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PREFACE

The three articles of the present volume pertain to very different subjects, all
of considerable current interest. The first reviews the fascinating history of the
search for nucleon substructure in the nucleus using the strength of Gamow–
Teller excitations. The second deals with deep inelastic lepton scattering as
a probe of the non-perturbative structure of the nucleon. The third describes
the present state of affairs for muon catalyzed fusion, an application of nuclear
physics which many new experiments have helped to elucidate. This volume
certainly illustrates the broad range of physics within our field.

The article on Nucleon Charge-Exchange Reactions at Intermediate Energy,
by Parker Alford and Brian Spicer, reviews recent data which has clarified one of 
the greatest puzzles of nuclear physics during the past two decades, namely, the 
“missing strength” in Gamow–Teller (GT) transitions. The nucleon-nucleon
interaction contains a GT component which has a low-lying giant resonance.
The integrated GT strength is subject to a GT sum rule. Early experiments
with (n,p) charge exchange reactions found only about half of the strength,
required by the sum rule, in the vicinity of the giant resonance. At the time,
new theoretical ideas suggested that the GT strength was especially sensitive
to renormalization from effects pertaining to nucleon substructure, particularly 
the delta excitation of the nucleon in the nucleus. Many conferences, in the
early 1980’s heralded the charge-exchange experiments as the “smoking gun”
for QCD effects in the nucleus at the low energies for which the shell model
had so successfully described everything for several generations. Others, more
cautious, maintained that the “missing strength” explanation could lie in the
domain of the nuclear shell model without specific reference to new QCD
effects. The present authors were pioneers in new techniques which provided 
much new data for both (p, n) and (n, p) charge exchange, first at TRIUMF and
then elsewhere, which solved the mystery. The present review summarizes the 
techniques and the wealth of new data for many areas ofphysics with the recent
advent of a full range of nucleon-nucleus charge exchange experiments. The 
review also shows how this data has demolished the “smoking gun.”

xi



xii Preface

Josef Speth and Tony Thomas have chosen to write a timely review of the
role of the pion cloud of the nucleon in deep inelastic lepton scattering. It is
a subject in which they have been world leaders for more than a decade and
which is of crucial importance in clarifying the spin and flavor structure of the
nucleon, a matter which now engages the interest of many nuclear and particle
physicists. They give a thorough description of the theoretical ideas and of the
various experiments which can be used to test them.

The subject of muon catalyzed fusion, reviewed in the third article by
Kanetada Nagamine and Masayasu Kamimura, should be part of the general
culture of every nuclear physicist, just like nucleosynthesis to which it is slightly
related. It is fifty years ago since the muon was identified as a “heavy electron”
a somewhat mischievous interloper in science whose role in nature was not
immediately clear. Almost immediately it was suggested that the muon, in its
short lifetime (several microseconds), might catalyze the fusion of the hydrogen
isotopes by “hiding” the charge of one of the isotopes, thus enabling the close
proximity required for fusion. It did not take long for the catalyzed fusions to
be observed or for the understanding that the production of useful energy by
this means required that each muon should catalyze a thousand or more fusions.
The early results came within an order of magnitude of this goal but also found
that being so tantalizingly close wasn’t good enough: nature played a cruel trick
in aborting the chain of catalyzed reactions, after about a hundred cycles, by
capture of the muon by the alpha particle emerging from the fusion. But such
“checkmates” in physics aren’t always absolute. Further the muon is always
a vehicle for exciting physics. Molecular resonance processes (very similar
to nuclear resonance processes) were found to enhance the fusions and even
the number of cycles. Very recent experiments at the Rutherford–Appleton
Laboratory by Nagamine, and theoretical work by Kamimura have given new 
insights into all of the physics of muon catalyzed fusion. The present review 
focuses on this new work and its physics, giving also the necessary historical 
background. Although the ultimate goal of useful energy production still 
remains elusive, muon catalyzed fusion is providing other applications and its 
new physics should give pleasure to all. 

J. W. NEGELE
E. W. VOGT
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1. INTRODUCTION

W. P. Alford and B. M. Spicer 

For many decades, the Gamow–Teller (GT) or spin-flip, isospin-flip inter-
action has been central to many important areas of nuclear physics research.
First identified as a component of the weak interaction in allowed beta-decay,
it plays a critical role in the initial step of the hydrogen fusion reaction lead-
ing to nucleosynthesis, and in the electron capture reactions leading to stellar 
collapse and supernova formation. It also gives rise to an important mode of
nuclear excitation, the Gamow–Teller giant resonance (GTGR). Over the past 
decade, a great deal of interest has focussed on the GTGR both as an example 
of a nuclear giant resonance, and as a possible indicator of new directions in
nuclear physics encompassing effects beyond the usual shell model of nuclear 
structure, and involving the substructure of the nucleons themselves. 

It has also long been recognized that the strong nucleon-nucleon interaction 
includes a GT component. This was demonstrated in low energy (p, n) reactions
over forty years ago, and the connection between allowed beta-decay rates and
(p , n) reaction cross sections was clearly recognised at that time. Interest in this
field was high, but until about fifteen years ago there was a very limited data base 
for comparison with the large body of theoretical speculation. This situation
changed dramatically with the demonstration at Michigan State University,
and soon after more convincingly at the Indiana University Cyclotron Facility
(IUCF), that the (p ,n) reaction at intermediate energies provided a quantitative
tool for the study of GT-transitions corresponding to b–-decay, usually referred
to as GT– transitions.

Comparable studies of (n,p) reactions corresponding to b+ decay soon 
became feasible with the development of new experimental facilities first at
TRIUMF and then at LAMPF and Uppsala. Thus it became possible to carry
out systematic studies of both GT– and GT+ giant resonances and to investigate 
fully the implications of the very powerful GT sum rule.

This review describes the field of intermediate energy charge-exchange
reactions at a time when a large body of experimental data has been accumulated 
and is available for comparison with theoretical models. It has also been a time 
of excitement in the field of nuclear physics, with the GTGR providing an 
important testing ground for new ideas about the importance of sub-nucleon
degrees of freedom in nuclear structure. The presentation here reflects an 
experimentalist’s viewpoint; an excellent review of the field from a theoretical 
viewpoint has recently been given by Osterfeld [1]. The two reviews may be 
regarded as complementary. 

As an introduction, a historical review of the development of ideas pertain-
ing to the GTGR is given, appropriate to its central role in the development
of the whole field. We then describe the emergence of new techniques for the 
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study of charge-exchange reactions, particularly the technical advances which
have yielded the recent volume of new data. The present status of charge-
exchange studies is reviewed and assessed to provide a perspective which goes 
beyond the principal focus of the GTGR. In the (p, n) reaction the GTGR aris-
ing from the DL = 0, or monopole, response dominates the spectrum at small
momentum transfers, with higher multipoles observable at high excitation and
larger scattering angles. By contrast, in (n,p) reactions in the heavier nu-
clei, the Gamow–Teller transitions are substantially Pauli-blocked and the spin
dipole resonance dominates, with contributions from higher multipoles also 
identifiable.

To provide some insight into the problems and uncertainties in studying
these multipoles, a description of the multipole decomposition procedure used 
in the data analysis is presented. This is followed by a discussion of the 
information available regarding the spin-dipole and higher multipole strength 
excited in charge-exchange reactions. 

In conclusion, the nuclear spin-isospin response at large momentum transfer 
in the quasifree region of excitation is discussed. The study of this region 
may provide new insights into the problem of the nucleon-nucleon interaction
in nuclear matter. A summary then reviews important open questions and 
possibilities for further advances in this field.

3

2. EARLY RESULTS IN THE STUDY OF SPIN AND ISOSPIN
EXCITATIONS

The results to be described involve both the weak beta decay interaction
and the strong nuclear interaction. A brief discussion of some concepts from 
these two fields essential for our purposes is therefore included here. 

2.1. Beta Decay 

The process of allowed beta decay is known to take place by two different
modes, the Fermi (F) or Gamow–Teller (GT) modes. In the Fermi mode
the transition operator is OF = τ± , the isospin raising or lowering operator 
corresponding to beta decay by positron or electron emission. These transitions
occur between isobaric analogue states, the quantum numbers of which differ 
from one another only in the third component of isospin, Tz = (N – Z) /2. Thus
the selection rule for Fermi transitions is DJ = 0, Dp = no. The comparative 
half-life for such a transition is given by [2, 3]

ft 1- =
6135

seconds
2 BF



4 W. P. Alford and B. M. Spicer 

where the transition strength is defined by [4]

BF = (2.1)

Since initial and final wave functions are essentially identical in these
transitions, the comparative half-life is short and the transitions are said to be 
superallowed.

The second decay mode, the GT mode, involves the nuclear transition
operator OGT = where     is the usual Pauli spin operator. In this case 
selection rules are DJ = 0, ± 1 (no 0+ → 0+),∆π = no, and the transition 
strength is defined as 

BGT =

The comparative half life is then 

(2.2)

ft 1 =-2

where gV,gA are the vector and axial vector weak coupling constants. We finally 
note that for transitions between isobaric analogue states in odd-A nuclei, both
modes may contribute so that 

ft 1 =
2
_

A long-standing puzzle in beta decay studies was posed by the observation
that decay rates for GT transitions were generally one to two orders of magni-
tude slower than predicted with single-particle model wave functions. A great 
deal of progress in understanding this problem has come from nuclear reaction 
studies, and some essential ideas in the theory of nuclear reactions are now 
outlined.

2.2. Direct Nuclear Reactions 

The nucleon-nucleon interaction may be described in a variety of ways, 
but for present purposes its spin and isospin structures are emphasized. It is 
known to include central, spin-exchange, spin–orbit and tensor components 

(gA /gV)2BGT

6135
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both without and with an isospin-exchange character. Thus the interaction may 
be written as 

5

VNN =

(2.3)

Here and ST is the two-body tensor operator. 
In general, each of the V’s is a function of internucleon separation. In a nuclear
reaction involving a transition between two states, the differential cross section
is given in the non-relativistic theory by [5] 

dσ 
dΩ (2.4)

Tfi is the transition amplitude for the reaction, and the sum is taken over
magnetic substates. The transition amplitude is given by

Tfi =

where , are the momenta of the incoming and outgoing particles, φi , φf

are wave functions of initial and final nuclear states, and Veff ( pj) is some
effective interaction between the incoming projectile and target nucleons. The 
main focus of interest here will be on nucleon charge-exchange ((p,n), (n,p))
reactions at intermediate energies. At energies above about 100 MeV, the
impulse approximation [6, 7] is believed to be applicable, and Veff  is the free 
nucleon-nucleon interaction. With the restriction to charge-exchange reactions,
only the isospin dependent terms will be involved. As an aside it should be 
noted that in an actual calculation, the wave functions must be antisymmetrized
between projectile and target nucleons. This leads to knock-on exchange terms
in Tf i which make important contributions to the calculated cross section.

In order to describe the essential features of the calculated reaction cross 
section, it is convenient to consider an effective interaction which depends 
only on the distance between the interacting particles, veff = v (rij). This is 
not a limitation on the validity of the results, but simplifies the notation in the
discussion below. 

The transition amplitude which is written above in ordinary space can be 
Fourier transformed and written in terms of the momentum transfer in the 
reaction = – In space the transition amplitude then can be written 
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In this expression
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is the projectile distortion function. In a distorted wave theory D is evalu-
ated numerically as part of a standard computer code such as DW81 [8]. In
the absence of distorting potentials the theory reduces to a plane wave Born 
approximation and D = 1. The function

ρif ( ) =

is the nuclear transition density and carries the information about the nuclear
states involved.    Since it is usual to consider transitions between states of 
definite spin and parity, it is convenient to represent r in terms of a multipole
expansion. For a given transition φi → φf only a limited number of terms can 
contribute, and usually only the lowest allowed multipole need be considered.
The specific form of these multipoles will be discussed in the context of their
application in later sections.

2.3.   Early Investigations of Charge-Exchange (Isovector) 
Interactions

A possible connection between nuclear beta decay rates and (p , n) reactions
was noted at least as early as 1957 [9], but the first paper to really investigate the
potential of charge-exchange reactions for studies of the effective interaction
in nuclei was that of Bloom, Glendenning and Mozkowski [ 10] entitled “The
proto–neutron interaction and the (p , n) reaction in mirror nuclei.” In it they
assumed that the effective interaction could be expressed as an isoscalar and
an isovector part v = va + vb

–. In a (p, n) reaction between isobaric analogue
states such as I3C(p, n)13N, the transition amplitude would be dominated by
Vb because of the complete overlap of initial and final wave functions. The
other part of the interaction va could contribute through knock-on exchange,
but this would lead to poor overlap of the wave functions and the contribution
would be small. Thus the (p, n) reaction would single out the isovector part
of the effective interaction. A subsequent study [11] of the 13C(p,n) 13Ngs and
15N(p,n)15Ogs reaction was carried out at energies between 6.5 and 13.6 MeV.
The interpretation of the results was complicated by the low beam energy used,
and no estimate ofthe magnitudes ofthe interaction strengths could be obtained.
It was concluded however that both the spin singlet (V ≡ VF) and spin-triplet
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Fig. 2.1. Time of flight spectra from proton bombardment of 51V and 89Y at 14.8 MeV,
showing the strong excitation of the isobaric analog of the 51V ground state. Reprinted from
[12] with permission. 

(Vσ ≡ VGT) parts of the isovector interaction were contributing to the reaction, 
and that the relative strength of the two contributions was VGT / VF ~ 0.4. 

Shortly before this study appeared, measurements of (p, n) cross sections 
on heavier nuclei [12] at 14.8 MeV, showed a very strong transition to what
appeared to be a single final state as shown in Fig. 2.1, This state was identified 
as the isobaric analogue of the target ground state, and led to the recognition 
of the fact that isospin was a useful quantum number even in nuclei in which 
Coulomb effects are large [13].

In the first of several papers which became the basis for much of the 
later development of ideas relating to charge-exchange reactions, the strong 
excitation of the isobaric analogue state (IAS) was recognized by Ikeda et
al. [14] as a manifestation of a giant resonance, in this case excited by the
isospin operator T – = which is responsible both for Fermi transitions
in beta decay, and for a part of the transition amplitude in (p,n) reactions.
This insight then led Ikeda et al. [ 15] to suggest that a giant resonance should 
also exist, associated with the isovector spin-flip operator, which
mediates the GT component of beta decay. The observed weakness of allowed 
GT beta transitions was ascribed to the fact that most of the strength of the 
giant resonance was located at excitation energies which were inaccessible
to beta decay, They further suggested that this GT giant resonance should
also be excited in the (p,n) reaction and that the ratio of cross sections for
the excitation of the GT and F giant resonances should be proportional to the
ratio of the squares ofthe appropriate interaction strengths, Vσ and V , in the
isovector effective interaction. 
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During the following decade a number of studies investigated the properties
of the isovector effective interaction utilizing the correspondence between beta-
decay matrix elements and those for the (p, n) reaction cross section [ 16, 17,
18, 19, 20, 21]. It was recognized that the momentum transfer in beta decay
was small, so that the transition amplitude for the (p,n) reaction should also
be evaluated for q 0, i.e., near scattering angle θ = 0. In the limit q = 0 it is
expected that the spin–orbit and tensor components of the effective interaction
can be neglected. For states connected by allowed beta decay, the angular
momentum transfer is at most one unit, with no parity change, so that the 
lowest term in the multipole expansion of the nuclear transition density will 
be the monopole with ∆L = 0. Thus for the (p,n) reaction cross section near
θ = 0o, the connection with beta decay can be expressed as [22]

dσ 
dΩ (q ~ 0] = (2.6)

Here N and Nσ are distortion factors, v (0) and vσ (0) are integrals of the 
effective interaction at q = 0 over the nuclear volume, while BF and BGT are
the appropriate beta transition strengths, evaluated from observed ft values.1_

2
The relation above seems to have first been written explicitly in [21], but

the ideas behind it were assumed, if not explicitly stated, in all the prior studies
of interest here. In these, the most clear-cut conclusions were obtained from
studies of the (p,n) reaction on the J π = 0+, T = 1 targets 14C [17] and 18O
[16]. In both cases the reaction populated final states with Jπ = 0+ via the 
V component of the interaction and states with J π = 1+ via Vσ    and reaction 
calculations using very simple shell model wave functions yielded estimates of
the interaction strengths. Initial analyses of the data assumed only monopole 
(∆L = 0) contributions to the reaction and only Fermi and GT contributions to
the effective interaction. However, in the 14C(p,n) reaction, the transition to
the ground state of 14N was found to be much stronger than predicted from the
strength of the corresponding beta decay and this indicated the importance of
the tensor part of the effective interaction. Also, for the 18O target, transitions
were observed leading to known states with Jπ = 2+, indicating contributions
from multipole components of the interaction with ∆L = 2.

Most of the above studies were carried out at energies below about 15 MeV,
where the assumed direct reaction mechanism was complicated by compound
nucleus effects although some measurements of the 6,7Li(p,n) reaction [19]
extended to energies of about 50 MeV. These showed that the strength of the 
Fermi interaction decreased by a factor of about 2 over the energy range from 
10 to 50 MeV, while the GT interaction strength was nearly constant over the 
same range. Thus by about 1975, some important characteristics of both the 
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Fermi and GT parts of the effective interaction had been extensively studied 
for projectile energies below about 50 MeV [23], and the stage had been set for
the much more definitive results which would be obtained using intermediate 
energy facilities which were just about to come into operation. 

2.4.    Giant Resonances and Sum Rules 

9

A giant resonance can be described as a state which can be represented by (a)
a collective model wave function, involving many nucleons, or alternatively, (b) 
a wave function which represents a superposition of single particle excitations. 
In either case, the excitation occurs via an appropriate transition operator. 
Probably the best known example of such an excitation is the electric dipole 
giant resonance which had been extensively studied since its discovery in 1948
[24]. In general, the giant resonance state is an eigenstate of an appropriate 
model nuclear Hamiltonian, not the true Hamiltonian. The residual interaction, 
which is the difference between true and model Hamiltonian then spreads the 
giant resonance over many states in the final nucleus. The transition probability 
to a single final state will depend on the properties of that state, as well as the 
target ground state, and any calculation of transition probability requires some 
model wave function for both states. In contrast to this situation, the total
transition probability to all components of the giant resonance will depend 
only on the properties of the target ground state, and the specific transition 
operator involved, without reference to the details of the final states. Sum rules 
are relations involving the total transition probability, or alternatively the total 
strength excited by a transition operator. Specific examples will be discussed 
shortly.

Since the early work of Anderson and Wong [25], and its interpretation 
by Ikeda et al. [14], the large (p,n) cross section for excitation of the iso-
baric analogue of the target ground state had been recognized as the signature 
of a giant resonance, in this case arising from the isospin-lowering operator
T– = This excitation, which we will refer to as the Fermi giant res-
onance, has a very special property. Since isospin is a conserved quantum 
number, at least in light nuclei, the Fermi giant resonance is in fact an eigen-
state of the nuclear Hamiltonian, so that the full transition strength appears in
a single state, the isobaric analog state. In this case the sum rule for the total
strength is just = SF = N– Z where the summation is a formality since
the full strength SF is carried in a single transition. This result was first derived
by Ikeda [26], although it was at that time expressed in somewhat different 
form, in terms of the (p, n) reaction cross section.

In contrast to this, in predicting the GT giant resonance, Ikeda et al. [15],
noted its spreading over many final states. The sum rule for this GR was also 
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given by [26], at least for heavy nuclei in which valence protons and neutrons
occupied different major shells. In this case, only b- transitions are allowed
and the sum rule is written

(2.7)

The more general form of the sum rule, applicable when both b- and b+
transitions are allowed is

= 3(N -Z) (2.8)

where the superscripts ± refer to b+ and b- decay respectively. This result
assumes only that the nucleus is comprised of neutrons and protons and conse-
quently is usually described as being model-independent. A detailed derivation
of the sum rule is given in [27].

In the decade following the discovery of the Fermi giant resonance many
investigations of it were reported, but the GT giant resonance was not observed.
However, in a study of the (p,n) reaction on targets of 48Ca, 90Zr, I20Sn and
208Pb at 25, 35 and 45 MeV at Michigan State University, Doering et al. [28],
observed a broad bump in the 0o reaction cross section for excitation energies a
few MeV above the known isobaric analogue resonance as shown in Fig. 2.2a.
The bump was not seen at 25 MeV, but was prominent at 45 MeV. For 90Zr the
excitation energy of the centroid of the bump was close to that expected for
a particle–hole state with configuration (πg7/2) (vg9/2) –1, while the angular
distribution of the cross section for the bump was similar to that for transitions
to known 1+ states at lower excitation arising from the (πg9/2) (vg9/2) –1

configuration. Finally, the magnitude of the cross section was comparable to
that predicted by DWIA calculations for a transition to the (πg7/2) (πg9/2) –1

configuration. Thus it was concluded that the observed transition did indeed
correspond to the GT giant resonance which had been predicted more than a
decade earlier. 

The identification of the GT giant resonance showed that it was more 
strongly excited relative to the rest of the (p,n) spectrum as the beam energy
was increased from 35 MeV to 45 MeV, and it was suggested [30, 31, 32] that 
spin-flip transitions would dominate the (p, n) spectrum at beam energies greater
than 65 MeV. This suggestion was also supported by early results at 120 MeV 
[33], and the full confirmation of  this prediction was soon provided by extensive 
studies ofthe (p, n) reaction at the Indiana University Cyclotron Facility (IUCF).
The IUCF time-of flight neutron spectrometer came into operation about 1978 
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Fig. 2.2. (a) Differential cross section for the 90Zr (p,n) reaction versus neutron energy, at 45 
MeV and 0o. The broad structure (6 MeV < Ex < 12 MeV) is the Gamow–Teller giant resonance. 
Reprinted from [28] with permission. (b) Time of flight spectra for the 90Zr (p,n) reaction, at 
120 MeV and 0, 5, and 10o laboratory angles. The peak marked ‘e’ is the Gamow–Teller giant 
resonance, and ‘d’ is the isobaric analog state. Peaks ‘b,’ ‘c,’ ‘f’ show ∆L = 0 angular distribution; 
peak ‘g,’ ∆L = 1. Reprinted from [29] with permission. 
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and provided the capability to measure neutron spectra from (p,n) reactions
with an energy resolution ≤ 1 MeV for incident proton energies 60 MeV 
≤ Ep ≤ 200 MeV. The system is described in more detail in the next section. 

In initial (p,n) studies at IUCF [34], the most striking observation was the
strong excitation of known ∆S = 1 transitions in forward angle spectra, and
it was observed that the spectra were very similar to what would be expected
for a reaction driven by a one-pion exchange potential [35, 36]. The cross
section for excitation of ∆S = 0 transitions was found to decrease steadily
relative to DS = 1 transitions as incident energy increased up to 200 MeV. At
that energy, the zero-degree spectrum at low excitation energies resulted almost 
entirely from a single component, Vστ, of the effective interaction. Provided 
that energy resolution was good enough to observe transitions to discrete final
states, the reaction provided the opportunity to study the properties of(almost)
isolated components ofthe effective interaction.

On light targets (A ≤ 20) the (p,n) reaction excited mainly discrete shell-
model states. For most heavier targets, a broad peak was observed at an
excitation energy a few MeV above the isobaric analogue state. The cross 
section forthis peak showed an angulardistributioncharacteristic ofa transition
with ∆L = 0, and was identified as the GTGR. In particular, a detailed study
of the 90Zr(p,n) reaction at 120 MeV at IUCF [29] showed that the bump
identified as the GTGR in the MSU experiments at 45 MeV was the dominant
feature ofthe zero degree spectrum. The resulting 0o spectrum at 120 MeV is
shown in Fig. 2.2b. In addition, at an angle of about 4o, a second broad peak 
was observed, at an energy several MeV above the GTGR. This peak showed
an angular distribution characteristic of ∆L = 1 and was identified as a dipole 
giant resonance. 

A second important result of the initial IUCF measurements was the con-
firmation of the expected proportionality between zero degree cross section 
and beta-decay transition strength as noted in Eq. (2.6). At a beam energy of
120 MeV, (p,n) cross sections were measured at 0o for transitions of known 
beta decay strength on targets of 7Li, 12,13C, 25,26Mg 27Al, 28Si and 90Zr. Dis-
tortion factors were estimated as N = [(dσ/dΩ)DW / (dσ/dΩ)PW]θ=0o where
DW and PW indicate reaction cross sections calculated in a distorted wave,
and plane wave impulse approximation. The results [22] showed the predicted
proportionality, with a value      v σ  T  (0)2

pared with the value of 122 MeV-fm3 expected for a pure one-pion exchange
potential. The observed proportionality indicated that the reaction model was
valid at energies above about 100 MeV and that measured (p,n) cross sections
could be used to estimate beta decay strengths for transitions that were not
energetically accessible to normal beta decay. 

168 MeV-fm3. This may be com-
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Given the relationship between beta decay strength and (p, n) cross section
at small momentum transfer, the IUCF results provided a measurement of the 
total GT strength arising from the target ground state. However, when this was 
compared with the lower limit of 3 (N – Z) required by the GT sum rule, it
was found that only about half the predicted strength could be identified in the
spectrum below about 30 MeV excitation energy. The search for the missing 
strength became the focus of a great deal of research over the next decade as 
discussed in Section 5.2. 

Except for the demonstration of missing GT strength, the IUCF results had
been foreshadowed by many studies over the previous two decades. How-
ever, the new results provided a much clearer demonstration of the connection
between beta decay and the (p, n) charge-exchange reaction. They generated
widespread interest in the study of GT transitions, and stimulated a great deal of 
further work in the field, both experimental and theoretical, over the following 
decade.

3.    EXPERIMENTAL FACILITIES 

The quantitative study of isovector spin-flip excitations at intermediate en-
ergies was made possible by the development of new experimental facilities. 
The IUCF neutron time-of-flight spectrometer was the first of these and it 
opened up this field by demonstrating the strong excitation of spin-flip transi-
tions at energies above ~ 100 MeV. This stimulated the construction of other
facilities for both (p,n) and (n, p) studies. In this section, a brief description of
the most important new facilities is given. 

3.1.    (p,n) Reactions 

3.1.1.    Neutron Time-of-Flight Spectroscopy 

The commonest method for measuring neutron energy involves the mea-
surement of neutron velocity, by measuring flight time over a known distance 
from source to detector. The start time is determined by using a pulsed proton 
beam to produce the neutrons. The arrival time is signalled by the occurrence
of a nuclear reaction in the detector (usually the 1H(n,p) or 12C(n,x) reaction) 
which produces a charged reaction product. 

The fractional uncertainty in the measured energy E is proportional to ∆ /L
where ∆τ is the uncertainty in measurement of flight time and L the length of
the flight path. The timing uncertainty is determined by characteristics of the 
beam pulsing system and the detector and is typically less than a nanosecond. 
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TABLE 3.1 
Flight Path Required for ∆E = 

0.5 MeV (∆τ= 0.5 ns)

E(MeV) 100 200 300 500
L(m) 30 91 178 440

For a given neutron energy and value of ∆ the flight path required to achieve
a specified energy resolution is then readily calculated. For a typical value of 
∆ = 0.5 ns the flight path required for an energy resolution ∆E = 0.5 MeV
is shown as a function ofneutron energy in Table 3.1. Such long flight paths
imply the need for large detectors in order to obtain reasonable solid angle.

The detectors also need to be as thick as possible, consistent with the
required time resolution, in order to maximize the detection efficiency. To
measure angular distributions of reaction cross sections the direction of the
beam on the target is rotated, rather than moving the bulky, massive detectors.
Most of the measurements of (p,n) cross sections at energies above 100 MeV
have been carried out with such facilities using either the IUCF or the LAMPF
time-of-flight spectrometers. 

With the IUCF system [37] proton beams are available in the energy range
60–200 MeV. The direction of the beam on target is rotated by a beam swinger 
consisting ofthree magnets as shown in Fig. 3.1. The first, located on the beam
line bends the incident beam to one side, where the second magnet bends it
back to intersect the original beam line at the target position but at a finite angle
of incidence. Bend angles up to 27o are available. Behind the target, a third
magnet bends the beam into a shielded beam dump, thus allowing (p,n) cross
section measurements at an angle of 0o.

The detectors [39, 40] consist of bars of plastic scintillator, approximately 
10 cm × 10 cm ×  1 m in size, viewed by photomultipliers at each end of the 
long dimension. With the bars oriented with the long axis normal to the beam
direction, mean timing is used to determine time of flight. To improve timing 
resolution, and hence energy resolution, the long axis may be oriented parallel
to the flight path, and flight time inferred from the time difference between the
two photomultipliers. The overall timing resolution of the system is 0.5 nsec. A 
second system using liquid scintillators has been constructed, with comparable 
properties [41]. 

Two flight paths are available. One at 0o to the incident beam may be
varied between 45 m and 90 m in length. The second, at an angle of 24o is
45 m long. Thus angular distributions may be measured out to about 50o. The 
overall energy resolution ranges from about 300 keV near 100 MeV incident
energy to about 1 MeV near 200 MeV. 
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Fig. 3.1. Beam swinger system (schematic) as used at IUCF. The first magnet deflects the beam
to one side, and the second bends it in the opposite direction to strike the target at a variable angle. 
The third magnet then deflects the beam into a shielded dump in order to permit cross section
measurements at 0o. Reprinted from [38] with permission.

This system can also be used with a second detector plane behind the first
in order to measure polarization of the emitted neutrons [42]. Thus with an 
incident polarized beam, the system can measure the spin transfer coefficient
Dnn in the (    ) reaction.

The LAMPF system [43] was similar to that at IUCF, but permitted mea-
surements at energies up to 800 MeV with a flight path up to 600 m. More
details are given in [44]. Although this system provided some interesting re-
sults [45, 46] it has now been decommissioned and the detectors are being used 
at IUCF. 

3.1.2.    Proton Recoil Spectroscopy 

Neutron energy may be determined from a measurement of the energy of 
the recoil protons produced in the 1H(n, p) reaction at 0o, and a system using 
this approach was commissioned at TRIUMF in 1985, utilizing the existing
medium resolution spectrometer (MRS) to detect the recoil protons.

A diagram ofthe TRIUMF system is shown in Fig. 3.2. The incidentproton
beam initiates the (p,n) reaction in a targetmounted over the pivot ofthe MRS.
After passing through the target the proton beam is deflected by about 20o

into a shielded beam dump, so that cross section measurements can be made 
at 0o reaction angle. In the original system, the recoil protons are produced
in a plastic scintillator 2 cm × 6 cm in area and 2 cm thick which is mounted 
on the MRS carriage about 90 cm from the primary target. The protons are
then detected and their energy measured with the MRS. The measured energy 
is corrected for energy loss in the scintillator (up to 10 MeV) using a signal
from the scintillator, With this system, energy resolution ranges from about 
0.8 MeV at 200 MeV to 1 MeV at 450 MeV. 
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Fig. 3.2. (a) The TRIUMF CHARGEX arrangement, set up for the study of (p,n) reactions.
The (p, n) target is located over the axis of the MRS. (b) The CHARGEX arrangement, set up for
the study of (n,p) reactions. In this case, the (n,p) reaction target is placed over the axis of the
MRS, and the 7Li neutrom–production target is 90 cm upstream from it. 

The TRIUMF system adapted easily for the study of (n,p) reactions also,
as described in the following section, and represented a major advance in the 
study of nucleon charge-exchange reactions. A more detailed description of 
the system has been given by Helmer [47]. 

3.2. (n,p) Reactions

Spectrometers for (n,p) studies require two basic components, the incident
neutron beam, followed by the proton detector. The first system to provide 
usefulresults forthe (n,p) reaction at intermediateenergieswas thatof Measday
and Palmieri [48, 49]. The source of neutrons was the d(p,n) reaction at
160 MeV and the proton detector was a plastic scintillator telescope plus a
sodium iodide detector. In spite of the rather poor energy resolution (~ 6 MeV) 
the authors were able to identify the excitation ofgiant resonances in nuclei. In
most current intermediate energy spectrometers the neutron beam is produced 
in the 7Li(p,n)7Be reaction at 0o. This reaction has the advantage of a large
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reaction cross section, about 35 mb/sr (lab) at 0o, but the disadvantage that the
neutron spectrum includes two peaks of comparable intensity resulting from
transitions to the ground state of 7Be, and to an excited state at 0.43 MeV.
This could result in a significant contribution to the energy resolution of the
spectrometer, though it is not the dominant one in any existing system. The 
spectrum also exhibits a weak continuum extending to high excitation energies,
which adds some complication to data analysis. The proton detection systems 
generally employ a combination of magnetic deflection, plus ray-tracing with 
suitable drift chambers to identify protons from the target and measure their 
energy. More detail on existing systems is as follows: 

3.2.1.    University of California at Davis 
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This facility, operating at 60 MeV, is at the lower end of the energy range
of interest. It deserves note however as the first system in this energy range to
produce useful measurements of (n,p) cross sections [50].

The incident neutron beam is collimated to 1.8 cm ×3.6 cm and provides 
a flux of 106 n/sec on target. The target is mounted in a magnetic field and
the trajectories of reaction protons are determined by two multi-wire chambers
which permit measurements to be made over the angular range 0o–48o. Overall 
energy resolution is about 1 MeV. 

3.2.2.   TRIUMF 

The TRIUMF spectrometer is essentially the same as is used for (p,n)
measurements [47] except that the 7Li neutron production target is mounted
about 90 cm upstream from the MRS pivot, and the recoil scintillator is replaced
by the (n,p) target mounted over the pivot. An important feature of this system
(Fig, 3.2b) is a segmented target box which allows a large target thickness while
maintaining good energy resolution [51]. In this target box, up to six separate 
targets are mounted between wire chambers which identify the origin of each 
reaction proton, and permit correction to be made for energy loss in subsequent 
layers of the target stack. Neutron flux is 106 n/sec on targets of area 2 cm
×5 cm. The overall energy resolution of the system, 0.8 MeV at 200 MeV
incident energy, made it possible for the first time to obtain (n,p) data over a
wide range of intermediate energies, comparable in quality to the (p,n) data
from neutron time-of-flight spectrometer systems. 

The continuum in the neutron source spectrum gives rise to a background
which must be subtracted using a deconvolution procedure [52]. This presents 
no difficulties at low excitation energy, but limits the maximum useable range



18 W. P. Alford and B. M. Spicer 

to an excitation energy of about 50 MeV. This is not a serious constraint on the
usefulness of the system for a wide range of charge-exchange studies.

3.2.3.   Los Alamos 

The WNR facility produces an intense neutron source with a continuous
energy distribution by bombarding a thick tungsten target with 800 MeV pro-
tons. In the (n,p) system, neutrons from this source are collimated and their
energy determined by time of flight over a 90 m flight path. The (n,p) target
is mounted at the end of this flight path, and reaction protons detected in a
system shown in Fig. 3.3. The system permits measurements to be carried
out over a range of incident energies (70–240 MeV) in a single measurement,
and has been useful in studying the excitation ofisovector giant resonances as
a function of incident energy [53, 54]. Its most serious drawback is that the
neutron flux per unit energy range is low. The system is described in [53].

3.2.4.   Uppsala 

This system, whichpermits (n,p) studies inthe energyrange 100-200MeV,
is basically similar to that at Los Alamos. Neutron flux is 106/sec on a 7 cm 
diameter target. Overall energy resolution is 2 MeV at 100 MeV incident
energy. The system is described in more detail in [55].

3.3.    Other Reactions 

Because of the experimental problems in (p,n) and (n,p) measurements,
there has been considerable interest in the use of other reactions with more
massive projectiles which permit the study of charge-exchange transitions with 
charged particles in both entrance and exit channels. Although these other 
reactions are not the principal focus of this review, it is useful to discuss their 
characteristics, and note the facilities available for theiruse.

3.3. 1. (3He,t)

This reaction was used in early searches for the GTGR [56, 57, 58]. The
beam energies were rather low however, (< 100 MeV) and the GTGR was not
very strongly excited. In addition it was shown [58] that two-step contributions 
to the reaction were important at low energy, and that transition amplitudes 
with ∆L = 2 were significant. 

Following the IUCF results, the (3He, t) reaction was investigated athigher
energies using beams of 600 MeV, 1.2 GeV and 2 GeV from Saturne [59] 



Fig. 3.3. Target and detector system used at the LAMPF (n,p) spectrometer. The targets are mounted between wire chambers
as with the TRIUMF target system [51]. DC1-DC4 are drifi chambers to permit ray tracing for the reaction protons. DE is a thin
timing scintillator and E is a calorimeter of CsI crystals. Similar systems are used in the Davis and Uppsala (n,p) spectrometers.
Reprinted from [54] with permission. 
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and targets of 13C, 54Fe and 89Y. The reaction tritons were detected in a large
magnetic spectrograph, SPES4 [60] with a momentum resolution ∆p/p = 5 ×
10–4. At 600 MeV it was found that the triton spectra at 0o were similar to 
neutron spectra from the (p, n) reaction at 200 MeV, and that the        part of the 
effective interaction was dominant. Results with the 13C target at 600 MeV
also provided an estimate of the ratio of spin-flip to non-spin-flip effective
interactions which was consistent with that obtained from (p,n) measurements
at 200 MeV. More detailed studies were reported for 12,13C(3He, t) at energies 
between 600 MeV and 2.3 GeV, which concluded that this is a single step
direct reaction which is well described by DWIA calculations [61]. Thus it
appeared that the (3He, t) and (p, n) reactions would provide comparable probes 
of spin-isospin excitations for the same value of Ein /A .

Most recently, a new facility has been commissioned at RCNP [62] which
permits studies at an energy of 450 MeV with a high resolution magnetic 
spectrometer for detection of the reaction tritons. Initial results have been 
reported for a number of targets ranging from 9Be to 154Sm, which again
demonstrate the strong excitation ofGT transitions [63]. In addition, the good
energy resolution in these measurements (210 keV) has revealed fine structure
in the GTGR ofmedium mass nuclei such as 58Ni, which permits interesting
comparisons with the M1 strength distributions observed in high resolution
(e,e') measurements [64].

The (3He, t) reaction is more complex than (p,n) in that the structure ofthe
3He and triton must be considered. This does not present a serious problem in
principle, butdoes addsomeuncertainty forthe detailedanalysis ofthe reaction.
Another difference between the reactions arises because the heavier particles 
are more strongly absorbed than the proton and neutron, so that (3He, t) can
be considered a surface reaction. As a result, the (3He, t) reaction provides
stronger excitation of transitions with L > 0, and may be useful in studies of
2hω excitations such as the spin isovector monopole resonance [65, 66].

3.3.2.   (d,2 He)

This reaction excites the same isospin-raising transitions as the (n,p) re-
action and has long been recognized as a possible probe of such excitations.
Actually, “2He” or the diproton has no bound states, but the two-proton system
has a well known 1S0 cross section maximum near zero energy, often referred to 
as a “virtual” state. In the studies ofinterest here, “2He” is defined by detecting
the two protons emitted with small angular separation from the decay of this
state.

Early studies at the relatively low energies of 55 MeV [67] and 99 MeV
[68] used counter telescopes to detect coincident protons emitted at an angle 
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of a few degrees to one another. Because of the background of single protons 
from breakup of the incident deuteron, measurements could only be made at 
angles greater than 15o. It was found however that angular distributions were
not characteristic of the L transfer for known transitions, and it was concluded 
that the reaction was not a useful probe of GT strength at such low energies.

Renewed interest in the reaction was stimulated by the prediction [69, 70]
that with a tensor-polarized deuteron beam, measurements of tensor analyzing
power (TAP) would yield the same information as obtained in much more 
difficult spin-transfer measurements in the ( , ) reaction. The reaction was
then studied [71] at energies of 650 MeV and 2 GeV using facilities at Saturne.
Using the magnetic spectrograph SPES4, it was possible to select the 1S0 final
state with less than 1% contribution from 3P states. Cross section measurements 
on the N = Z targets 12C and 40Ca showed spectra similar to those from the
(p,n) reaction and led to the conclusion that the reaction was well described as
a simple one-step reaction. Measurements of TAP in the p               n  reaction 
were also carried out and the results showed good agreement with impulse 
approximation calculations out to momentum transfer q = 2 fm–1 .

Similar results have recently been reported at the lower energy of 260 MeV
using the RIKEN accelerator and a magnetic spectrograph with detector system
similar to that of SPES4 [72]. In a study of the 12C( 2He) reaction [73] an
overall energy resolution of 460 keV was achieved. Measurements of TAP were 
also carried out and showed good agreement with calculations for transitions to
the 1+ ground state, and the broad 2– and 4– states near 4.5 MeV excitation.
Measurements of the (d , 2He) reaction at 125 MeV have also been reported
from a new facility at Texas A&M [74]. Results suggest that the reaction is
useful for GT measurements even at this relatively low energy.

Given the possibility of determining both transition strength and total spin 
transfer in charged particle angular distribution measurements it is likely that
( , 2He) studies will be of great interest and importance in the future.

