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PREFACE TO VOLUME 2 OF THE THIRD EDITION

Volume 1 of our new two-volume third edition covers relativistic quantum
mechanics, electromagnetism as a gauge theory, and introductory quantum
field theory, and leads up to the formulation and application of quantum
electrodynamics (QED), including renormalization. This second volume is
devoted to the remaining two parts of the ‘Standard Model’ of particle physics,
namely quantum chromodynamics (QCD) and the electroweak theory of Glashow,
Salam and Weinberg.

It is remarkable that all three parts of the Standard Model are quantum
gauge field theories: in fact, QCD and the electroweak theory are certain
generalizations of QED. We shall therefore be able to build on the foundations of
gauge theory, Feynman graphs and renormalization which were laid in Volume 1.
However, QCD and the electroweak theory both require substantial extensions
of the theoretical framework developed for QED. Most fundamentally, the
discussion of global and local symmetries must be enlarged to include non-
Abelian symmetries, and spontaneous symmetry breaking. At a somewhat more
technical level, the lattice (or path-integral) approach to quantum field theory, and
the renormalization group are both needed for access to modern work on QCD.
For each of these theoretical elements, a self-contained introduction is provided
in this volume. Together with their applications, this leads to a simple four-part
structure (the numbering of parts, chapters and appendices continues on from
Volume 1):

Part 5 Non-Abelian symmetries

Part 6 QCD and the renormalization group (including lattice field theory)

Part 7 Spontaneous symmetry breaking (including the spontaneous breaking of
the approximate global chiral symmetry of QCD)

Part 8 The electroweak theory.

We have already mentioned several topics (path integrals, the renormaliza-
tion group, and chiral symmetry breaking) which are normally found only in texts
pitched at a more advanced level than this one—and which were indeed largely
omitted from the preceding (second) edition. Nor, as we shall see, are these topics
the only newcomers. With their inclusion in this volume, our book now becomes a
comprehensive, practical and accessible introduction to the major theoretical and
experimental aspects of the Standard Model. The emphasis is crucial: in once
again substantially extending the scope of the book, we have tried hard not to
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compromise the title’s fundamental aim—which is, as before, to make the chosen
material accessible to the wide readership which the previous editions evidently
attracted.

A glance at the contents will suggest that we have set ourselves a
considerable challenge. On the other hand, not all of the topics are likely to be
of equal interest to every reader. It may therefore be helpful to offer some more
detailed guidance, while at the same time highlighting those items which are new
to this edition.

First, then, non-Abelian symmetry. This refers to the fact that the symmetry
transformations are matrices (acting on a set of fields), any two of which will
generally not commute with each other, so that the order in which they are applied
makes a difference. Much of the necessary mathematics already appears in the
simpler case in which the symmetry is a global, rather than a local one. In chapter
12 we introduce global non-Abelian symmetries via the physical examples of the
(approximate) SU(2) and SU(3) flavour symmetries of the strong interactions.

The underlying mathematics involved here is group theory. However, we
take care to develop everything we need on a ‘do-it-yourself” basis as we go along,
so that no prior knowledge of group theory is necessary. Nevertheless, we have
provided a new and fairly serious appendix (M) on group theory, which collects
together the main relevant ideas, and shows how they apply to the groups we are
dealing with (including the Lorentz group). We hope that this compact summary
will be of use to those readers who want a sense of the mathematical unity behind
the succession of specific calculations provided in the main text.

A further important global non-Abelian symmetry is also introduced in
chapter 12—that of chiral symmetry, which is expected to be relevant if the quark
masses are substantially less than typical hadronic scales, as is indeed the case.
The apparent non-observation of this expected symmetry creates a puzzle, the
resolution of which has to be deferred until part 7.

In chapter 13, the second in part 5, we move on to the local versions of
SU(2) and SU(3) symmetry, arriving in section 13.5 at the corresponding non-
Abelian gauge field theories which are the main focus of the book, being directly
relevant to the electroweak theory and to QCD respectively. Crucial new physical
phenomena appear, not present in QED—for example, the self-interactions among
the gauge field quanta.

On the mathematical side, the algebraic (or group-theoretic) aspects
developed in chapter 12 carry through unchanged into chapter 13, but the
‘gauging’ of the symmetry brings in some new geometrical concepts, such as
‘covariant derivative’, ‘parallel transport’, ‘connection’, and ‘curvature’. We
decided against banishing these matters to an appendix, since they are such a
significant part of the conceptual structure of all gauge theories, and moreover
their inclusion allows instructive reference to be made to a theory otherwise
excluded from mention, namely general relativity. All the same, practically-
minded readers may want to pass quickly over sections 13.2 and 13.3, and also
section 13.5.3, which explains why obtaining the correct Feynman rules for loops
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in a non-Abelian gauge theory is such a difficult problem, within the ‘canonical’
approach to quantum field theory as developed in volume 1.

Immediate application of the formalism can now be made to QCD, and this
occupies most of the next three chapters, which form part 6. Chapter 14 introduces
‘colour’ as a dynamical degree of freedom, and leads on to the QCD Lagrangian.
Some simple tree-graph applications are then described, using the techniques
learned for QED. These provide a good first orientation to data, following ‘parton
model” and ‘scaling’ ideas.

But of course a fundamental question immediately arises: how can such
an approach, based on perturbation theory, possibly apply to QCD which, after
all, describes the strong interactions between quarks? The answer lies in
the profound property (possessed only by non-Abelian gauge theories) called
‘asymptotic freedom’—that is, the decrease of the effective interaction strength
at high energies or short distances. Crucially, this property cannot be understood
in terms of tree graphs: loops must be studied, and this immediately involves
renormalization. In fact, perturbation theory becomes useful at high energies only
after an infinite series of loop contributions has been effectively re-summed. The
technique required to do this goes by the name of the renormalization group (RG),
and it is described in chapter 15, along with applications to asymptotic freedom,
and to the calculation of scaling violations in deep inelastic scattering.

We do not expect the majority of our readers to find chapter 15 easy going.
But there is no denying the central importance of the RG in modern field theory,
nor its direct relevance to experiment. In section 15.2 we have tried to provide
an elementary introduction to the RG, by considering in detail the much simpler
case of QED, using no more theory than is contained in chapter 11 of volume 1.
Sections 15.4 and 15.5 are less central to the main argument, as is an appendix
(N) on dimensional regularization.

In chapter 16, the third of part 6, we turn to the problem of how to
extract predictions from a quantum field theory (in particular, QCD) in the non-
perturbative regime. The available technique is computational, based on the
discretized (lattice) version of Feynman'’s path-integral formulation of quantum
field theory, to which we provide a simple introduction in section 16.4. A
substantial bonus of this formulation is that it allows fruitful analogies to be
drawn with the statistical mechanics of spin systems on a lattice. In particular,
we hope that readers who may have struggled with the formal manipulations of
chapter 15 will be refreshed by seeing RG ideas in action from a different and
more physical point of view—that of ‘integrating out’ short distance degrees of
freedom, leading to an effective theory valid at longer distances. The chapter ends
with some illustrative results from lattice QCD calculations, in section 16.7. An
appendix (O) on Grassmann variables is provided for those interested in seeing
how the path-integral formalism can be made to work for fermions.

At this half-way stage, QCD has been established as the theory of strong
interactions, by the success of both RG-improved perturbation theory and non-
perturbative numerical computations.
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Further progress requires one more fundamental idea—the subtle concept of
spontaneous symmetry breaking, which forms the subject of part 7. Chapter 17
sets out the basic theory of spontaneously broken global symmetries, and also
considers two physical examples in considerable detail, namely the Bogoliubov
superfluid in section 17.3, and the BCS superconductor in section 17.7. It is
of course true that these systems are not part of the standard model of particle
physics. However, the characteristic methods and concepts developed for such
systems provide valuable background for the particle physics applications of the
idea, which follow in the next two chapters. In particular, our presentation of
chiral symmetry breaking in chapter 18 follows Nambu’s remarkable original
analogy between fermion mass generation and the appearance of an energy gap in
a superconductor. Section 18.3, on linear and nonlinear sigma models, is rather
more optional, as is our brief introduction to chiral anomalies in section 18.4.
In chapter 19, the third in part 7, we consider the spontaneous breaking of
local (gauge) symmetries. Here the fundamental point is that it is possible for
gauge quanta to acquire mass, while still preserving the local gauge symmetry
of the Lagrangian. We consider applications both to the Abelian case of a
superconductor (sections 19.2 and 19.4—once again, a valuable working model
of the physics), and to the non-Abelian case required for the electroweak theory.

The way is now clear to develop the electroweak theory, in part 8. Chapter 20
is a self-contained review of weak interaction phenomenology, based on Fermi’s
‘current—current’ model. New material here includes discussion of the discrete
symmetries C and P, and of lepton number conservation taking into account the
possibility that neutrinos may be Majorana particles, in support of which we
provide an appendix (P) on Majorana fermions. Chapter 21 describes what goes
wrong with the current—current model, and with theories in which the W and Z
bosons are given a ‘naive’ mass, and suggests why a gauge theory is needed to
avoid these difficulties. Finally, in chapter 22, all the pieces are put together in
the presentation of the electroweak theory. New additions here include three-
family mixing via the CKM matrix, together with more detail on higher order
(one-loop) corrections, the top quark, and aspects of Higgs phenomenology. The
remarkably precise agreement—thus far—between theory and experiment, which
depends upon the inclusion of one-loop effects, makes it hard to deny that, when
interacting weakly, Nature has indeed made use of the subtle intricacies of a
renormalizable, spontaneously broken, non-Abelian chiral gauge theory.

But the story of the Standard Model is not yet quite complete. One
vital part—the Higgs sector—remains virtual, and phenomenological. Further
progress in understanding the mechanism of electroweak symmetry breaking,
and of mass generation, requires input from the next generation of experiments,
primarily at the LHC. We hope that we leave our readers with a sound grasp of
what is at stake in these experiments, and a lively interest in their outcome.
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12

GLOBAL NON-ABELIAN SYMMETRIES

In the preceding volume, a very successful dynamical theory—QED—has
been introduced, based on the remarkably simple gauge principle: namely
that the theory should be invariant under local phase transformations on the
wavefunctions (chapter 3) or field operators (chapter 7) of charged particles.
Such transformations were characterized as Abelian in section 3.6, since the
phase factors commuted. The second volume of this book will be largely
concerned with the formulation and elementary application of the remaining two
dynamical theories within the Standard Model—that is, QCD and the electroweak
theory. They are built on a generalization of the gauge principle, in which the
transformations involve more than one state, or field, at a time. In that case,
the ‘phase factors’ become matrices, which generally do not commute with each
other, and the associated symmetry is called a ‘non-Abelian’ one. When the phase
factors are independent of the spacetime coordinate x, the symmetry is a ‘global
non-Abelian’ one; when they are allowed to depend on x, one is led to a non-
Abelian gauge theory. Both QCD and the electroweak theory are of the latter
type, providing generalizations of the Abelian U(1) gauge theory which is QED.
It is a striking fact that all three dynamical theories in the Standard Model are
based on a gauge principle of local phase invariance.

In this chapter we shall be mainly concerned with two global non-Abelian
symmetries, which lead to useful conservation laws but not to any specific
dynamical theory. We begin in section 12.1 with the first non-Abelian symmetry
to be used in particle physics, the hadronic isospin ‘SU(2) symmetry’ proposed
by Heisenberg (1932) in the context of nuclear physics, and now seen as following
from the near equality of the u and d quark masses (on typical hadronic scales),
and the flavour independence of the QCD interquark forces. In section 12.2 we
extend this to SU(3)r flavour symmetry, as was first done by Gell-Mann (1961)
and Ne’eman (1961)—an extension seen, in its turn, as reflecting the rough
equality of the u, d and s quark masses, together with flavour independence of
QCD. The ‘wavefunction’ approach of sections 12.1 and 12.2 is then reformulated
in field-theoretic language in section 12.3.

In the last section of this chapter, we shall introduce the idea of a global
chiral symmetry, which is a symmetry of theories with massless fermions. This
may be expected to be a good approximate symmetry for the u and d quarks. But
the anticipated observable consequences of this symmetry (for example, nucleon
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parity doublets) appear to be absent. This puzzle will be resolved in part 7, via
the profoundly important concept of ‘spontaneous symmetry breaking’.

The formalism introduced in this chapter for SU(2) and SU(3) will be
required again in the following one, when we consider the local versions of these
non-Abelian symmetries and the associated dynamical gauge theories. The whole
modern development of non-Abelian gauge theories began with the attempt by
Yang and Mills (1954) (see also Shaw 1955) to make hadronic isospin into a
local symmetry. However, the beautiful formalism developed by these authors
turned out not to describe interactions between hadrons. Instead, it describes the
interactions between the constituents of the hadrons, namely quarks—and this in
two respects. First, a local SU(3) symmetry (called SU(3).) governs the strong
interactions of quarks, binding them into hadrons (see part 6). Second, a local
SU(2) symmetry (called weak isospin) governs the weak interactions of quarks
(and leptons); together with QED, this constitutes the electroweak theory (see
part 8). It is important to realize that, despite the fact that each of these two
local symmetries is based on the same group as one of the earlier global (flavour)
symmetries, the physics involved is completely different. In the case of the strong
quark interactions, the SU(3). group refers to a new degree of freedom (‘colour’)
which is quite distinct from flavour u, d, s (see chapter 14). In the weak interaction
case, since the group is an SU(2), it is natural to use ‘isospin language’ in talking
about it, particularly since flavour degrees of freedom are involved. But we must
always remember that it is weak isospin, which (as we shall see in chapter 20) is
an attribute of leptons as well as of quarks and, hence, physically quite distinct
from hadronic spin. Furthermore, it is a parity-violating chiral gauge theory.

Despite the attractive conceptual unity associated with the gauge principle,
the way in which each of QCD and the electroweak theory ‘works’ is actually
quite different from QED and from each other. Indeed it is worth emphasizing
very strongly that it is, a priori, far from obvious why either the strong interactions
between quarks or the weak interactions should have anything to do with gauge
theories at all. Just as in the U(1) (electromagnetic) case, gauge invariance forbids
a mass term in the Lagrangian for non-Abelian gauge fields, as we shall see in
chapter 13. Thus it would seem that gauge field quanta are necessarily massless.
But this, in turn, would imply that the associated forces must have a long-range
(Coulombic) part, due to exchange of these massless quanta—and of course in
neither the strong nor the weak interaction case is that what is observed.! As
regards the former, the gluon quanta are indeed massless but the contradiction is
resolved by non-perturbative effects which lead to confinement, as we indicated in
chapter 2. We shall discuss this further in chapter 16. In weak interactions, a third
realization appears: the gauge quanta acquire mass via (it is believed) a second
instance of spontaneous symmetry breaking, as will be explained in part 7. In fact,
a further application of this idea is required in the electroweak theory because of

' Pauli had independently developed the theory of non-Abelian gauge fields during 1953 but did not

publish any of this work because of the seeming physical irrelevancy associated with the masslessness
problem (Enz 2002, pp 474-82; Pais 2002, pp 242-5).
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939.553 MeV
— 938.259 MeV

p

Figure 12.1. Early evidence for isospin symmetry.

the chiral nature of the gauge symmetry in this case: the quark and lepton masses
also must be ‘spontaneously generated’.

12.1 The flavour symmetry SU(2)¢

12.1.1 The nucleon isospin doublet and the group SU(2)

The transformations initially considered in connection with the gauge principle in
section 3.5 were just global phase transformations on a single wavefunction

v = ey, (12.1)

The generalization to non-Abelian invariances comes when we take the
simple step—but one with many ramifications—of considering more than one
wavefunction, or state, at a time. Quite generally in quantum mechanics, we
know that whenever we have a set of states which are degenerate in energy (or
mass) there is no unique way of specifying the states: any linear combination of
some initially chosen set of states will do just as well, provided the normalization
conditions on the states are still satisfied. Consider, for example, the simplest case
of just two such states—to be specific, the neutron and proton (figure 12.1). This
single near coincidence of the masses was enough to suggest to Heisenberg (1932)
that, as far as the strong nuclear forces were concerned (electromagnetism being
negligible by comparison), the two states could be regarded as truly degenerate,
so that any arbitrary linear combination of neutron and proton wavefunctions
would be entirely equivalent, as far as this force was concerned, for a single
‘neutron’ or single ‘proton’ wavefunction. This hypothesis became known as
the ‘charge independence of nuclear forces’. Thus redefinitions of neutron and
proton wavefunctions could be allowed, of the form

Yp = Yy = ayp + B (12.2)
Yn — Yy = y¥p + 8¥n (12.3)

for complex coefficients &, B, y and 8. In particular, since ¥, and vy, are
degenerate, we have

Hyp=Eyp  Hyn=Eyy (12.4)

from which it follows that
HY, = H(oy + fym) = aH Yy + BH Y (12.5)
= E(ayp + BYn) = EY, (12.6)
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and, similarly,
Hyy = EY, (12.7)

showing that the redefined wavefunctions still describe two states with the same
energy degeneracy.

The two-fold degeneracy seen in figure 12.1 is suggestive of that found in
spin—% systems in the absence of any magnetic field: the s, = :I:% components are
degenerate. The analogy can be brought out by introducing the two-component
nucleon isospinor

p ) = < zi ) — Yoo + Vatn (12.8)

Xp:<(1)) Xn=<(1)). (12.9)

In /2, Yp is the amplitude for the nucleon to have ‘isospin up’ and v, is that
for it to have ‘isospin down’.

As far as the states are concerned, this terminology arises, of course, from
the formal identity between the ‘isospinors’ of (12.9) and the two-component
eigenvectors (4.59) corresponding to eigenvalues j:%h of (true) spin: compare
also (4.60) and (12.8). It is important to be clear, however, that the degrees of
freedom involved in the two cases are quite distinct; in particular, even though
both the proton and the neutron have (true) spin—%, the transformations (12.2) and
(12.3) leave the (true) spin part of their wavefunctions completely untouched.
Indeed, we are suppressing the spinor part of both wavefunctions altogether
(they are of course 4-component Dirac spinors). As we proceed, the precise
mathematical nature of this ‘spin-5’ analogy will become clear.

Equations (12.2) and (12.3) can be compactly written in terms of 1/ as

Yy 172 I//(1/2)/ — vy /2 V= < ;’j "g ) (12.10)

where

where V is the indicated complex 2 x 2 matrix. Heisenberg’s proposal, then,
was that the physics of strong interactions between nucleons remained the same
under the transformation (12.10): in other words, a symmetry was involved.
We must emphasize that such a symmetry can only be exact in the absence
of electromagnetic interactions: it is, therefore, an intrinsically approximate
symmetry, though presumably quite a useful one in view of the relative weakness
of electromagnetic interactions as compared to hadronic ones.

We now consider the general form of the matrix V, as constrained by various
relevant restrictions: quite remarkably, we shall discover that (after extracting an
overall phase) V has essentially the same mathematical form as the matrix U of
(4.81), which we encountered in the discussion of the transformation of (real) spin
wavefunctions under rotations of the (real) space axes. It will be instructive to see
how the present discussion leads to the same form (4.81).
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We first note that V of (12.10) depends on four arbitrary complex numbers or,
alternatively, on eight real parameters. By contrast, the matrix U of (4.81) depends
on only three real parameters: two to describe the axis of rotation represented by
the unit vector 7, together with a third for the angle of rotation . However, V
is subject to certain restrictions and these reduce the number of free parameters
in V to three, as we now discuss. First, in order to preserve the normalization of
1//(1/2), we require

w(l/z)/Tw(l/Z)’ — w(l/z)TVTVI//(l/Z) — w(l/z)’fl//(l/z) (12.11)
which implies that V has to be unitary:
Viv=1, (12.12)

where 15 is the unit 2 x 2 matrix. Clearly this unitarity property is in no
way restricted to the case of two states—the transformation coefficients for n
degenerate states will form the entries of an n x n unitary matrix. A trivialization
is the case n = 1, for which, as we noted in section 3.6, V reduces to a single
phase factor as in (12.1), indicating how all the previous work is going to be
contained as a special case of these more general transformations. Indeed, from
the elementary properties of determinants, we have

detVIV =det V' - detV = det V* - detV = |det V|> = 1 (12.13)

so that
detV = exp(if) (12.14)

where 6 is a real number. We can separate off such an overall phase factor from
the transformations mixing ‘p’ and ‘n’, because it corresponds to a rotation of the
phase of both p and n wavefunctions by the same amount:

Y=Yy Y =e“Yn. (12.15)

The V corresponding to (12.15)is V = ei‘)‘lz, which has determinant exp(2i«)
and is, therefore, of the form (12.1) with & = 2«. In the field-theoretic formalism
of section 7.2, such a symmetry can be shown to lead to the conservation of baryon
number Ny + Ng — Ng — Ng, where bar denotes the anti-particle.

The new physics will lie in the remaining transformations which satisfy

detV = +1. (12.16)

Such a matrix is said to be a special unitary matrix—which simply means it has
unit determinant. Thus, finally, the V’s we are dealing with are special, unitary,
2 x 2 matrices. The set of all such matrices form a group. The general defining
properties of a group are given in appendix M. In the present case, the elements of
the group are all such 2 x 2 matrices and the ‘law of combination’ is just ordinary
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matrix multiplication. It is straightforward to verify (problem 12.1) that all the
defining properties are satisfied here; the group is called ‘SU(2)’, the ‘S’ standing
for ‘special’, the ‘U’ for ‘unitary’ and the ‘2’ for ‘2 x 2’.

SU(2) is actually an example of a Lie group (see appendix M). Such groups
have the important property that their physical consequences may be found
by considering ‘infinitesimal’ transformations, that is—in this case—matrices
V which differ only slightly from the ‘no-change’ situation corresponding to
V = 1,. For such an infinitesimal SU(2) matrix Vj,q, we may therefore write

Vit =12 +i& (12.17)

where £ is a 2 x 2 matrix whose entries are all first-order small quantities. The
condition det Vipg = 1 now reduces, on neglect of second-order terms O (& 2), to
the condition (see problem 12.2)

Tré = 0. (12.18)
The condition that Vi,q be unitary, i.e.
(L +i&)(Ir —itH =1, (12.19)
similarly reduces (in first order) to the condition
E=¢". (12.20)

Thus & is a 2 x 2 traceless Hermitian matrix, which means it must have the form

£ = ( bf:ic b__aic ) (12.21)
where a, b, ¢ are infinitesimal parameters. Writing
a=c¢€3/2 b=¢€1/2 c=¢€/2 (12.22)
(12.21) can be put in the more suggestive form
E=€-1/2 (12.23)
where € stands for the three quantities
€ = (€1, €, €3) (12.24)

which are all first-order small. The three matrices 7 are just the familiar Hermitian
Pauli matrices

r1=<? (1)) rzz(io _é) m:(é _?) (12.25)
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here called ‘tau’ precisely in order to distinguish them from the mathematically
identical ‘sigma’ matrices which are associated with the real spin degree of
freedom. Hence, a general infinitesimal SU(2) matrix takes the form

Vingt = (12 +i€ - 7/2) (12.26)

and an infinitesimal SU(2) transformation of the p—n doublet is specified by

v\ _ . Yo
< I//Z )— (1> + i€ r/2)( " ) (12.27)

The 7-matrices clearly play an important role, since they determine the forms
of the three independent infinitesimal SU(2) transformations. They are called the
generators of infinitesimal SU(2) transformations; more precisely, the matrices
T /2 provide a particular matrix representation of the generators, namely the two-
dimensional or ‘fundamental’ one (see appendix M). We note that they do not
commute amongst themselves: rather, introducing T!/? = /2, we find (see
problem 12.3)

(1, 7] = e 10, (12.28)

where i, j and k run from 1 to 3 and a sum on the repeated index k is
understood as usual. The reader will recognize the commutation relations (12.28)
as being precisely the same as those of angular momentum operators in quantum
mechanics:

[Ji, J;] = i€jji Jk.. (12.29)

In that case, the choice J; = 0;/2 = J l.(l/ ? would correspond to a (real) spin-%
system. Here the identity between the tau’s and the sigma’s gives us a good reason
to regard our ‘p—n’ system as formally analogous to a ‘spin—%’ one. Of course, the
‘analogy’ was made into a mathematical identity by the judicious way in which &
was parametrized in (12.23).

The form for a finite SU(2) transformation V may then be obtained from the
infinitesimal form using the result

e = lim (1+ A/n)" (12.30)
n—oo
generalized to matrices. Let € = a/n, where « = (o1, 2, o3) are three real finite
(not infinitesimal) parameters, apply the infinitesimal transformation n times and
let n tend to infinity. We obtain

V =explia - 7/2) (12.31)

so that

w12 = < :ir} ) = exp(ic - r/2)< zp ) = exp(ia - /2y /2. (12.32)
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Note that in the finite transformation, the generators appear in the exponent.
Indeed, (12.31) has the form
V =exp(iG) (12.33)

where G = « - T/2, from which the unitary property of V easily follows:
V' = exp(—iG") = exp(—iG) = V7!, (12.34)
where we used the Hermiticity of the tau’s. Equation (12.33) has the general form
unitary matrix = exp(i Hermitian matrix), (12.35)

where the ‘Hermitian matrix’ is composed of the generators and the
transformation parameters. We shall meet generalizations of this structure in the
following section for SU(2), again in section 12.2 for SU(3), and a field-theoretic
version of it in section 12.3.

As promised, (12.32) is of essentially the same mathematical form as (4.81).
In each case, three real parameters appear: in (4.81) there are three parameters
to describe the axis fi and angle 6 of rotation; in (12.32) there are just the three
components of o. We can always2 write @ = |ot|@ and identify |e| with 6 and &
with A.

In the form (12.32), it is clear that our 2 x 2 isospin transformation is a
generalization of the global phase transformation of (12.1), except that

(a) there are now three ‘phase angles’ oc; and
(b) there are non-commuting matrix operators (the t’s) appearing in the
exponent.

The last fact is the reason for the description ‘non-Abelian’ phase invariance. As
the commutation relations for the T matrices show, SU(2) is a non-Abelian group
in that two SU(2) transformations do not, in general, commute. By contrast, in
the case of electric charge or particle number, successive transformations clearly
commute: this corresponds to an Abelian phase invariance and, as noted in
section 3.6, to an Abelian U(1) group.

We may now put our initial ‘spin-5’ analogy on a more precise mathematical
footing. In quantum mechanics, states within a degenerate multiplet may
conveniently be characterized by the eigenvalues of a complete set of Hermitian
operators which commute with the Hamiltonian and with each other. In the case
of the p—n doublet, it is easy to see what these operators are. We may write (12.4),
(12.6) and (12.7) as

HoyV/? = Ey (/2 (12.36)

and
sz(l/Z) _ EI//(I/Z) (12.37)

2 It is not completely obvious that the general SU(2) matrix can be parametrized by an angle 6 with
0 <0 < 2m, and f: for further discussion, see appendix M, section M.7.
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where H» is the 2 x 2 matrix

Hy = ( 1(:1 fl ) (12.38)

Hence H> is proportional to the unit matrix in this two-dimensional space and it
therefore commutes with the tau’s:

[Ha, ] = 0. (12.39)
It then also follows that H> commutes with V or, equivalently,
VH,V™! = H, (12.40)

which is the statement that H, is invariant under the transformation (12.32).
Now the tau’s are Hermitian and, hence, correspond to possible observables.
Equation (12.39) implies that their eigenvalues are constants of the motion (i.e.
conserved quantities), associated with the invariance (12.40). But the tau’s do
not commute amongst themselves and so, according to the general principles of
quantum mechanics, we cannot give definite values to more than one of them
at a time. The problem of finding a classification of the states which makes the
maximum use of (12.39), given the commutation relations (12.28), is easily solved
by making use of the formal identity between the operators 7;/2 and angular
momentum operators J; (cf (12.29)). The answer is3 that the total squared ‘spin’

T2 = o = 4 + 53 +7) = 1o (12.41)

and one component of spin, say T3(1/ 2 _ %r3, can be given definite values
simultaneously. The corresponding eigenfunctions are just the xp’s and x,’s of
(12.9), which satisfy

1.2 3 1

=3 3T =3 (12.43)
The reason for the ‘spin’ part of the name ‘isospin’ should by now be clear: the
term is actually a shortened version of the historical one ‘isotopic spin’.

In concluding this section we remark that, in this two-dimensional p—n space,

the electromagnetric charge operator is represented by the matrix

= 10 —11 12.44
Qem = 0 0 —§(2+T3). (12.44)

It is clear that although Qe commutes with 3, it does not commute with either
71 or 7o. Thus, as we would expect, electromagnetic corrections to the strong
interaction Hamiltonian will violate SU(2) symmetry.

3 See, for example, Mandl (1992).
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12.1.2 Larger (higher-dimensional) multiplets of SU(2) in nuclear physics

For the single nucleon states considered so far, the foregoing is really nothing
more than the general quantum mechanics of a two-state system, phrased in ‘spin-
%’ language. The real power of the isospin (SU(2)) symmetry concept becomes
more apparent when we consider states of several nucleons. For A nucleons in
the nucleus, we introduce three ‘total isospin operators’ T = (T, T», T3) via

T=13t0)+ 372+ + 3T (12.45)

which are Hermitian. The Hamiltonian H describing the strong interactions of
this system is presumed to be invariant under the transformation (12.40) for all
the nucleons independently. It then follows that

[H,T] = 0. (12.46)

Thus, the eigenvalues of the T operators are constants of the motion. Further,
since the isospin operators for different nucleons commute with each other
(they are quite independent), the commutation relations (12.28) for each of the
individual 7’s imply (see problem 12.4) that the components of T defined by
(12.45) satisfy the commutation relations

[T;, T;] =ie€;ji Tk (12.47)

for i, j,k = 1,2,3, which are simply the standard angular momentum
commutation relations, once more. Thus the energy levels of nuclei ought to
be characterized—after allowance for electromagnetic effects, and correcting for
the slight neutron—proton mass difference—by the eigenvalues of T? and T3, say,
which can be simultaneously diagonalized along with H. These eigenvalues
should then be, to a good approximation, ‘good quantum numbers’ for nuclei,
if the assumed isospin invariance is true.

What are the possible eigenvalues? We know that the T’s are Hermitian and
satisfy exactly the same commutation relations (12.47) as the angular momentum
operators. These conditions are all that are needed to show that the eigenvalues
of T? are of the form T(T + 1), where T = 0, %, 1,..., and that for a given T
the eigenvalues of 73 are — 7, —T + 1,...,T — 1, T; that is, there are 27 + 1
degenerate states for a given T. These states all have the same A value, and since
T3 counts +% for every proton and —% for every neutron, it is clear that successive
values of 73 correspond physically to changing one neutron into a proton or vice
versa. Thus we expect to see ‘charge multiplets’ of levels in neighbouring nuclear
isobars. These are precisely the multiplets of which we have already introduced
examples in chapter 1 (see figure 1.8) which we reproduce here as figure 12.2 for
convenience. These level schemes (which have been adjusted for Coulomb energy
differences, and for the neutron—proton mass difference) provide clear evidence of
T = % (doublet), T = 1 (tripletyand T' = % (quartet) multiplets. It is important to

note that states in the same 7'-multiplet must have the same J© quantum numbers
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Figure 12.2. Energy levels (adjusted for Coulomb energy and neutron—proton mass
differences) of nuclei of the same mass number but different charge, showing (a) ‘mirror’
doublets, (b) triplets and (c¢) doublets and quartets.

(these are indicated on the levels for '3F); obviously the nuclear forces will depend
on the space and spin degrees of freedom of the nucleons and will only be the
same between different nucleons if the space-spin part of the wavefunction is
the same. Thus, the assumed invariance of the nucleon—nucleon force produces
a richer nuclear multiplet structure, going beyond the original p—n doublet.
These higher-dimensional multiplets (T = 1, %, ...) are called ‘irreducible
representations’ of SU(2). The commutation relations (12.47) are called the Lie
algebra of SU(2)* (see appendix M) and the general group-theoretical problem
of understanding all possible multiplets for SU(2) is equivalent to the problem of
finding matrices which satisfy these commutation relations. These are, in fact,
precisely the angular momentum matrices of dimension (27 + 1) x 2T + 1)
which are generalizations of the t/2’s, which themselves correspond to T = %

4 Likewise, the angular momentum commutation relations (12.29) are the Lie algebra of the rotation
group SO(3). The Lie algebras of the two groups are, therefore, the same. For an indication of how,
nevertheless, the groups do differ, see appendix M, section M.7.
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as indicated in the notation T(%). For example, the 7 = 1 matrices are 3 x 3 and
can be compactly summarized by (problem 12.5)

(T'V) jx = —ieji, (12.48)

where the numbers —ie;j, are deliberately chosen to be the same numbers (with a
minus sign) that specify the algebra in (12.47): the latter are called the structure
constants of the SU(2) group (see appendix M, sections M.3-M.5). In general,
there will be (2T + 1) x (2T + 1) matrices T7) which satisfy (12.47) and
correspondingly (27 + 1) dimensional wavefunctions v(7) analogous to the two-
dimensional (T = %) case of (12.8). The generalization of (12.32) to these
higher-dimensional multiplets is then

YD = exp(ior - Ty D (12.49)

which has the general form of (12.35). In this case, the matrices T provide a
(2T + 1)-dimensional matrix representation of the generators of SU(2). We shall
meet field-theoretic representations of the generators in section 12.3.

We now proceed to consider isospin in our primary area of interest, which is
particle physics.

12.1.3 Isospin in particle physics

The neutron and proton states themselves are actually only the ground states of
a whole series of corresponding B = 1 levels with isospin % (i.e. doublets), as
noted in chapter 1 (see figure 1.10(a)). Another series of baryonic levels comes
in four charge states, as shown in figure 1.10(b), corresponding to 7 = %; and
in the meson sector, the 7’s appear as the lowest states of a sequence of mesonic
triplets (T = 1), shown in figure 1.11. Many other examples also exist but with
one remarkable difference as compared to the nuclear physics case: no baryon
states are known with 7' > % nor any meson states with 7 > 1.

The most natural interpretation of these facts is that the observed states
are composites of more basic entities which carry different charges but are
nearly degenerate in mass, while the forces between these entities are charge-
independent, just as in the nuclear (p,n) case. These entities are, of course, the
quarks: the n contains (udd), the p is (uud) and the A-quartet is (uuu, uud, udd,
ddd). The u—d isospin doublet plays the role of the p—n doublet in the nuclear case
and this degree of freedom is what we now call SU(2) isospin flavour symmetry
at the quark level, denoted by SU(2)r. We shall denote the u—d quark doublet

wavefunction by
g= ( Z > (12.50)

omitting now the explicit representation label ‘(%)’ and shortening ‘i, to just
‘u’, and similarly for ‘d’. Then, under an SU(2); transformation,

q— q =Vg=expla-1/2)q. (12.51)
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The limitation 7 < % for baryonic states can be understood in terms of their being
composed of three T = % constituents (two of them pairto 7 = 1 or 7 = 0 and
the thirdaddsto 7 = 1 tomake T = % orT = % andto 7T = Otomake T = %,by
the usual angular momentum addition rules). It is, however, a challenge for QCD
to explain why—for example—states with four or five quarks should not exist
(nor states of one or two quarks!) and why a state of six quarks, for example,
appears as the deuteron, which is a loosely bound state of n and p, rather than as
a compact B = 2 analogue of the n and p themselves.

Meson states such as the pion are formed from a quark and an anti-quark
and it is, therefore, appropriate at this point to explain how anti-particles are
described in isospin terms. An anti-particle is characterized by having the signs
of all its additively conserved quantum numbers reversed, relative to those of the
corresponding particle. Thus if a u-quark has B = %, T = % T3 = % a u-
quark has B = —%, T = %, T3 = —%. Similarly, the d has B = —%, T = %
and T3 = % Note that, while T3 is an additively conserved quantum number,
the magnitude of the isospin is not additively conserved: rather, it is ‘vectorially’
conserved according to the rules of combining angular-momentum-like quantum
numbers, as we have seen. Thus, the anti-quarks d and @ form the T = —1—% and
T; = —% members of an SU(2)¢ doublet, just as u and d themselves do, and the
question arises: given that the (u, d) doublet transforms as in (12.51), how does
the (i1, d) doublet transform?

The answer is that anti-particles are assigned to the complex conjugate of
the representation to which the corresponding particles belong. Thus, identifying
i = u* and d = d*, we have®

) (12.52)

ISWINI

- !
g =V*g* or< g ) = exp(—ia - 7%/2) <

for the SU(2)s transformation law of the anti-quark doublet. In mathematical
terms, this means (compare (12.32)) that the three matrices — %r* must represent
the generators of SU(2)¢ in the 2* representation (i.e. the complex conjugate of
the original two-dimensional representation, which we will now call 2). Referring
to (12.25), we see that 7} = 71, )’ = —712 and 75 = 73. Itis then straightforward
to check that the three matrices —t1/2, +12/2 and —t3/2 do indeed satisfy
the required commutation relations (12.28) and, thus, provide a valid matrix
representation of the SU(2) generators. Also, since the third component of isospin
is here represented by —73/2 = —73/2, the desired reversal in sign of the
additively conserved eigenvalue does occur.

Although the quark doublet (1, d) and anti-quark doublet (it, d) do transform
differently under SU(2)s transformations, there is nevertheless a sense in which
the 2* and 2 representations are somehow the ‘same’: after all, the quantum

5 The overbar (u etc) here stands only for ‘anti-particle’, and has nothing to do with the Dirac
conjugate ¥ introduced in section 4.4.
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numbers 7 = %, T; = :l:% describe them both. In fact, the two representations
are ‘unitarily equivalent’, in that we can find a unitary matrix Uc such that

Uc exp(—ia - r*/2)UE1 = exp(ix - T/2). (12.53)

This requirement is easier to disentangle if we consider infinitesimal
transformations, for which (12.53) becomes

Uc(—t)U:' =7 (12.54)

or
UctUp' = -t UcnUi'=1n  UcnUg' = —u. (12.55)
Bearing the commutation relations (12.28) in mind, and the fact that tfl =1, it

is clear that we can choose U¢ proportional to 7>, and set

Uc =ity = < (11 (1) ) (12.56)

to obtain a convenient unitary form. This implies that the doublet

we(2)=( %) 257

transforms in exactly the same way as (u,d). This result is useful, because
it means that we can use the familiar tables of (Clebsch—Gordan) angular
momentum coupling coefficients for combining quark and anti-quark states
together, provided we include the relative minus sign between the d and i
components which has appeared in (12.57). Note that, as expected, the d is in
the T3 = —1—% position and the u is in the T3 = —% position.

As an application of these results, let us compare the 7 = 0 combination
of the p and n states to form the (isoscalar) deuteron, and the combination of
(u,d) and (i1, d) states to form the isoscalar w-meson. In the first, the isospin
part of the wavefunction is ﬁ(l//pl//n — Ym¥p), corresponding to the § =

combination of two spin-l particles in quantum mechanics given by %(| 0

)| L) — | 4)] 1)). But, in the second case, the corresponding wavefunction is
[(dd (—u)u) = [(dd + uu). Similarly, the T = 1, T3 = 0 state describing
the ¥ is E(c?d + (—i)u) = ﬁ(dd — Q).

There is a very convenient alternative way of obtaining these wavefunctions,
which we include here because it generalizes straightforwardly to SU(3): its
advantage is that it avoids the use of the explicit C—G coupling coefficients and of
their (more complicated) analogues in SU(3).

Bearing in mind the identifications i = u*, d = d*, we see thatthe T = 0
gq combination iiu + dd can be written as u*u + d*d which is just ¢7g, (recall
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that © means transpose and complex conjugate). Under an SU(2); transformation,
qg— q =Vgq,s0 q"L — q/Jr = q"LVJr and

a'qa > q"q' =4¢"Vivg=4'q (12.58)
using ViV = 1,; thus, q*q is indeed an SU(2)¢ invariant, which means it has
T = 0 (no multiplet partners).

We may also construct the T = 1 g—¢ states in a similar way. Consider the
three quantities v; defined by

vi=q'tg i=123. (12.59)
Under an infinitesimal SU(2)¢ transformation
g =12 +i€e-t/2)q (12.60)
the three quantities v; transform to
vl =q"(1p —ie - t/2)1;(1 + i€ - T/2)g (12.61)

where we have used ¢’ = ¢"(1; + i€ - 7/2)" and then ¥ = 7. Retaining only
the first-order terms in € gives (problem 12.6)

Ei .
v = +1qu'(titj —1;7)q (12.62)
where the sum on j = 1,2,3 is understood. But from (12.28) we know the

commutator of two t’s, so that (12.62) becomes

€ .
v =v; + iéq'2i6ijkrkq (sumonk =1,2,3)

= v — €jk€jq g
= Vi — €jjk€jVk (12.63)

which may also be written in ‘vector’ notation as
vV=v—€xn. (12.64)

Equation (12.63) states that, under an (infinitesimal) SU(2)¢ transformation,
the three quantities v; (i = 1,2, 3) transform into specific linear combinations of
themselves, as determined by the coefficients ¢;;x (the €’s are just the parameters
of the infinitesimal transformation). This is precisely what is needed for a set of
quantities to form the basis for a representation. In this case, it is the T = 1
representation as we can guess from the multiplicity of three, but we can also
directly verify it as follows. Equation (12.49) with T = 1, together with (12.48),
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tell us how a T = 1 triplet should transform: namely, under an infinitesimal
transformation (with 13 the unit 3 x 3 matrix),

" = 15 +ie - TM)uy”  (sumonk =1,2,3)
=13+ iejT/.(l)),-kl//,El) (sumon j=1,2,3)
= (Bix + iej(Tj(l))ikiﬁ;El)
= (Bix +i€j. — i)y using (12.48)
= ‘ﬁi(l) — €jkEj w,gl) using the anti-symmetry of €;;;. (12.65)

which is exactly the same as (12.63).

As an aside, the reader may have been struck by the similarity between the
Lorentz 4-vector combination of Dirac spinors given by ‘yy*1” and the present
triplet combination ‘grg’. Indeed, recalling the close connection between
SU(2) and SO(3), we can at once infer from (12.59)—(12.63) that if ¢ is a two-
component (Pauli) spinor, q)Taqb behaves as a vector (SO(3)-triplet) under real-
space rotations. The spatial part 1/yy generalizes this to four-component spinors
(the o = 0 part Ty is rotationally invariant, analogous to ¢'g); when the
transformations are extended to include Lorentz (velocity) transformations, the
four combinations 1 y*1 behave as a 4-vector, as we have seen in volume 1.

Returning to the physics of v;, inserting (12.50) into (12.59), we find
explicitly that

v = id + du vy = —iad +idu v3 =iu —dd. (12.66)

Apart from the normalization factor of 1/ \/5, v3 may, therefore, be identified with
the 73 = 0 member of the 7 = 1 triplet, having the quantum numbers of the °.
Neither vy nor vy has a definite value of 73, however: rather, we need to consider
the linear combinations

T +iv)=iad T3=-1 (12.67)

and B
T —iv) = du T3 = +1 (12.68)

which have the quantum numbers of the 7~ and 7+. The use of vy % ivy
here is precisely analogous to the use of the ‘spherical basis’ wavefunctions
x £iy = rsin 9eT® for £ = 1 states in quantum mechanics, rather than the
‘Cartesian’ ones x and y.

We are now ready to proceed to SU(3).

12.2 Flavour SUQ3)¢

Larger hadronic multiplets also exist, in which strange particles are grouped with
non-strange ones. Gell-Mann (1961) and Ne’eman (1961) (see also Gell-Mann
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and Ne’eman (1964)) were the first to propose SU(3)r as the correct generalization
of isospin SU(2)¢ to include strangeness. Like SU(2), SU(3) is a group whose
elements are matrices—in this case, unitary 3 x 3 ones, of unit determinant. The
general group-theoretic analysis of SU(3) is quite complicated but is fortunately
not necessary for the physical applications we require. We can, in fact, develop
all the results needed by mimicking the steps followed for SU(2).

We start by finding the general form of an SU(3) matrix. Such matrices
obviously act on three-component column vectors, the generalization of the two-
component isospinors of SU(2). In more physical terms, we regard the three quark
wavefunctions u, d and s as being approximately degenerate and we consider
unitary 3 x 3 transformations among them via

¢ =Wgq (12.69)

where g now stands for the three-component column vector

g=1| 4 (12.70)
)

and W is a 3 x 3 unitary matrix of determinant 1 (again, an overall phase has
been extracted). The representation provided by this triplet of states is called the
‘fundamental’ representation of SU(3)r (just as the isospinor representation is the
fundamental one of SU(2)s).

To determine the general form of an SU(3) matrix W, we follow exactly the
same steps as in the SU(2) case. An infinitesimal SU(3) matrix has the form

Wing = 13 +ix (12.71)

where x is a 3 x 3 traceless Hermitian matrix. Such a matrix involves eight
independent parameters (problem (12.7)) and can be written as

X=n-1/2 (12.72)

where = (11,...,n8) and the A’s are eight matrices generalizing the T
matrices of (12.25). They are the generators of SU(3) in the three-dimensional
fundamental representation and their commutation relations define the algebra of
SU(3) (compare (12.28) for SU(2)):

(Aa/2, A /2] = ifabchc/2 (12.73)

where a, b and ¢ run from 1 to 8.

The A-matrices (often called the Gell-Mann matrices), are given in
appendix M, along with the SU(3) structure constants fup.. A finite SU(3)
transformation on the quark triplet is then (cf (12.32))

q' = exp(ie - 1/2)q (12.74)
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which also has the ‘generalized phase transformation’ character of (12.35), now
with eight ‘phase angles’. Thus, W is parametrized as W = exp(iac - 1/2).

As in the case of SU(2)¢, exact symmetry under SU(3)¢ would imply that the
three states u, d and s were degenerate in mass. Actually, of course, this is not
the case: in particular, while the u and d quark masses are of order 5-10 MeV, the
s-quark mass is much greater, of order 150 MeV. Nevertheless, it is still possible
to regard this as relatively small on a typical hadronic mass scale of ~ 1 GeV,
so we may proceed to explore the physical consequences of this (approximate)
SU(3)¢ flavour symmetry.

Such a symmetry implies that the eigenvalues of the A’s are constants of the
motion, but because of the commutation relations (12.73) only a subset of these
operators has simultaneous eigenstates. This happened for SU(2) too, but there
the very close analogy with SO(3) told us how the states were to be correctly
classified, by the eigenvalues of the relevant complete set of mutually commuting
operators. Here it is more involved—for a start, there are eight matrices A,. A
glance at appendix M, section M.4(v), shows that rwo of the A’s are diagonal
(in the chosen representation), namely A3 and Ag. This means physically that
for SU(3) there are two additively conserved quantum numbers, which in this
case are of course the third component of hadronic isospin (since A3 is simply 13
bordered by zeros), and a quantity related to strangeness. Defining the hadronic
hyperchange ¥ by ¥ = B 4 S, where B is the baryon number (% for each
quark) and the strangeness values are S(u) = S(d) = 0, S(s) = —1, we find
that the physically required eigenvalues imply that the matrix representing the
hypercharge operator is Y& = %)\3, in this fundamental (three-dimensional)

representation, denoted by the symbol 3. Identifying T3(3) = %)»3 then gives the
Gell-Mann—Nishijima relation Q = T3 + Y/2 for the quark charges in units of
le|.

So A3 and Ag are analogous to 73: what about the analogue of 72, which is
diagonalizable simultaneously with 3 in the case of SU(2)? Indeed, (cf (12.41)),
72 is a multiple of the 2 x 2 unit matrix. In just the same way, one finds that A2 is

also proportional to the unit 3 x 3 matrix:

8
/2 =) (/27 = %13 (12.75)

i=1

as can be verified from the explicit forms of the A-matrices given in appendix M,
section M.4(v). Thus, we may characterize the ‘fundamental triplet’ (12.70) by
the eigenvalues of (,/2)%, A3 and Ag. The conventional way of representing this
pictorially is to plot the states in a Y—73 diagram, as shown in figure 12.3.

We may now consider other representations of SU(3)¢. The first important
one is that to which the anti-quarks belong. If we denote the fundamental
three-dimensional representation accommodating the quarks by 3, then the anti-
quarks have quantum numbers appropriate to the ‘complex conjugate’ of this
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Figure 12.3. The Y-T3 quantum numbers of the fundamental triplet 3 of quarks and of the
anti-triplet 3* of anti-quarks.

representation, denoted by 3* just as in the SU(2) case. The g wavefunctions

identified as u = u™, d = d* and 5 = s* then transform by

/

= W*§ = exp(—ia - A*/2)g (12.76)

ol
Il
LIRS YN

instead of by (12.74). As for the 2* representation of SU(2), (12.76) means
that the eight quantities —A*/2 represent the SU(3) generators in this 3*
representation. Referring to appendix M, section M.4(v), one quickly sees that A3

and Ag are real, so that the eigenvalues of the physical observables T3(3*) = —-A\3/2
and Y@ = — %)\8/ 2 (in this representation) are reversed relative to those in the

3, as expected for anti-particles. The @i, d and § states may also be plotted on the
Y-T3 diagram, figure 12.3, as shown.

Here is already one important difference between SU(3) and SU(2): the
fundamental SU(3) representation 3 and its complex conjugate 3* are not
equivalent. This follows immediately from figure 12.3, where it is clear that the
extra quantum number Y distinguishes the two representations.

Larger SU(3)¢ representations can be created by combining quarks and anti-
quarks, as in SU(2)¢. For our present purposes, an important one is the eight-
dimensional (‘octet’) representation which appears when one combines the 3*
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and 3 representations, in a way which is very analogous to the three-dimensional
(“triplet’) representation obtained by combining the 2* and 2 representations of

SU(2).
Consider first the quantity iu 4+ dd + 5s. As in the SU(2) case, this can
be written equivalently as ¢ g, which is invariant under ¢ — ¢’ = Wg since

W'W = 135. So this combination is an SU(3) singlet. The octet coupling is
formed by a straightforward generalization of the SU(2) triplet coupling ¢ t¢q of
(12.59),

Wae=q'raq a=1,2,...,8. (12.77)

Under an infinitesimal SU(3)¢ transformation (compare (12.61) and (12.62)),

we = w), =q (13 —in - A/2)ra(13 +in - 1/2)q
.Mb
~ q"hagq +17q*(mb — Apra)q (12.78)

where the sum on b = 1-8 is understood. Using (12.73) for the commutator of
two A’s we find that -
wg = wa +1=7¢" 2 fancheq (12.79)

or
W), = Wa — fabebWe (12.80)

which may usefully be compared with (12.63). Just as in the SU(2)¢ triplet case,
equation (12.80) shows that, under an SU(3); transformation, the eight quantities
wg(a = 1,2,...,8) transform with specific linear combinations of themselves,
as determined by the coefficients f;p (the n’s are just the parameters of the
infinitesimal transformation).

This is, again, precisely what is needed for a set of quantities to form the
basis for a representation—in this case, an eight-dimensional representation of
SU3)¢. For a finite SU(3)¢ transformation, we can ‘exponentiate’ (12.80) to
obtain

w’ = exp(ie - G®)w (12.81)

where w is an eight-component column vector
w1
w2
w= . (12.82)

wg

such that w, = q#)»aq, and where (cf (12.49) for SU(2))r) the quantities
G® = (G(lg), Ggg), R Gég)) are 8 x 8 matrices, acting on the eight-component
vector w and forming an eight-dimensional representation of the algebra of SU(3):
that is to say, the G®g satisfy (cf (12.73))

6P, GP1 = ifuGP. (12.83)
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Figure 12.4. The Y-T73 quantum numbers of the pseudoscalar meson octet.

The actual form of the Gf,g) matrices is given by comparing the infinitesimal
version of (12.81) with (12.80):

(), =—ifune (12.84)

as may be checked in problem 12.8, where it is also verified that the matrices
specified by (12.84) do obey the commutation relations (12.83).

As in the SU(2)¢ case, the eight states generated by the combinations ¢ "A.¢
are not necessarily the ones with the physically desired quantum numbers. To
get the ™+, for example, we again need to form (w; =% iwy)/2. Similarly, wy
produces us + su and ws the combination —ius + isu, so the K= states are
w4 F iws. Similarly the K9, K9 states are wg — iw7 and we + iw7, while the n
(in this simple model) would be wg ~ (uu + dd — 25s), which is orthogonal to
both the 0 state and the SU(3)s singlet. In this way all the pseudoscalar octet of
m-partners has been identified, as shown on the Y-T diagram of figure 12.4. We
say ‘octet of w-partners’ but a reader knowing the masses of these particles might
well query why we should feel justified in regarding them as (even approximately)
degenerate. By contrast, a similar octet of vector (J*17) mesons (the w, p, K*
and K*) are all much closer in mass, averaging around 800 MeV: in these states
the qq spins add to S = 1, while the orbital angular momentum is still zero. The
pion, and to a much lesser extent the kaons, seem to be ‘anomalously light’ for
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some reason: we shall learn the likely explanation for this in chapter 18.

There is a deep similarity between (12.84) and (12.48). In both cases, a
representation has been found in which the matrix element of a generator is
minus the corresponding structure constant. Such a representation is always
possible for a Lie group and is called the adjoint, or regular, representation (see
appendix M, section M.5). These representations are of particular importance in
gauge theories, as we will see, since gauge quanta always belong to the adjoint
representation of the gauged group (for example, the eight gluons in SU(3),).

Further flavours ¢, b and t of course exist but the mass differences are now
so large that it is generally not useful to think about higher flavour groups such as
SU(4)r etc. Instead, we now move on to consider the field-theoretic formulation
of global SU(2); and SU(3)s.

12.3 Non-Abelian global symmetries in Lagrangian quantum field theory

12.3.1 SU(2); and SUQ3)¢

As may already have begun to be apparent in chapter 7, Lagrangian quantum
field theory is a formalism which is especially well adapted for the description of
symmetries. Without going into any elaborate general theory, we shall now give
a few examples showing how global flavour symmetry is very easily built into a
Lagrangian, generalizing in a simple way the global U(1) symmetries considered
in sections 7.1 and 7.2. This will also prepare the way for the (local) gauge case,
to be considered in the following chapter.
Consider, for example, the Lagrangian

2 =iGd — m)ii +dGF — m)d (12.85)

describing two free fermions ‘u’ and ‘d’ of equal mass m, with the overbar now
meaning the Dirac conjugate for the four—component splnor fields. As in (12.50),

we are using the convenient shorthand 1//u =1 and Wd =d. Let us introduce
§= ( 2 ) (12.86)
so that £ can be compactly written as
L£=4Gf —m)g. (12.87)

In this form it is obvious that EA—and, hence, the associated Hamiltonian H—are
invariant under the global U(1) transformation

§' =e% (12.88)
(cf (12.1)) which is associated with baryon number conservation. It is also
invariant under global SU(2) transformations acting in the flavour u—d space (cf

(12.32)):
§' = exp(—ia - 7/2)§ (12.89)
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(for the change in sign with respect to (12.31), compare sections 7.1 and 7.2 in
the U(1) case). In (12.89), the three parameters « are independent of x.

What are the conserved quantities associated with the invariance of £ under
(12.89)7 Let us recall the discussion of the simpler U(1) cases studied in sections
7.1 and 7.2. Considering the complex scalar field of section 7.1, the analogue
of (12.89) was just qb — ¢ = e ¢ and the conserved quantity was the
Hermitian operator N¢ which appeared in the exponent of the unitary operator
U that effected the transformation qs — (;AS’ via

¢ =UsU" (12.90)
with A A
U = exp(iaNg). (12.91)
For an infinitesimal o, we have
P~ —ie)p U=1+ieN, (12.92)
so that (12.90) becomes
(1 —i€)p = (1 4+ ieNg)p(1 — ieNy) ~ ¢ + ie[ Ny, P1; (12.93)
hence, we require o A
[Ny, 9l = —¢ (12.94)

for consistency. Insofar as Ny determines the form of an infinitesimal version of

the unitary transformation operator U, it seems reasonable to call it the generator
of these global U(1) transformations (compare the discussion after (12.27) and
(12.35) but note that here 1§7¢ is a quantum field operator, not a matrix).

Consider now the SU(2)¢ transformation (12.89), in the infinitesimal case:

q'=(—ie-1/2)4. (12.95)

Since the single U(1) parameter € is now replaced by the three parameters
€ = (€1, €2, €3), we shall need three analogues of Ny, which we call

(L ~Ly Ay AL
@ - 7@ 1P 72 (12.96)

corresponding to the three independent infinitesimal SU(2) transformations. The
generalizations of (12.90) and (12.91) are then

= 0G0 (12.97)
and

~ AL
03 = explia - T2 (12.98)
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~ (L N
where the T(z) are Hermitian, so that U(%) is unitary (cf (12.35)). It would

1
seem reasonable in this case too to regard the T(z) as providing a field-theoretic
representation of the generators of SU(2)¢, an interpretation we shall shortly
confirm. In the infinitesimal case, (12.97) and (12.98) become

(L AL
(1 —ie- /25 = (1 +ie-T g1 —ie- T (12.99)

1

using the Hermiticity of the T (2)’5. Expanding the right-hand side of (12.99) to
first order in €, and equating coefficients of € on both sides, (12.99) reduces to
(problem 12.9)
(3) 4 o
[T2.41=—(z/24 (12.100)
which is the analogue of (12.94). Equation (12.100) expresses a very specific

1
commutation property of the operators T(2 ) , which turns out to be satisfied by the
expression

= /c}*(r/z)@cﬁx (12.101)

as can be checked (problem 12.10) from the anti-commutation relations of the

fermionic fields in g. We shall derive (12.101) from Noether’s theorem in a little

while. Note that if ‘T/2’ is replaced by 1, (12.101) reduces to the sum of the u

and d number operators, as required for the one-parameter U(1) case. The ‘G774’

combination is precisely the field-theoretic version of the ¢'rg coupling we
1

discussed in section 12.1.3. This means that the three operators 'IA'(Z) themselves
belongtoa T = 1 triplet of SU(2)y.

e
It is possible to verify that these T(z)’s do indeed commute with the

Hamiltonian H': 1 1
dt? jar = it A1=0 (12.102)

1
so that their eigenvalues are conserved. That the T(2)’s are, as already suggested,

a field-theoretic representation of the generators of SU(2), appropriate to the case
T = % follows from the fact that they obey the SU(2) algebra (problem 12.11):

NCIIENC) NN C)
[Ti2 ,sz ]:16ijka2 . (12]03)
For many purposes it is more useful to consider the raising and lowering operators

PP = (7@ £i1?), (12.104)

For example, we easily find

AL ~
el =/fﬁd Bx (12.105)
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which destroys a d quark and creates a u, or destroys a i and creates a d, in either

~(L
case raising the T3(2) eigenvalue by +1, since
7ﬁ<%> 1 At 5t AN 43
30 =5 @'u—d'dyd’x (12.106)

which counts —1—% for each u (or a) and —% for each d (or u). Thus, these operators
certainly ‘do the job’ expected of field-theoretic isospin operators, in this isospin-
% case.

In the U(1) case, considering now the fermionic example of section 7.2

for variety, we could go further and associate the conserved operator ]\71/, with

a conserved current Ng:

Ny = /Ng dx N = oy (12.107)
where .
8MN$ =0. (12.108)
The obvious generalization appropriate to (12.101) is
N ~ (L AL -
1 )Z/T(2)Od3x (2 =c}y“§¢}. (12.109)

1
Note that both N$ and T L2 are of course functions of the spacetime coordinate
x, via the (suppressed) dependence of the g-fields on x. Indeed one can verify
from the equations of motion that

1
8, T = 0. (12.110)
1

Thus 'f(i)ﬂ is a conserved isospin current operator appropriate to the 7 = %
(u, d) system: it transforms as a 4-vector under Lorentz transformations and as a

T = 1 triplet under SU(2)¢ transformations.
Clearly there should be some general formalism for dealing with all this
more efficiently and it is provided by a generalization of the steps followed, in
the U(l) case, in equations (7.6)—(7.8). Suppose the Lagrangian involves a set of

fields ¥, (they could be bosons or fermions) and suppose that it is invariant under
the infinitesimal transformation

8Y, = —ie Ty rs (12.111)

for some setAof numerical coefficients 7;;. Equation (12.111) generalizes (7.5).
Then since L is invariant under this change,

L . AL .

SV + ————3"(5v,). (12.112)

0=6L=—
vy ICLA"/S)
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But

9L 9L
— = —— (12.113)
oYy a0k y)
from the equations of motion. Hence,
L .
M| ———38¢, | =0 (12.114)
(34 Yr)
which is precisely a current conservation law of the form
34, =0. (12.115)
Indeed, disregarding the irrelevant constant small parameter €, the conserved
current is .
i 0L oV (12.116)
] = —1—)) . .
ST S
Let us try this out on (12.87) with
8q = (—ie - 1/2)q. (12.117)

As we know already, there are now three €’s and so three 7;’s, namely
%(T] Vrss %(Tz)rs, %(13)”. For each one we have a current, for example

f@)_ . 0L T,

= — — q 12.118
1n 18(8“&) 2q q ( )

and similarly for the other 7’s and so we recover (12.109). From the invariance of
the Lagrangian under the transformation (12.117), there follows the conservation
of an associated symmetry current. This is the quantum field theory version of
Noether’s theorem (Noether 1918).

This theorem is of fundamental significance as it tells us how to relate
symmetries (under transformations of the general form (12.111)) to ‘current’
conservation laws (of the form (12.115), and it constructs the actual currents for
us. In gauge theories, the dynamics is generated from a symmetry, in the sense that
(as we have seen in the local U(1) of electromagnetism) the symmetry currents
are the dynamical currents that drive the equations for the force field. Thus, the
symmetries of the Lagrangian are basic to gauge field theories.

Let us look at another example, this time involving spin-0 fields. Suppose
we have three spin-0 fields all with the same mass, and take

£ =10,$19"1 + 18,820 32 + 18,,$39" 33 — 1> (7 + 93 + $3). (12.119)

It is obvious that £ is invariant under an arbitrary rotation of the three 43’s among
themselves, generalizing the ‘rotation about the three-axis’ considered for the ¢;—
¢» system of section 7.1. An infinitesimal such rotation is (cf (12.64), and noting
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the sign change in the field theory case)

d=b+exd (12.120)
which implies
8¢y = —iea TS} )y (12.121)
with
TN = —ieyps (12.122)

as in (12.48). There are, of course, three conserved T operators again and three

~ ~(1 ~ (1

T, which we call T( ) and T( " respectively, since we are now dealing with a
T = 1 isospin case. The a = 1 component of the conserved current in this case
is, from (12.116),

A ‘1 ~ ~ A A
1" = §20" s — $39" 2. (12.123)
Cyclic permutations give us the other components which can be summarized as
FO i@ OrTWargM _ grgDyr gy (12.124)
where we have written )
. %
oV =1 & (12.125)
3

and " denotes transpose. Equation (8.76) has the form expected of a bosonic spin-
0 current but with the matrices T(!) appearing, appropriate to the T = 1 (triplet)
representation of SU(2)y.

The general form of such SU(2) currents should now be clear. For an isospin
T -multiplet of bosons, we shall have the form

i@DITM g™y — (3rgM) T FMD) (12.126)

where we have put the { to allow for possibly complex fields; and for an isospin
T -multiplet of fermions we shall have

i Dy () (12.127)

where, in each case, the (27 + 1) components of (;AS or I/} transforms as a 7 -
multiplet under SU(2), i.e.

I T = exp(—ia - T (12.128)

and similarly for qAb(T), where TT) are the 27 4 1 x 2T + 1 matrices representing
the generators of SU(2)¢ in this representation. In all cases, the integral over all
space of the © = 0 component of these currents results in a triplet of isospin
operators obeying the SU(2) algebra (12.47), as in (12.103).
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The cases considered so far have all been free field theories but SU(2)-

invariant interactions can be easily formed. For example, the interaction g I/Afrvﬁ .
¢ describes SU(2)-invariant interactions between a T = % isospinor (spin-%)

field 1@ and a T = 1 isotriplet (Lorentz scalar) (?) _An effective interaction

between pions and nucleons could take the form g,y Tysy - g?), allowing for
the pseudoscalar nature of the pions (we shall see in the following section that

@yst/} is a pseudoscalar, so the product is a true scalar as is required for a parity-
conserving strong interaction). In these examples the ‘vector’ analogy for the
T = 1 states allows us to see that the ‘dot product’ will be invariant. A similar
dot product occurs in the interaction between the isospinor 1:0(%) and the weak
SU(2) gauge field VAV,L, which has the form

gc?y“%@\fvu (12.129)
as will be discussed in the following chapter. This is just the SU(2) dot product
of the symmetry current (12.109) and the gauge field triplet, both of which are in
the adjoint (7" = 1) representation of SU(2).

All of the foregoing can be generalized straightforwardly to SU(3)¢. For
example, the Lagrangian

L£=4Gd —m)q (12.130)
with ¢ now extended to
i
=1 d (12.131)
S

describes free u, d and s quarks of equal mass m. L is clearly invariant under
global SU(3)y transformations

§' = exp(—ia - 1/2)§ (12.132)

as well as the usual global U(1) transformation associated with quark number
conservation. The associated Noether currents are (in somewhat informal

notation)
A = A
fo*)“zc}y“?“é a=1,2,...,8 (12.133)
(note that there are eight of them) and the associated conserved ‘charge operators’
are
A A LA
GE,‘”:/GE,‘*”&X:/C;'?“@ a=12...8 (12.134)

which obey the SU(3) commutation relations

[ ’\;q)’ é;;q)] = ifabcéi‘q)- (12.135)
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SU(3)-invariant interactions can also be formed. A particularly important
one is the ‘SU(3) dot-product’ of two octets (the analogues of the SU(2) triplets),
which arises in the quark—gluon vertex of QCD (see chapters 13 and 14):

R
~igs Y der" S aeds,. (12.136)
f

In (12.136), gt stands for the SU(3). colour triplet
ag=| fo (12.137)
fe
where ‘f’ is any of the six quark flavour fields u, d,é,s,f,band Al‘i are the eight

(@ =1,2,...,8) gluon fields. Once again, (12.136) has the form ‘symmetry
current x gauge field’ characteristic of all gauge interactions.

12.3.2 Chiral symmetry

As our final example of a global non-Abelian symmetry, we shall introduce the
idea of chiral symmetry, which is an exact symmetry for fermions in the limit
in which their masses may be neglected. We have seen that the u and d quarks
have indeed very small masses (< 10 MeV) on hadronic scales and even the
s quark (~150 MeV) is relatively small. Thus, we may certainly expect some
physical signs of the symmetry associated with m, ~ mg =~ 0, and possibly
also of the larger symmetry holding when m, &~ mg &~ ms =~ 0. As we shall
see, however, this expectation leads to a puzzle, the resolution of which will have
to be postponed until the concept of ‘spontaneous symmetry breaking’ has been
developed in part 7.

We begin with the simplest case of just one fermion. Since we are interested
in the ‘small mass’ regime, it is sensible to use the representations (4.97) of
the Dirac matrices, in which the momentum part of the Dirac Hamiltonian is
‘diagonal’ and the mass appears as an ‘off-diagonal’ coupling (compare problem

4.15):
a:(g _2) ,8:(? (1)) (12.138)

Writing the general Dirac spinor w as

¢
= 12.1
w < X ) ( 39)
we have (as in (4.98), (4.99))
Ep=0- -pp+my (12.140)
Ex= —o0-px+mo. (12.141)
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We now introduce the matrix y5 defined, in this representation, as

10
s = < 0 1 ) (12.142)

The matrix ys plays a prominent role in chiral symmetry, as we shall see. Its
defining property is that it anti-commutes with the y* matrices:

{ys, y"} =0. (12.143)

With the choice (12.138) for & and 8, we have

y:(g _‘6> yozﬁz((l) (1)> (12.144)

and (12.143) can easily be verified. In a general representation, ys is defined by
ys =iy’y'y?y’ (12.145)

which reduces to (12.142) in the present case.

‘Chirality’ means ‘handedness’ from the Greek word for hand, xeip. Its use
here stems from the fact that, in the limit m — 0, the two-component spinors
¢, x become helicity eigenstates (cf problem 4.15), having definite handedness’.
Asm — 0, we have E — |p| and (12.140) and (12.141) reduce to

(0 - p/Iphg = (12.146)
(@-p/lphx = — & (12.147)

so that the limiting spinor ¢ has positive helicity, and § negative helicity (cf
(4.67) and (4.68)). In this m — 0 limit, the two helicity spinors are decoupled,
reflecting the fact that no Lorentz transformation can reverse the helicity of a
massless particle. Also in this limit, the Dirac energy operator is

[ o-p 0
a- p_<0 —6~p> (12.148)

which is easily seen to commute with ys. Thus, the massless states may
equivalently be classified by the eigenvalues of y5, which are clearly +1 since
2
vy =1.
Consider then a massless fermion with positive helicity. It is described by

¢

h 3 7_ b
the "'u sp1n0r< 0

) which is an eigenstate of ys with eigenvalue +1. Similarly,

a fermion with negative helicity is described by < 2 > which has y5 = —1.

Thus, for these states chirality equals helicity. We have to be more careful for
anti-fermions, however. A physical anti-fermion of energy £ and momentum p
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is described by a ‘v’-spinor corresponding to —FE and — p; but with m = 0 in
(12.140) and (12.141) the equations for ¢ and x remain the same for —E, — p as
for E, p. Consider the spin, however. If the physical anti-particle has positive
helicity, with p along the z-axis say, then s, = +%. The corresponding v-spinor
must then have s, = —% (see section 4.5.3) and must, therefore, be of x type

(12.147). So the v-spinor for this anti-fermion of positive helicity is < )Q( >

which has ys = —1. In summary, for fermions the ys eigenvalue is equal to
the helicity and for anti-fermions it is equal to minus the helicity. It is the ys
eigenvalue that is called the ‘chirality’.

In the massless limit, the chirality of ¢ and ¥ is a good quantum number (ys
commuting with the energy operator) and we may say that ‘chirality is conserved’
in this massless limit. However, the massive spinor w is clearly not an eigenstate

of chirality:
Ysw = ( —¢X > #A( i ) (12.149)

Referring to (12.140) and (12.141), we may therefore regard the mass terms as
‘coupling the states of different chirality’.

It is usual to introduce operators Pr,1, = ((1 £ ys5)/2) which ‘project’ out
states of definite chirality from w:

1 1 —
wz( +V5>w+( 2y5>a)EPRa)+PLa)Ea)R+a)L (12.150)

2
so that
_(1 0 ¢ \N_( ¢ (0
w=(50)(2)=(2) w=(0) s
Then clearly yswr = wr and yswp, = —or; slightly confusingly, the notation

‘R’, ‘L’ is used for the chirality eigenvalue.
We now reformulate this in field-theoretic terms. The Dirac Lagrangian for
a single massless fermion is

Lo = Vidi. (12.152)

Thls 1s invariant not only under the now familiar global U(1) transformation
w — 1// = e_w‘iﬁ but also under the ‘global chiral U(1)’ transformation

U= Y =e 1y (12.153)

where 8 is an arbitrary (x-independent) real parameter. The invariance is easily
verified: using {y°, y5} = 0, we have

r_ 1/’}/ — I//T 1/3)/5 w‘r 0 —1/3)/5 1/:/e_iﬁy5, (12.154)

<!
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and then using {y#, y5} = 0,

~ ~

1/://)/M3M1ﬁ/ — we—iﬁVsyﬂaﬂe—iﬁst}
— @y“eiﬁ)’SBMe_iﬁ”lﬁ
= GyPo, 0 (12.155)

as required. The corresponding Noether current is

L= Pytysy (12.156)
and the spatial integral of its © = 0 component is the (conserved) chirality
operator

0s = [ysiaix= @9~ i (12.157)

We denote this chiral U(1) by U(1)s.

It is interesting to compare the form of Qs with that of the corresponding
operator f &TI/A/d3 X in the non-chiral case (cf (7.48)). The difference has to
do with their behaviour under a transformation briefly considered in section 4.4,
namely parity. Under the parity transformation p — — p and thus, for (12.140)
and (12.141) to be covariant under parity, we require ¢ — x,x — ¢; this
will ensure (as we saw at the end of section 4.4) that the Dirac equation in the
parity-transformed frame will be consistent with the one in the original frame. In
the representation (12.138), this is equivalent to saying that the spinor wp in the
parity-transformed frame is given by

wp =y . (12.158)

which implies ¢p = x, xp = ¢. All this carries over to the field-theoretic case,
with I//p = )/01// Consider, then, the operator Qs in the parity-transformed frame:

(Qs)p = / 1&;Vsllfp d&x = / Ty Opsy 0P PPx = — / s d®x = —0s

(12.159)

where we used {yO, 5} = 0 and (yO)2 = 1. Hence, Q5 is a ‘pseudoscalar’

operator, meaning that it changes sign in the parity-transformed frame. We can

also see this directly from (12.157), making the interchange é < %. In contrast,

the non-chiral operator | 1/AfT1/Afd3X is a (true) scalar, remaining the same in the
parity-transformed frame.

In a similar way, the appearance of the ys in the current operator ]Aél =

&y“yyﬁ affects its parity properties: for example, the 4 = 0 component I/A/Jr yyﬁ

is a pseudoscalar, as we have seen. The spatial parts 1,@)/)/51/7 behave as an axial
vector rather than a normal (polar) vector under parity; that is, they behave like
r x p for example, rather than like r, in that they do not reverse sign under parity.
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(Polar and axial vectors will be discussed again in section 20.2.) Such a current is
referred to generally as an ‘axial vector current’, as opposed to the ordinary vector
currents with no ys.

As a consequence of (12.159), the operator 0s changes the parity of any
state on which it acts. We can see this formally by introducing the (unitary) parity
operator P in field theory, such that states of definite parity |+), |—) satisfy

Pity=14)  Pl-)=—|-). (12.160)
Equation (12.159) then implies that ISQ5 Pl = —Q5, following the normal
rule for operator transformations in quantum mechanics. Consider now the state
0Os|+). We have
PQsl+) = (PQsP~)P|+)
= — QOs|+) (12.161)

showing that Qs |+) is an eigenstate of P with the opposite eigenvalue, —1.
A very important physical consequence now follows from the fact that (in

this simple m = 0 model) Qs is a symmetry operator commuting with the
Hamiltonian H. We have
HQsly) = OsHIY) = EQs|V). (12.162)

Hence, for every state |y) with energy eigenvalue E, there should exist a state
Os|¥) with the same eigenvalue E and the opposite parity; that is, chiral
symmetry apparently implies the existence of ‘parity doublets’.

Of course, it may reasonably be objected that all of this refers not only to
the massless but also the non-interacting case. However, this is just where the
analysis begins to get interesting. Suppose we allow the fermion field ¥ to interact
with a U(1)-gauge field AM via the standard electromagnetic coupling

Line = qUy"JA,. (12.163)
Remarkably enough, ﬁim is also invariant under the chiral transformation

(12.153), for the simple reason that the ‘Dirac’ structure of (12.163) is exactly the

same as that of the free kinetic term #: the ‘covariant derivative’ prescription
ot — DH = 9" +ig AL automatically means that any ‘Dirac’ (e.g. y5) symmetry
of the kinetic part will be preserved when the gauge interaction is included. Thus
chirality remains a ‘good symmetry’ in the presence of a U(1)-gauge interaction.

The generalization of this to the more physical my, &~ mgq ~ 0 case is quite
straightforward. The Lagrangian (12.87) becomes

L=3qi¥§ (12.164)
as m — 0, which is invariant under the y5-version of (12.89),6 namely

G = exp(—if - T/2y5)4. (12.165)

6 ﬁo is also invariant under §’ = e*iﬂV5é which is an ‘axial’ version of the global U(1) associated
with quark number conservation. We shall discuss this additional U(1)-symmetry in section 18.1.1.
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There are three associated Noether currents (compare (12.109))

f(%m

S =qytys=q (12.166)

N

which are axial vectors and three associated ‘charge’ operators

1

T2 = /cf}g%c} d*x (12.167)
which are pseudoscalars, belonging to the T = 1 representation of SU(2). We
have a new non-Abelian global symmetry, called chiral SU(2)¢, which we shall
denote by SU(2)¢5. As far as their action in the isospinor u—d space is concerned,
these chiral charges have exactly the same effect as the ordinary flavour isospin
operators of (12.109). But they are pseudoscalars rather than scalars and, hence,
they flip the parity of a state on which they act. Thus, whereas the isospin-raising

~(L
operator T_i(rz) is such that

7.7 |d) = |u) (12.168)
ac)
TJ(rg) will also produce a u-type state from a d-type one via

~ () -
7.3 |d) = |i) (12.169)

~(Ly A
but the |iz) state will have opposite parity from |u). Further, since [T:_é), H]=0,
this state |i7) will be degenerate with |d). Similarly, the state |d) produced via

1
f_(? |u) will have opposite parity from |d), and will be degenerate with |u). The
upshot is that we have two massless states |u), |d) of (say) positive parity and a
further two massless states |ii), |d) of negative parity, in this simple model.
Suppose we now let the quarks interact, for example by an interaction of the
QCD type already indicated in (12.136). In that case, the interaction terms have

the form S -
ﬁy“fﬁz@z + 37/“7”3142 (12.170)
where R
it (4
a=1 dap d=\ d (12.171)
il d

and the 3 x 3 A’s act in the r—b—g space. Just as in the previous U(1) case,
the interaction (12.170) is invariant under the global SU(2)ss chiral symmetry
(12.165), acting in the u—d space. Note that, somewhat confusingly, (12.170) is
not a simple ‘gauging’ of (12.164): a covariant derivative is being introduced but
in the space of a new (colour) degree of freedom, not in flavour space. In fact,
the flavour degrees of freedom are ‘inert’ in (12.170), so that it is invariant under
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SU(2)¢ transformations, while the Dirac structure implies that it is also invariant
under chiral SU(2)ss transformations (12.165). All the foregoing can be extended
unchanged to chiral SU(3)rs, given that QCD is ‘flavour blind’ and supposing that
ms ~ 0.

The effect of the QCD interactions must be to bind the quark into nucleons
such as the proton (uud) and neutron (udd). But what about the equally possible
states (itiid) and (iidd), for example? These would have to be degenerate in mass
with (uud) and (udd), and of opposite parity. Yet such ‘parity doublet’ partners
of the physical p and n are not observed and so we have a puzzle.

One might feel that this whole discussion is unrealistic, based as it is on
massless quarks. Are the baryons then supposed to be massless too? If so,
perhaps the discussion is idle, as they are evidently by no means massless. But it
is not necessary to suppose that the mass of a relativistic bound state has any very
simple relation to the masses of its constituents: its mass may derive, in part at
least, from the interaction energy in the fields. Alternatively, one might suppose
that somehow the finite mass of the u and d quarks, which of course breaks the
chiral symmetry, splits the degeneracy of the nucleon parity doublets, promoting
the negative-parity ‘nucleon’ state to an acceptably high mass. But this seems
very implausible in view of the actual magnitudes of m, and mg compared to the
nucleon masses.

In short, we have here a situation in which a symmetry of the Lagrangian
(to an apparently good approximation) does not seem to result in the expected
multiplet structure of the states. The resolution of this puzzle will have to await
our discussion of ‘spontaneous symmetry breaking’, in part 7.

In conclusion, we note an important feature of the flavour symmetry currents
'IA'(%)M and fg%)ﬂ discussed in this and the preceding section. Although these
currents have been introduced entirely within the context of strong interaction
symmetries, it is a remarkable fact that exactly these currents also appear in
strangeness-conserving semileptonic weak interactions such as B-decay, as we
shall see in chapter 20. (The fact that both appear is precisely a manifestation of
parity violation in weak interactions.) Thus some of the physical consequences of
‘spontaneously broken chiral symmetry’ will involve weak interaction quantities.

Problems

12.1 Verify that the set of all unitary 2 x 2 matrices with determinant equal to +1
form a group, the law of combination being matrix multiplication.

12.2 Derive (12.18).
12.3 Check the commutation relations (12.28).

12.4 Show that the 7;’s defined by (12.45) satisfy (12.47).
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12.5 Write out each of the 3 x 3 matrices Ti(l) (i = 1,2, 3) whose matrix elements
are given by (12.48) and verify that they satisfy the SU(2) commutation relations
(12.47).

12.6 Verify (12.62).

12.7 Show that a general Hermitian traceless 3 x 3 matrix is parametrized by eight
real numbers.

12.8 Check that (12.84) is consistent with (12.80) and the infinitesimal form
of (12.81) and verify that the matrices Gﬁf‘) defined by (12.84) satisfy the
commutation relations (12.83).

12.9 Verify, by comparing the coefficients of €, €7 and €3 on both sides of (12.99),
that (12.100) follows from (12.99).

1
12.10 Verify that the operators T (2) defined by (12.101) satisfy (12.100). (Note:
use the anti-commutation relations of the fermionic operators.)

AL
12.11 Verify that the operators T(2) given by (12.101) satisfy the commutation
relations (12.103).
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13

LOCAL NON-ABELIAN (GAUGE) SYMMETRIES

The difference between a neutron and a proton is then a purely arbitrary
process. As usually conceived, however, this arbitrariness is subject
to the following limitations: once one chooses what to call a proton,
what a neutron, at one spacetime point, one is then not free to make any
choices at other spacetime points.

It seems that this is not consistent with the localized field concept that
underlies the usual physical theories. In the present paper we wish to
explore the possibility of requiring all interactions to be invariant under
independent rotations of the isotopic spin at all spacetime points. . .

Yang and Mills (1954)

Consider the global SU(2) isospinor transformation (12.32), written here again,

v (x) = expliar - T/2)¥ P (x) (13.1)

for an isospin doublet wavefunction w(%)(x). The dependence of w(%) (x) on the
spacetime coordinate x has now been included explicitly but the parameters « are
independent of x, which is why the transformation is called a ‘global’ one. As we
have seen in the previous chapter, invariance under this transformation amounts
to the assertion that the choice of which two base states—(p, n), (u, d), .. .—to
use is a matter of convention: any such non-Abelian phase transformation on a
chosen pair produces another equally good pair. However, the choice cannot be
made independently at all spacetime points, only globally. To Yang and Mills
(1954) (cf the quotation above) this seemed somehow an unaesthetic limitation
of symmetry: ‘Once one chooses what to call a proton, what a neutron, at one
spacetime point, one is then not free to make any choices at other spacetime
points.” They even suggested that this could be viewed as ‘inconsistent with the
localized field concept’ and they, therefore, ‘explored the possibility’ of replacing
this global (spacetime independent) phase transformation by the local (spacetime
dependent) one

¥ (x) = expligr - @ (0) /2192 (x) (13.2)

in which the phase parameters a(x) are also now functions of x = (¢, X) as
indicated. Note that we have inserted a parameter g in the exponent to make the
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analogy with the electromagnetic U(1) case

' (x) = explig x ()1Y (x) (13.3)

even stronger: g will be a coupling strength, analogous to the electromagnetic
charge g. The consideration of theories based on (13.2) was the fundamental step
taken by Yang and Mills (1954); see also Shaw (1955).

Global symmetries and their associated (possibly approximate) conservation
laws are certainly important but they do not have the dynamical significance of
local symmetries. We saw in section 7.4 how the ‘requirement’ of local U(1)
phase invariance led almost automatically to the local gauge theory of QED, in

which the conserved current 1/})/“1/7 of the global U(1) symmetry is ‘promoted’ to
the role of dynamical current which, when dotted into the gauge field AM, gave the
interaction term in ﬁQED. A similar link between symmetry and dynamics appears
if—following Yang and Mills—we generalize the non-Abelian global symmetries
of the preceding chapter to local non-Abelian symmetries, which are the subject
of the present one.

However, as mentioned in the introduction to chapter 12, the original Yang—
Mills attempt to get a theory of hadronic interactions by ‘localizing’ the flavour
symmetry group SU(2) turned out not to be phenomenologically viable (although
a remarkable attempt was made to push the idea further by Sakurai (1960)).
In the event, the successful application of a local SU(2) symmetry was to the
weak interactions. But this is complicated by the fact that the symmetry is
‘spontaneously broken’ and, consequently, we shall delay the discussion of this
application until after QCD—which is the theory of strong interactions but at
the quark rather than the composite (hadronic) level. QCD is based on the local
form of an SU(3) symmetry—once again, however, it is not the flavour SU(3)
of section 12.2 but a symmetry with respect to a totally new degree of freedom,
colour. This will be introduced in the following chapter.

Although the application of local SU(2) symmetry to the weak interactions
will follow that of local SU(3) to the strong, we shall begin our discussion of
local non-Abelian symmetries with the local SU(2) case, since the group theory
is more familiar. We shall also start with the ‘wavefunction’ formalism, deferring
the field-theory treatment until section 13.5.

13.1 Local SU(2) symmetry: the covariant derivative and interactions with
matter

In this section we shall introduce the main ideas of the non-Abelian SU(2)
gauge theory which results from the demand of invariance, or covariance, under
transformations such as (13.2). We shall generally use the language of isospin
when referring to the physical states and operators, bearing in mind that this will
eventually mean weak isospin.
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We shall mimic as literally as possible the discussion of electromagnetic
gauge covariance in sections 3.4 and 3.5 of volume 1. As in that case, no free-
particle wave equation can be covariant under the transformation (13.2) (taking
the isospinor example for definiteness), since the gradient terms in the equation
will act on the phase factor e(x). However, wave equations with a suitably
defined covariant derivative can be covariant under (13.2); physically this means
that, just as for electromagnetism, covariance under local non-Abelian phase
transformations requires the introduction of a definite force field.

In the electromagnetic case, the covariant derivative is

D" = 0" +igA*(x). (13.4)

For convenience, we recall here the crucial property of D*. Under a local U(1)
phase transformation, a wavefunction transforms as (cf (13.3))

¥ (x) = ¥ (x) = exp(ig x ()Y (x) (13.5)

from which it easily follows that the derivative (gradient) of ¥ transforms as

Y (x) — 3y (x) = exp(ig x (x))3" ¥ (x) +igd" x (x) exp(ig x (x)) ¥ (x).
(13.6)
Comparing (13.6) with (13.5), we see that, in addition to the expected first term
on the right-hand side of (13.6), which has the same form as the right-hand side
of (13.5), there is an extra term in (13.6). By contrast, the covariant derivative of
Y transforms as (see section 3.4 of volume 1)

D'y (x) — D"y’ (x) = exp(iq x (x)) D" (x) (13.7)

exactly as in (13.5), with no additional term on the right-hand side. Note
that D* has to carry a prime also, since it contains A" which transforms to
A" = A* — 9% x (x) when ¢ transforms by (13.5). The property (13.7) ensures
the gauge covariance of wave equations in the U(1) case; the similar property
in the quantum field case meant that a globally U(1)-invariant Lagrangian could
be converted immediately to a locally U(1)-invariant one by replacing 0 by D
(section 7.4).

In appendix D of volume 1 we introduced the idea of ‘covariance’ in the
context of coordinate transformations of 3- and 4-vectors. The essential notion
was of something ‘maintaining the same form’ or ‘transforming the same way’.
The transformations being considered here are gauge transformations rather than
coordinate ones; nevertheless, it is true that, under them, D*1 transforms in the
same way as ¥, while 9" does not. Thus, the term covariant derivative seems
appropriate. In fact, there is a much closer analogy between the ‘coordinate’ and
the ‘gauge’ cases, which we did not present in volume 1 but shall discuss in the
following section.

We need the local SU(2) generalization of (13.4), appropriate to the local
SU(2) transformation (13.2). Just as in the U(1) case (13.6), the ordinary gradient
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acting on w(%)(x) does not transform in the same way as 1//(%)(x): taking 0* of
(13.2) leads to

3y 3 (x) = expligr - a(x)/213"y P (x)
FigT - 0Ra(x)/2 expligr - @(x) /21y P (x)  (13.8)

as can be checked by writing the matrix exponential exp[A] as the series
(.¢]
exp[A] = ) A"/n!
n=0

and differentiating term by term. By analogy with (13.7), the key property we
demand for our SU(2) covariant derivative D“w(%) is that this quantity should
transform like w(%)—i.e. without the second term in (13.8). So we require

(DD (x)) = expligr - @(x)/2(D Y2 (x)). (13.9)
The definition of D* which generalizes (13.4) so as to fulfil this requirement is
D" (acting on an isospinor) = 9" +igz - W*(x)/2. (13.10)

The definition (13.10), as indicated on the left-hand side, is only appropriate for

isospinors w(%): it has to be suitably generalized for other ()’s (see (13.44)).
We now discuss (13.9) and (13.10) in detail. The 9* is multiplied implicitly

by the unit 2 matrix and the 7’s act on the two-component space of I//(%). The
WH (x) are three independent gauge fields

WH = (W, Wy, W5) (13.11)

generalizing the single electromagnetic gauge field A*. They are called SU(2)
gauge fields or, more generally, Yang—Mills fields. The term 7 - W* is then the
2 x 2 matrix

w3 Wi —iwy ) (13.12)

. WH =
T W ( Wi Fiwl W
using the t’s of (12.25): the x-dependence of the W#’s is understood. Let

us ‘decode’ the desired property (13.9), for the algebraically simpler case of
an infinitesimal local SU(2) transformation with parameters €(x), which are

. . . . . 1
of course functions of x since the transformation is local. In this case, 1,0(2)
transforms by

YO = (1 +igr e/ 2y (13.13)

T 1
and the ‘uncovariant’ derivative 9“1 (2) transforms by

My = (1 +igz - €(x)/2)3" ¥ 2 +igT - 04e(x)/2 %2 (13.14)
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where we have retained only the terms linear in € from an expansion of (13.8)

with &« — €. We have now dropped the x-dependence of the I//(%)’S but kept that
of €(x) and we have used the simple ‘1’ for the unit matrix in the two-dimensional
isospace. Equation (13.14) exhibits again an ‘extra piece’ on the right-hand side,
as compared to (13.13). However, inserting (13.10) and (13.13) into our covariant
derivative requirement (13.9) yields, for the left-hand side in the infinitesimal
case,

Dy = (9" +igT - W/ +igT - €(x)/2]y 2 (13.15)
while the right-hand side is
[1+igT - €(x)/2](0" +igT - W /2)y (D). (13.16)

In order to verify that these are the same, however, we would need to know
WK —that is, the transformation law for the three W# fields. Instead, we shall
proceed ‘in reverse’, and use the imposed equality between (13.15) and (13.16) to
determine the transformation law of W*.

Suppose that, under this infinitesimal transformation,

WH — WH = WH 4 SWH, (13.17)
Then the condition of equality is
(9% +igT/2 - (W" + SWH)[1 + ig - e(x) /2] D)
= [1 +ig7 - €(x)/21(3" +igT - WH/2)y D). (13.18)

Multiplying out the terms, neglecting the term of second order involving the
product of SW* and € and noting that

" (ey) = (3% €)Y + €(0*Y) (13.19)
we find that many terms cancel and we are left with
. T -SWH . T - 0*e(x)
87 T 8T
o/t ex) T WH 3 T WH T-€(x)
+(g) [( 2 > < 2 2 2 '
(13.20)
Using the identity for Pauli matrices (see problem 4.4(b))
oc-ac-b=a-b+ic-axb (13.21)
this yields
T -SWH = —1.0"e(x) — g7 - (e(x) x WH). (13.22)
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Equating components of T on both sides, we deduce

SWH = —0te(x) — gle(x) x WH]. (13.23)

The reader may note the close similarity between these manipulations and those
encountered in section 12.1.3.

