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1 Introduction

Pattern formation, i.e. the spontaneous emergence of spatial order, is a
widespread phenomenon in nature, and also in laboratory experiments. Ex-
amples can be given from almost every field of science, some of them very
familiar, such as fingerprints, the stripes on the skin of a tiger or zebra, the
spots on the skin of a leopard, the dunes in a desert, and some others less
evident, such as the convection cells in a fluid layer heated from below, and
the ripples formed in a vertically oscillated plate covered with sand [1].

All these patterns have something in common: they arise in spatially
extended, dissipative systems which are driven far from equilibrium by some
external stress. “Spatially extended” means that the size of the system is,
at least in one direction, much larger than the characteristic scale of the
pattern, determined by its wavelength. The dissipative nature of the system
implies that spatial inhomogeneities disappear when the external stress is
weak, and the uniform state of the system is stable. As the stress is increased,
the uniform state becomes unstable with respect to spatial perturbations of
a given wavelength. In this way, the system overcomes dissipation and the
state of the system changes abruptly and qualitatively at a critical value of
the stress parameter. The very onset of the instability is, however, a linear
process. The role of nonlinearity is to select a concrete pattern from a large
number of possible patterns.

These ingredients of pattern-forming systems can be also found in many
optical systems (the most paradigmatic example is the laser), and, conse-
quently, formation of patterns of light can also be expected. In optics, the
mechanism responsible for pattern formation is the interplay between diffrac-
tion, off-resonance excitation and nonlinearity. Diffraction is responsible for
spatial coupling, which is necessary for the existence of nonhomogeneous dis-
tributions of light.

Some patterns found in systems of very different nature (hydrodynamic,
chemical, biological or other) look very similar, while other patterns show
features that are specific to particular systems. The following question then
naturally arises: which peculiarities of the patterns are typical of optics only,
and which peculiarities are generic? At the root of any universal behavior of
pattern-forming systems lies a common theoretical description, which is in-
dependent of the system considered. This common behavior becomes evident

K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 1–31 (2003)
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2 1 Introduction

after the particular microscopic models have been reduced to simpler models,
called order parameter equations (OPEs). There is a very limited number of
universal equations which describe the behavior of a system in the vicinity of
an instability; these allow understanding of the patterns in different systems
from a unified point of view.

The subject of this book is transverse light patterns in nonlinear optical
resonators, such as broad-aperture lasers, photorefractive oscillators and op-
tical parametric oscillators. This topic has already been reviewed in a number
of works [2, 3, 4, 5, 6, 7, 8, 9, 10]. We treat the problem here by means of a
description of the optical resonators by order parameter equations, reflecting
the universal properties of optical pattern formation.

1.1 Historical Survey

The topic of optical pattern formation became a subject of interest in the late
1980s and early 1990s. However, some hints of spontaneous pattern formation
in broad-aperture lasers can be dated to two decades before, when the first
relations between laser physics and fluids/superfluids were recognized [11].
The laser–fluid connection was estalished by reducing the laser equations
for the class A case (i.e. a laser in which the material variables relax fast
compared with the field in the optical resonator) to the complex Ginzburg–
Landau (CGL) equation, used to describe superconductors and superfluids.
In view of this common theoretical description, it could then be expected
that the dynamics of light in lasers and the dynamics of superconductors and
superfluids would show identical features.

In spite of this insight, the study of optical patterns in nonlinear reson-
ators was abandoned for a decade, and the interest of the optical community
turned to spatial effects in the unidirectional mirrorless propagation of in-
tense light beams in nonlinear materials. In the simplest cases, the spatial
evolution of the fields is just a filamentation of the light in a focusing medium;
in more complex cases, this evolution leads to the formation of bright spa-
tial solitons [12]. The interest in spatial patterns in lasers was later revived
by a series of works. In [13, 14], some nontrivial stationary and dynamic
transverse mode formations in laser beams were demonstrated. It was also
recognized [15] that the laser Maxwell–Bloch equations admit vortex solu-
tions. The transverse mode formations in [13, 14], and the optical vortices in
[15] were related to one another, and the relation was confirmed experimen-
tally (Fig. 1.1) [16, 17]. The optical vortices found in lasers are very similar
to the phase defects in speckle fields reported earlier [18, 19].

The above pioneering works were followed by an increasing number of
investigations. Efforts were devoted to deriving an order parameter equation
for lasers and other nonlinear resonators; this would be a simple equation
capturing, in the lowest order of approximation, the main spatio-temporal
properties of the laser radiation. The Ginzburg–Landau equation, as derived
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Fig. 1.1. The simplest patterns generated by a laser, which can be interpreted
as locked transverse modes of a resonator with curved mirrors. From [17], c©1991
American Physical Society

in [11], is just a very simple model equation for lasers with spatial degrees of
freedom. Next, attempts were made to derive a more precise order parameter
equation for a laser [15, 20], which led to an equation valid for the red detun-
ing limit. Red detuning means that the frequency of the atomic resonance
is less than the frequency of the nearest longitudinal mode of the resonator.
This equation, however, has a limited validity, since it is not able to pre-
dict spontaneous pattern formation: the laser patterns usually appear when
the cavity is blue-detuned. Depending on the cavity aperture, higher-order
transverse modes [17] or tilted waves [21] can be excited in the blue-detuned
resonator.

The problem of the derivation of an order parameter equation for lasers
was finally solved in [22, 23], where the complex Swift–Hohenberg (CSH)
equation was derived. Compared with the Ginzburg–Landau equation, the
CSH equation contains additional nonlocal terms responsible for spatial mode
selection, thus inducing a pattern formation instability. Later, the CSH equa-
tion for lasers was derived again using a multiscale expansion [24]. The
CSH equation describes the spatio-temporal evolution of the field amplitude.
Also, an order parameter equation for the laser phase was obtained, in the
form of the Kuramoto–Sivashinsky equation [25]. It is noteworthy that both
the Swift–Hohenberg and the Kuramoto–Sivashinsky equations appear fre-
quently in the description of hydrodynamic and chemical problems, respec-
tively.

The derivation of an order parameter equation for lasers means a signifi-
cant advance, since it allows one not only to understand the pattern formation
mechanisms in this particular system, but also to consider the broad-aperture
laser in the more general context of pattern-forming systems in nature [1].
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The success in understanding laser patterns initiated a search for spon-
taneous pattern formation in other nonlinear resonators. One of the most
extensively studied systems has been photorefractive oscillators, where the
theoretical backgrounds were laid [26], complicated structures experimentally
observed [27, 28] and order parameter equations derived [29]. Intensive stud-
ies of pattern formation in passive, driven, nonlinear Kerr resonators were
also performed [30, 31, 32, 33]. Also, the patterns in optical parametric oscil-
lators received a lot of attention. The basic patterns were predicted [34, 35],
and order parameter equations were derived in the degenerate [36, 37] and
nondegenerate [38] regimes. The connection between the patterns formed in
planar- and curved-mirror resonators was treated in [39], where an order par-
ameter equation description of weakly curved (quasi-plane) nonlinear optical
resonators was given.

These are just a few examples. In the next section, the general character-
istics of nonlinear resonators, and the state of the art are reviewed.

1.2 Patterns in Nonlinear Optical Resonators

The patterns discussed in the main body of the book are those appearing
in nonlinear optical resonators only. This particular configuration is charac-
terized by (1) strong feedback and (2) a mode structure, both due to the
cavity. The latter also implies temporal coherence of the radiation. Thanks
to the feedback, the system does not just perform a nonlinear transformation
of the field distribution, where the fields at the output can be expressed as
some nonlinear function of the fields at the input and of the boundary con-
ditions. Owing to the feedback, the system can be considered as a nonlinear
dynamical system with an ability to evolve, to self-organize, to break sponta-
neously the spatial translational symmetry, and in general, to show its “own”
distributions not present in the initial or boundary conditions.

Nonlinear optical resonators can be classified in different ways: by the
resonator geometry (planar or curved), by the damping rates of the fields
(class A, B or C lasers), by the field–matter interaction process (active and
passive systems) and in other ways. After order parameter equations were
derived for various systems, a new type of classification became possible. One
can distinguish several large groups of nonlinear resonators, each of which can
be described by a common order parameter equation:

1. Laser-like nonlinear resonators, such as lasers of classes A and C, pho-
torefractive oscillators, and nondegenerate optical parametric oscillators.
They are described by the complex Swift–Hohenberg equation,

∂A

∂t
= (D0 − 1) A − A |A|2 + i

(
a∇2 − ω

)
A − (

a∇2 − ω
)2

A ,

and show optical vortices as the basic localized structures, and tilted
waves and square vortex lattices as the basic extended patterns.
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2. Resonators with squeezed phase, such as degenerate optical parametric
oscillators and degenerate four-wave mixers. They are described, in the
most simplified way, by the real Swift–Hohenberg equation,

∂A

∂t
= (D0 − 1) A − A3 +

(
a∇2 − ω

)2
A ,

and show phase domains and phase solitons as the basic localized struc-
tures, and stripes and hexagons as the basic extended patterns.

3. Lasers with a slow population inversion D (class B lasers). They cannot
be described by a single order parameter equation, but can be described
by two coupled equations,

∂A

∂t
= (D − 1) A + i

(
a∇2 − ω

)
A − (

a∇2 − ω
)2

A ,

∂D

∂t
= −γ

(
D − D0 + |A|2

)
,

and their basic feature is self-sustained dynamics, in particular the “rest-
less vortex”.

4. Subcritical nonlinear resonators, such as lasers with intracavity saturable
absorbers or optical parametric oscillators with a detuned pump. The
effects responsible for the subcriticality give rise to additional terms in
the order parameter equation, which in general has the form of a modified
Swift–Hohenberg equation,

∂A

∂t
= F

(
D0, A, |A|n ,∇2

)
+ i

(
a∇2 − ω

)
A − (

a∇2 − ω
)2

A ,

where F represents a nonlinear, nonlocal function of the fields. Its solu-
tions can show bistability and, as consequence, such systems can support
bistable bright spatial solitons.

This classification is used throughout this book as the starting point for
studies of pattern formation in nonlinear optical resonators. The main ad-
vantage of this choice is that one can investigate dynamical phenomena not
necessarily for a particular nonlinear resonator, but for a given class of sys-
tems characterized by a common order parameter equation, and consequently
by a common manifold of phenomena.

In this sense, the patterns in nonlinear optics can be considered as
related to other patterns observed in nature and technology, such as in
Rayleigh–Bénard convection [40], Taylor–Couette flows [41], and in chem-
ical [42] and biological [43] systems. The study of patterns in nonlinear res-
onators has been strongly influenced and profited from the general ideas of
Haken’s synergetics [44] and Prigogine’s dissipative structures [45, 46]. On the
other hand, the knowledge achieved about patterns in nonlinear resonators
provides feedback to the general understanding of pattern formation and
evolution in nature.
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Next we review the basic transverse patterns observable in a large variety
of optical resonators. It is convenient to distinguish between two kinds of
patterns: localized structures, and extended patterns in the form of spatially
periodic structures.

1.2.1 Localized Structures: Vortices and Solitons

A transverse structure which enjoys great popularity and on which numerous
studies have been performed, is the optical vortex, a localized structure with
topological character, which is a zero of the field amplitude and a singularity
of the field phase.

Although optical vortices have been mainly studied in systems where free
propagation occurs in a nonlinear material (see Sect. 1.3), some works have
treated the problem of vortex formation in resonators. As mentioned above,
the early studies of these fascinating objects [15, 16, 17, 18, 19] strongly
stimulated interest in studies of pattern formation in general. The existence
of vortices indicates indirectly the analogy between optics and hydrodynamics
[22, 47, 48, 49]. It has been shown that the presence of vortices may initiate
or stimulate the onset of (defect-mediated) turbulence [27, 50, 51, 52, 53].
Vortices may exist as stationary isolated structures [54, 55] or be arranged in
regular vortex lattices [17, 23, 28]. Also, nonstationary dynamics of vortices
have been reported, both of single vortices [56, 57] and of vortex lattice
structures [58]. Recently, optical vortex lattices have been experimentally
observed in microchip lasers [59].

Another type of localized structure is spatial solitons, which are non-
topological structures. Although such structures do not appear exclusively
in optical systems [60, 61, 62], they are now receiving tremendous interest
in the field of optics owing to possible technological applications. A spatial
soliton in a dissipative system, being bistable, can carry a bit of information,
and thus such solitons are very promising for applications in parallel storage
and parallel information processing.

Spatial solitons excited in optical resonators are usually known as cavity
solitons. Cavity solitons can be classified into two main categories: amplitude
(bright and dark) solitons, and phase (dark-ring) solitons. Investigations of
the formation of bright localized structures began with early work on bistable
lasers containing a saturable absorber [63, 64] and on passive nonlinear res-
onators [65].

Amplitude solitons can be excited in subcritical systems under bistability
conditions, and can be considered as homoclinic connections between the
lower (unexcited) and upper (excited) states. They have been reported for
a great variety of passive nonlinear optical resonators, such as degenerate
[66, 67, 68] and nondegenerate [69, 70] optical parametric oscillators, and for
second-harmonic generation [71, 72, 73] (Fig. 1.2), where the bistability was
related to the existence of a nonlinear resonance [37]. In some systems, the
interaction of solitons and their dynamical behavior have been studied [73,
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Fig. 1.2. Interaction of two moving amplitude solitons in vectorial intracavity
second-harmonic generation: (a) central collision, (b) noncentral collision. From
[73], c©1998 American Physical Society

74, 75]. Resonators containing Kerr media also support amplitude solitons,
as a result of either Kerr [76] or polarization (vectorial) [77] instabilities.

In active systems, bright solitons have been demonstrated in photore-
fractive oscillators [78, 79, 80] and in lasers containing saturable absorbers
[81, 82] or an intracavity Kerr lens [83]. A promising system for practical ap-
plications is the vertical cavity surface emission laser (VCSEL), which forms
a microresonator with a semiconductor as a nonlinear material. The theoret-
ically predicted patterns for this system [84, 85, 86, 87, 88, 89] were recently
experimentally confirmed in [90].

The required subcriticality condition is usually achieved by introducing
an intracavity absorbing element. However, recently, stable solitons in the
absence of an additional medium have been reported in cascade lasers [91].

Besides the amplitude solitons in subcritical nonlinear resonators, a dif-
ferent type of bistable soliton exists in supercritical resonators. Such systems
are characterized by a broken phase symmetry of the order parameter, and
solutions with only two possible phase values are allowed. In this case the
solitons connect two homogeneous solutions of the same amplitude but of
opposite phase. Such phase solitons, which are round, stable phase domains
of minimum size, appear as a dark ring on a bright background. This novel
type of optical soliton is now receiving a lot of interest, since the solitons are
seemingly much easier to realize experimentally than their bright counter-
parts in subcritical systems.

One of the systems most investigated has been the degenerate optical
parametric oscillator (DOPO), either in the one-dimensional case [92, 93]
or in the more realistic case of two transverse dimensions [94, 95, 96, 97].
Also, the soliton formation process [98, 99, 100] and its dynamical behavior
[101, 102] have been analyzed. Optical bistability in a passive cavity driven by
a coherent external field is another example of a system supporting such phase
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Fig. 1.3. Phase domains and phase (dark-
ring) solitons in a cavity four-wave-mixing
experiment. From [115], c©1999 Optical
Society of America

Fig. 1.4. Modulational instability of a straight domain boundary and formation
of a finger pattern, in a type II degenerate optical parametric oscillator. The upper
row shows the intensity, and the lower row the phase pattern. From [102], c©2001
American Physical Society

solitons [103, 104, 105, 106, 107]. Both the DOPO and systems showing opti-
cal bistability are systems described by a common order parameter equation,
the real Swift–Hohenberg equation [108]. Systems with a higher order of non-
linearity, such as vectorial Kerr resonators, have also been shown to support
phase solitons [109, 110, 111].

Phase solitons can form bound states, resulting in soliton aggregates or
clusters [94, 112].

Phase solitons in a cavity are seemingly much easier to excite than their
counterparts in subcritical systems. In fact, such phase solitons have already
been experimentally demonstrated in degenerate four-wave mixers [113, 114,
115] (Figs. 1.3 and 1.4).

1.2.2 Extended Patterns

Besides the localized patterns, vortices and solitons, to which the book is
mainly devoted, extended patterns in optical resonators have been also ex-
tensively studied. In optical resonators, two main categories of patterns can
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be distinguished. One class of patterns appears in low-aperture systems, char-
acterized by a small Fresnel number, such as a laser with curved mirrors. Since
this is the most typical configuration of an optical cavity, this phenomenon
was observed in the very first experimental realizations, although a system-
atic study was postponed to a later time [16]. The patterns of this kind are
induced by the boundary conditions, and can be interpreted as a weakly non-
linear superposition of a small number of cavity modes of Gauss–Hermite or
Gauss–Laguerre type.

Theoretical predictions based on modal expansions of the field [14, 116,
117] have been confirmed by a large number of experiments, some of them
reported in [118, 119, 120, 121, 122]. Owing to the particular geometry of the
cavity, this kind of pattern is almost exclusively optical. If the aperture is
increased, the number of cavity modes excited can grow, and so the spatial
complexity of the pattern grows[123].

The other class of extended optical patterns is typical of large-aperture
resonators, formed by plane mirrors in a ring or a Fabry–Pérot configuration.
The transverse boundary conditions have a weak influence on the system dy-
namics, in contrast to what happens in small-aperture systems. Consequently,
the patterns found in these systems are essentially nonlinear, and the system
dynamics can be reduced to the evolution of a single field, called the order
parameter.

The simplest patterns in these systems consist of a single tilted or travel-
ing wave (TW), which is the basic transverse solution in a laser [21], although
more complex solutions formed by several TWs have been found [125, 124].
The predicted laser TW patterns have been observed in experiments with
large-Fresnel-number cavities [126, 127, 128]. The TW solutions are also
found in passive resonators described by the same order parameter equa-
tion, such as nondegenerate optical parametric oscillators (OPOs) [35, 129].
The effect of an externally injected signal in a laser has been also studied
[130, 131], showing the formation of more complex patterns, such as rolls or
hexagons.

Roll, or stripe, patterns are commonplace for a large variety of nonlinear
passive cavities, such as degenerate OPOs [34], four-wave mixers [37], sys-
tems showing optical bistability [31, 132] and cavities containing Kerr media
[133]. Patterns with hexagonal symmetry are also frequently found in such
resonators [134, 135]. Both types of pattern are familiar in hydrodynamic
systems, such as systems showing Rayleigh–Bénard convection.

Another kind of traveling solution existing in optical resonators corre-
sponds to spiral patterns, such as those found in lasers [136, 137] and in
OPOs [138, 139], which are typical structures in chemical reaction–diffusion
systems.

When more complex models, including additional effects, are considered,
a larger variety of patterns, sometimes of exotic appearance, is found. Some
such models generalize the above cited models by considering the existence
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of competition between different parametric processes [140, 141] or between
scalar and vectorial instabilities [142], the walk-off effect due to birefringence
in the medium [143, 144, 145], or external temporal variation of the cavity
parameters [146].

Some systems allow the simultaneous excitation of patterns with different
wavenumbers. These systems form patterns with different periodicities that
have been called quasicrystals [147, 148] and daisy patterns [149] (Fig. 1.5).

The experimental conditions for large-aspect-ratio resonators are not
easy to achieve. Most of the experiments performed have studied multimode
regimes involving high-order transverse modes. The formation of the patterns
described above was reported in lasers [126, 127, 128] and OPOs [151, 152].
The observed patterns correspond well to the numerical solutions of large-
aspect-ratio models. Conditions for boundary-free, essentially nonlinear pat-
terns were obtained in [78, 153] with the use of self-imaging resonators,
which allowed the experimenters to obtain Fresnel numbers of arbitrarily
high value.

All the patterns reviewed above are two-dimensional, the light being dis-
tributed in the transverse space perpendicular to the resonator axis, and
evolving in time. Recently, the possibility of three-dimensional patterns
was demonstrated for OPOs [154], nonlinear resonators with Kerr media
[155, 156], optical bistability [157] and second-harmonic generation [158].

Finally, the problem of the effect of noise on the pattern formation prop-
erties of a nonlinear resonator has also been treated. One can expect that

Fig. 1.5. Experimentally observed
hexagonal patterns with sixfold and
twelvefold symmetry (quasipatterns),
in a nonlinear optical system with
continuous rotational symmetry. From
[150], c©1999 American Physical Soci-
ety
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noise, which is present in every system, will bring about new features in the
spatio-temporal dynamics of the system. First, noise can modify (shift) the
threshold of pattern formation [159]. Second, owing to noise, the precursors
of patterns can be seen below the pattern formation threshold [160, 161, 162].
While a noiseless pattern-forming system below the pattern formation thresh-
old shows no pattern at all, since all perturbations decay, one observes in the
presence of noise a particular form of spatially filtered noise, which in the
field of nonlinear optics has been called “quantum patterns” when the noise
is of quantum origin [163, 164, 165]. Above the pattern formation threshold,
noise can also result in defects (dislocations or disclinations) of the patterns
[166, 167].

1.3 Optical Patterns in Other Configurations

In parallel with the studies on nonlinear resonators, pattern formation prob-
lems have been considered in other optical configurations. These configura-
tions can be divided into the following categories, according to their geometry
and complexity.

1.3.1 Mirrorless Configuration

When an intense light beam propagates in a nonlinear medium, it can expe-
rience filamentation effects, leading to periodic spatial distributions [168], or
develop into self-trapped states of light, or solitons. The self-focusing action
of the nonlinearity compensated by diffraction results in self-sustained bright
spatial solitons [12], which can exist as isolated states or form complex en-
sembles, sometimes interacting in a particle-like fashion [169, 170, 171, 172,
173, 174, 175]. Also, dark solitons [176, 177, 178, 179, 180, 181, 182, 183, 184]
and optical vortices [185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196]
have been described and experimentally observed. In such a mirrorless con-
figuration feedback is absent, and one obtains not a spontaneous pattern for-
mation, but just a nonlinear transformation of the input distribution. This
nonlinear transformation can be very complicated, and can be described by
complicated integro-differential equations. However, every transformation re-
mains a transformation, and without feedback it does not lead to sponta-
neous pattern formation. Some other mirrorless schemes, where optical pat-
tern formation has been predicted, are based on the interaction of two coun-
terpropagating pumping waves in a nonlinear medium. It has been shown
that the waves that appear through nonlinear mixing processes have their
lowest threshold at certain angles with respect to the pumping waves, and
may result in a wide variety of patterns, either extended, such as rolls or
hexagons [197, 198, 199, 200, 201, 202, 203, 204](Fig. 1.6), or localized [205].
Experimental confirmation has been obtained using various nonlinear media,
such as atomic vapors and photorefractive crystals.
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Fig. 1.6. Hexagonal patterns
with different spatial scales
observed in a photorefractive
crystal with a single pump
wave. From [203], c©1991 Op-
tical Society of America

1.3.2 Single-Feedback-Mirror Configuration

The presence of a mirror introduces feedback into the system. Unlike the
case in the previous schemes, here nonlinearity and diffraction act at differ-
ent spatial locations. The most typical configuration is formed by a thin slice
of a Kerr medium and a mirror at some distance. Theoretical studies have
predicted structures mainly with hexagonal symmetry [206, 207, 208, 209]
(Fig. 1.7), although more complex solutions have been found [210, 214].
From the experimental side, various nonlinear media, such as atomic vapors
[211, 212], and Kerr [213] and photorefractive [214] media have been used
successfully. Also, this configuration led to the first realization of localized
structures in nonlinear optics [215]. The dynamics and interaction of these
localized structures have been extensively investigated [216, 217, 218, 219]
(Fig. 1.8).

1.3.3 Optical Feedback Loops

Another configuration, somewhat between the single feedback mirror and
the nonlinear resonator, is the feedback loop. In such a configuration, one
has the possibility of acting on the field distribution on every round trip
through the loop, continuously transforming the pattern distribution. Some
typical two-dimensional transformations are the rotation, translation, scal-
ing and filtering of the pattern. The first work obtained pattern formation by
controlling the spatial scale and the topology of the transverse interaction of
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Fig. 1.7. Hexagon formation in a single-feedback-mirror configuration. Numerical
results from [207], c©1991 American Physical Society

Fig. 1.8. Dissipative solitons observed experimentally in sodium vapor with a single
feedback mirror. From [219], c©2000 American Physical Society

Fig. 1.9. Experimental patterns in an
optical system with two-dimensional
feedback. (a) Hexagonal array, (b)–
(d) “black-eye” patterns, (e) island of
bright localized structures, (f) optical
squirms. From [224], c©1998 American
Physical Society
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Fig. 1.10. Quasicrystal patterns with
dodecagonal symmetry, with differ-
ent spatial scales, together with the
corresponding spatial spectra. From
[224], c©1998 American Physical So-
ciety

the light field in a medium with cubic nonlinearity [220, 221, 222], by control-
ling the phase of the field with a spatial Fourier filter [223, 224] (Figs. 1.9 and
1.10), and by introducing a medium with a binary-type refractive nonlinear
response [225].

A very versatile system is a feedback loop with a liquid-crystal light valve
acting as a phase modulator with a Kerr-type nonlinearity. The conversion
from a phase to an intensity distribution, required to close the feedback
loop, can be performed by two means: by free propagation (diffractional
feedback) [226, 227] or by interference with reflected waves (interferential
feedback), as shown in Fig. 1.11 [228, 229, 230]. In both cases, a great variety
of kaleidoscope-like patterns have been obtained theoretically and experimen-
tally. The patterns can also be controlled by means of nonlocal interactions,
via rotation [231, 232, 233] (Fig. 1.12) or translation [234, 235] of the signal
in the feedback loop, giving rise to more exotic solutions such as quasicrys-

Fig. 1.11. Patterns in a liquid-crystal light valve in the interferential feedback
configuration, for increasing translational nonlocality ∆x. The near field (top row) is
shown together with the corresponding spectrum (bottom row). From [230], c©1998
American Physical Society
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Fig. 1.12. Crystal and quasicrystal patterns obtained experimentally by rotation
of the signal in a liquid-crystal light valve feedback loop. The first and second
columns show the near-field distributions, and the third and fourth columns the
corresponding far fields. From [231], c©1995 American Physical Society

Fig. 1.13. Bound state of spatial solitons in a liquid-
crystal light valve interferometer. From [236], c©2002
American Physical Society

tals and drifting patterns. The existence of spatial solitons and the formation
of bound states of solitons have also been reported experimentally in the
liquid-crystal light valve system [236], as shown in Fig. 1.13.

1.4 The Contents of this Book

In Chaps. 2 and 3, the order parameter equations for broad-aperture lasers
and for other nonlinear resonators are obtained. These chapters are rela-
tively mathematical; however, the OPEs derived here pave the way for the
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subsequent chapters of the book. The derivation of the OPEs for class A
and class C lasers is given in Chap. 2. For completeness, two techniques of
derivation are given: one based on the adiabatic elimination of the fast vari-
ables, and one based on multiscale expansion techniques. Both procedures
lead to the complex Swift–Hohenberg equation as the OPE for lasers. The
CSH equation describes the spatio-temporal dynamics of the complex-valued
order parameter, which is proportional to the envelope of the optical field.
In Chap. 3, the OPEs for optical parametric oscillators and photorefractive
oscillators (PROs) are derived. In the degenerate case, the resulting equa-
tion is shown to be the real Swift–Hohenberg equation, first obtained in a
hydrodynamic context. For large pump detuning values, a generalized model
including nonlinear resonance effects is obtained. In the case of PROs, the
adiabatic elimination technique is used to derive the CSH equation. The order
parameter equations derived in Chaps. 2 and 3 divide nonlinear optical res-
onators into distinct classes, and thus allow one to study pattern formation
phenomena without necessarily considering every nonlinear optical system
separately; instead, one can consider classes of the systems.

Chapters 2 and 3 are devoted to the patterns of the first class of systems,
that described by the CSH equation, i.e. lasers, photorefractive oscillators
and nondegenerate OPOs. The localized patterns in this class of systems are
optical vortices: these are zeros of the amplitude of the optical field, and are
simultaneously singularities of the field phase. Optical vortices dominate the
dynamics of the system in near-resonant cases (when the detuning is close
to zero). The CGL equation in this near-resonant limit can be rewritten in a
hydrodynamic form. Owing to this analogy between laser and hydrodynamics,
the dynamics of the transverse distribution of the laser radiation are very
similar to the dynamics of a superfluid. It is shown that optical vortices of
the same topological charge rotate around one another; a pair of vortices of
the same charge translate in parallel through the aperture of the laser or
annihilate, depending on the parameters.

In Chap. 5, the limit of large or moderate detuning is considered. The
CSH equation cannot be rewritten in a hydrodynamic form, but the dynam-
ics of the fields can still be well interpreted by hydrodynamic means. For large
detuning, tilted waves are excited. In hydrodynamic terms, flows with a ve-
locity of fixed magnitude but arbitrary direction are favored. This results, in
particular, in counterpropagating flows separated by vortex sheets. This also
leads to optical vortices advected by the mean flow, and similar phenomena.
Such phenomena are analyzed theoretically and demonstrated numerically.
A pattern of square symmetry, called a square vortex lattice, consisting of
four counterpropagating flows in the form of a cross, is also described and
discussed.

In Chap. 6, the effects of the curvature of the mirrors of the resonator are
analyzed. The majority of theoretical investigations of pattern formation in
nonlinear optics, including those in the largest part of this book, have been
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performed by assuming a plane-mirror cavity model. However, in experiments
resonators with curved mirrors are often used. Therefore a model of a laser
with curved mirrors is introduced. The presence of curved mirrors results in
an additional term in the order parameter equation, proportional to the total
curvature of the mirrors in the resonator. This term produces a coordinate-
dependent (parabolic) phase shift of the order parameter during propagation
in the resonator. The presence of the parabolic potential allows one to expand
the field of the resonator in terms of the eigenfunctions (transverse modes)
of the potential. Although this mode expansion is strictly valid for linear res-
onators only, the nonlinearity in the resonator results in a weakly nonlinear
coupling of the complex amplitudes of the modes. As a result, an infinite set
of coupled ordinary differential equations for complex-valued mode ampli-
tudes is derived. This gives an alternative way of investigating the transverse
dynamics of a laser, by solving the equations for the mode amplitudes instead
of solving the partial differential equations. The technique of mode expansion
is shown to be extremely useful when one is dealing with a small number of
transverse modes. In particular, the transverse dynamics of class A lasers
and photorefractive oscillators are considered; the phenomena of transverse
mode pulling and locking are observed. Chapter 6 also deals with degenerate
resonators, such as self-imaging and confocal resonators. In such resonators,
the longitudinal mode separation is an integer multiple of the transverse
mode separation. It is shown, by analysis of the corresponding ABCD matri-
ces, that self-imaging resonators are equivalent to planar resonators of zero
length. This insight opened up new possibilities for experimenting with trans-
verse patterns in nonlinear optical systems, and allowed the first experimental
realization of a number of phenomena predicted theoretically for nonlinear
resonators.

Chapter 7 deals with patterns in class B lasers. Class B lasers are not
describable by the CSH equation. Owing to the slowness of the population
inversion, the order parameter equation in this case is not a single equation
belonging to one of the classes defined above, but a system of two coupled
equations, resembling those derived for excitatory or oscillatory chemical sys-
tems, where the (slow) population inversion plays the role of the recovery
variable, and the fast optical field plays the role of the excitable variable. An
analysis of such self-sustained spatio-temporal dynamics in a class B laser is
performed. The vortices, which are stationary in a class A laser, perform self-
sustained meandering in a class B laser, a phenomenon known as the “restless
vortex”. Also, vortex lattices experience self-sustained oscillatory dynamics.
Either the vortices in the lattice oscillate in such a way that neighboring vor-
tices rotate in antiphase, thus resulting in an “optical” mode of vortex lattice
oscillation, or the vortex lattice drifts spontaneously with a well-defined ve-
locity, thus resulting in an “acoustic” oscillation mode.

The following chapters, Chaps. 8 to 11, are devoted to amplitude and
phase domains, as well as amplitude and phase solitons in bistable nonlinear
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optical systems. The general theory of subcritical spatially extended systems
is developed in Chap. 8, where two mechanisms of creation of subcriticality
in optical resonators are described: one due to the presence of a saturable
absorber, and one due to the presence of a nonlinear resonance. A discussion
in terms of order parameter equations is given.

In Chap. 9, a theoretical description and experimental evidence of do-
main dynamics and spatial solitons in lasers containing a saturable absorber
are presented. Two different resonator configurations are used: a self-imaging
resonator where both nonlinearities (due to the gain and to saturable absorp-
tion) are placed at the same location on the optical axis of the resonator, and
a self-imaging resonator where the two nonlinearities are placed at Fourier-
conjugated locations. For spatially coincident nonlinearities, the evolution of
domains is demonstrated numerically and experimentally, with the eventual
appearance of spatial solitons. For nonlinearities placed in conjugate locations
in the resonator, the competition, mutual interaction and drift of solitons are
investigated, also both theoretically and experimentally.

In Chap. 10, a subcriticality mechanism different from saturable absorp-
tion is studied, in this case related to the existence of a nonlinear resonance
due to nonresonant pumping. As an example, the order parameter equation
obtained in Chap. 3 for a degenerate OPO with a detuned pump is consid-
ered. The nonlinear resonance implies that the pattern wavenumber depends
on the intensity of the radiation. With approriate values of the detuning, the
nonlinear resonance can lead to bistability, and thus allow the excitation of
amplitude domains and spatial solitons. Numerical results from the DOPO
mean-field model are given for comparison.

In Chap. 11, the dynamics of phase domains in supercritical real-valued
order parameter systems, such as the degenerate OPO, are analized. These
systems should properly be described by the real Swift–Hohenberg equation.
It is demonstrated that the domain boundaries, the lines of zero intensity
separating domains of opposite phase, may contract or expand depending
on the value of the resonator detuning. In this way, the domain boundaries
behave as elastic ribbons, with the elasticity coefficient depending on the
detuning. Contracting domains, observed for small values of the detuning,
eventually disappear. Expanding domains are found for large values of the
detuning, and their evolution results in labyrinthine structures. For interme-
diate values of the detuning, the contracting domain boundaries stop con-
tracting at a particular radius. The latter scenario results in stable rings of
domain boundaries, which are phase solitons. The experimental confirmation
of the predicted phenomena is described.

In Chap. 12, the Turing pattern formation mechanism, typical of chem-
ical reaction–diffusion systems, is shown to exist also in nonlinear optics. The
pattern formation mechanism described in most of the chapters of the book
is based on an off-resonance excitation. The Turing mechanism, however, is
based on the interplay between the diffusion and/or diffraction of interacting



References 19

components. In particular, the emergence of Turing-like patterns is predicted
to occur in active and passive systems, concrete examples being lasers with a
strongly diffusing population inversion, and degenerate OPOs with a strongly
diffracting pump wave. In both cases, one field plays the role of activator,
and the other the role of inhibitor. It is also shown that the effect of diffu-
sion and/or diffraction contributes to the stabilization of spatial solitons and
allows the existence of complex states resembling molecules of light.

In Chap. 13, we describe the three-dimensional structures of light pre-
dicted to occur in resonators described by the three-dimensional Swift–
Hohenberg equation. This order parameter equation describes a class of non-
linear optical resonators including the synchronously pumped OPO. Various
structures embedded in the envelopes of spatio-temporal light pulses are dis-
cussed, in the form of extended patterns (lamellae and tetrahedral patterns),
light bubbles (the analogue of the phase solitons in two dimensions) and vor-
tex rings. These structures exist when the OPO resonator length is matched
to the length of the pump (mode-locked) laser, which emits a continuous or
finite train of picosecond pulses. A three-dimensional modulation can develop
on the subharmonic pulses generated, depending on several parameters such
as the detuning from the resonance of the OPO cavity, and the mismatch of
the resonator lengths for the pump and OPO lasers.

The final chapter, Chap. 14, deals with the influence of noise on spatial
structures in nonlinear optics. Noise, which is not considered in the rest of
the book, is always present in a real experiment, in the form of vacuum noise
(always inevitable) or noise due to technological limitations. It is shown that
the noise affects the pattern formation in several ways. Above the modula-
tion instability threshold, where extended patterns are expected, the noise
destroys the long-range order in the pattern. Rolls and other extended struc-
tures still exist in the presence of noise, but they may display defects (such
as dislocations and disclinations) with a density proportional to the intensity
of the noise. Also, below the modulation instability threshold, where no pat-
terns are expected in the ideal (noiseless) case, the noise is amplified and can
result in (noisy) patterns. The symmetry of a pattern may show itself even
below the pattern formation threshold, thanks to the presence of noise. This
can be compared with a single-transverse-mode laser, where the coherence
in the radiation develops continuously, and where the spectrum of the lumi-
nescence narrows continuously when the generation threshold is approached
from below.
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hexagonal patterns in semiconductor resonators, Phys. Rev. A 65, 013812
(2002). 9

136. D. Yu, W. Lu and R.G. Harrison, Origin of spiral wave formation in excitable
optical systems, Phys. Rev. Lett. 77, 5051 (1996). 9

137. D. Yu, W. Lu and R.G. Harrison, Dynamic bistability and spiral waves in a
laser, J. Opt. B: Quantum Semiclass. Opt. 1, 25 (1999). 9

138. P. Lodahl, M. Bache and M. Saffman, Spiral intensity patterns in the internally
pumped optical parametric oscillator, Phys. Rev. Lett. 85, 4506 (2000). 9

139. S. Longhi, Spiral waves in a class of optical parametric oscillators, Phys. Rev.
E 63, 055202 (2001). 9

140. P. Lodahl and M. Saffman, Pattern formation in singly resonant second-
harmonic generation with competing parametric oscillation, Phys. Rev. A 60,
3251 (1999). 10

141. S. Longhi, Hexagonal patterns in multistep optical parametric processes, Opt.
Lett. 26, 713 (2001). 10

142. M. Hoyuelos, D. Walgraef, P. Colet and M. San Miguel, Patterns arising from
the interaction between scalar and vectorial instabilities in two-photon reso-
nant Kerr cavities, Phys. Rev. E 65, 046620 (2002). 10

143. M. Santagiustina, P. Colet, M. San Miguel and D. Walgraef, Noise-sustained
convective structures in nonlinear optics, Phys. Rev. Lett. 79, 3633 (1997).
10



References 27

144. H. Ward, M.N. Ouarzazi, M. Taki and P. Glorieux, Transverse dynamics of
optical parametric oscillators in presence of walk-off, Eur. Phys. J. D 33, 275
(1998). 10

145. M. Santagiustina, P. Colet, M. San Miguel and D. Walgraef, Walk-off and
pattern selection in optical parametric oscillators, Opt. Lett. 23, 1167 (1998).
10

146. S. Longhi, Nonadiabatic pattern formation in optical parametric oscillators,
Phys. Rev. Lett. 84, 5756 (2000). 10

147. S. Longhi, Transverse patterns in nondegenerate intracavity second-harmonic
generation, Phys. Rev. A 59, 4021 (1999). 10

148. S. Longhi, Quasipatterns in second-harmonic generation, Phys. Rev. E 59,
R24 (1999). 10

149. M. Le Berre, A.S. Patrascu, E. Ressayre and A. Tallet, Daisy patterns in the
passive ring cavity with diffusion effects, Opt. Commun. 123, 810 (1996). 10

150. R. Herrero, E. Große Westhoff, A. Aumann, T. Ackemann, Yu.A. Logvin and
W. Lange, Twelvefold quasiperiodic patterns in a nonlinear optical system
with continuous rotational symmetry, Phys. Rev. Lett. 82, 4627 (1999). 10

151. M. Vaupel, A. Maitre and C. Fabre, Observation of pattern formation in
optical parametric oscillators, Phys. Rev. Lett. 83, 5278 (1999). 10
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2 Order Parameter Equations for Lasers

Order parameter equations are the simplest (minimal) equations that de-
scribe, in the leading order, the dynamics of the field in broad-aperture lasers
and other nonlinear optical systems. This chapter is devoted to the derivation
of OPEs for lasers.

The OPEs have a twofold significance in studying the formation and evo-
lution of transverse patterns in nonlinear optics. First, they usually allow a
simplification of the analytical and numerical treatment, since the OPEs are
structurally simpler than the initial (microscopic) equations. The OPEs are
often obtained in the form of the complex Ginzburg–Landau or the complex
Swift–Hohenberg equation. These equations have been intensively studied
in recent years outside optics, and their properties are well, although not
completely, known. Thus, a reduction to these equations solves a part of the
problem [1].

Second, the OPEs allow one to consider the patterns in a particular sys-
tem (in our case, a laser) from a general point of view. As shown below,
the reduced laser equations in some limits are similar to the hydrodynamic
(Navier–Stokes) equation. In the other limit (a class B laser), the reduced
equations are similar to those derived for oscillatory chemical and biological
systems. Thus the derivation of OPEs allows one to demonstrate an anal-
ogy between nonlinear optics and hydrodynamics in one limit, and between
nonlinear optics and oscillatory chemical systems in the other limit. A knowl-
edge of the existence of vortices in superfluids allows one to predict vortices in
nonlinear optics thanks to the optics–hydrodynamics analogy, and similarly
a knowledge of “self-sustained meandering” of spiral waves in oscillatory or
excitable systems provides a motivation to look for the “restless vortex” in
class B lasers.

We start from a semiclassical model of a laser, the Maxwell–Bloch (MB)
system of equations, which includes transverse degrees of freedom. We then
reduce the MB system using two alternative methods: adiabatic elimination
(Sect. 2.3.1) and the multiscale expansion technique (Sect. 2.3.2). We deal
in this chapter with class A and class C lasers, since these cases lead to a
single OPE in the form of the CGL or CSH equation. The study of a class
B laser (a laser with relatively slow population inversion) is postponed to

K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 33–49 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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Chap. 7, since this class of laser leads to more complicated OPEs, and to
richer dynamics than those of class A and class C lasers.

2.1 Model of a Laser

Our starting point is the semiclassical Maxwell–Bloch (MB) equation system,
which describes many types of lasers with transverse degrees of freedom:

∂E

∂t
= κ

[− (1 + iω)E + P + id∇2E
]
, (2.1a)

∂P

∂t
= −γ⊥ (P − ED) , (2.1b)

∂D

∂t
= −γ‖

(
D −D0 +

1
2
(EP ∗ + E∗P )

)
. (2.1c)

The complex fields E(r, t) and P (r, t) are the envelopes of the electro-
magnetic (optical) field and of the polarization, and D(r, t) is the real valued
field of the population inversion, which in the absence of stimulated radia-
tion is equal to its unsaturated value D0(r). κ is the relaxation rate of the
optical field in the resonator due to the (small) transmittivity of the mirrors
and to linear losses in the resonator; γ⊥ and γ‖ are the decay rates of the
polarization and population inversion, respectively. Finally, ω is the reson-
ator detuning (the detuning of the resonance frequency of the corresponding
longitudinal mode with respect to the center of the gain line).

It is assumed that the optical field E(r, t) is linearly polarized, and the
gain line is homogeneously broadened. It is also assumed that only one lon-
gitudinal mode family is excited. Otherwise, there would be a dependence on
the longitudinal coordinate z, and not only a dependence on the time t and
on the transverse coordinates r = (x, y) as in (2.1).

The system (2.1) describes a laser with multiple transverse modes but
a single longitudinal mode. The evolution in time is assumed to occur on a
timescale much slower than the round-trip time of the light in the cavity;
otherwise, the assumption of a single longitudinal mode would be invalid.

The diffraction term is related to the spatial degrees of freedom. This
term, being nonlocal, couples the field throughout the cross section of the
laser, and is responsible for the collective behavior of the laser radiation.

The simplest limit of the Maxwell–Bloch system (2.1) is the class A laser,
in which the polarization and population inversion are fast compared with the
optical field in the resonator. In this limit, sometimes called the “good cavity
limit”, the fast material variables can be adiabatically eliminated, and a rel-
atively simple order parameter equation can be obtained. A straightforward
adiabatic elimination has been performed in this case in [2]. Although many
pattern-forming properties of lasers are lost in this adiabatic elimination, let
us start from this procedure.



2.1 Model of a Laser 35

It is assumed that the material variables decay fast, i.e. κ/γ⊥ = O(ε) and
κ/γ‖ = O(ε), where ε is a smallness parameter, and that the temporal deriva-
tives of all variables have finite values, i.e. ∂E/∂t ∼ ∂P/∂t ∼ ∂D/∂t = O(1).
Multiplying both sides of (2.1b) and (2.1c) by κ/γ⊥ and κ/γ‖, respectively,
we obtain the result that the left-hand sides of both equations are of or-
der O(ε). Keeping only the terms of zero order O(1), we can eliminate the
material variables from (2.1b) and (2.1c), and obtain

D =
D0

1 + |E|2 , P =
D0E

1 + |E|2 . (2.2)

The expressions (2.2) imply that the material variables P and D follow
instantaneously, or adiabatically, the changes of the field variable E. Inserting
(2.2) into (2.1a) we obtain a single equation for the field,

∂E

∂τ
= −E + D0E

1 + |E|2 + i
(
a∇2 − ω

)
E , (2.3)

where τ = κt is a slow time. Close to the emission threshold p = (D0 − 1)�
1, the emitted fields are relatively weak, |E|2 � 1, which allows a cubic
approximation for the nonlinear term in (2.3),

∂E

∂t
= pE + i

(
a∇2 − ω

)
E − E |E|2 ; (2.4)

this is the complex Ginzburg–Landau equation. In (2.4), p is the balance
between the gain and loss of the laser, and is a criticality parameter of the
CGL.