3.3.3. Heavy Ion Reactions 

Over the past two decades a variety of heavy ions ranging from 6Li to
20Ne have been used to investigate charge-exchange spin-flip transitions. Most 
interest has focussed on the (6Li, 6He) reaction as an analogue of the (p,n)
reaction and (12C, 12N) as an analogue of the (n,p) reaction. In both cases, the
transition to the ground state of the ejectile requires a spin change ∆S = 1, so
that only spin-flip transitions in the target are excited. In addition, both 6He and 
12N have only a single bound state, the ground state, which greatly simplifies
the interpretation of results. 

21



22 W. P. Alford and B. M. Spicer

In an early study of the (6Li, 6He) reaction at an energy of 34 MeV [75], it 
was concluded that the observed transitions involved sizeable two-step contri-
butions. In spite of this, a correlation was noted between DL = 0 cross sections
and known GT beta decay strengths, leading to the conclusion that the reaction 
should be useful for measurements of GT strength. Several subsequent studies
have investigated the reaction mechanism at higher energies [76, 77, 79, 80]
leading to the conclusion that, for strong transitions at least, a simple one-step
direct reaction model is appropriate at incident energies greater than about
25A MeV. In [79] and in another study at 156 MeV involving known GT tran-
sitions [81] it was shown that zero degree cross sections were proportional 
to GT strength, so that the reaction can be used as an alternative to (p,n) for
measurements of GT strength. The reaction has also been studied at an energy
of 100A MeV [82] where results very similar to those for intermediate energy
(p, n) measurements were demonstrated for target nuclei ranging from 12C to
208Pb.

Since 6Li has spin J = 1, the (6      , 6He) reaction permits measurements of
tensor analyzing power as in the ( , 2He) reaction. One such measurement
has been reported at 32 MeV [83] but the energy is too low to ensure a simple
one-step reaction.

Comparable studies have been reported for the (12C, 12N) reaction. At
an incident energy of 35A MeV [84], it was concluded that the cross section
was dominated by two- step contributions, but that the direct one-step reac-
tion should predominate at energies above 50A MeV. In a theoretical study at
energies between 30A and 100A MeV it was shown that the energy at which
the one-step reaction became dominant was state dependent, but that two-step
contributions were relatively unimportant for all states at the highest energy
[85]. The calibration of the reaction as a probe of GT strength has been in-
vestigated at an energy of 70A MeV [86] with the conclusion that the reaction
should be a useful alternative to (n,p) but that higher energies were required.
This has been confirmed in measurements of the 12C(12C, 12N)12B reaction at
135A  MeV [87]. 

It is clear that heavy-ion charge-exchange reactions can provide quantitative
measurements of GT strength without the experimental problems associated
with the neutrons in nucleon-induced reactions. There are however other 
problems which up to now have limited the usefulness of heavy-ion reactions. 
Some of these are the following. 

(i) The momentum transfer Dq increases very rapidly with angle for heavy-
ion reactions with the result that angular distributions of most interest are
compressed into an angular range of a few degrees near 0o, and angular
distributions for different DL transfers are difficult to discriminate. The
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necessary angular resolution may be obtained by accurate ray-tracing in 
the detector, as shown in [87] where the overall resolution was less than 
0. 1o, but few systems currently have such capabilities.

(ii) The high energy required in order to ensure a simple one-step reaction
makes it difficult to obtain energy resolution much better than is currently 
available in (p,n) and (n,p) reactions. For instance the most recent
results show energy resolution of 850 keV for (6Li, 6He) at 600 MeV,
and 700 keV for (12C, 12N) at 1600 MeV, to be compared with about
300 keV for (p,n) at 100 MeV and 800 keV for (n,p) at 200 MeV.

(iii) The internal structure of the beam and ejectile introduce complications in
the analysis of results, though these do not lead to serious difficulties. It is 
also found that the internal structure may contribute reaction amplitudes 
which are not related to GT strength, but these have been shown to be 
small in existing data [86]. 

(iv) Heavy-ion reactions tend to be localized near the nuclear surface because
of strong absorption of both projectile and ejectile. This tends to favor 
transitions with DL > 0, and it is observed that resonances with DL = 1,2
are more prominent in heavy- ion than in nucleon-induced reactions. It 
is also expected that resonances associated with excitations, such as
the spin isovector monopole should be more prominent, though this has
not yet been demonstrated. 
At first sight it would seem that in a surface reaction the DL = 0 cross
section would not necessarily be proportional to GT strength. This is 
because GT transition densities all peak at q = 0, but for momentum
transfers greater than 1fm–1 the densities show a strong variation from
state to state which should result in state-dependent variations in the 
ratio of cross section to GT strength, along with an admixture of cross
section with DL = 2. However, quantitative calculations using a strong
absorption model [88] have shown that the DL = 0 part of the cross
section is almost completely insensitive to momentum transfers greater
than 0.8 fm–1, thus accounting for the observed proportionality.

It is clear that heavy-ion charge-exchange reactions can provide informa-
tion about spin-isospin excitations comparable to that obtained from nucleon-
induced reactions. It remains to be seen, however, whether their experimental 
limitations can be sufficiently reduced to permit significant extensions of ex-
isting results. 
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4.    MEASUREMENT OF GT STRENGTH 

4.1.    Direct Determination 

The early results from IUCF provided a convincing demonstration of
the proportionality between dσ/dWpn , (q = 0o) and the beta decay strength
B (β−) for transitions between the same states. It was shown that the ratio
[dσ/dΩ (θ = 0o)] / D, where D is the nuclear distortion factor (Eq. (2.5)), was 
proportional to B (β−) with a proportionality constant reflecting the strength
of the appropriate interaction. The effects of nuclear distortions were not neg-
ligible, but the observed proportionality was taken as an indication that for
energies above about 100 MeV, they could be reliably calculated using the 
DWIA. In most subsequent work, an alternative but equivalent statement of the
proportionality was used, and the experimental cross section written [89] 

dσ

Here a labels a particular transition while the unit cross section is the mea-
sured ratio dσ/dΩ (q = 0) /B for an appropriate transition of known beta decay
strength. It was assumed that (A ) is a constant for all transitions originating
from a given target, and that its A dependence could be calculated for neigh-
boring targets. The dependence on Ep can also be calculated, or determined
by measurements at different incident energies. With either approach the im-
portant conclusion was that measurements of the (p,n) cross section may be
used to determine beta decay strength between states that are not energetically 
accessible in beta decay. 

From the outset it was recognized that the observed proportionality was 
affected by a number of factors which could limit the reliability of strengths 
estimated from cross section measurements. The nature and magnitude of such
effects are now discussed. 

4.1.1. Correction for Finite Momentum Transfer in Measured 
Cross Sections 

This correction is relatively straightforward. For transitions with ∆L = 0,
the q dependence of the cross section near q = 0 goes as exp(–qR)2 where
R is some characteristic length comparable with the nuclear radius. This
dependence is clearly shown in measured cross sections, which may be used to
estimate R. For a reaction Q-value equal to zero, data taken at angles greater
than zero can be trivially extrapolated to θ = 0 corresponding to q = 0. For
reactions with non-zero Q value, the required correction is given by the ratio

dΩ
( α, q = 0) =      (Ep, A )B (α )



Nucleon Charge-Exchange Reactions at Intermediate Energy 25

σDWIA (Q = q = 0) / σDWIA (Q, θ). Although the magnitude of the DWIA cross 
section may be sensitive to optical model parameters, the ratio is much less so
and the resulting correction should introduce small uncertainty in final results.

4.1.2.   State Dependence of 

The observed proportionality between GT strength and (p, n) cross section
arises as a result of the fact that the spin and isospin structure of the central part
of the nuclear effective interaction Veff is the same as for the beta interactions. 
However, the radial dependence of the interactions is different, and this can 
lead to differences between nuclear and beta transition matrix elements which
depend on the particular states involved. In addition, the non-central parts of 
Veff will contribute to the reaction cross section, with increasing importance
as the momentum transfer q increases. Such effects have been considered
by Taddeucci et al. [89], with results shown in Fig. 4.1. For GT transitions
involving simple particle–hole transition amplitudes, the calculated value of 
for a given mass number may vary by as much as 10% for different amplitudes. 
In Fig. 4.1, the dashed line represents a DWIA calculation of the mean A
dependence of , and the individual transitions show a standard deviation of
about 7% about the mean. This result suggests that for transitions to different
final states the value of would be subject to an uncertainty of at least this
magnitude, or, conversely that values of BGT extracted from measured cross
sections would have the same uncertainty. 

Figure 4.1 also shows calculated values of F = σ(q = 0) /BF for Fermi
transitions between isobaric analog states. In this case, calculations predict 
large differences between transitions of the types j>, (j>)–1 and j<, (j <)–1

where j> = l + 1 , j< = l – 1. These will be discussed in more detail in Sec-
tion 4.1.4.

-2-2

4.1.3.    Dependence on A, Ep

If the idea of a unit cross section is to be generally useful for determination 
of GT strength, then its dependence on target mass must be known. This
has been determined empirically for nuclei in which a transition of known b
strength is excited directly in the corresponding charge-exchange reaction. For
other nuclei it must be assumed that (A ) can be reliably calculated with a
model for the reaction. 

The question of a suitable model has been investigated in considerable detail
in [89]. There it was shown that experimental results at 120, 160 and 200 MeV 
could be fitted by an expression of the form    (A) = C exp ( – XA

1-3 ) . This form 
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Fig. 4.1. Results of DWIA calculations of For a given A, boxes show the results of using
different particle transition amplitudes. Note the large variations for Fermi transitions. Reprinted
from Nucl. Phys. A, v 469 T. N. Taddeucci et al., The (p,n) reaction as a probe of beta decay
strength (1987) 125–172 [89], with kind permission of Elsevier Science-NL Sara Burgerhartstraat 
25, 1055KV Amsterdam, The Netherlands. 

for the A dependence was that predicted by the eikonal approximation, while 
the energy-dependent parameters C and X were estimated by least-squares
fits to data. The resulting fit at 160 MeV is shown as the dashed curve in
Fig. 4.2. For even-A targets the curve provides a reasonable fit to the data, with
deviations usually within the quoted experimental uncertainties. For targets
with A ≤ 60, these uncertainties are typically about 10%, which are not much 
greater than the variation in the predicted state-dependence of . For heavier
targets, suitable beta transitions carry little strength, resulting in rather large
uncertainties in the small measured (p,n) cross sections.

For many odd-A targets, the measured values of are significantly greater
than the curve in Fig. 4.2, with particularly large deviations, ranging up to
50%, for masses A = 13, 15 and 39 [90]. The cause ofthese deviations is not
understood at the present time, but it may be significant that the largest ones all
involve mixed GT + F transitions between isobaric analog states. In a number
of non-analog transitions such as 37Cl [91, 921], 51V [93] or 71Ge [94], the 
measured value of is consistent with values for nearby even-A nuclei. Even
in the case of the 13C(p,n)13N reaction, the GT transition to the 3-2- ,T = 3-2 state
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Fig. 4.2. Experimental results
for measurements of   GT and 

Fat 160 MeV. The dashed
curve shows the A -dependence
predicted by the eikonal approx-
imation. The dotted curve is the 
dashed curve reduced by the ratio
(55/160)2. Reprinted from Nucl.
Phys. A, v 469 T. N. Taddeucci et
al.. The (p.n) reaction as a probe
ofbetadecaystrength(1987) 125–
I72 [89], with kind permission of
Elsevier Science-NL Sara Burg-
erhartstraat 25. 1055KV Amster-
dam, The Netherlands. 

at 15.06 MeV yields a value of    = 9.8 ± 0.9 mb/sr [95] which is in satisfactory 
agreement with results for 12C(p,n)12N.

4.1.4. Weak Transitions 

In early studies of the proportionality between dσ/dW (q = 0) and BGT it
was noted that contributions to the cross section from non-central parts of the
effective interaction would become important ifthe GT strength was small [34].
In this context, “small” was generally taken as relative to the strength of pure 
single particle–hole transitions, which is of the order of magnitude of unity. An
estimate of the expected effect is shown in Fig. 4.3 from [96]. In this figure, is 
calculated for transitions in which the GT matrix element is decreased relative
to that for the pure single-particle value for two cases, A = 12 involving p 3

2-
and p 1 states and A = 29 involving d 5 and d 3 states. The results show that 
for j>, (j>)–1 and j>, (j<)–1 transitions σ varies by less than a few percent for ∧

A = 12, and less than 10% for A = 29, for GT strength greater than about 1%
of the single particle value. In contrast to this behavior, j<, (j<)–1 transitions 
are strongly affected, with increasing by a factor of two for transitions with
a few percent of the single-particle strength.

2- 22 --
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Fig. 4.3. Values of σ GT calcu-
∧

 

lated for A = 12 and 29. Starting
with the pure particl–hole transi-
tions shown (B/B0 = 1). the GT-
amplitude was decreased, hold- 
ing other amplitudes fixed. The
dotted lines indicate 10% varia-
tion from the average values at 
B/B0 = 1. Reprinted from [96]
with permission. 

This problem has also been studied by Austin et al. [97], who calculated
for states populated in the 37Cl(p, n) reaction. Wave functions were calculated
for the full (2s1d) shell, and reaction cross sections were calculated with DWIA
including knock-on exchange. The calculations showed that if only ∆L = 0
transition amplitudes were considered, then shows variations of no more than 
about 10%, even for the weakest transitions. If DL = 2 amplitudes are included, 
however, then calculated values of    frequently showed increases of about 20%, 
and in one case by a factor of two, for transitions with BGT < 0.4. It is usually
assumed that ∆L = 2 contributions can be identified by the characteristic shape
of their angular distributions and that a multipole analysis can be carried out to
determine the ∆L = 0 part of the cross section. Austin et al., showed, however,
that the interference of different transition amplitudes may result in an angular
distribution that cannot be represented as a simple sum of ∆L = 0 and ∆L = 2
cross sections. The conclusion was that for transitions with a strength BGT less
than a few tenths of a unit, the strength estimated from (p ,n ) measurements
was subject to large uncertainty, as much as a factor of two for very weak
transitions.
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4.2. Comparison with Fermi Transitions 

In heavy nuclei, GT transitions to nuclear ground states are weak, and the 
direct determination of GT is no longer feasible. One solution to this difficulty 
has been to calibrate GT relative to F, the unit cross section for the Fermi 
transition.

It is known that the Fermi transition excites a single state (or a compact
group ofstates) in the final nucleus, the isobaric analogue ofthe target ground
state, with the known beta decay strength BF = N– Z. Using the model
implied by Eq. (2.6) the ratio of cross sections for GT and F transitions can 
be written 

(4.1)

Thus a comparison of GT and F transitions in any suitable nucleus (14C is most 
convenient) provides an experimental determination ofthe quantity

The distortion factors can be calculated using DWIA. It is found that either
factor alone is subject to uncertainties of up to about 50% depending on the 
choice of optical model parameters, but the ratio is largely unaffected by this 
uncertainty. Thus the ratio of interaction strengths may be determined directly 
from the (p, n) cross section data. Measurements of this ratio as a function of 
beam energy [46, 98, 99, 100] have been reported over the energy range 50 MeV 
≤ Ep < 800 MeV, with results shown in Fig. 4.4. These results were obtained 
using the I4C(p, n) reaction in which strong transitions of known strength can 
be clearly resolved. If it is assumed that this ratio is truly characteristic of the 
free N–N interaction, then the GT unit cross section for other nuclei can be
determined from Eq. (4.1). 

Although this approach has often been used to calibrate GT, there is
evidence that it may be subject to large uncertainties at least for odd-A nuclei.
In the energy range 50 MeV < Ep < 200 MeV, data for a number of even-A
nuclei show that the energy dependence of the ratio of unit cross sections is

GT /   F = R2 (Ep) = (EP / E0)2 with E0 = 55.1 ± 1.4 MeV [98]. For many 
odd-A nuclei, however, a value E0 45 MeV is required [101], and for the
35Cl (p,n) reaction a value E0 35 MeV has been reported. In this case it
has been shown that the value of F is smaller and GT is larger than for 
the neighboring nucleus 34S. Thus what are expressed as differences in the
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Fig.4.4. (a) The ratio of cross
sections of the 14C (p,n) 14N re-
action populating the 2.31 and 
3.95 >MeV states of 14N. The
2.31 MeV state is populated via 
the Fermi component of the N N -
interaction. and the 3.95 MeV 
state by the Gamow–Teller com-
ponent. Parts (b) and ( c ) show
the GT and F cross sections sepa- 
rately. The solid line is the result
of a calculation using a G-matrix
interaction based on the Bonn po-
tential. The dashed line is ob- 
tained using a t-matrix based on
free ,N-N amplitudes. Reprinted
from [46] with permission. 

energy dependence of the ratio may well reflect an unexpected A dependence
of F and/or GT.

Taddeucci [89] has noted that values of - F calculated by DWIA showed a
strong dependence on the assumed transition amplitude as shown in Fig. 4.1.
In addition, the data of Fig. 4.2, from the same reference shows that values
of F measured at 160 MeV for A ≥ 40 tend to lie close to one of two curves. 
The curve shown in Fig. 4.2 corresponds to a value R(Ep) = Ep/55 MeV. A
similar curve fitted to the lower data points would imply E0 40 MeV. Thus
at 160 MeV, the experimental ratio GT/ F for heavy nuclei shows variations
of almost a factor of two for different targets. The conclusion from this result 
must be that estimates of GT strength in heavy nuclei based on a comparison 
with the Fermi transition are considerably less certain than is often implied 
in discussions of experimental results. 
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5. GAMOW-TELLER GIANT RESONANCE 

For the Gamow–Teller giant resonance (GTGR), spread among many com-
pound nuclear states by the residual interaction, the interesting physical proper-
ties are the position of the centroid, the spreading width, and the total integrated 
strength which can be compared to the Gamow–Teller sum rule. As discussed 
in Section 5.1, the location and spreading width have not been the subject of 
serious controversy. In contrast however, the integrated strength, discussed in 
Section 5.2, gave rise to the “missing strength” or “quenching” problem which
has been the subject of lively debate for more than a decade, but which is now 
largely resolved. 

5.1.    Strength Distribution 

The IUCF results of Bainum et al. [29], for the reaction 90Zr(p, n)90Nb at
120 MeV exhibit the typical features of the GTGR, as shown in Fig. 2.2b About 
80% of the observed strength is found in the peak centered near an excitation 
energy of 8.7 MeV, with a width of about 4 MeV. Most of the remaining
strength is found in the peak at 2.3 MeV. The low-lying state arises from a
j>

–1 j> (here g–1
9/2 g9/2 ) transition while the peak at higher energy is associated 

with the j-1
<> j g–1

9/2 g7/2 transition. The residual particle–hole interaction 
shifts transition strength from the lower to the higher state, while mixing with
other more complicated states results in the observed broad peak. A systematic 
study [34] showed similar results for a number of target nuclei in the mass
range 90 ≤ A ≤ 208. For lighter nuclei, particularly A ≤ 40, the collective 
enhancement of the resonance strength is less pronounced, and the strength
distribution can be described in terms of a simple shell model. 

The excitation energy of the GTGR and the main features of the strength
distribution can be readily accounted for by a Tamm–Dancoff Approximation
(TDA) or Random Phase Approximation (RPA) model of 1p – 1h excitations
with a residual p–h interaction. The important inputs for such a calculation are
an estimate of single particle energies, particularly the spin–orbit splitting, and
of the strength of the residual interaction. In an early treatment, Bertsch [ 102] 
assumed a simple residual interaction of the form V (1,2) = –
Using observed excitation energies for the resonance he concluded that the
magnitude of Vσ was generally consistent with other estimates, and that
the observed strength distribution was accounted for. A similar approach
by Gaarde et al. [34], concluded that the data could be fitted well with a value
of Vσ = 245 MeV. fm3. In other, mostly later, treatments [ 103]; [ 104]; [ 105];
[ 106]; the particle–hole interaction was assumed to arise from one-pion plus 



32 W. P. Alford and B. M. Spicer 

one-rho exchange, plus a pair correlation function to account for effects of
other exchanges. In all these studies it was concluded that the model gave a
satisfactory account of the data using reasonable values of model parameters.

Several calculations have also been reported in which a straightforward shell
model is used to model the GTGR. The first of these was by Gaarde et al. [58],
to fit the location and spreading of the “bump” observed in the 48Ca(3He, t)48Sc
reaction at 66 MeV. Following the publication of the results of Bainum et al., for
the 90Zr(p,n)90Nb reaction at 120 MeV, Mathews et al. [107], showed that the
observed distribution of GT strength was well accounted for by a shell model
calculation with a model space of the (2p1g) shells. Another calculation by
Muto et al. [108], assumed a closed core of 88Sr with single particle excitations
into the (3s, 2d, 1g) shells. Using single particle energies and two-body matrix
elements from fits to level schemes in that mass region, a satisfactory fit to the 
GT strength distribution was obtained.

A better understanding of the width of the GTGR requires an extension of
the basic 1p–1h model to include mixing with more complex many particle-
many hole excitations. In an early calculation, Bertsch and Hamamoto [ 109]
used a schematic model to investigate the effect of mixing with 2p–2h excita-
tions. They concluded that the GT strength distribution would be fragmented
and spread over several tens of MeV in excitation energy mainly by the tensor
component of the p–h interaction. The shell model wave functions used in
the calculations of Mathews et al., and Muto et al., contained components
corresponding to 2p–2h excitations, and in both cases the authors showed that
mixing of these with the 1p–1h excitations led to a spreading of the strength
distributions that was in reasonable agreement with the data. 

A number of RPA type calculations have also been reported in which the
effects of 2p–2h excitations are included. An early paper by Schwesinger and
Wambach [ 110] considered the general problem, which was then followed by an 
application of their ideas to spin-isospin excitations by Cha et al. [106]. In the
latter paper it was argued that it was not necessary to consider excitations more
complex that 2p–2h. In such a model space it was then shown that a correlated
one-boson exchange effective interaction was able to reproduce measured GT
strength distributions for 90Zr and 208Pb. In general, this spreading of GT
strength results in a decrease in strength at low excitations, as will be discussed
in the following section.

In summary, both the excitation energy and the shape of the strength dis-
tribution of the GTGR can be readily accounted for on the basis of the model 
originally suggested by Ikeda et al. [15], using a reasonable model space and
reasonable residual interactions. 
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5.2. Transition Strength — The Missing Strength Problem

33

The transition strength of the GTGR is of great interest since the to-
tal strength is predicted by the model-independent GT sum-rule, S– – S+ =
3 (N– Z), while it may be determined experimentally using charge-exchange
reactions. Only about 60% of the predicted strength can be clearly identified
experimentally however, and the reasons for this discrepancy were not fully 
understood for about a decade. 

In the initial proposal of the existence of the GTGR, it was assumed that 
particle–hole interactions had shifted strength from the low-lying states ob-
served in beta decay to the region of the giant resonance, which was energet-
ically inaccessible to beta decay. The total sum-rule strength was conserved
however, and would be observable with suitable experimental techniques. As 
early as 1963 it had been suggested [15] that the (p, n) reaction should provide
the experimental capability. The first real test of this possibility was provided
by the observation at MSU of the GTGR in the 90Zr(p, n) reaction at 45 MeV
[28]. Although the resonance peak was superposed on a large background,
the cross section of the peak itself was estimated, and compared with DWIA
predictions. It was concluded that the measured cross section was consistent
with the GT sum-rule.

With the higher energy available at IUCF, the GTGR was much more 
clearly defined relative to background, and cross sections could be estimated
with greater precision. In a study of the 26Mg(p, n) reaction [111], the measured 
cross section was compared with shell model predictions using the full (2s 1d)
shell model space and it was concluded that only about 60% of the predicted
strength was observed. For a target of 42Ca, it is expected that (n,p) transitions
would be blocked giving S+ = 0, and S– = 3 (N – Z) = 6 units. The shape
of the strength distribution observed in the 42Ca(p,n) reaction [112] agreed
well with shell model predictions although the total strength observed up to an
excitation energy of 30 MeV was only 3.2 units. In further studies of 48Ca(p,n)
and 90Zr(p,n) it was also concluded that only 40 to 50% of the predicted
strength could be identified.

For targets with A ≥ 40, the GTGR is superposed on a continuum and in 
the above studies it was initially assumed that the continuum represented a
background to be subtracted from the GTGR peaks. Calculations by Osterfeld
[113] showed however that in the (p,n) spectra at 0o, transitions with ∆L > 0 
made very little contribution to the cross section in the vicinity of the GTGR,
indicating that the assumed background in fact was part ofthe GTGR. This led to
a significant increase in the estimate of observed GT strength, but measurements 
on many targets up to A = 238 showed conclusively that 30 to 40% of the
predicted GT strength could not be identified at excitation energies below 
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30 MeV [ 1 14]. This result defined the “missing strength” problem. With 
this, over the next decade, the GTGR provided a strong focus for the general 
elucidation of quenching effects in nuclear physics. 

During the previous decade there had been much speculation about the
possible observation of subnucleonic effects in nuclear structure [115, 116]. 
With the demonstration of the missing strength it was immediately pointed out 
that this could be a signature of such an effect. In particular, it was noted that 
the quantum numbers involved in GT transitions, ∆S = ∆T = 1, were the same
as those required for the excitation of a nucleus to the ∆ resonance. Thus the
p–h excitation involved in the GTGR couldmix with ∆–hole excitations result-
ing in a shift of GT strength to the region of the ∆ resonance at an excitation 
energy of about 300 MeV. In spite of the high energy of the ∆ excitations it was 
argued that this effect was important because all the nucleons in the nucleus
could participate in the ∆–hole excitation, while most particle–hole excitations 
corresponding to the GTGR were blocked by the Pauli principle. Quantitative
calculations [1 17, 118] of this effect were carried out using estimates of the
coupling between ∆–hole and particle–hole excitations based on coupling con-
stants for the (π−∆ ) and (π−N) interactions. The results of these calculations 
showed that the missing strength could in fact be accounted for by this model.
It appeared to be a major experimental discovery, heralding important new
directions in nuclear physics. 

This result was criticized on several grounds. Speth [ 119] noted that the 
coupling between ∆–hole and particle–hole states was poorly known. The 
conventional estimate from meson theory noted above was not reliable because 
exchange effects were much different for the two types of interactions. It was
also known that isoscalar spin-flip transitions show a quenching [120] similar 
to GT transitions even though the isoscalar excitations would not be mixed with 
∆–hole excitations. A different mechanism for quenching was pointed out by
Bertsch and Hamamoto [109] as noted earlier. Calculations of GT excitations 
using a realistic particle–hole interaction showed that the tensor component of 
the force produced strong fragmentation of the excitation with the resulting
strength spread over several tens of MeV excitation, where it would be difficult 
to identify experimentally. This problem of identifying distributed strength is 
discussed later in Sec. 6. 

The polarization of opinion on the cause of the quenching is illustrated in 
discussions at an international conference on spin excitations in nuclei (devoted 
mainly to the problem of GT quenching) in 1982. The exchange epitomized
the intensity of the debate on the subject which persisted at many workshops
and conferences for several years. At that time, Rho [121] argued that the
∆–hole mixing must be the most important mechanism involved. Arima [ 122] 
on the other hand argued strongly that quenching could be accounted for by 
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conventional nuclear structure effects such as core polarization and configura-
tion mixing. As early as 1954, Arima and Horie [123] had demonstrated the 
importance of 2p–2h excitations in fragmenting and spreading the strength of 
simple excitations, and this idea had been extended in many subsequent papers. 
Following the demonstration of the quenching of the GTGR, a large number of
theoretical studies were carried out in an effort to provide quantitative estimates 
of the relative importance of ∆–hole excitations and conventional configura-
tion mixing effects in this quenching. A few of these are described below, and
references to other work are given in those discussed here. 

Towner and Khanna [I24] carried out a careful investigation of GT and
M1 matrix elements in (closed-shell ± one nucleon) nuclei at A = 16 and
A = 40. For such nuclei, first order corrections to the matrix elements vanish,
and second order corrections arise mainly from non-central components of the 
effective interactions. The calculation included second-order core polarization,
meson-exchange currents and isobar currents. The effective interaction was
taken as a one-boson exchange potential, and the second order corrections were 
carried out explicitly to excitations of and then extrapolated to infinity. 
The final results showed reasonable agreement with experiment, especially in 
the light of the fact that extensive cancellations occurred among the eight terms 
contributing to M1 matrix elements and among the nine terms for GT. The 
authors concluded that while isobar excitations contribute to quenching they 
are not the dominant effect. They also presented a careful discussion of the
uncertainties in their results arising from the model used in the calculations.

In a subsequent calculation Cha et al. [106], concluded that 2p–2h exci-
tations alone could not account for the observed quenching below 40 MeV
excitation. A similar calculation by Drozdz et al. [125], concluded that the..

inclusion of ∆ excitations would reduce the calculated strength below experi-
ment. They noted however that direct coupling of the ground state to 2p–2h
excitations would be expected to increase the calculated strength and that satis-
factory agreement with experiment should be obtained without a contribution 
from ∆ excitations.

In most studies, the GT strength extracted from experimental spectra was
compared with theoretical calculations. However, Osterfeld et al. [ 126], took
a different approach in modelling the complete spectrum which was then com-
pared with experiment for 90Zr(p, n)90Nb. Structure calculations were carried
out for all isovector spin excitations up to ∆Jπ = 5+, and the resulting wave
functions were then used in DWIA to calculate (p, n) cross sections. These cross
sections were normalized by comparison with calculations of the cross section
for the 42Ca(p,n)42Sc reaction. The authors concluded that the experimental
spectra could be accounted for without invoking quenching from ∆-excitations.

35



36 W. P. Alford and B. M. Spicer 

They noted that this conclusion could be modified if the measured cross sec-
tions included substantial contributions from core excitations in the target, and 
suggested that a measurement of the 90Zr(n,p) cross section would provide a
definitive test of the importance of ∆ -excitations. A very similar calculation
by Klein et al. [193], concluded that mixing between 1p–1h and 2p– 2h
excitations provides the most plausible explanation for the quenching.

In another approach to the missing strength problem, orbital occupancies for 
single-particle states in nuclei ranging from 3He to 208Pb have been measured
at NIKHEF using the (e, e'p) reaction. A review of the experimental work has
been given by de Witt Huberts [ 127] and the theoretical interpretation of such
results has been discussed in detail by Mahaux and Sartor [128]. 

Since this reaction proceeds via the electromagnetic interaction rather than
the strong nuclear interaction there is relatively little uncertainty in the cal-
culated cross section. Comparison with measured cross sections provides a 
determination of orbital occupancies with an estimated uncertainty of about
10%. The conclusion from such measurements is that only about 50 to 60% 
of the single particle strength predicted by shell model calculations can be
identified.

Such results have helped to motivate a number of theoretical studies 
[129, 130, 131] which have shown that, in general, quasiparticle excitations
mix strongly with more complex excitations, with the result that the single 
particle strength, or response function, is spread over an excitation energy re-
gion extending beyond 100 MeV. This spreading of the single-particle strength 
leads to a quenching of particle–hole excitations of all angular momenta and 
in all reactions. The specific treatment of GT and spin-dipole excitations has 
been discussed in detail for targets of 48Ca and 90Zr [ 132, 133]. For instance,
because of excitations in the target ground state, it was calculated that the total 
GT strength in 48Ca (p,n) is 30 units, 6 units greater than the sum rule limit
3 (N– Z ). Only 14.5 units, or 60% of the limit, lie below 20 MeV excitation
however, with the remainder spread more or less uniformly up to 80 MeV. The 
GT strength in 48Ca (n,p) is then 6 units which is spread over a similar energy
range with a density of about 0.1 unit/MeV.

The general conclusion is that this spreading of single-particle strength 
provides an understanding of much, if not all, of the phenomenon of quenching 
in nuclear physics. While ∆ -excitations cannot be completely excluded, it
appears that any contribution of this sort accounts for only a small fraction of
the total quenching. 

What then is the possibility ofexperimental verification of the fragmentation 
of GT strength described above? In a word, it is slight at best. At high excitation 
the momentum transfer, even at zero degrees, becomes large enough that the 
tensor component of the effective interaction becomes dominant relative to 
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the component. As a result, in the (p,n) reaction the cross sections for
transitions with ∆L  >  0 become large and tend to dominate the spectrum. 
Since experimental angular distributions are no longer forward peaked for high
excitations the identification of the ∆L= 0 component of the cross section 
becomes subject to large experimental uncertainties, as discussed in Sec. 6. 
At the same time, ∆L = 0 contributions arising from the isovector monopole
GR, a excitation, are expected to appear. Thus, even if ∆L = 0 strength is
identified it cannot be unambiguously related to the GTGR. This problem has
been considered in some detail by Raywood et al. [52].

The final conclusion must be that it is very unlikely that much of the missing 
GT strength can be identified experimentally. However, a wide range of theo-
retical studies has now concluded that most, if not all, the observed quenching 
can be understood within the framework of conventional nuclear structure cal-
culations using large vector spaces and realistic effective interactions. The role
of ∆ excitations appears to be at most a small contribution to the total effect.

5.3. b+ Strength and the (n,p) Reaction

37

The foregoing sections have focussed on the (p,n) reaction and the mea-
surement of b- strength. However, the GT sum-rule involves both b- and b+

strength and may be written 

S– =3(N – Z ) +S+ (5.1)

In nuclei with a large neutron excess, allowed b+ transitions are strongly
suppressed by Pauli blocking, so that a knowledge of S+ may not be needed
in comparing measured values of S– with the limit 3 (N – Z ). Indeed the
demonstration of the missing GT strength in (p, n) reactions did not require a
measurement of S+. In general, however, a knowledge of S+ is needed for a
quantitative comparison with the sum-rule. In addition, a knowledge of the GT
strength distribution for b+ transitions is important in a number of other areas.

Given the symmetry between (p,n) and (n,p) reactions it is expected that
the relation between ( n , p ) cross sections and corresponding b+ strength will
be the same as that between (p, n) cross sections and b- strength. As the initial
test of this expectation, measurements of nP = [dσ/dΩ (q = 0)]np / B+ were
carried out for strong GT transitions for targets of 6Li, 12C and 13C [134]. The
resulting comparison with measured values of pn for these targets is shown
in Table 5.1. All transitions are to the ground state of the final nucleus except
for 13C (p,n)13N in which case the final state is the T = (15.06 MeV)-,3-2

3-2
isobaric analogue of the 13B ground state. For each target it is seen that

np = p n within the quoted uncertainties. In a later, more detailed study [135] 
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TABLE 5.1 
Comparison of Measured Values of 
Reduced Cross Sections for (p, n) and

(n,p) Reactions at 200 MeV 

Target pn np

6Li 9.1 ±0.5a) 9.90± 0.36b)
12C 9.2 ± 0.9a) 9.42±0.31b)
13C 9.8 ±0.8c) 10.96±0.56b)
a) ref. [89] b) ref. [ 134] c) ref. [95] 

a comparison of (p,n), (p,p') and (n,p) reactions on 6Li and 12C was able to
conclude that isospin was conserved between the different reactions, within the 
experimental uncertainty of 3%. The only other relevant measurement, in the 
64Ni (n,p ) reaction [54, 136], is in reasonable agreement with results of (p,n)
measurements in the mass region near A = 60, but the existence of a 1+ state
at an excitation energy of about 300 keV in the final nucleus 64Co introduces a
rather large uncertainty in this conclusion. 

Given the correspondence between (n,p) and (p,n) cross sections where
useful comparisons are possible, it is generally assumed that GT+ strength
distributions can be deduced from (n,p) measurements using the ratios σpn/B– 
for which extensive data are available. Of course, the problems expected for
weak transitions with this approach would be the same for (n,p) as for (p,n)
studies.

5.4.    Experimental Results of GT Studies 

In the foregoing, the emphasis has been on the problem of measuring GT 
strength distribution, and on understanding the significance of the missing 
strength. A number of other interesting problems in nuclear physics involve
GT transitions however, and some of these will be reviewed briefly. 

5.4.1.    Effective Interactions 

Much of the initial interest in (p, n) studies was motivated by the possibil-
ity of determining the properties of the Fermi and GT parts of the effective
interaction VF = V and VGT = Vσ as discussed earlier. The IUCF results
showed that at intermediate energies, interaction strengths could be extracted
from the forward angle (p, n) cross sections with much less uncertainty than at
low energies. They also provided a striking demonstration of the strong energy 
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dependence of the ratio of the strengths between 60 and 200 MeV [98] which 
motivated a number of theoretical investigations. 

Love [137] and Petrovich [138] showed that the measured ratio was re-
produced quite well with a G-matrix interaction, and soon afterwards Love 
and Franey [139] showed that a t-matrix interaction derived from measured 
nucleon-nucleon phase shifts also gave a good fit to the data. The observed
energy dependence was shown by Brown et al. [140], to arise naturally in a 
one-boson exchange model with p and r mesons. The actual magnitude of 
their calculated ratio was in fair agreement with the results of Love and of 
Petrovich, and with the data up to 200 MeV, 

Measurements of the ratio were later extended to 450 MeV at TRIUMF 
[99] and to 800 MeV at LAMPF [46, 141]. The solid line is the result of
a calculation using a G-matrix interaction based on the Bonn potential. The 
dashed line is obtained using a t-matrix based on free N–N amplitudes. At 
energies above 200 MeV, the calculated ratio did not fit the data as well as at 
lower energies, and it was shown that the disagreement arose mainly because 
of difficulties in calculating VF, the Fermi part of the interaction. This part
arises from a second order exchange [ 140] and is much more sensitive to finite 
density effects and other details of the calculation than is the GT part which 
arises mainly from one-boson exchange. The calculated magnitude of VGT

appears to be in satisfactory agreement with experiment [ 142]. 
It should be noted that the measured values of VF and VGT have all assumed

that at small momentum transfer only the central parts of the effective interac-
tion need be considered. Love et al. [ 143] have shown however that the ratio 
of cross sections for the strong transitions in 14C(p,n)14N are sensitive to the 
non-central parts of the interaction, and also to the optical model spin–orbit
interaction. Since this sensitivity arises mainly in the calculation of VF , it is
likely that the theoretical comparisons with VGT directly are more significant 
than with the ratio VGT / VF .

5.4.2.    Nuclear Structure — Model Comparisons 
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GT transitions and strength distributions from (p, n) and (n,p) studies now
provide a large body of experimental data for a well-defined simple nuclear
excitation. As such they have been of considerable interest for shell model 
comparisons. In principle, the (n,p) results should be of particular interest,
since the blocking of b+ transitions for nuclei with N > Z makes the model
predictions very sensitive to the choice of shell-model effective interactions
[144].

Many reported measurements of GT strength distributions have included 
model comparisons. For 1p and (2s1d) shell nuclei, calculations can be carried
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out in the full model space, and the resulting distributions usually show 
reasonable agreement with the data, although the measured strength is typically 
only about 60% of the model prediction. Typical results which illustrate such a
comparison may be noted for 10B [ 145], 16,18O [45], 26Mg [ 146] and 32S [78]. 

For (2p 1f) shell nuclei, with the energy resolution available, discrete final
states are rarely observable. Furthermore, calculations can only be carried out
in a truncated model, but it is found that the main features of the measured
distributions are reproduced fairly well. In this mass region, some typical
results for (p,n) studies are those reported for 40Ca [147], 42Ca [112], 51V
[148] and 54Fe [27, 149]. For the (n,p) reaction the quality of the model
comparison is exemplified by results for 40Ca [53], 45Sc [ 150], 55Mn, 56Fe and 
58Ni [151] and again 54Fe [152]. For all these comparisons except 42Ca and 
45Sc, the calculations must be renormalized by a factor of about 0.3 as a result 
of the truncation of the model space. 

5.4.3.    Electron Capture in Supernova Formation 

An interesting application of the (n,p) reaction has been in the measurement
of GT transition rates required in calculations of presupernova stellar collapse 
[ 153]. In the late stages of the evolution of a massive star, most of the core has 
been converted to elements in the Fe–Ni region. At this point no further energy 
can be generated by nuclear reactions in the core, and much of the support for 
outer layers of the star is provided by the pressure of the degenerate electron
gas in the core. In the absence of an energy source, the core contracts and
its temperature rises. Eventually the thermal energy of the electrons is large
enough that electron capture becomes important: 

ZA +e– → Z–1 A+v

Once this process starts, the loss of core electrons, plus the additional loss of
energy via neutrino emission leads to collapse of the star and possible supernova 
formation. In order to model the onset of collapse a knowledge of transition 
rates for electron capture on nuclei in the core are required. 

In early model calculations [ 154] the necessary strength distributions were 
estimated using a very simple nuclear model, since little experimental informa-
tion was available. However, with the development of facilities for intermediate 
energy (n,p) measurements beginning at TRIUMF in 1986, it has become pos-
sible to measure some of these strength distributions and so test the validity of
the earlier models. In the (2p1f) shell, measurements of GT+ strength have
been reported for 45Sc [150], 48Ti [155], 51V, 59Co [156], 54Fe [27], 55Mn,
56Fe, 58Ni [151], 60,62,64Ni [136], and 70,72Ge [157]. Calculations of electron
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capture rates using some of these new results have been carried out and com-
pared with results of earlier calculations [158, 159]. For some nuclei there is
little difference, but for 59Co for example the new result leads to a reduction in 
the calculated rate by a factor of at least 4.5. 

