUN I. However, since it is a hadron
collider, not the full energy goes into collision taken away by those quarks
in a proton that do not take part in the interaction. Due to a severe
background, this collider needs time to reach the integrated luminosity
required for SUSY discovery.

We show in Table 2 [37] the discovery reach of the Tevatron for squarks
of the third generation. Modern exclusion areas are also shown in plots
in Fig.17 [38]. One can see that they are still far from the expected
masses given in Table 1.

LHC

The LHC hadron collider is the ultimate machine for a new physics at
the TeV scale. Its c.m. energy is planned to be 14 TeV with very high
luminosity up to a few hundred fb−1. The LHC is supposed to cover the
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Decay Subsequent Final State of Discovery Reach

(Br = 100%) Decay b̃1
¯̃
b1 or t̃1

¯̃t1 @20 fb( − 1) (Run I)

b̃1 → bχ̃0
1 bb

/
ET 260 GeV/c2 (146 GeV/c2 )

t̃1 → cχ̃0
1 cc

/
ET 220 GeV/c2 (116 GeV/c2 )

t̃1 → blν̃ ν̃ → νχ̃0
1 l+l−b

/
ET 240 GeV/c2 (140 GeV/c2 )

t̃1 → blν̃χ̃0
1 l+l−b

/
ET - (129 GeV/c2 )

t̃1 → bχ̃±
1 χ̃±

1 → W (∗)χ̃0
1 l+l−b

/
ET ; 210 GeV/c2 (-)

t̃1 → bWχ̃0
1 l+l−bj

/
ET 190 GeV/c2 (-)

Table 2. Discovery reaches on Mb̃ and Mt̃ expected in Run II.
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Figure 17. Exclusion plots for squarks and sneutrinos (left) and squarks and gluino
(right) at Tevatron

wide range of parameters of the MSSM (see Fig.18 [39]) and discover the
superpartners with the masses below 2 TeV [40]. This will be a crucial
test for the MSSM and the low energy supersymmetry.

IX. Conclusion
Supersymmetry is now the most popular extension of the Standard

Model. It promises us that new physics is round the corner at a TeV
scale to be exploited at new machines of this decade. If our expectations
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Figure 18. Expected sparticle reach at LHC

are correct, very soon we will face new discoveries, the whole world
of supersymmetric particles will show up and the table of fundamental
particles will be enlarged in increasing rate. This would be a great step
in understanding the microworld.
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GAUGINO CONDENSATION AND SUSY
BREAKDOWN
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Abstract We review the mechanism of gaugino condensation in the framework
of the d = 10 heterotic string and its d = 11 extension of Horava and
Witten. In particular we emphasize the relation between the gaugino
condensate and the flux of the antisymmetric tensor fields of higher di-
mensional supergravity. Its potential role for supersymmetry breakdown
and moduli stabilization is investigated.

Keywords: Supersymmetry, Supergravity, String theory, Gaugino condensation,
Spontaneous breakdown of supersymmetry

I. Introduction
The topic of my lectures at the Cargèse summer school 2003 was a

general introduction to the breakdown of supersymmetry in field- and
string-theory. In this written up version I decided to concentrate on
some particular aspects of this mechanism: gaugino condensation in
the framework of heterotic string- and M-theory. This allows a more
detailed discussion of supergravity in d = 10 and d = 11 dimensions and
the reduction to the d = 4 case.

The mechanism of gaugino condensation is believed to play a crucial
role for moduli stabilization and SUSY breakdown in string theory. Con-
ceived as a mechanism for hidden sector supersymmetry breakdown in
supergravity extensions of the standard model of strong and electroweak
interactions [93, 94, 40] it found a natural setting in the framework of
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the E8 × E8 heterotic string theory [47] (see ref. [28, 32]) as well as the
M-theory of Horava and Witten [54] (suggested in [53, 102]).

One of the attractive features of the mechanism is a specific cancella-
tion of H−flux and the gaugino condensate in the low energy effective
potential. This allows a somewhat controlled discussion of the vacuum
energy at least at the classical level and it is the direct consequence
of the properties of the higher dimensional supergravity action. It also
emphasizes the importance of Chern-Simons-terms in H−flux of d = 10
supergravity [29].

In these lectures we shall not attempt to construct a fully realistic
model but try to explain the mechanism in its simplest form. In section
2 we will discuss supergravity in d = 10 and then define the supermul-
tiplets relevant for the d = 4 discussion. The mechanism of gaugino
condensation is introduced in section 4 followed by a determination of
the d = 4 effective action using the method of reduction and trunca-
tion [116]. Section 6 contains some aspects of the theory beyond the
classical level. In section 7 we give a detailed discussion of the d = 11
heterotic M-theory and the determination of the low energy effective ac-
tions. Some aspects of the mechanism that were rather obscure in the
d = 10 theory (like the cancellation of gaugino bilinears due to Chern-
Simons flux) become obvious in this generalized picture [103]. Section 8
will then focus on the specific properties of supersymmetry breakdown
at the hidden wall. The last section discusses some recent developments
that lead to a revived interest of this mechanism during the last year.

Before we start let me make a technical comment. Traditionally there
are two different ways to include a gaugino condensate in the effective ac-
tion. The first one [40, 28] uses explicitly the F−terms of the supersym-
metry transformation laws. These include gaugino bilinears multiplied
by the derivative of the gauge kinetic function. These gaugino bilinears
are then replaced by the (field dependent) renormalization group invari-
ant scale and included in the standard fashion in the scalar potential.
This is the procedure which we follow in these lectures. An alternative
method [32, 29] postulates the gaugino bilinear as a new term in an
effective superpotential. The qualitative results of the two mechanisms
are the same. Some quantitative differences will be mentioned where it
applies.

II. Supergravity in d = 10

We shall here discuss the effective action of superstring theories in the
supergravity field theory framework. For the known (N = 1) superstring
theories this is N = 1 supergravity in d = 10 coupled to pure E8 × E8
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or 0(32) gauge multiplets. The spectrum of this theory is given by the
supergravity multiplet (gMN , ψMα, BMN , λα, ϕ) where M, N = 0, . . . , 9
are world indices and α is a Majorana-Weyl spinor index, as well as
the gauge multiplet (AA

M , χA
α ) where A = 1, . . . , 496 lables the adjoint

representation of E8×E8 or 0(32). In the Type I theory, these correspond
to the massless closed (open) string states respectively. The action of
such a theory, including terms up to two derivatives, is unique and given
by [16]:
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+ four fermion interactions (II.1)

where Γ denote Dirac matrices in d = 10 and

FA
MN =

1
2
∂[MAA

N ] + fABCAB
MAC

N (II.2)

(written for short as F = dA + A2) denotes the gauge field strength.
Supersymmetry requires the field strength HMNP of the antisymmetric
tensor field BMN not just to be the curl of B, but

HA
MNP = ∂[MBNP ] + ωY M

MNP (II.3)

where the Chern-Simons term is given by

ωY M = Tr

(
AF − 2

3
A3

)
(II.4)

i.e., BNP has to transform non-trivially under the E8 × E8 [or 0(32)]
gauge transformations. This theory as it stands has gravitational anom-
alies and is too naive an approximation to the anomaly-free superstring
theory. The absence of anomalies requires an additional term to (3)[50]:

H = dB + ωY M − ωL (II.5)
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with
ωL = Tr(ωR − 2

3
ω3) (II.6)

where ωab
M is the spin connection. ω contains a derivative, thus ωL con-

tains three and appears squared in the action. This term is purely
bosonic and for a supersymmetric action requires additional terms which
up to now are only partially known. The action in (1) thus requires fur-
ther terms in order to be an adequate low-energy limit of string theory.
The action (1) was derived by truncating all heavy string states. For
a better approximation they should be integrated out, leaving a low-
energy theory with higher derivatives and terms in a higher order in α′

(the slope parameter). These terms appear in what is usually called ”σ
-model perturbation theory”, not to be confused with the string loop
expansion, which, at least in the heterotic case, is an expansion in g,
the gauge coupling constant. This expansion in powers of α′ is classical
at the string level. There might also be world-sheet non-perturbative
effects that play a role at this classical level. Looking at (1), one might
wonder what g (the gauge coupling constant) is. Observe that the gauge
fields have non-minimal gauge kinetic terms. Here g is not an input pa-
rameter, but g will be determined dynamically

1
g2

=< ϕ−3/4 > (II.7)

consistent with the expectations in string theory. We have to be aware
of the fact that the coupling constant as determined by this naive ap-
proximation might be different from that determined by string theory.
This approximation is probably only useful in defining the important
interactions at low energies. In order to ask more fundamental ques-
tions, like the determination of the fundamental coupling constants, the
approximation probably has to be improved. This can already be seen
when we discuss compactification. One possible way is to compactify
on a six-torus T 6 , leading to N = 4 supergravity in d = 4, which
does not resemble known d = 4 phenomenology. One might therefore
ask the question for more non-trivial compactifications (still postponing
the question of why these should be more likely than the trivial ones).
Defining φ = (3/4) log ϕ and neglecting fermionic terms, the equation of
motion for φ is:

�φ = exp(−φ)
[
F 2

MN + exp(−φ)H2
MNP

]
(II.8)

Integrating �φ over a compact manifold without boundary leads to a
vanishing result. The right-hand side is positive definite and therefore
has to vanish. This implies trivial compactification unless φ → ∞, which
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is outside the validity of our approximation. The addition of ωL in H
does not change the situation, but this term requires supersymmetric
completion which necessitates the presence of R2 terms. They actually
appear in the Euler combination

− exp(−φ)
[
R2

MNPQ − 4R2
MN + R2

]
(II.9)

on the right-hand side of (8), ensuring the absence of ghosts. With these
terms from the α′ expansion, non-trivial compactification is possible: R2

can be compensated by F 2, and this implies a breakdown of gauge sym-
metries in the presence of compactification [14]. Notice, however, that
the scale of compactification is not yet fixed. There exists an indepen-
dent argument confirming this result. For the H field to be well defined,
the integral of the curl of H over a compact manifold without boundary
should vanish: ∫

C4

dH =
∫
C4

[TrF ∧ F − TrR ∧ R] = 0 (II.10)

leading to a compensation of F and R in extra dimensions (for details
of this discussion please consult the available textbooks [46, 107]).These
results are very encouraging. If E8 ×E8 or 0(32) were to remain unbro-
ken in d = 4, they would not be able to lead to chiral fermions. The
discussed constraints involve integrated quantities and could have var-
ious solutions. Only the simplest possibility – a vanishing integrand –
can be studied easily [116]. It implies a direct identification of F and R.
The spin connection ωab

m (m = 4, . . . , 9; a, b = 1. . . . , 6) can be viewed as
a gauge field of an 0(6) subgroup of the Lorentz group 0(9, 1), identified
with AA

m in an 0(6) subgroup of E8 × E8 or 0(32) in order to fulfil the
constraints. The question of a remaining supersymmetry in d = 4 is re-
lated to the holonomy group of the compact manifold, which in turn is a
subgroup of 0(6). I shall not explain this relation here in detail, but just
give a heuristic argument. The gravitino ψα

M transforms like a 4 of 0(6).
N = 1 supersymmetry will be present in d = 4 if the decomposition of
the 4 with respect to the holonomy group contains exactly one singlet. If
there are more singlets, one will have extended supersymmetries, e.g., in
the case of the torus the holonomy group is trivial and 4 = 1+1+1+1,
resulting in N = 4 supersymmetry. The simplest choice for N = 1 is to
have SU(3) holonomy, which leads to 4 = 1 + 3 and 6 = 3 + 3̄, and is
used in the Calabi-Yau approach. But there are certainly more possi-
bilities, even with discrete subgroups of SU(3) corresponding to certain
orbifolds. For simplicity, I shall here assume SU(3) holonomy. With this
identification of ω and A at least one SU(3) subgroup of 0(32) or E8×E8
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will break down during compactification. In the case of 0(32), this will
lead to 0(26)×U(1) with possible zero modes in the decomposition of the
adjoint of 0(32), giving exclusively real representations of 0(32). Based
on this argument, one usually concludes that 0(32) will not lead to a
phenomenologically successful model, although not all possibilities have
yet been studied. The situation in the case of E8 × E8 looks better. A
decomposition of the adjoint of E8 with respect to E6 × SU(3) leads to
248 = (78, 1)+(27, 3)+(27, 3̄+(1, 8) and contains chiral representations.
Moreover, E6 is one of the more successful candidates for a grand unified
gauge group with a family of quarks and leptons in 27, the number of
these zero modes being defined by topological properties of the compact
manifold. Here is then the usual starting point for the construction of
”superstring-inspired models”.

III. Towards d = 4

We have first to discuss the possible zero modes. Let us define indices
M = (µ, m) (µ = 0, . . . , 3; m = 4, . . . , 9) and start with the metric

gMN =
(

g
−1/2
6 ĝµν

gmn

)
(III.11)

where g6 = detgmn is used to redefine gµν in order to have usual kinetic
terms for the graviton. The integral over extra dimensions∫

d6y
√−g6 = R6

c ∼ 1
M6

c

(III.12)

defines the average radius of compactification. Defining then gmn =
exp(σ)ĝmn with a scalar field σ, one can normalize

∫
d6y

√
−ĝ6 = M−6

P
and exp(σ) defines the radius of compactification in units of the Planck
length. Depending on the topological properties of the manifold, gmn

gives rise to zero modes that are scalars in d = 4 (we will not discuss off-
diagonal terms in gMN like gµm that give rise to gauge bosons depending
on the isometries of the manifold). gmn corresponds to a symmetric
tensor of 0(6) with respect to the SU(3) subgroup discussed earlier; we
have 21 = 1 + 8 + 6 + 6̄. With the notation m = (i, j̄), the latter
correspond to modes of gij̄ , gij , gīj̄ , while σ is the singlet.

Turning to the gravitino ψα
M , we can view α as an eight-dimensional

index which transforms as a 4 of 0(6) and a Weyl spinor of 0(3, 1). ψα
µ

corresponds to spin-3/2 particles in d = 4 with Nmax = 4 as already
discussed. ψα

m can give rise to spin-1
2 zero modes. To obtain canonical

kinetic terms for the gravitino, as in the case of the metric, a rescaling

ψ̃µ = exp(−3σ/4)ψµ (III.13)
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is required.
The antisymmetric tensor field BMN could give rise to Bµν , Bmν and

Bmn (corresponding to the Betti numbers b0, b1 and b2). A zero mode
from Bµν corresponds to one pseudoscalar degree of freedom θ defined
through a duality transformation

Hµν�ε
µν�σ = ϕ3/2exp(−6σ)∂σθ + . . . (III.14)

Bmν could give rise to extra gauge bosons which (although possibly
interesting) we shall not discuss here. Bmn will again correspond to
pseudoscalars in d = 4. A decomposition with respect to SU(3) gives
15 = 1 + 3 + 3̄ + 8 with the singlet corresponding to the ”trace” η =
εmnBmn and Bīj̄ , and Bij and Bij̄ corresponding to 3, 3̄, and 8 respec-
tively. All these modes appear in the action only through the field
strength H implying derivative couplings, i.e., they show axion-like be-
haviour. From the λ, φ members of the supergravity multiplet, we expect
additional spin 1

2(0) particles in d = 4.
The discussion of the zero modes of AA

M involves some complication
because of the identification of ωab

m and AA
m in an SU(3) subgroup. AA

µ

will of course, give rise to gauge bosons in the adjoint representations
of the unbroken gauge group, e.g., A = 1, . . ., 78 for E6. AA

m will
give rise to scalars in d = 4, and we are mostly interested in those
transforming as 27 (or 27) under E6. Let us therefore write A = (a, i) or
(ā, ī) a = 1, · · · , 27. The states Cb = Ab,i

ī
and Bb̄ = Ab̄,̄i

i then transform
as 27, 27 with respect to E6 and are singlets under the diagonal subgroup
SU(3) of the product of SU(3) ⊂ 0(6) and SU(3) ⊂ E8. These bosons
will have supersymmetric partners from the zero modes of χA

α . The
number of the possible zero model is of course entirely defined by the
topological properties of the manifold under consideration.

We can now have a first look at the possible interactions of these zero
model in d = 4 starting from the d = 10 action given in (1). Of course, in
general we expect here not only the influence of topological properties,
but also the explicit form of the metric of the compact manifold will be-
come important. Nonetheless we will be able to obtain some non-trivial
results that are rather independent of the special form of the metric.
We will do that exclusively in the framework of N = 1 supergravity in
d = 4, firstly because of the reasons given in Section 2, and secondly
because this theory is simpler than the non-supersymmetric case.

N = 1 supergravity in d = 4 (with action including terms up to
two derivatives [21]) is defined through two complex-valued functions
f , G of the chiral superfields φi. The first is an analytic function f(φi)
defining the gauge kinetic terms f(φi)WαWα. In a component language,
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f appears in many places, but it can be extracted most efficiently from

Ref(ϕi)FµνF
µν + Imf(ϕi)εµν�σFµνF �σ (III.15)

where ϕi denotes the (complex) scalar component of the superfield φi.
The second function is the so-called Kähler potential

G(φi, φ
∗
i ) = K(φi, φ

∗
i ) + log|W (φi)|2 (III.16)

Unlike f , G is not analytic and contains the left-handed chiral super-
fields along with their complex conjugates. The second term in (16)
contains the analytic function W (φi): the superpotential. The action
in component form usually contains G in complicated form; the scalar
kinetic terms, e.g., are

Gj
i (∂µϕi)(∂µϕ∗

j ); Gj
i ≡

∂2G

∂ϕi∂ϕ∗
j

(III.17)

whereas the scalar potential is given by

V = exp(G)[Gk(G−1)k
l G

l − 3]; Gk ≡ ∂G

∂ϕk
; Gl ≡ ∂G

∂ϕ∗
l

(III.18)

which makes it difficult to extract G once an action is given in component
form. There is only one term which allows a rather simple identification
of G, and this is a term involving the gravitino

e4 exp (G/2) ψ̄µγµνγ5ψν (III.19)

which will later be used extensively after the correct redefinitions of the
gravitino in d = 4 have been performed. Let us now consider the action
in d = 10 in order to learn something about the possible action in d = 4.
We start with the gauge kinetic term

e10ϕ
−3/4FMNFMN . (III.20)

Since we are interested in the F 2
µν part, we write

e4e6ϕ
−3/4FµνF�σgµ�gνσ (III.21)

where, with the definitions given earlier, we would like to extract f from

ê4Ref FµνF
µν (III.22)

with ê4 = (det ĝµν)
1
2 = exp(6σ)e4, and indices are contracted with the

”hatted” metric. Integrating the extra six dimensions with the normal-
ization given in (13) using MP ≡ 1, we obtain

ReS ≡ Ref = ϕ−3/4exp(3σ) (III.23)
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as the real part S of the scalar component of a chiral superfield (that will
later also be denoted by S). This is a rather amazing result. Remember
that at no point in the derivation did we have to know something about
the metric of the compact six-dimensional space, so this constitutes a
rather model-independent result. Observe that f is usually non-trivial,
that its vacuum expectation value (vev) will determine the gauge cou-
pling constant, and that the couplings of E8 (or E6) and E′

8 coincide.
Let us now discuss the imaginary part of f , to be extracted from

FµνFρσεµνρσ. The relevant degree of freedom comes from Bµν as dis-
cussed earlier. Bµν couples only through its field strength Hµνρ and has
therefore only derivative couplings. Taking the relevant terms in the
d = 10 action and integrating the extra dimensions, we obtain

ϕ−3/2 exp(6σ)Hµν�H
µν� + Hµν�O

µν� (III.24)

where Oµν� contains fermion bilinears. H has to satisfy a constraint
(neglecting R2-terms for the moment)

∂[µHν�σ] = −TrF[µνF�σ] (III.25)

which we take into account by adding a Lagrange multiplier

θεµν�σ (∂µHν�σ + TrFµνF�σ) (III.26)

Next we eliminate H via the equations of motion and arrive at an action
containing the terms

ϕ3/2 exp(−6σ)(∂µθ)2 + θεµν�σTr(FµνF�σ) (III.27)

which tells us that Imf = θ, and for the scalar component of S we
obtain

S = ϕ−3/4 exp(+3σ) + iθ (III.28)

as a mixture of gMN and BMN zero modes. The partner is a combination
of ψm and λ zero modes which we will not discuss here in detail. Observe
that θ couples only with derivatives except for the last term in (27), and
that the d = 4 action, has a Peccei-Quinn-like symmetry under shifts
of θ by a real constant, thus θ couples like an axion. Let me stress
again that all these statements about the action and the form of (28)
are model-independent and could be derived without explicit knowledge
of the metric.

Unfortunately, the situation changes once we try to extract the Kähler
potential. As already indicated, the term to investigate is the d = 4
”gravitino mass term” (19). The extraction of this term is rather com-
plicated due to several redefinitions of the gravitino field. A general form
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has been given in [29]), and we will not repeat the derivation here. Many
of the terms appearing there depend explicitly on the metric and spin-
connection of the six-dimensional compact space. A model-independent
statement can only be made about the structure of the superpotential,
because it is an analytic function in the chiral superfields. Symbolically
the ”gravitino mass term” is obtained as

exp(G/2) = ϕ−3/4 exp(−3σ)ΓmnpHmnp (III.29)

and from (16) we can try to read off the superpotential. W (φi) is de-
fined to be an analytic function in the chiral superfields and should not
contain derivatives. A first inspection of (29) therefore suggests that a
possible candidate for a superpotential is the A3 term contained in the
Yang-Mills Chern-Simons term (4) included in H. This then gives rise
to a trilinear superpotential involving the C and B fields defined earlier.
At the moment it is not clear whether these are the only possible terms
in the superpotential, although at the classical level this seems to be the
complete expression. Observe that, for example, the superfield S as de-
fined in (28) cannot appear in the superpotential, since its pseudoscalar
component has only derivative couplings. We will come back to these
points later. In any case, a more detailed discussion of the Kähler po-
tential requires more information (or approximations) about the d = 6
metric. Before we tackle this topic, let me first present a discussion
about supersymmetry breakdown in d = 4.

IV. Gaugino condensation and supersymmetry
breakdown

N = 1 supergravity in d = 4 still needs the incorporation of super-
symmetry breakdown at a scale small compared to the Planck mass. For
the phenomenological reasons mentioned earlier, this should appear in
a hidden sector only coupled gravitationally to the observable sector.
Some superstring models contain such a hidden sector, e.g. the sector
that contains the particles transforming non-trivially under the second
E8. Notice that the observable sector (for definiteness called the E6 sec-
tor) only couples gravitationally to the E′

8 sector (there are no particles
that transform non-trivially both under E6 and E′

8). Moreover, the E′
8

sector contains a d = 10 pure super-Yang-Mills multiplet, suggesting a
possible breakdown of supersymmetry via gaugino condensates. This
breakdown has already been discussed in the framework of supergravity
models, both at the level of an effective Lagrangian [93] and at the level
of the complete classical action [40]. Assume asymptotically-free gauge
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interactions (here E′
8 or a subgroup thereof) with a scale

Λ = µ exp
(
−1/b0g

2(µ)
)

(IV.30)

which is renormalization-group invariant at the level of the one-loop β-
function. In analogy to QCD, which leads to qq̄ condensates, we will
here assume that the gauge fermions condense at a scale

〈χχ〉 = Λ3 (IV.31)

As long as Λ is small compared to Mp, we assume that gravity will not
qualitatively disturb this dynamical mechanism. The question whether
such a condensate breaks supersymmetry can be studied by investigating
the supersymmetry transformation laws of the fermionic fields of the
theory. The non-derivative terms in these transformations will give us
the auxiliary fields that serve as order parameters for supersymmetry
breakdown. The relevant objects here are the auxiliary fields Fk of the
chiral superfields φk,

Fk = exp(G/2)Gk − 1
4
fk(χχ) + . . . (IV.32)

where f is the gauge kinetic function discussed earlier and fk is its
derivative with respect to φk. A necessary condition for the breakdown
of supersymmetry via gaugino condensates is therefore a non-trivial f -
function. This condition is fulfilled in the framework of superstring-
inspired models [28] [32], since we have seen in the last section that
f = S in a rather model-independent way. Whether this is also sufficient
for the breakdown of supersymmetry can only be checked by minimizing
the potential

V = Fk

(
G−1

)k
�
F � − 3 exp(G) (IV.33)

since the different terms in (32) might cancel at the minimum. But let
us for the moment assume that only the second term in (32) receives a
vev. Since fs = 1 in units of Mp, we find a supersymmetry breakdown
scale

〈Fs〉 = M2
s ≈ Λ3/Mp (IV.34)

and a scale of Λ ∼ 1013 GeV would lead to a gravitino mass in the TeV
range. Once we understand why Λ is five orders of magnitude smaller
than Mp, we shall understand why m3/2/Mp ∼ 10−15. Λ now depends
on the E′

8 gauge coupling and the spectrum of low-energy modes. Iden-
tifying g6 with g8 would in many circumstances lead to too large a value
for Λ, and one might speculate that E′

8 should break during compactifi-
cation. We shall, however, see later that the equality of g6 and g8 seems
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to be only an artifact of the classical approximation, which is not true
in the full theory. Thus the shadow E′

8 (or a subgroup thereof) sector
of the superstring takes the role of the hidden sector of supergravity
models and might explain the smallness of m3/2 compared to Mp. But
how does this breakdown of SUSY in the hidden sector influence the
observable sector? In general, we would expect gaugino masses (m1/2),
scalar masses (m0) and the trilinear couplings (Am) to be of the order
of magnitude of m3/2. A naive inspection shows that this might also be
true here. Gaugino masses in the observables sector are in general given
by

m1/2 = fk

(
G−1

)k
�
F � (IV.35)

where f is the gauge kinetic function of the observable sector. With
F � = (1/4)f � < χχ > we would therefore obtain m1/2 ∼ m3/2. In the
same way we would obtain under these circumstances the soft trilinear
couplings A ∼ 1 and scalar masses of order m3/2. To make a quantitative
statement about the soft parameters we need a better understanding of
the Kähler potential, a question which we want to discuss in the next
section. We need this in order to study the explicit form of the effective
potential and finds its minimum. This then also has to determine the
exact value of Λ in (IV.30) which depends on the coupling constant and
is fixed only after the value of g is known.

V. Reduction and Truncation
A first approximation for G (that might simulate an orbifold approx-

imation of interest in this context) is obtained through reduction and
truncation [120]. One first compactifies the d = 10 theory on a six-torus
T 6. The resulting theory is N = 4 supersymmetric in d = 4. From this
theory one truncates unwanted states, to obtain an N = 1 theory. From
the gauge singlet sector one keeps only those states that transform as
singlets under an SU(3) ⊂ 0(6) of the Lorentz group. Since ψα

µ trans-
forms as a 4 of 0(6) and thus as 1 + 3 under SU(3), we remain with one
gravitino. As already explained in Section 3, there are only a few gauge
singlets that survive this truncation. For the bosonic modes we have ϕ,
σ from the metric as well as θ and η from the antisymmetric tensor. For
the gauge non-singlet fields one has to remember the identification of
spin-connection and gauge fields. Here one keeps those states which are
singlets under the diagonal subgroup of the product of SU(3) ⊂ 0(6) and
SU(3) ⊂ E8. This leaves us with one 27 of E6 in this case, correspond-
ing to Cb = Ab,i

ī
; (b = 1, . . . , 27, cf. Section 3). With this well-defined

procedure based on simple reduction on T 6, the component Lagrangian
in d = 4 can be deduced. From this we can immediately read off f = S
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and W = dabcC
aCbCc, which should not be surprising. Moreover, from

the ”gravitino mass term” formula (29) one obtains

G = log
(
e−6σϕ−3/2

)
+ log |W |2 (V.36)

The components ϕ and σ should correxpond to lowest components of
chiral superfields. One combination S = ϕ−3/4 exp(3σ) + iθ has already
been defined earlier. To define the other combination, the information
from (36) is not enough. The charged fields C do not yet appear in the
first term of G in (36) and the correct definition of the superfields has yet
to be found. This can be done, for example, by using the scalar kinetic
terms. It leads to a second superfield in which ϕ, σ and the C-modes
mix

T = exp(σ)ϕ3/4 + |Ca|2 + iη (V.37)

where η is the mode from εmnBmn as discussed after equation (14), and
the Kähler potential from (36) thus reads

G = − log (S + S∗) − 3 log
(
T + T ∗ − 2|C|2

)
+ log |W |2 (V.38)

a form already previously mentioned in the framework of supergravity
models. The scalar potential derived from this G-function has some
remarkable properties

V =
1

16st3c

[
|W |2 +

tc
3
|W ′|2

]
+ D2 − terms (V.39)

where s = ReS and tc = ReT −|Ca|2 = t−|Ca|2 and W ′ is the derivative
of W with respect to the C-field. The potential is positive definite (tc > 0
is required by the kinetic terms ) and has a minimum with vanishing
vacuum energy V = 0. This minimum is obtained at W = W ′ = 0
independent of the values of s and t. This implies that at this level
the gauge coupling constant and the radius of compactification is not
yet fixed. The theory has classical symmetries which allow shifts of the
values of s and t, as well as Peccei-Quinn symmetries corresponding to
shifts in θ and η. This, of course, makes the use of this approximation as
an effective low-energy limit of the superstring very problematic. Certain
crucial parameters, like the value of the gauge coupling constant and the
scale of compactification, which we believe to be dynamically determined
in the full string theory, are not yet fixed. To determine these quantities
we would need information beyond the truncated theory.