The CGL equation is a crude approximation for a laser. For instance,
the selection of transverse wavenumber (transverse mode) is not accounted
for by (2.4). A linear stability analysis of the zero (nonlasing) solution of
(2.4) leads to equal growth exponents of all the components of the spatial
spectrum, which can be easily checked by inserting a test solution in the
form of a tilted wave, E(r, t) = e exp(ik · r + λt), with a small amplitude e,
linearizing it with respect to e, and calculating the exponent λ. Here k = k⊥
is the transverse wavenumber, or, in other words, the transverse component
of the wavevector tilted with respect to the optical axis of the resonator. The
value of λ is independent of the transverse wavenumber k = |k| and is equal
to λ = p = D0 − 1.

It is well known, however, that lasers emit particular transverse modes
(transverse wavenumbers) that depend on the length of the resonator. When
the maximum of the gain line coincides with a particular transverse mode
family (Fig. 2.1), the corresponding transverse mode is favored, and grows the
fastest. This tunability property of the laser is lost in the derivation of (2.4).
It is not difficult to understand why spatial-frequency selection is absent in
(2.4): the derivation assumes, among other things, the condition γ⊥/κ → ∞,
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frequency frequency

transverse modes transverse modes

gain line gain line

a) b)
Fig. 2.1. Transverse modes of the resonator and the gain line of the amplifying
medium of a laser. In the resonator length is varied, the transverse modes are
shifted with respect to the gain line, which allows the tuning of the modes. By
increasing the resonator length, one tunes to higher-order transverse mode families
(a). This corresponds to a negative detuning parameter ω in (2.1). By decreasing
the resonator length, one excites the lower-order transverse mode families (b). This
corresponds to a positive detuning

which means that the gain line is infinitely broad. An infinitely broad gain line
obviously cannot cause a transverse frequency selection. In order to account
for the spatial-frequency selection a more sophisticated derivation of the laser
OPE is required, which is the subject of the following sections.

To continue with the derivation of a more precise OPE a linear stability
analysis of the laser equations is useful.

2.2 Linear Stability Analysis

A standard technique is applied here to investigate the stability of the non-
lasing solution of (2.1), given by E(r, t) = 0, P (r, t) = 0, D(r, t) = D0.
By perturbing this trivial zero solution by E(r, t) = e exp(ik · r + λt),
P (r, t) = p exp(ik · r + λt) and D(r, t) = D0 + d exp(ik · r + λt), insert-
ing it into (2.1) and gathering the linear terms with respect to e, p and d, we
obtain

λe = −iκ (ω + ak2
)
e− κe+ κp , (2.5a)

λp = −γ⊥p+ γ⊥eD0 , (2.5b)
λd = −γ‖d . (2.5c)

The last equation in (2.5) is not coupled to the rest, and therefore the
calculation of one λ-branch is trivial: λ3 = −γ‖. The solution of the secular
equation (the solvability condition of (2.5) with respect to e and p) gives two
other branches of the growth exponent:

λ1,2 (∆ω) = −κ+ γ⊥ + iκ∆ω
2

± 1
2

√
(κ− γ⊥ + iκ∆ω)

2 + 4γ⊥κD0 . (2.6)
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Fig. 2.2. The real parts of the three Lyapunov growth exponents depending on
the transverse wavenumber for the MB equations (2.1) with κ = 1, γ⊥ = 1.2 and
γ‖ = 0.4. The λ3 branch is associated with the decay of the population inversion,
and is the horizontal straight line. b) The real and imaginary part of the most
relevant (upper) branch of the Lyapunov growth exponents (2.6) - dashed curves,
and their Taylor expansions (2.8) - solid curves.

Here ∆ω = ω + ak2 is proportional to the deviation of the mode with trans-
verse wavenumber k from its resonant value, ωres = −ak2. Figure 2.2 illus-
trates the dependence given by (2.6).

From (2.6), the threshold for the laser emission (which occurs when λ = 0)
is

D0 = 1 +
κ2

(κ+ γ⊥)
2∆ω

2 . (2.7)

A simplification of (2.1) is possible when only one λ-branch is relevant to
the dynamics of the system. This occurs, in particular, for class A and class
C lasers close to the emission threshold. In this case the other two branches
(the eigenvalue given by (2.6) with the negative sign, and also the straight
line λ = −γ‖ associated with the relaxation of population inversion) lie deep
below the zero axis, and the dynamics related to these branches are enslaved
by the dynamics related to the upper branch. We can expand the upper
λ-branch in a Taylor series around its maximum, which gives

κ+ γ⊥
κγ⊥

λ(∆ω) = p− i ∆ω − κ2

(κ+ γ⊥)
2∆ω

2. (2.8)

This is plotted in Fig. 2.2b as the solid curves.
The growth rate (2.8) is obtained by assuming that ∆ω is of O(ε) and

p = (D0 − 1) is of O(ε2). In this case the truncation of the Taylor series at
O(ε3) leads to (2.8). It is also possible to perform the Taylor expansion under
different smallness assumptions, which leads to slightly different expressions.

The linear stability analysis predicts the initial stage of evolution of the
radiation from the initial (thermal or quantum) noise. To illustrate the dy-
namics predicted by (2.8), the Maxwell–Bloch system (2.1) was integrated
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numerically, starting from a random field distribution in space. A series of
plots illustrating the evolution of the field in the linear stage is given in
Figs. 2.3 and 2.4. A discrimination against nonresonant components in the
spatial spectrum is clearly seen: either a central spot (Fig. 2.3) or a reso-
nant ring (Fig. 2.4) emerges from the initial broadband spatial spectrum,
depending on the detuning of the resonator. The radius of the resonant ring
is given by k2 = −ω/a, in accordance with the results of the linear stabil-
ity analysis (2.6). In the spatial domain, structures with a particular spatial
scale develop, which is related to the radius of the resonant ring; this scale is
l = 2π/k = 2π/

√−a/ω.
The linear stability analysis allows us to write down a model equation

that describes the linear stage of the field evolution. Recall that, in the linear
stability analysis, one substitutes the time evolution operator ∂/∂t by λ, and
the Laplace operator ∇2 by −k2. The opposite substitution (i.e. the substi-
tution in (2.8) of the algebraic variables by their corresponding operators)
leads to

∂A

∂τ
= pA+ i

(
a∇2 − ω

)
A− κ2

(κ+ γ⊥)
2

(
a∇2 − ω

)2
A , (2.9)

where A(r, τ) is the order parameter related to the optical field in the laser
resonator (the relation between A(r, τ) and E(r, t) is obtained in the next
section), and τ is a normalized time, τ = tκγ⊥/(κ+ γ⊥).

The last plots in Figs. 2.3 and 2.4 correspond to the nonlinear stage of the
evolution. Here the wavevectors from the resonant spot and from the reso-
nant ring, respectively, start to compete. Also, a nonlinear broadening of the
resonant ring (Fig. 2.4) or of the central spot (Fig. 2.3) occurs. The ring in
the spatial spectral domain (Fig. 2.4) can split into a few spots: one spot cor-
responds to a single tilted wave; two symmetrically placed spots correspond
to two counterpropagating tilted waves; several spots placed irregularly on
the ring correspond to domains of differently directed tilted waves; and four
spots correspond to a more fundamental pattern, the cross-roll, or square
vortex lattice pattern. The nonlinear patterns will be discussed in detail in
the following chapters. The linear theory can say nothing about the symme-
try of the nonlinear pattern: the last plots in Figs. 2.3 and 2.4 are beyond
the predictions of the linear order parameter equation (2.8). From the linear
theory (linear stability analysis), one can learn only that the most favored
modes (or wavenumbers) have a particular value that depends on the de-
tuning. The spatial spectral components grow to infinity, since there is no
mechanism to prevent their exponential growth in this linear theory. There
is no competition between wavevectors in the framework of the linear theory.
To retrieve the correct nonlinear picture of the evolution, one needs to close
the linear evolution equation (2.8) with some saturating nonlinear terms.

This closure is performed in the following sections in two different ways,
both using results from the linear stability analysis. One possibility is the
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Fig. 2.3. Linear stage of spatial pattern formation for zero detuning. The intensity,
the phase and the spatial Fourier spectra of the field are shown in the left, center
and right columns respectively. The calculations start from a random distribution
of the optical field (with a broadband spatial spectrum). The parameters used were
ω = 0, κ = 1, γ⊥ = 2 , γ‖ = 10 and a = 0.0005. The integration was performed with
periodic boundary conditions in a region of unit size. Time increases from top to
bottom row. Plots are given at times t = 0.5, where there is essentially a speckle field
of the laser radiation; t = 2.5, where the spot in the Fourier domain starts to narrow
(filtering of the spatial spectrum occurs); t = 7.5, where the resonant spot continues
narrowing, and regularization in the near field occurs (the vortex structure is more
pronounced); and t = 25, where a nonlinear “vortex glass” structure develops. The
spot in the far field does not narrow any further (its narrowing due to linear effects
is compensated by nonlinear broadening)
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Fig. 2.4. Linear stage of spatial pattern formation for finite negative detuning.
The parameters and initial conditions are as in Fig. 2.3 except for the detuning
ω = −2. Plots are given at times t = 1, where there is essentially a speckle field
of the laser radiation; t = 5, where the resonant ring starts to emerge in the far
field; t = 15, where the resonant ring narrows, and the field distribution in the near
field seems to be more regular; and t = 25, where different components from the
ring start to compete. In the near field the domains of tilted waves (the areas of
relatively homogeneous distribution) start to emerge
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adiabatic elimination technique [2, 3]. The other is the multiscale expansion
technique, as developed in [4] for the laser.

2.3 Derivation of the Laser Order Parameter Equation

The order parameter equation for a laser is derived in this section. For com-
pleteness, two techniques of derivation are used, adiabatic elimination and
the multiscale expansion, both leading to the same result. Physically, both
derivations have the same purpose: to get rid of unnecessary degrees of free-
dom. This is illustrated in Fig. 2.5, where it is symbolically shown how the
dynamics in the three-dimensional phase space can be reduced to dynamics
in a two-dimensional space by a suitable transformation of the coordinate
system. In general, the derivation of an order parameter equation is always
related to a reduction of the dimension of the original problem: Rn → Rm,
with m < n.

Fig. 2.5. A dimension reduction is achieved
by a suitable transformation of the coordinate
system

2.3.1 Adiabatic Elimination

The adiabatic-elimination (AE) technique consists of the following steps:

1. Linear stability analysis. In this stage, the eigenvalues are calculated and
the corresponding eigenvectors are determined. The eigenvectors are mu-
tually orthogonal with respect to the linear part of the equation system.

2. The initial nonlinear equation system is rewritten in the basis of the eigen-
vectors of the corresponding linearized problem. Owing to the nonlinear
terms, the eigenvectors are mutually coupled.

3. The eigenvectors with negative eigenvalues are adiabatically eliminated
from the corresponding equations. It is assumed that the eigenvectors
with negative eigenvalues are dominated by the eigenvectors with positive
eigenvalues.
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This procedure leads to an order parameter equation. We illustrate how
the adiabatic-elimination technique described above works for the special
case of a class C laser, when the relaxation rates for the optical field and
the polarization are equal, i.e. κ = γ⊥. This simplifies the problem from an
algebraic point of view, without losing generality.

The eigenvalues of the linearized problem (2.6), under the assumption
κ = γ⊥, simplify to

λ1,2 (∆ω) = −κ2 + i∆ω ±√
4D0 −∆ω2

2
, (2.10)

where ∆ω = ω − a∇2 is an operator, unlike the case for (2.6), where the
Laplace operator ∇2 was substituted by −k2.

The linear stability analysis can be rewritten in a more convenient matrix
form. In the matrix representation, the linearized equations (2.5a) and (2.5b)
are expressed in the following way:

∂e

∂t
= Le , (2.11)

where e = (e, p)T is the state vector of the system, and

L = κ

(−1− i∆ω 1

D0 −1

)
(2.12)

is the linear evolution matrix. The linear stability analysis is nothing but
a procedure of diagonalization of the linear evolution matrix L. Multiplying
(2.11) from the left by the transformation matrix S (to be determined below),
and inserting formally the unit matrix I = S−1S between L and e in the
right-hand side of (2.11), we obtain

S
∂e

∂t
= SLS−1Se . (2.13)

The matrix product SLS−1 then gives the diagonal matrix

Λ =

(
λ1 0

0 λ2

)
, (2.14)

consisting of the eigenvalues λ1,2, if the transformation matrix is adjoint to
the eigenvector matrix V , i.e. S =

(
V −1

)T. The eigenvector matrix V trans-
forms the coordinate system to one with axes directed along the eigenvectors
of the system; the coordinates in this new coordinate system A = (A,B)T

are related to the old coordinates e = (e, p)T by A = Se, and, vice versa,
e = S−1A.

Specifically, the matrix of eigenvectors is
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V =


1 (1/2)

(
i ∆ω +

√
4D0 −∆ω2

)
1 (1/2)

(
i ∆ω −√

4D0 −∆ω2
)

 , (2.15)

and its adjoint transformation matrix S = (V −1)T is

S =
1√

κ
√
4D0 −∆ω2


 (1/2)

(−i∆ω +√
4D0 −∆ω2

)
1

(1/2)
(
i ∆ω +

√
4D0 −∆ω2

)
1


 . (2.16)

In (2.16), the normalizing coefficient has been chosen in such a way, that the
expressions given later for the nonlinear terms simplify maximally.

The full nonlinear equations (2.1) in the matrix representation are

∂E

∂t
= LE +NE , (2.17a)

∂D

∂t
= −γ‖

(
D −D0 +

1
2
(EP ∗ + E∗P )

)
, (2.17b)

where E = (E,P )T, and (2.17b) has been written in a scalar form. The
nonlinear evolution matrix is

N =


 0 0

D −D0 0


 . (2.18)

Now we multiply (2.17a) by the transformation matrix (as in (2.14)) in
order to change to the new variables A and B; also, we express the old field
and polarization variables E and P in terms of the new ones in (2.17b). The
nonlinear evolution matrix in the new basis is

SNS−1 =
D −D0√
4D0 −∆ω2


 1 1

−1 −1


 . (2.19)

Taking into account the relations above, (2.17) converts to

∂

∂t


A

B


 =


λ1 0

0 λ2




A

B


+ D −D0√

4D0 −∆ω2


 1 1

−1 −1




A

B


(2.20a)

∂D

∂t
= −γ‖

(
D −D0 +

κ

2

√
4D0 −∆ω2(|A|2 − |B|2)

)
. (2.20b)

Adiabatic elimination can be performed if one λ-branch (namely the λ1

branch) dominates, and the other two branches lie deep below the zero axis.
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In this case, from (2.20b), the equation for the (enslaved) variable of the
population inversion D is

D −D0 = −κ

2

√
4D0 −∆ω2(|A|2 − |B|2) . (2.21)

Inserting (2.21) into the equation for the enslaved variable B, we obtain

∂B

∂t
= λ2B +

κ

2

(
|A|2 − |B|2

)
(A+B) . (2.22)

Assuming a near-threshold condition, together with the “close-to-resonance”
condition ∆ω = O(ε), we obtain λ2 = −2κ in the lowest order. The en-
slaved variable B is negligibly small compared with its master variable A,
i.e. |B| � |A|, and can be eliminated adiabatically from (2.22) to obtain
B = (1/4) |A|2 A, which justifies the assumption about the smallness of B
close to the threshold.

There now remains the equation for the order parameter A, which is
associated with the unstable λ1 branch. From (2.20), we obtain

∂A

∂t
= λ1A− κ

2

(
|A|2 − |B|2

)
(A+B) , (2.23)

which, taking into account the smallness of B and using the expression (2.10)
for λ1, simplifies to

∂A

∂t
=

κ

2

(
−i∆ω +

√
4D0 −∆ω2 − 2

)
A− κ

2
|A|2 A . (2.24)

Expanding the square root in a Taylor series (assuming the “near-threshold”
and “close-to-resonance” conditions discussed above) we obtain

2
κ

∂A

∂t
= pA+ i

(
a∇2 − ω

)
A− 1

4
(
a∇2 − ω

)2
A− |A|2 A . (2.25)

This is the final result, the order parameter equation, which captures the
essential features of the nonlinear dynamics of the laser under the assump-
tions made here. For arbitrary values of κ and γ⊥ (but assuming that both
parameters are of O(1)) we obtain the OPE for the general case of a class C
laser,

∂A

∂τ
= pA+ i

(
a∇2 − ω

)
A− κ2

(κ+ γ⊥)
2

(
a∇2 − ω

)2
A− |A|2 A , (2.26)

where τ = tκγ⊥/(κ+ γ⊥) is a normalized time.
Let us now repeat all assumptions used to derive (2.26):

• “near-threshold” condition: p = D0 − 1 = O(ε2). It follows from this con-
dition that the field amplitude A is small: A = O(ε).
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• “close-to-resonance” condition: ∆ω = a∇2 − ω = O(ε).
• Class C laser assumption: κ, γ⊥ and γ‖ = O(1). If γ‖ is small (the case of a
class B laser), then the adiabatic elimination of the population inversion is
impossible, and one ends up with a system of two equations and two order
parameters. This case will be investigated in Chap. 7.

All the simplifications used here follow from the above assumptions. For
instance, the enslaved parameter B was neglected because of its smallness.
Indeed, from the expression B = (1/4) |A|2 A, it follows thatB = O(ε3), and
thus this neglect is justified.

The terms on the right-hand side of (2.26) are of the third order of small-
ness, except for the diffraction term, which is of the second order of smallness.
Consequently, the evolution occurs on two timescales: the evolution due to
diffraction (e.g. the beating of the transverse modes of the laser) occurs on a
slow timescale T1 = O(1/ε), and the dynamics related to the linear growth
of the fields and nonlinear saturation (e.g. the buildup of the radiation in the
laser) occur on an even slower temporal scale T2 = O(1/ε2).

The detuning term was considered as a scalar during the derivation of
the OPE (2.26), although it is an operator. This detuning operator does not
commute with the order parameter A(r, t), nor with the nonlinearities. If
we take into account this noncommutativity, the nonlinear term in the OPE
(2.25) becomes

N = − κ

2
√
4D0 −∆ω2

(2.27)

×
(
A
−i ∆ω +√

4D0 −∆ω2

2
A∗ +A∗ i ∆ω +

√
4D0 −∆ω2

2
A

)
A,

where the operators act on the variables to the right of them. Now, calculating
the nonlinear term (2.27) and taking into account of the above smallness
conditions (retaining the terms of O(ε3)), we obtain N = −(κ/2) |A|2 A,
which leads again to (2.25) and (2.26).

The OPE (2.25), and also (2.26), is called the complex Swift–Hohenberg
equation, owing to its similarity to the usual real Swift–Hohenberg equation
[5].

Equation (2.26) retains all the ingredients of spatial pattern formation
in lasers. One important property of the radiation in lasers is its diffraction.
The second term on the right-hand side accounts for that. The third term on
the right-hand side describes the spatial-frequency selection, a phenomenon
essential for the correct description of narrow-gain-line lasers. In many such
lasers, selection of the spatial frequency (transverse mode) is possible by tun-
ing the length of the resonator: particular transverse modes fall under the
gain line and thus can be excited. Owing to the spatial-frequency selection
term, the maximum amplification occurs at a nonzero transverse wavenumber
k2 = −ω/a, which depends on the detuning ω. This means that a laser with
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negative detuning emits waves at an angle to the optical axis of the reson-
ator (conical emission). Such a detuning-caused pattern-forming instability
of lasers was first predicted in [6].

The first and last terms on the right-hand side of (2.26) give the nor-
mal form of a supercritical Hopf bifurcation. When the control parameter
p = D0 − 1 goes through zero a bifurcation occurs, bringing the system from
a stable point corresponding to the nonlasing solution A = 0 to a ring corres-
ponding to the lasing solution |A|2 = p, characterized by a fixed amplitude
but arbitrary phase.

2.3.2 Multiple-Scale Expansion

Another method that allows one to derive the OPE is the multiple-scale
expansion technique, widely used in nonlinear analysis. The starting point
is again a linear stability analysis, but the evolution equation of the order
parameter is found as a solvability condition.

This technique consists of the following steps:

1. The relevant variables and parameters of the system are expressed in
terms of a smallness parameter ε. This allows one to write the fields as
an asymptotic expansion,

v =
∞∑

n=1

εnvn . (2.28)

2. The original equations are expanded, and the coefficients of powers of ε
are gathered. At order n, the equation has the form Lvn = gn, which is
linear in vn, where gn contains the nonlinear interactions and variations
of the fields at lower orders, and L is a linear operator.

3. A solvability condition is applied at some order n, to require the exis-
tence of solutions. This is done by requiring that gn be orthogonal to the
solutions of the adjoint homogeneous problem, L∗vn = 0. This process is
also known as the Fredholm alternative theorem.

4. Finally, at a given order, a closed equation is obtained for the evolution
of one single variable, namely the order parameter.

In the following, we apply this method to the Maxwell–Bloch equations
(2.1) [4].

First, we assume that the near-to-resonance condition holds, requiring
that ∆ω =

(
a∇2 − ω

)
be a small quantity:

∆ω = εΘ . (2.29)

In the original paper [4], ω and ∇2 were both required to be small. This
restricts seriously the validity of the order parameter equation. Here we note
that requiring only ∆ω to be small, leads to the same result, and this allows
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us to consider cases where ω and ∇2 are moderate or large, as long as their
difference is small.

We make also the near-to-threshold assumption,

D0 = 1 + p , p = µε2 . (2.30)

With these assumptions, the laser variables depend on slow temporal and
spatial scales, which can be determined by using the results of the linear
stability analysis. The eigenvalue (2.8), which determines the temporal evo-
lution in the linear stage, has terms of first and second order in ε. We can
then define two temporal scales,

T1 = εt , T2 = ε2t , (2.31)

which allows us to expand the temporal derivative as

∂

∂t
= ε

∂

∂T1
+ ε2

∂

∂T2
. (2.32)

Finally, we expand the fields around the trivial solution:

E =
∞∑

n=1

εnen , P =
∞∑

n=1

εnpn , D = D0 +
∞∑

n=1

εndn . (2.33)

All the definitions (2.29)–(2.33) are now introduced into the Maxwell–
Bloch equations (2.1). Powers of ε are gathered, and the equations are solved
recursively at each order.

At the first order,

e1 = p , d1 = 0 . (2.34)

At the second order,

1
κ

∂e1
∂T1

= −e2 + p2 + iΘe1 , (2.35a)

1
γ⊥

∂p1

∂T1
= e2 − p2 , (2.35b)

0 = d2 − 1
2
(e∗1p1 + p∗1e1) . (2.35c)

The compatibility of (2.35a) and (2.35b) requires that

∂e1
∂T1

= i
κγ⊥

κ+ γ⊥
Θe1 , (2.36)

while the polarization is related to the field through

p2 = e2 − i κ

κ+ γ⊥
Θe1 . (2.37)
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Both of these relations will be useful later, at the next order. From (2.35c),
we obtain

d2 = − |e1|2 . (2.38)

At the order O(ε3), the equations read
1
κ

∂e1
∂T2

+
1
κ

∂e2
∂T1

= −e3 + p3 + iΘe2 , (2.39a)

1
γ⊥

∂p1

∂T2
+

1
γ⊥

∂p2

∂T1
= e3 − p3 + µe1 + d2e1 . (2.39b)

This system reduces, by applying a solvability condition that actually consists
in eliminating the dependence on third-order contributions, to(

1
κ
+

1
γ⊥

)(
∂e1
∂T2

+
∂e2
∂T1

)
= µe1−e1 |e1|2+iΘe2− κ2

(κ+ γ⊥)
2Θ

2e1 , (2.40)

where, in obtaining the last term, we have used

1
γ⊥

∂p2

∂T1
=

1
γ⊥

∂e2
∂T1

− 1
γ⊥

κ

κ+ γ⊥
iΘ

∂e1
∂T1

=
1
γ⊥

∂e2
∂T1

+
κ2

(κ+ γ⊥)
2Θ

2e1 . (2.41)

Equation (2.40) depends now only on the field amplitude at different
orders. Let us now define an order parameter A = εe1 + ε2e2. The evolution
of the order parameter with respect to the original time t is given by

∂A

∂t
= ε2

∂e1
∂T1

+ ε3
(
∂e2
∂T1

+
∂e1
∂T2

)
= ε2

κγ⊥
κ+ γ⊥

iΘe1 + ε3
(
∂e2
∂T1

+
∂e1
∂T2

)
.

(2.42)

Finally, (2.42), expressed in terms of the original variables, gives the evo-
lution equation of the order parameter,(

1
κ
+

1
γ⊥

)
∂A

∂t
= (D0 − 1)A−A |A|2

+i
(
a∇2 − ω

)
A− κ2

(κ+ γ⊥)
2

(
a∇2 − ω

)2
A , (2.43)

which coincides with (2.26), obtained by using the adiabatic-elimination pro-
cedure.
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3 Order Parameter Equations

for Other Nonlinear Resonators

3.1 Optical Parametric Oscillators

An optical parametric oscillator basically consists of a nonlinear χ(2) medium
inside a resonator driven by a coherent field of amplitude Ē and frequency
ωL, which propagates along the optical axis of the resonator, parallel to the
z axis. The crystal converts the intracavity pump field of frequency ωL and
amplitude A0 into two fields of frequency f1ωL and f2ωL, and of amplitude A1
and A2, the signal and idler waves, respectively. Energy conservation requires
that f1 + f2 = 1. Three longitudinal modes of the cavity with frequencies
ωcm (m = 0, 1, 2) are assumed to be close to the frequencies fmωL (where
f0 = 1). Under these conditions, and making some of the usual assumptions
of nonlinear optics (the mean-field limit, the paraxial and single-longitudinal-
mode approximations), the evolution equations for the pump, signal and idler
fields can be written as [1]

∂A0
∂t

= γ0
[− (1 + iω0)A0 + Ē −A1A2 + ia0∇2A0

]
, (3.1a)

∂A1
∂t

= γ1
[− (1 + iω1)A1 +A0A

∗
2 + ia1∇2A1

]
, (3.1b)

∂A2
∂t

= γ2
[− (1 + iω2)A2 +A0A

∗
1 + ia2∇2A2

]
, (3.1c)

where γm are the cavity decay rates, ωm = (ωcm − fmωL) /γm are the detun-
ings and am = c2/2γmfmωL are the diffraction coefficients.
The signal and idler fields can have arbitrary frequencies, since f1 and

f2 are free (within the restriction f1 + f2 = 1). In the particular case f1 =
f2 = 1/2, both fields have the same frequency ωL/2, leading to degenerate
oscillation (the DOPO). In this case, the model takes the form

∂A0
∂t

= γ0
[− (1 + iω0)A0 + Ē −A21 + ia0∇2A0

]
, (3.2a)

∂A1
∂t

= γ1
[− (1 + iω1)A1 +A0A

∗
1 + ia1∇2A1

]
. (3.2b)

Note that the degenerate model follows from the condition X1 = X2,
whereX is any of the variables. One might think that, in principle, the results
from the nondegenerate model would include also those corresponding to the
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degenerate model. However, this is not true in general, owing to the complex
character of the fields.
We start the analysis with the simpler, degenerate case.

3.2 The Real Swift–Hohenberg Equation for DOPOs

In order to simplify the analysis of this section, we make the following changes
of variables in the model (3.2):

A0 = E − (1 + iω0)X , (3.3a)

A1 =
√
1 + ω20Y , (3.3b)

Ē = (1 + iω0)E . (3.3c)

The DOPO model now reads
∂X

∂t
= −γ (1+iω0)

(
X + Y 2

)
+ i
1
2
∇2X , (3.4a)

∂Y

∂t
= − (1+iω1)Y + [E + (1 − iω0)X ]Y ∗ + i∇2Y , (3.4b)

where the time is normalized to γ1, the space variables are to a1, γ = γ0/γ1
and we have used a0 = a1/2.
In this new representation, the simplest stationary solution takes the form

X = Y = 0 , (3.5)

which is actually the trivial (nonlasing) solution.

3.2.1 Linear Stability Analysis

Next a stability analysis of the trivial solution (3.5) is performed against
space-dependent perturbations, with arbitrary wavenumber k. The lineariza-
tion of the system leads to the following eigenvalues:

λ0 = −γ
[
1± i

(
ω0 +

k2

2γ

)]
, (3.6)

λ1 = −1±
√
E2 − (ω1 + k2)2 . (3.7)

Clearly, λ0 has a negative real part for any value of the perturbation
wavenumber k. In contrast, one root of λ1 becomes positive for a given pump
value, indicating the presence of a bifurcation at

EB(k) =
√
1 + (ω1 + k2)2 . (3.8)

The emission threshold corresponds to the minimum value of EB(k),
which occurs at a critical wavenumber k = kc. Identically to the case of
the laser, the bifurcation depends on the sign of the detuning:
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1. For ω1 > 0, the instability occurs at kc = 0, corresponding to homoge-
neous emission. Thus, a positive detuning implies that no patterns (no
modes of the resonator) are excited.

2. For ω1 < 0, the instability occurs at kc =
√−ω1, corresponding to a

pattern-forming instability (conical emission).

The pump threshold is different for different signs of the detuning. From
(3.8) it follows that E0 = EB(kc) =

√
1 + ω21 for a positive detuning, while

E0 = 1 for a negative detuning. The situation in this respect is identical to
that in lasers.

3.2.2 Scales

We use the multiscale expansion technique described in Sect.2.3.2 to derive
an order parameter equation for a DOPO. Obviously, adiabatic elimination
is also possible and leads to the same result [2]. The first step consists in the
determination of the proper scalings.
We make again the near-to-threshold assumption,

E = E0 + ε2E2 . (3.9)

The near-to-resonance assumption,

a1∇2 − ω1 = εΘ , (3.10)

unlike the case for lasers, is not always valid. It is valid for self-imaging res-
onators (see Chaps. 5 and 11), which allows one to obtain independent values
of the diffraction coefficients for both waves. However, for plane mirror reson-
ators, strictly one should assume that both the detuning and the diffraction
are small:

a0∇2 ∼ O(ε) , ω1 ∼ O(ε) . (3.11)

To find the characteristic scale of the temporal evolution, we investigate
how the eigenvalue behaves under the above assumptions. Substitution of
(3.9)–(3.11) in (3.7) and expanding into Taylor series leads to

λ1 =
(
(E − E0)− 1

2
(
ω1 + k2

)2)
+O(ε4) , (3.12)

which is valid for both signs of the detuning. In particular, the largest eigen-
value is always λ1 (kc) = E − E0 ∼ O(ε2), which suggests the introduction
of a slow timescale T , given by

T = ε2t . (3.13)

The linear stability analysis does not predict any particular order of mag-
nitude for the pump detuning. Therefore, the pump detuning can in principle
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be chosen freely. However, we can use a property of the homogeneous solution
of the DOPO model to obtain some useful information. As shown in [3], the
homogeneous, nontrivial solution of the DOPO model shows bistable behav-
ior for ω0ω1 > 1. As the order of magnitude of ω1 is required in our analysis
to be O(ε), we can consider two main cases:
1. ω0 ∼ O(1), covering only a monostable situation, and
2. ω0 ∼ O(ε−1), covering also bistable situations.
In the following, we treat these two cases separately.

3.2.3 Derivation of the OPE

Consider an expansion of the fields in the form

X =
∞∑

n=1

εnxn , Y =
∞∑

n=1

εnyn , (3.14)

together with the scalings (3.9), (3.10), (3.12) and (3.13), and either (a)
moderate or (b) large pump detuning. Substitution in (3.4) leads to a system
of equations to be solved at each order.

(a) Moderate Pump Detuning. At O(ε), we find the solution

x1 = 0 , (3.15)

together with the relation

y1 = y∗1 , (3.16)

i.e. the signal field is, in the lowest order, real-valued. At O(ε2), the equations
read

x2 = −y21 , (3.17a)
y2 − y∗2 = −iΘy1 . (3.17b)

At O(ε3), only the equation for the signal field is relevant, which reads
∂y1
∂T

= −y3 + y∗3 + E2y1 + (1− iω0)x2y∗1 + iΘy2 . (3.18)

The solvability of (3.18) can be checked by adding it to its complex conju-
gate, in order to eliminate the explicit third-order contributions. Then, taking
into account (3.16) and (3.17), after some algebra, we find

∂y1
∂T

= E2y1 − y31 −
1
2
Θ2y1 , (3.19)
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which can be written in terms of the initial parameters. If we define the order
parameter as A = εy1, (3.19) leads to

∂A

∂t
= (E − 1)A−A3 − 1

2
(
ω1 −∇2)2A , (3.20)

which is the real Swift–Hohenberg (RSH) equation for the order parameter
A. The RSH equation was first derived in a hydrodynamic context [4], and
was later used to describe several nonlinear optical systems, such as optical
bistability and four-wave mixing [5].

(b) Large Pump Detuning. We repeat the derivation now, but using the
scalings (3.9)–(3.11) together with ω0 = Ω0/ε. From the first and second
order, we obtain (3.15) and (3.17a) again, and also

x3 = −2y1y2 , (3.21a)
y2 − y∗2 = −i (Θ+Ω0y21) y1 . (3.21b)

The third order results in

∂y1
∂T

= −y3 + y∗3 + iΩ0 (2y2 + y∗2) + E2y1 − y31 + iΘy2 . (3.22)

By adding (3.22) to its complex conjugate, and using (3.21) we finally
obtain

∂y1
∂T

= E2y1 − y31 −
1
2
(
Θ+Ω0y21

)2
y1 , (3.23)

which, expressed in terms of the original parameters, results in the following
order parameter equation:

∂A

∂t
= (E − 1)A−A3 − 1

2
(
ω1 −∇2 − ω0A

2
)2
A , (3.24)

where A is the signal amplitude to leading order.
Note that (3.24) reduces to (3.20) when ω0 is small. The term appearing

at large ω0 is responsible for the intensity-dependent wavenumber selection,
corresponding to a spatial nonlinear resonance. Many important features
of pattern formation are related to this effect, which will be discussed in
Chap. 10.

3.3 The Complex Swift–Hohenberg Equation for OPOs

Again, it is convenient to make some changes in the model before starting
the multiscale expansion procedure. The derivation is simplified if we apply
to (3.1) the changes (3.3a) and (3.3c), together with
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A1 =
√
1 + ω20Y e

iΩt, A2 =
√
1 + ω20Ze

−iΩt. (3.25)

The changes now include a change in the reference frequency Ω, given by

Ω =
a1ω2 − a2ω1

a
, (3.26)

where a = (a1γ1 + a2γ2) / (γ1 + γ2). This corresponds physically to the elim-
ination of the frequency shift of the signal and idler waves at the generation
threshold, which appears at a negative value of the effective detuning param-
eter, defined by

ω =
ω1γ1 + ω2γ2
γ1 + γ2

. (3.27)

With these changes, the equations (3.1) read

∂X

∂t
= γ0

[− (1 + iω0) (X + Y Z) + iã0∇2X
]
, (3.28a)

∂Y

∂t
= γ1

[−Y − iã1
(
ω −∇2)Y + EZ∗ + i (1 + i∆0)XZ∗] , (3.28b)

∂Z

∂t
= γ2

[−Z − iã2
(
ω −∇2)Z + EY ∗ + i (1 + i∆0)XY ∗] , (3.28c)

where X , Y and Z are the new pump, signal and idler fields, respectively,
and ãi = ai/a. For the new model (3.28), the trivial nonlasing solution again
takes the simple form

X = Y = Z = 0 . (3.29)

3.3.1 Linear Stability Analysis

The linearization of (3.28) around (3.29), with spatially dependent perturba-
tions, leads to the following growth rates for the perturbations:

λ0 = γ0
[−1 + i (∆0 + ak2

)]
, (3.30)

and

λ1 = −1
2
(γ1 + γ2)− i

1
2
(ã1γ1 − ã2γ2)

(
ω + k2

)
±1
2

√
[(γ1 − γ2)+i (ã1γ1 + ã2γ2) (ω + k2)]2 + 4γ1γ2E2. (3.31)

An instability of (3.29) can be caused by the upper (plus sign) branch of
(3.31). The threshold for this instability of (3.29) is

EB(k) =
√
1 + (ω + k2)2 . (3.32)
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Unlike the degenerate case, where the bifurcation is static (the eigenvalue
is real), the bifurcation here is oscillatory (Hopf), since the perturbations
grow with a frequency given by

ν = − 2γ1γ2
γ1 + γ2

(ã1 − ã2)
(
ω + k2

)
. (3.33)

Note that in the degenerate case ω1 = ω2, γ1 = γ2 and a1 = a2 (ν =
0), the eigenvalue (3.31) converts into (3.7), obtained in the analysis of the
degenerate case, which is real. In fact, the expression (3.31) becomes identical
to that obtained for the DOPO, (3.8), with ω1 replaced by ω.

3.3.2 Scales

We assume again the near-to-threshold condition (3.9) and the close-to-
resonance condition. The latter now takes the form

∇2 − ω = εΘ , (3.34)

with the additional condition ã0∇2 ∼ O(ε), as discused in Sect. 3.2.2. Under
these smallness assumptions, the eigenvalue (3.31) can be approximated by

γ−1λ = −i ã1 − ã2
2

(
ω + k2

)
+
(
(E − 1)−1

2
(
ω + k2

)
2

)
, (3.35)

which is similar to (2.9) for the laser case.
The eigenvalue (3.35) is now complex. The imaginary part is O(ε), while

the real part isO(ε2). This suggests the introduction of two different temporal
scales, T1 = εt and T2 = ε2t, and consequently the following expansion for
the temporal derivative

∂

∂t
= ε

∂

∂T 1
+ ε2

∂

∂T 2
. (3.36)

Again, the order of magnitude of the pump detuning can be chosen freely.
For simplicity, in the following we restrict the analysis to the case ω0 ∼ O (1).

3.3.3 Derivation of the OPE

Consider the system (3.28), with the smallness conditions described above,
together with a power expansion of the fields in the form

X =
∞∑

n=1

εnxn , Y =
∞∑

n=1

εnyn , Z =
∞∑

n=1

εnzn . (3.37)

At the first order
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x1 = 0 , (3.38a)
y1 = z∗1 . (3.38b)

At the second order

x2 = −y1z1 = − |y1|2 . (3.39)

The other fields evolve with respect to the slow time T1:

∂y1
∂T 1

= γ1 (z
∗
2 − y2 − iã1Θy1) , (3.40a)

∂z∗1
∂T 1

= γ2 (−z∗2 + y2 + iã2Θz∗1) . (3.40b)

Taking into account (3.38b), and adding (3.40a) to (3.40b), we obtain a closed
equation for the evolution of the signal with respect to the slow time T1,

∂y1
∂T 1

= −i γ1γ2
γ1 + γ2

(ã1 − ã2)Θy1 . (3.41)

Subtracting (3.40a) from (3.40b) gives

z∗2 = y2 + iΘy1 , (3.42)

where we have used the relation (γ1ã1 + γ2ã2) / (γ1 + γ2) = 1. At the third
order, only the equations for the signal and idler fields are relevant:

1
γ1

(
∂y2
∂T1

+
∂y1
∂T 2

)
= (3.43a)

z∗3 − y3 − iã1Θy2 + E2z
∗
1 + i (1− iω0) x2z∗1 ,

1
γ2

(
∂z∗2
∂T 1

+
∂z∗1
∂T 2

)
= (3.43b)

−z∗3 + y3 + iã2Θz∗2 + E2y1 − i (1 + iω0)x∗2y1 .
The solvability condition is obtained by adding (3.43a) to (3.43b), resulting
in

1
γ1

(
∂y2
∂T1

+
∂y1
∂T 2

)
+
1
γ2

(
∂z∗2
∂T 1

+
∂y1
∂T 2

)
(3.44)

= −iã1Θy2 + iã2Θz∗2 + 2E2y1 − 2y1 |y1|2 .
The dependence of (3.44) on z∗2 can be eliminated by substitution of (3.42),
leaving(

1
γ1
+
1
γ2

) (
∂y2
∂T1

+
∂y1
∂T2

)
= 2E2y1 − 2y1 |y1|2 − i (ã1 − ã2) Θy2 −Θ2y1. (3.45)

We now define the order parameter A as A = εy1 + ε2y2. We can express
its evolution on the original timescale as
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∂A

∂t
= ε2

∂y1
∂T 1

+ ε3
(
∂y2
∂T 1

+
∂y1
∂T 2

)

= ε2
[
−i γ1γ2

γ1 + γ2
(ã1 − ã2)Θy1

]
+ ε3

(
∂y2
∂T 1

+
∂y1
∂T 2

)
. (3.46)

Finally, the evolution equation of the order parameter can be written in terms
of the original parameters as

1
Γ
∂A

∂t
= (E − 1)A−A |A|2 − id (ω −∇2)A− 1

2
(
ω −∇2)2A , (3.47)

where Γ = γ1γ2/(γ1 + γ2) is the decay rate of the order parameter, and
d = (ã1 − ã2)/2 is a diffraction coefficient.
Equation (3.47) is a complex Swift–Hohenberg (CSH) equation, formally

identical to the order parameter equation derived for lasers in the preceding
chapter.
A multiple-scale expansion is also possible in the case of large pump de-

tuning, leading to

1
Γ
∂A

∂t
= (E − 1)A−A |A|2 − id

(
ω −∇2 − ω0 |A|2

)
A

−1
2

(
ω −∇2 − ω0 |A|2

)2
A+

1
2
ω0
(
A∗ ∇2A−A∇2A∗)A , (3.48)

which is the CSH equation with a nonlinear resonance, as derived in [6].

3.4 The Order Parameter Equation
for Photorefractive Oscillators

3.4.1 Description and Model

A photorefractive crystal is a nonlinear medium that responds to the light
intensity via the electro-optic effect, where spatial variations in the refractive
index are induced according to the light profile. When the crystal is placed
inside a resonator and subjected to an optical pump, this nonlinear optical
system is called a photorefractive oscillator. The pump wave, when scattered
by the imperfections of the crystal as it passes along the optical axis, initiates
an oscillation process, generating a signal wave. During the process, both the
pump and the generated waves are present in the resonator.
The total optical field inside the resonator is given by

Ē(r, t) = Ap(r, t) exp(ikpr− iωpt) +As(r, t) exp(iksr− iωst) + c.c. . (3.49)

where the indices p and s attributes to the pump and signal waves, respec-
tively. This induces a spatial modulation of the refractive index,
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n̄(r, t) = n(r, t) exp(iqr − iΩt) + c.c. , (3.50)

where Ω = ωp − ωs and q = kp − ks.
In the mean-field limit, the equations describing the evolution of the signal

wave and the refractive index are (the details of the derivation can be found
in [7])

∂A

∂t
= κ

[− (1 + iβ)A+ in∗ + ia∇2A] , (3.51a)

∂n

∂t
= −γ

(
n− in− ns

A∗

1 + |A|2
)
, (3.51b)

where A = As/Ap is the normalized signal field, ns is the saturation value of
the index grating, β is the detuning of the resonator frequency from the center
of the gain line, and κ and γ are the decay rates of the photon and index
gratings, respectively. Usually, the condition γ � κ holds, which allows the
adiabatic-elimination of the optical field. In the next section, the adiabatic
elimination technique is used to derive an order parameter equation for PROs.

3.4.2 Adiabatic Elimination and Operator Inversion

The envelope of the refractive-index grating can be expressed in terms of
the optical field by assuming that the field is a fast-relaxing variable, i.e.
∂A/∂t = 0. In this case

n =
(
1− iβ + ia∇2)A∗ . (3.52)

Substituting (3.52) in (3.51), and letting the differential operator act on
both sides of (3.51) yields

∂A

∂τ
= −(1 + i)A+ ins

1 + iβ − ia∇2
A∗

1 + |A| 2 , (3.53)

where τ = γt is a normalized time.
The stationary solution of (3.53) is A (r, t) = A0 exp (ikr), where A0 =

ns/2 − 1 and ak2 = 1 − β. This means that certain spatial modes with
wavenumbers k proportional to the resonator detuning are favored. Note the
presence of a constant frequency shift β = 1, which is different from the case
of a laser.
The differential operator in (3.53) can be expanded in a Taylor series,

ins

1 + iβ − ia∇2 =
ins

(1 + i) + i
(
β − 1− a∇2) (3.54)

≈ (1 + i)ns
2

[
1− 1 + i

2
(
β − 1− a∇2)− i

4
(
β − 1− a∇2)2 + · · ·

]
.



3.5 Phenomenological Derivation of Order Parameter Equations 61

This is valid when the condition β− 1− a∇2 � 1 holds. As can be shown by
an analysis of (3.53), this is the case for generation near the threshold, when
|A| � 1, and thus the expansion is justified.
The expansion (3.54), truncated at the second order, and inserted into

(3.53) leads to the equation

∂A

∂τ
=
(ns
2

− 1
)
(1 + i)A− ins

2
(
ω − a∇2)A

+i (1 + i)
ns
8
(
ω − a∇2)2A− ns

2
(1 + i)X + i

ns
2
(
ω − a∇2)X

−i (1 + i) ns
8
(
ω − a∇2)2X , (3.55)

where X = A |A|2 /(1 + |A|2) is a small quantity (X � A) and, in order to
keep the analogy with lasers, we have defined ω = β − 1.
Retaining in (3.55) only the terms at the leading order and applying the

cubic approximation X ≈ (2/ns)A |A|2, we finally obtain
∂A

∂τ
=
(ns
2

− 1
)
(1 + i)A− (1 + i) |A|2A−

i
ns
2
(
ω − a∇2)A− ns

8
(
ω − a∇2)2A , (3.56)

which is again the CSH equation. However, there is an important difference
between (3.56) and the CSH equations derived for lasers and OPOs: the
coefficient of the nonlinear term is complex, which causes self-defocusing in
this system.