It should be noted that the astrophysics calculations involve unstable as well 
as stable nuclei. Also, at the temperatures reached in the collapsing core, nuclei 
will undergo thermal excitation so that strength distributions for excited states
are also required. Thus, the available data should be viewed as calibrations
for model calculations of GT+ strengths. Conventional truncated shell model
calculations have been carried out, and comparisons with data are discussed in
the experimental papers noted. The overall agreement between theory and data
is generally reasonable, but it would be desirable to have a better understanding 
of the deviations and the extent to which they could point to shortcomings in the 
model. Some work in this direction has been reported [160, 161] using a shell 
model Monte Carlo approach which permits calculations to be carried out in a 
full (2p1f) model space. The results show good agreement with measured GT+ 
strength distributions with the same quenching as is found for such comparisons
in (2s1d) shell nuclei.

5.4.4.    Calibration of Neutrino Detectors 

The measurement of the neutrino flux from the sun involves the absorption 
of neutrinos in a GT transition: 

v+Z A + Z+1 A+e– 

and the calibration of detector efficiency requires a knowledge of the GT
strength distribution for the target nucleus. In the initial experiment in this field
the detector was 37Cl, with the GT strength for the ground state transition known 
from the electron-capture decay rate of 37Ar. The strength of excited state
transitions was inferred from the b+ decay of 37Ca [242] with the assumption
of isospin symmetry between the 37Ca → 37K and the 37Cl → 37Ar transitions. 
The detector is sensitive mainly to the high-energy neutrinos resulting from the 
beta decay of 8B in a minor branch of the solar energy production cycle.

Following the demonstration of the deficit of 8B neutrinos [162] there has 
been widespread interest in the problem of detecting solar neutrinos, especially
the lower energy neutrinos arising from the basic p–p cycle. Detectors have
been proposed based on 71Ga [163], 81Br [164], 98M0 [165], 115In [166] and 
127I [ 167]. The (p, n) reaction has been used to measure the distribution of GT
strength for most of these. 
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The most interesting case is 71 Ga, since this is used in the GALLEX detector 
and in the SAGE detector [ 168, 169]. In this case the (p,n) results [94] yield a
strength of 0.085 ± 0.015 units for the ground state transition, compared with
0.091 units determined from the decay of 71Ge. In addition, an excited state at
0.5 Me V cames a strength of 0.010±0.005 units and the total strength up to the 
particle emission threshold (7.4 MeV) is 4.3 ± 0.7 units. In the 98Mo(p,n)98Tc
reaction, BGT = 0.44 units is measured for an unresolved group of states near
the ground state [170]. However, since the low-lying 1+ states have not been
identified in 98Tc, it is not possible to use this measurement to estimate the
sensitivity of the proposed detector for low energy neutrinos. For 115In, a state
of spin 7/2+ at 0.614 MeV in 115Sn has BGT = 0.17, with very little additional
strength to any level below about 4 MeV. For the 127I (p,n) reaction [ 101] full
details of the strength distribution are not given, but it is claimed the measured
strength is substantially less than earlier estimates [ 167] which means that the
sensitivity of the proposed 127I detector would not be much different than that
for 37C1.

It is ofsome interest to note that the 37Cl (p, n) reaction was also studied [91]
and significant discrepancies with the 37Ca decay results were found. Although
the discrepancies had only a small effect on the calculated efficiency of the 37Cl
solar neutrino detector, they led to the suggestion that the (p,n) reaction did
not provide a reliable determination of GT strength [ 171]. As a result of this 
problem, further measurements of both the (p,n) reaction [92] and the 37Ca
b+ decay [ 172] were carried out, and the source of most of the discrepancy
identified as the unexpected gamma decay of a proton unbound level in 37K.
The remaining disagreement is probably the result of uncertainties in the (p, n)
results for weak transitions as discussed earlier.

Clearly the (p, n) measurements have been helpful in assessing the feasibil-
ity of new proposals, such as for the 127I detector. In every case, however, the
low-lying states of interest carry only a small amount of GT strength so that
its determination via the (p,n) reaction is subject to the uncertainties discussed
in Section 4.1.4. It appears likely the final accurate calibration of detector
response must involve the use of strengths determined from beta decay, or 
directly by neutrino absorption using a radioactive source to provide a known
flux of neutrinos, as has been done for the 71 Ga detector [ 169, 173]. 

6.    MULTIPOLE ANALYSIS: GT STRENGTH AT HIGHER 
EXCITATION ENERGY 

The measured spectra in (p, n) reactions show transitions to discrete states
or broad resonances at low excitation energy exhibiting forward peaked angular
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distributions which are fitted satisfactorily by DWIA calculations for DL = 0.
The forward peaking is the characteristic signature of transitions with DL = 0,
and these transitions are clearly identified as part of the GT strength. At 
higher excitation energies, typically above 10 to 15 MeV, angular distributions 
no longer show forward peaking, and generally are not characteristic of a 
single L-transfer. GT strength is expected in this region due to the spreading
discussed in Section 5.2, but is not unambiguously identifiable, as at lower 
excitation. The problem of determining GT strength in this situation is often
approached through a multipole decomposition analysis (MDA). The essential 
ideas behind such an analysis have been discussed by Moinester [174], and 
typical applications are illustrated in a number of data analyses, both for (p, n)
[45, 53, 148] and (n,p) reactions [52, 156, 175]. 

The method has serious limitations, but provides a useful general procedure 
for identifying the major components of measured spectra. In spite of its
limitations it has been extensively used in the analysis of charge-exchange
data, and will be discussed in some detail below. 

In the MDA, measured spectra at several angles are used to construct angular 
distributions of the differential cross section as a function of the excitation 
energy in the final nucleus. For each energy bin, it is assumed that the measured 
angular distribution can be fitted by a sum of cross sections arising from 
different suin transfers: 
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(6.1)

In this expression, the cross section for each value of Jπ is the result of a DWIA 
calculation, while the coefficients a Jp are determined by a least squares fit to
the data with the constraint that each coefficient must be non-negative. Sincc
the number of angles at which measurements are made is limited — usually no
more than six in typical intermediate energy charge-exchange experiments — 
the number of terms in the sum must be small in order to carry out a meaningful 
least squares fit.

Characteristically, the experimental data is limited to the forward direction,
usually to angles less than ~ 20°, with the consequence that small values of
the orbital angular momentum transfer will be the most important. For a (p, n)
reaction on a nucleus with A = 60 at 200 MeV, the condition DLmax, = ∆kR
gives an estimate of ∆Lmax      4. For a target nucleus with A = 238 at 300 MeV, 
the same condition gives ∆Lmax 8. Since spin-flip transitions are known
to be strong at these energies, for A = 60 transitions would be expected for
∆J π= 0+, 1+ (∆L = 0); 0–, 1-, 2– (∆L = 1); 1+ ,2+ ,3+ (∆L = 2); 2–, 3–, 4– 
(∆L = 3); and 3+, 4–,5+ (∆L = 4), a total of fourteen ∆J values in all. 
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Fig. 6.1. Calculated differential cross sections for ∆L = 1 transitions with DJp = 0-,1– and
2–. For the 0– case the particle–hole transition was assumed to be (g7/2), and for the 1–

and 2–              (g9/2).

However, it is known that nuclear reaction angular distributions are char-
acterized mainly by the orbital angular momentum transfer, ∆L, and are only
weakly dependent on the total angular momentum transfer, ∆J. This justifies
the restriction of the number of terms in the least squares fit to the number
of DL values involved. This point is illustrated in Fig. 6.1, where calculated
angular distributions for ∆L = 1, ∆Jπ = 0-, 1-, 2– for 1p–1h transitions ex-
pected to be important at low excitation energies in the 51V (n,p) reaction, i.e.,

–1
        for 0–, and for 1– and 2–. The main peak 

of the angular distribution occurs at about the same angle for 1 – and 2– transi-
tions, and at a slightly smaller angle for the 0– transition. The magnitude of the 
peak cross section is about the same for ∆Jπ = 1– and 2–, and somewhat less
for the 0– case. From this it is concluded that all contributions with ∆L = 1 can
be adequately represented by a DWIA angular distribution for ∆Jπ = 1-. In 
passing, it may be noted that the difference in angles at the peak of the 0– and
1 – angular distributions decreases as the mass number of the target increases.

Comparable results are found for transitions with ∆L = 2, 3, 4 and it is 
usually assumed that the representative shape for each of these is given by a
DWIA angular distribution for ∆J = ∆L or ∆L + 1. 
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It should be noted here that except for ∆L = 1, spin-flip transitions with
∆J = ∆L – 1 can also be excited with orbital angular momentum ∆L' = ∆L – 2. 
Thus in general, unnatural parity transitions will occur with a coherent mixture 
oftwo orbital angular momentum transfers, and the shapes ofthe DWIA angular
distributions might be expected to show the effect of interference between the 
two contributions; however it is found that the angular distribution for a given 
∆J is usually similar to that for the smaller of the two allowed values of 
∆L. It is also found that the DWIA shapes for unnatural parity transitions
show somewhat more variability in their dependence on the assumed transition 
amplitude than do natural parity transitions with ∆J = ∆L. This presumably
reflects the effects of the interference in ∆L.

Other inputs required for the DWIA calculations are the optical model
potentials, the nucleon-nucleon interaction responsible for creating the p–h
excitation, and the one body density matrix elements (OBDME) involved in
the transition. 

For the purposes of the MDA, the results of DWIA calculations are insen-
sitive to the choice of effective interaction and optical model potentials. The 
magnitude of the cross section depends on these inputs, but the characteristic 
shape of the angular distributions, i.e., the location and width of the primary 
peak, is not significantly sensitive to reasonable variations in either optical
potentials or effective interaction. The effects of such changes are illustrated in 
[45]. On the other hand, details of the distributions are affected; in particular 
the magnitude of the cross section at 0o for transitions with DL > 0 is sensitive 
to distortions in the scattering channels, i.e., the optical potentials. This point 
is particularly important in estimating GT strength at high excitation energy, as
is discussed later. 

In the calculations described below the Franey–Love N–N interaction [176] 
was used. Optical potentials were calculated by folding this interaction with
nuclear charge distributions from electron scattering. All the DWIA results of 
this section were calculated using the code DW81 [8].

The OBDME may be obtained as the result of a model calculation, par-
ticularly for lighter nuclei. Another approach is to use a transition amplitude 
generated by the application of an appropriate excitation operator to the as-
sumed target ground state. The simplest procedure, which is often used, is 
to assume a simple 1p–1h transition involving the single particle states ex-
pected to be most important in the region of excitation of interest. Although
this may appear a rather drastic approximation, it turns out to be a reasonable 
one. DWIA calculations show that the main features of the angular distribution 
shapes for given ∆Jp are not very sensitive to the choice of the OBDME. This
is illustrated in Fig. 6.2 which shows results for ∆Jp = 1 – for a variety of single
p–h transition amplitudes. To the extent that the ∆J dependence of transitions
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Fig. 6.2. Calculated angular distributions for ∆Jπ = 1– transitions in the 51V (n,p ) reaction.
The different particle–hole transitions are indicated. The result for the (d3/2)–1 (f5/2) transition 
shows a marked deviation from the average. 

of given ∆L can be ignored, it would appear reasonable to use such a simple
approximation in the calculations. This approach is adequate for small values 
of ∆L, but becomes increasingly questionable as ∆L increases. For one thing,
the angular separation of the peaks for successive values of ∆L decreases as ∆L
increases, as is seen in Fig. 6.3. For another thing, it is found that the DWIA 
shapes for a given ∆J = ∆L show increasing sensitivity to the assumed transi-
tion amplitude as ∆L increases. As a result of these two tendencies, there is an
increasing systematic uncertainty in cross section estimates as ∆L increases,
and the MDA procedure becomes of questionable value for values of ∆L ≥ 3. 

As a consequence of the above discussions, the series which is least-squares
fitted to the experimental differential cross sections is given by

(6.2)

As discussed earlier, the calculated cross section for a given L is the DWIA
result for ∆J = L, except L = 0 for ∆Jπ = 1+. Some typical results are shown 
in Fig. 6.4 for a MDA of data for the 51V(n,p)51Ti reaction at 200 MeV. In this
case it was assumed that the data could be represented as a sum of four terms
with ∆L = 0, 1, 2, 3, ∆J = 1+, 1– ,2+ ,3–. The assumed transition amplitudes 
were for 1+, 2+ and for 1–,3–, and the shapes 
are shown in Fig. 6.3. The MDA provides a good fit to the measured spectra at 
the five smallest angles and a reliable estimate of the distribution of GT strength 
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c.m.

Fig. 6.3. Calculated angular distributions for transitions with ∆L = 0, 1, 2, 3 in the 51V (n,p)
reaction using p–n configurations noted in the text. Note that the angular difference between the 
peak angles ofthe distributions decreases as ∆L increases. Reprinted from [I56] with permission.

up to an excitation of  8 MeV, with the total strength S E<8 MeV BGT = 1.2 ± 0.1 
units. The analysis indicates a comparable amount of GT strength at higher
excitation, but with much larger uncertainty, perhaps as much as a factor of
two. At 20.7o, the calculated cross section is less than the data; this indicates
the need for a further term, ∆L = 4, in the analysis. It is also of interest that
the ∆L = 2 contribution is small.

Another representation of these results of the MDA is shown in Fig. 6.5,
where the cross section is plotted for each value of ∆L at the angle closest
to the peak of the DWIA distribution for that value. The error bars in this 
figure represent the uncertainties in the least-squares fit arising from statisti-
cal uncertainties in the data. An indication of uncertainties arising from the
assumption of a particular p–h transition in the DWIA calculation is shown in
Fig. 6.6. Here, the cross sections for ∆L = 0 and ∆L = 1 are shown for different
choices of the p–h transition in the ∆L = 1 contribution. The error bars again 
reflect statistical uncertainties in the data, while the different curves show the
effect of changing the DWIA shapes. At low excitation energy, where the
measured angular distributions show a clear forward peaking, the estimate of 
∆L = 0 cross section is not sensitive to the choice of DWIA shapes. However,
at high excitation, the ∆L = 0 cross section depends sensitively on the ratio
σ(0o) /s(peak) for the L = 1 DWIA shape. The large ∆L = 0 cross section is
obtained using the L = 1 shape for the transition amplitude
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Fig. 6.4. Results of a multipole decomposition analysis of the data from the 51V (n,p) reaction 
showing the contribution of each multipole to the measured cross section as a function of
scattering angle and excitation energy. Points with error bars represent the measured cross
section. Reprinted from [156] with permission. 
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which is seen in Fig. 6.2 to have a small value for the ratio. At the same time, it
is seen that the estimate of ∆L = 1 cross section is not much affected by choice
of DWIA shapes. The conclusion that may be drawn from this is that the cross 
section for a given component is determined with an uncertainty arising from
statistics, in the region of excitation in which that component is dominant, In 
regions in which a given component makes only a small contribution to the 
cross section, then the results of the MDA become sensitive to the details of
the DWIA shapes and the magnitude of that component may be much more 
uncertain than the statistical estimate of the MDA would indicate. Thus the
component with ∆L = 0 is well determined up to an excitation energy of about
8 MeV, but is very uncertain at higher energies. Similarly, the DL = 1 contribu-
tion is well determined up to an excitation energy of about 15 MeV. At higher
excitation, the ∆L = 3 contribution becomes large, and the magnitude of the
∆L = 1 component from the MDA becomes sensitive to details of the DWIA
shapes for both ∆L = 1 and ∆L = 3. Note that the shape for ∆L = 3 was not
varied in the results shown in Fig. 6.6.

An example of the result obtained in using the MDA for a heavy nucleus,
where there is no large GT-peak, is shown in Fig. 6.7 for the 120Sn(n,p)120In
reaction [ 177], measured at 300 MeV. In this case the cross section is plotted
for each value of ∆L (0 ∆L    3) at the angle of measurement which is closest 
to the peak of the DWIA distribution for that value of ∆L. In this reaction, the
DLmax = 6; however, only the values of ∆L ≤ 3 are of interest. To minimize 
the number of terms in the series in DL, a single composite curve was used,
for DL = 4, 5,6; ∆J = 4+, 5–, 6+. The error bars in the figure represent the
uncertainties in the least squares fit arising from statistical uncertainties in the
data.

In concluding this section it should be emphasized that the MDA does not 
provide a routine that can be applied casually to any data set. In practice
it requires some care to establish that the p–h amplitudes used in the DWIA
are reasonable, and that the resulting shapes are indeed characteristic of the
∆L transfers used in the analysis. Properly applied, the procedure provides a
useful measurement of the dominant low-multipole components of the data. 
Small contributions may be identified and semi-quantitative estimates of their
strength may be obtained, but the uncertainty in such estimates is very difficult
to quantify. 

49

7.    SPIN DIPOLE AND HIGHER MULTIPOLE TRANSITIONS 

The previous section has discussed the relation between allowed GT beta
decay transitions, mediated by the transition operato   r     and the cross sec-,



50 W. P. Alford and B. M. Spicer 

Fig. 6.5. An alternative representation of the results of the MDA for the data shown in Fig. 
6.4. In this case, each multipole contribution is shown as a function of excitation energy at the 
angle of maximum cross section for that multipole. Reprinted from [156] with permission.

tion for charge-exchange reactions with ∆L = 0. More generally, a multipole
expansion of the matrix element of the effective interaction includes higher
order terms with transition operators of the form OJ

GT ~ rL ( YL )J with⊗
J = L,L ± 1. The resulting transitions are referred to as forbidden GT tran-
sitions. In contrast to allowed GT β transitions, these proceed with non-zero
momentum transfer with the consequence that the non-central (tensor and 
spin–orbit) parts of the nuclear effective interaction may also make substantial 
contributions to reaction cross sections. 

It should be noted that the proportionality between beta decay matrix ele-
ments and reaction cross sections which is so useful in the analysis of ∆L = 0
GT strength, has not been established for transitions with ∆L ≥ 1. It has not 
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Fig. 6.6. (a) The effect on extracted L = 0 cross section of different choices of particle-
hole configuration for the ∆L = 1 shape in the MDA. At high excitation there may be large
differences in the inferred cross section. Data was for the 51V (n,p) reaction at 200 MeV. (b) The
effect on extracted L = 1 cross section ofusing the two configurations as in Fig. 6.6a for the ∆L = 1
shape in the MDA. The different shapes have very little effect on the inferred cross section. Data 
was for the 51V (n,p ) reaction at 200 MeV.
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Fig. 6.7. Result of the MD analysis of the data for the 120Sn (n,p) reaction, taken at 300
MeV. The error bars represent uncertainties in the least-squares fit to the cross section data arising 
from counting statistics. The shaded areas show the estimate of the cross section arising from the 
particular multipole noted on each panel. Note the absence of any prominent GT peak. 

been feasible to search for such a relation experimentally since very few tran-
sitions of known b decay strength are observable with the energy resolution 
available in cross section measurements. Beyond the experimental problems, 
calculations indicate that there may be large variations in the ratio, especially 
for transitions with DJ = ∆L.

The investigation of higher order multipole transitions has not been driven
by the compelling issues which made the study of the ∆L = 0, GT transition
so important. Nevertheless, for the sake of completeness we present a brief
survey of our present knowledge of the higher multipole transitions. 

7.1.    Spin Dipole Transitions 

The first identification of a dipole transition excited in the (p, n) reaction
was in the IUCF results of Bainum et al. [29] in the same paper in which they 
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showed the strong excitation of the GTGR in 90Zr (p,n) 90Nb at 120 MeV. 
They noted a broad peak at an excitation energy about 9 MeV above the GTGR 
(the peak labelled “g” in Fig. 2.2b) with an angular distribution characteristic
of ∆L = 1 transfer. This excitation is about 4 MeV lower than the location of
the 1– T = 5 analog of the known El GR in 90Zr, and it was suggested that this
state is the T = 4 anti-analog of the El GR.

The systematics of this excitation were investigated by Sterrenberg et al.
[ 178] using the (p, n) reaction at 45 MeV. Though the excitation of spin-flip
transitions is less prominent at this energy than at 120 MeV, they were able
to identify the GTGR and the ∆L = 1 resonance in sixteen targets ranging
from 90Zr to 208Pb. Both resonances shifted towards the IAS with increasing
A, leading the authors to conclude that the shift resulted from the change in
isospin splitting between T and T– 1 states. Soon after this, Horen et al. [ 179]
measured the cross section for excitation of the DL = 1 resonance as a function 
of incident energy in the 208Pb (p, n) reaction. The energy dependence was the
same as for the GTGR leading to the conclusion that this was a spin excitation,
the spin-dipole giant resonance (SDGR).

The properties of the SDGR were investigated further by Gaarde et al. [34],
using data from the (p, n) reaction on targets of mass 40 ≤ A ≤ 208 at 200 MeV. 
In each spectrum, a peak was observed at an excitation energy several MeV
above the GTGR, with an angular distribution characteristic of ∆L = 1 transfer. 
The excitation energy of the peak was fairly well defined, but the cross section
was uncertain because of the large background beneath the peak.

For the spin-flip transitions with ∆L = 1, the SDGR would contain three
components representing total angular momentum transfers DJ = 0, 1 ,2 arising
from the transition operator OSD ~ [r ( Y1 ⊗      ) ]∆Jπ = 0,1 ,2– . They showed that 
for each ∆J value a sum rule analogous to the GT sum rule could be derived
for 0+ targets.

neutron excess (7.1)

It was claimed that the (p,n) cross section at the peak of the ∆L = 1 angular
distribution (θ 5o) was approximately proportional to the square of the spin-
dipole matrix element, independent of ∆J transfer; and they also showed that
a schematic RPA model was able to account for the general features of the
∆ -dependence of the total cross section and excitation energy of the SDGR.

The structure of the SDGR was investigated in more detail by Osterfeld et
al. [180], in an RPA calculation of isovector excitations arising in the 208Pb
(p,n) 208Bi reaction assuming F, GT, El and spin-dipole excitations. They
showed that the strength of the transitions to states with Jπ0+, 1+, 0–, and
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1– (∆S = 0) were all concentrated in a single state. The 1– (∆S = 1) strength
was fragmented, though the state at highest excitation carried much of the total
strength. The 2– states showed little collectivity, with strength spread fairly
uniformly from about 18 to 26 MeV excitation. The lack of collectivity for
the 2– states was explained by the fact that the nuclear transition density for
these states was peaked at a momentum transfer of ∆q 1 fm–1. At this
momentum transfer, the particle–hole interaction is much weaker than at
∆q 0, with the result that the collectivity of such states is reduced. A number
of subsequent RPA calculations have been carried out to study the structure of
the isovector spin response for ∆L = 1 excitations [181, 182]. The different
treatments involve somewhat different model assumptions and approximations,
but all reach conclusions similar to those of [180]. 

The effect of 2p–2h excitations in the target ground state has been calculated 
by Sagawa and Brown [ 183]. For 12C they conclude that such excitations have
the effect of quenching low-lying strength by about 25%. The effect of 2p–
2h excitations in the final state has been considered by Drozdz et al. [ 184]
with the conclusion that mixing between 1p–1h and 2p–2h results in a large
asymmetric spreading of the strength of the resonances, with about 30% of 
the total strength shifted to excitation energies greater than 35 MeV. Thus, the
mechanisms responsible for the missing GT strength are calculated to have
much the same effect on the spin-dipole resonance.

7.7.1.    Experimental Results 

A number of studies dealing specifically with dipole transitions and the 
SDGR have been reported but the interpretation of the results is hampered
by the difficulty of identifying contributions from the different J components.
DWIA calculations show that angular distributions for (p, n) or (n,p) transitions
with ∆Jπ = 1– or 2– are quite similar, and would not distinguish between these.
The angular distributions for ∆Jπ = 0– show a characteristic shape, but the
cross section per unit transition strength is predicted to be at least a factor of 3
less than for other components, so that 0– transitions would tend to be hidden
by the other ∆L = 1 transitions.

In principle, a measurement of suitable spin observables would permit the
identification of the ∆J of the transition [185]. The simplest observable to
measure in the ( , n) reaction is the analyzing power Ay, but it is found that this 
observable is more sensitive to nuclear structure than to the value of ∆J [ 186].
The spin-transfer coefficient ∆ nn, which is measured in the reaction is
predicted to depend on ∆J in such a way that a measurement ofDnn, along with
∆L (from the angular distribution) generally provides a unique determination
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of ∆J. This prediction has been confirmed for F and GT transitions on many
nuclei [ 185] and has been applied in studies of the SDGR [ 187].

A careful study of spin-dipole strength in the 12C (p,n)12N reaction has
been carried out by Gaarde et al. [ 188]. They reported prominent peaks in the
spectrum at excitation energies of 4.2 and 7 MeV in 12N, which showed angular 
distributions peaked near 8o, characteristic of ∆L = 1 for 12C. In addition, the
continuum between 7 and 19 MeV excitation showed an angular distribution
for ∆L = 1. The peak at 4.2 MeV was identified as arising mainly from
a 2– state which was predicted in model calculations. This assignment is
supported by the identification of the analogue state at 19.4 MeV excitation
in 12C in the 12C(e,e') reaction [189]. The peak at 7 MeV was identified
as arising from transitions to several 1– states which were predicted in the
same calculation which was based on an extension of the Cohen–Kurath model
[ 190] to 1 excitations [ 191]. DWIA calculations were carried out using the
model wave functions, and the results provided a good fit to the measured cross 
section for ∆L = 1 transitions. It was noted, however, that the calculated ratio
σ / B (∆L = 1) showed a strong dependence on ∆J. This means that the model 
results may be compared with the data, but that the ∆L = 1 strength cannot be
extracted from the data in a model-independent way, as for ∆L = 0 strength.

It is interesting to note that a later study of the 12C ( ) reaction [53]
showed that the measured value of Dnn was consistent with the assignment of
Jπ = 2– for the 4.2 MeV state, but not with the assignment of 1– for the 7 MeV
state. This result has been confirmed in a study of the analogue states excited
in the 12C ( ,2He) reaction [73] in which case a measurement of the tensor
analyzing power provides the J discrimination.

Another case in which a serious effort has been made to identify the com-
ponents of the SDGR is in the case of the 16O ( , ) and 40Ca ( ) reactions
[ 187]. For both cases, the measurement of Dnn provides an indication of the 
J-dependence of the cross section which is consistent with results of a TDA-
DWIA calculation. Of particular interest is the identification of the elusive
Jπ = 0– strength which is predicted to lie at the high-excitation edge of the
SDGR.

A measurement of spin-dipole strength has also been reported in connection 
with a study of the 90Zr (n,p) reaction [52]. Several model calculations [182,
192, 193] provide reasonable overall agreement with the data although all
the calculations show more pronounced structure than does the experimental
data. Wambach et al. [182] found that the inclusion of 2p–2h excitations did
not spread the 1p–1h strength as much as had been found in earlier structure
calculations, such as [ 109]. Yabe [ 192] showed that by empirically increasing 
the spreading width from 2 to 8 MeV the prominent structure was suppressed 
and good agreement with the data was obtained. 
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In the 208Pb (n,p) reaction, both the GT and SD giant resonances are Pauli-
blocked to first order, but measurements at TRIUMF [194] show a peak in the
proton spectrum at 5.5 MeV excitation which was interpreted as a ∆L = 1 peak,
However, later MD analysis [ 177, 195] showed that this peak contained both 
∆L = 0 and ∆L = 1 components in roughly equal proportion. RPA calculations 
[ 181] predict a SDGR with a centroid at an excitation energy near 7 MeV, about
1.5 MeV higher than is observed. Also, Krmpotic, Ebert and Wild [ 196] have, 
in a calculation of the charge-exchange collective modes in the lead region, 
predicted that in 208T1, the major portion of 0– and 1– strength is near 7 MeV
excitation, while the 2– strength is spread over the region from about 8 to
20 MeV. 

Finally, it may be noted that several measurements of SD strength distri-
butions in (2p1f) shell nuclei have been reported both in (p,n) [148, 149, 197]
and (n,p) [27, 150, 151, 156] reactions, but no serious effort in modelling these
results has been reported. 

In summary we note that extensive data have been reported on the excitation
of spin-dipole transitions in charge-exchange reactions. The general features 
of the results, including the quenching of predicted strength, can be understood
within the same theoretical framework as for GT transitions. More detailed 
and careful comparisons between experiment and theory should be stimulated 
by future ( , ) and ( ,2He) measurements which may provide strength distri-
butions for each of the predicted Jπ components of the SDGR.

7.2. L = 2 Strength 

Relatively little work has been reported on the study of isovector excitations 
with angular momentum change ∆L = 2. Auerbach and Klein [181] have
carried out RPA calculations for both (p,n) and (n,p) reactions on 60Ni, 90Zr
and 208Pb. Calculations were reported for transition strengths and excitation
energies for all three components of the excitations with Jπ = 1+ ,2+ and 3+. 
The calculated strength is 85 to 105% of the non-energy weighted sum rule 
limit for all targets and both reactions. Average excitation energies in the (n,p)
reaction range from 22.5 MeV for 60Ni to 15.6 MeV for 208Pb. For the (p,n)
reaction energies are nearly constant at about 33 MeV. 

The only clear experimental result is for the 10B (p,n)10Cg.s. reaction at
186 MeV [145]. In this case the ground state group is well resolved and
provides a unique example of a transition with ∆L = 2, ∆J π = 3+. The
measured angular distribution is fitted well in both shape and magnitude by
DWIA calculations which assume 1p–1h excitations within the (1s, 1p, 2s1d)
shell model space. 
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The most promising approach to broader experimental studies of these
excitations is through the multipole decomposition analysis of the continuum
in (n,p) measurements, since the ∆L = 2 excitations are predicted to occur at
substantially lower excitation in the (n,p) than in the (p,n) reaction. In this
connection it is useful to recall that in such an analysis, multipole contributions 
up to some maximum value of ∆Lmax are assumed, and futher contributions
are neglected. In fact, the component of largest ∆L used in the analysis really
measures contributions with ∆L ≥ ∆Lmax, and may not provide useful data 
on the single component ∆L = ∆Lmax. Thus, in the analysis of (n,p) data
from targets of medium mass nuclei, ∆Lmax = 3. In this case, estimates of
the contributions with ∆L = 0, 1 , 2 should be meaningful, while the component
with ∆L = 3 is probably not. In the heavier nuclei, interest is limited to ∆L-
values up to 3, and the final ∆Lmax was in most cases a composite angular
distribution for ∆L = 4,5,6.

A striking result from the multipole decomposition analyses of (n,p) re-
actions studied at TRIUMF is the lack of ∆L = 2 strength in most spectra
[155, 150, 156, 151]. In fact, the only cases where a substantial ∆L = 2 con-
tribution is found are for targets of 55Mn, 120Sn, 181Ta and 208Pb. Figure 7.1
shows the results of MDAs of data from targets of 55Mn and 56Fe [151], nu-
clei adjacent in the periodic table, but showing very different distributions of
strength for ∆L = 2 and 3. Also, Fig. 7.2 shows the results of MDAs of data
for 181Ta and 238U, targets which both show rotational band structure at low
excitations, indicating a quadrupole deformation. Again, there is a marked
difference in the distributions of L = 2 and 3 strength in these two cases.

Another situation in which ∆L = 2 strength is unexpectedly small is found
in charge-exchange pion scattering [198]. Conventional model calculations
predict that the monopole, dipole and quadrupole giant resonances should be
strongly excited. The monopole and dipole resonances were observed but no 
compact electric quadrupole strength was identified. A possible mechanism 
to explain this missing strength has been proposed by Leonardi et al. [ 199]. 
In a schematic model in which the nuclear Hamiltonian includes an isovector
quadrupole term they show that the effect of such a term suggests the need 
to generalize both the Hamiltonian and the quadrupole transition operator to 
include non-local terms. With a suitable choice for the magnitudes of the 
non-local contributions they found that the total quadrupole transition strength 
was strongly damped for ∆T = -1 [(p,n) transitions], and was almost zero
for ∆T = +1 [(n,p) transitions]. It must be noted however that the theory
was developed for non-spin flip transitions, and it is not clear how applicable 
it might be for the isovector spin flip transitions involved in (n,p) and (p,n)
reactions.
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Fig. 7.1. Results of the MD analyses for (a) the 55Mn (n,p) reaction, and (b) the 56Fe (n,p)
reaction both at 200 MeV. Note the great difference in the ∆L = 2 contribution in the two cases.
Reprinted from [151] with permission. 
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Fig. 7.1. (continued).
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Fig. 7.2. Results of the MD analyses for (a) the 181Ta (n,p) reaction at 300 MeV (upper four 
panels), and (b) the 238U (n,p) reaction at 320 MeV (lower four panels). The error bars and
shaded areas have the same significance as in Fig. 6.7. Note the large difference in the ∆L = 2 and
∆L = 3 contributions, even though both targets have well-defined rotational band structures at low
excitation.
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It should be noted that large components with ∆L = 2 have been reported
from analyses of spectra of (p,n) reactions from (2p1f) nuclei [148, 149]. 
However, these analyses assumed ∆Lmax, = 2, so that any contribution with
∆L > 2 would be included with ∆L = 2.

At the moment it must be concluded that the absence of significant strength
with ∆L = 2 in most of the (n,p) results is not well understood.

7.3.    An Attempt at Systematics for the L = 1 and L = 3 
Transitions

As the mass of the target nucleus increases, the centroid energy of the giant
resonances decreases as A–1/3 [200], and therefore a large number of ∆L-values
will be compressed into an excitation energy region whose range is constant.
This means that, in targets of heavy nuclei, the ∆L = 3 giant resonance will
most certainly be present. Indeed, as has been noted earlier, ∆L-values up 
to 7 or 8 are possible, theoretically at least, in the case of 238U. Because the 
single particle levels one oscillator quantum above the Fermi surface, in closed 
shell nuclei at least, cluster around the neutron binding energy, the transitions 
will occur at relatively low excitations, say below about 30 MeV excitation. If 
consideration is limited to 1p–1h transitions of energy 1 then it is reasonable
to expect that these will occur at the lower excitation energies. Indeed, it is 
known that, even when a residual interaction is used in a nuclear structure
calculation involving the use of single particle energies, the calculated levels 
always lie within the excitation region below about 25 MeV (see, for example, 

The only ∆L-values of interest in the heavy nuclei (A > 80, say), those which 
can be described in terms of 1p–1h transitions of 1 unperturbed energy, are
the ∆L = 1 and ∆L = 3 transitions. The strength of these giant resonances
can be calculated using sum rules given by Macfarlane [202] for T-raising and
T-lowering components of isovector excitations. For (n,p) reactions the sum
rule is written: 

[20 1]). 

(7.2)

where L is the multipole order, J the spin of the final state and ρ, ρ' represent 
the single particle (nlj) components of the wavefunctions of initial and final
states. The quantities nπ

ρ and nπ
ρ' are the occupation probabilities of the proton

and neutron single particle states respectively.
Given the restriction to ∆L = 1 and ∆L = 3 resonances arising from 1p–1h

transitions it is feasible to evaluate the sum rule and this has been done for
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Fig. 73. Results ofthe multipole decomposition analysis of data from the 208Pb (n,p) reaction
at 200 MeV after subtraction of the quasifree scattering contribution. The shaded areas have
the same significance as in Fig. 6.7.

targets of 90Zr, 120Sn, 181Ta, 208Pb and 238U, using occupation probabilities 
from [203]. 

To make acomparisonwith experimental results, these should include only
the 1p–1h, 1 excitations assumed in the calculation. A simple plausible
appproximation to this requirement may be obtainedby subtracting a quasifree
contribution which must consist of transitions of excitation energy at least 1 
from the raw data. Such a subtraction has been made by Long [177] for results
of (n,p) measurements on targets of 90Zr, 120Sn, I81Ta, 208Pb and 238U, and the 
spectra then analyzed with a MDA. The result ofsuch an analysis for the 208Pb
(n,p) reaction is shown in Fig. 7.3. 

A comparison ofthe measured cross sections, for DL = 1 and DL = 3 with
strengths from the sum rule calculation is shown in Fig. 7.4. In this comparison 
it was assumed that the cross section was proportional to the strength and that
the D -dependence of the proportionality could be neglected. The factor of
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Fig. 7.4. Comparison of the results ofthe limited sum rule calculation (squares) with measured 
cross sections for transitions with DL = 1 and 3 (circles). A quasifree contribution was subtracted
from the data before multipole decomposition analysis (see text). 

proportionality was determined for each value of DL separately by normalizing
calculations to the data. 

Agreement between theory and experiment is reasonable, considering the 
approximations made, except for the case of 181Ta. The deficiency in exper-
imental strength for both DL = 1 and DL = 3 in the case of 181Ta may well
be due to the spreading of 1p–1h strength in both cases by the deformation as
well as by 2p–2h configurations. For both DL = 1 and DL = 3 transitions the
trends shown make physical sense. In the case of the DL = 1 transitions, the
yield rises to flat maximum at about A = 150, and then falls. The decrease is
due to the commencement of Pauli blocking of these transitions. By contrast,
the DL = 3 yield rises continually through this part of the periodic table. This
must be due, at least in part, to the A–1/3 dependence of the DL = 3 resonance 
energy bringing more and more of the cross section for this multipole into the
excitation region considered. 

7.4.   Stretched States 

There is very little information available regarding isovector resonances
with large angular momentum transfer (DL 3). As noted in the discussion
of Section 6 the measurement of the cross section in the continuum for a given 
multipole order becomes increasingly uncertain as DL increases, and charge-
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exchange studies to date have provided little useful information about such
resonances.

There is however another class of transitions of high multipole order, the
stretched-state transitions, for which interesting results have been obtained.
Stretched states are 1p–1h excitations with total angular momentum J= Jmax =
jp + jh with jp = lp + 1 , jh = lh + 1 where lp, 1h are the largest orbital angular-2-2
momentum within a given oscillator shell. Thus a stretched state is described as
a unique 1p–1h configuration with the maximum angular momentum possible
within the model space. 

Such states have been extensively studied in (p,p') (e,e'), and (p, p')
reactions. Examples of early measurements are given in references [204, 205,
240]. In the case of the 28Si(p,p') reaction, polarized protons over the energy
range 80 to 180 MeV have been used [241]. The energy and momentum-
transfer dependences of the differential cross section and analyzing power
were shown to be capable of testing the various forms of the interaction used. 
It was shown that although the 1p–1h configuration was unique, this was not
an eigenstate of the nuclear Hamiltonian, so that the strength of the excitation 
was spread over other states by residual interactions. The cross section for 
excitation of a particular state however was proportional to the strength of the 
stretched configuration in the wave function of that state [206]. Thus the (e, e’)
reaction, involving the well understood electromagnetic interaction, may be 
used to determine the 1p–1h transition density; this may then be used in the
analysis of (p,p') results to study the effective N–N interaction.

It had been pointed out by Moffa and Walker [207] that the study of such
states with charge-exchange reactions would provide a valuable addition to 
the information available from the (e,e') and (p,p') reactions. For instance
in the (p,p') reaction both isoscalar and isovector transitions are excited, with
only isovector excitations in charge-exchange reactions. In the absence of the
isoscalar background, transitions of interest should be more clearly resolved 
in charge-exchange measurements. Also, comparison of analog states excited
in the two reactions permits the identification of the isospin of the inelastic 
excitations, and in the case of the (p,n) reaction the determination of the
isospin, Tf = T0 or (T0 – 1), of the states in the final nucleus.

The comparison of inelastic scattering with charge-exchange results implies 
the excitation of a particle into the next higher oscillator shell, or a 1
h excitation. However, excitations are also possible (GT transitions for 
instance), but        stretched-states are necessarily n–p or p–n excitations, which 
can only be reached with a charge-exchange reaction.

The experimental study of stretched state excitation via charge-exchange
reactions has been carried out largely by the Kent State group of Anderson, 
Watson et al.. In an early measurement [208] they identified major components 
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of the strength inreactions l6O (p,n) 16F(4–), 28Si(p,n) 28P(6–)and 48Ca(p,n)
48Sc (7+). The first two of these are 1 excitations which had been studied in
(e, e') and (p,p') reactions. The 48Sc (7+) state is an exampleof       a excitation 
which is only accessible via the (p, n) reaction. For the 16O and 28Si targets, the
measured differential cross sections showed angular distributions with the same
shape as in corresponding (p,p') measurements. The magnitudes of the (p, n)
cross sections were a factor of 2 larger than for (p,p') as expected from the ratio
of squares of the appropriate Clebsch–Gordan coefficients. However, DWIA
fits to the angular distribution using a pure 1p–1h transition density required
renormalization by factors of 0.3 1 and 0.23 respectively, indicating the strong
fragmentation of the strength, as found in the (p,p') and (e, e') results.

A number of subsequent measurements have been reported for both the
(p,n) [209, 210, 211, 212] and (n,p) [213] reactions.

The results for excitations have provided new data on this class of
stretched states. Measurements for the excitations however provide only
a limited extension of the inelastic scattering results. At present, the most
interesting aspect of the study of stretched configurations is the fragmentation
of the strength [206]. Charge-exchange measurements have not contributed to
such studies though, because of the relatively poor energy resolution available,
about 300 keV for (p,n) measurements and 1 MeV for (n,p).