Equation (13.23) defines the way in which the SU(2) gauge fields W#*
transform under an infinitesimal SU(2) gauge transformation. If it were not for
the presence of the first term 0*€(x) on the right-hand side, (13.23) would be
simply the (infinitesimal) transformation law for the 7 = 1 triplet representation
of SU(2)—see (12.64) and (12.65) in section 12.1.3. As mentioned at the end of
section 12.2, the T = 1 representation is the ‘adjoint’, or ‘regular’, representation
of SU(2) and this is the one to which gauge fields belong, in general. But there
is the extra term —d”e(x). Clearly this is directly analogous to the —9" x (x)
term in the transformation of the U(1) gauge field A*; here, an independent
infinitesimal function ¢; (x) is required for each component Wl.“ (x). If the €’s were
independent of x, then 9/ € (x) would of course vanish and the transformation law
(13.23) would indeed be just that of an SU(2) triplet. Thus, we can say that
under global SU(2) transformations, the W* behave as a normal triplet. But
under local SU(2) transformations they acquire the additional —d*€(x) piece
and, thus, no longer transform ‘properly’ as an SU(2) triplet. In exactly the same
way, 8“1/f(]7) did not transform ‘properly’ as an SU(2) doublet, under a local
SU(2) transformation, because of the second term in (13.14), which also involves
0"e(x). The remarkable result behind the fact that D“w(%) does transform
‘properly’ under local SU(2) transformations is that the extra term in (13.23)
precisely cancels that in (13.14)!

To summarize progress so far: we have shown that, for infinitesimal
transformations, the relation

(DM 2y = [1 + gt - €(x)/2)(D"y2) (13.24)

(where D* is given by (13.10)) holds true if in addition to the infinitesimal local
SU(2) phase transformation on w(%)

Yy =1 +igr - e(n)/21yD (1325)
the gauge fields transform according to
WH = WH — 9te(x) — gle(x) x WH]. (13.26)

In obtaining these results, the form (13.10) for the covariant derivative
has been assumed and only the infinitesimal version of (13.2) has been treated
explicitly. It turns out that (13.10) is still appropriate for the finite (non-
infinitesimal) transformation (13.2) but the associated transformation law for the
gauge fields is then slightly more complicated than (13.26). Let us write

U(a(x)) = expligt - a(x)/2] (13.27)
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so that w(%) transforms by
v = Ua(x)yp?. (13.28)

Then we require
Dy = Ua(x) DMy, (13.29)
The left-hand side is

(0" +igT - W /2)U(@(x)y
— (MUY + Uty D +igr - WH2UYD  (13.30)
while the right-hand side is
UO" +igr - WHE/2)y ). (13.31)
The Ual‘lﬁ(%) terms cancel leaving
@ U2 +igT - WH2 Uy = Uigr - WE/2 42, (13.32)

. . 1 .
Since this has to be true for all (two-component) 1//(2)’5, we can treat it as an
. .. 1y, .
operator equation acting in the space of ¥ (2)s to give

U +igr - W*/2U = Uigzr - WH/2 (13.33)

or, equivalently,

1 ' 1
STOW = Loruyu! +UgT-whu! (13.34)
g

which defines the (finite) transformation law for SU(2) gauge fields. Problem 13.1
verifies that (13.34) reduces to (13.26) in the infinitesimal case a(x) — €(x).

Suppose now that we consider a Dirac equation for w(%):
(iy, 0" — m)yy® =0 (13.35)

1
where both the ‘isospinor’ components of (2 are four-component Dirac spinors.
We assert that we can ensure local SU(2) gauge covariance by replacing 0" in this
equation by the covariant derivative of (13.10). Indeed, we have

1 1 1
U(a(x)[iy,D* — mly2) = iy, Ua(x)) D ¢ 2 — mU (a(x))y 2
. oy (3 dy
=iy, D"y D" —my2 (13.36)
using equations (13.28) and (13.29). Thus, if

Gy D" —m)y@ =0 (13.37)
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Figure 13.1. Vertex for isospinor-W interaction.

then ]
(iyu D™ —m)yy2 =0 (13.38)

proving the asserted covariance. In the same way, any free-particle wave equation
satisfied by an ‘isospinor’ w(%)—the relevant equation is determined by the
Lorentz spin of the particles involved—can be made locally covariant by the use
of the covariant derivative D*, just as in the U(1) case.

The essential point here, of course, is that the locally covariant form includes
interactions between the 1//(%)’5 and the gauge fields W#, which are determined
by the local phase invariance requirement (the ‘gauge principle’). Indeed, we can
already begin to find some of the Feynman rules appropriate to tree graphs for
SU(2) gauge theories. Consider again the case of an SU(2) isospinor fermion,

w(%), obeying equation (13.38). This can be written as

Qi — m)y ) = g(z/2) - Wy2), (13.39)

In lowest-order perturbation theory the one-W emission/absorption process is
given by the amplitude (cf (8.39)) for the electromagnetic case)

_(L 1
—ig f 02 /2y W d (13.40)

exactly as advertised (for the field-theoretic vertex) in (12.129). The matrix degree
of freedom in the 7’s is sandwiched between the two-component isospinors I//(%)I
the y matrix acts on the four-component (Dirac) parts of 1//(%). The external W#
field is now specified by a spin-1 polarization vector €, like a photon, and by
an ‘SU(2) polarization vector’ a”(r = 1,2, 3) which tells us which of the three
SU(2) W-states is participating. The Feynman rule for figure 13.1 is, therefore,

—ig(t" /2y (13.41)

which is to be sandwiched between spinors/isospinors uj, s and dotted into €*
and a”. (13.41) is a very economical generalization of rule (ii) in comment (3) of
section 8.3.

The foregoing is easily generalized to SU(2) multiplets other than doublets.
We shall change the notation slightly to use ¢ instead of 7' for the ‘isospin’
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quantum number, so as to emphasize that it is not the hadronic isospin, for which
we retain 7: ¢ will be the symbol used for the weak isospin to be introduced in
chapter 20. The general local SU(2) transformation for a #-multiplet is then

w(l‘) — w(l‘)/ — eXp[lgu(x)T(t)]l/f(t), (1342)
where the (27 + 1) x (2t + 1) matrices T, (i = 1,2, 3) satisfy (cf (12.47))
(1. 7] = e 1. (13.43)
The appropriate covariant derivative is
DM = 9" 4+ igT® . WH (13.44)

which is a (2f + 1) x (2¢ + 1) matrix acting on the (2¢ 4 1) components of ).
The gauge fields interact with such ‘isomultiplets’ in a universal way—only one
g, the same for all the particles—which is prescribed by the local covariance
requirement to be simply that interaction which is generated by the covariant
derivatives. The fermion vertex corresponding to (13.44) is obtained by replacing
7/2in (13.40) by T®,

We end this section with some comments:

(a) It is a remarkable fact that only one constant g is needed. This is not the
same as in electromagnetism. There, each charged field interacts with the
gauge field A* via a coupling whose strength is its charge (e, —e, 2¢, —5e, ).
The crucial point is the appearance of the quadratic g> multiplying the
commutator of the T’s, [T - €, T - W], in the W# transformation (equation
(13.20)). In the electromagnetic case, there is no such commutator—the
associated U(1) phase group is Abelian. As signalled by the presence of g2,
a commutator is a nonlinear quantity, and the scale of quantities appearing
in such commutation relations is not arbitrary. It is an instructive exercise to
check that, once SW* is given by equation (13.23)—in the SU(2) case—then
the g’s appearing in w(%)' (equation (13.13)) and v ") (via the infinitesimal
version of equation (13.42)) must be the same as the one appearing in §W*.

(b) According to the foregoing argument, it is actually a mystery why electric
charge should be quantized. Since it is the coupling constant of an Abelian
group, each charged field could have an arbitrary charge from this point
of view: there are no commutators to fix the scale. This is one of the
motivations of attempts to embed the electromagnetic gauge transformations
inside a larger non-Abelian group structure. Such is the case, for example,
in ‘grand unified theories’ of strong, weak and electromagnetic interactions.

(c) Finally we draw attention to the extremely important physical significance
of the second term §W* (equation (13.23)). The gauge fields themselves are
not ‘inert’ as far as the gauge group is concerned: in the SU(2) case they have
isospin 1, while for a general group they belong to the regular representation
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of the group. This is profoundly different from the electromagnetic case,
where the gauge field A* for the photon is of course uncharged: quite simply,
e = 0 for a photon and the second term in (13.23) is absent for A*. The
fact that non-Abelian (Yang—Mills) gauge fields carry non-Abelian ‘charge’
degrees of freedom means that, since they are also the quanta of the force
field, they will necessarily interact with themselves. Thus, a non-Abelian
gauge theory of gauge fields alone, with no ‘matter’ fields, has non-trivial
interactions and is not a free theory.

We shall examine the form of these ‘self-interactions’ in section 13.5.2. First,
we explore further the geometrical analogy, already hinted at, for the (gauge)
covariant derivative. This will ultimately lead us to an important new quantity
in non-Abelian gauge theories, the analogue of the Maxwell field strength tensor
FHY,

13.2 Covariant derivatives and coordinate transformations

Let us go back to the U(1) case, equations (13.4)—(13.7). There, the introduction
of the (gauge) covariant derivative D* produced an object, D" (x), which
transformed like ¥ (x) under local U(1) phase transformations, unlike the ordinary
derivative 9" (x) which acquired an ‘extra’ piece when transformed. This
followed from simple calculus, of course—but there is a slightly different way
of thinking about it. The derivative involves not only 1/ (x) at the point x but also
Y at the infinitesimally close, but different, point x 4 dx; and the transformation
law of ¥ (x) involves «(x), while that of ¥(x + dx) would involve the different
function a(x + dx). Thus, we may perhaps expect something to ‘go wrong’ with
the transformation law for the gradient.

To bring out the geometrical analogy we are seeking, let us split ¥ into its
real and imaginary parts ¢ = YR + iy, and write a(x) = g x (x) so that (13.3)
becomes (cf (3.63))

Yr(x) = cosa(x)yYr(x) — sina(x)Pr(x)
(13.45)

Y{(x) = sina(x)YRr(x) + cosa(x)Py(x).

If we think of ¥R (x) and ¥(x) as being the components of a ‘vector’ J(x) along
the ér and ¢ axes, respectively, then (13.45) would represent the components
of 1Z(x) as referred to new axes ER and EI, which have been rotated by —a/(x)
about an axis in the direction ér X €1 (1 e. normal to the ér—er plane), as shown
in figure 13.2. Other such ‘vectors’ ¢>1 (%), qbz (x), ... (i.e. other wavefunctions
for particles of the same charge q) when evaluated at the same point x will have
‘components’ transforming the same as (13.45) under the axis rotation eg, ¢y —
€x. 1. But the components of the vector ¥ (x + dx) will behave differently. The
transformation law (13.45) when written at x + dx will involve «a(x + dx), which
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x+dx

Figure 13.2. Geometrical analogy for a U(1) gauge transformation.

(to first order in dx) is &t (x) 4 9, (x) dx**. Thus, for g (x +dx) and ¥ (x +dx),
the rotation angle is o(x) 4 9, (x) dx* rather than «(x). Now comes the key
step in the analogy: we may think of the additional angle 0, c(x) dx* as coming
about because, in going from x to x + dx, the coordinate basis vectors er and e
have been rotated through +9,a(x) dx* (see figure 13.3)! But that would mean
that our ‘naive’ approach to rotations of the derivative of 1/7(x) amounts to using
one set of axes at x, and another at x 4 dx, which is likely to lead to ‘trouble’.
Consider now an elementary example (from Schutz (1988, chapter 5)) where
just this kind of problem arises, namely the use of polar coordinate basis vectors
é, and €y, which point in the  and @ directions respectively. We have, as usual,

Xx =rcosf y =rsinf (13.46)
and in a (real!) Cartesian basis d7 is given by
dF = dxi +dyj]. (13.47)
Using (13.46) in (13.47) we find

d7 = (dr cos® — rsin6 d)i + (dr sin6 + r cos 6 dG)f
=dré, + dbéy (13.48)

where

é =cosfi+sindj &9 =—rsinfi+rcosh]. (13.49)
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Figure 13.3. Changes in the basis vectors &, and €y of polar coordinates.

Plainly, €, and ég change direction (and even magnitude, for &g) as we move about
in the x—y plane, as shown in figure 13.3. So at each point (r, 8) we have different
axes e, ég. _

Now suppose that we wish to describe a vector field V in terms of €, and &g
via .

V=Veé+Vig=Vv2, (sumona=r,06) (13.50)
and that we are also interested in the derivatives of V, in this basis. Let us
calculate 0V /dr, for example, by brute force:

vV av'_ vl 9% \00%

- = . V"_
or or e+ ar %+ ar + or

where we have included the derivatives of €, and €y to allow for the fact that these
vectors are not constant. From (13.49) we find
82;« 829 . 2 ind 1 -
=0 — = —sinfi+cosh j = —ep (13.52)
or or r
which allov_&{s the last two terms in (13.51) to be evaluated. Similarly, we can
calculate 9V /96. In general, we may write these results as

(13.51)

CAA L ye O
v _°V o
agh — agh “ agh

(13.53)

where 8 = 1,2 withg! =r,¢> =6 anda =1, 6.

In the present case, we were able to calculate de,/dg? explicitly from
(13.49), as in (13.52). But whatever the nature of the coordinate system, dé,/dg”
is some vector and must be expressible as a linear combination of the basis vectors
via an expression of the form

=T7 452, (13.54)
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where the repeated index y is summed over as usual (y = r, 0). Inserting (13.54)
into (13.53) and interchanging the ‘dummy’ (i.e. summed over) indices « and y
gives finally

v ( A

9qF ~ \agf © Fa”‘”) “ (13

This is a very important result: it shows that, whereas the components of V in
the basis ¢, are just V%, the components of the derivative of V are not simply
aV®/dqP but contain an additional term: the ‘components of the derivative of a
vector’ are not just the ‘derivatives of the components of the vector’.

Let us abbreviate 8/851’3 to dg: then (13.55) tells us that in the €y basis, as
used in (13.55), the components of the dg derivative of V are

dpVE T,V = DgV©. (13.56)

The expression (13.56) is called the ‘covariant derivative’ of V% within the
context of the mathematics of general coordinate systems: it is denoted (as in
(13.56)) by DgV“ or, often, by V. (in the latter notation, dgV* is V¥ g).
The most important property of DgV® is its transformation character under
general coordinate transformations. Crucially, it transforms as a tensor Tg‘ (see
appendix D of volume 1) with the indicated ‘one up, one down’ indices: we
shall not prove this here, referring instead to Schutz (1988), for example. This
property is the reason for the name ‘covariant derivative’, meaning in this case
essentially that it transforms the way its indices would have you believe it should.
By contrast, and despite appearances, dg V* by itself does not transform as a ‘Tﬁ“’
tensor and, in a similar way, I'“,, g is not a ‘T %, g’-type tensor: only the combined
object DgV®is a ‘Tg".

This circumstance is highly reminiscent of the situation we found in the
case of gauge transformations. Consider the simplest case, that of U(1), for
which D,y = 9,¥ + igA, Y. The quantity D,y transforms under a gauge
transformation in the same way as v itself but 9, does not. There is, thus,
a close analogy between the ‘good’ transformation properties of DgV* and of
D, . Further, the structure of D, is very similar to that of DgV®. There are
two pieces, the first of which is the straightforward derivative, while the second
involves a new field (I" or A) and is also proportional to the original field. The
‘i’ of course is a big difference, showing that in the gauge symmetry case the
transformations mix the real and imaginary parts of the wavefunction, rather than
actual spatial components of a vector.

Indeed, the analogy is even closer in the non-Abelian—e.g. local SU(2)—

case. As we have seen, aﬂw(%> does not transform as an SU(2) isospinor
because of the extra piece involving d*¢€; nor do the gauge fields W* transform
as pure T = 1 states, also because of a d"e term. But the gauge covariant
combination (3% + igt - W“/Z)w(%) does transform as an isospinor under local
SU(2) transformations, the two ‘extra’ d*e€ pieces cancelling each other out.
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Figure 13.4. Parallel transport of a vector Vina polar coordinate basis.

There is a useful way of thinking about the two contributions to DgV* (or
D, ). Let us multiply (13.56) by dg? and sum over 8 so as to obtain

DV* = 3gV*dgP +T%,5V* dgP. (13.57)

The first term on the right-hand side of (13.57) is %qLZ dg? which is just the
conventional differential dV¥, representing the change in V* in moving from
g to P +dgP: AV = [V¥(qP + dgP) — V¥(¢P)]. Again, despite appearances,
the quantities dV* do not form the components of a vector and the reason is that
V% (gP + dg®) are components with respect to axes at ¢# + dg”, while V¥ (¢#)
are components with respect to different axes at . To form a ‘good’ differential
DV¥, transforming as a vector, we must subtract quantities defined in the same
coordinate system. This means that we need some way of ‘carrying’ V%(g?) to
q? + dg®, while keeping it somehow ‘the same’ as it was at ¢”.

A reasonable definition of such a ‘preserved’ vector field is one that is
unchanged in length and has the same orientation relative to the axes at q? +dq”
as it had relative to the axes at ¢# (see figure 13.4). In other words, Vis ‘dragged
around’ with the changing coordinate frame, a process called parallel transport.
Such a definition of ‘no change’ of course implies that change has occurred,
in general, with respect to the original axes at qP. Let us denote by §V* the
difference between the components of V after parallel transport to ¢# 4 dg” and
the components of V at gP (see figure 13.4). Then a reasonable definition of
the ‘good’ differential of V¢ would be V¥(¢? + dg#) — (V¥(¢P) + sV*) =
dV® — §V¥. We interpret this as the covariant differential DV* of (13.57) and,
accordingly, make the identification

SV = —T%,5VVdgP. (13.58)
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On this interpretation, then, the coefficients I'“},5 connect the components of a
vector at one point with its components at a nearby point, after the vector has
been carried by ‘parallel transport’ from one point to the other: they are often
called ‘connection coefficients’ or just ‘the connection’.

In an analogous way we can write, in the U(1) gauge case,

Dy = D*yrdx, = 0" ydx, +ieAHydxy,
=dy — Sy (13.59)
with
Sy = —ieA*y dxy,. (13.60)
Equation (13.60) has a very similar structure to (13.58), suggesting that the

electromagnetic potential A* might well be referred to as a ‘gauge connection’,
as indeed it is in some quarters. Equations (13.59) and (13.60) generalize

straightforwardly for DI//(%) and 51&6).

We can relate (13.60) in a very satisfactory way to our original discussion of
electromagnetism as a gauge theory in chapter 3 and, in particular, to (3.8.2). For
transport restricted to the three spatial directions, (13.60) reduces to

SY(X) =ieA-dxXy(x). (13.61)

However, the solution (3.82) gives

¥ (X) = exp (ie/x A-de)w(Azo, X) (13.62)

replacing g by e. So
X—+dx

Y (X 4+ dx) = exp (ie/

—00

X—+dXx X
= exp (ie/ A-dl) exp <ie/ A-d£>w(A=0,X+dX)
X —0o0

X
(1+ieA-dx)exp <ie/ A.de)[l/f(A =0,X)
+ VY (A=0,Xx) -dx]
~ Y (X) +ieA - dxyr(X)

+ exp (ie/ A-dl)Vw(Azo, X) - dx (13.63)

—00

A.de>¢(A=o, X + dx)

&

to first order in dX. On the right-hand side of (13.63), we see (i) the change 51 of
(13.61), due to ‘parallel transport’ as prescribed by the gauge connection A, and
(ii) the change in v viewed as a function of X, in the absence of A. The solution
(13.62) gives, in fact, the ‘integrated’ form of the small displacement law (13.63).
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Figure 13.5. Parallel transport (a) round a curved triangle on the surface of a sphere and
(b) round a triangle in a flat plane.

At this point the reader might object, going back to the ¢,, €y example, that
we had made a lot of fuss about nothing: gfter all, no one forced us to use the ¢, &g
basis, and if we had simply used the i, j basis (which is constant throughout the
plane) we would have had no such ‘trouble’. This is a fair point, provided that
we somehow knew that we are really doing physics in a ‘flat’ space—such as the
Euclidean plane. But suppose instead that our two-dimensional space was the
surface of a sphere. Then, an intuitively plausible definition of parallel transport
is shown in figure 13.5(a), in which transport is carried out around a closed path
consisting of three great circle arcs A — B, B — C, C — A, with the rule that,
at each stage, the vector is drawn ‘as parallel as possible’ to the previous one. It
is clear from the figure that the vector we end up with at A, after this circuit, is
no longer parallel to the vector with which we started; in fact, it has rotated by
/2 in this example, in which one-eighth of the surface area of the unit sphere is
enclosed by the triangle ABC. By contrast, the parallel transport of a vector round
a flat triangle in the Euclidean plane leads to no such net change in the vector
(figure 13.5(b)).

It seems reasonable to suppose that the information about whether the space
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Figure 13.6. Closed loop ABCD in ¢ l—q2 space.

we are dealing with is “flat’ or ‘curved’ is contained in the connection I'* 5. In
a similar way, in the gauge case the analogy we have built up so far would lead
us to expect that there are potentials A* which are somehow ‘flat’ (E = B = 0)
and others which represent ‘curvature’ (non-zero E, B). This is what we discuss
next.

13.3 Geometrical curvature and the gauge field strength tensor

Consider a small closed loop in our (possibly curved) two-dimensional space—
see figure 13.6—whose four sides are the coordinate lines q1 =a, q1 =a +da,
g>=b,g*>=b + 8b. We want to calculate the net change (if any) in §V* as we
parallel transport V around the loop. The change along A — B is

g*=b,q'=a+8a
(BV)aB = —/ %, V" dg!
q

2=b,q'=a

~ —d8al',1(a,b)V7 (a,b) (13.64)

to first order in §a, while that along C — D is

q*=b+8b,q'=a
(BV*ep = —/ r*, 1 v?dg'
q%=b+8b,q'=a+8a

q*=b+8b,q'=a+sa 1
= +/ Faylvy dq
q

2:b+5b,q1=a
~ 8aT%1(a. b + 8b)V (a. b + 8b). (13.65)
Now
o o 81—Wyl
I'*,1(a,b+6b) =~ TI'*1(a, b) + b (13.66)
9g?

and, remembering that we are parallel-transporting \7,

VY (a,b+8b) ~ VY (a,b) — TV 52V5b. (13.67)
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Combining (13.64) and (13.65) to lowest order, we find that

ar«
(8V*)aB + (8V*)cp ~ 5a5b[ 3 ;1 VY — FQV1FV52V51| (13.68)
q
or, interchanging dummy (summed) indices y and § in the last term,
a o %y o T8
(BV*)aB + (8V¥)cp ~ dadb P —T% %, | VY. (13.69)
q
Similarly,
o o aFaVz o 8 y
V*Bc + (6V*)pa ~ dadb | — 3q! +I%I%0 |V (13.70)

and so the net change around the whole small loop is

AT, aT%,,

dq? dg!

+ T, —T% 1,0 | VY.
(13.71)
The indices ‘1’ and ‘2’ appear explicitly because the loop was chosen to go along
these directions. In general, (13.71) would take the form
or%, B T,
9q° aqP

(8V*)aBcD ~ 8adb [

(V) loop ~ [ + %05 — r“(gﬂrfsw,} VYdAPe (13.72)
where dAP? is the area element. The quantity in brackets in (13.72) is the
Reimann curvature tensor R%,g,, which can clearly be calculated once the
connection coefficients are known. A flat space is one for which all components
R%,ps = 0; the reader may verify that this is the case for our polar basis é,, €
in the Euclidean plane. A non-zero value for any component of R%, g, means the
space is curved.

We now follow exactly similar steps to calculate the net change in §y as
given by (13.60), around the small two-dimensional rectangle defined by the
coordinate lines x; = a, x; = a + 8a, xp = b, xo = b + §b, labelled as in
figure 13.6 but with ¢! replaced by x; and g2 by x». Then

(8Y)aB = —ieA'(a, b)Y (a, b)sa (13.73)
and

(8Y)cp = +ieAl(a, b+ 8b)y(a, b+ 5b)sa
1
~ie (Al(a, b) + Ziéb> [ (a, b) — ieA(a, b)Y (a, b)sb]da
X2
~ ieA(a, b)y(a, b)da

1
+ie [?w(a, b) —ieA'(a, b)A*(a, b)Y (a, b)] sasdb. (13.74)
X2
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Combining (13.73) and (13.74) we find

AA!
(8Y)AB + (8¥)cp ~ |:iea—w + eZA‘A%/f} sasb. (13.75)
X2
Similarly,
. 9A? 24142
(8Y)BC + (8¥)pa ~ —1ea—1// —e“A Ay | 8adb (13.76)
X1
with the result that the net change around the loop is
. [9AY  9A?
(8Y¥)aBcp X ie | — — — | ¥ éadb. (13.77)
0x2 0x1
For a general loop, (13.77) is replaced by
) . [0A*  9AY oy, d
=ie| — — — X, dx
loop oxy oxy pey
=ieF" vy dx, dx,, (13.78)

where F*Y = 9¥A* — 9* AV is the familiar field strength tensor of QED.

The analogy we have been pursuing would, therefore, suggest that F*¥ = 0
indicates ‘no physical effect’, while F#" # 0 implies the presence of a physical
effect. Indeed, when A* has the ‘pure gauge’ form A* = 9" x the associated
F™ is zero: this is because such an A can clearly be reduced to zero by a gauge
transformation (and also, consistently, because (89" — 9V9*)x = 0). If A* is
not expressible as the 4-gradient of a scalar, then F*V # 0 and an electromagnetic
field is present, analogous to the spatial curvature revealed by R;’j o # 0.

Once again, there is a satisfying consistency between this ‘geometrical’
viewpoint and the discussion of the Aharonov—Bohm effect in section 3.6. As
in our remarks at the end of the previous section and equations (13.61)—(13.63),
equation (3.83) can be regarded as the integrated form of (13.78), for spatial loops.
Transport round such a loop results in a non-trivial net phase change if non-zero
B flux is enclosed, and this can be observed.

From this point of view there is undoubtedly a strong conceptual link
between Einstein’s theory of gravity and quantum gauge theories. In the former,
matter (or energy) is regarded as the source of curvature of spacetime, causing
the spacetime axes themselves to vary from point to point, and determining the
trajectories of massive particles; in the latter, charge is the source of curvature in
an ‘internal’ space (the complex 1-plane, in the U(1) case), a curvature which we
call an electromagnetic field and which has observable physical effects.

The reader may consider repeating, for the local SU(2) case, the closed-loop
transport calculation of (13.73)—(13.77). It will lead to an expression for the non-
Abelian field strength tensor. A closely related, and (for the non-Abelian case)
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slightly simpler, way of obtaining the result is to consider the commutator of two-
covariant derivatives. Consider first the U(1) case. Then

[D*, D"y = (D*D" — D' D*)yr = ie F*V (13.79)

as is verified in problem 13.2. (A similar result holds in the spacetime coordinate
transformation case, where the curvature tensor appears on the right-hand side.)
Equation (13.79) suggests that we will find the SU(2) analogue of F*' by
evaluating

[D*, D"]y2) (13.80)

where, as usual,
1
D" (on v (2)) = 9" +igT - AH)2. (13.81)

Problem 13.3 confirms that the result is
[D*, D"1y2) = ig7/2 - (WY — "WH — gWH x W"yD:  (13.82)

the manipulations are very similar to those in (13.20)—(13.23). Noting the analogy
between the right-hand side of (13.82) and (13.79), we accordingly expect the
SU(2) ‘curvature’, or field strength tensor, to be given by

FAY = WY — 9VWH — gWH x WY (13.83)
or, in component notation,
FIY = 0t Wy — 9" Wl — geij Wi Wy (13.84)

This tensor is of fundamental importance in a (non-Abelian) gauge theory.
Since it arises from the commutator of two gauge-covariant derivatives, we are
guaranteed that it itself is gauge covariant—that is to say, ‘it transforms under
local SU(2) transformations in the way its SU(2) structure would indicate’. Now
F#¥ has clearly three SU(2) components and must be an SU(2) triplet: indeed, it
is true that under an infinitesimal local SU(2) transformation

F'' = FM — ge(x) x F* (13.85)

which is the expected law (cf (12.64)) for an SU(2) triplet. Problem 13.4 verifies
that (13.85) follows from (13.83) and the transformation law (13.23) for the
WH fields. Note particularly that F*V transforms ‘properly’, as an SU(2) triplet
should, without the 3* part which appears in SW*.

This non-Abelian F*V is a much more interesting object than the Abelian
FH* (which is actually U(l)-gauge invariant, of course: F'* = FM*),
F*¥ contains the gauge coupling constant g, confirming (cf comment (¢) in
section 13.1.1) that the gauge fields themselves carry SU(2) ‘charge’ and act as
sources for the field strength.
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It is now straightforward to move to the quantum field case and construct
the SU(2) Yang-Mills analogue of the Maxwell Lagrangian —}—‘I:"W Fr. Tt is
simply —% F w IA:W, the SU(2) ‘dot product’ ensuring SU(2) invariance (see
problem 13.5), even under local transformation, in view of the transformation
law (13.85). But before proceeding in this way, we first need to introduce local
SU(3) symmetry.

13.4 Local SU(3) symmetry

Using what has been done for global SU(3) symmetry in section 12.2, and the
preceding discussion of how to make a global SU(2) into a local one, it is
straightforward to develop the corresponding theory of local SU(3). This is the
gauge group of QCD, the three degrees of freedom of the fundamental quark
triplet now referring to ‘colour’, as will be further discussed in chapter 14. We
denote the basic triplet by ¢, which transforms under a local SU(3) transformation
according to

¥’ = expligsh - a(x)/21¥ (13.86)

which is the same as the global transformation (12.74) but with the eight constant
parameters a replaced by x-dependent ones, and with a coupling strength g
inserted. The SU(3)-covariant derivative, when acting on an SU(3) triplet ¥, is
given by the indicated generalization of (13.10), namely

D" (acting on SU(3) triplet) = 9" +igsh/2 - A* (13.87)

where A\, A5, ..., A{ are eight gauge fields, the quanta of which are called
gluons. The coupling is denoted by ‘g’ in anticipation of the application to strong
interactions via QCD.

The infinitesimal version of (13.86) is (cf (13.13))

¥ = (1 +igsk - n(x)/2)y (13.88)

where ‘1’ stands for the unit matrix in the three-dimensional space of components
of the triplet . As in (13.14), it is clear that 8%’ will involve an ‘unwanted’
term 9/ n(x). By contrast, the desired covariant derivative D* v should transform
according to

D™y’ = (1 +igsh - n(x)/2)D*yr (13.89)

without the 3#5(x) term. Problem 13.6 verifies that this is fulfilled by having the
gauge fields transform by

AZL = Aﬁ — 3" 1nq(x) — gsfabcrlb(x)Ago (13.90)

Comparing (13.90) with (12.80) we can identify the term in f;. as telling us that
the eight fields A transform as an SU(3) octet, the n’s now depending on x, of
course. This is the adjoint or regular representation of SU(3)—as we have now
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Figure 13.7. Quark—gluon vertex.

come to expect for gauge fields. However, the d*n,(x) piece spoils this simple
transformation property under local transformations. But it is just what is needed
to cancel the corresponding 39 (x) term in 9#v’, leaving D* 4 transforming as
a proper triplet via (13.89). The finite version of (13.90) can be derived as in
section 13.1 for SU(2) but we shall not need the result here.

As in the SU(2) case, the free Dirac equation for an SU(3)-triplet ¥/,

(ypd" —m)y =0 (13.91)

can be ‘promoted’ into one which is covariant under local SU(3) transformations
by replacing d* by D of (13.87), leading to

(i —m)yy = gh/2- Ay (13.92)

(compare (13.39)). This leads immediately to the one gluon emission amplitude
(see figure 13.7)

—igs f Yk /2y i - Ay dix (13.93)

as already suggested in section 12.3.1: the SU(3) current of (12.133)—but this

time in colour space—is ‘dotted’ with the gauge field. The Feynman rule for

figure 13.7 is, therefore,
—igsiq /2y ", (13.94)

The SU(3) field strength tensor can be calculated by evaluating the
commutator of two D’s of the form (13.87): the result (problem 13.7) is

FIY = 91 AL — 8 AP — g fupc AL AY (13.95)

which is closely analogous to the SU(2) case (13.84) ( the structure constants of
SU(2) are given by the €;;; symbol and of SU(3) by fy»c). Once again, the crucial
property of Fj" is that, under local SU(3) transformations, it develops no ‘97,
part but transforms as a ‘proper’ octet:

F* = F" = g fabenp (¥) FL*". (13.96)
This allows us to write down a locally SU(3)-invariant analogue of the Maxwell

Lagrangian
—3FM Fap (13.97)
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by dotting the two octets together.

It is now time to consider locally SU(2)- and SU(3)-invariant quantum field
Lagrangians and, in particular, the resulting self-interactions among the gauge
quanta.

13.5 Local non-Abelian symmetries in Lagrangian quantum field theory

13.5.1 Local SU(2) and SU(3) Lagrangians

We consider here only the particular examples relevant to the strong and
electroweak interactions of quarks: namely, a (weak) SU(2) doublet of fermions
interacting with SU(2) gauge fields W,.“ and a (strong) SU(3) triplet of fermions
interacting with the gauge fields AY. We follow the same steps as in the U(1)
case of chapter 7, noting again that for quantum fields the sign of the exponents
in (13.28) and (13.86) is reversed, by convention; thus (12.89) is replaced by its
local version

§' = exp(—iga(x) - t/2)¢ (13.98)

and (12.132) by
§' = exp(—igs&(x) - 1/2)§. (13.99)

The globally SU(2)-invariant Lagrangian (12.§7) becomes locally SU(2)-
invariant if we replaced 0 by D" of (13.10), with W/ now a quantum field:

L jocal sU@) = G QD — m)§
=4@if —m)g — gqy"t/24 - W, (13.100)

with an interaction of the form ‘symmetry current (12.109) dotted into the gauge
field’. To this we must add the SU(2) Yang—Mills term

YA

Ly_M,su@) = _}TIE,LLU -F (13.101)

to get the local SU(2) analogue of Lqgp. It is not possible to add a mass term for

the gauge fields of the form %\/AVM . VAVM, since such a term would not be invariant
under the gauge transformations (13.26) or (13.34) of the W-fields. Thus, just as
in the U(1) (electromagnetic) case, the W-quanta of this theory are massless. We
presumably also need a gauge-fixing term for the gauge fields, as in section 7.3,
which we can take to be'

1
26

I We shall see in section 13.5.3 that in the non-Abelian case this gauge-fixing term does not
completely solve the problem of quantizing such gauge fields; however, it is adequate for tree graphs.

Lot = —=— (0, W" - 3,W"). (13.102)
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Figure 13.8. SU(2) gauge-boson propagator.

The Feynman rule for the fermion-W vertex is then the same as already given in
(13.41), while the W-propagator is (figure 13.8)

(=g + (1 —HKK/R]
k% +ie ’
Before proceeding to the SU(3) case, we must now emphasize three respects
in which our local SU(2) Lagrangian is not suitable (yet) for describing weak
interactions. First, weak interactions violate parity, in fact ‘maximally’, by
which is meant that only the ‘left-handed’ part I/AfL of the fermion field enters the
interactions with the W* fields, where K@L = (1 —1ys) /2)1@; for this reason the
weak isospin group is called SU(2)L.. Second, the physical W are, of course,
not massless and, therefore, cannot be described by propagators of the form
(13.103). And third, the fermion mass term violates the ‘left-handed’ SU(2) gauge
symmetry, as the discussion in section 12.3.2 shows. In this case, however, the
chiral symmetry which is broken by fermion masses in the Lagrangian is a local,
or gauge, symmetry (in section 12.3.2 the chiral flavour symmetry was a global
symmetry). If we want to preserve the chiral gauge symmetry SU(2);—and it is
necessary for renormalizability—then we shall have to replace the simple fermion

mass term in (13.100) by something else, as will be explained in chapter 22.

The locally SU(3).-invariant Lagrangian for one quark triplet (cf (12.137))
fr
gr = fja (13.104)
Je

where ‘f” stands for ‘flavour’, and ‘r, b, and g’ for ‘red, blue and green’, is

(13.103)

A R 1A A~ 1 ~ ~
Ge(p — my)ge — ZFa,wFé” - E(E?MAQ‘)(&AZ) (13.105)
where DM is given by (13.87) with A* replaced by A" and the footnote before
equation (13.102) also applies here. This leads to the interaction term (cf (13.93))
— g5y A/ 245 - A, (13.106)

and the Feynman rule (13.94) for figure 13.7. Once again, the gluon quanta must
be massless and their propagator is the same as (13.103), with §;; — Sap(a, b =
1,2,...,8). The different quark flavours are included by simply repeating the
first term of (13.105) for all flavours:

3" GGl — mo)is (13.107)
f
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which incorporates the hypothesis that the SU(3).-gauge interaction is ‘flavour-
blind’, i.e. exactly the same for each flavour. Note that although the flavour masses
are different, the masses of different ‘coloured’” quarks of the same flavour are the
same (my # md, My = Myb = mu,g)-

The Lagrangians (13.100)-(13.102) and (13.105), though easily written
down after all this preparation, are unfortunately not adequate for anything but
tree graphs. We shall indicate why this is so in section 13.5.3. Before that,
we want to discuss in more detail the nature of the gauge-field self-interactions
contained in the Yang—Mills pieces.

13.5.2 Gauge field self-interactions

We start by pointing out an interesting ambiguity in the prescription for
‘covariantizing’ wave equations which we have followed, namely ‘replace 9" by
D*’. Suppose we wished to consider the electromagnetic interactions of charged
massless spin-1 particles, call them X’s, carrying charge e. The standard wave
equation for such free massless vector particles would be the same as for A,
namely

ox* —9”9"X, =0. (13.108)

To ‘covariantize’ this (i.e. introduce the electromagnetic coupling), we would
replace 0" by D* = 0" 4 ie A" so as to obtain

D>X"* — D*D"X, = 0. (13.109)

But this procedure is not unique: if we had started from the perfectly equivalent
free particle wave equation

Ox* —3"9"X, =0 (13.110)
we would have arrived at
D*X* — D'D"*X, =0 (13.111)
which is not the same as (13.109), since (cf (13.79))
[D*, D'] = ieF"". (13.112)

The simple prescription 0* — D* has, in this case, failed to produce
a unique wave equation. We can allow for this ambiguity by introducing an
arbitrary parameter § in the wave equation, which we write as

D*X* — D'D"*X, +ieSF*' X, = 0. (13.113)

The § term in (13.113) contributes to the magnetic moment coupling of the
X-particle to the electromagnetic field and is called the ‘ambiguous magnetic
moment’. Just such an ambiguity would seem to arise in the case of the charged
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weak interaction quanta W+ (their masses do not affect this argument). For the
photon itself, of course, e = 0 and there is no such ambiguity.

It is important to be clear that (13.113) is fully U(1) gauge-covariant, so that
8 cannot be fixed by further appeal to the local U(1) symmetry. Moreover, it turns
out that the theory for arbitrary § is not renormalizable (though we shall not show
this here): thus, the quantum electrodynamics of charged massless vector bosons
is, in general, non-renormalizable.

However, the theory is renormalizable if—to continue with the present
terminology—the photon, the X-particle and its anti-particle, the X, are the
members of an SU(2)-gauge triplet (like the W’s), with gauge coupling constant
e. This is, indeed, very much how the photon and the W are ‘unified’ but there
is a complication (as always!) in that case, having to do with the necessity for
finding room in the scheme for the neutral weak boson Z° as well. We shall see
how this works in chapter 19: meanwhile we continue with this X—y model. We
shall show that when the X—y interaction contained in (13.113) is regarded as a
3-X vertex in a local SU(2) gauge theory, the value of § has to equal one; for this
value the theory is renormalizable. In this interpretation, the X* wavefunction
is identified with ‘%(Xf +1ix%)> and X* with ‘%(xq‘ —iX%)’ in terms of
components of the SU(2) triplet X*, while A* is identified with X g‘ .

1
Consider then equation (13.113) written in the form?

OX* — Y9 X, = VXM (13.114)
where
VX* = —ie{[0" (A, X") + A”, X™]
— (1 +8)[3"(A"X,) + A"3" X, ]
+8[0"(AYX,) + APV X, 1} (13.115)
and we have dropped terms of O(e®) which appear in the ‘D?’ term: we shall

come back to them later. The terms inside the { } brackets have been written in
such a way that each [ ] bracket has the structure

0(AX) + A0X) (13.116)

which will be convenient for the following evaluation.
The lowest-order (O (e)) perturbation theory amplitude for “X' — X* under
the potential V is then

—i/XZ(f)&X“(i) d*x. (13.117)
Inserting (13.115) into (13.117) clearly gives something involving two ‘X’-
wavefunctions and one ‘A’ one, i.e. a triple-X vertex (with A* = X ’3‘ ), shown

2 The sign chosen for V here apparently differs from that in the KG case (4.133) but it does agree
when allowance is made, in the amplitude (13.117), for the fact that the dot product of the polarization
vectors is negative (cf (7.84)).
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Figure 13.9. Triple-X vertex.

in figure 13.9. To obtain the rule for this vertex from (13.117), consider the first
[ ] bracket in (13.115). It contributes

—i(—ie)/)‘(;(2){3”()(3U(3)X“(1))+x§(3)avxﬂ(1)}d4x (13.118)

where the (1), (2), (3) refer to the momenta as shown in figure 13.9, and for
reasons of symmetry are all taken to be ingoing; thus,

XE(1) = € exp(—ik;3 - x) (13.119)

for example. The first term in (13.118) can be evaluated by a partial integration
to turn the 3" onto the X7, (2), while in the second term 9, acts straightforwardly

on X*(1). Omitting the usual (277)*8* energy—momentum conserving factor, we
find (problem 13.8) that (13.118) leads to the amplitude

iee; - €2 (k1 — ko) - €3. (13.120)
In a similar way, the other terms in (13.117) give
—ied(€; - €3 € ko —€r - €3 €1 - ky) (13.121)

and
+ie(1 +68)(ex-€3€1 -kp — €1 -€3 €2 -ky). (13.122)

Adding all the terms up and using the 4-momentum conservation condition
ki+ky+k3=0 (13.123)
we obtain the vertex
+ieler-ex(k1 — ko) - €3+ €3 - €3(8ky —k3) - €1 + €3 - €1 (k3 — 8ky) - €2}. (13.124)

It is quite evident from (13.124) that the value § = 1 has a privileged role
and we strongly suspect that this will be the value selected by the proposed SU(2)
gauge symmetry of this model. We shall check this in two ways: in the first,
we consider a ‘physical’ process involving the vertex (13.124) and show how
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Figure 13.10. Tree graphs contributing to X +d — X +d.

requiring it to be SU(2)-gauge invariant fixes 6 to be 1; in the second, we ‘unpack’
the relevant vertex from the compact Yang—Mills Lagrangian — le Xuw - X"
The process we shall choose is X +d — X + d where d is a fermion (which

we call a quark) transforming as the 73 = —% component of a doublet under the

SU(2) gauge group, its T3 = +% partner being the u. There are two contributing
Feynman graphs, shown in figures 13.10(a) and (b). Consider, first, the amplitude
for figure 13.10(a). We use the rule of figure 13.1, with the T-matrix combination
74 = (11 + i12) /+/2 corresponding to the absorption of the positively charged X
and 7 = (11 — irz)/\/i for the emission of the X. Then figure 13.10(a) is

i

(i) D (p)) =y —————
27 p +ki—m

gD (), (13.125)

where
y® = < p ) (13.126)

and we have chosen real polarization vectors. Using the explicit forms (12.25) for
the T-matrices, (13.125) becomes

1 i 1
E¢2P1+kl_mﬁ

We must now discuss how to implement gauge invariance. In the QED case
of electron Compton scattering (section 8.6.2), the test of gauge invariance was
that the amplitude should vanish if any photon polarization vector €”(k) was
replaced by k*—see (8.168). This requirement was derived from the fact that
a gauge transformation on the photon A* took the form A# — A'* = A% — 9t y,
so that, consistently with the Lorentz condition, €* could be replaced by €'* =
€ + Bk (cf 8.165) without changing the physics. But the SU(2) analogue
of the U(1)-gauge transformation is given by (13.26), for infinitesimal €’s, and
although there is indeed an analogous ‘—d*€’ part, there is also an additional part
(with ¢ — e in our case) expressing the fact that the X’s carry SU(2) charge.
However, this extra part does involve the coupling e. Hence, if we were to make
the full change corresponding to (13.26) in a tree graph of order 2, the extra part

(—ie)*d(p2) ¢,d(p1). (13.127)
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Figure 13.11. Tree graphs contributingto y +X — y + X.

would produce a term of order e3. We shall take the view that gauge invariance
should hold at each order of perturbation theory separately; thus, we shall demand
that the tree graphs for X—d scattering, for example, should be invariant under
€ — kM for any €.

The replacement €; — ki in (13.127) produces the result (problem 13.9)

(—ie)zéci(pmd(m) (13.128)

where we have used the Dirac equation for the quark spinors of mass m. The term
(13.128) is certainly not zero—but we must of course also include the amplitude
for figure 13.10(b). Using the vertex of (13.124) with suitable sign changes of
momenta, and the photon propagator of (7.119), and remembering that d has
73 = —1, the amplitude for figure 13.10(b) is

iele] - e2(k1 +k2)p + €2p€1 - (—8ka — ko + k1) + €162 - (ko — k1 — 8kp)]
—ig [ 1
x qu [—led(Pz) (—5> yud(pl)} , (13.129)

where q2 = (kq —kz)2 = —2kj-ky using k% = k% = 0, and where the £-dependent
part of the y-propagator vanishes since d(p») ¢d(p1) = 0. We now leave it as an
exercise (problem 13.10) to verify that, when €; — k1 in (13.129), the resulting
amplitude does exactly cancel the contribution (13.128), provided that § = 1.
Thus, the X—X—y vertex is, assuming the SU(2)-gauge symmetry,

ie[e - ex(ky — ko) - €3+ €2 - €3(ka —k3) - €1 + €3 - €1 (k3 — k1) - €2]. (13.130)

The verification of this non-Abelian gauge invariance to order 2 is, of
course, not a proof that the entire theory of massless X quanta, y’s and quark
isospinors will be gauge invariant if § = 1. Indeed, having obtained the X-
X-y vertex, we immediately have something new to check: we can see if the
lowest order y—X scattering amplitude is gauge invariant. The X—X-y vertex
will generate the O(e?) graphs shown in figure 13.11 and the dedicated reader
may check that the sum of these amplitudes is not gauge invariant, again in the
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Figure 13.12. y—y-X-X vertex.

kyseqof ke

kl,sl,i k3,s3,m

Figure 13.13. 4-X vertex.

(tree graph) sense of not vanishing when any € is replaced by the corresponding
k. But this is actually correct. In obtaining the X-X—y vertex we dropped
an 0(6‘2) term involving the three fields A, A and X, in going from (13.115)
to (13.124): this will generate an O(ez) y—y—X-X interaction, figure 13.12,
when used in lowest-order perturbation theory. One can find the amplitude for
figure 13.12 by the gauge-invariance requirement applied to figures 13.11 and
13.12, but it has to be admitted that this approach is becoming laborious. It is,
of course, far more efficient to deduce the vertices from the compact Yang—Mills
Lagrangian —%)A( - qu’ which we shall now do; nevertheless, some of the
physical implications of those couplings, such as we have discussed earlier, are
worth exposing.

The SU(2) Yang—Mills Lagrangian for the SU(2) triplet of gauge fields X"
is

Loym = —1Xu - X (13.131)
where
M =gt —rxt - x kX (13.132)
EAz,YM can be unpacked a bit into
— 1@ Xy = 0,%,) - 0FX) + e(X, x Xy) -t X"
— 12X X% = (XXX X)L (13.133)

The X—X—y vertex is in the ‘e’ term, the X—X—y—y one in the ‘e2’ term. We give
the form of the latter using SU(2) ‘i, j, kK’ labels, as shown in figure 13.13:

-2
—ie”[€;je€mne (€] - €362 - €4 — €] - €4€2 - €3)

+ €inc€jme(€1 - €2€3 - €4 — €1 - €362 - €4)

+ €imeenje(€1 - €4€2 - €3 — €] - €2€3 - €4)]. (13.134)
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The reason for the collection of terms seen in (13.130) and (13.134) can be
understood as follows. Consider the 3—X vertex

ko, €2, s k3. €3, kle(Xy x Xy) - 0" X k1, €1, i) (13.135)

for example. When each X is expressed as a mode expansion and the initial and
final states are also written in terms of appropriate a’s and a'’s, the amplitude
will be a vacuum expectation value (vev) of six a’s and a'’s; the different terms
in (13.130) arise from the different ways of getting a non-zero value for this vev,
by manipulations similar to those in section 6.3.

We end this chapter by presenting an introduction to the problem of
quantizing non-Abelian gauge field theories. Our aim will be, first, to indicate
where the approach followed for the Abelian gauge field AM in section 7.3.2 fails
and then to show how the assumption (nevertheless) that the Feynman rules we
have established for tree graphs work for loops as well, leads to violations of
unitarity. This calculation will indicate a very curious way of remedying the
situation ‘by hand’, through the introduction of ghost particles, only present in
loops.

13.5.3 Quantizing non-Abelian gauge fields

We consider for definiteness the SU(2)-gauge theory with massless gauge fields
W (x), which we shall call gluons, by a slight abuse of language. We try to carry
through for the Yang—Mills Lagrangian

Ly=—1F,,  F" (13.136)

=

where A . . ) .
Fu =0,W, —-9,W, —gW, xW,, (13.137)

the same steps we followed for the Maxwell one in section 7.3.2.
We begin by re-formulating the prescription arrived at in (7.116), which we
reproduce again here for convenience:

Le=—LF F" — —(3,AM)>. (13.138)
EAE leads to the equation of motion
A A 1 A
OA* —9#9,A"” + ga“auA” =0. (13.139)

This has the drawback that the limit £ — 0 appears to be singular (though the
propagator (7.119) is well behaved as & — 0). To avoid this unpleasantness,
consider the Lagrangian (Lautrup 1967)

Lep = —YE0 " + By, A" + 1 B? (13.140)
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where B is a scalar field. We may think of the ‘Bd - A’ term as a field-theory
analogue of the procedure followed in classical Lagrangian mechanics, whereby
a constraint (in this case the gauge-fixing one 9 - A =0)is brought into the
Lagrangian with a ‘Lagrange multiplier’ (here the field B). The momentum
conjugate to AV is now

A

#0=B (13.141)

while the Euler—Lagrange equations for AM read as
OA* — 9"9,A" = "B (13.142)

and for B yield . .
9 A" +EB =0. (13.143)

Eliminating B from (13.140) by means of (13.143), we recover (13.138). Taking
d;, of (13.142) we learn that OB = 0, so that B is a free massless field. Applying
[0 to (13.143) then shows that (19, A* = 0, so that 9, A" is also a free massless
field.

In this formulation, the appropriate subsidiary condition for getting rid of the
unphysical (non-transverse) degrees of freedom is (cf (7.108))

B (x)|w) = 0. (13.144)

Kugo and Ojima (1979) have shown that (13.144) provides a satisfactory
definition of the Hilbert space of states. In addition to this, it is also essential
to prove that all physical results are independent of the gauge parameter &.

We now try to generalize the foregoing in a straightforward way to (13.136).
The obvious analogue of (13.140) would be to consider

Lrsp=—1Fu -F"+B-@W)+1B.B (13.145)

N[—

where B is an SU(2) triplet of scalar fields. Equation (13.145) gives (cf (13.142))
(bv)ij ﬁjp,v + ap,éi =0 (13.146)

where the covariant derivative is now the one appropriate to the SU(2) triplet F
(see (13.44) with r = 1, and (12.48)) and i, j are the SU(2) labels. Similarly,
(13.143) becomes

W +£B =0. (13.147)

It is possible to verify that
(D*)ii (DV)ij Fjpw = 0 (13.148)
where i, j, k are the SU(2) matrix indices, which implies that

(DM)1i0,B; = 0. (13.149)
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This is the crucial result: it implies that the auxiliary field B is not a free field in
this non-Abelian case and so neither (from (13.147)) is 8MVAVM. In consequence,
the obvious generalizations of (7.108) or (13.144) cannot be used to define the
physical (transverse) states. The reason is that a condition like (13.144) must
hold for all times, and only if the field is free is its time variation known (and
essentially trivial).

Let us press ahead nevertheless and assume that the rules we have derived so
far are the correct Feynman rules for this gauge theory. We will see that this leads
to physically unacceptable consequences, namely to the violation of unitarity.

In fact, this is a problem which threatens all gauge theories if the gauge
field is treated covariantly, i.e. as a 4-vector. As we saw in section 7.3.2, this
introduces unphysical degrees of freedom which must somehow be eliminated
from the theory—or at least prevented from affecting physical processes. In
QED we do this by imposing the condition (7.108), or (13.144), but as we have
seen the analogous conditions will not work in the non-Abelian case, and so
unphysical states may make their presence felt, for example in the ‘sum over
intermediate states’ which arises in the unitarity relation. This relation determines
the imaginary part of an amplitude via an equation of the form (cf (11.63))

2 Im(flM|i) = / > (fM(n) (n| M i) dpp (13.150)

where (f|M]i) is the (Feynman) amplitude for the process i — f, and the
sum is over a complete set of physical intermediate states |n), which can enter
at the given energy; dp, represents the phase space element for the general
intermediate state |n). Consider now the possibility of gauge quanta appearing in
the states |n). Since unitarity deals only with physical states, such quanta can have
only the two degrees of freedom (polarizations) allowed for a physical massless
gauge field (cf section 7.3.1). Now part of the power of the ‘Feynman rules’
approach to perturbation theory is that it is manifestly covariant. But there is no
completely covariant way of selecting out just the two physical components of
a massless polarization vector €, from the four originally introduced precisely
for reasons of covariance. In fact, when gauge quanta appear as virtual particles
in intermediate states in Feynman graphs, they will not be restricted to having
only two polarization states (as we shall see explicitly in a moment). Hence,
there is a real chance that when the imaginary part of such graphs is calculated,
a contribution from the unphysical polarization states will be found, which has
no counterpart at all in the physical unitarity relation, so that unitarity will not
be satisfied. Since unitarity is an expression of conservation of probability, its
violation is a serious disease indeed.

Consider, for example, the process qq — qq (where the ‘quarks’ are an
SU(2) doublet) whose imaginary part has a contribution from a state containing
two gluons (figure 13.14):

2Im(qg|Mqq >= f 3 (qdlMlge) (zel M @) dpa (13.151)
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Figure 13.14. Two-gluon intermediate state in the unitarity relation for the amplitude for
qq — qq.

where dp, is the two-body phase space for the g-g state. The two-gluon
amplitudes in (13.151) must have the form

My €1 k1, M1)€y (ka, 22) (13.152)

where € (k, 1) is the polarization vector for the gluon with polarization A and
4-momentum k. The sum in (13.151) is then to be performed over A1 = 1,2
and A = 1, 2 which are the physical polarization states (cf section 7.3.1). Thus
(13.151) becomes

ZIm./\/qu—>qq = / Z M,IMV]EiLI(kla)"I)E;I (k2, A2)
r=1,2;1,=12

x M*

Havy

€12 (k1. )€y (k. 22) dpa. (13.153)

For later convenience we are using real polarization vectors as in (7.78) and
(7.79): eki, »i = +1) = (0,1,0,0), €(ki, ; = —1) = (0,0, 1,0) and, of
course, k12 = k% =0.

We now wish to find out whether or not a result of the form (13.153) will
hold when the M’s represent some suitable Feynman graphs. We first note
that we want the unitarity relation (13.153) to be satisfied order by order in
perturbation theory: that is to say, when the M’s on both sides are expanded
in powers of the coupling strengths (as in the usual Feynman graph expansion),
the coefficients of corresponding powers on each side should be equal. Since each
emission or absorption of a gluon produces one power of the SU(2) coupling g,
the right-hand side of (13.153) involves at least the power g*. Thus the lowest-
order process in which (13.153) may be tested is for the fourth-order amplitude
M%qu. There are quite a number of contributions to M%qu, some of which
are shown in figure 13.15: all contain a loop. On the right-hand side of (13.153),
each M involves two polarization vectors, and so each must represent the O (g?)

contribution to qq — gg, which we call ./\/1533, thus, both sides are consistently

of order g4. There are three contributions to M,SZS shown in figure 13.16: when
@)
qi—>qq &
generated, which should agree with the imaginary part of the total O(g*) loop-
graph contribution. Let us see if this works out.

these are placed in (13.153), contributions to the imaginary part of M e
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Figure 13.15. Some 0(g4) contributions to qq — qq.

Figure 13.16. O(gz) contributions to qq — gg.

We choose to work in the gauge £ = 1, so that the gluon propagator takes the
familiar form —ig""s;; / k*. According to the rules for propagators and vertices

already given, each of the loop amplitudes M%)_) @ (e.g. those of figure 13.15)
will be proportional to the product of the propagators for the quarks and the
gluons, together with appropriate ‘y’ and ‘t’ vertex factors, the whole being
integrated over the loop momentum. The extraction of the imaginary part of a
Feynman diagram is a technical matter, having to do with careful consideration of
the ‘i€’ in the propagators. Rules for doing this exist (Eden et al 1966, section 2.9)
and in the present case the result is that, to compute the imaginary part of the
amplitudes of figure 13.15, one replaces each gluon propagator of momentum k
by

n(—g“”)é(kz)e(ko)&j. (13.154)

That is, the propagator is replaced by a condition stating that, in evaluating the
imaginary part of the diagram, the gluon’s mass is constrained to have the physical
(free-field) value of zero, instead of varying freely as the loop momentum varies,
and its energy is positive. These conditions (one for each gluon) have the effect
of converting the loop integral with a standard two-body phase space integral for
the gg intermediate state, so that eventually

Im M) o = / M), (=g""HMD, (=g"") dp2 (13.155)

qq—qq H1vi Hav2
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where Mffl)vl is the sum of the three O(g?) tree graphs shown in figure 13.16,
with all external legs satisfying the ‘mass-shell’ conditions.

So, the imaginary part of the loop contribution to M%L @ does seem to have
the form (13.150) as required by unitarity, with |n) the gg intermediate state as in
(13.153). But there is one essential difference between (13.155) and (13.153): the
place of the factor —g*" in (13.155) is taken in (13.153) by the gluon polarization
sum

P (k)= " ek, A" (k. 1) (13.156)
A=1,2

for k = k1, ko and A = A1, Ay respectively. Thus, we have to investigate whether
this difference matters.

To proceed further, it is helpful to have an explicit expression for P*¥. We
might think of calculating the necessary sum over A by brute force, using two €’s
specified by the conditions (cf (7.84))

ek, ek, \) = =830 €-k=0. (13.157)

The trouble is that conditions (13.157) do not fix the €’s uniquely if k> = 0. (Note
the 8(k?) in (13.154).) Indeed, it is precisely the fact that any given €, satisfying
(13.157) can be replaced by €, + Ak, that both reduces the degrees of freedom to
two (as we saw in section 7.3.1) and evinces the essential arbitrariness in the €,
specified only by (13.157). In order to calculate (13.156), we need to put another
condition on €, 5o as to fix it uniquely. A standard choice (see, e.g., Taylor 1976,
pp 14-15) is to supplement (13.157) with the further condition

t-e=0 (13.158)

where ¢ is some 4-vector. This certainly fixes €, and enables us to calculate
(13.156) but, of course, now two further difficulties have appeared: namely, the
physical results seem to depend on 7,,; and have we not lost Lorentz covariance
because the theory involves a special 4-vector 7,,?

Setting these questions aside for the moment, we can calculate (13.156)
using the conditions (13.157) and (13.158), finding (problem 13.11)

Puy = —guy — [12kuky — k - t(kpty + kot )1/ k- )2 (13.159)

But only the first term on the right-hand side of (13.159) is to be seen in (13.155).
A crucial quantity is clearly

U,uv(ky = — Euv — P/w
= [2kyky — k - t(kuty + kyt,)]/ (k - )2 (13.160)

We note that whereas
kFPy =k"Py =0 (13.161)
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(from the condition k - € = 0), the same is not true of k" U,,—in fact,
kMU = —ky (13.162)

where we have used k> = 0. It follows that U v may be regarded as including
polarization states for which € - k # 0. In physical terms, therefore, a gluon
appearing internally in a Feynman graph has to be regarded as existing in
more than just the two polarization states available to an external gluon (cf
section 7.3.1). Uy, characterizes the contribution of these unphysical polarization
states.

The discrepancy between (13.155) and (13.153) is then

Im M@ _:/M(Z) UMYk DIMP [UR2V2(ky, 12)]dpa (13.163)

H1vy H2v2

together with similar terms involving one P and one U. It follows that these
unwanted contributions will, in fact, vanish if

2
KM, =0 (13.164)

and similarly for k>. This will also ensure that amplitudes are independent of #,.

Condition (13.164) is apparently the same as the U(1)-gauge-invariance
requirement of (8.165), already recalled in the previous section. As discussed
there, it can be interpreted here also as expressing gauge invariance in the non-
Abelian case, working to this given order in perturbation theory. Indeed, the
diagrams in figure 13.16 are essentially ‘crossed’ versions of those in figure 13.10.
However, there is one crucial difference here. In figure 13.10, both the X’s were
physical, their polarizations satisfying the condition € - k = 0. In figure 13.16, by
contrast, neither of the gluons, in the discrepant contribution (13.163), satisfies
€ - k = O—see the sentence following (13.162). Thus, the crucial point is that
(13.164) must be true for each gluon, even when the other gluon has € - k # 0.
And, in fact, we shall now see that whereas the (crossed) version of (13.164) did
hold for our dX — dX amplitudes of section 13.3.2, (13.164) fails for states with
€-k#0.

The three graphs of figure 13.16 together yield

M, el ki, A€y (ka. A2)

V1

_ 21—}( )E¢a- ! Ea i u(pr)

=g p22 221171—%1—”12 li¢1u(p1
+ 820(p2) S arif) ———— Larjdyu(py)
8 P22 li 1p1_k2_m2 2j¢u(p1

+ (=) &2ewij [(p1 + p2 + k1)1 g"MP + (=ky — p1 — p2)H1gP"!

L 5 Z e
—————5(p2) = y,ou(pi
(p1+ p2)? 27

(13.165)

+ (k1 + k2)P gH " €1, ariazjer,
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where we have written the gluon polarization vectors as a product of a Lorentz
4-vector €, and an ‘SU(2) polarization vector’ a; to specify the triplet state label.
Now replace €1, say, by k1. Using the Dirac equation for u(p1) and v(p»), the
first two terms reduce to (cf (13.128))

2 0(p2)dalti/2, T/ 2lu(p)ariaz;
= ig0(p2)drcijn (t/2)u(pr)aria; (13.166)

using the SU(2) algebra of the t’s. The third term in (13.165) gives

—igzeijkﬁ(pz)¢2(rk/2)u(p1)a1ia2,- (13.167)
v(p2)k1 (ti/2)u(pks - €2a1iaz;. (13.168)

T k
We see that the first part (13.167) certainly does cancel (13.166) but there remains
the second piece (13.168), which only vanishes if k;-e; = 0. This is not sufficient
to guarantee the absence of all unphysical contributions to the imaginary part of
the two-gluon graphs, as the preceding discussion shows. We conclude that loop
diagrams involving two (or, in fact, more) gluons, if constructed according to the
simple rules for tree diagrams, will violate unitarity.

The correct rule for loops must be such as to satisfy unitarity. Since there
seems no other way in which the offending piece in (13.168) can be removed,
we must infer that the rule for loops will have to involve some extra term, or
terms, over and above the simple tree-type constructions, which will cancel the
contributions of unphysical polarization states. To get an intuitive idea of what
such extra terms might be, we return to expression (13.160) for the sum over
unphysical polarization states Uy, and make a specific choice for 7. We take
t, = kﬂ, where the 4-vector k is defined by k = (—|k|, k) and k = (0, 0, |K|).
This choice obviously satisfies (13.158). Then

Upo(k, k) = (kpky + koky) /(21K (13.169)

and unitarity (cf (13.163)) requires

/M(Z) M(Z) (klllllzlln _i_kllLZ];iLl)(k;llzl& +k22k;1)
U1vy

d 13.170
w2 2lkz 2 o (B3170)

to vanish; but it does not. Let us work in the centre of momentum (CM)
frame of the two gluons, with k; = (|k|, 0,0, |K|), k> = (|k|, 0,0, —|K|), k; =
(—=1k|,0,0, |k, ka = (—|K|, 0,0, —|k|), and consider for definiteness the
contractions with the M?, term. These are M2, ki, MP), KM ete.
Such quantities can be calculated from expression (13.165) by setting € =
ki, €y = ky for the first, ¢; = ki, €2 = k> for the second, and so on. We have
already obtained the result of putting €; = kj. From (13.168) it is clear that a
term in which €; is replaced by k> as well as €] by k; will vanish, since k% =0.
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Figure 13.17. Tree-graph interpretation of the expression (13.172).

A typical non-vanishing term is of the form Mffl)vl ki“l?;‘ /2|k|?. From (13.168)

this reduces to

.2 €ijk _

—igt———v
2k - kp

using k» - 122/2|k|2 = —1. We may rewrite (13.171) as

(p2)k1 (te/2u(pr)ariaz; (13.171)

—gHV ke

jukmigéilﬂaliazl/’klv (13.172)

where
Juk = gu(p2)yu(t/2)u(p1) (13.173)

is the SU(2) current associated with the qq pair.

The unwanted terms of the form (13.172) can be eliminated if we adopt
the following rule (on the grounds of ‘forcing the theory to make sense’).
In addition to the fourth-order diagrams of the type shown in figure 13.15,
constructed according to the simple ‘tree’ prescriptions, there must exist a
previously unknown fourth-order contribution, only present in loops, such that
it has an imaginary part which is non-zero in the same physical region as the two-
gluon intermediate state and, moreover, is of just the right magnitude to cancel
all the contributions to (13.170) from terms like (13.172). Now (13.172) has the
appearance of a one-gluon intermediate state amplitude. The qq — g vertex is
represented by the current (13.173), the gluon propagator appears in Feynman
gauge £ = 1 and the rest of the expression would have the interpretation of
a coupling between the intermediate gluon and two scalar particles with SU(2)
polarizations ay;, azj. Thus, (13.172) can be interpreted as the amplitude for
the tree graph shown in figure 13.17, where the dotted lines represent the scalar
particles. It seems plausible, therefore, that the fourth-order graph we are looking
for has the form shown in figure 13.18. The new scalar particles must be massless,
so that this new amplitude has an imaginary part in the same physical region as
the gg state. When the imaginary part of figure 13.18 is calculated in the usual
way, it will involve contributions from the tree graph of figure 13.17 and these can
be arranged to cancel the unphysical polarization pieces like (13.172).

For this cancellation to work, the scalar particle loop graph of figure 13.18
must enter with the opposite sign from the three-gluon loop graph of figure 13.15,
which in retrospect was the cause of all the trouble. Such a relative minus sign
between single closed-loop graphs would be expected if the scalar particles in
figure 13.18 were, in fact, fermions! (Recall the rule given in section 11.3 and
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Figure 13.18. Ghost loop diagram contributing in fourth order to qq — qq.

problem 11.2.) Thus, we appear to need scalar particles obeying Fermi statistics.
Such particles are called ‘ghosts’. We must emphasize that although we have
introduced the tree graph of figure 13.17, which apparently involves ghosts as
external lines, in reality the ghosts are always confined to loops, their function
being to cancel unphysical contributions from intermediate gluons.

The preceding discussion has, of course, been entirely heuristic. It can be
followed through so as to yield the correct prescription for eliminating unphysical
contributions from a single closed gluon loop. But, as Feynman recognized (1963,
1977), unitarity alone is not a sufficient constraint to provide the prescription for
more than one closed gluon loop. Clearly what is required is some additional
term in the Lagrangian which will do the job in general. Such a term indeed
exists and was first derived using the path integral form of quantum field theory
(see chapter 16) by Faddeev and Popov (1967). The result is that the covariant
gauge-fixing term (13.102) must be supplemented by the ‘ghost Lagrangian’

Ly = 0,7 Dlii; (13.174)

where the 7 field is an SU(2) triplet and spinless, but obeying anti-commutation
relations: the covariant derivative is the one appropriate for an SU(2) triplet,
namely (from (13.44) and (12.48))

Df = 9"5;j + gewij W' (13.175)

in this case. The result (13.174) is derived in standard books of quantum field
theory, for example Cheng and Li (1984), Peskin and Schroeder (1995) or Ryder
(1996). We should add the caution that the form of the ghost Lagrangian depends
on the choice of the gauge-fixing term: there are gauges in which the ghosts are
absent. The complete Feynman rules for non-Abelian gauge field theories are
given in Cheng and Li (1984), for example. We give the rules for tree diagrams,
for which there are no problems with ghosts, in appendix Q.

Problems

13.1 Verify that (13.34) reduces to (13.26) in the infinitesimal case.
13.2 Verify equation (13.79).
13.3 Using the expression for D in (13.81), verify (13.82).
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13.4 Verify the transformation law (13.85) of F#' under local SU(2)
transformations.

13.5 Verify that F,, - F#*" is invariant under local SU(2) transformations.

13.6 Verify that the (infinitesimal) transformation law (13.90) for the SU(3) gauge
field AY is consistent with (13.89).

13.7 By considering the commutator of two D#’s of the form (13.87), verify
(13.95).

13.8 Verify that (13.118) reduces to (13.120) (omitting the (27)48* factors).
13.9 Verify that the replacement of €] by k1 in (13.127) leads to (13.128).

13.10 Verify that when € is replaced by & in (13.129), the resulting amplitude
cancels the contribution (13.128), provided that § = 1.

13.11 Show that P*" of (13.156), with the €’s specified by the conditions (13.157)
and (13.158), is given by (13.159).

Copyright 2004 IOP Publishing Ltd



PART 6

QCD AND THE RENORMALIZATION
GROUP
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14

QCD I: INTRODUCTION AND TREE-GRAPH
PREDICTIONS

In the previous chapter we have introduced the elementary concepts and
formalism associated with non-Abelian quantum gauge field theories. There are
now many indications that the strong interactions between quarks are described
by a theory of this type, in which the gauge group is an SU(3)., acting on a degree
of freedom called ‘colour’ (indicated by the subscript c¢). This theory is called
quantum chromodynamics or QCD for short. QCD will be our first application
of the theory developed in chapter 13, and we shall devote the next two chapters,
and much of chapter 16, to it.

In the present chapter we introduce QCD and discuss some of its simpler
experimental consequences. We briefly review the evidence for the ‘colour’
degree of freedom in section 14.1, and then proceed to the dynamics of colour, and
the QCD Lagrangian, in section 14.2. Perhaps the most remarkable thing about
the dynamics of QCD is that, despite its being a theory of the strong interactions,
there are certain kinematic regimes—roughly speaking, short distances or high
energies—in which it is effectively a quite weakly interacting theory. This
is a consequence of a fundamental property—possessed only by non-Abelian
gauge theories—whereby the effective interaction strength becomes progressively
smaller in such regimes. This property is called ‘asymptotic freedom’ and has
already been mentioned in section 11.5.3 of volume 1. In appropriate cases,
therefore, the lowest-order perturbation theory amplitudes (tree graphs) provide
a very convincing qualitative, or even ‘semi-quantitative’, orientation to the data.
In sections 14.3 and 14.4 we shall see how the tree-graph techniques acquired for
QED in volume 1 produce more useful physics when applied to QCD.

However, most of the quantitative experimental support for QCD now comes
from comparison with predictions which include higher-order QCD corrections;
indeed, the asymptotic freedom property itself emerges from summing a whole
class of higher-order contributions, as we shall indicate at the beginning of
chapter 15. This immediately involves all the apparatus of renormalization.
The necessary calculations quite rapidly become too technical for the intended
scope of this book but in chapter 15 we shall try to provide an elementary
introduction to the issues involved, and to the necessary techniques, by building
on the discussion of renormalization given in chapters 10 and 11 of volume 1. The
main new concept will be the renormalization group (and related ideas), which

Copyright 2004 IOP Publishing Ltd



is an essential tool in the modern confrontation of perturbative QCD with data.
Some of the simpler predictions of the renormalization group technique will be
compared with experimental data in the last part of chapter 15.

In chapter 16 we work towards understanding some non-perturbative aspects
of QCD. As a natural concomitant of asymptotic freedom, it is to be expected that
the effective coupling strength becomes progressively larger at longer distances
or lower energies, ultimately being strong enough to lead (presumably) to the
confinement of quarks and gluons: this is sometimes referred to as ‘infrared
slavery’. In this regime, perturbation theory clearly fails. An alternative, purely
numerical, approach is available however, namely the method of ‘lattice’ QCD,
which involves replacing the spacetime continuum by a discrete lattice of points.
At first sight, this may seem to be a topic rather disconnected from everything
that has preceded it. But we shall see that, in fact, it provides some powerful new
insights into several aspects of quantum field theory in general, and in particular
of renormalization, by revisiting it in coordinate (rather than momentum) space.
Chapter 16 therefore serves as a useful ‘retrospective’ on our conceptual progress
thus far.

14.1 The colour degree of freedom

The first intimation of a new, unrevealed degree of freedom of matter came
from baryon spectroscopy (Greenberg 1964; see also Han and Nambu 1965 and
Tavkhelidze 1965). For a baryon made of three spin-% quarks, the original non-
relativistic quark model wavefunction took the form

I//3q = I/fSpace 1s”spin Yflavour- (14.1)

It was soon realized (e.g. Dalitz 1965) that the product of these space, spin
and flavour wavefunctions for the ground-state baryons was symmetric under
interchange of any two quarks. For example, the A™T state mentioned in
section 1.2.3 is made of three u quarks (flavour symmetric) in the J© = %+ state,
which has zero orbital angular momentum and is hence spatially symmetric and a
symmetric S = % spin wavefunction. But we saw in section 7.2 that quantum field
theory requires fermions to obey the exclusion principle—i.e. the wavefunction
Yr3q should be anti-symmetric with respect to quark interchange. A simple way of
implementing this requirement is to suppose that the quarks carry a further degree
of freedom, called colour, with respect to which the 3q wavefunction can be anti-
symmetrized, as follows. We introduce a colour wavefunction with colour index
a:
Yo (¢=1,2,3).

We are here writing the three labels as ‘1, 2, 3’ but they are often referred to
by colour names such as ‘red, blue, green’; it should be understood that this
is merely a picturesque way of referring to the three basic states of this degree
of freedom and has nothing to do with real colour! With the addition of this
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degree of freedom, we can certainly form a three-quark wavefunction which is
anti-symmetric in colour by using the anti-symmetric symbol €y, , namely

1//3q,colour = €aBy Y 1#;3 1#;/ (14.2)

and this must then be multiplied into (14.1) to give the full 3q wavefunction. To
date, all known baryon states can be described in this way, i.e. the symmetry of the
‘traditional’ space—spin—flavour wavefunction (14.1) is symmetric overall, while
the required anti-symmetry is restored by the additional factor (14.2). As far as
meson (qq) states are concerned, what was previously a 7 wavefunction d*u is
now
1
V3

which we write in general as (1 /«/g)dgua. We shall shortly see the group-
theoretical significance of this ‘neutral superposition’, and of (14.2). Meanwhile,
we note that (14.2) is actually the only way of making an anti-symmetric
combination of the three ¥ ’s; it is therefore called a (colour) singlet. It is
reassuring that there is only one way of doing this—otherwise, we would have
obtained more baryon states than are physically observed. As we shall see in
section 14.2.1, (14.3) is also a colour singlet combination.

This would seem a somewhat artificial device unless there were some
physical consequences of this increase in the number of quark types—and there
are. In any process which we can describe in terms of creation or annihilation
of quarks, the multiplicity of quark types will enter into the relevant observable
cross-section or decay rate. For example, at high energies the ratio

(drul +d§u2 +d§‘u3) (14.3)

_a(ete” — hadrons)

Rl ———— (14.4)

will, in the quark parton model (see section 9.5), reflect the magnitudes of the
individual quark couplings to the photon:

R = Zeﬁ (14.5)

where a runs over all quark types. For five quarks u, d, s, ¢, b with respective

2 1 1 2 1 g
charges 5,373 % —g,thls yields

Rno colour = % (14.6)

and
Reolour = Tl (14.7)

for the two cases, as we saw in section 9.5. The data (figure 14.1) rule out (14.6)
and are in good agreement with (14.7) at energies well above the b threshold and
well below the Z° resonance peak. There is an indication that the data tend to lie
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Figure 14.1. The ratio R (see (14.4)) (Montanet et al 1994).

A%
T

Figure 14.2. t decay.

above the parton model prediction: this is actually predicted by QCD via higher-
order corrections, as will be discussed in section 15.1.

A number of branching fractions also provide simple ways of measuring
the number of colours N;. For example, consider the branching fraction for
T~ — e vev; (i.e. the ratio of the rate for T~ — e~ vev; to that for all other
decays). T~ decays proceed via the weak process shown in figure 14.2, where the
final fermions can be €™ Ve, 1™ vy, or ud, the last with multiplicity N.. Thus

1

B(t7 — e vevy) & TN
C

(14.8)

Experiments give B &~ 18% and hence N, ~ 3. Similarly, the branching fraction
B(W™ — e 1) is ~ %ZNC (from f = e, u, t,uandc). Experiment gives a
value of 10.7%, so again N, ~ 3.

In chapter 9 we also discussed the Drell-Yan process in the quark parton
model: it involves the subprocess qq — 1l which is the inverse of the one in
(14.4). We mentioned that a factor of % appears in this case: this arises because

we must average over the nine possible initial gq combinations (factor é) and
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Figure 14.3. Triangle graph for 70 decay.

then sum over the number of such states that lead to the colour neutral photon,
which is three (q1q1, q2q2 and q3q3). With this factor, and using quark distribution
functions consistent with deep inelastic scattering, the parton model gives a good
first approximation to the data.

Finally, we mention the rate for 7% — yy. As will be discussed
in section 18.4, this process is entirely calculable from the graph shown in
figure 14.3 (and the one with the y’s ‘crossed’), where ‘q’ is u or d. The
amplitude is proportional to the square of the quark charges but because the 77° is
an isovector, the contributions from the uii and dd states have opposite signs (see
section 12.1.3). Thus, the rate contains a factor

(- HH* =4 (14.9)

However, the original calculation of this rate by Steinberger (1949) used a model
in which the proton and neutron replaced the u and d in the loop, in which
case the factor corresponding to (14.9) is just one (since the n has zero charge).
Experimentally the rate agrees well with Steinberger’s calculation, indicating that
(14.9) needs to be multiplied by nine, which corresponds to N = 3 identical
amplitudes of the form shown in figure 14.3.

14.2 The dynamics of colour

14.2.1 Colour as an SU(3) group

We now want to consider the possible dynamical role of colour—in other words,
the way in which the forces between quarks depend on their colours. We have
seen that we seem to need three different quark types for each given flavour. They
must all have the same mass or else we would observe some ‘fine structure’ in the
hadronic levels. Furthermore, and for the same reason, ‘colour’ must be an exact
symmetry of the Hamiltonian governing the quark dynamics. What symmetry
group is involved? We shall consider how some empirical facts suggest that the
answer is SU(3)..

To begin with, it is certainly clear that the interquark force must depend
on colour, since we do not observe ‘colour multiplicity’ of hadronic states: for
example we do not see eight other coloured ats (dfuz, d;‘ul, ...) degenerate
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with the one ‘colourless’ physical w whose wavefunction was given previously.
The observed hadronic states are all colour singlets and the force must somehow
be responsible for this. More particularly, the force has to produce only those
very restricted types of quark configuration which are observed in the hadron
spectrum. Consider again the analogy drawn in section 1.2 between isospin
multiplets in nuclear physics and in particle physics. There is one very striking

difference in the latter case: for mesons only T = 0, % and 1 occur, and for
1

’ 2 ’
stop us finding T = % 3,..., states. (In fact, such nuclear states are hard to
identify experimentally, because they occur at high excitation energy for some
of the isobars—cf figure 1.8(c)—where the levels are very dense.) The same
restriction holds for SU(3)s also—only 1’s and 8’s occur for mesons and only
1’s, 8’s and 10’s for baryons. In quark terms, this of course is what is translated
into the recipe: ‘mesons are qq, baryons are qqq’. It is as if we said, in nuclear
physics, that only A = 2 and A = 3 nuclei exist! Thus, the quark forces must
have a dramatic saturation property: apparently no qqq, no qqqq, qqqqgq, . - - states
exist. Furthermore, no qq or qq states exist either—nor, for that matter, do single
q’s or q’s. All this can be summarized by saying that the quark colour degree
of freedom must be confined, a property we shall now assume and return to in
chapter 16.

If we assume that only colour singlet states exist and that the strong
interquark force depends only on colour, the fact that qq states are seen but qq
and qq are not, gives us an important clue as to what group to associate with
colour. One simple possibility might be that the three colours correspond to
the components of an SU(2). triplet ‘¢’. The anti-symmetric, colour singlet,
three-quark baryon wavefunction of (14.2) is then just the triple scalar product
¥ 1 ¥, x ¥3, which seems satisfactory. But what about the meson wavefunction?
Mesons are formed of quarks and anti-quarks, and we recall from sections 12.1.3
and 12.2 that anti-quarks belong to the complex conjugate of the representation
(or multiplet) to which quarks belong. Thus, if a quark colour triplet wavefunction
Y transforms under a colour transformation as

baryons only T = 0 1 and %, while in nuclei there is nothing in principle to

Vg — Y, = vcjyx/fﬂ (14.10)

where V(U is a 3 x 3 unitary matrix appropriate to the 7 = 1 representation of
SU(2) (cf (12.48) and (12.49)), then the wavefunction for the ‘anti’-triplet is v/,
which transforms as

Vo =y = Vv (14.11)

Given this information, we can now construct colour singlet wavefunctions for
mesons, built from qq. Consider the quantity (cf (14.3)) )", ¥y where ¥*
represents the anti-quark and ¢ the quark. This may be written in matrix notation
as ¥y where the ¥ as usual denotes the transpose of the complex conjugate
of the column vector . Then, taking the transpose of (14.11), we find that 1,04’
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transforms by

yi— ¢t =y tvDr (14.12)
so that the combination ¥ 7 transforms as
vy — vy =y TVOTVDy = gy (14.13)

where the last step follows since V1 is unitary (compare (12.58)). Thus, the
product is invariant under (14.10) and (14.11)—that is, it is a colour singlet, as
required. This is the meaning of the superposition (14.3).

All this may seem fine, but there is a problem. The three-dimensional
representation of SU(2), which we are using here has a very special nature: the
matrix V(I can be chosen to be real. This can be understood ‘physically’ if
we make use of the great similarity between SU(2) and the group of rotations
in three dimensions (which is the reason for the geometrical language of isospin
‘rotations’, and so on). We know very well how real three-dimensional vectors
transform—namely by an orthogonal 3 x 3 matrix. It is the same in SU(2). It is
always possible to choose the wavefunctions ¥ to be real and the transformation
matrix VI to be real also. Since VIV is, in general, unitary, this means that it
must be orthogonal. But now the basic difficulty appears: there is no distinction
between ¥ and ¥*! They both transform by the real matrix V(). This means that
we can make SU(2) invariant (colour singlet) combinations for qq states, and for
qq states just as well as for qq states—indeed they are formally identical. But such
‘diquark’ (or ‘anti-diquark’) states are not found and hence—by assumption—
should not be colour singlets.

The next simplest possibility seems to be that the three colours correspond to
the components of an SU(3), triplet. In this case the quark colour wavefunction
Y, transforms as (cf (12.74))

v -y =Wy (14.14)
where W is a special unitary 3 x 3 matrix parametrized as
W = exp(ia - 1/2), (14.15)
and ¥ transforms as
yh =y =yWh (14.16)

The proof of the invariance of ¥y goes through as in (14.13), and it can be
shown (problem 14.1(a)) that the anti-symmetric 3q combination (14.2) is also an
SU(3), invariant. Thus, both the proposed meson and baryon states are colour
singlets. It is not possible to choose the A’s to be pure imaginary in (14.15)
and thus the 3 x 3 W matrices of SU(3). cannot be real, so that there is a
distinction between ¥ and ¥*, as we learned in section 12.2. Indeed, it can
be shown (Carruthers (1966, chapter 3), Jones (1990, chapter 8), and see also
problem 14.1(b)) that, unlike the case of SU(2), triplets, it is not possible to form
an SU(3), colour singlet combination out of two colour triplets qq or antitriplets
qq. Thus, SU(3). seems to be a possible and economical choice for the colour

group.
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14.2.2 Global SU(3). invariance and ‘scalar gluons’

As previously stated, we are assuming, on empirical grounds, that the only
physically observed hadronic states are colour singlets—and this now means
singlets under SU(3).. What sort of interquark force could produce this dramatic
result? Consider an SU(2) analogy again: the interaction of two nucleons
belonging to the lowest (doublet) representation of SU(2). Labelling the states
by an isospin T, the possible T values for two nucleons are 7 = 1 (triplet) and
T = 0 (singlet). There is a simple isospin-dependent force which can produce a
splitting between these states—namely VT - T2, where the ‘1’ and ‘2’ refer to
the two nucleons. The total isospinis T = %(r 1 + T2) and we have

T?=1@t+2t a+1) =13 +211 - 12 +3) (14.17)
whence
71T, =2T2-3. (14.18)
In the triplet state T2 = 2 and in the singlet state T2 = 0. Thus,

(r1-t)r=1=1 (14.19)
(t1-12)7=0= —3 (14.20)

and if V is positive, the T = 0 state is pulled down. A similar thing happens in
SU(3)¢. Suppose this interquark force depended on the quark colours via a term
proportional to

Al Ao (14.21)

Then, in just the same way, we can introduce the total colour operator

F=1R1+21) (14.22)
so that
FZ=1d+20 2 +1) (14.23)
and
A A =2F2 2% (14.24)

where k% = k% =2 say. Here A= Zzzl ()2 is found (see (12.75)) to have
the value 16/3 (the unit matrix being understood). The operator F? commutes
with all components of A1 and A (as T2 does with 7; and T7) and represents the
quadratic Casimir operator C> of SUQ3). (see section M5 of appendix M), in the
colour space of the two quarks considered here. The eigenvalues of Ca play a very
important role in SU(3)., analogous to that of the total spin/angular momentum
in SU(2). They depend on the SU(3), representation—indeed, they are one of the
defining labels of SU(3) representations in general (see section M.5). Two quarks,
each in the representation 3., combine to give a 6.-dimensional representation and
a 37 (see problem 14.1(b), and Jones (1990, chapter 8)). The value of éz for the
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sextet 6. representation is 10/3 and for the 3} representation is 4/3. Thus the
‘A1 - A2’ interaction will produce a negative (attractive) eigenvalue —8/3 in the 3}
states, but a repulsive eigenvalue +4/3 in the 6 states for two quarks.

The maximum attraction will clearly be for states in which F? is zero. This is
the singlet representation 1.. Two quarks cannot combine to give a colour singlet
state, but we have seen in section 12.2 that a quark and an anti-quark can: they
combine to give 1. and 8.. In this case (14.24) is replaced by

Acd=2F2 -1 +ad (14.25)

where ‘1’ refers to the quark and ‘2’ to the anti-quark. Thus, the ‘A - A2’
interaction will give a repulsive eigenvalue +2/3 in the 8. channel, for which
é‘z = 3, and a ‘maximally attractive’ eigenvalue —16/3 in the 1. channel, for
a quark and an anti-quark.

In the case of baryons, built from three quarks, we have seen that when two
of them are coupled to the 3} state, the eigenvalue of A - A, is —8/3, one-half
of the attraction in the gq colour singlet state, but still strongly attractive. The
(qq) pair in the 3} state can then couple to the remaining third quark to make the
overall colour singlet state (14.2), with maximum binding.

Of course, such a simple potential model does not imply that the energy
difference between the 1. states and all coloured states is infinite, as our strict
‘colour singlets only’ hypothesis would demand, and which would be one (rather
crude) way of interpreting confinement. Nevertheless, we can ask: what single
particle exchange process between quark (or anti-quark) colour triplets produces
a A1 - Ay type of term? The answer is the exchange of an SU(3). octet (8.) of
particles, which (anticipating somewhat) we shall call gluons. Since colour is an
exact symmetry, the quark wave equation describing the colour interactions must
be SU(3). covariant. A simple such equation is

. Aa
(id —myy = 8s7 Aa¥ (14.26)

where gs is a ‘strong charge’ and A, (a =1, 2, ..., 8) is an octet of scalar ‘gluon
potentials’. Equation (14.26) may be compared with (13.92): in the latter, A,
appears on the right-hand side, because the gauge field quanta are vectors rather
than scalars. In (14.26), we are dealing at this stage only with a global SU(3)
symmetry, not a local SU(3) gauge symmetry, and so the potentials may be taken
to be scalars, for simplicity. As in (13.94), the vertex corresponding to (14.26) is

—igiha/2. (14.27)

(14.27) differs from (13.94) simply in the absence of the y* factor, due to the
assumed scalar, rather than vector, nature of the ‘gluon’ here. When we put two
such vertices together and join them with a gluon propagator (figure 14.4), the
SU(3). structure of the amplitude will be

Ma, M AL A2

Sy — = — . —= 14.28
) ab2 2 2 ( )
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Figure 14.4. Scalar gluon exchange between two quarks.

the §,5 arising from the fact that the freely propagating gluon does not change its
colour. This interaction has exactly the required ‘A - A2’ character in the colour
space.

14.2.3 Local SU(3). invariance: the QCD Lagrangian

It is, of course, tempting to suppose that the ‘scalar gluons’ introduced in (14.26)
are, in fact, vector particles, like the photons of QED. Equation (14.26) then

becomes ;)
G —m)yy = gsj“Am (14.29)
as in (13.92), and the vertex (14.27) becomes
A
—igsé’y“ (14.30)

as in (13.94). One motivation for this is the desire to make the colour dynamics
as much as possible like the highly successful theory of QED, and to derive the
dynamics from a gauge principle. As we have seen in the last chapter, this involves
the simple but deep step of supposing that the quark wave equation is covariant
under local SU(3). transformations of the form

¥ — ¥ = exp(igsa(x) - A/2)). (14.31)

This is implemented by the replacement
—
Oy — O + 1g57Aau(x) (14.32)

in the Dirac equation for the quarks, which leads immediately to (14.29) and the
vertex (14.30).