This remains a relevant question when we discuss the effective poten-
tial in the presence of a gaugino condensate. Since the gauge coupling



410 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

constant is not determined, Λ in (30) is also unknown. Using (33) and
(38), we get for the potential

V =
1

16st3c

[
|W − 2(stc)3/2(χχ)|2 +

tc
3
|W ′|2

]
(V.40)

where (χχ) depends on g2 through exp(−S/b0). The potential is still
positive definite and has a minimum at V = 0 which is still degenerate.
Now the minimum need not necessarily imply W = W ′ = 0, but we could
have a non-trivial vev of W . Given fixed 〈W 〉 �= 0 by some yet unknown
mechanism, the value of the gauge coupling constant would be fixed.
The most natural candidate for such a mechanism would be a nontrivial
vev (so-called flux) of the antisymmetric tensor field H as defined in
(5). At first sight one might have conjectured that the appropriate
flux would originate from dB, but it was soon realized that 〈dB〉 is
quantized in units of the Planck scale [108]. Thus 〈dB〉 should vanish
in order to allow for a value of 〈χχ〉 that is small enough to give a
reasonable value for the gravitino mass after supersymmetry breakdown.
One therefore concluded that it is the flux of the Chern-Simons terms in
(5) which is responsible for the non-zero H−flux [29]. For these terms
the quantization argument of ref. [108] does not apply and acceptable
values for 〈χχ〉 can be obtained. We shall come back to this question
in more detail in the framework of the heterotic M-theory. There it will
become obvious from theoretical arguments that it is not 〈dB〉 but the
flux from the Chern-Simons terms that compensates the contribution of
the gaugino condensate in the effective potential.

In order to minimize the potential, the theory slides to a coupling
constant which, through (30), gives a value of the condensate that ex-
actly cancels the contribution of W . In other words, this means that
the dilaton S slides to a value that cancels the vacuum energy in the
same way as an axion slides to cancel a possible θ-parameter of a gauge
theory [observe that exp(−S/b0) contains both s and θ]. Although we
do not yet understand the magnitude of supersymmetry breakdown, this
mechanism to ensure Evacuum = 0 after SUSY breakdown appears very
attractive. We shall still need to convince ourselves that supersymmetry
is actually broken, since in (40) a certain cancellation of 〈W 〉 and 〈χχ〉
appears. In fact it tells us that the auxiliary field FS of the S-superfield
vanishes in the vacuum. Nonetheless, here FT requires a non-vanishing
vev once 〈W 〉 �= 0, and supersymmetry is broken

FT = exp(G/2)GT �= 0. (V.41)

In a next step we have to analyze how the breakdown of SUSY is
felt in the observable sector, and this is, of course, model dependent.
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Gaugino masses, for example, are given by m1/2 = fk(G−1)k
� F

�, and
only fS is different from zero. In the case at hand we therefore obtain
m1/2 = 0. In fact, the same is also true for the scalar masses. This is an
artifact of the special model (a so-called no scale model) and would need
further discussions. A first question concerns the stability of this result
in perturbation theory which we shall investigate in the next section.

Before we do this let us mention a different way to include the gaugino
condensate in the low-energy effective potential [32]. Instead of including
(χχ) in Fk directly, as in (32), one might postulate a new contribution
to the superpotential proportional to (χχ) ∼ exp(−S/b0). This leads to
a potential very similar although not identical to the one given in (40)
(for details see [32, 29]).

VI. Beyond the classical level
Vanishing values of the soft parameters in the observable sector might

be a result of the symmetries of the theory, and if yes, whether these
symmetries hold to all orders in the perturbative loop expansion. For
the heterotic string, this loop expansion is governed by the coupling
constant g, which in turn is defined through a vev of the dilaton field.
This will allow us to construct a definite loop expansion in the dilaton
field and still give us restrictions on how the classical symmetries are
broken by loop effects. But before we discuss the loop expansion in
more general terms, let us examine some aspects at the one-loop level.
We can do that because of the mechanism of anomaly cancellation in
the d = 10 field theory. Green and Schwarz have observed that the
cancellation of anomalies [50] requires certain new local counterterms
with definite finite coefficients in the one-loop effective action to cancel
the gauge non-invariance of present non-local terms. In general, such
terms appear with infinite coefficients, but the possible symmetry of
the effective action forces us to renormalize the theory in such a way
that these gauge-variant local counterterms have a well-defined finite
coefficient. An example of such a term is

εBV OTr(FLKFSW )Tr(FAGFEN )εV OLKSWAGEN (VI.42)

where ε = 1/720(2π)5. While this gives rise to many new interaction
terms in the d = 4 theory, one possible manifestation seems to be of
particular importance. Replacing one of the TrF 2 terms by their vev in
extra dimensions, one arrives at

ηεµν�σTr(FµνF�σ). (VI.43)

According to (37), η is the imaginary part of T , and unlike in the classical
case it now (in addition to θ) couples to FF̃ . Observe that (VI.43) is
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gauge-invariant, while (VI.42) is not, but is required by the absence
of anomalies in d = 10. This shows that the remnants of such terms
originate in ten dimensions, and are one of the few places where we
could in principle observe whether we live in higher dimensions. (VI.43)
suggests that not only θ, but also η couples like an axion. To make sure
that this does not just lead to a redefinition of θ at the one-loop level,
all anomaly cancellation terms have to be considered. Doing this and
satisfying TrF 2 = TrR2 in extra dimensions, one arrives at the result
that η couples differently to E6 and E′

8:

εη[(FF̃ )8 − (FF̃ )6] and θ[(FF̃ )8 + (FF̃ )6] (VI.44)

leading to different gauge kinetic functions

f = S ± εT (VI.45)

for the different gauge groups.
This fact has interesting consequences, some of which we will now list.

a) The second axion could be a candidate to solve the strong CP
problem of QCD in the observable sector. One axion (like θ alone)
would not be sufficient, because it is used to adjust the θ-angle
of E′

8 and becomes massive. For a relatively recent discussion see
[43].

b) Supersymmetry requires the same behaviour of the real parts of S
and T as that of the imaginary parts; i.e., ReS and ReT couple
differently to E6 and E′

8. Since the vev′s of these fields define the
gauge coupling constants, g6 and g′8 need no longer be equal. This
might have consequences for the condensation scale of E′

8.

c) There exist now two axion-dilaton pairs, and this might generalize
the relaxation of the cosmological constant to the observable sector
in the same way as is appears in the hidden sector [71].

d) Imposition of supersymmetry also requires new terms in the Kähler
potential at the one-loop level. We will discuss this later.

e) As expected, these effects at the one-loop level lead to an induced
breakdown of supersymmetry in the observable sector once it is
broken in the hidden sector. Remember our discussion in Section
5, where the observable sector remained supersymmetric. Gaugino
masses are given by

m1/2 ∼ FT fT + FSfS . (VI.46)
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At tree level we had FS = fT = 0 and vanishing gaugino masses.
But now we have f = S + εT , and fT no longer vanishes. As
a result, non-trivial gaugino masses (and also non-trivial scalar
masses and A-parameters) of order εm3/2 are transmitted to the
observable sector.

Of course, in case of a nontrivial ε, we should go back to the action
and see what happens to the one-loop effective potential. In general we
shall expect a nontrivial value of the cosmological constant (typically
anti-de Sitter) and in some cases even unbroken supersymmetry. So a
discussion of a fully realistic model needs more structure than present
in the toy model under consideration.

VII. Heterotic M-Theory
With the discovery of string dualities, there has been a revival of the

study of those string theories that might eventually become relevant for
our discussion of the low-energy effective supergravity theories. From all
the new and interesting results in string dualities, it is the heterotic M–
theory of Hořava and Witten [54] (that in d = 11 could be regarded as
the strong coupling limit of d = 10 E8×E8 heterotic string theory) which
might have a direct impact on the discussion of the phenomenological
aspects of these theories. One of the results concerns the question of the
unification of all fundamental coupling constants [117] and the second
one the properties of the soft terms (especially the gaugino masses) once
supersymmetry is broken [102, 103]. As we shall see in both cases, results
that appear problematic in the weakly coupled case (as the formerly dis-
cussed heterotic string case will be called from now on) get modified in a
satisfactory way, while the overall qualitative picture remains essentially
unchanged. In these lectures we shall therefore concentrate on these
aspects of the new picture.

The heterotic M–theory is an 11–dimensional theory with the E8×E8

gauge fields living on two 10–dimensional boundaries (walls), respec-
tively, while the gravitational fields can propagate in the bulk as well.
A d = 4 dimensional theory with N = 1 supersymmetry emerges at low
energies when 6 dimensions are compactified on a Calabi–Yau manifold.
The scales of that theory are M11, the d = 11 Planck scale, R11 the size
of the x11 interval, and V ∼ R6 the volume of the Calabi–Yau manifold.
The quantities of interest in d = 4, the Planck mass, the GUT–scale
and the unified gauge coupling constant αGUT should be determined
through these higher dimensional quantities. The fit of ref. [117] iden-
tifies MGUT ∼ 3 · 1016 GeV with the inverse Calabi–Yau radius R−1.
Adjusting αGUT = 1/25 gives M11 to be a few times larger than MGUT .
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On the other hand, the fit of the actual value of the Planck scale can be
achieved by the choice of R11 and, interestingly enough, R11 turns out
to be an order of magnitude larger than the fundamental length scale
M−1

11 . A satisfactory fit of the d = 4 scales is thus possible, in contrast
to the case of the weakly coupled heterotic string where, naively, the
string scale seems to be a factor 20 larger than MGUT .

VII.1 The action in d = 11

The effective action of the strongly coupled E8 × E8 – M–theory in
the “downstairs” approach is given by [54] (we take into account the
numerical corrections found in [20])

L =
1
κ2

∫
M11

d11x
√

g

[
−1

2
R − 1

2
ψ̄IΓIJKDJψK − 1

48
GIJKLGIJKL

−
√

2
384
(
ψ̄IΓIJKLMNψN + 12ψ̄JΓKLψM

) (
GJKLM + ĜJKLM

)
−

√
2

3456
εI1I2...I11CI1I2I3GI4...I7GI8...I11

]
(VII.47)

+
1

4π(4πκ2)2/3

∫
M10

i

d10x
√

g

[
−1

4
F a

iABF aAB
i − 1

2
χ̄a

i Γ
ADA(Ω̂)χa

i

−1
8
ψ̄AΓBCΓA

(
F a

iBC + F̂ a
iBC

)
χa

i +
√

2
48
(
χ̄a

i Γ
ABCχa

i

)
ĜABC11

]

where M11 is the d = 11 manifold and M10
i (with i = 1, 2) its 10–

dimensional boundaries. In the lowest approximation M11 is just a
product M4 × X6 × S1/Z2. Compactifying to d = 4 in such an ap-
proximation we obtain [117, 20]

GN =
κ2

4

8π
=

κ2

8πR11V
, (VII.48)

αGUT =
(4πκ2)2/3

V
(VII.49)

with V the volume of the Calabi–Yau manifold X6 and R11 = πρ the
S1/Z2 length.

The fundamental mass scale of the 11–dimensional theory is given by
M11 = κ−2/9. Let us see which value of M11 is favoured in a phenomeno-
logical application. For that purpose we identify the Calabi–Yau volume
V with the GUT–scale: V ∼ (MGUT )−6. From (VII.49) and the value of
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αGUT = 1/25 at the grand unified scale, we can then deduce the value
of M11

V 1/6M11 = (4π)1/9α
−1/6
GUT ≈ 2.3 , (VII.50)

to be a few times larger than the GUT–scale. In a next step we can now
adjust the gravitational coupling constant by choosing the appropriate
value of R11 using (VII.48). This leads to

R11M11 =
(

MP lanck

M11

)2 αGUT

8π(4π)2/3
≈ 2.9 · 10−4

(
MP lanck

M11

)2

. (VII.51)

This simple analysis tells us the following:

In contrast to the weakly coupled case, the correct value of MPlanck

can be fitted by adjusting the value of R11.

The numerical value of R−1
11 turns out to be approximately an order

of magnitude smaller than M11.

Thus the 11th dimension appears to be larger than the dimensions
compactified on the Calabi–Yau manifold, and at an intermediate
stage the world appears 5–dimensional with two 4–dimensional
boundaries (walls).

We thus have the following picture of the evolution and unification
of coupling constants. At low energies the world is 4–dimensional and
the couplings evolve accordingly with energy: a logarithmic variation
of gauge coupling constants and the usual power law behaviour for the
gravitational coupling. Around R−1

11 we have an additional 5th dimension
and the power law evolution of the gravitational interactions changes.
Gauge couplings are not affected at that scale since the gauge fields live
on the walls and do not feel the existence of the 5th dimension. Finally
at MGUT the theory becomes 11–dimensional and both gravitational and
gauge couplings show a power law behaviour and meet at the scale M11,
the fundamental scale of the theory. It is obvious that the correct choice
of R11 is needed to achieve unification. We also see that, although the
theory is weakly coupled at MGUT , this is no longer true at M11. The
naive estimate for the evolution of the gauge coupling constants between
MGUT and M11 goes with the sixth power of the scale. At M11 we thus
expect unification of the couplings at α ∼ O(1). In that sense, the
M–theoretic description of the heterotic string gives an interpolation
between weak coupling and moderate coupling. In d = 4 this is not
strong–weak coupling duality in the usual sense. We shall later come
back to these questions when we discuss the appearance of a critical
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limit on the size of R11. A value of α ∼ O(1) (and thus S ∼ O(1)) at
M11 might also be favoured in view of the question of the dynamical
determination of the vev of the dilaton field [73].

VII.2 The effective action in d = 4

We now want to perform a compactification from d = 11 to d = 4.
Again we use the method of reduction and truncation. For the metric
we write

g
(11)
MN =

⎛⎝ c4e
−γe−2σgµν

eσgmn

e2γe−2σ

⎞⎠ (VII.52)

with M, N = 1 . . . 11; µ, ν = 1 . . . 4; m, n = 5 . . . 10 and det(gmn)=1.
This is the frame in which the 11–dimensional Einstein action gives the
ordinary Einstein action after the reduction to d = 4:

− 1
2κ2

∫
d11x

√
g(11)R(11) = −c4V̂7

2κ2

∫
d4x

√
gR + . . . (VII.53)

where V̂7 =
∫

d7x is the coordinate volume of the compact 7–manifold
and the scaling factor c4 describes our freedom to choose the units in
d = 4. The most popular choice in the literature is c4 = 1. This, how-
ever, corresponds to the unphysical situation in which the 4–dimensional
Planck mass is determined by the choice of V̂7 which is just a convention.
With c4 = 1 one needs further rescaling of the 4–dimensional metric. We
instead prefer the choice

c4 = V7/V̂7 (VII.54)

where V7 =
∫

d7x
√

g(7) is the physical volume of the compact 7–manifold.
In this way we recover eq. (VII.48) in which the 4–dimensional Planck
mass depends on the physical (and not coordinate) volume of the man-
ifold on which we compactify. As a result, if we start from the product
of the 4–dimensional Minkowski space and some 7–dimensional compact
space (in the leading order of the expansion in κ2/3) as a ground state in
d = 11 we obtain the Minkowski space with the standard normalization
as the vacuum in d = 4.

To find a more explicit formula for c4 we have to discuss the fields
σ and γ in some detail. In the leading approximation, σ is the overall
modulus of the Calabi–Yau 6–manifold. We can divide it into a sum
of the vacuum expectation value, 〈σ〉, and the fluctuation σ̃. In general
both parts could depend on all 11 coordinates, but in practice we have to
impose some restrictions. The vacuum expectation value cannot depend
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on xµ if the 4–dimensional theory is to be Lorentz–invariant. In the
fluctuations we drop the dependence on the compact coordinates cor-
responding to the higher Kaluza–Klein modes. Furthermore, we know
that in the leading approximation 〈σ〉 is just a constant, σ0 , while cor-
rections depending on the internal coordinates, σ1, are of the next order
in κ2/3. Thus, we obtain

σ(xµ, xm, x11) = 〈σ〉 (xm, x11) + σ̃(xµ) = σ0 + σ1(xm, x11) + σ̃(xµ) .
(VII.55)

To make the above decomposition unique we define σ0 by requiring that
the integral of σ1 over the internal space vanishes. The analogous de-
composition can be also done for γ. With the above definitions, the
physical volume of the compact space is

V7 =
∫

d7x
〈
e2σeγ

〉
= e2σ0eγ0 V̂7 (VII.56)

up to corrections of order κ4/3. Thus, the parameter c4 can be written
as

c4 = e2σ0eγ0 . (VII.57)

The choice of coordinate volumes is just a convention. For example
in the case of the Calabi–Yau 6–manifold only the product e3σV̂6 has
physical meaning. For definiteness we will use the convention that the
coordinate volumes are equal 1 in M11 units. Thus,

〈
e3σ
〉

describes the
Calabi–Yau volume in these units. Using eqs. (VII.50,VII.51) we obtain
e3σ0 = V M6

11 ≈ (2.3)6, eγ0e−σ0 = R11M11. The parameter c4 is equal to
the square of the 4–dimensional Planck mass in these units.

At the classical level we compactify on M4×X6×S1/Z2. This means
that the vacuum expectation values 〈σ〉 and 〈γ〉 are just constants and
eq. (VII.55) reduces to

σ = σ0 + σ̃(xµ), γ = γ0 + γ̃(xµ) . (VII.58)

In such a situation σ and γ are 4–dimensional fields. We introduce two
other 4–dimensional fields D and C11 by the relations

1
4!c4

e6σG11λµν = ελµνρ (∂ρD) , (VII.59)

C11ab̄ = C11δab̄ (VII.60)

where xa (xb̄) is the holomorphic (antiholomorphic) coordinate of the
Calabi–Yau manifold. Now we can define the dilaton and the modulus
fields by

S =
1

(4π)2/3

(
e3σ + i24

√
2D
)

, (VII.61)
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T =
1

(4π)2/3

(
eγ + i6

√
2C11 + C∗

i Ci

)
(VII.62)

where the observable sector matter fields Ci originate from the gauge
fields AM on the 10–dimensional observable wall (and M is an index in
the compactified six dimensions). The Kähler potential takes its stan-
dard form

K = − log(S + S∗) − 3 log(T + T ∗ − 2C∗
i Ci) . (VII.63)

The imaginary part of S (ImS) corresponds to the model independent
axion, and with the above normalization the gauge kinetic function is
f = S. We have also

W (C) = dijkCiCjCk (VII.64)

Thus the action to leading order is very similar to the weakly coupled
case.

Before drawing any conclusion from the formulae obtained above we
have to discuss a possible obstruction at the next to leading order. For
the 3–index tensor field H in d = 10 supergravity to be well defined one
has to satisfy dH = trF 2

1 + trF 2
2 − trR2 = 0 cohomologically. Here Fi

denotes the E8 field strength at the corresponding wall. In the simplest
case of the standard embedding one assumes trF 2

1 = trR2 locally and
the gauge group is broken to E6 × E8. Since in the M–theory case the
two different gauge groups live on the two different boundaries (walls)
of space–time such a cancellation point by point is no longer possible
[117]. We expect nontrivial vacuum expectation values (vev′s) of

(dG) ∝
∑

i

δ(x11 − x11
i )
(

trF 2
i − 1

2
trR2

)
(VII.65)

at least on one boundary (x11
i is the position of the i–th boundary). In

the case of the standard embedding we would have trF 2
1 − 1

2trR2 = 1
2trR2

on one and trF 2
2 − 1

2trR2 = −1
2trR2 on the other boundary. This might

pose a severe problem since a nontrivial vev of G might be in conflict with
supersymmetry (G11ABC = HABC). The supersymmetry transformation
law in d = 11 reads

δψM = DMη +
√

2
288

GIJKL

(
ΓIJKL

M − 8δI
MΓJKL

)
η + . . . (VII.66)

Supersymmetry will be broken unless e.g. the derivative term DMη com-
pensates the nontrivial vev of E. Witten has shown [117] that such a
cancellation can occur and constructed the solution in the linearized
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approximation (linear in the expansion parameter κ2/3). This solution
requires some modification of the metric on M11:

g
(11)
MN =

⎛⎝ (1 + b)ηµν

(gij + hij)
(1 + γ′)

⎞⎠ . (VII.67)

M11 is no longer a direct product M4×X6×S1/Z2 because b, hij and γ′

depend now on the compactified coordinates. The volume of X6 depends
on x11 [117]:

∂

∂x11
V = −

√
2

8

∫
d6x

√
gωABωCDGABCD (VII.68)

where the integral is over the Calabi–Yau manifold X6 and ω is the
corresponding Kähler form. The parameter (1 + b) is the scale factor of
the Minkowski 4–manifold and depends on x11 in the following way

∂

∂x11
b =

1
2

∂

∂x11
log v4 =

√
2

24
ωABωCDGABCD (VII.69)

where v4 is the physical volume for some fixed coordinate volume in
M4. In our simple reduction and truncation method with the metric
g
(11)
MN given by eq. (VII.52) we can reproduce the x11 dependence of V

and v4. The volume of X6 is determined by σ:

∂

∂x11
log V =

∂

∂x11
(3 〈σ〉) = 3

∂

∂x11
σ (VII.70)

while the scale factor of M4 can be similarly expressed in terms of the
fields σ and γ:

∂

∂x11
log v4 = − ∂

∂x11
(2 〈γ〉 + 4 〈σ〉) = − ∂

∂x11
(2γ + 4σ) . (VII.71)

Substituting 〈σ〉 by σ in the above two equations is allowed because, due
to our decomposition (VII.55), only the vev of σ depends on the internal
coordinates (the same is true for γ). The scale factor b calculated in ref.
[117] also depends on the Calabi–Yau coordinates. Such a dependence
cannot be reproduced in our simple reduction and truncation compact-
ification so we have to average eq. (VII.69) over X6. Using equations
(VII.68–VII.71) after such an averaging we obtain (to leading order in
the expansion parameter κ2/3) [102]

∂γ

∂x11
= − ∂σ

∂x11
=

√
2

24

∫
d6x

√
gωABωCDGABCD∫

d6x
√

g
. (VII.72)
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Substituting the vacuum expectation value of G found in [117] we can
rewrite it in the form

∂γ

∂x11
= − ∂σ

∂x11
=

2
3
ακ2/3V −2/3 (VII.73)

where
α =

πc

2(4π)2/3
(VII.74)

and c is a constant of order unity given for the standard embedding of
the spin connection by

c = V −1/3

∣∣∣∣∫ ω ∧ tr(R ∧ R)
8π2

∣∣∣∣ . (VII.75)

Our calculations, as those of Witten, are valid only in the leading non-
trivial order in the κ2/3 expansion. The expression (VII.73) for the
derivatives of σ and γ contains an explicit factor κ2/3. This means that
we should take the lowest order value for the Calabi–Yau volume in that
expression. An analogous procedure has been used in obtaining all for-
mulae presented in this paper. We always expand in κ2/3 and drop all
terms which are of higher order. Taking the above into account and us-
ing our units in which M11 = 1 we can rewrite eq. (VII.73) in the simple
form:

∂γ

∂x11
= − ∂σ

∂x11
=

2
3
αe−2σ0 . (VII.76)

Eqs. (VII.72–VII.76) as derived in ref. [102] contain all the information
to deduce the effective action, i.e. Kähler potential, superpotential and
gauge kinetic function of the 4–dimensional effective supergravity theory.

It is the above dependence of σ and γ on x11 that leads to these
consequences. One has to be careful in defining the fields in d = 4. It is
obvious, that the 4–dimensional fields S and T can no longer be defined
by eqs. (VII.61, VII.62) because now σ and γ are 5–dimensional fields.
We have to integrate out the dependence on the 11th coordinate. In
the present approximation, this procedure is quite simple: we have to
replace σ and γ in the definitions of S and T with their averages over
the S1/Z2 interval [102]. With the linear dependence of σ and γ on x11

their average values coincide with the values taken in the middle of the
S1/Z2 interval

σ̄ = σ
(πρ

2

)
= σ0 + σ̃(xµ) , (VII.77)

γ̄ = γ
(πρ

2

)
= γ0 + γ̃(xµ) . (VII.78)
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When we reduce the boundary part of the Lagrangian of M–theory
to 4 dimensions we find exponents of the fields σ and γ evaluated at the
boundaries. Using eqs. (VII.55) and (VII.76) we get

e−γ |M10
i

= e−γ0 ± 1
3
αe−3σ0 , (VII.79)

e3σ|M10
i

= e3σ0 ± αeγ0 . (VII.80)

The above formulae have very important consequences for the definitions
of the Kähler potential and the gauge kinetic functions. For example,
the coefficient in front of the DµC∗

i DµCi kinetic term is proportional to
e−γ evaluated at the E6 wall where the matter fields propagate. At the
lowest order this was just e−γ0 or 〈T 〉−1 up to some numerical factor.
From eq. (VII.79) we see that at the next to leading order 〈S〉−1 is
also involved with relative coefficient α/3. Taking such corrections into
account we find that at this order the Kähler potential is given by

K = − log(S + S∗) +
2αC∗

i Ci

S + S∗ − 3 log(T + T ∗ − 2C∗
i Ci) (VII.81)

with S and T now defined by

S =
1

(4π)2/3

(
e3σ̄ + i24

√
2D̄ + αC∗

i Ci

)
, (VII.82)

T =
1

(4π)2/3

(
eγ̄ + i6

√
2C̄11 + C∗

i Ci

)
(VII.83)

where bars denote averaging over the 11th dimension. It might be of
some interest to note that the combination ST 3 is independent of x11

even before this averaging procedure took place. The solution above is
valid only for terms at most linear in α. Keeping this in mind we could
write the Kähler potential also in the form

K = − log(S + S∗ − 2αC∗
i Ci) − 3 log(T + T ∗ − 2C∗

i Ci). (VII.84)

Equipped with this definition the calculation of the gauge kinetic func-
tion(s) from eqs. (VII.76, VII.80) becomes a trivial exercise [102]. In the
five–dimensional theory f depends on the 11–dimensional coordinate as
well, thus the gauge kinetic function takes different values at the two
walls. The averaging procedure allows us to deduce these functions di-
rectly. For the simple case at hand (the so–called standard embedding)
eq. (VII.80) gives [102]

f6 = S + αT ; f8 = S − αT . (VII.85)
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It is a special property of the standard embedding that the coefficients
are equal and opposite. The coefficients might vary for more general
cases. This completes the discussion of the d = 4 effective action in
next to leading order, noting that the superpotential does not receive
corrections at this level.