8.    QUASIELASTIC SCATTERlNG 

Conceptually, quasifree, or quasielastic, scattering is scattering of an inci-
dent nucleon from a nucleon within a nucleus at an incident energy high enough 
for the struck nucleon to be considered unbound. This reaction has proved use-
ful in the direct investigation of the single particle structure of nuclei, via the 
(p,2p) reaction, and also in the study of the effect of the nuclear medium on
the nucleon-nucleon interaction at large momentum transfers.

8.1.    Spectral Shapes 

Quasifree scattering was first studied in the (p,p') reaction, with early mea-
surements of the energy spectrum by Chrien et al. [214,  2 15] showing a broad 
peak centered near the energy corresponding to that for free NN-scattering. Such
spectra have been fitted reasonably well with calculations based on the semi-
infinite slab model [216]. A number of further measurements have been re-
ported, including spin observables as well as cross sections. Moss et al. [217]
measured the angular distribution of the continuum in the (p,p') reactions on
116Sn (800 MeV), and the spin transfer coefficient Dnn’ for 208Pb (400 MeV) and 
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of 90Zr (500 MeV) and concluded that the data were satisfactorily described by a 
model which treated properly the surface nature ofthe interaction and the effects 
ofPauli blocking. Chen et al. [218] measured analyzing power and spectral data
for the inelastic proton scattering from 208Pb at 290 MeV, for excitation energies
up to 160 MeV. They concluded that the semi-infinite slab model of Esbensen
and Bertsch [219] gave a good description of the shape of the continuum. They 
noted that the analyzing power, measured at the quasielastic peak, was less than
the free nucleon value at this momentum transfer, and that this was a possible 
indicator of relativistic effects. 

A summary of such measurements was provided by Smith [220] in which
he investigated the effects of several approximations in theoretical treatments. 
It was concluded that two-step contributions to the cross section were small, al-
though they became increasingly important at higher excitations. Particle–hole 
interactions are important and calculations of the nuclear response must include 
them. The damping ofthe 1p–1h response through 2p–2h mixing must be taken
into account, particularly for the isovector spin-flip part ofthe interaction. It was 
also important to use the “optimal” reference frame for specification of the NN-
scattering amplitudes, and to include the effects ofdistortions in impulse approx-
imation calculations. The final result was to provide a simple but comprehensive
model for the description of scattering to the continuum. 

In another study, Häusser et al. [22 1] measured a complete set of polariza-
tion variables in the inelastic proton scattering from 54Fe at 290 MeV. They also
demonstrated the dominance of the isoscalar component in the (p,p') reaction
by taking data from the purely isovector 54Fe (n,p) reaction [27], and, using the
Clebsch–Gordan coefficients relating the scattering cross section to the charge
exchange cross section, showed that the isovector scattering cross section is but 
a small part of the total. 

In contrast to this situation, charge exchange reactions involve only the
isovector part of the N–N interaction and should permit simpler comparisons
between theory and experiment. Energy spectra analogous to those measured
for the (p,p') reaction have been measured for the (p,n) reaction by Taddeucci
et al. [222] and Prout et al. [223]. The (p, n) quasifree peak has a shape similar
to that in the (p,p') reaction, but the peak is found to be shifted to an excitation
energy about 25 MeV higher than that of the proton peak at the same momen-
tum transfer. A similar shift had been observed in inelastic electron scattering,
which also involves an isovector probe. The magnitude of the shift is shown in 
Fig. 8.1 which is taken from [223]. This result has been accounted for, at least 
qualitatively, by Wambach [224] using a sum rule approach based on the theory 
of Fermi liquids. Later, Pandharipande et al. [225] arrived at the same result in
calculations for 2H, 4He and 16O using realistic models of nuclear forces. 
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Fig. 8.1. The quasielastic peak position, as seen in (e,e'), (p,p' ), (p,n) and (3He, t) reactions.
These are compared with free NN kinematics (solid line). Reprinted from [223] with permission.

Similar measurements for the (3He, t) reaction show a peak shift as for the
(p, n) reaction at low momentum transfer but this peak shift decreases in excita-
tion at higher momentum transfers until it moves below the line describing the
(p,p') reaction, as is shown in Fig. 8.1. This particular feature is not understood,
though it has been suggested that it may be the result of greater absorption or 
distortions in the (3He, t) reaction. Support for this suggestion comes from mea-
surements of the quasifree spectrum in the (p, n) reaction at 186 MeV where the
shift of the quasifree peak mirrors the (3He, t) data for large momentum transfer.
In this case, the neutrons have energies of less than 100 MeV and will be subject 
to large distortions [226]. 

In summary, the shape of the quasifree peak in both (p,p') and (p, n) experi-
ments is fitted satisfactorily using the semi-infinite slab model, The shift in the 
centroid of the peak for isovector probes appears to arise from collective effects 
in the nuclear medium but current models do not provide a quantitative under-
standing of the shift. 

8.2.    Nuclear Response Functions 

The effect of p–h interactions on the quasielastic response has been con-
sidered by Alberico et al. [227]. In an initial paper they studied the collective



68 W. P. Alford and B. M. Spicer 

response of symmetric, infinite nuclear matter to a spin-isospin sensitive probe
within an RPA framework. The elementary particle–hole interaction carries 
the quantum numbers S = T = 1, but Ms, the projection of S on the direction
of the momentum transfer must also be specified. The longitudinal channel
with coupling ( ) corresponds to M, = 0, and arises from pion exchange. 
The transverse channel coupling ( x ) corresponds to Ms = ± 1, and arises
from r-exchange. The two separate channels are not coupled, and so can be
investigated separately. They calculated that the collective effect produces
measurably different effects in the two responses. In the longitudinal channel, 
they found that the response was enhanced due to the attractive particle–hole 
interaction, with a shift of its maximum effect to smaller momentum transfer 
(a softening). The transverse response on the other hand, was found to be 
quenched and hardened; both shifts were with respect to the response of a free
Fermi gas. The result of these collective effects was that the value of the ratio of 
longitudinal to transverse responses, RL/RT, was predicted to be significantly
greater than unity for large momentum transfers as in the quasifree region.

This prediction has led to a number of interesting experiments. In the first
of these, Carey et al. [228] measured the diagonal spin transfer coefficients for
the quasifree scattering of 500 MeV protons on 2H and 208Pb at a momentum
transfer of 1.72f –1, corresponding to the peak of the quasifree cross section at
18o. Their measurements yielded a value of the ratio of the responses which was
close to unity, in serious disagreement with predictions. They showed that the
inclusion of surface effects in the scattering resulted in a substantial reduction
in the predicted ratio, though it was not enough to produce agreement with the
data. It was also noted that the interpretation of this result was complicated by
the fact that both isovector and isoscalar interactions were involved in inelastic
proton scattering. 

In one of the studies attempting to understand this result, Ichimura et al.
[229] calculated RL and RT for the conditions of this experiment. Three factors 
were found to be most important in decreasing the ratio. The effect of finite
nuclear size was found to be large, especially in the longitudinal response.
The effects of distortion decreased the softening of the longitudinal response,
and the hardening of the transverse response due to nuclear correlation, but
the enhancement and quenching remained in the respective responses. The
inclusion of the isoscalar component in the analysis also decreased the ratio.
These effects combined to reduce the calculated ratio to approximately 1.4 at
an energy loss of 30 MeV, decreasing to unity at an energy loss of 120 MeV.

The calculations of Pandharipande et al. [225], which were referred to
earlier, also predict an enhancement of the spin-longitudinal response over the
spin-transverse response of about 25% in nuclei such 16O at q = 1.77 fm–1.
Perhaps more interesting is their prediction that in 2H and 4He, the longitudinal
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response is significantly enhanced over the transverse response, even without
any pND coupling effects. They also comment that their calculated energy-
weighted sums are larger than those predicted by the RPA by some 50% for
momentum transfers below 2 fm–1 .

Subsequent experiments have measured the isovector responses without 
isoscalar contributions by utilizing the (p, n) reaction. McClelland et al. [230]
measured a complete set of spin transfer coefficients for the ( , ) reaction
on 2H, 12C and Ca targets at 494 MeV and q = 1.72f–1 The ratio RL/RT

was again found to be close to unity, and this result was confirmed by more
detailed measurements on these same targets by Chen et al. [231]. In the
most recent experiment Taddeucci et al. [232] investigated the momentum
dependence of the two responses with ( , ) measurements at 494 MeV
on targets of 2H, 12C and Ca at angles of 12.5o (q = 1.2f –1), 18o (q =
1.72f –1) and 28o (2.5f –1). They concluded that the longitudinal response
was consistent with RPA calculations [229] except at 12.5o where it was
significantly larger. The transverse response was significantly enhanced over
the RPA predictions, and over that measured in the (e, e') reaction. Thus the
earlier results which failed to show an enhancement in the ratio were shown
to arise as a consequence of an enhancement in the transverse response. The
cause of this enhancement is still not understood. There was a suggestion that 
it could be explained if distortion effects were different in the two channels,
but a transverse distortion twice as large as the longitudinal distortion would 
be required to fit the data. 

Brown et al. [233, 2341 have noted that a ratio of unity, implying equal
responses in both transverse and longitudinal channels would result if the 
isovector tensor interaction was negligible in the measurements. The vanish-
ing of the tensor force at q = 1.72f –1 would require a r meson reduced mass
of 0.84 times the free mass, but is not clear that this would account for the 
observed momentum dependence of the ratio.

In a different approach to the problem, Horowitz and Piekarewicz [235] 
calculated the ratio of the spin-longitudinal to spin-transverse responses in 
quasielastic (p, n) scattering using a relativistic random phase approximation
to the Walecka model of nuclear structure. Inherent in this model is a dy-
namical reduction of the nuclear mass in the nuclear medium, that is, the 
need for a reduced nucleon mass, which in turn is responsible for a shift in 
the position and width of the quasifree peak. This modification to the peak 
shape is sufficient to account for the quenching and hardening of the trans-
verse response relative to a free Fermi gas. A further effect caused by the
reduced nucleon mass is a suppression of the pNN-coupling in the medium,
which reduces the enhancement of the longitudinal response, thus predicting 
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the ratio of spin-longitudinal to spin-transverse responses to be close to unity,
as seen experimentally. 

Further predictions were provided by Hillhouse and De Kock [236] on the 
basis of relativistic plane wave calculations of complete sets of polarization
variables for targets from 12C to 208Pb, and for incident energies from 135 to
500 MeV, at fixed momentum transfer of 1.97 fm–1 . They noted that only the
analyzing power shows an unambiguous relativistic signature at the highest
energy, a fact pointed out earlier by Horowitz and Murdock [237]. They also 
pointed out that the polarization transfer observable, Dnn' , was extremely
sensitive to whether the pion–nucleon vertex was taken as pseudoscalar or
pseudovector, particularly for incident energies under 200 MeV, and that this
sensitivity should not be masked by the effect of spin–orbit distortions nor
any “effective mass” effect. 

The first experiments to look for such effects were those of Hicks et al. 
[238, 239] which measured analyzing powers as well as cross sections in the 
12C, 54Fe ( ,n) reactions at 290 and 420 MeV. They noted that the shape of
the quasifree spectrum was target dependent, indicating the need for caution 
in any use of a “universal” model for quasifree scattering. It was also found 
that analyzing powers were decreased with respect to the free N–N scattering
values for 12C at both incident energies, and for 54Fe at 290 MeV, as predicted
by [237]. 

Another experiment which has specifically investigated relativistic effects
on spin observables is that of Wang et al. [226]. In addition to measurements
of the ( p , n ) quasifree cross section noted earlier, they also measured the
spin observables Ay, P and Dnn for 10B ( , ) at 15o and 20o. For the first
two observables there is very little difference between free-nucleon-values
and the relativistic predictions. For Dnn however, the data are in reasonable
agreement with the relativistic prediction with the assumption of pseudovector
pion–nucleon coupling, and in clear disagreement with that for pseudoscalar 
coupling.

The relativistic plane wave impulse approximation has been successful
in fitting some of the experimental results of isovector quasifree scattering.
It is found, however, that it is not clearly superior to more conventional ap-
proaches, and in some cases the non-relativistic theories show better agree-
ment with data [239]. 

The study of quasifree scattering in the (p, n) reaction has provided impor-
tant new insights about the isovector effective interaction at large momentum 
transfer. Though many of the results appear to be understood, there are still 
interesting problems to be addressed, such as the shift of peak in the quasifree 
spectrum, and the observed enhancement of the transverse nuclear response. 
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Our review of charge-exchange reactions has attempted to describe the 
development of an important subfield of nuclear physics following the intro-
duction of new facilities which provided important new data. This occurred at 
a time when nuclear physics itself was in ferment with new ideas, originating 
in the standard model of quarks, leptons and unified forces. For almost a 
decade the investigation of charge-exchange reactions unfolded with consider-
able drama, with hints of the importance of nucleon substructure in low-energy
nuclear physics. As we have shown, the end of the drama yielded not that Holy 
Grail, but rather a great deal of very good and very rich nuclear physics. 

Recognition of the parallel between allowed beta decay and nuclear charge-
exchange reactions is now about forty years old. The correspondence was 
demonstrated in 1962 for Fermi transitions in the discovery of the strong 
excitation of the isobaric analogues of target ground states in the (p, n) reaction.
These transitions were mediated by the isospin-flip, non spin-flip component of 
the nucleon-nucleon interaction, and provided a striking example of a nuclear 
giant resonance. Soon after this the existence of a second giant resonance was
predicted, arising from the spin- and isospin-flip, or Gamow–Teller part of the 
nucleon-nucleon interaction, and very powerful model-independent sum rules 
were given for the total strengths of these resonances. Over the next decade 
many (p, n) measurements were carried out to investigate the properties of the
Fermi and Gamow Teller parts of the effective interaction, but the interpretation 
of the results was hampered by the low beam energies available for such studies, 
and the GT giant resonance was not seen. 

Major breakthroughs in this field came with the development of new ac-
celerator facilities in the 1970's, first at Michigan State University and then at
Indiana University. At IUCF it was clearly shown that at energies above about
100 MeV the (p,n) cross section at 0o provided a quantitative measurement
of the strength of the GT b- transition between the two states involved. This
result was to provide the impetus for major advances in the understanding of 
nuclear structure and effective interactions over the next decade. 

The most exciting development was the demonstration that only about half
the total strength required by the GT sum rule could be identified in (p,n)
measurements at energies near the peak of the GT resonances. This result, 
following on a decade of speculation about the role of nucleon substructure 
in nuclear physics was immediately interpreted as evidence for mixing of the 
high energy D-resonance with the low-lying nuclear states involved in GT 
transitions. This “missing strength’’ problem led to a strong polarization of
opinion regarding the importance of D excitations in nuclear structure and
stimulated a great deal of further work.
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Although the lack of observable GT strength is consistent with the existence
of D excitations, this turned out to be not the only possible explanation. Un-
fortunately there is no unambiguous signature of D excitations in the relevant 
data of charge-exchange reactions, and the resolution of the missing strength 
problem has emerged mainly in the results of a variety of model calculations. 
By now it is generally agreed that the missing strength can be accounted for 
in terms of excitations of the target ground state, plus spreading of the 1p–1h
excitations over more complex nuclear configurations. The missing strength
appears to be spread fairly uniformly over many tens of MeV in the final nucleus
where it is unlikely to be detectable with current experimental capabilities. If D
excitations are relevant, they make only a minor contribution to the structure of
low lying excitations or to the total missing strength. Beyond the question of D
excitation in nuclear structure, the study of GT transitions and the GTGR have
led to important advances in our understanding of the isovector effective inter-
actions. By the choice of suitable transitions (Jπ = 0+ → Jπ = 1+ for GT and 
Jp = 0+ → Jπ = 0+ for F transitions) nuclear states serve as filters to permit 
the study of (almost) pure single components of the nucleon-nucleon effective
interaction. Measurements of the 14C (p, n) reaction leading to the 2.13 MeV,
0+

. state and the 3.95 MeV, 1+ states of 14N have provided a determination of 
the energy dependence of the F and GT components of the interaction from 60
to 800 MeV. Model calculations have been able to account for the GT com-
ponent, but above 200 MeV the predictions for the F component are in rather 
poor agreement with the data. 

Another determination of the GT effective interaction is provided by the
location of the GTGR. This is sensitive to the particlehole interaction involved
in the 1p–1h excitations which make up the giant resonance. Calculations have
shown that this interaction, (i.e., the location of the GTGR) is satisfactorily
accounted for in terms of a correlated one-boson (p+ r) exchange.

In quite another direction there have been interesting applications of results 
of GT studies to astrophysical problems. One of these is the use of the (p,n)
reaction to measure b- strengths needed for the calibration of solar neutrino
detectors. The transitions of interest are all rather weak however, which implies 
large uncertainties (perhaps as much as a factor of two in some cases) in the 
measured strengths. In spite of such large uncertainties the measurements have
provided information which is useful in establishing the suitability of various 
materials such as 127I which have been proposed for new detectors.

Early on, in studies of the missing strength problem, it had been suggested
that measurements of (n ,p ) cross reactions, corresponding to b+ decay or
electron capture, could provide an unequivocal signature for excitations.D
This led to the development of several new spectrometers for intermediate 
energy (n,p) measurements, which were able to produce data of similar quality
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to the (p, n) results. As it turned out the (n,p) results did not resolve the missing
strength problem. They have however provided extensive data on GT strengths 
for electron capture on nuclei in the iron–nickel region. These results are 
needed for the calculation of pre-supernova collapse of massive stars initiated 
by the onset of electron capture reactions at high temperatures. Little data
has been previously available on these electron capture cross sections, and in
some cases the (n,p) results have led to substantial changes in estimates of the
relative importance of different nuclear species in initiating stellar collapse. 

The above discussion has emphasized the importance of GT transitions with 
angular momentum transfer ∆L = 0, corresponding to allowed b- or b+ decay.
Nuclear transitions of higher multipolarity have also been investigated though,
with DL 1. The spin dipole giant resonance with ∆L = 1, ∆Jπ = 0– , 1 – , 2–
is a prominent feature of (p, n) or (n,p) spectra at angles and excitation energies
corresponding to momentum transfer Dq    0.5 – 1 .0fm–1. Model calculations 
are able to give a reasonable account ofobserved strength distributions, but more
detailed model comparisons are limited by our inability to clearly identify the
three different components of the resonance. 

The same measurements that show the spin dipole giant resonance as an
ubiquitous feature of nuclear excitations have yielded another rather surprising
result. This is the almost complete absence of ∆L = 2,or quadrupole strength 
in many (n,p) reaction cross sections. A model to explain this result has
been proposed, based on non-local contributions to the quadrupole part of the
model Hamiltonian and the quadrupole transition operator, but this remains an 
interesting problem for further investigation. 

The other important problem that has been investigated in the last few years
is that of quasifree charge-exchange scattering. Early predictions of the ratio of
the spin longitudinal to spin transverse response in this reaction had been made 
but were found to be in serious disagreement with experimental results. The 
disagreement has been shown to arise in part because of inadequate treatment of 
distortion effects. There is however some suggestion that the nucleon-nucleon
effective interaction is modified in the nuclear medium in a way that is not fully 
understood at present. 

Finally, we note that the last few years have seen the development of
new facilities for the study of charge-exchange reactions using more massive 
projectiles to initiate reactions of greater complexity than (p, n) and (n,p).
These include (d, 2He), (3He, t), (6Li, 6He) (12C, 12B) and (12C, 12N). In
addition to providing cross section data the (d, 2He) and (6Li, 6He) reactions
can be studied using tensor polarized incident beams and this may lead to
major advances in the identification of the different components of the giant 
resonances with ∆L > 0.
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At this point we can say that our understanding of the GT giant resonance 
as an important mode of nuclear excitation is reasonably complete. Our under-
standing of the response function for large momentum transfers is much less 
so, and we may expect further studies to answer outstanding questions in this 
domain. While we can look forward to much interesting new work in charge-
exchange studies it is difficult just now to imagine developments that will have
the same impact on the field of nuclear physics as did the discovery about 1980 
of the dramatic appearance of the GT giant resonance as the dominant feature 
of intermediate energy (p, n) reactions.
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1.    INTRODUCTION 

Since its initial investigation at SLAC in the late 60's, deep-inelastic lepton 
scattering has provided a wonderful tool to explore perturbative QCD and 
to test many features of the Standard Model. The crucial theoretical tools 
needed to understand deep-inelastic scattering, namely the operator product 
expansion and the renormalization group (which are now used throughout
particle physics), were developed in parallel with the data taking. Using these 
techniques one can often eliminate the need to understand the detailed structure
of a target in order to make a rigorous test of QCD. Famous examples include 
the Adler, Gross, Llewellyn Smith and Bjorken sum-rules.

With perturbative QCD now well tested and established there are three 
important frontiers in deep-inelastic scattering. Two of these, namely the 
behavior at very small values of Bjorken x (defined in Section 2 below) which 
is currently being explored at HERA and the higher-twist corrections (again see 
Section 2), have traditionally been the domain of high energy physicists. The 
third frontier, which lies at the boundary of nuclear and particle physics, is our 
major concern. This is the wealth of information that deep-inelastic scattering 
data contains on the non-perturbative structure of hadrons [ 1]. 

The idea of using deep-inelastic scattering to probe non-perturbative struc-
ture first reached prominence in connection with the discovery of the nuclear 
EMC effect [2]. The fact that the structure function of a nucleus was not 
simply A times the structure function of a free nucleon, even in the valence 
region, suggested that the quark structure of the nucleon itself may be changed 
inside nuclear matter. Then quark degrees of freedom would play a vital role 
in understanding nuclear structure. This is one issue which still needs further 
study and we refer the interested reader to some recent reviews [3,4].

We shall focus on the non-perturbative structure of the free nucleon and 
particularly its meson cloud. Although the role of the pion cloud of the 
nucleon in deep-inelastic scattering began with Drell, Yan and Levy in 1970 
[5] and Sullivan [6] in 1972, modem interest in it also sprang from the nuclear
EMC effect. Realizing that virtual pion exchange plays a crucial role in 
nuclear binding, Llewellyn Smith [7] and Ericson and Thomas [8] explored the 
consequences for nuclear structure functions of an enhancement of the number 
of virtual pions per nucleon in a nucleus — see also Berger et al. [9]. This led 
naturally to a renewed interest in the role of the pion cloud in the free nucleon. 
In particular, it was shown by one of us [ 10] that one could put an upper limit 
on the hardness of the pion–nucleon form factor from the excess of non-strange
over strange sea quarks seen in deep-inelastic scattering. It was also realized 
that the pion cloud necessarily led to an excess of over quarks in the proton. 
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Since 1983, and particularly since the New Muon Collaboration’s confir-
mation of the excess of over in the proton [11], there has been a great
deal of theoretical and experimental activity. Much has already been learnt 
about nucleon structure and an exciting program of experiments needs to be 
carried out in the next few years to teach us more. Our purpose is to review
these developments for the community of physicists fascinated by the strong 
interaction, whether nuclear or particle physicists by background. 

We begin with a brief review of the notation and ideas of deep-inelastic
scattering and the general features of the data. Then we turn to the role 
of the long-range, pion cloud of the nucleon required by chiral symmetry 
as well as by the Heisenberg Uncertainty Principle! Having reviewed the 
traditional covariant approach we explain the importance of working in the 
infinite momentum frame. We explain why a pion cloud leads to important 
predictions such as an excess of anti-down over anti-up quarks, and look at the 
quantitative predictions. 

Having explained the theoretical ideas we turn to the various experiments 
which can be used to test or constrain them. This includes using exclusive pp 
reactions to constrain meson–nucleon form factors, measurements of the Got-
tfiied sum-rule, Drell–Yan experiments and polarized deep-inelastic scattering. 
We also discuss semi-inclusive deep-inelastic experiments. 

2.    ELEMENTARY IDEAS OF DEEP-INELASTIC SCATTERING 

There are a number of fine reviews of the ideas of inclusive lepton scattering
at high energy and momentum transfer-the deep-inelastic regime [ 12, 13, 14, 
15, 16, 17, 18, 19]. Our intention here is simply to explain the usual notation 
and summarize the essential ideas without any attempt at a formal derivation,
which would take far too long. 

We consider the inclusive scattering of a high energy lepton with initial 
(final) energy E (E') and scattering angle q from a hadronic target of mass M
and initial four-momentum p. The space like four-momentum transferred to
the target is denoted q. For an unpolarized target the laboratory differential 
cross-section for electromagnetic scattering is calculated by contracting the
lepton tensor Lµv with the hadronic tensor W µv;

(2.1)
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with

(2.2)

(2.3)

and the two arbitrary functions W1 and W2 contain all the information we can 
learn about the target from such experiments. 

After contracting the tensors and integrating over phase space we find: 

(2.4)

All of the information concerning the structure of the target is now con-
tained in the structure functions F1 (= MW1) and F2 (= vW2), with v = E – E'
(the photon energy in the laboratory frame) which can depend on at most 
two variables. One usually chooses those to be the Lorentz invariant quan-
tities Q2 (= –q2 > 0) and Bjorken x (= –q2 /2p.q = Q2/2 Mv). The deep-
inelastic regime corresponds to the case where Q2 and v are both very large
(Q2 > 2 GeV2, v > 1 GeV) but x lies in the range (0,1). In the case of neutrino
scattering from an unpolarized target we find a third structure function, F3,
associated with parity violation: 

(2.5)

There has recently been tremendous interest in polarized deep-inelastic
scattering. In the case where a polarized electron (or muon) scatters from a 
polarized, spin- 1 /2 target, there are two more structure functions which can be
measured, g1 and g2. Denoting beam and target helicity with arrows top and
bottom respectively we find: 

(2.6)

Clearly the second term on the right of Eq. (2.6) will be negligible (in the 
deep-inelastic region) if g1 and g2 are of the same order. To determine g2 one 
needs to work with a longitudinally polarized beam and a transversely polarized 
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target. However, even then the cross-section is of order (1 /Q) times that given
in Eq. (2.6): 

sin θ (2.7)

(Here, an arrow up indicates that the target is polarized in the direction at right
angles to the incident beam, in the scattering plane but pointing opposite to the
side where the final lepton exits.) 

In the late 1960s, tremendous excitement was generated by the discovery 
at SLAC that the structure functions were almost independent of Q2 over a
very wide range. That is, they were functions of the single variable — Bjorken
x. It is very easy to see that this is what one would expect if the nucleon
contained a collection of elementary constituents (initially called partons by 
Feynman but later identified with quarks) with low mass, which do not interact 
strongly during the deep-inelastic collision. For simplicity it is usual to consider 
this problem in a so-called infinite momentum frame, e.g., one where the
nucleon has momentum P M in the z– direction so that its 4-momentum is
p = (P, 0, 0, P). Under the assumptions of the parton model, only a parton with
fraction x of the momentum of the nucleon can absorb the exchanged photon
(or W-boson). Deep-inelastic structure functions are then determined by the 
number density of partons in the nucleon with momentum fraction x.

It is usual to define distributions q (x) which give the number density of
quarks in the target with helicity parallel or anti-parallel to that of the target.
For example, u (x) xdx gives the fraction ofmomentum of u quarks in the proton
with momentum between XP and (x + dx) P in the infinite momentum frame
(and with either helicity). By charge symmetry, u also gives the distribution
of d quarks in the neutron, but we note in passing that there are reasons to 
doubt the accuracy of this for the valence d-quarks in the proton at the 5% level

The structure functions mentioned earlier are directly related to these dis-
[20, 21]. 

tribution functions. For an electromagnetic probe one finds:

1
F1 (x) = –4

F2 (x) = 2xF1 (x)
1

g1 (x) = –2

(2.8)

(2.9)

(2.10)

with eq the charge, in units of e, of the quark offlavor q. Eq. (2.9) is the Callan–
Gross relation and relies on the partons having spin 1/2 and no transverse 
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momentum (in the infinite momentum frame). In general we have

F2 = 2xF1

J. Speth and A. W. Thomas 

(2.1 1) 

where R is the ratio of cross-sections for absorbing a longitudinal photon to
that for a transverse absorbing photon. Experimentally R is small [22] (≤ 0.1) 
for all x, for Q2 £  5 GeV2.

1+R
1 + 2Mx/v

For neutrino scattering from an isoscalar target one finds

= x (u + -u + d + -d + s + - )s

which measures the total quark content of the proton. Even more important, 
by combining v and data one can measure the combination

= ( u – u- + d– d- ) (2.13)

which isolates the excess of quarks over antiquarks, i.e., the valence quark
distribution of the nucleon. Clearly we would expect the sum rule (due to
Gross and Llewellyn Smith) 

(x) = 3 (2.14)

to be obeyed. It will also be useful to define the nth moment of a structure
function like xF3, F2 or xF1, as, e.g.,

1
M3n= [xF3(x)] (2.15)

2.1.    Scaling Violations 

It is clear from the analysis ofthe experimental data that even in the Bjorken
region the structure functions have a weak Q

2-dependence, and therefore so
do the distribution functions which we write as q (x, Q2) . If one sticks to any
one data set in order to (partially) avoid systematic errors, this variation of the
structure functions (scaling violation) is essentially logarithmic. In order to
understand it one must go beyond the naive parton model to QCD. 

Suppose we assume that the wavefunction of the target has no high-
momentum components (i.e., Q2). Then any Q2-dependence can only
come from the lepton–quark scattering process. Scaling results if the quark is 
treated as point-like and the trivial Q2-dependence of the Mott cross-section



Mesonic Contributions to the Spin and Flavor Structure of the Nucleon 

is factored out. On the other hand, in an interaction field theory, the lepton– 
quark scattering amplitude will involve radiative corrections, some of which 
add coherently (e.g., wave function and vertex renormalization) while others 
are incoherent (e.g., bremsstrahlung). It is well known that such radiative 
processes lead to corrections which vary logarithmically with the appropriate 
cut-off scale — in this case Q2 This is formally described using the operator
product expansion and the renormalization group.

On the basis of the operator product expansion and the renormalization 
group one can show that the moments of the structure functions can be written 
as the product ofa coefficient function Cn (which is independent ofthe target)
andthe matrix elementofa local operator. In factone finds that the Q2 variation
of the moments of the structure functions resides entirely in the coefficient 
functions which can be calculated by perturbative QCD. 
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To leading order one finds: 

Mn (Q2)=Mn (2.16)

and hence for fixed it is easily shown that

lnMn (Q2) = lnMm (Q2) + constant (2.17)

so that a log-log plot of any two moments should be a straight line whose slope 
is predicted by QCD. (The power is known as the anomalous dimension.)

All of the above discussion of Q2 evolution applies only to the non-singlet
structure functions like F3 which cannot involve gluons. The Q2 evolution of
singlet structure functions such as F2 is more complicated because the quarks 
and gluon operators mix under QCD renormalization. While the corresponding 
analysis is not much more difficult (it involves a 2 × 2 matrix), it would divert
us too much to explain it here. Instead we refer to the previously mentioned 
texts, e.g., there is a summary in Table 2 of the review by Altarelli [18]. 

Given an analytic continuation of a set of moments, Mn(Q2), there is a 
standard method for reconstructing the corresponding function — this is the
inverse Mellin transform (IMT): 

xF3 (x,Q2) = (2.18)
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where C is chosen so that the integral exists. If, as we explained above, the
moments of the structure function can be written as a product of a coefficient
function, Cn (Q2, µ2) with the target matrix element, N On (µ2) N ;

M2n (Q2) = Cn (Q2,µ2 ) (2.19)

the inverse Mellin transform, xF3, is just a convolution of the IMT of Cn

(denoted by C3) and 〈N  On N〉 (denoted F3), viz:

xF3 (x,Q2) = (x/y ,Q2, µ2) (yF3 (y,µ 2)) (2.20)
x y

This is an extremely important result. In particular, C3 is totally independent
of the structure of the target — a property known as factorization. Clearly if
we can evaluate the structure function of the target at any renormalization scale
µ2, Eq. (2.20) allows us to calculate it at all higher values of W2 Higher order
QCD corrections do not alter this result in principle, they just make C3 harder
to compute. For this reason µ2 cannot be too low.

2.2.    Features of Nucleon Data 

Current experiments at HERA are pushing back the kinematic boundaries 
within which the structure functions are known. For example, one can now
reach values of x as low as 2-3 × 10–5 at Q2 ~ 2 GeV2, whereas fixed target 
experiments can only get to x oforder 8 x 1 0–4 at very low Q2 (0.3 GeV2). Fur-
thermore, the perturbative evolution of the structure functions can be followed
to Q2 as high as 1 03–1 05 GeV2 at large x. For a summary of the present status
of the HERA experiments we refer to the proceedings of the recent HERA
Workshop on proton, photon and Pomeron structure [23] especially the review
by Badelek et al. [24].

Since our main concern is not with the small x behavior, it is sufficient to
view the data on a linear scale. Figure 2.1 summarizes an enormous amount of
experimental work carried out over the last 20 years with muon and neutrino 
beams and illustrates some very important features. 

First, we note that the anti-quark distribution, which is one half of the sea of
virtual-pairs that one sees when looking deep into any hadron, is concentrated
in the region below x = 0.3. In fact, x    (x) is typically parameterized as (1 – x)γ

(with γ= 7–9). Note that the sea quarks, qs are usually defined to have the
same shape as On the other hand, there are suggestions that s (x) may not
have the same shape as   (x) [25,  26,  27] and this will be important to test. Later 
we shall explicitly review the evidence from NMC [11] and NA51 [28] that
    > which leads to a violation of the Gottfried sum-rule. Finally, we note that 
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Fig. 2.1. Summary of structure function data taken with neutrinos and muons by various 
groups.

neutrino induced deep-inelastic scattering to di-muon final states can be used 
to check the relative strange versus non-strange sea. It seems that strangeness
is suppressed for Q2 ~ 5–10 GeV2, with [29]

= 0.45 ± 0.05

As the second feature of Fig. 2.1 we note that the valence quarks (recall 
Eq. (2.13)) dominate for x beyond 0.3. This is confirmed by the closeness of
xF3 and for x 0.3, after allowing for the electromagnetic charges of the
quarks = 12 + )). In the early days of deep-inelastic scattering this
provided vital confirmation that the partons of Feynman were, in fact, quarks.

The same counting rules (Drell–Yaw–West) which led one to expect the sea
quark distributions to behave like (1 – x)7 as x 1 suggest that the valence
distributions should behave as, qv (x) = xα (1 –x)β with a = -0.5 (from Regge



J. Speth and A. W.Thomas

theory) and b = 3. Of course, QCD evolution implies that a and b will also
depend slowly on Q2 and for recent parameterizations we refer to Badalek et
al., [24] and Martin, Stirling and Roberts [30]. The one feature worth noting
about the fits discussed there is that they all assume dv /uv ~ (1 – x) and
hence vanishes as x 1. Recent re-analysis of the binding and Fermi motion
corrections in the deuteron suggest that this may not be correct [3 1] and that, 
in agreement with perturbative QCD [32], d /u may decrease like (1 – x) for x
below 0.7 but tend to a constant as x 1. This needs further testing but one
should keep this uncertainty in mind in situations where the actual d /u ratio is
important.
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3.    SULLIVAN PROCESSES 

The virtual meson-cloud of the nucleon plays an important role in the
understanding of the nucleo–ucleon interaction [33] and the pion-cloud in 
particular has always been considered as crucial in understanding the nucleon’s 
long-range structure. For example, it was recognized even in the 1950’s that the
process n → pπ– naturally explains the negative tail of the neutron’s charge 
distribution. Furthermore, from PCAC, and the successes of chiral quark 
models [34, 35,  36, 37] we know that the nucleon has a pion cloud. 

In 1972, Sullivan [6] showed that in deep-inelastic lepton scattering from a 
nucleon, the process in which the virtual photon strikes a pion from the meson
cloud, and smashes the pion into debris, scales in the Bjorken limit. The reason 
for this is that, in contrast to processes such as exclusive pion-production,
which are suppressed by form factors of the order 1/Q2, here the inelastic
structure function of the pion itself is probed. The pion contribution to the
structure function of the nucleon was investigated later [ 10] in connection with
SU(3)-symmetry breaking in the quark sea content of the proton. Here it was
also pointed out that the pion cloud could be responsible for generating an 
asymmetry between the and quark content, through the preferred proton 
dissociation into a neutron and p+. Furthermore, DIS data on the momentum
fraction carried by antiquarks were used to obtain an upper limit on this non-
perturbative pionic component and therefore on the number of virtual pions in 
the nucleon [39, 50]. 

These early analyses came to the conclusion that the pionic component 
is small, which indicates that the pion–nucleon form factor has to be rather 
‘soft.’ This finding was in strong contradiction with the ‘hard’ form factors 
which were used in meson-exchange potentials [33] at that time. As we will 
see in the following there is not much left from this controversy. Hwang et
al. [40] pointed out that at moderate Q2 the total quark sea, including strange
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quarks, could be connected with the meson cloud. Zoller [41] showed that the 
meson–baryon form factors which enter in the analysis of deep-inelastic pro-
cesses are probed under similar kinematical conditions in semi-inclusive high 
energy proton–proton reactions. Holtmann et al. [27] extended the correspond-
ing analysis to include not only pseudoscalar but also vector mesons. The form 
factors deduced from such combined analyses turned out to be a little harder
than those in the initial investigations of the sea of the nucleons associated 
with pions only. On the other side it has been shown [42, 43, 44] that more 
sophisticated meson-exchange potentials can also reproduce the experimental 
nucleow–nucleon phase shifts with pion–nucleon form factors which are some-
what softer than those which were traditionally used in OBE potentials and are, 
in fact, close to those derived from DIS. 

The concept of the pionic cloud may be extended by taking into account 
first of all the full pseudoscalar nonet and also the vector meson nonet. These 
mesons are not only crucial in meson-exchange potentials but it has been known 
for a long time that they give important contributions to low energy nucleon
properties, such as the electromagnetic nucleon form factors or magnetic mo-
ments.

The one caution we should add, to which we return in Sec. 6, is that it is
not established to what extent one can add incoherently the contributions from 
mesons of increasing mass. In principle there is the possibility of interference 
between terms where one reaches the same final state, X, from both γ*MB →X
and γ*M'b' → X. Indeed, as we shall see in Sec. 3.6 and 4.7, for spin-
dependent structure functions we require some interference between the final 
states reached from            and          We regard the resolution of this question 
as being essentially empirical, while noting that apart from the r-meson the
heavier mesons play only a minor role. 

3.1.    The Convolution Model 
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The convolution model relies on the assumption that the nucleon wave 
function can be written as the following sum of Fock states 

(3.1)

where φ BM is the probability amplitude to find a physical nucleon in
a state consisting of a virtual meson M and a virtual baryon B with longitu-
dinal momentum fractions y and 1 – y and transverse momenta     and 
respectively. Z is the standard wave function renormalization factor and can



94 J. Speth and A. W. Thomas 

Fig. 3.1. DIS from the virtual (a) meson, and (b) baryon components of a physical nucleon. 

be interpreted as the probability of finding a bare nucleon in the physical nu-
cleon. In the following, we are concerned with first order corrections to the
bare nucleon only. Preliminary calculations [41] suggest that higher order cor-
rections are rather small provided that the form-factors used are not too hard. 
The infinite momentum frame (IMF) is particularly useful in the study of DIS 
phenomena. In the infinite momentum frame (i.e., ∞→ with the nucleon
momentum c.f. Sec. 2) the constituents of the nucleon can be assumed to be
free during the DIS reaction time [45]. 

The basic hypothesis of the convolution approach is that there are no inter-
actions among the particles in a multi-particle Fock state during the interaction 
with the hard photon in deep-inelastic scattering. This enables one to relate the 
contribution of a certain Fock state, BM, to the nucleon structure function F2,
to the structure functions of either the struck meson M or the struck baryon B 
(see Fig. 3.1 a, b) using 

(3.2)

(3.3)

or written in terms of quark distributions:

(3.4)

The main ingredients in these formulas are the splitting functions fMB/N (y)
and fBM/N (y) which are related to the probability amplitudes φBM in the IMF 
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via

(3.5)

(3.6)

Because the description of the nucleon as a sum of MB Fock states is
independent of the DIS process, the relation

fMB/N (y) =fBM/N (1 – y) (3.7)

must hold. It simply expresses the fact that if a meson with longitudinal mo-
mentum fraction y is struck by the photon, the remaining part of the nucleon is
a baryon with the remaining longitudinal momentum fraction, 1 –y. Moreover,
this relation automatically ensures global charge conservation

(3.8)

with MB = (y) dy and B M = fBM/N (y) dy, and momentum con-
servation

(3.9)

where MB = dyyfMB (y) and BM = dyyfBM (y) are the average mo-
mentum fractions carried by meson M and the virtual baryon B, respectively.
   and 〈y〉  are called the first and second moments of the splitting functions. 