Of course, the assumption of local SU(3). covariance leads to a great deal
more: for example, it implies that the gluons are massless vector (spin-1) particles
and that they interact with themselves via three-gluon and four-gluon vertices,
which are the SU(3). analogues of the SU(2) vertices discussed in section 13.5.2.
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The most compact way of summarizing all this structure is via the Lagrangian,
most of which we have already introduced in chapter 13. Gathering together
(13.105) and (13.174) (adapted to SU(3).), we write it out here for convenience:

Lqcp = Z Q5.0 — mp)apdrp — L Fap FI

flavours f
1o A
- E(B,,A’;)(&,,AZ) + 811 DL i (14.33)

In (14.33), repeated indices are, as usual, summed over: « and B are SU(3).-
triplet indices running from 1 to 3, and a, b are SU(3).-octet indices running from
1 to 8. The covariant derivatives are defined by

(ﬁu)aﬂ = a,u(saﬁ + igs%()\a)aﬁ-’&a,u (14.34)
when acting on the quark SU(3),. triplet, as in (13.87), and by
(Dy)ab = dudab + gs feabAcy (14.35)

when acting on the octet of ghost fields. For the second of these, note that the
matrices representing the SU(3) generators in the octet representation are as given
in (12.84), and these take the place of the ‘A/2’ in (14.34) (compare (13.175) in
the SU(2) case). We remind the reader that the last two terms in (14.33) are the
gauge-fixing and ghost terms, respectively, appropriate to a gauge field propagator
of the form (13.103) (with §;; replaced by 45 here). The Feynman rules for tree
graphs following from (14.33) are given in appendix Q.

In arriving at (14.33) we have relied essentially on the ‘gauge principle’
(invariance under a local symmetry) and the requirement of renormalizability
(to forbid the presence of terms with mass dimension higher than four). The
renormalizability of such a theory was proved by ’t Hooft (1971a, b). However,
there is, in fact, one more gauge invariant term of mass dimension four which can
be written down, namely

2
Lo = %ewg E1v o (14.36)

The factors in front of the ‘e F'F’ are chosen conventionally. In the U(1) case of
QED, where the summation on a is absent, such a term is proportional to E - B
(problem 14.2). This violates both parity and time-reversal symmetry: under P,
E — —E and B — B, whileunder T, E — E and B — —B. The same is true
of (14.36). Experimentally, however, we know that strong interactions conserve
both P and T to a high degree of accuracy. The coefficient 6 is therefore required
to be small.

The reader may wonder whether the ‘0 term’ (14.36) should give rise to a
new Feynman rule. The answer to this is that (14.36) can actually be written as a
total divergence:

€uvpo FIVEPT = 9, K" (14.37)
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where
[2/1 = 26MVpaAav(8pAaa - %gsfabcAprco)' (14.38)

Any total divergence in the Lagrangian can be integrated to give only a ‘surface’
term in the quantum action, which can usually be discarded, making conventional
assumptions about the fields going to zero at infinity. There are, however, field
configurations (‘instantons’) such that the contribution of the 6 term does not
vanish. These configurations are not reachable in perturbation theory, so no
perturbative Feynman rules are associated with (14.36). We refer the reader to
Cheng and Li (1984, chapter 16), or to Weinberg (1996, section 23.6), for further
discussion of the 6 term.

Elegant and powerful as the gauge principle may be, however, any theory
must ultimately stand or fall by its success, or otherwise, in explaining the
experimental facts. And this brings us to a central difficulty. We have
one well-understood and reliable calculational procedure, namely renormalized
perturbation theory. However, we can only use perturbation theory for relatively
weak interactions, whereas QCD is supposed to be a strong interaction theory.
How can our perturbative QED techniques possibly be used for QCD? Despite
the considerable formal similarities between the two theories, which we have
emphasized, they differ in at least one crucial respect: the fundamental quanta
of QED (leptons and photons) are observed as free particles but those of QCD
(quarks and gluons) are not. It seems that in order to compare QCD with
data we shall inevitably have to reckon with the complex non-perturbative
strong interaction processes (‘confinement’) which bind quarks and gluons into
hadrons—and the underlying simplicity of the QCD structure will be lost.

We must now recall from chapter 7 the very considerable empirical success
of the parton model, in which the interactions between the partons (now
interpreted as quarks and gluons) were totally ignored! Somehow it does seem
to be the case that in deep inelastic scattering—or, more generally, ‘hard’, high-
energy, wide-angle collisions—the hadron constituents are very nearly free and
the effective interaction is relatively weak. However, we are faced with an almost
paradoxical situation, because we also know that the forces are indeed so strong
that no-one has yet succeeded in separating completely either a quark or a gluon
from a hadron, so that they emerge as free particles. The resolution of this
unprecedented mystery lies in the fundamental feature of non-Abelian gauge
theories called ‘asymptotic freedom’, whereby the effective coupling strength
becomes progressively smaller at short distances or high energies. This property
is the most compelling theoretical motivation for choosing a non-Abelian gauge
theory for the strong interactions, and it enables a quantitative perturbative
approach to be followed (in appropriate circumstances) even in strong interaction
physics.

A proper understanding of how this works necessitates a considerable
detour, however, into the physics of renormalization. In particular, we need to
understand the important group of ideas going under the general heading of the
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‘renormalization group’ and this will be the topic of chapter 15. For the moment
we proceed with a discussion of the perturbative applications of QCD at the
tree-level, justification being provided by the assumed property of asymptotic
freedom.

14.3 Hard scattering processes and QCD tree graphs

14.3.1 Two-jet events in pp collisions

In chapter 9 of volume 1 we introduced the parton model and discussed how
it successfully interpreted deep inelastic and large-Q? data in terms of the free
point-like hadronic ‘partons’. This was a model rather than a theory: the theme
of most of the rest of this chapter, and the following one, will be the way in
which the theory of QCD both justifies the parton model and predicts observable
corrections to it. In other words, the partons are now to be identified precisely
with the QCD quanta (quarks, anti-quarks and gluons). We shall usually continue
to use the language of partons, however, rather than—say—that of hadronic
‘constituents’, for the following reason. It is only at relatively low energies
and/or momentum transfers that the (essentially non-relativistic) concept of a
fixed number of constituents in a bound state is meaningful. At relativistic
energies and short distances, pair creation and other fluctuation phenomena are
so important that it no longer makes sense to think so literally of ‘what the bound
state is made of’—as we shall see, when we look more closely at it (with larger
0?), more and more ‘bits’ are revealed. In this situation we prefer ‘partons’ to
‘constituents’, since the latter term seems to carry with it more of the traditional
connotation of a fixed number.

In section 9.5 we briefly introduced the idea of jets in eTe™ physics: well-
collimated sprays of hadrons, apparently created as a quark—anti-quark pair,
separate from each other at high speed. The dynamics at the parton level,
ete™ — qq, was governed by QED. We also saw, in section 9.4, how in
hadron-hadron collisions the hadrons acted as beams of partons—quarks, anti-
quarks and gluons—which could produce 1l pairs by the inverse process gq — 1l:
the force acting here is electromagnetic, and well described in the lowest order
of perturbative QED. However, it is clear that collisions between the hadronic
partons should by no means be limited to QED-induced processes. On the
contrary, we expect to see strong interactions between the partons, determined
by QCD. In general, therefore, the data will be complicated and hard to interpret,
due to all these non-perturbative strong interactions. But the asymptotic freedom
property (assumed for the moment) implies that at short distances we can use
perturbation theory even for ‘strong interactions’. Thus we might hope that the
identification and analysis of short-distance parton—parton collisions will lead to
direct tests of the tree-graph structure of QCD.

How are short-distance collisions to be identified experimentally? The
answer is: in just the same way as Rutherford distinguished the presence of a
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Figure 14.5. Parton—parton collision.

small heavy scattering centre (the nucleus) in the atom—by looking at secondary
particles emerging at large angles with respect to the beam direction. For each
secondary particle we can define a transverse momentum pt = p sinf where p
is the particle momentum and 6 is the emission angle with respect to the beam
axis. If hadronic matter were smooth and uniform (cf the Thomson atom), the
distribution of events in pt would be expected to fall off very rapidly at large pr
values—perhaps exponentially. This is just what is observed in the vast majority
of events: the average value of pt measured for charged particles is very low
({pt) ~ 0.4 GeV) but in a small fraction of collisions the emission of high-pr
secondaries is observed. They were first seen (Biisser et al 1972, 1973, Alper et
al 1973, Banner et al 1983) at the CERN ISR (CMS energies 30-62 GeV) and
were interpreted in parton terms as follows. The physical process is viewed as a
two-step one. In the first stage (figure 14.5) a parton from one hadron undergoes
a short-distance collision with a parton from the other, leading in lowest-order
perturbation theory to two wide-angle partons emerging at high speed from the
collision volume. This is a ‘hard-scattering’ process.

As the two partons separate, the effective interaction strength increases and
the second stage is entered, that in which the coloured partons turn themselves—
under the action of the strong colour-confining force—into colour singlet hadrons.
As yet we do not have a quantitative dynamical understanding of this second (non-
perturbative) stage, which is called parton fragmentation. Nevertheless, we can
argue that for the forces to be strong enough to produce the observed hadrons, the
dominant processes in the fragmentation stage must involve small momentum
transfer. Thus we have a picture in which two fairly well-collimated jets of
hadrons occur, each having a total 4-momentum approximately equal to that of
the parent parton (figure 14.6). Jets will be the observed hadronic manifestation
of the underlying QCD processes—just as they are in the analogous QED process
of ete™ annihilation into hadrons, discussed in section 9.5.

We now face the experimental problem of picking out from the enormous
multiplicity of total events just these hard scattering ones, in order to analyze them
further. Early experiments used a trigger based on the detection of a single high-
pt particle. But it turns out that such triggering really reduces the probability of
observing jets, since the probability that a single hadron in a jet will actually carry
most of the jet’s total transverse momentum is quite small (Jacob and Landshoff
1978, Collins and Martin 1984, chapter 5). It is much better to surround the
collision volume with an array of calorimeters which measure the total energy
deposited. Wide-angle jets can then be identified by the occurrence of a large
amount of total transverse energy deposited in a number of adjacent calorimeter
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Figure 14.6. Parton fragmentation into jets.

cells: this is then a ‘jet trigger’. The importance of calorimetric triggers was
first emphasized by Bjorken (1973), following earlier work by Berman et al
(1971). The application of this method to the detection and analysis of wide-
angle jets was first reported by the UA2 collaboration at the CERN pp collider
(Banner et al 1982). An impressive body of quite remarkably clean jet data was
subsequently accumulated by both the UA1 and UA2 collaborations (at /s = 546
and 630 GeV) and by the CDF and DO collaborations at the FNAL Tevatron
collider (/s = 1.8 TeV).
For each event the total transverse energy Y . Et is measured where

Z Er = Z E;sin6;. (14.39)
i

E; is the energy deposited in the ith calorimeter cell and 6; is the polar angle
of the cell centre: the sum extends over all cells. Figure 14.7 shows the
> Et distribution observed by UAZ2: it follows the ‘soft’ exponential form for
> Et < 60 GeV but thereafter departs from it, showing clear evidence of the
wide-angle collisions characteristic of hard processes.

As we shall see shortly, the majority of ‘hard’ events are of two-jet type,
with the jets sharing the ) EtT approximately equally. Thus, a ‘local’ trigger
set to select events with localized transverse energy > 30 GeV and/or a ‘global’
trigger set at > 60 GeV can be used. At /s > 500-600 GeV, there is plenty of
energy available to produce such events.

The total /s value is important for another reason. Consider the kinematics
of the two-parton collision (figure 14.5) in the pp CMS. As in the Drell-Yan
process of section 9.4, the right-moving parton has 4-momentum

x1p1 =x1(P,0,0, P) (14.40)
and the left-moving one

where P = /s/2 and we are neglecting parton transverse momenta, which are
approximately limited by the observed (pT) value (~ 0.4 GeV, and thus negligible
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Figure 14.7. Distribution of the total transverse energy > . ET observed in the UA2 central
calorimeter (DiLella 1985).

on this energy scale). Consider the simple case of 90° scattering, which requires
(for massless partons) x; = xj, equal to x say. The total outgoing transverse
energy is then 2x P = x./s. If this is to be greater than 50 GeV, then partons
with x > 0.1 will contribute to the process. The parton distribution functions are
large at these relatively small x values, due to sea quarks (section 9.3) and gluons
(figure 14.13), and thus we expect to obtain a reasonable cross-section.

What are the characteristics of jet events? When > Et is large enough
(> 150 GeV), it is found that essentially all of the transverse energy is indeed split
roughly equally between two approximately back-to-back jets. A typical such
event is shown in figure 14.8. Returning to the kinematics of (14.40) and (14.41),
x1 will not, in general, be equal to x>, so that—as is apparent in figure 14.8—
the jets will not be collinear. However, to the extent that the transverse parton
momenta can be neglected, the jets will be coplanar with the beam direction,
i.e. their relative azimuthal angle will be 180°. Figure 14.9 shows a number of
examples in which the distribution of the transverse energy over the calorimeter
cells is analysed as a function of the jet opening angle 6 and the azimuthal angle
¢. It is strikingly evident that we are seeing precisely a kind of ‘Rutherford’
process or—to vary the analogy—we might say that hadronic jets are acting as the
modern counterpart of Faraday’s iron filings, in rendering visible the underlying
field dynamics!

We may now consider more detailed features of these two-jet events—in

Copyright 2004 IOP Publishing Ltd



YA VA
YAV a4

YA
va Y

A
AN

E~100 Gev

Figure 14.8. Two-jet event. Two tightly collimated groups of reconstructed charged tracks
can be seen in the cylindrical central detector of UA1, associated with two large clusters of
calorimeter energy depositions (Geer 1986).

particular, the expectations based on QCD tree graphs. The initial hadrons provide
wide-band beams! of quarks, anti-quarks and gluons; thus, we shall have many
parton subprocesses, such as qq — qq, qq — qq, qq — gg, g2 — gg, etc.
The most important, numerically, for a pp collider are qq — qq, gg — gq and
gg — gg. The cross-section will be given, in the parton model, by a formula of
the Drell-Yan type, except that the electromagnetic annihilation cross-section

o(qq— pntp) =4na’/3¢> (14.42)

is replaced by the various QCD subprocess cross-sections, each one being
weighted by the appropriate distribution functions. At first sight this seems to
be a very complicated story, with so many contributing parton processes. But
a significant simplification comes from the fact that in the CMS of the parton
collision, all processes involving one gluon exchange will lead to essentially
the same dominant angular distribution of Rutherford-type, ~ sin™ /2, where
0 is the parton CMS scattering angle (recall section 2.6!). This is illustrated
in table 14.1 (adapted from Combridge et al (1977)), which lists the different
relevant spin-averaged, squared, one-gluon-exchange matrix elements |M|?,

! In the sense that the partons in hadrons have momentum or energy distributions, which are
characteristic of their localization to hadronic dimensions.
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Figure 14.9. Four transverse energy distributions for events with ) ET > 100 GeV, in the
0, ¢ plane (UA2, DiLella 1985). Each bin represents a cell of the UA2 calorimeter. Note
that the sum of the ¢’s equals 180° (mod 360°).

where the parton differential cross-section is given by (cf (6.129))

do _na
dcos® ~ 2§

2
S IM|. (14.43)

Here §, f and # are the subprocess invariants, so that
§=(xip1+x2p2)? = xixas  (cf (9.85)). (14.44)

Continuing to neglect the parton transverse momenta, the initial parton
configuration shown in figure 14.5 can be brought to the parton CMS by a Lorentz
transformation along the beam direction, the outgoing partons then emerging
back-to-back at an angle 6 to the beam axis, so 7 o« (1 — cos#) o sin®#/2. Only
the terms in (f)~2 ~ sin~*6/2 are given in table 14.1. We note that the §, 7, i
dependence of these terms is the same for the three types of process (and is, in
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Table 14.1. Spin-averaged squared matrix elements for one-gluon exchange (7-channel)
processes.

Subprocess IM|?

qq — qq 4 <§2+a2)
qq — qq EANEE

82, 12
qg — qg oo

ee>ee 35S+

fact, the same as that found for the 1y exchange process eTe™ — u™u~—see
problem 8.18, converting do/dt into do/d cos 6). Figure 14.10 shows the two-jet
angular distribution measured by UA1 (Arnison et al 1985). The broken curve is
the exact angular distribution predicted by all the QCD tree graphs—it actually
follows the sin~* /2 shape quite closely.

It is interesting to compare this angular distribution with the one predicted on
the assumption that the exchanged gluon is a spinless particle, so that the vertices
have the form ‘uu’ rather than ‘uy,u’. Problem 14.3 shows that, in this case,
the 1/72 factor in the cross-section is completely cancelled, thus ruling out such a
model.

This analysis surely constitutes compelling evidence for elementary hard
scattering events proceeding via the exchange of a massless vector quantum. It is
possible to go much further, in fact. Anticipating our later discussion, the small
discrepancy between ‘tree-graph’ theory (which is labelled ‘leading-order QCD
scaling curve’ in figure 14.10) and experiment can be accounted for by including
corrections which are of higher order in «s. To study such deviations from the
‘Rutherford’ behaviour it is convenient (Combridge and Maxwell 1984) to plot
the data in terms of the variable

1+ cosé
X=-—— (14.45)
1 —cosf
which is such that
do do dcos6 1 , do
— = =——(1—cosf)"——. (14.46)
dy dcosf dy 2 dcos6

The singular Rutherford term in do'/d cos# is therefore removed, and as 6 — 0,
do/dx — constant. Figure 14.11 shows a jet—jet angular distribution from the DO
collaboration (H Weerts 1994), plotted this way. The broken curve is the ‘naive’
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Figure 14.10. Two-jet angular distribution plotted against cos & (Arnison et al 1985).

parton model prediction and is clearly not in agreement with the data. The full
curve includes QCD corrections beyond the tree level (Ellis et al 1992), involving
the ‘running’ of the coupling constant oy and ‘scaling violation’ in the parton
distributions, both of which effects will be discussed later. The corrections lead

to good agreement with experiment.

The fact that the angular distributions of all the subprocesses are so similar
allows further information to be extracted from these two-jet data. In general, the

parton model cross-section will have the form (cf (9.92))

do 3 Fa(x1) Fp(x2) 3 doab—scd

dx;dx>dcos® X1 b dcosf
a,b c,d

(14.47)

where F,(x1)/x1 is the distribution function for partons of type ‘a’ (q, q or g), and
similarly for Fy(x2)/x2. Using the near identity of all do/dcos@’s, and noting

the numerical factors in table 14.1, the sums over parton types reduce to

Hex) + 5lg(x1) + GG Hg(x2) + 3Ig(x2) + G (x2)]} (14.48)

where g(x), g(x) and g(x) are the gluon, quark and anti-quark distribution

functions. Thus, effectively, the weighted distribution function?

F(x)

—— =g+ g () + g (x)] (14.49)

2 The % reflects the relative strengths of the quark—gluon and gluon—gluon couplings in QCD.
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Figure 14.11. Distribution of x from the DO collaboration (Weerts 1994) compared with
QCD predictions (Ellis et al 1992; figure from Ellis et al 1996).

is measured (Combridge and Maxwell 1984); in fact, with the weights as in
(14.48),

o _ F(x1) F(x) dogg g
dx;dxadcos®  x; x» dcoséd

(14.50)

x1 and x, are kinematically determined from the measured jet variables: from
(14.44),

X1Xp = §/s (14.51)

where § is the invariant [mass]2 of the two-jet system and
X1 — X2 =2PL/\/s (cf (9.83)) (14.52)

with P the total two-jet longitudinal momentum. Figure 14.12 shows F'(x)/x
obtained in the UA1 (Arnison et al 1984) and UA2 (Bagnaia et al 1984)
experiments.  Also shown in this figure is the expected F(x) based on
contemporary fits to the deep inelastic neutrino scattering data at Q% = 20 GeV?>
and 2000 GeV? (Abramovicz et al 1982a, b, 1983)—the reason for the change
with Q2 will be discussed in section 15.7. The agreement is qualitatively very
satisfactory. Subtracting the distributions for quarks and anti-quarks as found in
deep inelastic lepton scattering, UA1 were able to deduce the gluon distribution
function g(x) shown in figure 14.13. It is clear that gluon processes will dominate
at small x—and even at larger x they will be important because of the colour
factors in table 14.1.
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Figure 14.12. Effective distribution function measured from two-jet events (Arnison et
al 1984 and Bagnaia ef al 1984). The broken and chain curves are obtained from deep
inelastic neutrino scattering. Taken from DiLella (1985).

14.3.2 Three-jet events

Although most of the high Y Et events at hadron colliders are two-jet events, in
some 10-30% of the cases the energy is shared between three jets. An example
is included as (d) in the collection of figure 14.9: a clearer one is shown in
figure 14.14. In QCD such events are interpreted as arising from a 2 parton
— 2 parton + 1 gluon process of the type gg — ggg, gq — ggq, etc. Once
again, one can calculate (Kunszt and Piétarinen 1980, Gottschalk and Sivers 1980,
Berends et al 1981) all possible contributing tree graphs, of the kind shown in
figure 14.15, which should dominate at small «g. They are collectively known
as QCD single-bremsstrahlung diagrams. Analysis of triple jets which are well
separated both from each other and from the beam directions shows that the data
are in good agreement with these lowest-order QCD predictions. For example,
figure 14.16 shows the production angular distribution of UA2 (Appel et al 1986)
as a function of cos 6*, where 6* is the angle between the leading (most energetic)
jet momentum and the beam axis, in the three-jet CMS. It follows just the same
sin~*6* /2 curve as in the two-jet case (the data for which are also shown in the
figure), as expected for massless quantum exchange—the particular curve is for
the representative process gg — ggg.

Another qualitative feature is that the ratio of three-jet to two-jet events is
controlled, roughly, by « (compare figure 14.15 with the one-gluon exchange
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Figure 14.13. The gluon dustribution function g(x) extracted from the effective structure
function F(x) by subtracting the expected contribution from the quarks and anti-quarks
(Geer 1986).

amplitudes of table 14.1). Thus, a crude estimate of «g could be obtained by
comparing the rates of three-jet to two-jet events in pp collisions (see figure 14.22
for a similar ratio in eTe™ annihilation). Other interesting predictions concern
the characteristics of the three-jet final state (for example, the distributions in
the jet energy variables). At this point, however, it is convenient to leave pp
collisions and consider instead three-jet events in ee™ collisions, for which the
complications associated with the initial state hadrons are absent.

14.4 Three-jet events in ete™ annihilation

Three-jet events in eTe™ collisions originate, according to QCD, from gluon
bremsstrahlung corrections to the two-jet parton model process eTe™ — y* —
qq, as shown in figure 14.17.3 This phenomenon was predicted by Ellis et al
(1976) and subsequently observed by Brandelik er al (1979) with the TASSO
detector at PETRA and Barber et al (1979) with MARK-J] at PETRA, thus
providing early encouragement for QCD. The situation here is, in many ways,
simpler and cleaner than in the pp case: the initial state ‘partons’ are perfectly
physical QED quanta and their total 4-momentum is zero, so that the three jets

3 This is assuming that the total ete™ energy is far from the 70 mass; if not, the contribution from
the intermediate Z0 must be added to that from the photon.
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Figure 14.14. Three-jet event in the UA1 detector, and the associated transverse energy
flow plot (Geer 1986).

q q g g g g
g g g
g g
q q g g q q
Figure 14.15. Some tree graphs associated with three-jet events.

have to be coplanar; further, there is only one type of diagram compared to the
large number in the pp case and much of that diagram involves the easier vertices
of QED. Since the calculation of the cross-section predicted from figure 14.17
is not only relevant to three-jet production in eTe™ collisions but also to QCD
corrections to the fotal eTe™ annihilation cross-section, and to scaling violations
in deep inelastic scattering as well, we shall now consider it in some detail. It is
important to emphasize at the outset that quark masses will be neglected in this
calculation.

The quark, anti-quark and gluon 4-momenta are pi, p> and p3 respectively,
as shown in figure 14.17; the e~ and et 4-momenta are k; and k». The cross-
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Figure 14.16. The distribution of cos 8*(e), the angle of the leading jet with respect to
the beam line (normalized to unity at cos§* = 0), for three-jet events in pp collisions
(Appel et al 1986). The distribution for two-jet events is also shown (o). The full curve is
a parton model calculation using the tree-graph amplitudes for gg — ggg, and cut-offs
in transverse momentum and angular separation to eliminate divergences (see remarks

following equation (14.68)).
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Figure 14.17. Gluon brehmsstrahlung corrections to two-jet parton model process.

section is then (cf (6.110) and (6.112))

1y |Magel* &pi & pa & p3
do = 8" (ki +ky—p1—p2— 14.53
7= Ty (k1 + k2 = p1 — p2 — p3) 302 2E, 2E, 2E ( )
where (neglecting all masses)
2
€€ gs _ _ Ac (Pl ]193)
Mqgeg = ———-v(k2) “u(k1)<u( 1) v(p2)
qdg 02 14 p J/v 201 p3 *Yuvip
- A ( +
(s P )) ¥ (Mac (14.54)
2 2pps

and Q% = 4E? is the square of the total ete™ energy, and also the square of
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the virtual photon’s 4-momentum Q, and e, (in units of e) is the charge of a
quark of type ‘a’. Note the minus sign in (14.54): the anti-quark coupling is
—gs. In (14.54), €*V()) is the polarization vector of the outgoing gluon with
polarization A; a. is the colour wavefunction of the gluon (¢ = 1,---,8) and
Ac is the corresponding Gell-Mann matrix introduced in section 12.2; the colour
parts of the q and q wavefunctions are understood to be included in the u and
v factors; and (p; + p3)/2p1 - p3 is the virtual quark propagator (cf (L.6) in
appendix L of volume 1) before gluon radiation, and similarly for the anti-quark.
Since the colour parts separate from the Dirac trace parts, we shall ignore them
to begin with and reinstate the result of the colour sum (via problem (14.4)) in
the final answer (14.68). Averaging over et spins and summing over final-state
quark spins and gluon polarization A (using (8.170), and noting the discussion
after (13.127)), we obtain (problem 14.5)
4,22
}1 > Mo = =g o L (k) Huw(pi 2. p3) (14.55)
spins, A

where the lepton tensor is, as usual (equation (8.118)),
L™ (ky, ko) = 2(k{‘k§ + k‘fk’; — ki - kog"") (14.56)

and the hadron tensor is

H;w(Pl, D2, P3) = [Lp.v(pZ: p3) — L;w(Plv p1) + L,uv(ph p2)]

P12
+

[L,uv(ph p3) — LMU(va p2) + L,uv(ph p2)]
p2-p3

pP1- P2
(p1-p3)(p2- p3)
+ Lp,v(pZ’ p3)] (14.57)

(2L (p1, p2) + Lyuv(p1, p3)

Combining (14.56) and (14.57) allows complete expressions for the five-fold
differential cross-section to be obtained (Ellis ef al 1976).

Data are generally not extensive enough to permit such differential cross-
sections to be studied and so one integrates over three angles describing the
orientation (relative to the beam axis) of the production plane containing the three
jets. After this integration, the (doubly differential) cross-section is a function of
two independent Lorentz invariant variables, which are conveniently taken to be
two of the three s;; defined by

sij = (pi + pj)*. (14.58)
Since we are considering the massless case pl.2 = 0 throughout, we may also write

Sij = 2p,' “Pj- (1459)
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Figure 14.18. Virtual photon decaying to qqg.

These variables are linearly related by

2(p1-p2+p2-p3+tpi-p)=0° (14.60)
as follows from
(p1+ p2 + p3)? = 0? (14.61)
and pi2 = 0. The integration yields (Ellis et al 1976)
d? 2 1 202
0 gL (3, 0m 200 (14.62)
dsi3dsys 3 (Q%)° \s23  s13 513523

where oy = gs2/47l’.

We may understand the form of this result in a simple way, as follows. It
seems plausible that after integrating over the production angles, the lepton tensor
will be proportional to Q%g"”, all directional knowledge of the k; having been
lost. Indeed, if we use —g""L,,(p, p’) = 4p - p’ together with (14.57), we

easily find that
1 . . . 2 K K 20325
__g,wszpl Py PPy Pl 1239 S s 0%s12
4 p2-p3 pr-p3 (pr-p3)(p2-p3)  s23  S13 0 S13503

(14.63)
exactly the factor appearing in (14.62). In turn, the result may be given a
simple physical interpretation. From (7.115) we note that we can replace
—g"" by >, €*(1)e" (1) for a virtual photon of polarization A’, the " = 0
state contributing negatively. Thus, effectively, the result of doing the angular
integration is (up to constants and Q2 factors) to replace the lepton factor
(k)Y u(ky) by —ie* (1), so that F is proportional to the y* — qqdg processes
shown in figure 14.18. But these are basically the same amplitudes as the ones we
already met in Compton scattering (section 8.6). To compare with section 8.6.3,
we convert the initial-state fermion (electron/quark) into a final-state anti-fermion
(positron/anti-quark) by p — — p, and then identify the variables of figure 14.18
with those of figure 8.14(a) by

P’ — pi k' — p3 —p—>p2  §s—=>2p1-p3=s13
t— 2p1-p2 =512 u— 2ps- p3 = s23. (14.64)

Remembering that in (8.180) the virtual y had squared 4-momentum —Q?, we
see that the Compton ) IM|? of (8.180) indeed becomes proportional to the
factor (14.63), as expected.
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Figure 14.19. The kinematically allowed region in (x;) is the interior of the equilateral
triangle.

In three-body final states of the type under discussion here, it is
often convenient to preserve the symmetry between the s;;’s and use three
(dimensionless) variables x; defined by

§23 = Q2(1 — x;) and cyclic permutations. (14.65)
These are related by (14.60), which becomes
x1 +x2+x3 =2. (14.66)

An event with a given value of the set x; can then be plotted as a point in an
equilateral triangle of height 1, as shown in figure 14.19. In order to find the
limits of the allowed physical region in this x; space, and because it will be useful
subsequently, we now transform from the overall three-body CMS to the CMS
of 2 and 3 (figure 14.20). If 6 is the angle between 1 and 3 in this system, then
(problem 14.6)

x2 = (1 —x1/2) + (x1/2) cosf

x3 = (1 —x1/2) — (x1/2) cosb. (14.67)
The limits of the physical region are then clearly cos @ = 41, which correspond to
x2 = 1 and x3 = 1. By symmetry, we see that the entire perimeter of the triangle

in figure 14.19 is the required boundary: physical events fall anywhere inside the
triangle. (This is the massless limit of the classic Dalitz plot, first introduced by
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Figure 14.20. Definition of 6.

Dalitz (1953) for the analysis of K — 3m.) Lines of constant 6 are shown in
figure 14.19.

Now consider the distribution provided by the QCD bremsstrahlung process,
equation (14.62), which can be written equivalently as

R A G 2 S (14.68)
o dvrdvs 37 \ (I —xn(l —x2)

where o, is the point-like eTe~ — hadrons total cross-section of (9.100), and a
factor of four has been introduced from the colour sum (problem 14.4). The factor
in large parentheses is (14.63) written in terms of the x; (problem 14.7). The most
striking feature of (14.68) is that it is infinite as x| or x2, or both, tend to 1!

This is a quite different infinity from the ones encountered in the loop
integrals of chapters 10 and 11. No integral is involved here—the tree amplitude
itself becomes singular on the phase space boundary. We can trace the origin
of the infinity back to the denominator factors (p; - p3)71 ~ (1 —x2)~ ! and
(p2 - p3)~' ~ (1 —x1)~! in (14.54). These become zero in two distinct
configurations of the gluon momentum:

(@) p3 o pior p3 o« py (using p; = 0) (14.69)
() p3—0 (14.70)

which are easily interpreted physically. Condition (a) corresponds to a situation
in which the 4-momentum of the gluon is parallel to that of either the quark
or the anti-quark: this is called a ‘collinear divergence’ and the configuration
is pictured in figure 14.21(a). If we restore the quark masses, P12 = m% #0
and p% = m% # 0, then the factor (2p; - p3)~!, for example, becomes
((p1+ p3)* —m?)~! which only vanishes as p3 — 0, which is condition (b). The
divergence of type (a) is therefore also termed a ‘mass singularity’, as it would
be absent if the quarks had mass. Condition (b) corresponds to the emission of a
very ‘soft’ gluon (figure 14.21(b)) and is called a ‘soft divergence’. In contrast to
this, the gluon momentum p3 in type (a) does not have to be vanishingly small.
It is apparent from these figures that in either of these two cases the observed
final-state hadrons, after the fragmentation process, will in fact resemble a two-jet
configuration. Such events will be found in the regions x; ~ 1 and/or x, &~ 1 of
the kinematical plot shown in figure 14.19, which correspond to strips adjacent

Copyright 2004 IOP Publishing Ltd



T Ooooooooer - O,
(@) (b)

Figure 14.21. Gluon configurations leading to divergences of equation (14.68): (a) gluon
emitted approximately collinear with quark (or anti-quark): (b) soft gluon emission. The
events are viewed in the overall CMS.
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Figure 14.22. A compilation of three-jet fractions at different ete™ annihilation energies.
Adapted from Akrawy et al (OPAL) (1990); figure from Ellis ez al (1996).

to two of the boundaries of the triangle, and to regions near the vertices of the
triangle. Events inside the rounded triangular region should be mostly three-jet
events. To isolate them, we must keep away from the boundaries of the triangle.
The quantitative separation between two- and three-jet events is done by means
of a jet measure, which needs to be defined in such a way as to be free of soft and
collinear divergences. For example, Sterman and Weinberg (1977) defined two-
jet events to be those in which all but a fraction € of the total available energy is
contained in two cones of half-angle §. The two-jet cross-section is then obtained
by integrating the right-hand side of (14.68) over the relevant range of x; and x3.

Assuming such a separation of three- and two-jet events can be done
satisfactorily, their ratio carries important information—namely, it should be
proportional to ag! This follows simply from the extra factor of gy associated
with the gluon emissions in figure 14.15. Glossing over a number of technicalities
(for which the reader is referred to Ellis et al (1996, section 3.3)), we show in
figure 14.22 a compilation of data on the fraction of three-jet events at different
ete™ annihilation energies. The most remarkable feature of this figure is, of
course, that this fraction—and, hence, ag—changes with energy, decreasing as
the energy increases. This is, in fact, direct evidence for asymptotic freedom.
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It is now time to start our discussion of the theoretical basis for this
fundamental property.

Problems

14.1

(a) Show that the anti-symmetric 3q combination of equation (14.2) is invariant
under the transformation (14.14) for each colour wavefunction.

(b) Suppose that p, and ¢, stand for two SU(3). colour wavefunctions,
transforming under an infinitesimal SU(3). transformation via

p'=0+in-1/2)p

and similarly for g. Consider the anti-symmetric combination of their
components, given by

P293 — D342 0
p3qi—pigz | =\ 02 |;
P192 — p2q1 03

that is, Qq = €48y Pgqy. Check that the three components Q, transform
as a 3}, in the particular case for which only the parameters 71, 12, n3 and
ng are non-zero. [Note: you will need the explicit forms of the A matrices
(appendix M); you need to verify the transformation law

Q'=1—-in-1"/2)Q.]

14.2 Verify that the Lorentz-invariant ‘contraction’ €0 FHY FPO of two u()
(Maxwell) field strength tensors is proportional to E - B.

14.3 Verify that the cross-section for the exchange of a single massless scalar
gluon contains no ‘1/72’ factor.

14.4 This problem is concerned with the evaluation of the ‘colour factor’ needed
for equation (14.68). The ‘colour wavefunction’ part of the amplitude (14.54) is

T
ac(c3)x (Cl)?X(Cz) (14.71)

where c1, ¢ and c3 label the colour degree of freedom of the quark, anti-quark and
gluon respectively, and a sum on the repeated index c is understood as usual. The
x’s are the colour wavefunctions of the quark and anti-quark and are represented
by three-component column vectors: a convenient choice is

1 0 0
x(r) = 0 x(b) = 1 x(g) = 0
0 0 1
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by analogy with the spin wavefunctions of SU(2). The cross-section is obtained
by forming the modulus squared of (14.71) and summing over the colour labels
Ci.

(C)”xs( e (en) Eim ) tmlenalics)  (1472)

Y acen)x (e

€1,€2,€3

where summation is understood on the matrix indices on the x’s and A’s, which
have been indicated explicitly. In this form the expression is very similar to the
spin summations considered in chapter 8 (cf equation (8.60)). We proceed to
convert (14.72) to a trace and to evaluate it as follows:

(i) Show that
> " xse)x] (c2) = 8.

2

(i) Assuming the analogous result

Y ac(es)aj(cs) = dea

3

show that (14.72) becomes

8
1 § : 2
Z Tr()%) .
c=1

(iii) Using the A’s given in appendix M, section M.4.5, show that

8
ZTr(AC)2 = 16.
c=1

and hence that the colour factor for (14.68) is four.
14.5 Verify equation (14.55).
14.6 Verify equation (14.67).

14.7 Verify that expression (14.63) becomes the factor in large parentheses in
equation (14.68), when expressed in terms of the x;’s
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15

QCD II: ASYMPTOTIC FREEDOM, THE
RENORMALIZATION GROUP AND SCALING
VIOLATIONS IN DEEP INELASTIC SCATTERING

15.1 QCD corrections to the parton model prediction for
o(ete™ — hadrons)

We begin by considering QCD corrections (at the one-loop, O(«s), level) to the
simple parton model prediction for the total e*e™ annihilation cross-section into
hadrons (see figure 14.1). The parton model graph, shown again in figure 15.1
(assuming we are far from the Z° peak), has amplitude F,, say. The O(cs)
QCD corrections to F), are shown in figure 15.2: we denote the amplitude for
the sum of these processes by Fg v, where ‘v’ stands for ‘virtual’, since these
involve the emission and then reabsorption of gluons. The total cross-section
from these contributions is thus proportional to |F), + Fg,v|2—and this leads
to a problem. The gluon loops of figure 15.2 contain, of course, the usual
(‘ultraviolet’) divergences at large momenta. But they turn out also to diverge
as the (virtual) gluon momenta approach zero. Such ‘soft’ divergences are
usually called ‘infrared” when they occur in loops—and they are not cured by
renormalization, which is relevant to the high-energy (ultraviolet) divergence of
Feynman integrals. Renormalization has nothing to offer the infrared problem.
We ran into exactly the same trouble in chapter 11 for the case of the analogous
QED corrections, of course, but did not give any details there of how the problem
is solved. Now we need to be more explicit.

In fact, the gluon loops of figure 15.2 would also, in the limit of zero
quark mass, exhibit further (non-ultraviolet) divergences, arising from ‘collinear’
configurations of the quarks and gluons in the loops. This is, after all, not
unexpected: the gluon momenta in the loops run over all possible values,
including those which gave trouble in the real gluon emission processes of
figure 14.17, discussed in the last section of the previous chapter. Indeed, it is
the latter processes which hold the key to dealing with these troublesome soft and
collinear divergences of figure 15.2. The cure lies in a careful analysis of what
is actually meant by the total annihilation cross-section to qq. The point is that
an outgoing quark (or anti-quark) cannot be distinguished, kinematically, from
one which is accompanied by a soft or collinear gluon—just as, in the appropriate
kinematic regions, there are ambiguities between two-jet and three-jet events, as
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Figure 15.1. One-photon annihilation amplitude in eTe™ — §q.
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Figure 15.2. Virtual gluon corrections to figure 15.1.

we saw in section 14.4. Thus, to | F, +Fg v |2 should also be added the contribution
to the total cross-section due to production of soft (and collinear) gluons in these
dangerous kinematical regions. This will entail integrating (14.68) precisely over
some area (call it ) of figure 14.19 close to the triangular boundary, as defined
by a jet measure of some kind. This leads to a cross-section for the production of
real soft and collinear gluons which is given by

x1 +x2
= dxy dxs. 15.1
ohr = on gy // A= —x) 07 (b

Clearly, as the region 1 (parametrized in some way) tends to zero, (15.1) will
diverge due to the vanishing denominators (soft and collinear divergences).

This refinement hardly seems to have helped: we now have two lots of
‘infrared’ type divergences to worry about, one in | F, + Fg,v|2 and one in oy ;.
Yet now comes the miracle. Note that three terms appear when squaring out
|Fy + Fgv|?: one of order & (from | F, |?), another of order a2 (from | Fy,y|?)
and an interference term of order o2ag, which is the same order as (15.1 ). Thus
at order o’ars, (15.1) must be added precisely to this interference term—and the
wonderful fact is that their divergences cancel. The complete cross-section at
order o2as is found to be (see, for example, Pennington (1983) or Ellis et al
(1996))

o = opt(l +as/m). (15.2)

The remarkable cancellation of the soft and collinear divergences between
the real and virtual emission processes is actually a general result. The Bloch—
Nordsieck (1937) theorem states that ‘soft” singularities cancel between real and
virtual processes when one adds up all final states which are indistinguishable by
virtue of the energy resolution of the apparatus. A theorem due to Kinoshita
(1962) and Lee and Nauenberg (1964) states, roughly speaking, that mass
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singularities are absent if one adds up all indistinguishable mass-degenerate
states. If an ‘inclusive’ final state is considered (as ine*e™ — hadrons), then only
mass singularities from initial lines will remain. In the case of eTe™ annihilation,
these do not arise since the gluon cannot be attached to the e™ or e~ lines. But
in the case of deep inelastic scattering, when effectively a quark or anti-quark
appears in the initial state, such uncancelled mass singularities will occur, as
we shall see in section 15.7.1. They are of great importance physically, being
essentially the origin of scaling violations in deep inelastic scattering.

We return to (15.2). At first sight, this result might appear satisfactory.
Comparison with the data shown in figure 14.1 would suggest that og ~ 0.5 or
less,! so that (assuming the expansion parameter is as /) the implied perturbation
series in powers of o would seem to be rapidly convergent. However, this is an
illusion, which is dispelled as soon as we go to the next order in oy (i.e. to the
order oczozsz in the cross-section). Some typical graphs contributing to this order
of the cross-section are shown in figure 15.3 (note that, as with the O (a?) terms,
some graphs will contribute via their modulus squared and some via interference
terms). The result was obtained numerically by Dine and Sapirstein (1979) and
analytically by Chetyrkin et al (1979) and by Celmaster and Gonsalves (1980).
For our present purposes, the crucial feature of the answer is the appearance of a
term

2
Opt - —b(;—s In (%) (15.3)

where p is a mass scale (about which we shall shortly have a lot more to say, but
which for the moment may be thought of as related in some way to an average

1A more precise extraction of «s can be made from the value of R at the 70 peak, see Ellis et al
(1996). The value of as at the Z0 peak is approximately equal to 0.12.
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quark mass), and the coefficient b is given by

33— 2N
b= (;) (15.4)
127

where Nt is the number of ‘active’ flavours (e.g. Ny = 5 above the bb threshold).
In (15.3), s is the square of the total eTe™ energy (which we called 0% in
section 14.4). The term (15.3) raises the following problem. The ratio between it
and the O (a%a) term is clearly

—bag In(s/u1?). (15.5)

If we take Ny = 5, s &~ 0.4, u ~ 1 GeV and s ~ (10 GeV)?, (15.5) is of order 1
and can, in no sense, be regarded as a small perturbation.

Suppose that, nevertheless, we consider the sum of (15.2) and (15.3), which
is

. [1 + %{1 — bas ln(S//,Lz)}:I . (15.6)

This suggests that one effect, at least, of these higher-order corrections is to
convert o to an s-dependent quantity, namely os{1 — bo In(s/p?)}. We have
seen something very like this before, in equation (11.55), for the case of QED.
There is, however, one remarkable difference: here the coefficient of the In is
negative, whereas that in (11.55) is positive. Apart from this (vital!) difference,
however, we can reasonably begin to think in terms of an effective ‘s-dependent
strong coupling constant o’.

Pressing on with the next order (azas ) terms, we encounter a term (Samuel
and Surguladze 1991, Gorishny et al 1991)

2
O - [asbln (iz)} & (15.7)
n T

and the ratio between this and (15.3) is precisely (15.5) once again! We are now
strongly inclined to suspect that we are seeing, in this class of terms, an expansion

of the form (1 +x)~! = 1 — x + x> — x3 ... If true, this would imply that all
terms of the form (15.3) and (15.7) and higher, sum up to give (cf (11.61))
os /T
1+ — . 15.8
o [ T oesbln(s/uz)} (159

The ‘re-summation’ effected by (15.8) has a remarkable effect: the ‘dangerous’
large logarithms in (15.3) and (15.7) are now effectively in the denominator
(cf (11.56)) and their effect is such as to reduce the effective value of oy as s
increases—exactly the property of asymptotic freedom.

We hasten to say that of course this is not how the property was discovered!
The foregoing remarks leave many questions unanswered—for example, are we
guaranteed that still higher-order terms will indeed continue to contain pieces
corresponding to the expression (15.8)? And what exactly is the mass parameter
w? To address these questions we need to take a substantial detour.
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Figure 15.4. One-loop vacuum polarization contribution to Z3.

15.2 The renormalization group and related ideas

15.2.1 Where do the large logs come from?

We have taken the title of this section from that of section 18.1 in Weinberg
(1996), which we have found very illuminating, and to which we refer for a more
detailed discussion.

As we have just mentioned, the phenomenon of ‘large logarithms’ arises
also in the simpler case of QED. There, however, the factor corresponding to
ash ~ }T is /37w ~ 1073, so that it is only at quite unrealistically enormous ||
values that the corresponding factor (ar/37) In(|g?|/ mg) (where m is the electron
mass) becomes of order unity. Nevertheless, the origin of the logarithmic term is
essentially the same in both cases and the technicalities are much simpler for QED
(no photon self-interactions, no ghosts). We shall, therefore, forget about QCD
for a while and concentrate on QED. Indeed, the discussion of renormalization of
QED given in chapter 11 will be sufficient to answer the question in the title of
this subsection.

For the answer does, in fact, fundamentally have to do with renormalization.
Let us go back to the renormalization of the charge in QED. We learned in
chapter 11 that the renormalized charge e was given in terms of the ‘bare’ charge
eo by the relation e = eo(Zz/Zl)Zé/2 (see (11.6)), where, in fact, due to the

Ward identity Z; and Z; are equal (section 11.6), so that only Z;/ 2 is needed.
To order ¢? in renormalized perturbation theory, including only the ete™ loop of
figure 15.4, Z3 is given by (cf (11.30))

zP =1+ n20) (15.9)

where, from (11.23) and (11.24),

n2(g? = 8e 1f dx/ L k) (15.10)
Qr)d (K2 — A, +ie)? '

and A, = mg —x(1 —x)g? with g> < 0. We regularize the k¥’ integral by a cut-off
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A, as explained in sections 10.3.1 and 10.3.2, obtaining (problem 15.1)

A+ A2+ A, A

n[21(q2)=_ﬁ/1dxx(1—x) In -
14 72 0 1

A (A2 + A2
(15.11)
Setting g2 = 0 and retaining the dominant In A term, we find that
(Z2h12 = - (31) In(A/me). (15.12)
b4

Itis not a coincidence that the coefficient /37 of the ultraviolet divergence is also
the coefficient of the ln(|q2| / mg) term in (11.54)—(11.56): we need to understand
why.

We first recall how (11.54) was arrived at. It refers to the renormalized self-
energy part, which is defined by the ‘subtracted’ form

1@ = M@ - 170). (1513

In the process of subtraction, the dependence on the cut-off A disappears and we
are left with

_ 2 ! m2
2142 :__/ dxx(1l—-x)n| ——¢ 15.14
y (@) = I x(1 =x)In w2~ g2x(l =) (15.14)

as in (11.36). For large values of |g2|, this leads to the ‘large log’ term
(a/3m) ln(|q2|/m§). Now, in order to form such a term, it is obviously not
possible to have just ‘In|g?|” appearing: the argument of the logarithm must
be dimensionless so that some mass scale must be present to which |¢2| can be
compared. In the present case, that mass scale is evidently m., which entered
via the quantity 1'[5,2] (0) or, equivalently, via the renormalization constant Zgz] (cf
(15.12)). This is the beginning of the answer to our questions.

Why is it m. that enters into Hg,zl (0) or Z3? Part of the answer—
once again—is of course that a ‘In A’ cannot appear in that form but must be
‘In(A/some mass)’. So we must enquire: what determines the ‘some mass’?
With this question we have reached the heart of the problem (for the moment).
The answer is, in fact, not immediately obvious: it lies in the prescription used
to define the renormalized coupling constant—this prescription, whatever it is,
determines Z3.

The value (15.9) (or (11.30)) was determined from the requirement that the
O(e?) corrected photon propagator (in the & = 1 gauge) had the simple form
—igw/q2 as g2 — 0; that is, as the photon goes on-shell. Now, this is a perfectly
‘natural’ definition of the renormalized charge—but it is by no means forced upon
us. In fact, the appearance of a singularity in Zgz] as me — 0 suggests that it is
inappropriate to the case in which fermion masses are neglected. We could, in
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principle, choose a different value of ¢2, say g> = —u?, at which to ‘subtract’.
Certainly the difference between Hg} I (q2 = 0) and 1'[5,2] (q2 = —uz) is finite as
A — 00, so such a redefinition of ‘the’ renormalized charge would only amount
to a finite shift. Nevertheless, even a finite shift is alarming to those accustomed to
a certain ‘sanctity’ in the value o« = % ! We have to concede, however, that if the
point of renormalization is to render amplitudes finite by taking certain constants
from experiment, then any choice of such constants should be as good as any
other—for example, the ‘charge’ defined at g> = —u? rather than at g2 = 0.

Thus, there is, actually, a considerable arbitrariness in the way
renormalization can be done—a fact to which we did not draw attention in our
earlier discussions in chapters 10 and 11. Nevertheless, it must somehow be the
case that, despite this arbitrariness, the physical results remain the same. We shall
come back to this important point shortly.

15.2.2 Changing the renormalization scale

The recognition that the renormalization scale (—uz in this case) is arbitrary
suggests a way in which we might exploit the situation so as to avoid large
‘1n(|q2|/m§)’ terms: we renormalize at a large value of u?! Consider what

happens if we define a new Zg2] by
ZP () =1+ 12(g? = 2. (15.15)

Then for 2 > mg but u? « A2, we have

o

ZP () =1- ( )ln(A/u) (15.16)

3

and a new renormalized self-energy
N7? v = M2 - Mg = —u?)
2 1 2 2
1—
- _ ¢ / dx x(1 —x)In {W“—M} (15.17)
0

272 m2 — q2x(1 —x)
For u? and —g? both > m2, the logarithm is now In(|g?|/u?) which is
small when |q2| is of order u2. It seems, therefore, that with this different
renormalization prescription we have ‘tamed’ the large logarithms.

However, we have forgotten that, for consistency, the ‘e’ we should now be
using is the one defined, in terms of eq, via

1 o
e = (28 w)ten = (1= = In(a/w) eo (15.18)
rather than o 1 o
e=(ZP) ey = (1 - ln(A/me)) eo, (15.19)
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working always to one-loop order with an e*e™ loop. The relation between e,
and e is then
_ (= in/p)

o
T U= Z (A me)

e~ (1 + ln(u/me)) e (15.20)

3n
to leading order in . Equation (15.20) indeed represents, as anticipated, a finite
shift from ‘e’ to ‘e, but the problem with it is that a ‘large log’ has resurfaced
in the form of In(x/me) (remember that our idea was to take ,u2 > mg).
Although the numerical coefficient of the log in (15.20) is certainly small, a
similar procedure applied to QCD will involve the larger coefficient bag as in
(15.6) and the correction analogous to (15.20) will be of order 1, invalidating the
approach.

We have to be more subtle. Instead of making one jump from mg to a large
value 2, we need to proceed in stages. We can calculate e, from e as long as p
is not too different from m.. Then we can proceed to e, for 1’ not too different
from p, and so on. Rather than thinking of such a process in discrete stages
me — o — u' — -+ -, it is more convenient to consider infinitesimal steps—that
is, we regard e, at the scale 11’ as being a continuous function of e, at scale
and of whatever other dimensionless variables exist in the problem (since the e’s
are themselves dimensionless). In the present case, these other variables are u'/ 1
and me/ 1, so that e, must have the form

e = E(ey, '/, me/ ). (15.21)
Differentiating (15.21) with respect to ' and letting i’ = , we obtain

de,
Ma = Bley, me/ 1) (15.22)
where 5
ﬁ(eﬂv me/,U«) = [a_ZE(eﬂs va/lu’)} . (15‘2’3)
z=1
For u > me, equation (15.22) reduces to
de
ud—: = Blew, 0) = Bley) (15.24)

which is a form of the Callan—Symanzik equation (Callan 1970, Symanzik 1970):
it governs the change of the coupling constant ¢, as the renormalization scale u
changes.

To this one-loop order, it is easy to calculate the crucial quantity B(e).
Returning to (15.18), we may write the bare coupling eg as

e = ey (1 _ % 1n(A/,u,)>_1
o
~ ey (1 + 5 ln(A/u)>

e (1 n g‘—;; ln(A/u)> (15.25)

&
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where the last step follows from the fact that e and e, differ by 0(e3), which
would be a higher-order correction to (15.25). Now the unrenormalized coupling
is certainly independent of . Hence, differentiating (15.25) with respect to u at
fixed eg, we find

de, M ei de,

— ———In(A/pn)-— —| =0. (15.26)
2

dp |, 3 4r dp |,

Working to order e3, we can drop the last term in (15.26), obtaining finally (to
one-loop order)

de
u—=

3
S R )
o (_ B (eﬂ)). (15.27)

w 1277

We can now integrate equation (15.27) to obtain ¢, at an arbitrary scale p,
in terms of its value at some scale 4 = M, chosen in practice large enough so
that for variable scales u greater than M we can neglect m. compared with p, but
small enough so that In(M/m.) terms do not invalidate the perturbation theory
calculation of ey from e. The solution of (15.27) is then (problem 15.2)

1 1
In(u/M) = 6m* | — — — (15.28)
em  Cu
or, equivalently,
62
e, = M (15.29)
e
1- 12[‘;2 ln(l’Lz/MZ)
which is
adl (15.30)
oy = .
ST ()
where @« = e¢%/4m. The crucial point is that the ‘large log’ is now in the

denominator (and has coefficient aps/37!). We note that the general solution
of (15.24) may be written as

en de

ey ,3(6’)

w = M exp (15.31)

We have made progress in understanding how the coupling changes as the
renormalization scale changes and in how ‘large logarithmic’ change as in (15.20)
can be brought under control via (15.30). The final piece in the puzzle is to
understand how this can help us with the large —g? behaviour of our cross-section,
the problem from which we originally started.
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15.2.3 The renormalization group equation and large —g? behaviour in
QED

To see the connection we need to implement the fundamental requirement, stated
at the end of section 15.2.1, that predictions for physically measurable quantities
must not depend on the renormalization scale u. Consider, for example, our
annihilation cross-section o for e" e~ — hadrons, pretending that the one-loop
corrections we are interested in are those due to QED rather than QCD. We need
to work in the space-like region, so as to be consistent with all the foregoing
discussion. To make this clear, we shall now denote the 4-momentum of the
virtual photon by ¢ rather than Q and take ¢> < 0 as in sections 15.2.1 and
15.2.2. Bearing in mind the way we used the ‘dimensionless-ness’ of the e’s in
(15.21), let us focus on the dimensionless ratio o /o, = S. Neglecting all masses,
S can only be a function of the dimensionless ratio |¢%|/u? and of ey

S = S(g°1/11*, ep). (15.32)

But S must ultimately have no x dependence. It follows that the w? dependence
arising via the |q*|/u? argument must cancel that associated with e,. This is
why the u2-dependence of e, controls the |¢2| dependence of S, and hence of o.
In symbols, this condition is represented by the equation

0 de, 0 2, 2

I — | = | SUq"l/n"en) =0 (15.33)
Kle, du e dey

or

0 0 2, 2

u—| +Ble)—)SUql"/nen) =0. (15.34)
0 0
w e [

Equation (15.34) is referred to as ‘the renormalization group equation (RGE)
for §’. The terminology goes back to Stueckelberg and Peterman (1953), who
were the first to discuss the freedom associated with the choice of renormalization
scale. The ‘group’ connotation is a trifle obscure—but all it really amounts to is
the idea that if we do one infinitesimal shift in ;> and then another, the result will
be a third such shift; in other words, it is a kind of ‘translation group’. It was,
however, Gell-Mann and Low (1954) who realized how equation (15.34) could
be used to calculate the large |¢?| behaviour of S, as we now explain.

It is convenient to work in terms of w? and « rather than w and e.
Equation (15.34) is then

5
2 9

where B (o) is defined by

d
+ IB(O‘M)W) SUq>1/ 1%, au) =0, (15.35)
"

ay

d
Bla) = >k

15.36
o ( )

€0
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From (15.36) and (15.27), we deduce that, to the one-loop order to which we are

working, 2
B () = ﬁ[zl(eu) = 3—“ (15.37)
Now introduce the important variable
t =In(lg?|/p?). (15.38)
so that |q2|//L2 = ¢'. Equation (15.35) then becomes
[—3 +ﬁ(aﬂ)i} S, ay) =0. (15.39)
at day

This is a first order differential equation which can be solved by implicitly
defining a new function—the running coupling a(|q2|)—as follows (compare

(15.31):
a4’ o
r:/ —. (15.40)
au Be)

To see how this helps, we have to recall how to differentiate an integral with
respect to one of its limits—or, more generally, the formula

0 f(a) 8f
a_/ g(x)dx = g(f(a))—. (15.41)
a da

First, let us differentiate (15.40) with respect to ¢ at fixed o,: we obtain

_ 1 dade’D
Blallg?l) ot

Next, differentiate (15.40) with respect to «, at fixed ¢ (note that a(lqzl) will
depend on u and hence on «,,): we obtain

(15.42)

2
ool 1 1 (15.43)

doye Blallg?D)  Blow)

the minus sign coming from the fact that o, is the lower limit in (15.40). From
(15.42) and (15.43), we find the result

a
[ -+ ﬂ(au)—} a(lg*) =0, (15.44)

It follows that S(1, a(|q2|)) is a solution of (15.39).

This is a remarkable result. It shows that all the dependence of S on the
(momentum)? variable |¢2| enters through that of the running coupling «(|¢2|).
Of course, this result is only valid in a regime of —g? which is much greater than
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all quantities with dimension (mass)>—for example, the squares of all particle
masses which do not appear in (15.32). This is why the technique applies only
at ‘high’ —g?2. The result implies that if we can calculate S(1, ay) (ie. S at the
point g = —u2) at some definite order in perturbation theory, then replacing ay
by «(|¢?|) will allow us to predict the ¢g2-dependence (at large —g?). All we need
to do is solve (15.40). Indeed, for QED with one e*e™ loop, we have seen that
BP(a) = o?/37. Hence, integrating (15.40) we obtain
a(lg?) = —£ = . . 15.45
= e = T Z a2 (1249
This is almost exactly the formula we proposed in (11.56), on plausibility
grounds.?
Suppose now that the leading perturbative contribution to S(1, &) is Syoy.
Then the terms contained in S(1, a(|g2|)) in this approximation can be found by
expanding (15.45) in powers of o,

o —1
S(Lalg?) ~ Sia(lg®)) = Sia, [1 = 321]

aut [t
= Sjop |1+ 22 (2L 4. (15.46)

3 3

where ¢ = In(|¢%|/n?). The next higher-order calculation of S(1, ay) would be
Szai, say, which generates the terms

200t
$20°(1g%]) = Sra; [1 + } : (15.47)

Comparing (15.46) and (15.47), we see that each power of the large log factor
appearing in (15.47) comes with one more power of «, than in (15.46). Provided
oy, is small, then, the leading terms in ¢, t2, ...are contained in (15.46). Itis in
this sense that replacing S(1, oz, ) by S(1, a(|g?])) sums all ‘leading log terms’.

In fact, of course, the one-loop (and higher) corrections to S in which we
are really interested are those due to QCD, rather than QED, corrections. But
the logic is exactly the same. The leading (O(«s)) perturbative contribution to
S = o/op at q2 = —/Lz is given in (15.2) as as(,uz)/n. It follows that the
‘leading log corrections’ at high —g? are summed up by replacing this expression
by as(|q2|)/n, where the running as(|q2|) is determined by solving (15.40) with
the QCD analogue of (15.37)—to which we now turn.

15.3 Back to QCD: asymptotic freedom

The reader may have realized, some time back, that the quantity » introduced in
(15.4) must be precisely the coefficient of af in the one-loop contribution to the

2 The difference has to do, of course, with the different renormalization prescriptions.
Equation (11.56) is written in terms of an ‘«’ defined at q2 = 0 and without neglect of me.
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B-function of QCD defined by

9
By = us ; (15.48)
8“ fixed bare oy
that is to say,

2 2
I (15.49)

with 33N
p=22_= (15.50)

127

For Ny < 16, the quantity b is positive, so that the sign of (15.49)) is opposite to
that of the QED analogue, equation (15.37). Correspondingly, (15.45) is replaced
by

as(u?)
[1+ s (u?)bIn(lg?|/1?)]

and then replacing oy in (15.2) by (15.51) leads to (15.8).3

Thus, in QCD, the strong coupling runs in the opposite way to QED,
becoming smaller at large values of |¢2| (or small distances)—the property of
asymptotic freedom. The justly famous result (15.50) was first obtained by
Politzer (1973), Gross and Wilczek (1973) and 't Hooft. ’t Hooft’s result,
announced at a conference in Marseilles in 1972, was not published. The
published calculation of Politzer and of Gross and Wilczek quickly attracted
enormous interest, because it immediately explained the ‘paradoxical situation’
referred to at the end of section 14.2.3: how the successful parton model could be
reconciled with the undoubtedly very strong binding forces between quarks. The
resolution, we now understand, lies in quite subtle properties of renormalized
quantum field theory, involving first the exposure of ‘large logarithms’, and then
their re-summation in terms of the running coupling. Not only did the result
(15.50) explain the success of the parton model: it also, we repeat, opened the
prospect of performing reliable perturbative calculations in a strongly interacting
theory, at least at high |¢|?. For example, at sufficiently high |¢|?, we can reliably
compute the B function in perturbation theory. The result of Politzer and of
Gross and Wilczek led rapidly to the general acceptance of QCD as the theory
of strong interactions, a conclusion reinforced by the demonstration by Coleman
and Gross (1973) that no theory without Yang—Mills fields possessed the property
of asymptotic freedom.

In section 11.5.3 we gave the conventional physical interpretation of the
way in which the running of the QED coupling tends to increase its value at
distances |g|~! short enough to probe inside the screening provided by ete™

as(lg?) = (15.51)

3 Except that, in (15.51), a5 is evaluated at large space-like values of its argument, whereas in
(15.8), it is wanted at large time-like values. Readers troubled by this may consult Pennington (1983)
section 2.3.2, or Peskin and Schroeder (1995) section 18.5. The difficulty is evaded in the approach of
section 15.6 below.
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Figure 15.5. qq vacuum polarization correction to the gluon propagator.

pairs (|¢|™' <« mg 1), This vacuum polarization screening effect is also present
in (15.50) via the term —2N;/12m, the value of which can be quite easily
understood. It arises from the ‘qq’ vacuum polarization diagram of figure 15.5,
which is precisely analogous to the eTe™ diagram used to calculate 1:15,2] (g% in
QED. The only new feature in figure 15.5 is the presence of the %)\-matrices at
each vertex. If ‘a’ and ‘b’ are the colour labels of the ingoing and outgoing gluons,
the %A—matrix factors must be

3

)., (57)
Y “Ap (15.52)
2 (2 ap \2 / pa

a,p=1

since there are no free quark indices (of type «, B) on the external legs of the
diagram. It is simple to check that (15.52) has the value %8@, (this is, in fact,
the way the A’s are conventionally normalized). Hence, for one quark flavour we
expect ‘a/37’ to be replaced by ‘os/67’, in agreement with the second term in
(15.50).

The all-important, positive, first term must therefore be due to the gluons.
The one-loop graphs contributing to the calculation of b are shown in figure 15.6.
They include figure 15.5, of course, but there are also, characteristically, graphs
involving the gluon self-coupling which is absent in QED and also (in covariant
gauges) ghost loops. We do not want to enter into the details of the calculation of
B (cs) here (they are given in Peskin and Schroeder 1995, chapter 16, for example)
but it would be nice to have a simple intuitive picture of the ‘anti-screening’ result
in terms of the gluon interactions, say. Unfortunately, no fully satisfactory simple
explanation exists, though the reader may be interested to consult Hughes (1980,
1981) and Nielsen (1981) for a ‘paramagnetic’ type of explanation rather than a
‘dielectric’ one.

Returning to (15.51), we note that, despite appearances, it does not really
involve two parameters—after all, (15.48) is only a first-order differential
equation. By introducing

In ADep = Inp? — 1/ (bas(1?)) (15.53)

Copyright 2004 IOP Publishing Ltd



Figure 15.6. Graphs contributing to the one-loop B function in QCD. A curly line
represents a gluon, a broken line a ghost (see section 13.5.3) and a straight line a quark.

equation (15.51) can be rewritten (problem 15.3) as

1

2
as(lg”) = ———. (15.54)
: bIn(lg2l/Adcp)
Equation (15.54) is equivalent to (cf (15.40))

o0 dag
In <|q2|/A2CD) - —/ & (15.55)

< ay(lq2D) B!
with ,35[2] = —basz. Aqcp is, therefore, an integration constant representing

the scale at which «g would diverge to infinity (if we extended our calculation
beyond its perturbative domain of validity). More usefully, Aqcp is a measure
of the scale at which o really does become ‘strong’. The extraction of a
precise value of Agcp is a complicated matter, as we shall briefly indicate in
section 15.5, but a typical value is in the region of 200 MeV. Note that this is a
distance scale of order (200 MeV)’1 ~ 1 fm, just about the size of a hadron—a
satisfactory connection. Significantly, while perturbative QED is characterized by
a dimensionless parameter o, perturbative QCD requires a mass parameter (> or
AqQcp).
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So far we have discussed only the ‘one-loop’ calculation of B(«as). The two-
loop result (Caswell 1974, Jones 1974) may be written as ,65[3] = —bb’ ozf , Where

153 — 19Ny

bb' = 15.56
2472 ( )

Inserting ,35[2] and ,35[3] into (15.48) gives a corrected expression for a(|g2|) in

terms of as(,uz) which has to be solved numerically for o (|q2|). Typically, the b’
coefficient is associated with In ln(|q2| / w?) terms. The three-loop result has been
obtained by Tarasov et al (1980) and by Larin and Vermaseren (1993).

We shall return to o (eTe~ — hadrons) in section 15.6. First we want to
explore the RGE further.

15.4 A more general form of the RGE: anomalous dimensions and
running masses

The reader may be wondering why, for QCD, all the graphs of figure 15.6 are
needed, whereas for QED we got away with only figure 11.5. The reason
for the simplification in QED was the equality between the renormalization
constants Z1 and Zj, which therefore cancelled out in the relation between the
renormalized and bare charges e and e, as briefly stated before equation (15.9)
(this equality was discussed in section 11.6). We recall that Z; is the field strength
renormalization factor for the charged fermion in QED and Z; is the vertex
part renormalization constant: their relation to the counter terms was given in
equation (11.7). For QCD, although gauge invariance does imply generalizations
of the Ward identity used to prove Z; = Z; (Taylor 1971, Slavnov 1972),
the consequence is no longer the simple relation ‘Z; = Z5’ in this case, due
essentially to the ghost contributions. In order to see what change Z| # Z»
would make, let us return to the one-loop calculation of 8 for QED, pretending
that Z; # Z,. We have

Zy -

=773 e (15.57)

=

where, because we are renormalizing at scale w, all the Z;’s depend on
(as in (15.16)) but we shall now not indicate this explicitly. Taking logs and
differentiating with respect to w at constant ey, we obtain

d d 1 d wu dey,
u—| InZy—u—| InZy— —u—| InZz3+ ———| =0. (15.58)
dt |, dt |, 20 dp,, ep du |,
Hence,
Blen) de +2 d InZ (15.59)
e = B =ée e — e — 1n .
u w i wy3 wy2 p.lde’u 1

€0
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where
1 d 1 d
yvm=-u—,\ InZp 3= -u—| InZs. (15.60)
20 dufy, 20 dul,,
To leading order in e, the y3 term in (15.60) reproduces (15.27) when (15.16) is
used for Z3, the other two terms in (15.58) cancelling via Z1 = Z». So if, as in
the case of QCD, Z; is not equal to Z,, we need to introduce the contributions
from loops determining the fermion field strength renormalization factor, as well
as those related to the vertex parts (together with appropriate ghost loops), in
addition to the vacuum polarization loop associated with Z3.
Quantities such as y» and y3 have an interesting and important significance,
which we shall illustrate in the case of y» for QED. Z_z enters into the relation

between the propagator of the bare fermion (QIT(I/AfO(x)@O(O)HQ) and the
renormalized one, via (cf (11.2))

= o 1 = ~
QT (Y ()Y (0)|Q2) = Z—2<Q|T(¢O(X)l/fo(0))|§2) (15.61)

where (cf section 10.1.3) |2} is the vacuum of the interacting theory. The Fourier
transform of (15.61) is, of course, the Feynman propagator:

St(g*) = / dxel T (QIT (4 (1) (0))|2). (15.62)

Suppose we now ask: what is the large —g? behaviour of (15.62) for space-like
g%, with —g? >> m? where m is the fermion mass? This sounds very similar to the
question answered in 15.2.3 for the quantity S(|g>|/u>, e;). However, the latter
was dimensionless, whereas (recalling that 1@ has mass dimension %) S’I’;(qz) has
dimension M~!. This dimensionality is just what a propagator of the free-field
form i /(¢ — m) would provide.

Accordingly, we extract this (y])’1 factor (compare o /opt) and consider the
dimensionless ratio I?%(|q2|/,u2,aﬂ) = gS’I’;(q2). We might guess that, just
as for S(|q2|/u2, o), to get the leading large |q2| behaviour we will need to
calculate Ié{: to some order in «;, and then replace o, by a(|q2| / /,Lz). But this
is not quite all. The factor Z, in (15.61) will—as previously noted—depend on
the renormalization scale w, just as Zz of (15.16) did. Thus, when we change

1
., the normalization of the v/’s will change via the Z27 factors—by a finite
amount here—and we must include this change when writing down the analogue
of (15.34) for this case (i.e. the condition that the ‘total change, on changing u, is
zero’). The required equation is

a
2 [
The solution of (15.63) is somewhat more complicated than that of (15.34).
We can gain insight into the essential difference caused by the presence of y» by

oy

0 -
+ Bl 5 —+ )/2(0!#)} Ri(1%1 /1, a) = 0. (15.63)
"
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considering the special case B(e,) = 0. In this case, we easily find
RE(1q21/ 1%, e o ()72, (15.64)

But since Ié]’: can only depend on  via |g2|/u?, we learn that if 8 = O then the

large |¢2| behaviour of 15% is given by (|q2|/,u2)%7’2—0r, in other words, that at
large ||

1 |q2| ya(et,)
St(lq®1/m?, @) o« % (7) . (15.65)

Thus, at a zero of the B-function, S’I’; has an ‘anomalous’power law dependence
on |¢?| (i.e. in addition to the obvious y]’l factor), which is controlled by the
parameter y». The latter is called the ‘anomalous dimension’ of the fermion field,
since its presence effectively means that the |¢2| behaviour of S’{; is not determined
by its ‘normal’ dimensionality M~!. The behaviour (15.65) is often referred to
as ‘scaling with anomalous dimension’, meaning that if we multiply |¢2| by a
scale factor A, then S‘}': is multiplied by A72(¢»)=! rather than just A~!. Anomalous
dimensions turn out to play a vital role in the theory of critical phenomena—they
are, in fact, closely related to ‘critical exponents’ (see section 16.6.3 and Peskin
and Schroeder 1995, chapter 13). Scaling with anomalous dimensions is also
exactly what occurs in deep inelastic scattering of leptons from nucleons, as we
shall see in section 15.7.

The full solution of (15.63) for B # 0 is elegantly discussed in Coleman
(1985, chapter 3); see also Peskin and Schroeder (1995) section 12.3. We quote it
here:

_ ~ t
R{:(qul/uz),%)=R{:(1,a(|q2|/u2))e><p{ /0 df/J/z(Ol(t’))}. (15.66)

The first factor is the expected one from section 15.2.3; the second results from
the addition of the y» term in (15.63). Suppose now that 8(«) has a zero at some
point &*, in the vicinity of which 8(¢) ~ —B(e — «*) with B > 0. Then, near
this point the evolution of « is given by (cf (15.40))

5 a(lq?)) da
In(lg~/17) =/ Bl —a") (15.67)
o —B(a —a¥)
which implies
21N % 21,2\B
a(lg”]) = o™ + constant x (L”/|g"|)”". (15.68)

Thus, asymptotically for large |¢2|, the coupling will evolve to the ‘fixed point’
o*. In this case, at sufficiently large —g?, the integral in (15.66) can be evaluated
by setting a(t’) = a*, and Ié]/: will scale with an anomalous dimension y; (™)
determined by the fixed point value of «. The behaviour of such an « is shown

Copyright 2004 IOP Publishing Ltd



(X.*

(@) (b)

Figure 15.7. Possible behaviour of 8 functions: (a) the slope is positive near the origin (as
in QED) and negative near @ = o*; (b) the slope is negative at the origin (as in QCD) and
positive near oig = ot

in figure 15.7(a). We emphasize that there is no reason to believe that the QED B
function actually does behave like this.

The point o* in figure 15.7(a) is called an ultraviolet-stable fixed point: o
‘flows’ towards it at large |q2|. In the case of QCD, the § function starts out
negative, so that the corresponding behaviour (with a zero at a o # 0) would
look like that shown in figure 15.7(b). In this case, the reader can check (problem
15.4) that o} is reached in the infrared limit g*> — 0, and so af is called an
infrared-stable fixed point. Clearly it is the slope of 8 near the fixed point that
determines whether it is ultraviolet or infrared stable. This applies equally to a
fixed point at the origin, so that QED is infrared stable at « = 0 while QCD is
ultraviolet stable at ag = O.

We must now point out to the reader an error in the foregoing analysis in the
case of a gauge theory. The quantity Z; is not gauge invariant in QED (or QCD),
and so y» depends on the choice of gauge. This is really no surprise because the
full fermion propagator itself is not gauge invariant (the free-field propagator is
gauge invariant, of course). What ultimately matters is that the complete physical
amplitude for any process, at a given order of «, be gauge invariant. Thus,
the analysis given here really only applies—in this simple form—to non-gauge
theories, such as the ABC model or to gauge-invariant quantities.

This is an appropriate point at which to consider the treatment of quark
masses in the RGE-based approach. Up to now we have simply assumed that the
relevant |¢2| is very much greater than all quark masses, the latter therefore being
neglected. While this may be adequate for the light quarks u, d, s, it seems surely
a progressively worse assumption for c, b and t. However, in thinking about how
to re-introduce the quark masses into our formalism, we are at once faced with a
difficulty: how are they to be defined? For an unconfined particle such as a lepton,
it seems natural to define ‘the’ mass as the position of the pole of the propagator
(i.e. the ‘on-shell’ value p? = m?), a definition we followed in chapters 10 and 11.
Significantly, renormalization is required (in the shape of a mass counter-term) to
achieve a pole at the ‘right’ physical mass m, in this sense. But this prescription

Copyright 2004 IOP Publishing Ltd



cannot be used for a confined particle, which never ‘escapes’ beyond the range of
the confining forces and whose propagator can, therefore, never approach the free
form ~ (p — m)~ L.

Our present perspective on renormalization suggests an obvious way
forward. Just as there was, in principle, no necessity to define the QED
coupling parameter e via an on-shell prescription, so here a mass parameter in the
Lagrangian can be defined in any way we find convenient: all that is necessary is
that it should be possible to determine its value from experiment. Effectively, we

are regarding the ‘m’ in a term such as —mfﬁ(x)fﬁ(x) as a ‘coupling constant’
having mass dimension 1 (and, after all, the ABC coupling itself had mass

dimension 1). Incidentally, the operator V()Y (x) is gauge invariant, as is any
such local operator. Taking this point of view, it is clear that a renormalization
scale will be involved in such a general definition of mass and we must expect
to see our mass parameters ‘evolve’ with this scale, just as the gauge (or other)
couplings do. In turn, this will get translated into a |¢2|-dependence of the mass
parameters, just as for a(|q2|) and as(lqzl).

The RGE in such a scheme now takes the form

d d d
[u2a—ﬂ2 + Bl 5o+ Z Vi (@ts) + Vi (as)m%}R(lqzl/ﬁ, as,m/lql) =0

(15.69)
where the partial derivatives are taken at fixed values of the other two variables.
Here the y; are the anomalous dimensions relevant to the quantity R, and y, is
an analogous ‘anomalous mass dimension’, arising from finite shifts in the mass
parameter when the scale u? is changed. Just as with the solution (15.66) of
(15.63), the solution of (15.69) is given in terms of a ‘running mass’ m(|g?|).
Formally, we can think of y,, in (15.69) as analogous to S(cs) and Inm as
analogous to «5. Then equation (15.42) for the running o,

das(1g%))

= Blas(g)) (15.70)

where r = ln(|q2|/u2), becomes

d(nm(|g))

Y = Ym(as(g1). (15.71)

Equation (15.71) has the solution
2 2 4% 12 2
m(|q”|) = m(un”) exp , dIn|g=|ym(es(lgD. (15.72)
n
To one-loop order in QCD, y,(«s) turns out to be —%as (Peskin and

Schroeder 1995, section 18.1). Inserting the one-loop solution for o in the form
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(15.54), we find

2 2 1/7wb
In(u=/A%) ] (15.73)

2 2
m(lg?) = m(u?) [ln(lqzl/l\z)
where (7h) ! = 12 /(33 — 2Ny). Thus the quark masses decrease logarithmically
as |g?| increases, rather like as(|g2[). It follows that, in general, quark mass
effects are suppressed both by explicit m?/|¢?| factors and by the logarithmic
decrease given by (15.73). Further discussion of the treatment of quark masses is
contained in Ellis et al (1996) section 2.4.

15.5 Some technicalities

We conclude our discussion of RGE’s by commenting on a number of technical
matters to which we should draw the reader’s attention.

First, we have—for the sake of simplicity of exposition—conducted the
entire discussion of renormalization effects in the framework of regularization by
means of the ultraviolet cut-off A. However, we saw in section 11.3 that this was
a potentially dangerous procedure in a gauge theory, since it could spoil gauge
invariance. The latter is vital for two reasons: renormalizability depends upon it,
and so does the elimination of unphysical states (i.e. the preservation of unitarity).
While several gauge-invariant regularizations are available, the one now used
most widely is ‘dimensional regularization’, due to ’t Hooft and Veltman (1972).
We describe this method briefly here: some more details are given in appendix N.

The basic idea is very simple (if, at first, rather strange). It is based on the
observation that a typical logarithmically ultraviolet divergent one-loop diagram,
such as the photon vacuum polarization with amplitude (see (11.23) and (11.24))

d*’ x(1=x)
H[Z] = 8¢? / d / , 15.74
(@) =8 | v | oo A, +ic)? (15:74)

would converge if the number of dimensions over which k” was integrated were
less than four.* Thus, if one can somehow calculate the integral as an analytic
function of the dimensionality d of spacetime, it will converge for d < 4
and have an identifiable singularity as d approaches four, which the process of
renormalization can remove.

The first step is to consider the kj, integral as a contour integral in the &
plane, as we did in figure 10.8. This time, however, instead of evaluating it with
a cut-off, we rotate the contour CR in an anti-clockwise direction (thus avoiding
the poles the location of which is determined by the ‘+ie’ term), so that it runs

4 Note that dimensional regularization can equally well be used to deal with infrared divergences, by
allowing d to be greater than four. For example, the infrared divergence of section 15.1 can be handled
this way.
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along the imaginary axis: k;, — ik}. Then (15.74) becomes

d*k x(1—x)
-8 15.75
e/ /(271)4 k? + A))? (1575

where kg = (k,, k') is the ‘Euclidean’ 4-momentum. Note that for ¢g> < 0, the
denominator is never zero, so there is no need to include any ‘ie’. In dimensional
regularization, one replaces the ki-integral in (15.75) by

d’k}, 1 1 T@=d/2) [ 1\

5 — = =7 — (15.76)
Qo (kg + A2 @m)d2 T(Q) Ay

where I' is the gamma function (see, for example, Boas 1983, chapter 11). T is

related to the factorial function for integer values of its argument and satisfies

Fe+D=z2'zx) Tm=x-D TId)=1 (15.77)

for general z and integer n. It is clear from (15.77) that I'(z) has a pole at z = 0,
so that (15.76) is indeed singular when d = 4. To isolate the singular behaviour
we use the approximation

rQ-—d/p) = % —y 4 0() (15.78)

where € = 4 — d and y (not to be confused with the anomalous dimensions!) is
the Euler—Mascheroni constant, having the value y ~ 0.5772. Comparing (10.51)
and (15.76), we can see that we may crudely identify ‘é ~InA’.

Integrals such as (15.76) but with powers of k; in the numerator can be
evaluated similarly (see appendix N). Using these results one finds that the non-
gauge-invariant part of (11.18) does indeed cancel in this regularization procedure
(problem 15.5).

We may expand the right-hand side of (15.76) in powers of €, using x¢ =
e€M¥ ~ | 4+ elnx + - - -. We obtain the result (problem 15.6)

1

@ny E —y+ndr —Ina, + O(G)} : (15.79)

The appearance of the dimensional quantity A, inside the logarithm is
undesirable. We may rectify this by noting that although the fine structure
constant ¢ is dimensionless in four dimensions, the field dimension will change
when we go to d dimensions and, hence, so will that of the couplings if we want
to keep the action dimensionless. Problem 15.7 shows that in d dimensions the
coupling e has dimension (mass)¢/ 2 1t is natural, therefore, to rewrite the original
a as au, where the new « is dimensionless in d dimensions and w is ‘some
mass’. In that case, the logarithm in (15.79) becomes ln(AV/;LZ). The reader
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will not need to be told that © may be identified, most conveniently, with the
renormalization scale introduced earlier.

The question now arises of how renormalization is to be done in this
approach—and the answer is, just as before. We can, if we wish, define the
renormalized 1:15,2] (¢%) by subtracting from Hg,zl (q?) its value at g> = 0, as in
(11.32). This will, in fact, give exactly the same result as (11.36), the y and
In4m terms in (15.79) disappearing along with the 2/¢ singularity. However,
we know very well by now that this is not the only possibility and that we can
instead ‘subtract’ at a different point, say g2 = —u2. But in this dimensional
regularization approach, a very simple prescription is most appealing: why not
agree to define the renormalized 1—[5/2] by simply throwing away the singular term
2/€ in (15.79)?7 This makes the remainder perfectly finite as ¢ — 0, though
admittedly there are some odd-looking constants present. Such a procedure is
called ‘minimal subtraction’, denoted by MS. Even better, from the point of
view of simplicity, would be to get rid of the —y + In4mw ~ 1.95 as well (this
being a ‘finite renormalization’), which is, after all, not that small numerically.
This is called ‘modified minimal subtraction’ or MS (‘em-ess-bar’) (Bardeen et
al 1978). This scheme tends to reduce loop corrections to their simplest form,
but of course the resultant parameters may be less easily related to physically
measurable quantities than in the ‘on-shell’ (i.e. at g> = 0) scheme. MS is the
most widely used scheme as far as RGE-type applications are concerned.

It is now clear that, in addition to the (potential) dependence of calculated
quantities on the renormalization scale u?, there will also be a (potential)
dependence on the renormalization scheme which is used. In fact, the full
RGE equations of Stueckelberg and Peterman (1953) include variation due to
the (suitably parametrized) renormalization scheme, and express the ultimate
independence of physical qualities both of the choice of scale and of the choice
of scheme.

We make two immediate points. First, the parameter Agcp introduced in
(15.55) is scheme-dependent. The change from one scheme ‘A’ to another ‘B’
must involve a finite renormalization of the form (Ellis et al 1996, section 2.5)

aB =al( + ol +--0). (15.80)

Note that this implies that the first two coefficients of the B function are
unchanged under this transformation, so that they are scheme-independent. From
(15.55), the two corresponding values of Agcp are related by

AR 1 [efUa?D dx
In{— ) == — (15.81)
AA 2 a;\(‘q2|) bx (1 =+ - )
C1
= — 15.82
7 ( )

where we have taken |q2| — oo in (15.81) since the left-hand side is independent
of |¢g2|. Hence, the relationship between the Aqcp’s in different schemes is
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determined by the one-loop calculation which gives ¢; in (15.82). For example,
changing from MS to MS gives (problem 15.8)

Ai/[—s = A}gexp(nd/m — p). (15.83)

For this and other reasons (Ellis et al 1996, section 2.5), it is more common to
relate data to the value of « at a particular |¢2| value, usually taken to be M%.

Second, we must stress that the 2-independence of physical quantities only
holds when they are evaluated exactly. As soon as the perturbative expansion is
truncated, 1?-independence will break down. In general, it can be shown that
changing the scale in something which has been calculated to O(«) induces
changes which are O(ag“). The more terms in the series one has, the less
the effect of truncation should be—but, in practice, at any finite order, we may
wonder if there is a ‘best’ renormalization prescription to use, which minimizes
the various ambiguities. We shall not pursue this particular technicality any
further here, referring the interested reader to Pennington (1983) section 4.2 or
to Ellis er al (1996) section 3.1, for example.

15.6 o(ete~ — hadrons) revisited

Armed with this new-found sophistication as regards renormalization matters, we
may now return to the physical process which originally sparked this extensive
detour. The higher-order (in o) corrections to (15.2) are written as

2 o 2v\"
— [1 n “S:‘ ) 4 3 Culs /i) (%) ] (15.84)

n=2

(see Ellis et al 1996, section 3.1, or the review of QCD by Hinchcliffe in Hagiwara
et al 2002). The coefficient C>(1) was calculated by Dine and Sapirstein (1979),
Chetyrkin et al (1979) and by Celmaster and Gonsalves (1980), and it has the
value 1.411 for five flavours. The coefficient C3(1) was calculated by Samuel and
Surguladze (1991) and by Gorishny et al (1991), and is equal to —12.8 for five
flavours. The u2-dependence of the coefficients is now fixed by the requirement
that, order by order, the series (15.84) should be independent of the choice of
scale u? (this is a ‘direct’ way of applying the RGE idea). Consider, for example,
truncating at the n = 2 stage:

as(1?)

2
0~ op (1 + + CZ(S/MZ)(Ols(MZ)/ﬂ)) . (15.85)

Differentiating with respect to 2 and setting the result to zero we obtain (problem
15.8)
dc 2
240y __ mBs(u?) (15.56)
dp (o5 ()
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where an 0(012) term has been dropped. Substituting the one-loop result
(15.49)—as is consistent to this order—we find

Ca(s/u?) = Ca(1) — wbln(s/u?). (15.87)

The second term on the right-hand side of (15.87) gives the contribution identified
in (15.3).

In practice, corrections are necessary to account for effects due to the b and
t quark masses (Chetyrkin and Kuhn 1993), and (at sufficiently high /s) for Z°
effects. The current fitted value of as(M%) is 0.012 with an error of less than 5%
(Hagiwara et al 2002).

The terms in (15.84) which involve logarithms are referred to as ‘scaling
violations’ (compare the discussion of anomalous dimension in section (15.4)).
The parton model cross-section oy is proportional to s~! as could be predicted
on simple dimensional grounds, if all masses are neglected. Thus, if this were
the only contribution to o, the latter would scale as A~2 when the momenta are
all scaled by a factor A. The logarithmic terms violate this simple (power law)
scaling. We should also wonder whether something similar will happen to the
structure functions introduced in section 9.1 and predicted to be scale-invariant
functions in the free-parton model. This will be the topic of the final section of
this chapter.

15.7 QCD corrections to the parton model predictions for deep inelastic
scattering: scaling violations

As we saw in section 9.2, the parton model provides a simple intuitive
explanation for the experimental observation that the nucleon structure functions
in deep inelastic scattering depend, to a good first approximation, only on the
dimensionless ratio x = Q2/2Mv, rather than on Q2 and v separately: this
behaviour is referred to as ‘scaling’. Here M is the nucleon mass, and Q2
and v are defined in (9.7) and (9.8). In this section we shall show how QCD
corrections to the simple parton model, calculated using RGE techniques, predict
observable violations of scaling in deep inelastic scattering. As we shall see,
comparison between the theoretical predictions and experimental measurements
provides strong evidence for the correctness of QCD as the theory of nucleonic
constituents.

15.7.1 Uncancelled mass singularities

The free-parton model amplitudes we considered in chapter 9 for deep inelastic
lepton—nucleon scattering were of the form shown in figure 15.8 (cf figure 9.4).
The obvious first QCD corrections will be due to real gluon emission by either
the initial or final quark, as shown in figure 15.9, but to these we must add the
one-loop virtual gluon processes of figure 15.10 in order (see later) to get rid of
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Figure 15.8. Electron—quark scattering via one-photon exchange.

< %

Figure 15.9. Electron—quark scattering with single-gluon emission

T e

Figure 15.10. Virtual single—gluon corrections to figure 15.8.

infrared divergences similar to those encountered in section 15.1, and also the
diagram of figure 15.11 corresponding to the presence of gluons in the nucleon.
To simplify matters, we shall consider what is called a ‘non-singlet structure
function’ FZNS, such as F; P —F3" in which the (flavour) singlet gluon contribution
cancels out, leaving only the diagrams of figures 15.9 and 15.10.

We now want to perform, for these diagrams, calculations analogous to those
of section 9.2, which enabled us to find the e-N structure functions vW> and
MW; from the simple parton process of figure 15.8. There are two problems
here: one is to find the parton level W’s corresponding to figure 15.9 (leaving
aside figure 15.10 for the moment)—cf equations (9.29) and (9.30) in the case of
the free-parton diagram in figure 15.8; the other is to relate these parton W’s to
observed nucleon W’s via an integration over momentum fractions. In section 9.2
we solved the first problem by explicitly calculating the parton level d?c? /d Q%dv
and picking off the associated VW, W]i. In principle, the same can be done here,
starting from the five-fold differential cross-section foroure™ +q — e~ +q+¢
process. However, a simpler—if somewhat heuristic—way is available. We note
from (9.46) that, in general, F1 = M W is given by the transverse virtual photon
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Figure 15.11. Electron—gluon scattering with qq production.

cross-section

Wi =or/@4re®/K) =1 Y (e, (WWH (15.88)
A==%£1

where WHY was defined in (9.3). Further, the Callan—Gross relation is still true
(the photon only interacts with the charged partons, which are quarks with spin-%
and charge ¢;), and so

F/x =2F =2MW, = o7 /(47a®/2MK). (15.89)

These formulae are valid for both parton and proton Wi’s and WHY’s, with
appropriate changes for parton masses M. Hence, the parton level 2F; for
figure 15.9 is just the transverse photon cross-section as calculated from the
graphs of figure 15.12, divided by the factor 4n2a/2M K , where, as usual, <~
denotes kinematic quantities in the corresponding parton process. This cross-
section, however, is—apart from a colour factor—just the virtual Compton cross-
section calculated in section 8.6. Also, taking the same (Hand) convention for the
individual photon flux factors,

2MK =3§. (15.90)
Thus, for the parton processes of figure 15.9,
2F) = 67 /(4n*a/2MK)
S 1 4 weilaay i§  200?
dcosO-———— | —x— =+ — (15.91)
3 K st

T 4n2a ), 5

where, in going from (8.180) to (15.91), we have inserted a colour factor %
(problem 15.9), renamed the variables t — wu,u — t in accordance with
figure 15.12, and replaced o by e; 2aars.