The nontrivial dependence of σ and γ on x11 can also enter definitions
and/or interactions of other 4–dimensional fields. Let us next consider
the gravitino. After all we have to show that this field is massless to
give the final proof that the given solution respects supersymmetry. Its
11–dimensional kinetic term

−1
2
√

gψ̄IΓIJKDJψK (VII.86)

remains diagonal after compactification to d = 4 if we define the 4–
dimensional gravitino, ψ

(4)
µ , and dilatino, ψ

(4)
11 , by the relations

ψµ = e−(σ−σ0)/2e−(γ−γ0)/4

(
ψ(4)

µ +
1√
6
Γµψ

(4)
11

)
, (VII.87)

ψ11 = − 2√
6
e(σ−σ0)/2e(γ−γ0)/4Γ11ψ

(4)
11 . (VII.88)

The d = 11 kinetic term (VII.86) gives after compactification also a mass
term for the d = 4 gravitino of the form

3
8
eσ0e−γ0

∂γ

∂x11
=

√
2

64
eσ0e−γ0

∫
d6x

√
gωABωCDGABCD∫

d6x
√

g
=

1
4
αe−σ0e−γ0 .

(VII.89)
The origin of such a term can be traced back to nonzero values of the spin
connection components ωα11

µ and ωa11
m resulting from the x11 dependence

of the metric. It is a constant mass term from the 4–dimensional point of
view. This, however, does not mean that the gravitino mass is nonzero.
There is another contribution from the 11–dimensional term

−
√

2
384

√
gψ̄IΓIJKLMNψN

(
GJKLM + ĜJKLM

)
. (VII.90)

After redefining fields according to (VII.87,VII.88) and averaging the
nontrivial vacuum expectation value of G over X6 we get from eq.
(VII.90) a mass term which exactly cancels the previous contribution
(VII.89). The gravitino is massless – the result which we expect in a
model with unbroken supersymmetry and vanishing cosmological con-
stant. Thus, we find that our simple reduction and truncation method
(including the correct x11 dependence in next to leading order) repro-
duces the main features of the model.
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The factor 〈exp(3σ)〉 represents the volume of the six–dimensional
compact space in units of M−6

11 . The x11 dependence of σ then leads
to the geometrical picture that the volume of this space varies with x11

and differs at the two boundaries:

VE8 = VE6 − 2π2ρ
( κ

4π

)2/3
∣∣∣∣∣
∫

ω ∧ tr(F ∧ F ) − 1
2tr(R ∧ R)

8π2

∣∣∣∣∣ (VII.91)

where the integral is over X6 at the E6 boundary. In the given approxi-
mation, this variation is linear, and for growing ρ the volume on the E8

side becomes smaller and smaller. At a critical value of ρ the volume
will thus vanish and this will provide us with an upper limit on ρ:

ρ < ρcrit =
(4π)2/3

cπ2
M3

11V
2/3
E6

(VII.92)

where c was defined in eq. (VII.75). The critical value is model depen-
dent and we shall not discuss this in detail here.

Let us now compare the M-theory picture with that of the weakly cou-
pled heterotic string. Inspection of (VI.45) and (VII.85) reveals a close
connection between the two [7, 105]. The variation of the Calabi–Yau
manifold volume as discussed above is the analogue of the one loop cor-
rection of the gauge kinetic function (VI.45) in the weakly coupled case
and has the same origin, namely a Green–Schwarz anomaly cancellation
counterterm. In fact, also in the strongly coupled case this leads to a
correction for the gauge coupling constants at the E6 and E8 side. As we
have seen, gauge couplings are no longer given by the (averaged) S–field,
but by that combination of the (averaged) S and T fields which corre-
sponds to the S–field before averaging at the given boundary leading
to

f6,8 = S ± αT (VII.93)

at the E6 (E8) side respectively. The critical value of R11 will correspond
to infinitely strong coupling at the E8 side: S − αT = 0. Since we are
here close to criticality a correct phenomenological fit of αGUT = 1/25
should include this correction α−1

GUT = S+αT where S and αT give com-
parable contributions. This is a difference to the weakly coupled case,
where in f = S + εT the latter contribution was small compared to S.
The stability of this result for the corrections to f when going from weak
coupling to strong coupling is only possible by virtue of the rather spe-
cial properties of f . f does not receive further perturbative corrections
beyond one loop [109, 96], and the one loop corrections are determined
by the anomaly considerations. The formal expressions for the correc-
tions are identical, the only difference being that in the strongly coupled
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case these corrections are to be interpreted as having an importance
comparable to the classical value.

VIII. Supersymmetry breaking at the hidden
wall

For the discussion of supersymmetry breakdown we should carefully
examine the supersymmetry transformations of fermionic fields. Of par-
ticular importance are the fields that originate from the higher dimen-
sional gravitino. For the d = 11 action, the supersymmetry transforma-
tion laws for these fields are given by

δψA = DAη +
√

2
288

GIJKL

(
ΓIJKL

A − 8δI
AΓJKL

)
η − (VIII.94)

− 1
1152π

( κ

4π

)2/3
δ(x11) (χ̄aΓBCDχa)

(
ΓBCD

A − 6δB
AΓCD

)
η . . .

as well as

δψ11 = D11η +
√

2
288

GIJKL

(
ΓIJKL

11 − 8δI
11Γ

JKL
)
η +

+
1

1152π

( κ

4π

)2/3
δ(x11) (χ̄aΓABCχa) ΓABCη + . . .(VIII.95)

where gaugino bilinears appear in the right hand side of both expressions.
Again we consider gaugino condensation at the hidden E8 boundary:

〈χ̄aΓijkχ
a〉 = g2

8Λ
3εijk. (VIII.96)

The E8 gauge coupling constant appears in this equation because the
straightforward reduction and truncation leaves a non–canonical nor-
malization for the gaugino kinetic term. An important property of the
weakly coupled case (d = 10 Lagrangian) was the fact that the gaugino
condensate and the three–index tensor field H contributed to the scalar
potential in a full square. Hořava made the important observation that
a similar structure appears in the M–theory Lagrangian as well [53]:

− 1
12κ2

∫
M11

d11x
√

g

(
GABC11 −

√
2

32π

( κ

4π

)2/3
δ(x11)χ̄aΓABCχa

)2

(VIII.97)
with the obvious relation between H and G. Let us now have a closer
look at the form of G. At the next to leading order we have

G11ABC = (∂11CABC + permutations)

+
1

4π
√

2

( κ

4π

)2/3∑
i

δ(x11 − x11
i )(ωY M

ABC − 1
2
ωL

ABC).(VIII.98)



Gaugino Condensation and SUSY Breakdown 425

Observe, that in the bulk we have G = dC with the Chern–Simons
contributions confined to the boundaries. Formula (VIII.97) suggests a
cancellation between the gaugino condensate and the G–field in a way
that is very similar to the weakly coupled case, but the nature of the
cancellation of terms becomes much more transparent now. Remember
that in the former case we had argued that because of the quantization
condition for 〈dB〉 the gaugino condensate is cancelled not by 〈dB〉 but
by a flux of the Chern–Simons terms. Here, this becomes obvious. The
condensate is located at the wall as are the Chern–Simons terms, so this
cancellation has to happen locally at the wall and dC should vanish to
ensure that G does not have a vev in the bulk. In any case there is a
quantization condition for dC as well [118].

So this cancellation is very similar to the one in the weakly coupled
case. At the minimum of the potential we obtain GABCD = 0 everywhere
and

GABC11 =
√

2
32π

( κ

4π

)2/3
δ(x11)χ̄aΓABCχa (VIII.99)

at the hidden wall. Eqs. (VIII.94) and (VIII.95) then become

δψA = DAη + . . . (VIII.100)

δψ11 = D11η +
1

384π

( κ

4π

)2/3
δ(x11) (χ̄aΓABCχa) ΓABCη+. . .(VIII.101)

An inspection of the potential shows that δψ11 is nonvanishing and that
supersymmetry is spontaneously broken. Because of the cancellation
in eq. (VIII.97), the cosmological constant vanishes to leading order.
Recalling the supersymmetry transformation law for the elfbein,

δem
I =

1
2
η̄ΓmψI , (VIII.102)

one finds that the superpartner of the field T plays the role of the gold-
stino. Again we have a situation where FS = 0 (due to the cancellation
in (VIII.97)) with nonvanishing FT . But here we find the novel and
interesting situation that FT differs from zero only at the hidden wall,
although the field itself is a bulk field.

At that wall our discussion is completely 4–dimensional although we
are still dealing effectively with a d = 5 theory. To reach the effective
theory in d = 4 we have to integrate out the dependence of the x11

coordinate. As in the previous section this can be performed by the
averaging procedure explained there. With the gaugino condensation
scale Λ sufficiently small compared to the compactification scale MGUT ,
the low–energy effective theory is well described by four dimensional N =
1 supergravity in which supersymmetry is spontaneously broken. In this
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case, the modes which remain at low energies will be well approximated
by constant modes along the x11 direction. This observation justifies our
averaging procedure to obtain four dimensional quantities. Averaging
δψ11 over x11, we thus obtain the vev of the auxiliary field FT

FT =
1
2
T
∫

dx11√g1111δψ11∫
dx11√g1111

. (VIII.103)

Note that this procedure allows for a nonlocal cancellation of the vev of
the auxiliary field in d = 4. A condensate with equal size and opposite
sign at the observable wall could cancel the effect and restore super-
symmetry. Using

∫
dx11√g1111δ(x11) = 1, the auxiliary field is found to

be

FT = T 1
32π(4π)2/3

g2
8Λ

3

R11M3
11

(VIII.104)

Similarly one can easily show that FS as well as the vacuum energy
vanish. This allows us then to unambiguously determine the gravitino
mass, which is related to the auxiliary field in the following way:

m3/2 =
FT

T + T ∗ =
1

64π(4π)2/3

g2
8Λ

3

R11M3
11

=
π

2
Λ3

M2
P lanck

. (VIII.105)

As a nontrivial check one may calculate the gravitino mass in a different
way. A term in the Lagrangian

−
√

2
192κ2

∫
dx11√gψ̄IΓIJKLMNψNGJKLM , (VIII.106)

becomes the gravitino mass term when compactified to four dimensions.
Using the vev′s of the GIJK11 given by eq. (VIII.99), one can obtain
the same result as eq. (VIII.105). This is a consistency check for our
approach and the fact that the vacuum energy vanishes in the given
approximation.

It follows from eq. (VIII.105), that the gravitino mass tends to zero
when the radius of the eleventh dimension goes to infinity. When the
four–dimensional Planck scale is fixed to be the measured value, however,
the gravitino mass in the strongly coupled case is expressed in a standard
manner, similar to the weakly coupled case. To obtain the gravitino mass
of the order of 1 TeV, one has to adjust Λ to be of the order of 1013 GeV
when one constructs a realistic model by appropriately breaking the E8

gauge group at the hidden wall.
In the minimization of the potential, we have implicitly used the lead-

ing order approximation. As was explained in a previous section, the
next to leading order correction gives the non–trivial dependence of the
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background metric on x11. Then the Einstein–Hilbert action in eleven
dimensions gives an additional contribution to the scalar potential in the
four–dimensional effective theory, which shifts the vev′s of the GIJKL.
As a consequence, FS will no longer vanish. Though this may be sig-
nificant when we discuss soft masses, it does not drastically change our
estimate of the gravitino mass (VIII.105) and our main conclusion drawn
here is still valid after the higher order corrections are taken into account.
In any case, these questions have to be addressed if one aims at realistic
models for particle physics.

IX. Summary and outlook
In these lectures we have discussed the mechanism of gaugino conden-

sation and flux stabilization within the heterotic scenario in its simplest
version. The picture could be easily generalized to type II orientifolds or
other types of string constructions, leading to the notion of supersym-
metry breakdown on a hidden brane.

There is, however, still a long way to go towards realistic model build-
ing. One of the obstacles is the question of moduli stabilization in string
theory. Without a solution of this problem we shall usually obtain so-
called runaway vacua where e.g. coupling constants run to unrealistic
values. Another obstacle is the appearance of instabilities of the scalar
potential once we include radiative corrections. We have discussed some
aspects of this in section 6 when we included radiative (threshold) cor-
rections to the gauge coupling constants (45). If we would consider
f = S ± εT and reinsert this into the F−terms in (32) we would obtain
new contributions to the scalar potential leading to minima with a neg-
ative vacuum energy. This, of course, is nothing else than the problem
of the cosmological constant.

Recently there has been some revived interest in this discussion. One
aspect concerns the consideration of compactification of the extra di-
mensions on non-Kähler manifolds. Moduli are stabilized with the help
of fluxes of various antisymmetric tensor fields. For more details and
references, see [9, 15, 22, 44, 64]. This allows the stabilization of many
moduli already in the supersymmetric framework in a rather general
context and avoids cosmological moduli problems.

Within the heterotic M-theory context, there have been attempts to
go beyond the classical level [23]. In ref. [13] one finds a rather com-
prehensive discussion of moduli stabilization and supersymmetry break-
down in a general set-up of heterotic M-theory including 5-branes in the
bulk. Moduli can be stabilized, but a large negative vacuum energy re-
mains. Similar results in the heterotic string theory have been reported
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in [52]. These results are, of course, also of interest in the discussion of
cosmological aspects of string theory [63]. So the mechanism of super-
symmetry breakdown through gaugino condensation still remains one
the most promising subjects in the discussion of realistic string model
building.
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Cvetič, M., Font, A., Ibáñez, L. E., Lüst, D., Quevedo, F., Nucl.Phys. B361
(1991) 194

[43] Georgi, H., Kim, Jihn E., Nilles, H. P., Phys. Lett. B B437 (1998) 325, hep-
ph/9805510

[44] S. B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D 66, 106006 (2002)
[arXiv:hep-th/0105097].

[45] Ginsparg, P. Phys. Lett. B 197 (1987) 139

[46] M. B. Green, J. H. Schwarz and E. Witten, Superstring theory, Cambridge
Monographs on Mathematical Physics, Cambridge University Press 1987

[47] D. J. Gross, J. A. Harvey, E. J. Martinec and R. Rohm, Nucl. Phys. B 256, 253
(1985).

[48] Horne, J. H., Moore, G., Nucl.Phys. B432 (1994) 109
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IS DARK MATTER SUPERSYMMETRIC?
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Abstract From the precise relic density measurement by WMAP the WIMP an-
nihilation cross section can be determined in a model independent way.
If the WIMPS are postulated to be the neutralinos of Supersymmetry,
then only a limited region of parameter space matches this annihila-
tion cross section. It is shown that the resulting positrons, antiprotons
and gamma rays from the neutralino annihilation (mainly into bb quark
pairs) provide the correct shape and order of magnitude for the miss-
ing gamma and hard positron fluxes in the Galactic Models and are
consistent with the antiproton fluxes.

Keywords: Cold Dark Matter, Indirect detection, Diffuse Gamma Rays, Galactic
Positrons, Antiprotons, Neutralinos, Supersymmetry, Haloprofile

I. Introduction
Cold Dark Matter (CDM) makes up 23% of the energy of the universe,

as deduced from the temperature anisotropies in the Cosmic Microwave
Background (CMB) in combination with data on the Hubble expansion
and the density fluctuations in the universe [1]-[4]. The nature of the
CDM is unknown, but one of the most popular explanation for it is the
neutralino, a stable neutral particle predicted by Supersymmetry [5, 6].
The neutralinos are spin 1/2 Majorana particles, which can annihilate
into pairs of Standard Model (SM) particles. The stable decay and frag-
mentation products are neutrinos, photons, protons, antiprotons, elec-
trons and positrons. These decay products are and have been produced
everywhere in the universe, but the protons and electrons are drowned in
the many matter particles in the universe. However, the antimatter par-
ticles, neutrinos and photons may be detectable above the background
from nuclear interactions, especially because of the much harder spectra
expected from neutralino annihilation.
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In this paper we consider the annihilation of Dark Matter particles as
a source for gamma rays, antiprotons and positrons. Indirect detection
of Dark Matter with these particles has been discussed much before; for
some recent references see [10]-[23]. The results presented here differ
from previous ones by performing a statistical analysis to gamma rays,
antiprotons and gamma rays simultaneously. Also most of the previous
analysis were done before the WMAP data became available. These
data provide us with a model independent estimate of the annihilation
cross section, which in turn very much limits the parameter space.

In the following we first describe the model independent determination
of this annihilation cross section from the relic density and the corre-
sponding constraints on the parameter space in the Minimal Supersym-
metric Model using supergravity inspired symmetry breaking (mSUGRA).
The predictions from Supersymmetry concerning neutralino annihilation
are discussed, while in the following section the background spectra for
gamma rays, antiprotons and positrons, as predicted by the Galprop
model [24, 25] are discussed. In the last section the global fits are dis-
cussed. They are performed within the frame work of the DarkSusy [26]
program, after modifying it to simulate the background and propagation
model from Galprop in DarkSusy. The propagation is only important
for antiprotons and positrons because of their energy losses. For the
SUSY particle spectrum we use Suspect [27], for the Higgs masses Feyn-
higgsfast [28] and as a cross check for the cross sections and relic density
we use Micromegas [29]. Finally, some expectations for direct detection
and indirect searches for Dark Matter from solar neutrinos will be given.

II. Annihilation Cross section Constraints from
WMAP

In the early universe all particles were produced abundantly and were
in thermal equilibrium through annihilation and production processes.
The time evolution of the number density of the particles is given by the
Boltzmann equation, which can be written for neutralinos as:

dnχ

dt
+ 3Hnχ = − < σv > (n2

χ − neq2
χ ), (II.1)

where H is the Hubble expansion rate, nχ is the actual number den-
sity, neq

χ is the thermal equilibrium number density (before freeze-out),
< σv > is thermally averaged value of the total annihilation cross section
times the relative velocity of the annihilating neutralinos. The Hubble
term takes care of the decrease in number density because of the expan-
sion, while the first term on the right hand side represents the decrease
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Figure 1. The comoving number density of any massive particle, which can stay in
equilibrium by annihilation and creation processes with matter of the universe, until
it falls out of thermal equilibrium,as indicated by the dashed lines. This happens
roughly at a temperature of M/25, when the expansion rate becomes larger than the
annihilation rate. Therefore the Hubble constant determines the thermally averaged
annihilation cross section σv in a model independent way, if the actual density has
been measured. From Ref. [6].

due to annihilation and the second term represents the increase through
creation by the inverse reactions.

At temperatures below the mass of the neutralinos the number den-
sity drops exponentially. The annihilation rate Γ =< σv > nχ drops
exponentially as well, and if it drops below the expansion rate, the neu-
tralinos cease to annihilate. They fall out of equilibrium (freeze-out)
at a temperature of about mχ/25 [30] and a relic cosmic abundance
remains, as indicated in Fig. 1.

For the case that < σv > is energy independent, which is a good ap-
proximation in case there is no coannihilation and away from resonances,
the present mass density in units of the critical density is given by [6]:

Ωχh2 =
mχnχ

ρc
≈ (

3 · 10−27cm3s−1

< σv >
). (II.2)

One observes that the present relic density is inversely proportional to
the annihilation cross section at the time of freeze out, a result indepen-
dent of the neutralino mass (except for logarithmic corrections). For the
present value of Ωχh2 = 0.1 the thermally averaged total cross section
at the freeze-out temperature of mχ/25 must have been 3 ·10−26cm3s−1.
This can be achieved only for restricted regions of parameter space in
the MSSM, as will be discussed in the next section.
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III. Dark Matter Predictions from
Supersymmetry

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18

log10(Q/GeV)

m
as

se
s 

[G
eV

]

g
~

w
~

b
~

m1

m2

τ
~

r

τ
~

l

t
~

r,b
~

l,r

t
~

l

m0
m1/2

√m0
2+µ2

0

250

500

750

1000

1250

1500

1750

2000

2250

0 2 4 6 8 10 12 14 16 18

log10(Q/GeV)

m
as

se
s 

[G
eV

]

g
~

w
~

b
~
m1

m2

τ
~

r

τ
~

l

t
~

r,b
~

l,r

t
~

l

m0
m1/2

√m0
2+µ2

Figure 2. The running of the squark - and slepton masses starting at m0, gaugino
masses starting at m1/2 and Higgs mass parameters starting at

√
m2

0 + µ2 for m0 =
m1/2 = 500 GeV and tan β=51 (left) and for m0 = m1/2 = 1000 GeV and tan β=53
(right), which are the parameters of interest for the present analysis.
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Figure 3. The gaugino fraction of the lightest neutralino as function of m0 and
m1/2 for tan β=10 (left) and tan β=50 (right).

Supersymmetry [31] presupposes a symmetry between fermions and
bosons, which can be realized in nature only if one assumes each particle
with spin j has a supersymmetric partner with spin |j − 1/2| (|j − 1/2|
for the Higgs bosons). This leads to a doubling of the particle spec-
trum. Unfortunately the supersymmetric particles or “sparticles” have
not been observed so far, so the sparticle masses must be above the limits
set by searches at present accelerators. Obviously SUSY cannot be an
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exact symmetry of nature; or else the supersymmetric partners would
have the same mass as the normal particles. The mSUGRA model,
i.e. the Minimal Supersymmetric Standard Model (MSSM) with super-
gravity inspired breaking terms, is characterized by only 5 parameters:
m0, m1/2, tan β, sign(µ), A0. Here m0 and m1/2 are the common
masses for the gauginos and scalars at the GUT scale, which is deter-
mined by the unification of the gauge couplings. Gauge unification is still
possible with the precisely measured couplings at LEP [32]. The ratio
of the vacuum expectation values of the neutral components of the two
Higgs doublets in Supersymmetry is called tanβ and A0 is the trilinear
coupling at the GUT scale. We only consider the dominant trilinear cou-
plings of the third generation of quarks and leptons and assume also A0

to be unified at the GUT scale. The constraints on the supersymmetric
parameters space are practically independent of A0 due to a coincidence
from the constraints from the b → Xsγ rate and the lower limit on the
Higgs mass of 114 GeV [32]. The absolute value of the Higgs mixing
parameter µ is determined by electroweak symmetry breaking, while its
sign is taken to be positive, as preferred by the anomalous magnetic
moment of the muon [32].

The GUT scale masses are connected to low energy masses by the
Renormalization Group Equations (RGE), as shown in Fig. 2. The
running masses of the gauginos at low energy obey the simple solutions
of the RGE:

Mi(t) =
α̃i(t)
α̃i(0)

m1/2. (III.3)

Numerically at the weak scale (t = 2 ln(MGUT /MZ) = 66) one finds (see
fig. 2):

M3(g̃) ≈ 2.7m1/2, (III.4)
M2(MZ) ≈ 0.8m1/2, (III.5)
M1(MZ) ≈ 0.4m1/2. (III.6)

The gluinos obtain corrections from the strong coupling constant α3;
therefore they grow heavier than the gauginos of the SU(2)L ⊗ U(1)Y

group. Since the Higgsinos and gauginos are all spin 1/2 particles and
are equal in all other quantum numbers, the mass eigenstates are in
general mixtures of them, which are called generically charginos (neu-
tralinos) for the mixture of the supersymmetric partners of the charged
(neutral) gauge bosons and charged (neutral) Higgs bosons. The Majo-
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rana neutralino and Dirac chargino fields can be written as:

χ =

⎛⎜⎜⎝
B̃

W̃ 3

H̃0
1

H̃0
2

⎞⎟⎟⎠ , ψ =
(

W̃+

H̃+

)
,

while the mass matrices can be written as [31]:

MA =
(

M1 0
0 M2

)
Z2 =

(
−MZ cos β sin θW MZ cos β cos θW

MZ sin β sin θW −MZ sin β cos θW

)

MB =
(

0 −µ
−µ 0

)
Z1 =

(
−MZ cos β sin θW MZ sin β sin θW

MZ cos β cos θW −MZ sin β cos θW

)

M (0) =
(

MA Z1

Z2 MB

)
(III.7)

M (c) =
(

M2

√
2MW sin β√

2MW cos β µ

)
(III.8)

The last matrix leads to two chargino eigenstates χ̃±
1,2. The depen-

dence on the parameters at the GUT scale can be estimated by sub-
stituting for M2 and µ their values at the weak scale: M1(MZ) ≈
0.5M2(MZ) ≈ 0.4m1/2 and µ(MZ) ≈ 0.63µ(0).

From Fig. 2 it can be seen that the mass parameters in the Higgs
potential, m1 and m2, are driven negative, largely because of the large
Yukawa couplings of the third generation of quarks and leptons. This
leads to radiative electroweak symmetry breaking (EWSB), so the Higgs
mechanism in Supersymmetry needs not to be introduced ad hoc, as in
the Standard Model, but is caused by radiative corrections. The running
is only strong enough for top masses between 140 and 200 GeV and if
the starting value

√
µ2 + m2

0 at the GUT scale is large enough, which
in practice implies µ > M2. From the mass matrices III.7 and III.8
it is clear that for M1,2 < µ the lightest chargino is wino-like with a
mass given by M2 if the mixing is neglected and similarly the lightest
neutralino is bino like with a mass given by M1 ≈ 0.5M2.

In practice, there is some mixing and the neutralino mass eigenstates
are linear combinations of the weak eigenstates, i.e.

χ0
i = N1|B̃ > +N2|W̃3 > +N3|H̃0

1 > +N4|H̃0
2 > .
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Figure 4. Dominant tree diagrams for Dark Matter annihilation. Note that the
amplitudes of the graphs shown at the top are proportional to the mass of the final
state fermion, while the Higgs exchange is proportional to tan β for d-type quarks
and 1/tan β for up-type quarks. This implies that light fermion final states can be
neglected and at large tan β the bottom final states dominate.

Figure 5. The neutralino annihilation total cross section for tan β=35 as function
of the center of mass momenta in GeV of the neutralinos for quark -, lepton - and
W+W− final states, as calculated with CalcHEP [34]. Note the helicity suppression
at low momenta for light fermions.

Figure 6. The neutralino annihilation cross section for pseudoscalar Higgs exchange
for bottom and top final states as function of tan β , as calculated with CalcHEP [34].

The gaugino fraction N2
1 + N2

2 is nevertheless close to one, especially if
the diagonal elements are large compared with the off-diagonal elements
proportional to MZ . This is demonstrated in Fig. 3.
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Figure 7. The first two rows show the thermally averaged annihilation cross section
times velocity for neutralino annihilation as function of m0 and m1/2 for tan β= 50

and bb, tt, W+W−, and ττ final states (clockwise from top left). The last row shows
the total cross section or tan β= 5 (left) and 50 (right). The neutralino mass equals
≈ 0.4m1/2 in the CMSSM, so the neutralino varies from 40 to 400 GeV along the
front axis. Note the strong decrease of the cross section for heavier SUSY mass scales
and the different vertical scales.
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The interaction of the sparticles with normal matter is governed by a
new multiplicative quantum number called R-parity, which is needed in
order to prevent baryon- and lepton number violation. In GUT theories
quarks, leptons and Higgses are all contained in the same supermultiplet,
which allows couplings between quarks and leptons. Such transitions,
which could lead to rapid proton decay, are not observed in nature.
Therefore, the SM particles are assigned a positive R-parity and the
supersymmetric partners have a negative one, which can be related to
the known conserved quantum numbers of spin S, baryon number B and
lepton number L by R = (−1)3B+l+2S . Requiring R-parity conservation
implies that at each vertex one needs two supersymmetric particles, from
which it follows that:

The rapid proton decays involving vertices with only one sparticle
do not occur.

Sparticles can be produced only in pairs, e.g. pp → q̃g̃X or e+ +
e− → µ̃+µ̃−.

The heavier sparticles can decay to lighter ones, like ẽ → eγ̃ or
q̃ → qg̃, but the Lightest Supersymmetric Particle (LSP) is stable,
since its decay into normal matter would change R-parity.

The LSP has to be neutral to be a good candidate for Dark Matter.

The interactions of particles and sparticles can be different. For
example, the photon couples to electron-positron pairs, but the
photino does not couple to electron-positron - or selectron-spositron
pairs, since in these cases the R-parity would change from -1 to
+1.