It should be noted that, because of the probabilistic interpretation of 
jφMB (y, 2 , the wave function renormalization constant Z can be expressed 
as

Z= (3.10)

The quark distribution functions q N (x) of a nucleon within the Fock state
expansion are given as: 

qN (x) = (x) + δqN (x) (3.11)

where (x) is the quark distribution of the “bare” nucleon (see Sec. 4.2).
In the following, we shall explicitly evaluate the splitting functions fMB

and fBM , and examine the conditions under which Eq. (3.7) is fulfilled. The
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calculation can be performed in two different ways: (a) within the covariant
perturbation theory developed by Feynman, Schwinger and Dyson, and (b) 
in time ordered perturbation theory (TOPT) in the infinite momentum frame, 
as developed by Weinberg and Drell, Levy and Yan [5,46]. In the first case 
relativistic covariance is explicitly fulfilled, but particles are not always on 
their mass shell. This is a severe drawback in DIS because one is forced to 
make assumptions about (or to model) [47] the off-mass shell behavior of the 
hadron structure functions and, in addition, the basic relation in Eq. (3.7) is not 
fulfilled without further assumptions. In TOPT manifest relativistic covariance 
is lost. However, Weinberg [46] and later Drell, Levy and Yan [5] have shown 
that by applying TOPT in the infinite-momentum frame (IMF) one can ensure 
Lorentz invariance with substantial calculational simplifications which make 
this method especially suited for DIS —as first pointed out by Bjorken [48]. 

In his pioneering work Sullivan [6] used covariant perturbation theory and
so did everyone else until the early nineties, when new interest started in these 
processes, in connection with the violation of the Gottfiied sum-rule. Sullivan 
only considered the process shown in Fig. 3.1a, where the photon hits the 
pion. In order to conserve momentum and charge, one must also include the 
contribution shown in Fig. 3.1b where the photon hits the recoiling baryon 
after the meson is emitted. Previous treatments of this process in the covariant 
framework were made by several authors [38, 39, 40, 49, 50, 51, 52]. The 
results, however, were only in qualitative agreement with each other. The 
main reason was that different procedures were used to fulfill the conservation 
laws. Moreover, the whole approach was questioned because of the unknown 
off-mass-shell behavior of the hadron [47]. For all these reasons, in the more 
recent work [27, 41, 53] the formalism of TOPT was used in the infinite 
momentum frame, where these drawbacks do not exist. A review of the
covariant formulation and its various problems can be found in Ref. [54]. 
In the following, we will concentrate on the calculation of various splitting
functions within TOPT in the IMF. 

3.2.    Calculation of the Probability Amplitudes φBM in TOPT 

The main virtues of this formulation are that off-mass-shell ambiguities in
the structure functions of virtual particles can be avoided, and that the meson 
and baryon splitting functions satisfy Eq. (3.7) exactly. 

In TOPT the analogue of Fig. 3.1a involves two diagrams, as shown in 
Fig. 3.2, where the meson moves forward and backward in time, respectively. 
The advantage of the infinite momentum frame (IMF), where the target nucleon 
is moving fast in the z direction (with longitudinal momentum = pz→ ∞),
is that only diagrams involving forward moving mesons have to be considered.



Mesonic Contributions to the Spin and Flavor Structure of the Nucleon 97

Fig. 3.2. Time-ordered diagrams moving (a) forwards, and (b) backwards in time. Time is
increasing from left to right.

Diagrams with backward moving particles give no contributions in the limit
pz → ∞ 

The essential ingredients in the convolution model are the probability am-
plitudes φBM (y, In TOPT in the IMF one is able to write down explicitly
the intermediate Fock states 

(3.12)

This formula gives the probability amplitude of finding a nucleon with mo-
mentum in a Fock state where the baryon B has momentum and the meson
M momentum = – The factors (2p) 2 come in because we are work--
ing in momentum representation. The factors NN ( N B) are the usual fermion
wave function normalization factors, NN = NB = NM is a
bosonic normalization factor, NM = 1 The important feature of TOPT
is, in contrast to the covariant perturbation theory, that the intermediate particles
are on their mass-shell, i.e., their energies are given by 

3

EN = (3.13)

Therefore, one can calculate the vertex function V in Eq. (3.12) because
one can use on-mass shell wave functions. V depends on a particular model,
i.e., on the form of the Lagrangian used. In general V can be written as

(3.14)
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where summing and averaging over all possible spin-states is implicity as-
sumed. a, b and g are bi-spinor and/or vector indices dependent on the repre-
sentation used for particles of a given type. X and Ψ are the wave functions 
(field operators) of the intermediate meson and baryon, respectively. 

It has been shown [5] for the πN case, that in the infinite momentum limit
contributions of Fock states with anti-particles vanish and only contributions 
with (forward moving) particles survive if appropriate form factors are intro-
duced. This statement is also true for the other Fock states with which we deal. 
In the IMF the momenta of the particles involved can be parametrized in terms
of y and

Thus, in the limit p = →  ∞

and the energy denominator becomes: 

EN – EB –EM =

(3.15)

(3.16)

for y < 0 
for y > 1 (3.17)
for y ∋ [0,1]

where (y, is the invariant mass squared of the intermediate BM Fock
state

(3.18)

Only states withy ∋[0,1] survive in the IMF-limit. In this limit the proba-
bility amplitudes can be expressed as 

(3.19)

with V IMF being the vertex-function in the IMF-limit. In the formula above an
extra factor (πp)–½ has been taken out. It would cancel when going to prob-
ability densities by an appropriate factor of the Jacobian of the transformation
Eq. (3.15). 

Formula (3.19) can be used to calculate φBM (y, for all cases of interest
— see Refs. [27, 41, 54, 55]. Using TOPT this way has one disadvantage in 
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comparison with the typical calculation involving traces: one has to calculate 
VIMF for every spin configuration and calculate the spin average afterwards. 
On the other hand this turns out to be most useful for polarized DIS, as we will 
see in Sec. 4.5. 

3.3.    Meson-Baryon Form Factors 

The symmetry given by Eq. (3.7) is automatically fulfilled for vertices
involving point-like particles. Because of the extended structure of the hadrons 
involved one has to introduce phenomenological vertex form factors, which 
parametrize the unknown microscopic effects. It is interesting to mention that
Drell et al. [5] also had to introduce cut-offs in the transverse-momentum
when they derived the parton model for deep-inelastic electron scattering within
the same formalism. For these reasons, the vertex function, V (y , should
be replaced by V' (y , = G (y , V (y, Equation (3.7) now imposes a
severe restriction on these form factors: 

(3.20)

The form factors often used in meson exchange models and convolution models 
are functions of t only, the four-momentum squared of the meson, and do not
satisfy Eq. (3.20). In terms of the IMF variables y and t is given by 
(for comparison we also write down u, the four-momentum squared of the
intermediate baryon) 

(3.21)

(3.22)

Thus, form factors depending on t only, like the dipole form factor 

(3.23)

are ill-defined for the convolution models. They do not conserve basic quanti-
ties like charge and momentum. One simple method to obtain form factors with 
the right symmetry is to multiply a t-dependent form factor by a u-dependent
one with the same functional form, with m’M replaced by mB

Gsym(t,u) = G(t,mM)G(u,mB) (3.24)
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The importance ofusing such symmetric form factors was noticed only recently
[41, 55]. Another possible approach, namely to fix the cut-off parameters
to assure number sum rules (global charge conservation) (see [56, 57]), is
somewhat arbitrary, and does not guarantee momentum conservation, and gives 
rise to very different functional behavior of fNπ(y) and fπN (1 – y).

In recent publications dipole parametrizations [54] 

and exponential forms [27, 41, 55] have been used 

(3.25a)

(3.25b)

with the invariant mass, defined in Eq. (3.18). Using Eqs. (3.21) and
(3.22) one can show, that the exponential form given in Eq. (3.25b) is equivalent
to the symmetrized form 

(3.2c)

3.4.    Spin-Averaged Splitting Functions 

Equations (3.5) and (3.19) allow one to write the spin-averaged splitting 
functions as: 

(3.26)

where the vertex functions define the model. The vertex functions for the
Lagrangians listed in Appendix A are given in Appendix B. For the Nπ and
∆π Fock states we find:

(3.27)
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(3.28a)

and finally for the vector mesons:

(3.28b)

+gvNNf VNN mN 

As examples of the various splitting functions we show fNπ, f∆π and fNp in 
Fig. 3.3 [58]. TOPT and a cut-off deduced from high-energy scattering data
have been used with parameters given in Sec. 4.1. The ρN-splitting function 
peaks at larger y compared to the πN because the heavier r-meson carries more
momentum. On the other hand the π∆-splitting function peaks at somewhat
lowery compared with the πN case-because the ∆ is slightly heavier than the
nucleon.

The results obtained by means of TOPT in the IMF are exactly the same
as those derived with covariant perturbation theory. However, in TOPT it is 
natural to use form factors which depend on and therefore implicitly on 
t and u, whereas in covariant perturbation theory the natural choice are form 
factors which depend on t only. This is incorrect, as mentioned before. After 
transforming variables (u,t) [Eqs. (3.21) and (3.22)] one obtains the
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Fig. 3.3. Various splitting functions obtained by means of TOPT in the infinite momentum 
frame [58]. 

standard results for Np [6, 50, 52, 57] and Dp [50, 52] contributions. This
should be the case, because TOPT is just a different way to calculate diagrams.
There is, however, one point which requires a separate discussion in the next 
section.

3.5.    TOPT versus Covariant Perturbation Theory 

If the vertex functions used contain a derivative of the meson field, care must 
be taken or one will find differences between TOPT and covariant perturbation
theory. To illustrate this point let us consider the example of the pseudovector
NπN vertex, given by 

-LpV = u γ5γµ ∂µπu (3.29)

where for simplicity the coupling constant and isospin structure have been
suppressed. The standard covariant techniques lead to the splitting function of
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the meson 

(y) =

The result for the baryon is: 

(y) =

(3.30)

(3.31)

Here as mentioned before the two results are not related by Eq. (3.7), which 
leads to a violation of charge- and momentum conservation. The reason for this 
puzzle is that by using a derivative coupling, an additional off-shell dependence 
is introduced into the vertex function, which cannot be suppressed in the IMF-
limit. A way out is to use TOPT [41, 55]. Here, however, the problem arises
how to choose the meson energy in the vertex. In principle, there are two
possible prescriptions: 

A) One uses the meson four-momentum kµ : -uNγ5γµ (–i) k'µuB in the ver-
tex, i.e., the meson energy in the vertex is EM [Eq. (3.16)]. With this
form of the vertex one reproduces the baryon splitting function given
by Eq. (3.3 1). The meson splitting function is related to this result by
Eq. (3.7). 

B) Instead of k'µ one uses the difference of the baryon four-momenta pµ –
kµ : N (p) γ5 γµ (–i) (p – k)µuB (k), i.e., the meson energy in the vertex 
is EN – EB. With this prescription one gets the meson splitting function
given by Eq. (3.30). Again the corresponding result for the baryon
splitting function fulfills Eq. (3.7). 
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Fig. 3.4. Splitting functions fπN (y) evaluated using Covariant and time-ordered perturbation 
theory. The covariant function is as Fig. 3.5. The cut-offs in the form factors are chosen to give
the same value for πN = 0.235 [54].

Thus TOPT, in contrast to a covariant calculation, is consistent with the
convolution approach. The remaining point to clarify is which one of the two 
prescriptions one should use. The natural choice is prescription B, because in 
this prescription the splitting functions for the pseudovector case are identical to
those of the pseudoscalar case, if the coupling constants are identified properly. 
Moreover, in this prescription the structure of the vertex is due to the baryonic 
current only. 

In Fig. 3.4 a comparison is made between the splitting functions fπN (y), cal-
culated in covariant and time-ordered perturbation theory, respectively. While
the dependence on the functional form of the form factor within TOPT is weak, 
the results obtained with the two different formalisms deviate appreciably.
Even more severe is the violation of the basic symmetry,fπN (y) = fN π (1 – y),
in the covariant formalism. Whereas it is automatically fulfilled in TOPT, the
two functions, shown in Fig. 3.5, do not have this symmetry at all— the most
obvious difference being that fNπ ( 1 – y) is finite at y = 1. 

One should bear this result in mind if one calculates semi-exclusive reac-
tions like deep-inelastic electroproduction of neutrons, from which one aims to 
measure the pion structure function at small x. As 3-momenta are not conserved 
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Fig. 3.5. Splitting functions fπN (y) and fNπ (1 – y) with dipole form factors and cut-offs
chosen to give πN = N π = 0.235 [54].

in the splitting function, if calculated in the covariant formalism, the neutron-
and pion-momentum are not connected with each other, as discussed above.

3.6.    Polarized Splitting Functions 

The same approach is convenient for the extension to deep-inelastic scatter-
ing of polarized particles [27,59]. Let us introduce the probability amplitudes

(y,         which describe a nucleon with positive helicity (+ 1/2), being in 
a Fock state BM with baryon helicity A and meson helicity λ'. To calculate

(y, Eq. (3.19) can be used with the spin-averaged vertex.function VIMF
replaced by an appropriate helicity dependent one (see Appendix B). By 
analogy with the spin-averaged splitting function [see Eqs. (3.5) and (3.6)] we
introduce the polarized splitting fuctions y) and (y), which we 
define as 

(3.32)

(3.33)

(y) =

(y)=



106 J. Speth and A. W. Thomas 

For simplicity, let us specialize our discussion to the Nπ case and use the
more suggestive notation (y) = (y)and (y) = (y). Applying the
idea of the convolution model to the polarized quark distributions (x) , (x)
(the quark distribution of quarks with flavor q and spin parallel or antiparallel
to the nucleon spin) leads to the following relations: 

(x) =

(x) =

Taking the sum and the difference gives: 

δqN (x) =

δ∆qN (x) =

(3.34)

(3.35)

(3.36)

(3.37)

with ∆q (x) = (x)– (x). Here f (y), the splitting function for the unpo-
larized (spin averaged) case, is given by the sum of (y) and (y);∆ f (y),
the splitting function for the polarized case, by the difference. It is important
to note, that the splitting functions (y) and (y) are independent of each
other [59], i.e., there are no simple relations, like Clebsch–Gordan coefficients
between them. 

As an example, we show in Fig. 3.6 the corresponding splitting functions 
for the Nπ Fock component. As seen from the figure the non-spin-flip (dashed
line) and the spin-flip (dotted line) contributions are different. The spin-flip
contribution dominates at large momentum fraction of the nucleon [59]. The
spin-flip contribution is totally due to the presence of perpendicular momentum 
in the pion–nucleon wave function. This explains the sensitivity of the spin-
flip splitting function to the cut-off parameter of the vertex form factor. It also
leads to a similar sensitivity of the polarized splitting function ∆f = f
(dash-dotted line). Here, if integrated over y, the spin-flip and non-spin-
flip contributions almost cancel each other. There is no deep reason for this
cancellation; it is rather the consequence of the cut-off parameter choice. In the 
present calculation, the cut-off parameter (Λ = 1.08 GeV) has been adjusted to
the neutron production data (see Sec. 4.10. This cancellation has consequences 
for the spin content of the nucleon as we will discuss in Sec. 4.7.

Similar formulas can be derived analogously for other Fock states. For
particles with higher spin addition assumptions have to be made. For example,
in the ∆π case one has to distinguish between the (x) distributions in a ∆ 
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Fig. 3.6. The splitting functions (y) (solid), (y) (dash -dotted), (y) (dashed)

and (y) (dotted) with a cut-off parameter of Λ = 1.08 GeV, [55].

with helicity 1/2 and the similar distribution (we call it q⇑ (x)) in a ∆ with 
helicity 3/ 2. Assuming the relation q⇑ (x) = 3q  (x) for the bare ∆, which can 
be easily checked using SU (6) symmetry, it is possible to obtain an equation
similar to Eq. (3.27). 

In the most general case, assuming that the polarized quark distribution of 
different helicity states are the same (except helicity factors) one gets: 

dDqN (x) =

(3.38)
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∆fXY/ N (y) = S (y)                          (3.39) 
l

where the sum runs over all possible helicities of particle X .
From our experience with the calculation of axial coupling constants (c.f.

Sec. 4.7), it is vital to include terms in which (e.g.) the polarized-photon—N
interaction leads to the same final states as the polarized-photow-D interaction
[27, 59, 60, 61]. Indeed, this is precisely the reason that perturbation theory 
works so well when one carries through the renormalization program in the
cloudy bag model [35, 36]. These cross terms for baryons and mesons are,
respectively, the third and fourth terms on the rhs of Eq. (3.38). 

The formalism outlined here has been applied to the semi-leptonic decay 
and the “missing” spin of the nucleon. 

4.    MESON CLOUD AND THE NON-PERTURBATIVE SEA 

There exist numerous attempts to link quark models with DIS. The main idea
behind such approaches is that the QCD evolution implies a decreasing number
of sea-quarks (i.e., virtual -pairs) as the momentum scale, Q2, decreases.
Since most quark models involve three valence quarks (sometimes a small 
admixture is also considered), one would expect the model to relate to DIS at
some low momentum scale, Q2 = Q2

0 [62, 63]. There has been considerable
success in reproducing the experimental data [61, 64, 65, 66]. However, two
important points have to be borne in mind: (i) The evolution equation is first 
or second order in the running coupling constant and one must therefore worry 
about applying it below 1 (GeV/c)2. We note, however, that the agreement
between calculations using leading order and next to leading order evolution 
is very close; (ii) In addition, many of the early calculations did not respect 
chiral symmetry. That is, no quark model can be consistent with the known
symmetries of QCD unless pions are included. Since, as we have seen, pions
contain a valence pair, this pion cloud necessarily constitutes a sea of 
pairs in the nucleon. 

Thomas [10], and some years later Frankfurt et al. [39], used the fact that
this pion contribution breaks the SU (3)-flavor symmetry of the sea distribution
to put a limit on the hardness of the pNN form factor which controls the pion
emission — see Eq. (3.27). In Thomas’ case the limit is such that a chiral 
bag radius cannot be too small, say R = 0.87 ± 0.10 fm. In Ref. [39] the 
πN∆ coupling was also taken into account. In that case the bag radius had
to be larger than 1 fm. Frankfurt et al., also concluded that meson-exchange
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models for the NN -interaction are “not well justified on the microscopic level.”
In both calculations only the SU(3) breaking part of the proton sea, i.e.,
x (x)) was attributed to the -contribution of the pion. Hwang,
Speth and Brown [40] took a different point of view: they suggested that at 
moderate momentum transfer a significant fraction of the proton sea could
be due to the non-perturbative meson contribution. (They also included K
and K* mesons.) In that case, the amount of antiquarks which are due to
mesons can be somewhat larger, pushing the allowed cut-off towards 1 GeV.
In a recent publication Koepf, Frankfurt and Strikman [119] came to similar
conclusions. (Note that they used covariant perturbation theory which suffers 
from the problems discussed in Chapter 3.) In the past few years, the πNN
form factor used in meson-exchange potentials has been better understood [67]
and meson-exchange potentials with much softer πNN form factors have been
constructed [68, 69]. Therefore one may conclude that there is no longer any
inconsistency disagreement between meson-exchange models and DIS. 

The Jülich group [27, 58] has placed considerable importance on using,
in Eqs. (3.27)–(3.28b), meson–baryon vertices which are derived from other 
experimental data — like semi-inclusive neutron production in high-energy
proton–proton collisions. They calculated the corresponding meson contribu-
tions to the proton and neutron sea-quark distributions using the experimentally 
known pion structure function. Moreover, it has been shown that this process
can also be reversed; if the pNN vertex is known, one can obtain from semi-
exclusive deep-inelastic scattering processes, the pion structure function down 
to very small x, which will allow one to extract the sea-quark structure function 
of the pion [70]. In the following, we will discuss this point of view in more 
detail.

4.1.    Meson–Baryon Form Factors derived from Semi-Inclusive
pp-Reactions
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The functional form of the form factors used in deep-inelastic scattering is 
the same as the form used in meson-exchange NN potentials: (a) monopole-
and dipole-form as used in the Bonn-potential [33]; (b) Gaussian form as used 
by the Nijmegen-group [71]. The following analyses by Holtmann et al. [27]
have been performed with a Gaussian form factor, as given in Eq. (3.25b), 
where L is the inverse of a radius. In some models, like the cloudy bag, the 
radius is connected with the confining region of the valence quarks [35]. In 
other models this connection with the confining region is not so obvious. 

In order to fix the cut-off parameters, L, of the form factors, the authors 
of Ref. [27] used high-energy particle production data. They included in their 
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Fig. 4.1. One-Boson-Exchange diagrams for n and Λ production.

model the pseudoscalar and vector meson octet. A similar analysis, including
the pseudoscalar mesons only, was first performed by Zoller [41]. The neutron
and Lambda production data in the reactions pp → nX and pp → ΛX seems to 
be best tailored for extracting the cut-off parameters for the Nπ and Nρ as well
as for the LK and LK* Fock space components. If one restricts the analysis
to data with relatively low exchanged four-momenta it is reasonable to assume
that the neutron and the Lambda are produced by a simple one-boson-exchange
mechanism (OBE) as shown in Fig. 4.1. In complete analogy to modern meson-
exchange potentials one also assumes non-Reggeized mesons. Therefore, the 
region y → 0 and (1 – y) → 0 should not be considered. Fortunately, neither 
of these regions is important for evaluating the splitting functions. In the OBE 
approximation the invariant cross section for pp → BX  production has the form: 

(4.1)

The probability amplitudes, φBM, are defined in Eq. (3.19), wherey is the
longitudinal momentum fraction of the baryon with respect to the momentum
of the incoming proton and the corresponding transverse momentum. More-
over is the total meson–proton scattering cross section. For πp and Kp the
total cross sections, and are known experimentally; the corresponding 
vector meson cross sections are assumed to be equal to the pseudo-scalar ones.
It is important to bear in mind that the hadronic and photonuclear reactions are 
kinematically identical. 

The results of such an analysis are shown in Fig. 4.2 (for details see 
Refs. [27, 58]. As a criterion for the fit, it was assumed that the theoret-
ical result must not exceed the experimental data. This is well fulfilled in 
the case of the neutron and not so well in the case of the Λ, where the data
are not so good. For low π — and K — exchange, respectively, are the
dominant contributions, whereas the vector mesons do not play a role. For 
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TABLE 4.1 
Largest Meson Admixtures in the 

Nucleon [in %] 

Bare N – p N – ρ D –π D – r
58 18 13 6 2

higher — and K* — exchange become the dominant mechanism. It turns
out that one can choose the same cut-off parameter, ∆Mp = 1.08 GeV, for
pseudo-scalar and vector mesons. If one considers this parameter as univer-
sal for the meson–baryon-octet, then heavier mesons are strongly suppressed
and do not play a role. A corresponding analysis has also been performed
for ∆++ production. Here the cut-off parameter has to be chosen somewhat
small, LMD = 0.98 ± 0.05 GeV However, this value is much less reliable than
the previous one because the data are not very convincing. For example, the 
double differential cross sections vary by up to a factor of 2, depending on the
assumed background. The y-integrated spectra are more precise, with errors of
about 30%. The authors of Ref. [27] also found that their results do not depend
sensitively on the analytic form of the form factors (exponential, monopole or
dipole) as long as they fulfill the basic symmetry given in Eq. (3.7). Ifone uses
conventional form factors which only depend on t, a similar analysis to that
shown in Fig. 4.2 fails already for ≥ 0.3 (GeV/c)2.

Table 4.1 gives the probabilities [in %] of finding the various Fock states
in the nucleon. Note that the total probability of finding pion- and rho-
configurations is nearly 40%. This is in agreement with the results of the
Adelaide group [54]. In fact it is amazing how close these probabilities are 
to those found in the cloudy bag model more than a decade ago [35]. On the 
other hand, configurations with strange baryons and mesons are very small in 
the present model. Here, the strange sea of the nucleon is mainly due to the 
strange sea in the mesons, as we will discuss later. Thus the contribution of the 
strange sea to the spin of the nucleon is negligibly small in this model. 

4.2.    Sea-Quark Distributions of the Nucleon 

In order to calculate the quark distribution function within the Fock state 
expansion, see Section 3.1, one needs as input the quark distribution functions 
of the mesons and the bare baryons. For the quark distribution in the pion, 
a recent parameterization by Sutton et al. [74] has been used. By applying 
SU (3) symmetry, the distributions of the other mesons were (approximately) 
determined. Unfortunately, the sea quark distribution of the pion is practically 
unknown, and one must therefore make assumptions about its magnitude which 
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Fig. 4.2. Differential cross sections for pp → nX and pp → LX [72, 73]. Shown are the OBE 
contributions: pseudoscalar meson (dashed), vector mesons (dotted) and their sum (solid) [27].
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Fig. 4.3. Fit to the experimental data to determine the quark distributions of the ‘bare’ 
nucleon, at Q2 = 4 GeV2 [77, 78]. The thick and thin dashed curves are the ‘bare’ distributions
of fit I and fit II, respectively. The thick and thin full line represent the results of the corresponding 
meson-cloud model calculation [58]. The scale of the (x) experimental data [79] is Q2 = 3 GeV2 
(circles) and Q2

 = 5 GeV2 (squares).

simultaneously influence the assumptions about the sea of the bare nucleon. In 
order to determine the valence distribution of the bare nucleon self-consistently
it was parameterized in such a way that the theoretical valence distributions cal-
culated from Eq. (3.12) agreed with the phenomenological parameterizations. 
Two different scenarios have been considered: (i) (Fit I) no sea in the bare
nucleon, instead 40% of the momentum of the meson is carried by sea-quarks.
(ii) (Fit 11) 20% of the meson momentum is carried by the sea, but then one
needs a small sea in the bare nucleon. An experimental method to test this has 
been proposed by Londergan et al. [75]. This sea is assumed to be symmetric 
in and whereas the strange sea is suppressed by 50%. Both fits agree within
the errors with the data. The results of Ref. [58] are shown in Figs. 4.3 and 4.4. 
In the latter, the changes, especially in the u-valence distribution, due to the
coupling to the mesons are clearly seen. One also recognizes the asymmetry in 
the and distributions which is exclusively due to the Fock space expansion. 
The model has also been compared with the CCFR-data [76]. As shown in 
Table 4.2 the agreement between theory and experiment is satisfying. 
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Fig. 4.4. Quark distribution functions of the bare (dashed) and the physical nucleon [SS]. 
Differences between fit I and fit II (thin and thick line) can hardly be seen. 

Recently Steffens et al. [66] used quark model wave functions to calculate 
the bare valence quark distribution function. As shown in Fig. 4.5 the agreement
with the phenomenological distribution is also quite good. 

4.3. Gottfried Sum Rule and the – Asymmetry

The Gottfried sum rule is perhaps the most famous consequence of SU (2)
flavor symmetry of the sea. Because it measures the x-integrated difference
between the proton and neutron structure functions, it is sensitive only to the 
non-singlet SU (2) content of the nucleon. Let us first define the quantity

SG (x, 1) = (4.2)

Relating the proton and neutron structure functions to the quark distributions 
in the proton (i.e., using charge symmetry), we have 

1
SG(x, 1) = 3–

1
3

= – 

(4.3)

where the valence quark distributions are defined by qv ≡  q –    .    Since the 
number of valence quarks in a hadron does not change, we obtain the Gottfried
sum rule 

(4.5)1
3SG ≡  SG (0,1) = – [QPW]



Mesonic Contributions to the Spin and Flavor Structure of the Nucleon 115

TABLE 4.2 
Comparison of Measured Ratios of Quark Mo-
menta (CCFR-data (76]) with Theoretical Results 

Obtained with MCM [58] 
EXP Fit Fit II

K = 0.46 0.54 

hn – 0.081 0.069
RQ = 0.1.53± 0.034 0.176 0.182

provided we make the additional assumption as would be 
expected in the simple quark-parton model (QPM). 

The early experimental data for SG (x, 1) [81] did, in fact, suggest a value
lower than 1/3, but with errors large enough to be consistent with it. However, 
armed with the theoretical expectation of SU(2) flavor symmetry, most authors
believed that SG would tend to 1 /3 as the accuracy of the data improved. To the
surprise of many, the recent, accurate determination of SG by the NMC appears 
to support the idea that ≠ [113. Neglecting nuclear effects, the NMC found

(4.6)SG (xmin, 1) = 0.229 ± 0.0157

where xmin = 0.004. The present value which includes an extrapolation to
x = 0, is SG = 0.235 ± 0.026 [77], but this may be lowered a further 4–10%
by shadowing [41, 53]. The most natural explanation for the smaller than 
expected value Of SG is that     (x) ≠     (x). The value quoted above would imply 
that ) = 0.152 ± 0.06.

The meson-cloud model offers a simple, and at first sight convincing,
explanation. Indeed, as we noted earlier the model had already been used to 
predict > [10]. As discussed above, one can relate the proton and neutron
structure function difference to the quark distribution function of the proton 
only. As we have seen, the physical proton has a relatively large p+-neutron
component in the Fock space, but a much smaller p- – D++ component (the
effect of which is further reduced by the D0 – p+ contribution). Therefore
the Sullivan process immediately gives a surplus of d-antiquarks. The realistic-
meson cloud model explains the observed effect nearly quantitatively. This 
explanation indicates that the derivation of the GSR is due to deep-inelastic
scattering from the (isovector) meson cloud of the nucleon.

This, however, is difficult to understand if we go back to the original formula
Eq. (4.2). Here the cloud of p+ and p- mesons enters symmetrically, so one
expects that their effect should drop out. As we will see in the following, a 
calculation in terms of the meson cloud does give the correct result as far as 
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Fig. 4.5. Total valence distribution [66] in the bag-model and in the bag dressed with mesons 
compared with the MRS parametrization [80] of the data. The quark distributions are evolved 
in next-to-leading order QCD. 

the (integrated) Gottfried sum rule is concerned. If, however, one is interested 
in the x-distribution (i.e., the functional dependence of the rhs of Eq. (4.2))
one has to start with Eq. (4.2). The underlying physics is slightly more subtle 
than that discussed above. To explain it, we first consider a simplified model 
involving only bare nucleons and pions: 

(4.7)

Within this model we obtain the following contributions for and from 
the processes shown in Fig. 3.1 

(4.8)

(4.9)

Z is the probability to find a ‘bare’ nucleon, and are the structure
functions of the ‘bare’ proton and neutron, respectively, and is the pion 
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structure function. We also used the following shorthand notations: 

(4.10)

(4.1 1) 

Using charge-symmetry we obtain for the difference of the proton and neutron 
structure function 

= = 
(4.12a)

(4.12b)

From Eq. (4.12a) one immediately realizes, that, indeed, the pion structure 
function does not appear. Ifone divides Eq. (4.12b) byx and integrates overx
one obtains: 

(4.13)

where and are the valence distributions of the 'bare' proton. Here we 
have used the fact that in our simplified model the probabilities of finding a bare 
proton, a neutron with a π0 and a neutron with a p+ add up to unity, which gives
the well known factor 1/3 of the GSR. Deviations from this expected value
are proportional to the neutro–π+ admixture, and the proton-p- admixture
in the neutron, respectively. Moreover, one also realizes that the difference in
the x-distribution is proportional to the valence quark distribution in the (bare)
proton. As mentioned already, as long as one is interested in the integrated 
value of the GSR both formulations given here are equivalent [5 1].

If one is interested in the x-distribution, Eq. (4.13) has to be used. Gener-
alizations of Eq. (4.13) to include ∆ , vector mesons and strange hadrons are
straightforward. The result is that only the admixture of isovector-mesons gives
rise to a deviation from the GSR. An additional small contribution comes from 
strange baryons and mesons [27, 40, 54]. Calculations within meson mod-
els of different stages of sophistication have been performed by many authors. 
Their results essentially agree with the experimental finding. The x-distribution

(x) – (x) was calculated first by Melnitchouk et al. [52, 54], who also con-
sidered the effect of Pauli-blocking. Their results are shown in Fig. 4.6, where
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Fig. 4.6. Effect of the Pauli exclusion principle on the proton–neutron structure function 
difference, as a function of X [54]. The dotted (without meson corrections) and solid (with 
meson corrections) curves are for P = 0 (largest curves) 0.05, 0. 1 and 0.15 (smallest curves).

TOPT in the IMF was used with a dipole form factor (with Λ = 700 MeV). 
P denotes the fraction of the valence quark normalization associated with a
four-quark bag state spectator to the hard collision [82]. The most noticeable 
consequence of the meson cloud is a decrease in the peak value at x ~ 0.3,
which indicates a change in the usual regime of valence distributions. The
same effect can be seen in Fig. 4.3, where the results of Ref. [58] are shown. 
There only the effects of the meson cloud were considered. The various con-
tributions which give rise to the violation of the Gottfried sum rule and to the
asymmetry of the sea quark distribution are given in Fig. 4.7 and Table 4.3. In 
both cases one notices corrections coming from the ∆-configurations.

4.4.    Drell-Yan Processes and   – Asymmetry 

The Drell-Yan (DY) process [83] involves the electromagnetic annihilation 
of a quark (antiquark) from the incident hadron A with an antiquark (quark)
in the target hadron B. The resultant virtual photon materializes as a dilepton 
pair (l+l-) with muons being the pair most readily detected in experiments.
This process is schematically shown in Fig. 4.8. The cross-section for the DY
process can be written as 

(4.14)
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Fig. 4.7. Different contributions to the asymmetry of the sea quark distributions in the model 
of Ref. (27, 581. 

where s is the square of the center-of-mass energy and x1 and x2 are the lon-
gitudinal momentum fractions carried by the quarks of flavor f. The functions 

(x1) (xI)) and (x2) (x2)) are the (anti-)quark distributions of the 
beam and target, respectively. The factor K(x1 ,x2) accounts for the higher-
order QCD corrections that enter the process. Its value over the kinematic
range where experiments are carried out is typically 1.5. The values of x1 and
x2 are extracted from experiment via

M2 = sx1 x 2 ≈ 2Pl +Pl– (1 –cosθl +l –) (4.15)

where M is the mass of the dilepton pair, PI + and Pl– are the laboratory momenta 
of the leptons, and θ l+l- is the angle between their momentum vectors. The
total longitudinal momentum of the lepton pair (Pl + + Pl – )L fixes x1 – x2 via 

-1 (4.16)x1 – x2 ≡ XF = 

In order to avoid spurious contributions to the DY yield from vector meson
decays, all measurements are made for M > 4 GeV, and the region 9 ≤ M ≤
11 GeV is excluded to avoid the ϒ resonances.

The absolute value of the Drell-Yan cross section is biased by the uncer-
tainty in extrapolating from time-like to space-like values of Q2 when relating 
the Drell-Yan process with deep-inelastic scattering which involves the factor 
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TABLE 4.3 
Gottfried Sum-Rule with Differ-
ent Meson Contributions         = 

0.235 ± 0.026) 
In each line the contribution of the

given Fock-states are added [27]

Z SG

Bare nucleon I 0 0.333
+πN 0.755 –0.141 0.239
+πD 0.697 –0.106 0.263
All 0.580 –0.142 0.238

K [see Eq. (4.14)]. In order to avoid the uncertainty it is desirable to consider
ratios [84, 85] rather than absolute cross sections. 

Drell–Yan processes have been proposed to measure the – asymmetry
directly. In Ref. [86] the various experimental possibilities have been investi-
gated to test their sensitivity. In Fig. 4.9 we show the differential cross section, 
M3d2σ/dxF dM for dilepton production in p + d collision. The full line is the
result of the meson cloud model discussed in Section 4.2, with an asymmetric 
sea. In order to test the sensitivity to the – asymmetry, a symmetrized sea
distribution and a phenomenological distribution with symmetric , sea have
been also used in the calculation. Although there is some sensitivity to the 
asymmetry, it can be easily compensated by a slightly different normalization 
factor.

The present experimental data for the Drell–Yan processes in elementary
nucleon–nucleon collisions suffer from rather low statistics. Therefore, at 
present, one is forced to compare a theoretical calculation with the proton-
nucleus experimental data. In first approximation the cross section for the
production of the dilepton pairs in proton-nucleus scattering can be expressed 
in terms of the elementary pp and pn processes as 

It has been shown [84, 85] that the ratio of the cross section for the scattering 
of protons from the nucleus with N – Z ≠0 to that from an isoscalar target such
as deuterium is sensitive to the (x) – (x) difference. These ratios have
been measured by the E772 Collaboration at FNAL [84] for carbon, calcium,
iron and tungsten targets. Neglecting nuclear effects, elementary algebra leads
to the following result for the ratio: 

(4.18)
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Fig. 4.8. Drell-Yan process: An antiquark (quark) from a beam proton (A) annihilates with 
a quark (antiquark) from the target proton (B) and creates a lepton pair. 

where Z, N, A are numbers of protons, neutrons and the atomic number, re-
spectively. In the large x2 (target) limit the ratio takes a very simple form
[87]:

RDy ( x ) = 1 + with ∆ (x) = (x) – (x) (4.19a)

showing that the Drellll-Yan processes with non-isoscalar targets are relevant 
for the issue of the asymmetry. Here ∆ (x) is defined as 

1 1
2 2

The experimental ratios are consistent with symmetric quark distributions
[84, 87] (see Fig. 4.10). Moreover, using asymmetric quark distribution func-
tions (solid and dashed lines) has a rather small effect on the ratio. This renders 
those data useless for establishing the asymmetry. The ratio obtained with the 
recent MSR (A) quark distributions [30] almost coincides with the result of the
meson cloud model [88]. As seen from the figure these ratios do not provide a 
sensitive enough test. 

The idea of the – asymmetry is not new. It was considered a decade 
ago by Ito et al. [89] as a possible explanation for the slope of the rapidity
distribution of dilepton production in the proton–Pt collision at Fermilab. An
alternative interpretation stimulated by the discovery of the EMC effect invoked
the enhancement of the nuclear sea in Pt with respect to a collection of free
nucleons [8]. Ito et al., suggested to analyze the logarithmic derivative of the
rapidity distribution. 

(4.19b)(x) = (x) – – ∆ (x) and (x) = (x) + ∆ (x)-

with =x1x2 (4.20)
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Fig. 4.9. Cross section for the production of the dilepton pairs in proton–deuteron collisions. 
Shown is the lit of the K-factor for various quark distributions to the experimental data [86].

Fig. 4.10. Drell–Yan ratio for iron/deuterium and tungsten/deuterium. The solid line is the
result of MCM, the dashed line the asymmetric MSR(A) and the dash-dotted line the symmetric
MSR (S0

' ) parametrization [86]. Data are taken from Ref. [84].
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Fig. 4.11. The slope of the rapidity distribution. The full and dashed result is calculated with 
asymmetric sea quark distributions, the dotted and dash-dotted with symmetric ones [86]. 

where y = In (x1 /x2) /2 is the rapidity. This quantity also possesses the desired 
property of being independent of the K-factor. In terms of the quark distribu-
tions the slope can be expressed as product of valence and sea distributions. 
Therefore the rapidity slope is a quantity which is sensitive not only to the    – 
asymmetry but also to valence quark distributions. In Fig. 4.11 we display the
slope of the rapidity distribution calculated with different quark distributions.
The solid line is the result ofthe meson model [86]. The dotted line is the result
obtained with the Owens parameterization [90] of the quark distributions, the 
dashed line was obtained with the recent MRS (A) parameterization [30] with
  –   asymmetry and the dash-dotted line was obtained with MRS (S'

0) [80] 
(symmetric) distribution. Figure 4.10 clearly demonstrates that the asymmetry 
is not the only ingredient and a reasonable description of the experimental data 
can be obtained with both flavor symmetric and asymmetric distributions.

A quantity which can be extracted almost directly from experiment is

(4.2 1) ADY (x1,x2)=

which we will call Drell–Yan asymmetry. In Eq. (4.21) σpp and σpn are the
cross sections for dilepton production in proton–proton and proton–neutron
scattering. The Drell–Yan asymmetry (4.21) can be expressed in terms of the
quantity and ∆ , introduced in Eq. (4.19b)

ADY (x1,x2) =

(4.22)
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In the case of a flavor symmetric sea (D = 0) it is natural to expect that
ADY > 0, since u > d. However, the sign of ADY can be reversed by increasing 
the flavor asymmetry of the proton sea (∆ ≠ 0). 

Two dimensional maps of the Drell–Yan asymmetry as a function of x1

and x2 are shown in the form of the contour plots in Fig. 4.12. The different
maps were obtained with the Owens parameterization [90] (left-upper comer),
symmetric MRS(S'0 ) [80] (right-upper comer), the new MRS (A) [30] with the

– asymmetry built in (left-lower comer) and the prediction of the meson
cloud model [86] (right-lower comer). The result obtained with the Owens
(symmetric) parameterization and symmetric MRS (S'0 ) parameterization are
quite similar. This clearly demonstrates that the asymmetry A DY is the desired
quantity — insensitive to the valence quark distributions. It is also worth
noting here that ADY is positive in the whole range of (x1 , x2). How the     – 
asymmetry influences ADY is shown in two lower panels. It is very promising
that ADY obtained with the asymmetric quark distributions (lower panels) differs 
considerably (please note the change of sign in the lower panels) from the result
obtained with the symmetric distribution (upperpanels) and this should make an
unambiguous verification of the flavor asymmetry of the sea quarks possible. 
It is not random in our opinion that the result obtained within the meson
cloud model is very similar to that obtained from the parameterization fitted 
to different experimental data. We stress, in this context, that ADY calculated
in the meson cloud model is fairly insensitive to the quark distributions in the
bare nucleons (baryons). It is primarily sensitive to the – asymmetry which
is fully determined by the quark distributions in the pion (and other isovector
mesons), taken here from the pion–nucleus Drell–Yan process. In this analysis
it has been assumed that the quark distributions in other mesons are related to 
those for the pion via SU ( 3) f symmetry.