Before proceeding with (15.91), it is helpful to consider the other part of
the calculation—namely the relation between the nucleon F and the parton F 1.
We mimic the discussion of section 9.2 but with one significant difference: the
quark ‘taken’ from the proton has momentum fraction y (momentum yp) but now
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Figure 15.12. Virtual photon processes entering into figure 15.9.

2p

Figure 15.13. The first process of figure 15.12, viewed as a contribution to e~ —nucleon
scattering.

its longitudinal momentum must be degraded in the final state due to the gluon
bremsstrahlung process we are calculating. Let us call the quark momentum after
gluon emission zyp (figure 15.13). Then, assuming as in section 9.2 that it stays
on-shell, we have

> +22yq-p=0 (15.92)

or
x=yz x=0%2qp ¢ =-0° (15.93)

and we can write (cf (9.31))
F2 1 1 .
— =2k = Zf dy ﬁ(y)/ dz 2F18(x — y2) (15.94)
; 0 0

where the f;(y) are the momentum distribution functions introduced in section 9.2
(we often call them g (x) or g(x) as the case may be) for parton type i, and the
sum is over contributing partons. The reader may enjoy checking that (15.94) does
reduce to (9.34) for free partons by showing that in that case 2F e e28(1 —2)
(see Halzen and Martin 1984, section 10.3 for help), so that 2Ftree =);€ 2 £ (x).
To proceed further with the calculation (i.e. of (15.91) inserted into (15.94)),
we need to look at the kinematics of the yq — qg process, in the CMS. Referring
to figure 15.14, we let k, k’ be the magnitudes of the CMS momenta K, k’. Then

§=4k=(p+9*=0*0-2)/z z=0%/G+ 0%
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Figure 15.14. Kinematics for the parton process of figure 15.13.

qg—p)?=—2kk'(1 —cos®) = —Q*(1 — ¢)/2z ¢ =cosf
g —q")? = —2kk'(1 4 cos8) = —Q*(1 + ¢)/2z. (15.95)

(
(

<~

We now note that in the integral (15.91) for F 1, when we integrate over ¢ = cos 6,
we shall obtain an infinite result
I de
~ (15.96)

1—c

associated with the vanishing of 7 in the ‘forward’ direction (i.e. when ¢ and
p’ are parallel). This is a divergence of the ‘collinear’ type, in the terminology
of section 14.4—or, as there, a ‘mass singularity’, occurring in the zero quark

mass limit. If we simply replace the propagator factor 7! = [(¢ — p')*]~! by
[(g — p/)2 —m?]7!, where m is a quark mass, then (15.96) becomes
/ 1 de (15.97)
(1+2m?z/0?%) —¢ '

which will produce a factor of the form In(Q?%/m?) as m? — 0. Thus m regulates
the divergence. As anticipated in section 15.1, we have here an uncancelled mass
singularity and it violates scaling. This crucial physical result is present in the
lowest-order QCD correction to the parton model, in this case. Such logarithmic
violations of scaling are a characteristic feature of all QCD corrections to the free
(scaling) parton model.

We may calculate the coefficient of the In Q% term by retaining in (15.91)
only the terms proportional to 7!

1 2
A d 41
2F %eiz/ € (Lilfz (15.98)
ql=c\27r31—-z2
and so, for just one quark species, this QCD correction contributes (from (15.94))
aterm
2 1
;o dy 2, 9
?/ 7(](y){qu(X/y)1n(Q /m?) + C(x/y)} (15.99)
X
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to 2 F), where

4 (1472
Pog() = 3 ( 1J:Zz ) (15.100)

is called a ‘splitting function’, and C(x/y) has no mass singularity. The function
Pyq has an important physical interpretation: it is the probability that a quark,
having radiated a gluon, is left with the fraction z of its original momentum.
Similar functions arise in QED in connection with what is called the ‘equivalent
photon approximation’ (Weizsacker 1934, Williams 1934, Chen and Zerwas
1975). The application of these techniques to QCD corrections to the free
parton model is due to Altarelli and Parisi (1977) who thereby opened the
way to the previous much simpler and more physical way of understanding
scaling violations, which had previously been discussed mainly within the rather
technical operator product formalism (Wilson 1969).

Our result so far is, therefore, that the ‘free’ quark distribution function ¢ (x),
which depended only on the scaling variable x, becomes modified to

o [dy 22
10+ o y g Pag(x/y) In(Q"/m") + C(x/y)} (15.101)

due to lowest-order gluon radiation. Clearly, this corrected distribution function
violates scaling because of the In Q% term but the result as it stands cannot
represent a well-controlled approximation, since it diverges as m? — 0. We must
find some way of making sense, physically, of this uncancelled mass divergence
in (15.101).

15.7.2 Factorization and the DGLAP equation

The key (following Ellis et al 1996, section 4.3.2) is to realize that when two
partons are in the collinear configuration their relative momentum is very small,
and hence the interaction between them is very strong, beyond the reach of a
perturbative calculation. This suggests that we should absorb such uncalculable
effects into a modified distribution function ¢ (x, 1?) given by

s ['d
g 1) = q) + = [ () Pygx /) {In(u?/m?) + Cx/y)} (15.102)
2 y

X

which we have to take from experiment. Note that we have also absorbed the
non-singular term C(x/y) into ¢ (x, £2). In terms of this quantity, then, we have

1 d ;
270 0 = ¢ [ Do) {501~ x/3)+ S5 Riglae/) @)
x Y 2
= e2q(x, 0% (15.103)

to this order in «g, and for one quark type.
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This procedure is, of course, very reminiscent of ultraviolet renormalization,
in which ultraviolet divergences are controlled by similarly importing some
quantities from experiment. In this example, we have essentially made use of
the simple fact that

In(Q?/m?) = In(Q%/u?) + In(u?/m?). (15.104)

The arbitrary scale w, which is analogous to a renormalization scale, is here
referred to as a ‘factorization scale’. It is the scale entering into the separation
in (15.104) between one (uncalculable) factor which depends on the infrared
parameter /m but not on Q2 and the other (calculable) factor which depends on
Q2. The scale u can be thought of as one which separates the perturbative
short-distance physics from the non-perturbative long-distance physics. Thus,
partons emitted at small transverse momenta < pu (i.e. approximately collinear
processes) should be considered as part of the hadron structure and are absorbed
into g (x, u?). Partons emitted at large transverse momenta contribute to the short-
distance (calculable) part of the cross-section. Just as for the renormalization
scale, the more terms that can be included in the perturbative contributions to the
mass-singular terms (i.e. beyond (15.101)), the weaker the dependence on & will
be. In fact, for most purposes the factorization scale is chosen to be the same
as the renormalization scale, as the notation has already implicitly assumed. We
have demonstrated the possibility of factorization only to O («s) but proofs to all
orders in perturbation theory exist: a review is provided in Collins and Soper
(1987).

Different factorization schemes can also be employed, depending on how
the non-singular part C(x/y) is treated. In (15.102), as pointed out, we absorbed
all of it into ¢ (x, u2). This is why we obtained the simple result 2 Fj (x, 0% =
eizq (x, QZ) in (15.103). This scheme is called the ‘deep inelastic’ scheme (DIS)
(Altarelli er al 1978a, 1978b). A more common scheme is that in which the mass
singularity is regulated in dimensional regularization and only the ‘In4w — y’ bit,
in addition to the singularity, is absorbed into the distribution. This is called the
MS factorization scheme. In this case 2F; (x, Q%) will be given by an expression
of the form

1 d s
A 0= [ La0.0d a0 -5+ Sresin] (15109

X
to this order, where Cyg is a calculable function. Naturally, in analysing data the
same factorization scheme must be employed consistently throughout.

Returning now to (15.103), the reader can guess what is coming next:
we shall impose the condition that the physical quantity Fi(x, Q%) must be
independent of the choice of factorization scale 2. Differentiating (15.103)
partially with respect to 2, and setting the result to zero, we obtain (to order
a5 on the right-hand side)

2040 1 as(u
I 2

2 1 d
[ S Rt (15.106)
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This equation is the analogue of equation (15.36) describing the running of the
coupling o with 12, and is a fundamental equation in the theory of perturbative
applications of QCD. It is called the DGLAP equation, after Dokshitzer (1977),
Gribov and Lipatov (1972) and Altarelli and Parisi (1977) (it is also often referred
to as the Altarelli—Parisi equation). The derivation here is not rigorous—for
example we have assumed that it is correct to use o (uz) on the right-hand side.
A more sophisticated treatment (Georgi and Politzer 1974, Gross and Wilczek
1974) confirms the result and extends it to higher orders.

Equation (15.106) shows that, although perturbation theory cannot be used
to calculate the distribution function g (x, u?) at any particular value u?> = ,u(z),
it can be used to predict how the distribution changes (or ‘evolves’) as u?
varies. (We recall from (15.103) that ¢ (x, u(z)) can be found experimentally via
q(x, ,u(z)) =2F(x, 0% = ,u(z))/eiz.) Replacing 1% by Q2 then tells us how the
structure function evolves with Q2, via (15.103).

In general, the right-hand side of (15.106) will have to be supplemented by
terms (calculable from figure 15.11) in which quarks are generated from the gluon
distribution. The equations must then be closed by a corresponding one describing
the evolution of the gluon distributions (Altarelli 1982). Such equations can be
qualitatively understood as follows. The change in the distribution for a quark
with momentum fraction x, which absorbs the virtual photon, is given by the
integral over y of the corresponding distribution for a quark with momentum
fraction y, which radiated away (via a gluon) a fraction x/y of its momentum
with probability (es/27) Pgq(x/y). This probability is high for large momentum
fractions: high-momentum quarks lose momentum by radiating gluons. Thus,
there is a predicted tendency for the distribution function ¢ (x, 2) to get smaller
at large x as p? increases, and larger at small x (due to the build-up of slower
partons), while maintaining the integral of the distribution over x as a constant.
The effect is illustrated qualitatively in figure 15.15. In addition, the radiated
gluons produce more qq pairs at small x. Thus, the nucleon may be pictured as
having more and more constituents, all contributing to its total momentum, as its
structure is probed on ever smaller distance (larger w?) scales.

15.7.3 Comparison with experiment

Data on nucleon structure functions do indeed show such a trend. Figure 15.16
shows the QZ%-dependence of the proton structure function sz (x,0%) =
> e,.zxfi (x, Q?) for various fixed x values, as compiled by B Foster, A D Martin
and M G Vincter for the 2002 Particle Data Group review (Hagiwara et al 2002).
Clearly at larger x (x > 0.13), the function gets smaller as Q2 increases, while at
smaller x it increases.

Fits to the data have been made in various ways. One (theoretically
convenient) way is to consider ‘moments’ (Mellin transforms) of the structure
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Figure 15.15. Evolution of the distribution function with u?.

functions, defined by

1
M () =/ dxx""'q(x, 1) (15.107)
0

where we have now introduced the variable 1 = In 2. Taking moments of both
sides of (15.106) and interchanging the order of the x and y integrations, we find
that
dMy (1)
dr

Ols(t) : n—1 Y dx n—1
- 7/ dyy ‘Z(y”)/ —(x/y)" " Pyq(x/y).  (15.108)
0 oy

Changing the variable to z = x/y in the second integral and defining

1
v =4/ dzz" ™ Pyq(2) (15.109)
0
we obtain
dMZ () o)
q S n n
= M"(1). 15.110
ar 87 Y4 O] ( )

Thus the integral in (15.106)—which is of convolution type—has been reduced to
product form by this transformation. Now we also know from (15.48) and (15.49)

that q
o 2
— = —b 15.111
dr *s ( )
with b = (33 — 2Ny)/127 as usual, to this (one-loop) order. Thus (15.110)
becomes ) .
dinM i
¢ __Yaa _ g (15.112)
dIn oy 8b A

Copyright 2004 IOP Publishing Ltd



10

x=0.000063
{ { x-0000102
- * x=0.000162 Proton
91 * y} x=0.000253 « HI
,'“*" o +X_0008835 e ZEUS
o =
g Wt 320.000632 < BCDMS
T x=0.0008 O E665
wr ettt x=0.00102 O NMC
; T x=00013 A SLAC
i et x=0.00161 _
et =0.3(1.-0.4
et L xeooopn CT03GA0D
2 N .t
6 - . e IRELN x=0.00253
= 4o ® ot 4, x=0.0032
kot 000 .-*' et asiit ¢
+ . .:,M gt*h x=0.005
> i & x ** REM
Y 3 00" e * ..»:*‘ sty x=0.008
> oo™ ox* Jor X 1]
[y wooo® ot i 4 x=0.013
° ona"‘“f ..'..cu‘*'
4 - m S emaretn] x=0.021
o @oa®® o earord B
Mmm%u:nﬂw, L aeert t-*‘k.*t'*i’t* x=0.032
3- et esenemitnd ¢ X005
AE"“""&'?& x ceckmromatavta ¥ o x=0.08
AAAMMEDWE‘“ v axsbestye gty x=0.13
2 4 Anban ARG 0 BHRPIIGGee ¢ wp 0o o LakkkE g X o ¥ * x=0.18
* h o wmnpeey o by Leo0s
'’ AR AL RS FTT R BT S * x=0.4
1 B4 AN 0000 0 & & AkkR Ak N K R kK X:O.65
AAMARAMAR G EID S & O x=0.75 .
AAMMAA A X:O~85 (lle)
0 T T T T T T
107! 1 10 102 103 10* 10° 100
Q* (GeV?)

Figure 15.16. Qz—dependence of the proton structure function F; for various fixed x
values (Hagiwara et al 2002).

The solution to (15.112) is found to be

n n as() 44
My (1) = M (to) (as(t) > . (15.113)

At this point we hit one more snag—but a familiar one. The function
Pyq(z) of (15.100) is singular as z — 1, in such a way as to make the integrals
(15.109) for y,, diverge. This is clearly a standard infrared divergence (the quark
momentum yzp after gluon emission becomes equal to the quark momentum yp
before emission) and we expect that it can be cured by including the virtual gluon
diagrams of figure 15.10, as indicated at the start of the section (and as was done
analogously in the case of ete™ annihilation). This has been verified explicitly by
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Figure 15.17. Distributions of x times the unpolarized parton distributions f(x, u?)
(where f = uy, dy, u, d,s,c, g) using the MRST2001 parametrization (Martin et al 2002)
at a scale ;/.2 = 10 GeV? (from Hagiwara et al 2002).

Kim and Schilcher (1978) and by Altarelli ef al (1978a, b, 1979). Alternatively,
one can make the physical argument that the net number of quarks (i.e. the number
of quarks minus the number of anti-quarks) of any flavour is conserved as ¢ varies:

d 1
— dxg(x,t) =0. (15.114)
dr 0
From (15.106) this implies
1
/ deqJ[l(x, =0 (15.115)
0

where P(ig is the complete splitting function, including the effect of the gluon
loops. This fixes the contribution of these loops (which only enter, in the leading
log approximation, at z — 1): for any function f(z) regular as z — 1, Pan is

defined by
1 1
/0 dz f@PH(E) = /0 Az [f (@) — f(D]Pgg(2). (15.116)
Applying this prescription to y,,, we find (problem 15.10) that
n_ 8 1 2 +42n:1 15.117)
Yqq = 3 nn+1) s j '
and then .
4 2 1
d" = 1- 4% —|. 15.118
% 33—2Nf[ nnt 1) ;J} (-118)
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Figure 15.18. Data on the structure function F> in muon—proton deep inelastic scattering,
from BCDMS (Benvenuti et al 1989) and NMC (Amaudruz et al 1992). The curves are
QCD fits (Martin et al 1994) as described in the text.

We emphasize again that all the foregoing analysis is directly relevant only
to distributions in which the flavour singlet gluon distributions do not contribute
to the evolution equations. In the more general case, analogous splitting functions
Py, Pyq and Py will enter, folded appropriately with the gluon distribution
function g(x, r), together with the related quantities yé’g, yé’q and yé’g. Equation
(15.106) is then replaced by a 2 x 2 matrix equation for the evolution of the quark
and gluon moments My and M.

Returning to (15.113), one way of testing it is to plot the logarithm of
one moment, In M('l’, versus the logarithm of another, In M(’l", for different n, m
values. These should give straight lines with slopes (dgq/dqq)- Data support this
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prediction (Bosetti er al (1978)). However, since data do not exist for arbitrarily
small x, the moments cannot be determined from the data without some additional
assumptions. A more direct procedure, applicable to the non-singlet case too of
course, is to choose a reference point /,L% and parametrize the parton distribution
functions f;(x, fp) in some way. These may then be evolved numerically, via
the DGLAP equations, to the desired scale. Figure 15.17 shows a typical set of
distributions at 2 = 10 GeV? (Martin et al 2002). A global numerical fit is then
performed to determine the best values of the parameters, including Agcp which
enters into os(¢). An example of such a fit, due to Martin et al (1994), is shown
in figure 15.18. For further details of QCD fits to deep inelastic data the reader is
referred to Ellis et al (1996, chapter 4).

We conclude this chapter with two comments. First, the region of small
x (say x < 1072) requires special treatment and is the subject of ongoing
theoretical and experimental interest (Ellis et al 1996 section 4.6). Second, the ‘y’
notation for the moments of the splitting functions (as in (15.109)) is not chosen
accidentally. The same y’s are indeed anomalous dimensions (cf section 15.4) of
certain operators which appear in Wilson’s ‘operator product’ approach to scaling
violations, to which reference was made earlier (Wilson 1969). Readers keen to
pursue this may consult Peskin and Schroeder (1995, chapter 18).

Finally, it is worth pausing to reflect on how far our understanding of
structure has developed, via quantum field theory, from the simple ‘fixed number
of constituents’ models which are useful in atomic and nuclear physics. When
nucleons are probed on finer and finer scales, more and more partons (gluons, qq
pairs) appear, in a way quantitatively predicted by QCD. The precise experimental
confirmation of these predictions (and many others, as discussed by Ellis er al
(1996)) constitutes a remarkable vote of confidence, by Nature, in relativistic
quantum field theory.

Problems

15.1 Verify equation (15.11).
15.2 Verify equation (15.28).
15.3 Check that (15.51) can be rewritten as (15.54).

15.4 Verify that for the type of behaviour of the S function shown in
figure 15.7(b), « is reached as g> — 0.

15.5 Verify using dimensional regularization that the non-gauge-invariant part of
(11.18) cancels (see the text following equation (11.22)).

15.6 Verify equation (15.79).

15.7 Check that the electromagnetic charge e has dimension (mass)¢/? in d =
4 — € dimensions.

15.8 Verify equation (15.83).
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15.9 Using the results of problem 14.6, explain why the colour factor for (15.91)
. 4
1S 3-

15.10 Verify equation (15.117).
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16

LATTICE FIELD THEORY AND THE
RENORMALIZATION GROUP REVISITED

16.1 Introduction

Throughout this book, thus far, we have relied on perturbation theory as the
calculational tool, justifying its use in the case of QCD by the smallness of the
coupling constant at short distances: note, however, that this result itself required
the summation of an infinite series of perturbative terms. As remarked at the
end of section 15.3, the concomitant of asymptotic freedom is that o really does
become strong at small Q2 or at long distances of order AaéD ~ 1 fm. Here
we have no prospect of getting useful results from perturbation theory: it is the
non-perturbative regime. But this is precisely the regime in which quarks bind
together to form hadrons. If QCD is indeed the true theory of the interaction
between quarks, then it should be able to explain, ultimately, the vast amount of
data that exists in low-energy hadronic physics. For example: what are the masses
of mesons and baryons? Are there novel colourless states such as glueballs?
Is SU(2); or SU(3)¢ chiral symmetry spontaneously broken? What is the form
of the effective interquark potential? What are the hadronic form factors, in
electromagnetic (chapter 9) or weak (chapter 20) processes?

It is unlikely that answers to all these questions are going to be found
by performing calculations analytically—as is possible, of course, for the tree
diagrams of perturbation theory. Even in perturbation theory, however, one soon
encounters integrals that have to be evaluated numerically. The standard way of
doing this is to approximate the integral by some kind of discrete sum. Thus, a
mesh of points (in general multi-dimensional) has to be chosen: perhaps it would
make sense to formulate the theory on such a mesh—or ‘lattice’—in the first
place.

But there is a more fundamental point involved here. As we have seen
several times in this book, one of the triumphs of theoretical physics over the
past 50 years has been the success of renormalization techniques, first in ‘taming’
the ultraviolet divergences of quantum field theories and then in providing
quantitative predictions for short-distance phenomena in QCD, via the RGE. But
this immediately raises a question for any non-perturbative approach: how can we
regulate the ultraviolet divergences and therefore define the theory, if we cannot
get to grips with them via the specific divergent integrals supplied by perturbation
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theory? We need to be able to regulate the divergences in a way which does
not rely on their appearance in the Feynman graphs of perturbation theory. As
Wilson (1974, 1975) was the first to propose, one quite natural non-perturbative
way of regulating ultraviolet divergences is to approximate continuous spacetime
by a discrete lattice of points. Such a lattice will introduce a minimum distance—
namely the lattice spacing ‘a’ between neighbouring points. Since no two points
can ever be closer than a, there is now a corresponding maximum momentum
A = m/a (see following equation (16.6)) in the lattice version of the theory. Thus
the theory is automatically ultraviolet finite from the start, without presupposing
the existence of any perturbative expansion; renormalization questions will, of
course, enter when we consider the a dependence of our parameters. As long as
the lattice spacing is much smaller than the physical size of the hadrons one is
studying, the lattice version of the theory should be a good approximation. Of
course, Lorentz invariance is sacrificed in such an approach and replaced by some
form of hypercubic symmetry: we must hope that for small enough a this will
not matter. We shall discuss how a simple field theory is ‘discretized’ in the next
section: the following one will show how a gauge theory is discretized.

The discrete formulation of quantum field theory should be suitable for
numerical computation. This at once seems to rule out any formalism based on
non-commuting operators, since it is hard to see how they could be numerically
simulated. Indeed, the same would be true of ordinary quantum mechanics.
Fortunately, a formulation does exist which avoids operators: Feynman’s sum
over paths approach, which was briefly mentioned in section 5.2.2. This method
is the essential starting point for the lattice approach to quantum field theory and it
will be briefly introduced in section 16.4. The sum over paths approach does not
involve quantum operators, but fermions still have to be accommodated somehow.
The way this is done is briefly described in section 16.4 (see also appendix O).

It turns out that this formulation enables direct contact to be made between
quantum field theory and statistical mechanics, as we shall discuss in section 16.5.
This relationship has proved to be extremely fruitful, allowing physical insights
and numerical techniques to pass from one subject to the other, in a way that
has been very beneficial to both. In particular, the physics of renormalization
and of the RGE is considerably illuminated from a lattice/statistical mechanics
perspective, as we shall see in section 16.6. The chapter ends with some sample
results obtained from lattice simulations of QCD.

16.2 Discretization

We start by considering a simple field theory involving a bosonic field ¢.
Postponing until section 16.4 the question of exactly how we shall use it, we
assume that we shall still want to formulate the theory in terms of an action of the
form

S = /d4x L(p, Vo, ). (16.1)
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It seems plausible that it might be advantageous to treat space and time as
symmetrically as possible, from the start, by formulating the theory in ‘Euclidean’
space, instead of Minkowskian, by introducing ¢t = —it: further motivation for
doing this will be provided in section 16.4. In that case, the action (16.1) becomes

S — — i/d3x dr <¢, Vo, 12—‘?) (16.2)
= i/d3x dr Lg = iSg. (16.3)

A typical free bosonic action is then
Se($) = 3 / X dT[(3:¢)* + (V) + m*¢?]. (16.4)

We now represent all of spacetime by a finite-volume ‘hypercube’. For
example, we may have Nj lattice points along the x-axis, so that a field ¢ (x)
is replaced by the Ny numbers ¢ (nja) with ny = 0,1,..., Ny — 1. We write
L = Nja for the length of the cube side. In this notation, integrals and
differentials are replaced by the finite difference expressions

d 1
JarsaX 22 S n -] (16.5)
ny

so that a typical integral (in one dimension) becomes

ar (22 2 1 1 2 16.6
/ (a) —a Y 190 + 1~ g (16.6)

ny

As in all our previous work, we can alternatively consider a formulation
in momentum space, which will also be discretized. It is convenient to impose
periodic boundary conditions such that ¢ (x) = ¢(x + L). Then the allowed k-
values may be taken to be k,, = 27 vi/L withvy = —=N1/24+1,...0,...N1/2
(we take N to be even). It follows that the maximum allowed magnitude of the
momentum is then 7 /a, indicating that a ! is (as anticipated) playing the role of
our earlier momentum cut-off A. We then write

1 . -
p(ny) =Y ———eZ™m/Nig(y) (16.7)
" ; (N1a)2 1

which has the inverse

1
1) = (Nil) S e Mg ) (16.8)

ni
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since (problem 16.1)

Ni—1

1 el2mni(vi—v2)/Ny _ Sy v (16.9)

Nt
1 n1:0

Equation (16.9) is a discrete version of the §-function relation given in (E.25) of
volume 1. A one-dimensional version of the mass term in (16.4) then becomes
(problem 16.2)

%/dxmqu(xf = 1 Y Gndm) (16.10)
while
1 ap\> 2 - s
E/dx <E¢> N ;Zq&(m)sinz <%‘) F(=v1) (16.11)

= 22¢(kv1)451n (k >¢( k). (16.12)

kv,

Thus, a one-dimensional version of the free action (16.4) is

4 sin“ (ky,a/2) -
S Z(b(kvl [71/ 2} B (—ky,). (16.13)
k,,]
In the continuum case, (16.13) would be replaced by
1 [ dk - -
5 / —0)K* + m*1p(—k) (16.14)
2] 2w
as usual, which implies that the propagator in the discrete case is proportional to
4sin? (kv a/2) -
[7;1 +m2j| (16.15)
a

rather than to [k2 + m2]’1 (remember we are in one-dimensional Euclidean
space). The two expressions do coincide in the continuum limit ¢ — 0. The
manipulations we have been going through will be recognized by readers familiar
with the theory of lattice vibrations and phonons.

Following the same procedure for fermion field leads, however, to
difficulties. First note that the Euclidean Dirac matrices y}f are related to the

usual Minkowski ones y)' by v, 5 = =iy 5. v = —iy! = 1" They satisty
{yllf yf} = 28y for u = 1,2,3,4. The Euclidean Dirac Lagrangian is then
w(x) Yu 8M + m]yr(x), which should be written now in Hermitean form

my )Y (x) + 5 {0 @)y, (x) — @ ())yy ()} (16.16)
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The corresponding ‘one-dimensional’ discretized action is then

1 —
“me(m)l/f(mw {Z'ﬁ(n) Vi [ (m+1 1//(nl)}

a

I
—Z( (n1+) Wm))yFt/f(m)} (16.17)

ny

_ 1 -
- {ml//(nl)lﬁ(nl) + sy Ewen + 1)

nj

— i+ DyEpon]. (16.18)
In momentum space this becomes (problem 16.3)
sin(ky, a) -
> k) [%E — m} v (—kv)) (16.19)
o,

sin(k,, a)
R+

and the inverse propagator is [iylE m]. Thus the propagator itself is

.2
[ yfw} / [m2+ w} (16.20)
a a

But here is the (first) problem with fermions: in addition to the correct continuum
limit (@ — 0) found at k,, — 0, an alternative finite ¢ — 0 limit is found
at ky,, — m/a (consider expanding a! sin[(w/a — §)a] for small §). Thus
two modes survive as a — 0, a phenomenon known as the ‘fermion doubling
problem’ (actually in four dimensions there are 16 such corners of the hypercube).
It is a consequence of the fact that the Dirac Lagrangian is linear in the derivatives.

Various solutions to this problem have been proposed (Wilson 1975,
Susskind 1977, Banks et al 1976). Wilson (1974), for example, suggested adding
a term of the form %&(nl)[l//(nl + 1)+ (n; — 1) —2¢(n1)] to the Lagrangian,
which changes our inverse propagator to

[iyfw +m} + é(l — cos(ky,a)). (16.21)

By considering the expansion of the cosine near k,, ~ 0, it can be seen that the
second term disappears in the continuum limit. However, for k,, ~ m/a it gives
a large term of order 1/a, effectively banishing the ‘doubled’ state to a very high
mass. Further discussion of this aspect of lattice fermions is contained in Montvay
and Miinster (1994).

A second problem concerning fermions is the more obvious one already
alluded to: how are we to represent such entirely non-classical objects, which
in particular obey the exclusion principle? We shall return to this question in
section 16.4.
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16.3 Gauge invariance on the lattice

Having explored the discretization of derivatives, it is now time to think about
gauge invariance. In the usual (continuum) case, we saw in chapter 13 how this
was implemented by replacing ordinary derivatives by covariant derivatives, the
geometrical significance of which (in terms of parallel transport) was discussed
in section 13.2 and 13.3. It is very instructive to see how the same ideas arise
naturally in the lattice case.

We illustrate the idea in the simple case of the Abelian U(1) theory, QED.
Consider, for example, a charged boson field ¢ (x), with charge e. To construct a
gauge-invariant current, for example, we replaced ¢T3M¢ by ¢T(BM +ieA,)p, so
we ask: what is the discrete analogue of this? The term qu (x)%q)(x) becomes,
as we have seen,

1
¢*(m>;[¢(m +1) — ¢(n)al (16.22)

in one dimension. We do not expect (16.22) by itself to be gauge invariant and it
is easy to check that it is not. Under a gauge transformation for the continuous
case, we have

d(x) = e“YDp(x), A(x) > Ax) + diix); (16.23)

then ¢ (x)¢ (v) transforms by

T ()P (y) — e NI IWIGT (1) (y) (16.24)

and is clearly not invariant. The essential reason is that this operator involves the
fields at two different points—and so the term ¢ (n1)¢(n; + 1) in (16.22) will
not be gauge invariant either. Our discussion in chapter 13 should have prepared
us for this: we are trying to compare two ‘vectors’ (here, fields) at two different
points, when the ‘coordinate axes’ are changing as we move about. We need
to parallel transport one field to the same point as the other, before they can be
properly compared. The solution (13.62 ) shows us how to do this. Consider the
quantity

X
O@x,y) = ¢ (x)exp [ie/ Adx/i|¢(y). (16.25)
y
Under the gauge transformation (16.23), O(x, y) transforms by

Ox, y) — ¢T(x)e €W explic J7 Adx'+ie[8(x) -6 ()1} expD) $(y) = O(x, y)
(16.26)
and it is, therefore, gauge invariant. The familiar ‘covariant derivative’ rule can
be recovered by letting y = x + dx for infinitesimal dx, and by considering the
gauge-invariant quantity

) |:(’)(x,x +dx) — (’)(x,x)j|
lim .

16.27
dx—0 dx ( )
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Figure 16.1. Link variable U (n3; n1) in one dimension.

Evaluating (16.27), one finds (problem 16.4) the result

éT(x) <% - ieA> é(x) (16.28)
= ¢'(x) Dy (x) (16.29)

with the usual definition of the covariant derivative. In the discrete case, we
merely keep the finite version of (16.25), and replace ¢’ (n1)¢(n1 + 1) in (16.22)
by the gauge-invariant quantity

¢ DUy, n1 + Dg(ng +1) (16.30)

where the link variable U is defined by

nia
U(y,n+1) = exp [ie/ Adx/i|
(n1+1a
— exp[—ieA(ny)a] (16.31)

in the small a limit. The generalization to more dimensions is straightforward. In
the non-Abelian SU(2) or SU(3) case, ‘¢eA’ in (16.31) is replaced by gt A%(n;)
where the #’s are the appropriate matrices, as in the continuum form of the
covariant derivative. A link variable U (n2, n1) may be drawn as in figure 16.1.
Note that the order of the arguments is significant: U(np,ny) = U—L(n1, no)
from (16.31), which is why the link carries an arrow.

Thus gauge-invariant discretized derivatives of charged fields can be
constructed. What about the Maxwell action for the U(1) gauge field? This
does not exist in only one dimension (d,A, — d,A, cannot be formed) so let
us move into two. Again, our discussion of the geometrical significance of F),,
as a curvature (see section 13.3) guides us to the answer. Consider the product
U of link variables around a square path (figure 16.2) of side a (reading from
the right):

Ung = Uy, ny; nx, ny1 1)U (nx, Ryy1; N1, Ryt 1)
X Uxq1, Ny 1; Nxg1, ny)U(Mxy1, 0y ny, ny). (16.32)

It is straightforward to verify, first, that U is gauge invariant. Under a gauge
transformation, the link U (ny41, ny; ny, ny), for example, transforms by a factor
(cf equation (16.26))

expfie[6 (ny+1, ny) — O(ny, ny)l} (16.33)
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Figure 16.2. A simple plaquette in two dimensions.

and similarly for the three other links in U. In this Abelian case, the exponentials
contain no matrices and the accumulated phase factors cancel out, verifying the
gauge invariance. Next, let us see how to recover the Maxwell action. Adding the
exponentials again, we can write

Un = exp{—ieaAy(ny, ny) —ieaAx(ny,ny +1)

+ieaAy(ny + 1,ny) +ieaAy(ng, ny)} (16.34)
= exp {_ieaZ I:Ax(”l)m ny + 1) — Ay (ny, ny)i|
a
+i602|:Ay(nx+1,ny)—Ay(nx’ny)j|} 1635
a
Ay 9A
= exp{+iea® | —2 — —= (1636)
0x ay

using the derivative definition of (16.5). For small ‘a’ we may expand the
exponential in (16.36). We also take the real part to remove the imaginary terms,

leading to
> (1 —RelUp) > % 26204(ny)2 (16.37)
O O
where
A, 9A
Fry=—2——
dx dy

as usual. To relate this to the continuum limit we must note that we sum over each
such plaquette with only one definite orientation, so that the sum over plaquettes
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is equivalent to half of the entire sum. Thus

Z(l —RelUn) —> § Y &a*F),

niy,ny

— e%a //4 x)dxdy (16.38)

(Note that in two dimensions ‘e’ has dimensions of mass.) In four dimensions
similar manipulations lead to the form

1 1
- _22(1 —ReUp) — Z/ ExdrFy, (16.39)
e
]

for the lattice action, as required. In the non-Abelian case, as noted earlier, ‘e A’
is replaced by ‘gt - A’; for SU(3), the analogue of the left-hand side of (16.37) is

ZTr( - —Re UD> (16.40)

where the trace is over the SU(3) matrices.

16.4 Representation of quantum amplitudes

So we have a naturally gauge-invariant ‘classical’ field theory defined on a lattice,
with a suitable continuum limit. (Actually, the a — 0 limit of the quantum theory
is, as we shall see in section 16.7, more subtle than the naive replacements (16.5)
because of renormalization issues, as should be no surprise to the reader by now.)
However, we have not yet considered how we are going to turn this classical
lattice theory into a quantum one. The fact that the calculations are mostly going
to have to be done numerically seems at once to require a formulation that avoids
non-commuting operators. This is precisely what is provided by Feynman’s sum
over paths formulation of quantum mechanics (Feynman and Hibbs 1965) and
of quantum field theory and it is, therefore, an essential element in the lattice
approach to quantum field theory. In this section we give a brief introduction to
this formalism.

In section 5.2.2, we stated that in this approach the amplitude for a quantum
system, described by a Lagrangian L depending on one degree of freedom ¢(¢),
to pass from a state in which ¢ = ¢' at = f; to a state in which ¢ = ¢' at time
t = ty, is proportional to (with z = 1)

1
Z exp <i/fL(61(f),é(t))dt> (16.41)
5

all paths ¢(7)

where ¢ () = ¢, and ¢(tf) = gf. We shall now provide some justification for
this assertion.
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We begin by recalling how, in ordinary quantum mechanics, state vectors and
observables are related in the Schrodinger and Heisenberg pictures (see appendix I
of volume 1). Let ¢ be the canonical coordinate operator in the Schrodinger
picture, with an associated complete set of eigenvectors |g) such that

qlq) = qlq). (16.42)

The corresponding Heisenberg operator gy (¢)is defined by
éH(t) — eiﬁ([—to)c’]\e—iﬁ(t—to) (1643)

where H is the Hamiltonian and 7 is the (arbitrary) time at which the two pictures
coincide. Now define the Heisenberg picture state |g; )y by

g = A0 |g), (16.44)
We then easily obtain from (16.42)—(16.44) the result

gu(lg:)u = qlqi)u (16.45)

which shows that |¢,)qg is the (Heisenberg picture) state which at time ¢ is an
eigenstate of gy (¢) with eigenvalue g. Consider now the quantity

u(qrlgi)u (16.46)

which is, indeed, the amplitude for the system described by H to go from ¢! at ;
to ¢" at 7. Using (16.44), we can write

migrlas)n = (g'le™ " gh, (16.47)

We want to understand how (16.47) can be represented as (16.41).
We shall demonstrate the connection explicitly for the special case of a free
particle, for which
. PP
H=—. (16.48)
2m
For this case, we can evaluate (16.47) directly as follows. Inserting a complete set
of momentum eigenstates, we obtain!

~ . m ~ e .
(qlle HU= |4l = / (g1 p)(ple HU=0 gl dp

—00

1 Ot in2 (4t 2 T
= el e=ip> =)/ 2me=ipg' 4
—0oQ
L[ | PP — 1) ;
= [ e : - [— ~pa'—g) |} dp.
T J_ o 2m

(16.49)

I Remember that (q|p) is the g-space wavefunction of a state with definite momentum p and is,
therefore, a plane wave; we are using the normalization of equation (E.25) in volume 1.
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To evaluate the integral, we complete the square via the steps

Pz(ff_ti) — p( £ i) _ (k& 2 2mp(qf_qi)
2m plq )= 2m P tr— t

. 2 .
<tf - ti) _mg'—g) | m*¢'—g¢)’
2m P I — 1 (tr — 1;)?

. £ 02
_ <zf n)p/z_ m(q —q9° (16.50)

2m 2(ts — 1)
where .
, m(q" —q')

16.51
P— ( )

p

We then shift the integration variable in (16.49) to p’ and obtain

iH N 1 f_ i\2 00 (e — 1 2
<qf|ele(tr*t1)|q1> = —exp IM / dp/ exp _u .
2 2(tr — 1) —oo 2m

(16.52)
As it stands, the integral in (16.52) is not well defined, being rapidly oscillatory for
large p’. However, it is at this point that the motivation for passing to ‘Euclidean’
spacetime arises. If we make the replacement 1 — —irt, (16.52) becomes

. . 1 f_ 2] oo )
(qf|67H(rr7ﬁ)|6]1) — —exp |:_m(q q") ] / dp/ exp |:_ (tr —w)p

2 2(tr — iy) o0 2m
(16.53)
and the integral is a simple convergent Gaussian. Using the result

/ - dge 8’ = \/g (16.54)

we finally obtain

. _ 3 f_ 2
(e~ iy = [ﬁ} exp [—%] (16.55)

We must now understand how the result (16.55) can be represented in the
form (16.41). In Euclidean space, (16.41) is

T 2
> exp ( - / ' ém (j—f) dt) (16.56)

paths

in the free-particle case. We interpret the t integral in terms of a discretization
procedure, similar to that introduced in section 16.2. We split the interval 7y — 7j
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Figure 16.3. A ‘path’ from qo = qi at gy to gV = qf at 7y, via the intermediate positions

1 2 -1
q,q,...,qN at 7y, 17,..., TN

into N segments each of size €, as shown in figure 16.3. The t-integral in (16.56)
becomes the sum

U )
m S 16.57
25 (16.57)
J=1
and the ‘sum over paths’, in going from ¢ = ¢' at 7; to ¢V = ¢ at 7,
is now interpreted as a multiple integral over all the intermediate positions
ql, qz, e, qN_1 which paths can pass through at ‘times’ 71, 72, ..., Tny—1:

1 N (q] _ qj*])Z dq] dq2 qufl
e //.../exp[—m; - }A(G)A(e) e (1658)

where A(€) is a normalizing factor, depending on €, which is to be determined.
The integrals in (16.58) are all of Gaussian form and since the integral of
a Gaussian is again a Gaussian (cf the manipulations leading from (16.49) to
(16.52), but without the ‘i’ in the exponents), we may perform all the integrations
analytically. We follow the method of Feynman and Hibbs (1965, section 3.1).
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Consider the integral over ¢ ':

I E/exp{—g’—e[<q2—q‘)2+<q‘ — )1} dg'. (16.59)

This can be evaluated by completing the square, shifting the integration variable
and using (16.54) to obtain (problem 16.5)

1 — .
I = (E)2 exp |:—m(q2 - q‘)2j| : (16.60)
m 4e
Now the procedure may be repeated for the ¢2 integral
m ; m
I = / exp{—0” =) - (0" — 47} dg? (16.61)
€ 2e
which yields (problem 16.5)
1
4 2 — .
P= () exp| 227 - 42 (16.62)
3m 6¢

As far as the exponential factors in (16.55) in (16.56) are concerned, the pattern
is now clear: after n — 1 steps we shall have an exponential factor

expl—m(q" —¢')*/(2ne)]. (16.63)
Hence, after N — 1 steps we shall have a factor
expl—m(q" — ¢"?/2(x — w)] (16.64)

remembering that ¢V = ¢! and that 7y — ; = Ne. So we have recovered the
correct exponential factor of (16.55), and all that remains is to choose A(¢) in
(16.58) so as to produce the same normalization as (16.55).

The required A(e€) is
2mwe
A(e) =/ — (16.65)
m

as we now verify. For the first (ql) integration, the formula (16.58) contains two
factors of A~!(e), so that the result (16.60) becomes

[A(le>]211 =5 (%)é exp [~ 3¢ (@* —a'7]

- (27126)% exp [—%(qz . qi)z] . (16.66)

For the second (¢?) integration, the accumulated constant factor is

ﬁ (2:26)7 (43Lm€>z - (2:36)z ' (16.67)
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Proceeding in this way, one can convince oneself that after N — 1 steps, the
accumulated constant is

PR -
27 Ne 27 (s — 7)) ’

as in (16.55).

The equivalence of (16.55) and (16.56) (in the sense € — 0) is, therefore,
established for the free-particle case. More general cases are discussed in
Feynman and Hibbs (1965, chapter 5) and in Peskin and Schroeder (1995,
chapter 9). The conventional notation for the path-integral amplitude is

(gl A1y = / Dg(r)e fa Lo (16.69)

where the right-hand side of (16.69) is interpreted in the sense of (16.58).
We now proceed to discuss further aspects of the path-integral formulation.

Consider the (Euclideanized) amplitudi: (qfle_l:l (zr =) |qi) and insert a complete
set of energy eigenstates |n) such that H|n) = E,|n):

(q'le™ "V 1g") = 3 (g Ininlgh)eFr . (16.70)

n

Equation (16.70) shows that if we take the limits t; - —oo, Tt — 00, then the
state of lowest energy Eq (the ground state) provides the dominant contribution.
Thus, in this limit, our amplitude will represent the process in which the system
begins in its ground state |2) at 7; — —oo, with ¢ = ¢', and ends in |$2) at
7t — o0, with ¢ = ¢F.

How do we represent propagators in this formalism? Consider the expression
(somewhat analogous to a field theory propagator)

Gilta: 1) = (g1 T{Gu(ta)gu (1)} q;) (16.71)

where T is the usual time-ordering operator. Using (16.43) and (16.44), (16.71)
can be written, for t, > 14, as

Gita, 1) = <qf|e—iﬁ(tf—tb)L’]\e—iﬁ(tb—tg)ée—iﬁ(ta—ti)|qi>. (16.72)
Inserting a complete set of states and Euclideanizing, (16.72) becomes
Grilta, 1p) = /dq“ dg” g% (gfle™ =) |gP)
x (g le™ 1@l (g1, (16.73)

Now, each of the three matrix elements has a discretized representation of the
form (16.55) with, say, N1 — 1 variables in the interval (z,, i), N2 — 1 in (17, 7,)
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and N3 — 1 in (71, 7). Each such representation carries one ‘surplus’ factor of
[A(e)] Y, making an overall factor of [A(6)]73. Two of these factors can be
associated with the dg® dg” integration in (16.73), so that we have a total of
N1 + Ny + N3 — 1 properly normalized integrations and one ‘surplus’ factor
[A(e)]7! as in (16.58). If we now identify ¢(t,) = ¢%, q(t,) = qb, it follows
that (16.73) is simply

j:lf Ldr

/Dq(r)q(ra)q(fb)e_ (16.74)
In obtaining (16.74), we took the case 7, > 7t,. Suppose alternatively that
T, > Tp. Then the order of 7, and 7, inside the interval (zj, tr) is simply
reversed but since g“ and qb in (16.73), or g(z,) and g(tp) in (16.74), are
ordinary (commuting) numbers, the formula (16.74) is unaltered and it does
actually represent the matrix element (16.71) of the time-ordered product.

The generalizations of these results to the field theory case are intuitively
clear. For example, in the case of a single scalar field ¢ (x), we expect the analogue
of (16.74) to be (cf (16.4))

T
/D¢(X)¢(xa)¢(Xb)eXp[—/ Lg(¢, Ve, d:9) d4XEi| (16.75)

where

d*xg = d®x dt (16.76)
and the boundary conditions are given by ¢ (x, ;) = ¢i(x), ¢(x, 1) = q)f(x),
O (X, 1) = ¢%(x) and ¢(x, 1) = PP (x), say. In (16.75), we have to understand
that a four-dimensional discretization of Euclidean spacetime is implied, the fields

being Fourier-analysed by four-dimensional generalizations of expressions such
as (16.7). Just as in (16.71)-(16.74), (16.75) is equal to

(@ ) e TTT (G (xa) b (xp) e T 1 (x)). (16.77)

Taking the limits 7; — —o0, 7 — 00 will project out the configuration of lowest
energy, as discussed after (16.70), which in this case is the (interacting) vacuum
state |€2). Thus, in this limit, the surviving part of (16.77) is

(10 12)e E2(QT {du (xa) Pu(xp) }|2)e ~E2T (9! (x)) (16.78)

with t — oo. The exponential and overlap factors can be removed by dividing
by the same quantity as (16.77) but without the additional fields ¢(x,) and
¢ (xp). In this way, we obtain the formula for the field theory propagator in four-
dimensional Euclidean space:

J Do (xa) (xp) expl— [ L d*xg]
J D¢ expl— [7, Lk d*xg]

(QUT (n(va)du (x0)}Q) = lim_
(16.79)
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Vacuum expectation values (vevs) of time-ordered products of more fields will
simply have more factors of ¢ on both sides.

Perturbation theory can be developed in this formalism also. Suppose
Lg = E% + EE“, where ﬁ% describes a free scalar field and Eg“ is an interaction,
for example A¢*. Then, assuming A is small, the exponential in (16.79) can be
expressed as

exp [ - /d4xE (ﬁ% + Eg“)] = (exp—/d4xE£%) (1 - A/d4xE¢4 + - )
(16.80)
and both numerator and denominator of (16.79) may be expressed as vevs of
products of free fields. Compact techniques exist for analysing this formulation
of perturbation theory (Ryder 1996, Peskin and Schroeder 1995) and one finds
exactly the same ‘Feynman rules’ as in the canonical (operator) approach.

In the case of gauge theories, we can easily imagine a formula similar to
(16.79) for the gauge-field propagator, in which the integral is carried out over all
gauge fields A, (x) (in the U(1) case, for example). But we already know from
chapter 7 (or from chapter 13 in the non-Abelian case) that, in the continuum
limit, we shall not be able to construct a well-defined perturbation theory in this
way, since the gauge-field propagator will not exist unless we ‘fix the gauge’ by
imposing some constraint, such as the Lorentz gauge condition. Such constraints
can be imposed on the corresponding path integral and, indeed, this was the route
followed by Faddeev and Popov (1967) in first obtaining the Feynman rules for
non-Abelian gauge theories, as mentioned in section 13.5.3.

In the discrete case, the appropriate integration variables are the link
variables U(l;) where J; is the i™ link. They are elements of the relevant gauge
group—for example U(n1,n; + 1) of (16.3.1) is an element of U(1). In the
case of the unitary groups, such elements typically have the form (cf (12.35))
~ exp (i Hermitean matrix), where the ‘Hermitean matrix’ can be parametrized
in some convenient way—for example, as in (12.31) for SU(2). In all these cases,
the variables in the parametrization of U vary over some bounded domain (they
are essentially ‘angle-type’ variables, as in the simple U(1) case), and so, with a
finite number of lattice points, the integral over the link variables is well-defined
without gauge-fixing. The integration measure for the link variables can be chosen
so as to be gauge invariant and, hence, provided the action is gauge invariant,
the formalism provides well-defined expressions, independently of perturbation
theory, for vevs of gauge-invariant quantities.

There remains one more conceptual problem to be addressed in this
approach—namely, how are we to deal with fermions? It seems that we
must introduce new variables which, though not quantum field operators, must
nevertheless anti-commute with each other. Such ‘classical’ anti-commuting
variables are called Grassmann variables, and are briefly described in appendix O.
Further details are contained in Ryder (1996) and in Peskin and Schroeder (1995).
For our purposes, the important point is that the fermion Lagrangian is bilinear in

Copyright 2004 IOP Publishing Ltd



the (Grassmann) fermion fields i, the fermionic action having the form
Sy = /d4xE YMU)Y (16.81)

where M is a matrix representing the Dirac operator i/) — m, in its discretized
and Euclideanized form. This means that in a typical fermionic amplitude of the
form (cf the denominator of (16.79))

Zy = /D&Duf exp[— Sy ] (16.82)

one has essentially an integral of Gaussian type (albeit with Grassmann variables),
which can actually be performed analytically.” The result is simply det[M (U)],
the determinant of this matrix. The problem is that M is a very large matrix
indeed, if we want anything like a reasonably sized lattice (say 20 lattice spacings
in each of the four dimensions); moreover, the gauge field degrees of freedom
must be itemized (via the link variables U) at each site. At the time of writing,
computers are just about reaching the stage of being able to calculate such a vast
determinant numerically, but hitherto most calculations have been done in the
quenched approximation, setting the determinant equal to a constant independent
of the link variables U. This is equivalent to the neglect of closed fermion loops
in a Feynman graph approach. In the quenched approximation, the expectation
value of any operator O(U) is just

_ S DUOU) exp[—S,(U)]

o)) = 16.83
(©w) [ DU exp[—S,(U)] (1683

where S, (U) is the gauge action (16.40).

16.5 Connection with statistical mechanics

Not the least advantage of the path integral formulation of quantum field theory
(especially in its lattice form) is that it enables a highly suggestive connection to
be set up between quantum field theory and statistical mechanics. We introduce
this connection now, by way of a preliminary to the discussion of renormalization
in the following section.

The connection is made via the fundamental quantity of equilibrium
statistical mechanics, the partition function Z defined by

H
7 = - 16.84
> exp( kBT) (16.84)
configurations

which is simply the ‘sum over states’ (or configurations) of the relevant degrees
of freedom, with the Boltzmann weighting factor. H is the classical Hamiltonian

2 See appendix O.
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evaluated for each configuration. Consider, for comparison, the denominator in
(16.79), namely

Zy = / D¢ exp(—Sg) (16.85)

where
Sg = /d4xE LE = /d4xE ($@0:0)% + L(Ve)? + Im?¢* + 29"} (16.86)

in the case of a single scalar field with mass m and self-interaction A¢*. The
Euclideanized Lagrangian density Lg is like an energy density: it is bounded from
below and increases when the field has large magnitude or has large gradients in t
or X. The factor exp(—Sg) is then a sensible statistical weight for the fluctuations
in ¢, and Zy may be interpreted as the partition function for a system described
by the field degree of freedom ¢ but, of course, in four ‘spatial’ dimensions.

The parallel becomes perhaps even stronger when we discretize spacetime.
In an Ising model (see the following section), the Hamiltonian has the form

H==7 susn1 (16.87)
n

where J is a constant and the sum is over lattice sites n; the system variables
taking the values 1. When (16.87) is inserted into (16.84), we arrive at
something very reminiscent of the ¢(n1)¢(n1 + 1) term in (16.6). Naturally, the
effective ‘Hamiltonian’ is not quite the same—though we may note that Wilson
(1971b) argued that in the case of a ¢* interaction the parameters can be chosen
so as to make the values ¢ = =£1 the most heavily weighted in Sg. Statistical
mechanics does, of course, deal in three spatial dimensions, not the four of
our Euclideanized spacetime. Nevertheless, it is remarkable that quantum field
theory in three spatial dimensions appears to have such a close relationship to
equilibrium statistical mechanics in four spatial dimensions.

One insight we may draw from this connection is that, in the case of pure
gauge actions (16.39) or (16.40), the gauge coupling is seen to be analogous to
an inverse temperature, by comparison with (16.84). For example, in (16.40)
6/g% would play the role of 1/kgT. One is led to wonder whether something
like transitions between different ‘phases’ exist, as coupling constants (or other
parameters) vary—and, indeed, such changes of ‘phase’ can occur.

A second point is somewhat related to this. In statistical mechanics, an
important quantity is the correlation length &, which for a spin system may be
defined via the spin—spin correlation function

GX) = (s()s(0) = Y s00s(O)e /T (16.88)
all s(X)

where we are once more reverting to a continuous X variable. For large |X|, this
takes the form

G(X)O(LGX <ﬂ) (16.89)
x| Py ) '
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The Fourier transform of this (in the continuum limit) is
G(K») o< (K*+£72(T)) ™! (16.90)

as we learned in section 2.3. Comparing (16.88) with (16.79), it is clear that
(16.88) is proportional to the propagator (or Green function) for the field s(X):
(16.90) then shows that & “I(T) is playing the role of a mass term m. Now, near
a critical point for a statistical system, correlations exist over very large scales &
compared to the inter-atomic spacing a; in fact, at the critical point £(T¢) ~ L,
where L is the size of the system. In the quantum field theory, as indicated earlier,
we may regard a~! as playing a role analogous to a momentum cut-off A, so the
regime & > a is equivalent to m < A, as was indeed always our assumption.
Thus studying a quantum field theory this way is analogous to studying a four-
dimensional statistical system near a critical point. This shows rather clearly why
it is not going to be easy: correlations over all scales will have to be included.
At this point, we are naturally led to the consideration of renormalization in the
lattice formulation.

16.6 Renormalization and the renormalization group on the lattice

16.6.1 Introduction

In the continuum formulation which we have used elsewhere in this book,
fluctuations over short distances of order A~! generally lead to divergences in
the limit A — oo, which are controlled (in a renormalizable theory) by the
procedure of renormalization. Such divergent fluctuations turn out, in fact, to
affect a renormalizable theory only through the values of some of its parameters
and, if these parameters are taken from experiment, all other quantities become
finite, even as A — oo. This latter assertion is not easy to prove and, indeed, is
quite surprising. However, this is by no means all there is to renormalization
theory: we have seen the power of ‘renormalization group’ ideas in making
testable predictions for QCD. Nevertheless, the methods of chapter 15 were rather
formal and the reader may well feel the need of a more physical picture of what
is going on. Such a picture was provided by Wilson (1971a) (see also Wilson
and Kogut 1974), using the ‘lattice + path integral” approach. Another important
advantage of this formalism is, therefore, precisely the way in which, thanks
to Wilson’s work, it provides access to a more intuitive way of understanding
renormalization theory. The aim of this section is to give a brief introduction to
Wilson’s ideas, so as to illuminate the formal treatment of the previous chapter.
In the ‘lattice + path integral’ approach to quantum field theory, the degrees
of freedom involved are the values of the field(s) at each lattice site, as we have
seen. Quantum amplitudes are formed by integrating suitable quantities over all
values of these degrees of freedom, as in (16.79) for example. From this point
of view, it should be possible to examine specifically how the ‘short distance’ or
‘high momentum’ degrees of freedom affect the result. In fact, the idea suggests
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Figure 16.4. A portion of the one-dimensional lattice of spins in the Ising model.

itself that we might be able to perform explicitly the integration (or summation)
over those degrees of freedom located near the cut-off A in momentum space,
or separated by only a lattice site or two in coordinate space. If we can do
this, the result may be compared with the theory as originally formulated to
see how this ‘integration over short-distance degrees of freedom’ affects the
physical predictions of the theory. Having done this once, we can imagine doing
it again—and indeed iterating the process, until eventually we arrive at some
kind of ‘effective theory’ describing physics in terms of ‘long-distance’ degrees
of freedom.

There are several aspects of such a programme which invite comment. First,
the process of ‘integrating out’ short-distance degrees of freedom will obviously
reduce the number of effective degrees of freedom, which is necessarily very
large in the case § > a, as previously envisaged. Thus, it must be a step in the
right direction. Second, this sketch of the ‘integrating out’ procedure suggests
that, at any given stage of the integration, we shall be considering the system
as described by parameters (including masses and couplings) appropriate to that
scale, which is of course strongly reminiscent of RGE ideas. And third, we may
perhaps anticipate that the result of this ‘integrating out’ will be not only to render
the parameters of the theory scale-dependent but also, in general, to introduce
new kinds of effective interactions into the theory. We now consider some simple
examples which we hope will illustrate these points.

16.6.2 The one-dimensional Ising model

Consider first a simple one-dimensional Ising model with Hamiltonian (16.87)
and partition function

N—1
Z=Y exp [K > s,ls,1+1] (16.91)
n=0

{sn}

where K = J/(kgT) > 0. In (16.91) all the s, variables take the values 41
and the ‘sum over {s,}” means that all possible configurations of the N variables
50, 81, 82, ..., SN—1 are to be included. The spin s, is located at the lattice site na
and we shall (implicitly) be assuming the periodic boundary condition s, = Sy4».
Figure 16.4 shows a portion of the one-dimensional lattice with the spins on the
sites, each site being separated by the lattice constant a. Thus, for this portion we
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Figure 16.5. A ‘coarsening’ transformation applied to the lattice portion shown in
figure 16.4. The new (primed) spin variables are situated twice as far apart as the original
(unprimed) ones.

are evaluating

Z exp[K (sny—150 + SoS1 + S152 + 5253 + 5354)] . (16.92)

SN—1550551,52,53,54

Now suppose we want to describe the system in terms of a ‘coarser’ lattice,
with lattice spacing 2a and corresponding new spin variables s),. There are many
ways we could choose to describe the s;, but here we shall only consider a very
simple one (Kadanoff 1977) in which each s,, is simply identified with the s,
at the corresponding site (see figure 16.5). For the portion of the lattice under
consideration, then, (16.92) becomes

Z explK (sn—15( + 5051 + 5157 + 5753 + 5355)]. (16.93)

SN—1,8051,51,53,55

If we can now perform the sums over s; and s3 in (16.93), we shall end up (for
this portion) with an expression involving the ‘effective’ spin variables s, s and
s}, situated twice as far apart as the original ones and, therefore, providing a more
‘coarse grained’ description of the system. Summing over s; and s3 corresponds
to ‘integrating out’ two short-distance degrees of freedom as discussed earlier.

In fact, these sums are easy to do. Consider the quantity exp(Ks(s1),
expanded as a power series:

2 3

K K
exp(Ks(/)sl) =14 Ksys1 + N + ?(s(/)sl) + - (16.94)

where we have used (s(s1 )2 = 1. It follows that
exp(K sjs1) = cosh K (1 + s;s1 tanh K) (16.95)
and similarly

exp(K s1s1) = cosh K (1 + 5157 tanh K). (16.96)
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Thus the sum over s7 is

Z cosh® K (1 + sps1 tanh K + s157 tanh K + 535 tanh® K). (16.97)
S1=i1

Clearly, the terms linear in s; vanish after summing and the s; sum becomes just
2 cosh? K (1 + sps| tanh® K). (16.98)

Remarkably, (16.98) contains a new ‘nearest-neighbour’ interaction, s(/)si , just
like the original one in (16.91) but with an altered coupling (and a different spin-
independent piece). In fact, we can write (16.98) in the standard form

explg1(K) + K'sjs1] (16.99)
and then use (16.95) to set
tanh K’ = tanh® K (16.100)
and identify
2 cosh? K
Ky=In|——]. 16.101
g1(K) n(coshK’) ( )

Exactly the same steps can be followed through for the sum on s3 in (16.93)—and
indeed for all the sums over the ‘integrated out’ spins. The upshot is that, apart
from the accumulated spin-independent part, the new partition function, defined
on a lattice of size 2a, has the same form as the old one but with a new coupling
K’ related to the old one K by (16.100).

Equation (16.100) is an example of a renormalization transformation: the
number of degrees of freedom has been halved, the lattice spacing has doubled
and the coupling K has been renormalized to K’.

It is clear that we could apply the same procedure to the new Hamiltonian,
introducing a coupling K” which is related to K’ , and thence to K, by

tanh K" = (tanh K')? = (tanh K)*. (16.102)

This is equivalent to iferating the renormalization transformation; after n
iterations, the effective lattice constant is 2"a and the effective coupling is given

by

tanh K™ = (tanh K)". (16.103)
The successive values K’, K”, ... of the coupling under these iterations can
be regarded as a ‘flow’ in the (one-dimensional) space of K-values: a
renormalization flow.

Of particular interest is a point (or points) K* such that

tanh K* = tanh? K *. (16.104)
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Figure 16.6. ‘Renormalization flow’: the arrows show the direction of flow of the coupling
K as the lattice constant is increased. The starred values are fixed points.

This is called a fixed point of the renormalization tranformation. At such a point
in K -space, changing the scale by a factor of 2 (or 2" for that matter) will make
no difference, which means that the system must be, in some sense, ordered.
Remembering that K = J/(kgT), we see that K = K* when the temperature is
‘tuned’ to the value T = T* = J/(kpK*). Such a T* would be the temperature
of a critical point for the thermodynamics of the system, corresponding to the
onset of ordering. In the present case, the only fixed points are K* = oo and
K* = 0. Thus there is no critical point at a non-zero 7* and, hence, no transition
to an ordered phase. However, we may describe the behaviour as T — 0 as
‘quasi-critical’. For large K, we may use

tanh K ~ 1 — 2¢2K (16.105)

to write (16.104) as
K™ =K —1mn (16.106)

which shows that K" changes only very slowly (logarithmically) under iterations
when in the vicinity of a very large value of K, so that this is ‘almost’ a fixed
point.

We may represent the flow of K under the renormalization transformation
(16.103) as in figure 16.6. Note that the flow is away from the quasi-fixed point
at K* = oo(T = 0) and towards the (non-interacting) fixed point at K* = 0.

Another way of looking for a critical (or fixed) point would be to calculate
the correlation length £(7') introduced in (16.89) and (16.90). At a critical point,
& ~ L (the system size), which goes to infinity in the thermodynamic limit. In
the present model, with the Hamiltonian (16.87), we may calculate £(T") exactly
(problem 16.6) and find that

—a
Intanh K (a)”
Equation (16.107) confirms that there is no finite temperature 7 at which & — oo

but as T — 0 we do have £ — o0 and the system is ordered. More precisely,
from (16.107) we find

&(T) = (16.107)

£(T) ~ %e” for T — 0 (16.108)

or, in terms of the equivalent mass parameter m(7T) = &~ !'(T) introduced after
(16.90),

2
m(T) ~ ;efz’(. (16.109)

Copyright 2004 IOP Publishing Ltd



[ @
*
=0 K =

*
[ J

K K

Figure 16.7. The renormalization flow for the transformation (16.113).

The expression (16.109) becomes very small at small 7 but never vanishes at a
finite value of 7. In this sense, T = 0 is a kind of ‘asymptotically reachable’
fixed point.

It is interesting to consider the effect of the renormalization transformation
(16.103) on &. Let us denote by &,(T) the effective correlation length after n
iterations, so that

THN=———"""—. 16.110
Sn(T) In tanh K ™ ( )
From (16.103), it then easily follows that
1
&n(T) = ;E(T)- (16.111)

Equation (16.111) confirms what we might have expected: the correlation length
is measured in units of the only available length unit, a, and when this increases to
na after n iterations, & must decrease by n~! so as to maintain the same physical
distance. In particular, &€ — O asn — oo.

16.6.3 Further developments and some connections with particle physics

A renormalization transformation which has a fixed point at a finite (neither zero
nor infinite) value of the coupling is clearly of greater interest, since this will
correspond to a critical point at a finite temperature. A simple such example
given by Kadanoff (1977) is the transformation

K' =102kK)? (16.112)
for a doubling of the effective lattice size, or
K™ = 12Ky (16.113)

for n such iterations. The model leading to (16.113) involves fermions in one
dimension but the details are irrelevant to our purpose here. The renormalization
transformation (16.113) has three fixed points: K* = 0, K* = oo and the finite
point K* = % The renormalization flow is shown in figure 16.7.

The striking feature of this flow is that the motion is always away from
the finite fixed point, under successive iterations. This may be understood by
recalling that at the fixed point (which is a critical point for the statistical system)
the correlation length £ must be infinite (as L — 00). As we iterate away from

Copyright 2004 IOP Publishing Ltd



BK)

N[ —

Figure 16.8. The B-function of (16.117)—the arrows indicate increasing f.

this point, £ must decrease according to (16.111), and therefore we must leave the
fixed (or critical) point. For this model, £ is given by Kadanoff (1977) as

a

5= K]

(16.114)

which indeed goes to infinity at K = %

Let us now begin to think about how all this may relate to the treatment of
the renormalization group in particle physics, as given in the previous chapter.
First, we need to consider a continuous change of scale, say by a factor of f. In
the present model, the transformation (16.113) then becomes

K(fa)= %(ZK(a))f. (16.115)
Differentiating (16.115) with respect to f, we find that

dK (fa)
df
We may reasonably call (16.116) a renormalization group equation, describing

the ‘running’ of K (fa) with the scale f, analogous to the RGE’s for o and o
considered in chapter 15. In this case, the 8-function is

f = K(fa)In[2K(fa)]. (16.116)

B(K) = K In(2K), (16.117)

which is sketched in figure 16.8. The zero of § is indeed at the fixed (critical)
point K = % and this is an infrared unstable fixed point, the flow being away
from it as f increases.

The foregoing is exactly analogous to the discussion in section 15.4—see,

in particular, figure 15.7 and the related discussion. Note, however, that in the
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present case we are considering rescalings in position space, not momentum
space. Since momenta are measured in units of ¢~!, it is clear that scaling a
by f is the same as scaling k by f~! =, say. This will produce a change in sign
in dK /dt relative to dK /d f, and accounts for the fact that K = % is an infrared
unstable fixed point in figure 16.8, while ¢ is an infrared stable fixed point in
figure 15.7(b). Allowing for the change in sign, figure 16.8 is quite analogous to
figure 15.7(a).

We have emphasized that, at a critical point, the correlation length £ — oo
or, equivalently, the mass parameter (cf (16.90)) m = & —1 5 0. In this case, the
Fourier transform of the spin—spin correlation function should behave as

- 1
G(K?) x o (16.118)

This is indeed the k2-dependence of the propagator of a free, massless scalar
particle, but—as we learned for the fermion propagator in section 15.4—it is no
longer true in an interacting theory. In the interacting case, (16.118) generally
becomes modified to

G (k%) x . (16.119)
(k2)!2
or, equivalently,
1

in three spatial dimensions, and in the continuum limit. Thus, at a critical
point, the spin—spin correlation function exhibits scaling under the transformation
x' = fx but it is not free-field scaling. Comparing (16.119) with (15.65), we
see that n/2 is precisely the anomalous dimension of the field s(x), so—just as
in section 15.4—we have an example of scaling with anomalous dimension. In
the statistical mechanics case, 71 is a critical exponent, one of a number of such
quantities characterizing the critical behaviour of a system. In general, n will
depend on the coupling constant n(K): at a non-trivial fixed point, n will be
evaluated at the fixed point value K*, n(K*). Enormous progress was made in
the theory of critical phenomena when the powerful methods of quantum field
theory were applied to calculate critical exponents (see, for example, Peskin and
Schroeder (1995, chapter 13), and Binney et al (1992)).

In our discussion so far, we have only considered simple models with just
one ‘coupling constant’, so that diagrams of renormalization flow were one-
dimensional. Generally, of course, Hamiltonians will consist of several terms
and the behaviour of all their coefficients will need to be considered under a
renormalization transformation. The general analysis of renormalization flow
in multi-dimensional coupling space was given by Wegner (1972). In simple
terms, the coefficients show one of three types of behaviour under renormalization
transformations such that a — fa, characterized by their behaviour in the
vicinity of a fixed point:
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(i) the difference from the fixed point value grows as f increases, so that the
system moves away from the fixed point (as in the single-coupling examples
considered earlier);

(ii) the difference decreases as f increases, so the system moves towards the
fixed point; and

(iii) there is no change in the value of the coupling as f changes.

The corresponding coefficients are called, respectively, (i) relevant, (ii) irrelevant
and (iii) marginal couplings—the terminology is also frequently applied to the
operators in the Hamiltonians themselves. The intuitive meaning of ‘irrelevant’
is clear enough: the system will head towards a fixed point as f — oo whatever
the initial values of the irrelevant couplings. The critical behaviour of the system
will, therefore, be independent of the number and type of all irrelevant couplings
and will be determined by the relatively few (in general) marginal and relevant
couplings. Thus, all systems which flow close to the fixed point will display the
same critical exponents determined by the dynamics of these few couplings. This
explains the property of universality observed in the physics of phase transitions,
whereby many apparently quite different physical systems are described (in the
vicinity of their critical points) by the same critical exponents.

Additional terms in the Hamiltonian are, in fact, generally introduced
following a renormalization transformation. A simple mathematical analogue
may illustrate the point. Consider the expression

o0 o
Zyy = / dx/ dy exp[—(x? + y? + ax* 4+ ax2y?)] (16.121)
—00 —00

which may be regarded as the ‘partition function’ for a system with two variables
x and y, the action being similar to that of two scalar fields with quartic couplings.
Suppose we want to ‘integrate out’ the variable y. We write

o0 o
Zoy = / dx exp[—(x2 + Ax4)]/ dy exp[—(y% + Ax2y?)]
o —0Q0

:/ dx exp[—(x2 + AxH] (ﬁ)z (16.122)

Assuming that A is small and may be treated perturbatively, (16.122) may be
expanded as

oo
Zey =3 f dx exp[—(x? + AxH][1 — $ax? + 3a2x — 230+
—0o0

(16.123)
The terms in the series expansion may be regarded as arising from an expansion
of the exponential

exp[—Aax? — 1a%x* + %A3x6 =] (16.124)
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to order A3, so that to this order, (16.123) may be written as

o0
Zoy :n%/ dx exp{—[x*(1+ 30 +x* = 1A+ 230+ ). (16.125)
—0o0

The result (16.125) may be interpreted as (a) a renormalization of the ‘mass’ term

x2 so that its coefficient changes from 1 to 1 + %k; (b) a renormalization of the

x* term so that the coupling A changes to A — i)»z; and (c) the generation of a
‘new interaction’ of sixth order in the degree of freedom x. We may think of this
new interaction (in more realistic quantum field cases) as supplying the effective
interaction between the ‘x-fields’ that was previously mediated by the ‘y-fields’.

In the quantum field case, we may expect that renormalization
transformations associated with @ — fa, and iterations thereof, will in general
lead to an effective theory involving all possible couplings allowed by whatever
symmetries are assumed to be relevant. Thus, if we start with a typical ‘¢*’ scalar
theory as given by (16.86), we shall expect to generate all possible couplings
involving ¢ and its derivatives. At first sight, this may seem disturbing: after all,
the original theory (in four dimensions) is a renormalizable one, but an interaction
such as A¢® is not renormalizable according to the criterion given in section 11.8
( in four dimensions ¢ has mass dimension unity, so that A must have mass
dimension —2). It is, however, essential to remember that in this ‘Wilsonian’
approach to renormalization, summations over momenta appearing in loops do
not, after one iteration a — fa, run up to the original cut-off value 7 /a, but
only up to the lower cut-off 7 /fa. The additional interactions compensate for
this change.

In fact, we shall now see how the coefficients of non-renormalizable
interactions correspond precisely to irrelevant couplings in Wilson’s approach,
so that their effect becomes negligible as we iterate to scales much larger than
a. We consider continuous changes of scale characterized by a factor f, and
we discuss a theory with only a single scalar field ¢ for simplicity. Imagine,
therefore, that we have integrated out, in (16.85), those components of ¢ (x) with
a < x| < fa. We will be left with a functional integral of the form (16.85)
but with ¢ (x) restricted to [x| > fa, and with additional interaction terms in the
action. In order to interpret the result in Wilson’s terms, we must rewrite it so that
it has the same general form as the original Zy4 of (16.85). A simple way to do
this is to rescale distances by

X == (16.126)

so that the functional integral is now over ¢ (x') with |x'| > a, as in (16.85).
We now define the fixed point of the renormalization transformation to be that in
which all the terms in the action are zero, except the ‘kinetic’ piece; this is the
‘free-field’ fixed point. Thus, we require the kinetic action to be unchanged:

/ d g (3u0)* = f df, (3),')?
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_ [ Ll (3,9)? (16.127)
= 72 xg (0y .
from which it follows that ¢’ = f¢. Consider now a term of the form A¢°:

A/d4xE¢6 - %/d4x{3¢’6. (16.128)
(16.128) shows that the ‘new’ A’ is related to the old one by A’ = A/f? and
in particular that, as f increases, A’ decreases and is therefore an irrelevant
coupling, tending to zero as we reach large scales. But such an interaction
is precisely a non-renormalizable one (in four dimensions), according to the
criterion of section 11.8. The mass dimension of ¢ is unity, and hence that
of A must be —2 so that the action is dimensionless: couplings with negative
mass dimensions correspond to non-renormalizable interactions. The reader may
verify the generality of this result for any interaction with p powers of ¢ and ¢
derivatives of ¢.
However, the mass term mquz behaves differently:

2
m2/d4xE ¢’ = m2f2/c14x;S ¢ (16.129)
showing that m’ 2 = m? f? and the ‘coupling’ m? is relevant, since it grows
with f2. Such a term has positive mass dimension and corresponds to a ‘super-
renormalizable’ interaction. Finally, the A¢4 interaction transforms as

A / d*xp ¢* = A / d*xp ¢ (16.130)

and so ' = A. The coupling is marginal, which may correspond (though not
necessarily) to a renormalizable interaction. To find whether such couplings
increase or decrease with f, we have to include higher-order loop corrections.
The foregoing analysis in terms of the suppression of non-renormalizable
interactions by powers of f~! parallels precisely the similar one in section 11.8.
We saw that such terms were suppressed at low energies by factors of E /A, where
A is the cut-off scale beyond which the theory is supposed to fail on physical
grounds (e.g. A might be the Planck mass). The result is that as we renormalize,
in Wilson’s sense, down to much lower energy scales, the non-renormalizable
terms disappear and we are left with an effective renormalizable theory. This is
the field theory analogue of ‘universality’.

One further word should be said about terms such as ‘m2¢2’ (which arise
in the Higgs sector of the Standard Model, for instance). As we have seen, m?
scales by m? = m? f2, which is a rapid growth with f. If we imagine starting at
a very high scale, such as 10'> TeV and flowing down to 1 TeV, then the ‘initial’
value of m will have to be very finely ‘tuned’ in order to end up with a mass of
order 1 TeV. Thus, in this picture, it seems unnatural to have scalar particles with
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masses much less than the physical cut-off scale. We shall return to this problem
in section 22.10.1.

We have strayed considerably from the initial purpose of this chapter—
but we hope that the reader will agree that the extra insight gained into the
physical meaning of renormalization has made the detour worthwhile. We now
finally return to lattice QCD, with a brief survey of some of the results obtained
numerically.

16.7 Numerical calculations

Even in the quenched approximation (section 16.4), computing demands are
formidable. The lattice must be large enough so that the spatial dimension R
of the object we wish to describe—the Compton wavelength of a quark or the
size of a hadron—fits comfortably inside it, otherwise the result will be subject to
“finite-size effects’ as the hypercube side length L is varied. We also need R > a
or else the granularity of the lattice resolution will become apparent. Further, as
indicated earlier, we expect the mass m (which is of order R~ tobe very much
less than a~!. Thus, ideally, we need

a<R~1/m<L=Na (16.131)

so that N must be large. Actual calculations are done by evaluating quantities
such as (16.79) by ‘Monte Carlo’ methods (similar to the method which can be
employed to evaluate multi-dimensional integrals).

Ignoring any statistical inaccuracy, the results will depend on the parameters
gL and N, where g1 is the bare lattice gauge coupling (we assume for simplicity
that the quarks are massless). Despite the fact that g is dimensionless, we shall
now see that its value actually controls the physical size of the lattice spacing, a,
as a result of renormalization effects. The computed mass of a hadron M, say,
must be related to the only quantity with mass dimension, a~!, by a relation of
the form

1
M=—[(). (16.132)

Thus, in approaching the continuum limit @ — 0, we shall also have to change
gL suitably, so as to ensure that M remains finite. This is, of course, quite
analogous to saying that, in a renormalizable theory, the bare parameters of the
theory depend on the momentum cut-off A in such a way that, as A — oo,
finite values are obtained for the corresponding physical parameters (see the last
paragraph of section 10.1.2, for example). In practice, however, the extent to
which the lattice ‘a’ can really be taken to be very small is severely limited by the
computational resources available—that is, essentially, by the number of mesh
points N. Quenched calculations now use four-dimensional cubes with N = 64,
for example. If we were to think of an a of order 0.01 fm, so that L ~ 0.64 fm,
the masses m which could be simulated would be limited (from (16.131)) by
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m > 300 MeV, which is a severe restriction against light quarks or hadrons. A
more reasonable value might be a ~ 0.1 fm with L ~ 6.4 fm, which would allow
the pion to be reached but note that, in this case, the equivalent momentum cut-off
is i/a ~ 6 GeV, which seems low and certainly rules out simulations with very
massive quarks, in view of the left-hand inequality in (16.131). At all events, it
is clear that the lattice cut-off is, in practice, a long way from the ‘in principle’
A — 00 situation.
Equation (16.132) should, therefore, really read as

1
M = ;f(gL(a)). (16.133)

As a — 0, M should be finite and independent of a. However, we know that the
behaviour of gr (a) at small scales is, in fact, calculable in perturbation theory,
thanks to the asymptotic freedom of QCD. This will allow us to determine the
form of f(gL), up to a constant, and lead to an interesting prediction for M
(equations (16.139)—(16.140)).

Differentiating (16.133), we find that

_ M _ 1 df dgi(a)

0 W _—%f(gL(a))—i-;@ P (16.134)
so that
(adgL(“)) L fgian. (16.135)
da dgr
Meanwhile, the scale dependence of gi, is given (to one-loop order) by
adggsa) = %gﬁ(a) (16.136)

where the sign is the opposite of (15.48) since @ ~ u~! is the relevant scale

parameter here (compare the comments after equation (16.117)). The integration
of (16.136) requires, as usual, a dimensionful constant of integration (cf (15.54)):

gi@ 1
4 bIn(1/a2A?)’

(16.137)

Equation (16.137) shows that g1 (a) tends logarithmically to zero as a — 0, as
we expect from asymptotic freedom. Ap can be regarded as a lattice equivalent
of the continuum Aqcp, and it is defined by

1 2
AL = lim —exp(——5 . (16.138)
gL—)0a bgL

Equation (16.138) may also be read as showing that the lattice spacing a must go
exponentially to zero as g, tends to zero. Higher-order corrections can, of course,
be included.
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In a similar way, integrating (16.135) using (16.136) gives, in (16.132),

1 2
M = constant X | — exp -—— (16.139)
a bgL

= constant X Aj.. (16.140)

Equation (16.139) is known as asymptotic scaling: it predicts how any physical
mass, expressed in lattice units a~!, should vary as a function of gr. The
form (16.140) is remarkable, as it implies that all calculated masses must be
proportional, in the continuum limit a — 0, to the same universal scale factor
AL

How are masses calculated on the lattice? The principle is very similar to
the way in which the ground state was selected out as 7; — —o0, tf — +00 in
(16.70). Consider a correlation function for a scalar field, for simplicity:

C(1) = (Qlp(x = 0,1)¢(0)[R2)
= > [QlpO)n)|>e . (16.141)

As T — o0, the term with the minimum value of E,, namely E, = My, will
survive: My can be measured from a fit to the exponential fall-off as a function of
T.

The behaviour predicted by (16.139) and (16.140) can be tested in actual
calculations. A quantity such as the p meson mass is calculated (via a correlation
function of the form (16.141), the result being expressed in terms of a certain
number of lattice units a~! at a certain value of gr. By comparison with the
known p mass, a ! can be converted to GeV. Then the calculation is repeated for
a different gi value and the new a~! (GeV) extracted. A plot of In[a—!(GeV)]
versus 1/ gﬁ should then give a straight line with slope 27 /b and intercept In Ap..
Figure 16.9 shows such a plot, taken from Ellis et al (1996), from which it appears
that the calculations are indeed being performed close to the continuum limit.
The value of Ar has been adjusted to fit the numerical data and has the value
A1, = 1.74 MeV in this case. This may seem alarmingly far from the kind
of value expected for Agcp, but we must remember that the renormalization
schemes involved in the two cases are quite different. In fact, we may expect
Aqcp &~ 50A1 (Montvay and Munster 1994, section 5.1.6).

Having fixed the physical state of a by the p mass, one can then go on to
make predictions for the other low-lying hadrons. As one example, we show in
figure 16.10 a precision calculation by the CP-PACS collaboration (Aoki et al
2000) of the spectrum of light hadrons in quenched QCD. The p and 7 masses
are missing since they were used to fix, respectively, the lattice spacing (as just
noted) and the u, d masses. For each hadron, two lattice results are shown: filled
circles correspond to fixing the strange quark mass by fitting the K mass, and open
circles correspond to fitting the ¢ mass. The horiztonal lines are the experimental
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Figure 16.9. In(a—! in GeV) plotted against 1/ gﬁ, taken from Ellis et al (1996), as adapted
from Allton (1995).
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Figure 16.10. The mass spectrum of light mesons and baryons, containing u, d and s
quarks, calculated in the quenched approximation (Aoki e al 2000): Filled circles are the
results calculated by fixing the s quark mass to give the correct mass for the K meson; open
circles are the results of fitting the s quark mass to the ¢ mass. The horizontal lines are the
experimental values. The p and 7 masses are absent because they are used to fix the lattice

spacing and the u, d masses.
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Figure 16.11. The static QCD potential expressed in units of rg (Allton et al 2002,
UKQCD Collaboration). The broken curve is the functional form (16.145).

masses. Although the overall picture is quite impressive, there is clear evidence
of a disagreement, at about the 10% level, between the pairs of results. This
means that the ‘theory’ does not allow a consistent definition to be given of the s
quark mass. The inconsistency must be attributed to the quenched approximation.
This calculation was the first to establish quantitatively that the error to be
expected of the quenched approximation is of order 10%—an encouragingly
small value, implying that quenched calculations of other phenomenologically
important quantities will be reliable to within that sort of error also.

As a second example of a precision result, we show in figure 16.11 a lattice
calculation of the static qq potential (Allton et al 2002, UKQCD Collaboration)
using two degenerate flavours of dynamical (i.e. unquenched) quarks® on a
163 x 32 lattice. As usual, one dimensionful quantity has to be fixed in order
to set the scale. In the present case, this has been done via the scale parameter rg
of Sommer (1994), defined by

av
re 5 = 1.65. (16.142)

r r=ro

Applying (16.142) to the Cornell (Eichten et al 1980) or Richardson (1979)
phenomenological potentials gives ro >~ 0.49 fm, conveniently in the range
which is well determined by cc and bb data. The data are well described by

3 Comparison with matched data in the quenched approximation revealed very little difference, in
this case.
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the expression

A
Vir)y=Vo+or — — (16.143)
r
where, in accordance with (16.142),
1.65— A
o= (7) (16.144)
7

and where Vj has been chosen such that V (rg) = 0. Thus, (16.143) becomes

roV(r) = (1.65 — A) <i — 1) iy (r—o — 1) . (16.145)
ro r
Equation (16.143) is—up to a constant—exactly the functional form mentioned in
chapter 2, equation (2.22). The quantity /o (there called b) is referred to as the
‘string tension’ and has a value of about 465 MeV in the present calculations.
Phenomenological models suggest a value of around 440 MeV (Eichten et al
1980). The parameter A is found to have a value of about 0.3. In lowest-order
perturbation theory and in the continuum limit, A would be given by one-gluon
exchange as

A = Sas(p) (16.146)

where (1 is some energy scale. This would give g >~ 0.22, a reasonable value for
@ =~ 3 GeV. Interestingly, the form (16.145) is predicted by the ‘universal bosonic
string model” (Liischer et al 1980, Liischer 1981), in which A has the ‘universal’
value /12 >~ 0.26.

The existence of the linearly rising term with o > 0 is a signal for
confinement, since—if the potential maintained this form—it would cost an
infinite amount of energy to separate a quark and an anti-quark. But at some point,
enough energy will be stored in the ‘string’ to create a qq pair from the vacuum:
the string then breaks and the two qq pairs form mesons. There is no evidence for
string breaking in figure 16.11 but we must note that the largest distance probed
is only about 1.3 fm.

Our third and last example of lattice QCD calculations concerns chiral
symmetry breaking. We learned in section 12.3.2 that there is good evidence
to believe that the hadron spectrum predicted by QCD should show signs of
a symmetry (namely, chiral symmetry) which would be exact if the u and d
quarks were massless, and which should survive as an approximate symmetry
to the extent that m, and mq are small on hadronic scales. But we also noted
that the most obvious signs of such a symmetry—parity doublets in the hadronic
spectrum—are conspicuously absent. The resolution of this puzzle lies in the
concept of ‘spontaneous symmetry breaking’, which forms the subject of the next
part of this book (chapters 17—-19). Nevertheless, we propose to include the topic
at the present stage, since it is one on which significant progress has recently been
made within the lattice approach. Besides, seeing the concept in action here will
provide good motivation for the detailed study in part 7.
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‘Spontaneous symmetry breaking’ is an essentially non-perturbative
phenomenon and its possible occurrence in QCD is, therefore, a particularly
suitable problem for investigation by lattice calculations. Unfortunately, it
is difficult to construct a lattice theory with fermions—even massless ones,
supposing we could somehow ignore the right-hand inequality in (16.131)
in such a way as not to violate chiral symmetry from the start. For example,
the ‘Wilson’ (1974a) fermions mentioned earlier, while avoiding the fermion
doubling problem, break chiral symmetry explicitly. This can easily be seen by
noting (see (12.155) for example) that the crucial property required for chiral
symmetry to hold is

ysip + Dys =0 (16.147)

where D is the SU(3)c-covariant Dirac derivative. But the modification to the
derivative made in (16.21) contains a piece with no y-matrix, which will not
satisfy (16.147). Indeed, for a long time it was thought that, subject to quite
mild assumptions, chiral symmetry simply could not be realized at non-zero
lattice spacing: this is the content of the Nielsen—Ninomiya theorem (Nielsen
and Ninomiya 1981a, b,c). Admittedly, terms responsible for the breaking will
vanish in the continuum limit but it would be much better to start with an action
that preserved chiral symmetry, or a suitable generalization of it, at finite lattice
spacing, so that the effects attributable to spontaneous symmetry breaking can be
studied at finite a, rather than having to be extracted only in the continuum limit.
In particular, in view of the comments following (16.132), this would open up the
possibility of being able to tackle light quarks and hadrons.

In the last few years a way has been found to formulate chiral gauge theories
satisfactorily on the lattice at finite a. The key is to replace the condition (16.147)
by the Ginsparg—Wilson (1982) relation

ys + Dys = aDys. (16.148)

This relation implies (Liischer 1998) that the associated action has an exact
symmetry, with infinitesimal variations proportional to

8 = ys(1 — JaB)y (16.149)
§Y =¥ (1l — tab)ys. (16.150)

The symmetry under (16.149)—(16.150), which reduces to (16.147) as a —
0, provides a lattice theory with all the fundamental symmetry properties of
continuum chiral gauge theories (Hasenfratz et al 1998). Finding an operator
which satisfies (16.148) is, however, not so easy—but that problem has now been
solved, indeed in three different ways: Kaplan’s ‘domain wall’ fermions (Kaplan
1992); ‘classically perfect fermions’ (Hasenfratz and Niedermayer 1994); and
‘overlap fermions’ (Narayanan and Neuberger 1993a, b, 1994, 1995). All these
approaches are being numerically implemented with very promising results.

As we shall see in chapter 17, a dramatic signal of the spontaneous breaking
of a global symmetry is the appearance of a massless (Goldstone) boson: in the

Copyright 2004 IOP Publishing Ltd



present (chiral) case, this is taken to be the pion. The physical pion is, of course,
not massless and—as discussed in section 18.2—it is reasonable to suppose that
this is because chiral symmetry is broken explicitly by (small) quark masses m1,,
mgq in the QCD Lagrangian. Indeed, we shall show in equation (18.66) that

2

mZ is proportional to (my 4 mq). Here, therefore, is something that can be

explicitly checked in a numerical simulation: the square of the pion mass should
be proportional to the quark mass (taking m, = mg). Indeed, a simple model of
chiral symmetry breaking implies the relation (Gasser and Leutwyler 1982)

2 _ (my + mq)

— Ul T Md) ad|o 16.151
ms 272 +dd|2) ( )

<>

(Qla

where (cf (18.54)) f >~ 93 MeV and (Q|L_?12 + écﬂﬂ) is the expectation value,

in the physical vacuum, of the operator Gii + dd. The crucial point here is that
this vev remains non-zero even as the quark mass tends to zero—that is, as the
‘explicit’ chiral symmetry breaking is ‘turned off’. The existence of such a non-
zero vev for a field operator is a fundamental feature of spontaneous symmetry
breaking, as we shall see in the following chapter. Let us note here, in particular,
that the conventional definition of the vacuum |Q2) that we have used hitherto
would, of course, imply that the vev is zero. In section 18.1 we shall learn how,
in the Nambu vacuum (see equation (18.11)), such a non-zero vev can arise.