The LSP is weakly interacting with normal matter, since the final
state has to contain the LSP again, so its interaction with quarks
would only be elastic scattering by e.g. Z-, Higgs or squark ex-
change.

Consequently, the LSP is an ideal candidate for Dark Matter, since it
has all the properties of a Weakly Interacting Massive Particle (WIMP),
namely it is neutral, heavy and weakly interacting, so it will form galactic
haloes.

The neutralinos can annihilate through the diagrams, shown in Fig.
4. The main features of the amplitudes have been indicated below the
diagrams:

The annihilation into fermion-antifermion pairs is proportional to
the fermion mass in the limit v→0, which is the important case in
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Figure 8. The light shaded (blue) area is the region in the m0, m1/2 plane allowed
by the WMAP data (Ωh2 = 0.113± 0.009) ; the contours of larger Ωh2 are indicated
by the dashed lines in steps of 0.05. The upper row is for tan β=51 and A0 = 0 (left)
and A0 = m0 (right), which shows that the role of Higgs constraint (dotted line)
and b → Xsγ constraint (solid line) are interchanged for the different values of the
trilinear coupling, but the lower limit on m1/2 is not very sensitive to A0. The second
(third) row show the same information for a larger region for tan β=51, 52 (l. and
r.) ( 53 and 55 (l. and r.)). The excluded regions, where the stau would be the LSP
(left top corners) or EWSB fails (right bottom corners) or the boost factors are above
10 are indicated by the dots. The black dots indicate the resonance region, where
|mA − 2mχ0 | ≤ 10 GeV. For tan β > 52 the acceptable values for the relic densities
are for m1/2 values above the resonance region.
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the present universe at a temperature of a few Kelvin. This can
be understood as follows: The neutralino is a Majorana particle,
so it is its own antiparticle. In addition it has spin 1/2, thus
obeying Fermi statistics, which implies it cannot have identical
quantum numbers. Furthermore at low velocity it annihilates into
an s-wave state, which implies the spins have to be antiparallel
(just like for electrons in the hydrogen s-wave). Therefore also
the spins in the final state have to be antiparallel, which leads
to an amplitude proportional to the fermion mass to account for
the required helicity flip[33]. Consequently heavy final states are
enhanced at low momenta, as demonstrated in Fig. 5. Note that
at higher momenta not only s-waves contribute and the helicity
suppression disappears, so during the time of freeze-out all final
states were produced. Note that these arguments are only valid
for the diagrams with sfermion and Z-exchange. For the Higgs
exchange the proportionality to the final state fermion mass arises
from the Yukawa coupling. These cross sections were calculated
with the program package CalcHep[34].

The second important point concerns the tanβ dependence: the
diagram via pseudoscalar Higgs exchange is proportional to tanβ
for down-type quarks and 1/tanβ for up-type quarks. This im-
plies that at large tanβ (tan β > 5) the b-quark final states are
enhanced over t-quark final states, as shown in Fig. 6. The am-
plitudes of the Higgs exchange and the Z-exchange have an oppo-
site sign. Since the top final states have a large amplitude for Z-
exchange (amplitude ∝ mass), they are additionally suppressed by
the negative interference with the t-channel amplitudes. The cross
sections for various final states are shown as function of m0, m1/2

in Fig. 7. The last row shows the strong increase of the total anni-
hilation cross section as function of tanβ. The strong dependence
on the SUSY masses is obvious.

As shown in Fig. 4, the amplitude for pseudoscalar Higgs ex-
change is proportional to N1N3,4, i.e. it requires that the lightest
neutralino has both bino- and Higgsino components, which implies
that the diagonal elements in the mass matrix III.7 should not be
too large compared with the off-diagonal elements proportional to
MZ . So unless one tunes tanβ and the SUSY masses such that
one hits the resonance (mA ≈ 2mχ), in which case very small Hig-
gsino admixtures are enough, one needs relatively light neutralino
masses.
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The regions of parameter space allowed by the WMAP data are plot-
ted in Fig. 8 for different values of tanβ. It is clear that for tanβ ≈ 50
only a small region is allowed, if in addition the electroweak constraints
from the Higgs mass and b → Xsγ, and the requirement that the LSP
is a neutral particle have to be fulfilled. Values of tanβ below 50 are
excluded completely, if one wants to be consistent with all constraints
and if one requires in addition that the boost factors are below 10. The
last requirement implies that clumpiness can enhance the annihilation
signal by at most a factor of 10, which is the maximum order of mag-
nitude suggested by simulations of galaxy formation[35, 36]. However,
the present simulations have a poor resolution and do not consider in-
teractions between dark matter and normal matter, so this constraint
is not a strong one. The boost factors are strongly correlated with the
value of the local halo density ρχ. To obtain a conservative limit by the
requirement that the boost factor is below 10, ρχ was set to its maxi-
mum allowed value of 0.8 GeV/cm3. For values of tanβ above 50 there
are quite a range of neutralino masses allowed, since for larger values of
tan β one hits the resonance of pseudoscalar Higgs exchange, in which
case much heavier neutralinos are allowed, as shown in Fig. 8 (bottom
left). Masses between 100 and 450 GeV are possible.

In summary, the annihilation cross section becomes large for large
tan β and is dominated for tanβ > 5 by the s-channel pseudoscalar
Higgs exchange into bb quark pairs. Fig. 7 shows that values of tanβ
around 50 yield the annihilation cross sections required by WMAP, given
in Eq. II.2. Regions of coannihilation[37] at smaller tanβ are allowed by
WMAP data, but the coannihilation with other SUSY sparticles does
not operate in the present cooled down universe, which would imply
very small annihilation cross sections in the present universe and corre-
spondingly large boost factors needed to explain the deficiencies in the
positron, antiproton and gamma ray fluxes. Before discussing the global
fits, the cosmic ray fluxes from nuclear interactions are discussed.

IV. Cosmic Rays generated by Nuclear
Interactions

The sources of charged and neutral cosmic rays are believed to be su-
pernovae and their remnants, pulsars, stellar winds and binary systems.
Observations of X-ray and γ-ray emissions from these objects reveal the
acceleration of charged particles near them. Particles accelerated near
the sources propagate tens of millions of years in the interstellar medium
where they can loose or gain energy and produce secondary particles and
γ-rays. The spallation of primary nuclei into secondary nuclei gives rise
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Figure 9. Propagated abundances at 7.5 GeV/nucleon, as calculated by Galprop in
comparison with data. From Ref. [9].

to rare isotopes. Nuclear interactions produce not only matter, but also
antimatter, like antiprotons and positrons. The latter originate mainly
from the decay of charged pions and kaons.

The detailed studies of cosmic rays teach us about the production and
propagation in the universe. The gammas can deliver information over
intergalactic distances, while the charged particles propagate mainly on
galactic distances. Secondary nuclei are produced in the galactic disc,
from where they escape into the halo by diffusion and Galactic winds
(convection). They may gain energy by “diffusive” reacceleration in the
interstellar medium by the 2nd order Fermi acceleration mechanism, i.e.
on average more interstellar scattering centers from opposite directions
are hitting a given nuclei than “comoving” scatterers. In elastic collisions
this leads on average to an energy gain, thus depleting the low energy
part of the source spectrum. Long-living radioactive secondaries tell how
long they survive in the halo before interacting in the disc again, thus
determining the size of the halo. The gas density and acceleration time
scale can be probed by the abundances of the K-capture isotopes, which
would decay via electron K-capture in the interstellar gas.

Combining this information allows one to build a model of our galaxy.
Analytical and semi-analytical models often fail when compared with
all data. Therefore advanced models incorporating nuclear reaction net-
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fit to the B/C ratio, but due to the large diffusion coefficient required, this leads to a
deficiency in the flux of antiprotons (right). From Ref. [7].

works, cross sections for production of antiprotons, positrons, γ-rays and
synchrotron radiation, energy losses, convection, diffusive reacceleration,
distribution of sources, gas and radiation field etc. are needed.

In addition, the distributions of matter and antimatter in the inter-
stellar medium (ISM) are modified locally by affects of the solar activity
and magnetic fields inside our solar system, e.g. from the planets. Glee-
son & Axford [38] modelled the periodically varying solar activity with a
typical half cycle of 11 years1 by a radial solar wind in which the charged
particles loose kinetic energy depending on their rigidity R and on the
distance r from the sun. On this time scale the incoming flux from the
Galaxy does not vary and the problem reduces to an adiabatical deceler-
ation by the solar wind with a dependence only on the radial coordinate.
This can be solved analytically:

J(r, E, t) =
R2

R′2 J(inf, E′), (IV.9)

where J(r, E, t) is the measured differential flux at a distance r from the
sun for particles with energy E and mass E2

0/c2, J(inf, E′) is the incom-

1A cycle can vary between 8 and 14 yr.
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  0.5<l< 30.0 , 330.0<l<359.0

 -5.0<b<  5.0

Figure 11. The gamma-ray energy spectrum of the inner Galaxy as calculated by
Galprop [8] in comparison with EGRET data. Clearly, there is an access of data
above 1 GeV.

ing flux to the solar system and R2 = (E2 − E2
0)/(Ze)2 is the rigidity

with R′ = R(E′). The energy loss can be parametrized by the solar mod-
ulation parameter Φ(t) as E = E′− |Ze|Φ(t), where |Ze| is the absolute
charge of the particle; Φ(t) varies between 350 and 1500 MV depending
on the solar cycle. The solar modulation shifts the particle spectrum to
lower energies, but the effect is only noticeable for rigidities below 10
GV. Recent determinations of the local interstellar flux (LIS) from the
modulated (=measured) ones for electrons, positrons and protons can
be found in Ref. [39].

The most complete and publicly available code for the production and
propagation of particles in our galaxy is the GALPROP code [24, 25]. It
provides a numerical solution to the transport equation including a cross
section database with more than 2000 points, source functions, density
distributions, etc. The cross section tables include all possible cross
sections: p+p, p+He, p+N , He+N , N +N , where all nuclei up to the
heaviest ones (Ni) are considered. Fig. 9 shows the composition of the
primary and secondary nuclei, as calculated by Galprop in comparison
with data. Clearly, the production of secondary nuclei is well described.
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Fig. 10 shows the spectrum of the Boron over Carbon (B/C) ratio,
which shows a characteristic depletion at low energies. Since Boron is a
purely secondary produced nuclei, while Carbon is primarily produced,
the depletion at low energy is a sensitive handle on the question of dif-
fusive reacceleration and solar modulation. As shown, the modulation
effects the spectra mainly at kinetic energies below 10 GeV/nucleon. In
order to reproduce the sharp peak in the ratios of secondary to primary
nuclei without any unphysical breaks in the energy dependence of the
diffusion coefficients and/or the injection spectrum, the diffuse reaccel-
eration with a rather large diffusion coefficient is needed [40, 7]. But this
leads to too few antiprotons, as shown by the dashed line on the right
hand side in Fig. 10. The possible way out of the discrepancy between
the B/C ratio and too few antiprotons was suggested by Strong and
Moskalenko: a “fresh” local unprocessed component at low energies of
primary nuclei, thus decreasing the B/C ratio and allowing for a smaller
diffusion coefficient. Also too few gammas are generated by Galprop,
as shown in Fig. 11, which would also need either a harder nucleon
spectrum or a harder electron spectrum, but this would need spatial
variations which make the spectrum in our local region unrepresentative
of the large scale average [8].

However, an alternative explanation may be the annihilation of neu-
tralinos, which increases the yield of gammas, antiprotons, and high en-
ergy positrons, but does NOT effect the B/C ratio. This goes exactly in
the direction of solving these discrepancies between Galprop and present
data simultaneously, as will be shown in the next section by a global fit
to all data.

V. Global fits to positrons, antiprotons and
gamma rays

Trying to disentangle the contributions from nuclear interactions and
neutralino annihilation to the antimatter fluxes and gamma rays is in
practice not easy. Ideally one would like to implement the neutralino
annihilation as a source function in the Galprop code, so the antimatter
from nuclear interactions and meutralino annihilation would be trans-
ported through the galaxy in an identical way. However, this numerical
code is too slow to be used in a fit program. Therefore, we used the
second best possibility, namely using the publicly available code Dark-
Susy [26] for neutralino annihilation, which has semi-analytical solutions
to the diffusion equation and includes the important energy losses for
positrons. We changed the diffusion parameters and code in DarkSusy
in such a way, that the energy losses of positrons and antiprotons resem-
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bled as closely as possible the Galprop results and interfaced Galprop to
Darksusy in order to get the shape of the background for the fit. The
normalization of the background and the annihilation signal were both
left free, so only the shapes were fitted.

The Dark Matter halo profile is usually assumed to be of the Navarro,
Frenk & White (NFW) type [41], as supported by other studies on galaxy
formation [35, 36, 42, 43]. Effectively we have chosen for the Dark Matter
density distribution an isothermal spherical symmetric profile:

ρ(r) = ρ0 · (
r

a
)−γ
[
1 + (

r

a
)α
] γ−β

α
,

where a is a scale radius and the slopes α, β and γ can be thought of
as the radial dependence at r ≈ a, r >> a and r << a, respectively.
For definiteness we use (α, β, γ) =(1,3,1) for a scale a = 10 kpc, but e.g.
(1.5,2,1) for a=2 kpc yields practically identical results.

With this profile the halo density increases quite steeply towards
the center, so most annihilations will take place in the center of the
galaxy, thus producing there gamma rays, positrons and antiprotons.
The gamma rays can travel over large distances without loosing energy,
but they will arrive at the detector only, if they were emitted along
the line of sight. Antiprotons and positrons on the other hand change
direction during the propagation along the magnetic field lines and by
collisions, so they can arrive at the detector even if they were not emitted
along the line of sight. This causes a larger acceptance for the antipro-
tons and positrons in comparison with the gamma rays. On the other
hand, many of the positrons and antiprotons loose energy and/or dif-
fuse out of the galaxy. Therefore the absolute fluxes are dependent on
the halo profile and propagation parameters. However, the shape of the
background spectra is much less dependent on the propagation parame-
ters. Consequently, fitting only the shape of the background, i.e. using
a free normalization factor, will be much less model dependent. Also
for the annihilation signal the shape is much better known than the
absolute flux, since for the dominant decay into bb quarks the fragmen-
tation properties of these quarks have been accurately studied at the
LEP accelerator in the relevant energy range of about 100 GeV. The ab-
solute flux depends on the possible local density fluctuations around the
average density. Since the annihilation rate is proportional to the square
of the density, local fluctuations can boost the annihilation by a large
factor, although models of galaxy formation predict the boost factors to
be ”of the order of a few”[35, 36]. They can be somewhat different for
gammas, antiprotons and positrons, because of their different range in
the galaxy.



452 PARTICLE PHYSICS AND COSMOLOGY: THE INTERFACE

10
-6

10
-5

10
-4

10
-2

10
-1

1 10 10
2

E [GeV]

E
2  *

 fl
ux

 [G
eV

 c
m

-2
 s

-1
sr

-1
]

EGRET
background
signal
bg + sig

Boostfaktor: 19.6
χ2: 11.8/7
χ2 (bg only): 26.9/8
bg scaling: 1.15

m0 = 500 GeV
m1/2 = 350 GeV
tan β = 50

bb
-

mχ = 143 GeV

10
-3

10
-2

10
-1

1

10
-1

1 10 10
2

E [GeV]

e+
/(

e+
+

e- )

HEAT 94 / 95 / 00
AMS01
background
signal
bg + sig

Boostfaktor: 14
χ2: 17/17
χ2 (bg only): 27.4/18
bg scaling: 1.14

m0 = 500 GeV
m1/2 = 350 GeV
tan β = 50

bb
-

mχ = 143 GeV

10
-8

10
-7

10
-6

10
-5

10
-1

1 10 10
2

E [GeV]

p-  fl
ux

 [c
m

-2
G

eV
-1

s-1
sr

-1
]

BESS 95/97
background
signal
bg + sig

Boostfaktor: 13.6
χ2: 8.9/12
χ2 (bg only): 23.4/13
bg scaling: 1.01

m0 = 500 GeV
m1/2 = 350 GeV
tan β = 50

bb
-

mχ = 143 GeV

Figure 12. Spectra for gamma rays, positron fraction and antiprotons (from top)
with contributions from nuclear interactions (grey/yellow) and neutralino annihilation
(dark/red) for a neutralino mass of 143 GeV.
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The following data were used in the fit:

Gamma ray data from the galactic center in the angular range
330◦ < � < 30◦ and −5◦ < b < 5◦ from the EGRET space tele-
scope, which has been taking data for about 9 years on the NASA
Compton Gamma Ray Observatory (CGRO). We use the data as
presented in Ref. [44].

Positron data from AMS [45] and HEAT [46].

Antiproton data from BESS in the years 1997 and 1998 [47]

A χ2 minimization was performed between the combined data and the
sum of the annihilation signal and background with the normalizations
of signal and background as free parameters. The halo parameters were
fixed to a NFW (1,3,1) profile, while the mass of the neutralino was fixed
to 143 GeV. Different halo profiles would not change the χ2 of the fit,
only change the boost factors. For the choosen halo profile the boost
factors for all particles (gammas, positrons, and antiprotons) come out
to be similar. The mass of the neutralino was choosen to be as low as
possible to be compatible with the electroweak constraints. The gamma
data actually prefers a somewhat lower mass, but the positron fraction
a somewhat higher mass. However, the present data are not accurate
enough to provide a strong constraint on the mass, so a mass of 143 GeV
was choosen. This is compatible with the WMAP data for relatively
large values of m0 and tanβ, as shown in Fig. 8.

The Galprop program describes well the gamma rays below 1 GeV,
but fails for the high energy part of the spectra. The shape of the spectra
is better predicted than the absolute flux, since the shape is determined
by the measured spectra of the protons, which determine the π0 produc-
tion, and the electron spectra, which determines the contributions from
bremssthralung and inverse Compton scattering. Therefore the normal-
ization of the background was left free in the fit, so only the shape of
the background was fitted.

The χ2 function for gamma rays was defined as
∑

i(fγDi−T )2/(fγσi)2+
(1−fγ)2/σ2

n, where the sum runs over all data bins with errors σi and T
is the sum of the parametrized background from nuclear interactions, as
calculated by Galprop and the contribution from neutralino annihilation,
as calculated by DarkSusy with the modifications mentioned above. fγ

is a common normalization factor for all data points with a systematic
error given by σn. Normally fγ was set to one, but sometimes it was left
free in the fit in order to study the effect of possible correlations between
the data points. Similar χ2 functions were defined for the antiprotons
and positrons and the total χ2 was simply the sum of the χ2 contribu-
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tions for gamma rays, antiprotons and positrons, since no correlations
exist.

Figure 13. A summary of experiments for direct detection of Dark Matter and the
signals they are looking for by the interaction of the WIMP with the detector. The
smaller detectors can look for a coincidence of ionization, scintillations or phonons,
while the bigger detectors can search for an annual modulation in one of the signals.
From Ref. [52].

Figure 14. The flux of WIMP’s in the detector is proportional to the velocity of
the detector with respect to the “sea” of WIMP’s, which is maximum on the second
of June and minimal in December due to the movement of the earth around the sun.
This causes an annual modulation of about 7% in the WIMP detection rate.

The results of the fits are shown in Fig. 12. In total six independent
free parameters are fitted, namely the normalization factors for signal
and background for gamma rays, positrons and antiprotons. This im-
plies the χ2 values are independent of the absolute normalizations of
signal and background, they only depend on the shape. The latter is
determined by the neutralino mass for the signal, while the shape of the
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background is dominated by the π0 spectrum produced in nuclear inter-
actions. As indicated in the figures the boost factors vary between 14
and 20, so they are similar for antiprotons, positrons and gamma rays
for the NRW halo profile discussed before. The χ2/d.o.f. is reduced from
90/39 for the “background-only” fit to 39/36 for the fit including neu-
tralino annihilation. This corresponds to about a 4 σ effect, if calculated
with Gaussian errors.

Improved data on the positron, antiprotons and gamma rays are ex-
pected from the “table-top” PAMELA experiment with a tracker accep-
tance of ≈0.002 m2 sr, which is scheduled to be launched on a Russian
satellite in 2004[48]. Much larger statistics is expected from the AMS-02
experiment[49] with an acceptance of ≈0.8 m2 sr. This detector, which
is optimized to identify antimatter, is scheduled to start three years of
data taking at the International Space Station towards the end of 2006.
Since it will measure the fluxes up to energies of several hundred GeV, it
should be able to pin down the mass of the neutralino by measuring the
end points of the spectra much more precisely. Similarly, the GLAST
satellite can measure high energy gamma rays and is scheduled to start
data taking in 2006[50]. Large area neutrino experiments could look for
the neutrinos from neutralino annihilation in the sun[51].
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V.1 Direct Searches
Dark Matter can be searched for directly by trying to detect the elastic

scattering of a WIMP in a detector. The difficulty is the low scatter-
ing cross section and the low signal compared with the background. The
background can be suppressed by considering two signals in coincidence,
e.g. the heat from the lattice vibrations (phonons) and the ionization or
scintillation induced by the displacement of the hit nucleus[6]. The heat
can be measured at low temperatures of a few mK, where the heat capac-
ity (∝ T 3) is sufficiently small to give a measurable rise in temperature.
The ionization can be measured in semiconductor detectors by apply-
ing an electric field to the detector, which drives the electron/hole pairs
to the collecting electrodes. If the detector is made from a scintillation
material, e.g. NaI crystals, the scintillation light can be detected by pho-
tomultipliers. This technique of simultaneously measuring the heat and
the signal from the displacement gives excellent discrimination against
gamma ray background e.g. from decays of radioactive nuclei, since
nuclear recoils from a heavy projectile, like WIMPS, produce relatively
more phonons than ionization or scintillation, while photons produce rel-
atively more ionization compared to phonons. Many experiments with
all these different techniques are in progress, as summarized in Fig. 13.

The cross section for WIMP-nucleon scattering is proportional to the
velocity between WIMP and target. The WIMP is practically at rest,
but the detector flies with the speed of our solar system, modulated with
the orbital speed of the earth around the sun. This allows one to search
for an annular modulation in the signal with an amplitude of about
7%. A 6.3σ annual modulation signal has been observed by the DAMA
experiment, which looks for a scintillation signal in extremely pure NaI
crystals[53]. The experiment has been running for about 7 years and
the observed period of the modulation is one year with the maximum
near the expected date of June 2nd. Unfortunately, the signal has not
yet been confirmed by other experiments with a similar sensitivity[54].

The various direct search results and the indirect searches are com-
pared in Fig. 15, both for the spin-independent and spin-dependent
scattering on protons. The scattering on neutrons is similar. The spin-
independent cross section, mainly mediated by Higgs exchange, couples
proportional to the mass, while the spin-dependent cross section couples
mainly to the spin of the nucleus. The sensitivity for spin-independent
scattering is usually higher, especially on heavier nuclei, because of the
coherence of the scattering: a WIMP with low momenta has a wave-
length of the order of the size of a nucleus, thus scattering coherently
on all nuclei, which enhances the mass and therefore the amplitude by
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a factor A for A nuclei and the cross section is then proportional to
A2. Complete formulae have been summarized in the nice review by
Jungman, Kamionkowski and Griest[6].

The cross sections for direct Dark Matter detection for WIMP masses
of 144 and 295 GeV were calculated with DarkSusy [26], using the SUSY
parameters discussed for the indirect detection. For the heavier masses
the cross section rapidly decreases, but the projected sensitivity of future
direct detection experiments may be sufficient, as demonstrated in Fig.
15.

VI. Conclusion
It is shown that the discrepancies between EGRET data and the

galactic models can be reduced by taking as an additional source of
hard gammas the annihilation of Dark Matter, assuming Dark Matter
is made of neutralinos, as predicted by Supersymmetry. In addition, it
is shown that adding the positrons from neutralino annihilation in the
same Dark Matter model to the same background model improves also
the χ2 fit to the positron data significantly, while the increase in an-
tiprotons is compatible with the data. These facts, statistical significant
improvement of the global fit for positrons, antiprotons and gamma rays
simultaneously for a supersymmetric model with an annihilation cross
section compatible with the model-independent WMAP value, provide
strong experimental evidence for the supersymmetric nature of Dark
Matter.

I thank V. Moskalenko and A. Strong for sharing with us all their
knowledge about our galaxy, O. Reimers to provide us with the EGRET
data and my close collaborators M. Herold, A. Gladyshev, D. Kazakov
and C. Sander for help during this analysis. This work was supported
by the DLR (Deutsches Zentrum für Luft- und Raumfahrt).
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CARGESE LECTURES ON EXTRA-
DIMENSIONS

Riccardo Rattazzi
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Abstract I give a pedagogical introduction to the concepts and the tools that
are necessary to study particle physics models in higher dimensions. I
then give a more detailed presentation of warped compactifications and
discuss their possible relevance to the hierarchy problem.

Keywords: Extra-dimensions, branes, effective action, effective field theories, grav-
ity, hierarchy, Kaluza-Klein fields, large extra-dimensions, The Randall-
Sundrum model, radions, moduli

Introduction
Science in general and particle physics in particular thrive from con-

ceptual puzzles and unexplained phenomena. The gauge hierarchy prob-
lem is an exemplar source for inspiration. While we haven’t got yet any
direct experimental evidence onto what mechanism sets the small ratio
GN/GF ∼ 10−34 between the Newton and Fermi constants, a great deal
of theoretical progress in particle physics has been triggered in trying to
come up with an explanation. For instance, the great development in
supersymmetric field theory of the last three decades is to a good extent
motivated by the potential relevance of supersymmetry to the hierarchy
problem. The last few years have also witnessed a great revival in the
interest for models with extra space dimensions. On one side this revival
is motivated by important theoretical developments within superstring
theory, in particular by the realization that there exist in string the-
ory solitonic membranes, D-branes, on which ordinary particles could
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be localized [1]. On the other side the revival is also phenomenologically
motivated by the realization that extra-dimensions can shed a new light
on the hierarchy problem [2].