3.5 Phenomenological Derivation
of Order Parameter Equations

The CSH equation (3.47) was first derived for lasers [8]. Afterwards the same
equation was derived for photorefractive oscillators [7] and for nondegenerate
optical parametric oscillators [6]. The fact that the same order parameter
equation has been derived for different types of nonlinear optical system
hints at its universality. Its universality becomes evident when we derive the
CSH equation phenomenologically from general symmetry assumptions, not
restricting ourselves to a specific physical system. Let us assume for this
purpose that an isotropic physical system characterized by a complex order
parameter loses its stability at a nonzero wavenumber k0. This means that the
maximum of the real part of the dominating (largest and positive) instability
branch crosses the λ = 0 axis at the wavenumber k0, as illustrated in Fig. 3.1.
The dominating instability branch can be approximated by a parabola at its
maximum (near to the points where it crosses the λ = 0 axis),

λRe(k2) = p− g
(
ak2 − k20

)2
, (3.57)
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(a)

(b)

Fig. 3.1. (a) Real part of the dominating Lyapunov exponents as a function of
the transverse wavenumber (dashed curve), and the parabolic approximation (solid
curve). (b) Imaginary part of the dominating Lyapunov exponent (dashed curve)
and its linear approximation (solid line). The dashed curves are generic (they are
free-hand curves). It is significant that the real part of the dominating Lyapunov
exponent just crosses the λ = 0 axis from below

where p is a control parameter. The spatial isotropy implies that λ depends
on k2 = |k|2 and not on the first power of k. The imaginary part of λ can be
approximated by the line

λIm
(
k2
)
= ak2 − k20 . (3.58)

λIm is equal to zero at k2 = k20 if the reference frequency is equal to the
central frequency of the gain line of the nonlinear optical system.
If we now substitute λ by the temporal derivative ∂/∂t (thus returning

from the frequency spectrum to the evolution in time), and the wavenumber
k by the differential operator −i∇ (thus returning from the spatial spectrum
to the distributions in space), then the linear part of the order parameter
equation is recovered,

∂A

∂τ
= pA+ i

(
a∇2 + k20

)
A− g

(
a∇2 + k20

)2
A , (3.59)

where A(r, t) is an eigenvector associated with the relevant (most unstable)
λ-branch and plays the role of an order parameter.
It remains to close the linear equation (3.59) using some nonlinearity, in

order to prevent the infinite growth of unstable modes. If we assume the
invariance of the field phase, we obtain a cubic, saturating, nonlinear term
A |A|2 in the lowest order. In fact, the terms pA−A |A|2 represent a normal
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form of the Hopf bifurcation, the bifurcation preserving the invariance of the
phase of the order parameter. This closure of the linear equation (3.59) leads
to

∂A

∂τ
= pA−A |A|2 + i (a∇2 + k20

)
A− g

(
a∇2 + k20

)2
A , (3.60)

which is exactly equivalent to (3.47).
In such a way the CSH equation can be derived phenomenologically as

a universal model that includes, in the lowest-order approximation, all the
significant ingredients of a nonlinear optical system: (a) the finite width of the
gain line, (b) spatial isotropy and (c) phase invariance. It is a normal form
(a minimum equation) for a tunable system with a finite gain line width
characterized by a Hopf bifurcation.
The above phenomenological derivation of (3.47) allows one to consider it

as not only a simplified model equation for a specific physical system, such as
a class A or class C laser, which is valid in a particular parameter range, but
also as a universal model equation that describes a class of patterns and a
class of phenomena in nonlinear optics in the lowest order of approximation.
In the same spirit, one can derive phenomenologically the real Swift–Ho-

henberg (RSH) equation, which was derived above for a DOPO. DOPOs are
characterized not by a Hopf but by a pitchfork bifurcation (a DOPO favors
two values of the phase, differing by π). The normal form of a pitchfork
bifurcation is pA − A3, where A is the real-valued order parameter. Adding
the spatially dependent term, one obtains

∂A

∂τ
= pA−A3 +

(
a∇2 + k20

)2
A , (3.61)

which is the RSH equation. The RSH equation is actually valid not only
for DOPOs, but also for degenerate four-wave mixers, for systems showing
optical bistability [5], and for other systems showing phase squeezing.
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4 Zero Detuning: Laser Hydrodynamics

and Optical Vortices

In this chapter, the properties of vortices in class A and class C lasers at zero
detuning are investigated. As shown in the previous chapters, these classes
of laser can be described by the complex Swift–Hohenberg equation (2.26),
which in the zero-detuning case reads

∂A

∂τ
= pA+ ia ∇2A − κ2

(κ + γ⊥)2
a2 ∇4A − |A|2 A . (4.1)

This equation is similar to the complex Ginzburg–Landau equation, ex-
cept for the diffusion term. Instead of the Laplace operator describing the
usual diffusion, here one has a second-order Laplace operator, corresponding
to super-diffusion. Therefore, adopting the terminology of [1], we call (4.1)
the laser Ginzburg–Landau (LGL) equation.

Equation (4.1) can be simplified by using the following normalizations for
time, space and the order parameter: τ → t/p, x → x

√
a/p and A → A

√
p.

Now, instead of (4.1), we can deal with an LGL equation with only one free
parameter,

∂A

∂t
= A+ i∇2A − g ∇4A − |A|2 A . (4.2)

The remaining parameter in (4.2) is g = pκ2/(κ + γ⊥)
2, and thus all

the properties of the solutions of the LGL equation depend on this g-factor,
which has the meaning of a super-diffusion coefficient.

4.1 Hydrodynamic Form

The LGL equation (4.2) can be converted into a hydrodynamic form by using
the Madelung transformation. Originally, Madelung demonstrated [2] that
the transformation of the order parameter A(r, t) =

√
ρ(r, t) exp [iΦ(r, t)]

brings the nonlinear Schrödinger equation into a hydrodynamic form, where
the intensity plays the role of a (super)fluid density, and the phase gradient
∇Φ(r, t) the role of a velocity. Performing the same transformation in (4.2),
we obtain
K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 65–79 (2003)
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∂ρ

∂t
= 2ρ− 2ρ2 − 2∇(ρ ∇Φ) , (4.3a)

∂Φ
∂t

= −g∇4Φ +
∇(2

√
ρ)√

ρ
− (∇Φ)2 . (4.3b)

In (4.3) the super-diffusion has been assumed to be small: all the terms
containing the coefficient g have been neglected, except for the most sig-
nificant one (g ∇4Φ in (4.3b)). Normalizing again the spatial variables with
the change r/

√
2 → r, and rewriting (4.3) in terms of the velocity in the

transverse space v = v⊥ = ∇Φ, we obtain

∂ρ

∂t
+ ∇(ρv) = 2ρ− 2ρ2 , (4.4a)

∂v

∂t
+ (v∇)v = −g

2
∇4v + ∇

(∇(
√

ρ)
2
√

ρ

)
. (4.4b)

Equations (4.4) describe, in the hydrodynamic analogy, the evolution of
a “photon fluid”. The left parts of the equations can be interpreted as the
conservation of mass and momentum (the analogues of the continuity and
Euler equations, respectively). The right part of (4.4a) describes the presence
of sources and sinks: “mass” is created owing to the linear gain and dissipates
owing to the saturation of the inversion in the laser. The right part of (4.4b)
can be interpreted as the dissipation of momentum due to super-viscosity,
which is proportional to the g-factor. The last term in (4.4b), called the
“quantum pressure” term, has no analogue in standard fluid mechanics.

The “photon fluid” in a laser as described by the LGL equation does not
possess the usual compressibility, where the internal pressure is proportional
to some local function of the density (note that the quantum pressure in
(4.4b) is nonlocal). However, a classical pressure can occur if we consider
an additional self-focusing or self-defocusing mechanism, e.g., if a focusing–
defocusing Kerr material is present in the laser resonator. In this case the
LGL equation becomes

∂A

∂t
= A+ i∇2A − g ∇4A − (1 + iα) |A|2 A . (4.5)

The Euler equation (4.4b) is modified because of this self-focusing/defo-
cusing to

∂v

∂t
+ (v∇)v = −∇p

ρ
− g

2
∇4v + ∇

(∇(
√

ρ)
2
√

ρ

)
, (4.6)

where the classical pressure is proportional to the fluid density, since p =
αρ2/2. For a defocusing medium (α > 0) the compressibility relation is “nor-
mal”, while for a focusing medium (α < 0) it is “anomalous”.

Looking ahead (this topic will be treated in detail in Chap. 6), in the case
of a curved (parabolic) resonator, an additional external potential appears in
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the laser hydrodynamic equation. The curved mirrors result in an additional
term in the right-hand side of the LGL equation (4.2), given by −icr2A,
where c is the curvature of the mirrors. The form of this new term arises
from the fact that the curved mirrors correspond to a spatial dependence of
the resonator detuning parameter, which is parabolic in a first approximation.
Taking the curvature into account leads to the corresponding Euler equation,

∂v

∂t
+ (v∇)v = −∇V − ∇p

ρ
− g

2
∇4v + ∇

(∇(
√

ρ)
2
√

ρ

)
, (4.7)

where V (r) is a potential holding the laser fluid inside the resonator (in the
lateral direction).

Summarizing, the transverse dynamics of the laser radiation are analo-
gous to the dynamics of a compressible, quantized fluid. The parabolic mir-
rors of the laser resonator result in a parabolic potential, which localizes
the laser fluid. The compressibility law of the laser fluid is nonlocal, and a
local compressibility/anticompressibility term appears when additional self-
defocusing/focusing effects are included. Finally, the super-viscosity of the
laser fluid pκ2/ [2(κ + γ⊥)]

2 is inversely proportional to the width of the gain
line.

4.2 Optical Vortices

The radiation of lasers, being similar to fluids and superfluids, can be ex-
pected to show vortices. Optical vortices can indeed be obtained by integrat-
ing the LGL equation (4.2) numerically. In the first approximation, an optical
vortex has a helical wavefront, and therefore can be described asymptotically
(at the core) by

A(r) = r exp(imϕ) , (4.8)

where m = ±1 is the topological charge of the vortex, and (r,ϕ) are polar
coordinates centered at the vortex core. In general, the distribution of the
field in the presence of an optical vortex is

A(r) = R(r) exp [imϕ + iΦ(r)] , (4.9)

where the amplitude R(r) saturates far away from the vortex core, and Φ(r)
is the radial phase responsible for the radiation from the vortex.

When Φ(r) is a constant (corresponding to a uniform radial phase), the
lines of equal phase are directed radially from the vortex core (Fig. 4.1, left),
and the flow of the photon fluid around the vortex is purely azimuthal. The
vortex does not radiate in this case. In general, however, the flow has a radial
component, as shown in Fig. 4.1 on the right. The origin of the radial flow
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Fig. 4.1. Phase isolines around an optical vortex, shown by thin lines or curves,
and flow lines (along the phase gradient), shown by thick lines with arrows. Left :
optical vortex with constant radial phase. Right : optical vortex with radial phase
growing monotonically away from the vortex core

component is that fluid is created at the vortex core (where the amplification
(source) dominates over the saturation (sink) in (4.4a)), and flows outwards,
where the sources and sinks compensate one another. Such radiating vortices
are sometimes called spiral waves, since the equiphase lines are of spiral shape.

The vortex solution (4.9), however, does not posses an explicit algebraic
form for the LGL equation in two spatial dimensions. In order obtain insight
into the properties of the vortex (e.g. the size of the vortex core, and the
vortex radiation), an analysis of a 1D analogue of a vortex is useful. The
1D analogue of a vortex is a kink wave that is equal to zero at the vortex
core (x = 0), and approaches asymptotic values with constant amplitude and
opposite phases at x = ±∞.

In the next section, the 1D version of (4.2) is analyzed in two limits
separately: (1) in the limit of strong diffraction (g � 1), and (2) in the limit
of strong diffusion (g � 1).

4.2.1 Strong Diffraction

In the strong-diffraction limit (g � 1), (4.2) converts to

∂A

∂t
= A+ i

∂2A

∂x2
− |A|2 A . (4.10)

A solution in the form of a kink can be found straightforwardly using an
ansatz of the form A(x, t) = tanh(x/x0) exp [−iωt + iΦ(x)], with a phase gra-
dient Φx = (α/x0) tanh(x/x0). Inserting the ansatz into (4.10), one obtains
the half-width of the kink x0, the kink radiation factor α and the frequency
ω:

x2
0 = 3

√
2 , α =

√
2 , ω =

1
3
√
2

. (4.11)

These values apply approximately in the 2D case for an optical vortex, where
the half-width of the kink x0 plays the role of the vortex core radius r0. The
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numerical values of the parameters differ slightly in the 2D case, but the
scalings hold.

As follows from this analysis, the radial phase of the vortex is not uniform,
since Φr = (α/r0) tanh(r/r0). According to the hydrodynamic analogy, where
the phase gradient is equivalent to the velocity of the flow, the vortex creates
a flow outwards or, in optical terms, the vortex radiates. The radiation is zero
close to the vortex core (the radial phase variation is zero at this point), and
increases away from it, saturating at a constant value. The saturation value
with the initial normalizations of (4.1) is

Φsat
r =

√√
2p
3a

≈ 0.687
√

p

a
. (4.12)

The equal-phase lines therefore form spirals, as shown in the right-hand side
of Fig. 4.1.

This provides an interpretation of the existence of “shocks” between vor-
tices: the radiation from the neighboring vortices propagates, and collides.
Owing to the collision, “shocks” appear.

The vortex core radius, expressed in terms of the initial parameters of
(4.1), is proportional to the diffraction coefficient in this limit of strong
diffraction:

r2
0 = 3

√
2
(

a

p

)
. (4.13)

In Fig. 4.2, several vortex ensembles are shown in the strong-diffraction
case, as obtained by numerical integration of (4.1).

It is interesting to note that the motion of the vortices is nearly chaotic.
Annihilation of vortices is observed, as well as nucleation of new pairs of
vortices. From a statistical point of view, the distribution of vortices remains

Fig. 4.2. The amplitude (left) and
the phase (right) obtained by numer-
ical integration of the LGL equation
(4.2) with g = 0.2. The distributions
in the top row are obtained at time
t = 100, and those in the bottom row
at time t = 300
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unchanged during the calculation: the density of vortices is nearly the same in
the top and bottom plots in Fig. 4.2. The chaotic vortex motion in the CGL
equation has been shown to be at the root of “defect-mediated turbulence”
[3].

In order to check the predicted vortex behavior, several experiments have
been performed with a broad-aperture photorefractive oscillator, which, as
shown in Chap. 3, is the analogue of a laser described by the LGL equation. In
the strong diffraction limit, ensembles of vortices with shocks were observed
[4].

Figure 4.3 shows experimentally recorded patterns obtained by tuning the
resonator length so that the ring in the far field contracted to a central spot
(right). This siuation corresponds to zero resonator detuning. Optical vortices
separated by shocks are seen in the near-field pattern (left), in accordance
with the theoretical predictions. The orientation of the shock boundaries
and the locations of vortices evolved freely in time and were not imposed
by the boundaries. The patterns display central symmetry, which is imposed
by the confocality of the resonator (see Chap. 6 for a discussion of confocal
resonators). The mismatch l from the confocal length in the experiment was
around 5 mm. Judging from the observed patterns, the diffraction dominated
over diffusion in this case.

Fig. 4.3. Vortices separated by shocks for zero detuning: the near-field distribution
is shown at the left, and the far-field distribution at the right. The deviation from
the confocal length was around 5 mm, and thus diffraction dominates over diffusion.
The pump field intensity was twice the threshold value
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4.2.2 Strong Diffusion

Consider now the strong-diffusion limit (g � 1), in which (4.2) reads

∂A

∂t
= A − g

∂4A

∂x4
− |A|2 A . (4.14)

Obviously, one can scale out the parameter g in this limit. However, we
keep it in order to avoid misunderstandings, and keep the normalizations
defined previously.

The natural guess for the solution of (4.14) in 1D is again a kink, A (r, t) =
tanh(x/x0), now with a uniform phase profile. This form of kink, however, is
not an exact solution of (4.14), as is easy to find by a direct test. Therefore
one can use it only as an approximate solution.

Next, we use the fact that (4.14) is variational, i.e. it can be expressed in
variational form as ∂tA = −δF/δA∗, where F(A) is a real-valued variational
potential given by

F =
∫ ∞

−∞

(
− |A|2 + 1

2
|A|4 +

∣∣∣∣∂2A

∂x2

∣∣∣∣
2
)
dx . (4.15)

This allows us to determine the half-width of the kink solution by inserting
the ansatz into the variational functional, and minimizing (4.15) with respect
to x0.

If we substitute the hyperbolic-tangent ansatz into (4.15), an infinite value
is obtained for the potential. This is due to the contribution of the homoge-
neous background of amplitude |A0| = 1. Therefore we calibrate the potential
(4.15) by subtracting this constant contribution:

F =
∫ ∞

−∞

(
− |A|2 + 1

2
|A|4 + 1

2
+
∣∣∣∣∂2A

∂x2

∣∣∣∣
2
)
dx . (4.16)

Integration of (4.16) now gives a finite value for the potential,

F(x0) =
16g + 5x4

0

120x3
0

. (4.17)

The value of the half-width that minimizes the potential F is given by
x4

0 = (24/5)g. The vortex core radius is therefore proportional to the diffusion
coefficient in this limit of strong diffusion, if we use the initial normalization
of (4.1):

r2
0 =

√
24
5

a√
p

κ

κ + γ⊥
. (4.18)

The radial phase is constant in this limit. Vortices do not radiate when
diffusion is the dominating process and, consequently, they do not cause
shocks in vortex ensembles.
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Fig. 4.4. The amplitude and phase, as
obtained by numerical integration of (4.1)
with g = 10. The distributions calculated
at t = 8 and t = 150 are shown in the top
and bottom rows respectively

Figure 4.4 illustrates the dynamics of a vortex ensemble in the strongly
diffusive case, as obtained by numerical integration of (4.1).

The number of vortices decreases with time in this diffusive limit. This is
in contrast with Fig. 4.2, which shows no variation in the number of vortices,
in a statistical sense, in the diffractive limit.

Annihilation of vortices, and a plane wave as the final state can be ex-
pected, since the diffusive limit is a variational one. Variational systems de-
velop in such a way that they reach the minimum of the variational potential
along the shortest path (along the gradient of the potential).

In experiments, the diffusive case is obtained when the resonator length is
precisely tuned to the self-imaging length, as shown in Chap. 6. An example
of a pattern recorded under such conditions is shown in Fig. 4.5. An obvious
difference from the distribution shown in Fig. 4.3 is the absence of shocks.

4.2.3 Intermediate Cases

It is difficult to perform analytical evaluations of the vortex parameters for
arbitrary diffraction–diffusion ratios. However, the vortex behavior in this
intermediate case can be extrapolated from the two limits. Qualitatively, one
can expect that the closer the parameters are to the diffractive limit (small g),
the more the vortices radiate, and the more prominent the shocks in vortex
ensembles are. Also, the dynamics are more chaotic. On the other hand, the
closer the parameters are to the diffusive limit (large g), the more the vortices
tend to annihilate and disappear.

Some quantitative evaluations can be performed with a simplified version
of the LGL equation, namely the ordinary CGL equation, which contains
normal diffusion. In two dimensions, this equation reads

∂A

∂t
= A+ iaIm ∇2A+ aRe ∇2A − |A|2 A , (4.19)

where aIm and aRe are the diffraction and diffusion coefficients, respectively.
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Fig. 4.5. Vortices for zero detuning, for a perfectly confocal resonator, when the
diffusion dominates over the diffraction. The pump field intensity was twice the
threshold value. Shocks are absent because diffusion dominates

In one transverse dimension, (4.19) possesses an exact kink solution in
the form A(x, t) = β tanh(x/x0) exp [−iωt + iΦ(x)], where the gradient of
the phase is given by Φx = (α/x0) tanh(x/x0). Substitution in (4.19) allows
us to evaluate the parameters of the kink:

x2
0 = −5

2
aRe +

√(
9
2

)
a2
Re + 18a2

Im , (4.20a)

α = −3
2

aRe

aIm
+

√(
3aRe

2aIm

)2

+ 2 . (4.20b)

In two transverse dimensions, no algebraic vortex solution exists. However,
the parameters obtained for the kink solution can again be supposed to be
valid also for the vortex solution, with the width of the kink x0 corresponding
now to the radius of the vortex core r0.

Consider now the two limiting cases of (4.20).
In the diffractive case, where aIm � aRe, the vortex radius is given by

r2
0 = 3

√
2aIm − 5

2
aRe , (4.21)

and is mainly determined by diffraction. The vortex radiation parameter is

α =
√
2− 3

2
aRe

aIm
, (4.22)

which asymptotically approaches its maximum value as the purely diffractive
case is approached.
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In the diffusive case, where aIm � aRe, the vortex radius is given by

r2
0 = 2aRe + 2

a2
Im

aRe
, (4.23)

and is mainly determined by diffusion. The radiation parameter is

α =
2aIm

3aRe
, (4.24)

which is linearly proportional to the diffraction/diffusion ratio. In the purely
diffusive limit α tends to zero, corresponding to a uniform phase.

Note that, with the appropriate scalings (the parameter aIm/aRe used
for asymptotic expansions plays the role of the g-factor of (4.2), as can be
easily checked), these results agree with those obtained for the vortices of the
LGL equation in the corresponding limits, thus justifying the use of (4.19)
to evaluate the vortex parameters.

4.3 Vortex Interactions

A single, isolated vortex on a homogeneous background is stationary. If the
spatial symmetry is broken, the vortex starts to move. The symmetry can
be broken by a gradient of the background field on which the vortex is su-
perimposed. For the study of vortex interactions, we assume the presence of
two vortices; one vortex creates inhomogeneities, and the other vortex moves
because of those inhomogeneities, and vice versa.

A vortex creates phase as well as amplitude inhomogeneities. Vortices
interact predominantly as a result of phase inhomogeneities, since the am-
plitude inhomogeneities decay rapidly far away from the vortex core. The
phase gradient has an angular component due to the helicity of the vortex,
and also a radial component due to the vortex radiation, as discussed in the
previous section. Therefore, we already know how the first vortex imposes
phase inhomogeneities. To understand the vortex dynamics, one must find
out how the second vortex responds to those phase inhomogeneities.

A mathematically rigorous derivation of the vortex–vortex interaction can
be found in [5, 6]. Here we sketch a phenomenological theory, which is simpler
and more transparent.

We assume that the second vortex is imposed on a tilted wave exp(ik ·r),
and rewrite (4.19)1 with the ansatz A(r, t) = exp(ik · r)B(r, t) :

1 For simplicity, we study the ordinary CGL equation. The main properties of the
dynamics of vortices for the LGL equation are analogous, and will be discussed
below in the present chapter.
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∂B

∂t
+ 2aIm(k · ∇)B − 2iaRe(k · ∇)B

= (1− aRek
2 − iaImk2)B − |B|2 B + iaIm ∇2B + aRe ∇2B . (4.25)

The presence of the background tilted wave decreases the gain and shifts
the frequency (the first term on the right-hand side in (4.25)), owing to the
mismatch from the resonance (a tilted wave is at resonance in a laser with zero
detuning). The remaining three terms on the right-hand side indicate that
the presence of the background tilted wave does not alter the nonlinearity,
the diffraction or the diffusion. Therefore the vortex solution (modified by a
change of the gain) makes the right-hand side of (4.25) equal to zero. The
terms on the left-side of the equation are responsible for the vortex motion.

The term 2aIm(k · ∇)B implies a uniform translation of the vortex en-
velope B(r, t) with a velocity v = 2aImk. Indeed, the solution B(r, t) =
Bv(r−2aImkt) makes the first two terms of the left-hand side of (4.25) equal
to zero. The vortex envelope Bv(r, t) thus translates at a certain velocity, or,
in other words, is advected by the photon flow. In general, not only a vortex
but also an arbitrary inhomogeneity is advected by a background flow. Note
that no assumption about the form of the perturbation B(r, t) has been made
to calculate the advection.

The term with imaginary coefficient 2iaRe(k · ∇)B, evaluated asymptot-
ically close to the vortex core, can be rewritten as follows. The asymptotic
form of Bv close to the vortex is Bv(r, t) = x+imy (m = ±1), and the
following relation is valid:

i(k · ∇)Bv = (mk⊥ · ∇)Bv , (4.26)

where k⊥ is perpendicular to the gradient of the background tilted wave of
wavevector k (it is rotated counterclockwise by 90◦). As a result, we obtain
an asymptotic equation for the motion of the vortex envelope,

∂Bv

∂t
+ 2aIm(k · ∇)Bv − 2aRem(k⊥ · ∇)Bv = 0 (4.27)

and, consequently, an expression for the vortex velocity,

v = 2aImk − 2aRem × k , (4.28)

where m is a unit vector which is transverse to the (x, y) plane, and directed
along the z axis (optical axis) for a vortex with positive topological charge,
and in the opposite direction for a negative charge.

From this analysis, it follows that the vortices are advected by the mean
flow, and move with the flow velocity. Diffraction is responsible for the hydro-
dynamic advection. Owing to diffusion, however, the vortices have a velocity
component transverse to the flow. The hydrodynamic interpretation of this
transverse velocity component of a vortex is the gyroscopic Magnus force: a
vortex (and any rotating object in general) adquires a velocity component
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transverse to the direction of the force acting on it. The Magnus force depends
on the sense of rotation of a rotating body in hydrodynamics and, equiva-
lently, on the topological charge of the optical vortex m in nonlinear optics
(4.28). The magnitude of the Magnus force is proportional to the diffusion
coefficient.

A similar analysis performed on the LGL equation (4.2) reveals that the
vortex motion induced by the phase gradient is described by

v = 2k − 4g |k|2 m × k, (4.29)

where the advection along k is the same as for the CGL equation, but the
transverse motion is proportional to the third power of the wavenumber |k| of
the background tilted wave, since not the usual diffusion but super-diffusion
is present in the LGL equation.

In Fig. 4.6, results of numerical calculations based on (4.2) demonstrating
vortex motion in a phase gradient are shown.

Fig. 4.6. Two vortices advected by a
background flow, for g = 4. The phase
gradient, visible from the phase pic-
tures (right), is directed to the right.
The time t between pictures is 40

The vortex velocity component directed along the phase gradient is inde-
pendent of the vortex charge. The transverse (gliding) component depends
on the charge: the positively charged vortex at the top left corner of Fig. 4.6
glides downwards, while the negatively charged vortex at the bottom right
corner glides upwards.

Vortices gliding perpendicular to the background tilted wave diminish
their average tilt. Indeed, below the positively charged vortex in Fig. 4.6, the
tilt is larger than above the vortex: above the positively charged vortex there
are three vertical interference fringes, while below there are four fringes. The
zero-detuned (resonant) laser “prefers” a homogeneous distribution, because
this corresponds to a minimum of the variational potential. Thus a vortex
glides in such a way as to minimize the potential energy of the laser.
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Fig. 4.7. Interaction of two vortices: (a) of the same charge; (b) of opposite charge
at small separation; (c) of opposite charge at large separation

Once one knows how vortices create phase gradients and how they move
because of phase gradients, one can analyze the interaction of vortices.

A system of two equally charged vortices is shown in Fig. 4.7a. The first
vortex imposes an angular and a radial phase variation at the location of the
second vortex, and vice versa, as shown by the dashed arrows. The induced
velocity components are indicated by solid arrows. It follows that two pos-
itively charged vortices rotate one around another anticlockwise; if, on the
other hand, both are negatively charged, they rotate clockwise. The vortices
also repel one another, and the separation between them grows. This pic-
ture of the interaction remains qualitatively the same for different diffusion–
diffraction ratios aRe/aIm for the CGL equation (4.19) or, equivalently, for
different values of g for the LGL equation (4.2).

This also provides evidence that vortices of charge larger than one are
never stable in broad-aperture lasers.

The behavior of two vortices with opposite charge is illustrated in
Figs. 4.7b,c. It follows that a vortex pair translates in a direction perpen-
dicular to the line connecting the vortex cores. The vortex separation can
increase or decrease during the course of translation, depending on the dif-
fusion/diffraction ratio and on their initial separation. For a small initial
separation, the vortices attract one another and eventually annihilate. For
a sufficiently large separation, the vortices repel one another. This follows
from simple geometrical considerations, as illustrated in Figs. 4.7b,c: recall
that the radial phase variation increases and the angular phase variation
decreases monotonically with the vortex separation.

It is possible to evaluate analytically the critical separation of oppositely
charged vortices for the CGL equation. At the critical radius, the relation
aRe/aIm = Φr/Φϕ holds. The radial and angular phase variations are Φr =
(α/r0) tanh(r/r0), and Φϕ = 1/r. Therefore, the critical separation rcr can
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be calculated from the transcendental equation

aRe

aIm
= α

(
rcr

r0

)
tanh

(
rcr

r0

)
. (4.30)

The critical vortex separation increases with increasing diffusion, as (4.30)
shows. In the strong-diffusion limit, the equilibrium vortex separation can be
expressed analytically, and is given by

rcr

r0
=

3
2

(
aRe

aIm

)2

. (4.31)

A similar analysis for the LGL equation yields the result that the critical
vortex separation is linearly proportional to g : rcr/r0 ≈ g .

In all cases, the more diffusive the system is, the more dilute is the vortex
gas at equilibrium. The equilibrium density of a vortex gas is thus propor-
tional to n ≈ (r0/rcr)2 ≈ 1/g2.

The above scenario of vortex interaction is, however, valid only in the limit
where diffusion dominates. When diffraction dominates, the shocks between
neighboring vortices can significantly alter the picture discussed above. Fig-
ure 4.8. shows how the presence of shocks can strongly influence the vortex
interaction.

Fig. 4.8. Two vortices interacting
with a shock in between them, for
g = 0.5. In each of the pictures, the
upper vortex has a negative topologi-
cal charge, and the lower has a posi-
tive topological charge. The time t be-
tween pictures is 40

The vortices in Fig. 4.8 are expected to propagate to the left, according
to the analysis given above (Fig. 4.7); since the bottom vortex is of positive
charge, it should drive the upper vortex to the left, and since the upper
vortex is of negative charge, it should drive the bottom vortex to the left too.
This occurs for a large diffusion parameter g � 1, as numerical integration
of (4.2) shows. This is also the case in the initial stage of evolution for the
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relatively small diffusion parameter g = 0.5 used in the calculations by which
Fig. 4.8 was obtained. However, the vortices interact “correctly” only before
the shock develops between them. After the shock develops, it begins to
screen the vortices from one another, and the phase gradients caused by one
vortex are no longer visible to the other vortex. The vortices then move not
because of a mutual interaction mediated by phase gradients, but because of
interaction with the shock. The bottom vortex then moves to the right, as
rolling along the shock. The upper vortex also rolls to the right, for the same
reason.

The interaction between vortices and shocks can be understood in terms
of vortex motion due to amplitude gradients, as investigated in [7]. An am-
plitude gradient (a gradient of the fluid density) causes a gradient of the
pressure, owing to the compressibility relation in the laser–hydrodynamics
analogy. The pressure gradient, according to the laser hydrodynamic equa-
tions (4.4), causes a drift of the vortex. The vortex drift has, however, a
component perpendicular to the force acting on the vortex. This is the Mag-
nus drift: not only a vortex, but also every rotating object undergoes a drift
perpendicular to the force acting on it.
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5 Finite Detuning: Vortex Sheets

and Vortex Lattices

In this chapter, the spatio-temporal dynamics of the fields emitted by class
A and C lasers are investigated in the case of moderate negative detuning.
The transverse field dynamics in lasers are described by the CSH equation
(2.26), as derived in Chap. 2. In this chapter, the same normalizations as in
(4.2) are used, bringing (2.26) into the form

∂A

∂t
= A + i

(∇2 + ∆
)
A − g

(∇2 + ∆
)2

A − |A|2 A , (5.1)

where the normalized detuning ∆ = −ω/p has also been defined. Note that
the laser detuning ω and that of the CSH equation given by (5.1) are defined
with opposite signs. As follows from the linear stability analysis in Chap. 2,
laser patterns appear in the blue-detuned case ω < 0 (when the cavity res-
onance frequency is less than the central frequency of the atomic transition).
On the other hand, it is customary to write the real and complex Swift–
Hohenberg equations in the form (5.1), where patterns occur for positive
values of ∆.

The simplest solution of (5.1) is a tilted (or traveling) wave (TW),

A(r, t) = exp(ikr), (5.2)

with a wavevector k pertaining to the resonant ring (the modes obeying
|k| =

√
∆, which, as predicted by the linear stability analysis in Chap. 2,

experience the maximum amplification).
If the wavenumber of the TW is mismatched from that of the maximally

amplified mode (the wavelength is shorter or longer than the resonant value),
the resulting TW solution is

A(r, t) =
[
1 − g

(
|k|2 −∆

)2
]
exp

[
ik · r − i

(
k2 −∆

)
t
]
, (5.3)

which has an amplitude smaller than that of the resonant TWs, and oscillates
with a frequency proportional to the mismatch ∆ω = k2 −∆, where k = |k| .
The dependence of the amplitude of the TW on the mismatch ∆ω in (5.3) is
similar to the usual resonance curve of a driven oscillator.

The presence of traveling waves is closely related to the existence and
dynamics of vortices, as already discussed in Chap. 4. In Sect. 5.1 the motion
K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 81–90 (2003)
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of a single vortex superimposed on a TW is analyzed, in a similar way to the
analysis in Sect. 4.3. In this case, the finite detuning introduces new features
into the dynamics compared with the zero-detuning case, such as vortex
stretching. In Sect. 5.2, the interaction of two TWs with different orientations
is studied. It is shown that such an interaction may lead to the formation of
TW domains. At a boundary between two domains (where two TWs merge),
an array of equally charged vortices is formed, which corresponds to a vortex
sheet. Finally, the interaction of four TWs at particular angles is shown to
generate a stable cross-roll pattern, which can alternatively be described as
a square vortex lattice.

5.1 Vortices “Riding” on Tilted Waves

The evolution of an arbitrary perturbation of a TW can be studied using the
change of variable A(r, t) = exp(ikr)B(r, t). In the case of a resonant TW
(|k| = √

∆), this change brings (5.1) into the form

∂B

∂t
+ 2k · ∇B = B + i∇2B − g(2ik · ∇ + ∇2)2B − |B|2 B , (5.4)

which is the evolution equation for the modulation of a resonant TW. The
terms on the left-hand side describe the advection of vortices (and of every
structure in general), with the velocity of the TW given by v = 2k. The
terms on the right-hand side describe the evolution of the envelope in a basis
propagating with the underlying TW. The dynamics are similar to those of
the nondetuned laser studied in the previous chapter, but not completely
identical. Inspecting the right-hand side of (5.4), one can identify local gain
and saturation terms, and also diffraction terms identical to those for a laser
with zero detuning. The diffusion in (5.4) is, however, different. Expanding
the third term on the right-hand side,

−g(2ik · ∇ + ∇2)2 = 4g(k · ∇)2 − g∇4 − 4ig(k · ∇3) , (5.5)

we notice that the vortices diffuse in different ways in the directions parallel
and perpendicular to the direction of the advecting TW. The parallel diffusion
is stronger (the first order of the Laplacian) than the perpendicular diffusion
(the second order of the Laplacian). Therefore vortices can be expected to
stretch along the TW direction.

Figure 5.1 shows two oppositely charged vortices advected by a TW, as
obtained by solving numerically the CSH equation (5.1). As expected from
(5.4), the vortices are stretched along the direction of advection. For periodic
boundary conditions, as in Fig. 5.1, the vortices move periodically through
the interaction region. The situation is different for zero boundary conditions.
In this case vortices can appear at one boundary, be advected by the tilted
wave and be destroyed at the other boundary. Such a case is illustrated by
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Fig. 5.1. Two vortices advected by
a background tilted wave directed to
the right, as obtained by numerical in-
tegration of (5.1). The phase gradient
is visible from the phase picture. The
parameters are ∆ = 0.5 and g = 0.4

Fig. 5.2. Vortices generated periodically at the bottom right corner of the integra-
tion region, and advected by a tilted wave in an upward and leftward direction. At
the top left corner of the integration region, several fringes are visible, which occur
because of interference between propagating and reflected TWs. The parameters
are ∆ = 2 and g = 0.1. The time between the plots is t = 2.5, and increases from
left to right

a series of snapshots in Fig. 5.2, obtained by numerical integration of the
CSH equation (5.1) with zero boundary conditions. Similar results have been
obtained in [1] by investigating numerically a Raman laser.

Figure 5.3 shows several vortices advected by a tilted wave, as obtained
experimentally with a photorefractive oscillator in a self-imaging cavity (the
details of the experimental configuration will be given in Chap. 6). The fig-
ure shows three snapshots of vortices, which are continuously created in the
central part of the crystal and drift outwards. There is a defect in the central
part of the figure, since seemingly the telescope inside the resonator was not

Fig. 5.3. Optical vortices nucleated at the center are advected outwards by a
radially tilted wave. The times between three consecutive snapshots (at the left)
were t = 5 s. At the right, the corresponding far-field distribution is shown
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perfectly tuned in the lateral direction (see Fig. 6.6). The defect in the center
nucleates the vortices, which are advected by a radially spreading tilted wave.

5.2 Domains of Tilted Waves

Another natural choice for a basic solution of the CSH equation (5.1) is in
the form of two counterpropagating TWs,

A(r, t) = a+(t) exp(ik · r) + a−(t) exp(−ik · r) , (5.6)

which corresponds to a standing wave (SW) in the case of equal amplitudes
|a+| = |a−|.

One can easily check the stability of the solution (5.6) by inserting it
into (5.1), gathering the terms with the exponents exp(ik · r) and exp(−ik ·
r), and neglecting the terms containing the third spatial harmonics (those
with the exponents exp(3ik · r) and exp(−3ik · r)). In the case of resonant
counterpropagating TWs, where |k| = √

∆, the equations for the amplitudes
read

∂a±
∂t

= a± − a±(|a±|2 + 2 |a∓|2) . (5.7)

A linear stability analysis of (5.7) yields the result that the SW solution
|a+| = |a−| is unstable against one of the two TW solutions, |a+| = 1,
|a−| = 0 or |a−| = 1, |a+| = 0. The system (5.7) possesses a variational
potential that has two minima, which correspond to two TWs, and a saddle
point, which corresponds to a SW. Therefore, (5.7) leads to a competition
between counterpropagating TWs, with the survival of the stronger one.

The competition of counterpropagating TWs can also result in their separ-
ation in space. In this case spatial domains appear, each domain characterized
by a particular direction of a TW.

TW domains commonly appear in the numerical integration of the CSH
equation with periodic boundary conditions, but they exist only as transients:
the strongest domain finally wins, and a pure TW remains as the final pattern.
With zero (Dirichlet) lateral boundaries, however, coexisting TW domains
can be stationary.

Figure 5.4 shows the formation and evolution of TW domains. From the
resonant ring, some spots emerge (right column, showing the spectra), cor-
responding to TW domains (left column). In what follows, the strongest
domains survive. However, the domains are not uniform (second and third
rows), but contain defects in the form of optical vortices. The optical vortices
are advected by the TWs and finally disappear at the domain boundaries.

A domain boundary, as can be seen from the left column in Fig. 5.4, is
an array of equally charged vortices, or a vortex sheet. This is so because
of the particular phase variation at the boundary between two TWs (center
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Fig. 5.4. Appearance and dynamics of TW domains, as obtained by numerical
integration of (5.1). The parameters are ∆ = 2 and g = 1, and the time between
snapshots is t = 20. Time runs from top to bottom

column, showing the phase pattern). Note also that the size of a vortex in
the array is different from that of a freely moving vortex, as can clearly be
seen from the third row in Fig. 5.4.

Figure 5.5 shows field distributions containing domains of tilted waves,
as observed experimentally. Two domains (left) and four domains (right) are
shown together with their corresponding far-field distributions. The direc-
tions of the waves traveling inside the domains correspond to the orientations
of the spots in the far-field ring. The orientation drifted slowly with time, in-
dicating that the orientation of the domains is independent of the boundaries
both in the experiment and in the numerics. The domains are separated by
vortex rows, as expected for domains of different flow.
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Fig. 5.5. Domains of tilted waves separated by rows of vortices: near-field and
far-field pictures. The resonator length was tuned to maintain the ring in the far
field. Note the row of vortices separating the two domains of tilt in the snapshot at
the left. Four domains of different tilt are visible in the right snapshot

In the experimental figure (Fig. 5.5) counterpropagating domains were
recorded. In general, the directions of the TWs in neighboring domains can
be at arbitrary angles. Different angles between domains result in different
separations between vortices at the domain boundaries. Figure 5.6 illustrates
boundaries between domains characterized by different angles of the TWs,
from counterpropagating domains (Fig. 5.6a) to almost copropagating do-
mains (Fig. 5.6d).

The counterpropagating domains in Fig. 5.6a were constructed from TWs
with wavenumbers |k| = 5× 2π, directed to the left in the middle of the fig-
ure, and to the right at the horizontal periodic boundary. The directions
of the TWs can be seen clearly from the phase plots (right column). The
vortex sheet contains 10 vortices over the integration range in this case of
counterpropagating domains: the integral of the phase gradient over the cor-
responding closed loop is equal to 10× 2π.

In general, the density of vortices in a vortex sheet is proportional to
the projection of the difference between the wavectors ∆k = k1 − k2 on the
domain boundary; this can be shown by integration of the phase gradient of
the field over a closed loop enclosing a unit length of the domain boundary.

The TW of the middle domain in Fig. 5.6b is directed upwards and to the
left: it has the same modulus of the wavevector as in Fig. 5.6a (|k| = 5×2π),
but has a horizontal component kx = −4×2π. The vortex sheet now contains
9 vortices, which can again be checked by the integration of the phase gradient
over the corresponding closed loop.

The TW of the middle domain in Fig. 5.6c is directed upwards. The
vortex sheet contains 5 vortices in this case. A peculiar feature is that, for
the lower vortex sheet, the TWs “run apart” (in the vertical direction), and
thus the vortices are ”stretched”. This domain boundary corresponds to a
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a) b)

c)
d)

Fig. 5.6. TW domains, as obtained by numerical integration of (5.1). The parame-
ters are ∆ = 2 and g = 1. Different initial conditions were used to generate different
direction of the TW in the domain

source. The upper domain boundary, in contrast, represents a sink, since the
corresponding TWs “run together”.

Finally, the domain boundaries in Fig. 5.6d contain only two vortices,
since the TWs are almost copropagating: for the middle domain, kx = 2×2π.
The bottom vortex sheet again corresponds to a line of sources, and the top
vortex sheet corresponds to a line of sinks, which can be also seen from the
size and shape of the vortices.

5.3 Square Vortex Lattices

Two counterpropagating TWs compete and do not result in a stable standing-
wave pattern, as shown in the previous section. Instead, they occupy different
areas in space. However, four resonant TWs can coexist simultaneously, re-
sulting in a stationary pattern,

A(r, t) =
∑

j=1,4

Aj exp(ikjr) . (5.8)

The four wavevectors are directed as shown in Fig. 5.7. The pattern con-
sists of two pairs of counterpropagating TWs, crossing at an angle of 90◦.
Such cross-roll patterns have been found in lasers [2, 3] and in optical para-
metric oscillators [4].

By inserting (5.7) into (5.1) and neglecting the higher harmonics, we
obtain the result that the amplitudes of the TW components of the square
vortex lattice (SVL) are all equal to |Aj |2 = 1/5. The phases of the TWs
obey the relation

Φ =
∑

j=1,4

ϕj = π . (5.9)
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Fig. 5.7. Square vortex lattice as obtained by numerical integration of (5.1): ampli-
tude, phase and spatial Fourier spectrum of the field. The parameters are g = 0.4
and ∆ = 2. At the right, a schematic illustration of the four TWs forming the
pattern is shown

A stability analysis based on the variational potential yields the result
that the SVL corresponds to a local minimum in the parameter space of Aj

[2]. Therefore the SVL is stable with respect to small perturbations. The tilted
waves correspond to deeper minima of the potential, and standing waves, as
discussed in the previous section, correspond to a saddle point.

In Fig. 5.8 the SVL is shown for a pump value significantly larger than
that used in Fig. 5.7. Shocks between vortices are visible, as well as higher
spatial harmonics in the spatial Fourier spectrum.

Fig. 5.8. Square vortex lattice as obtained by numerical integration of (5.1). The
parameters are the same as in Fig. 5.7, except for the pump value, p = 9. Here, a
version of (5.1) was used in which the pump parameter was normalized to p = 1,
and the gain term (the first term on the right-hand side of (5.1)) contained the gain
parameter explicitly

Two pairs of counterpropagating TWs can cross not only at an angle of
90◦, but also at arbitrary angles. Such angles lead to rhombic vortex lattices,
as shown in Fig. 5.9. The picture resembles domains of counterpropagating
TWs. Indeed, with increasing detuning, a rhombic vortex lattice becomes
unstable and transforms into domains of counterpropagating TWs. The decay
of a rhombic vortex lattice and the formation of TW domains is shown in
Fig. 5.10.
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Fig. 5.9. Rhombic vortex lattice as obtained by numerical integration of (5.1).
The parameters are the same as in Fig. 5.7. The lattice is constructed from four
TWs with wavevectors kj = (±4×2π,±2π); however, higher components in spatial
Fourier spectrum appear

Fig. 5.10. Decay of a rhombic vortex lattice and formation of TW domains, as
obtained by numerical integration of an unnormalized version of (5.1). The param-
eters are the same as in Fig. 5.9, except for the pump value, p = 4. The stationary
distribution shown in Fig. 5.9 was taken as the initial condition for the calculation

Finally, we present experimental evidence of a square vortex lattice. Fig-
ure 5.11 shows the corresponding field distribution. The directions of the four
tilted waves correspond to the orientations of the four spots in the far-field
ring. The orientation of these spots drifted with time indicating that (1) not
only a square but also a rhombic symmetry of the vortex lattice was possible,
and (2) the symmetry of the pattern was independent of the boundaries.
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Fig. 5.11. A “cross-roll” pattern
or square vortex lattice, as ob-
tained experimentally with a pho-
torefractive oscillator
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6 Resonators with Curved Mirrors

All the previous chapters have dealt with pattern formation in plane–plane
mirror resonators. The order parameter equations (Chaps. 2 and 3) were
derived assuming a plane–plane mirror cavity. The vortex dynamics (Chaps.
4 and 5) were analyzed for a plane–plane mirror resonator too. In reality,
however, most nonlinear resonators contain curved mirrors. This chapter is
devoted to the transverse patterns in nonplanar resonators.