A simple analogy may help us to see how such a non-zero vev may arise.
Consider the quantity

Zocp = /DUDI// Dwexp[— S — /E(ilp —m)y d4xEj| (16.152)

where S, is the action for the gauge fields with link variables U and only one
f_ermion field ¥ of mass m is treated. Then (cf (16.79)) it is clear that the vev of

1@1@ can be written as

= A 0
(Qyy|Q) = 8—(111 ZqQep) (16.153)
m

and we are specifically thinking of the limit as m — 0, taken after the infinite
volume limit a — 0 (see the penultimate paragraph of section 17.3.1).

Now consider an analogous problem in statistical mechanics, in which
the degrees of freedom are spins which can interact with one another via a
Hamiltonian H; and (via their associated magnetic moment w) with an external
magnetic field B. The partition function is

Zy =) exp—(Hy — usB)/ksT (16.154)
where s is the component of spin along the field B. The average value of s is then
given by

kgT 0InZ
(s) = — . (16.155)
u 0B
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Figure 16.12. The pion mass squared in units of r,’ 2, versus the quark mass m, normalized
at the reference point m = myer (Giusti 2002).

In particular, we may regard a non-zero value of (s) as arising ‘spontaneously’
if it survives (in the thermodynamic limit V' — o0) even as B — 0. Such a
non-zero (s) occurs in a ferromagnet below its transition temperature, where it
is related to the ‘internal field’. The limitations of this analogy will be discussed
in section 17.3.1 but for the moment it does provide a useful physical picture in

which ‘(Q|1/A/1/Af|§2)’ can be regarded as an ‘internal field’ arising spontaneously
in the ground state |2), even when the ‘external field’ m is reduced to zero. The
existence of such a non-zero vacuum value, surviving in the symmetry limit m —
0, is fundamental to the concept of spontaneous symmetry breaking. An even
better analogy is to the ‘condensates’ relevant to superfluids and superconductors,

which we shall study in chapter 17: the vev (Q|L_?ft + Mm) is called the ‘chiral
condensate’.

Let us now see whether the prediction (16.151) is confirmed by numerical
calculations in lattice QCD. Figure 16.12 shows a recent compilation (Giusti
2002) of calculations, done in the quenched approximation, of the pion mass
squared (in units of 1/ rg where ro = 0.5 fm) versus quark mass m, normalized
at the reference point m = myer such that m, (m = myer) = 2mg with mg =
495 MeV (note that Zm%rg =~ 3.16). It is clear that the expectation mjzr x m
is generally well borne out. More sophisticated calculations predict corrections
to (16.151), including terms of the form m Inm (Bernard and Golterman 1992,
Sharpe 1992), which may be seen at the lowest m values (Draper et al 2002).
Note that the physical pion mass is at (mr9)*> ~ 0.13 on figure 16.12: in physical
units the lowest pion masses reached at present lie somewhat below 200 MeV and
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the lightest quark mass is about 15 MeV (Draper et al 2002). The actual physical
values can be expected to be reached quite soon.

We have been able to give only a brief introduction into what is now, some
30 years after its initial inception by Wilson (1974), a highly mature field. A
great deal of effort has gone into ingenious and subtle improvements to the lattice
action, to the numerical algorithms and to the treatment of fermions—to name a
few of the issues. Lattice QCD is now a major part of particle physics. From
the perspective of this chapter and the previous one, we can confidently say
that, both in the short-distance (perturbative) regime and in the long-distance
(non-perturbative) regime, QCD is established as the correct theory of the strong
interactions of quarks, beyond reasonable doubt.

Problems

16.1 Verify equation (16.9).

16.2 Verify equation (16.10).

16.3 Show that the momentum space version of (16.18) is (16.19).
16.4 Use (16.25) in (16.27) to verify (16.28).

16.5 Verify (16.60) and (16.62).

16.6 In a modified one-dimensional Ising model, spin variables s, at sites labelled
byn = 1,2,3,..., N take the values 5, = %1 and the energy of each spin
configuration is

N—1
E==Y" Jusasnti

n=1
where all the constants J, are positive. Show that the partition function Zy is
given by

N-1

Zy =2 l_[ (2cosh K)

n=1
where K, = J,/kgT. Hence, calculate the entropy for the particular case in
which all the J,,’s are equal to J and N > 1 and discuss the behaviour of the
entropy in the limits 7 — oo and T — 0.

Let ‘p’ denote a particular site such that 1 <« p <« N. Show that the average

value (s,s,41) of the product s,s,41 is given by

( ) 1 0Zn
SpS = .
prrtll = 7y 0K,
Show further that
1 3/ Zy
(Spsp+j) =

Zn 0K, 0K i1 ... 0K 1)
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Hence, show that,inthecase J1 = =---=Jy = J,

(spspj) = e 45

where
& = —a/[In(tanh K)]

and K = J/kpT. Discuss the physical meaning of &, considering the T — o0
and T — 0 limits explicitly.
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PART 7

SPONTANEOUSLY BROKEN
SYMMETRY
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17

SPONTANEOUSLY BROKEN GLOBAL
SYMMETRY

Previous chapters have introduced the non-Abelian symmetries SU(2) and SU(3)
in both global and local forms, and we have seen how they may be applied to
describe such typical physical phenomena as particle multiplets and massless
gauge fields. Remarkably enough, however, these symmetries are also applied,
in the Standard Model, in two cases where the physical phenomena appear to
be very different. Consider the following two questions: (i) Why are there no
signs in the baryonic spectrum, such as parity doublets in particular, of the global
chiral symmetry introduced in section 12.3.2? (ii) How can weak interactions
be described by a local non-Abelian gauge theory when we know the mediating
gauge field quanta are not massless? The answers to these questions each
involve the same fundamental idea, which is a crucial component of the Standard
Model and perhaps also of theories which go beyond it. This is the idea that a
symmetry can be ‘spontaneously broken’ or ‘hidden’. By contrast, the symmetries
considered hitherto may be termed ‘manifest symmetries’.

The physical consequences of spontaneous symmetry breaking turn out to
be rather different in the global and local cases. However, the essentials for
a theoretical understanding of the phenomenon are contained in the simpler
global case, which we consider in this chapter. The application to spontaneously
broken chiral symmetry will be treated in chapter 18; spontaneously broken local
symmetry will be discussed in chapter 19 and applied in chapter 22.

17.1 Introduction

We begin by considering, in response to question (i), what could go wrong with
the argument for symmetry multiplets that we gave in chapter 12. To understand
this, we must use the field theory formulation of section 12.3, in which the
generators of the symmetry are Hermitian field operators and the states are created
by operators acting on the vacuum. Thus, consider two states |A), |B):!

|A) = ¢L10)  |B)=¢5l0) (17.1)

1 We now revert to the ordinary notation |0) for the vacuum state, rather than |€2), but it must be borne
in mind that |0) is the full (interacting) vacuum.
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where qAbL and qgg are related to each other by (cf (12.100))

10,641 = by, (17.2)
for some generator Q of a symmetry group, such that
[0, H]=0. (17.3)
(17.2) is equivalent to
U0~ ~ @} +ied}, (17.4)

for an infinitesimal transformation U ~ 1 + ie Q Thus qu is ‘rotated’ into qg;;

by U, and the operators will create states related by the symmetry transformation.
We want to see what assumptions are necessary to prove that

Eo=Ep  where H|A) = E4|A) and H|B) = Eg|B). (17.5)
We have . L o L
Eg|B) = H|B) = H$}10) = H(Q$', — $)0)(0). (17.6)
Now if R
010) =0 (17.7)

we can rewrite the right-hand side of (17.6) as

HQ$10)= 0HP'10)  using (17.3)
= Qm A) = E4Q|A)
= EAQ}10) = EA(d + ¢ 0)10)  using (17.2)

E4|B) if (17.7) holds; (17.8)
whence, comparing (17.8) with (17.6), we see that
Es=Ep if (17.7) holds. (17.9)
Remembering that U= exp(io Q), we see that (17.7) is equivalent to
10 = U10) = |0). (17.10)

Thus, a multiplet structure will emerge provided that the vacuum is left invariant
under the symmetry transformation. The ‘spontaneously broken symmetry’
situation arises in the contrary case—that is, when the vacuum is not invariant
under the symmetry, which is to say when

010) # 0. (17.11)

In this case, the argument for the existence of symmetry multiplets breaks
down and although the Hamiltonian or Lagrangian may exhibit a non-Abelian
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symmetry, this will not be manifested in the form of multiplets of mass-degenerate
particles.

The preceding italicized sentence does correctly define what is meant by
a spontaneously broken symmetry in field theory, but there is another way of
thinking about it which is somewhat less abstract though also less rigorous. The
basic condition is QIO) # 0, and it seems tempting to infer that, in this case, the
application of Q to the vacuum gives, not zero, but another possible vacuum, |0)’.
Thus we have the physically suggestive idea of ‘degenerate vacua’ (they must be
degenerate since [0, H] = 0). We shall see in a moment why this notion, though
intuitively helpful, is not rigorous.

It would seem, in any case, that the properties of the vacuum are all
important, so we begin our discussion with a somewhat formal, but nonetheless
fundamental, theorem about the quantum field vacuum.

17.2 The Fabri-Picasso theorem

Suppose that a given Lagrangian £ is invariant under some one-parameter
continuous global internal symmetry with a conserved Noether current j/, such
that 9, j* = 0. The associated ‘charge’ is the Hermitian operator Q f ]Od3

and Q = 0. We have hitherto assumed that the transformations of such a U(1)
group are representable in the space of physical states by unitary operations
U (A) = exp 1AQ for arbitrary A, with the vacuum invariant under U so that
Q|O) = 0. Fabri and Picasso (1966) showed that there are actually rwo
possibilities:

(a) Q|O) = 0 and |0) is an eigenstate of Q with eigenvalue 0, so that |0) is
invariant under U(i.e. U|O) = |0)); or

(b) Q|O) does not exist in the space (its norm is infinite).
The statement (b) is technically more correct than the more intuitive statements
<010) £ 0 or “U|0) = |0)", suggested before.

To prove this result, consider the vacuum matrix element (0| ]O()C)Q|O>
From translation invariance, implemented by the unitary operator’ Ux) =
exp iP - x (where P* is the 4-momentum operator), we obtain

(017°(x) 010) = (0l [0y~ 17+ )0y
— <0|61PX 0(0)Q671Px|0)
where the second line follows from
[P*, 0] =0 (17.12)

2 If this seems unfamiliar, it may be regarded as the four-dimensional generalization of the
transformation (I.7) in appendix I of volume 1, from Schrodinger picture operators at t = 0 to
Heisenberg operators at ¢ # 0.
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since Q is an internal symmetry. But the vacuum is an eigenstate of P* with
eigenvalue zero, and so

(017°(x)010) = (017°(0)010) (17.13)

which states that the matrix element we started from is, in fact, independent of x.
Now consider the norm of Q|0):

010 00) = / x(017°x) 610y (17.14)
_ / x(01]°(0) 010} (17.15)

which must diverge in the infinite volume limit, unless Q|O) = 0. Thus, either
QlO) =0or Q|O) has infinite norm. The foregoing can be easily generalized to
non-Abelian symmetry operators T;.

Remarkably enough, the argument can also, in a sense, be reversed. Coleman
(1986) proved that if an operator

o) = /d3xj0(x) (17.16)

is the spatial integral of the u = 0 component of a 4-vector (but not assumed to
be conserved) and if it annihilates the vacuum

A

O1)[0) =0 (17.17)

then in fact 8Mf“ =0, Qis independent of 7, and the symmetry is unitarily
implementable by operators U= exp(ir 0).

We might now simply proceed to the chiral symmetry application. We
believe, however, that the concept of spontaneous symmetry breaking is so
important to particle physics that a more extended discussion is amply justified.
In particular, there are crucial insights to be gained by considering the analogous
phenomenon in condensed matter physics. After a brief look at the ferromagnet,
we shall describe the Bogoliubov model for the ground state of a superfluid, which
provides an important physical example of a spontaneously broken global Abelian
U(1) symmetry. We shall see that the excitations away from the ground state are
massless modes and we shall learn, via Goldstone’s theorem, that such modes
are an inevitable result of spontaneously breaking a global symmetry. Next,
we shall introduce the ‘Goldstone model’ which is the simplest example of a
spontaneously broken global U(1) symmetry, involving just one complex scalar
field. The generalization of this to the non-Abelian case will draw us in the
direction of the Higgs sector of the Standard Model. Returning to condensed
matter systems, we introduce the BCS ground state for a superconductor in
a way which builds on the Bogoliubov model of a superfluid. We are then
prepared for the application, in chapter 18, to spontaneous chiral symmetry
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breaking (question (i) of the first paragraph of this chapter), following Nambu’s
profound analogy with one aspect of superconductivity. In chapter 19 we shall
see how a different aspect of superconductivity provides a model for the answer
to question (ii).

17.3 Spontaneously broken symmetry in condensed matter physics

17.3.1 The ferromagnet

We have seen that everything depends on the properties of the vacuum state.
An essential aid to understanding hidden symmetry in quantum field theory
is provided by Nambu’s (1960) remarkable insight that the vacuum state of a
quantum field theory is analogous to the ground state of an interacting many-body
system. It is the state of lowest energy—the equilibrium state, given the kinetic
and potential energies as specified in the Hamiltonian. Now the ground state of
a complicated system (for example, one involving interacting fields) may well
have unsuspected properties—which may, indeed, be very hard to predict from
the Hamiltonian. But we can postulate (even if we cannot yet prove) properties of
the quantum field theory vacuum |0) which are analogous to those of the ground
states of many physically interesting many-body systems—such as superfluids
and superconductors, to name two with which we shall be principally concerned.

Now it is generally the case, in quantum mechanics, that the ground state
of any system described by a Hamiltonian is non-degenerate. Sometimes we
may meet systems in which apparently more than one state has the same lowest
energy eigenvalue. Yet, in fact, none of these states will be the true ground state:
tunnelling will take place between the various degenerate states, and the true
ground state will turn out to be a unique linear superposition of them. This is,
in fact, the only possibility for systems of finite spatial extent, though, in practice,
a state which is not the true ground state may have an extremely long lifetime.
However, in the case of fields (extending presumably throughout all space), the
Fabri—Picasso theorem shows that there is an alternative possibility, which is
often described as involving a ‘degenerate ground state’—a term we shall now
elucidate. In case (a) of the theorem, the ground state is unique. For, suppose
that several ground states |0, a), |0, b), ... existed, with the symmetry unitarily
implemented. Then one ground state will be related to another by

10, a) = 2|0, b) (17.18)

for some A. However, in case (a) the charge annihilates a ground state, and so
all of them are really identical. In case (b), however, we cannot write (17.18)—
since QIO) does not exist—and we do have the possibility of many degenerate
ground states. In simple models one can verify that these alternative ground
states are all orthogonal to each other, in the infinite volume limit. And each
member of every ‘tower’ of excited states, built on these alternative ground states,
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is also orthogonal to all the members of other towers. But any single tower
must constitute a complete space of states. It follows that states in different
towers belong to different complete spaces of states; that is, to different—and
inequivalent—‘worlds’, each one built on one of the possible orthogonal ground
states. In particular, they cannot be related by unitary transformations of the form
e,

At first sight, a familiar example of these ideas seems to be that of a
ferromagnet below its Curie temperature Tc, so that the spins are fully aligned.
Consider an ‘ideal Heisenberg ferromagnet’ with N atoms each of spin—%,

described by a Hamiltonian of Heisenberg exchange form Hg = —J ) S-S,
where i and j label the atomic sites. This Hamiltonian is invariant under spatial
rotations, since it only depends on the dot product of the spin operators. Such
rotations are implemented by unitary operators exp(iS- &) where S= ) ; S;, and
spins at different sites are assumed to commute. As usual with angular momentum
in quantum mechanics, the eigenstates of Hy are labelled by the eigenvalues of
total squared spin, and of one component of spin, say of S. = > SlZ The
quantum mechanical ground state of Hg is an eigenstate with total spin quantum
number § = N/2, and this state is (2 - N/2 4+ 1) = (N + 1)-fold degenerate,
allowing for all the possible eigenvalues (N/2, N/2 — 1,...,—N/2) of S'Z for
this value of S. We are free to choose any one of these degenerate states as ‘the’
ground state, say the state with eigenvalue S; = N /2.

It is clear that the ground state is not invariant under the spin-rotation
symmetry of Hg, which would require the eigenvalues S = S; = 0. Furthermore,
this ground state is degenerate. So two important features of what we have so
far learned to expect of a spontaneously broken symmetry are present—namely,
‘the ground state is not invariant under the symmetry of the Hamiltonian’; and
‘the ground state is degenerate’. However, it has to be emphasized that this
ferromagnetic ground state does, in fact, respect the symmetry of Hg in the sense
that it belongs to an irreducible representation of the symmetry group: the unusual
feature is that it is not the ‘trivial’ (singlet) representation, as would be the case for
an invariant ground state. The spontaneous symmetry breaking which is the true
model for particle physics is that in which a many-body ground state is not an
eigenstate (trivial or otherwise) of the symmetry operators of the Hamiltonian:
rather it is a superposition of such eigenstates. We shall explore this for the
superfluid and the superconductor in due course.

Nevertheless, there are some useful insights to be gained from the
ferromagnet. First, consider two ground states differing by a spin rotation. In
the first, the spins are all aligned along the 3-axis, say, and in the second along the
axis fi = (0, sina, cos ). Thus the first ground state is

1 1 1
= (N products) (17.19)
o (0>1(0>2 (O)N procduets
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while the second is (cf (4.74))

(@ _  cosa/2 cosa/2
Xo = ( isinw/2 )1< isine/2 /- (17.20)

The scalar product of (17.19) and (17.20) is (cos a/2)N , which goes to zero as
N — oo. Thus any two such ‘rotated ground states’ are, indeed, orthogonal in
the infinite volume limit.

We may also enquire about the excited states built on one such ground state,
say the one with S‘Z eigenvalue N /2. Suppose for simplicity that the magnet is
one-dimensional (but the spins have all three components). Consider the state
Xn = Sn—XO where S‘n_ is the spin-lowering operator S‘n_ = (S‘M — iS‘,,y) at site

n, such that
A 1 0
s (3)=(9) ana
n n

S0 8, xo differs from the ground state xo by having the spin at site n flipped. The
action of Hg on x, can be found by writing

358 =3 84+ 8;-8ip) + 8.8 (17.22)
i#] i#]

(remembering that spins on different sites commute), where S‘H_ = 3‘,' x + i§,~y.
Since all §i+ operators give zero on a spin ‘up’ state, the only non-zero
contributions from the first (bracketed) term in (17.22) come from terms in which
either S‘H_ or S‘j+ act on the ‘down’ spin at 7, so as to restore it to ‘up’. The
‘partner’ operator Si_ (or S j—) then simply lowers the spin at i (or j), leading to
the result o o
> 1G-S+ 8-S =D xi- (17.23)
i#j i#n
Thus the state y, is not an eigenstate of I:IS. However, a little more work shows
that the superpostitions

R IR
T =—= D €M p (17.24)
VN4

are eigenstates. Here g is one of the discretized wavenumbers produced by
appropriate boundary conditions, as is usual in one-dimensional ‘chain’ problems
(see section 16.2). The states (17.24) represent spin waves and they have the
important feature that for low g (long wavelength) their frequency w tends to zero
with ¢ (actually @ oc ¢2). In this respect, therefore, they behave like massless
particles when quantized—and this is another feature we should expect when a
symmetry is spontaneously broken.

The ferromagnet gives us one more useful insight. We have been assuming
that one particular ground state (e.g. the one with S; = N/2) has been somehow
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‘chosen’. But what does the choosing? The answer to this is clear enough in
the (perfectly realistic) case in which the Hamiltonian Hs is supplemented by a
term —guB ), Siz, representing the effect of an applied field B directed along
the z-axis. This term will, indeed, ensure that the ground state is unique, and
has S; = N/2. Consider now the two limits B — 0 and N — oo, both at
finite temperature. When B — 0 at finite N, the N + 1 different S, eigenstates
become degenerate, and we have an ensemble in which each enters with an equal
weight: there is, therefore, no loss of symmetry, even as N — oo (but only after
B — 0). However, if N — oo at finite B # 0, the single state with S, = N/2
will be selected out as the unique ground state and this asymmetric situation will
persist even in the limit B — 0. In a (classical) mean-field theory approximation
we suppose that an ‘internal field’ is ‘spontaneously generated’, which is aligned
with the external B and survives even as B — 0, thus ‘spontaneously’ breaking
the symmetry.

The ferromagnet, therefore, provides an easily pictured system exhibiting
many of the features associated with spontaneous symmetry breaking; most
importantly, it strongly suggests that what is really characteristic about the
phenomenon is that it entails ‘spontaneous ordering’.> Generally such ordering
occurs below some characteristic ‘critical temperature’, Tc. The field which
develops a non-zero equilibrium value below Tc is called an ‘order parameter’.
This concept forms the basis of Landau’s theory of second-order phase transitions
(see, for example, chapter XIV of Landau and Lifshitz (1980)).

We now turn to an example much more closely analogous to the particle
physics applications: the superfluid.

17.3.2 The Bogoliubov superfluid

Consider the non-relativistic Hamiltonian (in the Schrodinger picture)

m

I:IZZL/CPXV(IET'VQE
3 //dBXCPy”('X — e e (WIS (17.25)

where QST (X) creates a boson of mass m at position X. This H describes identical
bosons of mass m interacting via a potential v, which is assumed to be weak (see,
for example, Schiff 1968, section 55 or Parry 1973, chapter 1). We note at once
that H is invariant under the global U(1) symmetry

P(X) = ¢'(X) = e 4P (x) (17.26)

the generator being the conserved number operator

N = /$*$d3x (17.27)

3 1t is worth pausing to reflect on the idea that ordering is associated with symmetry breaking.
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which obeys [N JH ] = 0. Our ultimate concern will be with the way this
symmetry is ‘spontaneously broken’ in the superfluid ground state. Naturally,
since this is an Abelian, rather than a non-Abelian, symmetry the physics will
not involve any (hidden) multiplet structure. But the nature of the ‘symmetry
breaking ground state’ in this U(1) case (and in the BCS model of section 17.7)
will serve as a physical model for non-Abelian cases also. We shall work always
at zero temperature.

We begin by re-writing H in terms of mode creation and annihilation
operators in the usual way. We expand H(x) as a superposition of solutions of
the v = 0 problem, which are plane waves* quantized in a large cube of volume
Q:

P(x) = Zake (17.28)

where ag|0) = 0, &E|O) is a one-particle state and [d, Ezi,] = Sy k> with all
other commutators vanishing. We impose periodic boundary conditions at the
cube faces and the free particle energies are ¢, = k>/2m. Inserting (17.28) into
(17.25) leads (problem 17.1) to

A BN 1
H= Zek&;awﬁ 3 ki —kpay af ¢ Ak =K —k)) (17.29)
k A

where the sum is over all momenta K, ko, kl, k) subject to the conservation law
imposed by the A function:

Ak) =1 ifk=0 (17.30)

=0 ifk # 0. (17.31)

The interaction term in (17.29) is easily visualized as in figure 17.1. A pair of

particles in states k|, k} is scattered (conserving momentum) to a pair in states
K1, ko via the Fourier transform of v:

5(K) = /v(r)eik'r ar. (17.32)

Now, below the superfluid transition temperature 75, we expect from the
statistical mechanics of Bose—Einstein condensation (Landau and Lifshitz 1980,
section 62) that in the limit as v — 0 the ground state has all the particles
‘condensed’ into the lowest energy state, which has K = 0. Thus, in the limit
v — 0, the ground state will be proportional to

IN,0) = @H)"|0). (17.33)

When a weak repulsive v is included, it is reasonable to hope that most of the
particles remain in the condensate, only relatively few being excited to states with

4 This is non-relativistic physics, so there is no anti-particle part.
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ky k,

Figure 17.1. The interaction term in (17.29).

k # 0. Let Ny be the number of particles with K = 0 where, by assumption,
No ~ N. We now consider the limit N (and Ny) — oo and 2 — o0 such that the
density p = N/ (and pp = Np/ <) stays constant. Bogoliubov (1947) argued
that, in this limit, we may effectively replace both ag and &g in the second term in

(17.29) by the number Né /2. This amounts to saying that in the commutator

A AT A A
ap 4y a ap _i
QL2 Ql/2 QL2 Ql/2

(17.34)

the two terms on the left-hand side are each of order Ny/ €2 and hence finite, while
their difference may be neglected as 2 — 0. Replacing dp and &g by Né /? leads

(problem 17.2) to the following approximate form for H:

2

o o i a 1N-_
H~ Hg = Xk: aakEx+ 5o 9(0)
1 ' N _ At At A A~
+5 Xk: 5P 0laal, +aa ] (17.35)
where
N _
Ep = e+ S0(k) (17.36)

primed summations do not include kK = 0 and terms which tend to zero as 2 — oo
have been dropped (thus, Ny has been replaced by N).

The most immediately striking feature of (17.35), as compared with H of
(17.29), is that ﬁB does not conserve the U(1) (number) symmetry (17.26) while
H does: it is easy to see that for (17.26) to be a good symmetry, the number
of a’s must equal the number of a™’s in every term. Thus, the ground state of
Hg, |ground)p, cannot be expected to be an eigenstate of the number operator.
However, it is important to be clear that the number-non-conserving aspect of
(17.35) is of a completely different kind, conceptually, from that which would be
associated with a (hypothetical) ‘explicit’ number violating term in the original
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Hamiltonian—for example, the addition of a term of the form ‘a’aa’. In arriving
at (17.35), we have effectively replaced (17.28) by

A 172 1 ~ ik
dp0 = py/* + oI > ayek (17.37)
k0

where pg = No/ 2, No &~ N and Ny/ 2 remains finite as Q — oo. The limit is
crucial here: it enables us to picture the condensate Ny as providing an infinite
reservoir of particles, with which excitations away from the ground state can
exchange particle number. From this point of view, a number-non-conserving
ground state may appear more reasonable. The ultimate test, of course, is whether
such a state is a good approximation to the true ground state for a large but finite
system.

What is |ground)g ? Remarkably, Hg can be exactly diagonalized by means
of the Bogoliubov quasiparticle operators (for K # 0)

Gk = frak+gkal &L = fal +aa’, (17.38)

where f; and g are real functions of k = |k|. We must again at once draw
attention to the fact that this transformation does not respect the symmetry (17.26)
either, since ax — e %4y while &ik — e+i°‘&ik. In fact, the operators &li will
turn out to be precisely creation operators for quasiparticles which exchange
particle number with the ground state.

The commutator of @k and &ﬂ; is easily evaluated:

lak, &) = [ — g? (17.39)

while two &’s or two &'’s commute. We choose fr and g such that fk2 — g,% =1,
so that the a’s and the &’s have the same (bosonic) commutation relations and
the transformation (17.38) is then said to be ‘canonical’. A convenient choice is
fr = cosh 6, gr = sinh 6. We now assert that I:IB can be written in the form

A~ / +
Hg =" oy + B (17.40)
k

for certain constants wy and S. Equation (17.40) implies, of course, that the
eigenvalues of Hg are B+ Y k(n + 1/2)wy, and that o?li acts as the creation
operator for the quasiparticle of energy wy, as just anticipated.

We verify (17.40) slightly indirectly. We note first that it implies that, for
one particular mode operator &IT ,

(s, &1 = wid,. (17.41)
Substituting for &IT from (17.38), we require

[Hg, cosh 6,4, + sinh6,a_ ] = w;(cosh6; & + sinh6a_) (17.42)
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which must hold as an identity in the a’s and a'’s. Using the expression (17.35)
for Hg, and some patient work with the commutation relations (problem 17.3),
one finds that

N
(w; — Ej) cosh6; + §ﬁ(|) sinh9; =0 (17.43)
N
§E(I)cosh01 — (w; + Ej) sinh§; = 0. (17.44)
For consistency, therefore, we require
N\ _
E} —w} — (@) @1)*=0 (17.45)
or (recalling the definitions of E; and €;)
2 /2 1/2
wp=|— | =— +2pv() (17.46)
2m \ 2m
where p = N/Q. The value of tanh6; is then determined via either (17.43) or

(17.44).

Equation (17.46) is an important result, giving the frequency as a function of
the momentum (or wavenumber); it is an example of a ‘dispersion relation’. As
long as v (1) is less singular than | ~2as|l| = 0, w; will tend to zero as ||| — 0 and
we will have massless ‘phonon-like” modes. In particular, if v(0) # 0, the speed
of sound will be (pv(0)/m)'/2. However, for large |||, w; behaves essentially like
12 /2m and the spectrum returns to the ‘particle-like’ one of massive bosons. Thus,
(17.46) interpolates between phonon-like behaviour at small ||| and particle-like
behaviour at large |l|. Furthermore, we note that if, in fact, v(1) ~ 1/I 2 then
w; — constant as ||| — 0 and the spectrum would not be that of a massless
excitation. Indeed, if v(l) ~ e2/|2, then w; ~ |e|(p/m)'/? for small |I|, which
is just the ‘plasma frequency’. Such a v is, of course, Colombic (the Fourier
transform of e2/|X|), indicating that in the case of such a long-range force the
massless mode associated with spontaneous symmetry breaking acquires a mass.
This will be the topic of chapter 19.

Having discussed the spectrum of quasiparticle excitations, let us now
concentrate on the ground state in this model. From (17.40), it is clear that it
is defined as the state |ground)p such that

dx|ground)g =0 forall k # 0 (17.47)

i.e. as the state with no non-zero-momentum quasiparticles in it. This is a
complicated state in terms of the original dx and &E operators, but we can give
a formal expression for it, as follows. Since the @’s and a'’s are related by a
canonical transformation, there must exist a unitary operator Us such that

ak = UpaUg'  ax = Ug'aUs. (17.48)
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Now we know that ai|0) = 0. Hence it follows that
& Usl0) =0 (17.49)

and we can identify |ground)s with 0B|0). In problem 17.4, ﬁB is evaluated for
an Hg consisting of a single k-mode only, in which case the operator effecting
the transformation analogous to (17.48) is U, = expl@(aa — a'a®)/2] where
6 replaces 6 in this case. This generalizes (in the form of products of such
operators) to the full Hp case but we shall not need the detailed result: an
analogous result for the BCS ground state is discussed more fully in section 17.7.
The important point is the following. It is clear from expanding the exponentials
that Ug creates a state in which the number of a-quanta (i.e. the original bosons) is
not fixed. Thus, unlike the simple non-interacting ground state | N, 0) of (17.33),
|ground)p = Us |0) does not have a fixed number of particles in it: that is to say,
it is not an eigenstate of the symmetry operator N, as anticipated in the comment
following (17.36). This is just the situation alluded to in the paragraph before
equation (17.19), in our discussion of the ferromagnet.

Consider now the expectation value of q@(x) in any state of definite particle
number—that is, in an eigenstate of the symmetry operator Niitis easy to see that
this must vanish (there will always be a spare annihilation operator). However,
this is not true of <]33 (X): for example, in the non-interacting ground state (17.33),
we have

(N, 0lgs (XN, 0) = py/>. (17.50)

Furthermore, using the inverse of (17.38)
ax = cosh By — sinh G (17.51)

together with (17.47), we find the similar result:

B {ground|dp (x)|ground)s = p)/>. (17.52)

The question is now how to generalize (17.50) or (17.52) to the complete qAS(X)
and the true ground state |ground), in the limit N, Q2 — oo with fixed N/ Q. We
make the assumption that

(ground|q§(x)|ground) #*0; (17.53)

that is, we abstract from the Bogoliubov model the crucial feature that the field
acquires a non-zero expectation value in the true ground state, in the infinite
volume limit.

We are now at the heart of spontaneous symmetry breaking in field theory.
Condition (17.53) has the form of an ‘ordering’ condition: it is analogous to the
non-zero value of the total spin in the ferromagnetic case, butin (17.53)—we must
again emphasize—|ground) is not an eigenstate of the symmetry operator N.If
it were, (17.53) would vanish, as we have just seen. Recalling the association
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‘quantum vacuum <> many body ground state’ we expect that the occurrence
of a non-zero vacuum expectation value (vev) for an operator transforming non-
trivially under a symmetry operator will be the key requirement for spontaneous
symmetry breaking in field theory. In the next section we show how this
requirement necessitates one (or more) massless modes, via Goldstone’s theorem
(1961).

Before leaving the superfluid, we examine (17.37) and (17.52) in another
way, which is only rigorous for a finite system but is, nevertheless, very
suggestive. Since the original H has a U(1) symmetry under which  transforms
to (;3/ = exp(—ia)qs, we should be at liberty to replace (17.37) by

dp = “pt* 4 Ql/z 3 aeioelx, (17.54)
k#0

But in that case our condition (17.52) becomes

B (groundlqAbl'g |ground)p = el B (ground|qASB |ground)g. (17.55)

Now ng = ﬁanSB [}Jl where l}a = exp(ial(’). Hence (17.55) may be written as

(groundIanbB | ground)p = e i‘)‘B(ground|¢§13| ground)p. (17.56)

If |ground)s were an eigenstate of N with eigenvalue N, say, then the U, factors
in (17.56) would become just eV . ¢V and would cancel out, leaving a
contradiction. Instead, however, knowing that |ground)g is not an eigenstate of N,
we can regard Uoj !|ground)p as an “alternative ground state’ |ground, o) such

that

B(ground, o |<13B |ground, o) = e i B (ground|qASB |ground)p (17.57)

the original choice (17.52) corresponding to « = 0. There are infinitely many
such ground states since « is a continuous parameter. No physical consequence
follows from choosing one rather than another but we do have to choose one, thus
‘spontaneously’ breaking the symmetry. In choosing say o = 0, we are deciding
(arbitrarily) to pick the ground state such thatg (ground|¢AﬁB |ground)p is aligned in
the ‘real’ direction. By hypothesis, a similar situation obtains for the true ground
state. None of the states |ground, «) is an eigenstate for N: instead, they are
certain coherent superpositions of states with different eigenvalues N, such that
the expectation value of ¢ASB has a definite phase.

17.4 Goldstone’s theorem
We return to quantum field theory proper and show, following Goldstone (1961)

(see also Goldstone, Salam and Weinberg (1962)) how in case (b) of the Fabri—
Picasso theorem massless particles will necessarily be present. Whether these
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particles will actually be observable depends, however, on whether the theory
also contains gauge fields. In this chapter we are concerned solely with global
symmetries, and gauge fields are absent: the local symmetry case is treated in
chapter 19.

Suppose, then, that we have a Lagrangian £ with a continuous symmetry
generated by a charge 0, which is independent of time and is the space integral
of the u = 0 component of a conserved Noether current:

0= ffo(x)d3x. (17.58)

We consider the case in which the vacuum of this theory is not invariant, i.e. is
not annihilated by Q

Suppose qAS(y) is some field operator which is not invariant under the
continuous symmetry in question and consider the vacuum expectation value

(OI[Q, ¢(3)110). (17.59)

Just as in equation (17.13), translation invariance implies that this vev is, in fact,
independent of y, and we may set y = 0. If Q were to annihilate |0), this would
clearly vanish: we investigate the consequences of its not vanishing. Since b is
not invariant under Q the commutator in (17.59) will give some other field, call
it qS’ (0); thus, the hallmark of the hidden symmetry situation is the existence of
some field (here qAS/ (0)) with non-vanishing vacuum expectation value, just as in
(17.53).
From (17.58), we can write (17.59) as

0 # (01¢'(0)[0) (17.60)

= <0|[ / d3xfo(x>,és(0>}|0>. (17.61)
Since, by assumption, 8Mf“ = 0, we have, as usual,
8 3 ~ 3 P

730 d’X jo(x)+ | d’x div j(x) =0 (17.62)

whence

a N A
o / &x O[Lo(). $(0)110)

50 —/d3x<0|[div](x),43(0)]|o> (17.63)

—/ds O (). dO10).  (17.64)

If the surface integral vanishes in (17.64), (17.61) will be independent of xg.
The commutator in (17.64) involves local operators separated by a very large
space-like interval and, therefore, the vanishing of (17.64) would seem to be
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unproblematic. Indeed so it is—with the exception of the case in which the
symmetry is local and gauge fields are present. A detailed analysis of exactly
how this changes the argument being presented here will take us too far afield at
this point, and the reader is referred to Guralnik ez al (1968) and Bernstein (1974).
We shall treat the ‘spontaneously broken’ gauge theory case in chapter 19, but in
less formal terms.

Let us now see how the independence of (17.61) on xq leads to the necessity
for a massless particle in the spectrum. Inserting a complete set of states in
(17.61), we obtain

0 # / &% Y {01 jo(x) ) (n]$(0)]0) — (01§ (0)|n) (] jo(x) 0)} (17.65)

= / d*x Y 1{01jo(0) ) (r|$(0)[0)e™ X — (0]$(0)|n) {n jo(0)|0)e™”" ¥}
(17.66)

using translation invariance, with p, the 4-momentum eigenvalue of the state
|n). Performing the spatial integral on the right-hand side, we find (omitting the
irrelevant (277)%) that

0% Y 83 (PILOLjo(0)n) (n]$(0)[0)eP0™ — (0] (0)|n) (n] jo(0)|0)e o],
(17.67)

But this expression is independent of xo. Massive states |n) will produce explicit
xp-dependent factors eFiMnxo (pno — M, as the é-function constrains p, = 0);
hence, the matrix elements of fo between |0) and such a massive state must
vanish, and such states contribute zero to (17.67). Equally, if we take |n) = |0),
(17.67) vanishes identically. But it has been assumed to be not zero. Hence,
some state or states must exist among |n) such that (0] jo|n) # 0 and yet (17.67)
is independent of xg. The only possibility is states whose energy p,o goes
to zero as their 3-momentum does (from 53(pn)). Such states are, of course,
massless: they are called generically Goldstone modes. Thus, the existence of a
non-vanishing vacuum expectation value for a field, in a theory with a continuous
symmetry, appears to lead inevitably to the necessity of having a massless particle,
or particles, in the theory. This is the Goldstone (1961) result.

The superfluid provided us with an explicit model exhibiting the crucial
non-zero expectation value (ground|q3| ground) # 0, in which the now expected
massless mode emerged dynamically. We now discuss a simpler relativistic
model, in which the symmetry breaking is brought about more ‘by hand’—that
is, by choosing a parameter in the Lagrangian appropriately. Although in a sense
less ‘dynamical’ than the Bogoliubov superfluid (or the BCS superconductor, to
be discussed shortly), this Goldstone model does provide a very simple example
of the phenomenon of spontaneous symmetry breaking in field theory.
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17.5 Spontaneously broken global U(1) symmetry: the Goldstone model

We consider, following Goldstone (1961), a complex scalar field ¢3 as in
section 7.1, with

A1 .. N T
= (¢ — = — 17.68
¢ ﬁ(fﬁl i) ¢ ﬁ(q)l +i¢2) ( )
described by the Lagrangian
Lo = 0.9N0"$) - V(@). (17.69)

We begin by considering the ‘normal’ case in which the potential has the form

INGT$)? + 1267 (17.70)

A~

VZ‘A/S

with u2, A > 0. The Hamiltonian density is then

Ho=9"¢+ Vo' - Vé+ V(@) (17.71)
Clearly Lg is invariant under the global U(1) symmetry
¢— ¢ =e 9, (17.72)

the generator being ]\7¢ of (7.23). We shall see how this symmetry may be
‘spontaneously broken’.

We know that everything depends on the nature of the ground state of
this field system—that is, the vacuum of the quantum field theory. In general,
it is a difficult, non-perturbative, problem to find the ground state (or a good
approximation to it—witness the superfluid) but we can make some progress by
first considering the theory classically. It is clear that the absolute minimum of
the classical Hamiltonian Hg is reached for

(i) ¢ = constant, which reduces the ¢ and V¢ terms to zero; and
(il) ¢ = ¢o, where ¢g is the minimum of the classical version of the potential,
V.

For V = Vs as in (17.70) but without the hats and with A and u? both positive,
the minimum of Vg is clearly at ¢ = 0 and is unique. In the quantum theory, we
expect to treat small oscillations of the field about this minimum as approximately
harmonic, leading to the usual quantized modes. To implement this, we expand (]3
about the classical minimum at ¢ = 0, writing as usual

¢ = / &[&(k)e—”” + b7 (k)e ] (17.73)
) eV '

where the plane waves are solutions of the ‘free’ (A = 0) problem. For A = 0, the
Lagrangian is simply A
Liree = 8,9' 0" — 12979 (17.74)
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¢

Figure 17.2. The classical potential Vsg of (17.77).

which represents a complex scalar field, consisting of two degrees of freedom,
each with the same mass u (see section 7.1). Thus, in (17.73), w = (k2 + u?H)/2
and the vacuum is defined by

a(k)|0) = b(k)|0) = 0 (17.75)

and so clearly A
(0]¢]0) = 0. (17.76)

It seems reasonable to interpret quantum field average values as corresponding to
classical field values and, on this interpretation, (17.76) is consistent with the fact
that the classical minimum energy configuration has ¢ = 0.

Consider now the case in which the classical minimum is not at ¢ = 0.
This can be achieved by altering the sign of % in (17.70) ‘by hand’, so that the
classical potential is now the ‘symmetry breaking’ one:

V= Vsp = 32679 — 12979 (17.77)

This is sketched versus ¢1 and ¢, in figure 17.2. This time, although the origin
¢1 = ¢2 = 0 1is a stationary point, it is an (unstable) maximum rather than a
minimum. The minimum of Vsg occurs when

2 2
@'¢) = % (17.78)

or, alternatively, when

ol +¢3 = ——=v (17.79)
where o
"

V=15 (17.80)
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The condition (17.79) can also be written as
6] = v/v/2. (17.81)

To have a clearer picture, it is helpful to introduce the ‘polar’ variables p(x) and
6(x) via

P (x) = (p(x)/v2) exp(i6 (x)/v) (17.82)

where, for convenience, the v is inserted so that 6 has the same dimension (mass)
as p and ¢. The minimum condition (17.81), therefore, represents the circle
p = v: any point on this circle, at any value of 8, represents a possible classical
ground state—and it is clear that they are (infinitely) degenerate.

Before proceeding further, we briefly outline a condensed matter analogue
of (17.77) and (17.81) which may help in understanding the change in sign of the
parameter 2. Consider the free energy F of a ferromagnet as a function of the
magnetization M at temperature 7' and make an expansion of the form

A
F%FO(T)+/L2(T)M2+ZM4+--- (17.83)

valid for weak and slowly varying magnetization. If the parameter 147 is positive,
it is clear that F has a simple ‘bowl’ shape as a function of |M |, with a minimum
at [IM| = 0. This is the case for T greater than the ferromagnetic transition
temperature Tc. However, if one assumes that u2(7) changes sign at Tc,
becoming negative for T < Tc, then F will now resemble a vertical section
of figure 17.2, the minimum being at |[M| # 0. Any direction of M is possible
(only |M| is specified); but the system must choose one particular direction (e.g.
via the influence of a very weak external field, as discussed in section 17.3.1) and
when it does so the rotational invariance exhibited by F of (17.83) is lost. This
symmetry has been broken ‘spontaneously’—though this is still only a classical
analogue. Nevertheless, the model is essentially the Landau mean field theory
of ferromagnetism, and it suggests that we should think of the ‘symmetric’ and
‘broken symmetry’ situations as different phases of the same system. It may also
be the case in particle physics that parameters such as #* change sign as a function
of T, or some other variable, thereby effectively precipitating a phase change.

If we maintain the idea that the vacuum expectation value of the quantum
field should equal the ground-state value of the classical field, the vacuum in this
u? < 0 case must, therefore, be |0)g such that B(O|43|O)B does not vanish, in
contrast to (17.76). It is clear that this is exactly the situation met in the superfluid
(but ‘B’ here will stand for ‘broken symmetry’) and is, moreover, the condition
for the existence of massless (Goldstone) modes. Let us see how they emerge in
this model.

In quantum field theory, particles are thought of as excitations from a ground
state, which is the vacuum. Figure 17.2 strongly suggests that if we want a
sensible quantum interpretation of a theory with the potential (17.77), we had
better expand the fields about a point on the circle of minima, about which stable

Copyright 2004 IOP Publishing Ltd



oscillations are likely, rather than about the obviously unstable point ¢ = 0. Let
us pick the point p = v, & = 0 in the classical case. We might well guess
that ‘radial’ oscillations in p would correspond to a conventional massive field
(having a parabolic restoring potential), while ‘angle’ oscillations in 6—which
pass through all the degenerate vacua—have no restoring force and are massless.
Accordingly, we set

A 1
x)=—
=7
and find (problem 17.5) that LAG (with V= \7513 of (17.77) with hats on) becomes

(v + h(x)) exp(—if (x) /v) (17.84)

Lo =18,ho"h — n?h* + 19,000 + u*/n + - - (17.85)

the dots representing interaction terms which are cubic and quartic in 6, h.
Equation (17.85) shows that the particle spectrum in the ‘spontaneously broken’
case is dramatically different from that in the normal case: instead of two degrees
of freedom with the same mass w, one (the #-mode) is massless and the other (the
h-mode) has a mass of v/2u. We expect the vacuum |0)p to be annihilated by the
mode operators a;, and dy for these fields. This implies, however, from (17.84)
that .

B{01}0)s = v/+/2 (17.86)

which is consistent with our interpretation of the vacuum expectation value (vev)
as the classical minimum, and with the occurrence of massless modes. (The
constant term in (17.85), which does not affect equations of motion, merely
reflects the fact that the minimum value of Vsg is —u*/A.) The ansatz (17.84) and
the non-zero vev (17.86) may be compared with (17.37) and (17.52), respectively,
in the superfluid case.

Goldstone’s model, then, contains much of the essence of spontaneous
symmetry breaking in field theory: a non-zero vacuum value of a field which
is not an invariant under the symmetry group, zero mass bosons and massive
excitations in a direction in field space which is ‘orthogonal’ to the degenerate
ground states. However, it has to be noted that the triggering mechanism for
the symmetry breaking (1> — —u?) has to be put in by hand, in contrast to
the—admittedly approximate but more ‘dynamical’—Bogoliubov approach. The
Goldstone model, in short, is essentially phenomenological.

As in the case of the superfluid, we may perfectly well choose a vacuum

corresponding to a classical ground state with non-zero 6, say § = —«. Then
B(0. @[$]0, a)p = e (17.87)
9 9 ﬁ
= ¢ “(0/¢|0)3 (17.88)
as in (17.57). But we know (see (7.27) and (7.28)) that
e 9% = ¢ = UppU;! (17.89)
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where

0, = e*Vo (17.90)
So (17.88) becomes
B(0, @|$10, a)p =5 (01UadU, 1 10)p (17.91)

and we may interpret ﬁa_ 110)p as the ‘alternative vacuum’ |0, &)p (this argument
is, as usual, not valid in the infinite volume limit where ]\7¢ fails to exist).

It is interesting to find out what happens to the symmetry current
corresponding to the invariance (17.72), in the ‘broken symmetry’ case. This
current is given in (7.23) which we write again here in slightly different notation:

Jy =@ e — (0"$) ) (17.92)

normal ordering being understood. Written in terms of the /2 and 6 of (17.84), jg
becomes R . o
jq’; = v0"0 + 2h0"0 + h*9"0 /v, (17.93)

The term involving just the single field 6 is very remarkable: it tells us that there
is a non-zero matrix element of the form

B(01jjy ()16, p) = —ipHve P (17.94)

where |0, p) stands for the state with one #-quantum (Goldstone boson),
with momentum p*. This is easily seen by writing the usual normal mode
expansion for 6 and h, and using the standard bosonic commutation relations for
ap (k), fl; (k'). In words, (17.94) asserts that, when the symmetry is spontaneously
broken, the symmetry current connects the vacuum to a state with one Goldstone
quantum, with an amplitude which is proportional to the symmetry breaking
vacuum expectation value v. The matrix element (17.94), with x = 0, is precisely
of the type that was shown to be non-zero in the proof of the Goldstone theorem,
after (17.67). Note also that (17.94) is consistent with 8ﬂf¢’f = 0 only if p> =0,
as is required for the massless 6.

We are now ready to generalize the Abelian U(1) model to the (global) non-
Abelian case.

17.6 Spontaneously broken global non-Abelian symmetry

We can illustrate the essential features by considering a particular example, which,
in fact, forms part of the Higgs sector of the Standard Model. We consider an
SU(2) doublet but, this time, not of fermions as in section 12.3 but of bosons:

N 1 .2 LA
o (T _ [ pOrTie)
= ( ¢° ) - ( -5 (@3 +id4) (7o)
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where the complex scalar field ot destroys positively charged particles and
creates negatively charged ones and the complex scalar field 430 destroys neutral
particles and creates neutral anti-particles. As we shall see in a moment, the
Lagrangian we shall use has an additional U(1) symmetry, so that the full
symmetry is SU(2)xU(1). This U(1) symmetry leads to a conserved quantum
number which we call y. We associate the physical charge Q with the eigenvalue
13 of the SU(2) generator 3, and with y, via

Q=e(3+y/2) (17.96)

so that y(¢T) = 1 = y(¢°). Thus, ¢ and ¢° can be thought of as analogous to
the hadronic iso-doublet (K, K?).
The Lagrangian we choose is a simple generalization of (17.69) and (17.77):

~ s N ~p A A asn
Lo=0,0")0")) +u’d'p — Z(¢T¢)2 (17.97)

which has the ‘spontaneous symmetry breaking’ choice of sign for the parameter
u2. Plainly, for the ‘normal’ sign of 2, in which ‘+u2¢7¢’ is replaced by
‘— MZQASTQAS’, with u? positive in both cases, the free (A = 0) part would describe a
complex doublet, with four degrees of freedom, each with the same mass p. Let
us see what happens in the broken symmetry case.

For the Lagrangian (17.97) with x> > 0, the minimum of the classical

potential is at the point
(@' PImin = 262 /0 = v?)2. (17.98)
As in the U(1) case, we interpret (17.98) as a condition on the vev of quqs
016$10) = v*/2 (17.99)

where now |0) is the symmetry-breaking ground state, and the subscript ‘B’ is
omitted. Before proceeding, we note that (17.97) is invariant under global SU(2)
transformations

é — ¢ = exp(—ia - T/2)¢ (17.100)

but also under a separate global U(1) transformation
é — ¢ = exp(—ia)d (17.101)

where « is to be distinguished from & = (1, a2, @3). The full symmetry is then
referred to as SU(2)xU(1), which is the symmetry of the electroweak sector of
the Standard Model, except that in that case it is a local symmetry.

As before, in order to get a sensible particle spectrum we must expand the
fields ¢3 not about 43 = 0 but about a point satisfying the stable ground state
(vacuum) condition (17.98). That is, we need to define ‘(O|qA5|O)’ and expand
about it, as in (17.84). In the present case, however, the situation is more
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complicated than (17.84) since the complex doublet (17.95) contains four real
fields as indicated in (17.95), and (17.98) becomes

(017 + ¢3 + ¢35 + $310) = v*. (17.102)

Itis evident that we have a lot of freedom in choosing the (O|¢A3i |0) so that (17.102)
holds, and it is not at first obvious what an appropriate generalization of (17.84)
and (17.85) might be.

Furthermore, in this more complicated (non-Abelian) situation a
qualitatively new feature can arise: it may happen that the chosen condition
(O|q3i |0) # O is invariant under some subset of the allowed symmetry
transformations. This would effectively mean that this particular choice of the
vacuum state respected that subset of symmetries, which would therefore not
be ‘spontaneously broken’ after all. Since each broken symmetry is associated
with a massless Goldstone boson, we would then get fewer of these bosons than
expected. Just this happens (by design) in the present case.

Suppose, then, that we could choose the (O|<;AS,' |0) so as to break this
SU2)xU(1) symmetry completely: we would then expect four massless fields.
Actually, however, it is not possible to make such a choice. An analogy may make
this point clearer. Suppose we were considering just SU(2) and the field ‘@ was
an SU(2)-triplet, ¢. Then we could always write (0|¢p|0) = vn where n is a unit
vector; but this form is invariant under rotations about the n-axis, irrespective of
where that points. In the present case, by using the freedom of global SU(2)x U(1)
phase changes, an arbitrary (0¢]0) can be brought to the form

N 0
0/$10) = ( e ) (17.103)

In considering what symmetries are respected or broken by (17.103), it is easiest
to look at infinitesimal transformations. It is then clear that the particular
transformation

8¢ = —ie(1 + 13) (17.104)

(which is a combination of (17.101) and the ‘third component’ of (17.100)) is still
a symmetry of (17.103) since

(1 +r3)< u/(z/i ) = < 8 ) (17.105)

so that
(0[¢]0) = (Ol¢ + 8¢10). (17.106)

We say that ‘the vacuum is invariant under (17.104)’ and when we look at the
spectrum of oscillations about that vacuum we expect to find only three massless
bosons, not four.
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Oscillations about (17.103) are conveniently parametrized by

. . 0
¢=exp(—1(0(x)-r/2)v)( %(v—i—lfl(x)) ) (17.107)

which is to be compared with (17.84). Inserting (17.107) into (17.97) (see
problem 17.6), we find that no mass term is generated for the 6 fields, while
the H field piece is

Ly =18, H3"H — /> H* + interactions (17.108)

just as in (17.85), showing that mpy = ﬁu

Let us now note carefully that whereas in the ‘normal symmetry’ case with
the opposite sign for the w2 term in (17.97), the free-particle spectrum consisted
of a degenerate doublet of four degrees of freedom all with the same mass p, in the
‘spontaneously broken’ case, no such doublet structure is seen: instead, there is
one massive scalar field and three massless scalar fields. The number of degrees
of freedom is the same in each case, but the physical spectrum is completely
different.

In the application of this to the electroweak sector of the Standard Model,
the SU(2)xU(1) symmetry will be ‘gauged’ (i.e. made local), which is easily
done by replacing the ordinary derivatives in (17.97) by suitable covariant ones.
We shall see in chapter 19 that the result, with the choice (17.107), will be to
end up with three massive gauge fields (those mediating the weak interactions)
and one massless gauge field (the photon). We may summarize this (anticipated)
result by saying, then, that when a spontaneously broken non-Abelian symmetry
is gauged, those gauge fields corresponding to symmetries that are broken by the
choice of (O|¢3|O) acquire a mass, while those that correspond to symmetries that
are respected by (0]¢]0) do not. Exactly how this happens will be the subject of
chapter 19.

We end this chapter by considering a second important example of
spontaneous symmetry breaking in condensed matter physics, as a preliminary
to our discussion of chiral symmetry breaking in the following chapter.

17.7 The BCS superconducting ground state

We shall not attempt to provide a self-contained treatment of the Bardeen—
Cooper—Schrieffer (1957)—or BCS—theory; rather, we wish simply to focus on
one aspect of the theory, namely the occurrence of an energy gap separating the
ground state from the lowest excited levels of the energy spectrum. The existence
of such a gap is a fundamental ingredient of the theory of superconductivity; in the
following chapter we shall see how Nambu (1960) interpreted a chiral symmetry
breaking fermionic mass term as an analogous ‘gap’. We emphasize at the outset
that we shall here not treat electromagnetic interactions in the superconducting
state, leaving that topic for chapter 19. Again, we work at zero temperature.
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Our discussion will deliberately have some similarity to that of
section 17.3.2. In the present case, of course, we shall be dealing with electrons—
which are fermions—rather than the bosons of a superfluid. Nevertheless, we
shall see that a similar kind of ‘condensation’ occurs in the superconductor too.
Naturally, such a phenomenon can only occur for bosons. Thus, an essential
element in the BCS theory is the identification of a mechanism whereby pairs of
electrons become correlated, the behaviour of which may have some similarity
to that of bosons. Now the Coulomb interaction between a pair of electrons is
repulsive and it remains so despite the screening that occurs in a solid. But the
positively charged ions do provide sources of attraction for the electrons, and
may be used as intermediaries (via ‘electron—phonon interactions’) to promote an
effective attraction between electrons in certain circumstances. At this point we
recall the characteristic feature of a weakly interacting gas of electrons at zero
temperature: thanks to the Exclusion Principle, the electrons populate single-
particle energy levels up to some maximum energy EF (the Fermi energy), whose
value is fixed by the electron density. It turns out (see, for example, Kittel (1987)
chapter 8) that electron—electron scattering, mediated by phonon exchange, leads
to an effective attraction between two electrons whose energies ¢, lie in a thin
band Er — wp < €; < Er 4 wp around Ef, where wp is the Debye frequency
associated with lattice vibrations. Cooper (1956) was the first to observe that
the Fermi ‘sea’ was unstable with respect to the formation of bound pairs, in
the presence of an attractive interaction. What this means is that the energy
of the system can be lowered by exciting a pair of electrons above Ef, which
then become bound to a state with a total energy less than 2 Eg. This instability
modifies the Fermi sea in a fundamental way: a sort of ‘condensate’ of pairs is
created around the Fermi energy and we need a many-body formalism to handle
the situation.

For simplicity, we shall consider pairs of equal and opposite momentum K,
so their total momentum is zero. It can also be argued that the effective attraction
will be greater when the spins are anti-parallel but the spin will not be indicated
explicitly in what follows: ‘k” will stand for ‘k with spin up’ and ‘—k’ for ‘—k
with spin down’. With this by way of motivation, we thus arrive at the BCS
reduced Hamiltonian

Hpcs = Y ealyé— VY ehel e i (17.109)
k k,k’

which is the starting point of our discussion. In (17.109), the ¢’s are fermionic
operators obeying the usual anti-commutation relations and the vacuum is such
that ¢x|0) = 0. The sum is over states lying near Ep, as before, and the
single-particle energies €; are measured relative to Er. The constant V (with the
minus sign in front) represents a simplified form of the effective electron—electron
attraction. Note that, in the non-interacting (V = 0) part, 5i6k is the number
operator for the electrons, which because of the Pauli principle has eigenvalues O
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or 1: this term is, of course, completely analogous to (7.50) and sums the single-
particle energies ¢, for each occupied level.

We immediately note that I:IBCS is invariant under the global U(1)
transformation

ek — & =e oy (17.110)

for all k, which is equivalent to 1&/ x) = e_io‘l/} (X) for the electron field operator
at X. Thus fermion number is conserved by I:IBcs. However, just as for the
superfluid, we shall see that the BCS ground state does not respect the symmetry.

We follow Bogoliubov (1958), Bogoliubov er al (1959) (see also Valatin
(1958)) and make a canonical transformation on the operators Ck, 5ik similar to
the one employed for the superfluid problem in (17.38), as motivated by the ‘pair
condensate’ picture. We set

Bx = ukex — wél B = wé] — vék

Bk =wék+we) B =ukel + wiék (17.111)

where uj and vy are real, depend only on k = |k| and are chosen so as to preserve
anti-commutation relations for the B’s. This last condition implies (problem 17.7)

up + v =1 (17.112)
so that we may conveniently set
U = cos 6y v = sin 6. (17.113)

Just as in the superfluid case, the transformations (17.111) only make sense in the
context of a number-non-conserving ground state, since they do not respect the
symmetry (17.110). Although Hgcs of (17.109) is number-conserving, we shall
shortly make a crucial number-non-conserving approximation.

We seek a diagonalization of (17.109), analogous to (17.40), in terms of the
mode operators B and B T

Hpes =) on (BB + B Br) +v (17.114)
k

for certain constants wy and y. It is easy to check (problem 17.8) that the form
(17.114) implies

[Ascs, B1=wif (17.115)

as in (17.41), despite the fact that the operators obey anticommution relations.
Equation (17.115) then implies that the wy are the energies of states created by
the quasiparticle operators ,BAE and ,3'4( the ground state being defined by

Brlground)pcs = B_i|ground)pcs = 0. (17.116)
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Substituting for ,BT in (17.115) from (17.111), we therefore require
[Hpcs, cos 6 & — sinfyé_1] = wy(cos6; & — sinfy é_p) (17.117)

which must hold as an identity in the ¢’s and ér’s. Evaluating (17.117), one
obtains (problem 17.9)

(w1 — €) cosf — V sin6 Zé_kék =0 (17.118)
k
—Veost » éhely + (o + ) sin) = 0. (17.119)
k

It is at this point that we make the crucial ‘condensate’ assumption: we
replace the operator expressions ), ¢_xCx and ) ) 6{(6' « by their average
values, which are assumed to be non-zero in the ground state. Since these
operators carry fermion number +£2, it is clear that this assumption is only valid
if the ground state does not, in fact, have a definitive number of particles—just as

in the superfluid case. We accordingly make the replacements

1% Zé kk = V Bes(ground| Y é_ék|ground)pes = A (17.120)
k

1% chc « = Vecs(ground) » " ¢féT | |ground)pcs = A*. (17.121)
k

In that case, equations (17.118) and (17.119) become

wy cosO; = € cosO; + Asinb; (17.122)
w;sinf; = — € sinf) + A*cos6; (17.123)

which are consistent if
w = +[e? + |A]2]V2, (17.124)

Equation (17.124) is the fundamental result at this stage. Recalling that ¢; is
measured relative to Ex, we see that it implies that all excited states are separated
from EFf by a finite amount, namely |A]|.

In interpreting (17.124), we must however be careful to reckon energies for
an excited state as relative to a BCS state having the same number of pairs, if we
consider experimental probes which do not inject or remove electrons. Thus,
considering a component of |ground)pcs with N pairs, we may consider the
excitation of two particles above a BCS state with N — 1 pairs. The minimum
energy for this to be possible is 2| A|. It is this quantity which is usually called the
energy gap. Such an excited state is represented by ,BII ,Bikl ground)pcs.

We shall need the expressions for cos6; and sin §; which may be obtained
as follows. Squaring (17.122) and taking A now to be real and equal to |A|, we
obtain

|A[%(cos? ) — sin® 6)) = 2¢;|A] cos 6§ sin 6, (17.125)
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which leads to
tan 20; = |A|/€ (17.126)

and then

1 o 172 1 ¢ 172
cosf; = [E (1 + $>j| sing; = [E (1 — $>j| . (17.127)
[ [

All our experience to date indicates that the choice ‘A = real’ amounts to a choice
of phase for the ground-state value:

V es(ground| Y © é_gek|ground)pes = | Al (17.128)
k

By making use of the U(1) symmetry (17.110), other phases for A are equally
possible.

The condition (17.128) has, of course, the by now anticipated form for
a spontaneously broken U(1) symmetry, and we must therefore expect the
occurrence of a massless mode. However, we may now recall that the electrons
are charged, so that when electromagnetic interactions are included in the
superconducting state, we have to allow the o in (17.110) to become a local
function of X. At the same time, the massless photon field will enter. Remarkably,
we shall learn in chapter 19 that the expected massless (Goldstone) mode is, in this
case, not observed: instead, that degree of freedom is incorporated into the gauge
field, rendering it massive. As we shall see, this is the physics of the Meissner
effect in a superconductor, and that of the ‘Higgs mechanism’ in the Standard
Model.

An explicit formula for A can be found by using the definition (17.120),
together with the expression for ¢k found by inverting (17.111):

&k = cos by Pi + sin by B . (17.129)

This gives, using (17.120) and (17.129),

|A| = V pcs(ground| Z(cos Ok,é_k + sin 6 ,3;2)
k

X (cos O ,3k + sin 6 ,BAik)|ground)Bcs

= V pcs (ground| Z cos B sin Gk,é_kﬁik |ground)pcs
k
_yy oA
o 2e; +1A2]12

(17.130)

The sum in (17.130) is only over the small band Er — wp < € < Ef + wp over
which the effective electron—electron attraction operates. Replacing the sum by
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an integral, we obtain the gap equation

__V N/ _d
@p ez+|A|2]2

— VNpsinh™ (wp/|A]) (17.131)

where NF is the density of states at the Fermi level. Equation (17.131) yields

A= —22  ~oppe I/ VN (17.132)
sinh(1/V Nr)

for VNg « 1. This is the celebrated BCS solution for the gap parameter |A|.
Perhaps the most significant thing to note about it, for our purpose, is that the
expression for |A| is not an analytic function of the dimensionless interaction
parameter V Ng (it cannot be expanded as a power series in this quantity), and
S0 no perturbative treatment starting from a normal ground state could reach this
result. The estimate (17.132) is in reasonably good agreement with experiment,
and may be refined.

The explicit form of the ground state in this model can be found by a
method similar to the one indicated in section 17.3.2 for the superfluid. Since
the transformation from the ¢’s to the B’s is canonical, there must exist a unitary
operator which effects it via (compare (17.48))

Uscs é Ules = B Uscs &1y Uges = BT (17.133)

The operator UBCS is (Blatt 1964, section V.4, Yosida 1958, and compare problem
17.4)
Uscs = [ [explor(@fe’ — éké_il. (17.134)
k

Then, since ¢k|0) = 0, we have

U} osPcUscs|0) = 0 (17.135)
showing that we may identify
|lground)gcs = Ugcs|0) (17.136)

via the condition (17.116). When the exponential in Uscs is expanded out and
applied to the vacuum state |0), great simplifications occur. Consider the operator

Sk —5&5'k—ckc K- (17.137)
We have

~2 At At A A AA atat
Sk = —CpC_|CkC—k — CkC_KCC Ly (17.138)
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so that §§|O) = —|0). It follows that

02 6}
o _ ~ k k A~
exp(OrsK)|0) = [ 1 4 Oksk — — — ?Sk ... ]10)

2
= (cos O + sin O 5k)|0)
= (cos O + sin g &1 )[0) (17.139)
and hence
|ground)gcs = [ [(cos 6k + sin 6 ¢7,)10). (17.140)
k

As for the superfluid, (17.140) represents a coherent superposition of correlated
pairs, with no restraint on the particle number.

We should emphasize that this is only the barest outline of a simple version
of BCS theory, from which many subtleties have been omitted. Consider, for
example, the binding energy E}, of a pair, which to calculate one needs to evaluate
the constant y in (17.114). To a good approximation, one finds (see, for example,
Enz 1992) that Ey, ~ 3A%/Eg. One can also calculate the approximate spatial
extension of a pair, which is denoted by the coherence length & and is of order
vp/m A where kp = mup is the Fermi momentum. If we compare Ey, to the
Coulomb repulsion at a distance &, we find that

Ev/(a/&) ~ a0/ (17.141)

where ag is the Bohr radius. Numerical values show that the right-hand side of
(17.141), in conventional superconductors, is of order 1073, Hence, the pairs are
not really bound, only correlated, and as many as 10° pairs may have their centres
of mass within one coherence length of each other. Nevertheless, the simple
theory presented here contains the essential features which underly all attempts
to understand the dynamical occurrence of spontaneous symmetry breaking in
fermionic systems.
We now proceed to an important application in particle physics.

Problems

17.1 Verify (17.29).
17.2 Verify (17.35).
17.3 Derive (17.43) and (17.44).

17.4 Let .
U, = expl$26(a* — ']

where [a, a"] = 1 and A, 6 are real parameters.

(a) Show that U ) 1S unitary.
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(b) Let

A)\ = A)L& A;l and A}\ = A)Lfl-‘-[j;l
Show that R
dh _pj
dx .
and that -
d=1I 5 s
— =61
a2 *

(c) Hence, show that .
I, = cosh(A0) G + sinh(x9) &'

and thus finally (compare (17.38) and (17.48)) that
0@0;1 =coshfda +sinhoa’ =&
and
01&70171 —=sinh@a +coshoa’ = a'
where

Ui = Upzy = expl6(a* — a™)).

17.5 Insert the ansatz (17.84) for ¢ into Lg of (17.69) with V = Vgg of (17.77)
and show that the result for the constant term and the quadratic terms in 4 and 6,
is as given in (17.85).

17.6 Verify that when (17.107) is inserted in (17.97), the terms quadratic in the
fields H and 6 reveal that € is a massless field, while the quanta of the H field
have mass /2.

17.7 Verify that the B’sof (17.111) satisfy the required anti-commutation relations
if (17.112) holds.

17.8 Verify (17.115).
17.9 Derive (17.118) and (17.119).
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18

CHIRAL SYMMETRY BREAKING

In section 12.3.2 we arrived at a puzzle: there seemed good reason to think
that a world consisting of u and d quarks and their anti-particles, interacting
via the colour gauge fields of QCD, should exhibit signs of the non-Abelian
chiral symmetry SU(2)¢s, which was exact in the massless limit m,, mqg — 0.
But, as we showed, one of the simplest consequences of such a symmetry
should be the existence of nucleon parity doublets, which are not observed.
We can now resolve this puzzle by making the hypothesis (section 18.1) first
articulated by Nambu (1960) and Nambu and Jona-Lasinio (1961a), that this
chiral symmetry is spontaneously broken as a dynamical effect—presumably,
from today’s perspective, as a property of the QCD interactions, as discussed
in section 18.2. If this is so, an immediate physical consequence should be
the appearance of massless (Goldstone) bosons, one for every symmetry not
respected by the vacuum. Indeed, returning to (12.169) which we repeat here
for convenience,

~(3) -
T.51d) = i) (18.1)

we now interpret the state |iZ) (which is degenerate with |d)) as |d + ‘r ) where
‘w* is a massless particle of positive charge but a pseudoscalar (0™) rather than
a scalar (0%) since, as we saw, |ii) has opposite parity to |u). In the same way,
0>

3

1 1

7~ and ‘m"” will be associated with YA{? and f;g). Of course, no such massless
pseudoscalar particles are observed; but it is natural to hope that when the small
up and down quark masses are included, the real pions (7T, 7, 7°) will emerge
as ‘anomalously light’, rather than strictly massless. This is indeed how they do
appear, particularly with respect to the octet of vector (1~) mesons, which differ
only in qq spin alignment from the pseudoscalar (07) octet. As Nambu and Jona-
Lasinio (1961a) stated, ‘It is perhaps not a coincidence that there exists such an
entity [i.e. the Goldstone state(s)] in the form of the pion’.

If this was the only observable consequence of spontaneously breaking
chiral symmetry, it would perhaps hardly be sufficient grounds for accepting
the hypothesis. But there are two circumstances which greatly increase the
phenomenological implications of the idea. First, the vector and axial vector

~ (L ~ (L
symmetry currents T(2)M and ng)ﬂ of the u—d strong interaction SU(2)

symmetries (see (12.109) and (12.166)) happen to be the very same currents
which enter into strangeness-conserving semileptonic weak interactions (such as
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n — pe Ve and 7~ — u”v,), as we shall see in chapter 20. Thus, some
remarkable connections between weak- and strong-interaction parameters can be
established, such as the Goldberger—Treiman (1958) relation (see section 18.3)
and the Adler—Weisberger (in Adler 1965) relation. Second, it turns out that
the dynamics of the Goldstone modes, and their interactions with other hadrons
such as nucleons, are strongly constrained by the underlying chiral symmetry
of QCD; indeed, surprisingly detailed effective theories (see section 18.4) have
been developed, which provide a very successful description of the low-energy
dynamics of the hadronic degrees of freedom. Finally, we shall introduce the
subject of chiral anomalies in section 18.5.

It would take us too far from our main focus on gauge theories to pursue these
interesting avenues in detail. But we hope to convince the reader, in this chapter,
that chiral symmetry breaking is an important part of the Standard Model, and
to encourage further study of a subject which may at first sight appear somewhat
peripheral to the Standard Model as conventionally understood.

18.1 The Nambu analogy

We recall from section 12.3.2 that for ‘almost massless’ fermions it is natural to
use the representation (4.97) for the Dirac matrices, in terms of which the Dirac
equation reads

E¢=0-pp+my (18.2)
Ex= —o0-px+mo. (18.3)

Nambu (1960) and Nambu and Jona-Lasinio (1961a) pointed out a remarkable
analogy between (18.2) and (18.3) and equations (17.122) and (17.123) which
describe the elementary excitations in a superconductor (in the case A is real) and
which we repeat here for convenience:

w; cosb; = € cosf; + Asinb; (18.4)
w;sinf; = — ¢ sinf; + A cos 6. (18.5)

In (18.4) and (18.5), cos#; and sin6; are, respectively, the components of the

electron destruction operator ¢ and the electron creation operator éL in the

quasiparticle operator ,3| (see (17.111)):
B = cos6 & —sing &', (18.6)
|

The superposition in ,é| combines operators which transform differently under
the U(1) (number) symmetry. The result of this spontaneous breaking of the U(1)
symmetry is the creation of the gap A (or 2A for a number-conserving excitation)
and the appearance of a massless mode. If A vanishes, (17.126) implies that
6y = 0 and we revert to the symmetry-respecting operators ¢, 6:. Consider
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Figure 18.1. The type of fermion—anti-fermion in the Nambu ‘condensate’.

now (18.2) and (18.3). Here ¢ and x are the components of definite chirality in
the Dirac spinor @ (compare (12.150)), which is itself not a chirality eigenstate
when m # 0. When m vanishes, the Dirac equation for @ decouples into two
separate ones for the chirality eigenstates g = < (g ) and ¢, = ( 2 )
Nambu therefore made the following analogy:

superconducting gap parameter A <> Dirac mass m
quasiparticle excitation <> massive Dirac particle
U(1) number symmetry <> U(1)s chirality symmetry
Goldstone mode <> massless boson.

In short, the mass of a Dirac particle arises from the (presumed) spontaneous
breaking of a chiral (or ys) symmetry, and this will be accompanied by a massless
boson.

Before proceeding, we should note that there are features of the analogy
on both sides which need qualification. First, the particle symmetry we want to
interpret this way is SU(2)rs not U(1)s, so the appropriate generalization (Nambu
and Jona-Lasinio 1961b) has to be understood. Second, we must again note that
the BCS electrons are charged, so that in the real superconducting case we are
dealing with a spontaneously broken local U(1) symmetry, not a global one. By
contrast, the SU(2)¢5 chiral symmetry is not gauged.

As usual, the quantum field theory vacuum is analogous to the many-body
ground state. According to Nambu’s analogy, therefore, the vacuum for a massive
Dirac particle is to be pictured as a condensate of correlated pairs of massive
fermions. Since the vacuum carries neither linear nor angular momentum, the
members of a pair must have equal and opposite spin: they therefore have the
same helicity. However, since the vacuum does not violate fermion number
conservation, one has to be a fermion and the other an anti-fermion. This means
(recalling the discussion after (12.148)) that they have opposite chirality. Thus,
a typical pair in the Nambu vacuum is as shown in figure 18.1. We may easily
write down an expression for the Nambu vacuum, analogous to (17.140) for the
BCS ground state. Consider solutions ¢+ and x4 of positive helicity in (18.2) and
(18.3); then

E¢y = | plops +mxs (18.7)
Exs = —|Plxs +més. (18.8)
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Comparing (18.7) and (18.8) with (18.4) and (18.5), we can read off the mixing
coefficients cos 6, and sin 6, as (cf (17.127))

1/2
cosf, = [2 <1+M>i| (18.9)

ing, = l1 M v 18.10
51np—|:2<—Ej|) (18.10)

where E = (m? + p?)!/2. The Nambu vacuum is then given by'

O)x = [ J(cos 8, — sin6,¢f (P (— p))10)m—o (18.11)
P,s

where 6;’s and c?; ’s are the operators in massless Dirac fields. Depending on
the sign of the helicity s, each pair in (18.11) carries £2 units of chirality. We
may check this by noting that in the mode expansion of the Dirac field U, & ( p)
operators go with u-spinors for which the y5 eigenvalue equals the helicity, while
d T( p) operators accompany v-spinors for which the ys elgenvalue equals minus
the helicity. Thus, under a chiral transformatlon 1// =P ”Sw & — e iPsg
and d; — e‘ﬂsds , for a given s. Hence csd acquires a factor e2ifs, Thus
the Nambu vacuum does not have a definite chirality and operators carrying
non-zero chirality can have non-vanishing vacuum expectation values (vevs). A
Dirac mass term v is of just this kind, since under ¥ = e #¥5y} we find that
1&7)/01& — I/A/Teiﬁ”yoe_iﬁml/; = &e_ZiﬁVSI/A/. Thus, in analogy with (17.120), a
Dirac mass is associated with a non-zero value for N(Oli}l/} [O)N.

In the original conception by Nambu and co-workers, the fermion under
discussion was taken to be the nucleon, with ‘m’ the (spontaneously generated)
nucleon mass. The fermion—fermion interaction—necessarily invariant under
chiral transformations—was taken to be of the four-fermion type. As we have
seen in volume 1, this is actually a non-renormalizable theory but a physical
cut-off was employed, somewhat analogous to the Fermi energy Er. Thus, the
nucleon mass could not be dynamically predicted, unlike the analogous gap
parameter A in BCS theory. Nevertheless, a gap equation similar to (17.131)
could be formulated, and it was possible to show that when it had a non-trivial
solution, a massless bound state automatically appeared in the ff channel (Nambu
and Jona-Lasinio 1961a). This work was generalized to the SU(2)¢5 case by
Nambu and Jona-Lasinio (1961b), who showed that if the chiral symmetry was
broken explicitly by the introduction of a small nucleon mass (~ 5 MeV), then
the Goldstone pions would have their observed non-zero (but small) mass. In
addition, the Goldberger—Treiman (1958) relation was derived and a number of
other applications were suggested. Subsequently, Nambu with other collaborators

LA different phase convention is used for cz;r (— p) as compared to that for 6ik in (17.111).
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(Nambu and Lurie 1962, Nambu and Schrauner 1962) showed how the amplitudes
for the emission of a single ‘soft’ (nearly massless, low momentum) pion could be
calculated, for various processes. These developments culminated in the Adler—
Weisberger relation (Adler 1965, Weisberger 1965) which involves rwo soft pions.

This work was all done in the absence of an agreed theory of the strong
interactions (the N-J-L theory was an illustrative working model of dynamically-
generated spontaneous symmetry breaking, but not a complete theory of strong
interactions). QCD became widely accepted as that theory in around 1973. In this
case, of course, the ‘fermions in question’ are quarks and the interactions between
them are gluon exchanges, which conserve chirality as noted in section 12.3.2.
The bulk of the quark masses inside bound states forming hadrons is then
interpreted as being spontaneously generated, while a small explicit quark mass
term in the Lagrangian is held to be responsible for the non-zero pion mass. Let
us therefore now turn to two-flavour QCD.

18.1.1 Two flavour QCD and SU(2)¢r, xSUQ2)¢r

Let us begin with the massless case, for which the fermionic part of the
Lagrangian is _

L, =0iDa+dibd (18.12)
where i and d now stand for the field operators,

DM = 3" 4 igh/2 - A* (18.13)

and the A matrices act on the colour (r,b,g) degree of freedom of the u and d
quarks. In addition to the local SU(3). symmetry, this Lagrangian is invariant
under

(i) U(1)¢ ‘quark number’ transformations
G — e g (18.14)
(i) SU(2)¢ ‘flavour isospin’ transformations
q — exp(—ia-t/2)q (18.15)
(@iii) U(1)¢s5 ‘axial quark number’ transformations
g—e g (18.16)
(iv) SU(2)¢s5 ‘axial flavour isospin’ transformations

q — exp(—iB - 1/2y5) q (18.17)

g

where

Q>

). (18.18)

Q> >
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Symmetry (i) is unbroken and its associated ‘charge’ operator (the quark number
operator) commutes with all other symmetry operators, so it need not concern us
further. Symmetry (ii) is the standard isospin symmetry of chapter 12, explicitly
broken by the electromagnetic interactions (and by the difference in the masses
my and mg, when included). Symmetry (iii) does not correspond to any known
conservation law; however, there are not any near-massless isoscalar 0~ mesons,
either, such as must be present if the symmetry is spontaneously broken. The 5
meson is an isoscalar 0~ meson, but with a mass of 547 MeV it is considerably
heavier than the pion. In fact, it can be understood as one of the Goldstone bosons
associated with the spontaneous breaking of the larger group SU(3)r5, which
includes the s quark (see, for example, Weinberg 1996, section 19.10). In that
case, symmetry (iii) becomes extended to

i — e sy d— e #Prsg § — e 15§ (18.19)

but there is still a missing light isoscalar 0~ meson. It can be shown that its mass
must be less than or equal to /3 m,, (Weinberg 1975); but no such particle exists.
This is the well-known ‘U(1) problem’: it was resolved by "t Hooft (1976a, 1986),
by showing that the inclusion of instanton configurations (Belavin ef al 1975) in
path integrals leads to violations of symmetry (iii)—see, for example, Weinberg
(1996, section 23.5). Finally, symmetry (iv) is the one with which we are presently
concerned.

The symmetry currents associated with (iv) are those already given in
(12.166), but we give them again here in a slightly different notation which will
be similar to the one used for weak interactions:

2 x Ti o X
fs=art'vs5q =123 (18.20)

Similarly, the currents associated with (ii) are

A

= 53/#%51 i=123 (18.21)

The corresponding ‘charges’ are (compare (12.167))
N N Ti
Qis E/j,?s d*x =/q ys—qd3 (18.22)
Ay
previously denoted by lsz and (compare (12.101))
o —/ATZ’quP (18.23)

1
previously denoted by Ti(z). As with all symmetries, it is interesting to discover
the algebra of the generators, which are the six charges Qi, Q,;5 in this case.
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Patient work with the anti-commutation relations for the operators in g (x) and
c}T(x) gives the results (problem 18.1)

[0i. Q)1 = i€iji Ok (18.24)
[0:, 0j5] = i€ijk Ok.s (18.25)
[0i5, Q) 5] = i€ijk Ok (18.26)

Relation (18.24) has been seen before in (12.103) and simply states that the Qi ’s
obey an SU(2) algebra. A simple trick reduces the rather complicated algebra of
(18.24)—(18.26) to something much simpler. Defining

Oir = 3(0i + 0is) OiL = 3(0i — 0is) (18.27)
we find (problem 18.2)
[0ir, Q)R] = i€ijk Ok R (18.28)
[0ir, Oj1L] = i€ijk Ok L (18.29)
[Oir, Qj,L] =0. (18.30)

The operators QLR, QLL therefore behave like two commuting (independent)
angular momentum operators, each obeying the algebra of SU(2). For this
reason, the symmetry group of the combined symmetries (ii) and (iv) is called
SUQ2)¢L x SUQR)R.-

The decoupling effected by (18.27) has a simple interpretation. Referring to
(18.22) and (18.23), we see that

L+ys5\Ti. 3
= —qgd’x 18.31
QlR / < ) ) 2q ( )

and similarly for Ql L. But ((1 £ y5)/2) are just the projection operators PR 1.
introduced in section 12.3.2, which project out the chiral parts of any fermion
field. Furthermore, it is easy to see that P2 = Pr and PL = Py, so that Q, R and

Ql,L can also be written as
Oir = /qﬂ 2’ Rdx QL= /(}EZlC}L d*x (18.32)

where gr = ((1 — ¥5)/2)q, gL = ((1 + y5)/2)q. In a similar way, the currents
(18.20) and (18.21) can be written as

W= jil,lR + jil,lL -]l 55 Jz R ]il,lL (18.33)
where
2 = 'C, ~ m = ‘L’, R
Jir = qry" EQR JiL = qLr” ECIL (18.34)
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Thus the SU(2)p, and SU(2)R refer to the two chiral components of the fermion
fields, which is why it is called chiral symmetry.
Under an infinitesimal SU(2) isospin transformation, g transforms by

Gg—q¢ =0—ie-1/2)q (18.35)
while under an axial isospin transformation
qg— 4 =1—in-7/2y5q. (18.36)
Multiplying (18.36) by y5 and adding the result to (18.35), we find that
gr = (1 —i(e + 1) - T/2)gr (18.37)

and similarly
g =1 —i(e —n)-t/2)qL. (18.38)

Hence gr and g transform quite independently,2 which is why [Q iRs Qj,L] =0.
This formalism allows us to see immediately why (18.12) is chirally
invariant: problem 18.3 verifies that £, can be written as

~

Ly = Gribar + Gribay (18.39)

which is plainly invariant under (18.37) and (18.38), since D is flavour-blind.

There is as yet no formal proof that this SU(2)p, x SU(2)r chiral symmetry
is spontaneously broken in QCD, though it can be argued that the larger
symmetry SU(3)L, xSU(3)r—appropriate to three massless flavours—must be
spontaneously broken (see Weinberg 1996, section 22.5). This is, of course, an
issue that cannot be settled within perturbation theory (compare the comments
after (17.132)). Numerical solutions of QCD on a lattice (see chapter 16)
do provide strong evidence that quarks acquire significant dynamical (SU(2);5-
breaking) mass.

Even granted that chiral symmetry is spontaneously broken in massless two-
flavour QCD, how do we know that it breaks in such a way as to leave the isospin
(‘R+L’) symmetry unbroken? A plausible answer can be given if we restore the
quark mass terms via

Ly = myiiit + madd = 3 (my +ma)qq + 3(my —ma)qrsq.  (18.40)

Now ) ) )
49 = q1.qr + grqL (18.41)

and ) ) )
473 = G 73R + GRrT3GL. (18.42)

2 Wemaysety =€ +nandd =€ — .

Copyright 2004 IOP Publishing Ltd



Including these extra terms is somewhat analogous to switching on an external
field in the ferromagnetic problem, which determines a preferred direction for
the symmetry breaking. It is clear that neither of (18.41) and (18.42) preserves
SU®2)LxSU(2)r since they treat the L and R parts differently. Indeed, from
(18.37) and (18.38), we find that

N =/ = . . n
GLar = qrag = gL +i(e —n) - 7/2)(1 —i(e + 1) - T/2)gr (18.43)
=§Ldr —in - 4LTdR (18.44)

and . ) )
grdL = qr4L + 1 - GrT4L. (18.45)

Equations (18.44) and (18.45) confirm that the term c}(} in (18.40) is invariant
under the isospin part of SU(2)LxSU(2)r (since € is not involved) but not
invariant under the axial isospin transformations parametrized by 5. The
qt3q term explicitly breaks the third component of isospin (resembling an
electromagnetic effect) but its magnitude may be expected to be smaller than that
of the gg term, being proportional to the difference of the masses, rather than
their sum. This suggests that the vacuum will ‘align’ in such a way as to preserve
isospin but break axial isospin.

18.2 Pion decay and the Goldberger-Treiman relation

We now discuss some of the rather surprising phenomenological implications of
spontaneously broken chiral symmetry—specifically, the spontaneous breaking
of the axial isospin symmetry. We start by i 1gn0r1ng any ‘explicit’ quark masses,
so that the axial isospin current is conserved, 9, j ]l s = 0. From sections 17.4
and 17.5 (suitably generalized) we know that this current has non-zero matrix
elements between the vacuum and a ‘Goldstone’ state which, in our case, is the
pion. We therefore set (cf (17.94))

(0175 @) Imj, p) = ip" fre P08y (18.46)

where f is a constant with dimensions of mass, which we expect to be related to
a symmetry-breaking vev. The precise relation between f, and a vev depends on
the dynamical theory (or model) being considered: for example, in the o-model
of section 18.3, in which j 518 given by (18.81) and the field o develops a vev
given in (18.86), we find that fx = —vs. Note that (18.46) is consistent with
8Mfi’f5 = 0if p> = 0, i.e. if the pion is massless.

We treat f; as a phenomenological parameter. Its value can be determined
from the rate for the decay 7+ — p*v,, by the following reasoning. In chapter 20
we shall learn that the effective weak Hamiltonian density for this low-energy
strangeness-non-changing semileptonic transition is

~ G = N
Hw(x) = 7; cos 6 g ()Y (1 — y5)Pu (x)
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Figure 18.2. Helicities of massless leptons in 7+ — p v, due to the “V — A’ interaction.

X [ (Y (1 = y3)Te () + Uy, (751 = y9) P (0] (18.47)

where GF is the Fermi constant and ¢ is the Cabibbo angle. Thus, the lowest-
order contribution to the S-matrix is

—i(u*, pri vy, pzl/d4x Hw )|z, p)
. GF 4 H 0 )
=775 cosfc [ d'x (u™, p1; vu, p2al¥r,, () yu(l — ¥5)¥u(x)|0)

X (01 a) " (1 = ys) (I, p). (18.48)

The leptonic matrix element gives i, (p2) v, (1 —y5) v, (p1)elP11P2) ¥ ip the usual
way. For the pionic one, we note that

Ta@rH (L= y9)dua@) = Jl) — 1) = Ji500 +ij85()  (18.49)

from (18.20) and (18.21). Further, the currents fl.“ can have no matrix elements
between the vacuum (which is a 0% state) and the 7 (which is 07), by the
following argument. From Lorentz invariance such a matrix element has to be
a 4-vector. But since the initial and final parities are different, it would have to be
an axial 4-vector.’> However, the only 4-vector available is the pion’s momentum
p" which is an ordinary (not : an axial) 4-vector. On the other hand, precisely for
this reason the axial currents ] 5 do have a non-zero matrix element, as in (18.46).

Noting that |7 +) = ﬁlm + i), we find that

O )y (1 =y ()™, p) = — —=(O1jl's — ijaslms + im2) (18.50)

V2
= 2pH freTiPX (18.51)
so that (18.48) becomes
i2m)*8* (p1 + p2 — P)[—Grcosbciiy (p2)yu (1 — ys)v(p) p* fr].  (18.52)

The quantity in brackets is, therefore, the invariant amplitude for the process, M.
Using p = p1 + p2, we may replace p in (18.52) by m,,, taking the neutrino to
be massless.

3 See page 284.
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Before proceeding, we comment on the physics of (18.52). The (1 — ys5)
factor acting on a v spinor selects out the ys = —1 eigenvalue which, if the
muon was massless, would correspond to positive helicity for the u™ (compare
the discussion in section 12.3.2). Likewise, taking the (1 — ys) through the yOpH
factor to act on u:ﬁ it selects the negative helicity neutrino state. Hence, the
configuration is as shown in figure 18.2, so that the leptons carry off a net spin
angular momentum. But this is forbidden, since the pion spin is zero. Hence, the
amplitude vanishes for massless muons and neutrinos. Now the muon, at least,
is not massless and some ‘wrong’ helicity is present in its wavefunction, in an
amount proportional to m,,. This is why, as we have just remarked after (18.52),
the amplitude is proportional to m,. The rate is therefore proportional to mi
This is a very important conclusion, because it implies that the rate to muons is
~ (my/ me)? ~ (400)? times greater than the rate to electrons—a result which
agrees with experiment, while grossly contradicting the naive expectation that the
rate with the larger energy release should dominate. This, in fact, is one of the
main indications for the ‘vector—axial vector’, or ‘V — A’, structure of (18.47), as
we shall see in more detail in section 20.4.

Problem 18.4 shows that the rate computed from (18.52) is
G}%mifg(m% — mi)z

3
dwrm;

cos? fc. (18.53)

T—>uy —

Neglecting radiative corrections, this enables the value
= >~ 93 MeV (18.54)

to be extracted.