The potential relevance of extra-dimensions to the hierarchy prob-
lem can be grasped by the following simple line of reasoning. One way
to phrase the hierarchy is that the Standard Model (SM) quanta, like
the Z-boson, are much softer than the quanta of a possible underlying
Grand Unified Theory (GUT) or string theory: mZ/mGUT ∼ 10−14.
That is to say that the minimum frequency corresponding to a trav-
elling Z boson wave is mZ ∼ 102 GeV while the minimal frequency
of a GUT wave is ∼ 1016 GeV. Supersymmetry or technicolor allow
for a dynamical explanation of this huge hierarchy. Moreover in both
cases the value of mZ/mGUT is determined by a quantum phenom-
enon, i.e. dimensional transmutation. However we know since long
of a basic classical phenomenon that can make quanta softer: gravi-
tational redshift. Let us briefly recall how this works in general rel-
ativity. Consider a gravitational field specified by a metric gµν(x).
The invariant interval separating event x from event x + dx is given
by (ds)2 = gµνdxµdxν . By the Equivalence Principle (ds)2 equals the
Lorentz invariant interval measured by any freely falling observer at x:
(ds)2 = −(∆X0)2 + (∆X1)2 + (∆X2)2 + (∆X3)2. Consider the case
of a static metric gµν and of an interval dx in the time direction. In
this case (ds)2 = g00(dx0)2 < 0 corresponds to the proper time interval
experienced by a freely falling observer with zero velocity at x

dτ =
√

−g00(x)dx0 (.1)

By the Equivalence Principle any clock at rest at x will oscillate with its
proper period ∆T = 1/ω according to the same freely falling observer.
Then by eq. (.1) the frequency ω(x) observed in the original reference
frame will be rescaled according to

1
ω

=
√
−g00(x)

1
ω(x)

. (.2)

This rescaling is not yet, by itself, a physical effect: also the unit of
measure of time at x, specified by some standard clock, will undergo
the same rescaling. (Another way to state this is that the overall nor-
malization of the metric, upon which eq. (.2) crucially depends, is not
an observable as it depends on the units of measure.) An observable
effect arises when comparing the frequencies of two copies of the same
clock located at different points. For instance we can consider two hy-
drogen atoms located respectively at points A and B in the gravitational
field of a star (see Fig. (1)), and associate the frequency ω to a given
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Figure 1. Two atoms A and B in the gravitational field of a star.

atomic transition. The waves emitted at A will oscillate everywhere
with frequency ωA =

√
−g00(A)ω. This is because the background is

time independent, and two neighbouring wavecrests, leaving A with de-
lay 1/ωA, will take the same time to reach any given point, for example
point B. Similarly the wave emitted at B will oscillate everywhere with
frequency ωB =

√
−g00(B)ω. The ratio

ωB

ωA
=

√
g00(B)
g00(A)

< 1 (.3)

represents a physical effect. The observer A notices that the light emit-
ted from position B, closer to the star, is redshifted and similarly ob-
server B notices that the light emitted at A is blue-shifted. This effect
can be qualitatively understood as the photon loosing kinetic energy
as it climbs up to A from deep inside the gravitational potential well
at B. In everyday’s life this gravitational redshift represents a tiny ef-
fect, since the gravitational field of the earth is rather weak. However
gravity is a non-linear theory encompassing large gravitational fields,
like the one near the horizon of a black hole. Assume indeed that the
star of the previous example has collapsed to form a black hole. In
this case the metric is given as a function of the radial coordinate r by
g00 = −1+2GNM/r ≡ −1+rS/r (with M the black hole mass). As the
position rB of atom B approaches the horizon rS we have g00(rB) → 0 so
that the the redshift becomes infinite! The infinite redshift of photons
emitted at the horizon corresponds to the fact that light cannot escape
from a black-hole. We can say that the gravitational field of a black
hole creates an infinite hierarchy of energies of the emitted photons as
the emitter is moved towards the horizon. With the gauge hierarchy in
mind it is perhaps then natural to think of a wild generalization of the
system we just discussed, one in which the points A or B are general-
ized to 3-dimensional spacelike surfaces, or 3-branes. In this process the
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dynamical system living on a point, the atom, is generalized to the dy-
namical system that lives on a 3-surface, a 3+1 quantum field theory, for
instance the Standard Model. Imagine then to place two identical copies
of 3-branes hosting the Standard Model at different points inside a grav-
itational field, in Fig. (2), in a straightforward generalization of Fig. (1).
Of course, since three space dimensions already span the membranes, the
distance separating them must correspond to a new spacelike dimension,
the fifth dimension. In our generalization the role of the atomic energy
levels (and thus of the emitted frequencies) is played by the masses of
the particles living on the branes. For instance the masses of the two
identical Z bosons satisfy

mZ(B)
mZ(A)

=

√
g00(B)
g00(A)

< 1. (.4)

If only gravity propagates in the fifth dimension, one experimental con-
sequence of eq. (.4) is that the gravitons emitted in radiative Z decays
at point A are more energetic to observer B than those emitted in the
same process at B. Also one can’t stop from imagining a situation where
brane B is much deeper than brane A inside a gravitational field, perhaps
even very close to a horizon: then one would expect a huge hierarchy for
the masses of identical particles living on the two different branes. Of
course the example we are considering is not directly applicable to the
gauge hierachy problem, as that does not concern two identical copies
of the SM. Nevertheless the redshifting mechanism would obviously be
at work even if the field theories living on the two branes where not the
same, and also in more complicated situations where the SM degrees of
freedom are not fully localized: it is just kinematics. Is it then possible
that the weak scale hierarchy originates as a consequence of gravitational
redshift in extra-dimensions? The answer to this question is affirmative
and the model that proves it was proposed by Randall and Sundrum in
a pioneering paper [3].

I. Part I: Extra-Dimensions
In this section we introduce the players in the game (gravity, branes

and localized fields) and discuss the rules that govern their effective
action.

I.1 Gravity and Branes
Gravity plays a central role in the physics of extra-dimensions. This is

shown for instance by the example of the previous section. It is then im-
portant to recall the basic concepts relavant to describing the dynamics
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Figure 2. Two branes A and B in a 5-dimensional gravitational field.

of gravity. A basic introduction to General Relativity is taken for granted
here. We will be concerned with a D-dimensional space-time with co-
ordinates XM and metric gMN (X), with M, N = 0, . . . , D − 1. We use
the mostly plus convention wherein at any space time point a locally
inertial frame can be found in which gMN = ηMN ≡ (−1, +1, . . . ,+1).
Later on we will specialize to the phenomenologically relevant case where
D − 4 space-like dimensions are compactified. The metric, up to diffeo-
morphisms, contains the dynamical degrees of freedom of gravity. The
affine connection ΓR

MN = gRS(∂MgNS +∂NgMS −∂SgMN )/2 defines par-
allel transport, by means of which the Riemann tensor, characterizing
the spacetime curvature, is constructed RS

MNR = ∂NΓS
MR − ∂MΓS

NR +
ΓT

MRΓS
TN − ΓT

NRΓS
TM . Using the Riemann tensor and its contracted

forms, the Ricci tensor RMR = RN
MNR and Ricci scalar R = RMNgMN ,

the most general invariant action can be written as

S=
∫

dDX
√

g
{

aMD
D + 2MD−2

D R + bMD−4
D R2 + . . . cMD−6

D R R + . . .
}

(I.5)
where MD is D-dimensional Planck scale. In ordinary 4-dimensional
Einstein gravity, according to our non-conventional normalization, we
have M4 = (32πGN )−1/2 � 1.2 × 1018 GeV. We have parametrized all
the couplings with dimensionless coefficients a, b, c, . . . and organized the
lagrangian as a derivative expansion

aMD
D p0 + MD−2

D p2 + bMD−4
D p4 + . . . + cMD−6

D p6 + . . . (I.6)

where the lowest terms are those that are important at the longest dis-
tance scales. In particular the first term, the cosmological constant,
influences directly the global structure of the space-time. From the ef-
fective lagrangian point of view, which we will discuss in more detail
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later, we can meaningfully address only those phenomena that involve
a finite number of terms, i.e. those for which p/MD is significatively
less than 1. In this respect, although one would naively expect all the
coefficients a, b, c, . . . to be O(1), we will assume that the cosmological
term a is much smaller than 1. This is mostly for a theoretical rea-
son: when a = O(1) the background solution to Einstein equations has
R = O(M2

D) for which the derivative expansion breaks down. But no-
tice also that there is a phenomenological preference to work with small
cosmological constant. On one side we know from observation that the
effective cosmological constant of our macroscopic 4-dimensional world
is very small: Λ4 = a4M

4
4 ∼ (10−3eV)4  M4

4 . This may be an indi-
cation that also the fundamental cosmological constant aMD−2

D , before
compactification, is small. Moreover, as mentioned in sec. I.6, a small
D-dimensional cosmological constant is also favored in the scenario of
large extra-dimensions [2] by the requirement of a flat potential for the
radius modulus. So, while we will assume a  1 as a result of some
tuning or, perhaps, D-dimensional supersymmetry, for all the other co-
efficients we will just need the perfectly natural and weak assumption
that they be ≤ O(1). For instance in ordinary General Relativity with
the above assumption the Einstein Lagrangian is a successful truncation
up to the very small Planck length λP = 1/M4 = 10−33 cm. This is
evident with the above classical Lagrangian, but as discussed later, it
remains true also at the quantum level.

The second important player in the extra dimensional game is given
by the so called (mem)branes. They are extended objects which span
surfaces and on which excitations (particles) can be localized. An ex-
plicit physical example of a brane is given, for instance, by the surface
separating two different metals, where there exist localized excitations
in the charge density, the surface plasmons. Another explicit example
of a brane can be provided by a domain wall. Consider a scalar field
theory with a Z2 invariant potential V (φ) = g

2(φ2 − v2)2. In addition
to the two vacuum solutions φ = ±v this model contains domain wall
solutions

φ = v tanh(m(z − z0)) (I.7)

where m =
√

gv is the mass of the scalar field, while z indicates one
of the space directions. This solution interpolates between the φ = −v
vacuum at z = −∞ and the φ = +v vacumm at z = +∞ and is thus
topologically stable [4]. With respect to the true vacuum φ = ±v this
solution has an energy density E = (∂zφ)2 ∝ cosh−4(m(z− z0) localized
within a distance ∼ 1/m from the center of the wall. Integrating E
across the wall we obtain the wall tension τ = 4

√
gv3/3. Away from
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the wall the scalar has mass m so that at E < m there are no modes
propagating through the full space. There is however a massless scalar
mode localized at the wall. Indeed the domain wall solution breaks
spontaneously the original D-dimensional Poincaré group down to the
(D − 1)-dimensional one, corresponding to translations and boosts in
the directions parallel to the wall. As it happens for ordinary internal
symmetries, we then expect the presence of Goldstone bosons associated
to the broken generators. A naive application of that result to space-
time symmetries is however not possible[7, 8]. The Goldstone theorem is
proven by considering the local tranformations associated to the global
symmetries. In the case of the Poincaré group both translations and
boosts reduce, locally, to local translations. The Goldstone bosons are
then in a one to one correspondence with the broken translation gener-
ators [7]. In the case at hand the translations along the z direction are
broken and z0 parametrizes the manifold of equivalent vacua. Like in the
case of internal symmetries we can parametrize the Goldstone excitation
by promoting z0 to a field z0(x) depending on the (D − 1) longitudinal
coordinates. At linearized level it corresponds to a mode

δφ(x, z) = − vm

cosh2 mz
z0(x) (I.8)

which is clearly normalizable and localized within a distance 1/m around
the wall. Under z-translations φ(z, x) → φ(z + a, x) we have z0(x) →
z0(x)−a. Because of this non linear symmetry the action can depend on
z0 only through its space time derivatives. In particular there is no mass
term for z0(x). The effective action for z0, valid at momentum  m,
can be carefully derived by integrating out the massive excitations of the
original field φ. However it is intuitively clear what result to expect at
lowest order. In this limit we are considering very smooth deformations
of the wall, such that its position varies appreciably only over distances
much bigger that its width 1/m. At each point we then expect the
field to be given approximately by eq. (I.7), but with z replaced by the
direction locally orthogonal to the wall. Then the action will just be
given by the integral of the original wall tension τ =

√
λv3 over the

volume of the deformed wall.
Other fields can be localized at a domain wall. A fermion ψ with

Yukawa interaction λψψ̄ wil be massive in the bulk, but will contain
zero modes localized at the wall where φ = 0 [5]. Similarly, ideas to
localized gauge fields have been proposed [6]. Likewise, D-branes in
string theory support localized modes (scalars, fermions and vectors)
associated to open strings ending on them [1]. In these lectures we will
be focusing on the low energy description of branes. For instance, in the
case we just considered this corresponds to E  m. In this regime we
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will not be concerned with the microscopic mechanism that gave origin
to the brane and to the fields localized on it. We will just assume that
the brane hosts a field theory of our choice and derive the consequences.
The presence of some degrees of freedom, like the Goldstone z0 above,
could however just follow from symmetry considerations and not be an
option.

I.2 Brane Effective Actions
We will now discuss the dynamics of branes by writing the most gen-

eral effective action satisfying some basic principles. We follow closely
the presentation given in ref. [7]. Let us consider an n-brane, a membrane
filling n spatial dimension whose spacetime trajectory, the worldbrane,
is an n + 1-surface. We parametrize this surface with coordinates xµ,
µ = 0, . . . , n. The embedding in the full D-dimensional spacetime is
described by D functions X(x)M , with M = 0, . . . , D − 1. For instance,
in the simplest case of a point particle, a 0-brane, the worldbrane is the
particle trajectory, the worldline, parametrized by a time coordinate x0:
X(x0). It is physically intuitive that the distance between points on the
brane, as measured by a brane observer, be the same as measured by a
bulk observer,

ds2|brane = GMN (X(x)) dXM |branedXN |brane

= GMN (X(x)) ∂µX∂νX
Ndxµdxν (I.9)

i.e. the bulk metric gives rise to an induced metric ĝµν on the brane

ĝµν(x) = GMN (X(x)) ∂µXM∂νX
N . (I.10)

Notice that the induced metric is a scalar under the bulk diffeomorphisms
(all the M, N... indices are contracted) while it is a tensor under repara-
metrizations of the brane xµ = xµ(x′). As the choice of coordinates x is
arbitrary, physical quantities should not depend on it. Therefore, like in
ordinary gravity, starting from ĝµν we should write an action invariant
under brane reparametrizations. We will do that in a moment. Before
then we want to emphasize that, like we have projected the metric, so
we can do with other tensors. For instance a bulk gauge field (1-form)
AM (X) leads to a brane field Âµ(x) = AM (X(x)) ∂µXM which under
the bulk gauge tranformation AM → AM +∂Mα shifts as under a proper
n + 1-dimensional gauge transformation

δÂµ(x) = ∂Mα (X(x)) ∂µXM (x) = ∂µ [α (X(x))] . (I.11)

We can then use the projected field and gauge symmetry to couple the
original 1-form to charged matter on the brane. A similar procedure
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can be followed for the D-bein field EA
M , necessary to couple fermions

to gravity in a manifestly covariant way. Here and in what follows we
indicate with A, B, . . ., A = 0, . . . D − 1, and with a, b . . ., a = 0, n re-
spectively the bulk and brane Lorentz indices. The D-bein EA

M field
represents D 1-forms (A = 0, . . . , D − 1) in the cotangent space, sat-
isfying the relation ηABEA

MEB
N = GMN . The D-bein defines at each

space-time point a tangent space basis corresponding to the coordinates
of a free falling observer: it associates to the entries of a vector V M in
a given system of coordinates the entries V̂ A = EA

MV M in the coordi-
nates of a free falling observer. Indeed, by the definition of EA

M , vector
products are conserved: V̂ AŴBηAB = V MWNGMN . Moreover local
Lorentz rotations EA

M (X) → RA
B(X)EB

M (X) are a gauge symmetry: the
orientation of the D-bein at each point is not physical. This just means
that the locally inertial reference frame is only defined up to a Lorentz
transformation. Now, the tangent space σ to the brane at a point x is
a n + 1 subspace of the tangent space Σ at X(x). A vector vµ ∈ σ is
written in free falling coordinates as v̂A = EA

M∂µXMvµ. By this rela-
tion, σ is represented as a n + 1 dimensional subspace of the Lorentzian
(free falling) vector space. To define the induced n + 1-bein we have
just to find an orthonormal basis of this subspace. One way to proceed
is to divide the indices {A} into two groups: {a} for A = 0, . . . , n and
{i} for A = n + 1, . . . , D − 1. Since σ is a time-like subspace we can
always perform a Lorentz rotation v̂′A = R̄A

B v̂B such that v̂′i ≡ 0 for
v̂A ∈ σ. In the new basis, σ is spanned by v̂′a for a = 0, . . . , n, so that
we have v̂′av̂′bηab ≡ v̂′Av̂′BηAB = vµvνgµν . For vectors in σ, summing
over a is equivalent to summing over A. The induced n+1-bein can then
be defined as ea

µ ≡ R̄a
BEB

M∂µXM . It is straightforward to check that ea
µ

satisfies the basic conditions

ea
µeb

νηab = ĝµν ea
µeb

ν ĝ
µν = ηab. (I.12)

One crucial remark is that the rotation R̄A
B is only defined modulo the

rotations in the subgroup SO(1, n) × SO(D − n − 1) which leave the
σ subspace and its complement invariant. In particular the induced ea

µ

is defined modulo the local Lorentz symmetry SO(1, n) of the brane:
the arbitrariness of our construction of ea

µ does not affect physics pro-
vided the brane Lagrangian is written in a locally Lorentz invariant way.
Using ea

µ we can derive a brane spin connection and write a covariant
Lagrangian for localized fermions.
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The effective Lagrangian for a brane can then be written as

Sbrane =
∫

dn+1x
√

g
{

−τ + Mn−1R(ĝ) + ψ̄ �Dψ + Dµφ†Dµφ+

+(higher derivatives)
}

(I.13)

where we have considered the example of localized fermion and scalar
fields. The covariant derivatives involve the projected 1-forms, Âµ and
ea
µ, as well as any possible localized Yang Mills field. The most relevant

term, the one with the lowest number of derivatives, corresponds to the
brane tension τ . In the effective theory description of the domain wall of
the previous section, τ is determined by matching eq. (I.13) computed on
a flat configuration, on which the intrinsic curvature terms vanish, with
our calculation of the flat wall tension. This way we obtain τ = 4

√
gv3/3.

The general result in eq. (I.13) also shows that the naive derivation of
the effective action sketched in sect. I.1 is indeed accurate in the limit
where the wall intrinsic curvature is small.

Let us consider as an explicit example a 3-brane living in D dimen-
sional Minkowsky space, in the limit in which gravity is turned off. We
can choose a gauge where the brane embedding is simply Xµ = xµ for
µ = 0, 1, 2, 3 and Xi = Y i(x) for i = 4, . . . , D − 1. In this parametriza-
tion the brane roughly extends along the 0, . . . , 3 direction of the bulk
space. The functions Y i parametrize the deformations along the orthog-
onal directions and are the dynamical degrees of freedom, the branons.
In terms of the branons the induced metric is

ĝµν = ηµν + ∂µY i∂νY
jδij . (I.14)

and the tension term of eq. (I.13) expanded in powers of ∂Y becomes

Leff = −τ
√
−g = −τ

{
1 +

1
2
∂µY i∂µYi +

1
8
(∂µY i∂µYi)2 + . . .

}
.

(I.15)
This lagrangian provides a kinetic term with the right sign for Y pro-
vided τ > 0. The configuration Y i = 0 is stable and represents the
vacuum configuration of our brane. But the most remarkable thing is
that our general symmetry considerations also fix all the interaction
terms involving n fields Y and a number of derivatives ≤ n. The terms
involving the curvature affect the interactions that have always at least
two more derivative, and give subleading contributions to the scattering
of branons at low enough energy. This is totally analogous to what hap-
pens in ordinary sigma models, like the pion lagrangian of QCD, where
at lowest order in the expansion E/fπ the scattering amplitudes are fully
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fixed by the group structure in terms of just one physical parameter, fπ

itself. Indeed also the branon system is a σ-model whose coset space cor-
responds to the breakdown of the D-dimensional Poincaré group down
to the 4-dimensional one [7, 8]. To conclude, notice that by indicating
τ = f4 and by going to the canonical field Ŷ i = f2Y i, the branon inter-
actions are proportional to inverse powers of f : this mass scale plays a
role analogous to fπ in the pion Lagrangian.

I.3 Effective Field Theories
One general aspect of physical systems is that the dynamics at large

length scales, or equivalently at low energy, does not depend too much on
the microscopic details. For instance the interaction of an electromag-
netic wave with an antenna of size a much smaller than the wavelength
λ is described to a good accuracy by the coupling to the dipole mode
of the antenna. Higher multipole moments will contribute to correc-
tions suppressed by powers of λa  1. Another example is provided
by molecules, where the slow vibrational modes, describing the oscil-
lations in the distance between the various nuclei, can be accurately
studied by first averaging over the fast motions of electrons. Averaging
over the electronic states provides an effective Hamiltonian for the low
frequency modes, where the higher details of the electronic structure
are controlled by higher powers of the ratio ωslow/ωfast. Effective Field
Theories technique provide a systematic way, an expansion, to treat the
details of microscopic physics when discussing phenomena at low enough
energy. Normally, when Quantum Field Theory is introduced as a con-
struction to describe fundamental processes, a great emphasis is put
on the requirement of renormalizability. Technically renormalizability
corresponds to the possibility of sending the energy cut-off Λ of the sys-
tem to infinity while keeping all the physical quantities finite (and non
trivial)1. Physically this means that the theory can be extrapolated to
infinitely small distances without encountering new microscopic struc-
tures. Renormalizable theories can be truly fundamental and not just
an effective description valid in a limited energy range. Renormalizable
theories are however a special case, and in practically all applications to
particle physics one deals with non-renormalizable effective field theories
2 The best example of a non-renormalizable theory is given by General
Relativity, which necessarily requires a new description at an energy

1As we will explain better below this is a somewhat stronger requirement than renormaliz-
ability: in weakly coupled theories it corresponds to asymptotic freedom.
2For excellent introductions to effective field theories see the papers in Ref.[9]
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scale smaller or equal to MP = 1019 GeV. Nonetheless GR makes per-
fect sense as an effective field theory at energies much smaller than its
cut off [10]. But also QED is an effective field theory: the interactions of
electrons and photons are modified at energies much bigger than me by
the presence of new particles and new interactions. Still in the regime
E ∼ me the small effects of the microscopic dynamics can be accounted
for by adding a suitable tower of non-renormalizable interactions. The
SM, the most fundamental description of particle interactions gravity
excluded, is renormalizable. Still we can only consider the SM as an
effective theory. On one hand this is because the necessary inclusion
of gravity makes it non-renormalizable. On the other hand, even in the
absence of gravity, the SM is renormalizable but not asymptotically free.
At least one of its couplings, the one associated to the hypercharge vector
boson, grows logarithmically with energy and becomes infinite at a scale
ML ∼ mW eb/α, with b = 12π cos2 θW /41 ∼ 1. At E ∼ ML the perturba-
tive description breaks down, very much like the effective description of
G.R. breaks down at the Planck scale. The fact that ML � MP makes
however this second problem academic.

In order to make these general statements more concrete, let us focus
on a very simple example. Let us consider a physical system which at low
enough energy possesses just one scalar degree of freedom parametrized
by a field φ. The most general local and Poincaré invariant Lagrangian
can be written as an expansion in powers of φ and of its derivatives

L = ∂µφ∂µφ − m2φ2 + λ4φ
4 +

λ6

M2
φ6 +

λ8

M4
φ8 + · · ·

+
η4

M2
φ2∂µφ∂µφ +

η6

M4
φ4∂µφ∂µφ · · · (I.16)

where for simplicity we have also assumed a symmetry φ → −φ. We have
scaled all the couplings by powers of one mass scale M and by dimen-
sionless quantities λi, ηi, . . .. It is reasonable to assume that λi, ηi, . . . ∼
O(1). This corresponds to a theory that in addition to the particle mass
m contains only another physical scale, M , associated to the interac-
tions. It is easy to understand the meaning of this expansion when
calculating scattering amplitudes at energies m  E  M . Let us
focus on tree level computations first. We shall worry about quantum
corrections later. Neglecting numerical factors and indicating one power
of momentum generically by E, we have

A2→2(E) ∼ λ4 + η4
E2

M2
. . . (I.17)
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Figure 3. The diagrams contributing to the elastic process 2 → 2 at lowest order.

for the elastic process 2 → 2 corresponding to Fig. (3) and

A2→4(E) ∼ 1
E2

{
λ2

4 + λ4η4
E2

M2
+ λ6

E2

M2
+ . . .

}
(I.18)

for the inelastic process 2 → 4 shown in Fig. (4). This power counting
corresponds to simple dimensional analysis. Notice that for E  M
the dimensionless coupling λ4 dominates all the amplitudes. This result
is intuitively obvious. A coupling g of mass dimension [E]d can per-
turbatively contribute to observables via the dimensionless combination
g/Ed. We can then distinguish three classes of couplings depending on
whether d is positive, zero or negative. Couplings of positive dimension
are called relevant, as their effect becomes more important the smaller
the energy. An example is given by the mass term itself, which gives
small O(m2/E2) effects in the relativistic regime, but becomes impor-
tant when E ∼ O(m). Couplings of vanishing dimensions, like λ4, are
termed marginal. At tree level their effects are independent of the energy
scale. Finally, couplings of negative dimension are termed irrelevant, as
their effects become very small in the low energy domain. Notice that
while there is only a finite numer of relevant and marginal couplings, the
tower of irrelevant couplings is infinite. In spite of their infinity, and as
their naming suggests, irrelevant couplings do not totally eliminate the
predictive power of our Lagrangian as long as we use it at low energy,
E  M . At each finite order (E/M)n, only a finite number of terms
in the Lagrangian contributes to the amplitudes. This preserves a weak
form of predictivity, which is often good enough, since we just need to
match our theoretical computations to the experimental precision, which
is always finite.

We can now worry about quantum corrections. These introduce some
technical difficulties, but the basic conclusion is unchanged. To be fully
general, let us write our Lagrangian as a sum over operators Oi of di-
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Figure 4. The leading contributions to the inelastic process 2 → 4.

mension di + 4

L =
∑

i

ci
Oi

Mdi
. (I.19)

Assume we want to calculate some observable at order (E/M)n. Work-
ing at tree level it is enough to truncate L to the operators with di ≤ n.
The analysis at tree level is made simple by the fact that the exter-
nal momenta (∼ E) completely fix the momenta of the internal lines
and vertices. This is no longer true at loop level, where the loop mo-
mentum can be arbitrarily high. Moreover some of the loop integrals
are UV divergent and must be cut-off at some scale Λ. An interaction
term cON/MdN , can generate quantum corrections that involve positive
powers of the cut-off Λ

δA
A ∼ · · · + c

ΛP EdN−P

MdN
+ · · · (I.20)

Then an operator with dN > n, which at tree level only gives corrections
beyond the needed accuracy En, can, at loop level, generate effects that
scale with a power dN − P ≤ n. Moreover if Λ ∼ O(M) these quan-
tum effects are as important as the tree level contribution of operators
of lower dimension. This seems very embarrassing. Fortunately it can
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be proven that these effects are exactly equivalent to a renormalization
of the coefficients ci of the operators of lower dimensionality. Therefore
they do not contain any new information and can be eliminated by a
trivial change of renormalization scheme. Their equivalence to local op-
erators is qualitatively understandable: loops of high virtuality are small
in position space, corresponding to a region of size 1/Λ, and look point-
like with respect to the long wavelength 1/E of the external particles.
Another way to understand this result is to take a Wilsonian view point
where Λ is the running cut-off. After running down to a scale Λ such
that E <∼ Λ  M , the troublesome virtual effects becomes manifestly
small: the big effect has been replaced by a local renormalization of the
classical Lagrangian 3. But there is no doubt that the most convenient
method to define effective field theories at the quantum level is by Di-
mensional Regularization (DR). Dimensionally regulated loop integrals
exhibit no powerlike divergences, only logarithmic divergences survive.
The issue we just worried about does not even arise! The naive power
counting we found at tree level carries over to the quantum theory up
to mild logarithimic corrections.

Figure 5. 2-loop contribution to elastic scattering from λ5φ
5/M vertices.

Consider, for instance, the 2-loop diagram involving two insertions of
the λ5φ

5/M interaction shown in Fig. (5) By using a hard momentum
cut-off we have

δA2→2 = λ2
5

{
a

Λ2

M2
+ b

E2

M2
ln Λ/E

}
(I.21)

3To make this argument fully rigorous one should take into account that the Wilsonian
Lagrangian at scale Λ now also contains terms that scale like inverse powers of Λ. Terms
proportional to 1/(ΛRMS) are however fixed by the renormalized couplings associated to
operators with di ≤ S [11].
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while DR in 4 + ε dimensions gives

δA2→2 = λ2
5

(
1
ε

+ b lnµ/E

)
E2

M2
. (I.22)

In DR, after renormalization, this diagram gives just a logarithimic
Renormalization Group (RG) evolution of the coefficient of a dimen-
sion 6 operator (φ2) (φ2). We emphasize that while the power diver-
gences are totally scheme dependent, being fully saturated in the UV,
the logarithmic divergence involves a physical IR singularity lnE and
must be the same in both regularizations. This lnE term is associated
by unitarity to the cut diagrams |A2→3|2.