Following the suggestion of Ellis and Stirling, the NA51 Collaboration at 
CERN has recently measured the ADY asymmetry along the x1 = x2 diagonal
[28]. Due to low statistics, only ADY at low x = x1 = s2 was obtained. In 
Fig. 4.13 we show their experimental result (one experimental point) together
with the results obtained with different quark distributions. The meaning of the 
lines here is the same as in Fig. 4.10. The result denoted as MCM, obtained 
with the meson cloud model [58, 88] essentially without free parameters, nicely 
agrees with the experimental data point. In order to better understand the result, 
and the relation to the – asymmetry, let us express the cross sections in
Eq. (4.2 1) in terms of the quark distributions. Assuming proton–neutron isospin 
symmetry and taking x1 = x2 = x, as for the NA51 experiment, one gets in terms 
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Fig. 4.12. A two-dimensional map of the Drell–Yan asymmetry as a function ofx1 and x2 [86].
Shown are results obtained with the Owens parametrization [90] (left-upper comer), symmetric
MSR (S'0 ) (right-upper comer), new MRS(A) with the – -asymmetry built in (left-lower corner)
and prediction of the meson cloud model [27,  58] (right-lower comer). Note the change of the sign 
in the lower panels. 

of the quark distributions in the proton 

ADY = (4.23)

Let us consider first the case = . For a crude estimate one may neglect
sea-sea terms (important at small x only) and assume uval (x) = 2dval (x), which
leads to ADY = 1/11 > 0. The same crude estimate in the case of an asymmetric 
sea in conjunction with the decomposition Eq. (4.19b) yields 

(4.24)ADY =



126 J. Speth and A. W. Thomas 

Fig. 4.13. Drell–Yan asymmetry along the x1 = x2 diagonal [86]. The meaning of the lines here 
is the same as in Fig. 4.11. The data point is taken from the NA51 Collaboration at CERN [28]. 

This demonstrates a strong sensitivity to both the – asymmetry and to
the absolute normalization of the sea. The lack of dependence on the valence
quark distributions in the approximate expression Eq. (4.24) suggests a weak
dependence in the exact formula, Eq. (4.23). The negative value obtained
by the NA51 experiment, ADY = -0.09 ± 0.02 ± 0.025, automatically implies

> – at least for the measured x = 0.18 (provided that the proton–neutron 
isospin symmetry violation is small(!)) [91]. The data point ofthe NA51 group
is so far the most direct evidence for the flavor asymmetry of the sea quarks,
which is explicitly show in Fig. 4.14. There ADY has been translated into
the ratio /  (x)./   (x)  The x dependence of the asymmetry is awaiting further 
experiments. It is expected that the new experiment planned at Fermilab [92]
will be very useful in this respect and will provide the x dependence of the –
asymmetry up to x = 0.4. It should therefore shed new light on the microscopic
structure of the nucleon. The meson-cloud model gives definite predictions for
the asymmetry awaiting future experimental verification. 

4.5.    Polarized Semi-Inclusive Deep-Inelastic Scattering 

Despite the various phenomenological successes of the meson cloud model
discussed so far, it is important to look for further experimental evidence point-
ing unambiguously to the existence of a pion and kaon cloud in high energy
reactions. Melnitchouk and Thomas [93] have focussed on the semi-inclusive
production of polarized ∆++ baryons from a polarized proton, e → e' ++ X
and of a polarized L from a polarized proton They suggested
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Fig. 4.14. The ratio as obtained from the meson cloud model [88] and the 
MSK (A) parametrization (dashed line) compared with the experimental result of the NA51
Collaboration [28).

experiments at CEBAF and HERMES which could distinguish between the
meson-exchange mechanism and parton fragmentation. In Fig. 4.15 the po-
larization asymmetry (s+ – s-) /stot is shown for CEBAF and HERMES
kinematics. The two curves represent extreme cases, in which D ’s are pro-
duced entirely via pion emission or diquark fragmentation. In reality, the ratio 
of polarization cross sections will be some average of the curves in Fig. 4.15. 
The amount of deviation from the parton model curve will indicate the extent 
to which the pion-exchange process contributes. 

In a similar way, leptoproduction of polarized L hyperons from polarized 
protons can be used to test the relevance of a kaon cloud in the nucleon. The 
advantage of detecting L ’s in the final state, as compared with D baryons, lies
in the fact that the L is self-analyzing. It has also been suggested [93] that 
measurement of the polarization of the L in the target fragmentation region
could discriminate between models of the spin content of the nucleon in which 
a large fraction of the spin is carried either by (negative polarized) strange quarks 
or (positively polarized) gluons. The latter would imply a positive correlation 
of the target proton and L spins, while the spin projection of the L along
the target polarization axis should be negative in the former model. (Similar
effects would also be seen in the reaction → -ΛΛ [94, 95]. The present data on 
semi-inclusive, non-polarized, Λ’s, however, indicate that the L and S hyperon
admixtures in the proton wave function might be small (see the discussions in 
Sections 4.1 and 4.2). The polarization asymmetry for A-production is shown
in Fig. 4.16. In first approximation the probability of forming a L and L is
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Fig. 4.15. Polarization asymmetry for 
the π-exchange (upper curves) and par-
ton fragmentation (lower curve) mod-
els. The solid and dashed lines are for CE-
BAF and HERMES kinematics, respec-
tively.

equal in the parton fragmentation process and the asymmetry is zero. Therefore 
the observation of a large polarization asymmetry in the large z region of target 
fragmentation will be evidence for a kaon-exchange fragmentation mechanism. 

4.6.    Exclusive Electroproduction of Pions 

It has been suggested that the spin averaged splitting functions discussed 
above may be directly measurable in exclusive electroproduction of pions above 
the resonance region. This claim is based on the observation [96] that, for the
photon virtuality Q2 greatly exceeding the meson and baryon virtualities k2,
the differential cross section for the reaction ep → eMB is dominated by the 
nucleon–pion pole diagram which factorizes 

dσ
~fπN (x) (Q2) (4.25)

Here, Fπ(N) (Q2) is the on-mass-shell electromagnetic form factor of the
struck pion (nucleon).

In [96] the splitting functions are interpreted as the densities of (non-
perturbative) partons (mesons and baryons) of the physical nucleon and it is 
suggested that one could study them like parton densities in inclusive DIS.
Indeed, from Eq. (4.25) it follows that in exclusive one-pion electroproduction
the photon of high virtuality, Q2, probes the density of mesons and/or baryons 
in the proton at the value of the light-cone Sudakov variable equal to the 
Bjorken variable x. Factorization implies a possibility of separate analysis of
the light-cone meson—baryon density functions and the electromagnetic form 
factors of mesons and baryons. 

More accurately, the decomposition of the differential cross section of the 
exclusive reaction ep → eπ+n in terms of the longitudinal and transverse cross 
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Fig. 1.16. Polarization asymmetry
for the K-exchange (solid) model of Λ
production, compared with a leading 
fragmentation approximation estimate
for the parton fragmentation process 
(dashed).

sections reads [96] 

where KL and KT in (4.26) are the kinematical factors.
In Eq. (4.26) Fw(Q2) is the on-shell charge form factor on the pion. It

is worth recalling that in the light-cone parton model the condition Q2 k2

guarantees the on-shellness of partons [96]. The second (transverse) term in
(4.26) arises from the ρ+ – π+ radiative transition which is under the control of
the form factor Frp (Q2). This is a magnetic dipole (M1) transition -hence
the enhancement factor, Q2, in the corresponding term in the electroproduction
cross section (4.26).

The density of the transversely polarized ρ-mesons in the proton, can
easily be obtained [96]. It is worth noticing that the ρ-pole dominated transverse
cross section is expected to be an increasing function of at small This
effect is due to the strong -dependence of the tensor term 

in the rNN interaction, which generates terms proportional to and
Observation of this phenomenon is crucial for understanding the mechanism 
of exclusive electroproduction. 

The possibility to detect neutral mesons makes the reaction ep → eπ0π 
particularly interesting as it is free of the pion-pole term and at high Q2 the
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baryon pole term is suppressed by extra powers of 1/Q2. Then the differential
cross section reads 

(4.27)

There are two main reasons for the w-pole dominance. First of all the ωπγ 
coupling constant, absorbed in the radiative transition form factor, (Q2) ,
is numerically large. The extra enhancement is due to the factor, Q2, typical of
the magnetic dipole interaction [96].

This observation makes the idea of the precision measurement of the Q2-
dependence of the cross section of the reaction p (e,e'π0 )p especially ap-
pealing, since it provides us with opportunity of direct measurement of the
vector meson cloud of the nucleon. Furthermore, as has been emphasized
in [96], the early onset of the parton model regime enables one to study the
helicity non-conserving form factors Fρπ (Q2) , Fωπ (Q2) in the substantially
non-perturbative region and, what is more important, to retrace the onset of the
pQCD regime at a very high Q2 as well.

In a recent detailed analysis [97], it has been also suggested that measure-
ments of fast pions in the final state, in coincidence with the final electron, could 
be sensitive to a pionic component of the nucleon. Extending the exclusive 
analysis of Güttner et al. [116] in the IMF, Pirner and Povh [97] work within a
constituent quark picture in which the probability to find a pion in the nucleon is
expressed in terms of the pion distribution function inside a constituent quark. 

The differential pion-production cross section for the “leading pion” (inte-
grated over transverse momenta) is written as

∝A (x,y,z ) + B (x,y,z ) Fp (Q2)

+ C (x,y,z' ) F 2
π (Q2) (4.28)

where z = Eπ/ v is the fraction of the photon’s energy carried by the pion, and
where the A and B terms describe soft and hard fragmentation, respectively. The
function C reflects coherent scattering from the pion cloud of the constituent
quark. Each term in Eq. (4.28) gives a characteristic Q2-dependence, namely 
logQ2, 1/Q2 and 1/Q4, respectively. To isolate the coherent scattering from
the pion one therefore has to restrict oneself to the region of not too high Q2,
where the form factor suppression has not yet eliminated the pion signal.

A useful observation in this analysis is that each of the three processes has 
a quite distinct z-dependence. The hard-fragmentation process gives a differ-
ential cross section which is constant in z, and is important in the intermediate
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z region (0.6 ≤ z ≤ 0.8). The soft fragmentation mechanism is dominant at 
small z,z ≤ 0.6, but dies out rather rapidly at larger z. This fact may enable one 
to detect the pion-exchange process, which dominates the region 0.8 ≤ z ≤ 1, 
where it predicts a contribution that is several times larger than the constant-z,
hard fragmentation mechanism [117]. The conclusion that the pion-exchange
process is dominant is consistent with our previous results. 

The authors argue, however, that what they suggest is the measurement of 
the meson cloud ofthe constituent quark and not the meson cloud ofthe nucleon. 
In their view the meson cloud of the nucleon has already been determined from
the pion-electroproduction data on the proton where only a 3% admixture of
nπ+ in the bare proton was found [116]. This should be compared with the
corresponding value in Table 4.1, where the π+n admixture is 12% (and 6%
is π0p). This crucial difference in the concept of the meson cloud will be
decided very soon experimentally by the ZEUS collaboration at HERA, which 
is installing a forward neutron calorimeter. 

4.7.   Meson-Cloud Effects on the Spin-dependent Properties of 
the Nucleon 

The spin structure functions [Eq. (2.10)] of the proton and neutron are 
related by the Bjorken sum rule, which is a rigorous prediction of QCD

(4.29)

It was first derived using current algebra [98] where one can show that the
integrated value of gN

1 (x) is given (in the Bjorken limit) by the matrix-element

Using the decomposition for the charge squared 

where the l’s are the usual Gell-Mann matrices, one obtains what for the proton 
is called the Ellis–Jaffe Sum Rule [99]. 

(4.32)1
p = 6 [I0 +I8 +I3]-

(4.30)

(4.31 )
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In terms of the standard SU(3) amplitudes, F and D, for the baryon semi-
leptonic decays, the two flavor octet amplitudes are given as 

and

1I3 = – 2 (4.33)1
2

= – ( F + D)

I8 =

The flavor singlet amplitude is given as 

(4.34)1
2

= – (F – D)

I0 = (4.35) 

and can be deduced from the experimentally known p from Eq. (4.32) if one
takes F and D from the analysis of the semi-leptonic decays of the baryon octet.

Usually one expresses the Ellis–Jaffe sum rule in terms of the polarized
quark distributions. 

Dq =

p =

(4.36)

(4.37)

Correspondingly one expresses the semi-leptonic decay of the baryon octet
in the Cabbibo model, where one assumes that the axial currents responsible
for the semi-leptonic decays belong to an SU (3) octet. The diagonal matrix 
elements of these axial currents in this specific model give the well-known
connection to the Ellis–Jaffe sum rule. Note, that in Eq. (4.37) the polarization
of quarks and anti-quarks enter, where the Cabbibo model considers only the
three valence quarks. 

(4.38)

g0A = Du + Dd + Ds (4.40)

If one assumes that there is no polarized strangeness contribution, i.e.,
∆s = 0 as Ellis and Jaffe assumed, g0

A is given by Eq. (4.40), and one obtains 
the result of Ref. [99]. 

2g3
A = ∆u – ∆d = F+ D

2           = ∆u + ∆d – 2DS = 3F – D (4.39)

(4.41)

(4.42)
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The recent interest in these sum rules originates from the measurements 
of the spin structure functions of the proton and neutron by the EMC-[100],
SMC-[101] and SLAC-[102] collaborations. The first measured value of the
proton structure function by EMC caused great excitement because it deviated
appreciably from the original Ellis–Jaffe prediction and indicated that only a 
small fraction of the proton spin is carried by quarks. The latest analysis of the 
newer data by Ellis and Karliner [103] gives (at Q2 = 10 GeV2).

gA
(o) = 0.31 ± 0.07

This is commonly interpreted as meaning that only 1/3 of the spin of the
proton comes from the spin of the quarks. While it is not our primary concern
here, we stress that such an interpretation is quite incorrect. Because of the
axial anomaly in the flavor singlet channel, gA

(o)  bears no formal relationship to 
the spin of the proton [104]. 

In view of the importance of the meson cloud for the Gottfried sum rule
violation, one might expect that it could also play an important role for the 
nucleon spin. Indeed, an early estimate within the one pion exchange model 
seemed to indicate that meson cloud effects may play a role in resolving the 
‘spin crisis’ [60]. Because of the close connection of the Ellis–Jaffe sum 
rule with semi-leptonic decays of the octet baryons we will first review the 
consequences of the meson cloud for these properties. Modifications of the
axial-vector coupling constants due to the meson cloud can be quite important, 
since the corresponding axial-currents are not protected against renormalization 
due to the meson cloud [34, 36, 105]. 

4.7.1.    Semi-Leptonic Decays 

According to our present understanding, the weak semi-leptonic decays
of the octet baryons can be classified into two groups: either a d-quark is
transformed into a u-quark, or an s-quark is transformed into a u-quark. The
matrix elements of the current operators ‘responsible’ for the semi-leptonic
decays of the baryons belonging to the octet can be parameterized in terms of
q2-dependent form factors.

UB2 (4.43)
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Fig. 4.17. Corrections to an axial current in the meson cloud model. 

The factor C here is the Cabibbo factor (sin qc) or (cos qc). At low momen-
tum transfer only two terms, f1 (vector) and g1 (axial vector), are important. It
is customary to extract from experiments the ratio gA /gv = g1 (0) /f1 (0).

Mesonic corrections lead to the renormalization of the axial-vector coupling
constants. The vector coupling constants are protected against renormalization
by vector current conservation. Mesonic corrections to the axial-vector cou-
pling constants have been taken into account by calculating the loop corrections
to the tree level approximation according to 

(4.44)

The polarized splitting functions Df were defined in Section 3.6 and Aa
µ are

the axial current operators. The corresponding diagrams are shown in Fig. 4.17. 
The formalism outlined in Section 3 has been recently applied by two 

groups to the semi-leptonic decay of the octet baryons. Zoller [59] considered 
corrections due to the admixture of the pseudoscalar octet and the baryon 
decuplet, whereas Holtmann et al. [27] included, in addition, the vector meson 
nonet.

To perform numerical calculations within this model requires the knowl-
edge of the axial coupling constants for the bare octet and decuplet baryons,
vector mesons and the transitions octet ↔ decuplet. The transitions within the 
baryonic octet are traditionally parameterized by the so-called anti-symmetric F
and symmetric D coupling constants. The axial coupling constant for the tran-
sition within the decuplet (H) can be fixed by the relation 2〈∆++ A3

µ D ++ =
H. 2m Dsµ. In analogy one defines the coupling constant for the interference
diagram octet ↔ decuplet (l) as 2  p A3

µ ∆ 0 =2 0 A3
µp = I.2

The matrix elements of the axial-vector current between pseudoscalar mesons



Mesonic Contributions to the Spin and Flavor Structure of the Nucleon 135

vanish. They are, however, finite for vector mesons. Here the structure is anal-
ogous to that of the baryonic octet. The corresponding constants are denoted
as FV and DV. Due to parity-conservation the axial coupling constant FV
vanishes. The vector meson ↔ pseudoscalar meson interference terms have an 
octet structure analogous to the other cases, with coupling constants called FI
and DI.

In the SU(6) model, i.e., in the model in which all particles are described
by their SU(6) wave functions [12], the axial coupling constants can easily be
calculated

2F = –, D = 1, H = 1, I = 4 FV = 0, DV = 1, FI = 1, DI = 0 (4.45)3 3

In Table 4.4 various theoretical results obtained with different model-
assumption for all possible semi-leptonic decays are compared with the avail-
able data [106]. In the column named ‘MC, SU(6)’ the gA’s are shown cal-
culated within the model of Holtmann et al., using the unrenormalized SU (6)
axial-vector coupling constants [Eq. (4.45)]. In the column labelled ‘MC,
SU(3)’ the corresponding results are given with F and D fitted to the mea-
sured values of the axial-vector coupling constants (the remaining parameters
H,I,DV and FI were taken at their SU(6) values). For comparison the tree-
level (no mesonic corrections) SU (6) model and SU (3) model ( F and D fitted
to the experimental data) are also included. The latter is the ‘Cabbibo’-model.

The χ2 values presented in the last row for each model give an idea of
the fit quality. It is well known that the naive SU(6) model gives a very
poor description of the experimental semi-leptonic decay data. On the other
hand, when fitting the F and D parameters an extremely good description 
of the existing (5!) data can be achieved. It is commonly believed that any
correction to the SU(3) model may only destroy this niceagreement. In fact, the
inclusion of mesonic corrections with SU (6) axial coupling constant improves
the description of the data dramatically (X 2/N = 4369 → X 2/N = 8.5). An 
additional variation of the F and D parameters can improve the results slightly. 
As pointed out by Zoller [59], the agreement with the data of the MCM-
model plus SU(6) coupling parameters is comparable with the Cabbib model. 
Whereas the latter has two parameters to fit the 5 experimental data, the SU (6)-
MCM is completely parameter free, because everything is fixed by previous 
investigations. On the other hand, it is also clear that the axial coupling 
parameters derived from the non-relativistic constituent quark model have to be 
modified due to the fact that in relativistic quark models an appreciable amount 
ofthe proton spin arises from the orbital motion of the 3 quarks [107, 108].
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TABLE 4.4 
A List of All Possible Semileptonic Decays of Baryons within the

Nucleon Octet 
The axial couplings gA has been calculated at the tree-level in the
SU (6) model (F = 2/3 and D = 1) and in the SU (3) model F and D
(F = 0.44, D = 0.82) fitted. Moreover, the results of the same models
are shown with inclusion of the meson cloud. For the SU(3) case we

find F = 0.53 and D = 1.15 
Decay SU (6) SU(3) MC, MC, gA exP

SU(6) SU(3)
η → ρ 1.67 1.257 1.241 1.257 1.2573 ± 0.0028
Σ+ → Λ 0.82 0.67 0.66 0.74
Σ-  → Σ0 0.94 0.62 0.77 0.64
Σ-  →  Λ 0.82 0.67 0.65 0.75 0.60 ± 0.03

Ξ0   →   Ξ0 0.33 0.38 0.27 0.49

Σ 0 → ρ 0.24 0.27 0.19 0.31
Σ - → η 0.33 0.38 0.27 0.49 0.34 ± 0.05
Ξ0 → Σ+ 1.67 1.26 1.37 1.39
Ξ-  → Λ 0.41 0.20 0.35 0.16 0.3 1 ±  0.06
Ξ-  → Σ0 1.18 0.89 0.97 0.98
x2/N 4369 2.0 8.5 6.5

Σ+ → Σ0 –0.94 –0.62 –0.77 –0.64

Λ → ρ –0.87 –0.96 –0.89 –0.857 ± 0.018 

4.7.2.    The Ellis–Jaffe Sum Rule 

In order to calculate the sum rule within the MCM one has to calculate
the three matrix elements I0 , I3, I8 given in Eqs. (4.33)–(4.35). The 13 and I8
are directly connected with the semi-leptonic decay of the octet baryons. If
one assumes that the polarization of the strange sea can be neglected (as done 
by Ellis and Jaffe [99]) then g 0

A = 2 and therefore I0 is also connected
with the leptonic decay. The same two versions of the MCM discussed in the 
previous section have also been applied to the 'spin-problem' of the nucleon.
Zoller [59] considered the baryon and pseudoscalar meson octet and the baryon 
decouplet. He used SU (6) axial coupling parameters. The polarization of the 
strange quarks is very small (∆s = 0.005), and the fraction of the spin (helicity)
carried by the quarks is about 80%. In his model the three major Fock space
components are: 

N phys = 0.568 N) bare+ 0.238πN + 0.125 π∆ (4.46)

If one used this decomposition in a static model the matrix element of the
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spin operator Sz between proton states with Sz = 1/2 reads:
∧

 

p

6≈ 0.568? * 1/2 + 0.238 * 

This value should be compared with 1/2. The depolarization effect is due 
to the spin-flip of the πN component, whereas the π∆ term tends to retain
the proton polarization. In the actual, relativistic case, the spin-flip and non-
spin-flip terms nearly cancel each other (see Section 3.6) and this results in
a vanishing contribution of the πN component to . For that reason the

corresponding value in the full model is even larger = 0.4. .This result 
depends on the cut-off parameters chosen for the meson–baryon vertices. For 
harder form factors [59] more of the proton spin is carried by the meson cloud
but on the other hand the axial couplings of hyperons become unacceptably
small. The results of Holtmann et al. [88] are summarized in Table 4.5, which 
includes the Ellis–Jaffe sum rule for the proton and the neutron, the
Bjorken sum rule S , the polarization of the strange sea ∆s and q0 (which
corresponds 2 * In the “SU (6)” model the axial coupling constants are
given by Eq. (4.45); in the “SU (3)” model the amplitudes F and D also are
fitted to the semi-leptonic decay data. The wave function includes (a) tree level, 
(b) tree level plus octet baryons and pseudoscalar mesons (oct, ps), (c) as in (b)
but also including the decuplet baryons (oct, dec, ps) and (d) denoted by “full”
includes, in addition, the vector meson octet. 

On the tree level in SU(6) all the spin of the proton is due to the spin of the 
quarks. If one considers the mesonic admixture, 15% of the proton spin arises
from the orbital momentum of mesons and bare baryons. In the SU(3) case,
qo is already reduced to 0.5 on the tree level because of the effective F and D
amplitudes. Mesonic corrections do not further reduce that value (note: the F
and D parameters are refitted). It is important to realize that in the MCM with 
SU (6) parameters one implicitly assumes that the spin of the “bare” nucleon,
delta and admixed mesons is 100% quark spin. This, however, is not true in 
relativistic model where nearly 50% of the nucleon is due to orbital momenta 
of the quarks (small components of the Dirac wave function). Calculations 
which include this effect have not yet been done. 

The results of the MCM using effective F and D amplitudes resemble very
much earlier calculations within the cloudy bag model [60]. Also here the
depolarization due to the πN-admixture is essentially compensated by the π∆ 
admixture, so that the originally MIT-bag value of = 0.18 is only slightly
reduced.
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TABLE 4.5 
The Ellis–Jaffe Sum Rule for Proton and Neutron,
the Bjorken Sum Rule and the Axial Flavor Singlet 
Coupling Constant Obtained with Inclusion of Dif-
ferent Fock States: Octet Baryons with Pseudoscalar 
Mesons (oct, ps), Octet and Decuplet Baryons with 
Pseudoscalar Mesons (oct, decu, ps) and with Vector

Mesons in Addition (all) 
The axial coupling constants for the SU(3) case are: F =
0.53, D = 1.15 for (oct, ps) and F = 0.48,D = 0.91 for

(oct, decu, ps) and F = 0.53,D = 1.15 (all).

S
p
EJ Sn

EJ SB ∆qo ∆So
SU (6) tree 0.278 0 0.278 1 0

oct, ps 0.212 0.004 0.208 0.779 0.004 
oct, decu, ps 0.233 –0.010 0.243 0.804 0.002

all 0.220 0.011 0.209 0.846 0.017
SU (3) tree 0.173 -0.037 0.210 0.489 0

oct, ps 0.154 -0.056 0.210 0.356 0.003
oct, decu, ps 0.169 –0.041 0.210 0.461 0.001

all 0.179 -0.031 0.210 0.541 0.018

The comparison of the two models also sheds some light on the model-
dependence of the Ellis–Jaffe sum rule which relies completely on the Cabbibo-
model of semi-leptonic decays. Whereas these decays can be equally well
described in the parameter free MCM-SU (6) model and the 2 parameter SU( 3)
(Cabbibo) model, the sum rule and the spin content ∆q0 are very different. In 
particular one knows that the UA (1)-anomaly [63, 104, 109, 110] may play an 
important role.

5.    MESONS IN THE PROTON AS TARGETS FOR DEEP-INELASTIC
SCATTERlNG

The experimental determination of the quark structure function of the pion
is of crucial importance for our understanding of hadron physics. From chiral 
symmetry one expects that the pion, as a Goldstone mode, might have a quite 
different structure compared with other mesons and baryons. Actually, quark-
models predict that the pion should be a highly collective object and that this
might show up in the structure function— as is the case for collective states in
nuclear physics. 

Up to now the only feasible method to extract the pion structure function
has been the πN Drell–Yan production. The disadvantages of this method
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are that the attainable luminosity is low and that only the valence part of the
pion structure function at rather large x (≥  0.2) can be studied — see however 
[111]. An extension of our knowledge of the pion structure function is possible 
by using the virtual pions of the meson cloud around the proton as targets in
deep-inelastic scattering [70]. As we have discussed before, these pions arise
naturally as a consequence of the pion–nucleon coupling and the interaction 
of high-energy projectiles like nucleons, pions or leptons with the virtual pion 
of the πN Fock state of the proton. It is a typical stripping reaction, in which
the momentum distribution of the spectator nucleon reflects the momentum
distribution in the πN (meson–baryon) Fock state.

In Fig. 5. la, we show again the pp-reaction which has been used in Sec-
tion 4.1 to determine the p+ and r+ Fock states in the proton. It is important
to realize that this reaction is in the same kinematic region as the deep-inelastic
electron scattering, shown in Figs. 5.1b and 5.1c. Therefore once the fluxes
(splitting functions) fnπ+/p (z, ) and f∆++p-/p (z, ) are known, one can
reverse the “Sullivanprocesses” and determine the pion and rho structure func-
tions from the semi-inclusive production of neutrons. As in the pp-reaction we 
expect that the semi-inclusive reactions

(a) ep → e'nX

(b)         ep → e'∆X (5.1)

in the properly chosen kinematical domain, will also be dominated by the pion 
exchange [33] mechanism of Fig. 5.1. If this is the case, then the straightforward 
generalization of Eq. (4.1) to semi-inclusive deep-inelastic electron scattering 
is

× K(x, Q2)F eπ
2 (xπ,Q2) (5.2)

where F eπ
2 (xπ, Q2) is the structure function of the pion; xπ = x/ (1 – z) is

the Bjorken variable in the electron–pion deep-inelastic scattering, with the
obvious kinematical restriction 0 < x < 1 – z, and K (x, Q2) is the standard
kinematical factor 

K (x,Q2) = Q2-, y = 
xs

assuming for the sake of simplicity 2xF e π
1  (x) = F e π

2 (x). Knowing all kinemat-
ical variables, and trusting the theoretical prediction for fnπ+/P (z,     ), one can 
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Fig. 5.1. The pion (rho) exchange contributions to the inclusive neutron production (a) in 
pp-scattering, and (b) neutron, and (c) ∆++ production in deep-inelastic scattering. Diagram
(d) shows the diffractive production of N*’s by pomeron exchange.

invert Eq. (5.2) and determine the pion structure function from the experimen-
tally measured semi-inclusive cross section. In the HERA experiments, one
can go down to the region of very small xπ (≥ 10–4). This will be an enormous 
expansion of the kinematical region studied compared with the πN Drell–Yan 
experiments, which cannot go much below xπ ~ 0.1 [74]. Furthermore, such
a determination of the pion structure function at HERA would allow one to
study the scaling violations in the pion structure function in a broad range of
(xπ, Q2), which is hardly possible in the Drell–Yan experiments. 

From the purely experimental point of view, the semi-inclusive reaction
ep → e'nX is being studied already by the ZEUS collaboration, which has 
installed a test forward neutron calorimeter (FNC) to complement its leading 
proton spectrometer [112]. This FNC was tested with neutrons from inclu-
sive proton beam-gas interactions, and an excellent agreement between the 
measured spectra and the pion-exchange predictions was found.

The principal task is to find the kinematical domain in which the semi-
inclusive reaction ep → e'nX is dominated by the pion-exchange contribution. 
The semi-inclusive production of neutrons with z ~ 0.8 turns out to be the
optimal kinematical domain, and it also corresponds to the domain in which
the semi-inclusive cross section is largest. The fluxes for the charge-exchange
reactions, p → n and p → D++, as well as the reaction p → p, are shown in 
Fig. 5.2. The expected counting rates can be judged by the total number of
virtual pions in the nucleon as given in Table 4.1, nπ (πN)≈ 0.18, nπ (π∆)≈
0.06, which shows that deep-inelastic scattering on pions, accompanied by
p → n, D fragmentation, will have a statistical weighting only one order of
magnitude lower than that for ep scattering.

The background to the pure pion exchange comes from interaction with 
Fock states which contain heavier mesons M = K, ρ, ω..... Evidently, in such
states the heavy mesons M will carry a larger fraction of the momentum of the 
MN state, and the heavy meson exchange will contribute to the spectrum of 
neutrons at smaller z in comparison with the pion exchange (we do not discuss 
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Fig. 5.2. Longitudinal momen-
tum distribution of (a) neutrons, 
(b) protons, and (c) ∆++. The
contributions of the π and ρ ex-
change mechanisms are shown by 
the dashed and dotted line. respec-
tively. The contribution from the 
pomeron exchange mechanism to 
the p → p fragmentation is shown 
by the dash-dotted line [70].

here the region of 1 – z 1, where the Reggeization of mesons becomes
important). In Fig. 5.2 the effect of the r-meson is shown as a dotted curve. 
Evidently, choosing the region z ~ 0.7–0.8, one can eliminate much of the
ρ-exchange background. A still better separation of the π and ρ exchange
can be achieved if one compares the p distributions for the two mechanisms.
As shown in Fig. 5.3 the best way of discriminating between the π and ρ 
contribution is to select only events with ≤ 0.1 (GeV/c)2. Then the relative 
contribution of the pion exchange is significantly enhanced.

In the suggested mechanism for semi-inclusive neutron production, the
differential cross section (5.2) is a product of the universal flux factor, which
only depends on z, and the structure function F π

2 (xπ, Q2) which is a function
of xπ = x/ ( 1 – z). This factorization property allows an important cross check 
of the model: binning the semi-inclusive cross section data as a function of z
should not depend on xπ. Furthermore this z-dependence should be identical



142 J. Speth and A. W. Thomas 

Fig. 5.3. Longitudinal momentum distribution of neutrons (see Fig. 5.28) with the extra 
condition < 0.1 (GeV/c)2 (lower curves) compared to the unconstrained one (upper
curves, see Fig. 5.2a). The p exchange contributions are shown by dashed lines; the r exchange
contributions by the dotted lines. 

to the z-dependence of the inclusive spectra of neutrons from the hadronic
rN interactions. Remarkably, the FNC of the ZEUS collaboration enables
the latter cross check to be performed in situ, directly comparing the spectra
of neutrons from inclusive beam-gas interactions and from deep-inelastic ep
scattering. Such a comparison of the two spectra will allow one to verify that
the background contribution to z ~ 0.7–0.8, from deep-inelastic scattering off
the baryonic core, is as small as in hadronic reactions. Reversing the argument, 
one can determine the xp dependence of the pion structure function by changing
x at fixed values of z and verifying that the xp dependence comes out the same 
at all values of z.

The above discussion is fully applicable to the semi-inclusive production of
D++. The longitudinal momentum distribution of D++ is shown in Fig. 5.2c.
As in the p → n case, the contributions from the p and r exchange mechanism
are fairly well separated, with the π-exchange contribution dominating at large
z . Measuring the ∆++ production at HERA will require good experimental 
resolution of both the proton and π+ resulting from the D++ decay, which
requires multitrack identification of the leading proton spectrometer. The ZEUS
collaboration has such a device operating at HERA [ 113]. The measurements
of D++ production are important for the direct evaluation of the contribution 
of the two-step process p → D → np to the spectrum of neutrons. The D
decay background to the spectrum of neutrons is small — isospin symmetry
considerations imply that the relative contamination of the neutron spectra
nπ (π∆) / (3nπ(πN))≈ 0.1. 
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It is important to realize that in order to relate xπ, the Bjorken variable in
the electron–pion deep-inelastic scattering and z, the longitudinal momentum
fraction carried by the neutron, the basic symmetry for the splitting function
[Eq. (3.7)] has to be fulfilled. As discussed in Section 3 this puts stringent 
restrictions on the form factors in the vertex function which are not fulfilled by 
the conventional form-factors which depend only on the momentum variable t
[118].

6.    CONCLUSION 

On very general grounds the meson cloud must play an important role in the
structure of the nucleon. In particular p-nucleon, p-delta and r-nucleon Fock 
space components constitute nearly 40% of the nucleon wave function. We 
have explored the phenomenological consequencesof the cloud in a variety of
experiments and we have shown that it gives large effects in the non-perturbative
regime of QCD. The investigations range from semi-inclusive nucleon–nucleon 
scattering to polarized and unpolarized DIS, semi-inclusive DIS, exclusive 
electroproduction of mesons, Drell–Yan experiments and semi-leptonic decays 
of baryons. 

The model so far has several outstanding successes: 

I. The initial prediction of the asymmetry of the quark sea > has been
confirmed some years later by NMC. 

II. After determining the πN and πN form factors from semi-inclusive pp
data, recent calculations quantitatively reproduce (parameter free) the 
measured – asymmetry. Also, the calculated shape of (x) / (x)
seems to be well described. 

III. Deep-inelastic scattering off the meson cloud explains a significant part 
of the experimental sea-quark structure functions of the nucleon for
Q2 ≤ 5 GeV2 and x > 10–2.

IV. The meson cloud model reproduces the 5 experimentally known data 
of the semi-leptonic decay of the baryon octet equally well as the two 
parameter fit of the Cabbibo model. 

V. Valence quark structure functions deduced from a model which com-
bines the bag and meson cloud model agree surprisingly well with the 
phenomenological ones. 
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Moreover the model makes some definite predictions which may be tested 
in the near future: 

(i) The polarization of the strange quark sea in the nucleon is very small. 
Therefore strange quarks carry a negligibly small fraction of the spin of 
the nucleon. 

(ii) The fraction of the spin of the nucleon which arises from the orbital 
momentum between mesons and baryons is only 15%. 

(iii) Using the meson cloud model, a method has been suggested to measure
the pion structure function down to x ≈ 10–4, by exploiting the non-
perturbative pN and pD Fock components ofthe nucleon which dominate
the fragmentation of protons into fast neutrons and D’s.

From all that has been reviewed here it should be obvious that the meson 
cloud model represents an important link between classical nuclear physics 
and high-energy particle physics. In the first case mesons and baryons are 
the relevant degrees of freedom whereas the latter is dominated by quarks and 
gluons. The model which we have presented here extends the meson–baryon 
dynamics into the non-perturbative regime of QCD and represents therefore an 
important tool to help to explore it. 
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A.    LAGRANGIANS 

Here we present the interaction Lagrangians we employ in our calculations. 
They are usually used in meson exchange models [33]. F, denotes a spin-1/2
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field (N), Ψ a spin-3/2 field (D) of Rarita–Schwinger form; with πpseudoscalar
fields are denoted, with q vector fields (r, w):
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L1 = (7.1)
L2 = (7.2)
L3 = (7.3)
L4 = (7.4)

The anti-symmetric tensor sµv, here is defined as σµv = i–2 [γµ, γv].

B.    VERTEX FUNCTIONS 

Here we list results [58] for helicity dependent vertex functions (y, ).
y here denotes the longitudinal momentum fraction of the baryon in the nucleon;

  = ( cos , sin ) the transverse momentum of the baryon with respect 
to the nucleon momentum. The contributions are listed according to particle
helicities (1/2 → λ, λ'), with λ and λ' being the baryon and meson helicities 
respectively.

a) Transitions for L1 (Nπ,Nη,ΣK, ΛK)

1 1- -
2 → + 2

, 0

1 1 – → – –, 02 2

b) Transitions for L2 (∆π, Σ * K)

1 3-2

1- 1-

– → + 2
, 0 –

2 → + 2
, 0

1 1– → – –, 02 2

1 3– → – –, 0 –2 2

c) Transitions for L3 (Nρ,Nω, ΣK*, ΛK')

1 1
2– → + 2

, + 1-
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d) Transitions for L4 (Ar,S*K*)
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1.   INTRODUCTION 

Nuclear fusion is a phenomena of well-known nuclear reactions occurring 
mostly among light nuclei when they come close to each other within the range 
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TABLE 1.1 
Typical Fusion Reactions 

p + d → 3He + g (5.5 MeV) 
p + t → 4He+ g (19.8 MeV)
d + d → 3He + n (3.3 MeV)

t + p (4 MeV)
4He+ g (24 MeV)

d + t → 4He + n ( 17.6 MeV) 
t + t → 4He+2n (10 MeV)
d+ 3He → 4He + p (1 8.35 MeV) 

of the nuclear interaction distance (a few fm, fm = 10–13 cm). Because of a re-
duction of the sum of the rest masses from the initial state to the final state, one 
can expect the production of energy from such fusion reactions. The most sta-
ble nuclei are in the iron region and, in stellar collapse, nucleosynthesis from 
fusion occurs for all elements up to iron. For fusion energy in our sun and, in-
deed, for laboratory fusion energy, only the very lightest elements participate. In
Table 1.1, the typical fusion reactions among very light nuclei are summarized.

Most fusion reactions have been studied at high energy (above 100 keV) us-
ing accelerators. There, the reaction partners come together closely enough to
overcome the Coulomb repulsion. As described in this article, the muon cat-
alyzed fusion (frequently the abbreviation µCF is used hereafter) phenomenon is
a nuclear reaction at zero energy in which the negative muon effectively “hides”
the positive charge of one of the hydrogen isotopes thus enabling the close ap-
proach necessary for fusion. There, our knowledge of the nuclear physics ofthe
fusion reaction at high energy must be extrapolated. 

Among two types of muons, namely, µ+ and µ–, only the µ– is involved in
muon catalyzed fusion research. The most fascinating features regarding muon
catalyzed fusion concern: (1) varieties of phenomena related to the interplay of
nuclear phenomena and atomic phenomena which, in turn, are related to the in-
terplay of nuclear and electromagnetic interaction, respectively, and (2) possible
future applications to energy resources. This is particularly true regarding the
µCF in a deuterium and tritium (D–T) mixture with a high density ø compara-
ble to the liquid hydrogen density, ø0 (0.425 × 1023 nuclei/cc). In the following, 
the present understanding and future prospects of µCF are summarized with a
particular emphasis on the D–T µCF and some limited descriptions on the µCF
in DD as well as the other systems listed in Table 1.1.

The basic phenomena of the µCF involve the following two processes: (1)
the formation of a small molecule, called a muonic molecule, consisting of two 
nuclei and a µ– and an inter-molecular fusion reaction, and (2) a series of chain
reactions ofthe fusion reactions mediated by a single µ–. Regarding the case of
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Fig. 1.1. Conceptual view of the role of a negative muon used to remove the repulsive potential 
between d and t to catalyze nuclear fusion with reference to thermal nuclear fusion.

the D–T µCF, these two processes are schematically summarized in Figs. 1.1 and
1.2. Sometimes, historically in particular, the chain reaction is presented in the
form of a cyclic reaction by connecting the ending part of one unit of the chain
reaction to the beginning part, as shown in Fig. 1.3. The basic processes for D–T
µCF, the details of which are described in later sections, can be summarized as
follows.