In the presence of curved mirrors, the Maxwell–Bloch equation system
reads

∂E

∂t
= κ

[− (1 + iω0)E − icr2E + ia∇2E + P
]
, (6.1a)

∂P

∂t
= −γ⊥ (P − ED) , (6.1b)

∂D

∂t
= −γ‖

(
D −D0 +

1
2
(EP ∗ + E∗P )

)
. (6.1c)

The only difference between (6.1) and (2.1) is the additional term icr2E
in (6.1a), which takes into account the presence of a parabolic mirror in the
resonator. Here c = kC/2κ is the focusing parameter, proportional to the
total curvature of the mirrors C (positive for a cavity with focusing mirrors,
and negative for a cavity with defocusing mirrors).

The resonator equation, in the absence of nonlinearity (P = 0 in (6.1a)),
has a simple solution in the form of a decaying Gaussian beam,

E (r, t) = E0 e−(1+iω)te−(r/r0)
2
, (6.2)

with a frequency ω = ω0−2
√
ac and a half-width r20 = 2

√
a/c. The Gaussian

beam is actually the lowest, fundamental transverse mode of the resonator,
named the TEM00 mode. In general, the higher-order transverse modes are
also exponentially decaying solutions of the linearized version of (6.1a).

In the first two sections of this chapter the case of a quasi-planar reson-
ator, such that the curvature of the resonator mirrors is small, is discussed.
The effects of the curved mirrors are weak in one resonator round trip, and
can be calculated perturbatively. This fact allows one to derive the order
parameter equation for a laser with curved mirrors (Sect. 6.1). It also allows
the application of mode expansion techniques in the theoretical treatment of
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laser patterns (Sect. 6.2). In Sect. 6.3 the case of a resonator with strongly
curved mirrors is investigated, which in some limits (confocal and self-imaging
resonators) also leads to important simplifications of the problem.

6.1 Weakly Curved Mirrors

In this case the effects of the curvature may be treated perturbatively. We
can take into account of these effects by assuming a weakly varying detuning
in the transverse cross section of the resonator, ω(r) = ω0+cr2.We then (see
Fig. 6.1) consider a resonator with focusing parabolic mirrors as a resonator
with a length thats varies over the transverse cross section: the resonator is
of maximum length along the optical axis, and shorter at some distance from
it. This corresponds to a negative detuning that is maximum on the optical
axis and decreases away from it.

Fig. 6.1. A resonator with focus-
ing curved mirrors can be considered
as a resonator with laterally varying
length: on the optical axis the length
of the resonator is maximum

If the variation of the resonator length over the beam width is small, then
the derivation of the order parameter equation is straightforward. We can
repeat the adiabatic-elimination procedure in Chap. 2 by using a coordinate-
dependent resonator detuning ω(r) = ω0 + cr2. This leads to

∂A

∂τ
= pA+ i(a∇2 − ω0 − cr2)A (6.3)

− κ2

(κ+ γ⊥)2
(a∇2 − ω0 − cr2)2A− |A|2A .

The same result was obtained in [1] by using a multiscale expansion. In
both derivations the smallness parameter is ε =

√
ac, which is actually the

frequency separation of two adjacent transverse modes.
The transverse modes are the eigenfunctions of the operator P̂ =i(a∇2 −

cr2), in both (6.3) and (6.1a). P̂ is the propagation operator in a linear
resonator without gain or decay. The eigenfunctions of the propagator P̂ are
the transverse modes of the resonator, such that the field distributions do
not vary in time, and P̂An(r) = −iωnAn(r). For a cylindrically symmetric
resonator, the Gauss–Laguerre mode sets can be used:

Apl(ρ, ϕ) =
2√
π
(2ρ2)1/2

(
p!

(p+ l)!

)1/2

Ll
p(2ρ

2) exp(−ρ2) exp(ilϕ) , (6.4)
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where p = 0, 1, 2, ... is the radial index, and l = ...,−2,−1, 0, 1, 2, ... is the
angular index. ρ denotes the radial coordinate normalized to the beam waist
r0 = (4a/c)1/4, ϕ is the angle around the optical axis of the laser, and Ll

p are
Laguerre polynomials with the argument indicated. The mode functions are
orthonormalized, and obey the condition

2π∫
0

dϕ

∞∫
0

dρ ρApl(ρ, ϕ)A∗
p′l(ρ, ϕ) = δpp′δll′ . (6.5)

Alternatively, one can use the Gauss–Hermite mode set; however, for
cylindrically symmetric resonators, the Gauss–Laguerre modes are more con-
venient.

The eigenfrequencies of the modes are

ωp,l = 2
√
ac(2p+ l+ 1) , (6.6)

which means that the transverse modes can be degenerate. The fundamental
Gaussian mode TEM00 (p = 0, l = 0) has a frequency ω0 = 2

√
ac; the

two single-vortex helical modes TEM∗
0±1 (p = 0, l = ±1) have a frequency

ω = 2ω0; the next mode family consists of the nonhelical mode TEM∗
10 (p = 1,

l = 0) and two helical double-vortex modes TEM∗
0±2 (p = 0, l = ±2), and so

on. The nth transverse mode family n = 2p+ l is n times degenerate.

6.2 Mode Expansion

Modes are eigenfunctions of a linear resonator. In a nonlinear resonator, the
modes become coupled. We can then rewrite (6.3) in terms of coupled mode
amplitudes, by expanding the order parameter into modes:

A(r, t) =
∑

i

fi(t)Ai(r) , (6.7)

where i is an arbitrary combination of mode indices p and l. Inserting the
expansion (6.7) into (6.3), multiplying both sides by A∗

j (r), integrating and
taking into account of the orthonormality of the modes, we obtain

∂fi

∂τ
= pifi − i(ωi + ω0)fi −

∑
jkl

Γil
jkfjfkf

∗
l , (6.8)

where pi = p− (ωi + ω0)2κ2/(κ+ γ⊥)2 are the individual gain coefficients of
the modes, and Γil

jk are the nonlinear coupling coefficients, given by

Γil
jk =

∫
Aj(r)Ak(r)A∗

i (r)A
∗
l (r) dr . (6.9)
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The mode expansion is not very useful if many modes are taken into
account. The computer time required to integrate (6.8) numerically is pro-
portional to the fourth power of the number of modes. Therefore, for a large
number of modes, the numerical integration of the partial differential equa-
tion (6.3) is usually more convenient. However, the mode expansion approach
is very useful if a small number of modes is excited. The usefulness of mode
expansion is illustrated below with two examples of circling vortices, and with
an example of transverse-mode locking.

6.2.1 Circling Vortices

Vortices circling around the optical axis of a laser can be interpreted as the
interference of two modes of different helicities. In this case, (6.8) becomes

∂f1
∂τ

= p1f1 − i(ω1 + ω0)f1 − f1(G11 |f1|2 + 2G12 |f2|2) , (6.10a)

∂f2
∂τ

= p2f2 − i(ω2 + ω0)f2 − f2(G22 |f2|2 + 2G12 |f1|2) , (6.10b)

where

G11 = Γ11
11 =

∫
|A1(r)|4 dr , (6.11a)

G22 = Γ22
22 =

∫
|A2(r)|4 dr , (6.11b)

G12 = Γ12
12 = Γ21

21 =
∫

|A1(r)|2 |A2(r)|2 dr . (6.11c)

From (6.10), one can analyze the behavior of two modes with different
helicities. For example, it is found that the frequencies of the modes are not
affected by the nonlinear interaction. The particular spatial shapes of the
helical modes do not lead to nonlinear mode pulling or locking. The variation
of the difference between the phases of the modes only rotates the two-mode
interference pattern around the optical axis of the laser, and consequently
there is no preferred phase difference.

There are several different solutions for the intensities of the modes ni =
|fi|2. One solution is trivial, with the amplitudes of both modes equal to
zero. This solution is, however, unstable if the laser is above the generation
threshold. Another solution corresponds to a single mode, where the intensity
of one mode is zero, and the intensity of the other is ni = pi/Gii. The most
interesting solution is that where both modes are excited,

n1 =
p1G22 − 2p2G12

G11G22 − 4G2
12

, (6.12a)

n2 =
p2G11 − 2p1G12

G11G22 − 4G2
12

. (6.12b)
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A stability analysis of these solutions shows that the two modes can co-
exist (and beat, if they have different eigenfrequencies) if G11G22 > 4G2

12,
which means that the modes overlap relatively weakly. For example, the fun-
damental mode TEM00 and the single-vortex mode TEM∗

01 overlap relatively
strongly and the above inequality is invalid. The overlap between these two
modes is G12/

√
G11G22 = 1/

√
2, which is larger than the critical overlap of

1/2 for the coexistence of modes. These two modes, therefore, cannot exist
simultaneously. Interference of the modes TEM00 and TEM∗

01 results in an
optical vortex rotating around the optical axis of the laser. Such behavior is,
however, unstable for a class A laser, as (6.12) shows, and either the vortex
spirals in and subsequently remains on the optical axis of the laser (the helical
TEM∗

01 mode wins the competition), or the vortex spirals out and disappears
(the fundamental TEM00 mode wins). A steadily spiraling vortex is possible
only in a class B laser, as shown in Chap. 7.

Instead of one single vortex, however, several circling vortices are easily
obtained in the framework of (6.11). A number l of vortices of the same charge
arranged symmetrically around the optical axis of the laser corresponds to
the interference pattern of a TEM∗

0l mode with the fundamental Gaussian
mode. The mode overlap decreases with increasing l. For example, the overlap
between the TEM∗

02 and TEM00 modes is 1/
√
6, that between the TEM∗

03

and TEM00 modes is 1/
√
20, and so on.

In Fig. 6.2, an example of multiple circling vortices is shown, taken from
[2]. Note that while multiple circling vortices are relatively easily obtained
experimentally, a single circling vortex following a circular trajectory has
never been observed.

Fig. 6.2. Three vortices circling
around the optical axis of a laser. At
the right, an interference picture with
a tilted plane wave is shown. The in-
terference fringes indicate the topolog-
ical charges of the vortices

6.2.2 Locking of Transverse Modes

Another example concerns the locking of the transverse modes. In this case,
instead of helical modes (6.4), a expansion into flowerlike modes is more
convenient:

Apli(ρ, ϕ) =
2√
π
(2ρ2)1/2

(
p!

(p+ l)!

)1/2

Ll
p(2ρ

2)e−ρ2 ×
{
cos(lϕ), i = 1
sin(lϕ), i = 2 ,

(6.13)
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Fig. 6.3. Perfectly locked vortex
(left) and a vortex locked with some
nonzero angle between the phases of
the “flower” modes of which it is com-
posed (right). The experiments were
done with a photorefractive oscillator

which are also orthogonal and normalized. Taking now two modes from the
same transverse mode family, we obtain, instead of (6.11),

∂f1
∂τ

= p1f1 − i(ω1 + ω0)f1 − f1(G11 |f1|2 + 2G12 |f2|2)−G′
12f

2
2 f

∗
1 ,

(6.14a)
∂f2
∂τ

= p2f2 − i(ω2 + ω0)f2 − f2(G22 |f2|2 + 2G12 |f1|2)−G′
12f

2
1 f

∗
2 ,

(6.14b)

where the phase-sensitive terms (the last term in the right-hand side) are
included. The phase-sensitive coupling coefficient is given by

G′
12 = Γ22

11 = Γ11
22 =

∫
A2

1(r)A
∗2
2 (r) dr . (6.15)

The role of the phase-sensitive terms is to lock the frequencies of the
two modes (i.e. to synchronize the modes) if their eigenfrequencies do not
differ too much. If we restrict our considerations, for simplicity, to the case
of symmetric modes (p1 = p2 = p, G11 = G22), the solution of (6.14) is

p− n [G11 + 2G12 +G′
12 cos (4∆ϕ)] = 0 ,

∆ω
2

− nG′
12 sin (4∆ϕ) = 0 . (6.16)

Here ∆ω = ω1 − ω2 is the frequency mismatch between the two modes, n is
the intensity of each of the modes, and ∆ϕ = ϕ1−ϕ2 is their phase difference.

The solution (6.16) indicates that the modes lock with the same phase if
the frequency detuning is equal to zero. In general, the phase-locking angle is
proportional to the detuning. Figure 6.3 (left) shows a perfectly locked vortex
and (right) a vortex where the corresponding “flower” modes are locked at a
nonzero angle.

Evidently, there exists a maximum value of the mode frequency mismatch
for which the modes are still locked,

∆ωthr =
2pG′

12

G11 + 2G′
12

. (6.17)

Figure 6.4 shows examples of mode-locked patterns involving a small num-
ber of modes, obtained experimentally [3].
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Fig. 6.4. Mode-locked patterns: vortex quadrupole (left) and a vortex quadrupole
that has degenerated into two vortices of the same charge (middle). Both of these
plots belong to the mode family 2p + l = 2. The distribution at the right belongs
to transverse mode family 2p + l = 3

When the frequency detuning is larger than the threshold value given by
(6.17), the modes continue to beat, despite their phase-sensitive coupling.
Figure 6.5 shows the evolution of the phase difference between two modes
when the mode detuning is close to the locking threshold. The modes are
unlocked but do not evolve freely: the phase difference, during its cycle of
2π, sometimes varies faster, and sometimes varies more slowly (for favored
values of the phase). The intensity of the field also oscillates correspondingly.

Fig. 6.5. Evolution of the phase
difference between the two modes,
and of the intensity of one (arbi-
trary) mode close to the locking
threshold

6.3 Degenerate Resonators

The use of resonators with curved mirrors allows one to observe the sim-
plest transverse patterns containing several optical vortices (e.g. as shown in
Figs. 4.2 and 4.3). The observed patterns are the result of the interference of
transverse modes of the resonator. The patterns are either stationary, if the
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modes are locked, or periodic, if the modes are beating. These patterns are
weakly nonlinear patterns: role of the nonlinearity is only that of allowing
mode competition. The spatial scale of the patterns (e.g. the size of the vor-
tices) does not depend on the nonlinearity, but only on the boundary condi-
tions. This means, equivalently, that the temporal spectrum is a collection of
discrete frequencies. These frequencies may be shifted (for frequency-pulling
modes) or locked. However, these patterns have a discrete set of frequen-
cies and not a continuous spectrum, which indicates a dependence on the
boundaries.

Patterns that are essentially nonlinear, such as those investigated in
Chaps. 3 and 4, are of a different nature. They depend weakly on the bound-
aries and, equivalently, their temporal spectrum degenerate into a continuum.
These patterns were predicted and calculated for a plane–plane mirror res-
onator.

Let us now estimate the width of the aperture of a plane–plane resonator
necessary to observe at least one vortex. The evaluation of the vortex core
radius in Chap. 4 gives r20 = 3

√
2a/p, which for a pump intensity of two

times the threshold value (p = 1) yields r0 ≈ 2
√
a. Remembering that the

diffraction coefficient is a = QLλ/(4π) (where L ≈ 1 m is a typical resonator
length, λ ≈ 1 µm is a typical wavelength of the radiation, and Q ≈ 10 is a
typical resonator finesse), we obtain r0 ≈ 3 mm. A minimum width of the
aperture of order of 1 cm is then necessary to observe one vortex. Corres-
pondingly, for observation of ensembles of vortices, such as those calculated
in Chaps. 4 and 5, unrealistically broad apertures are needed.

It is difficult experimentally to build a laser with such a broad aperture,
and therefore one must think of some other configuration. In fact, the require-
ment of a broad-aperture cavity can be achieved not only with a plane–plane
mirror resonator, but also with a curved cavity in a self-imaging or near-self-
imaging configuration, as will be shown in this section.

The main reason why configurations other than a quasi-planar resonator
are mistrusted for experimental investigation of transverse pattern forma-
tion concerns the theoretical assumptions. In deriving the order parameter
equation (2.26) for lasers and other nonlinear optical systems, the mean-field
approximation is used. It is assumed that the radiation changes very little
during a resonator roundtrip. The question is whether order parameter equa-
tions derived for a mean-field case can be used to describe resonators where
the fields vary strongly with propagation. Indeed, for self-imaging resonators
(e.g. a confocal resonator) the field changes significantly over a roundtrip. On
one roundtrip, the field changes from the near field in a reference plane to
the far field in the Fourier-conjugated plane, and back to the near-field.

However, the variation of the field along the cavity can be neglected if the
nonlinear material is short enough compared with the length of the cavity.
In this case the diffractive propagation in the linear part of the resonator is
completely irrelevant. What is significant is how much the fields change over
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a complete roundtrip in the cavity. If the fields change just a little, then order
parameter equations derived using a mean-field approximation are valid. In
near-self-imaging resonators, the fields indeed change very little in a round
trip. In a precisely self-imaging resonator, the fields do not change at all (they
are imaged on themselves).

In order to derive an order parameter equation for a near-self-imaging
resonator, we must rewrite the field propagation equation (6.1a) for a more
general case:

∂E

∂t
= κ

(
− (1 + iω)E − ikCr2

2κ
E + i

B

2kκ
∇2E + P

)
, (6.18)

where the coefficients B and C are the off-diagonal elements of the propa-
gation (ABCD) matrix. For a near-planar resonator, the ABCD matrix is

ABCD =

(
A B

C D

)
=

(
1 L

−c 1

)
, (6.19)

where the element B is equal to the total resonator length, and the element
C is the total curvature of the resonator c. From this, one can retrieve the
propagation equation from (6.18), and for small L and c one can derive the
CSH equation as the order parameter equation (6.3). In experiments, the
so-called 8f resonator, shown in Fig. 6.6, is very convenient.

Fig. 6.6. The 8f resonator. The cavity is self-imaging for a linear length equal to
4f (the full length is equal to 8f); dL is a small deviation from the self-imaging
length

The ABCD matrix for a perfectly self-imaging case is the diagonal unitary
matrix. If a small deviation from the self-imaging length is present, then the
ABCD matrix is

ABCD =

(
1 dL

0 1

)
, (6.20)
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where the element B, which is proportional to the diffraction, is equal to the
deviation from the focal length. In the precise self-imaging case, the diffrac-
tion vanishes. A slightly longer resonator is equivalent to a planar resonator
with a total length equal to the deviation dL. A resonator slightly shorter
than the length of a self-imaging resonator is equivalent to a planar resonator
with a negative length. A negative length of the equivalent resonator means
a negative diffraction coefficient.1

The sign of the diffraction has no influence on the linear propagation
(spreading) properties. However, combined with a focusing nonlinearity, a
change between diffraction and antidiffraction allows one to change between
focusing and defocusing.

Some experiments have been performed with a nearly confocal resonator,
as shown in Fig. 6.7. The ABCD matrix in this case is

ABCD =

( −1 dL

−dL/f2 −1

)
, (6.21)

which, for the precisely confocal configuration, corresponds to an antiunitary
matrix. Confocal resonators are not completely degenerate. They self-image
only after two resonator roundtrips. In one roundtrip, they invert the image.
Therefore a confocal resonator can support only patterns that have central
symmetry or antisymmetry.

Fig. 6.7. Confocal resonator

Summarizing, one can expect that the nonlinear light dynamics in a self-
imaging (4f) resonator are described by the CSH equation (2.26), with a
1 A negative diffraction coefficient has the following physical sense: the usual

diffraction of a resonator, in a geometrical approach, relates the angle of the
incident ray (with respect to the optical axis) to the lateral shift of the ray in
the resonator after one round trip. An incident ray inclined to the right normally
returns shifted to the right after a round trip. The larger the resonator diffraction
is, the larger is the shift. For a resonator slightly shorter than the corresponding
self-imaging resonator, an incident ray inclined to the right returns shifted to
the left. This can be interpreted as propagation in a resonator with negative
diffraction.
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diffraction coefficient calculated using the deviation from the self-imaging
length instead of the total length. The dynamics in a confocal resonator
can also be described by (2.26), but with additional symmetry restrictions,
such that central symmetry, A(r, t) = A(−r, t), or antisymmetry A(r, t) =
−A(−r, t), is imposed.

This insight inspired the use of self-imaging resonators for observing es-
sentially nonlinear vortex patterns (Chaps. 4 and 5), bright spatial solitons
(Chap. 9), and phase domains and phase solitons (Chap. 11). For example,
in some experiments to observe essentially nonlinear patterns we have used a
photorefractive oscillator with BaTiO3 as the active medium. In the confocal
case, the resonator consisted of two highly reflecting mirrors with a radius of
curvature of 350 mm. In the self-imaging case, a resonator with four highly
reflecting plane mirrors and four identical intracavity lenses (with focal length
f = 100 mm), arranged in a near-self-imaging geometry, was used (Fig. 6.8).
The total length of the resonator is L = 8f + l, where l is a small shift from
the self-imaging configuration (l � f).

Fig. 6.8. Schematic illustration of the experimental arrangement used in the 8f
resonator geometry

For a totally open aperture, we observe in the near field (at the plane
where the crystal is located) a random small-scale structure, as is typically
observed in large-Fresnel-number photorefractive oscillators. In the far field
(Fourier-conjugated plane), we observe a set of concentric rings (Fig. 6.9).
The rings in the far field indicate the slight deviation from the self-imaging
length and are comparable to the rings observed in plane Fabry–Pérot res-
onators. Different rings correspond to different longitudinal orders of the
resonant spatial wavevectors (or different longitudinal modes). A variation
of the resonator length leads to a change of the tilt angles of the resonant
wavevectors and a change of the ring diameters in the far field.
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Fig. 6.9. Left : a transverse pattern (near field at the left, far field at the right)
recorded experimentally in a PRO with a nearly confocal resonator. The intracavity
aperture was completely open. Right: schematic interpretation of the Fresnel rings
in the PRO resonator. The PRO emits in a narrow frequency band, which is related
to the wavenumber of the emitted light k = ω/c. The light is radiated at angles such
that the longitudinal component of the wavevector matches the longitudinal-mode
condition of the resonator

To realize the case of a single-longitudinal mode (but with multiple trans-
verse modes) describable by the CSH equation, the emission was restricted
to a single ring by an aperture in the far-field plane. Under these conditions
the PRO displayed the typical patterns predicted by CSH equation, which
depended on the resonator tuning.
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1. G.J. de Valcárcel, Order-parameter equations for transverse pattern formation
in nonlinear optical systems with nonplanar resonators, Phys. Rev. A 56, 1542
(1997). 92

2. M. Brambilla, F. Battipede, L.A. Lugiato, V. Penna, F. Prati, C. Tamm and
C.O.Weiss, Transverse laser patterns. I. Phase singularity crystals, Phys. Rev.
A 43, 5090 (1991). 95

3. K. Staliunas, G. Slekys and C.O. Weiss, Nonlinear pattern formation in active
optical systems: shocks, domains of tilted waves, and cross-roll patterns, Phys.
Rev. Lett. 79, 2658 (1997). 96



7 The Restless Vortex

A single, isolated vortex in a class A or C laser, as described by the CSH
equation (2.26), is stationary. However, in the case of a class B laser, the
situation is different. Free vortices are not stationary but are in permanent
motion. Also, a lattice of vortices experiences permanent self-sustained mo-
tion, leading to various oscillation modes.

For class B lasers, the population inversion decays slowly, and the follow-
ing relations hold: γ‖/κ = O(ε) and γ‖/γ⊥ = O(ε), where ε is a smallness
parameter. The eigenvalue associated with the population inversion D in the
linear stability analysis, λ (k) = −γ‖, does not lie sufficiently deep below the
zero axis. Consequently, the population inversion is not enslaved by the fast
variables, namely the field and the polarization, and cannot be adiabatically
eliminated. The CSH equation is therefore an oversimplified model for a class
B laser and does not describe adequately its spatio-temporal phenomena.

It is well known that single-transverse-mode class B lasers show relaxation
oscillations with a frequency

ωrel =

√
2κγ‖(D0 − 1)−

γ2
‖
4

, (7.1)

where the polarization is assumed to relax infinitely fast, i.e. γ⊥ → ∞. On the
other hand, a single-transverse-mode laser, as described by the CSH equa-
tion, reaches its stationary state monotonically, and does not show relaxation
oscillations. It is plausible to expect also that the spatio-temporal dynamics
of class B lasers are different from those of lasers of class A and class C, which
are described by the CSH equation.

7.1 The Model

An order parameter equation system describing the spatio-temporal dynam-
ics of a class B laser close to the emission threshold can be obtained by
applying the techniques presented in Chap. 2. We use here the method of
adiabatic elimination used in Sect. 2.3 in the limit of a class A laser.

For a class B laser, owing to the slowness of the population inversion, one
can consider the equations of the field and polarization ((2.1a) and (2.1b))
K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 103–115 (2003)
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separately from the equation of the population inversion (2.1c), and diag-
onalize the system formed by (2.1a) and (2.1b), considering D(r, t) as a
parameter. This leads to the following growth rate of perturbations:

λ1,2(∆ω) = −κ

2

(
2 + i∆ω ±

√
4D −∆ω2

)
. (7.2)

Here, as in Chap. 2, the particular case κ = γ⊥ is considered for simplicity.
Generalization to arbitrary values of κ and γ⊥ (but keeping O(κ) = O(γ⊥))
is straightforward. The eigenvector system associated with (7.2) is, in matrix
form,

V =


1 (1/2)

(
i ∆ω +

√
4D −∆ω2

)
1 (1/2)

(
i ∆ω −√

4D −∆ω2
)

 , (7.3)

and its adjoint transformation matrix S = (V −1)T is given by

S =
1√

κ
√
4D −∆ω2


 (1/2)

(−i∆ω +
√
4D −∆ω2

)
1

(1/2)
(
i ∆ω +

√
4D −∆ω2

)
1


 . (7.4)

The expressions for the eigenvalues (7.2), the eigenvectors (7.3) and the
transformation matrix (7.4) are analogous to the expressions (2.10), (2.15)
and (2.16) for class A and class C lasers in Chap. 2. The difference is that here
a time- and space-dependent population inversion D(r, t) appears instead of
a homogeneous, stationary population inversion D0.

Now, we define a new set variables A = (A, B)T, related to the old ones
by the transformation A = SE and viceversa, E = S−1A.

The equations for the field and polarization can now be rewritten, in terms
of the new variables, as

2
κ

∂A

∂t
= −i ∆ω A+

(√
4D −∆ω2 − 2

)
A , (7.5a)

2
κ

∂B

∂t
= −i ∆ω B −

(√
4D −∆ω2 + 2

)
B . (7.5b)

The equation for the population inversion transforms to

∂D

∂t
= −γ‖

[
D − D0 +

κ

2

√
4D −∆ω2

(
|A|2 − |B|2

)]
. (7.6)

As follows from (7.5b), the stable variable B decays rapidly to zero and
can be neglected. Now, expanding the term with the square root in (7.5a) and
(7.6) as a Taylor series, assuming the near-threshold condition p = D − 1 =
O(ε2) and the near-to-resonance condition ∆ω = O(ε), we obtain
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2
κ

∂A

∂t
= (D − 1)A+ i

(
a∇2 − ω

)
A − 1

4
(
a∇2 − ω

)2
A , (7.7a)

∂D

∂t
= −γ‖

(
D − D0 + |A|2

)
. (7.7b)

If we remove the assumption of κ = γ⊥ (but assume that these two coef-
ficients are of the same order, O(1)) we obtain the order parameter equation
for the general case of a class B laser:

∂A

∂τ
= (D − 1)A+ i

(
a∇2 − ω

)
A − κ2

(κ+ γ⊥)
2

(
a∇2 − ω

)2
A, (7.8a)

∂D

∂τ
= −γ

(
D − D0 + |A|2

)
, (7.8b)

where we recall that the variables appearing in (7.8) are related to the original
ones through the relations τ = tκγ⊥/(κ+ γ⊥), γ = (κ + γ⊥)γ‖/κγ⊥, and a
normalized field intensity κ |A|2 → |A|2 has been used.

The two coupled equations (7.8) have also been derived in [1] using the
multiscale expansion technique. They are the basic equations used for the
study of the spatio-temporal dynamics in class B lasers throughout this chap-
ter.

During the diagonalization procedure, the time-dependent transformation
matrix S was used, which obviously does not commute with the operator of
the time derivative ∂/∂t. In fact, the commutation of these operators was
assumed in obtaining (7.8). Assuming the above near-threshold condition
D − 1 = O(ε2), however, we obtain the result that the commutator is of
higher order of smallness than the rest of the terms in (7.8), and thus can
be neglected. Therefore, in the framework of the near-threshold assumption
used here, the system (7.8) is valid for a class B laser.

7.2 Single Vortex

A numerical study of a single vortex in a class B laser (in the framework of
(7.8), and also in the framework of the complete Maxwell–Bloch equations
(2.1)) reveals a surprising result: a single, isolated vortex, placed in a ho-
mogeneous background, is not stationary as in a class A laser, but shows
a self-induced, permanent motion. For some values of the parameters, the
motion resembles a “stochastic meandering” of the vortex core. Sometimes
the motion is circular or flower-like. In order to understand the origin of this
self-induced motion we inspect the distributions of the optical field A and of
the population inversion D at the vortex core.

Figure 7.1a shows the fields along a line crossing the center of a stationary
vortex. At the vortex center the order parameter A, which is proportional to
the optical field, is zero. As the population inversion does not decay in the
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Fig. 7.1. Electric-field modulus (solid line) and population inversion (dashed line),
corresponding to (a) a stationary optical vortex, and (b) a vortex moving to the
right, on the axis along which the vortex moves in (b). The changes of the field are
shown by arrows

absence of an optical field, an inversion maximum builds at the location of
the optical vortex.

If we perturb the envelope of the field by shifting the “optical part” of
the vortex, as shown in Fig. 7.1b, restoring forces appear, represented by
vertical arrows in the figure. The inversion builds up at the new location of
the zero of the optical field. In this way, the inversion profile tends to follow
the motion of the “optical part” of the vortex. The restoring forces on the
optical fields are such that the shifted zero of the field is pushed further in
the same direction: the trailing slope is amplified more since the inversion is
larger there, and the leading edge is attenuated more, since the inversion is
smaller there.

As a consequence, the zero of the optical field moves away from the max-
imum of the population inversion. Its escape velocity is proportional to κ,
the buildup rate of the optical field. The population inversion follows the es-
caping zero of the field. Its maximum velocity is proportional to the buildup
rate of the population inversion, γ‖. If the population inversion is faster than
the optical field, i.e. γ‖ ≥ κ, its maximum cannot escape the zero of the
optical field, and thus the location of the optical vortex is stabilized. In the
case of a class B laser, where γ‖ ≤ κ, the population inversion relaxes more
slowly than the field, and the race between the zero of the optical field and
the maximum of the population inversion continues forever.

The velocity of the vortex motion can be estimated by assuming that the
laser field at a particular location goes through half a period of a relaxation
oscillation during the passage of a restless vortex through it. Since the ra-
dius of the vortex is proportional to r0 ≈ √

a/ (D0 − 1), and the relaxation
oscillations have a frequency ωrel =

√
2γ(D0 − 1)− γ2/4, the velocity of the

self-induced motion estimated in this way is

|v| = 2r0ωrel

π
=
2
√
2aγ

π

√
1− γ

8 (D0 − 1) . (7.9)
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Fig. 7.2. Restless motion of two vortices. Two vortices with opposite topologi-
cal charge have been considered, since the periodic boundary conditions require
zero total charge. The positively charged vortex at the bottom right corner moves
clockwise, and the other, negatively charged vortex, moves anticlockwise. The pa-
rameters are D0 = 2, γ = 0.1, a = 0.0001 and g = 1.25; the time between successive
plots is t = 20

Fig. 7.3. Trajectory of a restless vortex with positive topological charge: the tran-
sient toroidal trajectory and the final circular trajectory. The parameters are as in
Fig. 7.2, and time between successive points is ∆t = 3.5

Numerical calculations show that the estimation (7.9) works well con-
cerning the velocity of the vortex |v| ≈ 2

√
2aγ/π, and also concerning the

threshold condition for self-induced vortex motion, γ = 8(D0−1). In Fig. 7.2,
the motion of two restless vortices, obtained numerically, is shown.

Figure 7.3 shows the trajectory of a restless vortex. The direction in which
the vortex starts to move is given by an initial symmetry breaking. After a
transient toroidal motion, the asymptotic vortex trajectory is circular. Ap-
parently, the rotatory nature of the vortex motion is related to the fact that
the vortex itself is a rotating object.

The vortex is squeezed in the direction of motion. Figure 7.4 shows the
field amplitude (a magnified part of the first plot of Fig. 7.2), where this
squeezing is visible. The field maximum behind the vortex corresponds to
the maximum of the population inversion. The optical and material parts of
the vortex are shifted, so that the population inversion maximum lags behind.
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Fig. 7.4. A restless vortex taken from the first plot in Fig. 7.2, and magnified four
times. The vortex moves to the left, and is squeezed along the direction of motion

The radius of the circular orbit of the vortex depends in general on the
diffusion coefficient in the equation for the field (the g-factor), and also on the
decay rate of the population inversion, γ. The exact dependence is unclear.
The numerical calculations indicate that the radius of the vortex orbit in-
creases with a decrease of the diffusion factor g and the population inversion
decay rate γ. However, even in the purely diffractive case g = 0, the vortex
trajectory is a curved, not a straight line. This is related to the fact that a
spatially dependent gain occurs because of the spatial mismatch between the
field zero and the maximum of the population inversion. This creates a spatial
profile of both the background field intensity and the background field phase.
The gradients of both the intensity and the phase push the optical vortex
in accordance with the results of Chap 2: the vortex motion induced by the
phase inhomogeneity is parallel to the phase gradient, and should result in a
parallel motion of the restless vortex in the purely diffractive case. However,
the inhomogeneity of the intensity causes a vortex motion perpendicular to
the intensity gradient. The amplitude and phase gradients together cause a
circular vortex motion, even in the purely diffractive case.

7.3 Vortex Lattices

The nonstationarity of a single vortex in a class B laser suggests that vor-
tices arranged in a lattice will also be, in general, nonstationary. Numerical
integration of the class B laser equations confirms this suggestion.

As shown in [2], vortex oscillations in a vortex lattice can be synchro-
nized in different ways. “Optical”, “acoustic” and several “mixed” oscillation
modes have been identified here, on the basis of numerical integration of the
laser equations with reflecting (zero flux) boundary conditions. When peri-
odic boundaries are used, two pure cases of self-induced dynamics of vortex
lattices are observed: (1) an “optical“ oscillation mode, where neighboring
vortices along a diagonal (with the same topological charge) oscillate in an-
tiphase, and (2) a parallel translation of the vortex lattice. The analogue of
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this translational motion in the case of reflecting boundaries is an “acoustic”
oscillation mode.

7.3.1 “Optical” Oscillation Mode

Figure 7.5 shows four snapshots of a vortex lattice, where neighboring vortices
along the diagonal oscillate in antiphase. The motion resembles the oscillation
of atoms in a crystal when an “optical” oscillation mode is excited.

An interesting fact is that the vortices in the oscillating square vortex
lattice are arranged hexagonally most of the time. The average intensity
distribution is, however, of square symmetry.

Fig. 7.5. Oscillations of a vortex lattice as obtained by numerical integration of
(7.8). The parameters are g = 0.2, D0 = 2, ω = 0.335, γ = 0.1. The time between
snapshots is t = 5

The oscillation frequency of the “optical” oscillation mode can be found by
noting that the far field of an oscillating vortex lattice, as shown in Fig. 7.6,
is a superposition of two cross-roll patterns rotated by 45◦. One cross-roll
has a resonant transverse wavenumber, with eigenfrequency ω0 = ak2; the
wavenumber of the other pair of cross-rolls is larger by a factor of

√
2, which

corresponds to the eigenfrequency ω1 = 2ak2. This leads to a beat frequency
∆ω = ak2.

Fig. 7.6. Spatial Fourier spectrum of the optical field in the oscillating vortex
lattice shown in Fig. 7.5 (left). Right, the composition of the wavevectors in the
oscillating vortex lattice
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7.3.2 Parallel translation of a vortex lattice

If the gain line is extremely narrow (∆ω � ak2), then both cross-rolls can-
not be simultaneously excited, and the “optical” oscillation mode does not
appear. Instead of oscillating, the vortices start to drift. Drift occurs if the
tilted-wave components of the vortex lattice have different frequencies.

To investigate the drift of a vortex lattice, we use the ansatz

A(r, t) =
∑

j=1,4

Ai exp(ikj · r − iωjt) , (7.10a)

D(r, t) = d0 +
∑

j=1,4

∑
l=1,4

dj,k exp [i (kj − kl) · r − i (ωj − ωl) t] , (7.10b)

where the frequencies obey
∑

ωj = 0. For a parallel translation of the vortex
lattice, the frequencies of antiparallel TW components are of opposite sign:
ω1 = −ω3 and ω2 = −ω4. The drift direction depends on the frequency ratio:
v · kj = ωj/ω, where ω =

√
ω2

1 + ω2
2 is the total oscillation frequency, and

ω2 =
γ (D0 − 1)
4 + γ

. (7.11)

As (7.10) and (7.11) indicate, oscillations of the intensity of the optical
field appear at every location, and are related to the translational motion of
the pattern. The frequency of the intensity oscillations in the limit of slow
population inversion is ωosc = 2ω =

√
γ(D0 − 1), and thus this frequency is

smaller than the frequency of the relaxation oscillation by a factor of
√
2.

The corresponding velocity of the pattern is |v| = ω/k, given by

|v| =
√

γ‖ (D0 − 1)
2k

. (7.12)

A parallel translation of a square vortex lattice is possible for periodic
boundary conditions only. For reflecting boundaries, a square vortex lattice
either is fixed if the area is too small, or oscillates periodically as a whole.
The latter oscillation mode of the vortex lattice has been called an “acoustic”
oscillation mode in [2].

Figure 7.7 illustrates the “acoustic” oscillation mode in the case of one
spatial dimension. In this case we can excite a standing-wave pattern (owing
to the reflecting boundaries). The standing wave oscillates back and forth, as
shown in the figure. A vortex lattice in 2D oscillates in a similar way.

Summarizing, the vortex lattice either oscillates in an “optical” mode
or undergoes a parallel translation, for periodic boundary conditions and a
class B laser. The vortex lattice is never at rest. For reflecting (zero flux)
boundary conditions, the lattice can also oscillate in an “optical” mode. A
parallel translation is impossible in this case, and therefore the lattice either
displays an “acoustic” oscillation mode or is at rest. For boundaries different
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Fig. 7.7. Temporal oscillations of a 1D optical pattern (a
standing wave) as obtained by numerical integration of the 1D
version of (7.8) with reflecting lateral boundaries. The spatial
coordinate is horizontal; the time varies from top to bottom by
t = 100. The parameters are D0 = 1.5, γ = 0.16 and g = 0.1

from those discussed above, the vortex oscillations can synchronize in differ-
ent ways. For example, in the case of a rotationally symmetric boundary (a
circular aperture, or a spherical mirror), small vortex ensembles can rotate.

All self-induced oscillations of vortices and vortex lattices in the case of
a class B laser occur at a frequency of the order of the relaxation oscillation
frequency.

7.4 Experimental Demonstration
of the “Restless” Vortex

The “restless vortex” phenomenon suggests that simple transverse patterns
consisting of one or several optical vortices, which are stationary in class
A lasers, may be nonstationary (periodic or chaotic) in class B lasers. In
a class A laser, the frequencies of the transverse modes are pulled towards
one another and may lock to a common frequency, owing to the nonlinear
coupling via the population inversion common to both modes, as described
in Chap. 6. In contrast, in a class B laser, a vortex is nonstationary, and
transverse modes may not lock in this case.

In this section, a cavity with curved mirrors is considered. In this case,
vortex solutions correspond to the excitation of high-order modes in the cav-
ity. Many of the expressions used here have already been derived in Chap. 6.

7.4.1 Mode Expansion

We look for solutions of (7.8) containing a small number of transverse modes,
using a mode expansion technique for the optical field, represented by

A(r, t) =
∑

i

fi(t)Ai(r) , (7.13)
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where i is an arbitrary combination of the mode indices p and l.1 The ex-
pansion (7.13) was used in Chap. 6 in the limit of a class A laser, where the
population inversion can be adiabatically eliminated. In this case D(r, t) was
expressed as a function of the field A(r, t),

D(r, t) =
D0

1 + |A(r, t)|2 ≈ D0 − |A(r, t)|2

= D0 −
∑

i

fi(t)fj(t)Ai(r)A∗
j (r) . (7.14)

Since the population inversion is not enslaved by the optical field in a
class B laser, we expand the population inversion too:

D(r, t) = D0 −
∑

i

dij(t)Ai(r)A∗
j (r) . (7.15)

The motivation for the expansion (7.15) is the expression (7.14), since
in the limiting case of a class A laser dij = fif

∗
j . We insert the expressions

(7.13) and (7.15) into (7.8), multiply (7.8a) by A∗
k and integrate over the

two-dimensional space. This leads to the following equations for the mode
coefficients fi (t) and dij (t) :

∂fi

∂τ
= pifi − i (ωi − ω0) fi −

∑
jkl

Γil
jkfjdkl , (7.16a)

∂dij

∂τ
= −γ‖

(
dij − fif

∗
j

)
, (7.16b)

where pi and the nonlinear coupling coefficients Γil
jk have been defined in

(6.8).
The model (7.16) is, to our knowledge, the simplest one capable of de-

scribing a multi-transverse-mode class B laser. In principle, it describes an
arbitrary number of transverse modes, but in practice it is useful if a small
number of modes is excited. We analyze two-mode states in this section, for
which the equations (7.16) read

∂f1

∂τ
= p1f1 − i(ω1 + ω0)f1 (7.17a)

−f1(G11d11 +G12d22)− f2(G12d12 +G′
12d21) ,

∂f2

∂τ
= p2f2 − i(ω2 + ω0)f2 (7.17b)

−f2(G22d22 +G12d11)− f1(G12d21 +G′
12d12) ,

∂dij

∂τ
= −γ‖

(
dij − fif

∗
j

)
, (7.17c)

where the coupling coefficients are as defined in (6.9).

1 Actually we expand (7.8a) here, but take into account of a spatially dependent
detuning corresponding to the curved mirrors of the resonator.
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We recall that the coefficient G′
12 vanishes for phase-insensitive (helical)

modes (6.3), and is nonzero for phase-sensitive (flower) modes (6.12).

7.4.2 Phase-Insensitive Modes

In a class A laser, the frequencies of phase-insensitive modes are not affected
by the nonlinear coupling. The vortices rotate around the optical axis with
a frequency exactly equal to the difference of the eigenfrequencies of the two
corresponding modes. In the degenerate case the vortices stop rotating. We
show below that for a class B laser, the vortices behave differently.

We look for solutions of (7.17) in the form fi(t) = ni exp (iΩit). The
coefficients of the population inversion become

dii = fif
∗
i , (7.18a)

dij = −fif
∗
j

γ

γ + i (Ωi − Ωj)
, (7.18b)

and the mode beat frequency ∆Ω = Ωi − Ωj obeys the equation(
1− ∆ω

∆Ω

) [
γ2

(
G11

G12
+ 2

)
+∆Ω2

(
G11

G12
+ 1

)]
= 2γ (D0 − 1) , (7.19)

where ∆ω = ωi − ωj is the mode degeneracy here 2, or, in other words, the
difference of the eigenfrequencies of the modes.

Fig. 7.8. The mode beat frequency
∆Ω versus the mode frequency de-
tuning ∆ω for different values of γ.
The mode-coupling coefficients corres-
pond to the beating of the TEM01 and
TEM∗

01 modes (a circling vortex)

A family of curves of ∆Ω versus ∆ω for different values of γ is plotted in
Fig. 7.8. The curves clearly show the mode-pushing phenomenon in the case
of a class B laser. The pushing is weaker in the intermediate case between a
class A and a class B laser (γ ≈ 1) and grows with decreasing γ. When

2 Do not confuse this ∆ω with ∆ω = ω − a∇2 used previously in this chapter.
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γ <
2 (D0 − 1)

G11/G12 + 2
, (7.20)

bistability appears. In this case the beat frequency is never zero, which means
that a stationary pattern consisting of helical modes is never generated.

The frequency of the self-induced mode beat in the case ∆ω = 0 is given
by

∆Ω2
0 =

2γ (D0 − 1)− γ2 (G11/G12 + 2)
G11/G12 + 1

, (7.21)

which is proportional to the frequency of the relaxation oscillations in the
limit γ � 1.

7.4.3 Phase-Sensitive Modes

Mode pushing also occurs for the modes which frequency-pull for class A
lasers. For a class B laser, the relation between the mode beat frequency
and the detuning is modified with respect to the class A laser, as shown in
Fig. 7.9. The mode-locking region shrinks with decreasing γ and bistability
appears, similarly to the case of no mode-locking.