A by-product of this discussion is that in DR with minimal subtraction
(or any other mass independent subraction scheme) the RG equation
for the couplings of an effective Lagrangian follows just by dimensional
analysis [12]. Using the notation of eq. (I.19) where a coupling ci/M

di

has dimension −di, the β function has the form

µ
dci

dµ
=

∑
dj+dk=di

aj,kcjck +
∑

dj+dk+dl=di

aj,k,lcjckcl + · · · (I.23)

where ai,j , ai,k,l, . . . are numerical coefficient following from the loop in-
tegrals. Notice that the parameter submanifold where all the irrelevant
couplings (−di < 0) vanish is stable under RG evolution. This inter-
esting submanifold corresponds to what we normally call renormalizable
theories. On the other hand, once we turn on an irrelevant coupling of
dimension −d < 0 it will generate by RG evolution an infinite subset
of the couplings of more negative dimension. Such theories are termed
non-renormalizable, as quantum effects force the presence of infinitely
many inputs, though we hope to have made it clear how to deal with
them. Notice also that our original assumption to scale all the irrele-
vant couplings by the same mass M is stable under RG flow. Of course
there can be more complicated situations and models where the higher
dimensional couplings involve hierarchically different scales.

We conclude this discussion by reiterating the basic theorem. La-
grangians involving all possible non-renormalizable terms can be made
sense of as effective ones. A weak form of predictivity can be preserved
by working in perturbation theory in an expansion in E/M , where M is
the lowest scale characterizing the non-renormalizable couplings. This
works as long as E  M . When E ∼ M infinitely many parameters be-
come relevant and our effective Lagrangian completely looses predictive
power. A reasonable expectation is that at the scale M the theory enters
a new regime where perhaps new degrees of freedom are relevant. For in-
stance this is what happens in QCD at the scale 4πfπ ∼ 1GeV where the
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weakly coupled description of mesonic physics breaks down. At this en-
ergy the hadrons deconfine and at higher energies the dynamics is more
accurately described in terms of quarks and gluons. Notice that, accord-
ing to our discussion, non-asymptotically free renormalizable theories
are qualitatively similar to non-renormalizable theories. In the former
case, at least one coupling grows logarithmically λ(E) ∝ 1/ ln(ML/E)
with energy, while in the latter the growth of the effective dimensionless
couplings is powerlike λ(E) ∝ (E/M)n. In both cases the perturbative
description breaks down at some high scale, ML or M . The only differ-
ence between the two cases is quantitative: in the renormalizable case,
for a not too small a value of the running coupling at low energy, the
cut-off scale ML is exponentially far away.

I.4 Examples
We can analyze from the effective field theory viewpoint some system

of interest. One instructive example is provided by pure gravity, whose
Lagrangian was given in eq. (I.5). To study the interactions let us focus
on the case of vanishing cosmological constant and let us expand the
metric field around the flat background

gMN = ηMN +
hMN

M
D
2
−1

D

. (I.24)

Eq. (I.5) will then be written as a power series in the fluctuation h⎧⎨⎩(∂h)2 +
1

M
D
2
−1

D

h(∂h)2 +
1

MD−2
D

h2(∂h)2 + . . .

⎫⎬⎭ · · ·

+b

⎧⎨⎩ 1

M
D
2

+1

D

(∂2h)(∂2h) + . . .

⎫⎬⎭+ . . . (I.25)

where we have been very schematic, suppressing all the tensor structure
indices and O(1) factors, but keeping the derivative expansion structure
manifest. Notice that the fluctuation h has been defined in such a way
that it is canonically normalized. The interactions then all scale by
inverse powers of the Planck mass. The above Lagrangian, after suitable
gauge fixing can be used to compute graviton scattering processes in
perturbation theory. For instance the amplitude A2→2 scales with the
energy E like

A2→2 ∼ ED−2

MD−2
D

(
1 + b

E2

M2
D

+ . . .

)
. (I.26)
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The dots also include quantum effects, which scale like positive powers of
E/MD. For instance, by simple dimensional analysis, 1-loop effects in-
duced by the leading two derivative Lagrangian are of order (E/MD)D−2

with respect to the leading tree level contribution. In the ordinary purely
4 dimensional theory of Einstein gravity the Planck mass M4 ∼ 1018

GeV is much bigger than any energy scale relevant to astrophysics or
cosmology (if not for very early cosmology, even before inflation). Then
the truncation of the theory to the lowest two derivative Lagrangian,
the Einstein-Hilbert action, already allows a very accurate description
of the dynamics.

As a second example consider the interactions of the branon excita-
tions Y of a 3-brane

Lbrane = −f4
√

ĝ + bf2
√

ĝR(ĝ) + . . . (I.27)

Substituting eq. (I.14) and writing the interactions in terms of the
canonical fields Ŷi = f2Yi it is straighforward to power count the scal-
ing of Feynman diagrams. For the Y Y → Y Y amplitude the Feynman
diagram expansion corresponds to the series

A2→2 =
E4

f4

(
1 + C

E4

f4
lnE + b

E2

f2
+ . . .

)
. (I.28)

where the first and second term (proportional to a calculable coefficient
C) are determined by the quartic interaction in eq. (I.15) respectively
at tree level and at 1-loop. The tension f turns out to be the energy
scale which controls the perturbative expansion. At energies E ∼ f the
effective field theory description surely breaks down, in analogy with
the case E ∼ M in the scalar toy model of the previous section. The
quantity (E/f)2 controls the strength of the interaction like α/4π does
in quantum electrodynamics.

The length L = 1/f can be interpreted as the quantum size of the
brane, in analogy with the Compton wavelength of a particle. Indeed in
the case of a 0-brane, a point particle, f coincides with the mass m and
we recover the usual definition of Compton wavelength. In the case of a
particle the length 1/m controls the domain of validity of the low energy
non-relativistic effective theory. If we try to localize one electron at a
distance < 1/m, then, by the indetermination principle, not only will
its momentum p be relativistic but the production of electron-positron
pairs energetically possible. In the case of the brane, we can, for instance,
consider the quantum fluctuation of the linearized induced metric on the
vacuum . We find (cf. eq. (I.14))

〈∂µY i∂µYi〉 ∼
1
f4

∫
k3dk (I.29)
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which shows that at wavelengths of order 1/f the fluctuation of the
brane position becomes itself of order 1/f : at these short wavelengths
the brane cannot be approximated by a smooth surface. Basically it is
not possible to talk about fluctuations in the position of the brane that
are shorter than 1/f in both longitudinal and transverse directions.

With the previous considerations in mind, it is instructive to consider
the field theoretic domain wall discussed in sect. I.1. For definiteness
let us focus on the case of a 4-dimensional scalar theory, so that the wall
is a 2-brane. The tension is τ =

√
gv3, while the cut-off of the effective

description is provided by m =
√

gv, the energy at which extra massive
modes come in. We have m = (gτ)1/3, so that as long as the original
4D theory was weakly coupled (g  1), the brane theory never gets into
a strong coupling regime. At the cut off scale m, the loop expansion
parameter of the effective brane theory m3/τ = g coincides with the
loop expansion parameter of the original scalar field theory.

Figure 6. Cylindrical structure of 5-dimensional space-time compactified on M4 ×
S1.

I.5 Kaluza-Klein decomposition
So far we have been general: our discussion applies equally well to

compact and to infinite extra-dimensions. However, since it is empiri-
cally very clear that we live in three macroscopic spatial dimensions, for
phenomenological applications we must focus on the case in which the
extra-dimensions are compactified at some small enough radius R. The
dynamics at distances much bigger than R will not be able to notice the
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presence of the extra compact directions. To illustrate this fact let us
consider the simplest situation of a 5D scalar field φ with the 5th dimen-
sion compactified on a circle (see Fig. (6)) of radius R. Compactification
is formally expressed by the periodicity requirement

φ(x, x5) = φ(x, x5 + 2πR) (I.30)

Processes taking place on time scales T  R, by causality and by local-
ity, cannot notice that the 5th dimension is compact. On the other hand
to study processes happening on a time scale T >∼ R, and in particular at
energies E <∼ 1/R, the 5D local description is not the most adequate. In
this case it is convenient to expand the field φ in its Fourier components
with respect to the periodic coordinate x5.

φ(x, x5) =
n=∞∑

n=−∞
φn(x)ei

nx5
R . (I.31)

where the reality of φ implies φ−n(x) = φn(x)∗. Notice that each differ-
ent coefficient φn in this expansion corresponds to a different 4D field.
The φn are called Kaluza-Klein (KK) fields. According to this expansion
the 5D kinetic action integrated over x5 becomes∫

Lφdx5 = −1
2

∫ [
(∂µφ)2 − (∂5φ)2

]
=

1
2

∞∑
−∞

[
−|∂µφn|2 +

n2

R2
|φn|2

]
. (I.32)

The original 5D massless field has been decomposed in a tower of Kaluza-
Klein scalars φn with mass

mn = n/R. (I.33)

If we work at energy E, only a limited number n ∼ ER of KK can be
produced. In particular, for E < 1/R only the zero mode φ0 is available.
At such low energies the model looks 4-dimensional. The KK particles
appear only virtually, and their effect is reproduced by a suitable set
of local operators involving only the massless 4D fields. In the specific
example we are considering, the full space-time symmetry is just the 4-
dimensional Poincaré group times translations along the fifth direction:
P4 × U(1). The KK particle states represent just the irreducible repre-
sentations of this group. In particular the index n represents the charge
under the U(1) group of 5D translations: 5D translational invariance
shows up in 4D as the conservation of the KK indices ni summed over
the incoming and outgoing particles in a collision.
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Along similar lines one can study the KK decomposition of a gauge
vector field AM . But rather than discussing it in detail we go directly
to the case of the graviton: the technical issues, associated to gauge
invariance, are analogous for both vector and tensor field. So let us
consider the original theory of Kaluza and Klein [13]: 5D Einstein gravity
compactified on M4 × S1 with the action

2M3
5

∫
M4×S1

√
gR(g) (I.34)

We can write the full metric tensor in block form

gMN (x, x5) =
(

gµν gµ5

g5µ g55

)
=
(

ηµν + hµν hµ5

hµ5 1 + h55

)
. (I.35)

To work out the spectrum we must compute the quadratic action in
the linearized field hMN and then use the gauge freedom provided by
the linearized 5D diffeomorphisms, xM → xM + εM (x, x5)

hMN → hMN + δhMN = hMN + ∂N εM + ∂M εN . (I.36)

to eliminate the redundant degrees of freedom. Here and in what follows,
working at linear order, indices are raised and lowered using the Lorentz
metric ηMN . We stress that the compactification of the fifth dimension
implies that all our fields, including εM are periodic in x5. Using the
5 gauge parameters εN we can essentially eliminate 5 combinations of
the metric fluctuations hMN . We can choose these 5 combinations to be
just h55 and hµ5. By using Fourier modes we have that δh55 = 2∂5ε5
becomes

δh
(n)
55 = 2inε

(n)
5 (I.37)

which explicitly shows that we can eliminate all the modes but h
(0)
55 ,

which is gauge invariant. The gauge invariance of zero modes like h
(0)
55

follows from the periodicity of the gauge transformation∮
S1

δh55 = 2
∮

S1

∂5ε5 = 0 (I.38)

and is a generic features of gauge theories on compact spaces. The same
thing happens for hµ5

δh
(n)
µ5 = ∂µε

(n)
5 + inε(n)

µ . (I.39)

Therefore by using the n �= 0 modes of εM we can go to a gauge where

h55(x, x5) ≡ φ(x) hµ5(x, x5) ≡ Aµ(x) (I.40)
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while hµν(x, x5) is unconstrained. However we still have the zero mode
gauge freedom

Aµ → Aµ + ∂µε(0) h(0)
µν → h(0)

µν − ∂µε(0)ν − ∂νε
(0)
µ . (I.41)

The residual scalar mode φ, usually called radion, is associated to fluc-
tutations in the proper length L of the radius of compactification δL =∮

h55/2 = πRφ. The graviphoton Aµ, as shown in eq. (I.41), is the
gauge field associated to 4D local translations of the 5th coordinate.
The associated charge is just the momentum along the fifth dimension,
i.e. the KK index n.

Defining the KK modes via

hµν ≡
+∞∑

n=−∞
h(n)

µν ei
nx5
R (I.42)

the linearized 4D action becomes

L(2)
4D = M3

5 πR

{[ ∑+∞
−∞ h(n)µν

h
(−n)
µν − h(n)µ

µ h(−n)ν
ν

+ 2h
(n)
µν ∂µ∂νh(−n)ρ

ρ − 2h
(n)
µν ∂µ∂ρh(−n)ν

ρ

+ n2

4R2 (h(n)µ
µh(−n)ν

ν − h(n)µν
h

(−n)
µν )

]
+ 2φ(∂µ∂νh

(0)
µν − h(0)µ

µ) − FµνF
µν

}
(I.43)

where Fµν = ∂µAν − ∂νAµ. By looking at the coefficient of the zero
mode action we deduce that the effective 4-dimensional Planck scale is

M2
4 ≡ M3

5 2πR (I.44)

The ∂5 terms of the 5d Lagrangian have turned into mass terms for the
n �= 0 modes. As first noticed by Fierz and Pauli [14], the specific tensor
structure of this mass term is the only one ensuring the absence of ghosts
and tachyons in h

(n)
µν . The equations of motion for the massive modes

reduce indeed to(
+

n2

R2

)
h(n)

µν = 0 ∂µh(n)
µν = h(n)µ

µ = 0 (I.45)

where the second and third relations follow by taking the divergence
and trace of the equation of motion. This is completely analogous to
the well known case of a massive vector Vµ. There the divergence of
the equation of motion gives the constraint ∂µVµ = 0, implying that
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only 3 out of the 4 degrees of freedom propagate, as it should be for
a J = 1 massive particle. Here, due to the constraints, we have 10 −
5 = 5 propagating states, corresponding to a massive J = 2 particle.
An arbitrary symmetric two index tensor Hµν can be decomposed in
components of definite spin as

Hµν = HTT
µν +∂µET

ν +∂νE
T
µ +
(

ηµν − ∂µ∂ν

∂2

)
Φ+

∂µ∂ν

∂2
Ψ ≡ 2⊕1⊕0Φ⊕0Ψ

(I.46)
where ET

µ and HTT
µν are respectively transverse and transverse-traceless

(∂µET
µ = ∂µHTT

µν = ηµνHTT
µν = 0) and the spin of each component is in-

dicated in an obvious notation. By eq. (I.45) only HTT survives on-shell.
An instructive exercise is to construct the projectors on HTT , ET , Φ and
Ψ by writing them in a compact way in terms of the transverse and
longitudinal vector projectors ΠT

µν = ηµν − ∂µ∂ν/∂2, ΠL
µν = ∂µ∂ν/∂2.

Another instructive exercise is to write the kinetic Lagrangian in terms
of the various projectors, in complete analogy with the massive J = 1
case, and from that to derive the massive J = 2 propagator

〈h(−n)
µν h(n)

ρσ 〉 =
1
2

(
Π̂T

µρΠ̂
T
νσ + Π̂T

µσΠ̂T
νρ

)
− 1

3Π̂T
µνΠ̂T

ρσ

p2 + n2

R2

≡ Πµνρσ(mn)
p2 + m2

n

(I.47)

where Π̂T
µν = ηµν − pµpν/(mn)2.

Let us now focus on the zero modes. Notice that the radion mixes
kinetically to the graviton. It is convenient to diagonalize the kinetic
term via the Weyl shift h

(0)
µν ≡ h̄µν − 1

2φηµν , after which φ acquires a self
kinetic term

3
2
M3

5 πRφ φ (I.48)

while h̄µν has obviously the kinetic term of massless graviton. At this
point we can gauge fix the residual 4D reparametrization and gauge
symmetry by using respectively the de Donder and Feynman gauges

2M3
5 πR

{(
∂µh̄µν − 1

2
∂ν h̄

µ
µ

)2

− (∂µAµ)2
}

. (I.49)

On shell we have 2 physical helicity states in both h̄ and A. These,
including φ, add up to 5 states: the same number we found at each
excited level, but here they are shared among particles of different spin.

The presence of the radion φ makes this theory quite different from
ordinary 4D Einstein gravity (the additional scalar is sometimes called a
Brans-Dicke field). The tensor field that couples to ordinary 4D matter
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and thus describes the observable fluctuations of the 4D geometry is
the original metric h

(0)
µν and not h̄µν . Therefore the relevant graviton

propagator is

〈h(0)
µν h(0)

ρσ 〉 = 〈h̄µν h̄ρσ〉 +
1
4
〈φφ〉

=
1

M2
4

{
1
2 (ηµρησν + ηµσηρν) − 1

2ηµνηρσ

q2

+
1
6

ηµνηρσ

q2
} (I.50)

where the first term is just the result we would get in ordinary GR and
the second contribution, proportional to 1/6, is due to the radion. In
the non-relativistic regime the effects of the tensor and scalar field are
indistinguishable. The Newton constant is determined by 〈h(0)

00 h
(0)
00 〉 and

given by

32πGN =
2

M2
4

(
1
2

+
1
6

)
=

4
3

1
M2

4

(I.51)

where we have indicated separately the contributions of the tensor and
of the scalar. However in the relativistic regime the implications of the
two terms are quite different. In particular φ does not couple to photons
as they have a traceless energy momentum tensor. Now, one of the most
accurate tests of GR is the measurement of the deflection of light by
the gravitational field of the Sun: the experimental result agrees with
the theory to about 1 part in 103. In the theory at hand, φ does not
contribute to this deflection, and the scattering angle, expressed in terms
of the non-relativistic GN of eq. (I.51), is therefore only 3/4 of the GR
prediction. This result is completely ruled out by the data. In order to
meet consistency, φ should be given a mass mφ, so that its contribution
to the potential will decay as e−mφr/r and become quickly irrelevant for
r > 1/mφ. Notice that giving a mass to φ corresponds to stabilizing
the size of the 5th dimension. The agreement between the value of GN

measured in post Cavendish experiments [21–23] down to distances of
order 100 µm with that governing post Newtonian corrections in the
solar system forces the mass of φ to be bigger that �c/100µm ∼ 10−3

eV.
To gain another viewpoint on the compactification of gravity from D

down to 4 dimensions, it is worth to count the physical states of gravity
around ordinary D-dimensional (non-compact) Minkowsky space. The
metric symmetric tensor hMN corresponds to D(D− 1)/2 fields. By us-
ing the D gauge transformations εN we can eliminate D of these fields.
For instance we can go to the Gaussian normal gauge where all time com-
ponents vanish h00 = h0i = 0. This choice is the analogue of Coulomb
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gauge in Maxwell’s theory. However as in any gauge theory, even after
fixing the gauge, we must still impose the equations of motion of h00

and h0i as an initial time constraint

∂L
δh00

= ∇i∇jhij −∇i∇ih
j
j |t=0 = 0

∂L
δh0i

=
(
∇j ḣij −∇iḣ

j
j

)
|t=0 = 0

(I.52)
where by the dot and by ∇i we indicate respectively detivatives with
respect to the time, t, and space, xi, coordinates. The divergence of the
hij equations of motion (

∇j ḧij −∇iḧ
j
j

)
= 0 (I.53)

ensures that both constraints remain valid at all times4. To clarify things
it is convenient to decompose hij in spin components as previously done
in eq. (I.46)

hij ≡ HTT
ij + ∇iV

T
j + ∇jV

T
i +

(
δij −

∇i∇j

∇2

)
H +

∇i∇j

∇2
V (I.54)

Moreover it should be noticed that there is a residual gauge freedom
preserving the Gaussian normal condition

ε0 ≡ ε0(xi) εi ≡ εT
i (xi) −∇i(εL(xi) + tε0(xi)). (I.55)

Notice that the ε’s depend only on the space coordinates and that ∇iεT
i =

0. Now, the divergence and trace of the hij equation of motion imply

∇iḦ = ∇2V̈ T
i = 0 V̈ + (D − 2)Ḧ − (D − 3)∇2H = 0. (I.56)

Assuming that our fields F vanish fast enough at spactal infinity, ∇2F =
0 implies F = 0. The first two equations then imply H = H0(xi) +
tH1(xi) and V T

j = V0
T
j (xi)+tV1

T
j (xi). The initial time constraints imply

however H0 = H1 = V1
T
j = 0. In turn eq. (I.56) implies V = V0(xi) +

tV1(x). At this point we are left with D functions V0
T
i , V0, V1 which

can be completely eliminated by the residual gauge freedom εT
i , εL, ε0.

Notice that the initial time constraints eliminate 1 dynamical variable,
H, plus D − 1 “velocities” Ḣ, V̇ T

i . Instead the gauge freedom allows to
eliminate D − 1 variables and 1 velocity. This generalizes the situation

4Again this is analogous to electromagnetism. In Coulomb gauge, the A0 equation of motion

constraint gives Gauss law
−→∇ · −→E = 0 at initial times. Maxwell’s equation

−̇→
E =

−→∇ × −→
B

implies the validity of Gauss’s law at all times.
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field original (−) gauge (−) eqs. motion propagating
d.o.f fixing d.o.f.

(J = 2) hµν 10 0 −5 5

(J = 1) hµi 4n −4 −(n − 1) 3(n − 1)

(J = 0) hij
n(n+1)

2
−n 0 n(n−1)

2

Table 1. Number of degrees of freedom (d.o.f.) off-shell and on-shell for each field
component

in electromagnetism where the Gauss constraint eliminates 1 velocity,
∇iȦi, while the residual gauge freedom eliminates ∇iAi.

The result of all this is that, after going to the h00 = h0i = 0 gauge,
an additional D deegrees of freedom are eliminated (V T

i , H, V ) and we
are left with D(D − 1)/2 − 2D = D(D − 3)/2 propagating fields, corre-
sponding to HTT

ij .
Before concluding this section we discuss the more general case of

Einstein gravity in D = 4 + n dimensions, with the n extra-dimensions
compactified on a square torus Tn [15]. Indicating by i and xi the extra
indices and coordinates, Tn is defined by the equivalence relation xi ∼
xi + 2πRni with ni a vector with integer entries. KK levels are labelled
by a vector of integers (−→n )i = ni associated to the momentum ni/R
along the Tn directions. The counting of physical degrees of freedom
for each massive KK level is shown in Table (1). It is easy to check
that gauge invariance allows to eliminate the 4D vector nihiµ (4 fields)
and the scalars nihij (n fields). On shell n− 1 longitudinal components
from the remaining n − 1 vectors and 5 more components from hµν are
eliminated. The propagating degrees of freedom are correspondingly
n − 1 massive vectors and 1 massive graviton. Thus there finally result
(n + 4)(n + 1)/2 = D(D − 3)/2 physical states, in agreement with our
previous derivation. At the zero mode level there is the same number
of degrees of freedom, but they are shared among 1 graviton h

(0)
µν , 2n

graviphotons Ai
µ and a symmetric matrix of n(n + 1)/2 scalars φij . The

scalars φij are the moduli describing the fluctuations in the shape and
size of the torus. In particular the trace φi

i describes the fluctuations
of the torus volume. This field mixes to the 4D graviton leading to a
propagator with an extra scalar term

1
M2

4

{
1
2 (ηµρησν + ηµσηρν) − 1

2ηµνηρσ

q2
+

n

2n + 4
ηµνηρσ

q2
}. (I.57)

In order to agree with observations, the volume modulus should be sta-
bilized.
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I.6 Large Extra-Dimensions
A very interesting arena where to apply the concepts that we intro-

duced is given by the scenario of large extra-dimensions. This scenario
has been advocated by Arkani-Hamed, Dimopoulos and Dvali (ADD)
as an alternative viewpoint on the gauge hierarchy problem [2]. With
respect to the standard picture for physics beyond the SM the ADD
proposal represents a dramatic shift of paradigm. In the standard sce-
nario, fundamental interactions are described by an ordinary quantum
field theory up to energy scales larger that the Grand Unification scale
1016 GeV. Above this scale quantum gravity effects or string theory im-
ply a radical revision of fundamental physics. According to the ADD
proposal, instead, this radical revision is needed right above the weak
scale! The proposal is specified by three main features

There exists a number of n new spatial compact dimensions. For
instance a simple manifold could be just M4 × Tn.

The fundamental Planck scale of the theory is very low MD ∼
TeV.

The SM degrees of freedom are localized on a 3D-brane stretching
along the 3 non-compact space dimensions.

As we will now explain, these three requirement allow for a drastically
different viewpoint on the hierarchy problem, without leading to any
stark disagreement with experimental observations. Let us focus on
gravity first. As we have already seen in the simple case of Kaluza-
Klein’s theory, the macroscopic Planck mass M2

4 of the effective 4D
theory is related to the microscopic MD via

M2
4 = M2+n

D Vn (I.58)

where Vn is the compactification volume. For a torus we have Vn =
(2πR)n and the above result follows from a simple generalization of
the analysis we previously did on S1. We can also obtain this rela-
tion by considering directly the effective action for a purely zero mode
gµν(xµ, xi) ≡ ḡµν(xµ) fluctuation of the metric along M4

2M2+n
D

∫
d4xµdnxi√gRD(g) ↔ 2MDVn

∫
d4xµ√ḡR4(ḡ) (I.59)

where we have explicitly indicated the dimensionality of the Ricci tensor.
The main remark of ADD is based on eq. (I.58). Provided the volume
of compactification is large enough, even a low gravity scale MD can
reproduce the physical value M4 = 2 × 1018 GeV. Before discussing the
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n R

1 6 × 1013 cm

2 0.4 mm = 1/(10−4eV)

4 10−8 mm = 1/(20KeV)

6 2.5 × 10−11 mm = 1/(10MeV)

Table 2. Radius of compactification for fixed value of MGRW
D = 1 TeV , where

(MGRW
D )2+n ≡ 4(2π)nM2+n

D is the Planck mass defined in the first paper of ref. [15].

needed size of R, notice that eq. (I.58) has a very simple interpretation
via Gauss’s theorem. Consider the Newtonian potential ϕ ≡ h00/2 gen-
erated by a test mass M in the linearized approximation. At a distance
r  R the compactness of the extra-dimensions does not play a relevant
role: the potential is to a good approximation SO(3+n) symmetric and
given by

ϕ|r�R � − Γ(n+3
2 )

(2n + 4)π
3+n

2

1
M2+n

D

M

r1+n
. (I.60)

as dictated by Gauss’s theorem. At r � R the field lines stretch along
the 3 non-compact directions, the potential is only SO(3) symmetric.
The surface encompassing the field flux is now the two sphere (non-
compact directions) times the compactification manifold; for instance
S2 × Tn. Applying Gauss’s theorem we find then

ϕ|r�R � − n + 1
16π(n + 2)M2+n

D Vn

M

r
≡ n + 1

16π(n + 2)
1

M2
4

M

r
(I.61)

from which we recover again eq. (I.58). In practice the large distance
field is made weaker by the large extradimensional volume in which the
field lines can spread. (The dependence of eq. (I.61) on n is due to the
massless radion. For n = 1 it agrees with eq. (I.51), while for general n
eq. (I.61) is simply the Fourier transform of eq. (I.57).).

If the ultimate cut-off MD is of order the weak scale itself G
−1/2
F , then

the expected quantum corrections to the Higgs mass are of the order of
its phenomenologically favored value mH ∼ G

−1/2
F . In this respect the

hierarchy problem, in its ordinary formulation, is practically eliminated
when MD ∼ 1 TeV. With this input, and with the observed value of
M4, eq. (I.58) predicts the size of Vn. In Table 2, we give the radius
of compactification in the case of a square n-torus. We stress, see eqs.
(I.60,I.61), that Newton’s law is reproduced only at distances large than
R. The case n = 1 requires a radius of compactification of the size
of the solar system, which is largely ruled out. However already for n
greater or equal than 2 the resulting radius is not unreasonable. Indeed
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experimental tests of gravity at distances shorter than a millimeter are
extremely arduous. This is largely due to the presence of Van der Waals
forces, which tend to swamp any interesting measurement. At present
the best bound relegates O(1) deviations from Newton’s law (the ones
we would expect is our scenario at r <∼ R) to distances shorter than
200µm. In this respect the case n = 2 is not barely inconsistent. n = 2
is also experimentally interesting, as it predicts deviations in the range of
present sensitivities. The search for deviations from Newton’s law is an
active experimental field, also greatly stimulated by the ADD proposal.