Consider now another matrix element of fl“ 55 this time between nucleon
states. Following an analysis similar to that in section 8.8 for the matrix elements
of the electromagnetic current operator between nucleon states, we write

(N, p'lJ5O)IN, p)
_ Tofald T;
= ii(p') [V“Vst(qz) + quVsts(qz) + q“ysFi(qz)} Elu(p)

(18.55)

where the Fl.s’s are certain form factors, M is the nucleon mass and g = p — p/.
The spinors in (18.55) are understood to be written in flavour and Dirac space.
Since (with massless quarks) j,.“ 5 is conserved—thatis g, jl.“ 5(0) = 0(cf (8.99))—
we find that

_ Ti

0= a(p ) grsFi @) + 4’y F; (@)l up)
_ T
= a(Pp = PHrsFi (@®) + a7y F3 ()] S up)

= i(p")[—2MysF} (¢ + qzysFi(q%]%u(p) (18.56)
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Figure 18.3. One pion intermediate state contribution to F3'5 .

using pys = —ysp and the Dirac equations for u(p), i(p’). Hence, the form
factors F 15 and F35 must satisfy

2MF} (g% = ¢ F3 (¢P). (18.57)

Now the matrix element (18.55) enters into neutron S-decay (as does the
matrix element of fi“ (0)). Here, g% ~ 0 and (18.57) appears to predict, therefore,
that either M = 0 (which is certainly not so) or F15 (0) = 0. But F15 0)
can be measured in 8 decay and is found to be approximately equal to 1.26:
it is conventionally called go. The only possible conclusion is that F35 must
contain a part proportional to 1/g*. Such a contribution can only arise from the
propagator of a massless particle—which, of course, is the pion. This elegant
physical argument, first given by Nambu (1960), sheds a revealing new light
on the phenomenon of spontaneous symmetry breaking: the existence of the
massless particle coupled to the symmetry current fl“ s ‘saves’ the conservation
of the current.

We calculate the pion contribution to F35 as follows. The process is pictured
in figure 18.3. The pion-current matrix element is given by (18.46), and the
(massless) propagator is i/g2. For the 7—N vertex, the conventional Lagrangian
is

igaNNTiNysTi N (18.58)

which is SU(2)¢-invariant and parity-conserving since the pion field is a
pseudoscalar and so is NysN. Putting these pieces together, the contribution
of figure 18.3 to the current matrix element is

_ T i
ZgnNNM(P/)VSElu(P)? —ig" fx (18.59)
and so :
F(@*) = 528aw/x (18.60)
from this contribution. Combining (18.57) with (18.60), we deduce
_ fim F3(g2) = Wz (18.61)
8A = 220 1@q7) = i .
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the well-known Goldberger—Treiman (G-T) (1958) relation. Taking M =
939 MeV, gao = 1.26 and f; = 93 MeV, one obtains g,NN & 12.7, which is
only 5% below the experimental value of this effective pion—nucleon coupling
constant.

In the real world, the pion mass is not zero and neither are the ‘explicit’ quark
masses my, mq. With my and mq reinstated, the equations of motion for the quark

fields are . L .
iPg=mg  —iDugy" =qm (18.62)
where
_( my O
m= ( 0 my ) (18.63)
We can re-calculate 9, f,.“ 5 and find (problem 18.5) that
2 .X Ti ~
duiis =14 {m, 5’} ¥s5q. (18.64)
Let us take the case i = 1, for example. Then
{m, 71} = (my +maq)71. (18.65)

Now consider the matrix element

0, (015 OIm1(p)) = —p? fx = S0my + m)Oligriyslmy).  (18.66)
Since p* = mjzr we see that mjzr is proportional to the sum of quark masses and
tends to zero as they do.

We can repeat the argument leading to the G-T relation but retaining
mjzr # 0. Equation (18.46) tells us that Bﬂfl.’f s/ (mjzr fr) behaves like a properly
normalized pion field, at least when operating on a near mass-shell pion state.
This means that the one-nucleon matrix element of Bﬂfi’f 5 is (cf (18.59))

— Ti i 2
2gznNu(p)ys E“(P)mmn Sr (18.67)
while from (18.55) it is given by
.- Ti
ii(p[=2MysFi (¢%) + ¢7ys F3 (g7 Su(p). (18.68)
Hence,
2 2
COMFGP) + P F(q?) = 2N x (18.69)
q° — mj'[
Also, in place of (18.60), we now have
5..2 1
F(q%) = ———5 28NN fr- (18.70)
q- —my
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Equations (18.69) and (18.70) are consistent for q2 = mjzr if

F(q* = m%) = gunnfr /M. (18.71)

F15 (g?) varies only slowly from g% = 0 to g% = m%, since it contains no rapidly

varying pion pole contribution, and so we recover the G-T relation again.

Amplitudes involving two ‘Goldstone’ pions can be calculated by an
extension of these techniques. We refer the interested reader to Georgi (1984).

We now turn to another example of a phenomenological model exhibiting
spontaneously broken axial isospin symmetry, this time realized in terms of
hadronic (nucleon and pion) degrees of freedom, rather than quarks. It will be
a somewhat more complicated model than that of section 17.4, though similar to
it in that the spontaneous breaking is put in ‘by hand’ via a suitable potential. As
we will see, it effectively embodies many of the preceding results.

18.3 The linear and nonlinear o -models

The linear o-model involves a massless fermion isodoublet g@ (which will be
identified with the nucleon—its mass being generated spontaneously, as we shall
see) and a massless pseudoscalar isotriplet & (the pions). There is also a scalar
field 6 which is an isoscalar. The Lagrangian is (with A > 0)

Lo = Yidy +igann¥TysV - T + genn¥ U6 + 10,7 - o
+19,60%6 — L2 @62+ 2 — @2 + 2D (18.72)

We have seen all the different parts of this before: the massless fermions, the T—y
coupling as in (18.58), an analogous o -y coupling (here with the same coupling
constant), and r and o fields with a symmetrical mass parameter 12 and a quartic
potential.

What are the global symmetries of (18.72)? We can at once infer that it is
invariant under global isospin transformations if V is an isodoublet, # an isotriplet
and ¢ an isoscalar, transforming by

V> U =(1—ie-1/2)% (18.73)
o> =n+exn (cf (12.64)) (18.74)
6—>6 =6 (18.75)

under an infinitesimal SU(2)¢ transformation. The associated symmetry current is

JO = gyt nd + & x 94 7),;. (18.76)

l

The first term of (18.76) is as in (18.21) and the second is equivalent to (12.124).
The corresponding charges

0 = szO @ $3x (18.77)
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are constants of the motion and obey the SU(2) algebra (18.24). Note that all these
algebraic results hold independently of the specific realization of the operators in
terms of the fields in the model under consideration (quarks on the one hand,
pions and nucleons on the other).

However, (18.72) is also invariant under a further set of transformations (see
problem 18.6), namely

v =1 —in- T2y (18.78)
> =n+ny0 (18.79)
66 =6—n-7 (18.80)

where 7 is a second set of three infinitesimal parameters. Transformation (18.78)
is the same as (18.36) and is, therefore, again an axial isospin transformation on
the doublet . This suggests we call the second set of currents jl.“ 5> where now

s = iy ystid + (69" — #106). (18.81)

Again, the first term is as in (18.20) and there is a new ‘mesonic’ piece. It can
easily be verified that jl.“ s would not be conserved if we added an explicit mass

for 1@ Remarkably, the charges
0% = / T d3x (18.82)

and Ql@ satisfy relations of the form (18.24)—(18.26). Thus, once again, we have
a model of interacting fields with a global SU(2)p, x SU(2)r symmetry.

As far as the fermion field I/Af is concerned, we know that the ‘L’ and ‘R’
refer to the components of different chirality. But how can we understand this
SU(2)xSU(2) structure for the meson fields, for which of course no 5 matrix
can enter? Just as the algebra of SU(2) is the same as that of the generators of 3D
rotations (section 12.1.1), so the algebra of SU(2) x SU(2) turns out to be the same
as that of the generators of rotations in a four-dimensional Euclidean space—here,
of course, an ‘internal’ space involving the field components (see appendix M,
section M.4.3). If we label the four directions as 1, 2, 3 and 4, we can imagine
rotations in the planes 12, 13 and 23 which would be ‘spatial’ rotations, leading
to an SU(2) algebra. But there are also rotations in the 14, 24 and 34 directions,
which are analogous to spacetime (velocity) transformations in special relativity.
This makes six ‘rotations’ in all, which is the same number of generators as the
three Q;U)’s together with the three Ql(? ’s. Of course, this by itself by no means
proves that the algebra of the generators of SO(4) (the special orthogonal group
in 4D—i.e. the group of 4D rotations) is the same as SU(2)xSU(2). But the
SO(4) symmetry of (18.72) is apparent, at least in the meson sector, if we regard
(6, 1) as being the four components of a ‘4-vector’. The transformations of SO(4)
preserve the (length)2 of 4-vectors—in this case, therefore, of o2 + #2. Just this
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combination is visible in the potential terms of (18.72), and we can easily verify
from (18.79) and (18.80) that, indeed, (to first order in ) 6'% + 7% =62+ 72 as
required. Finally, note that (18.79) and (18.80) are analogous to an infinitesimal
velocity transformation in relativity, with 6 — ¢, # — X, and 2 — x2 invariant
rather than 62 + 7 2. So (18.74) and (18.75) tell us how & and & transform under
ordinary SU(2)y, while (18.79) and (18.80) record their transformations under the
other SU(2), which we may reasonably call SU(2)¢5 in view of (18.78). Then the

associated ‘L’ and ‘R’ generators can be found by writing QI(UL) = % (Ql(.“) - QE”S)),

Ql((;) = %[ngo) + QE’?] as before. These relations provide us with the ‘L’ and
‘R’ transformation law for the meson fields in this model.

Thus far we have supposed that the parameter u2 in (18.72) is positive,
representing a normal mass parameter. The symmetry is then unbroken, the
ground state having (0|6|0) = (0|7|0) = 0. We now consider the symmetry
breaking case u? < 0,asin (17.77) and (17.97). The classical potential in (18.72)
now becomes

V(r,0) = —3pc? + %) + tre? + n%)? (18.83)
where the ‘new’ 12 in (18.83) is positive. This potential has a minimum when

n’ 40’ =12 (18.84)

o

with :
Ve = (u2/)2. (18.85)
(18.84) generalizes the circular minimum of figure 17.2 to the surface of a sphere
in 4D; it is also, in fact, exactly analogous to (17.102)—a point to which we shall
eventually return in chapter 22. As in these previous cases, we interpret (18.84)

as (O|fr2 +62 [0) = U(ZT, and we need to choose one particular ground state before
we can get a proper particle interpretation. We choose

OI710) =0  (0|5|0) = v (18.86)

Then # will have a standard expansion in terms of a’s and a'’s, while for 6 we
need to set
6 =vy +6 (18.87)

and then expand 6’ in terms of creation and annihilation operators. Introducing
(18.87) into (18.72), we find (problem 18.7) that £, becomes
Loy =Y + gannve) W + igaNNGTysY - 7 + grnni 6’
+ 10,7 - 0t 7 + 18,6046 + 26 — ave 6 (67 + 77
— %A(&/z + 72)? + constant. (18.88)

The spontaneous breaking typified by (18.87) has, therefore, induced the
following results:
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(i) the fermion has acquired a mass —g yn Vs, proportional to the symmetry
breaking parameter v, ;

(ii) the 7’s remain massless, being the three Goldstone modes ‘perpendicular’
to the one selected out by the symmetry-breaking condition (18.86);

(iii) the 6’ field has a mass v/2u, corresponding to oscillations in the ‘radial’
direction in figure 17.2;

(iv) there are new trilinear couplings between & and o, proportional to v, ; and

(v) the SU(2); symmetry of (18.72) is preserved, since the vacuum choice
(18.86) respects it, but SU(2);5 is spontaneously broken.

We may therefore regard L, as some kind of ‘effective Lagrangian’
embodying the SU(2)L x SU(2)r symmetry of QCD, broken spontaneously in just
the same way as we assumed for QCD. The empirical consequences—massless
pions, a massive nucleon—are the same but, of course, there is no real dynamical
explanation of the symmetry breakdown here, just a ‘by hand’ choice of the sign
of u? in (18.72).

This model can be easily modified to include a finite mass for the pions.
In the QCD case, we saw that a quark mass term broke the full SU(2)xSU(2)

symmetry explicitly, while leaving SU(2)r intact. In the same way, the addition of
aterm 44 to L, will have the same effect (again, itis analogous to an ‘alignment
field’). One quickly verifies (problem 18.8) that now BM Jis is no longer zero but

is given by
aﬂj,.“s = —cHj. (18.89)

Thus, just as in the previous section, 8M ] 5 is proportional to the pion field. In
fact, for consistency with (18.46), we should have

c=—m2fr. (18.90)

We can check (18.90) (at least to tree level in the interactions of ﬁo +co) as
follows. With the explicit symmetry-breaking addition c¢&, the minimum (18.84)
gets shifted to a new point such that (0]|6'|0)—which we still call v,—satisfies

Vo (—p? +v2) =c. (18.91)

Note that v, returns to (u?/1)'/2 for ¢ — 0. In addition, there is a pion mass term
—%(—MZ + )»Zv?,)frz. Previously this was of course zero (from (18.85)), but now
from (18.91) we can identify mjzr as ¢/ v, . This will be consistent with (18.90) if
our symmetry breaking parameter v, is identified with — f. In that case, from
item (i) we learn that the nucleon mass is gNN fr, and we recover a G-T type
relation (at tree level) with g = 1.

We can ask to what extent the rather simple Lagrangian (18.72) (with the
w? term as in (18.83)) describes other features of low-energy interactions among
pions and nucleons. The 7—N interaction itself leads, of course, precisely to the
‘one pion exchange’ potential between two nucleons, as postulated by Yukawa,
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but now incorporating the conservation of isospin. Furthermore, this 7—N theory
is renormalizable, although in view of the magnitude of g,NN, perturbation theory
is of little value. The main phenomenological problem with (18.72) is that there
is no plausible candidate, among the observed mesons with masses below 1 GeV,
for the ‘o’ (0%) meson. We can actually get rid of o by supposing that its mass
V2 is very large indeed but in such a way that the ratio v, = (12/2)'/2 remains
finite. This implies that A also becomes very large, rising as the square of the

scaling of u. However, the value of the potential at the minimum is — Z /\ , which
becomes very large and negative. Thus in terms of a picture such as figure 17.2,
the potential has a very deep and narrow minimum and (assuming a semi-classical
picture) the fields are effectively constrained to lie on the ‘chiral circle’

62+ 7t = f2 (18.92)

The result of imposing (18.92) is rather remarkable. Let us consider now just
the meson sector. The potential terms disappear altogether from (18.72) and we
are left with pions interacting via the interaction

Lotom = 18, (\/fg - 7%2) aH <\/fj$ - fzz) (18.93)

(7 - 8, 7) (& - 017)

1
=3 ~ (18.94)
(f2 -
We interpret the denominator in (18.94) via its expansion
A Lo s A2 2y 1
Lolom = =—— (@ - dw) (T - dm)(1 — &~/ f7) (18.95)
2f2
1
(# - 9, 7)(# - 0"7) + O(#°). (18.96)

27

The first term in (18.96) describes a pion—pion scattering process of the form
7w+ — w4, for which it makes a quite specific prediction, since f is known.
The result was first given by Weinberg (1966), using a different technique, and is
consistent with experiment (see Donoghue et al (1992) for a review).

Relation (1 8.96) invites a number of comments. First, we note that the

effective interaction = 377 f 5 (7T - dm)? is not renormalizable, since it has a coefficient
T

with dimension (mass)~2. However, the discussion in section 11.8 showed that
such a Lagrangian could still be useful, even in loops, provided one worked at
energies below the scale set by the dimensional coupling. Here that scale is
fx= = 93 MeV (or perhaps this multiplied by numbers such as 27z, if we are
lucky). At any rate, we expect the theory to work only for energies not too far from
threshold. Nevertheless, it is striking that symmetry conditions have determined
the low-energy dynamics of the Goldstone modes. This is a general feature and
clearly a most important one. It opens up a large field of ‘effective Lagrangians’
for low-energy hadronic physics (Donoghue ez al 1992).
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Second, it is interesting that the effective m—m interaction involves two
derivatives, so that the corresponding Feynman amplitudes for w (p1) + 7w (p2) —
7 ( p/l) + 7( p’z) contain two powers of the momenta, which from Lorentz
invariance must appear in the form of s = (p; + p2)%, t = (p1 — p’l)2 or
u=(p— p/2)2, where p| + p2 = p| + p), expresses 4-momentum conservation.
They therefore vanish (for m% = 0) at the points s = 0,7 = 0 or u = 0. On the
other hand, derivatives are absent from the meson sector of the ‘spontaneously
broken” model (18.88), suggesting a contradiction. In particular, the interaction
ik(ftz)z would seem to lead to a constant (non-vanishing) contribution as the
momenta went to zero. However, there will also be contributions from o’
exchange of the form A/(g? — m(zr) where mg = 2u?% and A is proportional
to kzvcz,. Expanding this in powers of qz/m%,, we find a leading term —A/m%, ~
—22v2 /m2 ~ —2%v2/u® ~ —). A proper calculation shows that indeed such
terms exactly cancel the i)»(fr2)2 ones (see, for example, Donoghue et al (1992)),
leaving the leading contribution proportional to g% (where ¢ is any of the possible
momentum transfers).

Despite the low-energy success of (18.96) (which is called the ‘nonlinear
o-model’ in this context), it fails to account for prominent phenomena as the
energy scale rises into the 500-1000 MeV region. In particular, there is no sign
ofthe T = 1,J” = 1~7 — x resonance called the p (see section 9.5), with a
mass of 770 MeV. The situation is no better with the ‘linear o-model’ of (18.88).
The importance of p-meson exchange in hadronic dynamics was first stressed by
Sakurai (1960) in his ‘vector meson dominance’ theory. It is phenomenologically
rather successful but it has not yet been possible to derive it directly from QCD.
A combination of the low-energy Goldstone mode dynamics and the (at present)
phenomenological p-meson contribution provides a good representation of non-
strange mesonic dynamics below about 1 GeV.

18.4 Chiral anomalies

In all our discussions of symmetries so far—unbroken, approximate and
spontaneously broken—there is one result on which we have relied and never
queried. We refer to Noether’s theorem, as discussed in section 12.3.1. This states
that for every continuous symmetry of a Lagrangian, there is a corresponding
conserved current. We demonstrated this result in some special cases, but we
have now to point out that while it is undoubtedly valid at the level of the
classical Lagrangian and field equations, we did not investigate whether quantum
corrections might violate the classical conservation law. This can, in fact, happen
and when it does the afflicted current (or its divergence) is said to be ‘anomalous’
or to contain an ‘anomaly’. General analysis shows that anomalies occur in
renormalizable theories of fermions coupled to both vector and axial vector
currents. In particular, therefore, we may expect an anomaly when we introduce
electromagnetism into our chiral models (such as the linear o-model), since then
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Figure 18.4. The amplitude considered in (18.97) and the one-pion intermediate state
contribution to it.

both axial vector and vector symmetry currents will be involved. This is an
example of a chiral anomaly, a typical illustration of which is provided by the
calculation of the rate for 7% — yy, to be discussed shortly.

One way of understanding how anomalies arise is through consideration of
the renormalization process, which is in general necessary once we get beyond the
classical (‘tree level’) approximation. As we saw in volume 1, this will invariably
entail some regularization of divergent integrals. But the specific example of
the O(e?) photon self-energy studied in section 11.3 showed that a simple cut-
off form of regularization already violated the current conservation (or gauge
invariance) condition (11.21). In that case, it was possible to find alternative
regularizations which respected electromagnetic current conservation and were
satisfactory. Anomalies arise when both axial and vector symmetry currents are
present, since it is not possible to find a regularization scheme which preserves
both vector and axial vector current conservation (Adler 1970, Jackiw 1972, Adler
and Bardeen 1969).

The need for particular care in the calculation of 70 — yy was first
recognized by Schwinger (1951), using a different approach. A full exposition
of the anomaly in the axial vector current in spinor electrodynamics was first
given by Adler (1969) and the occurrence of the anomaly in the o-model (with
electromagnetic interactions) was pointed out by Bell and Jackiw (1969). A more
modern non-perturbative perspective is provided by Peskin and Schroeder (1995,
chapter 19).

We shall not attempt an extended discussion of this technical subject. But
we do want to alert the reader to the existence of these anomalies; to indicate how
they arise in one simple model; and to explain why, in some cases, they are to be
welcomed, while in others they must be eliminated.

We consider the classic case of 7% — 7y, in the context of spontaneously
broken global chiral symmetry with massless quarks and pions. The axial isospin
current f,“ 5(x) should then be conserved, but we shall see that this implies that the
amplitude for 70 — yy must vanish, as first pointed out by Veltman (1967) and
Sutherland (1967). We begin by writing the matrix element of ]Af 5(x) between
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the vacuum and a 2y state, in momentum space, as

/ dx e 95y, ki, €1 v, K, €] f15 (6)10)
= @m)*8* (k1 + ka — @)ef, (k1)edy (k) MM (ki ko). (18.97)

As in figure 18.3, one contribution to M*"* has the form (constant/q?) due to the
massless 70 propagator, shown in figure 18.4. This is because, once again, when
chiral symmetry is spontaneously broken, the axial current connects the pion state
to the vacuum, as described by the matrix element (18.46). The contribution of
the process shown in figure 18.4 to M*¥* is then

ig" fa éiAe”Mﬁklakzﬁ (18.98)

where we have parametrized the 70— yy amplitude as Ae" P €7, (k1)e3, (k2)
kigkzg.  Note that this automatically incorporates electromagnetic gauge
invariance (the amplitude vanishes when the polarization vector of either photon
is replaced by its 4-momentum, due to the anti-symmetry of the € symbol), and
1t is symmetrical under 1nterchange of the photon labels. Now consider replacing
]3 5(x) in (18.97) by 0, j Ja, 5(x) which should be zero. A partial integration in
(18 97) then shows that this implies that

quM™* =0 (18.99)

which with (18.98) implies that A = 0, and hence that 70 — yy is forbidden. It
is important to realize that all other contributions to M pvd apart from the 79 one
shown in figure 18.4, will not have the 1/ q2 factor in (18.98) and will, therefore,
give a vanishing contribution to qﬂ/\/l’“’)‘ at g2 = 0 which is the on-shell point
for the (massless) pion.

It is, of course, true that m% # 0. But estimates (Adler 1969) of the
consequent corrections suggest that the predicted rate of 70 — yy for real
70 is far too small. Consequently, there is a problem for the hypothesis of
spontaneously broken (approximate) chiral symmetry.

In such a situation, it is helpful to consider a detailed calculation performed
within a specific model. In the present case, we want a model which exemplifies
spontaneously broken chiral symmetry, so the Lagrangian £, of (18.72) is an
obvious choice, when enlarged to include electromagnetism in the usual gauge-
invariant way. For our purposes, it will be sufficient to simplify (18.72) so as
to include only one fermion of charge e (the proton) and two mesons, the o
and m3. This was the model considered by Bell and Jackiw (1969) and also by
Adler (1969). It is also effectively the model used long before, by Steinberger
(1949), in the first calculation of the 7% — yy rate. To order «, there are two
graphs to consider, shown in figure 18.5(a) and (b). It turns out that the fermion
loop integral is actually convergent: details of its evaluation may be found in

Copyright 2004 IOP Publishing Ltd



fi

Figure 18.5. The two O(«x) graphs contributing to 0 — yy decay in the simplified
version of (18.72).

Figure 18.6. O () contributions to the matrix element in (18.97).

Itzykson and Zuber (1980, section 11.5.2). In the limit q2 — 0, the result is

(using g/m = £

&2

= 18.100
472 f, ( )
where A is the 7° — yy amplitude introduced earlier. Problem 18.9 evaluates

the 7 — yy rate using (18.100) to give

o md

0 big
Mx" — 2y) = oA 2 (18.101)
(18.101) is in very good agreement with experiment.

In principle, various possibilities now exist. But a careful analysis of the
‘triangle’ graph contributions to the matrix element M*"* of (18.97), shown in
figure 18.6, reveals that the fault lies in assuming that a regularization exists such
that for these amplitudes the conservation equation g, (y y |]Aé‘ 5(0)|0) = 0 can be
maintained, at the same time as electromagnetic gauge invariance. In fact, no such
regularization can be found. When the amplitudes of figure 18.6 are calculated
using an (electromagnetic) gauge-invariant procedure, one finds a non-zero result
for qu{yy |]A§L 5(0)|0) (again the details are given in Itzykson and Zuber (1980)).
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This implies that 8Mféf 5(x) is not zero after all, the calculation producing the

specific value
2

33 €PFry gy, (18.102)

0 fts(0) =
where the F’s are the usual electromagnetic field strength tensors.

Equation (18.102) means that (18.99) is no longer valid, so that A need no
longer vanish: indeed, (18.102) predicts a definite value for A, so we need to see
if it is consistent with (18.100). Taking the vacuum — 2y matrix element of
(18.102) produces (problem 18.10)

2
igu MM = %e‘”mkmkzﬂ (18.103)

which is indeed consistent with (18.97) and (18.100), after suitably interchanging
the labels on the € symbol.

Equation (18.102) is a typical example of ‘an anomaly’—the violation, at
the quantum level, of a symmetry of the classical Lagrangian. It might be thought
that the result (18.102) is only valid to order « (though the O (a?) correction
would presumably be very small). But Adler and Bardeen (1969) showed that
such ‘triangle’ loops give the only anomalous contributions to the ] s—Y—V
vertex, so that (18.102) is true to all orders in «.

The triangles considered earlier actually used a fermion with integer charge
(the proton). We clearly should use quarks, which carry fractional charge. In this
case, the previous numerical value for A is multiplied by the factor 73 Q? for each
contributing quark. For the u and d quarks of chiral SU(2)xSU(2), this gives 1/3.
Consequently agreement with experiment is lost unless there exist three replicas
of each quark, identical in their electromagnetic and SU(2)xSU(2) properties.
Colour supplies just this degeneracy, and thus the 7° — yy rate is important
evidence for such a degree of freedom.

In the foregoing discussion, the axial isospin current was associated with a
global symmetry: only the electromagnetic currents (in the case of 70 — yy)
were associated with a local (gauged) symmetry and they remained conserved
(anomaly free). If, however, we have an anomaly in a current associated with
a local symmetry, we will have a serious problem. The whole rather elaborate
construction of a quantum gauge field theory relies on current conservation
equations such as (11.21) or (13.164) to eliminate unwanted gauge degrees of
freedom and ensure unitarity of the S-matrix. So anomalies in currents coupled
to gauge fields cannot be tolerated. As we shall see in chapter 20, and is already
evident from (18.48), axial currents are indeed present in weak interactions and
they are coupled to the W+, Z0 gauge fields. Hence, if this theory is to be
satisfactory at the quantum level, all anomalies must somehow cancel away. That
this is possible rests essentially on the observation that the anomaly (18.102) is
independent of the mass of the circulating fermion. Thus cancellations are, in
principle, possible between quark and lepton ‘triangles’ in the weak interaction
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case. Remarkably enough, complete cancellation of all anomalies does occur in
the GSW theory (see Peskin and Schroeder 1995, section 20.2). Bouchiat et al
(1972) were the first to point out that each generation of quarks and leptons will be
separately anomaly free if the fractionally charged quarks come in three colours.
Anomaly cancellation is a powerful constraint on possible theories ("t Hooft 1980,
Weinberg 1996, section 22.5).

Problems

18.1 Verify (18.24)—(18.26).
18.2 Verify (18.28)—(18.30).
18.3 Show that £, of (18.12) can be written as (18.39).

18.4 Show that the rate for 7t — u"’vu, calculated from the lowest-order matrix
element (18.52), is given by (18.53).

18.5 Verify (18.64).
18.6 Show that (18.72) is invariant under the transformations (18.78)—(18.80).

18.7 Show that after making the ‘shift’ (18.87), the Lagrangian (18.72) becomes
(18.88).

18.8 Show that when a term co isAadded to L, of (18.72), the divergence of the
axial vector current is given by 9, jl.“ s(x) = —cm;.

18.9 Verify (18.101), and calculate the 70 lifetime in seconds.
18.10 Verify (18.103).
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19

SPONTANEOUSLY BROKEN LOCAL SYMMETRY

In earlier parts of this book we have briefly indicated why we might want to
search for a gauge theory of the weak interactions. The reasons include: (a)
the goal of unification (e.g. with the U(1) gauge theory QED), as mentioned
in section 2.5; and (b) certain ‘universality’ phenomena (to be discussed more
fully in chapter 20), which are reminiscent of a similar situation in QED (see
comment (ii) in section 3.6 and also section 11.6) and which are particularly
characteristic of a non-Abelian gauge theory, as pointed out in section 13.1 after
equation (13.44). However, we also know from section 2.5 that weak interactions
are short-ranged, so that their mediating quanta must be massive. At first sight,
this seems to rule out the possibility of a gauge theory of weak interactions, since
a simple gauge boson mass violates gauge invariance, as we pointed out for the
photon in section 11.4 and for non-Abelian gauge quanta in section 13.51, and we
will review again in the following section. Nevertheless, there is a way of giving
gauge field quanta a mass, which is by ‘spontaneously breaking’ the gauge (i.e.
local) symmetry. This is the topic of the present chapter. The detailed application
to the electroweak theory will be made in chapter 22.

19.1 Massive and massless vector particles

Let us begin by noting an elementary (classical) argument for why a gauge field
quantum cannot have mass. The electromagnetic potential satisfies the Maxwell
equation (cf (3.21))

OAY — 3¥(3,4%) = ju, (19.1)

which, as discussed in section 3.3, is invariant under the gauge transformation
AP — AH = A* — 9ty (19.2)

However, if A* were to represent a massive field, the relevant wave equation
would be
O+ M*HA” — 8" (8,A") = jU.. (19.3)

To get this, we have simply replaced the massless ‘Klein—Gordon’ operator [
by the corresponding massive one, 1 + M? (compare sections 4.1 and 5.3).
Equation (19.3) is manifestly not invariant under (19.2) and it is precisely the
mass term M2 A" that breaks the gauge invariance. The same conclusion follows
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Figure 19.1. Fermion—fermion scattering via exchange of two X bosons.

in a Lagrangian treatment: to obtain (19.3) as the corresponding Euler—Lagrange
equation, one adds a mass term +%M2AMA“ to the Lagrangian of (7.63) (see also
sections 11.4 and 13.5.1) and this clearly violates invariance under (19.2). Similar
reasoning holds for the non-Abelian case too. Perhaps, then, we must settle for
a theory involving massive charged vector bosons, W+ for example, without it
being a gauge theory.

Such a theory is certainly possible but it will not be renormalizable, as
we now discuss. Consider figure 19.1, which shows some kind of fermion—
fermion scattering (we need not be more specific), proceeding in fourth-order
perturbation theory via the exchange of two massive vector bosons, which we
will call X-particles. To calculate this amplitude, we need the propagator for
the X-particle, which can be found by following the ‘heuristic’ route outlined in
section 7.3.2 for photons. We consider the momentum—space version of (19.3)
for the corresponding XV field, but without the current on the right-hand side (so
as to describe a free field):

[(—k% 4+ M?)g"" + k"KM X, (k) = 0 (19.4)

which should be compared with (7.87). Apart from the ‘ie’, the propagator should
be proportional to the inverse of the quantity in the square brackets in (19.4).
Problem 19.1 shows that, unlike the (massless) photon case, this inverse does
exist and is given by
—g" + kK M?
k? — M?
A proper field-theoretic derivation would yield this result multiplied by an overall
factor ‘i’ as usual and would also include the ‘i€’ via k> — M? — k* — M? + ie.
We remark immediately that (19.5) gives nonsense in the limit M — 0, thus
indicating already that a massless vector particle seems to be a very different kind
of thing from a massive one (we cannot just take the massless limit of the latter).
Now consider the loop integral in figure 19.1. At each vertex we will have a
coupling constant g, associated with an interaction Lagrangian having the general

(19.5)
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form glﬁy,u/}f( " (a yuys coupling could also be present but will not affect the
argument). Just as in QED, this ‘g’ is dimensionless but, as we warned the reader
in section 11.8, this may not guarantee renormalizability and, indeed, this is a case
where it does not. To get an idea of why this might be so, consider the leading
divergent behaviour of figure 19.1. This will be associated with the k*k" terms in
the numerator of (19.5), so that the leading divergence is effectively

L (PR (1
/dk<k2)(k2)kk (196)

for high k-values (we are not troubling to get all the indices right, we are
omitting the spinors altogether and we are looking only at the large-k part of the
propagators). Now the first two bracketed terms in (19.6) behave like a constant
at large k, so that the divergence becomes

. 11
~ | d*k-- (19.7)

which is quadratically divergent and, indeed, exactly what we would get in a
‘four-fermion’ theory—see (11.89) for example. This strongly suggests that the
theory is non-renormalizable.

Where have these dangerous powers of k in the numerator of (19.6) come
from? The answer is simple and important. They come from the longitudinal
polarization state of the massive X-particle, as we shall now explain. The free-
particle wave equation is

O+ MHXY - 8", X") =0 (19.8)
and plane-wave solutions have the form
XV = e’e7ikr, (19.9)
Hence, the polarization vectors €" satisfy the condition
(—k?> 4+ M?)e” + k k" = 0. (19.10)
Taking the ‘dot’ product of (19.10) with k,, leads to
M*k-€=0 (19.11)

which implies (for M? # 0!)
k-e=0. (19.12)

Equation (19.12) is a covariant condition, which has the effect of ensuring that
there are just three independent polarization vectors, as we expect for a spin-
1 particle. Let us take k* = (k°,0,0, |k|): then the x- and y-directions are
‘transverse’ while the z-direction is ‘longitudinal’. Now, in the rest frame of the
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X, such that kgt = (M, 0, 0, 0), (19.12) reduces to €Y = 0 and we may choose
three independent €’s as

€ (krest, A) = (0, €(1)) (19.13)

with
el ==+1)= F2712(1, +i,0) (19.14)
e(r =0)= (0,0, 1). (19.15)

The €’s are ‘orthonormalized’ so that (cf (7.83))
€M) - e(V) = (19.16)

These states have definite spin projection (A = =£1, 0) along the z-axis. For the
result in a general frame, we can Lorentz transform €* (kgest, ) as required. For
example, in a frame such that k* = (k°, 0, 0, |K|), we find that

e*(k, A = £1) = e (kpest, A = £1) (19.17)
as before, but the longitudinal polarization vector becomes (problem 19.2)
ek, x =0) =M~ (K|, 0,0, k%). (19.18)

Note that k - € (k, A = 0) = 0 as required.
From (19.17) and (19.18), it is straightforward to verify the result (problem
19.3)
Z e*(k, MeV (k, L) = —g"¥ + k"k”/MZ. (19.19)
A=0,%1

Consider now the propagator for a spin-% particle, given in (7.60):

i(f+m)

G (19.20)

Equation (7.61) shows that the factor in the numerator of (19.20) arises from the
spin sum

> ualk, )iig(k, s) = (k +m)up. (19.21)
s
In just the same way, the massive spin-1 propagator is given by

i[—g"” + ki'k” /M?)
k2 — M? +ie

(19.22)

and the numerator in (19.22) arises from the spin sum (19.19). Thus, the
dangerous factor k*k"/M? can be traced to the spin sum (19.19): in particular,
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at large values of k the longitudinal state €*(k, A = 0) is proportional to k*, and
this is the origin of the numerator factors k*k" /M? in (19.22).

We shall not give further details here (see also section 20.3) but merely state
that theories with massive charged vector bosons are indeed non-renormalizable.
Does this matter? In section 11.8 we explained why it is thought that the relevant
theories at presently accessible energy scales should be renormalizable theories.
Is there, then, any way of getting rid of the offending ‘k*k"’ terms in the X-
propagator, so as (perhaps) to render the theory renormalizable? Consider the
photon propagator of chapter 7 repeated here:

i[—g"" + (1 — &)k*k" /K]
k2 + e ’

(19.23)

This contains somewhat similar factors of k*k" (admittedly divided by k? rather
than M?) but they are gauge-dependentand can, in fact, be ‘gauged away’ entirely,
by choice of the gauge parameter £ (namely by taking & = 1). But, as we have
seen, such ‘gauging’—essentially the freedom to make gauge transformations—
seems to be possible only in a massless vector theory.

A closely related point is that, as section 7.3.1 showed, free photons exist
in only two polarization states (electromagnetic waves are purely transverse),
instead of the three we might have expected for a vector (spin-1) particle—and
as do indeed exist for massive vector particles. This gives another way of seeing
in what way a massless vector particle is really very different from a massive
one: the former has only two (spin) degrees of freedom, while the latter has three,
and it is not at all clear how to ‘lose’ the offending longitudinal state smoothly
(certainly not, as we have seen, by letting M — 01in (19.5)).

These considerations therefore suggest the following line of thought: is it
possible somehow to create a theory involving massive vector bosons, in such
a way that the dangerous k*k" term can be ‘gauged away’, making the theory
renormalizable? The answer is yes, via the idea of spontaneous breaking of gauge
symmetry. This is the natural generalization of the spontaneous global symmetry
breaking considered in chapter 17. By way of advance notice, the crucial formula
is (19.75) for the propagator in such a theory, which is to be compared with
(19.22).

The first serious challenge to the then widely held view that electromagnetic
gauge invariance requires the photon to be massless was made by Schwinger
(1962). Soon afterwards, Anderson (1963) pointed out that several situations
in solid state physics could be interpreted in terms of an effectively massive
electromagnetic field. He outlined a general framework for treating the
phenomenon of the acquisition of mass by a gauge boson, and discussed its
possible relevance to contemporary attempts (Sakurai 1960) to interpret the
recently discovered vector mesons (o, w, ¢, ...) as the gauge quanta associated
with a local extension of hadronic flavour symmetry. From his discussion, it
is clear that Anderson had his doubts about the hadronic application, precisely
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because, as he remarked, gauge bosons can only acquire a mass if the symmetry is
spontaneously broken. This has the consequence, as we saw in chapter 17, that the
multiplet structure ordinarily associated with a non-Abelian symmetry would be
lost. But we know that flavour symmetry, even if admittedly not exact, certainly
leads to identifiable multiplets, which are at least approximately degenerate in
mass. It was Weinberg (1967) and Salam (1968) who made the correct application
of these ideas to the generation of mass for the gauge quanta associated with the
weak force. There is, however, nothing specifically relativistic about the basic
mechanism involved, nor need we start with the non-Abelian case. In fact, the
physics is well illustrated by the non-relativistic Abelian (i.e. electromagnetic)
case—which is nothing but the physics of superconductivity. Our presentation is
influenced by that of Anderson (1963).

19.2 The generation of ‘photon mass’ in a superconductor: the Meissner
effect

In chapter 17, section 17.7, we gave a brief introduction to some aspects of the
BCS theory of superconductivity. We were concerned mainly with the nature
of the BCS ground state and with the non-perturbative origin of the energy gap
for elementary excitations. In particular, as noted after (17.128), we omitted
completely all electromagnetic couplings of the electrons in the ‘microscopic’
Hamiltonian. It is certainly possible to complete the BCS theory in this way, so as
to include within the same formalism a treatment of electromagnetic effects (e.g.
the Meissner effect) in a superconductor. We refer interested readers to the book
by Schrieffer (1964, chapter 8). Instead, we shall follow a less ‘microscopic’
and somewhat more ‘phenomenological’ approach, which has a long history in
theoretical studies of superconductivity and is, in some ways, actually closer (at
least formally) to our eventual application in particle physics.

In section 17.3.1 we introduced the concept of an ‘order parameter’, a
quantity which was a measure of the ‘degree of ordering’ of a system below
some transition temperature. In the case of superconductivity, the order parameter
(in this sense) is taken to be a complex scalar field v, as originally proposed
by Ginzburg and Landau (1950), well before the appearance of BCS theory.
Subsequently, Gorkov (1959) and others showed how the Ginzburg-Landau
description could be derived from BCS theory, in certain domains of temperature
and magnetic field. This work all relates to static phenomena. More recently, an
analogous ‘effective theory’ for time-dependent phenomena (at zero temperature)
has been derived from a BCS-type model (Aitchison ef al 1995). For the moment,
we shall follow a more qualitative approach.

The Ginzburg—Landau field ¢ is commonly referred to as the ‘macroscopic
wave function’. This terminology originates from the recognition that in the BCS
ground state a macroscopic number of Cooper pairs have ‘condensed’ into the
state of lowest energy, a situation similar to that in the Bogoliubov superfluid.
Further, this state is highly coherent, all pairs having the same total momentum
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(namely zero, in the case of (17.140)). These considerations suggest that a
successful phenomenology can be built by invoking the idea of a macroscopic
wavefunction v, describing the condensate. Note that ¥ is a ‘bosonic’ quantity,
referring essentially to paired electrons. Perhaps the single most important
property of ¢ is that it is assumed to be normalized to the tofal density of Cooper
pairs n¢ via the relation

[Y|* = ne = ng/2 (19.24)

where 74 is the density of superconducting electrons. The quantities n. and ng will
depend on temperature 7', tending to zero as T approaches the superconducting
transition temperature T, from below. The precise connection between ¢ and
the microscopic theory is indirect; in particular, ¢ has no knowledge of the
coordinates of individual electron pairs. Nevertheless, as an ‘empirical’ order
parameter, it may be thought of as in some way related to the ground-state “pair’
expectation value introduced in (17.121); in particular, the charge associated with
Y is taken to be —2e and the mass is 2me.

The Ginzburg-Landau description proceeds by considering the quantum-
mechanical electromagnetic current associated with ¥, in the presence of a static
external electromagnetic field described by a vector potential A. This current
was considered in section 3.4 and is given by the gauge-invariant form of (A.7),
namely

—2e . .
[ (V 4 2ie Ay — {(V + 2ie Ay} v ]. (19.25)

Amel

Jem

Note that we have supplied an overall factor of —2e to turn the Schrodinger
‘number density’ current into the appropriate electromagnetic current. Assuming
now that, consistently with (19.24), ¥ is varying primarily through its phase
degree of freedom ¢, rather than its modulus ||, we can rewrite (19.25) as

. 262 1 2
Jem=—"" <A+ —V¢> ¥ (19.26)
2e

ne

where ¥ = e'®|y|. We easily verify that (19.26) is invariant under the gauge
transformation (3.40), which can be written in this case as
A— A+Vy (19.27)
¢ — ¢ —2ey. (19.28)

We now replace |1,0|2 in (19.26) by ng/2 in accordance with (19.24) and take the
curl of the resulting equation to obtain

2

VX oy = — (e ”s> B. (19.29)

ne

Equation (19.29) is known as the London equation (London 1950) and is one of
the fundamental phenomenological relations in superconductivity.
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The significance of (19.29) emerges when we combine it with the (static)
Maxwell equation
VXxB=jen- (19.30)

Taking the curl of (19.30) and using V x (V x B) = V(V . B) — V2B and

V - B =0, we find that
2
V2B = <e ”s) B. (19.31)

ne

The variation of magnetic field described by (19.31) is a very characteristic one
encountered in a number of contexts in condensed matter physics. First, we
note that the quantity (e*ng /me) must—in our units—have the dimensions of
(length)~2, by comparison with the left-hand side of (19.31). Let us write

eni) _ 1 (19.32)
me | T A2 '

Next, consider for simplicity one-dimensional variation

’B 1
W2 = 2 (19.33)
in the half-plane x > 0, say. Then the solutions of (19.33) have the form
B(x) = Boexp—(x/A) (19.34)

the exponentially growing solution being rejected as unphysical. The field,
therefore, penetrates only a distance of order A into the region x > 0. The
range parameter A is called the screening length. This expresses the fact that,
in a medium such that (19.29) holds, the magnetic field will be ‘screened out’
from penetrating further into the medium.

The physical origin of the screening is provided by Lenz’s law: when a
magnetic field is applied to a system of charged particles, induced EMF’s are set
up which accelerate the particles and the magnetic effect of the resulting currents
tends to cancel (or screen) the applied field. On the atomic scale, this is the cause
of atomic diamagnetism. Here the effect is occurring on a macroscopic scale
(as mediated by the ‘macroscopic wavefunction’ i) and leads to the Meissner
effect—the exclusion of flux from the interior of a superconductor. In this case,
screening currents are set up within the superconductor, over distances of order
A from the exterior boundary of the material. These exactly cancel—perfectly
screen—the applied flux density in the interior. With ng ~ 4 x 102® m—3 (roughly
one conduction electron per atom), we find that

1/2
Me -8
A= < ) ~ 108 m (19.35)

nge?

Copyright 2004 IOP Publishing Ltd



which is the correct order of magnitude for the thickness of the surface layer
within which screening currents flow, and over which the applied field falls to
zero. As T — T, ng — 0 and X becomes arbitrarily large, so that flux is no
longer screened.

It is quite simple to interpret equation (19.31) in terms of an ‘effective non-
zero photon mass’. Consider the equation (19.8) for a free massive vector field.
Taking the divergence via 9, leads to

M?3,X" =0 (19.36)
(cf (19.11)) and so (19.8) can be written as
@+ M>HX' =0 (19.37)

which simply expresses the fact that each component of XV has mass M. Now
consider the static version of (19.37), in the rest frame of the X-particle in which
(see equation (19.13)) the v = 0 component vanishes. Equation (19.37) reduces
to

VZX = M*X (19.38)

which is exactly the same in form as (19.31) (if X were the electromagnetic field
A, we could take the curl of (19.38) to obtain (19.31) via B = V x A). The
connection is made precise by making the association

2
M2 = (‘" ”S> _ 1 (19.39)

ne

Equation (19.39) shows very directly another way of understanding the ‘screening
length <> photon mass’ connection: in our units i = ¢ = 1, a mass has the
dimension of an inverse length and so we naturally expect to be able to interpret
27! as an equivalent mass (for the photon, in this case).

This treatment conveys much of the essential physics behind the
phenomenon of ‘photon mass generation’ in a superconductor. In particular, it
suggests rather strongly that a second field, in addition to the electromagnetic one,
is an essential element in the story (here, it is the i field). This provides a partial
answer to the puzzle about the discontinuous change in the number of spin degrees
of freedom in going from a massless to a massive gauge field: actually, some other
field has to be supplied. Nevertheless, many questions remain unanswered so far.
For example, how is all the foregoing related to what we learned in chapter 17
about spontaneous symmetry breaking? Where is the Goldstone mode? Is it
really all gauge invariant? And what about Lorentz invariance? Can we provide
a Lagrangian description of the phenomenon? The answers to these questions are
mostly contained in the model to which we now turn, which is due to Higgs (1964)
and is essentially the local version of the U(1) Goldstone model of section 17.5.
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19.3 Spontaneously broken local U(1) symmetry: the Abelian Higgs model

This model is just ﬁG of (17.69) and (17.77), extended so as to be locally, rather
than merely globally, U(1) invariant. Due originally to Higgs (1964), it provides
a deservedly famous and beautifully simple model for investigating what happens
when a gauge symmetry is spontaneously broken.

To make (17.69) locally U(1) invariant, we need only replace the d’s by D’s
according to the rule (7.120) and add the Maxwell piece. This produces

Ly = [(0" +igA)P1 (0, +igA )Pl — L Eu FP — I0(@Td)* + 12 @7 d).

(19.40)
(19.40) is invariant under the local version of (17.72), namely
$x) > ' (x) = eI (19.41)
when accompanied by the gauge transformation on the potentials
~ Al ~ 1
AF(x) = AP (x) = A*(x) + —0*a(x). (19.42)
q

Before proceeding any further, we note at once that this model contains four
field degrees of freedom—two in the complex scalar Higgs field $ and two in
the massless gauge field Al

We learned in section 17.5 that the form of the potential terms in (19.40)
(specifically the 12 one) does not lend itself to a natural particle interpretation,
which only appears after making a ‘shift to the classical minimum’, as in (17.84).
But there is a remarkable difference between the global and local cases. In the
present (local) case, the phase of ¢§ is completely arbitrary, since any change in &
of (19.41) can be compensated by an appropriate transformation (19.42) on A*,
leaving Ly the same as before. Thus, the field 6 in (17.84) can be ‘gauged away’
altogether, if we choose! But 6 was precisely the Goldstone field, in the global
case. This must mean that there is somehow no longer any physical manifestation
of the massless mode. This is the first unexpected result in the local case. We
may also be reminded of our desire to ‘gauge away’ the longitudinal polarization
states for a ‘massive gauge’ boson: we shall return to this later.

However, a degree of freedom (the Goldstone mode) cannot simply
disappear. Somehow the system must keep track of the fact that we started with
four degrees of freedom. To see what is going on, let us study the field equation
for A", namely

OAY — 8" (3, A%) = j2, (19.43)

where fe"m is the electromagnetic current contained in (19.40). This current can
be obtained just as in (7.137) and is given by

Jon =iq@79"¢ — (3"¢")p) — 2¢*AV¢" . (19.44)
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We now insert the field parametrization (cf (17.84))

dx) = %(v + h(x)) exp(—if (x)/v) (19.45)

into (19.40) where v/\/i = 21/2|/,L|/)\.% is the position of the minimum of the
classical potential as a function of |¢|, as in (17.81). We obtain (problem 19.4)

~ A 0'0
jgm = —u2q2 (A” — ) + terms quadratic and cubic in the fields. (19.46)
vg

The linear part of the right-hand side of (19.46) is directly analogous to the non-
relativistic current (19.26), interpreting i as essentially playing the role of ‘¢
and |/|? the role of v2. Retaining just the linear terms in (19.46) (the others
would appear on the right-hand side of equation (19.47) following, where they
would represent interactions) and placing this fé’m in (19.43), we obtain

. . 36
OAY — 9V9, A" = —v¢? (A” - ) (19.47)
vg

Now a gauge transformation on AV has the form shown in (19.42), for arbitrary
&. So we can certainly regard the whole expression (A” — 3"0/vq) as a perfectly
acceptable gauge field. Let us define

81}
v

A7

AV =A" -

(19.48)

Then, since we know (or can easily verify) that the left hand side of (19.47) is
invariant under (19.42), the resulting equation for AV

OAY — 90, A" = —vzqu’” (19.49)

or
(O +v2¢?HAY — "0, A" =0. (19.50)

But (19.50) is nothing but the equation (19.8) for a free massive vector field, with
mass M = vq! This fundamental observation was first made, in the relativistic
context, by Englert and Brout (1964), Higgs (1964) and Guralnik et al (1964); for
a full account, see Higgs (1966).

The foregoing analysis shows us two things. First, the current (19.46) is
indeed a relativistic analogue of (19.26), in that it provides a ‘screening’ (mass
generation) effect on the gauge field. Second, equation (19.48) shows how the
phase degree of freedom of the Higgs field ¢AS has been incorporated into a new
gauge field A/", which is massive and, therefore, has ‘three’ spin degrees of
freedom. In fact, we can go further. If we imagine plane-wave solutions for
A", AV and , we see that the 8”é/vq part of (19.48) will contribute something
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proportional to kV/M to the polarization vector of A" (recall M = vg). But
this is exactly the (large k) behaviour of the longitudinal polarization vector of
a massive vector particle. We may therefore say that the massless gauge field
A" has ‘swallowed’ the Goldstone field § via (19.48) to make the massive vector
field A". The Goldstone field disappears as a massless degree of freedom, and
reappears, via its gradient, as the longitudinal part of the massive vector field. In
this way the four degrees of freedom are all now safely accounted for: three are
in the massive vector field A and one is in the real scalar field / (to which we
shall return shortly).

In this (relativistic) case, we know from Lorentz covariance that all the
components (transverse and longitudinal) of the vector field must have the same
mass and this has, of course, emerged automatically from our covariant treatment.
But the transverse and longitudinal degrees of freedom respond differently in
the non-relativistic (superconductor) case. There, the longitudinal part of A
couples strongly to longitudinal excitations of the electrons: primarily, as Bardeen
(1957) first recognized, to the collective density fluctuation mode of the electron
system—that is, to plasma oscillations. This is a high-frequency mode and is
essentially the one discussed in section 17.3.2, after equation (17.46). When
this aspect of the dynamics of the electrons is included, a fully gauge-invariant
description of the electromagnetic properties of superconductors, within the BCS
theory, is obtained (Schreiffer 1964, chapter 8).

We return to equations (19.48)—(19.50). Taking the divergence of (19.50)
leads, as we have seen, to the condition

A" =0 (19.51)

on A*. It follows that in order to interpret the relation (19.48) as a gauge
transformation on A” we must, to be consistent with (19.51), regard A* as being
in a gauge specified by
A 1 .~ | N
A = —00 = —06. (19.52)
vq M

In going from the situation described by A" and 6 to one described by A'" alone
via (19.48), we have evidently chosen a gauge function (cf (19.42))

a(x) = —0(x)/v. (19.53)
Recalling then the form of the associated local phase change on qAﬁ(x),
$(x) = ¢'(x) = e 4 (x) (19.54)

we see that the phase of 43 in (19.45) has been reduced to zero, in this choice
of gauge. Thus it is indeed possible to ‘gauge 6 away’ in (19.45), but then the
vector field we must use is A’*, satisfying the massive equation (19.50) (ignoring
other interactions). In superconductivity, the choice of gauge which takes the
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macroscopic wavefunction to be real (i.e. ¢ = 0in (19.26)) is called the ‘London
gauge’. In the next section we shall discuss a subtlety in the argument which
applies in the case of real superconductors, and which leads to the phenomenon
of flux quantization.

The fact that this ‘Higgs mechanism’ leads to a massive vector field can be
seen very economically by working in the particular gauge for which ¢ is real and
inserting the parametrization (cf (19.45))

Lo+ iy (19.55)
—(v .
V2

b=
into the Lagrangian L. Retaining only the terms quadratic in the fields, one finds
(problem 19.5) that

L0 = 10, A, — 0,40 (0HAY — 9" AR) + 1g2? A, AF
+ 18,ho"h — p*h*. (19.56)

The first line of (19.56) is exactly the Lagrangian for a spin-1 field of mass vg—
i.e. the Maxwell part with the addition of a mass term (note that the sign of the
mass term is correct for the spatial (physical) degrees of freedom); and the second
line is the Lagrangian of a scalar particle of mass +/2u. The latter is the mass
of excitations of the Higgs field h away from its vacuum value (compare the
global U(1) case discussed in section 17.5). The necessity for the existence of
one or more massive scalar particles (‘Higgs bosons’) when a gauge symmetry is
spontaneously broken in this way was first pointed out by Higgs (1964).

We may now ask: what happens if we start with a certain phase 6 for ¢ but
do not make use of the gauge freedom in AV to reduce  to zero? We shall see in
section 19.5 that the equation of motion, and hence the propagator for the vector
particle depend on the choice of gauge; furthermore, Feynman graphs involving
quanta corresponding to the degree of freedom associated with the phase field
6 will have to be included for a consistent theory, even though this must be an
unphysical degree of freedom, as follows from the fact that a gauge can be chosen
in which this field vanishes. That the propagator is gauge dependent should, on
reflection, come as a relief. After all, if the massive vector boson generated in this
way were simply described by the wave equation (19.50), all the troubles with
massive vector particles outlined in section 19.1 would be completely unresolved.
As we shall see, a different choice of gauge from that which renders  real has
precisely the effect of ameliorating the bad high-energy behaviour associated
with (19.50). This is ultimately the reason for the following wonderful fact:
massive vector theories, in which the vector particles acquire mass through the
spontaneous symmetry breaking mechanism, are renormalizable ("t Hooft 1971b).

However, before discussing other gauges than the one in which b is given by
(19.55), we first explore another interesting aspect of superconductivity.
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Figure 19.2. Magnetic field B and modulus of the macroscopic (pair) wavefunction || in
the neighbourhood of a flux filament.

19.4 Flux quantization in a superconductor

Though a slight diversion, it is convenient to include a discussion of flux
quantization at this point, while we have a number of relevant results assembled.
Apart from its intrinsic interest, the phenomenon may also provide a useful
physical model for the ‘confining’ property of QCD, already discussed in
section 16.7.

Our discussion of superconductivity so far has dealt, in fact, with only one
class of superconductors, called type I: these remain superconducting throughout
the bulk of the material (exhibiting a complete Meissner effect), when an external
magnetic field of less than a certain critical value is applied. There is a
quite separate class—type-II superconductors—which allow partial entry of the
external field, in the form of thin filaments of flux. Within each filament the field
is high and the material is not superconducting. Outside the core of the filaments,
the material is superconducting and the field dies off over the characteristic
penetration length A. Around each filament of magnetic flux, there circulates a
vortex of screening current: the filaments are often called vortex lines. It is as if
numerous thin cylinders, each enclosing flux, had been drilled in a block of type-I
material, thereby producing a non-simply connected geometry.

In real superconductors, screening currents are associated with the
macroscopic pair wavefunction (field) . For type-II behaviour to be possible,
[v| must vanish at the centre of a flux filament and rise to the constant value
appropriate to the superconducting state over a distance & < A, where £ is the
‘coherence length’ of section 17.7. According to the Ginzburg—Landau (GL)
theory, a more precise criterion is that type-II behaviour holds if £ < 2!/2x:
both & and X are, of course, temperature-dependent. The behaviour of || and B
in the vicinity of a flux filament is shown in figure 19.2. Thus, whereas for simple
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type-I superconductivity, || is simply set equal to a constant, in the type-II case
|| has the variation shown in this figure. Solutions of the coupled GL equations
for A and v can be obtained which exhibit this behaviour.

An important result is that the flux through a vortex line is quantized. To see
this, we write

¥ = ey (19.57)
as before. The expression for the electromagnetic current is
2
. q Vo
Jem=——(A——> v (19.58)
m q

as in (19.26), but in (19.58) we are leaving the charge parameter ¢ undetermined
for the moment: the mass parameter m will be unimportant. Rearranging, we

have
_ m j +qu
Clyi2 " g

Let us integrate equation (19.59) around any closed loop C in the type-II
superconductor, which encloses a flux (or vortex) line. Far enough away from
the vortex, the screening currents j ., will have dropped to zero, and hence

(19.59)

fA~dS=17§V¢~dS=l[¢]C (19.60)
c qJc q

where [¢]c is the change in phase around C. If the wavefunction ¢ is single-
valued, the change in phase [¢]¢ for any closed path can only be zero or an integer
multiple of 2. Transforming the left-hand side of (19.60) by Stoke’s theorem,
we obtain the result that the flux @ through any surface spanning C is quantized:

2nn
<I>=/B~dS=—=nd>o (19.61)
q

where &9 = 2m/q is the flux equation (or 27/i/g in ordinary units). It
is not entirely self-evident why v should be single-valued, but experiments
do indeed demonstrate the phenomenon of flux quantization, in units of ®g
with |g| = 2e (which may be interpreted as the charge on a Cooper pair, as
usual). The phenomenon is seen in non-simply connected specimens of type-I
superconductors (i.e. ones with holes in them, such as a ring), and in the flux
filaments of type-II materials: in the latter case each filament carries a single flux
quantum 9.

It is interesting to consider now a situation—so far entirely hypothetical—in
which a magnetic monopole is placed in a superconductor. Dirac showed (1931)
that, for consistency with quantum mechanics, the monopole strength g, had to
satisfy the ‘Dirac quantization condition’

qgm =n/2 (19.62)

Copyright 2004 IOP Publishing Ltd



where g is any electronic charge and n is an integer. It follows from (19.62) that
the flux 47 gy, out of any closed surface surrounding the monopole is quantized
in units of ®(. Hence, a flux filament in a superconductor can originate from, or
be terminated by, a Dirac monopole (with the appropriate sign of gp,), as was first
pointed out by Nambu (1974).

This is the basic model which, in one way or another, underlies many
theoretical attempts to understand confinement. The monopole—antimonopole
pair in a type-II superconducting vacuum, joined by a quantized magnetic flux
filament, provides a model of a meson. As the distance between the pair—the
length of the filament—increases, so does the energy of the filament, at a rate
proportional to its length, since the flux cannot spread out in directions transverse
to the filament. This is exactly the kind of linearly rising potential energy required
by hadron spectroscopy (see equation (16.143)). The configuration is stable
because there is no way for the flux to leak away: it is a conserved quantized
quantity.

For the eventual application to QCD, one will want (presumably) particles
carrying non-zero values of the colour quantum numbers to be confined. These
quantum numbers are the analogues of electric charge in the U(1) case, rather
than of magnetic charge. We imagine, therefore, interchanging the roles of
magnetism and electricity in all of the foregoing. Indeed, the Maxwell equations
have such a symmetry when monopoles are present. The essential feature of the
superconducting ground state was that it involved the coherent state formed by
condensation of electrically charged bosonic fermion pairs. A vacuum which
confined filaments of E rather than B may be formed as a coherent state of
condensed magnetic monopoles (Mandelstam 1976, 't Hooft 1976b). These E
filaments would then terminate on electric charges. Now magnetic monopoles
do not occur naturally as solutions of QED: they would have to be introduced
by hand. Remarkably enough, however, solutions of the magnetic monopole
type do occur in the case of non-Abelian gauge field theories, whose symmetry
is spontaneously broken to an electromagnetic U(1)ey, gauge group. Just this
circumstance can arise in a grand unified theory which contains SU(3). and a
residual U(1)em. Incidentally, these monopole solutions provide an illuminating
way of thinking about charge quantization: as Dirac (1931) pointed out, the
existence of just one monopole implies, from his quantization condition (19.62),
that charge is quantized.

When these ideas are applied to QCD, E and B must be understood as the
appropriate colour fields (i.e. they carry an SU(3). index). The group structure
of SU(3) is also quite different from that of U(1) models, and we do not want
to be restricted just to static solutions (as in the GL theory, here used as an
analogue). Whether in fact the real QCD vacuum (ground state) is formed as some
such coherent plasma of monopoles, with confinement of electric charges and
flux, is a subject of continuing research; other schemes are also possible. As so
often stressed, the difficulty lies in the non-perturbative nature of the confinement
problem.
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19.5 ’t Hooft’s gauges

We must now at last grasp the nettle and consider what happens if, in the
parametrization

¢ = |$|exp(f (x)/v) (19.63)
we do not choose the gauge (cf (19.52))

9, A =06/M. (19.64)

This was the gauge that enabled us to transform away the phase degree of freedom
and reduce the equation of motion for the electromagnetic field to that of a massive
vector boson. Instead of using the modulus and phase as the two independent
degrees of freedom for the complex Higgs field $, we now choose to parametrize
b, quite generally, by the decomposition

¢ =2"12[v + 51(x) +iz2(x)] (19.65)

where the vacuum value§ of x1 and j are zero. Substituting this form for ¢3 into
the master equation for AV (obtained from (19.43) and (19.44))

OA" — 0" (0, A") = iql$70"$ — (0"$) ¢] — 244" ¢ ¢ (19.66)
leads to the equation of motion

O+ MHAY — 8 (0, A") = — M”32+ q(£20" %1 — 219" %2)
— AR+ 205+ 1D (19.67)

with M = quv. At first sight this just looks like the equation of motion of
an ordinary massive vector field AY coupled to a rather complicated current.
However, this certainly cannot be right, as we can see by a count of the degrees of
freedom. In the previous gauge we had four degrees of freedom, counted either
as two for the original massless AV plus one each for 6 and A, or as three for the
massive A" and one for /. If we take this new equation at face value, there seem
to be three degrees of freedom for the massive field A" and one for each of X1
and x>, making five in all. Actually, we know perfectly well that we can make use
of the freedom gauge choice to set X3 to zero, say, reducing 43 to a real quantity
and eliminating a spurious degree of freedom: we have then returned to the form
(19.55). In terms of (19.67), the consequence of the unwanted degree of freedom
is quite subtle, but it is basic to all gauge theories and already appeared in the
photon case, in section 7.3.2. The difficulty arises when we try to calculate the
propagator for AV from equation (19.67).

The operator on the left-hand side can be simply inverted, as was done in
section 19.1, to yield (apparently) the standard massive vector boson propagator

i(—g" 4+ kMk" /M?) ) (K* — M?). (19.68)
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Figure 19.3. AY—%, coupling.
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Figure 19.4. Series for the full AV propagator.

However, the current on the right-hand side is rather peculiar: instead of having
only terms corresponding to AV coupling to two or three particles, there is also
a term involving only one field. This is the term —Md" x>, which tells us that
AV actually couples directly to the scalar field x, via the gradient coupling
(—=Ma"). In momentum space this corresponds to a coupling strength —ik" M
and an associated vertex as shown in figure 19.3. Clearly, for a scalar particle,
the momentum 4-vector is the only quantity that can couple to the vector index of
the vector boson. The existence of this coupling shows that the propagators of AV
and X, are necessarily mixed: the complete vector propagator must be calculated
by summing the infinite series shown diagrammatically in figure 19.4. This
complication is, of course, completely eliminated by the gauge choice 2 = 0.
However, we are interested in pursuing the case x» # 0.

In figure 19.4 the only unknown factor is the propagator for x». This can
be easily found by substituting (19.65) into Ly and examining the part which is
quadratic in the x’s: we find (problem 19.6) that

Ly = %aﬂglaﬂgl + %Bﬂf(za"iz — 12 %% + cubic and quartic terms.  (19.69)

Equation (19.69) confirms that ; is a massive field with mass /2 (like the hin
(19.56)), while x> is massless. The x> propagator is, therefore, i/k%. Now that
all the elements of the diagrams are known, we can formally sum the series by
generalizing the well-known result ((cf 10.12) and (11.26))

A=) '=14+x+x24+3+--. (19.70)

Diagrammatically, we rewrite the propagator of figure 19.4 as in figure 19.5 and
perform the sum. Inserting the expressions for the propagators and vector—scalar
coupling and keeping track of the indices, we finally arrive at the result (problem
19.7)

. (—glM + Kkt M2
1
k2 — M?

) () — K’k /k*) ™! (19.71)

for the full propagator. But the inverse required in (19.71) is precisely (with a
lowered index) the one we needed for the photon propagator in (7.88)—and, as
we saw there, it does not exist. At last the fact that we are dealing with a gauge
theory has caught up with us!
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Figure 19.5. Formal summation of the series in figure 19.4.

As we saw in section 7.3.2, to obtain a well-defined gauge field propagator
we need to fix the gauge. A clever way to do this in the present (spontaneously
broken) case was suggested by "t Hooft (1971b). His proposal was to set

duAF = ME R (19.72)
where £ is an arbitrary gauge parameter! (not to be confused with the
superconducting coherence length). This condition is manifestly covariant and,
moreover, it effectively reduces the degrees of freedom by one. Inserting (19.72)
into (19.67), we obtain

O+ M?)AY — 8 (0, AM) (1 — 1/8) = q(%20" %1 — 18" %2) (19.73)
— PAGE 2081 + 23, (19.74)

The operator appearing on the left-hand side now does have an inverse (see
problem 19.8) and yields the general form for the gauge boson propagator

. (I =Kk 5 20—
"t s | (K = M) 19.75
l[g e | ) (19.75)
This propagator is very remarkable.> The standard massive vector boson
propagator
i(—g"” + KK M) — M) (19.76)

is seen to correspond to the limit £ — oo and, in this gauge, the high-energy
disease outlined in section 19.1 appears to threaten renormalizability (in fact, it
can be shown that there is a consistent set of Feynman rules for this gauge and
the theory is renormalizable thanks to many cancellations of divergences). For
any finite &£, however, the high-energy behaviour of the gauge boson propagator
is actually ~ 1/k%, which is as good as the renormalizable theory of QED
(in Lorentz gauge). Note, however, that there seems to be another pole in the
propagator (19.75) at k* = &£M?: this is surely unphysical since it depends
on the arbitrary parameter £. A full treatment ('t Hooft 1971b) shows that this
pole is always cancelled by an exactly similar pole in the propagator for the x»

1" We shall not enter here into the full details of quantization in such a gauge: we shall effectively treat
(19.72) as a classical field relation.

2 A vector boson propagator of similar form was first introduced by Lee and Yang (1962) but their
discussion was not within the framework of a spontaneously broken theory, so that Higgs particles
were not present and the physical limit was obtained only as &€ — 0.
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field itself. These finite-§ gauges are called R gauges (since they are ‘manifestly
renormalizable”) and typically involve unphysical Higgs fields such as x>. The
infinite-£ gauge is known as the U gauge (U for unitary) since only physical
particles appear in this gauge. For tree-diagram calculations, of course, it is
easiest to use the U-gauge Feynman rules: the technical difficulties with this
gauge choice only enter in loop calculations, for which the R-gauge choice is
easier.

Note that in our master formula (19.75) for the gauge boson propagator the
limit M — 0 may be safely taken (compare the remarks about this limit for the
‘naive’ massive vector boson propagator in section 19.1). This yields the massless
vector boson (photon) propagator in a general £-gauge, exactly as in equation
(7.119) or (19.23).

We now proceed with the generalization of these ideas to the non-Abelian
SU(2) case, which is the one relevant to the electroweak theory. The general
non-Abelian case was treated by Kibble (1967).

19.6 Spontaneously broken local SU(2) xU(1) symmetry

We shall limit our discussion of the spontaneous breaking of a local non-Abelian
symmetry to the particular case needed for the electroweak part of the Standard
Model. This is, in fact, just the local version of the model studied in section 17.6.
As noted there, the Lagrangian Lo of (17.97) is invariant under global SU(2)
transformations of the form (17.100), and also global U(1) transformations
(17.101). Thus, in the local version, we shall have to introduce three SU(2) gauge
fields (as in section 13.1), which we call Wi“ (x) G =1,2,3),and one U(1) gauge

field é“(x). We recall that the scalar field qs is an SU(2)-doublet

b= < i’; ) (19.77)

so that the SU(2) covariant derivative acting on ¢AS is as given in (13.10), namely
D" = 3* +igT - W )2. (19.78)

To this must be added the U(1) piece, which we write as ig’ Br /2, the % being for
later convenience. The Lagrangian is, therefore,

n N mw A A PR SN 1. . 1~ -
Lo = (D,m)'(D“¢)+u2¢*¢—z<¢'¢>2—zFWF‘”—ZGWG“” (19.79)
where

Dtp = (0" +igT - W" /2 +ig’ B"/2)d (19.80)
F = arW" — "W — gW" x W" (19.81)
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and
G" = 9*BY — 3" BM. (19.82)

We must now decide how to choose the non-zero vacuum expectation value
that breaks this symmetry. The essential point for the electroweak application
is that, after symmetry breaking, we should be left with three massive boson
gauge bosons (which will be the W* and Z°) and one massless gauge boson, the
photon. We may reasonably guess that the massless boson will be associated with
a symmetry that is unbroken by the vacuum expectation value. Put differently,
we certainly do not want a ‘superconducting’ massive photon to emerge from
the theory in this case, as the physical vacuum is not an electromagnetic
superconductor. This means that we do not want to give a vacuum value to a
charged field (as is done in the BCS ground state). However, we do want it to
behave as a ‘weak’ superconductor, generating mass for W and Z°. The choice
suggested by Weinberg (1967)) was

01610y = ( . /Oﬁ ) (19.83)

where v/+/2 = /2 /A2, which we have already considered in the global case
in section 17.6. As pointed out there, (19.83) implies that the vacuum remains
invariant under the combined transformation of ‘U(1) + third component of SU(2)
isospin’—that is, (19.83) implies

&+ 420110y = 0 (19.84)
and hence
(01$10) — ((01$10))" = expliar(X + £{/*)1(01410) = (01B10)  (19.85)

where, as usual, t3(1/ L 73/2 (we are using lower case ¢ for isospin now,

anticipating that it is the weak, rather than hadronic, isospin—see chapter 21).
We now need to consider oscillations about (19.83) in order to see the

physical particle spectrum. As in (17.107), we parametrize these conveniently

as
N A 0
¢ = exp(—if(x) - T/2v) ( \k(v i I:I(x)) ) (19.86)

(compare (19.45)). However, this time, in contrast to (17.107) but just as in
(19.55), we can reduce the phase fields 0 to zero by an appropriate gauge
transformation, and it is simplest to examine the particle spectrum in this (unitary)
gauge. Substituting

. 0
¢=( L+ AW) ) (19.87)
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into (19.79) and retaining only terms which are second order in the fields (i.e.
kinetic energies or mass terms), we find (problem 19.9) that

Lhee = Lo, A" A — p>H?
L@ Wiy — Wi ) (@ W) — VW) + Lg?v? Wy, Wi
— 1@ Wy — 3, Wa) @MWy — 3" WA + Lg?v? Wa, Wy
— 1@ W3y — 8, W3,) (0H WY — 3" WL — LG G
+ 2 (eWs — ¢/ B) (g WS’ — ¢'BM). (19.88)
The first line of (19.88) tells us that we have a scalar field of mass V2u (the Higgs

boson, again). The next two lines tell us that the components W; and W, of the
triplet (W1, Wa, W3) acquire a mass (cf (19.56) in the U(1) case)

M| =M = gv/2 = Mwy. (19.89)

The last two lines show us that the fields W3 and B are mixed. But they can easily
be unmixed by noting that the last term in (19.88) involves only the combination
gWé‘ —-g B*, which evidently acquires a mass. This suggests introducing the
normalized linear combination

Z* = cos Gw WL — sin Gy B* (19.90)
where

172 inow = g'/(g2 + gH)'/? (19.91)

cosbw = g/(g* + g2
together with the orthogonal combination
A" = sinw WL + cos w BH. (19.92)
We then find that the last two lines of (19.88) become

~1@uZy — 0,2,0(0,2" — 0" Z") + v (g + 8D Zu 2P — LE PP (19.93)

where . . .
Fuv = 3, Ay — 9yA,. (19.94)
Thus )
Mz = 5v(g* +87)'/? = Mw/ cos bw (19.95)
and
Ma = 0. (19.96)

Counting degrees of freedom as in the local U(1) case, we originally had 12
in (19.79)—three massless W’s and one massless B, which is eight degrees of
freedom in all, together with four ¢-fields. After symmetry breaking, we have
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three massive vector fields Wl, Wz and Z with nine degrees of freedom, one
massless vector field A with two, and one massive scalar H. Of course, the
physical application will be to identify the W and Z fields with those physical
particles, and the A field with the massless photon. In the gauge (19.87), the W
and Z particles have propagators of the form (19.22).

The identification of A* with the photon field is made clearer if we look at
the form of DMqAb written in terms of A n and 7 w» discarding the Wl, Wz pieces:

. i A
D = {aﬂ —|—igsin9w< J;B) A,

ig [m ., IL+\]4s |-
— — V4 . 19.97
+COS9W[2 sin 9w< : )] u}q& (19.97)

Now the operator (14173) acting on (0|¢A> |0) gives zero, as observed in (19.84), and
this is why A, does not acquire a mass when (0|¢|0) # 0 (gauge fields coupled

to unbroken symmetries of (O|(;A5|O) do not become massive). Although certainly
not unique, this choice of q3 and (0|¢3|0) is undoubtedly very economical and
natural. We are interpreting the zero eigenvalue of (1 + 73) as the electromagnetic
charge of the vacuum, which we do not wish to be non-zero. We then make the
identification

e = g sin By (19.98)

in order to get the right ‘electromagnetic D,,’ in (19.97).

We emphasize once more that the particular form of (19.88) corresponds to
a choice of gauge, namely the unitary one (cf the discussions in sections 19.3 and
19.5). There is always the possibility of using other gauges, as in the Abelian case,
and this will, in general, be advantageous when doing loop calculations involving
renormalization. We would then return to a general parametrization such as (cf
(19.65) and (17.95))

5 0 L ( $—id )
= — - 19.99
b=z )+ 5 (500 (1999
and add 't Hooft gauge-fixing terms

_%{ Z (8MWI.M + EMW($,)2 + (BMZM + (S-Mz(i?))z + (aMAA,u)Z}. (19100)
i=1,2

In this case the gauge boson propagators are all of the form (19.75) and &-
dependent. In such gauges, the Feynman rules will have to involve graphs
corresponding to exchange of quanta of the ‘unphysical’ fields bi, as well as
those of the physical Higgs scalar 6. There will also have to be suitable
ghost interactions in the non-Abelian sector as discussed in section 13.5.3. The
complete Feynman rules of the electroweak theory are given in appendix B of
Cheng and Li (1984).
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The model introduced here is actually the ‘Higgs sector’ of the Standard
Model but without any couplings to fermions. We have seen how, by
supposing that the potential in (19.79) has the symmetry-breaking sign of the
parameter u?, the W* and Z° gauge bosons can be given masses. This
seems to be an ingenious and even elegant ‘mechanism’ for arriving at a
renormalizable theory of massive vector bosons. One may, of course, wonder
whether this ‘mechanism’ is after all purely phenomenological, somewhat akin
to the GL theory of a superconductor. In the latter case, we know that it
can be derived from ‘microscopic’ BCS theory and this naturally leads to
the question whether there could be a similar underlying ‘dynamical’ theory,
behind the Higgs sector. It is, in fact, quite simple to construct a theory
in which the Higgs fields ) appear as bound, or composite, states of heavy
fermions.

But generating masses for the gauge bosons is not the only job that the Higgs
sector does in the Standard Model: it also generates masses for all the fermions.
As we will see in chapter 22, the gauge symmetry of the weak interactions is
a chiral one which requires that there should be no explicit fermion masses in
the Lagrangian. We saw in chapter 18 how it is likely that the strong QCD
interactions do, in fact, break chiral symmetry for the quarks, spontaneously. But,
of course, the leptons are not coupled to QCD, and even as far as the quarks
are concerned we saw that some small Lagrangian mass was required (to give
a finite mass to the pion, for example). Thus for both quarks and leptons a
chiral-symmetry-breaking mass seems unavoidable. To preserve the weak gauge
symmetry, this must—in its turn—be interpreted as arising ‘spontaneously’ also;
that is, not via an explicit mass term in the Lagrangian. The dynamical generation
of fermion masses would, in fact, be closely analogous to the generation of
the energy gap in the BCS theory, as we saw in section 18.1. So we may
ask: is it possible to find a dynamical theory which generates both masses
for the vector bosons and for the fermions? Such theories are generically
known as ‘technicolour models’ (Weinberg 1979, Susskind 1979) and they have
been intensively studied (see, for example, Peskin (1997)). One problem is
that such theories are already tightly constrained by the precision electroweak
experiments (see chapter 22), and meeting these constraints seems to require
rather elaborate kinds of models. However, technicolour theories do offer the
prospect of a new strongly interacting sector, which could be probed in the next
generation of colliders. But such ideas take us beyond the scope of the present
volume. Within the Standard Model, one proceeds along what seems a more
phenomenological route, attributing the masses of fermions to their couplings
with the Higgs field, in a way quite analogous to that in which the nucleon
acquired a mass in the linear o -model of section 18.3, and which will be explained
in chapter 22.

We now turn, in the last part of the book, to weak interactions and the
electroweak theory.
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Problems

19.1 Show that

2
[(—k* + M%) g"" + k"k"] <_g“'“ + kuko/M ) v

2 — M2 = 8p

19.2 Verify (19.18).

19.3 Verify (19.19).

19.4 Verify (19.46).

19.5 Insert (19.55) into LAH of (19.40) and derive (19.56) for the quadratic terms.
19.6 Insert (19.65) into ﬁH of (19.40) and derive the quadratic terms of (19.69).
19.7 Derive (19.71).

19.8 Write the left-hand side of (19.74) in momentum space (as in (19.4)), and

show that the inverse of the factor multiplying AW is (19.75) without the ‘i’ (cf
problem 19.1).

19.9 Verify (19.88).
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PART 8

WEAK INTERACTIONS AND THE
ELECTROWEAK THEORY
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20

INTRODUCTION TO THE PHENOMENOLOGY OF
WEAK INTERACTIONS

Public letter to the group of the Radioactives at the district society meeting in
Tibingen:

Physikalisches Institut

der Eidg. Technischen Hochschule

Gloriastr.

Zirich Zirich, 4 December 1930
Dear Radioactive Ladies and Gentlemen,

As the bearer of these lines, to whom I graciously ask you to listen, will explain to
you in more detail, how because of the ‘wrong’ statistics of the N and °Li nuclei
and the continuous B-spectrum, I have hit upon a desperate remedy to save the
‘exchange theorem’ of statistics and the law of conservation of energy. Namely,
the possibility that there could exist in the nuclei electrically neutral particles, that
I wish to call neutrons, which have the spin % and obey the exclusion principle and
which further differ from light quanta in that they do not travel with the velocity
of light. The mass of the neutrons should be of the same order of magnitude
as the electron mass and in any event not larger than 0.01 proton masses.—The
continuous B-spectrum would then become understandable by the assumption that
in B-decay, a neutron is emitted in addition to the electron such that the sum of
the energies of the neutron and electron is constant......

I admit that on a first look my way out might seem to be quite unlikely, since
one would certainly have seen the neutrons by now if they existed. But nothing
ventured nothing gained, and the seriousness of the matter with the continuous
B-spectrum is illustrated by a quotation of my honoured predecessor in office, Mr
Debye, who recently told me in Brussels: ‘Oh, it is best not to think about it, like
the new taxes.” Therefore one should earnestly discuss each way of salvation.—
So, dear Radioactives, examine and judge it.—Unfortunately I cannot appear in
Tiibingen personally, since I am indispensable here in Ziirich because of a ball
on the night of 6/7 December.—With my best regards to you, and also Mr Back,
your humble servant,

W Pauli
Quoted from Winter (2000), pp 4-5.
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At the end of the previous chapter we arrived at an important part of the
Lagrangian of the Standard Model, namely the terms involving just the gauge
and Higgs fields. The full electroweak Lagrangian also includes, of course,
the couplings of these fields to the quarks and leptons. We could at this point
simply write these couplings down, with little motivation, and proceed at once to
discuss the empirical consequences. But such an approach, though economical,
would assume considerable knowledge of weak interaction phenomenology on
the reader’s part. We prefer to keep this book as self-contained as possible and
so in the present chapter we shall provide an introduction to this phenomenology,
following a ‘semi-historical’ route (for fuller historical treatments we refer the
reader to Marshak ef al (1969) or to Winter (2000), for example).

Much of what we shall discuss is still, for many purposes, a very useful
approximation to the full theory at energies well below the masses of the W+
(~80 GeV) and Z° (~90 GeV), as will be explained in section 21.2. Besides,
as we shall see, in the neutrino sector especially the ‘historical’ data need to be
carefully interpreted in order to understand the focus of much ongoing research.

20.1 Fermi’s ‘current—current’ theory of nuclear -decay and its
generalizations

The first quantum field theory of a weak interaction process was proposed by
Fermi (1934a, b) for nuclear S-decay, building on the ‘neutrino hypothesis’ of
Pauli. In 1930, Pauli (in his ‘Dear Radioactive Ladies and Gentlemen’ letter) had
suggested that the continuous e~ spectrum in S-decay could be understood by
supposing that, in addition to the e, the decaying nucleus also emitted a light,
spin—l, electrically neutral particle, which he called the ‘neutron’. In this first
version of the proposal, Pauli regarded his hypothetical particle as a constituent
of the nucleus. This had the attraction of solving not only the problem with
the continuous e~ spectrum but a second problem as well—what he called the
‘wrong’ statistics of the '*N and ®Li nuclei. Taking '“N for definiteness, the
problem was as follows. Assuming that the nucleus was somehow composed of
the only particles (other than the photon) known in 1930, namely electrons and
protons, one requires 14 protons and seven electrons for the known charge of
seven. This implies a half-odd integer value for the total nuclear spin. But data
from molecular spectra indicated that the nitrogen nuclei obeyed Bose—Einstein,
not Fermi—Dirac statistics, so that—if the usual ‘spin-statistics’ connection were
to hold—the spin of the nitrogen nucleus should be an integer, not a half-odd
integer. This second part of Pauli’s hypothesis was quite soon overtaken by the
discovery of the (real) neutron by Chadwick (1932), after which it was rapidly
accepted that nuclei consisted of protons and (Chadwick’s) neutrons.

However, the §-spectrum problem remained and, at the Solvay Conference
in 1933, Pauli restated his hypothesis (Pauli 1934), using now the name ‘neutrino’
which had meanwhile been suggested by Fermi. Stimulated by the discussions at
the Solvay meeting, Fermi then developed his theory of S-decay. In the new
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Figure 20.1. Four-fermion interaction for neutron B-decay.

picture of the nucleus, neither the electron nor the neutrino were to be thought
of as nuclear constituents. Instead, the electron—neutrino pair had somehow to
be created and emitted in the transition process of the nuclear decay, much as a
photon is created and emitted in nuclear y-decay. Indeed, Fermi relied heavily
on the analogy with electromagnetism. The basic process was assumed to be
the transition neutron— proton, with the emission of an e~ v pair, as shown in
figure 20.1. The n and p were then regarded as ‘elementary’ and without structure
(point-like); the whole process took place at a single spacetime point, like the
emission of a photon in QED. Further, Fermi conjectured that the nucleons
participated via a weak interaction analogue of the electromagnetic transition
currents frequently encountered in volume 1 for QED. In this case, however,
rather than having the ‘charge conserving’ form of i,y #u,, for instance, the ‘weak
current’ had the form u,y " uy, in which the charge of the nucleon changed. The
lepton pair was also charged, obviously. The whole interaction then had to be
Lorentz invariant, implying that the e”v pair had also to appear in a similar (4-
vector) ‘current’ form. Thus a ‘current—current’ amplitude was proposed, of the
form

Altpy " unite-yyuity (20.1)

where A was constant. Correspondingly, the process was described field
theoretically in terms of the local interaction density

Ay ()Y P () e ()Y (). (20.2)

The discovery of positron S-decay soon followed and then electron capture: these
processes were easily accommodated by adding to (20.2) its Hermitian conjugate

Ay ()Y P ()T, () Y e () (20.3)

taking A to be real. The sum of (20.2) and (20.3) gave a good account of
many observed characteristics of B-decay, when used to calculate transition
probabilities in first-order perturbation theory.

Soon after Fermi’s theory was presented, however, it became clear that the
observed selection rules in some nuclear transitions could not be accounted for
by the forms (20.2) and (20.3). Specifically, in ‘allowed’ transitions (where
the orbital angular momentum carried by the leptons is zero), it was found
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that, while for many transitions the nuclear spin did not change (AJ = 0), for
others—of comparable strength—a change of nuclear spin by one unit (AJ = 1)
occurred. Now, in nuclear decays the energy release is very small (~ few MeV)
compared to the mass of a nucleon, and so the non-relativistic limit is an excellent
approximation for the nucleon spinors. It is then easy to see (problem 20.1)
that, in this limit, the interactions (20.2) and (20.3) imply that the nucleon spins
cannot ‘flip’. Hence some other interaction(s) must be present. Gamow and Teller
(1936) introduced the general four-fermion interaction, constructed from bilinear
combinations of the nucleon pair and of the lepton pair, but not their derivatives.
For example, the combination

T () P () e () () (20.4)
could occur, and also
05 ()00 Pn ()P0, () (20.5)
where .
Oy = %(y,m — v (20.6)

The non-relativistic limit of (20.4) gives AJ = 0, but (20.5) allows AJ = 1.
Other combinations are also possible, as we shall discuss shortly. Note that the
interaction must always be Lorentz invariant.

Thus began a long period of difficult experimentation to establish the correct
form of the B-decay interaction. With the discovery of the muon (section 1.3.1)
and the pion (section 2.2), more weak decays became experimentally accessible,
for example u decay

uw —e 4+v4v (20.7)

and 7 decay
T —>e +. (20.8)

Note that we have deliberately called all the neutrinos just ‘v’, without any
particle/anti-particle indication or lepton flavour label: we shall have more to say
on these matters in section 20.6. There were hopes that the couplings of the pairs
(p,n), (v,e™) and (v, u~) might have the same form (‘universality’) but the data
were incomplete and, in part, apparently contradictory.

The breakthrough came in 1956, when Lee and Yang (1956) suggested that
parity was not conserved in all weak decays. Hitherto, it had always been assumed
that any physical interaction had to be such that parity was conserved, and this
assumption had been built into the structure of the proposed S-decay interactions,
such as (20.2), (20.4) or (20.5). Once it was looked for properly, following the
analysis of Lee and Yang, parity violation was indeed found to be a strikingly
evident feature of weak interactions.
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20.2 Parity violation in weak interactions

In 1957, the experiment of Wu et al (1957) established, for the first time, that
parity was violated in a weak interaction, specifically nuclear B-decay. The
experiment involved a sample of ®*Co (J = 5) cooled to 0.01 K in a solenoid. At
this temperature most of the nuclear spins are aligned by the magnetic field and
so there is a net polarization (J), which is in the direction opposite to the applied
magnetic field. ®*Co decays to ®'Ni (J = 4), a AJ = 1 transition. The degree
of Co alignment was measured from observations of the angular distribution of
y-rays from %ONi. The relative intensities of electrons emitted along and against
the magnetic field direction were measured, and the results were consistent with
a distribution of the form

10)=1—-(J) - p/E (20.9)
=1—wvcosh (20.10)

where v, p and E are, respectively, the electron speed, momentum and energy,
and 6 is the angle of emission of the electron with respect to (J).

Why does this indicate parity violation? To see this, we must first recall the
definition of vectors (‘polar vectors’) and pseudovectors (‘axial vectors’). A polar
vector is one which transforms in the same way as the coordinate X under the
parity operator P

P:x— —x. (20.11)

Thus a polar vector V is defined by the behaviour
P:V—> -V (20.12)

under parity. Examples are the velocity v, momentum p and electromagnetic
current j.,. The vector product of two such vectors defines the behaviour of an

axial vector
P.:UxV—->(-Ux((V)=UxV (20.13)

under parity. In contrast to (20.11) and (20.12), an axial vector does not reverse
sign under P: the most common example is angular momentum | = X x p. By
extension, any angular momentum, such as spin, is also an axial vector. In forming
scalar products therefore, we must now distinguish between a scalar such as U -V
(the dot product of two polar vectors) and a pseudoscalar such as U - (V x W)
(the triple scalar product of three polar vectors):

P:U.V—> +U.V (20.14)
P:U-(VxW)— —U-(VxW). (20.15)

The scalar remains the same under P but the pseudoscalar changes sign.
Consider now how the distribution (20.10) would be described in a parity-
transformed coordinate system. Applying the rules just stated, (J) — (J) and
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p — — pso that, as described by the new system, the distribution would have the
form
Ip(#) =1+ vcosh. (20.16)

The difference between (20.16) and (20.10) implies that, by performing the
measurement, we can determine which of the two coordinate systems we must,
in fact, be using. The two are inequivalent, in contrast to all the other
coordinate system equivalences which we have previously studied (e.g. under
three-dimensional rotations and Lorentz transformations). This is an operational
consequence of ‘parity violation’. The crucial point in this example, evidently,
is the appearance of the pseudoscalar quantity (J) - p in (20.9), alongside the
obviously scalar quantity ‘1°.

The Fermi theory, employing only vector currents, needs a modification to
account for this result. To see how this may be done, we need to consider the
behaviour of the Dirac spinors and fermion fields under P.