Fig. 7.9. The mode beat frequency
∆Ω versus the mode frequency de-
tuning ∆ω for different values of γ
in the mode-pulling case. The mode-
coupling coefficients correspond to the
TEM10 and TEM01 Gauss–Hermite
modes, and their locking to the heli-
cal TEM∗

01 mode

A numerical analysis leads to the conclusion that the transition between
mode locking and unlocking occurs at a mode beat frequency proportional
to the relaxation oscillation frequency: the pattern either oscillates at a fre-
quency larger than the relaxation frequency or locks to a stationary pattern.
A pattern consisting of nonlocking modes is never at rest for a class B laser.

The mode locking was investigated experimentally by studying the vortex
behavior in a CO2 laser [3]. Figure 7.10 shows the frequency of the spatial
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oscillations of the laser pattern as the frequency mismatch of the modes
was varied (by varying the astigmatism of the resonator). The experiment
shows the predicted hysteresis in the locking and unlocking of the vortex. The
experiment also shows that the smallest possible frequency of the oscillations
is proportional to the relaxation oscillation frequency.

Fig. 7.10. Locking and unlocking of
the “doughnut” in a CO2 laser. The
pin position controls the astigmatism
of the resonator, and correspondingly
the frequency detuning between the
Gauss–Hermite modes
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8 Domains and Spatial Solitons

This chapter is devoted to the description of the general properties of a
particular class of solutions of extended nonlinear systems, namely spatial
solitons, or localized structures. In contrast to extended patterns, such as rolls
or hexagons, spatial solitons are solutions where the field is inhomogeneous
only in a localized region of the space and is homogeneous in the rest of the
space.

The stability of spatial solitons is due to a balance between linear and non-
linear effects. In transverse nonlinear optics, these balancing effects are usu-
ally the spreading caused by diffraction and the compression (self-focusing)
caused by a focusing nonlinearity.

Spatial solitons have been theoretically predicted for a variety of nonlinear
optical cavities [1]. In this chapter we present some general concepts concern-
ing spatial domains and solitons, and the next three chapters are devoted to
the implementation of these ideas in concrete optical systems.

The study of optical solitons is relevant not only from a fundamental
viewpoint but also because of their potential applications in information pro-
cessing technology. Such practical applications will be discussed in Chaps. 9
and 11.

8.1 Subcritical Versus Supercritical Systems

The existence of spatial solitons is closely related to the character of the
bifurcation from the nonlasing (trivial) to the lasing regime. It is useful to
review here some basic concepts of bifurcation theory [2].

A bifurcation is supercritical if the transition from one solution to an-
other, obtained by varying the control parameter (the pump intensity in
the optical case), is continuous, and the solutions connect at the bifurcation
point. Equivalently, an infinitesimal variation of the control parameter leads
to an infinitesimal change in the amplitude of the solution in the case of a
supercritical bifurcation. Examples of a supercritical bifurcation are shown
in Figs. 8.1a,c. A supercritical bifurcation corresponds to a phase transition
of type II. In contrast, a bifurcation is subcritical if, at the bifurcation point,
the amplitudes of the solutions differ by a finite quantity (i.e. they are dis-
connected). In this case, both solutions may coexist below the bifurcation
K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 117–124 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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a)

b)

c)

A

p

A

p space

Domain Soliton

A

p space

Domain Soliton

Fig. 8.1. Different types of bifurcation in nonlinear systems. (a) Supercritical Hopf
bifurcation, (b) subcritical Hopf bifurcation, (c) supercritical pitchfork bifurcation.
A is the amplitude of the solution, and is p the pump (criticality) parameter

point, the system showing bistability or hysteresis (Fig. 8.1b, center). The
corresponding phase transition is of type I.

Another possible classification of bifurcations takes into account the sym-
metry of the phase of the emerging solution. When the phase of the solution
is invariant (not fixed by the system), a Hopf bifurcation occurs, as shown
in the phase diagrams at the left in Figs. 8.1a,b. If two opposite values of
the phase are preferred, a pitchfork (static) bifurcation occurs instead, and
a real-valued order parameter is obtained.

As discussed in the following sections, some kind of bistability is always
needed for the existence of domains and of spatial solitons. The order param-
eter equations derived in Chaps. 2 and 3 (the Ginzburg–Landau and Swift–
Hohenberg equations, either real or complex), which are representative of
most nonlinear optical systems, possess a primary bifurcation of supercritical
type.

8.2 Mechanisms Allowing Soliton Formation

There are two basic mechanisms that may cause subcriticality, and conse-
quently may lead to soliton formation. Both are related to the existence of
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absolute bistability between two different extended solutions (which may or
not be homogeneous). In order to show this, let us consider the complex
Swift–Hohenberg equation, and analyze the properties of its simplest non-
trivial solution: a traveling wave.

8.2.1 Supercritical Hopf Bifurcation

Consider the simplest form of the complex Swift–Hohenberg equation, as
obtained in Chaps. 2 and 3:

∂A

∂t
= pA − A |A|2 + i

(
a∇2 −∆

)
A − g

(
a∇2 −∆

)2
A . (8.1)

Consider also a solution of (8.1) in the form of a traveling wave,

A = |A| exp(ik0x − iωt) . (8.2)

The intensity of the traveling wave can be found from (8.1), and plotted in
terms of the various parameters. Figure 8.2a shows the usual bifurcation dia-
gram, with the intensity as a function of the criticality parameter p. Another
useful representation, shown in Fig. 8.2b, is the dependence of the intensity
on the squared wavenumber. It is evident that no bistability is possible here,
since the trivial solution is always unstable against a traveling wave when the
latter exists. Consequently, solitons cannot be stable under supercritical con-
ditions, and subcriticality of the emerging solution is then required. In order
to introduce subcriticality, an external effect is usually added to the system,
such as an intracavity saturable absorber, an intracavity focusing/defocusing
material or parametric forcing. The corresponding equation modeling the dy-
namics is a modified Ginzburg–Landau or Swift–Hohenberg equation, with
additional terms describing the subcriticality.

k2p k 2

0

00

A
2

A
2

Fig. 8.2. Dependence of the intensity on the criticality parameter p and on the
squared wavenumber k2, in the case of a supercritical Hopf bifurcation
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8.2.2 Subcritical Hopf Bifurcation

We consider two possible modifications of (8.1) that lead to subcritical solu-
tions: (a) a modification of the local nonlinear terms, and (b) a modification
of the nonlocal terms, containing spatial derivatives.

(a) The Quintic Complex Swift–Hohenberg Equation. In this case, a
nonlinear term of fifth order is considered:

∂A

∂t
= pA − bA |A|2 − A |A|4 + i

(
a∇2 −∆

)
A − g

(
a∇2 −∆

)2
A . (8.3)

The traveling-wave solution behaves as depicted in Fig. 8.3.

p0

A
2

k2k2

0

0

A
2

Fig. 8.3. Dependence of the intensity on the criticality parameter p and on the
squared wavenumber k2, in the case of a subcritical Hopf bifurcation generated by
a quintic nonlinear term

The subcritical character of the bifurcation follows from the left-hand
graph in Fig. 8.3 (there is a coexistence of solutions for p < 0). Differently
from the supercritical case, the traveling-wave branch is disconnected from
the trivial-solution branch (see the right-hand graph in Fig. 8.3). As a con-
sequence, the trivial solution is stable for any wavenumber, reflecting an
absolute bistability (bistability is not absolute if the upper branch connects
with the trivial branch, as will be discussed in the next example).

A physical system showing this behavior is a laser with a saturable ab-
sorber, whose corresponding order parameter equation is

∂A

∂t
=

pA

1 + |A|2 /Ip

− αA

1 + |A|2 /Is

− A

+i
(
a∇2 −∆

)
A − g

(
a∇2 −∆

)2
A . (8.4)

The effect of this type of nonlinearity will be analyzed in detail in the
following chapter. Note that the fifth-order nonlinearity corresponds to the
first terms in the Taylor expansion of the first two terms in (8.4).

In this example, the gain must be larger than the losses for stable soli-
tons. This condition can be visualized by plotting the first and second terms
in (8.4), as shown in Fig. 8.4.
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0 A
2

loss

gain

Fig. 8.4. Gain and losses in a laser
with a saturable absorber

(b) Spatial Nonlinear Resonance. Usually the resonant wavenumber,
corresponding to the solution selected by the system, is constant and given
by k2

0 = −∆/a. In some cases, however, the resonant wavenumber is intensity-
dependent, a phenomenon known as nonlinear resonance. The complex Swift–
Hohenberg equation then takes the form

∂A

∂t
= pA − A |A|2 + i

(
a∇2 −∆−∆0 |A|2

)
A

−g
(
a∇2 −∆ −∆0 |A|2

)2

A . (8.5)

The properties of the traveling-wave solution of (8.5) are illustrated in
Fig. 8.5: the nonlinear resonance results in a tilt of the resonance curve (a
linear resonance corresponds to a symmetric parabola).

Note that, unlike the case of the quintic complex Swift–Hohenberg equa-
tion, the instability now is not absolute: there always exist a wavenumber (in
fact, the band of wavenumbers between the two intersections of the resonance

k2

k2

k2
0

k2
0

0

0

A 2

A 2

p0

A 2

Fig. 8.5. Dependence of the intensity on the criticality parameter p and on the
squared wavenumber k2, in the case of a subcritical Hopf bifurcation generated by
a nonlinear resonance term
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curve with the axis) where the trivial solution is unstable. In order to have
absolute bistability, this instability region must be removed.

One way of doing this is by shifting the curve to the left, since negative
values of k2

0 have no physical meaning. We then deal with a “cut” nonlinear
resonance (Fig. 8.6). The bistability is now absolute, since the traveling-wave
branch is completely disconnected from the trivial solution.

An example of a physical system showing a nonlinear resonance is a laser
(or, in general, a nonlinear resonator) with intracavity focusing. This case
will be treated in detail in Chap. 10.

k k k
0
2 2 2

0 0

A2 A 2

Fig. 8.6. The effect of shifting of the nonlinear resonance curve: (a) the whole
curve, including unphysical solutions; (b) Cut nonlinear resonance, showing abso-
lute bistability

8.3 Amplitude and Phase Domains

A spatial soliton can be regarded as a limiting case of a more general solution,
a domain. A domain is a region of space of arbitrary size or shape (in a
system with one or two spatial degrees of freedom, respectively) where a field
of given amplitude and phase is separated from regions with a different field
amplitude and phase by domain boundaries or domain walls. The domain
walls correspond to the connections between two stable solutions.

The classification of bifurcations given in Sect. 8.1 (see Fig. 8.1) can be
used to classify the different types of domains. When the fields inside and
outside the domain differ only in their phase (thus having the same intensity
in all of the space except at the walls), we refer to phase domains. Phase
domains are related to a pitchfork bifurcation, as shown in Fig. 8.1c. Sub-
criticality is not required for phase domains. A detailed discussion of phase
patterns is left to Chap. 11.

When, however, the fields differ in their amplitude, we refer to amplitude
domains. In this case, a subcritical bifurcation is always needed.

Domains can be generated by means of a hard-excitation mechanism: a
sufficiently strong spatially localized perturbation of the lower state can bring
a portion of the system into the other state, even though a weak perturbation
will not. Once a domain has been formed, it shows a dynamic behavior. The
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domain walls expand or contract, depending on the parameters, eventually
bringing the entire system into one of the two homogeneous states.

If the system parameters are not far away from a modulational stabil-
ity boundary, the switching fronts connecting two homogeneous states show
damped spatial oscillations on either side of the front.

Although a complete characterization of solitons requires, in general, a
numerical solution of the model, some important predictions can be made by
analyzing (i) the character of the bifurcation, as was done in Sect. 8.1, and
(ii) the stability of the homogeneous solutions, to be discussed in the next
section.

8.4 Amplitude and Phase Spatial Solitons

Usually, amplitude and phase solitons are referred to as bright solitons and
dark ring solitons, respectively. This terminology comes from their intensity
distribution: amplitude solitons connect solutions with different amplitudes
(and also different intensities), and they appear as bright spots surrounded
by a background of lower intensity (usually zero) (see Fig. 8.7a). On the
other hand, phase solitons connect solutions of opposite phase (but of the
same intensity), and they appear as dark rings (in 2D) or lines (in 1D) on
a background of finite intensity (see Fig. 8.7b). As already stated, ampli-
tude solitons always require subcriticality, but this is not necessary for phase
solitons.

Fig. 8.7. Amplitude (left) and phase (right) solitons that are solutions of the equa-
tions for a degenerate optical parametric oscillator in different parameter regions.
For the plot at the left, E = 1.2, and for the plot at the right, E = 2.0

Depending on the stability of the homogeneous solutions, amplitude spa-
tial solitons can be interpreted in two ways. First, if a homogeneous solution
corresponding to one of two bistability branches is modulationally unstable,
then a soliton can occur as a homoclinic connection between a stable homo-
geneous state and a modulated (stripe or hexagon) state, as shown by Fauve
and Thual in [3]. A soliton in this interpretation is a single, isolated band of
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a stripe pattern in the 1D case, or a single isolated spot of a hexagonal pat-
tern in the 2D case. The background solution (the solution far away from the
soliton) corresponds to the stable solution branch in this interpretation. For
bright solitons, the upper branch is usually modulationally unstable, and the
radiation corresponding to the stable lower branch serves as a background.
In the case of dark solitons, the unstable (modulated) solution is the lower
branch [1].

In the case when both the upper and the lower branches are modulation-
ally stable, solitons (or domains in general) can be interpreted as homoclinic
connections between the two homogeneous states, as shown by Rosanov [4]. A
spatial domain corresponding to one solution branch can contract to a mini-
mum size and not contract further, owing to the interaction between domain
boundaries. The bright soliton in this interpretation is a spatial domain of
minimum size corresponding to the upper bistability branch, whereas the ra-
diation corresponding to the lower branch acts as the background. For dark
solitons, the opposite is true. The mechanisms of the interaction between
domain walls that leads to stable solitons are under investigation, but it is
more or less clear that a nonmonotonic spatial decay of the domain boundary
plays a significant role in the stability of solitons. The stronger the spatial
oscillations of a nonmonotonically decaying domain boundary are, the larger
is the stability range of a spatial soliton of the Rosanov type. The effect of
modulations will be treated in detail in Chap. 12.

Both type of solitons (amplitude and phase) can coexist in the same
optical system if it is characterized by a subcritical pitchfork bifurcation. In
this case the subcriticality is responsible for bright solitons, and the pitchfork
bifurcation for phase solitons. The example shown in Fig. 8.7 corresponds to
intensity distributions found by numerical integration of the equation for a
DOPO in two transverse dimensions, with the same initial conditions but
different parameters.
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In the previous chapter, the existence of solitons in subcritical systems was
discussed from a general viewpoint. In this and the next chapter, we apply
these concepts to concrete nonlinear optical systems. In the present chapter,
a laser with a saturable absorber is analyzed. This system shows amplitude
bistability, owing to the subcritical character of the bifurcation. Experimental
results are also discussed, confirming the theoretical predictions.

9.1 Model and Order Parameter Equation

A simple theoretical model of a laser with an intracavity saturable absorber
follows from the Maxwell–Bloch equation system after the adiabatic elimin-
ation of the fast atomic variables [1]:

∂A

∂t
= − (α + β)A +

pA

1 + |A|2 /Ip

+ (aRe + iaIm)∇2A , (9.1a)

∂β

∂t
= γ

(
β0 − β − β

|A|2
Is

)
, (9.1b)

where β represents the nonlinear saturable absorption (nonlinear losses),
which relaxes at a rate γ to β0, its maximum value, in the absence of a
field; p is the gain parameter; Ip and Is are the gain and absorption satura-
tion intensities, respectively; α represents the linear losses; and aRe and aIm

are the diffusion and diffraction coefficients, respectively.
A single order parameter equation for a laser with a saturable absorber

can be found by neglecting the inertia of the absorber (i.e. when γ � 1). In
this case, the adiabatic elimination of β in (9.1b) leads to [2, 3]

∂A

∂t
= −αA +

pA

1 + |A|2 /Ip

− β0A

1 + |A|2 /Is

+ (aRe + iaIm)∇2A . (9.2)

In the derivation of (9.1) and (9.2), a cavity with plane mirrors was as-
sumed. However, as discussed in Sect. 6.3, the validity of these equations can
be extended to systems in a self-imaging resonator, just by using a diffraction
coefficient aIm = l/2k, where l is the displacement of the mirrors from the
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self-imaging case, instead of the total cavity length in a plane–plane mirror
cavity. Then, in a quasi-self-imaging configuration (with l small), the diffrac-
tion is correspondingly small.

The diffusion term aRe is introduced phenomenologically in (9.2). Its phys-
ical sense is a spatial frequency filtering. In the case of a self-imaging reson-
ator with an aperture located in the far field, the aperture imposes a localized
profile of the gain in the Fourier domain. In the most convenient case of a
parabolic profile, we can write

∂A(k⊥, t)
∂t

= −aRek
2A(k⊥, t) , (9.3)

where aRe is related to the size of the aperture. Converting (9.3) to the spatial
domain by an inverse Fourier transform, we obtain

∂A(r, t)
∂t

= aRe ∇2A(r, t) , (9.4)

which is a diffusion term, phenomenologically included in (9.1a).
Owing to this equivalence, the diffusion of the field can be controlled by

varying the boundary conditions, either by using a finite pump area or by
introducing an aperture into the resonator.

The model (9.2), although derived for a class A laser, is also valid, as
shown in [4], for a photorefractive oscillator. This equivalence was discussed
in Chap. 3.

An important restriction on the validity of (9.1) and (9.2) is that both
nonlinear processes, gain and absorption saturation, must occur in the same
location of the resonator along its optical axis. In some experimental situ-
ations, however, it is convenient to place the nonlinear elements in Fourier-
conjugate planes, and thus at different locations. This near-field–far-field sep-
aration can be taken into account if, in (9.1a), the nonlinear gain operator
N̂(p, Ip), defined as

N̂(p, Ip) =
pA

1 + |A|2 /Ip

, (9.5)

acts not on the field but on its Fourier image. This particular configuration
is then modeled by the equation

∂A

∂t
= − (α + β)A + F̂−1N̂F̂A + (aRe + iaIm)∇2A , (9.6)

together with (9.1b). Here the operators F̂ and F̂−1 represent the direct and
inverse Fourier transforms, defined by

F̂A =
1
2π

∫∫
A(x, y, t) exp(ikxx + ikyy)dxdy , (9.7a)

F̂−1A =
1
2π

∫∫
A(kx, ky, t) exp(−ikxx − ikyy)dkx dky . (9.7b)
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The models (9.2) and (9.6), which correspond to two different experimen-
tal configurations, are the basic models used for the investigation of amplitude
domains and spatial solitons in this chapter.

9.2 Amplitude Domains and Spatial Solitons

In both configurations described above, when the system starts from a ran-
dom initial condition, an ensemble of solitons can be excited in the near field,
a situation that dominates in the initial stage of the evolution. For the first
configuration, when both nonlinearities act in the near-field domain of a self-
imaging resonator, solitons behave nearly independently, and the nonlinear
evolution leads to an ensemble of weakly interacting solitons.

A different scenario is observed when the gain medium is located in the
far-field domain. In this case, in the nonlinear evolution, a strong competition
between solitons occurs. The solitons, although well separated in the spatial
domain, overlap completely in the focal plane, where the gain medium is
placed. The gain saturation depends on the total energy of the radiation. As
a result, several solitons well separated from one another in the spatial domain
share the same population inversion. The more solitons in the ensemble, the
smaller the average energy (and the peak intensity) of a soliton. Owing to
the nonlinear absorption, the weaker solitons are more strongly discriminated,
initiating a competition, which proceeds until a single soliton survives.

We start the analysis by obtaining the homogeneous lasing solution of
(9.2). Neglecting spatial and temporal derivatives, we find that the intensity
is given by

I± =
Is

2α

(
Ip

Is
(p − α)− β0 − α

)

± Is

2α

√
4α

Ip

Is
(p − β0 − α) +

(
Ip

Is
(α − p) + α + β0

)2

. (9.8)

The bifurcation from the trivial solution to (9.8) is subcritical (and the
lasing solution is bistable) if

Ip

Is
>

1 + α

α
. (9.9)

When (9.9) holds, bistability occurs in a pump parameter range given by

1 +
Is

Ip

(
α − 1 +

√
4α
(

Ip

Is
− 1
))

< p < α + 1 , (9.10)

which corresponds to the parameter region where bright solitons can exist.
An exact soliton solution does not exist for (9.2) or (9.6), and therefore

an analytical treatment is possible only using an approximate profile of the
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soliton. One reasonable choice is a Gaussian envelope with unknown time-
dependent parameters,

A(r, t) =
√

I (t) e−c(t)r2
. (9.11)

Inserting the ansatz (9.11) into (9.6) leads to a set of equations for the
complex parameters of the soliton. A handleable system of equations can be
found by assuming the following conditions:

1. A fast saturable absorber (γ � 1). In this case, the absorption variable
can be adiabatically eliminated from (9.1b), leading to (9.2).

2. Diffusion is strong compared with diffraction, aRe � aIm. This is the
case when the resonator length is tuned to correspond to a self-imaging
resonator, where diffraction almost vanishes. In this limit the parameters
of the soliton take real values.

3. The soliton can be approximated by a parabolic profile if we use, in-
stead of (9.11), the ansatz A(r, t) ≈√I(t)

[
1− c (t) r2

]
. In this case, the

saturating nonlinear terms can be simplified by a series expansion.

Finally, gathering terms in r, we obtain the following system:

dI

dt
= −2αI − 2β0I

1 + I/Is
+

2pI
(
1 + 3I/4c2Ip

)
(1 + I/4c2Ip)

2 − 8IcaRe , (9.12a)

dc

dt
= − 2β0I/Is

(1 + I/Is)
2 +

pI/2cIp

(1 + I/4c2Ip)
− 4c2aRe . (9.12b)

The system (9.12) is still too complicated to obtain analytically tractable
steady-state solutions. However, an analysis of this system is useful for ob-
taining some preliminary conclusions concerning the role of the diffusion par-
ameter, aRe.

If diffusion is absent (aRe = 0) , the system (9.12) leads to singular solu-
tions, as (9.12b) results in a continuous increase of the curvature c(t) and a
corresponding shrinking of the soliton. For p > α+β0/(1+I/Is), the intensity
I(t) also grows, leading to an unphysical singularity. This can be understood
by analyzing the different saturating effects involved: the absorption leads to
a narrowing of the soliton, since it acts more strongly in the parts with less
amplitude (far from the peak). If the saturating gain were at the same loca-
tion in the resonator, it would lead to a broadening of the soliton, since in this
case the pumping would be stronger in the tails and weaker at the peak. The
balance of these two effects allows soliton formation in a quasi-planar laser
cavity. However, in the present case the saturating gain acts in the Fourier
plane, and a broadening in the Fourier domain corresponds to a narrowing
of the soliton in the spatial domain. Hence, both nonlinear processes con-
tribute to narrowing the soliton, and lead to a singularity if no other physical
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phenomena balance this double narrowing effect. The balance in the present
model comes from the diffusion, as (9.12b) shows.

The counterbalance between nonlinearities on the one hand, and diffusion
on the other hand, can be seen in a plot of the vector field generated by (9.12),
as shown in Fig. 9.1. When the diffusion is large enough to compensate the
narrowing effect of the nonlinearities, a node point appears, signaling the
possibility of stable solitons.

node

saddle

node

a) b) c)

Fig. 9.1. The vector field of the evolution of the parameters of the spatial soliton
(amplitude a(t) in the vertical direction, and inverse width c(t) in the horizontal
direction) as given by the parabolic expansion (9.12). (a) Below the threshold, p =
0.75, aRe = 0.127; (b) situation corresponding to bistability, p = 0.79, aRe = 0.13;
(c) in the monostable regime, p = 1.6, aRe = 0.29. Other parameters are Ip = 1,
Is = 1; the amplitude a(t) varies from 0 to 8.4; and the inverse width c(t) from 0
to 1.4 in all three cases

9.3 Numerical Simulations

In order to check the analytical results described above, the models (9.2) and
(9.6) were integrated numerically by using the split-step method with peri-
odic boundary conditions. Two stages can be distinguished: (1) the process of
soliton formation starting from noisy initial conditions, and (2) the manipu-
lation of a single soliton once it has been formed. Experiments corresponding
to these results are described in Sect. 9.4.

9.3.1 Soliton Formation

We start by considering simulations of a laser in the first configuration (with
both nonlinear elements located in the near field of the resonator), described
by (9.2). In this case no competition between localized structures is expected.

The emission was initiated with a large pump value (p = 2.5), at which
the absorber was completely saturated. The field developed several optical
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(a) (b) (c) (d) (e)

Fig. 9.2. Evolution of an initial randomly distributed field as obtained by numerical
integration of (9.2). The parameters are aRe = 0.5, aIm = 2, Ip = 1, Is = 0.06,
α = 3. The first plot was calculated for a relatively large value of the pump intensity
(p = 2.5), corresponding to an almost saturated absorber. Later the pump intensity
was lowered to p = 2.15. The time between plots is t = 30

vortices at arbitrary locations, separated by shocks, as Fig. 9.2a shows. Next,
the pump value was decreased to p = 2.15, at which value the absorber
was unsaturated, and field discrimination occurred. The vortices converted
into dark domains, and the shocks into bright domains, the precursors of
the solitons (Figs. 9.2b,c). The bright domains take the form of arbitrarily
oriented stripes, which correspond to one-dimensional solitons (Fig. 9.2d,e).
If the pump is left unchanged, the stripes shorten during the evolution and
finally disappear, leaving the system in a homogeneous state. The excitation
of two-dimensional solitons requires a slight increase of the pump in the final
stage of contraction. The shortening of the stripes then stops, allowing the
formation of stationary solitons.

The need for this complicated procedure, based on variations of the pump
intensity, to control the patterns and obtain stable solitons, can be under-

Fig. 9.3. The peak amplitude of a stable soliton versus the pump parameter in
the case of one spatial dimension (circles) and two spatial dimensions (triangles),
as obtained by numerical integration of (9.2). The parameters are as in Fig. 9.2
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stood from an analysis of single solitons in 1D and 2D. In Fig. 9.3 the peak
amplitudes of 1D and 2D solitons, evaluated numerically, are plotted together
with the amplitude of the homogeneous solution given by (9.8), as a variation
of the pump parameter. We clearly see that localized stripes (1D solitons) are
stable for pump values smaller than those required for localized spots (2D
solitons), and that their existence ranges do not coincide. The explanation lies
in the fact that the solitons have larger losses (diffractive and diffusive) in two
dimensions than in one, and therefore require a larger pump value to compen-
sate such losses. It is also important to note that the existence range of the
solitons corresponds only to a small portion of the full bistability range (9.10).

Let us now consider the other laser configuration (with a near-field–far-
field separation), where, as discussed in the previous section, competition
among solitons is expected. The numerical integration of (9.6) in this case
shows the formation of a single soliton from a noisy spatial distribution
(Fig. 9.4).

(a)

(b)

(c)

(d)

Fig. 9.4. Formation of a symmetric, stable,
localized structure from an initial randomly
distributed field, as obtained by numerical in-
tegration of (9.6) in the case of two spatial
dimensions: the left column shows the spatial
distributions (near field), and the right column
the spatial spectra (far field)

The temporal series shown in Fig. 9.4 shows the near field (left) and the
far field (right), where the absorber and the gain medium, respectively, are
placed. Figure 9.4a shows the initial random distribution. During the linear
evolution, several bright spots emerge, and a filtering in the Fourier plane
is observed, which corresponds to a broadening of the spots in the spatial
domain (Fig. 9.4b). In the nonlinear stage, the saturation of both the gain
and the absorption contributes to a broadening of the spatial spectrum (or,
equivalently, to a narrowing of the spots), forming an ensemble of round spots
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or solitons (Fig. 9.4c). Finally, owing to the nonlinear absorption, only the
strongest soliton survives the competition (Fig. 9.4d).

We remark that this scenario of the developement of a single soliton in
the transverse plane is analogous to the temporal pulse-formation process in
lasers with passive mode locking. In both cases one starts with a random field
distribution (a random ensemble of pulses or solitons). A spectral filtering in
the frequency spectrum or in the spatial Fourier spectrum occurs in the linear
stage of the evolution. In both cases, only one pulse or soliton survives in the
nonlinear stage of the evolution. Competition occurs because several pulses
or solitons share a common population inversion. For a mode-locked laser the
amplifying medium is relatively slow, and the amplification depends on the
integral energy. In our pattern-forming laser, the spatial spectra of individual
pulses overlap in the focal plane, and the amplification again depends on the
integral characteristics (in space) of the radiation.

9.3.2 Soliton Manipulation: Positioning, Propagation, Trapping
and Switching

One of the most promising applications of transverse spatial solitons is ex-
pected in the field of information processing and storage, where the solitons
would be used as bits or basic information units [5]. To realize such practical
applications, one needs to be able to manipulate solitons by external actions.
In this section we show how such external actions can be incorporated into
the numerical simulations, and how the solitons can be influenced in the
desired way.

An important property of a spatial soliton is its position: in the absence
of spatial inhomogeneities, a soliton has spatial multistability, i.e. it is stable
independently of its location in the laser cross section. Consequently, it is
expected that a soliton will move under the action of gradient forces, in
particular those produced by phase gradients. We have tested the drift of a
soliton under the influence of two different phase gradients: a linear (ramped)
and a parabolic gradient.

The easiest way to physically introduce a linear phase gradient is by
tilting one of the resonator mirrors. This effect can be taken into account
in the model by adding phenomenologically a symmetry-breaking term to
(9.1), which now reads

∂A

∂t
= −kt ∇A − αA + TNL + (aRe + iaIm)∇2A , (9.13)

where TNL represents the same nonlinear terms as in (9.1) and kt describes
the tilt of the mirror, which has the dimensions of a velocity. The first term in
(9.13) results in the drift of a soliton in a direction determined by the mirror
tilt, with a constant velocity proportional to kt.

Similarly, a phase trough can be modeled by placing one of the intracavity
lenses closer to the resonator center or, alternatively, by a spatially dependent
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pump. In this case the soliton drifts towards the resonator axis, independently
of its initial position and even without mirror tilting.

The most important characteristic that we require of the system, from
the information-processing point of view, is the possibility of “writing” and
“erasing” the solitons. This can be achieved by exploiting the characteristics
of a resonator with spatially extended nonlinearities, which induces a strong
competition between solitons, independent of their separation. In this case,
a strong enough localized perturbation, externally injected into the system,
can be used to create (or write) a new soliton at a desired location, which
competes with another soliton previously existing at a different place, the
latter soliton discriminated against (or erased) by the new one. This switching
process is shown in Fig. 9.5.

Injection

Injection

Fig. 9.5. The dynamics of switching of soli-
tons by injection as obtained by numerical
integration of (9.6) in the case of one spa-
tial dimension. A first injection flash occurs at
t = 40, and a second at t = 80. The peak am-
plitude of the first injection beam was 4.1, and
that of the second beam was 4.4; the widths
of the injection beams were the same in both
cases

9.4 Experiments

All of the theoretical results presented in the previous sections have been ex-
perimentally reproduced. For the experiments, a self-imaging resonator con-
figuration was used containing a photorefractive crystal as the amplifying
medium, and a saturable absorber consisting of bacteriorhodopsin [6] or a
dye cell. The amplifying medium and the absorber were placed either in the
same place in the resonator (corresponding to model (9.2)) or in separate
places (corresponding to model (9.6)). A schematic illustration of the exper-
imental setup is shown in Fig. 9.6.

The saturation of the transmission of the intracavity saturable absorber
was initiated by an additional (bleaching) unfocused beam controlled by a
shutter.
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CCD Camera

to PC

BR
absorber

Shutter He-Ne laser

Nd:YAG laser

SHG crystal

Dye cell

Fig. 9.6. Experimental setup used in the studies of solitons

We consider first some experiments with a PRO, located close to the
absorber. Initially, the bleaching beam completely saturates the absorber, and
the observed emission is a speckle structure, with optical vortices separated
by shocks. When the bleaching beam is blocked, the absorber unsaturates
and a domain structure develops, evolving into contracting stripes (the field
density decreases with time). This experimental scenario is shown in Fig. 9.7,
in good agreement with the numerical result (compare with Fig. 9.2).

(a) (b) (c) (d)

Fig. 9.7. Experimentally observed evolution of the field after the bleaching beam
is switched off. The time interval between successive plots is 10 s

When the pump intensity is increased, two-dimensional solitons can be
stabilized, as discussed in the previous section. Depending on the pump value
and, mainly, on the moment at which it is increased, a single soliton or
a cluster of solitons can be stabilized. If the pump intensity is increased
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a)

b)

c)

d)

Near field Far field

Fig. 9.8. Stationary solitons and en-
sembles of solitons, observed experi-
mentally in the near and far field of
the resonator

relatively late, one or a few coexisting solitons are obtained (Figs. 9.8a,b). If
the change is made earlier, larger soliton ensembles appear (Figs. 9.8c,d).

The properties of single solitons were studied experimentally with a dye
laser in the near-field–far-field configuration. The dependence of the aver-
age laser output on the average pump power was measured experimentally,
showing the bistability or hysteresis loop predicted by the theory (Fig. 9.9).

The transverse structure of the output field was also measured, at three
characteristic pump values. For pump values in the bistability region, a quasi-
Gaussian spatial soliton develops, as Fig. 9.9a shows. At the border between
bistability and monostability, a super-Gaussian structure appears (Fig. 9.9b),
while in the monostability domain a large-size structure with a strongly struc-
tured profile is observed (Fig. 9.9c). To create the soliton, the absorber cell
was locally bleached for a short time. After the bleaching was removed, the
soliton remained.
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Fig. 9.9. Experimentally measured hysteresis in the dependence of the laser output
on the pump power, and the transverse structure of the output laser beam for three
fixed pump powers: (a) small, quasi-Gaussian spatial soliton in the bistable region,
(b) intermediate-size, super-Gaussian soliton at the border between bistability and
monostability, and (c) large-size structure with a strongly structured profile in the
monostable region

The size of the soliton depends on the diffusion coefficient (note that,
for small diffraction, the diffusion is nothing but a spatial scaling; see (9.4)),
which, as discussed previously, is a function of the pump area. This depen-
dence has been also observed in the experiments. As Fig. 9.10 shows, a fo-
cusing of the pump results in a broadening of the soliton.

The possibility of manipulating the solitons has been also demonstrated
experimentally. Figure 9.11 shows the switching of a soliton. Once a soliton
is “written” in a given place in the resonator cross section, the bleaching of
the absorber at a different location results in the “erasing” of the first soliton
and the creation of the new one.

Finally, the motion or drift of a soliton under the action of a phase gradient
has been also tested. When one of the resonator mirrors is tilted, the soliton
drifts at a constant velocity in the direction of the tilt (Fig. 9.12a). The
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1 mm

Fig. 9.10. Experimental observation of the spatial soliton structure in a laser: (a)
for small pump area in the dye cell, and (b) for large pump area, illustrating the
dependence of soliton size on diffusion

Fig. 9.11. Switching of a soliton initiated by an external bleaching beam in a new
position across the laser aperture. The arrow in the second picture indicates the
place of incidence of the initiating beam. The time interval between neighboring
pictures is 2.5 s

Fig. 9.12. The periodic soliton. Unidirectional
drift motion and switching off occurs for a tilted
resonator mirror when the bacteriorhodopsin ab-
sorber cell is subjected to permanent local bleach-
ing by a laser beam
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snapshots here were taken at equally spaced times, and demonstrate the
constant transverse velocity of the soliton under the linear gradient.

On the other hand, changing the length of the resonator away from the
precise self-imaging length creates a phase trough with a minimum at the
resonator center. The soliton then moves towards the center of the phase
trough, and becomes trapped at the cavity axis.
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10 Subcritical Solitons II:

Nonlinear Resonance

In this chapter we study the formation of bright solitons in an optical system
where amplitude bistability occurs because of a nonlinear resonance mecha-
nism. One system showing this property is a degenerate optical parametric
oscillator with a detuned pump [1, 2]. The model equations for this system in
the mean-field limit were presented in Chap. 3. The existence of a nonlinear
resonance in a DOPO was also shown in Chap. 3, by the derivation of an
order parameter equation in the limit of large pump detuning (3.24). This
equation is the real version of (8.5), and therefore the general ideas presented
in the previous chapter are applicable in the case of a DOPO. In particular,
bright solitons can also be expected in DOPOs.

Throughout this chapter we analyse the degenerate case of an OPO only.
However, since the order parameter equation for a nondegenerate OPO shows
a nonlinear resonance too, the main conclusions of this chapter (about soli-
tons) are easily extendable to the nondegenerate case [3].

10.1 Analysis of the Homogeneous State.
Nonlinear Resonance

As stated earlier, the mean-field model of a DOPO can be reduced to an
order parameter equation in the form of a modified Swift–Hohenberg equation
(3.24), which we rewrite here for convenience:

∂A

∂t
= pA − A3 − 1

2
(
ω1 −∇2−ω0A

2
)2

A . (10.1)

This equation describes the evolution of the order parameter A, which
proportional to the signal field, close to the oscillation threshold; p = E−1 is
the amount by which the pump intensity is above the threshold, and ω0 and
ω1 are the pump and signal detunings, respectively.1 For nonzero ω0, (10.1)
possesses a nonlinear resonance, since the frequency-selection operator (the

1 Remember that the pump and signal fields appearing in the order parameter
equation (10.1) are scaled with respect to their original values as defined in the
mean-field model of the DOPO (3.1); the changes are given by (3.3).

K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 139–146 (2003)
c© Springer-Verlag Berlin Heidelberg 2003



140 10 Subcritical Solitons II: Nonlinear Resonance

last term) is intensity-dependent. Corresponding plots of the spatial nonlinear
resonance effect were given in Figs. 8.5 and 8.6.

In order to find the necessary conditions for the existence of solitons in a
DOPO, we proceed as in the laser case considered in the previous chapter.
First, we analyze the properties of the homogeneous nontrivial solution, which
for (10.1) is given by

A2
± =

1
ω2

0

(
−1 + ω0ω1 ±

√
1− 2ω0ω1 + 2pω2

0

)
. (10.2)

Depending on the values of the detunings, the solution (10.2) can appear
via a supercritical bifurcation (when ω0ω1 < 1) or via a subcritical one (when
ω0ω1 > 1). In the latter case, the system shows bistability between (10.2)
and the trivial solution A = 0 for pump values in the range

ω0ω1 − 1/2
ω2

0

≤ p ≤ ω2
1

2
, (10.3)

as follows from (10.2).
The lower branch of (10.2) (the solution with the minus sign) is unstable,

as usual. The stability of the upper branch against space-dependent pertur-
bations can be analyzed by substituting A = A++δA exp(λt+ik ·r) in (10.2),
and linearizing in the perturbations δA. The growth rate of a perturbation
is governed by the real part of the eigenvalue λ, given by

λ(k) = p − 1
2

(
k2 − ω1

)2 − A2
+

2
[
6− 2ω0

(
2k2 + 3ω1

)
+ 5ω2

0A
2
+

]
, (10.4)

where k2 = k2
x+k2

y. Note that the following analysis is valid for either one or
two transverse dimensions, owing to the rotational symmetry of the problem.

From (10.4) it follows that a perturbation can grow (λ can be positive),
and develop into a pattern only when ω1 > 0, which, together with the
bistability condition ω0ω1 > 1, requires that the pump detuning must be
positive.

The growth rate (10.4) is maximal at a wavenumber kmax, which, as found
by setting ∂λ/∂k = 0 in (10.4), is

k2
max = ω1 + 2ω0A

2
+ , (10.5)

or, using (10.2),

k2
max = ω1 + 2

(
−1 +

√
1− 2ω0ω1 + 2pω2

0

)
1
ω0

. (10.6)

This corresponds to the characteristic spatial-modulation wavenumber of the
pattern. It is clear from (10.5) that, for ω0 �= 0, the modulation wavenumber
depends on the intensity of the solution, indicating the nonlinear resonance
mentioned above.
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If the pump power is increased, the real part of the eigenvalue decreases,
vanishing at a threshold value p = pmod, where

pmod =
ω2

1

2
(
24− 8ω0ω1 + ω2

0ω
2
1

)
. (10.7)

For p > pmod, the homogeneous solution is stable. Since pmod is always
larger than the pump value given by the upper limit of (10.3) for an arbi-
trary detuning value, the trivial and modulated solutions coexist in the whole
bistability domain. We therefore expect soliton formation in this parameter
region.

The bifurcation diagram of the homogeneous solution is depicted in
Fig. 10.1.

0.0 0.5 1.0 1.5 2.0 2.5

p

0.0
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p
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stable

mod

Fig. 10.1. Bifurcation diagram of homoge-
neous solution, for ω0 = 10, ω1 = 1. The trivial
solution is stable for p < 0.5

10.2 Spatial Solitons

From the viewpoint of soliton formation, an important difference between the
DOPO and the laser studied in the previous chapter is that the solitons in a
DOPO are closely related to a modulational instability, which is absent in the
case of a laser with a saturable absorber. To show this and to test the above
predictions derived from the order parameter equation (10.1), the mean-field
model for a DOPO (3.1) has been numerically integrated. We present the
results for one and two transverse dimensions.

10.2.1 One-Dimensional Case

In 1D (representing, for example, a resonator with cylindrical mirrors or
a system with a slab waveguide configuration), a roll (or stripe) pattern
develops for pump values below pmod, sustained by the homogeneous solution.
In Fig. 10.2, several periodic solutions obtained for different pump values are
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Fig. 10.2. Stable rolls on a finite background for different pump values: (a) E = 1.4,
(b) E = 1.6, (c) E = 2. The other parameters are ω0 = 10, ω1 = 1, a1 = 0.001,
a0 = a1/2. Note the dependence of the wavenumber on the pump value

shown. Note that not only the wavenumber depends on the pump value (see
(10.5)), but also the amplitude of the modulation.

The modulation depth of the stationary pattern, defined as

C =
Imax − Imin

Imax + Imin
, (10.8)

increases with decreasing pump value. At the pump value p = plim, the modu-
lation equals unity (Imin = 0); here the point of zero intensity of the envelope
of the roll pattern connects with the trivial solution. Below this pump value,
the rolls are no longer stable, and owing to the attracting character of the
trivial solution, a dynamical regime appears, shown in Fig. 10.3.

Fig. 10.3. Modulational instability of the homo-
geneous solution, and soliton formation via anni-
hilation of neighboring solitons. Time runs from
top (t = 0) to bottom (t = 75). The pump value
is E = 1.2, and the other parameters are as in
Fig. 10.2
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The initial homogeneous solution is modulationally unstable, and thus in
an initial stage a roll pattern emerges, with a wavenumber given by kmax, and
with a modulation increasing with time (top part of the figure). Since the
pump value is below plim, the roll breaks into independent units, and each of
the local maxima of the pattern behaves independently from the others; the
maxima interact and merge with their nearest neighbors, and develop into
an ensemble of weakly interacting solitons. After a long transient, only one
soliton survives.

This scenario of spontaneous soliton formation is not possible in the ab-
sence of modulational instability. In the latter case, only localized perturba-
tions strong enough to connecting the two homogeneous branches can lead
to soliton formation.

For pump values plim < p < pmod, the solitons are stable, but require a
hard localized excitation, as in the case of a laser, as described in the previous
chapter.

The spatial profile of the solitons is given in Fig. 10.4. Apart from the
single soliton usually found (Fig. 10.4a), higher-order solitons can also be
stable (although they are less probable). A double-peaked soliton is shown
(Fig. 10.4b); this exist in a narrower pump domain. The peak-to-peak dis-
tance is close to the width of an individual soliton, and the double-peaked
soliton resembles a portion of a periodic pattern.

x

2

4

6

A2

0

x
Fig. 10.4. Soliton profiles: (a) single, for E = 1.2, and (b) double, for E = 1.35.
The other parameters are as in Fig. 10.2

A roll pattern can be interpreted as a periodic array of equally spaced soli-
tons, an idea supported by the numerical results described above (Figs. 10.3
and 10.4). This relation between extended and localized patterns allows es-
timation of the width of a soliton on the basis of results of a linear stability
analysis. To perform this estimation, we consider the asymptotic relations
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A ≈ A+ [1 + cos (kx)] ≈ A+

[
1 +

(
1− k2x2

2

)]

= 2A+

(
1− k2x2

4

)
≈ 2A+sech

(
x√
2/k

)
, (10.9)

from which the width of the soliton is found to be

x0 =
√
2

k
, (10.10)

where k = kmax, given by (10.6).
These results are consistent with an alternative analysis [4, 5], where a

parametrically driven Ginzburg–Landau equation was derived as an order
parameter equation for the DOPO, under different assumptions from those
used in the derivation of (10.1). As shown in [5], this equation supports an
exact hyperbolic-secant solution, in agreement with the asymptotic solution
(10.9).

In Fig. 10.5, the width of the soliton as evaluated numerically (dots) is
compared with the analytical value given by (10.10) (full line). Note that the
correspondence is better for pump values close to the threshold, in accordance
with the assumption made in the derivation of the model (10.1). The dashed
lines represent limiting values of the width, those widths corresponding to
the largest and smallest wavenumbers that may experience growth (neutrally
stable eigenvalues).

1.15 1.20 1.25 1.30 1.35
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0

1

2

3

x0

Fig. 10.5. Width of the soliton as a func-
tion of the pump amplitude. Numerical
values (dots) are compared with analyt-
ical values (line) derived from the linear
stability analysis. Other parameters as in
Fig. 10.2

10.2.2 Two-Dimensional Case

The above treatment of 1D solitons can be extended to the 2D case. In 2D,
the pattern that coexists with solitons has hexagonal symmetry. Analogously
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to the 1D case, below a certain value of the pump, the pattern breaks up
into an ensemble of weakly interacting solitons, resembling a “soliton gas”.
Neighboring solitons merge, leaving a single soliton after a long transient.