Focusing on gravity only, we have shown that for n ≥ 2 the radius of
compactification is small enough. On the other hand the Standard Model
has been verified down to distances much shorter than the radii shown
in the table. The SM is a 3+1 dimensional quantum field theory and its
predictions depend crucially on this property. LEP, SLC and Tevatron
have tested the SM up to an energy of order 1 TeV, corresponding to
a distance of order 10−16 cm. Experimentally then, the SM is a 3+1
dimensional system down to a distance much shorter that the radius of
compactification. Localizing all the SM degrees of freedom on a 3-brane
is an elegant way to realize this experimental fact, while keeping larger
radii of compactification. Now it will be the brane size, or whatever other
characteristic brane cut-off scale, perhaps 1/MD itself, to characterize
the length scale down to which the SM is a valid effective field theory.
This scale can conceivably be >∼ 1 TeV. For instance, the ADD scenario
could be realized in type I string theory [16, 17] with the SM localized
on a D-brane. In this case the string scale MS , governing the mass of
Regge resonances, acts as UV cut off of the brane effective theory.

This completes the basic description of the ADD scenario. It must
however be said that, as it stands, the ADD proposal is a reformulation
of the hierarchy problem and not yet a solution [18]. Instead of the small
Higgs vacuum expectation value (VEV) of the old formulation, we now
need to explain why the compactification volume Vn is so much bigger
that its most natural scale 1/Mn

D:

VnMn
D ∼ 1033. (I.62)

Vn, or equivalently the radius R, is a dynamical degree of freedom, a
scalar field. We have already shown that in the case of Tn the fluctuation
of Vn ≡ (2πR)n corresponds at linear order to the trace hi

i. Since we
want a large 〈R〉 the scalar potential V (R) will have to be much flatter
than naively expected at large values of R. As far as we know, the most
natural way to achieve such flat potentials is by invoking supersymmetry.
So, if the ADD scenario is realized in Nature it is likely to be so together
with supersymmetry at some stage. Notice that in the conventional
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formulation of the hierarchy problem supersymmetry is invoked to ensure
a flat potential at small values of the Higgs field, i.e. a small Higgs mass.
As a matter of fact, the ADD proposal maps a small VEV problem
into a basically equivalent large VEV problem. In the new scenario the
hierarchy problem has become a sort of cosmological constant problem.
Indeed a vacuum energy density Λ4+n would add to the radius potential
a term ∼ Λ4+nRn. This grows very fast at large R so we expect [18]
that Λ4+n should be much smaller than its natural value ( TeV)4+n. In
this respect the presence of bulk supersymmetry would be a natural
way to enforce a small Λ4+n, thus helping to explain the large volume.
Indeed [19] presents a simple mechanism which produces large radii at
n = 2, but which works for a vanishing bulk cosmological constant Λ6.
Although the model considered is not supersymmetric it is conceivable
that the same mechanism will generalize to a supersymmetry set-up and
thus lead to a truly natural generation of the hierarchy.

One reason why the ADD proposal is important is theoretical. The
hope is that such a drastic revision of our view of fundamental inter-
actions may open the way to new solutions to old problems, like the
cosmological constant problem for instance. Having string theory right
at the weak scale may also end up being the right ingredient to build
the right string model. However none of these breakthroughs has come
yet. The interest in the ADD proposal is at the moment associated to its
potentially dramatic phenomenological implications [20]. There are two
classes of laboratory tests of large extra-dimensions. We have already
commented on the first class, the search for deviations from Newton’s
law at short but macroscopic distances. This is done in table top ex-
periments. These deviations could be determined by the light moduli,
like the radius R [18], or by the lowest Kaluza-Klein (KK) J=2 modes.
Another source of deviation could be the lowest KK mode of a bulk
vector field gauging baryon number [20]. At present, O(1) deviations
from Newton’s law have been excluded down to a length ∼ 200 µm [21],
while forces that have a strength > 104 of gravity are bounded to have
a range smaller than 20µm [22, 23]. Notice that this class of effects
crucially depends on the features of the compactification manifold at
large “lengths”, as they determine the masses of the lightest modes. For
instance the presence of even a small curvature of the compactification
manifold can drastically affect these prediction by lifting the lightest
states. On dimensional grounds, if the typical curvature length is L the
modes with mass < 1/L will be affected and possibly made heavier.

The second class of tests is given by high energy collisions [15]. In this
case we deal with either gravitons at virtuality Q � 1/R or with real
gravitons measured with too poor an energy resolution to distinguish
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Figure 7. Example of two processes with missing energy by bulk graviton radiation.

individual KK levels. In practice, for high energy processes happening
on a short time scale τ ∼ 1/E  R, causality and locality imply that we
cannot notice that the extra-dimensions are compact. Therefore we can
take the limit R → ∞ and work as if our brane were embedded in infinite
(4 + n)-dimensional Minkowski space. (If the compactification manifold
had curvature length L  R, then the same reasoning would apply for
energies E � 1/L). Moreover at energy E < MD, as discussed in section
I.4, we can reliably compute the amplitudes in a systematic derivative
expansion. The characteristic signals are then associated to the emission
of gravitons (G) which escape undetected into the extra-dimensions.
Interesting examples (see the figure) are given by the processes e+e− →
γ + G = γ+ �E or pp → jet+ �E or possibly by the invisible decay of
the Higgs into just one graviton [24]. The latter process does not violate
the conservation of angular momentum, since there are KK gravitons of
spin 0. The relevant interactions are obtained by expanding the brane
action for the SM (as in eq. (I.13)) in powers of the induced metric.
For processes with the emission of one graviton we have just the energy
momentum term

Lint = −1
2
TSM

µν hµν(x, yi = 0) (I.63)

where we have assumed the brane to be located at yi = 0. Emission
rates can be computed by expanding hµν(x, yi = 0) in KK modes. For
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instance, the differential cross section for e+e− → γG

d2σ

dxγd cos θ
(e+e− → γG) = α

128
1

(4π)
n
2 Γ(n

2
)

(
s

n
2

Mn+2
D

)
[
Fn(xγ , cos θ) + O( s

M2
D

)
]

(I.64)

Fn(x, y) =
2(1 − x)

n
2
−1

x(1 − y2)
[
(2 − x)2(1 − x + x2) − 3y2x2(1 − x) − y4x4

]
.

(I.65)
Here xγ = 2Eγ/

√
s, Eγ is the photon energy, and θ is the angle between

the photon and beam directions. At leading order in E/MD this process
is predicted just in terms of one new parameter, MD itself. Higher order
corrections will depend on new operator coefficients. Similar results can
be found for all the other processes [15].

Notice that graviton emission violates the conservation of momentum
along the y directions. This is not surprising since the presence of the
brane at y = 0 breaks translation invariance. However one might worry
that non-conservation of the brane energy momentum might lead to in-
consistencies in the interaction with gravity; after all Einstein equations
demand energy momentum conservation. But this is not the case. Even
though the global momentum Pi along yi is not conserved (or better not
defined) the full energy momentum tensor TMN for the brane plus mat-
ter is indeed locally conserved. Conservation of a local current in the
absence of a globally conserved charge is the landmark of spontaneous
symmetry breaking, and is precisely what happens here. As we have
said before, translations in yi are a non-linearly realized symmetry, with
the branons Y i acting as Goldstone bosons. Local conservation of mo-
mentum implies the presence of the branons and hence their production
in fundamental processes. Since the brane is infinitely massive it cannot
undergo a global recoil, but conservation of its energy momentum tensor
implies the possibility of local recoil by branon emission. The emission of
branons is another possible signature of the braneworld scenario. Bra-
nons Y are emitted in pairs. At lowest order one finds [25]

d2σ

dxγd cos θ
(e+e− → γY Y ) =

α

1920π5

(
s3

f8

)[
F6(xγ , cos θ) + O(

s

M2
D

)
]

(I.66)
which, up to an overal constant, is the same result one obtains for gravi-
ton emission at D = 10. A similar result is obtained in the case of
hadronic collisions. Comparing eqs. (I.64,I.66) to experiments one ob-
tains experimental bounds of the scales MD and f . As the effect grows
with

√
s the best bounds are obtained from the higher energy exper-

iments, LEP2 and Tevatron. In particular LEP2 implies the bound
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n 2 3 4 5 6

MGRW
D (TeV) > 1.45 > 1.09 > 0.87 0.72 0.65

Table 3. Collider bounds on MGRW
D

f > 100 GeV [25]. The combined LEP Tevatron bounds on MD [27]are
shown in Table 3. These direct bounds are not very strong. The reason
is that the cross section is suppressed by a rather large power of E over
the high scale. The LHC will be a better machine to test these ideas
through the direct production of gravitons or string states [15, 26]. At
present stronger bounds come from other effects, associated to contact
4 fermion interactions, that are expected in the ADD scenario model
without being a distinctive feature. The translation of the bounds from
these other effects into bounds on MD is a model dependent procedure,
but it is fair to say that they roughly imply MD >∼ 3 TeV [27]. Finally
we should mention that, with enough luck, the LHC may also study
gravitational scattering at energies in excess of the Planck mass MD,
the so-called transplanckian regime. For MD ∼ 1 − 3 TeV, the most
energetic collisions at LHC, at

√
s = 14 TeV, should start manifesting

the transplanckian dynamics, which consists of black-hole [28] or string
ball [29] production and also of the characteristic gravitational elastic
scattering [30]. The common features of these processes is to give cross
section at high energy, and fixed angle, that asymptotically grow like a
power of energy. This would be an undisputable signal that the high
energy dynamics of gravity, a force whose associated charge is energy
itself, has been detected.

Computations like those we have outlined are relevant also to study
the cosmological and astrophysical implications of the ADD scenario.
The phenomenology of these models is now a very wide field. Unfortu-
nately in order to cover it appropriately we would be lead outside the
main goal of the present lectures, which concerns the basic physics prin-
ciples and tools. Excellent pedagogical reviews of recent results with
extensive references are given by refs. [31, 32].

II. Part II: the Randall-Sundrum model
In the second part of these lecture we will focus on a specific model

proposed by Randall and Sundrum (RS) which is interesting both from
the theoretical and the pedagogical viewpoint. On one side the RS model
realizes a new way of approaching the hierarchy problem, on the other it
is simple enough to allow a number of rather instructive computations.
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Moreover it naturally demands the introduction of the concept of holog-
raphy, the basis of the AdS/CFT correspondance [33, 34]. All these
reasons make the RS model a very rich and instructive lecture subject.

II.1 The Model
Let us consider a model with a 5th dimension and let us compactify it

by considering the following equivalence relations for the fifth coordinate
y

y ∼ y + 2π y ∼ −y. (II.67)

The first relation, alone, would define a circle S1. The second relation,
a Z2 reflection, implies identification of opposite points on the circle, as
shown in the Fig. (8). y = 0 and y = π are fixed points under Z2 on
the circle and are identified with themselves. The resulting space from
this identifications is called a S1/Z2 orbifold. S1/Z2 is equivalent to the
[0, π] segment, but for computational purposes it is useful work with the
full S1 covering space with Z2 identification. Consider now the metric

Figure 8. Graphical representation of S1/Z2.

on this space

ds2 = gµνdxµdxν + 2gµ5dxµdy + g55dy2. (II.68)

The points related by y → −y are physically identical, and under Z2

the interval ds2 should be invariant. Since dy → −dy under Z2, we then
have

gµν(x, y) = gµν(x,−y) g55(x, y) = g55(x,−y) gµ5(x, y) = −gµ5(x,−y).
(II.69)

From the last identity and by the continuity of gµ5 it follows that gµ5 (x, 0)
= gµ5(x, π) = 0. Changes of coordinates

x̄µ = x̄µ(x, y) ȳ = ȳ(x, y) (II.70)
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should still parametrize an orbifold and respect eq. (II.67). Without
loss of generality we can impose ȳ to be the new orbifold coordinate
satisfying

ȳ(x, y + 2π) = ȳ(x, y) + 2π ȳ(x,−y) = −ȳ(x, y) (II.71)

generalizing what we did before for the circle. Notice that under reparame-
trizations the fixed point are mapped onto themselves ȳ(x, 0) = 0,
ȳ(x, π) = π 5 At the boundaries, eq. (II.70) reduces to 4D repara-
metrizations of the boundaries themselves

0) xµ → x̄µ(x, 0)
π) xµ → x̄µ(x, π) (II.72)

under which the induced metrics

g0µν ≡ gµν(x, 0) gπµν ≡ gµν(x, π) (II.73)

are covariant tensors. Now, using g0,π we can write the most general
invariant action involving also fields and interactions localized at the
boundaries

S =
∫

d4x

∫ 2π

0
dy
{√

g [2M5R(g) − τ ] (II.74)

+ δ(y)
√

g0 [L0 − τ0] + δ(y − π)
√

gπ [Lπ − τπ]
}

where τ and τ0, τπ are respectively the bulk cosmological constant and
boundary tensions. By L0,π we indicate any other interactions involving
fields localized at the boundary. Neglecting the latter, the 5D Einstein
equations are

√
g GMN =

−1
4M3

5

[
τ
√

ggMN +
(
τ0
√

g
0
g0µνδ(y) + τπ

√
g

π
gπµνδ(y − π)

)
δµ
Mδν

N

]
(II.75)

We look for a solution with the following Poincaré invariant ansatz

ds2 = e−2σ(y)ηµνdxµdxν + r2
cdy2 (II.76)

5On the segment [0, π] these are the reparametrizations that do not move the boundaries. One
could allow more general reparametrizations under which the boundary points are shifted.
The resulting field space would be obviously larger. The physics would however not be
affected. From the point of view of this more general formulation our field space is obtained
just by a partial gauge fixing.
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where rc is a parameter with dimension [length] parametrizing the proper
distance between the two fixed points. The µ5 equation is identically
satisfied while the 55 is(

σ′

rc

)2

= − τ

24M3
5

≡ k2. (II.77)

implying a negative cosmological constant τ < 0. Imposing the orbifold
symmetry eq. (II.77) has two solutions (up to trivial coordinate changes):

σ(y) = ±krc|y|. (II.78)

Finally the µν equation is

σ′′ =
rc

12M3
5

[τ0δ(y) + τπδ(y − π)] (II.79)

which is solved by eq. (II.78) provided the following conditions hold

τ0 = −τπ = ±24M3
5 k. (II.80)

Without loss of generality, we can choose the solution σ = +krc|y|. No-
tice that the tension τπ is negative. We will later show that this does
not lead to instabilities. Eq. (II.80) represents a tuning of two parame-
ters, in the absence of which there would not exist a static solution with
Poincaré symmetry. This does not seem at all a desired feature for a
model aiming at a solution of the gauge hierarchy problem! The meaning
of eq. (II.80) will become more clear below. We will then explain that
in the complete model there remains just one tuning, the one associated
to the 4D cosmological constant. This is a situation common to all the
other solutions of the gauge hierarchy problem, like supersymmetry or
technicolor.

Our orbifold with metric

ds2 = e−2krc|y|dxµdxµ + r2
cdy2 (II.81)

corresponds to two slices of 5-dimensional anti-de Sitter space (AdS5)
glued back to back at the fixed points. The full AdS space is obtained by
|y| → y and for y ∈ (∞,+∞). k2 = R5(g) parametrizes the curvature of
this space. In order for our effective field theory to be a valid description
it should be k  M5. A region with fixed x coordinates exported along
y describes a throat that gets exponentially narrow at larger y. Fig.
9 depicts the same contraction for the wavelength of infalling quanta,
which we will later discuss in more detail. It is sometimes said that the
space is “warped” by the y dependent factor multiplying the 4D metric.
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Figure 9. Contraction of wavelengths as particles fall through the AdS throat.

Our metric can be used to redshift 4-dimensional mass parameters as
suggested at the beginning of these lectures. Assume we place at 0 and
π two identical copies of a 4D QFT. Exactly like with two atoms in the
gravitational field of a star, any direct experimental comparison of the
masses of the equivalent states at each brane gives

mπ

m0
= e−krcπ. (II.82)

For e−krcπ ∼ mZ/M4 this effect could be relevant in explaining the weak
scale hierarchy. Because of the relative shift of mass scales the 0 and π
fixed points are called respectively the Planck and TeV brane. Notice
also that, because of the appearance of an exponential factor, a redshift
of order mz/M4 ∼ 10−16 is already obtained when the proper radius of
compactification rcπ is only about 35−40 times larger than the curvature
radius 1/k. The latter could in turn be not much bigger than the 5D
Planck length 1/M5. Therefore a large hierarchy can be obtained from
a rather small fifth dimension.

II.2 Low energy effective theory
The RS model is a generalization of the Kaluza-Klein theory that

we already studied. It is then straightforward for us to discuss its zero
mode content and to derive the low energy effective field theory. The
main difference with respect to gravity on S1, is that gµ5 is odd under
orbifold parity, see eq. (II.69). Then gµ5 does not have a graviphoton
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zero mode and we can go to a gauge where gµ5 ≡ 0. On the other hand
the graviton and radion zero modes are just obtained by promoting the
Lorentz metric ηµν and radius rc to 4-dimensional fields [3]

ds2 = GMNdXNdXM = e−2kT (x)|y|ḡµν(x)dxµdxν + T (x)2dy2. (II.83)

Notice indeed that when ḡµν and T are constant over space-time, eq.
(II.83) is a solution of the equations of motion.(T = rc is not fixed by
the solution, while the solutions with arbitrary constant ḡµν is simply
obtained from the original solution by applying the coordinate change,
xµ → Aµ

νxν , with Aρ
µAρν = ḡµν .) Then the 5D action is stationary over

the field manifold of constant ḡµν and T , i.e. there is no “potential”
for ḡµν and T , so that they must correspond to massless particles. By
substituting the ansatz in eq. (II.83) in the action we find indeed

Leff
4 =

∫
L5(ḡ, T )dy =

(
M5

k

)3 √
ḡ
{(

2k2 − 2µ2
)
R(ḡ) + 12(∂µ)2

}
(II.84)

where
µ(x) = ke−kT (x)π. (II.85)

and where all the metric contractions are done with ḡµν . This Lagrangian
correctly describes the interactions of the zero modes up to terms with
more than two derivatives. We will explain this in more detail when
deriving the KK spectrum. By substituting 〈T 〉 = rc in the above equa-
tions we can read the effective 4-dimensional Planck scale

M2
4 =

M3
5

k

(
1 − e−2krcπ

)
. (II.86)

By working with T ≡ rc, eq. (II.83) substituted in the 5D Einstein
term gives

√
gR5(g) =

√
ḡrce

−2σ(y)R4(ḡ) + . . .. Eq. (II.86) then simply
corresponds to the integral

M2
4 = M3

5

∫ π

−π
e−2σ(y)rcdy. (II.87)

The crucial aspect of this result is that M4 is completely dominated by
the region close to the Planck brane, where the warp factor is of order
1. Therefore the value of M4 is insensitive to the redshift of mass scales
that takes place in the bulk and which is maximal at the TeV brane.

Now that we have calculated the Planck mass we can discuss the issue
of the gauge hierarchy in more detail. Assume we localize all the fields
of the Standard Model on the TeV brane. We indicate collectively by
H, ψα, and Aµ the scalars, fermions and vectors, and by m the mass



Cargese Lectures on Extra-Dimensions 499

parameters (any mass parameter, including the Higgs mass). According
to the ansatz of eq. (II.83), and keeping the radion fixed for simplicity,
the induced metric at the TeV brane is

gπµν = e−2σ(π)ḡµν(x). (II.88)

so that the low energy effective action including the y = π boundary
contribution is

Leff =
{2M3

5

k

(
1 − e−2σ(π)

)√
ḡR(ḡ) +

√
gπLπ(gπµν , H, ψα,Aµ, m)

}
.

(II.89)
Notice that the metric that couples to matter is rescaled with respect
to the one that appears in the Einstein term, as if different length units
were used in the two actions. To make physics manifest it is useful to
perform a constant Weyl transformation on the matter action. This is
just a reparametrization of field variables corresponding to a change of
the length unit. Indicating by w the Weyl rescaling parameter, in 4
dimension we have that the various fields transform as

(gµν , H, ψα, Aµ ) =
(
w−2g′µν , wH ′, w3/2ψ′

α, A′
µ

)
. (II.90)

Indicating collectively the fields with Φ and the rescaled ones with Φ′ a
generally covariant action S satisfies the relation

S(Φ, m) = S(Φ′,
m

w
). (II.91)

One can easily check this result by considering the free scalar Lagrangian
√

g
(
gµν∂µH∂νH − m2H2

)
(II.92)

In the case of the matter contribution in eq. (II.89) we make a rescaling
with w = eσ(π) such that gπµν = w−2ḡµν , H = wH ′, . . . and write it as

√
ḡLπ(ḡµν , H

′, ψ′
α, A′

µ, me−σ(π)). (II.93)

In these new variables it is evident that all mass parameters in the
matter Lagrangian are redshifted with respect to the Planck mass M4 �√

M3
5 /k. Now the importance of the RS mechanism has become very

concrete. We stress once again that the basic reason for this result is that
the 4-dimensional Planck mass is dominated by a contribution from the
region of low redshift, while the SM lives deep inside a region of high red
shift. As a matter of fact the metric ḡµν that appears in the 4D Einstein
term coincides with the induced metric on the Planck brane g0µν . We
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will later explain that all these facts corresponds to the localization of
the 4D graviton near the Planck brane.

We want to emphasize that eq. (II.91) implies that only ratios of
mass parameters are observable in a theory of gravity, since their overall
normalization can be trivially changed by a field redefinition. This is
the same situation we have in the SM, where all CP violating phases,
but one, transform under field redefinitions and can thus be eliminated.
Only the ratio of Planck and weak scales, the hierarchy, is an observable.
Then we can have an alternative view point of our result, where the
original scale in the Lagrangian is the weak scale and the Planck mass is
a blue shifted derived scale. Consider indeed a rescaling with w = eσ(π)

on our original Lagrangian and on our original solution. Now all mass
parameters in the starting Lagrangian are of order TeV; for instance
M5 → M ′

5 = M5/w. Moreover the warp factor is 1 at y = π and eσ(π)

at y = 0. The 4D Planck mass is now written as

M2
4 =

(M ′
5)

3

k′

(
e2k′r′cπ − 1

)
. (II.94)

This picture makes more evident that the the hierarchy is generated
by a “dilution” mechanism, like in the ADD scenario. In eq. (II.94),
M2

4 comes out large because of the exponential growth of the “volume”
towards the Planck brane.

After the derivation of the effective Lagrangian we can better under-
stand the meaning of the tunings imposed on the boundary tensions. As
we will show below, the KK spectrum is quantized in units of the radion
VEV 〈µ〉. For E  〈µ〉 the system can be described by the zero modes
ḡµν and µ. Now, if we add to the brane tensions a perturbation which
is small enough not to excite the KK modes we should be able to accu-
rately describe its effects just in terms of the zero modes. Consider then
the following perturbations of the tensions parametrized by α, β  1

τ0 = 24M3
5 k (1 + α) τπ = −24M3

5 k (1 − β) . (II.95)

At lowest order, the correction to the effective Lagrangian is simply
obtained by substituting eq. (II.83) in the terms proportional to α and
β in the the original Lagrangian

∆Leff
4 = −24

(
M5

k

)3 √
g
(
αk4 + βµ4

)
. (II.96)

By integrating out the massive KK there arise extra corrections that
have either derivatives in them or are of higher order in α, β. The above
equation represents the leading correction to the potential. It is evident
that the two tunings of the brane tensions, α = β = 0, correspond to
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1 vanishing radion potential

2 vanishing 4-dimensional cosmological constant.

Now, the second requirement is truly necessary since the the cosmologi-
cal constant is experimentally extremely small Λ4

4
<∼ (10−3eV)4. On the

other hand, by the first requirement the radion is a massless Brans-Dicke
field leading to a new unacceptable long range force. The first tuning
is not only useless but experimentally ruled out. The basic RS model
must be modified in order to give a mass to the radion while retaining
the possibility to fine tune the 4D cosmological constant to zero. In the
modified theory there would remain just one tuning.

One can ask if a modifcation of the brane tensions can lead to a real-
istic radion stabilization. Of course we already know from the derivation
of the RS solution that with detuned tensions we would not be able to
find a static solution which is also flat from the 4D viewpoint. But it
is useful to study this more quantitatively. Notice that β gives rise to a
simple quartic potential for µ, so it would seem that the only stationary
point is µ = 0, which is not interesting. The situation is however slightly
more subtle since µ mixes kinetically with the graviton. In order to eas-
ily read the dynamics of µ it is useful to perform a Weyl rescaling of the
metric

ḡµν → ḡµν

1 − µ2

k2

(II.97)

to go in the Einstein frame in which the gravitational kinetic term is
exactly 2(M3

5 /k)
√

ḡR(ḡ) with no radion contribution. At the same time
the radion kinetic term receives a negligibly small modification, while
the potential term becomes

∆V = −∆Leff
4 = 24

(
M

k

)3 √
g
αk4 + βµ4

(1 − µ2

k2 )2
. (II.98)

This potential is stationary at (µ2/k2) = −α/β. One can easily check
that this stationary point corresponds to a minimum only for α < 0,
β > 0. Around the stationary point, V is negative so that the 4D
metric in turn will be AdS4. It turns out that both the AdS4 curvature
k4 and the radion mass mµ scale in the same way k2

4 ∼ m2
µ ∼ −αk2.

Then this solution does not look even approximately like the real world,
and a more realistic mechanism of radius stabilization is needed. Before
concluding this section we would like to notice that our simple discussion
captures and explains in a physically intuitive way the results of refs.
[38, 39], where the full 5D equations of motion in the presence of detuned
brane tensions were studied. Our approach also clarifies the results of
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early studies of RS cosmology [40, 41], where a puzzling tuning ρ0 =
−ρπ(µ/k)2 between the energy momentum densities at the two different
branes was found to be needed. In our particular set up we have ρ0 ≡ k4α
and ρπ ≡ k4β, showing that the tuning is just the radion stationarity
condition in the absence of extra contributions to the potential [42].

II.3 Radius stabilization: Goldberger-Wise
mechanism

As we have already remarked, in the RS model the hierarchy between
mass scales at the two boundaries depends exponentially on the proper
distance πrc between them. A moderate separation πrc/L ∼ 40 between
the proper length and the AdS length of the 5th dimension is then
enough to obtain a huge hierarchy. This would seem a natural way to
explain the hierarchy. The implicit assumption behind this conclusion is
that rc is the natural dynamical variable to describe the stabilization of
the 5th dimension, i.e. the radion potential is practically a polynomial
in rc. However we have so far no solid reason to believe this is the case.
As a matter of fact, in the simple example at the end of the previous
section, the natural variable was the warp factor µ/k itself. Now, instead
of the proper distance, an observer at the Planck brane could decide to
define her/his distance to the TeV brane through the time T a light
signal (or a graviton!) takes to travel to the TeV brane and back. The
result would be

T = 2
∫ π

0

dy√
g00

=
2
k

(
ekrcπ − 1

)
∼ 2

µ
(II.99)

which is exponentially large as a consequence of time dilation near the
TeV brane. According to this perfectly acceptable definition, the size of
the extra-dimension is controlled by the weak scale µ itself. Notice that
the potential of the previous section is polynomial in µ. Such hugely
different notions for the size of the 5th dimension arise because the
global features of the RS space are controlled by curvature. We could
have started with a coordinate system in which, according to the above
definition of distance, the 5th coordinate is parametrized by

z =
e−krcy

k
. (II.100)

The metric would then have been

ds2 =
L2

z2

(
ηµνdxµdxν + dz2

)
. (II.101)

where L = 1/k, the AdS radius, represents the AdS curvature length.
In these “conformal” coordinates there is no exponential factor, but the
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locations of the Planck and TeV branes, respectively z0 and z1, are very
far apart

z0 = L  Lekrcπ = z1 (II.102)

In these new coordinates the radion field is simply associated to the
position of the second brane: µ(x) = 1/z1(x).