20.3 Parity transformation of Dirac wavefunctions and field operators

We consider the behaviour of the free-particle Dirac equation

0P (X, 1) .
i = e VYD) + (X 1) (20.17)

under the coordinate transformation
P:x—> X =—=Xx,t > t. (20.18)

Equation (20.17) will be covariant under (20.18) (see appendix D of volume 1 and
also section 4.4 of volume 1) if we can find a wavefunction p(X’, 1) for observers
using the transformed coordinate system such that ‘their’ Dirac equation has
exactly the same form in their system as (20.17):

0
ia—”?’(x/, 1) = —ia - V'yp(X', 1) + Bmyp(X, 1). (20.19)
Now we know that V' = —V, since X’ = —X. Hence, (20.19) becomes
oYp o, , ,
= (1) =i V(1) + (). (20.20)

Multiplying this equation from the left by 8 and using fa = —a 8, we find that

i0
la—t[ﬁwp(x’, 0] = —iet - VIBYp(X', )] + BmlBY (X', 1)]. (20.21)

Comparing (20.21) and (20.17), it follows that we may consistently ‘translate’
between Y and p using the relation

Y(X, 1) = Byp(—X, 1) (20.22)
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or, equivalently,
Yp(X, 1) = BY(—X, 1). (20.23)

In fact, we could include an arbitrary phase factor np on the right-hand side
of (20.23): such a phase leaves the normalization of v and all bilinears of the
form ¢ (gamma matrix) v unaltered. The possibility of such a phase factor
did not arise in the case of Lorentz transformations, since we can insist that for
infinitesimal ones the transformed v/ and the original ¥ differ only infinitesimally
(not by a finite phase factor). But the parity transformation cannot be built up
out of infinitesimal steps—the coordinate system is either reflected or it is not.
Parity is said to be a discrete transformation in contrast to the continuous Lorentz
transformations (and rotations).

As an example of (20.23), consider the free-particle solutions in the standard
form (4.40), (4.46):

WX, 1) =N < 2 ) exp(—iEf +ip- X). (20.24)
Erm®
Then

Yp(X, 1) = BY(—x,1) = N ( 2y

5 )exp(—iEt —ip-%) (20.25)
E+m

which can be conveniently summarized by the simple statement that the three-
momentum P as seen in the parity transformed system is minus that in the original
one, as expected. Note that o does not change sign.

In the same way we can introduce the idea of a unitary quantum field operator
P which transforms Dirac field operators &(X, t) according to

Jp(x. 1) = Py (x, )P~ = B (—x, 1. (20.26)
An explicit form for P is given in section 15.11 of Bjorken and Drell (1965), for
example. )
_ Consider now the behaviour under P of a 4-vector current of the form
¥ (x)y*in(x). We have, for u = 0,
Uip(%, Dy Pap(X, 1) = lp(X, DR (X, 1)
=] (=X, DB - (=X, 1)
=¥ (=X, D2 (=X, 1) (20.27)

showing that the © = 0 component is a scalar under P: this is to be expected, as
the electric charge density, p, is also a scalar. For the spatial parts, we have

D1, DY Pap(X. 1) = Fio (X, By Pap(X. 1)
Ui (=%, 0)BBY B (X, 1)
— U (=X, Dy Y (=X, 1) (20.28)
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using By = —yB. Thus the spatial parts transform as a polar vector, like the
current density j.

To accommodate parity violation, we must, however, have both axial and
polar vectors, so as to create pseudoscalars well as scalars. For Dirac particles,
this is done via the y5 matrix already introduced in section 12.3.2. We recall the

definition
ys =iy%y 'y’ (20.29)
y5 can easily be shown to anti-commute with the other four y matrices:
{vs, vut =0. (20.30)

With the usual choice of the Dirac matrices used in chapter 4, namely

1 0 0 o
,3=<0 _1> a:(a 0) (20.31)

and yp = B, y = Ba, we easily find that

0 1
y5=<1 0 ) (20.32)

Consider now the quantity v 1 (X, )ys Vn(X, 1). Under the parity transformation,
this becomes

Jip(X, Dysthap(X. 1) = § a6, 0 BysPap(x. 1)
= U (=X, 1) BBYs BU2 (=X, 1)
= — Y1 (=X, DysVa(—X, 1) (20.33)

using Bys = —yspB and B> = 1. Thus, this combination of 1/}1 and 1&2 is a
pseudoscalar.
Finally, and most importantly, consider the combination

01 Dy ysia(X, 1),

The reader can easily check (problem 20.2) that the 4 = 0 component of this is a
pseudoscalar, while the spatial part is an axial vector. We call this kind of 4-vector
an axial 4-vector, the usual ‘¢4’ one being just a vector, for short.

Let us write the components of an axial 4-vector AM as

A = (AY) A). (20.34)

Then, under parity, A% > —A%and A — A, where we are suppressing possible
spacetime arguments X, . Similarly, for an ordinary 4-vector

VE = WO, V), (20.35)
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the components transform by Vo \70, V — —V under parity, as we have seen.
It follows that the Lorentz invariant product

~

A VE = A%O —A.V (20.36)

transforms as a pseudoscalar under parity, while A MA“ and \A/,L V“ both transform
as scalars. We learn, therefore, that one way to introduce a Lorentz invariant
pseudoscalar interaction is to form the ‘dot product’ of a VH and an A type
object. This proves to be the key to unlocking the structure of the weak
interaction. Indeed, after many years of careful experiments, and many false trails,
it was eventually established (always, of course, to within some experimental
error) that the currents participating in Fermi’s current—current interaction are, in
fact, certain combinations of V-type and A-type currents, for both nucleons and
leptons.

20.4 V — A theory: chirality and helicity

Quite soon after the discovery of parity violation, Sudarshan and Marshak (1958)
and then Feynman and Gell-Mann (1958) and Sakurai (1958) proposed a specific
form for the current—current interaction, namely the V. — A (‘V minus A’)
structure. For example, in place of the leptonic combination .-y, u,, these
authors proposed the form .-y, (1 — ys)u,, being the difference (with equal
weight) of a V-type and an A-type current. For the part involving the nucleons,
the proposal was slightly more complicated, having the form upy, (1 — rys)un
where r had the empirical value ~ 1.2. From our present perspective, of course,
the hadronic transition is actually occurring at the quark level, so that rather than
a transition n — p we now think in terms of a d — u one. In this case, the
remarkable fact is that the appropriate current to use is, once again, essentially
the simple ‘V — A’ one, uyy, (1 — ys)ua.! This V — A structure for quarks and
leptons is fundamental to the Standard Model.

We must now at once draw the reader’s attention to a rather remarkable
feature of this V — A structure, which is that the (1 — y5) factor can be thought of
as acting either on the u spinor or on the u spinor. Consider, for example, a term
ey (1 — ys)u,. We have

e~y (1 — yshuy = ul_Byu(l — ys)u,
=ul_(1 = y5)Byuu

[(1 = y5)ue-1"Byuuy
=[(1 = y5)ue-]1vuuty. (20.37)

To understand the significance of this, it is advantageous to work with a different
representation of the Dirac matrices. We work in a representation in which ys is

1 We shall see in section 20.10 that a slight modification is necessary.
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chosen to be diagonal, namely

1 0 o 0 01 0 —o
= (o ) = (8 ) ee(V0) 7= (5 5)
(20.38)
which is related to our ‘usual’ choice (20.31) by a unitary transformation. The
a and B of (20.38) were introduced earlier in equation (4.97) and problem 4.15:
readers who have not worked through that problem are advised to do so now. We
may also suggest a backward glance at section 12.3.2 and chapter 17.
First of all, it is clear that any combination ‘(1 — y5)u’ is an eigenstate of ys
with eigenvalue —1:

ys(l—ys)u = (ys — Du=—(1—ys5)u (20.39)

using y52 = 1. In the terminology of section 12.3.2, ‘(1 — y5)u’ has definite
chirality, namely L (‘left-handed’), meaning that it belongs to the eigenvalue — 1
of ys5. We may introduce the projection operators Pr, P of section 12.3.2,

PLE(I_z”S) PRE(IJ;”S) (20.40)

satisfying
PP=PR P'=P. PRPL=PLPR=0 PrR+P.=1 (2041)

and define
up = PLu UR = Pr (20.42)

for any u. Then

- 1 —ys _ _
Uyu (T) upy = uyy PLuz = uquPfuz

= i1y, PLuoL = uy PRy uoL

= “IPLIBJ/MWL = UL YuU2L (20.43)

which formalizes (20.37) and emphasizes the fact that only the chiral L
components of the u spinors enter into weak interactions, a remarkably simple
statement.

To see the physical consequences of this, we need the forms of the Dirac
spinors in this new representation, which we shall now derive explicitly, for
convenience. As usual, positive energy spinors are defined as solutions of
(p — m)u = 0, so that writing

(9
U= ( . ) (20.44)
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we obtain

(E—0-po=my
(E4o0-p)x =mé. (20.45)

A convenient choice of two-component spinors ¢, x is to take them to be helicity
eigenstates (see section 4.3). For example, the eigenstate ¢ with positive helicity
A = +1 satisfies

o - P+ = |plo+ (20.46)

while the eigenstate ¢_ with A = —1 satisfies (20.46) with a minus on the right-
hand side. Thus, the spinor u(p, A = +1) can be written as

u(p,)\=+1)=N( (E_?J)m ) (20.47)

The normalization N is fixed as usual by requiring uu = 2m, from which it
follows (problem 20.3) that N = (E + | p|)!/2. Thus, finally, we have

u(p,h=+1) = ( ﬁmﬁ ) (20.48)

Similarly,

— - ( VE-Iplo-
u(p,k——l)—(m¢>. (20.49)

Now we have agreed that only the chiral ‘L’ components of all u-spinors
enter into weak interactions, in the Standard Model. But from the explicit form
of ys given in (20.38), we see that when acting on any spinor u, the projector P,
‘kills’ the top two components:

M(9)-(0) e

In particular,

Pu(p,h = +1) = ( «/E—iolplrm ) (20.51)
and

Equations (20.51) and (20.52) are very important. In particular, equation (20.51)
implies that in the limit of zero mass m (and, hence, E — | p|), only the negative
helicity u-spinor will enter. More quantitatively, using

_VEE-p  om

E — = form < E, 20.53
[Pl Frip | 2E ( )
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we can say that positive helicity components of all fermions are suppressed in
matrix elements by factors of order m/E. Bearing in mind that the helicity operator
o - p/|pl| is a pseudoscalar, this ‘unequal’ treatment for A = +1 and A = —1
components is, of course, precisely related to the parity violation built into the
V — A structure.

A similar analysis may be done for the v-spinors. They satisfy (p +m)v =0

and the normalization vv = —2m. We must, however, remember the ‘small
subtlety’ to do with the labelling of v-spinors, discussed in section 4.5.3: the
two-component spinors x in v(p, A = +1) actually satisfy o - px— = —|plx—

and, similarly, the x4’s in v(p, A = —1) satisfy o - px4+ = |p|x+. We then find
(problem 20.4) the results

v(p, A =—+1) = < _ﬁmz_ ) (20.54)

and

_ _( ~EA+IPIx+
v(p,k_—l)_( —VE=Tpls ) (20.55)

Once again, the action of Pr removes the top two components, leaving the result
that, in the massless limit, only the A = 41 state survives. Recalling the ‘hole
theory’ interpretation of section 4.5.3, this would mean that the positive helicity
components of all anti-fermions dominate in weak interactions, negative helicity
components being suppressed? by factors of order m /E .

We should emphasize that although these two results, stated in italics, were
derived in the convenient representation (20.38) for the Dirac matrices, they
actually hold independently of any choice of representation. This can be shown
by using general helicity projection operators.

In Pauli’s original letter, he suggested that the mass of the neutrino might
be of the same order as the electron mass. Immediately after the discovery of
parity violation, it was realized that the result could be elegantly explained by
the assumption that the neutrinos were strictly massless particles (Landau 1957,
Lee and Yang 1957, Salam 1957). In this case, u and v spinors satisfy the same
equation p(u or v) = 0, which reduces via (20.45) (in the m = 0 limit) to the
two independent two-component ‘Weyl’ equations.

Eqp=0-ppo  Exo=—0-Pxo. (20.56)

Remembering that E = | p| for a massless particle, we see that ¢¢ has positive
helicity and yo negative helicity. In this strictly massless case, helicity is Lorentz
invariant, since the direction of p cannot be reversed by a velocity transformation
with v < c¢. Furthermore, each of the equations in (20.56) violates parity, since E
is clearly a scalar while o - p is a pseudoscalar (note that when m # 0 we can infer

2 The proportionality of the negative helicity amplitude to the mass of the anti-fermion is, of course,
exactly as noted for 7+ — pt vy, decay in section 18.2.
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from (20.45) that, in this representation, ¢ <> x under P, which is consistent with
(20.56) and with the form of 8 in (20.38)). Thus the (massless) neutrino could
be ‘blamed’ for the parity violation. In this model, neutrinos have one definite
helicity, either positive or negative. As we have seen, the massless limit of the
(four-component) V — A theory leads to the same conclusion.

Which helicity is actually chosen by Nature was determined in a classic
experiment by Goldhaber et al (1958), involving the K-capture reaction

e” +2Eu - v+ Sm* (20.57)

as described by Perkins (2000), for example. They found that the helicity of the
emitted neutrino was (within errors) 100% negative, a result taken as confirming
the ‘two-component’ neutrino theory and the V — A theory.

We now turn to the question of whether there is a distinction to be made
between neutrinos and anti-neutrinos. As a preliminary, we first introduce another
discrete symmetry operation, that of charge conjugation C.

20.5 Charge conjugation for fermion wavefunctions and field operators

We begin by following rather similar steps to those in section 20.3 for parity.
Consider the Dirac equation for a particle of charge —e (e > 0) in a field A*:

(if +ed —m)y = 0. (20.58)
The equation satisfied by a particle of the same mass and opposite charge +e is
(id —ed —m)yc = 0. (20.59)

Remarkably, there is a sort of ‘covariance’ involved here under the transformation
e — —e: we can relate ¢ to 1 in such a way that (20.59) follows from (20.58).
Take the complex conjugate of (20.59), so as to produce the equation

(y" 0, +ey™ A +m)y& =0 (20.60)

assuming A, to be real. Multiplying (20.60) from the left by a matrix Co (to be
determined), which is assumed to be non-singular, we obtain

[Coy™ Cy ' (18, + eAy) +mlCoyré = 0. (20.61)
Thus, if we can find a Cq such that
Coy™Cyt = —p* (20.62)

we may identify Coy¢ with ¥ (up to an ever-possible phase factor). In either
of our two representations (20.31) or (20.38), all y-matrices are real except >
which is pure imaginary. A possible choice for Cy is then iy 2, the i being inserted
for convenience so as to make Cy real.
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The wavefunctions i and /¢ are then related by
y=iy’yé  or  Ye=iy'yt (20.63)

where we have used (iyz)2 =1

Consider the application of this result, taking i to be a negative 4-
momentum solution of the free-particle Dirac equation with a helicity A = +1
v-spinor:

¥ =v(p, A=+’
_ ( —vE—|plx- >eip~x
VE +[plx-

using (20.54), in the representation (20.38). Then, in this case,

(20.64)

2% _ (O —ioy —vE—|plx* —ip-x

Now the x_ here satisfies
o px-=—|pIx- (20.66)

as agreed in section 20.3. Taking the complex conjugate of (20.66), we find that

o* - pxX =—|plx* (20.67)
and, recalling that o and o3 are real while o7 is pure imaginary, we see that
(20.67) is

(01p1 —o2p2 +03p3) = = —|plIxZ. (20.68)

Multiplying by o> from the left and, using o102 = —op01, 0103 = —0307,
022 = 1, we obtain (inserting a —i freely)

o - p(—ioax?) = | pl(—io2x®) (20.69)

showing that (—iop x*) is a spinor with positive helicity, say ¢. Thus, we find
for this case that

a2k _ —ipx __ \/E+|p|¢+> —ip-x
Ye =iy v (p, A =+1)e _<m¢+ e

=u(p,r = +1)e P* (20.70)

and so the transformed wavefunction ¥c is precisely the wavefunction of a
positive 4-momentum solution with positive helicity (cf (20.48)). In a similar
way, defining io2x* as ¢_, we find that iy>v*(p, A = —1) = u(p,» = —1).
Thus, our transformation takes negative 4-momentum solutions with helicity A
into positive 4-momentum solutions with helicity A.

This transformation is the nearest we can get, in a wavefunction theory, to
a particle <> anti-particle transformation. For the latter, we want an operator
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which simply changes a particle with a certain 4-momentum and helicity into the
corresponding anti-particle with the same 4-momentum and helicity. This can
only be done in a quantum field formalism. There, the required operator is C,
with the property

Ve =CyC! = oY =iy 2y T, (20.71)

(Note that we write explicitly ™T for * as I/Af will contain annihilation and creation
operators for which * is undefined).

Let us consider the effect of the transformation (20.71) on a standard normal
mode expansion of a Dirac field:

3
V(x) = ¢k 1 Z[ék(k)u(k,)»)e_ik"‘—i—c?;(k)v(k,)»)eik'x] (20.72)

() V2E 4

where E = vVm?2 + k2. Using iy 2u*(k, 1) = v(k, A), which follows by inverting
(20.70), and the similar relation for A = —1, we find that

d’k

dem = [ XL > e kv, Me* + dyu(k, e 1 (20.73)
@2n)’ V2E 4

from which it is clear that the field @C (x) is just the same as @(x) but with ¢ (k)
replaced by dy. (k) (and ¢, (k) by ‘?I (k))—that is, particle operators replaced by
anti-particle ones, just as the é—conjugate field should be. In particular, the k and
A values are not altered, as required.

We have introduced the idea of particle—anti-particle conjugation within the
context of electromagnetic interaction, where it is indeed a good symmetry. But
we must now ask whether it is also a good symmetry in weak interactions. The
answer to this question must be an immediate negative, since we have seen that the
V — A interaction treats a positive helicity particle very differently from a negative
helicity anti-particle, while one is precisely transformed into the other under C.
In perhaps more physical terms, we know that the e~ emitted in p©~-decay is
predominately in the A = —1 helicity state. Particle—anti-particle symmetry
would predict that an et emitted in the C-conjugate process should also have
helicity A = —1, but it does not.

However, it is clear that the helicity operator itself is odd under P. Thus
the CP-conjugate of an e~ with A = —1 is an e™ with A = +1, and so the
V — A interaction does preserve the combined symmetry of CP. It may easily be
verified (problem 20.5) that the ‘two-component’ theory of (20.56) automatically
incorporates CP invariance. We shall discuss CP further in section 22.7.1.

Returning to (20.58) and (20.59), we see that, whether we use I/Af or I/Afc,
four distinct kinds of ‘modes’ are involved: there are particles with either sign of
helicity and anti-particles with either sign of helicity. This is just what we need
to describe fermions which carry a conserved quantum number (such as their
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electromagnetic charge), by which—according to some convention— ‘particle’
can be distinguished from ‘anti-particle’. Thus far, in this book, this has been
the case, since we have only considered charged fermions. But in the case of the
neutral neutrinos the situation is not so clear, as we shall now discuss.

20.6 Lepton number

In section 1.3.1 of volume 1, we gave a brief discussion of leptonic quantum
numbers (‘lepton flavours’), adopting a traditional approach in which the data
are interpreted in terms of conserved quantum numbers carried by neutrinos,
which serve to distinguish neutrinos from anti-neutrinos. We must now examine
the matter more closely, in the light of what we have learned about the helicity
properties of the V — A interaction.

In 1955, Davis (1955)—following a suggestion made by Pontecorvo
(1948)—argued as follows. Consider the e~ capture reactione™ +p — v +n,
which was, of course, well established. Then, in principle, the inverse reaction
v+n — e~ + p should also exist. Of course, the cross-section is extremely small
but by using a large enough target volume this might perhaps be compensated.
Specifically, the reaction v +37 Cl — e~ +37 Ar was proposed, the argon being
detected through its radioactive decay. Suppose, however, that the ‘neutrinos’
actually used are those which accompany electrons in 8~ -decay. If (as was
supposed in section 1.3.1) these are to be regarded as anti-neutrinos, ‘V’, carrying
a conserved lepton number, then the reaction

D 437 Cl = e~ 435 Ar (20.74)

should not be observed. If, on the other hand, the ‘v’ in the capture process and the
‘v’ in B-decay are not distinguished by the weak interaction, the reaction (20.74)
should be observed. Davis found no evidence for reaction (20.74), at the expected
level of cross-section, a result which could clearly be interpreted as confirming
the ‘conserved electron number hypothesis’.

However, another interpretation is possible. The e~ in B-decay has
predominately negative helicity and its accompanying ‘v’ has predominately
positive helicity. The fraction of the other helicity present is of the order m/E,
where E ~ few Meyv, and the neutrino mass is less than 1 eV; this is, therefore,
an almost undetectable ‘contamination’ of negative helicity component in the ‘v’.
Now the property of the V — A interaction is that it conserves helicity in the zero
mass limit (in which chirality is the same as helicity). Hence, the positive helicity
‘v’ from B~ -decay will (predominately) produce a positive helicity lepton, which
must be the e™ not the e~. Thus the property of the V — A interaction, together
with the very small value of the neutrino mass, conspire effectively to forbid
(20.74), independently of any considerations about ‘lepton number’.

Indeed, the ‘helicity-allowed’ reaction

‘9 4+p—>et+n (20.75)
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was observed by Reines and Cowan (1956) (see also Cowan et al (1956)).
Reaction (20.75) too, of course, can be interpreted in terms of ‘v’ carrying a
lepton number of —1, equal to that of the e™. It was also established that only
‘v’ produced e~ via (20.74), where ‘v’ is the helicity —1 state (or, on the other
interpretation, the carrier of lepton number +1).

The situation may therefore be summarized as follows. In the case of e~ and
e, all four ‘modes’—e~ (A = +1),e (A = —1),eT(A = +1),et (L = =1)—
are experimentally accessible via electromagnetic interactions, even though only
two generally dominate in weak interactions (e~(A = —1) and et (A = +1)).
Neutrinos, in contrast, seem to interact only weakly. In their case, we may if
we wish say that the participating states are (in association with e~ or e™) D
(A = 4+1) and ve(A = —1), to a very good approximation. But we may also
regard these two states as simply two different helicity states of one particle, rather
than of a particle and its anti-particle. As we have seen, the helicity rules do the
job required just as well as the lepton number rules. In short, the question is:
are these ‘neutrinos’ distinguished only by their helicity, or is there an additional
distinguishing characteristic (‘electron number’)? In the latter case, we should
expect the ‘other’ two states ve(A = —1) and ve(A = +1) to exist as well as the
ones known from weak interactions.

If, in fact, no quantum number—other than the helicity—exists which
distinguishes the neutrino states, then we would have to say that the C-conjugate
of a neutrino state is a neutrino, not an anti-neutrino—that is, ‘neutrinos are
their own anti-particles’. A neutrino would be a fermionic state somewhat like
a photon, which is, of course, also its own anti-particle. Such ‘C-self-conjugate’
fermions are called Majorana fermions, in contrast to the Dirac variety, which
have all four possible modes present (two helicities, two particle/anti-particle).
The field operator for a Majorana fermion, Y (x), will have a mode expansion of
the form (20.72) but the operator 6; will appear instead of the operator c?; Such
a field will then clearly obey the relation

CimC! = Y (20.76)

which is the Majorana condition. The quantum theory of free Majorana fermions
is described in appendix P.

The distinction between the ‘Dirac’ and ‘Majorana’ neutrino possibilities
becomes an essentially ‘metaphysical’ one in the limit of strictly massless
neutrinos, since then (as we have seen) a given helicity state cannot be flipped by
going to a suitably moving Lorentz frame, nor by any weak (or electromagnetic)
interaction, since they both conserve chirality which is the same as helicity in the
massless limit. We would have just the two states ve(A = —1) and ve(A = +1)
and no way of creating ve(A = +1) or ve(A = —1). The ‘7’ label then becomes
superfluous. Unfortunately, the massless limit is approached smoothly and it
seems highly likely that neutrino masses are, in fact, so small that the ‘wrong
helicity’ supression factors will make it very difficult to see the presence of the
possible states ve (A = +1), Ve(A = —1), if indeed they exist.
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Figure 20.2. Double S-decay without emission of a neutrino, a test for Majorana-type
neutrinos.

One much-discussed experimental test case (see, for example, the review by
Kayser in Hagiwara et al (2002) and references therein) concerns ‘neutrinoless
double B-decay’, which is the process A — A’ +e~ +e~, where A, A’ are nuclei.
If the neutrino emitted in the first S-decay carries no electron-type conserved
quantum number, then in principle it can initiate a second weak interaction,
exactly as in Davis’ original argument, via the diagram shown in figure 20.2. The
v emitted along with the e~ at the first vertex will be predominately A = 41, but
in the second vertex the V — A interaction will ‘want’ it to have A = —1, like the
outgoing e~ . Thus, there is bound to be one ‘m/E’ suppression factor, whichever
vertex we choose to make ‘easy’. There is also a complicated nucleus physics
overlap factor. As yet, no clear evidence for this process has been obtained.

In the same way, ‘v’ particles accompanying the = ’s in 7~ decay

T = u + D" (20.77)
are observed to produce only pt’s when they interact with matter, not u™’s.
Again this can be interpreted either in terms of helicity conservation or in terms of
conservation of a leptonic quantum number L. We shall assume the analogous
properties are true for the ¥ s accompanying t leptons.

On the other hand, helicity arguments alone would allow the reaction
P9 +p—e"+n (20.78)

to proceed, but as we saw in section 1.3.1 the experiment of Danby et al (1962)
found no evidence for it. Thus there is evidence, in this type of reaction, for a
flavour quantum number distinguishing neutrinos which interact in association
with one kind of charged lepton from those which interact in association with a
different charged lepton. However, a number of observations (see section 22.7.2)
have combined to demonstrate convincingly that ‘neutrino oscillations’ do occur,
in which states of one such flavour can acquire a component of another, as it
propagates. It would create too big a detour to continue with the details of this
interesting physics at this point: we shall return to it in section 22.7.2. For
the moment we simply state that, for the simple case of ve <> v, mixing (for
example), the probability that an initially pure v, state becomes a v, state in
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vacuo is proportional to
sin?(L/Lo) (20.79)

where L is the distance from the v, production point, and the ‘oscillation length’
Ly is given by (Perkins 2000, section 9.7)

Lo(inkm) ~ 0.8 x E(GeV)/Am>(eV?) (20.80)

where E is the neutrino beam energy and Am? is the squared mass difference
|m§M —m?2 |.If Am? ~ 107* eV? and E ~ 1 GeV, we see that Lo ~ 8000 km, so
that L must be of the order of the radius of the earth before (20.79) is appreciable.
Just such oscillations have been observed via atmospheric or solar neutrinos, but
the experiment of Danby et al (1962) was obviously unable to see them. It is also
the case that none of the known (2003) neutrino experiments is sensitive to the
difference between the Dirac and Majorana ‘option’.

The upshot of all this is that, while the ‘Majorana neutrino’ hypothesis
is interesting and still viable, and one for which some appealing theoretical
arguments can be made (Gell-Mann et al 1979, Yanagida 1979, Mohapatra and
Senjanovic 1980, 1981, see also appendix P, section P.2), it is fair to say that
the Standard Model treats neutrinos as Dirac particles, and that is what we shall
generally assume in the rest of this part of the book. In due course (section 22.6),
we shall see why, if neutrinos are Majorana particles, the way their mass must
appear would suggest an origin in ‘physics beyond the Standard Model’.

20.7 The universal current—current theory for weak interactions of leptons

After the breakthroughs of parity violation and V — A theory, the earlier hopes
(Pontecorvo 1947, Klein 1948, Puppi 1948, Lee et al 1949, Tiomno and Wheeler
1949) were revived of a universal weak interaction among the pairs of particles
(p,n), (ve, €™ ), (Vu, u™), using the V — A modification to Fermi’s theory. From
our modern standpoint, this list has to be changed by the replacement of (p,n)
by the corresponding quarks (u,d), and by the inclusion of the third lepton pair
(v¢, T7) as well as two other quark pairs (c,s) and (t,b). It is to these pairs that the
‘V — A’ structure applies, as already indicated in section 20.4, and a certain form
of ‘universality’ does hold, as we now describe.

Because of certain complications which arise, we shall postpone the
discussion of the quark currents until section 20.10, concentrating here on the

leptonic currents. In this case, Fermi’s original vector-like current I/Afeyl‘@u
becomes modified to a fotal leptonic charged current

Jéceptons) = ji (@) + i G0 + i (D) (20.81)
where, for example,

Ji(e) = ey (1 — ys)e. (20.82)
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In (20.82) we are now adopting, for the first time, a useful shorthand whereby
the field operator for the electron field, say, is denoted by é(x) rather than I/Afe (x)
and the ‘x’ argument is suppressed. The ‘charged’ current terminology refers to
the fact that these weak current operators jxk carry net charge, in contrast to an
electromagnetic current operator such as éy“é which is electrically neutral. We
shall see in section 20.9 that there are also electrically neutral weak currents.

The interaction Hamiltonian density accounting for all leptonic weak
interactions is then taken to be

1 Gr ; 2
HER = N jb(leptons) ,gCM (leptons). (20.83)
Note that ~ ~

(Der (1= y5)2)" = ey’ (1 — ys)ve (20.84)
and similarly for the other bilinears. The currents can also be written in terms of
the chiral components of the fields (recall section 20.4) using

2DeLyer, = DeyH (1 — ys5)é (20.85)

for example. ‘Universality’ is manifest in the fact that all the lepton pairs have
the same form of the V — A coupling, and the same ‘strength parameter’ Gg/~/2
multiplies all of the products in (20.83).

The terms in (20.83), when it is multiplied out, describe many physical
processes. For example, the term

Gr - .z .
— Dyt —ys)pey (1 — ys)de (20.86)
V2

describes ;™ decay:

o= v, e 4+ e (20.87)
as well as all the reactions related by ‘crossing’ particles from one side to the
other, for example

vpt+e = u +ve. (20.88)
The value of G can be determined from the rate for process (20.87) (see, for
example, Renton 1990, section 6.1.2) and it is found to be

Gr ~ 1.166 x 1075 GeV~2. (20.89)

This is a convenient moment to note that the theory is not renormalizable
according to the criteria discussed in section 11.8 at the end of the previous
volume: Gr has dimensions (mass)~2. We shall return to this aspect of Fermi-
type V — A theory in section 21.4.

There are also what we might call ‘diagonal’ terms in which the same lepton
pair is taken from ka and fjvkﬂ, for example

G ~ AR A
7gvey“(1 — ¥5)é (1 — ys5)Pe (20.90)
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which describes reactions such as
Ve+e€ — Ve +e€ . (20.91)

The cross-section for (20.91) was measured by Reines et al (1976) after many
years of effort.

It is interesting that some seemingly rather similar processes are forbidden
to occur, to first order in 7—ALICCE (see (20.83)), for example

Vy+e =i, +e . (20.92)

For reasons which will become clearer in section 20.9, (20.92) is called a ‘neutral
current’ process, in contrast to all the others (such as 8-decay or p-decay) we have
discussed so far, which are called ‘charged current’” processes. If the lepton pairs
are arranged so as to have no net lepton number (for example e~ Ve, vy, v, Uy
etc) then pairs with non-zero charge occur in charged current processes, while
those with zero charge participate in neutral current processes. In the case of
(20.91), the leptons can be grouped either as (V.e™) which is charged, or as (Ve ve)
or (eTe™) which is neutral. However, there is no way of pairing the leptons in
(20.92) so as to cancel the lepton number and have non-zero charge. So (20.92) is
a purely ‘neutral current’ process, while some ‘neutral current’ contribution could
be present in (20.91), in principle. In 1973 such neutral current processes were
discovered (Hasert et al 1973), generating a whole new wave of experimental
activity. Their existence had, in fact, been predicted in the first version of the
Standard Model, due to Glashow (1961). Today we know that charged current
processes are mediated by the W* bosons and the neutral current ones by the Z°.
We shall discuss the neutral current couplings in section 20.9.

20.8 Calculation of the cross-section for v, + e~ — u™ + v,

After so much qualitative discussion, it is time to calculate something. We
choose the process (20.88), sometimes called inverse muon decay, which is a
pure ‘charged current’ process. The amplitude, in the Fermi-like V — A current
theory, is

M = —i(Gp/V2)ia (W) yu(l — ys)u(v)id(we)y* (1 — ys)u(e). (20.93)

We shall be interested in energies much greater than any of the lepton masses and
so we shall work in the massless limit: this is mainly for ease of calculation—the
full expressions for non-zero masses can be obtained with more effort.
From the general formula (6.129) for 2 — 2 scattering we have, neglecting
all masses,
do 1

dQ ~ 64n2s

|M)? (20.94)
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where |M|? is the appropriate spin-averaged matrix element squared, as in
(8.184) for example. In the case of neutrino—electron scattering, we must average
over initial electron states for unpolarized electrons and sum over the final muon
polarization states. For the neutrinos there is no averaging over initial neutrino
helicities, since only left-handed (massless) neutrinos participate in the weak
interaction. Similarly, there is no sum over final neutrino helicities. However,
for convenience of calculation, we can, in fact, sum over both helicity states of
both neutrinos since the (1 — y5) factors guarantee that right-handed neutrinos
contribute nothing to the cross-section. As for the eu scattering example in
section 8.7, the calculation then reduces to that of a product of traces:

G2 1
IM|* = ({) Te[K v (1 — ys)kyu (1 — ys)l3 Tr[p'y (1 — ys)py"(1 — y5)]

(20.95)
all lepton masses being neglected. We define
_ G2
(M2 = =5 | N B (20.96)
where the v, — ™ tensor Ny, is given by
Nyw = Telk v (1 = ys)kyu (1 — ps)] (20.97)
Iz Iz
without a 1/(2s + 1) factor, and the e~ — v, tensor is
EY = 3 Tilp'y" (1 = ys)py" (1 = ys)] (20.98)

including a factor of % for spin averaging.

Since this calculation involves a couple of new features, let us look at it in
some detail. By commuting the (1 — ys) factor through two y matrices (py"”) and
using the result that

(1—ys)* =2(1 — ys) (20.99)

the tensor N, may be written as

Nuy = 2Tr[F yu (1 — y5)kn]
= 2Te(K yukyn) — 2 Te(yskyok vyu). (20.100)

The first trace is the same as in our calculation of eu scattering (cf (8.185)):
Te(k yyukvy) = ALK ky + Kok + (g%/2)gu]- (20.101)

The second trace must be evaluated using the result

Tr(ysdbéd) = dieqp,sa®bPc? d° (20.102)
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(see equation (J.37) in appendix J of volume 1). The totally anti-symmetric tensor
€qpys 18 just the generalization of ;4 to four dimensions and is defined by

+1 for €p123 and all even permutations of 0, 1, 2, 3
€apys = -1 for €1023 and all odd permutations of 0, 1, 2, 3
0 otherwise.

Its appearance here is a direct consequence of parity violation. Note that this
definition has the consequence that

0123 = +1 (20.103)

but
123 = 1. (20.104)

We will also need to contract two € tensors. By looking at the possible
combinations, it should be easy to convince yourself of the result

| 81 Sjm
€ijk€ilm = ‘ S Sim (20.105)
i.e.
€ijk€ilm = 6 jIOkm — Sk18jm- (20.106)
For the four-dimensional € tensor, one can show (see problem 20.7) that
5 8y 8%
€uvape™? =21 5 B (20.107)
8y Og

where the minus sign arises from (20.104) and the 2! from the fact that the two
indices are contracted.

We can now evaluate N,,,. We obtain, after some rearrangement of indices,
the result for the v, — ©™ tensor:

Nuv = 81k ky + Ky + (¢ /2)guv) — i€uvapk®k 1. (20.108)
For the electron tensor E#*¥ we have a similar result (divided by 2):
E" =4[(p"'p" + p"'p" + (¢°/2)g"") — ie"""° p, pj]. (20.109)
Now, in the approximation of neglecting all lepton masses,
q"Nuw = q"Nyu» =0 (20.110)
as for the electromagnetic tensor L, (cf (8.188)). Hence, we may replace

P=p+gq (20.111)

Copyright 2004 IOP Publishing Ltd



and drop all terms involving ¢ in the contraction with N,,,. In the anti-symmetric
term, however, we have

e py (ps + qs) = € pyqs (20.112)
since the term with ps vanishes because of the anti-symmetry of €;,,,s. Thus, we
arrive at

Ely =8ptp” +2¢%g"" — 4ie"V p, gs. (20.113)

We must now calculate the ‘N - E’ contraction in (20.96). Since we are
neglecting all masses, it is easiest to perform the calculation in invariant form
before specializing to the ‘laboratory’ frame. The usual Mandelstam variables are
(neglecting all masses)

s=2k-p (20.114)
u= —2k'-p (20.115)
t= —2k-k =q¢> (20.116)
satisfying
s+t+u=0. (20.117)

The result of performing the contraction
N EMY = Ny ELy (20.118)

may be found using the result (20.107) for the contraction of two € tensors (see
problem 20.7): the answer for v,e™ — ©u™ Ve is

N EMY = 16(s + u?) 4 16(s> — u?) (20.119)

where the first term arises from the symmetric part of N, similar to L, and
the second term from the anti-symmetric part involving €;,,,45. We have also used

t=qg*>=—(s+u) (20.120)
valid in the approximation in which we are working. Thus, for v,e™ — ©™ v, we
have

Ny EMY = 43257 (20.121)
and with

do 1 (G
— = — | N EHY 20.122
dQ ~ 64n2s < 2 ) o ( )
we finally obtain the result
do Glz:s
— = (20.123)
dQ  4n?
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The total cross-section is then

Glz:s
o= —. (20.124)
T
Since ¢t = —2p2(1 — cos@), where p is the CM momentum and 6 the

CM scattering angle, (20.123) can alternatively be written in invariant form as
(problem 20.8)
do G
d 7
All other purely leptonic processes may be calculated in an analogous fashion
(see Bailin (1982) and Renton (1990) for further examples).

When we discuss deep inelastic neutrino scattering in section 20.11, we shall
be interested in neutrino ‘laboratory’ cross-sections, as in the electron scattering
case of chapter 9. A simple calculation gives s >~ 2m¢E (neglecting squares of
lepton masses by comparison with m¢E), where E is the ‘laboratory’ energy of a
neutrino incident, in this example, on a stationary electron. It follows that the total
‘laboratory’ cross-section in this Fermi-like current—current model rises linearly
with E. We shall return to the implications of this in section 20.11.

The process (20.88) was measured by Bergsma et al (CHARM collaboration)
(1983) using the CERN wide-band beam (E, ~ 20 GeV). The ratio of the
observed number of events to that expected for pure V — A was quoted as
0.98 +£0.12.

(20.125)

20.9 Leptonic weak neutral currents

The first observations of the weak neutral current process v,e~ — v e~ were
reported by Hasert ef al (1973), in a pioneer experiment using the heavy-liquid
bubble chamber Gargamelle at CERN, irradiated with a v, beam. As in the
case of the charged currents, much detailed experimental work was necessary to
determine the precise form of the neutral current couplings. They are, of course,
predicted by the Glashow—Salam—Weinberg (GSW) theory, as we shall explain
in chapter 22. For the moment, we continue with the current—current approach,
parametrizing the currents in a convenient way.

There are two types of ‘neutral current’ couplings: those involving neutrinos

of the form ¥; ... 7;; and those involving the charged leptons of the form i...10.
We shall assume the following form for these currents (with one eye on the GSW
theory to come):

(1) neutrino neutral current

_ 1—
encV Dt < 2V5> b l=e w1 (20.126)

(2) charged lepton neutral current

= (I —ys) (I+ys)
gnlyt [CZL st ch 5

}i l=e, p, 1. (20.127)
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This is, of course, by no means the most general possible parametrization. The
neutrino coupling is retained as pure ‘V — A’, while the coupling in the charged
lepton sector is now a combination of ‘V — A’ and ‘V+A’ with certain coefficients
clL and c{Q. We may also write the coupling in terms of ‘“V’ and ‘A’ coefficients
defined by c{, = ci + c{z, cg = ci — C{Q. An overall factor gn determines the
strength of the neutral currents as compared to the charged ones: the ¢’s determine
the relative amplitudes of the various neutral current processes.

As we shall see, an essential feature of the GSW theory is its prediction
of weak neutral current processes, with couplings determined in terms of one
parameter of the theory called ‘Ow’, the ‘weak mixing angle’ (Glashow 1961,
Weinberg 1967). The GSW predictions for the parameter gn and the ¢’s is (see
equations (22.37)—-(22.40))

gN = g/ cos By =1 d=-I+a ch=a (20.128)
forl = e, u, T, where a = sin” Gw and g is the SU(2) gauge coupling. Note that a
strong form of ‘universality’ is involved here too: the coefficients are independent
of the ‘flavour’ e, u or 7, for both neutrinos and charged leptons.
The following reactions are available for experimental measurement (in
addition to the charged current process (20.88) already discussed):

e — vue e — e (NO) (20.129)
Vo€ —> Ve€~ Vo€ —> De€™ (NC 4+ CC) (20.130)

where ‘NC’ means neutral current and ‘CC’ charged current. Formulas for these
cross-sections are given in section 22.4. The experiments are discussed and
reviewed in Commins and Bucksbaum (1983), Renton (1990) and, most recently,
by Winter (2000). All observations are in excellent agreement with the GSW
predictions, with 6w determined as sin? 6w =~ 0.23. The reader must note,
however, that modern precision measurements are sensitive to higher-order (loop)
corrections, which must now be included in comparing the full GSW theory with
experiment (see section 22.8). The simultaneous fit of data from all four reactions
in terms of the single parameter 6w provides already strong confirmation of the
theory—and indeed such confirmation was already emerging in the late 1970s
and early 1980s, before the actual discovery of the W* and Z° bosons. It is also
interesting to note that the presence of vector (V) interactions in the neutral current
processes may suggest the possibility of some kind of link with electromagnetic
interactions which are, of course, also ‘neutral’ (in this sense) and vector-like. In
the GSW theory, this linkage is provided essentially through the parameter 6w, as
we shall see.

20.10 Quark weak currents

The original version of V — A theory was framed in terms of a nucleonic current

of the form &py“(l — ry5)1/A/n. With the acceptance of quark substructure it was
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natural to re-interpret such a hadronic transition by a charged current of the form

ay*(1 — ys)d very similar to the charged lepton currents: indeed, here was a
further example of ‘universality’, this time between quarks and leptons. Detailed
comparison with experiment showed, however, that such d — n transitions were
very slightly weaker than the analogous leptonic ones: this could be established
by comparing the rates forn — pe~ V. and ;& — v e Ve.

But for quarks (or their hadronic composites), there is a further complication,
which is the very familiar phenomenon of flavour change in weak hadronic
processes (recall the discussion in section 1.3.2). The first step towards the
modern theory of quark currents was taken by Cabibbo (1963). He postulated
that the strength of the hadronic weak interaction was shared between the AS = 0
and AS = 1 transitions (where S is the strangeness quantum number), the latter
being relatively suppressed as compared to the former. According to Cabibbo’s
hypothesis, phrased in terms of quarks, the total weak charged current for u, d and
s quarks is

. — (1= s) (1
Jea (0, d s) = cos Qcﬁyﬂ(izy‘g)d + sin 9cﬁy”%§' (20.131)

We can now postulate a total weak charged current
Jec(otal) = jh(leptons) + j&, (u,d. s) (20.132)

where fgc(leptons) is given by (20.81), and then generalize (20.83) to

Gr » \
A — 7; Jéc(total) i, (total). (20.133)

The effective interaction (20.133) describes a great many processes.
The purely leptonic ones discussed previously are, of course, present in
]CC(leptons) Jccu(leptons). But there are also now all the semi-leptonic processes
such as the AS = 0 (strangeness conserving) one

d—>u+e + e (20.134)
and the AS = 1 (strangeness changing) one
s—>u+te + . (20.135)

The notion that the ‘total current’ should be the sum of a hadronic and a
leptonic part is already familiar from electromagnetism—see, for example,
equation (8.90).
The transition (20.135), for example, is the underlying process in semi-
leptonic decays such as
YT > n+4e + e (20.136)

and
K —>n%+e + e (20.137)
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Figure 20.3. Strangeness-changing semi-leptonic weak decays.

as indicated in figure 20.3.

The ‘s’ quark is assigned § = —1 and charge —%e. The s — u transition
is then referred to as one with ‘AS = AQ’, meaning that the change in the
quark (or hadronic) strangeness is equal to the change in the quark (or hadronic)
charge: both the strangeness and the charge increase by one unit. Prior to the
advent of the quark model and the Cabibbo hypothesis, it had been established
empirically that all known strangeness-changing semileptonic decays satisfied the
rules [AS| = 1 and AS = AQ. The u-s current in (20.131) satisfies these rules
automatically. Note, for example, that the process apparently similar to (20.136),
%+t — n+ et + v, is forbidden in the lowest order (it requires a double quark
transition from suu to udd). All known data on such decays can be fit with a value
sinfc ~ 0.23 for the ‘Cabibbo angle’ ¢ (not to be confused with Oyw). This
relatively small angle is, therefore, a measure of the suppression of |AS| = 1
processes relative to AS = 0 ones.

The Cabibbo current can be written in a more compact form by introducing
the ‘mixed’ field

d' = cosfcd + sin 6cS. (20.138)

Then

(20.139)

2 = (1 —=ys) 4
Jgab(u, d,s) = MVMT !

In 1970 Glashow, Iliopoulos and Maiani (GIM) (1970) drew attention to
a theoretical problem with the interaction (20.133) if used in second order.
Now it is, of course, the case that this interaction is not renormalizable, as
noted previously for the purely leptonic one (20.83), since Gr has dimensions
of an inverse mass squared. As we saw in section 11.7, this means that one-
loop diagrams will typically diverge quadratically, so that the contribution of
such a second-order process will be of order (Gp.GrA?) where A is a cut-off,
compared to the first-order amplitude Gg. Recalling from (20.89) that Gg ~
10~5 GeV~2, we see that for A ~ 10 GeV such a correction could be significant
if accurate enough data existed. GIM pointed out, in particular, that some second-
order processes could be found which violated the (hitherto) well-established
phenomenological selection rules, such as the |AS| = 1 and AS = AQ rules
already discussed. For example, there could be AS = 2 amplitudes contributing
to the K1, — Kg mass difference (see Renton 1990, section 9.1.6, for example), as
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well as contributions to unobserved decay modes such as
Kt s> nat+v+9d (20.140)

which has a neutral lepton pair in association with a strangeness change for the
hadron. In fact, experiment placed very tight limits on the non-existence of
(20.140)—and still does: the present limit on the branching is less than about
10°%. This seemed to imply a surprisingly low value for the cut-off, say
~ 3 GeV (Mohapatra et al 1968).

Partly in order to address this problem and partly as a revival of an earlier
lepton-quark symmetry proposal (Bjorken and Glashow 1964), GIM introduced a
fourth quark, now called c (the charm quark) with charge %e. Note that in 1970
the 7-lepton had not been discovered, so only two lepton family pairs (ve, €), (Vy,
w) were known: this fourth quark, therefore, did restore the balance, via the two-
quark family pairs (u,d), (c,s). In particular, a second quark current could now
be hypothesized, involving the (c,s) pair. GIM postulated that the c-quark was
coupled to the ‘orthogonal’ d—s combination (cf (20.138))

§ = —sinfcd + cos Ocs. (20.141)
The complete four-quark charged current is then

M(l _VS)dA/
2

The form (20.142) had already been suggested by Bjorken and Glashow (1964).
The new feature of GIM was the observation that, assuming an exact SU(4)f
symmetry for the four quarks (in particular, equal masses), all second-order
contributions which could have violated the |AS| = 1, AS = A Q selection rules
now vanished. Further, to the extent that the (unknown) mass of the charm quark
functioned as an effective cut-off A, due to breaking of the SU(4)r symmetry,
they estimated m. to lie in the range 3—4 GeV, from the observed K, — Kg mass
difference.

GIM went on to speculate that the non-renormalizability could be overcome
if the weak interactions were described by an SU(2) Yang—Mills gauge theory,
involving a triplet (W, W, W) of gauge bosons. In this case, it is natural to
introduce the idea of (weak) ‘isospin’, in terms of which the pairs (ve, €), (v, 1),
(ud), (¢, s') are all t = % doublets with 13 = :l:%. Charge-changing currents then
involve the ‘raising’ matrix

+cy (20.142)

A _ B -
ngM(uv d1 C, S) = 12)/ A M%fl‘

e = L dim = (0] 20.143
§r+:§(t1+1t2)_ 0 0 (20.143)

and charge-lowering ones the matrix 7_/2 = (t; — it2)/2. The full symmetry
must also involve the matrix t3/2, given by the commutator [ty /2, 7_/2] = t3.
Whereas 7 and t_ would (in this model) be associated with transitions mediated
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by W, transitions involving 73 would be mediated by W and would correspond
to ‘neutral current’ transitions for quarks. We now know that things are slightly
more complicated than this: the correct symmetry is the SU(2) x U(l) of
Glashow (1961), also invoked by GIM. Skipping, therefore, some historical steps,
we parametrize the weak quark neutral current as (cf (20.127) for the leptonic
analogue)

= (I —ys) d+w)].
N Z qy“[cﬁ 2]/5 +C§Ty5:|q (20.144)

g=u,c,d’,s

for the four flavours so far in play. In the GSW theory, the ¢ ’s are predicted to be

C_

- %a R = —%a (20.145)

*=1a (20.146)

=

C

S

e CE
NI—

_|_

Q=

Q

o

e

C

where a = sin? Ow as before and gn = g/ cos Ow.
One feature of (20.144) is worth nothing. Consider the terms

=/ R _
d{.)d +5{.35. (20.147)

It is simple to verify that, whereas either part of (20.147) alone contains a

strangeness-changing neutral combination such as c?{. .J)S or §{. . .}aA?, such
combinations vanish in the sum, leaving the result diagonal in quark flavour.
Thus, there are no first-order neutral flavour-changing currents in this model, a
result which will be extended to three flavours in sections 22.3 and 22.7.1.

In 1974, Gaillard and Lee (1974) performed a full one-loop calculation
of the K, — Kg mass difference in the GSW model as extended by GIM to
quarks and using the renormalization techniques recently developed by ’t Hooft
(1971b). They were able to predict mc ~ 1.5 GeV for the charm quark mass,
a result spectacularly confirmed by the subsequent discovery of the cc states in
charmonium, and of charmed mesons and baryons of the appropriate mass.

20.11 Deep inelastic neutrino scattering

We now present another illustrative calculation within the framework of the
‘current—current’ model, this time involving neutrinos and quarks. We shall
calculate cross-sections for deep inelastic neutrino scattering from nucleons,
using the parton model introduced (for electromagnetic interactions) in chapter 9.
In particular, we shall consider the processes

vy +N—-u +X (20.148)
by +N—put+X (20.149)

which, of course, involve the charged currents for both leptons and quarks.
Studies of these reactions at Fermilab and CERN in the 1970s and 1980s played
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Figure 20.4. Inelastic neutrino scattering from a nucleon.

a crucial part in establishing the quark structure of the nucleon, in particular the
quark distribution functions.

The general process is illustrated in figure 20.4. By now we are becoming
accustomed to the idea that such processes are, in fact, mediated by the W+, but
we shall assume that the momentum transfers are such that the W-propagator is
effectively constant (see the discussion in section 21.2). The effective lepton—
quark interaction will then take the form

~eff GF = A R ) = A
o = Sl = ybuliy! (= yd + "1 = y9fl - (20.150)

leading to expressions for the parton-level subprocess amplitudes which are

exactly similar to that in (20.93) for v, + e~ — u~ + v.. Note that we are

considering only the four flavours u, d, c, s to be ‘active’, and we have set 6c ~ 0.
As in (20.96), the v;, cross-section will have the general form

do™ o N W( (g, p) (20.151)

where N, is the neutrino tensor of (20.108). The form of the weak hadron tensor
W(’f)]; is deduced from Lorentz invariance. In the approximation of neglecting
lepton masses, we can ignore any dependence on the 4-vector ¢ since

q" Ny = q"Nyy = 0. (20.152)

Just as Ny, contains the pseudotensor €,,q5, S0 too will W’:v since parity is
not conserved. In a manner similar to equation (9.10) for the case of electron
scattering, we define neutrino structure functions by

! i
Wiy = (8" W 4 5 plp Wy = e pygs WY (20.153)

In general, the structure functions depend on two variables, say Q2 and v, where
0% = —(k —k")> and v = p - ¢/ M; but in the Bjorken limit approximate scaling
is observed, as in the electron case:

2
Qv :OZO } x = 0%/2Mv fixed (20.154)
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v (0% v) > By (x) (20.155)
MW (Q% v) > F" (x) (20.156)
vy (0% v) > F{(x) (20.157)

where, as with (9.21) and (9.22), the physics lies in the assertion that the F’s are
finite. This scaling can again be interpreted in terms of point-like scattering from
partons—which we shall take to have quark quantum numbers.

In the ‘laboratory’ frame (in which the nucleon is at rest) the cross-section
in terms of Wy, W> and W3 may be derived in the usual way from (cf equation
9.11))

Gr\ 1 K
do® = (L) —dzmMN, WY —— (20.158)
JV2) 4k-p W) 2k (27)3

In terms of ‘laboratory’ variables, one obtains (problem 20.10)

?2c®  GLK k+K
_ 0) o2 ()7 gin?
dQdv Z?(qu cos™(6/2) + W, 2sin”(6/2) +

sin2(6/2) W3(“>>

(20.159)
For an incoming anti-neutrino beam, the W3 term changes sign.
In neutrino scattering it is common to use the variables x, v and the
‘inelasticity’ y where
y=p-q/p-k. (20.160)

In the ‘laboratory’ frame, v = E — E’ (the energy transfer to the nucleon) and
y = v/E. The cross-section can be written in the form (see problem 20.10)

d2c™ G2 1+ (1—y)2 1—(1—y)?
o F Fz(u) +d -y +xF3(u) I-y)

— ZF (20.161)
dxdy 27 2 2

in terms of the Bjorken scaling functions, and we have assumed the relation
2w F” = FY (20.162)
appropriate for spin—% constituents.
We now turn to the parton-level subprocesses. Their cross-sections can

be straightforwardly calculated in the same way as for v, e~ scattering in
section 20.8. We obtain (problem 20.11)

d2 GZ 2
B EE ) 0 Y (N (20.163)
dxdy b4 2Mv
d’o G2 2 0?
g, vq : = ZEx( =2 [x——=]). 20.164
vq, vq dxdy 7 sx(L—=y)"|x My ( )
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(@) (b)

Figure 20.5. Suppression of v,q — u~q for y = 1: (a) initial-state helicities; (b)
final-state helicities at y = 1.

The factor (1 — y)? in the vq, vq cases means that the reaction is forbidden at
y = 1 (backwards in the CM frame). This follows from the V — A nature of
the current, and angular momentum conservation, as a simple helicity argument
shows. Consider, for example, the case vq shown in figure 20.5, with the
helicities marked as shown. In our current—current interaction there are no
gradient coupling terms and, therefore, no momenta in the momentum-space
matrix element. This means that no orbital angular momentum is available to
account for the reversal of net helicity in the initial and final states in figure 20.5.
The lack of orbital angular momentum can also be inferred physically from the
‘point-like’ nature of the current—current coupling. For the vq or vq cases, the
initial and final helicities add to zero and backward scattering is allowed.
The contributing processes are

vd—1"u bd—lta (20.165)
vi—[1"d bu—Itd (20.166)

the first pair having the cross-section (20.163), the second (20.164). Following
the same steps as in the electron scattering case (sections 9.2 and 9.3), we obtain

F,? = F)" = 2x[d(x) + ii(x)] (20.167)
FP = F{™ = 2[d(x) — ii(x)] (20.168)
" = F)P = 2x[u(x) + d(x)] (20.169)
FJ" = Fi® = 2[u(x) — d(x)]. (20.170)

Inserting (20.167) and (20.168) into (20.161), for example, we find that

2o D) )
= 200x[d(x) + (1 — y)“u(x)] (20.171)
dxdy
where
Gis GiME
o0 = 2—Fs ="~ ~15x%x107*(E/GeV) m? (20.172)
g v

is the basic ‘point-like’ total cross-section (compare (20.124)). Similarly, one
finds that _
d25 0P

T 200x[(1 — y)2u(x) +d(x)]. (20.173)
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Figure 20.6. Charged-current inelasticity (y) distribution as measured by CDHS (from
Winter 2000, p 443).

The corresponding results for vn and vn are given by interchanging u (x) and d(x)
and u(x) and d(x).

The target nuclei usually have approximately equal numbers of protons and
neutrons and it is appropriate to average the ‘n’ and ‘p’ results to obtain an
‘isoscalar’ cross-section o "N or ¢ "N);

d2 O_(UN)

&d = aox[q(x) + (1 — ¥)2G(x)] (20.174)
d2 5N
djdy = aox[(1 — y)2q(x) + G(x)] (20.175)

where g(x) = u(x) +d(x) and g(x) = u(x) + d(x).
Many simple and striking predictions now follow from these quark parton
results. For example, by integrating (20.174) and (20.175) over x, we can write

do (vN)

o —ole — )0l (20.176)
do N ) -
& =ool(1-y)°0 + 0] (20.177)
where Q = f xq(x)dx is the fraction of the nucleon’s momentum carried

by quarks and similarly for Q. These two distributions in y (‘inelasticity
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Figure 20.7. Low-energy v and v cross-sections (from Winter 2000, p 427).

distributions’), therefore, give a direct measure of the quark and anti-quark
composition of the nucleon. Figure 20.6 shows the inelasticity distributions as
reported by the CDHS collaboration (de Groot et al 1979), from which the authors
extracted the ratio

0/(0+ Q) =0.15+0.03 (20.178)

after applying radiative corrections. An even more precise value can be obtained
by looking at the region near y = 1 for vN which is dominated by Q, the small O
contribution (o (1 — y)?) being subtracted out using vN data at the same y. This

method yields B B
0/(Q0+ 0)=0.154+0.01. (20.179)
Integrating (20.176) and (20.177) over y gives
o™ =0p(0+10) (20.180)
o™ =0y(30+ Q) (20.181)
and hence B )
0+ 0 =30"N 4N /44, (20.182)
while
0/0+0) =1 (2 (20.183)
2\ 1+4r ’

where r = 0N /6 "N) From total cross-section measurements and including ¢
and s contributions, the CHARM collaboration (Allaby et al 1988) reported

Q + O = 0.492 4 0.006(stat) & 0.019(syst) (20.184)
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0/(0 + Q) = 0.154 + 0.005(stat) + 0.011(syst). (20.185)

The second figure is in good agreement with (20.179) and the first shows that only
about 50% of the nucleon momentum is carried by charged partons, the rest being
carried by the gluons, which do not have weak or electromagnetic interactions.

Equations (20.180) and (20.181), together with (20.172), predict that the
total cross-sections o "™ and o ") rise linearly with the energy E. Figure 20.7
shows how this (parton model) prediction received spectacular confirmation as
early as 1975 (Perkins 1975), soon after the model’s success in deep inelastic
scattering. In fact, both "N /E and 0 "N /E are found to be independent of E
up to E ~ 200 GeV.

Detailed comparison between the data at high energies and the earlier data
of figure 20.7 at E, up to 15 GeV reveals that the Q fraction is increasing with
energy. This is in accordance with the expectation of QCD corrections to the
parton model (section 15.7): the Q distribution is large at small x and scaling
violations embodied in the evolution of the parton distributions predict a rise at
small x as the energy scale increases.

Returning now to (20.167)—(20.170), the two sum rules of (9.65) and (9.66)
can be combined to give

1
3= / dx [u(x) +d(x) —i(x) —d(x)] (20.186)
0
1
=1 /0 dx (F;P 4+ Fy™) (20.187)
1
= / dx FyN (20.188)
0

which is the Gross—Llewellyn Smith sum rule (1969), expressing the fact that
the number of valence quarks per nucleon is three. The CDHS collaboration (de
Groot et al 1979), quoted

1
IGLLs = / dx F{N =3.240.5. (20.189)
0

In perturbative QCD, there are corrections expressible as a power series in «g, SO
that the parton model result is only reached as Q% — oo:

IoLLs(Q%) = 3[1 + dias /7 + dao2 /m* + - -] (20.190)

where di = —1 (Altarelli ef al 1978a, b), d» = —55/12 + N¢/3 (Gorishny and
Larin 1986) where Nt is the number of active flavours. The CCFR collaboration
(Shaevitz et al 1995) has measured IgrLs in anti-neutrino—nucleon scattering at
(0?%) ~ 3 GeV2. It obtained

IoiLs ((0?) = 3 GeV?) = 2.50 + 0.02 & 0.08 (20.191)
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Figure 20.8. CCFR neutrino—iron structure functions xF3(U) (Shaevitz et al 1995). The
full line is the next-to-leading order (one-loop) QCD prediction and the dotted line is an
extrapolation to regions outside the kinematic cuts for the fit.

in agreement with the O(a?) calculation of Larin and Vermaseren (1991) using
A%D = 250 & 50 MeV.

The predicted Q2 evolution of x F3 is particularly simple since it is not
coupled to the gluon distribution. To leading order, the x F3 evolution is given
by (cf (15.106))

d
d In Q2

s(0H ! d
(xF(x, Q2)>=“(nQ) / Pe(2)x s ()Z—“,QZ) L o

Figure 20.8, taken from Shaevitz et al (1995), shows a comparison of the CCFR
data with the next-to-leading order calculation of Duke and Owens (1984). This
fit yields a value of og at Q% = M% given by

as(M2) = 0.111 = 0.002 % 0.003. (20.193)

The Adler sum rule (Adler 1963) involves the functions F; P and sz P,

! dx v v
Iy = /O 7(sz’ - F)). (20.194)
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In the simple model of (20.167)—(20.170), the right-hand side of Iy is just

1
2/ dx u(x) +d(x) —dx) — i(x)) (20.195)
0

which represents four times the average of I3 (isospin) of the target, which is
% for the proton. This sum rule follows from the conservation of the charged
weak current (as will be true in the Standard Model, since this is a gauge
symmetry current, as we shall see in the following chapter). Its measurement,
however, depends precisely on separating the non-isoscalar contribution (/p
vanishes for the isoscalar average ‘N’). The only published result is that of the
BEBC collaboration (Allasia et al 1984, 1985):

In = 2.02 4 0.40 (20.196)

in agreement with the expected value 2.
Relations (20.167)—(20.170) allow the F, functions for electron (muon) and
neutrino scattering to be simply related. From (9.58) and (9.61), we have

FN=LFEP+ " = Zx+i+d+d) + 5x(s+5) +---  (20.197)
while (20.167) and (20.169) give
RN=LWFEP+ " =x(+d+i+d). (20.198)

Assuming that the non-strange contributions dominate, the neutrino and charged
lepton structure functions should be approximately in the ratio 18/5, which is
the reciprocal of the mean squared charge of the u and d quarks in the nucleon.
Figure 20.9 shows the neutrino results on F> and x F3 together with those from
several uN experiments scaled by the factor 18/5. The agreement is reasonably
good, and this gives further confirmation of the quark parton picture.

From (20.167)—(20.170), we see that the differences F)’ — x F3’ involve the
anti-quark (sea) contribution, which from the data are concentrated at small x, as
we already inferred in section 9.3.

We have mentioned QCD corrections to the simple parton model at several
points. Clearly the full machinery introduced in chapter 15, in the context of
deep inelastic charged lepton scattering, can be employed for the case of neutrino
scattering also. For further access to this area we refer to Ellis et al (1996,
chapter 4), and Winter (2000, chapter 5).

20.12 Non-leptonic weak interactions

The effective weak Hamiltonian of (20.133) (as modified by GIM) clearly
contains the term
Gr

Hee () = 7

ngM(x)j;GIM(x) (20.199)
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Figure 20.9. Comparison of neutrino results on F>(x) and xF3(x) with those from
muon production properly rescaled by the factor 18/5, for a 0?2 ranging between 10 and
1000 GeV? (from Winter 2000, p 455).

Figure 20.10. Effective four-fermion non-leptonic weak transition at the quark level.

in which no lepton fields are present (just as there are no quarks in (20.83)). This
interaction is responsible, at the quark level, for transitions involving four-quark
(or anti-quark) fields at a point. For example, the process shown in figure 20.10
can occur. By ‘adding on’ another two quark lines u and d, which undergo no
weak interaction, we arrive at figure 20.11, which represents the non-leptonic
decay A® — pr—.

This figure is, of course, rather schematic since there are strong QCD
interactions (not shown) which are responsible for binding the three-quark
systems into baryons and the qq system into a meson. Unlike the case
of deep inelastic lepton scattering, these QCD interactions cannot be treated
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Figure 20.11. Non-leptonic weak decay of A0 using the process of figure 20.10, with the
addition of two ‘spectator’ quarks.

perturbatively, since the distance scales involved are typically those of the hadron
sizes (~ 1 fm), where perturbation theory fails. This means that non-leptonic
weak interactions among hadrons are difficult to analyse quantititively, though
substantial progress is being made via lattice QCD. Similar difficulties also arise,
evidently, in the case of semi-leptonic decays. In general, one has to proceed
in a phenomenological way, parametrizing the decay amplitudes in terms of
appropriate form factors (which are analogous to the electromagnetic form factors
introduced in chapter 8). In the case of transitions involving at least one heavy
quark Q, Isgur and Wise (1989, 1990) noticed that a considerable simplification
occurs in the linit mg — oo. For example, one universal function (the ‘Isgur—
Wise form factor’) is sufficient to describe a large number of hadronic form factors
introduced for semi-leptonic transitions between two heavy pseudoscalar (0™) or
vector (17) mesons. For an introduction to the Isgur—Wise theory, we refer to
Donoghue et al (1992).

The non-leptonic sector is the scene of some very interesting physics,
however, such as KO — K9 and B® — BY oscillations, and CP violation in the
K%—K° and B’—BY systems. We shall see how CP violation arises in the Standard
Model in section 22.7.1. For a convenient review of this large and important area,
we refer to Leader and Predazzi (1996).

Problems

20.1 Show that in the non-relativistic limit (| p| <« M) the matrix element itpy “uy
of (20.1) vanishes if p and n have different spin states.

2_0.2 Show that 1;1 (X, t)yovﬁz(x, t) is a pseudoscalar under Is, and that
(X, )y ya(X, t) is an axial vector.

20.3 Verify the normalization N = (E + | p|)!'/? in (20.47).

20.4 Verify (20.54) and (20.55).

20.5 Verify that equations (20.56) are invariant under CP.
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20.6 The matrix s is defined by ys = iy%y!y?y3. Prove the following
properties:

(a) y52 = 1 and hence
(I+y5)(A—=ys5) =0;
(b) from the anti-commutation relations of the other y matrices, show that
{vs, vut =0

and hence that
(I +ys)vo = vo(1 — ¥s)
and
I+ y5)vovu = voyu(l + ¥s).

20.7
(a) Consider the two-dimensional anti-symmetric tensor ¢;; defined by
€1 =+1, 61 = -1 €11 =€» =0.

By explicitly enumerating all the possibilities (if necessary), convince
yourself of the result

€ijer = +1(0ikdj1 — 8i1d k).
Hence prove that
€ij€il =0j and €ijeij =2
(remember, in two dimensions, Zi 8ii = 2).

(b) By similar reasoning to that in part (a) of this question, it can be shown that
the product of two three-dimensional anti-symmetric tensors has the form

(Sil 8im 81’/1
€ijk€imn = | 8ji Sjm djn
Ski Skm Okn

Prove the results

Sjm (Sjn
8km 8kn

€ijk€imn = ‘ €ijk€ijn = 28n €ijk€ijk = 3!

(c) Extend these results to the case of the four-dimensional (Lorentz) tensor

€.vap (remember that a minus sign will appear as a result of €123 = +1
but €913 = —1).
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20.8 Starting from the amplitude for the process
vyte —u +e
given by the current—current theory of weak interactions,
M = —i(Ge/V)i(w)yu(1 = y5)u(vu) g™V i (ve)yo (1 = ys)u(e)
verify the intermediate results given in section 20.8 leading to the result
do/dr = Gi/m

(neglecting all lepton masses). Hence, show that the local total cross-section for
this process rises linearly with s:

o = Gis/m.
20.9 The invariant amplitude for 7 ™ — e™v decay may be written as

= (GF/V2) fx pPa(w)yu(l — ys)v(e)

where p* is the 4-momentum of the pion and the neutrino is taken to be massless.
Evaluate the decay rate in the rest frame of the pion using the decay rate formula

[ = (1/2My)| M|*dLips(M2; ke, k)

where the phase space factor ‘dLips’ is defined in (16.111). Show that the ratio of
7T — etvand 7T — pTv rates is given by

2
Dt —etv) (M. \* (M2 — M2
Dt — ptv)  \M, M2 —-M?:)
Repeat the calculation using the amplitude

= (Gr/V2) fr P"a()yu(gv + gays)v(e)

and retaining a finite neutrino mass. Discuss the e /u™ ratio in the light of your
result.

20.10

(a) Verify that the inclusive inelastic neutrino—proton scattering differential
cross-section has the form

2™ GEK’

dQ? dv 27k

(k + ’) )
+ — I (9/2)W >

<W2(”) cos2(6/2) + WM 2sin?(6/2)

in the notation of section 20.11.
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(b) Using the Bjorken scaling behaviour
VWZ(U) N F2(V) MWI(V) N F](V) UW3(V) N F3(V)

rewrite this expression in terms of the scaling functions. In terms of the
variables x and y, neglect all massses and show that

A2 G2
= T;S[F;”a — )+ FVxy? + FV (1 = y/2)yx].

Remember that
K'sin?(0/2) xy
M 2
(c) Insert the Callan—Gross relation
wF” = F"

to derive the result quoted in section 20.11:

e G} EO) T+(1—y)? xF”1—(1—y)?
dedy ~ 27 2 2 FY 2 ’

20.11 The differential cross-section for v, q scattering by charged currents has
the same form (neglecting masses) as the v, e~ — ™ v, result of problem 20.8,
namely
2
9 (g = ZE.
b4
(a) Show that the cross-section for scattering by anti-quarks v, q has the form

do Glz: 5
— g =—~U0-y)".
o Vo =—0-y
(b) Hence prove the results quoted in section 20.11:

d2

(vq) = G—% 8(x — Q?/2Mv)
drdy vq sx6(x /2Mv

and
d2 2

Gg
( vq) = —SX(1 —y)8(x — Q*/2Mv)

(where M is the nucleon mass).
(c) Use the parton model prediction

& —G—%[ 7(0)(1 = )%
T q(x)+ )1 —y)
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to show that
FY = 2x[q(x) + G ()]

and
xF 00 ) — @)
FPx) a0 +4(x)
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21

DIFFICULTIES WITH THE CURRENT-CURRENT
AND ‘NAIVE’ INTERMEDIATE VECTOR BOSON
MODELS

In the preceding chapter we developed the ‘V — A current—current’
phenomenology of weak interactions. We saw that this gives a remarkably
accurate account of a wide range of data—so much so, in fact, that one might
well wonder why it should not be regarded as a fully-fledged theory. One good
reason for wanting to do this would be in order to carry out calculations beyond
the lowest order, which is essentially all we have used it for so far (with the
significant exception of the GIM argument). Such higher-order calculations are
indeed required by the precision attained in modern high-energy experiments.
But the electroweak theory of Glashow, Salam and Weinberg, now recognized
as one of the pillars of the Standard Model, was formulated long before such
precision measurements existed, under the impetus of quite compelling theoretical
arguments. These had to do, mainly, with certain in-principle difficulties
associated with the current—current model, if viewed as a ‘theory’. Since we now
believe that the GSW theory is the correct description of electroweak interactions
up to currently tested energies, further discussions of these old issues concerning
the current—current model might seem irrelevant. However, these difficulties do
raise several important points of principle. An understanding of them provides
valuable motivation for the GSW theory—and some idea of what is ‘at stake’ in
regard to experiments relating to those parts of it (notably the Higgs sector) which
have still not been experimentally established.

Before reviewing the difficulties, however, it is worth emphasizing once
again a more positive motivation for a gauge theory of weak interactions. This
is the remarkable ‘universality’ structure noted in the previous chapter, not only
as between different types of lepton but also (within the context of Cabibbo-—
GIM ‘mixing’) between the quarks and the leptons. This recalls very strongly
the ‘universality’ property of QED, and the generalization of this property in
the non-Abelian theories of chapter 13. A gauge theory would provide a natural
framework for such universal couplings.
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Figure 21.1. Current-current amplitude for vy, +pu~ — Ve +€7.

21.1 Violation of unitarity in the current—current model

We have seen several examples, in the previous chapter, in which cross-sections
were predicted to rise indefinitely as a function of the invariant variable s, which
is the square of the total energy in the CM frame. We begin by showing why this
is ultimately an unacceptable behaviour.

Consider the process (figure 21.1)

Dy - Dete @21.1)

in the current—current model, regarding it as fundamental interaction, treated to
lowest order in perturbation theory. A similar process was discussed in chapter 20.
Since the troubles we shall find occur at high energies, we can simplify the
expressions by neglecting the lepton masses without altering the conclusions. In
this limit the invariant amplitude is (problem 21.1), up to a numerical factor,

M = GrE?*(1 + cos ) (21.2)

where E is the CM energy and 6 is the CM scattering angle of the e~ with respect
to the direction of the incident ©~. This leads to the following behaviour of the
cross-section:

o ~ GEE>. (21.3)

Consider now a partial wave analysis of this process. For spinless particles the
total cross-section may be written as a sum of partial wave cross-sections

4
o= k—’; S @I+ DIfs (21.4)
J

where fj is the partial wave amplitude for angular momentum J and k is the
CM momentum. It is a consequence of unitarity or flux conservation (see, for
example, Merzbacher 1998, chapter 13) that the partial wave amplitude may be
written in terms of a phase shift §;:

f1 =¢€% sing, (21.5)

so that
[fsl < 1. (21.6)

Thus, the cross-section in each partial wave is bounded by

o7 <4m(2J + 1)/k> (21.7)
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which falls as the CM energy rises. By contrast, in (21.3) we have a cross-section
that rises with CM energy:
o~ E% (21.8)

Moreover, since the amplitude (equation (21.2)) only involves (cos 9)° and
(cos0)! contributions, it is clear that this rise in o is associated with only a few
partial waves, and is not due to more and more partial waves contributing to the
sum in o. Therefore, at some energy E, the unitarity bound will be violated by
this lowest-order (Born approximation) expression for o.

This is the essence of the ‘unitarity disease’ of the current—current model.
To fill in all the details, however, involves a careful treatment of the appropriate
partial wave analysis for the case when all particles carry spin. We shall avoid
those details and instead sketch the conclusions of such an analysis. For massless
Spin-% particles interacting via a V — A interaction we have seen that helicity is
conserved. The net effect of the spin structure is to produce the (1 4 cos 6) factor
in equation (21.2). This embodies the fact that the initial state with J, = —1
(J; quantized along the ™ direction in the CM system) is forbidden by angular
momentum conservation to go to a J, = +1 state at 8 = 7, which is the state
required by the V — A interaction. Extracting this angular-momentum-conserving
kinematic factor, the remaining amplitude can be regarded as that appropriate to
a J = 0, spinless process (since there are no other factors of cos ) so that
f450 ~ GrE>. (21.9)

(S

The unitarity bound (21.6) is therefore violated for CM energies
E > Gp'* ~300GeV. (21.10)

This difficulty with the current—current theory can be directly related to the
fact that the Fermi coupling constant G is not dimensionless. From calculated
decay rates, G is found to have the value (Hagiwara et al 2002) :

Gr ~ 1.16639(1) x 107> GeV 2 (21.11)

and has the dimensions of [M]~2. Given this fact, we can arrive at the form
for the cross-section for v, u~ — Vee™ at high energy without calculation. The
cross-section has dimensions of [L]*> = [M]~2 but must involve Glz: which has
dimension [M]~*. It must also be relativistically invariant. At energies well
above lepton masses, the only invariant quantity available to restore the correct
dimensions to o is s, the square of the CM energy E, so that o ~ GIZ:E 2,

At this point the reader may recall a very similar-sounding argument made
in section 11.8, which led to the same estimate of the ‘dangerous’ energy scale
(21.10). In that case, the discussion referred to a hypothetical ‘four-fermion’
interaction without the V — A structure and it was concerned with renormalization
rather than unitarity. The gamma-matrix structure is irrelevant to these issues,
which ultimately have to do with the dimensionality of the coupling constant in
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Figure 21.2. One-photon annihilation graph forete™ — ptpu~.

both cases. In fact, as we shall see, unitarity and renormalizability are actually
rather closely related.

Faced with this unitarity difficulty, we appeal to the most successful theory
we have, and ask: what happens in QED? We consider an apparently quite similar
process, namely e"e™ — T~ in lowest order (figure 21.2). In chapter 8 the
total cross-section for this process, neglecting lepton masses, was found to be (see
problem 8.19 and equation (9.88))

o = 4na?/3E? (21.12)

which obediently falls with energy as required by unitarity. In this case the
coupling constant «, analogous to G, is dimensionless, so that a factor E? is
required in the denominator to give o ~ [L]?.

If we accept this clue from QED, we are led to search for a theory of weak
interactions that involves a dimensionless coupling constant. Pressing the analogy
with QED further will help us to see how one might arise. Fermi’s current—current
model was, as we said, motivated by the vector currents of QED. But, in Fermi’s
case, the currents interact directly with each other, whereas in QED they interact
only indirectly via the mediation of the electromagnetic field. More formally, the
Fermi current—current interaction has the ‘four-point’ structure

‘Ge(Pr) - () (21.13)
while QED has the ‘three-point’ (Yukawa) structure
CUT A (21.14)

Dimensional analysis easily shows, once again, that [Gg] = M ~2 while [e] =
MO This strongly suggests that we should take Fermi’s analogy further and look
for a weak interaction analogue of (21.14), having the form

GUP W’ (21.15)

where W is a bosonic field. Dimensional analysis shows, of course, that [g] =
MO,

Since the weak currents are, in fact, vector-like, we must assume that the
W fields are also vectors (spin-1) so as to make (21.15) Lorentz invariant. And
because the weak interactions are plainly not long-range, like electromagnetic
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Figure 21.3. One-W™ annihilation graph for v, +p©~ — Ve +¢€7.

ones, the mass of the W quanta cannot be zero. So we are led to postulate the
existence of a massive weak analogue of the photon, the ‘intermediate vector
boson’ (IVB), and to suppose that weak interactions are mediated by the exchange
of IVB’s.

There is, of course, one further difference with electromagnetism, which is

that the currents in B-decay, for example, carry charge (e.g. &ey“(l — )/5)1/;,,c
creates negative charge or destroys positive charge). The ‘companion’ current

carries the opposite charge (e.g. I/’}p]/l,_(l - rys)v,@n destroys negative charge or
creates positive charge), so as to make the total effective interaction charge-
conserving, as required. It follows that the W fields must then be charged, so
that expressions of the form (21.15) are neutral. Because both charge-raising and
charge-lowering currents exist, we need both W7 and W~. The reaction (21.1),
for example, is then conceived as proceeding via the Feynman diagram shown in
figure 21.3, quite analogous to figure 21.2.

Because we also have weak neutral currents, we need a neutral vector boson
as well, 79, In addition to all these, there is the familiar massless neutral vector
boson, the photon. Despite the fact that they are not massless, the W* and Z°
can be understood as gauge quanta, thanks to the symmetry-breaking mechanism
explained in section 19.6. For the moment, however, we are going to follow a
more scenic route and accept (as Glashow did in 1961) that we are dealing with
ordinary ‘unsophisticated’ massive vector particles, charged and uncharged.

21.2 The IVB model
As discussed in section 19.1, the classical wave equation for a massive vector
particle, described by the field W#, is
(D+M$V)W“ —3*9"W, =0 (21.16)
and the propagator (ignoring the i€) is
(g + KK/ MG,)

21.17
e 21.17)

Let us first see how the IVB model relates to the current—current one. Matrix
elements will have the general form (up to constant factors)

2
2.1 (_gp.v +kp,kv/Mw) Ty
g 5 Ja (21.18)
k? — My,
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Figure 21.4. One-W™ exchange process in S-decay.

where jf‘ and j, are certain weak-current matrix elements, and ‘g’ is playing a
role analogous to ‘e’(compare (21.14) and (21.15)). Such a structure will appear
not only for processes such as that shown in figure 21.3 but also for the IVB
version of B-decay shown in figure 21.4.

For typical f-decay energies (and knowing that My ~ 80 GeV!), we
certainly have k2 << M%J so that all k-dependence in the W-propagator (21.18)
can be ignored, and we arrive back at Fermi’s current—current amplitude, with the
important qualitative connection

Gr ~ g%/ M3,. (21.19)

This is a fundamental relation—the exact version of it in the GSW theory is
given in equation (22.29) of chapter 22. It shows us why the Fermi constant has
dimension [rnass]_2 and even, in a sense, why the weak interactions are weak!
They are so (i.e. Gr is ‘small’) principally because My is so large. Indeed,
out of so much apparent dissimilarity between the weak and electromagnetic
interactions, perhaps some simple similarity can, after all, be rescued. Maybe
the intrinsic strengths g and e are roughly equal:

g ~e. (21.20)
This would then lead, via (21.19), to an order-of-magnitude estimate of Mw:
My ~ ¢/ G}/* ~ 90 GeV (21.21)

which is indeed quite close to the true value. This simple idea is essentially
correct: the precise relation between g and e in the GSW theory will be given
in (22.46).

We now investigate whether the IVB model can do any better with unitarity
than the current—current model. The analysis will bear a close similarity to the
discussion of the renormalizability of the model in section 19.1, and we shall take
up that issue again in section 21.4.

21.3 Violation of unitarity bounds in the IVB model

As the section heading indicates, matters will turn out to be fundamentally
no better in the IVB model, but the demonstration is instructive. We begin
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by considering the process (21.1), viewed as proceeding as in figure 21.3, the
amplitude for which we take to be

2 1 — —'uv—i-k'uksz 1 —
i%ﬁ(emﬂu@e% g / )ﬁ(vumﬂu(u).

2 k2 — M? 2

(21.22)

For convenience, the factors of two have been chosen to be those that would

actually appear in the GSW theory in unitary gauge, as will be explained in
section 22.1.2.

We may compare (21.22) with the amplitude for figure 21.2, which is
—ghv
k2

ie*5(e)y,u(e) ( ) u()yvo(p) (21.23)
where k is the 4-momentum of the photon. At first sight, we might conclude that
the high-energy behaviour of (21.22) is going to be considerably ‘worse’ than
that of (21.23) in view of the presence of the k**kV factors in the numerator of
(21.22). However, they turn out to be harmless, as we can see as follows. Using
4-momentum conservation,

ki) y (1 — ys)v(ve) = (pt + pHi(e)yu (1 — ys)v(ve) (21.24)
=u(e)p, (1 — ys)v(ve) + u(e) p; (1 — ys)v(ve).
(21.25)

Using the Dirac equation for the spinors in the forms u(p)(p — m) = 0 and
(p + m)v(p) = O (see problem 4.11), together with {y*, y5} = 0, (21.25)
becomes

mei(e)(1 — y5)v(ve) — myu(e)(l + ys)v(ve). (21.26)

A similar result holds for the k¥ factor; thus the k*k" factors have disappeared.
Indeed, neglecting the lepton masses by comparison with My, the effect of the
IVB is simply to replace the photon propagator —g¥/k* by —gh/(k* — M\%V).
It was this photon propagator which was really responsible, in a dynamical sense,
for the fall with energy of the QED cross-section (21.12) and hence we conclude
that, at least for this process, the IVB modification of the four-fermion model does
avoid the violation of unitarity in lowest order.

Does the IVB modification ensure that the unitarity bounds are not violated
for any Born (i.e. tree-graph) process? The answer is no. The unitarity-violating
processes turn out to be those involving external W particles (rather than internal
ones, as in figure 21.3). Consider, for example, the process

vy Uy —> W W (21.27)

proceeding via the graph shown in figure 21.5. The fact that this is experimentally
a somewhat esoteric reaction is irrelevant for the subsequent argument: the
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Figure 21.5. 1~ -exchange graph for v, + v, — Wt +w—,

proposed theory, represented by the IVB modification of the four-fermion model,
will necessarily generate the amplitude shown in figure 21.5, and since this
amplitude violates unitarity, the theory is unacceptable. The amplitude for this
process is proportional to

Moy = 826, (ko M)e ™ (ki 1) (p2)y™ (1 — ys)

-+
ngf:%%ffggﬂﬂ(l—Jsﬁdpn (21.28)
"

where the ¢* are the polarization vectors of the W’s: e;* (ka, Ap) is that associated
with the outgoing W~ with 4-momentum k, and polarization state Ay, and
similarly for €, *.

To calculate the total cross-section, we must form |/\/l|2 and sum over the
three states of polarization for each of the W’s. To do this, we need the result

Y ek, Merk, 1) = —guy + kuky /My (21.29)
1=0,%+1

already given in (19.19). Our interest will, as usual, be in the high-energy
behaviour of the cross-section, in which regime it is clear that the &k, k, / M\%v term
in (21.29) will dominate the g,,, term. It is therefore worth looking a little more
closely at this term. From (19.17) and (19.18) we see that in a frame in which
k* = (k°,0,0, |K|), the transverse polarization vectors €*(k, A = +£1) involve
no momentum dependence, which is, in fact, carried solely in the longitudinal
polarization vector € (k, A = 0). We may write this as

et M
ek, h = 0) = w

~ 4 TV 1k 21.30
My Tk T (2130)

which at high energy tends to k" /My . Thus, it is clear that it is the longitudinal
polarization states which are responsible for the k*k" parts of the polarization
sum (12.21), and which will dominate real production of W’s at high energy.
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Concentrating therefore on the production of longitudinal W’s, we are led to
examine the quantity

g4

m Telk2 (1 = y5)(py — KDk p K1 (py — kDKo p,) (21.31)

where we have neglected m,, commuted the (I — y5) factors through, and
neglected neutrino masses in forming Zspins | Moo|?. Retaining only the leading
powers of energy, we find (see problem 21.2) that

> " IMool* ~ (g% /M) (p1 - k2) (p2 - ka) = (g% /M) E*(1 — cos® ) (21.32)

spins

where E is the CM energy and 6 the CM scattering angle. Recalling (21.19), we
see that the (unsquared) amplitude must behave essentially as G E2, precisely as
in the four-fermion model (equation (21.2)). In fact, putting all the factors in, one
obtains (Gastmans 1975)

do » E 25in% 6

a@ = F 8x?
and, hence, a total cross-section which rises with energy as E2, just as before.
The production of longitudinal polarized W’s is actually a pure J = 1 process
and the J = 1 partial wave amplitude is

(21.33)

fi = GRE? /6. (21.34)

The unitarity bound |fi| < 1 is therefore violated for E > (6/Gg)!/ 2~
10° GeV (cf (21.10)).

Other unitarity-violating processes can easily be invented, and we have to
conclude that the IVB model is, in this respect, no more fit to be called a theory
than was the four-fermion model. In the case of the latter, we argued that the root
of the disease lay in the fact that G was not dimensionless, yet somehow this was
not a good enough cure after all: perhaps (it is indeed so) ‘dimensionlessness’ is
necessary but not sufficient (see the following section). Why is this? Returning
to My, .5, for v — WHTW™ (equation (21.28)) and setting €, = k, /M for the
longitudinal polarization vectors, we see that we are involved with an effective

amplitude 2 A
—v 1—ys)———k (1 — . 21.35
"2, v(p2)ka( 1/5)(p1 — kl)zkl( ys)u(p1) (21.35)

Using the Dirac equation p,u(p1) = 0 and P12 = 0, this can be reduced to

2

— &S (pka(1 = ys)u(py). (21.36)
MW

We see that the longitudinal €’s have brought in the factors M, =2, which are
‘compensated’ by the factor ¥, and it is this latter factor which causes the rise
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Figure 21.6. Lowest-order amplitudes for ete™ — yy: (a) direct graph, (b) crossed
graph.

with energy. The longitudinal polarization states have effectively reintroduced a
dimensional coupling constant g/ M.

Once more we turn in our distress to the trusty guide, QED. The analogous
electromagnetic process to consider is e" e~ — yy. In QED there are two graphs
contributing in lowest order (the ‘crossed’ versions of figure 8.14). These are
shown in figures 21.6(a) and (b). The fact that there are two rather than one will
turn out to be significant, as we shall see in section 21.4. For the moment we
just concentrate on figure 21.6(a) which is directly analogous to the diagram for
vb — WTW™. The amplitude for this diagram is the same as before except that
(1 — ys)/2 is replaced by 1, g/2'/2 by e and the € vectors now refer to photons:

MMVU“(M)o (21.37)

My s, = €€ (ka, Ma)e (ki A)D
g = €€, (ka, k)€ (ki, A)V(p2)y (1 — k)% —m?

In the cross-section we would need to sum over the photon polarization states.
For the massive spin-1 particles, we used

> eulk, ek, A) = —guy + kyuky /M3y (21.38)
A

and so we would need the analogue of this result for massless photons. This is a
non-trivial point. Clearly the answer is not to take the My — 0 limit of (21.38),
since this diverges. However, the ‘dangerous’ term k. .k, / M%J arises entirely from
the longitudinal polarization vectors, and we learnt in section 7.3 that, for real
photons, the longitudinal state of polarization is absent altogether! We might well
suspect, therefore, that since it was the longitudinal W’s that caused the ‘bad’
high-energy behaviour of the IVB model, the ‘good’ high-energy behaviour of
QED might have its origin in the absence of such states for photons. And this
circumstance can, in its turn, be traced (cf section 7.3.1) to the gauge invariance
property of QED.

Indeed, in section 8.6.3 we saw that in the analogue of (21.38) for photons
(this time involving only the two transverse polarization states), the right-hand
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side could be taken to be just —g,,,, provided that the Ward identity (8.165) held,
a condition directly following from gauge invariance.

We have arrived here at an important theoretical indication that what we
really need is a gauge theory of the weak interactions, in which the W’s are gauge
quanta. It must, however, be a peculiar kind of gauge theory, since normally
gauge invariance requires the gauge field quanta to be massless. However, we
have already seen how this ‘peculiarity’ can indeed arise, if the local symmetry
is spontaneously broken (chapter 19). But before proceeding to implement
that idea in the GSW theory, we discuss one further disease (related to the
unitarity one) possessed by both current—current and IVB models—that of non-
renormalizability.

21.4 The problem of non-renormalizability in weak interactions

The preceding line of argument about unitarity violations is open to the following
objection. It is an argument conducted entirely within the framework of
perturbation theory. What it shows, in fact, is simply that perturbation theory
must fail in theories of the type considered at some sufficiently high energy. The
essential reason is that the effective expansion parameter for perturbation theory
isE G}]:/ 2. Since E Gll:/ ? becomes large at high energy, arguments based on lowest-
order perturbation theory are irrelevant. The objection is perfectly valid, and
we shall take account of it by linking high-energy behaviour to the problem of
renormalizability, rather than unitarity. We might, however, just note in passing
that yet another way of stating the results of the previous two sections is to say
that, for both the current—current and IVB theories, ‘weak interactions become
strong at energies of order 1 TeV’.