The most straightforward extension of the 1D soliton is a solitary spot.
Another extension would be a solitary stripe. However, this kind of soliton is
always unstable in 2D, and breaks up into an array of spots which eventually
evolve into a single soliton. A scenario of a modulational instability of a
localized stripe is shown in Fig. 10.6, where only the initial evolution is shown.

Fig. 10.6. Instability of a localized stripe in two dimensions, and formation of
solitons in the form of spots, evaluated at E = 1.3. Other parameters as in Fig. 10.2

The extension of the double soliton to 2D is a localized ring (Fig. 10.7a),
and corresponds to Fig. 10.4b in a rotationally symmetric case. If the pump is
increased, the ring-shaped soliton can experience a modulational instability
in the azimuthal direction, forming an ensemble of single solitons located
around the ring (Fig. 10.7b).

More generally, curved solitary lines (of arbitrary shape) in 2D are affected
by modulational instabilities along the direction of the soliton axis, and the
straight or circular shapes we have studied are just particular cases.

In conclusion, we have shown that bright spatial solitons can be stable
solutions of a model of the degenerate optical parametric oscillator when
the pump wave is positively detuned with respect to the closest frequency
of the resonator. This result can be explained by noticing the existence of

Fig. 10.7. Higher-order 2D solitons: (a) annular soliton for ω0 = 5; (b) modulated
annular soliton for ω0 = 10. Other parameters are E = 1.32 and ω1 = 1
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a nonlinear resonance effect, as revealed by the order parameter description
of the DOPO derived in this limit. This mechanism is not exclusive to this
system, but should be present in other resonators that contain nonlinear
focusing media, thus producing an intensity-dependent detuning.
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11 Phase Domains and Phase Solitons

11.1 Patterns in Systems
with a Real-Valued Order Parameter

The radiation emitted by lasers and other laser-like nonlinear optical systems,
such as nondegenerate optical parametric oscillators and photorefractive os-
cillators, has a free phase: above the generation threshold the field intensity
is fixed, but the phase can take an arbitrary value. The generation threshold
in laser-like systems is usually characterized by a supercritical Hopf bifurca-
tion (Fig. 8.1a). As a consequence, the corresponding order parameter equa-
tion is the complex Ginzburg–Landau or the complex Swift–Hohenberg equa-
tion (or a generalization of one of those equations) as discussed in Chaps. 2
and 3. In Chaps. 8–10 we have seen that for some kinds of systems (e.g.
in the presence of an intracavity saturable absorber or with an intracavity
focusing/defocusing material), the bifurcation from the nonlasing to the las-
ing state can also be subcritical (Fig. 8.1b). Owing to this subcriticality,
or equivalently owing to the amplitude bistability, switching waves between
bistable states, amplitude domains, and spatial solitons in the form of am-
plitude domains of minimum size are possible.

This chapter deals with a different class of systems in nonlinear optics,
those characterized by a real-valued order parameter. Such systems display
not a subcritical or supercritical Hopf bifurcation, but a pitchfork one at the
generation threshold (Fig. 8.1c). Typical examples of systems with a real-
valued order parameter are degenerate optical parametric oscillator and a
degenerate four-wave mixer (DFWM). The radiation in such systems prefers
two values for the phase, differing by π and associated with the two branches
of the pitchfork bifurcation. Consequently, patterns associated with a real-
valued order parameter such as stripes, hexagons and phase domains are
favored, while laser-like patterns such as tilted waves, optical vortices and
vortex lattices, of the kind studied in Chaps. 4–6, are suppressed in such
systems with phase selection properties.

We now analyze patterns analogous to the amplitude domains discussed
in Chap. 8, namely phase domains, and their limiting case, phase solitons
[1, 2].
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11.2 Phase Domains

As an example of a system displaying a pitchfork bifurcation we consider
again the DOPO, whose mean-field model, introduced in Chap. 3, reads

∂A0

∂t
= γ0

[− (1 + iω0)A0 + Ē − A2
1 + ia0∇2A0

]
, (11.1a)

∂A1

∂t
= γ1

[− (1 + iω1)A1 +A0A
∗
1 + ia1∇2A1

]
. (11.1b)

The spatially homogeneous stationary solution of (11.1) can be found
by elimination of the pump field A0 from (11.1), and by using the ansatz
A1 = A exp(iϕ) for the subharmonic field. We obtain

A2 = −1 + ω0ω1 +
√

E2 − (ω0 + ω1)
2

, (11.2a)

sin (2ϕ) = −ω0 + ω1

E
, (11.2b)

with an additional constraint on the phase, cos(2ϕ) > 0 [3]. The stationary
intensity of the pump corresponding to (11.2) is |A0|2 = 1 + ω2

1. This solu-
tion is exact for the mean field-model, and coincides with (10.2) when the
appropriate limits are taken.

The expressions (11.2) represent two physically equivalent solutions with
the same amplitude but different phases, ϕ1 = − arcsin [(ω0 + ω1)/2E] and
ϕ2 = ϕ1 + π. In the case of zero (or sufficiently small) detuning, the numer-
ical solution of (11.1) leads asymptotically to one of the two homogeneous
distributions given by (11.2) as the final state. However, in a transient stage
of the evolution, when the system starts from a random field distribution,
the field shows separate domains, characterized by one of the two values of
the phase inside each domain.

In Fig. 11.1, the amplitude and phase distributions of the subharmonic
(signal) radiation in a DOPO are shown during a transient. The field vanishes
along the lines separating the two phases, which are called domain bound-
aries (and also dark switching waves). The stability of domain boundaries
in DOPOs was first investigated in [4]. The domains here are essentially dy-
namic, and can move, reconnect or disappear during the nonlinear evolution.
This chapter is devoted to the nonlinear dynamics of these domains.

For the sake of simplicity, and also for the sake of generality of the results,
in the following the domain dynamics are studied not by solving the mean-
field DOPO model (11.1), but by solving the corresponding order parameter
equation. As shown in Sect. 3.3, the dynamics of a DOPO are described,
close to the threshold, by the real Swift–Hohenberg equation, which can be
written as

∂A

∂t
= A − A3 − (∆+∇2

)2
A , (11.3)
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Fig. 11.1. Phase domains in a DOPO for small signal detuning. The intensity (left)
and phase (right) distributions are shown. The calculations started from a random
distribution of the optical field (with a broadband spatial spectrum). A transient
stage of the evolution is shown. The parameters used were E = 2, ω0 = 0, ω1 =
−0.3, γ1 = γ0 = 1, a1 = 0.0005 and a0 = a1/2. The integration was performed
using periodic boundary conditions in a region of unit size

Notice that this equation is valid for zero or moderate pump detuning.
Otherwise, nonlinear resonance effects must be taken into account.

Owing to the universal character of the Swift–Hohenberg equation as a
basic pattern-forming model, the results derived from (11.3) are applicable
not only to DOPOs, but also to other nonlinear optical systems such as
DFWMs [5] and to physical systems of different natures, such as systems
showing Rayleigh–Bénard convection in hydrodynamics [6].

The order parameter A(r, t) is proportional to the complex amplitude of
the subharmonic field, A1(r, t). The normalization of the time τ = (E − 1) γ1t
scales out the pump value E in (11.3). The coefficient of the Laplace opera-
tor is equal to unity, owing to the normalization of the spatial coordinates.
The parameter ∆ is proportional to the subharmonic detuning ω1 in (11.1):
∆ = −ω1/

√
2 (E − 1). Note that the detuning parameter in (11.3) is sign-

reversed with respect to the detuning in the DOPO model (11.1). Extended
patterns, such as rolls and hexagons, now occur for positive ∆ in (11.3),
whereas equivalent patterns occur for negative detunings in the DOPO equa-
tions.

The solutions of (11.3) are analogous to the patterns generated by the
DOPO equations discussed above. For a relatively large positive detuning, the
RSH equation has a spatially modulated solution in the form of stripes with
amplitude A(r) =

√
4/3 cos (k · r), where the resonant wavenumber |k| =√

∆ is dependent on the detuning. For a negative or relatively small positive
detuning ∆, the RSH equation has two physically equivalent homogeneous
solutions with equal amplitude A =

√
1−∆2, but with different phases ϕ =

(0, π), the analogue of the domains in the DOPO (Fig. 11.1). In the following
sections the evolution of domains or, equivalently, the motion of the domain
boundaries is studied.
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11.3 Dynamics of Domain Boundaries

Before investigating the dynamics of phase domains in 2D, let us analyze
the case of stationary, straight boundaries, which is actually the 1D case.
Straight boundaries between sufficiently large domains are stationary, since
two phases (two stationary solutions) corresponding to neighboring domains
are always in equilibrium here.1 Domain boundaries can move either because
of curvature effects (as investigated in Sect. 11.4), or because of their mutual
interaction (Sect. 11.5).

No analytic expression exists for a straight domain boundary in the case
of the RSH equation. However, such boundaries can be found analytically in
the case of the real Ginzburg–Landau (RGL) equation,

∂A

∂t
= A − A3 +∇2A . (11.4)

Equation (11.4) has a kink-form solution in 1D, corresponding to a straight
domain boundary in 2D,

A(x) = ± tanh
(

x√
2

)
, (11.5)

which represents a solution directed along the y axis.
The RSH equation in the limit of large negative detuning actually trans-

forms into the RGL equation (11.4). Therefore, let us assume that the domain
boundary solution of the RSH equation possess a form similar to the kink
solution of the RGL equation. This suggest the use of the following ansatz:

A(x) =
√
1−∆2 tanh

(
x

x0

)
, (11.6)

where
√
1−∆2 is the modulus of the homogeneous solution of the RSH

equation and x0 is the (unknown) half-width of the domain boundary.

11.3.1 Variational Approach

The RSH equation is a variational equation, and thus it can be also written
in the gradient form ∂A/∂t = −δF/δA , with a potential F (A) given by [7]

F =
∫ ∞

−∞

(
−A2

2
+

A4

4
+

[(∇2 +∆
)
A
]2

2

)
dxdy . (11.7)

1 This is not always true in DOPOs, since in a certain parameter range the Ising–
Bloch transition can be present, leading to a drift of the walls at constant velocity.
However, this transition requires a complex order parameter, and thus cannot
be obtained from the Swift-Hohenberg equation.



11.3 Dynamics of Domain Boundaries 151

We use a variational approach in order to (i) determine the half-width x0

of the straight domain boundary that minimizes the potential (11.7) in 1D,
and (ii) to analyze the motion of curved domain boundaries in 2D.

After the ansatz (11.6) is substituted into (11.7), the integration results
in an infinite value for the potential. This is due to the contribution of the
homogeneous background A0. Therefore we need to calibrate the potential
(11.7) by subtracting this constant contribution [8], which in the 1D case
yields

F =
∫ ∞

−∞

(
−A2 − A2

0

2
+

A4 − A4
0

4
+

[(
∂2/∂x2 +∆

)
A
]2

2
− ∆2A2

0

2

)
dx .

(11.8)

Integration of (11.8) with the ansatz (11.6) now gives a finite value for
the potential,

F =
1−∆2

15x3
0

[
5x4

0

(
1−∆2

)
+ 8− 20∆x2

0

]
, (11.9)

which depends on the unknown parameter x0 and on the detuning ∆. The
value of the half-width can be found by minimizing the potential (11.9), and
is given by

x2
0 =

2√
5

√
6−∆2 −√

5∆
1−∆2

. (11.10)

Substituting (11.10) into (11.9), we find the corresponding potential,

F1D =
8

3
√
2
√
5

(
1−∆2

)(3/2) (2 + 3∆2 −√
6−∆2

√
5∆
)

(√
6−∆2 −√

5∆
)(3/2)

. (11.11)

The dependences (11.10) and (11.11) are plotted in Fig. 11.2. As ex-
pected, the dark line broadens monotonically with decreasing detuning. The
calibrated potential (11.8) is positive over almost the whole detuning range.
This is plausible, since the dark line is a defect in a homogeneous pattern, and
thus increases the potential energy of the system. However, for large values
of the detuning the potential becomes negative, which has profound conse-
quences for the dynamics of domains in 2D. Indeed, if for a small detuning
the presence of a kink in 1D increases the variational potential, then in 2D a
domain wall should tend to be as short as possible, and the domains should
contract. On the other hand, if for a large detuning the presence of a kink
in 1D decreases the variational potential, then in 2D a domain wall should,
correspondingly, tend to be as long as possible, and thus the domains should
expand. This dynamic behavior of 2D domains is investigated in the next
section.
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Fig. 11.2. The half-width x0 of the dark line
given by (11.10), and the calibrated 1D func-
tional (11.11), as a function of the detuning ∆

11.3.2 Two-Dimensional Domains

To study analytically the motion of a domain boundary in 2D, we assume a
ring-shaped form. This represents, equivalently, a circular domain centered
at the origin of a polar coordinate system. Such a dark ring can be described
by the ansatz

A(r) =
√
1−∆2 tanh

(
r − r0

x0

)
tanh

(
r + r0

x0

)
, (11.12)

where r0 is the radius of the ring, and the half-width x0 is given by (11.10).
Owing to the cylindrical symmetry of the ansatz (11.12), the variational
potential can be written as

F = 2π
∫ ∞

0

(
−A2

2
+

A4

4
+
1
2

[(
∂2

∂r2
+
1
r

∂

∂r
+∆

)
A

]2
)

r dr , (11.13)

which has to be calibrated in the same way as in the 1D case, to avoid the
background contribution.

Analytical integration of (11.13) using the ansatz (11.12) is not possible
in the 2D case; however, two other complementary approaches can be used.
One possibility is to evaluate approximately the integral in some limiting
cases. The other possibility is to calculate the integral (11.13) numerically.

When the radius of the ring is large enough (when r0/x0 � 1), the order
parameter A(r) is nearly an odd function with respect to the ring radius r0.
Making the change of variables x = r − r0, assuming the integrated function
f(x) to be even, and extending the integration limits to the whole space, we
obtain

F2D = 2π

∞∫
−∞

f(x)(x + r0) dx = 2πr0

∞∫
−∞

f(x) dx = 2πr0F1D . (11.14)
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This result is not exact, because the integration limits in reality do not
extend to infinity, and also because the integrated function is not even, but
has a small odd part. The errors occurring because of these two assumptions
give corrections to (11.14) of orders O(exp (−r0/x0)) and O(1/r0), respec-
tively. Therefore, for an asymptotically large radius of the ring r0, and for a
width of the dark line x0 = O(1), we obtain the potential

F2D = 2πr0F1D +O
[
exp
(
− r0

x0

)]
+O

(
1
r0

)
. (11.15)

Thus the potential in 2D is roughly equal to the potential in 1D (11.11)
multiplied by the length of the weakly curved (circular) dark line. In this
approximation, the sign of F1D determines the evolution of the ring. As can
be seen from Fig. 11.2, around zero detuning F1D is positive, and thus the
longer the domain boundary is, the larger the 2D potential is. As the solution
tends to minimize the potential, the domains contract. For a detuning larger
than some ∆c, the 1D potential is negative, and the domains expand. The
particular case of stationary rings occurs at ∆c =

√
2/7 ≈ 0.535.

The result of numerical integration of the RSH equation (11.4) shows con-
traction or expansion of the domains, depending on the detuning. In Fig. 11.3,
an example of domain contraction for a small value of the detuning is given.

Figure 11.4, in contrast, shows domain expansion for a large detuning
value. The asymptotic pattern in this case is a labyrinth structure. The nu-
merical results indicate that rings of large radius are marginally stable at
a detuning ∆c = 0.45 ± 0.05, which differs from the analytically evaluated

Fig. 11.3. Evolution of phase domains obtained using the RSH equation for a small
signal detuning, ∆ = 0.25. The integration was performed in a box of size 70 units
(the integration grid contained 128×128 points), with periodic boundaries. Time
increases from left to right. In the upper row the field intensity is plotted, and the
lower row shows the field phase. The pictures were obtained at times t = 0 (the
initial distribution), t = 20, t = 100 and t = 250. The last domains disappear at
t = 370
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Fig. 11.4. Evolution of phase domains obtained using the RSH equation for a large
signal detuning, ∆ = 0.65. Other parameters as in Fig. 11.3. The initial picture at
time t = 0 was prepared by integrating the RSH equation with a detuning ∆ = 0.25
(as in the previous figure), and further calculations were then performed with the
new detuning value. The other plots were obtained at times t = 20, t = 150 and
t = 1000

equilibrium detuning value given above. This difference occurs because of
the inexact form of the ansatz. The domain boundaries are not exactly of
hyperbolic-tangent form (with monotonically decaying tails), but show an
oscillatory decay of the tails. A more accurate analysis that takes account
of these spatial oscillations and leads to a better correspondence with the
numerical values is performed in Sect. 11.5.

In this way, by varying the detuning ∆, one can manipulate the domain
dynamics, forcing the domains to expand or to shrink. Expanding domains
keep their topological properties during the evolution for moderate values of
the detuning: the number of domains in a finite labyrinth pattern is equal to
that in the initial pattern, as can be seen in Fig. 11.4.

The situation is different for larger values of the detuning, in particular
when ∆ >

√
2/3. In this case, as follows from the linear stability analysis,

the homogeneous solution is modulationally unstable. Domain growth and
labyrinth formation are now accompanied by the appearance of new domains
(nucleation), as shown in Fig. 11.5. Another peculiarity of the large-detuning
case is that the dark lines in the labyrinths can break and reconnect, which
also leads to topological changes of the domains.

Fig. 11.5. Evolution of phase domains obtained using the RSH equation a for
large signal detuning, ∆ = 0.85. Other parameters as in Fig. 11.3. The plots were
obtained at times t = 0, 20, 150 and 1000
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An expression for the velocity of the moving fronts in a potential system
can also be derived. In the case of a cylindrically symmetric ring, the radial
velocity v = dr0(t)/dt is [7]

v = − ∂F/∂r0

2π
∫
(∂A/∂r)2r dr

, (11.16)

and is proportional to the force acting on the ring (the gradient of the varia-
tional potential) and inversely proportional to the “mass”, or inertia, of the
ring. In the limit of large ring radius, the velocity can be evaluated analyti-
cally. In this case, using (11.14) for the potential, and evaluating the integral
in the denominator in (11.16) in the same way as above, we obtain

v = − 2
r0

2 + 3∆2 −√
6−∆2

√
5∆√

5
√
6−∆2 − 5∆

, (11.17)

that is, the velocity is inversely proportional to the ring radius.
The behavior of a circular domain boundary can be generalized to domains

of arbitrary form. Assuming that the curvature of the dark line is sufficiently
small, the equation for the local motion of the curve is ∂R/∂t = −vc, where
the local motion of the dark line is directed along its normal and is propor-
tional to the local curvature c = ∂2R/∂l2, with the proportionality coefficient
given by (11.17).

11.4 Phase Solitons

The above analysis predicts either the contraction or the expansion of do-
mains. This conclusion is valid, however, only for a sufficiently large radius
of a domain or, equivalently, for a sufficiently small curvature of a dark line.
In other words, when diametrically opposite segments of the domain bound-
ary do not interact. For small domains, when the diameter is of the same
order of magnitude as the width of the domain boundary, the situation may
be different. Indeed, numerical integration of the RSH equation sometimes
shows that the dark rings stop contracting at some small radius. Figure 11.6
shows such a scenario, where an ensemble of stable dark rings of fixed radius
evolves. We call these stationary small domains phase solitons, by analogy
with the amplitude solitons studied in Chap. 9. A comparison of the profiles
of the two types of solitons was shown in Figs. 8.1 and 8.7.

The variational approach of the previous section cannot predict analyti-
cally the existence of solitons, since the assumption r0/x0 � 1 is no longer
valid. Numerical integration of (11.3), however, shows that phase solitons
exist for detuning values in the range 0.287± 0.001 < ∆ < 0.460± 0.001.

The interaction of opposite segments of the ring results in a repulsive
force that balances the attraction between the fronts due to the tendency to
contraction, allowing soliton formation.
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Fig. 11.6. Evolution of phase domains obtained using the RSH equation for an
intermediate signal detuning, ∆ = 0.35. Other parameters as in Fig. 11.3. The plots
were obtained at times t = 0, 20, 150 and 1000

To demonstrate the repulsive effect of the interaction, the potential
(11.13) has been integrated numerically using the ansatz (11.12). Three char-
acteristic plots are given in Fig. 11.7, showing the dependence of the potential
on the radius of the ring for different values of the detuning ∆, together with
the analytical approximation (11.14) (dashed lines).

As predicted from the 1D analytical calculations, for small detuning, the
potential increases with the radius, leading to a contraction of the ring. Corre-
spondingle, for large detuning, the potential decreases with increasing radius,
leading to an expansion However, for some intermediate values of the de-
tuning, the potential exhibits a minimum at some radius of the ring (the
middle curve in Fig. 11.7; see also the inset). This potential minimum in-
dicates the existence of phase solitons, with a radius corresponding to the
potential minimum. The final distribution in the series shown in Fig. 11.6
is an ensemble of such solitons. These solitons are similar to those found in
systems showing optical bistability, whose order parameter equation is also
of Swift–Hohenberg type [9].

Although a variational analysis using the ansatz (11.12) yields a potential
minimum at some radius of the dark ring, thereby predicting its stability, the
evaluated stability range 0.39±0.01 < ∆ < 0.52±0.01 does not coincide with
the numerically calculated stability range 0.287±0.001 < ∆ < 0.460±0.001.

F

r0
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∆=0.6

∆=0.3

∆=0.45 Fig. 11.7. The potential obtained by eval-
uating (11.13) numerically with the ansatz
(11.12), for a small detuning ∆ = 0.3, for a
large detuning ∆ = 0.6 and for an interme-
diate value of detuning ∆ = 0.45. The 1D
potentials calculated analytically (11.11) are
shown by dashed lines. The case of ∆ = 0.45
is magnified in the inset
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The discrepancy between the numerically calculated soliton existence range
and that obtained from the “monotonic” ansatz (11.12) suggests that some
other mechanism is responsible for the stability of solitons. We consider next
the nonmonotonic (oscillatory) spatial decay of the domain boundaries as a
possible stabilizing mechanism.

11.5 Nonmonotonically Decaying Fronts

As can be seen from Fig. 11.8, numerical integration of the RSH equation in
1D indeed shows small amplitude oscillations in the decay of the fronts. The
larger the detuning is, the larger is the spatial modulation of the tails of the
domain boundaries.

-1

- 0.5

0

0.5

1

xxx
A (x )

(a) (b) (c)

Fig. 11.8. The order parameter A corresponding to a phase domain, as calculated
from (11.3) in the 1D case, for different values of detuning. (a) ∆ = −0.75: domain
boundaries are monotonic functions. (b) ∆ = 0: small spatial oscillations close
to domain boundaries are visible. (c) ∆ = 0.75: strong spatial oscillations are
visible. The detuning value in the last case c) is close to the modulational-instability
threshold at ∆ =

√
2/3

Since the monotonic ansatz (11.6) in the form of a hyperbolic tangent
does not describe these spatial oscillations correctly, an “oscillatory” ansatz
must be used instead [10]. We use the ansatz

A(x) = sign(x)
√
1−∆2f(x) , (11.18)

where the profile function f, given by

f(x) = 1− e−σ|x| cos(kx) , (11.19)

is characterized by a spatial decay rate σ and a spatial frequency k. In gen-
eral, the ansatz (11.18) means that the domain boundaries decay with a
complex-valued decay parameter Λ = σ+ik. The real part of Λ indicates the
spatial decay of a perturbation, while the imaginary part indicates the spa-
tial frequency of oscillation. These two unknown parameters can be found by
minimizing the corresponding potential. Integration of (11.8) with the ansatz
(11.18) gives a value for the potential which depends on the detuning ∆ and
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Fig. 11.9. The real and imaginary
parts of the spatial decay rate Λ =
σ+ik of a domain boundary, as a func-
tion of the detuning ∆

on the soliton parameters σ and k. The potential has a minimum correspond-
ing to the correct values of σ and k. These values are given in Fig. 11.9 as a
function of the detuning.

From Fig. 11.9, it follows that oscillatory behavior is more prominent for
positive detuning, since σ < k. For negative detuning, σ > k, and the os-
cillations are relatively strongly damped, in accordance with Fig. 11.8. The
dependence of the potential on the detuning is qualitatively the same as in
Fig. 11.2, obtained with the monotonic ansatz. The difference is only quan-
titative: the potential changes its sign from positive (domain contraction)
to negative (domain expansion) at a detuning value ∆c ≈ 0.4616. Compar-
ing this value with the numerically obtained value ∆c = 0.45± 0.05, we see
that the results obtained from the nonmonotonic ansatz agree well with the
numerically obtained results.

The nonmonotonic ansatz can be extended to 2D to analyze the stability
of ring-shaped domain boundaries in 2D. In this case we take

A(r) = sign (r − r0)
√
1−∆2f(r − r0)f(r + r0) , (11.20)

where f is given by (11.19), r0 is the radius of the ring as in (11.12), and the
decay parameters σ and k are taken from the results of the 1D variational
study. The oscillatory ansatz and the numerically calculated soliton profile
are compared in Fig. 11.10.

A calculation of the potential (11.8) using the ansatz (11.20) yields again
a minimum at some ring radius, indicating the existence of solitons. This min-
imum exists in the detuning range 0.27 < ∆ < 0.46, which corresponds well
to that obtained numerically, 0.287± 0.001 < ∆ < 0.460± 0.001. Again we
note that the existence range calculated in the previous section by using the
monotonic ansatz was very different from the existence range calculated nu-
merically. Therefore one may conclude that a nonmonotonic decay of domain
boundaries is essential for a correct description of solitons. The assumption
of nonmonotonic decay allows one to calculate precisely the critical detuning
value for contraction or expansion of domains, and also the existence range
of localized solutions.
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Fig. 11.10. Left : profile of a dark line (kink) in 1D (solid line) and its approxima-
tion by the oscillatory ansatz (11.18) (dashed line), for ∆ = 0.3. Right : profile of a
spatial soliton in 2D and its approximation by the ansatz (11.20), for ∆ = 0.4

Next we explore how, in general, the soliton stability range depends on
the modulation of the tails. For this purpose, we assume that the dynamics of
domain boundaries are described by the RSH equation, but that the modu-
lation of the domain boundaries is enhanced (or reduced) by some additional
(let us say, nonvariational) effects [10]. This occurs, for example, in degener-
ate optical parametric oscillators (see Chap. 12). For this purpose, we keep
the value of the k obtained from the variational analysis of the RSH equation
(in which case k(∆) is a function only of the detuning), but allow arbitrary
values of the decay parameter σ. The approach is somewhat artificial, but it
allows one to understand qualitatively the role of the oscillatory fronts in the
stabilization of solitons.

The resulting diagram is plotted in Fig. 11.11, which shows the soliton
stability range in the plane (∆, 1/σ). The existence range grows with increas-
ing oscillation of the decaying domain boundary (decreasing σ). The dashed
curve corresponds to the decay rate calculated from the variational analysis of
the RSH equation. The region above the dashed line corresponds to enhanced

4

2

σ–1

–1.0 0.0 1.0

∆

Fig. 11.11. The soliton exis-
tence range in the plane (∆, 1/σ),
for a single- and a double-radius
ring soliton. The potentials cor-
responding to different cases are
shown in the insets
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spatial oscillations relative to the predictions of the RSH equation, and the
region below the dashed line corresponds to reduced spatial oscillations.

For sufficiently strong spatial oscillations, the soliton stability range may
extend even the negative values of detuning. This is in good correspondence
with results derived in the case of a DOPO, where a significant increase of the
existence range is predicted (Chap. 12). Also, besides the fundamental soliton
(a ring of minimum radius), higher-order solitons appear, characterized by
a set of discrete values of the ring radius r = nr0, where n = 1, 3, 5, ... and
r0 is the radius of the fundamental soliton. The potential corresponding to
a double-size ring soliton is shown in the inset. These higher-order solitons
have been found numerically in a DOPO in [11] (see also Sect. 11.7).

The distributions in Fig. 11.12 show ensembles of solitons calculated from
a model of a DOPO [2]. Besides the single-ring soliton, double-ring solitons
are also possible here. Also, locked states of two single-ring solitons and even
more complicated “molecules” were obtained.

Fig. 11.12. Ensembles of phase solitons in a DOPO. The parameters are E = 2,
ω0 = 0, γ1 = γ0 = 1, a1 = 0.0005 and a0 = 0.00025. The integration was performed
with periodic boundary conditions in a unit-size region. The signal detunings ω1,
from left to right, are −0.3, −0.5, −0.6 and −0.6

11.6 Experimental Realization of Phase Domains
and Solitons

Although theoretical investigations of phase domains and solitons were initi-
ated by studying the concrete example of a DOPO system, the first experi-
ments on domains were performed with a degenerate four-wave mixer [12].
The equivalence of these two systems near the threshold was demonstrated
theoretically in [5], on the basis of the common order parameter equation for
both systems. Experimentally, the slow dynamics of the field in a DFWM
based on a slow photorefractive material (BaTiO3) are very convenient for
the observation of transients. The characteristic timescale of the system is
about 1 s, which allows recording with ordinary video equipment.

The experimental scheme is shown in Fig. 11.13. Two counterpropagat-
ing pump beams (from a single-frequency Ar+ laser at 514.5 nm) illuminate
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Fig. 11.13. Schematic illustration of near-self-imaging resonator used for experi-
ments to study phase domains and solitons. M , mirrors; f , focal length of lenses;
l, deviation from self-imaging length; D, diaphragm, which filters the high trans-
verse modes. The photorefractive crystal was pumped by two counterpropagating
beams. This scheme is similar to that discussed in Chap. 9, but the pumping by
two counterpropagating beams used here results in degenerate four-wave mixing

a photorefractive BaTiO3 crystal mounted inside a near-self-imaging linear
resonator. In the limit of precise self-imaging, such a resonator has an in-
finite Fresnel number (within the limits of the paraxial approximation). All
the transverse modes are exactly degenerate, allowing resonance for arbitrary
images with complicated structure. Changing the resonator length with re-
spect to the self-imaging length by l makes the resonator equivalent to a
plane-mirror resonator of length l. In the experiment l was 30 mm, which
corresponds to a characteristic spatial scale x0 = 100 µm (∆x0 ≈ √

λl). Vari-
ation of the resonator length on the scale of an optical wavelength allowed
us to vary the detuning parameter.

Typically, domains separated by black lines of irregular shape were ob-
served in the emission. The domain boundaries can have quite complicated
forms, including self-crossings, and in general they move. Figure 11.14 shows
the intensity of a portion of the emitted radiation (left), and an interferogram
made with a plane wave (right), showing a phase difference of π between do-

Fig. 11.14. Snapshots of the field intensity (left) and interferogram (right). A
phase shift of π between neighboring domains is visible in the interference picture
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Fig. 11.15. A contracting domain boundary for small resonator detuning. The
domain boundary straightens, and the domains contract and disappear for such
values of the detuning

Fig. 11.16. Expanding domains for large resonator detuning. The domains grow
and a final labyrinth structure sets in

mains, thus proving the real-valued nature of the order parameter of the
emitted field.

The dynamics of the domains depend strongly on the detuning, as follows
from the theoretical treatment discussed above. For near-zero detuning a
domain coarsening occurs. Experimental recordings in this regime are given
in Fig. 11.15, showing the shrinking of a domain boundary (compare with
Fig. 11.3). The domain boundaries finally disappear, and a homogeneous
field results as the final state.

For moderately large detuning, the topology-preserving expansion of do-
main boundaries, as recorded experimentally, is shown in Fig. 11.16 (compare
with Fig. 11.4). The domains expand until the whole space is filled, and a
“labyrinth” pattern is reached as the final state.

The formation of solitons was also observed when the detuning was in-
creased (Fig. 11.17). In the left plot a transient state is shown, in which some
domains shrink and some domains have already shrunk to the minimum ra-
dius. In the plot at the right, a stationary state containing two solitons is
shown.

In order to prove the stability of the solitons, the evolution of the length
of a domain boundary was studied. In these experiments, a long domain
boundary and one soliton were simultaneously present. As Fig. 11.18 shows,
the long domain shrinks, whereas the soliton remains unchanged. The lengths
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Fig. 11.17. Spatial localized structures. Left :
the transient stage is shown, where one domain
(the upper one) is contracting, and three other
domains have already contracted to minimum
radius. Right : two stationary solitons are visi-
ble
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Fig. 11.18. A contracting domain boundary (2), and a stable soliton (1). Time
increases from (a) to (d)
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Fig. 11.19. Length of the domain bound-
aries of (1) and (2) from Fig. 11.18 as a
function of time. The lines are to guide
the eye

of the domain boundaries are plotted as a function of time in Fig. 11.19. This
evidences that the solitons are not marginally stable small domains, but really
are stable formations (with a finite stability range).

11.7 Domain Boundaries and Image Processing

Phase domains and spatial solitons in the form of dark rings could be a useful
tool for parallel analog information processing [13], which could be applied to
all-optical artificial vision, optical neural networking or optical sensing. Here
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Fig. 11.20. A photo of an airplane (left) and a reduced-resolution version (on a grid
of (128×128 points). The reduced-resolution version was processed (see Fig. 11.21)

we give just an example that shows the potential of this technique to locate
and track stationary and moving objects. In Fig. 11.20, an original photo
of an airplane (left) and its reduced-resolution version on a grid of 128×128
points (right) are shown. The DOPO equations (11.1) were solved using the
distribution in Fig. 11.20 as the initial condition for the subharmonics. In
practice, this could be achieved by a short injection of a field with a distribu-
tion of subharmonic frequency corresponding to the image to be processed.

The temporal evolution of the spatial distribution of subharmonics is
shown in Fig. 11.21, as obtained from the numerical integration of (11.1).
The contour of the object (the airplane) is automatically reproduced by dark
curves (the domain boundaries). In the nonlinear evolution (which in a ex-
periment using a DOPO could take just few picoseconds), the dark curves
contract into a phase soliton positioned at the center of the object (targeting).

The detailed scenario is as follows:

1. t = 1. There is essentially an image of the injected field distribution. The
amplitude of the subharmonics at the beginning of the processing is 0.1%
of the saturation value of the subharmonic amplitude (the corresponding
value in terms of intensities).

2. t = 3. Linear stage of amplification: a smoothing of the field due to spatial
filtering is observed. The form of the spatial filter is a ring or a central
spot in the far field, depending on the detuning.

3. t = 10. Nonlinear saturation is reached: the amplitude distribution in the
domains becomes more and more regular (more “flat”). The nonlinear
evolution of domains begins.

4. t = 30. The domain begins contracting.
5. t = 90. The domain boundary becomes smoother, and contraction con-
tinues.

6. t = 130. At a particular size of the domain, the contraction slows down.
This particular radius is roughly 3r0, where r0 is the radius of the final
soliton. The evolution, however, does not stop at this size of the domain,
but the domain continues contracting.
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Fig. 11.21. Domain evolution as obtained by numerical integration of DOPO
equations (11.1). Spatial intensity distributions are shown. The initial distribution
of subharmonics is taken (injected) from Fig. 11.21. Parameters are: E = 2, ω0 = 0,
ω1 = −0.2, γ1 = γ0 = 1 . Diffraction coefficients are: a1 = 0.001 and a0 = 0.0005.
Integration was performed with periodic boundary conditions in unit size region

7. t = 190. The contraction again slows down, this time at a radius 2r0.
8. Finally, at t = 250, the domain contracts to the final state, a stable
soliton, at the geometrical center of the object.

An interesting point is that the evolution of the domain does not exactly
follows the velocities (11.16) and (11.17), but slows down at some stages of
evolution. This slowing down can be explained by the modulation of the slope
of the variational potential shown in Fig. 11.11. At some radii of the domain,
roughly equal to integer multiples of the radius of the fundamental soliton
(r = nr0, where n = 1, 2, 3 ...), the slope of the potential is minimum (it
is maximum at radii r = (n+ 1/2) r0). The force causing contraction (the
derivative of the potential) is minimum at radii that are integer multiples of
r0, and here the contraction velocity is also minimum. The modulation of
the slope of the potential is due to the spatial modulation of the tails of the
domain boundaries, as discussed above in Sect. 11.5.

For sufficiently strong modulation of the tails, the potential can have
multiple local minima, at radii r = nr0. In this case a domain can stop con-
tracting at those radii. Figure 11.22 shows some snapshots of the evolution
of domains with larger spatial modulation of the tails of the domain bound-
aries (e.g. because of larger pump diffraction, as will be discussed in the next
chapter).

This simple example shows the unique possibilities of phase domains in
analog image processing. Domain boundaries may simulate the margins of an
object. Discrete solitons can count the objects of interest in the field of vision.
A (stroboscopic) array of solitons can be left behind to track a moving object
and the trajectory of the moving object can be recorded by discrete positions
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Fig. 11.22. Some snapshots from domain evolution as obtained by numerical in-
tegration of the DOPO equations. The parameters and initial conditions are as in
Fig. 11.21 except for the pump diffraction coefficient, a0 = 0.0015 (three times as
large as in the previous case). The larger diffraction of the pump enhances spatial
modulation (see Chap. 12), and consequently enables not only a stable fundamental
soliton (of minimum radius), but also stable solitons with twice (or even three or
more times) the minimum radius

of solitons. In general, solitons can discretize the properties of objects. And,
finally, moving (inertial) solitons may be employed to forecast the trajectory
of an object or the evolution of an image in general by all-optical means.

References

1. K. Staliunas and V.J. Sánchez-Morcillo, Dynamics of domains in Swift–
Hohenberg equation, Phys. Lett. A 241, 28 (1998). 147

2. K. Staliunas and V.J. Sánchez-Morcillo, Spatial localized structures in degen-
erate optical parametric oscillators, Phys. Rev. A 57, 1454 (1998). 147, 160

3. L.A. Lugiato, C. Oldano, C. Fabre, E. Giacobino and R. Horowicz, Bistability,
self-pulsing and chaos in optical parametric oscillators, Nuovo Cimento 10D,
959 (1988). 148

4. S. Trillo, M. Haelterman and A. Sheppard, Stable topological spatial solitons
in optical parametric oscillators, Opt. Lett. 22, 970 (1997). 148
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12 Turing Patterns in Nonlinear Optics

12.1 The Turing Mechanism in Nonlinear Optics

A well-known transverse-pattern formation mechanism in broad-aperture
lasers and other nonlinear resonators is off-resonance excitation. If the cen-
tral frequency of the gain line of the laser ωA is larger than the resonator
resonance frequency ωR, then the excess of frequency ∆ω = ωA−ωR causes a
transverse (spatial) modulation of the laser fields, with a characteristic trans-
verse wavenumber k obeying a dispersion relation ak2 = ∆ω, where a is the
diffraction coefficient of the resonator. The patterns that occur in such a way
play the role of a “bridge” between the excitation and the dissipation, which
occur at different frequencies, and these patterns enable maximum energy
transfer through the system.
In all the previous chapters, patterns due to off-resonance excitation have

been studied. These were patterns in lasers, photorefractive oscillators, degen-
erate and nondegenerate optical parametric oscillators, and four-wave mixers.
For a degenerate OPO, the excitation frequency is equal to half of the pump
radiation frequency ωA = ω0/2, and its mismatch from ωR leads to the same
macroscopic pattern formation mechanism as in lasers. The off-resonance
mechanism not only excites extended patterns (such as tilted waves, rolls,
square vortex lattices and hexagons), but is also responsible for the stability
of localized structures in the above systems.
The off-resonance pattern formation mechanism is essentially a geomet-

rical one. It resembles the formation of rolls in Rayleigh–Bénard convection,
where the width of the convection rolls is fixed mainly by the distance between
the upper and lower plates. In optical resonators, the propagation angles of
off-axis components are fixed by the resonance conditions. The spatial scale
is thus fixed not by nonlinearity, but by linear geometric effects.
The pattern formation mechanism discovered by Turing for reaction–diffu-

sion systems [1] has a different origin from the mechanism discussed above.
Here, at the root, is an interplay between the diffusions of two (or more)
interacting components. The coupling between a strongly diffusing (lateral)
inhibitor and a weakly diffusing (local) activator is responsible for the pattern
formation.
The simplest (linearized) representation of such a reaction–diffusion equa-

tions displaying a Turing instability is given by the model [2]
K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 169–192 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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∂u1

∂t
= a1u1 − b1u2 + d1 ∇2u1 , (12.1a)

∂u2

∂t
= b2u1 − a2u2 + d2 ∇2u2 . (12.1b)

In this system u1 plays the role of the activator and u2 the role of the
inhibitor, with diffusion coefficients d1 and d2 respectively. The particular
form of the cross-coupling matrix (where ai and bi have positive values) leads
to maximum amplification of the wavenumbers obeying

|k|2 = 1
2

(
a1

d1
− a2

d2

)
, (12.2)

as follows from a stability analysis of (12.1).
Motivated by this analysis, one might ask the following question: is the

Turing mechanism possible in nonlinear optics too? Let us take as an example
the equation for a class B laser from Chap. 7,

∂A

∂t
= (D − 1)A+ i (a∇2 − ω

)
A− g

(
a∇2 − ω

)2
A , (12.3a)

∂D

∂t
= −γ

(
D −D0 + |A|2

)
, (12.3b)

with an unsaturated population inversion D0 and a spatial-wavenumber se-
lection factor g. Let us simplify (12.3) by assuming a very narrow gain line,
i.e. g � 1, which makes diffraction negligible when compared with diffusion,
and zero detuning, ω = 0. Also, which is very significant here, let us assume
that the population inversion also diffuses, which results in adding a Lapla-
cian to (12.3b). In this case, if we define the field diffusion constant d1 = gd2,
(12.3) converts to

∂A

∂t
= (D − 1)A− d1 ∇4A , (12.4a)

∂D

∂t
= −γ

(
D −D0 + |A|2

)
+ d2 ∇2D , (12.4b)

a system of two nonlinearly coupled diffusing components. The field diffusion
is governed not by the usual Laplace operator, but by the second power of the
operator (sometimes called super-diffusion, as mentioned earlier); however,
this makes no essential difference compared with normal diffusion.
Consider a perturbation of the stationary solution A = Ā + a, D = D̄ +

d, where
(
Ā, D̄

)
=
(±√

D0 − 1, 1
)
. Linearizing (12.4) with respect to the

perturbations leads to
∂a

∂t
= d

√
D0 − 1− d1 ∇4a , (12.5a)

∂a

∂t
= −γ

(
d+ 2a

√
D0 − 1

)
+ d2 ∇2d . (12.5b)

The similarity to the Turing system (12.1) becomes more evident if we
change the sign of the perturbation of the population inversion d. This results
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in the linear coupling matrix

L =


 0 −√

D0 − 1

2γ
√
D0 − 1 −γ


 , (12.6)

and a diagonal diffusion matrix

D =


−d1∇4 0

0 d2∇2


 =


−d1k

4 0

0 −d2k
2


 . (12.7)

The form of the linear coupling matrix, compared with (12.1), allows us
to identify the optical field with the activator variable in a reaction–diffusion
system, and the population inversion with the inhibitor variable.
The main requirement for Turing pattern formation in a reaction–diffusion

system is that the inhibitor diffuses faster than the activator. This require-
ment is often called the principle of “local activator and lateral inhibitor”
(LALI). Consequently, it seems reasonable that for observation of similar
patterns in nonlinear optics, one must require that the inhibitor (the popu-
lation inversion in a laser) diffuses more strongly than the optical field.
The purpose of this chapter is to generalize the LALI principle to arbitrary

forms of nonlocalities. Indeed, both diffusion and diffraction are nonlocal
operators responsible for the communication of fields in the transverse plane.
In the original study by Turing, the usual form of diffusion was considered
for the two interacting components. In optics one can have more complicated
situations: even the model (12.4) and (12.5) shows such complications, since
besides the normal diffusion of the population inversion there is a super-
diffusion of the optical field. One can also have a situation where the inversion
is diffusing but the optical field is diffracting (for a laser with a broad gain
line). And, finally, one can have both components diffracting, as in the case
of optical parametric oscillators.
These cases are investigated below. In the next section, a laser with dif-

fusing inversion is studied under subcritical and supercritical conditions, and
it is shown that Turing patterns are possible in the subcritical case. It is
also shown that the diffusion of the population inversion stabilizes spatial
solitons. In Sect. 12.3, the optical parametric oscillator is investigated. It is
shown that the diffraction of the pump field (playing the role of inhibitor)
may lead to the excitation of Turing patterns, which are different from the
off-resonance patterns studied in previous chapters.

12.2 Laser with Diffusing Gain

It is often supposed intuitively that diffusion in a gain material (e.g. diffusion
of the population inversion in a gas laser or diffusion of free charge carriers in a
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semiconductor laser) should weaken the spatial inhomogeneity of the emitted
optical field. As a consequence, gain diffusion should reduce or suppress a
modulational instability, and might destroy spatial solitons that would exist
in its absence.
The opposite phenomenon is shown to be true in this section, namely

that the diffusion of a saturating gain enhances the spatial modulation of the
optical field. This enhancement of modulation supports solitons and increases
their stability range.