To solve the hierarchy problem we must then find a mechanims that
stabilizes the second brane at z1 ∼ 1/TeV � z0 ∼ 1/MP . In order to
do so, Goldberger and Wise (GW) [35] have proposed a simple model
involving a 5D scalar field φ with action

Sφ =
∫

d4xdz
{√

g[−(∂φ)2 − m2φ2]+δ(z − z0)
√

g0L0(φ) (II.103)

+ δ(z − z1)
√

g1L1(φ)}

It is assumed that the dynamics of the boundary terms L0,1 is such as
to fix the values φ(z0) = ṽ0 and φ(z1) = ṽ1. For instance, one can take
L0,1 = −λ0,1(φ − v0,1)2 with λ0,1 → ∞. The assumption of an infinitely
steep boundary potential simplifies the computations but is not essential
[35, 36]. In the vacuum, the field φ will have a non-trivial bulk profile
satisfying the 5D Klein-Gordon equation and interpolating between the
two boundary values v0 and v1. The energy associated to this profile
depends on the distance between the two branes, corresponding to a
non-vanishing radion potential. Now, solving the coupled equations of
motion of gravity plus φ exactly is in general difficult. To make our task
easier we can make the simplifying assumption that φ only induces a
small perturbation of the locally AdS5 Randall-Sundrum metric. Quan-
titatively this is equivalent to requiring the scalar energy momentum to
be a small perturbation of the 5D cosmological constant

T φ
MN ∼ (∂zφ)2+m2φ2 ∼ max(v2

0, v
2
1)×max(k2, m2)  T vacuum

MN ∼ M3
5 k2.

(II.104)
Since, in order to generate a big hierarchy we will need m2 <∼ k2, the
above relation simply implies

v2
0,1  M3

5 (II.105)

(notice that a scalar field in 5D has mass dimension 3/2). When this con-
dition holds, φ is determined at leading order by solving the φ equations
of motion over the unperturbed RS background with Dirichlet boundary
conditions φ(z0) = v0 and φ(z1) = v1. Because of this second constraint,
there are no massless zero modes in the KK tower of φ. As long as the
φ profile is a small perturbation of RS the only light states are those of
the unperturbed model: the 4D graviton and the radion. In this respect
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the procedure of solving the φ equations of motion and calculating the
action on the solution corresponds to integrating out the tower of mas-
sive φ KK modes to obtain an effective Lagrangian for the light modes
ḡ and µ. This is what we will now do. For a field configuration that
does not depend on the 4D coordinates the 5D Klein-Gordon equation
becomes

z5

L2
∂z

1
z3

∂zφ = m2φ (II.106)

and the most general solution is

φ = Az4+ε + Bz−ε ε =
√

4 + m2L2 − 2 � m2L2

4
. (II.107)

where we are emphasizing that we will be momentarily interested in the
limit ε ∼ m2L2/4  1. The boundary conditions fix

A = zε
0

v0 − v1(z0/z1)4+ε

1 − (z0/z1)4+2ε
B = z−4−ε

1

v1 − v0(z0/z1)ε

1 − (z0/z1)4+2ε
(II.108)

and eq. (II.103) evaluated on the solution yields an effective potential
for the radion µ

V (µ) =
1

1 − (µL)4+ε

[
(4 + ε)µ4(v̄1 − v̄0(µL)ε)2 (II.109)

+ εL−4(v̄0 − v̄1(µL)4+ε)2
]

= L−4F (µL)

where we have made the substitutions z0 = L, z1 = 1/µ and where
v̄0,1 = L3/2v0,1 are the boundary VEVs in units of the AdS curvature.
For µL  1 the potential becomes

V = εv̄2
0L

−4 +
[
(4 + 2ε)µ4(v̄1 − v̄0(µ/µ0)ε)2 − εv̄2

1µ
4
]

+ O(µ8L4)
(II.110)

which for ε > 0 is minimized at

µL �
(

v̄1

v̄0

) 1
ε

. (II.111)

The hierarchy 〈µ〉L ∼ MW /MP = 10−17 can be naturally obtained for
fundamental parameters not much smaller than one (ex. v̄1/v̄0 ∼ 1/10
and ε ∼ 1/20). The hierarchy naturally arises because of the non-
analytic dependence of eq. (II.111) on ε . Some comments are now
in order.
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1 Notice that the relevant part of the potential (the term in square
brackets in eq. (II.110)) has the form µ4P (µε). This is basically
a quartic potential modulated by a slow evolution of the effec-
tive coupling λ ≡ P (µε). Notice indeed that for ε  1 one has
µε ∼ 1 + ε lnµ + . . ., so that the dependence on µ is reminiscent
of a slow RG evolution. Stability of the potential at large µ corre-
sponds to limµ→∞ P (µ) > 0. Because of the slow evolution of P , a
minimum of the potential will exist very close to the point where
P crosses zero to become negative, see eqs. (II.110,II.111). These
properties are in full analogy with the Coleman-Weinberg (CW)
[37] mechanism of dimensional transmutation. There, quantum
corrections to the effective potential cause the quartic coupling to
turn negative at some scale. Since this happens through the slow
logarithmic RG evolution, broadly different mass scales can arise,
making the CW mechanism very interesting to explain the weak
to Planck scale hierarchy. It seems that the GW mechanism works
qualitatively in the same way.

2 Expanding at second order around the minimum and using the
unperturbed kinetic Lagrangian we find the radion mass

m2
µ � 2

3
v̄2
1ε

3/2〈µ〉2  〈µ〉2 (II.112)

indicating that in the model at hand the radion is much lighter
than the other KK resonances and potentially more interesting for
collider phenomenology.

3 The potential at the minimum is dominated by the fist term in
eq. (II.110): Vmin � εv̄2

0L
−4 ∼ M4

4 , far too large! However we
can now go back and slightly modify the brane tensions as we did
in the previous section. For small α and β, at leading order this
amounts to adding the contribution in eq. (II.96) to eq. (II.110).
Around the minimum of the GW potential µ is massive so that
β �= 0 causes only a small shift in 〈µ〉. We no longer need to
tune β = 0 after the radius is stabilized. Moreover both α and
β cause a shift in the potential at the minimum. By properly
choosing one combination of them we can cancel the potential at
the minimum. This is of course a fine tuning, but it is just the
cosmological constant problem, which we never promised to solve.
After radius stabilization the only fine tuning left in the model is
the one associated to the vanishing cosmological constant.
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4 The minimal GW potential gives rise to a stable minimum only
for ε � m2L/4 > 0. However one could also obtain stable minima
for ε < 0 for a proper range of the detuning parameter β.

Concerning the last remark one may worry that ε ∼ m2 < 0 will
lead to instabilities in the bulk. If |m2| is small enough, however, no
instability arises. Concerning this result it is instructive to consider the
following exercises.

Show that no instability is generated for m2 > −4k2 + (small)
(hint: study the KK spectrum for the excitation ∆φ around the
GW background remembering that ∆φ = 0 at the boundaries).

Study the same problem with a flat 5th dimension.

II.4 Kaluza-Klein spectrum
In this section we shall study the KK spectrum of the gravitational

field. As for the flat case we studied earlier, it is convenient to use the
5D gauge freedom to eliminate as many degrees of freedom from gµ5 and
g55 as possible. It is then easy to check (for instance by working at the
linearized level) that without loss of generality we can use the following
parametrization

ds2 = e−2k|y|rc−2f(x)e2k|y|rc (ĝµν(x, y)dxµdxν) +
(
1 + 2f(x)e2k|y|rc

)2
dy2

(II.113)
Because of the orbifold projection we can consistently set gµ5 ≡ 0. On
the other hand for g55 we can eliminate all the modes but one, the
radion. This one mode remaining in g55 can however be parametrized
at our convenience, and the choice in eq. (II.113) as an advantage that
we will now explain. Since we are mostly interested in the J = 2 modes,
consider first substituting eq. (II.113) with f(x) = 0 in the RS action.
After changing the 5th coordinate to z = Le−k|y|rc , one finds

S(g) = 4M3
5 L3

∫ z1

L

√
ĝ
dz

z3

[
R4(ĝ) +

1
4
(
(∂z ĝ

µν)(∂z ĝµν) + (ĝµν∂z ĝµν)2
)]

.

(II.114)
Notice that all terms with no derivative acting on ĝµν(x, y(z)) have ju-
diciously cancelled out when expanding around the RS solution. We
already know that it should have been this way: any constant ĝµν solves
the equations of motion, so that the action for ĝµν must involve only
gradient terms. When f �= 0 we find an extra contribution to be added
to eq. (II.114) and starting at quadratic order in f

∆S = −12
M3

5

L

(
z2
1 − L2

)
∂µf∂µf + O(f3, f2hµν , . . .) (II.115)
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where hµν = ĝµν − ηµν . Notice that there is no kinetic mixing between
f and the metric hµν . In other words, the graviton is automatically
in the Einstein frame. This is because of our specific parametrization
of the scalar mode in eq. (II.113). This should be contrasted to the
parametrization in eq. (II.83) which lead to a small O(µ2L2) mixing
between radion and graviton. Anyway, neglecting O(µL), terms and
with the identification (cf. eqs. (II.83,II.85))

µ(x) = ke−kπrc−f(x)e2kπrc = ke−σ(π,x) (II.116)

eq. (II.115) reproduces the radion kinetic term of eq. (II.84).
Let us now focus on the J = 2 modes. Expanding eq. (II.114) at

quadratic order in hµν = ĝµν − ηµν we find

M3
5 L3

∫ z1

L

dz

z3

(
hµνK

µνρσhρσ − hµν∂2
zhµν + hµ

µ∂2
zhν

ν

)
(II.117)

where Kµνρσ is the 4-dimensional J = 2 kinetic operator shown in the
first line of eq. (I.43). Notice that the mass operator has the Fierz-Pauli
form. From eq. (II.117) the equation for the eigenmodes ψn(z) is then
simply

−z3∂z
1
z3

∂ψn(z) = m2
nψn(z) (II.118)

with boundary conditions

∂zψn|z=L = ∂zψn|z=z1 = 0, (II.119)

as hµν is even under the orbifold parity and its action does not contain
boundary terms.

For mn �= 0 the general solution to eq. (II.118) is written in terms of
Bessel functions

ψn(z) =
z2

L2
[J2(mnz) + bnY2(zmn)] (II.120)

and the boundary conditions enforced by using the identity

∂zψn ∝ z2 [J1(mnz) + bnY1(zmn)] . (II.121)

We then find
bn =

J1(mnL)
Y1(mnL)

(II.122)

while the eigenvalue equation is simply

J1(mnL)Y1(mnz1) − Y1(mnL)J1(mnz1) = 0. (II.123)
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In order to focus on the phenomenologically interesting “light” modes,
satisfying mnL  1, we need the asymptotic behaviour of the Bessel
functions

x  1 →
{

J2(x) = x2

8 + O(x4)
Y2(x) = − 4

πx2 − 1
π + O(x2)

x � 1 →

⎧⎨⎩ J2(x) =
√

2
πx cos(x − 5

4π)

Y2(x) = −
√

2
πx sin(x − 5

4π)
.

(II.124)

In the limit mnL  1 eqs. (II.122) and (II.123) reduce respectively to

bn � (mnL)2π/4  1 (II.125)

and
J1(mnz1) = 0 (II.126)

The solutions to the last equation are quantized in units of 1/z1 ≡ 〈µ〉

mn = cn
1
z1

� (n +
1
4
)
π

z1
, (II.127)

where the last identity is valid asymptotically for n � 1 (cf. eq. (II.124))
but works very well already for n = 1: c1 � 1.21π. Notice that because
bn  1, Y2 makes a negligible contribution to ψn in the region mnz �
1 where ψn oscillates. In the region zmn  1, the Y2 contribution
is relatively important (in fact dominant), but this region contributes
negligibly to the normalization of the eigenfunctions.

Indeed, by eq. (II.117) the norm of the modes is

||ψn||2 =
∫ z1

z0=L

2zdz

L2
[J2(mnz) + bnY2(mnz)]2 �

∫ z1

0

zdz

L2
[J2(mnz)]2

=
(z1

L

)2
J2(mnz1)2. (II.128)

Neglecting contributions of relative size O(L2/z2
1) ∼ m2

weak/M
2
P , we have

approximated ||ψn|| by its value in the limit z0 = 0, in which the Planck
brane has an infinite proper distance from the TeV brane (and an in-
finite relative blueshift, see eq. (II.101)). ||ψn|| is dominated by the
region 1/mn < z < z1, where the Bessel functions have an oscillatory
behaviour. A mode with mass mn is not very sensitive to the region
z < 1/mn. In particular the modes remain normalizable and the spec-
trum discrete even for z0 → 0. Notice finally that the orthonormal
modes ψ̂n(z) ≡ ψn(z)/||ψn|| satisfy ψ̂n(z1) = sgn(J2(mnz1))z1/L, so
that all modes couple with equal strength to the fields on the SM brane.
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The massless mode, see eq. (II.118), simply corresponds to a constant
ψ0 = 1 with norm

||ψ0|| = L2

∫ z1

z0=L

2dz

z3
=
(

1
L2

− 1
z2
1

)
(II.129)

which is dominated at small z. Unlike the massive modes, ψ0 is local-
ized at the Planck brane: ||ψ0|| diverges for z0 → 0 but remains finite
for z1 → ∞. From eq. (II.114) we have that the 4D Planck mass is
M2

4 = M3
5 L3||ψ0||2 = M3

5 L[1− (L/z1)2], which is the result we obtained
previously. Notice also that for z0 → 0 the 4D Planck mass diverges,
corresponding to the zero mode graviton being localized infinitely far
away from the TeV brane.

Using the above results, but working with the canonically normalized
KK gravitons h̄

(n)
µν and radion f̄ the coupling to the TeV brane energy

momentum tensor is written as

Lint = −1
2

⎧⎨⎩ h̄
(0)
µν

M4
+
∑
n≥1

h̄
(n)
µν

Λ

⎫⎬⎭Tµν +
f̄√
24Λ

Tµ
µ (II.130)

where Λ ≡ (M5L)3/2/z1. eq. (II.130) is the basic equation to study
the collider implications of the RS model [43]. The interactions and
spectrum of the J = 2 modes are fully described by two parameters,
Λ and 〈µ〉 = 1/z1. For radion phenomenology two extra parameters
are needed, one is the radion mass, which depends on the stabiliza-
tion mechanism, the other is a radion-Higgs mixing parameter ξ [24].
Basically the parameter ξ accounts for the fact that the energy mo-
mentum tensor for a scalar H is defined up to an “improvement term”
∆Tµν = ξ(∂µ∂ν − ηµν∂

2)H2. A non zero ξ induces a kinetic mixing
between radion and Higgs after electroweak symmetry breaking.

A little exerciseonecandowiththe interaction Lagrangian in eq. (II.130)
concerns the validity of perturbation theory. A simple quantity to cal-
culate (estimate) is the decay width into SM particles (living at the TeV
boundary). For the n-th mode we find

Γ(n) ∼
m3

n

8πΛ2
. (II.131)

Notice that Γ(n) grows with n, so that for n large enough the nearby
resonances will start overlapping. When this takes place, by definition,
perturbation theory breaks down: quantum corrections to the spectrum
(the widths) make the very concept of individual KK resonances useless.
Using the above equations we find that Γ(n) < mn+1 − mn is satisfied
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for masses below
mn < M5

L

z1
. (II.132)

This shows that the UV cut-off for physics at the TeV scale is just the
redshifted Planck mass. Of course by starting off in the primed Weyl
frame, discussed above eq. (II.94), this is the obvious result.

II.5 Strong coupling puzzle
At the end of the previous section we have shown by a simple argument

that the RS model becomes strongly coupled at a fairly low scale M ′
5 =

M5L/z1. If we we want to explain the hierarchy by the ratio L/z1, then
M ′

5 ∼TeV very much like in the ADD scenario. Although such a low-
cut off limits predictivity, as long as M ′

5 is somewhat bigger than the
mass of the lightest KK, some control is retained: roughly a number of
modes ∼ M ′

5z1 = M5L remains weakly coupled. From the conceptual
viewpoint, however, the presence of this low cut-off can be confusing,
when not properly interpreted. One basic puzzle is that M ′

5 depends
on the location of the TeV brane. Moreover as z1 → ∞ and half of
AdS5 is recovered, M ′

5 goes to zero, as if there was no energy range
where gravity on AdS makes sense as an effective field theory. The
origin of this puzzle is that we are working on a curved space where
particle propagation involves large or possibly infinite momentum blue-
shift. As we will explain, since the puzzle arises when considering the
global aspect of our spacetime, a proper resolution cannot do without
accounting for the locality of the interactions.

It is instructive to go back and consider the motion of a particle in
AdS space. The equations for the geodesic in conformal coordinates are

ẍµ − 2
ẋµż

z
= 0 z̈ − ż2

z
+

ẋµẋνηµν

z
= 0 (II.133)

where by the dot we indicate the derivative with respect to the affine
parameter λ. Let us focus on the massless case. As λ is arbitrary, we
can choose it such that dxM/dλ coincides with the 5-momentum PM .
By this choice we have, in particular, d/dλ = P 5d/dz and by using the
zero mass condition PMPNgMN = 0 we can write eq. (II.133) and its
solution as

z
dPM

dz
= 2PM → PM =

(
z2

L2

)
P̄M . (II.134)

This is the momentum in the AdS coordinates, but a more physical quan-
tity is the momentum PM

phys seen in the frame of a free falling observer at
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rest at z: PM
phys = PM (L/z) = P̄M (z/L). Viewing the particle as a wave,

the increase in momentum is simply due to the homogeneous contraction
L/z of all lengths when moving down the AdS throat, see Fig. (9). Mov-
ing to larger z is like going backward in time in Friedmann-Robertson-
Walker (FRW) cosmology. This analogy is not accidental as both AdS
and FRW have conformally flat metrics. Now, consider two particles
starting with momenta P̄M

1 and P̄M
2 at the Planck brane. If they collide

after falling at a bulk position z, the center of mass energy of the collision
will be s(z) = −2PM

1 PN
2 gMN = −2P̄M

1 P̄N
2 ηMN (z/L)2 = s(0)(z/L)2.

Then by starting by a sub-Planckian energy
√

s(0) < M5 we can pro-
duce super-Planckian collisions if z is large enough. Of course this also
means that a Planck brane observer must wait a relatively long time
T > z in order to observe this collision. In a moment we will see that
this time delay is the central point to discuss “strong coupling” at the
quantum level. Notice also that in the case of the compact RS model z
is bounded by z1, so that for

√
s(0) < M5L/z1 the Planck mass is never

exceeded in the bulk. Once again we have found that the critical energy
corresponds to the redshifted Planck mass M ′

5.
Consider now the limit z1 → ∞. At z = ∞ the metric of 4D slices van-

ishes, similarly to what happens to g00 in the Schwarzschild solution in
GR. Also, at the point z = ∞ there is a horizon, the AdS horizon. In fact
a particle falling from the Planck brane takes an infinite Planck brane
time to reach z = ∞, but the proper time experienced by the particle is
finite τ = πL/2. This is completely analogous to the Schwarzschild case.
The model so defined is named RSII [44], so that the model with two
branes we have considered so far is named RSI. If we assume that the
SM is instead localized at the Planck brane (and thus give up explaining
the hierarchy by redshifts) the RSII model represents an “alternative
to compactification”. This is because, although the 5th dimension is
non-compact, there is still a normalizable 4-dimensional graviton, see
eq. (II.129), dominating the IR behaviour of gravity. Eq. (II.129) should
be contrasted to the flat case, in which ||ψ0|| grows with the radius R,
so that the zero mode decouples in the infinite volume limit.

The RSII model seems a very interesting way to view 4D gravity. In
this model however a particle falling from the Planck brane can undergo
virtually infinite redshift before colliding. Then if we blindly applied
the above definition of UV cut-off we would conclude that RSII is not a
viable effective field theory! And we would be wrong. The point is that
the notion of “which energy is Planckian” must be a local one. As we
have already stated, a Planck brane observer, while working with initial
states that have

√
s  M5, must set up an experiment that probes deep

into the 5D bulk in order to see quantum gravity effects. An instructive
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Figure 10. Amplitude for the scattering
of fermions localized on the Planck brane
via t-channel 5D graviton exchange.

Figure 11. Leading quantum gravity cor-
rection to the process of Fig. (10) .

way to understand how things work is to consider a scattering process
induced by graviton exchange among particles localized on the Planck
brane. Consider first a t−channel process at fixed angle, for which the
exchanged graviton has virtuality Q =

√
−t ∼ √

s. A particle with
virtuality Q can exist only for a time ∼ 1/Q, so that by causality it
probes the bulk no further than zQ ∼ 1/Q. The virtual momentum is
then only blueshifted to

Q(z) = Q
z

L
<∼ Q

zQ

L
∼ 1

L
(II.135)

so that perturbativity of the process is maintained as long as 1/L  M5.
But this was our original requirement in order to trust the RS solu-
tion. By the above simple argument we expect the leading gravitational
loop corrections to the above process to be controlled by Q(zQ)/M5 =
1/(M5L) independent of the scale of the kinematical parameters s and
t = Q2. This result is remarkable: the leading gravitational corrections
are scale invariant. This does not happen by chance and is related to
the possibility to interpret the RSI and RSII models according to the
AdS/CFT correspondence [46, 47, 36]. As shown in Fig. (11), we can
make our arguments slightly more concrete by considering the 1-loop
correction to our t−channel process. The crucial remark [47] is that the
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brane to bulk propagator (working in momentum space along the brane
and in position space along the 5th dimension) behaves like

G(z = z0, z
′, Q) ∝ e−Q(z′−z0) (II.136)

while the local loop expansion parameter is [Q(z′)]3/M3
5 . Taking the

brane to bulk propagator into account, the 1-loop correction diagram
will be of order

e−Q(z′−L)

(
Qz′

M5L

)3

<
1

(M5L)3
(II.137)

consistent with our previous result. Notice that both the above inequal-
ity and the previous argument apply only for Q < 1/L. When Q > 1/L
curvature is unimportant (the relevant length scale 1/Q is short) so that
the loop expansion parameter is just that of flat space ∼ Q3/M3

5 . We
conclude that a Planck brane observer studying t-channel graviton ex-
change sees quantum gravity becoming important at the most obvious
scale: M5. By the same argument, we would also deduce that an ob-
server sitting on a probe brane at position z sees gravity becoming strong
at a local scale M5(z) = M5z/L.

The situation for s-channel processes is somewhat different. Here with
enough energy resolution one could produce, even on the Planck brane,
individual KK-modes and measure their widths, being thus able to de-
cide whether there is strong dynamics. The required energy resolution
∆E <∼ 1/z1, corresponds, by the indetermination principle, to a time
scale T > z1 during which a signal can travel from the Planck to TeV
brane. To be more definite consider the annihilation process λλ̄ → χχ̄
for fermions living on the Planck brane. The s−channel amplitude is

A(s) =
1
4
Tµν(in)T ρσ(out)〈hµνhρσ〉

=
1
4
Tµν(in)T ρσ(out)∑
n

|ψ̂(n)(z = L)|2
M3

5 L

Πµνρσ(mn)(s)
s − m2

n + imnΓn
(II.138)

where Π(mn) is the J = 2 projection operator defined in eq. (I.47) and
where for simplicity we have neglected the radion contribution. The
wave function at the Planck brane is |ψ̂(n)(z = L)|2 ∼ mn(L2/z1) for
the massive modes, but for the zero mode we have |ψ̂(0)(z = L)|2 ∼ 1.
The lighter massive modes, being localized away from the Planck brane,
couple much more weakly than the zero mode. In this respect, the
production of these modes is very suppressed. However even with this
tiny coupling one could in principle study the production of individual
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resonances and measure their width. In fact we do not want to stress
to much the wave function suppression, as it is a specific feature of the
graviton KK. For instance, in the case of a bulk vector this suppression
is practically absent [45]. The point we want to stress here concerns
instead the energy resolution of the experiment. In order to proceed we
need the explicit expression of the brane to brane propagator as a sum
over massive KK , 4D graviton and radion contributions

M3
5 〈hµνhρσ〉 = A(s)Πm�=0

µνρσ +
z2
1

z2
1 − L2

Πm=0
µνρσ

sL
+

L2

z2
1 − L2

ηµνηρσ

6sL
(II.139)

where
Πm�=0

µνρσ =
1
2

(ηµρησν + ηµσηρν) −
1
3
ηµνηρσ (II.140)

is the massive spin 2 projector of eq. (I.47) after eliminating the irrel-
evant longitudinal parts, while Πm=0

µνρσ is the massless projector given in
eq. (I.50). Notice that the radion contribution, the third term, is sup-
pressed by a power L2/z2

1 . The massive KK amplitude is

A(s) =
{

1
2
√

s

Y1(
√

sz1)J2(
√

sL) − J1(
√

sz1)Y2(
√

sL)
Y1(

√
sz1)J1(

√
sL) − J1(

√
sz1)Y1(

√
sL)

− 1
sL

z2
1

z2
1 − L2

}
≡ F (s)

2
√

s
− 1

sL

z2
1

z2
1 − L2

. (II.141)

Notice that A(s), and F (s) have poles on the real positive axis in corre-
spondence with the massive KK masses. However A(s) does not have a
pole at s = 0, while F (s) does. For large z1, on the positive real s axis
A(s) is a complicated oscillating function with narrowly spaced poles.
However when s is continued into the complex plane all this structure
gives way to the much simpler euclidean behaviour. By giving

√
s a pos-

itive finite imaginary part
√

s ≡ qR + iqI and by using the asymptotic
expansion for Bessel functions we find

F (s) =
J2(

√
sL) + iY2(

√
sL)

J1(
√

sL) + iY1(
√

sL)
(
1 + O(e−2qIz1)

)
=

H
(1)
2 (

√
sL)

H
(1)
1 (

√
sL)

(
1 + O(e−2qIz1)

)
(II.142)

where we employed the definition of the Hankel functions. Substituting
this result into eq. (II.141) we find, up to O(e−2qIz1) terms

〈hµνhρσ〉(
√

s = qR + iqI) = − H
(1)
2 (

√
sL)

2
√

sH
(1)
1 (

√
sL)

Πm�=0
µνρσ − ηµνηρσ

6sL
. (II.143)
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The important point about this result is that all the dependence on pow-
ers of z1 has disappeared. Now, the point is that if we use initial states
that have an energy spread (∆s)/

√
s >> 1/z1 (i.e. smearing this ampli-

tude with a wave function spread over ∆s) is practically equivalent to
considering the amplitude at a complex point with Im(

√
s) ∼ i∆s/

√
s.

For such spread states all the physics of the KK-modes, including their
detailed strong dynamics is exponentially suppressed, and thus practi-
cally inaccessible. This result is quite analogous to the well known exam-
ple of e+e− → hadrons. In that case, the behaviour of the cross section
as a function of the energy can be very complicated by the presence of
the resonances, indicating that a perturbative QCD computation is not
adequate. For instance this is the case near the bottom quark thresh-
old. However by averaging the cross section over ∆s/

√
s >> ΛQCD one

obtains an observable which can be reliably computed in perturbation
theory in terms of the production of quarks and gluons. This is the
so-called parton-hadron duality.

To conclude we want to apply eq. (II.143) in the fully euclidean region√
s = iq to compute the gravitational potential induced on the Planck

brane by a source on it. Notice that this is the exact propagator for
RSII, while for RSI it applies only for q > 1/z1. We are interested in the
long distance behaviour qL  1, so we use the Bessel function expansion
at small argument.

We find

〈hµνhρσ〉(
√

s = +iq) =
1

M3
5 L

{
Πm=0

µνρσ

q2
+ Πm�=0

µνρσ

L2

2
ln q2 + O(q2)

}
(II.144)

so that the Newtonian potential induced by a body of mass m is

V (r) =
GNm

r

(
1 +

2L2

3r2
+ . . .

)
. (II.145)

This formula applies in the long distance regime r � L. A good exercise
is to check that at a distance r  L, the potential goes back to the
5D behaviour V ∼ 1/r2. Then RSII can be a viable alternative to
compactification for L <∼ 100µm.
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