After high-energy µ– injection and stopping in a D-T mixture either a (dµ)
or (tµ) atom is formed, depending upon the concentration of D and T (Cd and Ct,
Cd + Ct = 1). Because of the difference in the binding energy of atomic states
(either excited or ground) between (dµ) and (tµ), the µ– in the atomic state of
(dµ) takes a transfer reaction to (tµ) during a collision with the surrounding t
in either DT or T2 like (dµ) + t → (tµ) + d at the rate of λdt. Thus formed (tµ)
either after thermalization or before, reacts with D2, DT or T2 to form a muon
molecule, where the formation of a specific state of the (dtµ) molecule through
the resonant formation mechanism is important for the fusion rate of λdtµ. Once
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Fig. 1.2.  Chain reaction of the muon catalyzed fusion phenomena in a D-T mixture. 
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Fig. 1.3. Cyclic reaction representation of the chain reaction of the muon catalyzed fusion 
phenomenon in a D–T mixture, including possible loss processes other than (aµ) sticking.

the (dtµ) molecule is formed in the specific state, a rapid cascade transition pro-
cess of the µ– inside the dtµ molecule takes place followed by the fusion reac-
tion in a low-lying molecular state of the ( dtµ), where a distance between d and t
is close enough for the fusion reaction to take place. Then, a 14 MeV neutron and
3.6 MeV a are emitted. After the fusion reaction in the (dtµ) molecule, most of
the µ– is liberated to participate in the second µCF cycle. Some small fraction of
the µ– has a possibility to be captured by the recoiling positively charged a. The
probability of forming an (αµ)+ ion is called the sticking probability ωs. Once 
the (αµ)+ is formed, since the µ– has an initial kinetic energy of 90 keV com-
pared to the 10 keV binding energy of the ground state of (αµ), the µ– can be 
stripped from the stuck (αµ) ion. This process is called regeneration. Thus, µ– 
in the form of either a non-stuck µ– or a regenerated one from the stuck (αµ)
can participate in the second µCF cycle. Thus the chain continues. From the
very first ideas about µCF the question of interest has been: how many cycles
can occur during the muon's short lifetime (2.2 µs)?

Some details concerning the D-TµCF cycle are shown in Fig. 1.3. In the
(dµ) to t transfer, there is a possibility that the µ– is transferred from excited
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(dµ) states. Also, the existence of He impurity is inevitable due to t-decay and
µCF, itself; the µ– loss due to capture to 3He must be taken into account, In
addition to Fig. 1.3, since t, d and µ– have spin, there should be a hyperfine (spin-
dependent) effect in the formation process of a muon molecule. 

In fact, various types of physical processes are involved in these main pro-
cesses. The fusion reaction in a small muon molecule is the most significant 
part where nuclear interaction dominates. Also, a nuclear interaction does affect
muon sticking and related processes. The remaining processes are due mainly
to electromagnetic-interactions. There, in order to understand electromagnetic-
interaction related µCF phenomena, the basic roles of the µ– can be understood
by considering the µ– to be a heavy electron with a mass ratio mµ/me of 207. 

Therefore, in order to understand the physics of the µCF, the following clas-
sification of the processes is relevant: (1) nuclear-process, fusion reaction in
a muon molecule; (2) intermediate-process, muon sticking, regeneration and 
electromagnetic transitions; (3) atomic and molecular processes, muonic atom
formation/intra-atomic cascade and slowing-down, muon transfer among hy-
drogen isotopes, formation of a muon molecule/intra-molecular transition and
a He impurity effect in the µCF ofhydrogen isotopes, etc; (4) the application of
µCF phenomena. With some emphasis on nuclear physics aspects of µCF, the
present review follows this classification.

The concept ofthe µCF has been introduced independently by Frank [1] and
Sakharov [2]. An experimental observation of p–D µCF was made by Alvarez 
et al., at Berkeley in 1956 [3]. The major historical trend of the µCF studies is
summarized in Table 1.2. Several review articles are available regarding the µCF
phenomena [4, 5, 6, 7, 8]. Since 1986, almost every year, an international con-
ference has been held. The proceedings report on updated progresses of the µCF
research; Tokyo 1986 [9], Leningrad 1987 [10], Florida 1988 [11], Vienna 1990 
[ 12], Uppsala 1993 [13] and Dubna 1995 [14]. Since there exist rather complete
review articles [4, 5, 6, 7, 8] concerning both experimental and theoretical stud-
ies up to the early 90’s we would like to focus our main descriptions on Experi-
mental Studies and Theoretical Studies after 1990, and summarize the activities 
before 1990 as Historical Background. 

Here, we summarize what has happened after 1990 up to today in the field 
of muon catalyzed fusion. Experimentally, new insights have been provided by 
the development of new experimental facilities and methodologies: progress in 
X-ray detection in D-TµCF has been made by using instantaneously intense
pulsed muons, which are now available at KEK-MSL and RIKEN-RAL; high
energy (0.1 eV), (dµ), (tµ) reaction studies have been realized by the develop-
ment of (dµ), (tµ) beam method; etc. Also, over time it has come to be recog-
nized that low-energy atomic/molecular processes are affected by the molecular
as well as condensed-matter status of the reaction partners. Theoretically, the 
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TABLE 1.2 
Major Historical Trends of Muon Catalyzed Fusion Studies 

1947
1948

1956 Observation of pdµ fusion (Alvarez) 
1957

1966
1967

1977
1979
1979

1982
1987
1987

1993
1994
1995
1997

Hypothesis of the µCF cycle (Frank)
Estimate of the fusion rate λdd

f , λdt
f (Sakharov)

Calculation of the dtµ cycle and sticking (Jackson) 

Observation of the T-dependence of λddµ (Dzhelepov)
Theory ofthe resonant formation of ddµ (Vesman)

Prediction of large λdtµ (Gerstein and Ponomarev) 
Observation of the upper limit on ldtµ
Observation of the hyperfine effect in λddµ (PSI) 

Measurement of λdtµ, µdt (LAMPF) 
Observation of X-rays from (µα)+ in DT µCF (PSI,KEK)
Observation of X-rays from dHeµ (KEK) 

Observation of a large λddµ in solid D2 (TRIUMF) 
Observation of X-rays from muon transfer (PSI,KEK) 
Observation of λdtµ with eV (tµ) (TRIUMF) 
Systematic studies of X-rays, neutrons from DT-µ CF (RIKEN-RAL)

need for precise calculations of the energy levels of the muon molecule (better 
than ppm accuracy) have promoted progress in theoretical studies of few-body
systems, including theories beyond an adiabatic approximation. Further details 
can be found in the following. 

2.

Historical Background 

NUCLEAR FUSION REACTION INSIDE MUON MOLECULE 

As depicted in Fig. 1.1, a nuclear fusion reaction takes place when the two
nuclei such as d and t come close to each other within the range of the nuclear 
interaction (rn; ≅  a few fm). However, because of the Coulomb repulsion be-
tween positively charged nuclei, starting from zero relative energy, the realiza-
tion of nuclear fusion is not easy at all. In the concept of thermal nuclear fusion,
additional kinetic energy is given by thermal energy (kT) by satisfying the fol-
lowing condition; kT ≥ e2/rn. By assuming rn ≅ 10-12 cm, since the right-hand
side of the inequality formula becomes 7 × 104 eV, the required temperature is 
7 × 108 K. 



calculated by Bogdanova et al. [15].
Fig. 2.1. Scheme of cascade processes in dtµ and ddµ molecules after the resonant molecular formation at (1,1) state,
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On the contrary, in the concept of the µCF, the fusion reaction becomes real-
ized by utilizing a neutral small atom formed by the µ– and hydrogen isotopes
and by forming a small molecule (actually molecular ion) among the d, t and µ– .
Now, let us consider how small this muon molecule is. The µ– in the ground
state of muonic hydrogen is known to take an orbit with a radius of 270 fm and 
a binding energy of 2.8 keV. By using an analogy to a conversion from H( 1s) to
H2

+ (g.s.), where the radius becomes 2-times larger and the binding energy be-
comes l /10-times smaller, one can consider the (H2µ–)+ (similarly (D2µ–)+,
etc) the molecular ion takes a radius of 2 × 270 fm and a binding energy of
2.8 × (1/10) keV. Thus, since the range ofthe nuclear interaction (a few fm) be-
comes not far from the size of the molecule, with the help of zero-point motion
of the molecular ion, the fusion reaction proceeds at a high rate.

Historically, the rate of nuclear fusion inside the small muon molecule (λf)
was calculated [ 16, 17] by the so-called factorization relations by considering. 

λf = af (R = 0) 2

where af is a reaction constant related to the fusion cross section at zero relative 
energy, which can be obtained by an interpolation from the nuclear reaction data 
at higher energies and (R) 2 is the probability density to find the two nuclei
at a distance of R. The constant af can be obtained by the interpolation ( v → 0)
with a description of low-energy cross section of the fusion reaction, 

2s = af C0 v

where C0 is the Gamow factor of s-wave scattering and v is the relative velocity 
at infinity. λf ~ 1012s–1 was given in Refs. [16] and [17]. 

Experimental Studies 

Since a nuclear-fusion reaction realized in a muon molecule exhibits the re-
action at zero relative energy, the reaction phenomena represent a new aspect of 
the nuclear interaction. This situation seems to have relevance to the n–n, p-p
interactions at zero energy. On the other hand, since, in most of the cases, lf is
too-high to be measured directly, an analysis as well as an interpretation of most 
of the µCF experiments, in particular for dtµ as well as ddµ, have been con-
ducted while assuming an “unmeasurable” l f , and to measure the other rates in 
the µCF processes. Several possibilities exist to directly measure the value of
lf, for e.g.,pdµ, ptµ, etc., as summarized in Table 2.1 a. 
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TABLE 2.1a 
Fusion Rates of Muon at the Ground State of a Typical Muon

Molecule (s–1) other than (dtµ ) and (ddµ )

Molecule Reaction Ratio(%) Theory Experiment
[Jv] channel

pdµ [00] 8 × 105 [a]
µ3He+ γ 86 9.7(1) × 105 3.50 (20) × 105 [c]

1.07 (6) × 105 [b]

3He+µ 14 0.62 (2) × 105 0.56(6) × 105

ptµ[00] µ4He +γ (e+e–) 95 1.3 × 106 [a] 6.5 (7) x 104 [e]

ttµ[11] µ4He+2n 14 1.2 × 107 [a]

d3 Heµ
[J=0] 102 [g]
[J = 0] 3(1) × 108 [h]
[J= 1] 6(3) × 105 [h]

4He+ µ 5 1.3 × 105

[10] 4He+2n+µ 86 1.3 × 107 1.5 × 107 [f]

a Reference [18]
b Reference [19]
c Reference [20]
d Reference [21]
c Reference [22] 
f Reference [23]
g Reference [24]
h Reference [25] 

In the case of pdµ fusion for liquid H–D mixtures, which has a long his-
tory after the observation by Alvarez et al. [3], an experiment at PSI [20] mea-
sured g rays (5.5 MeV) after pdµ → µ3He + g fusion with reference to neu-
trons from ddµ fusion. The pdµ is formed in a (Jv = 10) state followed by
a fast de-excitation process and the fusion occurs at (00) state [18]. Histori-
cally, this fusion reaction is considered to exhibit a significant spin-dependent
process in (dµ). Namely, any fusion from the initial spin-quartet (spin 3/2)
state ofpd to the 3He ground state was considered to be prohibited by the Pauli
principle as long as the spin-singlet and symmetric s-wave configuration alone
is assumed for 3He. However, the obtained data in terms of the spin state of
pd, = 0.35 (2) µs–1 and = 0.11 (1) µs–1, showed a non-vanishing
quartet contribution. The data were excellently explained by a calculation of 
Friar et al. [19],       = 0.37 (1) µs–1 and      = 0.107 (6) µs–1; they took 
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TABLE 2.1b 
Theoretical Fusion Rates (s–1) at the State (Jv) of dtµ and

ddµ Muon Molecules 
Authors State

dtµ :
Bogdanova et al.a 1.0 × 1012   0.80 × 1012   1.1 × 108  4.2 × 107

Struensee et al.b 1.30 × 1012   1.13 × 1012

Kamimurac (1.22–1.28) (1.03–1.08) (1.32–4.38) (0.51–1.71)

Szalewicz et al.d 1.25 × 1012   1.05 ×1012

ddµ :

(00) (01) (10) (11)

×1012 ×1012 × 108 ×108

Bogdanovaa 4.3 × 108 1.5 ×109
 

(0.9)e (0.1)e

a Reference [18] 
b Reference [26]
c Reference [27]
d Reference [29] 
c Probabilities

precise Faddeev-type 3He wave functions based on realistic N–N potentials and 
the MI operator, including meson exchange effects. The data itself should be
considered to be related to the radiative capture rate of the µ– at zero energy.

As for ptµ fusion, an experiment at PSI [22] measured γ ray (19.8 MeV)
after the ptµ → 4Heµ + g reaction, compared to ptµ → 4He + µ. The fusion 
occurs in a (Jv = 00) state where three hypefine-split sublevels exit [18]. Since
g emission is only possible for the spin- 1 state of (tµ), this process is known to
probe the spin-flip process. There, λf = 0.065 (7) µs–1 has been obtained.

Regarding ttµ fusion, there has been none of the refined experiment for the
pure T2 target other than the old PSI experiment [23], where, from the time-
evolution of the fusion neutron, the value of λf was obtained. The major fusion
process is considered to take place in the (10) state by the p-wave cross section 

Other than the systems of hydrogen isotopes, the µCF rates in several sys-
tems including nuclei beyond hydrogen isotopes, like 3He, 6Li, 7Li, have been
considered, mostly theoretically. These results are summarized in Table 2. la.
Among them, the greatest concern was paid to the fusion rate in (d 3Heµ), since
this fusion reaction might be promising for a possible application to energy
sources, other than D–T µCF, due to the spatial concentration of the produced
energy output (both p and a are charged particles) and the availability of 3He
resource in the moon surface soil [30]. On the other hand, since the expected 

[18].
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radius of the (d3Heµ)++ molecular ion is two-times larger than (dtµ)+, a sub-
stantially reduced fusion rate had been expected. However, as described later, an 
advanced theoretical calculation based upon a non-adiabatic procedure has pro-
duced a rather promising rate. Some experimental trials have been undertaken at
KEK and at TRIUMF, where the emission of high-energy protons from the thin 
layer of a liquid D2

3He target is expected to occur; 3He introduction was made
by pressurizing 3He onto the surface of liquid 3He. The result has not yet been
conclusive.

Theoretical Studies 

There have been several shortcomings in factorization treatments of the fu-
sion rate. First of all, we need knowledge concerning the fusion rate at the ex-
cited state of the muonic molecule specified by the rotational quantum number 
(J) and vibrational one (v), since, as described later, the formation of a muonic
molecule takes place in the excited state of the muon molecule. Secondly, dis-
tortion of the molecular wave function due to the nuclear interaction should be
taken into account. Moreover, a correction is needed in the formula of lf due to 
the dominance of a near-threshold resonance in the reaction cross section.

Advanced calculations of the fusion rates in the muonic molecule dtµ were 
made by Bogdanova et al. [ 18], and Kamimura [27] within the complex nuclear 
potential (optical potential) method and by Struensee etal. [26], and Szalewicz et
al. [29], within the R-matrix method. Two ofthese calculations [ 18,261 employed 
the framework ofadiabatic representation, while the others [27,29] used the non-
adiabatic one. All ofthese calculations took into full account the observed energy
dependence of the reaction cross section of d+ t→ α + n + 17.6 Me V at low en-
ergies, including the jπ = 3/2+ resonance at Eom = 60 ke V (Fig. 2.2). In the work 
of Bogdanova et al. [18] and Kamimura [27] theinteraction part of the total three-
body Hamiltonian comprises the Coulomb potentials between d, t and µ and the
nuclear complex potential between d and t. The latter one is constructed so as to 
reproduce the observed energy dependence ofthe fusion cross sections, while the 
imaginary part ofthe complex potential accounts for the α-n channel; the absorp-
tion cross section directly means the fusion cross section, since there is no reac-
tion channel other than the fusion one in the concerned low-energy region. Twice 
the imaginary part ofthe complex eigen-energy, ER – iE1 stands for the width of

-the energy level,   = 2E1, and h / 
L

corresponds to its life-time. The inverse of the 
lifetime directly gives the fusion rate λf of the dtµ  molecular state. Four types of 
calculations [ 18, 26, 27, 29] gave similar results concerning the fusion rates of the 
J = 0 states of (dtµ) as shown in Table 2. 1b. 

In order to understand the overall fusion rate in a muon molecule, the de-
tails concerning the intra-molecular cascade transitions should be known. As



Muon Catalyzed Fusion: Interplay Between Nuclear and Atomic Physics 163

Fig. 2.2. Cross section s/n (E) for the reacton d+ t → 4He + n, experimental data [28] with a
theoretical curve obtained by using the potential used in the fusion-rate calculation for D–T
µCF by Bogdanova et al. (18], and by Kamimura (27].

described later, the formation of a muonic molecule is done mostly via resonance 
reactions to form an excited rotational vibrational (Jv) state with J = v = 1,
which is very weakly bound with respect to the (tµ)1s + d threshold. The de-
excitation of the muonic molecule levels proceeds via Auger transitions, like

These Auger de-excitation processes of the muonic molecule have been theoret-
ically estimated by Bogdanova et al. [ 15]. The essential parts of the results are
summarized in Fig. 2.1. The µ– cascades down to the lower levels where the
fusion reaction takes place. In Fig. 2.1, the fusion reaction rates and the cascade 
transition rates for the D–T µCF are summarized; 80% of the fusion takes place
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at the (Jv) = (01) state and 20% at the (00) state, both of which are formed af-
ter cascading down from the (11) state. As also shown in Fig. 2.1, in the case of 
ddµ , which is formed at the (Jv) = (11) state, the fusion reaction takes place at
the (11) and (10) states at a rate of 5 × 108 s–1 . The theoretical rates are sum-
marized in Table 2. 1b. Combining all of these arguments on the rates of fusion
and de-excitation, we can conclude that in a time of 10–11 s (rate of 1011 s–1)
the fusion reaction is completed in the muon molecule after the formation of the
(11) state or after the formation of the dtµ molecule during a collision between
(tµ) and D2.

The fusion reaction rate in (d3Heµ )J=0.1 was calculated precisely by 
Kamimura [25] in the same manner as for the (dtµ) molecule. Namely, simi-
lar nuclear complex potentials were employed so as to explain the low-energy
cross sections of the d + 3He → 4He +p reaction dominated by the 3/2+ reso-
nance, and the fusion rates were estimated using the imaginary part of the eigen-
energies of the complex Hamiltonian. The calculated results are listed in Ta-
ble 2. l a. These rates will be referred to in a later section in relation to the muonic 
molecule of (dHeµ). As described later, since the (d3Heµ) molecule is formed
at J = 1, as evidenced by a radiative photon measurement, while a transition to
J = 0 is not very slow due to rotational transitions, 1 → 0, in (dHeµ) through an
external Auger process [31], an overall high fusion rate in d3Heµ  is expected. 

3.

Historical Background 

MUON STICKING AFTER NUCLEAR FUSION 

So far, various experimental methods have been applied in order to investi-
gate the muon catalyzed fusion (µCF) phenomena summarized in Fig. 1.3 for
D–T µCF. Let us explain how to obtain the reaction rates such as λdtµ and λdt,
as well as the loss probability, such as ωs, experimentally. The measurement of 
14 MeV fusion neutrons can be used to obtain the fusion neutron yield, the cy-
cling rate of the µCF, etc., where the decay e– measurement is mostly used for
normalization purposes. Measurements of the characteristic X-ray in the µCF
can also provide very valuable insights concerning each process of the µCF. A
time-dependent measurement of these fusion neutrons and characteristic X-rays
from muonic atoms/molecules can reveal the time evolution of µCF phenomena.
Combinations of these experimental methods may provide the most satisfactory
information about each process of the µCF cycle. Most of the experiments on
DT-µCF conducted at Los Alamos [32,33] and PSI [34,35] around 1990 have
focused on neutron measurements; both systematic neutron and X-ray combined
measurements were carried out for the first time rather recently at RIKEN-RAL.
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Regarding the rate of cycling (λc) with a loss probability (W) including 
muon-to-alpha sticking phenomena, several experimental methods have been
applied. Here, we summarize relations between the experimental observables 
and physical parameters in the µCF cycle.

1. (neutron method) Measurements of the absolute yield Yn and disappear-
ance rate λn give us the loss rate Wn seen by neutrons [32, 33, 34], thus
providing some limiting factor on ωs.

where

ø =DT density (nuclei/cc) divided by the liquid hydrogen density
(0.425 × 1023nuclei/cc)

λn =λ0 + λc Wn

Wn = ωs + other losses

2.  (X-ray method) X-ray measurements from (µα)+ ions gives directly 
knowledge about sticking phenomena [36, 37, 38]. The combination of
Yx (t) and Yx (t) gives a direct measure of ωs.

= κωs
0

Yn

Yx–

where the k, given by the theory of atomic processes of (µα)+ ion, is the 
X-ray yield per sticking and ω0s is the initial sticking right after the fusion 
reaction in the muon molecule. Actually, wosis the sum ofthe initial stick-
ing to each orbit of the (µα)+ ion, 

The ωs which appears in the total loss probability Wn is obtained after cor-
recting for the regeneration factor R,

ωs = ω0
s (1–R)
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Again, since the regeneration process depends upon the initial state of the 
(µα)– ion, the ws should be written as 

3. (ionmethod) Detectionofthe (µα)+ ion gives us further direct knowledge 
about sticking phenomena. The detection ofthe in-flight (µα)+ by a solid 
state detector [39, 40] gives us a measure ofthe initial sticking ω0

s . On the 
other hand, the measurements of a total amount of ionization loss in a DT
mixture gives us the final sticking ws [41, 42]. 

The experiments so far conducted as well as the values so far obtained are 
summarized in Fig. 3.1a, where values of the effective sticking of ws are pre-
sented as a function of ø.

Theoretical studies on the α-sticking have been initiated by Jackson [16],
who used a sudden approximation. The probability of a (µα)+ atom formation 
in an nl state is given by 

where

and ønIm ( ) is the wave function of (µα)nlm,-q = mµv (v: velocity of (µα));
in (  ) is the normalized muon wave function at the instant of fusion, which can 

be expressed through the muon-molecule wave function, jv (  , ℜ) by in ( ) = 
N jv ( , ℜ= 0), where ℜ the inter-nuclear distance and    is the muon coor-
dinate with respect to the c.m. of the two nuclei, with N being the normalization
constant.

Experimental Studies 

Here, we wish to present some recent achievements of the X-ray measure-
ments on µ–α sticking phenomena. The most important α-sticking probability 
ws to be determined is that for the D–T µCF with high density and high Ct, where 
more than 100 fusion neutrons per single µ– have been observed. There, the ws
strictly places an upper limit on the energy-production capability from the D–T 
µCF. The conventional neutron method for observing the loss probability should 
be considered as an indirect method for the determination of ωs.
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The X-ray method, which is practically the only one which can be applied
to a direct ωs measurement for a high-density and high-Ct D–T mixture re-
quires a relation between the observed X-ray intensity and the sticking proba-
bility ωs. Theoretical studies on this subject were first carried out by Cohen [43] 
and Markushin [44], and later by various other authors [45, 46 ,47, 48]. These 
are summarized in Table 3.2. For instance, Cohen has predicted a Kα (2p → 1s)
X-ray intensity per fusion Y (Kα) being 0.24% for a D–T mixture with a density
of 1.2ø0, where the calculation was started with an initial sticking probability
of 0.848%. There, starting from the predicted atomic states formed right after 
the initial sticking ω0

s , the X-ray emission during the slowing-down of (αµ) was 
calculated by considering all possible processes, such as µ– stripping (reacti-
vation), excitation and de-excitation in ( αµ) atoms etc. At the same time, these 
theories have predicted the regeneration probability (R) for free µ– production
during the slowing-down of (αµ) atoms.

Since 1986, X-ray measurements have been applied to the direct measure-
ments of the µ–α sticking probability in D–T µCF at PSI [36], at UTMSL/KEK 
[37, 38] and recently at RIKEN/RAL. There, the experiment at PSI was per-
formed with continuous muons for a low-Ct (~ 10–4) D–T mixture, and that
at KEK-MSL and RIKEN/RAL with pulsed muons for high-Ct (from 0.1 to
0.7). As for X-ray detection in dtµ–µCF, the radiation background of the
bremsstrahlung associated with t beta-decay is serious; the background, the en-
ergy of which extends up to 17 keV, does mask all ωs-related X-rays (E (Kα):
8.2 keV, E (Kβ): 9.6 keV, etc.). The use of pulsed muons, now available at KEK
[49] or at RIKEN/RAL [50], is really helpful; by operating the detection system
only in a short time interval around a muon pulse, a significant improvement in 
the S/N  ratio can be expected [37, 38]. 

Following the first successful observation of Kα X-ray from (µα)+ in high-
f and high-Ct (Ct = 0.3) D–T mixtures at UTMSL/KEK [38], systematic data
on ωs and λc have been obtained in high-density (liquid and solid ø = 1.2 ~ 1.5)
and high-Ct (Ct = 0.1 ~ 0.7) D–T mixtures at RIKEN-RAL. Several important 
improvements exist for the experimental method: (1) a high intensity and low-
background pulsed µ– beam is used; (2) in order to obtain data for a 3He-free
pure D–T mixture, in-situ 3He removal as well as a chemical-analysis apparatus
have been introduced; (3) by using combined data on both the absolute yields and
the time slope (decay time) constants for X-rays and neutrons (Y x, λx, Yn,λn),
one can obtain the cycling rate λc loss rate Wn and X-ray per sticking κω0s inde-
pendently, and restriction on κ is obtained by comparing Wand κω s

0 . The actual 
steps for analyzing the data are as follows: a) from the time slope constantof the
neutron yield Yn, the value of λc Wn (= (λn – λ0) / ø) is obtained, while, from the
absolute neutron yield Yn, the value of λc (= Yn λn / ø) is obtained, so that both λc

and Wn are obtained from the fusion neutron data; b) after confirming the time
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Fig. 3.1a. The existing data concerning the sticking probability ωs vs density j in the muon
catalyzed fusion of a D–T mixture, where the data was obtained from Los Alamos [33], PSI 
[34, 35, 36] and KEK [38]. Also, preliminary data from RIKEN-RAL of the average of the data 
for G = 0.3,0.4 and 0.5 is shown.

slope constant of the X-ray yield Yx (t) being consistent with that of the fusion
neutron λn, the value of κω0 is obtained by taking the ratio Yx/Yn, so that the ef-
fective sticking seen by X-ray ωs (X) is obtained by using the theoretical values
of κ and R listed in Table 3.2 ( Yx / Yn × (1 – R) / κ); c) the overall consistency of 
these analysis can be checked by the condition Wn ωs.

The experimental values are summarized in Fig. 3. 1b. The results concern-
ing ωs can be summarized as follows, while the results concerning λdtµ are
summarized in a later section: 1) the ws obtained by using the step mentioned
above is consistent with the condition ws Wn only when we take the values
of κ (R) predicted by the theories [47,48] and thus obtained ws (X ) becomes al-
most consistent with ωs (n) obtained from Wn after correcting the contributions 
of loss processed due to ddµ , ttµ formation; 2) the observed X-ray intensity ratio
I (Kβ) / I (Kβ) from the stuck (µα)+ ion is close to the lowest value of the the-
oretical values also predicted by the same theories [47,48]; 3) the observed ωs,
obtained thus, is smaller than the theoretical one, namely, ωs (exp) ≅ 0.5% vs 
ws (theory) ≅ 0.6%, as shown in Fig 3. la; 4) there is a maximum in the fusion 
neutron yield at Ct ~ 0.5, which is not consistent with the existing data at Los



Muon Catalyzed Fusion: Interplay Between Nuclear and Atomic Physics 169

Fig. 3.1 b. Preliminary data on ws obtained by simultaneous X-ray and neutron measurements 
in a solid D–T mixture with reference to the total loss probability Wn seen by neutrons, where
correction was made for X-ray with R and K indicated and for neutron with parameters using
qls indicated (upper). The obtained Kβ / Kα ratio in a liquid and solid D–T mixture (lower). 
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TABLE 3.1 
Theoretical Initial Muon Sticking Proba-
bilities w0s (%) at the (J,v) State of a dtµ
Molecule with and without a Nuclear Inter-

action
Author State 

(Without nuclear interaction) 
Hu [a] 0.897 0.8649 
Ceperley Alder [b] 0.895 
Bogdanova et al. [c] 0.846 0.848 
Haywood et al. [d] 0.886 0.888 (2) 
Kamimura I [e] 0.8859 0.8896 

(with nuclear interaction) 
Bogdanova et al. [e] 0.93 
Kamimura [f] 0.925 (4) 0.927 (4) 
Jezioski et al. [g] 0.917 0.915 
Cohen et al. [h] 0.912 0.913 
a Reference [53] 
b Reference [5 1] 
c Reference [52] 
d Reference [54] 
c Reference [55]
f Reference [27]
g Reference [56] 
h Reference [57] 

(00) (01) 

Alamos (Ct ~ 0.3) nor at PSI (Ct ~ 0.3); 5) ωs seems to have a weak Ct depen-
dence. Improved experiments are now in progress.

Theoretical Studies 

At an earliest stage of the theoretical studies, the initial muon wave func- 
tion in (r) was taken as the simplest form of the µ– in µ5He) atom (Born-
Oppenheimer approximation), which results in ω s0 = 1.2%. In papers after 1985, 
the non-adiabatic motion of the muon in the dtµ molecule was taken into ac-
count. New methods to solve non-adiabatically the Coulomb three-body prob-
lem includes a Green-function Monte-Carlo method [51], the adiabatic repre-
sentation method [52], variational methods with a Hylleraas basis [53, 54] and 
the Jacobian-coordinate coupled-channel method [27]; ω0

s  calculated from these 
three-body wave functions are listed in the upper half of Table 3.1. The non-
adiabatic nature of the dtµ wave function reduces the initial sticking by some 
25%.
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The effect of the nuclear d–t interaction on the sticking was then studied
using the nuclear optical potential model [27, 55] and with R-matrix theory
[56, 57]. In the former method, the nuclear d–t potential (cf. Section 2) is di-
rectly added to the Coulombic Hamiltonian in order to examine the change in
the muon wave function at the nuclear coalescence. In the latter method, the ef-
fect of the nuclear interaction is indirectly included by imposing an appropriate 
nuclear boundary condition on the dtµ wave function at the channel radius. Both
methods gave similar results, as shown in the lower half of Table 3.1 ; the nuclear-
interaction effect increases the initial sticking by 3%. 

In order to investigate the nuclear-interaction effect beyond the sudden ap-
proximation, Kamimura [58] formulated a four-body ( t + p + n + µ ) model of 
the fusion (t+ (Pn) → (tp) +n) and investigated the initial sticking problem
starting with the fundamental reaction theory. The sudden approximation is
equivalent to the so-called zero-range plane-wave Born approximation (PWBA) 
in reaction theory. In order to greatly improve the part of PWBA, he formulated 
the zero-range coupled-channel Born approximation (CCBA), which includes,
as effects of the strong n–α interaction, the distortion of the plane wave and cou-
pling among the n– (αµ)nl channels (nl includes the continuum states). By this
formulation it was found that the final-state-interaction effects do change the ab-
solute value of the transition matrix to each ( αµ)nl state, but, as long as the exci-
tation energies of the (αµ)nl states are safely negligible compared with the fusion 
energy 17.6 MeV, the change in the transition matrix is independent ofthe (α–µ)
states, including the continuum; this means that the initial sticking ω0

s does not 
change since it is the ratio of the transition strength to the bound state of (αµ) to 
that to all states, including the continuum. Furthermore, from the structure ofthe 
transition matrix, the release of the zero-range approximation of the transition 
interaction does not seem to significantly change that ratio for calculating w0s.
This prediction [58] was realized afterwards in some efforts [ 18,59] to improve 
the sudden approximation. Another remaining and meaningful improvement of 
the initial-sticking calculation will be to replace the initial dtµ wave function by
dtµ + αnµ, for which the Hamiltonian with a nuclear dt–αµ  coupling interaction 
is diagonalized within the L2-integrable basis functions [27]. 

By adopting the value of the initial sticking probability in Table 3.1, sev-
eral authors [43, 44, 48] have calculated the effective sticking ωs, while taking 
into account all of the processes involved in the regeneration of the muon from
the (αµ) atom, such as Coulomb excitation and deexcitation, Auger transitions, 
Stark mixing, muon transfer, ionization and radiative deexcitation. From the val-
ues of R at (ø = 1.24ø0) in Table 3.2, one can obtain ωs = 0.6. The density de-
pendence of the theoretical values of ws in dtµ-µCF summarized in Fig. 3.la
appear to be consistently higher than the experimental values; in terms of the ef-
fective sticking, theoretical calculations predict ωs ≅ 0.6%, while experiments 
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TABLE 3.2 
Theoretical Predictions on the X-Ray Intensity and Regeneration

Factor, for αµ in D–T µCF

( 1-R ) Y(Kβ )C

Reference Y (Kα)a    κ(Kα) Rb

κ Y(Kα)
(%)

Cohend 0.25 0.28 0.35 (5) 2.3 0.12
Markwhine 0.25 0.28 0.35 2.3 0.12
Takahashif 0.24 0.27 0.30 2.6 0.18
StruenseeandCoheng 0.27 0.30 0.35 2.2 0.12
Rafelskih 0.30 0.34 0.36 1.9 0.07
Stoddeni 0.30 0.34 0.34(3) 1.9 0.081
a
 For ω0

s = 0.886% and ø = 1.2ø0
b For ø = 1.2ø0
c For ø =1.2ø0
d Reference [43]
c Reference [44]
f Reference [45]
g
 Reference [46]

h Reference [47]
i

 Reference [48]

report ωs ≅ 0.4%. After several trials, the gap has not been filled so far. This is 
one of the most important problems to be solved in the µCF studies. Clearly, a
lower value of ωs increases the number of fusion cycles catalyzed by the muon. 

4.    ATOMIC AND MOLECULAR PROCESSES BEFORE AND AFTER 
FUSION

4.1.    Hydrogen Muonic Atom Slowing-Down

Historical Background 

All of the processes in µCF start with the µ– injection into a D–T or D2 mix-
ture at high energies (MeV or higher). Then, the µ– begins a slowing-downpro-
cess by ionization of the surrounding molecules/atoms and is eventually cap-
tured by the d or t to form a muonic d or t atom with a population proportional to
the concentration. 

It was pointed out both theoretically and experimentally that when a
hydrogen-isotope target stays at liquid-hydrogen density ø0, the time required
for muonic atom formation is less than 10–12 s [4, 5]. The atomic state of the 
muonic atom involves a radial quantum number, n, of about 14 ( ≈ (mµ/me)1/2 ),
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Then, the intra-atomic cascade transition takes place via an Auger process at the 
earlier stage (among higher atomic orbits) and a radiative process at the later 
stage, where a Stark-mixing process takes on a significant role at high target
density. The cascade process to the ground state of the muonic atom at ø = ø0 

is considered to take less than 10–11 s [4]. The thus-formed neutral atoms un-
dergo a further slowing-down process through a series of elastic collisions with
the surrounding atoms/molecules and eventually achieve thermalization. 

The above-mentioned picture of muonic atom formation → intra-atomic
cascade → thermalization should be subject to a drastic change when the muonic
hydrogen is formed in a high-density hydrogen-isotope mixture, e.g., a (dµ) or
(tµ) atom in D–T mixture. More rapid processes might be competing with either
the cascade orthermalization processes. As described later, significant examples
exist, such as muon transfer from an excited atomic state, muon-molecule for-
mation at epithermal energy, etc. In any case, it has been recognized that we need 
more advanced knowledge concerning the most fundamental process of elastic
scattering of a neutral hydrogen atom with the surrounding atoms and molecules. 

Experimental Studies 

Elastic scattering and competing processes ofneutral dµ and tµ can be quan-
titatively described in the form of the energy dependence of the cross sections.
Originally, the elastic scattering of e.g., tµ has been considered to collide with
the nucleus of d, t 

(tµ) + d → (tµ) +d

However, as has been pointed out experimentally [60], a realistic calculation
is required under the condition that the nucleus of the collision partner is situ-
ated inside the D2, DT, T2 molecules. There, energetic (dµ) produced by the
Ramsauer–Townsend effect in solid H2(D2) was subject to slowing-down by an 
added D2 layer with various thickness, where dµ stopping was monitored by the
occurrence of DD µCF; a comparison was made with a Monte-Carlo calculation 
based upon various types of elastic-scattering cross sections.

A significant experimental progress for studies of the slowing-down, neutral 
muonic hydrogen atom e.g., the experiment mentioned above, has been brought
about by a beam development of energetic dµ, tµ atoms [61]. There, the basic 
idea is again due to knowledge concerning elastic scattering between muonic
hydrogen atoms with hydrogen isotopes. As theoretically predicted [62], there
is a significant Ramsauer–Townsend minimum, at energies in the eV region, in 
the cross section between dµ or tµ in H2; after slowing-down of dµ or tµ in
H2, the medium becomes transparent. Therefore, when µ– is injected into H2
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with some optimized concentration of D2 or T2, dµ or tµ undergo emission into
vacuum from a sold H2(D2) or H2 (T2) surface [61]. 

Also, in the actual situation of µCF experiments, a condensed phase, such
as the liquid and solid phase, is used. In experiments with the solid phase ofD2,
the thermalization takes a different form compared to that in the gas phase; the
thermalization of (dµ) is not completed because of the existence of an “energy
gap” in solid D2 [63]. So far, several pieces of significant evidence exist for a
condensed-matter effect on the incomplete thermalization: (1) the π−p atom at
its formation in liquid hydrogen was found to have a kinetic energy from 1 eV to 
more than 100 eV [4]; (2) as explained later, recent data concerning muon trans-
fer from excited (pµ) to d can only be explained by the existence of an energetic
(pµ); (3) also, again, as explained later, an energetic (dµ) might explain a large
λddµ in solid D2.

Theoretical Studies 

Theoretical studies on the elastic scattering of muonic hydrogen atoms from
hydrogen isotopes has been extended to include an environment effect. In
Fig. 4.1, typical theoretical calculations are summarized for the elastic scatter-
ing of dµ from a d nucleus, from a D atom and from a D2 molecule [64, 65]. 
Also, theoretical calculation have been extended to include a condensed-matter
effect, where H2, D2, T2 are formed in liquid or solid [66]. There, it is shown that 
in solids the phonon spectrum does change the elastic scattering cross section.

4.2.    Muon Transfer among Hydrogen Isotopes 

Historical Background 

When the µ– is injected into a D–T mixture with D2, T2 and DT, the atomic 
states of (dµ) and (tµ) are produced roughly proportional to the concentration,
Cd or Ct (Cd +Ct = 1). In a D–T mixture with a density ø of around ø0, af-
ter injection with MeV energy, it takes 10–10 s for the µ– to reach the ground
state of either (dµ) or (tµ), Then, the µ– remains during most of its lifetime
in the ground state, where the nuclear capture rate to either d or t is negligibly
small (400 s–1 for dµ), Since the ground-state energy of (tµ) is deeper than that
of (dµ) by 48 eV, the µ– at the ground state of (dµ) can easily be transferred
through the reaction (dµ) + t → (tµ) + d via a collision with t in either T2 or 
DT. Theoretical studies on the ground-state transfer reaction among hydrogen
isotopes have been carried out by several groups [67, 68, 69, 70, 71, 72, 73], and 
results of the transfer rate at thermal energies (~ 2.7 × 108 s–1) have explained 
the observed values. 
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Fig. 4.1. Low-energy elastic scattering cross section for a dµ( ) atom from d nucleus (σn),
D atom (σat) and D2 molecule (σmol) at 300 K, calculated by Adamczak and Melezhik [64].

Since the cascade transition rate of the µ– in (dµ) or (tµ) is comparable to
the radiative transition rate, there is a possibility for the µ– to take a transfer
reaction to (tµ) from its excited state of (dµ), By denoting q1s to be a probability 
for the µ– to reach to the ground state, the problem of the µ– transfer at the
excited state is sometimes called the q1s problem; qls = 1 corresponds to the µ–
transfer after the µ– reaches the ground state. Moreover, it has been pointed out
that the (dµ) → (tµ) transfer reaction might occur at the epithermal energy of

Some qualitative arguments can be summarized concerning the q1s values at 
various Ct, ø and ∋(dµ), as shown in Fig. 4.2a. Some indirect knowledge exists 
about the values of q1s in D–T µCF based on Ct dependence measurements of
fusion neutrons in a D–T mixture [74]. 

Experimental Studies 

(dµ).

Experimentally, it is possible to directly measure the value of q1s by using a 
difference in the energy of e.g., the Kα X-ray either between (dµ) and (tµ) for
a (dµ) to t transfer reaction or between (pµ) and (dµ) for a pµ) to d transfer.
Depending upon which X-ray is detected, we can simply conclude whether the 
transfer reaction does occur from excited states or from the ground state (see 
Fig. 4.2b). 
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Fig. 4.2a. Theoretical prediction of the q1s values [75] in the (dµ) + t → (tµ) + p transfer re-
action and the experimental ones [76], extracted from neutron data in D-T µCF as a function 
of CT at various (dµ) energies E and densities 4.