12.2.1 General Case

Consider a general model, where the mean-field equations for an optical sys-
tem with saturable gain are given by [3]

∂A

∂t
= F (A,∇2A) +DA , (12.8a)

∂D

∂t
= γ(D0 −D −D |A|2 + d∇2D) , (12.8b)

where A(r, t) is the optical field (order parameter) and D(r, t) is the gain
field (e.g. the population inversion). The operator F (A,∇2A) is a given non-
linear and nonlocal function of the order parameter A(r, t), d is the diffusion
coefficient for the saturable gain, and γ is its relaxation rate. The complex
conjugate equation of (12.8a) must also be taken into account when the op-
tical field is complex (if diffraction or focusing/defocusing nonlinearities are
present in the function F (A,∇2A)).
For simplicity, it is assumed below that the gain relaxation is fast (γ =

O(1/ε), with ε � 1), and the gain variable D can be adiabatically eliminated
from (12.8b) by requiring that ∂D/∂t = 0. However, as numerical calculations
show, the main conclusions are valid even for moderate gain relaxation, i.e.
γ = O(1). The adiabatic elimination from (12.8b), neglecting gain diffusion
(d = 0), is straightforward, and gives

D =
D0

1 + |A|2 . (12.9)

In general (for d 	= 0), the adiabatic elimination requires the inversion of
the operator

N = 1 + |A|2 − d∇2 , (12.10)

since (12.8b) can be written, in the stationary case, as ND = D0. The inver-
sion can be performed for small diffusion, assuming that d∇2 = O(ε) and all
the other variables are of O(1), yielding

N−1D =
D0

1 + |A|2
[
1 + d∇2

(
1

1 + |A|2
)]

+ d∇2


 1(
1 + |A|2

)2∇D0


 ,

(12.11)
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where the Laplace operator acts on the variables to the right of it. It is easy
to verify that N−1ND0 = D0

(
1 +O(ε2)), which confirms the validity of the

inverse operator (12.11) at O(ε).
For a spatially homogeneous pump parameter D0, the last term on the

right-hand side of (12.11) vanishes, and the population inversion becomes

D =
D0

1 + |A|2 +
D0

1 + |A|2 d∇
2

(
1

1 + |A|2
)
. (12.12)

Inserting (12.12) into (12.8a), we finally obtain the order parameter equa-
tion

∂A

∂t
= F ′(A,∇2A) +

D0A

1 + |A|2 d∇
2

(
1

1 + |A|2
)
, (12.13)

where F ′(A,∇2A) = F (A,∇2A)+D0/(1+ |A|2). The last term on the right-
hand side of (12.13) is due to the diffusion of the saturable gain.
Equation (12.13) will be used as a basis to investigate how the gain dif-

fusion affects the stability of the homogeneous solutions of that equation.
Linearization of (12.13) around the homogeneous stationary solution

(which now depends on the explicit form of F ′, and is assumed to be real-
valued without loss of generality), with perturbations of the form A =
Ā+ a1 exp(λt+ikr) + a∗2 exp(λt−ikr), leads to

λa = La+Da, (12.14)

where a = (a1, a2)
T is the column vector of the perturbation amplitudes. L

is the linear evolution matrix generated by the nondiffusive part of (12.13),

L =


 δF ′/δa1 δF ′/δa2

δF ′∗/δa1 δF ′∗/δa2


 , (12.15)

and D is the perturbation matrix due to gain diffusion,

D =
D0Ā

2(
1 + Ā2

)3 d∇2


1 1

1 1


 . (12.16)

A useful representation can be found by rewriting (12.14)–(12.16) in terms
of the new basis a± = a1 ± a2 (corresponding to perturbations of the ampli-
tude and the phase, respectively), in which one obtains, instead of (12.16),

D =
D0Ā

2(
1 + Ā2

)3 d∇2


2 0

0 0


 . (12.17)

From this general analysis, we can draw some conclusions:
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1. The sum of the Lyapunov exponents is always equal to the trace of the
linear evolution matrix. The perturbation (12.17) increases the sum of the
Lyapunov exponents by an amount 2dk2D0A

2/
(
1 +A2

)3. This indicates
that, overall, the gain diffusion works as “antidiffusion” of the order par-
ameter, and spatial components with nonzero transverse wavenumbers
(off-axis modes) may be amplified because of gain diffusion.

2. If the amplitude and the phase of the order parameter A are decoupled
from one another, then the gain diffusion affects only the amplitude per-
turbations. Therefore the gain diffusion always increases the amplitude
modulations, and as a consequence may stabilize spatial solitons. On the
contrary, it does not affect purely phase perturbations at all.

3. If the amplitude and phase perturbations of the order parameter A are
coupled, then the eigenvalues are complex and form a conjugate pair, i.e.
λ1,2 = λRe±iλIm. The sum of the eigenvalues is proportional to the real
part, i.e. λ1 + λ2 = 2λRe. Therefore (12.17) indicates also the destabi-
lization of coupled amplitude and phase perturbations. The gain diffu-
sion thus increases (or initiates) a modulational instability of oscillatory
(Hopf) type.

4. In the case of bistability, the gain diffusion affects predominantly the
upper bistability branch: the coefficient of the effective “antidiffusion” of
the order parameter 2dk2D0A

2/(1+A2)3 depends on the intensity of the
optical field, and is evidently larger for the upper branch.

The above conclusions are now set out in detail for the case of a bistable
laser (a laser with an intracavity saturable absorber).

12.2.2 Laser with Saturable Absorber

We consider first the simplest case of a monostable laser (with linear losses),
represented by

F (A,∇2A) = −A+ ia∇2A+ g∇4A . (12.18)

A linear stability analysis of the full system ((12.8) and (12.18)) shows that,
although the λ-branch related to the amplitude perturbation is shifted up-
ward, its maximum value can never become positive. As a consequence, am-
plitude modulations (due to lateral boundaries or other reasons) can be en-
hanced, but never cause absolute instabilities. Some bistability mechanism is
required to reach an instability. As an example, we consider the case of a laser
with a saturable absorber, discussed in Chap. 9. The functional F (A,∇2A)
is now given by

F (A,∇2A) = −A− α0A

1 + |A|2 /Is
+ ia∇2A− g∇4A , (12.19)

where α0 is the coefficient of the unsaturated losses and Is is the saturation
intensity. Again, zero detuning is assumed in (12.19).
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For g = 0, one has a purely diffractive case, as studied by Rosanov [4].
For a = 0, the purely diffusive case is obtained instead. In optics, the purely
diffusive case can be realized using a self-imaging resonator, as described in
Chap. 6.
First we investigate the purely diffusive case, where the amplitude and

phase perturbations are decoupled. In this case we have

∂A

∂t
=

D0A

1 + |A|2 −A− α0A

1 + |A|2 /Is
− g∇4A+

D0A

1 + |A|2 d∇
2

(
1

1 + |A|2
)
.

(12.20)

A linear stability analysis of the homogeneous upper-branch solution of
(12.20) gives

λ =
2D0Ā

2(
1 + Ā2

)2 + 2α0(Ā2/Is)(
1 + Ā2/Is

)2 − gk4 +
2D0Ā

2(
1 + Ā2

)3 dk2 (12.21)

for amplitude perturbations. The phase perturbations are not affected by the
gain diffusion in this purely diffusive case.
A family of plots of (12.21) is given in Fig. 12.1a, showing the modula-

tional instability, which appears and grows with increasing gain diffusion d.
For sufficiently large gain diffusion, the upper branch can be modulationally
unstable.
In order to test whether the above procedure of operator inversion reveals

the correct results, a linear stability analysis of the full problem ((12.8) and
(12.19)) was also performed. Figure 12.1b shows the results of the stability
analysis of the full system. Evidently, the instability spectra for small gain
diffusion and small transverse wavenumbers coincide well in the two cases (the
smallness parameter in the adiabatic elimination (12.11)–(12.13) is indeed
d∇2 = −dk2 = O(ε)). Discrepancies appear for relatively large values of the
gain diffusion, leading to different quantitative (but not different qualitative)
results.
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Fig. 12.1. Growth rate of a perturbation as a function of the transverse wavenum-
ber for different values of gain diffusion d, obtained from a linear stability analysis
of (a) the simplified model (12.20) and (b) of the full system (12.8). The parameters
are D0 = 2.8, γ = 5, Is = 0.1 and α0 = 5.0
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12.2.3 Stabilization of Spatial Solitons by Gain Diffusion

Two different interpretations of spatial solitons were discussed in Chap. 8:
a spatial soliton can be considered either as a part of an extended pattern,
such as a pattern of rolls or hexagons (Fauve and Thual type [5]), or as
a homoclinic connection between two stable homogeneous states, forming a
domain of minimum size (Rosanov type [4]).
In the first case, the background amplitude (the solution far away from

the soliton) corresponds to the stable solution branch. For bright solitons,
the upper branch is usually modulationally unstable, and the radiation cor-
responding to the stable lower branch serves as the background. For dark
solitons, the opposite is valid. In the second case, an interaction between
locked fronts results from the nonmonotonic decay of the background field
far from a front.
In both cases, a spatial modulation is involved in the soliton formation

process. As shown in Chap. 11, solitons are more robust, and their stabil-
ity range is larger, in the case of strong spatial modulation. Consequently,
from the analysis of the previous section, it follows that gain diffusion must
enhance the stability of solitons, since in all cases an increase in the gain
diffusion always leads to an increase in the growth exponents of the off-axis
perturbation modes, i.e. to the enhancement of the spatial modulation. Three
different situations can be realized:

1. Positive growth exponents become larger, and the parameter range of the
modulational instability, and that for solitons of the Fauve and Thual
type, increases.

2. Negative growth exponents decrease in magnitude, and spatial oscilla-
tions become less damped, resulting in the stabilization of Rosanov-type
solitons.

3. Negative growth exponents may become positive. One can then obtain a
transformation of solitons of the Rosanov type into solitons of the Fauve
and Thual type (this is actually more a transformation of the interpreta-
tion than a qualitative transformation of the soliton itself). In all cases,
the stability range of the bright solitons is increased.

In order to check the statements above, a numerical investigation of the
full system ((12.8) and (12.19)) was performed. The results are summarized in
Fig. 12.2, where the existence ranges of bright and dark solitons are plotted
on the plane (D0, d), together with the modulational-instability boundary
(squares) and the domain equilibrium boundary (full circles). Typical field
profiles corresponding to different parameter values are shown in Fig. 12.3.
In region A of Fig. 12.2, amplitude spatial solitons of the Fauve and Thual

type exist. Their profile is shown in Fig. 12.3d. In region B, the spatial solitons
are of the Rosanov type. A contraction of amplitude domains occurs in this
region. In region C, the spatial solitons are still of the Rosanov type (shown in
Fig. 12.3c), but amplitude domains expand. In regions C and D, dark spatial
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Fig. 12.2. Regions corresponding to different regimes of localized solutions in the
plane (D0, d), as obtained from numerical integration of (12.8) in the purely diffusive
case. The parameters are as in Fig. 12.1

solitons exist. The line marked by squares (separating region A from regions
B and C in Fig. 12.2) corresponds to the modulational-instability threshold.
The line marked by filled circles (separating regions B and C) corresponds
to the equilibrium state of the two phases corresponding to the upper and
lower solution branches, and thus domains neither contract nor expand. The
dashed vertical line separates the monostable and bistable regimes of the
homogeneous solutions.
In the case of small domains, the domain boundaries lock and result in

stable solitons. As Fig. 12.2 indicates, this locking can occur for contracting
domains (in region B) and also for expanding domains (in region C).
We note that the spatial solitons in regions A, B, and C appear visually

identical: no abrupt changes of the soliton parameters are observed when
the modulational-instability threshold line is crossed. The existence range of
bright solitons increases with diffusion, and the Rosanov-type solitons trans-
form into Fauve and Thual type solitons at the onset of the modulational
instability of the upper solution branch.
Figures 12.3a,b show domains at equilibrium, which occurs between region

B (contraction) and region C (expansion). However, the domain boundaries
do not decay monotonically, but show spatial oscillations. These oscillations
are stronger for larger diffusion of the gain, as is evident from comparison
between Fig. 12.3a and Fig. 12.3b. We note that spatial oscillations are much
more prominent on the upper bistability branch, in correspondence with the
predictions above.
Dark solitons have also been found numerically. They exist in regions

C and D. Curiously enough, enhancement of the modulation of the upper-
branch solution stabilizes the dark solitons too. The upper (modulated) so-
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Fig. 12.3. Stationary solutions obtained by numerical integration of the initial
equations in the case of one spatial dimension. The parameters are as in Fig. 12.1.
(a) Amplitude domain with weakly nonmonotonic tails, for D0 = 2.99, d = 0. (b)
Amplitude domain with strongly nonmonotonic tails (close to the modulational-
instability boundary), for D0 = 2.85, d = 5. (c) Soliton in region B (of Rosanov
type), for D0 = 2.95, d = 0. (d) Soliton in region A (of Fauve and Thual type), for
D0 = 2.7, d = 5. (e) Dark soliton in region D for zero gain diffusion (weak spatial
modulation), for D0 = 3.05, d = 0. (f) Dark soliton in region D for strong gain
diffusion (strong spatial modulation), for D0 = 2.15, d = 5

lution now serves now as the background for the dark solitons. It is usually
presumed that a modulation of the solution branch other than that corres-
ponding to the background stabilizes solitons. What follows generally from
this study is that enhancement of the modulation of the background also
increases the stability of dark solitons.
Figures 12.3e,f show numerically calculated field profiles corresponding to

dark solitons. As in the case of large domains, the enhancement of the spatial
modulation with gain diffusion is also clearly visible in this case.
The above results correspond to the purely diffusive case. In the presence

of diffraction, the mathematical expressions obtained from the linear stability
analysis are not so transparent. The corresponding plots are given in Fig. 12.4.
In general, a relatively small ammount of diffraction of the field does not bring
about qualitative changes: an enhancement of the modulational instability
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Fig. 12.4. Growth rate of perturbations in the diffractive case. Parameters as
in Fig. 12.1, except for the diffraction coefficient. (a) Weak diffraction, a = 0.25;
for nonzero gain diffusion, a small region of locking between amplitude and phase
perturbations appears (indicated by vertical dashed lines). (b) Strong diffraction,
a = 2.5; the amplitude and phase perturbations are locked everywhere except for
relatively small transverse wavenumbers k

(Fig. 12.4a) is observed because of gain diffusion, as in the purely diffusive
case studied above. The additional feature compared with the purely diffusive
case is a locking between amplitude and phase instabilities in a certain band
of transverse wavenumbers (where the amplitude and phase λ-branches are
sufficiently close). As the numerical calculations show, the enhancement of
the soliton stability range due to gain diffusion is similar to that in the purely
diffusive case.
For larger diffraction (Fig. 12.4b), the locking between amplitude and

phase perturbations is stronger. As a consequence, a nonstationary modula-
tional instability is predicted (an instability of Hopf type). One may, there-
fore, expect oscillatory solitons in the case of strong diffraction.
Some general conclusions following from the above analytical and numer-

ical study are:

1. Diffusion of the saturable gain enhances the growth of the off-axis field
components. Overall, gain diffusion results in “antidiffusion” of the order
parameter. As a result, gain diffusion can enhance and/or initiate a modu-
lational instability. In the monostable case, a modulational instability is
never achieved; however, the maximum growth rate can approach very
close to the zero axis from below, thus causing weakly decaying spatial
oscillations. In the bistable case, a modulational instability can appear
in some band of transverse wavenumbers.

2. The solution corresponding to the upper bistability branch is predomi-
nantly affected by gain diffusion. The solution corresponding to the lower
branch is less affected, or almost unaffected, since its amplitude is signif-
icantly smaller than that of the upper branch.

3. As a result, gain diffusion increases the stability range of solitons of both
types: in the case of a Fauve and Thual type soliton, which a priori re-
quires modulationally unstable solutions, the enhancement of the modu-
lational instability obviously increases its existence range. In the case of
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solitons of the Rosanov type, where the stabilization is due to the non-
monotonic decay of the domain fronts, an increase of the gain diffusion
results in an increase of the spatial oscillations, and the existence range
of solitons increases correspondingly.

4. The transition between the solitons of the two types is smooth (no singu-
lar behavior appears at the boundary between solitons of Rosanov type
and solitons of Fauve and Thual type). This suggests that distinguishing
the two types of solitons is only a matter of interpretation. In essence,
the solitons of the two types are similar, as they convert one into another
smoothly.

5. As the analysis of bright solitons shows, an enhancement of the modula-
tion of the upper state (unlike a enhancement of the modulaton of the
background solution) increases the stability of a soliton. However, the
analysis of dark solitons shows that an enhancement of the background
modulation can also stabilize those solitons.

6. In the diffractive case, pump diffusion can enhance or initiate not only
stationary modulational instabilities, but also nonstationary ones (in-
stabilities of Hopf type).

12.3 Optical Parametric Oscillator
with Diffracting Pump

Consider now a system where the two competing fields are diffracting. One
example is given by a DOPO, whose mean-field dynamical equations for the
signal (subharmonic) A1(r, t) and the pump wave A0(r, t) are

∂A0

∂t
= γ0

[− (1 + iω0)A0 + Ē −A2
1 + ia0 ∇2A0

]
, (12.22a)

∂A1

∂t
= γ1

[− (1 + iω1)A1 +A0A
∗
1 + ia1 ∇2A1

]
, (12.22b)

where the parameters are defined in Chap. 3.
Throughout this section, the case of a resonant pump ω0 = 0 and equal

decay rates γ1 = γ0 is considered to simplify the analysis. Also, we normalize
the spatial coordinates to

√
a1, which is equivalent to setting a1 = 1 and

a0 = a in (12.22), where a = a0/a1 is the relative diffraction parameter.
We note here that, as diffraction in a laser depends on the resonator

length in the case of a self-imaging cavity, in a DOPO the use of such a
cavity allows one to choose freely the value of the diffraction parameter a.
In fact, when the optical cavity is formed by plane mirrors, the diffraction
coefficients of the signal and pump fields are related by a1 = 2a0, as a result
of the phase-matching condition [7]. In the present case, in order to study
the influence of diffraction, we assume that each field resonates in a near-
self-imaging cavity, with different lengths for the two fields, and consider
a = a0/a1 a free parameter.
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12.3.1 Turing Instability in a DOPO

An initial comparison with the Turing system suggests that a LALI instability
might be observed in a DOPO when the ratio between the pump (inhibitor)
and subharmonic (activator) diffraction coefficients a reaches a critical value
[8].
We proceed again by analyzing the stability of the homogeneous solu-

tion of (12.22) against space-dependent perturbations of the form δA(r, t) ∝
exp(λt+ik ·r), where δA = (δA0, δA

∗
0, δA1, δA

∗
1). The resulting linear matrix

leads to a fourth-order polynomial in the eigenvalues and then to explicit
(although lengthy) analytical expressions for the growth rate λ(k).
In Fig. 12.5 we represent the real part of λ as a function of the perturba-

tion wavenumber k, for three different values of the diffraction parameter and
a fixed positive value of the signal detuning. The parameters are such that an
off-resonance instability does not occur (the signal detuning is positive). For
zero pump diffraction, a = 0 (dotted curve), the homogeneous solution is sta-
ble. The off-axis modes are strongly damped, and no LALI instability occurs.
For a diffraction parameter a = 1/2 (dashed curve in Fig. 12.5), correspond-
ing to the plane-mirror configuration, the homogeneous solution is still stable;
the off-axis modes are damped, but the damping around some wavenumbers is
weak. This corresponds to a situation where a LALI instability is detectable,
but below the threshold (an underdeveloped LALI instability). If the value
of the diffraction parameter is increased, the largest of the real parts of the
eigenvalues grows, until it becomes positive at a critical wavenumber k = kc.
This situation is shown by the continuous curve in Fig. 12.5, obtained for a
diffraction parameter a = 10.

Fig. 12.5. Real part of the eigenvalue as a function of the perturbation wavenum-
ber, for different values of the diffraction parameter: a = 0 (dotted curve), a = 0.5
(dashed curve) and a = 10 (solid curve). The other parameters are ω1 = 1, ω0 = 0,
E = 2.5
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At the threshold of the pattern-forming instability, the real part of the
eigenvalue of the wavenumber with maximum growth is zero. In Fig. 12.6,
the off-resonance and LALI instability regions are plotted in the parameter
space (ω1, E) for a specific value of the diffraction parameter. The regions
are well separated in the parameter space, and therefore can be associated
with different mechanisms. The off-resonance instability exists for all values
of the pump intensity above threshold, whereas the LALI instability appears
only at some critical pump value that depends on the diffraction parameter
a.

Fig. 12.6. Instability regions in the par-
ameter space (ω1, E) for nonzero diffrac-
tion parameter a = 5, evaluated from
a linear stability analysis. There are two
instability regions: for negative detuning,
the traditional off-resonance instability;
for positive detuning, the Turing instabil-
ity

We note that pump diffraction not only creates the LALI instability,
but also modifies the off-resonance instability range, as can be seen from
Fig. 12.6. For zero pump diffraction the off-resonance instability occurs be-
tween the dashed curve and the left part of the solid curve corresponding to
the neutral-stability line, as follows from the standard analysis. Pump diffrac-
tion increases significantly the off-resonance instability region. However, the
spatial scale of the off-resonance pattern is not modified by the presence of
pump diffraction.
Another important feature that reveals the different nature of the patterns

on both sides of the resonance is the corresponding wavelength. In the case
of off-resonance patterns, this wavelength depends mainly on the resonator
detuning and the diffraction coefficient of the signal wave. In contrast, the
wavelength of the pattern in the LALI region depends essentially on the
pump and on the ratio of the diffraction coefficients a, and very weakly on
the resonator detuning. This behavior is shown in Fig. 12.7, where the squared
wavenumber of the maximally growing mode is plotted against the detuning
(full line). The broken part of the curve, in the neighborhood of the resonance,
corresponds to negative eigenvalues.
Some analytical expressions can be found in different limits. For negative

detuning, the wavenumber is given by

k2 = −ω1 , (12.23)
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Fig. 12.7. The wavenumber of the
pattern, given by a linear stability an-
alysis for a = E = 10. The exact value
is given by the solid line. The dashed
lines correspond to analytical expres-
sions given in the text

which clearly corresponds to the off-resonance patterns selected by the cavity.
For positive detuning,

k2 =
ω1

a
+
2E
aω1

. (12.24)

The asymptotic expressions (12.23) and (12.24) are represented by dashed
curves in Fig. 12.7, to be compared with the exact result (full line).
Turing patterns were found by numerical integration of (12.22). In Fig. 12.8

we show the threshold for the emergence of spatial patterns, for a fixed value
of signal detuning. Results obtained from the linear stability analysis de-
scribed above (full line) are shown, together with numerical results for some
values of the diffraction parameter (represented by symbols). In all cases, the
final LALI patterns have hexagonal symmetry, such as the one shown in the

Fig. 12.8. Critical pump value for
Turing instability as a function of
the diffraction parameter, for fixed
signal detuning ω1 = 2. The sym-
bols represent the result of numerical
integration of the DOPO equations.
The solid curve represents the result
of a semianalytical calculation based
on a linear stability analysis, and
the dashed curve corresponds to the
boundary of the instability domain
given by (12.27). The inset shows a
hexagonal pattern obtained numeri-
cally for a = 5, E = 3



184 12 Turing Patterns in Nonlinear Optics

inset of Fig. 12.8. For comparison, the preferred patterns occurring in the
off-resonance region are not hexagons, but stripes.
The threshold condition for a LALI instability can be evaluated analyt-

ically, but is in general a complicated function of the parameters. However,
Fig. 12.8 indicates two main features: (i) there exists a hyperbolic relation
between the pump and diffraction parameters, and (ii) a minimum value of
the diffraction parameter am is required to reach the instability for a fixed
detuning. This guided our search for an asymptotic expression, where we
introduced a smallness parameter related to the deviation from the thresh-
old, given by E0 =

√
1 + ω2

1. Assuming that R = E0 (E − E0) ≈ O(ε) and
D = a − am ≈ O(1/ε), and expanding the eigenvalue, we find, at leading
order in ε, that the homogeneous solution is unstable whenever

27D2R2 − ω2
1 (2DR− 1)3 < 0 . (12.25)

The minimum value of the diffraction parameter am, which depends on
the detuning, can be evaluated by analyzing the opposite limit, i.e. at large
values of the pump parameter above the threshold. In this case we find that
the instability can be observed only when a > am, where

am (E0 − 1) = 1 . (12.26)

From (12.26) it follows that am grows monotonically when the detuning is
decreased, and that a > 1 (and consequently a0 > a1) when ω1 <

√
3.

Finally, the instability domain (12.25) in the original variables is

(a− am) (E − E0) < η , (12.27)

where η is a positive function of the signal detuning. In the limit of small
detuning, (12.25) yields an asymptotic value η = 27/8ω2

1.
The expression (12.27) is plotted in Fig. 12.8 (as the dashed line) for

ω1 = 2 (for which η = 2). Notice the good correspondence with the exact
(full line) and numerical (symbols) results.

12.3.2 Stochastic Patterns

The Turing instability in a DOPO occurs only for nonzero signal detuning,
as follows from the stability analysis and also from (12.25). However, in res-
onance, some transverse wavenumbers are weakly damped for nonzero pump
diffraction. The wavenumber of the weakly damped modes can be obtained
from a linear stability analysis of (12.22). In the limit of far above the thresh-
old (E � 1), this wavenumber is given by

k2 =

√
2E
a

, (12.28)
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which is valid also for small values of the detuning ω1, where pattern forma-
tion is expected.
Equation (12.28) corresponds to a ring of weakly damped wavevectors, in

the spatial Fourier domain. To check the existence of the ring numerically one
must introduce a permanent noise. We can expect that the homogeneous so-
lution will then be weakly modulated by a filtered noise, with a characteristic
wavenumber given by (12.28).
In order to incorporate the noise, we have modified (12.22) by adding a

term √
γiΓi to the evolution equation for each field component Ai. These

terms, introduced phenomenologically, represent stochastic Langevin forces
defined by

〈Γi(r1, t1)〉 〈Γ∗i (r2, t2)〉 =
δ(r1 − r2)δ(t1 − t2)

2Ti
, (12.29)

where Ti are the corresponding temperatures.
A typical result of numerical integration of the Langevin equations is

shown in Fig. 12.9, where a snapshot of the amplitude and the corresponding
averaged spatial power spectrum

〈|A(k)|2〉 are shown. As expected, no spatial
wavenumber selection was visible in the case of zero pump diffraction. For
nonzero pump diffraction, the DOPO filters the off-axis noise components,
and a ring emerges in the far field (Fig. 12.9, right). If the pump diffraction
parameter is increased, the induced wavenumber ring decreases in radius and
becomes more dominant, in accordance with (12.28).
The above calculations were performed for zero detuning for both waves.

Therefore all possible pattern formation mechanisms due to off-resonance
excitation are excluded.
The expression (12.28) for the wavenumber, although evaluated at reson-

ance, is a good approximation to the wavenumber of the patterns for moder-
ate values of the signal detuning, and corresponds to a characteristic length
of the emerging pattern Lp = k−1

c . Returning to the initial normalizations of

Fig. 12.9. Stochastic spatial distribution (left) and averaged spatial Fourier power
spectrum (right) obtained by numerical integration of the DOPO Langevin equa-
tions, for ω1 = 0, E = 2, a0 = 0.005, a1 = 0.0005 (a = 10). The averaging time was
t = 300. The zero spectral component has been removed
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the spatial variables in (12.22), this length can be expressed as

L2
p =

√
a0a1

2E
, (12.30)

which, together with (12.27), is strikingly similar to the conditions derived in
[9] for the Brusselator, a paradigmatic model of chemical pattern formation.
Clearly, the scale of the pattern given by (12.30) depends on the diffraction

coefficients of both fields. It is interesting to compare the scale of the Turing
pattern with the characteristic scales of the components, given by their spatial
evolution in the absence of interaction. For this purpose, we consider first a
deviation from the trivial solution, A0 = E + X , A1 = Y . In the resonant
case and neglecting the nonlinear interaction, (12.22a) leads to

−Y + EY ∗ + ia1∇2Y = 0 , (12.31)

or, equivalently,[
1−

(a1

E
∇2
)2
]
Y = 0 . (12.32)

Similarly, from (12.22b) we find

−X + ia0∇2X = 0 . (12.33)

From the solutions of (12.32) and (12.33), we can define a characteristic
spatial scale for the activator, La =

√
a1/E, and for the inhibitor, Li =

√
a0,

corresponding to the signal and pump fields, respectively. Now the scale of
the generated pattern can be written in terms of the scales of the activator
and the inhibitor, as

L2
p =

LaLi√
2

, (12.34)

revealing that the characteristic spatial scale of the pattern is the geometric
mean of the spatial scales of the interacting components.
It is possible to find a simple relation between La and Li in the limit of

a � am and E � E0 (large diffraction and pump parameters, and moderate
detuning). In this case, the instability domain (12.27) takes the form aE > η,
which can be expressed in terms of the characteristic lengths to give the
threshold condition

Li >
√
ηLa . (12.35)

The value of η depends on the signal detuning and can be evaluated from
(12.25). We find that η > 1/2 always and, in particular, that η > 1 for
ω1 < 3

√
3. Therefore, for small (and also moderate) detuning, the inhibitor

range must be larger than the activator range for the occurrence of the LALI
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instability. This is in accordance with the assumptions made in the derivation
of (12.28).
The conditions defined by (12.34) and (12.35) are typically found in

reaction–diffusion systems, and are a signature of the Turing character of
the instabilities described above.

12.3.3 Spatial Solitons Influenced by Pump Diffraction

The spatial modulation induced by pump diffraction also influences the sta-
bility of solitons [10], in accordance with the results of Chap. 11. In order
to show this, we performed a numerical integration of the DOPO equations
(12.22) for different values of a0. The amplitude along a line crossing the cen-
ter of a soliton is plotted in Fig. 12.10, showing that the diffraction enhances
the spatial oscillations strongly.
The parameters that define the shape of a soliton are the exponent of the

spatial decay and the wavenumber of the oscillating tails. These parameters
can be analytically evaluated by means of a spatial stability analysis. We
assume that the intensity of the field is perturbed from its stationary value
in some place in the transverse space (owing to the effects of boundaries, a
spatial perturbation or a defect in the patterns), and look at how this per-
turbation decays (or grows) in space. For this purpose, we consider evolution
in space instead of time. When the system has reached a stationary state,
the solution, which we assume to have radial symmetry, can be written in
the time-independent form

Ai = Āi + δAi(r) , (12.36)

x

-1.0

1.0

-2.0

0.0

2.0

A1

Fig. 12.10. Amplitude profile of a soliton across a line crossing its center, evaluated
numerically for different pump diffraction coefficients, a0 = 0.0005, 0.002 and 0.01.
The amplitude of the modulation of the tails increases with increasing diffraction.
The other parameters are a1 = 0.001, E = 2, ω1 = −0.6, ω0 = 0
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where Āi represents the stationary homogeneous solution for the pump and
signal fields, given in (11.2).
After substitution of (12.36) in (12.22), if we consider regions in space not

close to the domain boundary, the resulting system can be linearized in the
deviation, and the spatial evolution can be described by the system

∇2 δA = L δA , (12.37)

where δA is the four-component perturbation vector and L is a linear matrix.
In the case of a resonant pump, i.e. ω0 = 0, L is given by [10, 11]

L =




−i/a 0 − (2i/a) Ā1 0

0 i/a 0 (2i/a) Ā∗
1

iĀ∗
1 0 −i (1 + iω1) iĀ0

0 −iĀ1 −iĀ∗
0 i (1− iω1)



. (12.38)

The solutions of the linear system (12.37) are of the form

δA(r) ∝ eqr , (12.39)

where the wavevector q can be complex, in the form q =Re(q) +i Im(q).
From (12.39), it follows that a negative value of Re(q) indicates a spatial
decay of the perturbation and is responsible for localization, while a nonvan-
ishing value of Im(q) indicates the presence of a nonmonotonic (oscillatory)
decay [12]. Thus, the solution (12.36), with the deviation given by (12.39),
represents the asymptotic profile of the soliton far from its core.
Expressions for the spatial decay and modulation follow from a study of

the eigenvalues of L, which are the solutions of the characteristic equation

a2µ4−2a2ω1µ
3+(1− 4aI1)µ2−2ω1 (1− 2aI1)µ+4I1 (1 + I1) = 0 , (12.40)

where I1 = A2
1. Comparing with the ansatz (12.40), we identify q =

√
µ.

A simple analytical solution of (12.40) exists in the case of a resonant
signal, i.e. ω1 = 0, only, and can be written as

aµ2 =
1√
2

√
−1 + 4aI1 ±

√
1 + 8a (2a+ 1) I1 . (12.41)

We see from (12.41) that the size of the soliton depends on the diffraction
ratio a in a nontrivial way. This is in contrast with previous studies of pattern
formation in many nonlinear optical systems (the Lugiato–Lefever approach
[13]), where diffraction appears simply as a scale factor in the wavevector, in
the form ak2.
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In Fig. 12.11 a comparison between analytical results (dashed curve) and
numerical results (continuous curve) for the spatial oscillations of the decay-
ing tail of a domain boundary is given. The peak of the localized structure is
omitted. Note that the correspondence is very good, even close to the domain
boundary (the line of zero intensity). In this particular case, four minima of
the intensity are visible. The opposite segment of a dark ring can be locked
by each of the minima. Obviously, the soliton of minimum size, locked by the
first maximum, which is the strongest, is the most stable one. However, dark
rings with larger radii can also be stable.

r

-1.5

-0.5

-2.0

-1.0

0.0

A1

Fig. 12.11. Spatial oscillations of the field outside a soliton, as evaluated numeri-
cally (continuous line) and analytically from the spatial stability analysis (dashed
line), for E = 2.5, ω1 = 0.5, ω0 = 0, a1 = 0.00025 and a0 = 0.00125 (a = 5)

The stability range of solitons is limited on one hand by the contraction
and annihilation of domains, and on the other hand by either the presence of
modulational instabilities (the modulations grow, and fill the whole space) or
expansion of domains. Since modulational instabilities are favored by diffrac-
tion, it may seem that diffraction has a negative effect on the stability of
solitons. However, for pump values at which instabilities are absent, the in-
crease in the modulation of the tails could prevent full contraction, thus con-
tributing to an enhancement of the stability range. Numerical calculations
performed for a large pump diffraction parameter show that the stability is
always enhanced, at least up to some value of the pump parameter.
The presence of strong modulations in the tails also allows the formation

of more complex structures, in the form of bound states of single solitons,
or “molecules” of light. Some examples of molecules of varying complexity
are shown in Fig. 12.12. Examples with two and three maxima are shown in
Figs. 12.12a,b, and a chain composed of five maxima is shown in Fig. 12.12c.
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a) b) c)

Fig. 12.12. Several bound states (molecules) of solitons, obtained for a = 5, E =
2.5, ω1 = 0.5, ω0 = 0 : (a) Double; (b) triple; (c) a chain. The field amplitude
along a cross section y = 0 of the chain is shown the graph by the solid line. The
dashed line represents a section across the space outside the dark line

The internal structure of the chain shown in Fig. 12.12c is more clearly
visible in a section along the middle (y = 32). Five maxima at equidistant
points are seen. The field along a line outside the domain boundary is given
by the dashed line, evaluated at y = 20.
In all cases, the large value of the pump diffraction parameter is respon-

sible for the stability of such complex structures, by amplifying the spatial
oscillations and thus preventing their collapse. To show this, we have followed
the evolution of the soliton “molecules” shown in Figs. 12.12b,c by decreas-
ing the diffraction parameter to a = 1 while keeping the other parameters
unchanged. The resulting scenario is shown in Fig. 12.13, where the pictures
have been taken at equally spaced times. The final state corresponds to a
single soliton.
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Fig. 12.13. Temporal evolu-
tion showing the decay to a
single soliton of the molecules
shown in Figs. 12.12b,c when
the diffraction parameter is
decreased to a = 1
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13 Three-Dimensional Patterns

In the previous chapters, only 1D and 2D structures of light were investigated;
when the fields depend on one or two transverse spatial coordinates and
evolve slowly in time. A single family of longitudinal modes was assumed in
the theoretical models, where the fields change negligibly along length of the
resonator. The experimental measurements were also 2D; the two-dimensional
distributions were recorded with a video camera. Very little is known about
three-dimensional spatial light structures of the fields associated with the
simultaneous emission of a large number of longitudinal and transverse modes
of the resonator. Some analysis of 3D Turing structures has been done in [1]
for nonoptical systems, and recently in [2] for lasers.

Emmision of multiple longitudinal modes can occur in lasers and other
nonlinear optical systems when the gain line is broader than the free spectral
range of the resonator. The gain line for OPOs (the line of phase synchro-
nism) is usually very broad, and therefore this system is suited very well
for generating 3D structures. The case of degenerate OPOs is the main case
discussed in this chapter; we restrict our considerations of the nondegenerate
case and other nonlinear optical systems to a short discussion at the end of
the chapter.

13.1 The Synchronously Pumped DOPO

For simplicity, a synchronously pumped DOPO, as sketched in Fig. 13.1, is
discussed here. 3D subharmonic pulses travel around a resonator filled with
a medium with a second-order nonlinearity, being feed from the energy of a
sequence of pump pulses. The pump pulses are resonant: a new pump pulse
meets a resonating subharmonic pulse at the entrance of the nonlinear crystal
on each resonator round trip. 3D structures are expected to reside within the
propagating subharmonic pulses. We show below that the spatio-temporal
dynamics of the field within the resonating pulses are governed by a 3D
Swift–Hohenberg (SH) equation. We then analyze 3D extended (periodic)
and localized structures as solutions of the order parameter equation.

The model of a synchronously pumped DOPO is used for simplicity and
clarity only. It covers pump pulses of infinitely long duration, which corre-
sponds to continuous pumping. The model of a continuously pumped DOPO
K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 193–203 (2003)
c© Springer-Verlag Berlin Heidelberg 2003
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Synchronously pumped OPO:

cw-pumped OPO:

Fig. 13.1. Schematic illustration of a synchronously pumped (left) and continu-
ously pumped (right) degenerate optical parametric oscillator

is also shown in Fig. 13.1. Therefore the analysis applies for synchronously
and continuously pumped DOPOs.

The interaction of the three-dimensional slowly varying envelopes of the
3D pump and subharmonic pulses, A0(r⊥, τ , z) and A1(r⊥, τ , z), respectively,
is described by the following set of equations:

∂A0

∂z
= ia‖,0

∂2A0

∂τ2
+ ia⊥,0 ∇2

⊥A0 − χA2
1 , (13.1a)

∂A1

∂z
= (v0 − v1)

∂A1

∂τ
+ ia‖,1

∂2A1

∂τ2
+ ia⊥,1 ∇2

⊥A1 + χA0A
∗
1 . (13.1b)

Here vj = ∂kj/∂ωj are the group velocities for the pump (j = 0) and
subharmonic (j = 1) waves, a‖,j = ∂kj/∂ωj are the longitudinal dispersion
coefficients, a⊥,j = 1/2kj are the transverse diffraction coefficients, and χ is
the nonlinear coupling coefficient. Evolution occurs along z, the longitudinal
coordinate. The fields are defined in the 2D transverse space r⊥ = (x, y), in
which the Laplace operator ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2 acts, and in the longitu-
dinal space τ, representing a retarded time in a frame propagating with the
group velocity of the pump pulses.

The changes of the fields during one resonator round trip are assumed to
be small. This allows us, first, to obtain a mapping describing the discrete
changes of the subharmonic pulse in successive resonator round trips. Second,
it allows us to replace the discrete mapping by a continuous evolution, and
thus to obtain an order parameter equation in the form of a partial differential
equation.

13.1.1 Order Parameter Equation

Diffractive and dispersive changes of the pump are neglected during the
propagation over the crystal length ∆l, which is assumed to be small com-
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pared with the total length of the resonator L. Assuming that the subhar-
monic field changes negligibly along the crystal, i.e. A1(r⊥, τ , z) ≈ A1(r⊥, τ),
(13.1a) can be integrated to give

A0(r⊥, τ , z) = A0(r⊥, τ , 0)− χA2
1(r⊥, τ) z . (13.2)

The mean value of the pump envelope is then given by

A0(r⊥, τ , z) = A0(r⊥, τ , 0)− χA2
1(r⊥, τ)

∆l
2
. (13.3)

This approximation of the mean pump value (13.3) allows us to obtain a
mapping of the subharmonic pulse for successive resonator round trips. Tak-
ing into account the nonlinear interaction in the crystal (13.1a), the diffractive
propagation in the resonator, the losses in the mirrors α1, and the phase shift
∆ϕ due to resonator length detuning, we obtain the following mapping:

A1,(n+1) = A1,(n) + (ν0 − ν1)∆l
∂A1,(n)

∂τ
+ i∆A1,(n) − α1A1,(n) (13.4)

+ia‖,1 ∆l
∂2A1,(n)

∂τ2
+ ia⊥,1L∇2

⊥A1,(n) + χ∆l
(
A0 − χ

∆l
2
A2

1,(n)

)
A∗

1,(n) .

Dispersion is assumed to occur in the nonlinear crystal only. In contrast,
diffraction occurs throughout the propagation over the whole resonator length
L.

The mapping (13.4) can be transformed into a continuous evolution in
time t (where t = nLα1/c is normalized to the photon lifetime in the reson-
ator). After renormalizing the fields, one obtains

∂A

∂t
= PA∗ −A+ i(∇2 +∆)A − |A|2A , (13.5)

which is a parametrically driven Ginzburg–Landau equation similar to that
obtained for the corresponding problem in 2D [3, 4]. In (13.5) we have made
the following changes of variables:

P (r⊥, η) = A0(r⊥, η, 0)χ
∆l
α1

, (13.6a)

A(r⊥, τ , η) = A1(r⊥, η, t)χ
∆l√
2
, (13.6b)

(X,Y ) = (x, y)
√

α1

d⊥L
, η = τ

√
α1

d‖∆l
, ∆ =

∆ϕ
α1

. (13.6c)

The 3D Laplace operator ∇2 = ∂2/∂X2 + ∂2/∂Y 2 + ∂2/∂η2 is calculated
in a coordinate frame propagating with the subharmonic pulse, r = (X,Y, η).

A further simplification of (13.5) is possible for a pump value close to
the generation threshold (|P − 1| � 1). This can be done by adiabatically
eliminating the small imaginary part of the field, as in [3]. Applying directly
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the derivation procedure for the 2D case from [3] to the 3D parametrically
driven Ginzburg–Landau equation, we obtain

∂A

∂t
= (P − 1)A− 1

2
(∇2 +∆)2A−A3 , (13.7)

which is a real Swift–Hohenberg equation in 3D.
The spatio-temporal structure of the pump pulses is included in P (r, t),

and therefore (13.7) is valid for both synchronously and continuously pumped
OPOs. The boundary conditions in the lateral coordinates depend on the de-
tails of the experiment: for example, the aperture of the resonator implies
boundaries where the fields are zero, and systems with an infinitely broad
aperture (and pump profile) require no lateral boundaries at all. In the lon-
gitudinal direction, periodic boundaries must be used, corresponding to a
periodic repetition of the pattern.

Further, in the analytical treatment of the patterns, a pump that is ho-
mogeneous in 3D is assumed. This assumption is legitimate when the typical
size of the spatial structures is much smaller than the spatial size of the pump
pulse. This occurs for a sufficiently broad pump beam (|∂P/∂X | , |∂P/∂Y | �
|P |) and also for a sufficiently long pump pulse (|∂P/∂η| � |P |). Under these
conditions, one can consider the pump parameter to be constant in the cen-
tral region of the pulse. This allows us to scale out the pump parameter and
write (13.7) in the form

∂A

∂t
= A− (∇2 +∆)2A−A3 , (13.8)

which has only one free parameter, the detuning ∆.
The validity of the linear part of (13.7) can be tested by comparison

of the spectrum of the Lyapunov growth exponents calculated from (13.7),
with the round-trip increments of the fields calculated from (13.1) and (13.3).
Such a comparison shows that (13.7) describes well the linear pattern-forming
properties (transverse wavenumber selection) of a DOPO not only near the
threshold, where (P − 1) � 1, where (13.7) is strictly mathematically valid,
but also moderately above the threshold, where (P − 1) ≈ O(1).

13.2 Patterns Obtained
from the 3D Swift–Hohenberg Equation

In the limit of small detuning, a homogeneous distribution with amplitude
|A| = ±√

1−∆2 and one of two phase values, ϕ = (0, π), is a stable solution
of the 3D SH equation (13.8). However, in a transient stage of the evolution, if
one starts from a random field distribution, the subharmonic field can consist
of separated domains, each with one of two phase values. The phase domains
in 2D patterns are separated by domain boundaries (or dark switching waves),
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Fig. 13.2. Phase domains as obtained by numerical integration of (13.8), depicted
by surfaces of zero field. At the bottom a 2D section is shown, showing the field
intensity (left), and the field phase (right). The detuning is ∆ = 0.4. Periodic
boundaries were used on a box of size ∆x = ∆y = ∆η = 20

as analyzed in Chap. 11. Analogously, similar 3D domains exist, separated
by 2D domain walls.

A numerical integration of the 3D SH equation (13.8) was performed to
test the idea of domains in 3D. A split-step technique was used on a spatial
grid of 32× 32× 32 points. The result is showm in Fig. 13.2 for a particular
time in the transient evolution. Two domains of uniform phase, embedded in
a background of the opposite phase, are apparent.

The dynamics of the 3D domains depend on the detuning parameter in a
similar way to those of 2D domains (see Chap. 11). A negative or small posi-
tive detuning leads to the contraction and eventual disappearance of domains.
A large positive detuning leads to the growth of domains and formation of a
3D “labyrinth” structure, as discussed below. However, in a particular detun-
ing range the contracting domains can stabilize at a particular size. In this
case we obtain spherically symmetric, stable “bubbles”, which are the local-
ized structures (spatial solitons) of the 3D SH equation. Such an ensemble of
stable bubbles is shown in Fig. 13.3, as obtained numerically.

The stability limits of the spatial solitons were analyzed, by solving the
3D SH equation (13.8) numerically. The bubbles are stable in the interval
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Fig. 13.3. 3D spatial phase solitons (bubbles). The same conditions as in Fig. 13.2
were used, except for the detuning value ∆ = 0.45

0.430 < ∆ < 0.460. This stability range is much narrower than that for the
corresponding dark rings in 2D found in Chap. 11, which is 0.287 < ∆ <
0.460.