Fig. 4.2b. Scheme of Kα X-rays
studied concerning qls problems in
the muon-transfer reaction of µp+
d → µp+ p.
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Such experiments became feasible only by adopting a high-resolution X-ray
spectrometer. So far, two experiments have been carried out for the (pµ) to d
transfer; (1) by using CCD charge-coupled devices at PSI [77] and (2) by us-'
ing 7-channel segmented Si(Li) detectors at UTMSL/KEK and at RIKEN/RAL
[78]. The results are depicted in Fig. 4.3a. There, we can easily notice that the ex-
perimentally obtained q1s takes substantially weaker Cd dependence compared
to the theoretical predictions. Possible explanations are as follows: (1) at the
time of transfer reaction, (pµ) takes a high energy close to 5 eV [75]; (2) some
unknown process exists in the cascade transitions of (pµ) or (dµ).

Theoretical Studies 

Theoretical studies have been extended to cover the q1s problem, energy
dependence of the initial state, etc. Namely, fully quantum-mechanical calcu-
lations of muonic atom-nucleus collisions including muon transfer from the
ground state have been extended up to ~ 50 eV cm energy by several groups
with adiabatic representation methods [70, 71] and with non-adiabatic methods 
[72,73]. However, a fully quantum-mechanical approach to muon transfer from
excited states is still in progress [80], though this is one of the most important
theoretical problems to be solved in the µCF studies in relation to the q1s prob-
lem. The difficulty in this approach is due to the long-range interaction (∝R– 2)
between the excited-state channels and the increased number of coupled chan-
nels. So far, a semi-classical calculation of the excited-state transfer has been
performed [67]. 

An example of a possible unknown process may be the possible existence of
the side-path proposed by Froelich and Wallenius [79], as depicted in Fig. 4.3b.
The excited (tµ)2s states formed via a transfer reaction from the excited (dµ)2s 

states does collide with D2 to resonantly form a (dtµ).* molecule with n = 2,
which mostly decays into the (dµ)1s + t channel [81]; apparently, (dµ)1s is
formed. This process can be considered as muon transfer from (tµ)2s to (dµ)ls
via three-body resonances of (dtµ), This enlarges the (dµ)1s population and im-
proves the agreement with the experimental q1s.

4.3.    Formation of the Muon Molecule 

HistoricaI Background 

The lifetime of m- in vacuum and in a muonic hydrogen atom is 2.20 µs,
corresponding to a decay rate of λ0 = 0.455 × 1 06 s–1 . Due to the heavy mass, 
the atomic ground state of µ– around d or t is small (260 fm) and tightly bound
(–2.7 ke V). A small neutral atom (tµ) may come close to d in D2 or DT to form 
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Fig. 4.3a. Experimental results of qls in µp + d observed by X-ray measurements [77, 78] and 
theoretical predictions [75]. 
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Fig. 4.3b. Schematic diagram of dtµ–µCF cycle including side-path through the resonant
formation of an excited molecule (dtµ )* by Froelich et al. [79].

a small molecule of (dtµ)+, whose ground state is small in size (520 fm) and
tightly bound (-300 eV). Usually, the rate of formation of a tightly bound molec-
ular state is relatively slow. The most promising way is the so-called Auger cap-
ture, for example, 

(dµ) + D2 → [ (ddµ) de] + e–

(tµ) + D2 → [(dtµ) de] + e–

The theoretically predicted rate [82] for the final state of a muonic molecule be-
comes fairly slow, such as 106 s–1 (comparable to λ0).

However, Ponomarev and collaborators [83] have theoretically predicted
that an extremely shallow bound state with both a rotational and vibration an-
gular momentum of one (Jv) = (11) exists at an energy of ∋11 = -0.6 eV, mea-
sured from the threshold energy of (tµ) ls + d. Because of the existence of this
shallow bound state, substantially enhanced formation rates are expected by the
following reaction process called resonant molecular formations, as can be seen
in Fig. 4.4: 

(tµ) + D2 → [(dtµ)11 d2e]*
(tµ) + DT → [(dtµ) 11 t2e]*
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Experimentally, the formation rate of muon molecule can be obtained through
the relations between the observed cycling rate λc and the rate of the processes,
e.g., λdf and λdtµ, shown in the diagram of Fig. 1.3. Let us consider high- density
and high-Ct D–T µCF and assume that the atomic capture rate (λdµ and λtµ) and 
fusion rate (λf) are sufficiently high compared to the muon decay rate (λdµ, λtµ,
λf λ0). Then, the cycle time (λc

-1 ) is due to the waiting time of dµ for muon 
transfer to t and that to form the molecule. 

Here, the factor q1s Cd is the probability that the muon reaches the ground state of 
dµ, reflecting the fact that the transfer rate in the excited states of (dµ) are very 

rapid, as is the excited-state cascade. 
In the above formula for λc the maximum λc can be obtained for 

Ct = (1 + γ)–1 ,

In a D–T mixture, there are three molecules D2, DT and T2 with the concentra-
tion ratios CD2, DDT and CT2 , respectively determined by the rate of chemical 
equilibrium. Thus, the rate λdtµ can be decomposed into the sum of two terms, 

The idea of resonant molecular formation was experimentally confirmed, at 
least qualitatively, by the Dubna group in 1979 [84], and in more detail by the ex-
periments at Los Alamos [33] and at PSI [34], where both “three-body effects” 
and a strange temperature dependence have been discovered. At the same time, a 
very rapid formation rate (order of 6 × 108 s–1) was experimentally established 
for ø = ø0 for a temperature range of up to 500 K [32]. These experimental data 
are summarized in Fig. 4.5a. Theoretical predictions based upon the resonant
molecular formation have not been able to explain the observed temperature de-
pendence of the molecular-formation rate; according to theoretical predictions, 
there should be a steeper decrease in λdtµ towards the lowest temperature. 

Experimentally, the existence of nonlinear many-body collisions in
ldtµ–d has been consistently confirmed [33, 34]. There, the resonant process 

between (tµ) and D2 proceeds under the influence of the other D2,

(tµ) + D2 + D2 → [(dtµ) d2e]* + D2

Experimental data have shown that such an effect does exist only for (tµ) + D2
and not for (tµ) + DT. At the same time, the effect is effective only for Ct ≥
0.3. Assuming λdtµ = , from the Los Alamos
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Fig.  4.4.  Energy-level diagram for resonant molecular formation; dtµ  vs ddµ .

= 206 (29),experiment [33], the following values are obtained;
450 (50) and  = 23 (6) in the unit of 106 s–1 at the temperatures below

=

130 K. 
The larger rate of λdtµ–d compared to ldtµ–t predicts that an enhanced λc

would be obtained for a non-equilibrated D–T mixture where D2 and T2 exist
without forming DT (before the chemical reaction D2 + T2 → 1-

2 D2 + DT + 1-
2 T2

is completed). This experiment has been conducted both at LAMPF and at PSI

The importance of an ortho/para state of D2 in λdtµ has been considered ei-
[74].
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Fig. 4.5a. Experimental data concerning the cycling rate in DT-µCF as a function of CT at
various ø[34] and as a function of ø at various CT [33].
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Fig. 4.5a. (continued)

ther in a gas or solid D–T mixture [85, 87]. Such an experiment has not yet been 
carried out yet. 

Compared to the formation of (dtµ ) the formation of (ddµ) can be more
quantitatively explained by theoretical predictions. Actually, the idea of reso-
nant molecular formation was suggested by Vesman [88] with a reference to an
enhanced (ddµ) formation rate; sometime the resonant formation is called the
Vesman mechanism. Experimentally, two components have been observed in 
the fusion neutron time spectrum, which can be interpreted as the dependence
of the (dµ) spin-state on the molecular formation rate and with a hyperfine con-
version rate in dµ (F = 3/2 → F = 1/2) Thus, the observed data at each
temperature can be subdivided into two components. As can be seen in Fig. 4.6,
the agreement seems to be perfect within a temperature range down to 30 K. 

Thus, an overall agreement between theory and experiment has been achieved 
for DD µCF, and has not been obtained entirely for D–T µCF. This general ten-
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Fig. 4.5b. Predicted resonance structure of tµ + D2 at various energies of (tµ) and 4 K and
liquid-hydrogen density of D2 compared with the rate of energy loss due to elastic scattering 
for two hyperfine states of tµ cited in Ref. [92].

dency can be qualitatively explained by considering the energy balance between 
the resonating muon molecular state and the electronic molecular state. As de-
picted in Fig. 4.4, an energy deficiency exists for DD µCF, while an energy excess
exists for D–T µCF.

Experimental Studies 

Recently, there has been remarkable progress in our understanding of the
formation mechanism of a dtµ muon molecule. In order to observe the resonant
molecular formation of energetic hot (tµ) with D2, two types of experiments
were conducted. The epithermal mechanism of dtµ fusion was discovered at 
PSI [90] in triple H/D/T mixtures of hydrogen isotopes. The mechanism, dis-
cussed below, provides a wide range of opportunities to understand the reaction 
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Fig. 4.5c. Dependence of the resonance reaction rates λdtµ–x (E), x = (p,d,t), on the energy
E of the tµ atom at T = 30 K; (a) F = 0, (b) F = 1, from Faifman and Ponomarev [86]. 
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Fig. 4.6. Molecular-formation rates and measured in gas, liquid and solid, and
theoretical predictions for gas and liquid. The data of TRIUMF-UBC and TRIUMF-UT are 
from Ref. [89] and Ref. [60] respectively. The rest are referred to in Ref. [89]. 

mechanism of various branches of the fusion cycle, especially, fast atomic and 
molecular processes with hot tµ atoms at high density. After the discovery of
the epithermal mechanism in a triple mixture, several calculations were made of
physical processes which actually takes place [86, 91]. 

In a triple mixture, fast (tu) and (dµ) atoms with an initial kinetic energy
45 eV and 43 eV are generated via isotope-exchange reactions; 

(pµ) + t → (tµ) + p + 182.8 eV 
(pµ) + d→ (dµ) + p + 134.7 eV

with high rates of λpt = 0.7 × 1010 s-1 and λpd = 1.7 × 1010 s–1 respectively at 
ø =1 [86]. 

The emerging fast (dµ) atoms transfer to fast (tµ) with E = 20 eV via a
charge-exchange reaction 

(dµ) + t → (tµ) + d + 48.0 eV

also with a high rate of λdt ≅ 1010 s–1 . Therefore, at amoderate concentration Ct,
the (tµ) atoms are mainly formed with an initial kinetic energy of 20 eV due to
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the processes (pµ) → (tµ) and (pµ) → (dµ) → (tµ). Owing to the Ramsauer– 
Townsend effect, since the eV-(tµ) atom has a large mean-free-path, it has a sig-
nificant chance to collide with a host molecule to from a muonic molecule (dtµ)
via the Vesman mechanism before thermalization. 

Valuable experimental information has been obtained by employing a H/D/T
mixture with small Cd and Ct [76]. There, all (tµ) atoms are formed through
transfer processes of pµ → t or dµ → t, producing hot (tµ) atoms. The char-
acteristic epithermal peak in the fusion neutron time spectrum was seen in an
experiment at PSI which was qualitatively explained by the following formation
process; tµ+ HD → [(dtµ) pee]*. The details concerning a resonating state in
HD will be mentioned later. 

Another way to observe dtµ formation with energetic hot (tµ) is an experi-
ment with an eV (tµ) beam; an eV (tµ) “beam” is obtained from the solid layer
of H2 + 0.1% T2, where a recoiling eV (tµ) after (pµ) + t → (tµ) +p reaction
can be emitted from the surface ofthe solid layer with the help ofa reduced cross
section between (tµ) and H2 due to the Ramsauer–Townsend mechanism. The
eV (tµ) was injected into a separated D2 layer, and the energy dependence in
λdtµ was measured by time-of-flight technique at TRIUMF [92]. As theoreti-
cally predicted [63] (see Fig. 4.5b), the existence of a resonance at 0.5 eV has
been confirmed; there, the need of a reduction in an energetic tµ + D2 resonance
structure by a factor of two was also noticed. 

Recent experiments involving X-rayheutron measurements on D–T µCF in 
high-density and high-Ct D–T mixture at RIKEN-RAL have also produced, in
addition to muon sticking phenomena, important new insights concerning the
formation mechanism of dtµ. The results can be summarized as follows:
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1, The density dependence, which had been observed from the gas phase to
the liquid phase (ø = 1.2) [33, 34], seems to exist from liquid to solid
(ø = 1.5) from Ct = 0.28 to Ct = 0.70, suggesting that the three-body
collision effect in λdtµ does coexist under the condensed-matter effect. 

2. The 3He accumulation effect, really significant in solid but not significant 
in liquid, has been precisely measured in order to be used for an interpre-
tation of λdµ.

As for the well-understood DD µCF, as summarized in Fig. 4.6, it was found
that there is a marked deviation between the experiment and theory below 20 K,
corresponding to the solid phase [60, 89,93, 94]. The deviation should be ex-
plained by the following two mechanisms (either one of two or both of them): a) 
due to a non-thermalization effect [64] during the slowing-down of (dµ), the ex-
istence of an energy gap in solid D2 does suppress complete slowing-down, thus 
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producing a non-thermalized epithermal (dµ) (energy of about 20 K); b) the re-
action mechanism of the molecular formation may be dramatically changed due
to a change in the final-state energy spectrum [87, 95]. 

Theoretical Studies 

An accurate calculation of the energy of the (Jv) = 11 state of (dtµ),
€11, was one of the main subjects of a theoretical study of muon catalyzed 
fusion throughout the 1980’s. As a pure Coulomb-interacting three-body
problem, the energy was given as €11 = –0.64 eV by Vinitsky et al. [96],
and -0.656 eV by Gocheva et al. [97], with an adiabatic representation. 
Using a variational method with an elliptic basis, Vinitsky et al. [98], and
Korobov et al. [99], gave €11 = –0.6589 eV and –0.65968 eV, respectively.
Finally, €11 = –0.66001 eV was obtained by Szalewicz et al. [100], with a 
Hylleraas basis, –0.660104 eV by Kamimura [101] with a Gaussian basis in
Jacobian coordinates and –0.6601 72 eV by Alexander and Monkhorst [102] 
with Slater geminals. It should be noticed that, at this level of accuracy, the
energy €11 may be affected by ~ 0.1 meV by an uncertainty in the masses
of d,t and µ [101].

Among the various computational methods employed in the above stud-
ies, the most general, flexible and rapid one may be the Jacobian-coordinate
coupled-rearrangement-channel method [101], which has been commonly
used in calculations of the energy levels, fusion rate, sticking probability, 
muon transfer reaction and dissociation of excited molecules. A formula-
tion in Jacobian coordinates is very advantageous for a correct description
of the very loosely bound states, the dissociation process and the scattering
states; use of basis functions spanned over the three rearrangement chan-
nels suffers little from the linear dependence between the large-scale basis 
functions, working entirely in 64-bit precision arithmetic on supercomputers. 
This method has also been applied [ 103] very accurately to the three-nucleon
bound states (3H, 3He) with a faster convergence of the solution than in the
Faddeev-method calculations [103].

There are several corrections to €11 which are larger than 1 meV. These
include nuclear finite-size effects, nuclear polarization effects, relativistic and
QED (vacuum polarization) effects, hyperfine effects and energy shifts caused
by the host molecule. The total corrections to €11 amount to ~ +60 MeV,
for a review of these corrections, see another publication [4].

Theoretical studies are needed for understanding the surprising aspects in 
the dtµ formation rates; (a) strange temperature dependence and (b) three-
body collision effects. A theoretical calculation which had been used to 
calculate the transition matrix elements in the dipole approximation has been 
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extended to include the quadrupole terms [104]. However, except for a slight
reduction in the absolute rate, an explanation for the temperature dependence 
does not take a significant improvement. 

A theoretical understanding of the origin of the three-body collision ef-
fects has been obtained only qualitatively. As suggested in the argument
related to Fig. 4.4, in a (tµ) y + D2 collision, a partner is needed to ab-
sorb any excess energy for the resonance condition. Petrov [105] has shown
how to incorporate the three-body effect in the form of the resonance-width,
while Menshikov et al. [ 106], have developed a theoretical treatment which
includes the effect of the potential from the surrounding molecules. On the
other hand, Leon [107] has developed a theory based upon a microscopic 
multi-step process. 

The possible existence of resonance states above the dµ + t threshold
has been discussed in several theoretical papers [108, 109].These states are 
the so-called Feshbach type resonance; three-body electric correlation effects
produces the resonance states. The fusion rates and sticking probabilities
have also been calculated [8]. The existence of a state at around 1815 eV
(with reference to the lowest (tµ)1s has been discussed based on a complex 
coordinate-rotation method [110]. There have been no experimental studies
to see the effect of these resonance states. The formation rate of these states
and the rate of slowing-down due to elastic scattering should be calculated
before we see such an effect. 

In (dtµ) formation, the lowest accessible vibrational transitions lie below
the threshold (as shown in Fig. 4.4, the kinetic energy of the collision partners 
would have to be negative to reach them) the strongest resonant contributions 
to molecular formation since are due to higher vibrational transitions, which
correspond to the kinetic energy of the collision partners of several hundred 
MeV. In a triple mixture of H/D/T, three types of resonant reactions are 
possible:
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tµ + D2 → [ (dtµ)dee]
tµ + DT → [(dtµ) tee]
tµ+ HD → [(dtµ)pee] 

The rates of the first two reactions and the third one were calculated by
Faifman and Ponomarev [86] for a (tµ)F=0.1 energy of E ≤ 1 eV (Fig. 4.5c). 
The fast muonic atoms (tµ ) realize the above three reactions with the high 
rate of 1010s–1 at energies of the (tµ) atoms, E = 0.2-0.5 eV before ther-
malization. Physical processes which take place in the triple mixture H/D/T
were extensively studied by a Monte-Carlo simulation by Markushin et al.
[91].



190 K. Nagamine and M. Kamimura 

4.4. He Impurity Effect 

Historical Background 

The effect of the existence of He impurities in D–T µCF is inevitable prob-
lem for the following two reasons: a) due to t beta-decay, when there is no 3He
removal system, 3He accumulates steadily (100 ppm per day); b) the product of
4He after D–T µCF also accumulates, which may cause serious problems. 

On the other hand, the µ– transfer phenomena from p, d, t to 3He, 4He is of 
special interest for the following reasons: (a) this transfer reaction is known not
only to be the most fundamental process other than transfer among hydrogen 
isotopes, but also to be anomalously fast compared to the conventional direct 
exchange process; (b) this transfer reaction gives us an opportunity to learn about 
the structure of a muon molecule by X-ray spectroscopy.

Historically, the formation of the (d4Heµ) state was proposed by Popov et
al., in order to explain the anomalously high µ– transfer rate from hydrogen iso-
topes to the He impurity [ 111,112]. According to this model, the following pro-
cess is expected to take place (see Fig. 4.7); instead ofa direct exchange reaction
of (dµ) + 4He → [ (d4Heµ) e-] + + e-, the molecular ion is formed through 
(dµ) + 4He → [(d 4Heµ ) e-] + + e-, where the molecule (d4Heµ) is preferen-
tially formed in the J = 1 state of the (2pσ) state. In this case, the characteristic
photon spectrum can be predicted: aunique peak energy (6.8 keV versus 8.2 keV
of Kα line in Heµ) with a broad and asymmetric shape (Fig. 4.7). 

At UT-MSLKEK, such an experiment was carried out for a liquid D2 tar-
get with He impurity (430 ppm), which was dissolved by pressurizing the liq-
uid D2 surface with 2 atmospheres of He gas [113]. The observed results are
shown in Fig. 4.7 for the time-integrated energy spectrum at a delayed time after 
µ-injection (from 0.28 to 7.5µs). There, a characteristic asymmetric and broad
photon peak was observed with a central energy of 6.85 (4) keV and a width of
0.74 (4) ke V, agreeing quite well with the theoretical reductions [ 111, 112]. 

Based upon the predicted energy spectrum and the observed one, one can
conclude that a radiative transition photon was observed. The present result
nicely confirms the model of the muon-transfer mechanism through the forma-
tion of a muon molecule. At the same time, this result can be considered to be 
the first experiment to actually “see” a muon molecule.

Experimental Studies 

After the first X-ray observation of a (d4Heµ) molecule, a (dµ)-to-He trans-
fer experiment has been extended to see the isotope effect, namely to study the
difference with 3He. The expected nature of (d4Heµ) molecule in terms of the
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energies of the molecular levels predicts that no big difference exists between
the radiative photon intensities that could be seen in these two transfer reactions.

The X-ray spectra first observed at UTMSL/KEK [114], as seen in Fig. 5.1, 
has shown a surprising difference at around 6.8 keV, a significant peak can be
seen in d 4Heµ, while only a weak one can be seen in d 3Heµ. In combination
with the difference in the muon-molecule formation rate and concentration, the
expected difference in 6.8 keV-photon intensity becomes 0.138. Later, similar 
results and a more precise energy spectrum were obtained at PSI using a CCD 
detector [115]. 

Theoretical Studies 
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There are four types of decay modes of the muonic molecules (d3,4Heµ) J= 1
which have attracted strong theoretical interest:

1. Radiative decay: 

2. Fusion decay: (d3Heµ)J =l → 4He +p + µ,

3. Particle decay: 

4. Auger decay: 

Calculations of the radiative decay of (d4Heµ) by Aristov et al. [111], and
by Hara and Ishida [ 121] have explained the observed photon spectrum, which
provided the first direct evidence for the existence of muonic molecules. The
radiative decay rate λ r given by [116] is 1.55 × 1011 s–1 for (d3Heµ)J=1 and
1.69 × 1011 s–1 for (d 4Heµ)J =1 .

The fusion reaction rate λf of (d3Heµ)J=1 is given in Table 2.1 a. We can see 
that the fusion process is negligible compared with the radiative decay from the
states with J = 0 and J = 1. It is then needless to say that no fusion occurs in the 
(d4Heµ) molecule, Therefore, it is clear that the fusion branch is not an origin of
the observed strong reduction of the radiative decay in (d3 Heµ) compared with
that in (d4He µ).

It was first predicted by Kamimura [116] that strongly reduced radiative
decay branching ratio should be observed in the case of (d3Heµ) ; while for
(d 3Heµ) particle decay is much stronger than the radiative decay, this is not the
case for (d 4Heµ). The enhancement ofparticle decay in d 3Heµ compared with
that in d4Heµ essentially comes from the fact that the kinetic energy (zero-point
oscillation) in the former is larger than that in the latter, simply due to the smaller 
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Fig. 4.7. Schematic energy diagram explaining µ- transfer from d to He through the forma-
tion of a (dHeµ) molecule with a predicted photon energy spectrum of the radiative transition
and the observed photon spectrum from liquid D2 with 193 ppm 4He and that with 250 ppm
3He [114].



Fig. 4.1. (continued).

TABLE 4.1 
Properties of a Hydrogen-Helium-Muon Molecule; Binding En-
ergies, EB (eV) Radiative-Decay Rates lg( 1011 s–1) and Particle-

Decay Rates lp (1011 s–1)
System Ref. J = 0 J = 1

EB lg l p EB lg lp 

p3Heµ [a] 69.0 2.11 47.3 38.1 1.74 31.6

p4Heµ [a] 75.4 2.24 35.4 45.4 1.89 24.8
d3Heµ [a] 70.6 1.80 3.58 48.2 1.58 2.77

[b] 70.946 1.75e 4.70 48.419 1.55e 5.06
[c] 48.421 5.29
[d] 69.96 8.0 46.75 7.0

d4Heµ [a] 78.7 1.94 1.85 57.6 1.74 1.38
[b] 77.430 1.60 58.221 1.69e 1.67

[d] 77.96 2.3 56.10 2.4
[c] 58.225 1.80

t3Heµ [a] 72.3 1.70 0.79 53.4 1.53 0.66
a A. V.Kravtsov et al. [1 17]
b
 Y. Kino and M. Kamimura [1 18] 

c V. I. Korobov [219]
d
 S. S. Gerstein and V. V. Gusev [ I20] 

c
 S. Hara and T. lshihara [I21]
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mass of 3He. Along with this consideration, further prediction was made of an
even stronger reduction of radiative decay in (p4Heµ) than in (d3Heµ).

In order to calculate more accurately the width of such highly excited (~
8 keV) Feshbach-type resonances, Kino and Kamimura [ 118] developed a di-
rect numerical method to solve the resonant states under the explicit scattering
boundary condition for the d-(Heµ)1s channel. The resulting energy and width
of the J = 0 and 1 resonance are listed in Table 4.1 together along with the results
by other authors. We can thus see that the branching ratio of the radiative decay 
is given by 

This predicts that the ratio of the strength of the radiative decay from
(d3Heµ) to that from (d4Heµ) is 0.234/0.503 = 0.465 as long as the forma-
tion probabilities of the two muonic molecular states are normalized to be the
same. This ratio explains well the observed value of the ratio, 0.38 ± 0.06 [114]. 

Auger decay of the hydrogen–helium muonic molecules was investigated by
Kravtsov et al. [ 117]. They concluded that the Auger rate is independent of the 
isotopic content of the molecule and amounts to ~ 25% of radiative one. Al-
though deexcitation from J = l to J = 0 via an inner-Auger effect is energet-
ically not allowed for (dHeµ) molecules, the possibility of deexcitation via an
outer-Auger effect has been pointed out by Czaplinski et al. [31]. More exten-
sive theoretical and experimental studies of the decay mechanism are expected
in order to thoroughly understand these interesting muonic molecules.

5.    ENERGY PRODUCTION OF MUON CATALYZED FUSION 

Initially the ideas about µCF were motivated by the dream of achieving fu-
sion energy from, perhaps, thousands of fusion catalysis by each muon. These
hopes were dampened by the early experiments in which only a hundred or so
catalyses were found, largely because of 4He-sticking. However, other possible
applications followed. At this moment, the following three subjects are under se-
rious discussions towards realization; a) an energy source; b) a 14 MeV neutron 
source and c) an ultra-slow µ– source. Let us re-evaluate here the first subject,
namely, the potential of µCF for energy production. 

In order to consider the energy-production efficiency, it is required to know
how much energy is needed to produce a single muon (a muon cost). There have
been several discussions on the optimization of the p- production and p- →
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TABLE 5.1 
Examples of Pion and Muon Cost Estimations 

Author Reaction p- /E µ–/ E Conditions

Petrovand t (1 Gev)–t 0.25 0.20 50% elastically
(GeV) (GeV)

Shabelskia t (1 GeV)–C, Be 0.22 0.17 scattered t is unused 
d (1 GeV)–C 0.17 0.125

Jände1b d–D–T ( ø < 0.1) 0.5 infinite D–T target

Kuzminov, Petrov d (0.8 Gev)– 0.19 multiple NN collision
and Shabelskic [D–T ( ø = 0.50)] and 10 T field

considered

Letysheva et al.d d (2 GeV)–C, Be 0.22 internuclear cascade code
a Reference [122, 123]
b
 Reference [124]

c Reference [125]
d Reference [  I26] 

µ– conversion. For p- production, the fundamental processes in the nucleon-
nucleon inelastic process are nn → pnp- and np → ppπ−. Therefore, the use of
accelerated nuclei other than protons is inevitable. A deuteron beam as well as a
triton beam have been considered for a cost (energy) estimation for economical 
µ– production.

Following the argument made by Petrov et al. [ 122, 123], a realistic solution
seems to be as follows. By using a 1 GeV/nucleon t (d) beam bombarded onto
Li or Be nuclei, we can obtain 0.22 (0.17) p- from a single t(d). By using a
large- scale superconducting solenoid with a reflecting mirror, one can expect
75% efficiency for µ– conversion from a single p- Thus, a 1 GeV energy of
t (d) produce 0.17µ- so that one µ– can be produced by an energy of 6 (8) GeV.
Further, by selecting the values mentioned for p- production in a t–t collision
[122] the eventual cheapest cost would be about π− / 4 GeV and µ–/5 GeV. 

Several ideas have been proposed for reducing the muon cost. Studies have
been done for optimizing the type of incident accelerated particle, particle en-
ergy and choice of the fixed target. By summarizing these studies [124, 125,
126], as shown in Table 5.1, the optimization does not seem to exceed the value
mentioned above (π-/4 GeV). Another method to reduce the p- production
cost is to use a colliding beam. In this case, the energy of the center-of-mass
motion, which is wasted at a fixed target geometry, would be efficiently used. It
is claimed that p-/1.8 GeV (0.55p- /GeV) can be realized by a d–d collider
[127]. However, the realization of a collider with megawatts in each beam is to-
tally uncertain. 
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Fig. 5.1. Number of fusions and produced energy from dtµ -µCF with required remarks.

As for the development of high-efficiency scheme of p- → µ- conversion,
because of the strong demand for an intense µ- beam from fundamental physics
experiments of a) lepton flavor non-conservation, and b) µ+µ- colliders, there
have been a number of proposals for a realistic form. Some of these examples
[122, 128, 129, 130, 131, 132] are summarized in Table 5.2. 

On the other hand, the energy-production capability           of the µCF is deter-
mined by          = 17.6 × Yn (MeV) in the case of D-T µCF, which has a stringent 
limiting factor due to the sticking probability ws like ≤ 17.6 × ω–1s (MeV).
The situation pertaining to         is summarized in Fig. 5.1. 

Several remarks can be given for a possible increase in the energy- produc-
tion capability from the D–T µCF: a) since the conditions so far used for the D-T
target in the µCF experiment, namely, density, temperature and Ct as well as the
energy of the (tµ) atoms Etµ controlled by the mixture of H2 into D–T mixture
have not been satisfactory, there might exist more favorable conditions toward
higher energy production; the µCF experiment at a higher density D–T mixture,
like ø ≡ 2ø0, should be the typical example; b) in order to increase λdtµ, more 
favorable matching condition in terms of resonant molecular formation might
exist which will be realized by exciting the molecular levels of D2 or DT by e.g., 



TABLE 5.2 
Proposed High Efficiency p- → µ- Converter for an Intense µ- Source at Various High- Intensity Hadron Accelerators

P (d) / s µ- / S µ-/ p (d) µ-/Power ( p , d ) (MW)Project Institute Accelerator

L.F.N.Ca INR–Moscow p, 500 MeV, 100 µA 6.3 × 1014 1011 1.6 ×10–4 1.6 × 1016

L.F.N.c.b AGS–BNL p, 24 GeV, 3µA 2.0 × 1013 4 × 1011 0.020 5.6 × 1014

µ+ µ- Collidec BNLetc. p, 30 GeV, 0.25 µA 2.5 × 1013/15 4 × 1012/15 0.16 2.2 × 1014

GeneralPurposee JHF–KEK p, 3 GeV, 200 µA 1.3 × 1015 1.3 × 1013 0.01 2.2 × 1015

µCF Reactorf Gatchina d, 1.5 GeV, 12 mA 7.5 × 1016 1.5 × 1016 0.20 2.2 × 1014

µCF n-Sourced PSI d, 1.5GeV, 12 mA 7.5 × 1016 1015 0.013 4.2 × 1015

a Reference [I28]
b Reference [I29]
c Reference [130]
d Reference [I31] 
e Reference [I32] 
f Referece [I23]
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lasers; c) in order to decrease ws, or in order to increase R, several ideas have been 
proposed, and, among them, the use of a D-T plasma where enhanced regener-
ation is expected due to an elongated (αµ)+ mean-free path [ 133] as well as the
application of electric field acceleration of (µα)+ [ 134] might be worth trying;
d) in an actual 10 ~ 100 MW power plant, if it exists, there might be several µ–
associated atoms or molecules interacting with each other, and thus causing a
new non-linear phenomena possibly associated with a higher energy production 
which should be examined by using a high-brightness muon beam, like slow µ–.

Contrary to the energy-production solely via the µCF, the concept of muon
catalyzed hybrid reactor has been proposed by Petrov [ 135] and later by Eliezer 
et al. [136]. There, the accelerated 1 GeV/nucleon d beam is bombarded on a Li
or Be target with the remaining beam stopping in 238U, where ~ 30% of the beam
is spent on π- production and 70% is spent on 238U fission and 238Pu production 
as electronuclear breeding. The produced π− is used for the µCF in D-T mix-
ture, where produced 14 MeV neutron stops in the blanket of 238U and 6Li pro-
ducing 239Pu and T. The Pu thus produced is used for a thermal nuclear reactor
and the fission energy is used to feed the accelerator and the rest of the system.
It is concluded that the proposed hybrid system can double the electric-power
output of non-hybrid electronuclear breeding. There is an argument against the
use of the µCF for fuel production of a thermal nuclear reactor because it brings
all the problems of nuclear reactor, like radioactive waste disposal, etc.

In summary, the possibility of energy production by µCF still remains elu-
sive. It is tantalizingly close but still just beyond reach. The physics remains 
exciting and, perhaps, some new discoveries will bring it closer. 

6.

6.1.  14 MeV Neutron Source 

FURTHER APPLICATION OF MUON CATALYZED FUSION 

When thermal nuclear fusion becomes realistic, it is pointed out to be impor-
tant to develop a material to be used for the first wall next to the inner-most core
ofthe fusion reactor. For this purpose, it is important to investigate a highly irra-
diation test facility for 14 MeV neutrons. One practical idea is to have an intense 
source of a 200 keV d beam and produce 14 MeV neutrons via the d + t → a + n
reaction [137]. In parallel to this idea, the 14 MeV neutrons from the µCF can
be considered to be an alternative way for such a materials irradiation facility.

Some realistic schemes have been considered [131, 138]. Let us consider a
1.5 GeV (1 2 µA) deuteron accelerator available. By placing a 30–50 cm graphite
target in the confinement field of a 5–10 T superconducting solenoid, intense
pion production and efficient µ– production can be realized. There, the µCF in
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the D-T target occurs, followed by intense 14 MeV neutrons (on the order of 
1014n /cm2s) for the material under testing placed at one surface of the DT con-
tainer. Most importantly, the power consumption by the µCF method is substan-
tially lower compared to that in the 200 keV d accelerator method (~ 1 / 10!). An 
alternative idea has been proposed by Petrov [139]. Some realistic plant design
is in progress. 

6.2.   Slow µ–

For the case of negative muons (µ–), it has been found to be very difficult 
to produce an intense slow µ– beam due to the following reasons: (1) because 
of a strong absorption of stopped π- inside matter, the p- -to- µ- decay cannot 
be realized inside the target material, so that there is no surface µ–, except for a
small probability for liquid H2 or He; (2) because of muonic atom formation, the 
stopped µ– cannot be liberated from the stopping material after thermalization
inside the condensed matter, and, thus, no re-emission can be expected for the
case of µ–. The situation is, of course, very different for slow µ+ production.

For a more realistic estimation, the kinetics in µCF must be taken into ac-
count. In order to overcome the second difficulty, a new idea has been proposed 
for the source of slow µ–, which will be realized with the help of µCF phenom-
ena [140]. The principle is as follows (see Fig. 6.1): (a) at the disappearance of
the core nuclei of 5He at the instant of µCF, a slow µ– with an energy of around
10 keV is released; (b) this liberation process is known to be repeated up to 150
times during the µ– lifetime; (c) after successive liberation processes of slow
µ–, we can expect that a significant fraction of the µ– stopping inside a thin
solid D–T layer would be re-emitted from the surface. 

When there are no leakage processes from the D-T layer, (solid and Ct being 
around 0.3 ~ 0.5) the conversion efficiency can be estimated to be the ratio of
the range of the 10 keV µ– (0.3 µm) versus that of the incoming µ– with an
energy of, say, 1 MeV (0.9 mm). The multiplication factor due to the number of 
µCF cycles is ≅ thus giving × 0.3 ×10–3 / 0.9 = 0.004. For a more 
realistic estimation, the kinetics in µCF must be taken into account. For instance, 
the diffusion length of the neutral (dµ) or (tµ) gives a significant correction to
the value mentioned above. Assuming 1 µm for the diffusion length of (dµ) and 
(tµ) in the D-Tlayer with a 7 µm layer thickness, the conversion efficiency from
stopping 1 MeV a µ– (below 10 keV) emissions is around 2 × 10–4 instead of

In order to enhance the conversion efficiency, a two-layer structure was pro-
posed by G. M. Marshall which would form an optimized D–T layer on a 1 mm
thick H2 layer with 0.1% T2 (see Fig. 6. 1), the range of the injected MeV µ–
can be effectively reduced due to the Ramsauer–Townsend effect. Already, in 

4 × 10–3.
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Fig. 6.1. Schematic view of low-energy µ-production from D–T µCF in a thin solid layer of
a D–T mixture and its extended version with a Ramsauer-effect enhancement.
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order to confirm the reduced range concept, test experiments have been carried
out at UTMSL/KEK and at TRIUMF for DD µCF by using 2 eV (dµ) from the
H2(D2) mixture. There, a value of 1.5 µm was obtained. Assuming that eV (tµ)
stopping in the D2 layer is similar to eV (tµ) stopping in the D-T layer, one can 
obtain the conversion efficiency from 1 MeV µ– to the slow µ– in a two-layer
configuration, like 2 × 10–4 [0.9 (mm)/1.5 (µm)] × = 0.12 , where is
the emission probability of eV (tµ) from stopping µ–. From our knowledge,
is around 0.1, leading to a conversion efficiency of 0.012 [141]. 

The generation of intense slow µ– has an important application field,
namely, as a µ– ion source for µ+µ– colliders; for the TeV lepton colliders, acir-
cular accelerating and colliding machine is possible only for muons which have
much lower synchrotron radiation loss than electrons and yet live long enough 
to form colliding beams. A slow muon source, as already realized for the µ+
[142] along with the slow µ– source described here, can be efficiently used for
a realistic cooling method of muons [143]. 
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7.    CONCLUSIONS AND FUTURE PERSPECTIVES 

Sometimes, each step in the historical development of an event is described
by the time-sequential progress of (a) introduction, (b) succession, (c) change 
and (d) conclusion/finale. According to our understanding, at the time of the 
present review, the µCF studies stay at the time of“change.”

During the earlier two steps, the µCF studies have realized marked signifi-
cant progress like; a) rapid formation rate of muon molecule via resonant forma-
tion processes, b) quantitative understandings (at least trial) of µ to a sticking, c)
muon transfer among p, d, t and the importance of a transfer from excited states, 
etc. The interaction between theory and experiments has proceeded nicely by 
exchanging surprising new discoveries. 

There are several reasons, as described in earlier chapters, why we call the 
present stage of the µCF research “change.”

Experimentally, the importance of a “condensed-matter effect” has been 
consistently appreciated regarding the following experimental evidence;

a) anomalous T-independent and large lddµ in solid D2;
b) the existence of an epithermal (dµ) and enhanced stopping-rate of (dµ)

Also, new experimental situations such as energetic (tµ) and (dµ), have been
employed to investigate exotic reaction phenomena beyond thermal equilibrium 
reactions with an energy of kT . There, the following new insights have been ob-
tained:

in a solid D2 layer; 
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a) by using an eV (tµ) beam, direct evidence has been obtained for the exis-

b) by using H/D/T triple mixture, an enhanced formation of (dtµ) has been

tence of a 0.5 eV resonance in (λdtµ);

detected due to the effect of a high-energy resonance.

Theoretically, for a satisfactorily scientific understanding ofthe µCF cycles, it is
interesting and important i) to study the deceleration and acceleration of muonic 
hydrogen atoms during a muonic cascade, ii) to calculate elastic and inelastic
scattering and transfer reactions of excited muonic hydrogen atoms in a fully 
quantum mechanical manner, iii) to calculate the rates of formation and dissoci-
ation of muonically excited states of dtµ molecules, and iv) to revisit the muon-
4He initial sticking in any advanced treatment. The calculations ii) and iii) are 
expected to contribute to a resolution of the q1s problem.

In application fields, “change” has been detected in the following directions;

a) The 14 MeV neutron source, by µCF phenomena is now attracting much
attention, so that realistic plant designs are going on in several institutions;

b) Because of strong requests from particle physicists, an intense µ– source
design is now seriously in progress, which may help us to learn a realistic 
way to achieve a µ-/p- conversion rate of 0.75.

Throughout these steps up to today, there are several experimental facts which 
have been left unexplained by any theoretical study. Significant examples are as
follows;

a) T-dependence of λdtµ in particular, dependence towards T → 0.

b) Three body collision effect in λdtµ exhibiting its ø-dependence.

From “change” to “finale,” several future perspectives can be suggested.

1, Experimentally, there should be eventual studies over a wider range of
conditions for the D–T mixture (ø, T, Ct, CHe, ortho/para, etc). Thus, by
covering the entire region of the µCF under various condensed-matter en-
vironments one can elucidate the “few-body µCF problem” under “many-
body background.” 

2. It is interesting and important to study µCF under exotic conditions: µCF
in molecular-state controlled D2 or DT by e.g., lasers, µCF in D–T plasma, 
etc., with the help ofa strong pulsed m- source. Such an experiment is not
beyond our reach at all. 
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3. Also, under the condition of the availability of more than 1010/s intense
µ– (with hopefilly pulsed time-structure), non-linear µCF phenomena
might become effective; the existence of e.g., one [(dtµ) d2e]+ might be
affected by the second one, etc. 

Thus the field of µCF remains vigorous with many challenging issues to be con-
fronted and with the continued promise of fascinating physics.
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