Large detuning values lead to periodic patterns with a dominant nonzero
spatial wavenumber |k| = √

∆. In two dimensions, a parallel stripe pattern
occurs and has a spatial distribution A(r) ≈ √

4/3 cos(kr). Hexagonal pat-
terns are not supported by the SH equation in 2D, since the nonlinearity is
purely cubic here. (It is known that a square nonlinearity is necessary for
supporting stable hexagons, unless an additional neutral mode is included.)
A direct continuation to the 3D case gives the analogue of a stripe pattern, a
standing-wave pattern also called “lamellae”. However, besides lamellae an-
other stable periodic structure is possible in 3D, a structure made up of four
resonant standing waves, with wavevectors as illustrated in Fig. 13.4a,

A(r) ≈
∑

j=1,4

(Aje
ikjr + c.c.) . (13.9)

The four k-resonant standing waves, for which |kj | =
√
∆, do not lie

in the same plane, and thus such a tetrahedral structure can exist only in
3D space. The phases of the four nonplanar standing waves, with complex
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Fig. 13.4. (a) k-resonant wavevectors forming a tetrahedral structure. (b) Iso-
lines at 85% of maximum field intensity, and isolines at (c) 93% and (d) −93% of
maximum amplitude, obtained by numerical integration of the 3D SH equation for
∆ = 1.2 and a box size ∆x = ∆y = ∆η = 10

amplitudes Aj = |Aj |eiϕj , obey

ϕ =
∑

j=1,4

ϕj = π . (13.10)

A stability analysis shows that both lamellae and tetrahedral structure
are stable. For the stability analysis, a variational potential for (13.8) was
calculated, namely

F =
∫ (

−A
2

2
+
A4

4

)
dr . (13.11)

Note that Laplace operators do not appear in the variational potential, if we
are dealing with the k-resonant structures.

Calculation of the variational potential yields the potential minima as-
sociated with these structures in the parameter space of Aj . The mini-
mum values of the potential are F1 = −1/6 = −0.1666... for lamellae, and
F4 = −2/15 = −0.1333... for the tetrahedral structure. Lamellae are thus
more stable than the tetrahedral structure. For comparison, the 3D contin-
uations of the resonant square pattern, and of the hexagonal pattern have
potentials F2 = −1/10 = −0.1 and F3 = −1/9 = −0.1111..., respectively.
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However, these unstable patterns correspond not to local potential minima
in the parameter space of Aj but to saddle points.

Numerical integration of (13.8) confirms the stability of the tetrahedral
structure. The numerical results are given in Fig. 13.4b, in the form of iso-
lines at 85% of the maximum field intensity. This intensity structure actually
consists of two nested structures, shown in Fig. 13.4c and Fig. 13.4d, where
the isolines at 93% of the maximum and minimum amplitude are plotted.

13.3 The Nondegenerate OPO

In the case of a nondegenerate OPO, the interaction between the slowly
varying envelope of the 3D pump, signal and idler pulses, A0(r⊥, τ , z),
A1(r⊥, τ , z) and A2(r⊥, τ , z), respectively, must be considered. This is de-
scribed by the following set of equations:

∂A0

∂z
= ia‖,0

∂2A0

∂τ2
+ ia⊥,0 ∇2

⊥A0 − χA1A2 , (13.12a)

∂A1

∂z
= (v0 − v1)

∂A1

∂τ
+ ia‖,1

∂2A1

∂τ2
+ ia⊥,1 ∇2

⊥A1 + χA0A
∗
2 , (13.12b)

∂A2

∂z
= (v0 − v2)

∂A2

∂τ
+ ia‖,2

∂2A2

∂τ2
+ ia⊥,2 ∇2

⊥A2 + χA0A
∗
1 . (13.12c)

Here the coefficients are analogous to those in (13.1), but now correspond
to the pump (j = 0), signal (j = 1) and idler (j = 2) waves. The assumption
that the changes in the fields during one resonator round trip are small may be
made as in (13.1), which allows us to obtain a mapping describing the discrete
changes of the subharmonic pulse in successive resonator round trips, and to
derive equations of continuous evolution (the order parameter equation).

The analogue of (13.3) is

A0(r⊥, τ , z) = A0(r⊥, τ , 0)− χA1(r⊥, τ)A2(r⊥, τ )
∆l
2
, (13.13)

and the analogue of (13.5) is

∂A

∂t
+ v1

∂A

∂η
= PB −A+ i(∇2

1 +∆1)A− |B|2A , (13.14a)

∂B

∂t
+ v2

∂B

∂η
= PA−B + i(∇2

2 +∆2)A− |A|2B , (13.14b)

which is a system of two coupled Ginzburg–Landau equations for the variables

A(r⊥, τ , z) = A1(r⊥, η, t)χ
∆l√
2
, (13.15a)

B(r⊥, τ , z) = A∗
2(r⊥, η, t)χ

∆l√
2
. (13.15b)
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Unlike the case of (13.5), two 3D Laplace operators must be defined if the
two waves have different diffraction and/or diffusion coefficients.

A further simplification of (13.14) is possible for equal group velocities of
the signal and idler waves. This leads to

∂A

∂t
= (P − 1)A+ i(∇2

− +∆−)A− 1
2
(∇2

+ +∆+)2A− |A|2 A , (13.16)

which is the complex Swift–Hohenberg equation in 3D. The resulting de-
tunings depend on the detunings of the signal and idler field components:
∆± = ∆1±∆2. The same is true for the resulting components of the Laplace
operators.

A numerical integration of (13.16) has been performed. The extended
patterns obtained consisted of 3D tilted waves, completely analogous to those
in 2D studied in Chap. 5, and also the 3D analogue of the square vortex
lattice. The latter consists of a grid of parallel vortex lines with alternating
directions. The localized structures obtained here correspond to vortex rings.
These vortex rings can stabilize at some equilibrium radius dependent on
the value of the detuning parameter. Sometimes these vortex rings can form
complicated structures, two of which are shown in Fig. 13.5.

Fig. 13.5. Stable vortex rings, as obtained by numerical integration of the 3D
complex Ginzburg–Landau equation (13.16)

13.4 Conclusions

This investigation of synchronously pumped OPOs leads to the following
conclusions.

13.4.1 Tunability of a System with a Broad Gain Band

A DOPO in reality has a very broad gain line width (the line of phase syn-
chronism), typically many orders of magnitude larger than the free spectral
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range of the resonator. Nevertheless, variation of the resonator length (on the
scale of the optical wavelength) allows one to change the detuning parameter
in (13.5) and (13.13), and thus allows the manipulation of the 3D structures.

This seeming paradox can be understood in the following way. The max-
imum gain for a plane wave of the subharmonic field occurs when its phase
has a particular value ϕ = 0, π with respect to the pump phase at the en-
trance of the nonlinear crystal. Tuning of the resonator length breaks the
optimum phase relation for the plane wave. Therefore a modulation appears
in the subharmonic field, causing a Guoy phase shift, which brings the phase
to its optimum value. The Guoy phase shift is proportional to the spatial
wavenumber of the modulation appearing. This modulation can appear in
the transverse or longitudinal direction, or in both directions simultaneously,
resulting in oblique lamellae or a tetrahedral structure.

13.4.2 Analogy Between 2D and 3D Cases

The order parameter equation derived here for a 3D DOPO is analogous to
that derived for a DOPO in the 2D case [3]. The only difference is the di-
mensionality of the problem. This suggests that this analogy between 2D and
3D systems is valid not only for DOPOs, but also for other nonlinear optical
systems. A requirement is that the nonlinear processes should be fast com-
pared with the time of light propagation over the typical length scales of the
longitudinal modulation. In this case the order parameter equations derived
for other nonlinear optical systems in 2D (e.g. externally driven nonlinear
resonators containing focusing or defocusing media or saturable absorbers
[5]) can be straightforwardly extended to the 3D case, and used to simulate
a broad gain line in a synchronously or continuously pumped system. In-
stead of extended or localized structures in 2D, one should the obtain the
corresponding 3D structures, propagating cyclically in the resonator.

The 3D extension of the equations results in the corresponding 3D exten-
sion of the structures. the 3D structures that have direct counterparts in 2D
are phase domains, localized structures in the form of “bubbles”, and lamel-
lar structures. However, the family of 3D structures is richer than that in 2D.
An example of a 3D structure that does not have a counterpart in 2D is the
resonant tetragonal pattern, which is supported by a cubic nonlinearity.
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14 Patterns and Noise

All of the previous chapters of the book have dealt with patterns in nonlinear
resonators in the absence of noise. In reality, noise is always present in ex-
periments. First of all, vacuum noise is inevitable. Noise due to technological
limitations is often also present, and causes spatio-temporal fluctuations of
the field. Also, the optical elements (e.g. mirrors) always have nonzero rough-
ness of their surfaces, which causes spatial (stationary) noise. Last but not
least, the optical elements are of limited size, causing aperture effects, which
can also be considered as spatial (constant in time) perturbations of the field.

In the simplest case the influence of noise on the patterns is the following:

1. Above the modulational-instability threshold, where extended ordered
patterns are expected (rolls, hexagons, tilted waves or square vortex lat-
tices), noise destroys the long-range order in the pattern. Rolls and other
extended structures can still exist in the presence of noise, but may dis-
play defects (dislocations or disclinations) with a density proportional to
the intensity of the noise [1].

2. Below the modulational-instability threshold, where no patterns are ex-
pected in the ideal (noiseless) case, the noise is amplified and can result in
(noisy) patterns. The symmetries of the patterns may show themselves
even below the pattern formation threshold, thanks to the presence of
noise [2]. This can be compared with the case of a single-transverse-mode
laser, where the coherence of the radiation develops continuously, and the
spectrum of the luminescence narrows continuously when the generation
threshold is approached from below.

3. The presence of noise can modify (shift) the threshold of pattern forma-
tion [3].

In this chapter, several novel phenomena related to the influence of noise
on pattern formation (specifically, stripe-pattern formation) are considered.
It is shown that:

• Above the pattern formation threshold, the far field shows singularities
asymptotically obeying a k−2 law. This is shown concretely for stripe
(roll) patterns, where two singularities in the spatial Fourier distribution
are present; however, the results may be extended to other patterns. For

K. Staliūnas and V. J. Sánchez-Morcillo (Eds.):
Transverse Patterns in Nonlinear Optical Resonators, STMP 183, 205–224 (2003)
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example, the far-field distributions of hexagonal patterns show distribu-
tions of the form (k − ki)−2, where ki (i = 1, ..., 6) are the locations of
singularities of the far field, arranged on the vertices of a hexagon.

• The spatial power spectra of the noise show a 1/fα distribution, where
the exponent α is close to unity, and depends on the dimensionality and
symmetry of the pattern.

• The stochastic drift of the patterns is sub-Brownian: it is well known that
the stochastic drift of the position of a Brownian particle obeys a square
root law,

√〈
x (t)2

〉
∝ t1/2 .

We show that the stochastic drift of nonlinear patterns is in general differ-
ent (weaker) than the Brownian; for example the stripe pattern has a root
mean wandering ∝ t1/4 in the case of one spatial dimension.

The analysis of noisy stripes is performed by solving the stochastic Swift–
Hohenberg equation as the order parameter equation for a stripe pattern in
a spatially isotropic system [4], or the Newell–Whitehead–Segel equation as
an amplitude equation for perturbations of stripe a pattern [5]. However, we
start from an analysis of a noisy homogeneous state or, in other words, of a
nonzero-temperature condensate. The main results (spatio-temporal spectra)
in the case of the condensate (the first part of the chapter), are then applied
to calculate the noise properties of stripe patterns.

14.1 Noise in Condensates

An order–disorder transition in a condensate or, in general, in a spatially
extended nonlinear system can be described in the lowest order by a complex
Ginzburg–Landau equation with a stochastic term:

∂A

∂t
= pA − (1 + ic) |A|2 A + (1 + ib)∇2A+ Γ(r, t) . (14.1)

Here A(r, t) is a complex-valued order parameter defined in an n-dimensional
space r, evolving with time t. The control parameter is p (the order–disorder
transition occurs at p = 0). The Laplace operator ∇2A represents the non-
locality in the system, and Γ(r, t) is an additive noise, δ-correlated in space
and time and of temperature T , such that

〈Γ(r1, t1)Γ∗(r2, t2)〉 = 2T δ(r1 − r2)δ(t1 − t2) . (14.2)

Below the transition threshold (p < 0), the CGL equation (14.1) yields
a disordered state: the order parameter A(r, t) is essentially noise filtered in
space and time, with an exponential (thermal) intensity distribution. Above
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the transition threshold (p > 0), (14.1) yields an ordered, or coherent, state
(or a condensate) in modulationally stable cases, with the intensity dis-
tributed around its mean value

〈
|A|2

〉
= p.

The CGL equation (14.1), with complex-valued coefficients, has been in-
vestigated in the previous chapters to describe the dynamics of optical vor-
tices in the case of zero or negative detuning. Here, however, we consider
the CGL equation as a universal model describing an order–disorder phase
transition. The first two terms, pA− |A|2 A, approximate to the lowest order
a supercritical Hopf bifurcation, a bifurcation that brings the system from a
trivial state to a state with phase invariance of the order parameter A(r, t).
The complex-valued character of the order parameter is important, since ev-
ery ordered, or coherent, state, both in classical and in quantum mechanics,
is characterized not only by the modulus of the order parameter, but also by
its phase. The diffusion term ∇2A describes the simplest possible nonlocality
term in a spatially isotropic and translationally invariant system.

The real Ginzburg–Landau equation was introduced [6] as the normal
form for a second-order phase transition between two arbitrary spatially ex-
tended states and can be derived systematically for many systems, as well
as phenomenologically from symmetry considerations. The real Ginzburg–
Landau equation does not contain information about the coherence proper-
ties of the system. Thus, analogously, we try to find a simple model for the
order–disorder phase transition, a normal form that can be derived system-
atically for particular systems, as well as phenomenologically from symmetry
considerations. The complex Ginzburg–Landau equation is just that. It de-
scribes, as a normal form, systems characterized by (1) a supercritical phase
transition between a disordered and an ordered state, (2) phase invariance of
the order parameter, and (3) isotropy and homogeneity in space.

14.1.1 Spatio-Temporal Noise Spectra

For the analytical treatment, we assume that the system is sufficiently far
above the order–disorder transition, i.e. p >> T . Then the homogeneous
component |A0| = √

p dominates, and we can look for a solution of (14.1)
in the form of a perturbed homogeneous state, A(r, t) = A0 + a(r, t). After
linearization of (14.1) around A0 and diagonalisation, we obtain the linear
stochastic equations for the amplitude and phase perturbations, b+ = (a +
a∗)/

√
2 and b− = (a − a∗)/

√
2, respectively:

∂b+

∂t
= −2pb+ +∇2b+ + Γ+(r, t) , (14.3a)

∂b−
∂t

= ∇2b− + Γ−(r, t) . (14.3b)

Equation (14.3a) gives the evolution of the amplitude fluctuations b+,
which decay at a rate λ+ = −2p − k2 (where k is the spatial wavenumber
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of the perturbation). Asymptotically, long-lived amplitude perturbations are
possible only at the Hopf bifurcation point (in the critical state), but never
above or below it. Equation (14.3b) is the equation for phase fluctuations
b− which decay at a rate λ− = −k2 above the Hopf bifurcation point. This
means that the long-wavelength modes decay asymptotically slowly, with a
decay rate approaching zero as k → 0, which is a consequence of the phase
invariance of the system. The phase, as a result, is in a critical state for all
p > 0.

From (14.3) one can calculate the spatio-temporal noise spectra, by rewrit-
ing (14.3) in terms of the spatial and temporal Fourier components,

b±(r, t) =
∫

b±(k, ω)eiωt−ikr dω dk , (14.4)

where the coefficients of the fourier components follow directly from (14.5):

b+(k, ω) =
Γ+(k, ω)

iω + k2 + 2p
, (14.5a)

b−(k, ω) =
Γ−(k, ω)
iω + k2

. (14.5b)

The coefficients of the spatio-temporal power spectra (sometimes called
the “structure function”) are

S+(k, ω) = |b+(k, ω)|2 = |Γ+(k, ω)|2
ω2 + (2p+ k2)2

, (14.6a)

S−(k, ω) = |b−(k, ω)|2 = |Γ−(k, ω)|2
ω2 + k4

, (14.6b)

for the amplitude and phase fluctuations, respectively. If we assume δ-
correlated noise in space and time, |Γ±(k, ω)|2 are simply proportional to
the temperature T of the random force.

Spatial Power Spectra. The spatial spectra are obtained by integration
of (14.6) over all the temporal frequencies ω:

S(k) = S+(k) + S−(k) =
∫

S+(k, ω) dω +
∫

S−(k, ω) dω . (14.7)

The total power spectrum here is the sum of the power spectrum of the
amplitude, S+(k), and that of the phase, S−(k), since the spectral compo-
nents b±(r, t) are mutually uncorrelated, as follows from (14.5). For clariry,
the integration is performed here separately for the amplitude and phase
fluctuations, and yields

S+(k) =
∫ +∞

−∞

T

ω2 + (k2 + 2p)2
dω =

Tπ

k2 + 2p
, (14.8a)

S−(k) =
∫ +∞

−∞

T

ω2 + k4
dω =

Tπ

k2
. (14.8b)
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This means that the spectrum of phase fluctuations is of the form 1/k2

(14.8b). The spatial spectrum of amplitude fluctuations is Lorentzian: in
the short-wavelength limit, |k|2 
 2p, the amplitude spectrum is equal to
the phase spectrum, i.e. S+(k) = S−(k). The total spectrum is then S(k) =
2S+(k) in the short-wavelength limit. In the long-wavelength limit |k|2 � 2p,
the amplitude fluctuation power spectrum saturates at S+(k ≈ 0) = Tπ/2p,
and is negligibly small compared with phase fluctuation spectrum. Therefore
the total spectrum is essentially determined by the phase fluctuations in this
long-wavelength limit.

Temporal Power Spectra. The temporal power spectra are obtained by
integration of (14.6) over all possible spatial wavevectors k. In the case of
one spatial dimension,

S+1D(ω) =

∞∫
−∞

T

ω2 + (2p+ k2)2
dk =

Tπ

ω
Im

[
(2p − iω)−1/2

]
, (14.9a)

S−1D(ω) =

∞∫
−∞

T

ω2 + k4
dk =

Tπ

21/2ω3/2
. (14.9b)

This results in a power spectrum of phase fluctuations (14.9b) of precisely
the form ω−3/2 over the entire frequency range. The spectrum of amplitude
fluctuations (14.9a) is more complicated: in the limit of large frequencies
|ω| 
 2p it is equal to the phase spectrum, i.e. S+1D(ω) = S−1D(ω). In the
limit of small frequencies |ω| � 2p, the amplitude power spectrum saturates
at

S+1D(ω ≈ 0) =
Tπ

2 (2p)3/2
, |ω| � 2p . (14.10)

In this way, (14.9a) represents a Lorentz-like spectrum (with an ω−3/2

frequency dependence) for the amplitude fluctuations of a system extended
in one-dimensional space.

Integration of (14.6) in two spatial dimensions yields

S+2D(ω) =
Tπ

2ω

(
π − 2 arctan

2p
ω

)
, S−2D(ω) =

Tπ221/2

2ω
. (14.11)

This results in a power spectrum of the phase fluctuations of the form 1/ω
over the entire frequency range, and in a Lorentz-like spectrum of the ampli-
tude fluctuations with an ω−1 frequency dependence.

Finally, integration of (14.6) in three spatial dimensions yields

S+3D(ω) =
2Tπ2

ω
Im

[
(2p+ iω)1/2

]
, S−3D(ω) =

Tπ221/2

ω1/2
. (14.12)
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This results in an exponent 1/2 of the Lorentz-like amplitude and phase
power spectra.

Generalizing, the power spectrum of phase fluctuations for a D-dimensional
systems (e.g. for a fractal-dimensional system) is of the form S−D(ω) ≈ ω−α

where α = 2−D/2. For the amplitude fluctuations, one obtains a Lorentz-like
power spectrum, saturating for low frequencies, and with an ω−α dependence
for high frequencies. The width of the Lorentz-like power spectrum of ampli-
tude fluctuations depends on the supercriticality parameter p: ω0 ≈ 2|p|.

14.1.2 Numerical Results

The spectral densities (14.8)–(14.12) calculated from the linearization were
compared with densities obtained directly by numerical integration of the
CGL equation (14.1) in one, two and three spatial dimensions. A CGL equa-
tion with real-valued coefficients b = c = 0 was numerically integrated with
a supercriticality parameter p = 1.

Temporal Power Spectra. The numerically calculated temporal power
spectra are plotted in Fig. 14.1. The 1/ωα character of the noise spectra is
most clearly seen in the case of a 1D system (here α = 3/2). In two dimensions
the 1/ωα noise (α = 1) is visible over almost three decades of frequency, and
in three dimensions (α = 1/2) over almost two decades. The dashed lines in
Fig. 14.1 indicate the expected slopes.

Fig. 14.1. Total temporal power spectra of the noise in one, two and three spatial
dimensions, as obtained by numerical integration of the CGL equation. The dashed
lines show the slopes α = 1/2, α = 1 and α = 3/2. The spectra are arbitrary
displaced vertically to distinguish between them. The integration period was t =
1000, and averaging was performed over 2500 realizations

The main obstacle to calculating the noise spectra numerically over the en-
tire frequency range is the discretization of the spatial coordinates and of the
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time in the integration scheme. Discretization of space imposes a truncation
of the higher spatial wavenumbers, and thus affects the high-frequency com-
ponents of the temporal spectra. Therefore, to obtain numerically the spectra
over the entire frequency range, a series of separate calculations for different
integration regions was performed, and the spectra in the corresponding fre-
quency ranges were combined into one plot. The calculations shown Fig. 14.2
were performed for the 2D case with four different sizes of integration regions
l = ln = 2π×102.5−n/2 (n = 1, 2, 3, 4). The spectrum constructed by combin-
ing partially overlapping pieces results in a 1/ω dependence extending over
more than five decades in frequency. A “kink” separating the low-frequency
range (where the amplitude fluctuations are negligible compared with the
phase fluctuations) and the high-frequency range (where the amplitude fluc-
tuations are equal to the phase fluctuations) is visible in the power spectrum
in Fig. 14.2a, and especially in the normalized power spectrum ωS(ω) in
Fig. 14.2b.

Fig. 14.2. Total temporal power spectra of noise in 2D, as obtained by numerical
integration of the CGL equation. The integration period was 107 temporal steps;
averaging was performed over 2500 realizations. The calculations were performed
with four different sizes of the integration region with different temporal steps

A multiscale numerical integration of the CGL equation in 1D and 3D
was also performed. This showed the 1/ω3/2 and 1/ω1/2 dependences, re-
spectively, over more than five decades of frequency (not shown).
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Spatial Power Spectra. Numerical discretization also distorts the spatial
spectra, since it restricts the range of spatial wavenumbers. Therefore we also
performed a series of calculations with different sizes of integration region,
and combined the calculated averaged spatial spectra into one plot. The
results shown in Fig. 14.3 (2D case) were calculated with five different sizes
of the integration region l = ln = 2π × 102.5−n/2 (n = 1, ..., 5). In this way
we obtained spectra by combining partially overlapping pieces, extending in
total over around four decades.

Figure 14.3a shows the spectra on a log− log scale, where a 1/k2 character
can be clearly seen, especially in the limits of long and short wavelengths.
A “kink” at intermediate values of k, most clearly seen in Fig. 14.3b, joins
spectra in the limits of long and short wavelengths which are both of the
same slope but of different intensities.

One more reason to construct the spectra by combining pieces calculated
separately is the finite size of the temporal step used in the split-step nu-
merical technique. In order to obtain the correct spatial spectra in the long-
wavelength limit, a time-consuming integration is required. The long waves

Fig. 14.3. Total spatial power spectra of noise in two spatial dimensions, as ob-
tained by numerical integration of the CGL equation. Averaging was performed over
the time of the temporal steps. Each point corresponds to the averaged intensity of
a discrete spatial mode. The calculations were performed with five different values
of the size of the integration region, with different temporal steps. These spectra
were combined into one plot. The dashed lines correspond to a 1/k2 dependence
and are to guide the eye
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are very slow, the characteristic buildup time being of the order of τb ≈ 1/k2,
as can be seen from (14.6) and (14.8), and this time diverges as k → 0. Thus
one has to average for a very long time to obtain the correct statistics for
the long waves. On the other hand, the characteristic buildup times for short
wavelengths are very small, since the same relation τb ≈ 1/k2 holds. Here,
correspondingly, in order to obtain the correct statistics of the mode occu-
pation, one has to decrease the size of the temporal step as k → ∞. We thus
come to the conclusion that one can never obtain the analytically predicted
(correct) 1/k2 statistical distribution in a single numerical run with finite
temporal steps (i.e. with a limited time resolution). A spectrum calculated
with a fixed temporal step is shown in Fig. 14.4. In a log− log representation
(Fig. 14.4a), a sharp decrease of the occupation of the large wavenumbers
occurs. In a representation of the logarithm of the spectral density versus k2

(Fig. 14.4b), a straight line indicating an exponential decrease is obtained
for large wavenumbers. The spectrum shown in Fig. 14.4, curiously enough,
is thus precisely a Bose–Einstein distribution, which decays with a power
law for long wavelengths, i.e. S(k → 0) ∝ k−2, and exponentially for short
wavelengths, i.e. S(k → ∞) ∝ exp(k−2).

Fig. 14.4. The total spatial spectrum as obtained by numerical integration of the
CGL equation in 1D for a fixed temporal step of ∆t = 0.05, but combined from
four calculations with different sizes of integration region. Averaging was performed
over a time t = 106. Plot (a) shows the spectrum in a log− log representation, and
the dashed line corresponds to a 1/k2 dependence, and (b) shows the spectrum in
a single-log representation and the dashed line corresponds to an exp

(−k2
)
depen-

dence

We note that the linear stability analysis does not lead to the Bose–
Einstein distribution found numerically with finite temporal steps. The finite
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temporal step ∆t is equivalent to a particular cutoff frequency ωmax of the
temporal spectrum, with ωmax = 2π/∆t. In order to account for this finite
temporal resolution, the integration of (14.9) should be performed not over all
frequencies, but over [0, ωmax]. This integration, however, leads to a power-law
decay for short wavenumbers, and not to the expected exponential decay. We
have no explanation for this discrepancy between the analytical and numerical
results.

We performed a series of numerical calculations in which the size of the
temporal step was varied, in order to interpolate the spectra over the total
range of spatial frequencies. The result can be represented as

S(k) =
TπC/ωmax

exp (k2C/ωmax)− 1
. (14.13)

Here C is a constant of order one. Equation (14.13) reproduces correctly
the numerically obtained spectra in both asymptotic limits of k → 0 and
k → ∞. For intermediate values of wavelength, a transition between a power
law and an exponential decay is predicted by (14.11), exactly as found in the
numerical calculations. In this way, the numerical results show that the spatial
spectrum of the CGL equation in the case of limited temporal resolution
coincides precisely with a Bose–Einstein distribution, whereas the spectrum
in the case of unlimited temporal resolution follows a power law.

14.1.3 Consequences

To conclude this section, we show analytically and numerically that the power
spectra of spatially extended systems with order–disorder transitions obey
power laws: the spatial noise spectra are of 1/k2 form, thus being Bose–
Einstein-like. The temporal noise spectra of the CGL equation are shown to
be of 1/ωα form, with the exponent α = 2 − D/2 depending explicitly only
on the dimension of the space D. Spatially extended systems with order–
disorder transitions are described by a CGL equation with stochastic forces
(14.1); this equation accounts for the symmetries of the phase space (Hopf
bifurcation) and the symmetries of the physical space (rotational and trans-
lational invariance).

All ordered states in nature are, presumably, one- to three-dimensional.
This corresponds to exponents of the 1/ωα noise satisfying 1/2 < α < 3/2,
according to our model, which corresponds well with the experimentally ob-
served exponents of 1/ωα noise (for reviews of 1/f noise, see [7]). The expo-
nent is found experimentally to lie in the range 0.6 < α < 1.4 [7], depending
on the particular system. Another prominent feature of 1/ω noise is that the
spectrum usually extends over many decades of frequency with constant α,
which also follows simply and naturally from our model.

The model presented here for 1/ω noise comprises the two most accepted
models for 1/ω noise. In [8], 1/ω noise is interpreted as a result of a superpo-
sition of Lorentzian spectra, requiring a somewhat unphysical assumption of
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a specific distribution of damping rates. In our model, the 1/ω spectrum also
results formally from a superposition of stochastic spatial modes (see (14.5)
and (14.6)). However, the distribution of the damping rates f(γ) (γ = k2

in our case) results naturally from the dimensionality of the space and is
universally valid.

There is also a relation to the model of self-organized criticality [9], in
that the phase variable in our model is always in a critical state, as (14.3b)
indicates. This analogy with self-organized criticality for the phase variable is
a consequence of the phase invariance in the Hopf bifurcation. Consequently,
one would expect that the noise power spectra of models of self-organized
criticality would show the same dependence on the spatial dimension, α =
2 − D/2, as found here. To our knowledge, no detailed investigations of the
dependence of α on the dimension of the space have been performed for
self-organized criticality.

The above dependence of α on the dimension of the space leads to general
conclusions concerning the stability of the ordered state of the system. The
integral of the 1/ωα power spectrum always diverges in the limit of either
large or small frequency, indicating a breakup of the ordered state in the
limit of small or of large times, respectively. For example, in the case of a
low-dimensional system with D < 2, α > 1, the integral of the temporal
power spectrum diverges at low frequencies, which means that the average
size of the fluctuations of the order parameter grows to infinity for large
times. The average size of a fluctuation is

〈
|a(t)|2

〉
≈

∫ ∞

ωmin

S(ω)dω , (14.14)

where ωmin = 2π/t is the lower cutoff boundary of the temporal spectrum;
thus this average size grows as

〈
|a(t)|2

〉
∝ tα−1 (14.15)

with increasing time. This generalizes the Wiener stochastic diffusion process,

〈
|a(t)|2

〉
∝ t , (14.16)

well known for zero-dimensional systems, and predicts that diffusion in spa-
tially extended systems is weaker than in zero-dimensional systems. For ex-
ample, the fluctuations of the order parameter in a 1D system (α = 1.5)
should diffuse as〈

|a(t)|2
〉
∝ t1/2 . (14.17)

This also means that for large times, the fluctuations of the order param-
eter become, on average, of the order of magnitude of the order parameter
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itself. Defects must then appear in the ordered state, even for a small tem-
perature.

For high-dimensional systems with D > 2, α < 1, in contrast, the integral
over the temporal power spectrum diverges at large frequencies. It may be
expected that large fluctuations of the order parameter occur at small times,
given by

〈
|a(t)|2

〉
≈

∫ ωmax

0

S(ω)dω , (14.18)

where ωmax = 2π/t is the upper cutoff boundary of the temporal spectra.
This results in the diffusion law

〈
|a(t)|2

〉
∝ 1

t1−α
(14.19)

for α < 1, which diverges for small times. The fluctuations of the order
parameter in a 3D system (α = 0.5) should diverge as

〈
|a(t)|2

〉
= t−1/2 (14.20)

for small times. This means that a continuous creation and annihilation of
pairs of defects in the ordered state can be predicted for D > 2. These defects
are termed “virtual defects”, since they appear on a short timescale only and
do not have any dynamical significance.

The case D = 2 is marginal. The integral over the spectrum diverges
weakly (logarithmically) in the limits of both small and large frequencies.
A specific such low-frequency divergence in this kind of 2D patterns was
investigated in [10], and is termed the Kosterlitz–Thouless transition.

14.2 Noisy Stripes

An analysis of the stochastic dynamics of stripes may be performed by solving
a stochastic Swift–Hohenberg equation [4],

∂A

∂t
= pA − A3 − (

∆+∇2
)2

A+ Γ(r, t) , (14.21)

for the temporal evolution of the real-valued order parameter A(r, t), defined
in the D-dimensional space r. Again, p is the control parameter (the stripe
formation instability occurs at p = 0); ∆ is the detuning parameter, deter-
mining the resonant wavenumber of the stripe pattern given by k2

0 =
√
∆;

and Γ(r, t) is an additive noise, δ-correlated in space and time, and of tem-
perature T, defined as in (14.2).

Analytical results are obtained by solving the stochastic amplitude equa-
tion for the stripes,
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∂B

∂t
= pB − |B|2 B − (

2ik0∇+∇2
)2

B + Γ(r, t) , (14.22)

for the slowly varying complex-valued envelope B(r, t) of the stripe pat-
tern corresponding to the resonant wavevector k0. The amplitude equa-
tion (14.22) can be obtained directly from (14.21), by inserting A(r, t) =
[B(r, t) exp(ik0 · r)+c.c.]/√3, or directly from the microscopic equations of
various stripe-forming systems (e.g. [11]). Equation (14.22) can also be ob-
tained phenomenologically on the basis of symmetry considerations for arbi-
trary stripe patterns [5].

14.2.1 Spatio-Temporal Noise Spectra

We again assume that the system is sufficiently far above the stripe-forming
transition, and that p 
 T . The homogeneous component dominates in
(14.22) (and, correspondingly, one stripe component dominates in (14.21)),
and one can look for a solution of (14.22) in the form of a perturbed homo-
geneous state, B(r, t) = B0+ b(r, t). After linearization of (14.22) around B0

and diagonalization, we obtain the linear stochastic equations for the pertur-
bations of the amplitude, b+ = (b + b∗)/

√
2, and phase, b− = (b − b∗)/

√
2:

∂b+

∂t
= −2pb+ + L̂+(∇)b+ + Γ+(r, t) , (14.23a)

∂b−
∂t

= L̂−(∇)b− + Γ−(r, t) . (14.23b)

Here the nonlocality operators are given by

L̂±(k0,∇) = −p+ (2k0∇)2 −∇4 ∓
√

p2 − (
4k0∇3

)2
, (14.24)

and their spectra by

L̂±(k0, k) = −p − (2k0 dk)
2 − dk4 ∓

√
p2 − (4k3

0 dk)
2

, (14.25)

as obtained by the substitution∇ →i dk, where dk = k−k0 is the wavevector
of the perturbation mode in (14.22).

Asymptotic values of the the nonlocality operator L̂−(∇) for phase per-
turbations can be found in two opposite limits, namely the strong- and weak-
pump limits, where

L̂−(k0,∇) = (2k0∇)2 −∇4 for
∣∣4k0∇3

∣∣ � p , (14.26a)

L̂−(k0,∇) = − (
2ik0∇+∇2

)2
for

∣∣4k0∇3
∣∣ 
 p . (14.26b)

Equation (14.23a) is an equation for the amplitude fluctuations b+ cor-
responding to the modulation amplitude of the stripe pattern, while (14.23b)
is an equation for the phase fluctuations b− corresponding to parallel trans-
lation of the stripes. Equation (14.25) indicates that the phase fluctuations



218 14 Patterns and Noise

decay at a rate L̂−(k0, k) = −(2k0 dk)2−dk4 in the strong-pump limit, or
L̂−(k0, k) = −(2k0 dk+dk2) in the weak-pump limit. This means that the
long-wavelength phase perturbation modes decay asymptotically slowly, with
a decay rate approaching zero as dk → 0, which is a consequence of the phase
invariance of the system.

Next, we consider only the phase perturbations. These perturbations de-
termine the stochastic dynamics of the stripe pattern above the stripe forma-
tion threshold, i.e. for p > 0. More precisely, the amplitude fluctuations are
small compared with the phase fluctuations if

∣∣4k3
0 dk

∣∣ � p, as follows from
(14.26).

We calculate the spatio-temporal power spectra of the phase fluctuations
by rewriting (14.23b) in terms of the spatial and temporal Fourier compo-
nents,

b(r, t) =
∫

b−(k, ω)eiωt−ik·rdω dk , (14.27)

and

S(k, ω) = |b−(k, ω)|2 = |Γ−(k, ω)|2
ω2 + |L−(k0, k)|2

. (14.28)

Assuming δ-correlated noise in space and time, |Γ−(k, ω)|2 is simply pro-
portional to the temperature T of the random force.

The spatial power spectrum is obtained by integration of (14.28) over all
temporal frequencies:

S(k) =

∞∫
−∞

T

ω2 + |L−(k0, k)|2
dω =

Tπ

2 |L−(k0, k)| . (14.29)

This results in a divergence of the spatial spectrum as dk → 0 (and,
equivalently, in a divergence of the spatial spectrum of a roll pattern ob-
tained from (14.21) as k → k0). As follows from (14.29), perturbations of
the stripe pattern dk diverge differently, depending on whether the pertur-
bations are parallel or perpendicular to the wavevector of the stripe pattern
k0. This follows from the isotropic form of the nonlocality operator (14.25).
The parallel perturbations (corresponding to compression and undulation of
the stripes) diverge as dk−2, while the perpendicular perturbations (corres-
ponding to a zigzagging of the stripes) diverge as dk−4. This results in an
anisotropic form of the singularity at dk = 0, which can actually be expected
from the anisotropic form of the amplitude equation for rolls (14.22). Figure
14.5 shows the spatial power spectrum of the noise of the stripe pattern as
obtained from a numerical integration of the SH equation (14.21) and illus-
trates the anisotropy. The anisotropy results in the fact that the stability
conditions of the stripes depend on the number of spatial dimensions. The
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ky

kx

Fig. 14.5. Spatial noise power spectrum of stripes in 2D obtained numerically by
solving the stochastic SH equation (14.1) with p = 1 and ∆ = 0.7. The averaging
time was tav = 5000. The intensity of the spatial spectral components is represented
logarithmically

integral of (14.29) over the spatial wavenumbers dk diverges for spatial di-
mensions D < 4, and converges for D ≥ 4 only. Only for four (or more)
dimensions of space are the stripes absolutely stable against additive noise.
This is in contrast to a well-known theorem concerning the stability of a “con-
densate”: a condensate (a homogeneous distribution) is known to be stable
for all spatial dimensions larger than two.

The temporal power spectra are obtained by integration of (14.28) over
all possible wavevectors dk:

S(ω) =

∞∫
−∞

T

ω2 + |L−(k0, k)|2
dk . (14.30)

However, this has no analytic form, even for one spatial dimension.
Asymptotically, in the limit of small frequencies ω → 0, when the term

(2k0 dk)2 dominates in the denominator of the integral (14.30), an analyt-
ical integration is possible, and leads to the following results. For 1D, the
spectrum is S1D(ω) = c1DTω−3/2, with a coefficient c1D = π/(2

√
2k2

0). For
2D, S2D(ω) = c2DTω−1.25; for 3D, S3D(ω) = c3DTω−1; and in the general
case of D dimensions, SD (ω) = cDTω−α, where α = 1 + (3 − D)/4 and the
coefficients cD is of order unity.

The integral (14.30) has been evaluated numerically, and the results for
one, two and three dimensions are given in Fig. 14.6; 1/ωα dependences
are obtained. In the small-frequency limit ω → 0, the exponents obey α =
1 + (3 − D)/4; in the large-frequency limit ω → ∞, the spectra also show
a power-law form, but with exponents α = 1 + (4 − D)/4. The exponents
change abruptly from the small-frequency value to the large-frequency value
at a critical frequency ωc ≈ 4k2

0, as follows from an analysis of (14.29), and
as seen from Fig. 14.6.
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Fig. 14.6. Temporal spectra obtained by numerical calculation of the integral
(14.9) with p = 1 and ∆ = 1. (a) 1D case. The phase power spectrum (obtained from
integration of (14.23b)), the amplitude power spectrum (obtained from integration
of (14.23a)) and the total spectrum are shown. (b) The phase power spectra as
calculated for one, two and three spatial dimensions

Comparing these results with the noise spectra of condensates (Sect. 14.1)
one can conclude that:

1. One-dimensional stripes have the same exponent of noise power spectra
as one-dimensional condensates. This is plausible, since the amplitude
equation for stripes is similar to a complex Ginzburg–Landau equation,
and the two equations coincide in the limit of dk → 0.

2. Two-dimensional stripes behave like noisy condensates of dimension
D = 1.5, if one judges from the exponents of the noise spectra in the
low-frequency limit. As discussed above (see also Fig. 14.5), the singu-
larity of the spatial noise spectrum is strongly squeezed in the direc-
tion along the stripes. It is then plausible that the noise characteristics
of this anisotropic system are between those of isotropic one- and two-
dimensional systems.
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3. Similarly, three-dimensional stripes (lamellae) behave like two-dimensional
condensates. Both display power spectra with α = 1.

14.2.2 Stochastic Drifts

Since the temporal power spectra for stripe patterns diverge as 1/ω3/2, the
stochastic drift of stripes should be subdiffusive, as follows from (14.15) and
(14.17). We tested this prediction about stochastic drift of the stripe pat-
tern by numerically solving the Swift–Hohenberg equation (14.21) in 1D. We
calculated the displacement of the stripe pattern as a function of time. The
displacement x(t) of the stripe position for the SH equation is directly pro-
portional to the phase of the order parameter B(x, t) at the corresponding
spatial location in the amplitude equation (14.22). Figure 14.7a shows the
power spectrum of the displacement, which follows an ω−3/2 law, in accor-
dance with the analytical predictions. Figure 14.7b shows the power spectrum
of the variation (the temporal derivative x(t) − x(t − ∆t)) of the displace-
ment, which follows an ω1/2 law. The average square displacement of the
stripe position x(t), averaged over many realizations, is shown in Fig. 14.7c.
The predicted slope of 1/2 is clearly seen for times up to t ≈ 1000. For very
large times, the usual (Brownian) stochastic drift is obtained. This behavior
for large times (corresponding to small frequencies) is, however, an artifact
of the numerical space discretization. A subdiffusive stochastic drift of kinks
(fronts) in 1D systems (for small times, however) was recently found in [12].

The above discussion of stochastic drifts concerns large times: the vari-
ance of the position of 1D stripes of the form t1/2 is related to the ω−3/2

power spectrum at small frequencies. The ω−1.75 spectrum at large frequen-
cies (ω ≥ ωc ≈ 4k2

0) predicts, equally, a t3/4 law for the stochastic drift at
small times. The results of numerical calculations in Fig. 14.7 do not, how-
ever, take account of small timescales (t ≤ 2π/ωc), and thus the small-time
drift law was not observed numerically.

The stochastic drift (although subdiffusive) of the order parameter means
that for large times the fluctuations become, on average, of the order of
magnitude of the order parameter itself. The long-range order eventually
breaks up even for a small temperature. In general, for a 1/ωα power spectrum
with α > 1, such finite perturbations occur for times t ≥ tc ∝ T−1/(α−1). We
tested this dependence on 1D stripes, where the critical time is tc ∝ T−2. For
this purpose, we prepared numerically an off-resonance stripe pattern using
the SH equation for 1D without a stochastic term. The off-resonance stripe
was stable (it was within the Eckhaus stability range). We then switched on
the stochastic term and waited until the fluctuations of the stripe pattern
grew and destroyed it locally. We observed that after the stripe pattern was
destroyed in some place, a resonant stripe appears there and invades the whole
pattern in the form of propagating switching waves. The state of the system
changes in this way from a local potential minimum (off-resonance stripe) to
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Fig. 14.7. Statistical properties of the position of a stripe pattern as obtained by
numerical integration of the SH equation in 1D with p = 1 and ∆ = 0.7. (a) The
power spectrum of the displacement x(t). The dashed line with a slope correspond-
ing to ω−3/2 serves to guide the eye. (b) The power spectrum of the variation of the
displacement x(t)− x(t−∆t). The dashed line with a slope corresponding to ω1/2

serves to guide the eye. (c) The average square displacement of the stripe position,
as averaged over 1000 realizations
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the global potential minimum (resonant stripe) as a result of triggering by a
local perturbation.

In Fig. 14.8, the numerically calculated lifetime of the off-resonance stripe
pattern is plotted as a function of the temperature of the stochastic force.
Again, as predicted by analytic calculations, the dependence tc ∝ T−2 is
obtained. This shows that in spatially extended systems, the switching from
a local potential minimum to a deeper global minimum does not depends
exponentially on time as in zero-dimensional (compact) systems, but obeys a
power law. In particular, for stripe patterns, the switching time is ts ∝ T−2

in 1D.

Fig. 14.8. Lifetime of an off-resonant stripe pattern as a function of the noise
temperature T , as obtained by numerical integration of the SH equation in 1D
with p = 1. A resonant stripe pattern with k2

0 = 1 was excited for ∆ = 1. The
detuning value was then reduced to 0.75, and the time was measured until the new
resonant stripe pattern took over. Every point was obtained by averaging over 10
realizations

14.2.3 Consequences

To conclude, we recall that simple models for stripe patterns (the stochas-
tic Swift–Hohenberg equation for the order parameter, and the stochastic
Newell–Whitehead–Segel equation for the envelope of the stripes) allow one
to calculate spatio-temporal noise power spectra, and to predict the following
properties of stripe patterns in the presence of noise:

1. An anisotropic form of the singularities in the spatial power spectrum.
2. Stability conditions that depend on the number of spatial dimensions.
3. A 1/ωα temporal power spectrum with an exponent that depends explic-

itly on the number of spatial dimensions.
4. Subdiffusive stochastic drift.
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5. A power-law temperature dependence of the lifetime of a locally stable
stripe pattern (corresponding to a local potential minimum).
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and M. Grant, Ordering dynamics in the two-dimensional stochastic Swift–
Hohenberg equation, Phys. Rev. Lett. 68, 3024 (1992). 205

2. R.J. Deissler, External noise and the origin and dynamics of structure in con-
vectively unstable systems, J. Stat. Phys. 54, 1459 (1989); J. Garćıa-Ojalvo, A.
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