We gave an elementary introduction to renormalization in chapters 10 and
11 of volume 1. In particular, we discussed in some detail, in section 11.8, the
difficulties that arise when one tries to do higher-order calculations in the case of
a four-fermion interaction with the same form (apart from the V — A structure)
as the current—current model. Its coupling constant, which we called G, also
had dimension (mass) 2. The ‘non-renormalizable’ problem was essentially that,
as one approached the ‘dangerous’ energy scale (21.10), one needed to supply
the values of an ever-increasing number of parameters from experiment and the
theory lost predictive power.

Does the IVB model fare any better? In this case, the coupling constant is
dimensionless, just as in QED. ‘Dimensionlessness’ alone is not enough, it turns
out: the IVB model is not renormalizable either. We gave an indication of why
this is so in section 19.1 but we shall now be somewhat more specific, relating the
discussion to the previous one about unitarity.

Consider, for example, the fourth-order processes shown in figure 21.7 and
21.8—the former for the QED process ete~™ — ete™ via an intermediate 2y
state, the latter for the IVB-mediated process v, v, — v,V,. It seems plausible
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Figure 21.7. 0(64) contributions to ete™ — ete™.

Figure 21.8. 0(g4) contribution to vy vy — vy V.

from the diagrams that, in each case, the amplitudes must be formed by somehow
‘sticking together’ two of the lower-order graphs shown in figures 21.5 and 21.6.!
Accepting this for the moment, and knowing that ultraviolet divergences of loop
graphs originate in the high-k behaviour of their integrands, we are led to compare
the high-energy behaviour of the process ete™ — yy, on the one hand, and
v,V — WHTW™, on the other. This is exactly the comparison we were making
in the previous section, but now we have arrived at it from considerations of
renormalizability, rather than unitarity.

Indeed, we saw in section 20.3 that the high-energy behaviour of the
amplitude v — WTW~ (figure 21.5) grew as E2, due to the k dependence of the
longitudinal polarization vectors, and this turns out to produce, via figure 21.8, a
non-renormalizable divergence, for the reason indicated in section 19.1—namely,
the ‘bad’ behaviour of the k*k"/ M\%v factors in the W-propagators, at large k.

So it is plain that, once again, the blame lies with the longitudinal
polarization states for the W’s. Let us see how QED—a renormalizable theory—
manages to avoid this problem. In this case, it seems clear from inspection
of figure 21.7 that there are two graphs corresponding to figure 21.5, namely
figures 21.6(a)and (b), already discussed in the previous section. Consider,
therefore, mimicking for figures 21.6(a) and (b) the calculation we did for
figure 21.4. We would obtain the leading high-energy behaviour by replacing the

' The reader may here usefully recall the discussion of unitarity for one-loop graphs in section 13.5.3.

Copyright 2004 IOP Publishing Ltd



v v

Figure 21.10. Four-point vv vertex.

photon polarization vectors by the corresponding momenta and it can be checked
(problem 21.5) that when this replacement is made for each photon the complete
amplitude for the sum of figures 21.6(a) and (b) vanishes.

In physical terms, of course, this result was expected, since we knew in
advance that it is always possible to choose polarization vectors for real photons
such that they are purely transverse, so that no physical process can depend on a
part of €, proportional to k. Nevertheless, the calculation is highly relevant to
the question of renormalizing figure 21.7. The photons in this process are not real
external particles but are instead virtual, internal ones. This has the consequence
that we should, in general, include their longitudinal (e, o k,) states as well
as the transverse ones (see section 13.5.3 for something similar in the case of
unitarity for one-loop diagrams). The calculation of problem 21.3 then suggests
that these longitudinal states are harmless, provided that both contributions in
figure 21.6 are included.

Indeed, the sum of these two contributions is not divergent. 1If it were,
an infinite counter term proportional to a four-point vertex ete~ — ete~
(figure 21.9) would have to be introduced and the original QED theory, which of
course lacks such a fundamental interaction, would not be renormalizable. This
is exactly what does happen in the case of figure 21.8. The bad high-energy
behaviour of v — W1W™ translates into a divergence of figure 21.8—and
this time there is no ‘crossed’ amplitude to cancel it. This divergence entails the
introduction of a new vertex, figure 21.10, not present in the original [IVB theory.
Thus, the theory without this vertex is non-renormalizable—and if we include it,
we are landed with a four-field point-like vertex which is non-renormalizable, as
in the Fermi (current—current) case.

Our presentation hitherto has emphasized the fact that, in QED, the bad high-
energy behaviour is rendered harmless by a cancellation between contributions
from figures 21.6(a) and (b) (or figures 21.7(a) and (b)). Thus, one way to ‘fix’
the IVB theory might be to hypothesize a new physical process to be added to
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figure 21.5 in such a way that a cancellation occurred at high energies. The
search for such high-energy cancellation mechanisms can, indeed, be pushed to a
successful conclusion, given sufficient ingenuity and, arguably, a little hindsight.
However, we are in possession of a more powerful principle. In QED, we
have already seen (section 8.6.2) that the vanishing of amplitudes when an €,
is replaced by the corresponding k,, is due to gauge invariance: in other words,
the potentially harmful longitudinal polarization states are, in fact, harmless in a
gauge-invariant theory.

We have therefore arrived once more, after a somewhat more leisurely
discussion than that of section 19.1, at the idea that we need a gauge theory of
massive vector bosons, so that the offending k*k" part of the propagator can be
‘gauged away’ as in the photon case. This is precisely what is provided by the
‘spontaneously broken’ gauge theory concept, as developed in chapter 19. There
we saw that, taking the U(1) case for simplicity, the general expression for the
gauge boson propagator in such a theory (in a 't Hooft gauge) is

. (1 — &)kMkY
1|:—g + §§M2 :|/(k2 M3, +ie) (21.39)

where £ is a gauge parameter. Our IVB propagator corresponds to the £ — o0
limit and with this choice of &, all the troubles we have been discussing appear to
be present. But for any finite & (for example £ = 1) the high-energy behaviour of
the propagator is actually ~ 1/k?, the same as in the renormalizable QED case.
This strongly suggests that such theories—in particular non-Abelian ones—are,
in fact, renormalizable. 't Hooft’s proof that they are ("t Hooft 1971b) triggered an
explosion of theoretical work, as it became clear that, for the first time, it would be
possible to make higher-order calculations for weak interaction processes using
consistent renormalization procedures of the kind that had worked so well for
QED.

We now have all the pieces in place, and can proceed to introduce the GSW
theory based on the local gauge symmetry of SU(2) x U(1).

Problems

21.1

(a) Using the representation for ¢, 8 and y5 introduced in section 20.4 (equation
(20.38)), massless particles are described by spinors of the form

u=E"? ( er ) (normalized to ulu = 2F)

where o - PP+ = +¢1, p = p|p|. Find the explicit form of u for the case
P = (sind, 0, cos ).
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(b) Consider the process v, + = — Ve + €7, discussed in section 21.1, in the
limit in which all masses are neglected. The amplitude is proportional to

Geo(u, R)yu (1 — ys)u(u™, Lyi(e™, L)y* (1 = y5)v(ve, R)

where we have explicitly indicated the appropriate helicities R or L (note
that, as explained in section 20.4, (1 — y5)/2 is the projection operator for a
right-handed anti-neutrino). In the CM frame, let the initial ©~ momentum
be (0, 0, E) and the final e~ momentum be E(sin 8, 0, cos 8). Verify that the
amplitude is proportional to G E2(14-cos #). (Hint: evaluate the ‘easy’ part
(V) yu (1 — ys)u(u™) first. This will show that the components u = 0, z
vanish, so that only the 4 = x, y components of the dot product need to be
calculated.)

21.2 Verify equation (21.32).

21.3 Check that when the polarization vectors of each photon in figures 21.6(a)
and (b) is replaced by the corresponding photon momentum, the sum of these two
amplitudes vanishes.
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22

THE GLASHOW-SALAM-WEINBERG GAUGE
THEORY OF ELECTROWEAK INTERACTIONS

Given the preceding motivations for considering a gauge theory of weak
interactions, the remaining question is this: what is the relevant symmetry group
of local phase transformations, i.e. the relevant weak gauge group? Several
possibilities were suggested, but it is now very well established that the one
originally proposed by Glashow (1961), subsequently treated as a spontaneously
broken gauge symmetry by Weinberg (1967) and by Salam (1968), and later
extended by other authors, produces a theory which is in remarkable agreement
with currently known data. We shall not give a critical review of all the
experimental evidence but instead proceed directly to an outline of the GSW
theory, introducing elements of the data at illustrative points.

22.1 Weak isospin and hypercharge: the SU(2) x U(1) group of the
electroweak interactions: quantum number assignments and W and
Z masses

An important clue to the symmetry group involved in the weak interactions is
provided by considering the transitions induced by these interactions. This is
somewhat analogous to discovering the multiplet structure of atomic levels and
hence the representations of the rotation group, a prominent symmetry of the
Schrodinger equation, by studying electromagnetic transitions. However, there
is one very important difference between the ‘weak multiplets’ we shall be
considering and those associated with symmetries which are not spontaneously
broken. We saw in chapter 12 how an unbroken non-Abelian symmetry leads
to multiplets of states which are degenerate in mass, but in section 17.1 we
learned that that result only holds provided the vacuum is left invariant under
the symmetry transformation. When the symmetry is spontaneously broken, the
vacuum is not invariant and we must expect that the degenerate multiplet structure
will then, in general, disappear completely. This is precisely the situation in the
electroweak theory.

Nevertheless, as we shall see, essential consequences of the weak symmetry
group—specifically, the relations it requires between otherwise unrelated masses
and couplings—are accessible to experiment. Moreover, despite the fact that
members of a multiplet of a global symmetry which is spontaneously broken
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will, in general, no longer have even approximately the same mass, the concept
of a multiplet is still useful. This is because when the symmetry is made a
local one, we shall find (in sections 22.2 and 22.3) that the associated gauge
quanta still mediate interactions between members of a given symmetry multiplet,
just as in the manifest local non-Abelian symmetry example of QCD. Now, the
leptonic transitions associated with the weak charged currents are, as we saw
in chapter 20, v < e,v, < p etc. This suggests that these pairs should be
regarded as doublets under some group. Further, we saw in section 20.10 how
weak transitions involving charged quarks suggested a similar doublet structure
for them also. The simplest possibility is therefore to suppose that, in both cases, a
‘weak SU(2) group’ called ‘weak isospin’, is involved. We emphasize once more
that this weak isospin is distinct from the hadronic isospin of chapter 12, which is
part of SU(3)s. We use the symbols #, #3 for the quantum numbers of weak isospin
and make the following specific assignments for the leptonic fields:

1 B=+4+1/2 Ve Vi Dz
== o A Al
2 n=-1/2 e L 73 L T L
(22.1)
where e, = %(1 — ¥s)é etc, and for the quark fields

> {ntne (), (9) (5)
t= - _ A . n . (22.2)
2 Bn=-1/2 d ), )L b )L

As discussed in section 20.4, the subscript ‘L’ refers to the fact that only the
left—handed chiral components of the fields enter as a consequence of the V. — A
structure. For this reason, the weak isospin group is referred to as SU(2)L,
to show that the weak isospin assignments and corresponding transformation
properties apply only to these left—-handed parts: for example, under an SU(2)L,

transformation )
< e ) =exp(—ia-t/2)( e ) . (22.3)
e L e L

Note that, as anticipated for a spontaneously broken symmetry, these doublets all
involve pairs of particles which are not mass degenerate. In (22.2), the prime
indicates that these fields are quantum-mechanical superposition of the fields
d , §, ¢ which are classified by their sfrong interaction quantum numbers. This is a
generalization to 3 x 3 mixing of the 2 x 2 GIM mixing introduced in section 20.10,
and it will be discussed further in section 22.7.1. For the moment, we ignore the
corresponding mixing in the neutrino sectors but return to it in section 22.7.2.
Making this SU(2)L into a local phase invariance (following the logic of
chapter 13) will entail the introduction of three gauge fields, transforming as a
t = 1 multiplet (a triplet) under the group. Because (as with the ordinary SU(2)¢
of hadronic isospin) the members of a weak isodoublet differ by one unit of
charge, the two gauge fields associated with transitions between doublet members
will have charge +1. The quanta of these fields will, of course, be the now
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familiar WE bosons mediating the charged current transitions, and associated with
the weak isospin raising and lowering operators t+. What about the third gauge
boson of the triplet? This will be electrically neutral, and a very economical and
appealing idea would be to associate this neutral vector particle with the photon—
thereby unifying the weak and electromagnetic interactions. A model of this kind
was originally suggested by Schwinger (1957). Of course, the W’s must somehow
acquire mass, while the photon remains massless. Schwinger arranged this by
introducing appropriate couplings of the vector bosons to additional scalar and
pseudoscalar fields. These couplings were arbitrary and no prediction of the W
masses could be made. We now believe, as emphasized in section 21.4, that
the W mass must arise via the spontaneous breakdown of a non-Abelian gauge
symmetry and, as we saw in section 19.6, this does constrain the W mass.

Apart from the question of the W mass in Schwinger’s model, we now know
(see chapter 20) that there exist neutral current weak interactions, in addition
to those of the charged currents. We must also include these in our emerging
gauge theory, and an obvious suggestion is to have these currents mediated by the
neutral member WO of the SU(2),. gauge field triplet. Such a scheme was indeed
proposed by Bludman (1958), again pre-Higgs, so that W masses were put in ‘by
hand’. In this model, however, the neutral currents will have the same pure left—
handed V — A structure as the charged currents; but, as we saw in chapter 20,
the neutral currents are not pure V — A. Furthermore, the attractive feature of
including the photon, and thus unifying weak and electromagnetic interactions,
has been lost.

A key contribution was made by Glashow (1961); similar ideas were
also advanced by Salam and Ward (1964). Glashow suggested enlarging the
Schwinger-Bludman SU(2) schemes by inclusion of an additional U(1) gauge
group, resulting in an ‘SU(2)L x U(1)’ group structure. The new Abelian U(1)
group is associated with a weak analogue of hypercharge—‘weak hypercharge’—
justas SU(2)L, was associated with ‘weak isospin’. Indeed, Glashow proposed that
the Gell-Mann-Nishijima relation for charges should also hold for these weak
analogues, giving

eQ=e(tz3+y/2) (22.4)

for the electric charge Q (in units of ¢) of the #3 member of a weak isomultiplet,
assigned a weak hypercharge y. Clearly, therefore, the lepton doublets, (ve, e™)
etc then have y = —1, while the quark doublets (u, dc) etc have y = +%. Now,
when this group is gauged, everything falls marvellously into place: the charged
vector bosons appear as before but there are now rwo neutral vector bosons, which
between them will be responsible for the weak neutral current processes and for
electromagnetism. This is exactly the piece of mathematics we went through
in section 19.6, which we now appropriate as an important part of the Standard
Model.

For convenience, we reproduce here the main results of section 19.6. The
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Higgs field ¢ is an SU(2) doublet

= < ?; ) (22.5)
with an assumed vacuum expectation value (in unitary gauge) given by
wdo =,z ) (226)
v/V2
Fluctuations about this value are parametrized in this gauge by
N 0
¢=< L@+ ) ) (22.7)

where H is the (physical) Higgs field. The Lagrangian for the sector consisting
of the gauge fields and the Higgs fields is

~ 1 A ~
V-FMU—ZGWG’“’ (22.8)

4>|~

Loo = (Dud) (D"¢) + u’¢'d — —(¢ ) —

where F wv 1s the SU(2) field strength tensor (19.81) for the gauge fields VAVM,
Guv is the U(1) field strength tensor (19.82) for the gauge field B*, and B“(f& is

given by (19.80). After symmetry breaking (i.e. the insertion of (22.7) in (22.8))
the quadratic parts of (22.8) can be written in unitary gauge as (see problem 19.9)
£l = Yoot - 2 @29)

— 2@ Wiy — 3 W) @ WY — 9" W) + §g2v? Wy, Wi (22.10)

— Z(aﬂqu — BUWZM)(B"Wz -9 W2 ) + gg vszﬂWz" (22.11)

— Y02y — 0,2,) (012" — 9V 21 + = (g + 82, 2" (22.12)
—Lp, B (22.13)
where . . .

Z" = cos bw W3 — sin by B* (22.14)
A" = sinGw W1 + cos by B* (22.15)

and
W= gAY — gY AR (22.16)

with
costy = g/(g* +gH"*  sinow =g'/(g* + ¢ (22.17)
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Table 22.1. Weak isospin and hypercharge assignments.

t 3 y 0
VeL. VuL» VoL 12 172 -1 0
VeR» VMR, ViR 0 0 0 0
er. UL, T 12 —-1/2 -1 -1
R, MR, TR 0 0 -2 —1
ur, cL, tL 12 12 13 2/3
UR, CR. tR 0 0 4/3 2/3
d:L, s’/L, b; 12 —1/2 13 —-1/3
dli, sk. bR 0 0 -2/3  —1/3
) 12 12 1 1
#° 12 -1/2 1 0

Feynman rules for the vector boson propagators (in unitary gauge) and couplings,
and for the Higgs couplings, can be read off from (22.8), and are given in
appendix Q.

Equations (22.9)-(22.13) give the tree-level masses of the Higgs boson and
the gauge bosons: (22.9) tells us that the mass of the Higgs boson is

my = 21 = V2 (22.18)

where v/ V2 is the (tree-level) Higgs vacuum value; (22.10) and (22.11) show that
the charged W’s have a mass

where g is the SU(2). gauge coupling constant; (22.12) gives the mass of the Z°
as
Mz = Mw / cos bw (22.20)

and (22.13) shows that the A" field describes a massless particle (to be identified
with the photon).

Still unaccounted for are the right—handed chiral components of the fermion
fields. There is, at present, no evidence for any weak interactions coupling
to the right-handed field components and it is therefore natural—and a basic
assumption of the electroweak theory—that all ‘R’ components are singlets under
the weak isospin group. Crucially, however, the ‘R’ components do interact via
the U(1) field B¥: it is this that allows electromagnetism to emerge free of parity-
violating ys terms, as we shall see. With the help of the weak charge formula
(equation (22.4)), we arrive at the assignments shown in table 22.1.

We have included ‘R’ components for the neutrinos in the table. It is,
however, fair to say that in the original Standard Model the neutrinos were taken
to be massless, with no neutrino mixing. We have seen in chapter 20 that it is
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for many purposes an excellent approximation to treat the neutrinos as massless,
except when discussing experimental situations specifically sensitive to neutrino
oscillations. We shall mention their masses again in section 22.7.2, but for the
moment we proceed in the ‘massless neutrinos’ approximation. In this case, there
are no ‘R’ components for neutrinos.

22.2 The leptonic currents (massless neutrinos): relation to
current—current model

We write the SU(2);, x U(1) covariant derivative in terms of the fields W' and B*
of section 19.6 as

D" = 3" +igr -W"/2 +ig'yB"/2  on°‘L SU(2)doublets  (22.21)

and as
D" =9t +ig'yB"/2 on ‘R’ SU(2) singlets. (22.22)

The leptonic couplings to the gauge fields therefore arise from the ‘gauge-
covariantized’ free leptonic Lagrangian:

Liepo= Y Ipiblp+ Y IiBlk (22.23)

f=e.u,t f=e,u,t

where the f 7L are the left-handed doublets

> Dy
le = ~ 22.24
fL < 7 )L ( )

and f fR are the singlets feR = ¢R efc.

Consider, first, the charged leptonic currents. The correct normalization for

the charged fields is that WhH = (Vi/f‘ — ﬂ/i/f )/+/2 destroys the W+ or creates the
W~ (cf(7.15)). The ‘T - W/Z’ terms can be written as

T W= L :”(W{‘ mLLL/ R +1W;)} +2

V2 V2 V2 2

where 71+ = (71 £ i12)/2 are the usual raising and lowering operators for the
doublets. Thus, the ‘ f = e’ contribution to the first term in (22.23) picks out the
process e~ — v + W™ for example, with the result that the corresponding vertex
is given by

Wy (22.25)

g u0-y
V2 2

The ‘universality’ of the single coupling constant ‘g’ ensures that (22.26) is also
the amplitude for the 4 — v, — W and T — v, — W vertices. Thus the amplitude

(22.26)
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Figure 22.1. W-exchange process in vy, +e~ — pu™ + ve.

for the v, + e~ — u~ + ve process considered in section 20.8 is

38 iy, L9 IS TR e L (A=)
V2 2 . k2 — Mg, V202

u(e)

(22.27)
corresponding to the Feynman graph of figure 22.1.
For k* « M\%v we can replace the W-propagator by the constant value
gtv/ M%v, leading to the amplitude

)

8 )y (1 —ys)uy)ia(ve)y* (1 — ys)u(e) (22.28)
2

8M3,

which may be compared with the form we used in the current—current theory,
equation (20.93). This comparison gives

Gr g’
— = 22.29
V2 8Mg, (2229

This is an important equation giving the precise version, in the GSW theory, of
the qualitative relation (21.19) introduced earlier.
Putting together (22.19) and (22.29), we can deduce

Ge/V2 =1/2v%) (22.30)

so that from the known value (21.11) of GF, there follows the value of v:
v >~ 246 GeV. (22.31)

Alternatively, we may quote v/+/2 (the vacuum value of the Higgs field):
v/~/2 >~ 174 GeV. (22.32)

This parameter sets the scale of electroweak symmetry breaking, but as yet no
theory is able to predict its value. It is related to the parameters A, i of (22.8) by
v/v/2 = V2 /2% (cf (17.98)).
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In general, the charge-changing part of (22.23) can be written as

g | ,d—ys) L% (I=ys5) .|
—E{Veyu > L+ Dry” 5 ¢ W

+ Hermitian conjugate (22.33)

~

Dyt

n (I—ys)
e+ 5

where WH = (W' — iW}")/+/2. (22.33) has the form
—fgc(leptons) W, — jgg(leptons) WZ (22.34)

where the leptonic weak charged current fgc(leptons) is precisely thatused in
the current—current model (equation (20.81)), up to the usual factors of g’s and
V/2’s. Thus the dynamical symmetry currents of the SU(2); gauge theory are
exactly the ‘phenomenological’ currents of the earlier current—current model. The
Feynman rules for the lepton—W couplings (appendix Q) can be read off from
(22.33).

Turning now to the leptonic weak neutral current, this will appear via the
couplings to the Z°, written as

— jh(leptons) Z". (22.35)

Referring to (22.14) for the linear combination of Wé‘ and B* which represents
Z“, we find (problem 22.1) that

0 8 -~ 1 1 - Vs .2 ~
Jnc(leptons) = 05 b Xl: 2% |:t3 <T) — sin 9WQli| Y (22.36)

where the sum is over the six lepton fields ve,e™, vy, ..., 7. Forthe Q = 0
neutrinos with 13 = +1,

_ 1—
Zﬁn/“( )5, (22.37)

fﬁc(neutrinos) = 3
/

8
2 cos Ow

where now [ = e, i, 7. For the other (negatively charged) leptons, we shall have
both L and R couplings from (22.36), and we can write

> 7 1—ys 1+y5\]+
! _(charged leptons) = —5— iy |l LT g
]NC(C arged leptons) o~ Z y© e ) + cr 5

Ow
l=e,u,7
(22.38)
where
i =1t —sin’ wQ; = —% +sin® w (22.39)
ck = —sin? Ow Q) = sin’ fyy. (22.40)
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Figure 22.2. Zo-exchange processine” u~ —e U .

As noted earlier, the Z° coupling is not pure ‘V — A’. These relations (22.37)—
(22.40) are exactly the ones given earlier, in (20.126)—(20.128); in particular,
the couplings are independent of ‘/” and hence exhibit lepton universality. The
alternative notation

i (charged leptons) = —& yi(gl — gl ys)i 22.41
JNc(charged leptons) ZCOSQW; r"(8y = gars) (22.41)

is often used, where
gy =—1+2sinfoy gl =-1 (22.42)

Note that g{, vanishes for sin” Oy = 0.25. Again, the Feynman rules for lepton-Z
couplings (appendix Q) are contained in (22.37) and (22.38).

As in the case of W-mediated charge-changing processes, Z’-mediated
processes reduce to the current—current form at low k2. For example, the
amplitude for e~ = — e~ via Z° exchange (figure 22.2) reduces to

)
ig?
- mu(e)m[ci(l — ¥5) 4 ch(1 4 ys5)lu(e)
X (Y16 (1 = y5) + L+ ys)lu(u). (22.43)

It is customary to define the parameter
p = MZ, /(M2 cos® bw) (22.44)

which is unity at tree level (see (22.20)) in the absence of loop corrections. The
ratio of factors in front of the u...u expressions in (22.43) and (22.28) (i.e.
‘neutral current process’/‘charged current process’) is then 2p.

We may also check the electromagnetic current in the theory, by looking for
the piece that couples to AM. We find that

e = —gsinbw 3 Iy (22.45)
l=e,u,7
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which allows us to identify the electromagnetic charge e as
e = gsinfy (22.46)

as already suggested in (19.98) of chapter 19. Note that all the y5’s cancel from
(22.45), as is of course required.

22.3 The quark currents

The charge-changing quark currents which are coupled to the W* fields have a
form very similar to that of the charged leptonic currents, except that the 13 = —%
components of the L-doublets have to be understood as the flavour-mixed (weakly
interacting) states

dA ! Ve Vus Vb dA
»i/ = Ved Vs Veb s s (22.47)
b’ L Ve Vs Vo b /.

where d,§ and b are the strongly interacting fields with masses mgq, ms and
myp and the V-matrix is the Cabibbo-Kobayashi—-Maskawa matrix (Cabibbo
1963, Kobayashi and Maskawa 1973) which generalizes the 2 x 2 GIM mixing
introduced in section 20.10. We shall discuss this matrix further in section 22.7.1.
Thus, the charge-changing weak quark current is

jbo(quarks) = = 1ay

V2
(22.48)
which generalizes (20.131) to three generations and supplies the factor g/~/2, as
for the leptons.

The neutral currents are diagonal in flavour if the matrix V is unitary (see
also section 22.7.1). Thus fﬁc(quarks) will be given by the same expression as
(20.144), except that now the sum will be over all six quark flavours. The neutral
weak quark current is thus

8 Py M(l _J/S) 7 A H(l _J/S)/\/ - H(l _)/5) ~y
- - t -
{ ) +cy 2 s +ty 3

" = 1 —=ys) (I+ys)] .
Jic(quarks) = —=-— ;qy“ [c{i T TR |4 (2249)
where
of =1 —sin® 0w Qy (22.50)
ch = —sin*6wQ,. (22.51)

These expressions are exactly as given in (20.144)—(20.146). As for the charged
leptons, we can alternatively write (22.49) as

g ~ n q q ~
— 22.52
3 cos b Eq qv"(gy — &pAY5)4 ( )

flﬁc (quarks) =
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where
gl =1t —2sin’ 6w Q, (22.53)
gl =l (22.54)

Before proceeding to discuss some simple phenomenological consequences,
we note one important feature of the Standard Model currents in general. Reading
(22.1) and (22.2) together ‘vertically’, the leptons and quarks are grouped in
three families, each with two leptons and two quarks. The theoretical motivation
for such family grouping is that anomalies are cancelled within each complete
family. Anomalies were discussed in section 18.4. While they can be tolerated in
global (non-gauged) currents—and indeed we saw that an anomaly in the strong
isospin current is responsible for 70 — yy decay—they must cancel in the
symmetry currents of a gauge theory or else renormalizability is destroyed. The
condition that anomalies cancel in the gauged currents of the Standard Model is a
remarkably simple one (Ryder 1996, p 384):

Ne(Qu+ Qd) + Q. =0 (22.55)

where N, is the number of colours and Q,, Q4 and Q. are the charges (in units
of e) of the ‘u’, ‘d’ and ‘e’ type fields in each family. Clearly (22.55) is true for
the families in (22.1) and (22.2) and indicates a remarkable connection, at some
deep level, between the facts that quarks occur in three colours and have charges
which are 1/3 fractions. The Standard Model provides no explanation of this
connection.

22.4 Simple (tree-level) predictions

We noted in section 20.9 that, before the discovery of the W and Z particles, the
then known data were consistent with a single value of Oy given (using a modern
value) by sin? Ow ~ 0.23. Using (22.29) and (22.46), we may then predict the

value of Mw:
12 37.28
My = [ =2 — ~ 20 Gev ~ 7773 GeV. (22.56)
V2Gg sinfw  sinfw
Similarly, using (22.20) we predict
Mz = Mw / cos 6w =~ 88.58 GeV. (22.57)

These predictions of the theory (at lowest order) indicate the power of the
underlying symmetry to tie together many apparently unrelated quantitities, which
are all determined in terms of only a few basic parameters.
The width for W~ — e~ + V. can be calculated using the vertex (22.26),
with the result (problem 22.2)
1 g2 Gp M3

W~ TPe) = — My = — —¥ ~ 205 MeV 22.58
W= ebe) = 1 g MV = 51 ¢ (228)
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Figure 22.3. Neutrino—electron graphs involving Z0 exchange.

using (22.56). The widths to ©~ vy, T~ v, are the same. Neglecting GIM-type
flavour mixing among the two energetically allowed quark channels ud and cs,
their widths would also be the same, apart from a factor of three for the different
colour channels. The total W width for all these channels will therefore be about
1.85 GeV, while the branching ratio for W — ev is

B(ev) = I'(W — ev)/[(total) ~ 11%. (22.59)

In making these estimates we have neglected all fermion masses.
The width for Z° — v can be found from (22.58) by replacing g/2'/? by
g/2 cosbw, and Mw by Mz, giving

_ 1 g2 Mz Gp M3
rz° ——5 72 _ P77 ~152MeV 22.60
(@ = ) = S i cos 0w 2172 1on © (22.60)

using (22.57). Charged lepton pairs couple with both c£ and c{Q terms, leading
(with neglect of lepton masses) to

-— . 22.61
6 47 cos? By ( )

[2 2 2
- M,
F(ZO 1) = (M) 8 z

The values ¢f = 1, ck = 0 in (22.61) reproduce (22.60). With sin® 6y =~ 0.23,
we find that .
rz° — 1) ~ 76.5 MeV. (22.62)

Quark pairs couple as in (22.49), the GIM mechanism ensuring that all flavour-
changing terms cancel. The total width to uu, dd, cg, ss and bb channels (allowing
three for colour and neglecting masses) is then 1538 MeV, producing an estimated
total width of approximately 2.22 GeV. (QCD corrections will increase these
estimates by a factor of order 1.1.) The branching ratio to charged leptons
is approximately 3.4%, to the three (invisible) neutrino channels 20.5% and to
hadrons (via hadronization of the qq channels) about 69.3%.

Cross-sections for lepton—lepton scattering proceeding via Z° exchange can
be calculated (for K« M%) using the currents (22.37) and (22.38), and the
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Figure 22.4. One-W annihilation graph in vee™ — Vee™.

method of section 20.8. Examples are
vue” — vue” (22.63)

and
vue” — e (22.64)

as shown in figure 22.3. Since the neutral current for the electron is not pure V—A,
as was the charged current, we expect to see terms involving both |clL|2 and |c{2 |2,
and possibly an interference term. The cross-section for (22.63) is found to be ('t
Hooft 1971c¢)

do/dy = QGEEme/m)[|c] | + |ck 17 (1 — »)? = 3k el + ¢f "ch)yme/E]
(22.65)
where E is the energy of the incident neutrino in the ‘laboratory’ system and
y = (E — E’)/E as before, where E’ is the energy of the outgoing neutrino in the
‘laboratory’ system.! Equation (22.65) may be compared with the vueT — U Ve
(charged current) cross-section of (20.125) by noting thatt = —2mEy: the |c£ 2
term agrees with the pure V — A result (20.125), while the |c{2 |2 term involves the
same (1 — y)? factor discussed for vq scattering in section 20.11. The interference
term is negligible for £ > me . The cross-section for the anti-neutrino process
(22.64) is found from (22.65) by interchanging CIL and cﬁ.
A third lepton—lepton process is experimentally available,

Vo€~ —> De€ . (22.66)

In this case there is a single W intermediate state graph to consider as well as
the Z one, as shown in figure 22.4. The cross-section for (22.66) turns out to be
given by an expression of the form (22.65) but with the replacements

i — % +sin® bw, ck — sin® fw. (22.67)

' In the kinematics, lepton masses have been neglected wherever possible.
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(@) (b)

Figure 22.5. (a) One-y and (b) one-ZY annihilation graphs inete™ — ff.

We emphasize once more that all these cross-sections are determined in terms of
the Fermi constant G and only one further parameter, sin? fy. As mentioned in
section 20.9, experimental fits to these predictions are reviewed by Commins and
Bucksbaum (1983), Renton (1990) and Winter (2000).

Particularly precise determinations of the Standard Model parameters may
be made at the eTe™ colliders, LEP and SLC. Consider the reactionete™ — f f
where f is pu or 7, at energies where the lepton masses may be neglected in
the final answers. In lowest order, the process is mediated by both y- and Z°-
annihilation as shown in figure 22.5. Calculations of the cross-section were
made some 30 years ago (for example Budny (1975)). In modern notation, the
differential cross-section for the scattering of unpolarized e~ and e™ is given by

do _na2
dcos® ~ 2s

[(1 4+ cos?0)A + cos 6 B] (22.68)

where 6 is the CM scattering angle of the final-state lepton, s = (pe- + pe+)* and

A =1+2g5g) Rex(s) + [(g%)% + (€)11(eD? + (@) x> (22.69)

B = 4g5.¢] Re x(s) + 8g5.85 8L g8 1% ()2 (22.70)
x(s) = s/[4sin’ Oy cos® Ow (s — M2 +iTzMz)]. (22.71)

Note that the term surviving when all the g’s are set to zero, which is therefore
the pure single photon contribution, is exactly as calculated in problem 8.19. The
presence of the cos 6 term leads to the forward—backward asymmetry noted in
that problem.

The forward-backward asymmetry Apg may be defined as

AfB = (Nr — NB)/(Ng + Ng) (22.72)

where Nr is the number scattered into the forward hemisphere 0 < cosf < 1 and
Ng that into the backward hemisphere —1 < cos# < 0. Integrating (22.68) one
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easily finds that
Argp = 3B/8A. (22.73)

For sin? 6w = 0.25 we noted after (22.42) that the g{,’s vanish, so they are very
small for sin? By =~ 0.23. The effect is therefore controlled essentially by the first
term in (22.70). At /s = 29 GeV, for example, the asymmetry is Apg =~ —0.063.

However, QED alone produces a small positive Agp, through interference
between 1y and 2y annihilation processes (which have different charge
conjugation parity), as well as between initial- and final-state bremsstrahlung
corrections to figure 22.5(a). Indeed, all one-loop radiative effects must clearly
be considered, in any comparison with modern high precision data.

Many such measurements have been made ‘on the Z peak’, i.e. at s = M% in
the parametrization (22.71). In that case, (22.73) becomes (neglecting the photon
contribution)

3ng%g£g5

{1(%)% + g5)2(el)? + (gh)21)

Another important asymmetry observable is that involving the difference of
the cross-sections for left- and right-handed incident electrons:

App(Z° peak) =

(22.74)

ALR = (oL — or)/(oL + OR) (22.75)
for which the tree-level prediction is
ALR = 28%85/[(89)° + (2)°1. (22.76)

A similar combination of the g’s for the final-state leptons can be measured by
forming the ‘L-R F-B’ asymmetry

AFB — [(oLF — 01B) — (0rRF — 0RB)]/(0R + OL) (22.77)

for which the tree-level prediction is

A =26l el /1)) + (D)2 (22.78)

The quantity on the right-hand side of (22.78) is usually denoted by A s:

Ap=2¢l el /1eh)? + (eDA. (22.79)

The asymmetry App is not, in fact, direct evidence for parity violation in
ete™ — utu~, since we see from (22.69) and (22.70) that it is even under g, —
—glA, whereas a true parity-violating effect would involve terms odd (linear)
in ng. However, electroweak-induced parity violation effects in an apparently
electromagnetic process were observed in a remarkable experiment by Prescott
et al (1978). Longitudinally polarized electrons were inelastically scattered
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from deuterium and the flux of scattered electrons was measured for incident
electrons of definite helicity. An asymmetry between the results, depending on
the helicities, was observed—a clear signal for parity violation. This was the
first demonstration of parity-violating effects in an ‘electromagnetic’ process: the
corresponding value of sin® Ay is in agreement with that determined from v data.

We now turn to some of the main experimental evidence, beginning with the
discoveries of the W* and Z° 1983.

22.5 The discovery of the W* and Z° at the CERN pp collider

22.5.1 Production cross-sections for W and Z in pp colliders

The possibility of producing the predicted W+ and Z° particles was the principal
motivation for transforming the CERN SPS into a pp collider using the stochastic
cooling technique (Rubbia et al 1977, Staff of the CERN pp project 1981).
Estimates of W and Z° production in pp collisions may be obtained (see, for
example, Quigg 1977) from the parton model, in a way analogous to that used
for the Drell-Yan process in section 9.4 with y replaced by W or Z°, as shown in
figure 22.6 (cf figure 9.12) and for two-jet cross-sections in section 14.3.1. As in
(14.44), we denote by § the subprocess invariant

§ = (x1p1 +x2p2)? = x1x28 (22.80)

for massless partons. With sUV2 = My ~ 80 GeV and s'/2 = 630 GeV
for the pp collider energy, we see that the x’s are typically ~0.13, so that the
valence q’s in the proton and q’s in the anti-proton will dominate (at /s = 1.8
TeV, appropriate to the Fermilab Tevatron, x >~ 0.04 and the sea quarks will be
expected to contribute). The parton model cross-section pp — W+ anything is
then (setting Vg = 1 and all other V;; = 0)

u(x)d(x2) + d(x1)u(x2) }
u(xy)d(x2) + d(xp)u(x2)

(22.81)
where the % is the same colour factor as in the Drell-Yan process, and the
subprocess cross-section & for qq — W* + X is

1 1 1
a(pﬁ—>W*+X)=§/ dX1/ dxzaocl,xz){
0 0

6 = 4m2a(1/4sin’ Ow)8(S — M) (22.82)
= 12'2GpMG8(x1x25 — M3). (22.83)

QCD corrections to (22.81) must, as usual, be included. Leading logarithms
will make the distributions Q%-dependent, and they should be evaluated at Q% =
MVZV. There will be further (O(ozsz)) corrections, which are often accounted for
by a multiplicative factor ‘K, which is of order 1.5-2 at these energies. O(ozsz)
calculations are presented in Hamberg et al (1991) and by van der Neerven and
Zijlstra (1992); see also Ellis et al (1996) section 9.4. The total cross-section
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Figure 22.7. Preferred direction of leptons in W+ decay.

for production of W and W™ at /s = 630 MeV is then of order 6.5 nb, while a
similar calculation for the Z° gives about 2 nb. Multiplying these by the branching
ratios gives

o(pp > W+ X — evX) >~ 0.7nb (22.84)
o(pp — 704+ X - eTe™X) ~ 0.07 nb (22.85)

at 4/s = 630 MeV.

The total cross-section for pp is about 70 mb at these energies; hence (22.84)
represents ~ 10~8 of the total cross-section, and (22.85) is 10 times smaller.
The rates could, of course, be increased by using the qg modes of W and Z°,
which have bigger branching ratios. But the detection of these is very difficult,
being very hard to distinguish from conventional two-jet events produced via the
mechanism discussed in section 14.3.1, which has a cross-section some 103 higher
than (22.84). W and Z° would appear as slight shoulders on the edge of a very
steeply falling invariant mass distribution, similar to that shown in figure 9.13, and
the calorimetric jet energy resolution capable of resolving such an effect is hard
to achieve. Thus, despite the unfavourable branching ratios, the leptonic modes
provide the better signatures, as discussed further in section 22.5.3.
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22.5.2 Charge asymmetry in W decay

At energies such that the simple valence quark picture of (22.81) is valid, the
W™ is created in the annihilation of a left-handed u quark from the proton
and a right-handed d quark from the p (neglecting fermion masses). In the
W+ — ety decay, a right-handed e and a left-handed v, are emitted. Referring
to figure 22.7, we see that angular momentum conservation allows e™ production
parallel to the direction of the anti-proton but forbids it parallel to the direction of
the proton. Similarly, in W~ — e™ v, the e is emitted preferentially parallel
to the proton (these considerations are exactly similar to those mentioned in
section 20.11 with reference to vq and vq scattering). The actual distribution
has the form ~ (1 + cos 9;‘)2, where 6; is the angle between the e~ and the p (for
W~ — e 1) or the et and the p (for W — et ve).

22.5.3 Discovery of the W* and Z° at the pp collider and their properties

As already indicated in section 22.5.1, the best signatures for W and Z production
in pp collisions are provided by the leptonic modes

pp — WEX — eTvX (22.86)
pp — Z°X — eTe ™ X. (22.87)

Reaction (22.86) has the larger cross-section, by a factor of 10 (cf (22.84) and
(22.85)) and was observed first (UA1, Arnison et al 1983a; UA2, Banner et al
1983). However, the kinematics of (22.87) is simpler and so the 70 discovery
(UA1, Arnison et al 1983b; UA2, Bagnaia et al 1983) will be discussed first.

The signature for (22.87) is, of course, an isolated and approximately back-
to-back, eTe™ pair with invariant mass peaked around 90 GeV (cf (22.57)). Very
clean events can be isolated by imposing a modest transverse energy cut—the
eTe™ pairs required come from the decay of a massive relatively slowly moving
7°. Figure 22.8 shows the transverse energy distribution of a candidate Z° event
from the first UA2 sample. Figure 22.9 shows (Geer 1986) the invariant mass
distribution for a later sample of 14 UA1 events in which both electrons have well-
measured energies, together with the Breit—Wigner resonance curve appropriate
to My = 93 GeV/c2, with experimental mass resolution folded in. The UA1 result
for the Z° mass was

My =93.0 & 1.4(stat) & 3.2(syst.) GeV. (22.88)

The corresponding UA?2 result (DiLella 1986), based on 13 well-measured pairs,
was
Mz = 92.5 £ 1.3(stat.) £ 1.5(syst.) GeV. (22.89)

In both cases, the systematic error reflects the uncertainty in the absolute
calibration of the calorimeter energy scale. Clearly the agreement with (22.57)
is good, but there is a suggestion that the tree-level prediction is on the low side.
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Figure 22.9. Invariant mass distribution for 14 well-measured 720 - ete~ decay (UA1,

Geer 1986).

Indeed, loop corrections adjust (22.57) to a value M%h =~ 91.19 GeV, in excellent
agreement with the current experimental value (Hagiwara et al 2002).

The total Z° width I'z is an interesting quantity. If we assume that, for
any fermion family additional to the three known ones, only the neutrinos are
significantly less massive than Mz /2, we have

'z 2 (2.540.16AN,) GeV (22.90)

from section 22.4, where AN, is the number of additional light neutrinos (i.e.
beyond v, v, and v;) which contribute to the width through the process 70 —

Copyright 2004 IOP Publishing Ltd



351 DELPHI

oy (nb)

88 89 90 91 92 93 94 95 96
Js (GeV)

Figure 22.10. The cross-section for ete~ — hadrons around the 79 mass (DELPHI
collaboration, Abreu et al 1990). The dotted, full and dashed lines are the predictions of
the Standard Model assuming two, three and four massless neutrino species respectively.
(From Abe, 1991.)

vv. Thus (22.90) can be used as an important measure of such neutrinos (i.e.
generations) if 'z can be determined accurately enough. The mass resolution of
the pp experiments was of the same order as the total expected Z° width, so that
(22.90) could not be used directly. The advent of LEP provided precision checks
on (22.90): at the cost of departing from the historical development, we show data
from DELPHI (Abreu et al 1990, Abe 1991) in figure 22.10, which established
N, =3.

We turn now to the WE. In this case an invariant mass plot is impossible,
since we are looking for the ev (;v) mode, and cannot measure the v’s. However,
it is clear that—as in the case of Z° — ete™ decay—slow moving massive
W’s will emit isolated electrons with high transverse energy. Further, such
electrons should be produced in association with large missing transverse energy
(corresponding to the v’s), which can be measured by calorimetry and which
should balance the transverse energy of the electrons. Thus, electrons of high
ET accompanied by balancing high missing ET (i.e. similar in magnitude to that
of the e~ but opposite in azimuth) were the signatures used for the early event
samples (UA1, Arnison et al 1983a; UA2, Banner et al 1983).

The determination of the mass of the W is not quite so straightforward as
that of the Z, since we cannot construct directly an invariant mass plot for the
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Figure 22.11. Kinematics of W — ev decay.

ev pair: only the missing transverse momentum (or energy) can be attributed to
the v, since some unidentified longitudinal momentum will always be lost down
the beam pipe. In fact, the distribution of events in peT, the magnitude of the
transverse momentum of the e~, should show a pronounced peaking towards the
maximum kinematically allowed value, which is pet ~ %Mw, as may be seen
from the following argument. Consider the decay of a W at rest (figure 22.11).

We have |p.| = %MW and |p.t| = %Mw sinf = per. Thus, the transverse
momentum distribution is given by
d do  dcosé d 2 1 -1/2
o _ _do cosf _ do DeT —M\%v B PgT (22.91)
dper dcos@ dper dcosf \ Mw 4

and the last (Jacobian) factor in (22.91) produces a strong peaking towards
PeT = %Mw. This peaking will be smeared by the width and transverse motion of
the W. Early determinations of My used (22.91), but sensitivity to the transverse
momentum of the W can be much reduced (Barger ef al 1983) by considering
instead the distribution in ‘transverse mass’, defined by

M2 = (Eer + Ev1)? — (Per + Pyr)? = 2perpur(1 — cos ) (22.92)

where ¢ is the azimuthal separation between per and p,t. A Monte Carlo
simulation was used to generate Mt distributions for different values of Mwy,
and the most probable value was found by a maximum likelihood fit. The quoted
results were

UA1 (Geer 1986) : My = 83.5 4]} (stat.) £ 2.8 (syst.) GeV (22.93)
UA2 (DiLella 1986) : Mw = 81.2 4 1.1 (stat.) & 1.3 (syst.) GeV (22.94)
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Figure 22.12. W — ev transverse mass distribution measured by the CDF collaboration
(Abe et al 1995a).

the systematic errors again reflecting uncertainty in the absolute energy scale of
the calorimeters. The two experiments also quoted (Geer 1986, DiLella 1986)

UAL : 'y < 6.5GeV

UA2:  TI'w <7.0GeV }90% cl. (22.95)

Once again, the agreement between the experiments and of both with (22.56) is
good, the predictions again being on the low side. Loop corrections adjust (22.56)
to Mw =~ 80.39 GeV (Hagiwara et al 2002). We show in figure 22.12 a more
modern determination of Mw by the CDF collaboration (Abe et al 1995a).

The W and Z mass values may be used together with (22.20) to obtain
sin? Ow via

sin? Ow = 1 — M3,/ M3. (22.96)

The weighted average of UA1 and UA2 yielded

sin? Bw = 0.212 £ 0.022 (stat.). (22.97)

Radiative corrections have, in general, to be applied but one renormalization
scheme (see section 22.8) promotes (22.96) to a definition of the renormalized
sin” By to all orders in perturbation theory. Using this scheme and quoted values
of Mw and Mz (Hagiwara et al 2002), one finds that sin? Ow =~ 0.222.
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Figure 22.13. The W decay angular distribution of the emission angle 6 of the positron
(electron) with respect to the anti-proton (proton) beam direction, in the rest frame of the
W, for a total of 75 events; background subtracted and acceptance corrected.

Finally, figure 22.13 shows (Arnison et al 1986) the angular distribution of
the charged lepton in W — ev decay (see section 22.5.2); 6 is the et (e™) angle
in the W rest frame, measured with respect to a direction parallel (anti-parallel)
to the p(p) beam. The expected form (1 + cos 9;‘)2 is followed very closely.

In summary, we may say that the early discovery experiments provided
remarkably convincing confirmation of the principal expectations of the GSW
theory, as outlined in the preceding sections.

We now consider some further aspects of the theory.

22.6 The fermion mass problem

The fact that the SU(2)L, gauge group acts only on the L components of the
fermion fields, immediately appears to create a fundamental problem as far as the
masses of these particles are concerned: we mentioned this briefly at the end of
section 19.6. Let us recall first that the standard way to introduce the interactions
of gauge fields with matter fields (e.g. fermions) is via the covariant derivative
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replacement
ot — DH* =9 +igT - WH/2 (22.98)

for SU(2) fields W acting on t = 1/2 doublets. Now it is a simple exercise
(compare problem 18.3) to check that the ordinary ‘kinetic’ part of a free Dirac
fermion does not mix the L. and R components of the field:

Ty = Jrivm + YLy, (22.99)

Thus we can, in principle, contemplate ‘gauging’ the L and the R components
differently. Of course, in the case of QCD (cf (18.39)) the replacement § — Ip
was made equally in each term on the right-hand side of (22.99) but this was
because QCD conserves parity and must, therefore, treat L and R components the
same. Weak interactions are parity-violating and the SU(2), covariant derivative
acts only in the second term of (22.99). However, a Dirac mass term has the form

—m R + VR (22.100)

(see equation (18.41) for example) and it precisely couples the L and R
components. It is easy to see that if only UL is subject to a transformation of the
form (22.3), then (22.100) is not invariant. Thus, mass terms for Dirac fermions
will explicitly break SU(2)L. The same is also true for Majorana fermions (see
appendix P) which might describe the neutrinos.

This kind of explicit breaking of the gauge symmetry cannot be tolerated,
in the sense that it will lead, once again, to violations of unitarity and then of
renormalizability. Consider, for example, a fermion—anti-fermion annihilation
process of the form

ff—Wiwg, (22.101)

where the subscript indicates the A = 0 (longitudinal) polarization state of the
W=, We studied such a reaction in section 21.3 in the context of unitarity
violations (in lowest-order perturbation theory) for the IVB model. Appelquist
and Chanowitz (1987) considered first the case in which ‘f’ is a lepton with
t = % B3 = —% coupling to W’s, 70 and y with the usual SUQ2);. x U(1)
couplings, but having an explicit (Dirac) mass m ¢. They found that in the ‘right’
helicity channels for the leptons (A = +1 for f, A = —1 for f) the bad high-
energy behaviour associated with a fermion-exchange diagram of the form of
figure 21.5 was cancelled by that of the diagram shown in figure 22.14. The sum
of the amplitudes tends to a constant as s (or E 2) — 00. Such cancellations
are a feature of gauge theories, as we indicated at the end of section 21.4,
and represent one aspect of the renormalizability of the theory. But suppose,
following Appelquist and Chanowitz (1987), we examine channels involving the
‘wrong’ helicity component, for example A = 41 for the fermion f. Then it is
found that the cancellation no longer occurs and we shall ultimately have a ‘non-
renormalizable’ problem on our hands, all over again.
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Figure 22.14. One-Z and one-y annihilation contribution to f;—_1 fo—1 — W(')"W(; .

An estimate of the energy at which this will happen can be made by recalling
that the ‘wrong’ helicity state participates only by virtue of a factor (m  /energy)
(recall section 20.4), which here we can take to be m r/+/s. The typical bad high-
energy behaviour for an amplitude M was M ~ Ggs, which we expect to be
modified here to

MNGpsmf/\/ENGme\/E. (22.102)

The estimate obtained by Appelquist and Chanowitz differs only by a factor of
V2. Attending to all the factors in the partial wave expansion gives the result that
the unitarity bound will be saturated at E = Ey (TeV) ~ /m ¢ (TeV). Thus, for
my ~ 175 GeV, E; ~ 18 TeV. This would constitute a serious flaw in the theory,
even though the breakdown occurs at energies beyond those currently reachable.
However, in a theory with spontaneous symmetry breaking, there is a
way of giving fermion masses without introducing an explicit mass term in
the Lagrangian. The linear o-model of (18.72) shows how, if a fermion has
a ‘“Yukawa’-type coupling to a scalar field which acquires a vev, then this
will generate a fermion mass. Consider the electron, for example, and let us
hypothesize such a coupling between the electron-type SU(2) doublet

Ve

Iy = ( Ve ) (22.103)
€ JL

the Higgs doublet ¢ and the R-component of the electron field:

ﬁ?(uk = —ge(leLpér + érdleL). (22.104)

In each term of (22.104), the two SU(2)L, doublets are ‘dotted together’ so as to
form an SU(2)L scalar, which multiplies the SU(2);, scalar R-component. Thus,
(22.104) is SU(2)L-invariant, and the symmetry is preserved, at the Lagrangian
level, by such a term. But now insert just the vacuum value (22.6) of ¢A5 into
(22.104): we find the result

A LN A
Ly (vac) = ~ge 5 (@Lér +rlL) (22.105)
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Figure 22.15. One-H annihilation graph.

which is exactly a (Dirac) mass of the form (22.100), allowing us to make the
identification
Me = gev/V2. (22.106)

When oscillations about the vacuum value are considered via the
replacement (22.7), the term (22.104) will generate a coupling between the
electron and the Higgs fields of the form

—geeeH /N2 = — (me/v)ééH (22.107)
= — (gme/2Mw)ééH. (22.108)

Such a coupling, if present for the process f f — War W, considered earlier, will
mean that, in addition to the f-exchange graph analogous to figure 21.5 and the
annihilation graph of figure 22.14, a further graph shown in figure 22.15, must
be included. The presence of the fermion mass in the coupling to H suggests that
this graph might be just what is required to cancel the ‘bad’ high-energy behaviour
found in (22.102)—and by this time the reader will not be surprised to be told that
this is indeed the case.

At first sight it might seem that this stratagem will only work for the 13 = — 1

2
components of doublets, because of the form of (0|¢|0). But we learned in
section 12.1.3 that if a pair of states ( Z forming an SU(2) doublet transform

by

u ,_ —ia-7/2 u
<d> =e <d> (22.109)

then the charge conjugate states it ( 4 ) transform in exactly the same way.

Thus if, in our case, ¢3 is the SU(2) doublet

Loa Ay = At
b= @(qil 1,?2)_(’30 (22.110)
ﬁ(¢3—1¢4)5¢
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then the charge conjugate field

be = ind* = VL%(%H@) - ¢0 22.111)
~ L1 +ign e

is also an SU(2) doublet, transforming in just the same way as (;AS ((22.110) and
(22.111) may be thought of as analogous to the (K+, KO) and (K, K™) isospin
doublets in SU(3)¢). Note that the vacuum value (22.6) will now appear in the
upper component of (22.111). With the help of $c we can write down another
SU(2)-invariant coupling in the ve—e sector, namely

—gue(leLdCPer + DerPéleL) (22.112)

assuming now the existence of the field Ver. In the Higgs vacuum (22.6), (22.112)
then yields ) )

—(80.0/V2) (DL Der + Der Per) (22.113)

which is precisely a (Dirac) mass for the neutrino, if we set g,,v/+/2 = n,,.

Itis clearly possible to go on like this and arrange for all the fermions, quarks
as well as leptons, to acquire a mass by the same ‘mechanism’. We will look
more closely at the quarks in the next section. But one must admit to a certain
uneasiness concerning the enormous difference in magnitudes represented by the
couplings gv., ... 8e, ... & Ifm,, < 1eV, then g,, < 10—, while g ~ 1!
Besides, whereas the use of the Higgs field ‘mechanism’ in the W-Z sector is
quite economical, in the present case it seems rather unsatisfactory simply to
postulate a different ‘g’ for each fermion—-Higgs interaction. This does appear
to indicate that we are dealing here with a ‘phenomenological model’, once more,
rather than a ‘theory’.

As far as the neutrinos are concerned, however, there is another possibility,
as indicated in section 20.6, which is that they could be Majorana (not Dirac)
fermions. In this case, rather than the four degrees of freedom (veL, Ver, and
their anti-particles) which exist for massive Dirac particles, only two possibilities
exist for neutrinos, which we may take to be v and ver. With these, it is
certainly possible to construct a Dirac-type mass term of the form (22.113). But
since, after all, the ver component has zero quantum members both for SU(2),
W-interactions and for U(1) B-interactions (see table 22.1), we could consider
economically dropping it altogether, making do with just the v, component.

Suppose, then, that we keep only the field Der . Its charge-conjugate is defined
by (see (20.71))

~ . =T . A
(PeL)C = iy200g, = iy2D; (22.114)

Now we know that the charge-conjugate field transforms under Lorentz
transformations in the same way as the original field (see appendix P) and so
we can use (Ve )¢ to form a Lorentz invariant

(DeL)C veL (22.115)
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which has mass dimension M3. Hence, we may write a ‘Majorana mass term’ in
the form .
—2mmlBeL) ¢ Per. + Der (DeL)c] (22.116)

where the % is conventional. Written out in more detail, we have

(DeL)C Der. = Dy - — iy Yo, = Doy iy2r0Der (22.117)

in our representation (20.38). Now

. —iop 0
iyay0 = < 0 2 o ) ) (22.118)
But since Ve is an L-chiral field, only its two lower components are present (cf
(20.50)) and (22.117) is effectively

(DeL)C Der. = Dop (102) DeL. (22.119)

Note that io; is an anti-Hermitian 2 x 2 matrix, so that (22.119) would vanish for
classical (commuting) fields.

It is at once apparent that the mass term (22.116) is not invariant under a
global U(1) phase transformation

Der, — € %D, (22.120)

which would correspond to lepton number (if accompanied by a similar
transformation for the electron fields). Thus—as, in fact, we already knew—
Majorana neutrinos do not carry a lepton number.

There is a further interesting aspect to (22.119) which is that, since two Dep,
operators appear rather than a 7. and a ﬁg (which would lead to L conservation),
the (¢, 3) quantum numbers of the term are (1,1). This means that we cannot
form an SU(2), invariant with it, using only the Standard Model Higgs ¢AS, since
the latter has r = % and cannot combine with the (1,1) operator to form a singlet.
Thus, we cannot make a ‘tree-level’ Majorana mass by the mechanism of Yukawa
coupling to the Higgs field, followed by symmetry breaking.

However, we could generate suitable ‘effective’ operators via loop
corrections, perhaps, much as we generated an effective operator representing an
anomalous magnetic moment interaction in QED (cf section 11.7). But whatever
it is, the operator would have to violate lepton number conservation, which is
actually conserved by all the Standard Model interactions. Thus, such an effective
operator could not be generated in perturbation theory. It could arise, however,
as a low-energy limit of a theory defined at a higher mass scale, as the current—
current model is the low energy limit of the GSW one. The typical form of such
operator we need, in order to generate a term ﬁgLiaz DeL, 1S

8eM 7~ T, ~ih
o Gedo)Tioa@cler). (22.121)
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Note, most importantly, that the operator ‘(I¢)(¢l)’ in (22.121) has mass
dimension five, which is why we introduced the factor M~ in the coupling: it
is indeed a non-renormalizable effective interaction, just like the current—current
one. We may interpret M as the mass scale at which ‘new physics’ enters, in the
spirit of the discussion in section 11.7. Suppose, for the sake of argument, this
was M ~ 10'® GeV (a scale typical of Grand Unified Theories). After symmetry
breaking, then, (22.121) will generate the required Majorana mass term, with

2
mm ~ geMvM ~ gem1072eV. (22.122)

Thus, an effective coupling of ‘natural’ size gem ~ 1 emerges from this argument,
if indeed the mass of the ve is of order 10~2 eV. Further discussion of neutrino
masses is contained in appendix P, section P.2.

These considerations are tending to take us ‘beyond the Standard Model’, so
we shall not pursue them at any greater length. Instead, we must now generalize
the discussion to the three-family case.

22.7 Three-family mixing

22.7.1 Quark flavour mixing

We introduce three doublets of left-handed fields:
. AL n A2 . A3
= 5 = S = A 22.123
qLi ( i > qL2 ( dis > qL3 ( dis > ( )
and the corresponding six singlets

UR1 dri UR2 dr2 HR3 dr3 (22.124)

which transform in the now familiar way under SU(2); x U(1). The i-fields

correspond to the 13 = —1—% components of SU(2)L, the d ones to the 3 = —%
components, and to their ‘R’ partners. The labels 1, 2 and 3 refer to the family
number; for example, with no mixing at all, iy = 4r,dL; = dr, etc. We

have to consider what is the most general SU(2)L x U(1)-invariant interaction
between the Higgs field (assuming we can still get by with only one) and these
various fields. Apart from the symmetry, the only other theoretical requirement is
renormalizability—for, after all, if we drop this we might as well abandon the
whole motivation for the ‘gauge’ concept. This implies (as in the discussion

of the Higgs potential V) that we cannot have terms like (1/31/7({5)2 appearing—
which would have a coupling with dimensions (mass)~* and would be non—
renormalizable. In fact, the only renormalizable Yukawa coupling is of the form

‘;ﬁfﬁ(i’, which has a dimensionless coupling (as in the ge and g,,, of (22.104) and
(22.112)). However, there is no a priori requirement for it to be ‘diagonal’ in
q g
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the weak interaction family index i. The allowed generalization of (22.104) and
(22.112) is, therefore, an interaction of the form (summing on repeated indices)

ﬁw = aijéuti;cﬁm + bijéLi‘i;C?Rj +h.c. (22.125)

where ‘h.c.” stands for ‘Hermitian conjugate’,

dui = ( Gk ) (22.126)
dii

and a sum on the family indices i and j (from 1 to 3) in (22.125) is assumed. After
symmetry breaking, using the gauge (22.7), we find (problem 22.3) that

. A\ - . % .
Lip=— (1 + ?) lirimi;ir; + dLim?dej +h.c] (22.127)

where the ‘mass matrices’ are

v
my; = ~ 5% my; = —Eb,,-. (22.128)

Although we have not indicated it, the m" and m9 matrices could involve a ‘vs5°
partas well as a ‘1’ partin Dirac space. It can be shown (Weinberg 1973, Feinberg
et al 1959) that m" and m? can both be made Hermitean, ys-free and diagonal by
making four separate unitary transformations on the ‘family triplets’:

ﬁLl . szl
L =1 dro do=1\ din etc (22.129)
i3 dv3
via
e = (UM)ailiLi  firg = (U )ailiri (22.130)
die = (U Maidri  dra = (UR)aidri- (22.131)

In this notation, ‘«’ is the index of the ‘mass diagonal’ basis and ‘i’ is that of the
‘weak interaction’ basis.2 Then (22.127) becomes

. H _ ZA
Lo =— (1 + —) [myiidi + - - - + mypbb]. (22.132)
v

Rather remarkably, we can still manage with only the one Higgs field. It couples
to each fermion with a strength proportional to the mass of that fermion, divided
by Mw.

2 So, for example, i y—t = I, dig—s = 5L, etc.
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Now consider the SU(2)p xU(1) gauge-invariant interaction part of the
Lagrangian. Written out in terms of the ‘weak interaction’ fields &y, r; and di gr;
(cf (22.21) and (22.22)), it is

Lywp =iiLj, dij)y"* @, +igt - W, /2 +1ig'yB,./2) < Ci/ )
J
+ iR Y* (0, + 18y Bu/2)iirj + idr;y* (3, + ig'y B, /2)dR
(22.133)

where a sum on j is understood. This now has to be rewritten in terms of the
mass-eigenstate fields iy, ry and QL,RO,.

Problem 22.4 shows that the neutral current part of (22.133) is diagonal in
the mass basis, provided the U matrices of (22.130) and (22.131) are unitary;
that is, the neutral current interactions do not change the flavour of the physical
(mass eigenstate) quarks. The charged current processes, however, involve the
non-diagonal matrices 71 and 17 in (22.133) and this spoils the argument used in
problem 22.4. Indeed, using (22.25) we find that the charged current piece is

~ g =z A N 12]_]'
Loc= — —L;,dL)yut+W, A + h.c.
cc \/5( Lj»dLj)VuT+ u( di )
8 = ni T
= — —iupjy"*dL;W, +h.c.
Vol iWu
8 = T W
T2 Lal (U )a (U D) jply g Wy + e, (22.134)
where the matrix
Vap = (U2 U P gp (22.135)

is not diagonal, though it is unitary. This is the well known CKM matrix (Cabibbo
1963, Kobayashi and Maskawa 1973). The interaction (22.134) then has the form

—%Wu [GLy"d] + ELy™S] + fLy*b]] + hec. (22.136)
where ) R
d£ Vud Vus Vub dL

SU = Vea Ves Vb Sl (22.137)
bi Vu Vis Vo br

It is important to know how many independent parameters the CKM matrix
contains. A general 3x3 complex matrix has 2x3%=18 real parameters. The
unitarity relation VTV = I provides nine conditions, namely

[Vaal? + [Veal® + [Vial* = 1 (22.138)
together with two other similar diagonal equations, and

Vi Vad + Vi Vea + ViVia = 0, (22.139)
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and five other similar ‘off-diagonal’ equations. If all the elements of the matrix
were real, it would be orthogonal VTV = I) and could be thought of as a
‘rotation’, parametrized by three real numbers. The remaining six parameters
in the unitary V are, therefore, phases. The phase of each of the quark fields is
arbitrary and may be freely changed (though gr, and gr must change in the same
way to keep the mass terms in (22.132) real). This would seem to give enough
freedom to redefine away six phases from V as defined in (22.135). However,
we can see that V is left invariant if we change all the quarks by the same
phase. Thus, there are really only five removable phases, and V may therefore be
parametrized in terms of three real ‘rotation angles’ and one phase. The standard
parametrization of V (Hagiwara et al 2002) is

c12€13 $12€13 s13e 7101
V= —sic23 —c1253513617  c1a023 — s12523513€1 $23C13
512523 — C12€23513€913  —c12803 — s12023513€08 3013
(22.140)

where ¢;; = cos6;; and s;; = sin6;;.

Before proceeding further, it is helpful to note the 90% confidence limits
on the elements of the matrix V as quoted by Hagiwara et al (2002), taking into
account the unitarity constraints:

(0.9741 —0.9756)  (0.219 —0.226)  (0.0025 — 0.0048)
0.219 — 0.226)  (0.9732 —0.9748)  (0.038 — 0.044) | . (22.141)
(0.004 — 0.014)  (0.037 —0.044)  (0.9990 — 0.9993)

From this it follows that the mixing angles are small and, moreover, satisfy a
definite hierarchy
1> 012 > 023 > 613. (22.142)

Thus a small-angle approximation to the angles 6;; in (22.140) is often
satisfactory. ~ This leads to a parametrization due to Wolfenstein (1983).
Identifying s;p = A, we write Vop =~ s33 = AX2 and Vg = spze 3 =
AM3(p —in) with A ~ 1 and |p — in| < 1. This gives

1—A22 A AN (p —in)
vV~ —A 1 —22/2 A2 (22.143)
A1 —p—in) —AA? 1

retaining terms up to O(A3).

From (22.141) we see that the elements which are least well determined are
Vig and Vyp. We may use the unitarity relation (22.139), with Vyg = 1 & Vy, to
relate these two elements by
Voo + Via = s12Vg,- (22.144)

u

This relation may be represented as a triangle in the complex plane as shown in
figure 22.16 where, without loss of generality, VcqV} has been chosen to lie along
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Figure 22.16. The ‘unitarity triangle’ representing equation (22.144).

the horizontal. This is known as the ‘unitarity triangle’. The angles 8 and y are
defined by ' '
Via = [Vale™  Vip = |[Viple™ (22.145)

and from (22.140) y = 813. The triangle can also be rescaled so that its base is of
unit length: the apex is then at 5 = p(1 — A2/2), ij = n(1 — A%/2) in terms of the
parameters in (22.143).

The existence of the phase §13 represents a fundamental difference from
the simple 2 x 2 mixing of the original Cabibbo—GIM type considered in
section 20.10. In that case, the 2 x 2 mixing matrix (following the same counting
of parameters as before) can have only one real parameter, the Cabibbo (GIM)
angle 6. This corresponds to setting all angles 0;3 to zero in (22.140). The reason
that the appearance of the phase §;3 in (22.140) is so significant is that it implies
(if 813 # 0) that CP is violated. The action of P and C on fermionic fields was
discussed in sections 20.3 and 20.5:

Py (x, HP! = yodr(—x, 1) (22.146)
Cyx, HP~ ! = iy T (x, 1). (22.147)
Hence, . o
CPy (x, ) (CP) ™' = iy?y 9 T(=x, 1). (22.148)
We also have
CPW ,, (x, 1)(CP)~! =W W (=X, ). (22.149)

Careful application of these relations then shows (problem 22.5) that (for
example)

(CPYir Vaay"di W, (CP) ™ = di Viay i W), (22.150)

where the fact that the fields are evaluated at X will not matter since we integrate
over X in the action. But the corresponding term from the ‘h.c.” part in (22.136)
is -

ALV i W, (22.151)
It follows that, for CP to be conserved, the entries in the V-matrix must be real.
With three families (though not with only two) the possibility exists of having a
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CP-violating phase parameter §;3, as was stressed by Kobayashi and Maskawa
(1973).

In fact, CP violation in the decays of neutral K mesons is an intensively
studied phenomenon, since its discovery in 1964 (Christenson et al 1964). In
the Standard Model, it is interpreted as arising from the phases in the Vy;, and
Viq elements (see (22.143)). It is, however, a very small effect, as seen from the
magnitudes of Vyp and Vi in (22.143) (they involve third-generation mixing and
are O(23)). It can be shown (Jarlskog 1985a, b) that CP-violating amplitudes, or
differences of rates, are all proportional to the quantity

2 .
$12813823€12€13€23 Sin 813 (22.152)

which is just twice the area of the unitarity triangle. For a full introduction to
the phenomenology of CP violation we refer the reader to Leader and Predazzi
(1996, chapters 18 and 19), and to Branco er al (1999) and Bigi and Sanda (2000).

Larger effects are expected in the BY system, which is a major motivation
for the construction of B factories. As an indication, present experimental results
from Babar (Aubert et al 2002) and Belle (Abe et al 2002) yield

sin2f = 0.78 £0.08 (22.153)

when averaged.

According to the summary in the current Review of Particle Properties
(Hagiwara et al 2002) all processes can be quantitatively understood by one value
of the CKM phase §13(= y) = 59° £ 13°. The value of B = 24° £+ 4° as
determined from the overall fit is consistent with (22.153).

22.7.2 Neutrino flavour mixing

An analysis similar to the previous one can be carried out in the leptonic sector.
We would then have leptonic flavour mixing in charged current processes, via
interactions of the form

DLa Vg v*éLpWy + hec. (22.154)

where V@ is the leptonic analogue of the CKM matrix, namely the MNS matrix
(Maki et al 1962; see also Pontecorvo 1967). We would also have lepton mass
terms (f)Lim}’jﬁRj +h.c.) and (éLim‘,?jéRj + h.c.) in analogy with (22.127). If the
neutrino mass matrix m" was identically zero, or if—improbably—its eigenvalues
were all equal, we would be free to redefine Dp, and DR by

L=vOiy  fr=vOin (22.155)

so as to reduce the charged current term to family-diagonal form. It is thesestates
that we would identify with the physical neutrino states, in that case. But it is now
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clear, experimentally, that neutrino flavour mixing does take place, indicating that
neutrinos do have (different) masses.

The reader will recall that it is an open question whether neutrinos are Dirac
or Majorana particles (sections 20.6 and 22.6). If they are of Majorana type,
this has an interesting consequence for the parametrization of the matrix V.
We saw following equation (22.119) that global phase transformations (ordinarily
corresponding to a number conservation law) cannot be freely made on Majorana
fields, as they carry no lepton number. Thus, two of the phases which could
be removed from the 3 x 3 quark mixing matrix V, cannot be removed from
the leptonic analogue matrix V) if the neutrinos are Majorana particles. In the
Majorana case, the matrix V) can be parametrized as

v (Majorana) = V (CKM type) x diag(el®/?, ¢l®2/2 1) (22.156)

and we have three CP-violating phases.

Because the neutrino mass differences are (apparently) so small, quantum-
mechanical oscillations between neutrinos of different (leptonic) flavour can be
observed to occur over macroscopic distances. The subject is extensively covered
in a number of books and reviews, for example Mohapatra and Pal (1991), Boehm
and Vogel (1987), Kayser et al (1989), Bahcall (1989), Bilenky (2000) and Kayser
in Hagiwara et al (2002). We note that the extra CP-violating phases in (22.156)
do not affect neutrino oscillations but do affect the rate for neutrinoless double
B-decay (see section 20.6).

22.8 Higher-order corrections
The Z° mass is presently (2002) determined to be
Mz = 91.1876 + 0.0021 GeV (22.157)

from the Z lineshape at LEP1 (Tournefier 2001). The W mass (CDF: Affolder et
al (2001); DO: Abbott er al (2000); UA2: Alitti et al (1992)) is

Mw = 80.451 £ 0.061 GeV. (22.158)
The asymmetry parameter A, (see (22.79)) is (Abe et al 2000)
Ae = 0.15138 & 0.00216 (22.159)

from measurements at SLD. These are just three examples from the table of
35 observables listed in the review of the electroweak model by Erler and
Langacker in Hagiwara et al (2002). Such remarkable precision is a triumph
of machine design and experimental art—and it is the reason why we need a
renormalizable electroweak theory. The overall fit to the data, including higher-
order corrections, is quoted by Erler and Langacker as x2/degree of freedom
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= 47.3/38. The probability of a larger x2 is 14%: one of the major discrepancies
is a 3.20 deviation in the hadronic charge asymmetry (3/4)AcAp; another is a
2.5¢0 deviation in the muon anomalous magnetic moment, g, —2. This reasonably
strong numerical consistency lends impressive support to the belief that we are
indeed dealing with a renormalizable spontaneously broken gauge theory, because
no extra parameters, not in the original Lagrangian, have had to be introduced.

In fact, one can turn this around, in more than one way. First, the one
remaining unobserved element in the theory—the Higgs boson—has a mass My
which is largely unconstrained by theory (see section 22.10.2) and it is therefore
a parameter in the fits. Some information about My can therefore be gained by
seeing how the fits vary with My. Actually, we shall see in equation (22.174) that
the dependence on My is only logarithmic—it acts rather like a cut-off, so the fits
are not very sensitive to My. By contrast, some loop corrections are proportional
to the square of the top mass (see (22.173)), and consequently very tight bounds
could be placed on m; via its virtual presence (in loops) before its real presence
was confirmed, as we shall discuss shortly and in section 22.9. Second, very
careful analysis of small discrepancies between precision data and electroweak
predictions may indicate the presence of ‘new physics’.

After all this (and earlier) emphasis on the renormalizability of the
electroweak theory, and the introduction to one-loop calculations in QED at the
end of volume 1, the reader perhaps now has a right to expect an exposition of loop
corrections in the electroweak theory. But the fact is that this is a very complicated
and technical story, requiring quite a bit more formal machinery which would be
outside the intended scope of this book (suitable references include Altarelli et
al (1989), especially the pedagogical account by Consoli et al (1989); and the
equally approachable lectures by Hollik (1991)). Instead, we want to touch on
just a few of the simpler and more important aspects of one-loop corrections,
especially insofar as they have phenomenological implications.

As we have seen, we obtain cut-off independent results from loop corrections
in a renormalizable theory by taking the values of certain parameters—those
appearing in the original Lagrangian—from experiment, according to a well-
defined procedure (‘renormalization scheme’). In the electroweak case, the
parameters in the Lagrangian are

gauge couplings g, g’ (22.160)

Higgs potential parameters A, uz (22.161)
Higgs—fermion Yukawa couplings g ¢ (22.162)

CKM angles 612, 013, 623 phase 613 (22.163)
MNS angles 61, 615,64, phase 8%; (a1, a2?). (22.164)

The fermion masses and mixings, and the Higgs mass, can be separated off,
leaving g, g’ and one combination of A and 2 (for instance, the tree-level vacuum
value v). These three parameters are usually replaced by the equivalent and more
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convenient set

o (Mohr and Taylor 2000) (22.165)
GF (Marciano and Sirlin 1988, van Ritbergen and Stuart 1999) (22.166)
My (Tournefier 2001). (22.167)

These are, of course, related to g, g’ and v; for example, at tree level

1 1
o =g /(g + ¢ Man Mz = 5”‘/ g2 +g"? Gr = o (22.168)

but these relations become modified in higher order. The renormalized parameters
will ‘run’ in the way described in chapters 15 and 16: the running of «, for
example, has been observed directly (TOPAZ: Levine et al 1997; VENUS: Okada
et al 1998; OPAL: Abbiendi et al 2000; L3: Acciari et al 2000).

After renormalization, one can derive radiatively-corrected values for
physical quantities in terms of the set (22.165)—(22.167) (together with My
and the fermion masses and mixings). But a renormalization scheme has to
be specified, at any finite order (though, in practice, the differences are very
small). One conceptually simple scheme is the ‘on-shell’ one (Sirlin 1980, 1984,
Kennedy et al 1989, Kennedy and Lynn 1989, Bardin et al 1989, Hollik 1990; for
reviews see Langacker 1995). In this scheme, the tree-level formula

sin® 0w = 1 — M,/ M3 (22.169)

is promoted into a definition of the renormalized sin®6w to all orders in
perturbation theory, it being then denoted by S\ZVZ

sey =1 — Mg /M2. (22.170)
The radiatively-corrected value for My is then

M3, = (’Z“/ﬁ (22.171)
syl — Ar)

where Ar includes the radiative corrections relating o, «(M7z), Gg, Mw and Mz.
Another scheme is the modified minimal subtraction (MS) scheme (section 15.5)
which introduces the quantity sin” fw () = 82(w)/[8(w) + §2(1)] where the
couplings § and &’ are defined in the MS scheme and y is chosen to be Mz for
most electroweak processes. Attention is then focused on §% = sin? éw(Mz).
This is the scheme used by Erler and Langacker in Hagiwara et al (2002).

We shall continue here with the scheme defined by (22.170). We cannot
go into detail about all the contributions to Ar but we do want to highlight two
features of the result—which are surprising, important phenomenologically, and
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related to an interesting symmetry. It turns out (Consoli et al 1989, Hollik 1991)
that the leading terms in Ar have the form

Ar = Arg —

(1—s3)
——YAp + (AF)rem. (22.172)

Sw

In (22.172), Arg = 1 — a/a(Mz) is due to the running of «, and has the value

Arg = 0.0664(2) (see section 11.5.3). Ap is given by (Veltman 1977)
?;G}:(mt2 — mﬁ)

Ap =
P 8m2/2

while the ‘remainder’ (Ar)rm contains a significant term proportional to
In(m¢/mz), and a contribution from the Higgs boson which is (for myg > Mw)

V2GEM2, 11 m? 5
A A~ W [ E ) -2 22.174
( r)rem,H 16722 3 n M\%V 6 ( )

(22.173)

As the notation suggests, Ap is a leading contribution to the parameter p
introduced in (22.44). As explained there, it measures the strength of neutral
current processes relative to charged current ones. Ap is then a radiative
correction to p. It turns out that, to good approximation, electroweak radiative
corrections in ete™ — Z° — f £ can be included by replacing the fermionic
couplings g, and g/ (see (22.42), (22.53) and (22.54)) by

g = ol =20k ss%) (22.175)
and
o S—
gl = yorts (22.176)

together with corrections to the Z° propagator. The corrections have the form
(in the on-shell scheme) py ~ 1 + Ap (of equation (22.173)) and «r ~ 1 +
[5\2V /(1 —s\z,v)] Ap, for f # b, t. For the b-quark, there is an additional contribution
coming from the presence of the virtual top quark in vertex corrections to Z — bb
(Akhundov et al 1986, Beenakker and Hollik 1988).

The running of « in Arg is expected, but (22.173) and (22.174) contain
surprising features. As regards (22.173), it is associated with top—bottom quark
loops in vacuum polarization amplitudes, of the kind discussed for lzlg,zl in
section 11.5 but this time in weak boson propagators. In the QED case, referring
to equation (11.38) for example, we saw that the contribution of heavy fermions
‘(1% < mzf)’ was suppressed, appearing as 0(|q2|/m2f). In such a situation
(which is the usual one), the heavy particles are said to ‘decouple’. But the
correction (22.173) is quite different, the fermion masses being in the numerator.
Clearly, with a large value of m, this can make a relatively big difference. This
is why some precision measurements are surprisingly sensitive to the value of
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Figure 22.17. t-b vacuum polarization contribution.

my in the range near (as we now know) the physical value. Second, as regards
the dependence on my, we might well have expected it to involve m% in the
numerator if we considered the typical divergence of a scalar particle in a loop
(we shall return to this after discussing (22.173)). Ar would then have been very
sensitive to my but, in fact, the sensitivity is only logarithmic.

We can understand the appearance of the fermion masses (squared) in the
numerator of (22.173) as follows. The shift Ap is associated with vector boson
vacuum polarization contributions, for example the one shown in figure 22.17.
Consider, in particular, the contribution from the longitudinal polarization
components of the W’s. As we have seen, these components are nothing but
three of the four Higgs components which the W* and Z° ‘swallowed’ to become
massive. But the couplings of these ‘swallowed” Higgs fields to fermions are
determined by just the same Higgs—fermion Yukawa couplings as we introduced
to generate the fermion masses via spontaneous symmetry breaking. Hence we
expect the fermion loops to contribute (to these longitudinal W states) something
of order g; /4m, where gy is the Yukawa coupling. Since gy ~ my/v (see

(22.106)) we arrive at an estimate ~ m?/4nv2 ~ Gpm§/4n as in (22.173).
An important message is that particles which acquire their mass spontaneously
do not ‘decouple’.

But we now have to explain why Ap in (22.173) would vanish if m? = m{—

and why only In m%{ appears in (22.174). Both these facts are related to a
symmetry of the assumed minimal Higgs sector which we have not yet discussed.
Let us first consider the situation at tree level, where p = 1. It may be shown
(Ross and Veltman 1975) that p = 1 is a natural consequence of having the
symmetry broken by an SU(2)1, doublet Higgs field (rather than a triplet, say)—
or indeed by any number of doublets. The nearness of the measured p parameter
to 1 is, in fact, good support for the hypothesis that there are only doublet Higgs
fields. Problem 22.6 explores a simple model with a Higgs field in the triplet
representation.

At tree level, it is simplest to think of p in connection with the mass ratio
(22.44). To see the significance of this, let us go back to the Higgs gauge field
Lagrangian Lo of (22.8) which produced the masses. With the doublet Higgs
of the form (22.110), it is a striking fact that the Higgs potential only involves the
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highly symmetrical combination of fields
O + 63 + d3 + 3 (22.177)

as does the vacuum condition (17.102). This suggests that there may be some
extra symmetry in (22.8) which is special to the doublet structure. But of course,
to be of any interest, this symmetry has to be present in the (DMqAb)*(DI‘qAS) term
as well.

The nature of this symmetry is best brought out by introducing a change of
notation for Higgs doublet $* and ¢°: instead of (22.110), we now write

~ o a+ir)/V2
¢—( @ —if)/V2 ) (22.178)
while the ¢ field of (22.111) becomes
. (G +ir3)/V2 )
bc = ( A3 ) (22.179)

We then find that these can be written as

R 1 . . .. (0 - |

¢=—(a+1t~7t)< ) ¢C=—(a+1t~n)< ) (22.180)
V2 I V2 0

Consider now the covariant SU(2)L x U(1) derivative acting on qAS as in (22.8),

and suppose to begin with that g’ = 0. Then

N 1 ) A .. 0
D¢ = E(aﬂ +igr - W, /2)(0 +it - ) ( ) )
1 J— A8 A i
= E 00 +it - oym +15crr W,
8 n \h . N 0
_E[H'WM‘HT'WM X 7T | (22.181)
using 7;7; = §&;; + i€;jxtx. Now the vacuum choice (22.6) corresponds to
o6 = v, = 0, so that when we form (D,LQAS)T(D"(]S) from (22.181), we will
get just
1 T an L (O 1o
5(0’1) Zv T - Wy -W) < 1 )ZE wWy - W (22.182)

with My = gv/2 as usual. The condition g’ = 0 corresponds (cf (22.17))
to Ow = 0, and thus to WM = 2#» and so (22.182) states that in the limit
g — 0, My = My, as expected if cosOw = 1. It is clear from (22.181) that
the three components VAV,L are treated on a precisely equal footing by the Higgs
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field (22.178), and indeed the notation suggests that W « and 7 should perhaps be
regarded as some kind of new triplets.

It is straightforward to calculate (DMQAS)T(D"(]S) from (22.181): one finds
(problem 22.7)

Nt ~ 1 ~ 1 ~ g A A A
(D) DV = 2 (0,6)* + 5 (0u7)* = S5 - W
+ %&a,ﬁ AW %aﬂfr (@ x W
882 0 a0 &2
+ WG+ %) + AW (22.183)

This expression now reveals what the symmetry is: (22.183) is invariant under
global SU(2) transformations under which W « and 7 are vectors—that is (cf
3.9) A A A
W, — W, +exW,
T—>T+eXT . (22.184)
o0 —>0

This is why, from the term Wi&z, all three W fields have the same mass in this
g’ — 0 limit.

If we now reinstate g/, and use (22.14) and (22.15) to write W3u and éﬂ in
terms of the physical fields 2/1 and AM as in (19.97), (22.181) becomes

1 5. +i HVT/ i sz 4 3 Zﬂ tiesing 1+ 13 i
— ig— ig— ig— ig sin
V2 H g2 ln g2 2u g2 cos OBw g W 2 H
_ ig .2 1+13) 5 A ~ 0
—COSQW sin 9w( 5 >ZM}(U+1T Jr)< 1) (22.185)

We see from (22.185) that g’ # 0 has two effects. First, there is a ‘T - W’-
like term, as in (22.181), except that the ‘W3’ part of it is now 2/ cosOw. In
the vacuum 6 = v, 7 = 0 which simply means that the mass of the Z is
Mz = Mw /cosOw,i.e. p = 1; and this relation is preserved under ‘rotations’ of
the form (22.184), since they do not mix # and . Hence this mass relation (and
p = 1) is a consequence of the global SU(2) symmetry of the interactions and the
vacuum under (22.184), and of the relations (22.14) and (22.15) which embody
the requirement of a massless photon.

However, there are additional terms in (22.185) which single out the ‘z3’
component, and therefore break this global SU(2). These terms vanish as g’ — 0
and do not contribute at tree level, but we expect that they will cause O(g'%)
corrections to p = 1 at the one-loop level.

None of this, however, yet involves the quark masses and the question of why
th - btz) appears in the numerator in (22.173). We can now answer this question.
Consider a typical mass term, of the form discussed in section 22.7.1, for a quark
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doublet of the ith family

Ly = _g+(L_AlLi2Li)‘$CﬁRi - g—(;AlLiéLi)QASC?Ri- (22.186)
Using (22.178) and (22.179), this can be written as
b =~ tidi @+ fz)( i ) S i@+ ) ( i )
= - (g;ij_/;_)(ftuéu)(&-i-if ﬂ)( ZE: )
- (‘g%\_@g‘)(ﬁuéu)(& tir -fr)t3< Zz ) (22.187)

Consider now a 51multaneous (infinitesimal) global SU(2) transformation on
the two doublets (iir;, d.;)" and (iig;, dr)™:

ALi . Ny, URi UR;
~ — (1 —ie-1/2 ~ ~ — (1 —1€e-1/2 .
(dLi> ( /)(du) (dRi> ( /)<de>

(22.188)
Under (22.188), the first term of (22.187) becomes (to first order in €)
G++8) = % n . A . <ftRi>
————(updy))o +it- (T + 7T X € A . 22.189
2«/5 ( Li Ll)[ ( )] dRi ( )

From (22.189) we see that if, at the same time as (22.188), we also make
the transformation of & given in (22.184), then this first term in EAm will be
invariant under these combined transformations. The second term in (22.187),
however, will not be invariant under (22.188) but only under transformations
with €1 = €2 = 0,€3 # 0. We conclude that the global SU(2) symmetry of
(22.184), which was responsible for p = 1 at the tree level, can be extended
also to the quark sector; but—because the g4 in (22.186) are proportional to the
masses of the quark doublet—this symmetry is explicitly broken by the quark
mass difference. This is why a t—b loop in a W vacuum polarization correction can
produce the ‘non-decoupled’ contribution (22.173) to p, which grows as th — m%
and produces quite detectable shifts from the tree-level predictions, given the
accuracy of the data.

Returning to (22.188), the transformation on the L components is just the
same as a standard SU(2), transformation, except that it is global; so the gauge
interactions of the quarks obey this symmetry also. As far as the R components
are concerned, they are totally decoupled in the gauge dynamics, and we are
free to make the transformation (22.188) if we wish. The resulting complete
transformation, which does the same to both the L and R components, is a non-
chiral one—in fact, it is precisely an ordinary ‘isospin’ transformation of the type

uj . i
(gl_ >—> (1—16-1’/2)( py ) (22.190)
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Figure 22.18. One-boson self-energy graph in @72

The reader will recognize that the mathematics here is exactly the same as that in
section 18.3 involving the SU(2) of isospin in the o-model. This analysis of the
symmetry of the Higgs (or a more general symmetry breaking sector) was first
given by Sikivie et al (1980). The isospin SU(2) is frequently called ‘custodial
SU(2)’ since it ‘protects’ p = 1.

What about the absence of m%l corrections? Here the position is rather more
subtle. Without the Higgs particle H the theory is non-renormalizable, and hence
one might expect to see some radiative correction becoming very large (O(mlz{))
as one tried to ‘banish’ H from theory by sending my — oo (myg would be acting
like a cut-off). The reason is that in such a (¢')? theory, the simplest loop we
meet is that shown in figure 22.18 and it is easy to see by counting powers, as
usual, that it diverges as the square of the cut-off. This loop contributes to the
Higgs self-energy, and will be renormalized by taking the value of the coefficient
of ¢T¢ in (22.8) from experiment. We will return to this particular detail in
section 22.10.1.

Even without a Higgs contribution however, it turns out that the electroweak
theory is renormalizable at the one-loop level if the fermion masses are zero
(Veltman 1968, 1970). Thus, one suspects that the large m% effects will not
be so dramatic after all. In fact, calculation shows (Veltman 1977, Chanowitz
et al 1978, 1979) that one-loop radiative corrections to electroweak observables
grow at most like In ma for large my. While there are finite corrections which
are approximately O(m%l) for m% < M\%v,z’ for m%l > M\%v,z the O(mlz{) pieces
cancel out from all observable quantities,’ leaving only In m%l terms. This is just
what we have in (22.174) and it means, unfortunately, that the sensitivity of the
data to this important parameter of the Standard Model is only logarithmic. Fits to
data typically give my in the region of 100 GeV at the minimum of the x? curve
but the error (which is not simple to interpret) is of the order of 50 GeV. Direct
searches now rule out a Higgs mass less than about 110 GeV , while the ~ 2 s.d.
effect seen at the close of play at LEP gave my ~ 115 GeV (LEP Higgs (2001)).
For further details, see the review of searches for Higgs bosons by Igo-Kemenes
in Hagiwara et al (2002).

At the two-loop level, the expected 0(m4H) behaviour becomes O(ma)
instead (van der Bij and Veltman 1984, van der Bij 1984)—and, of course,
appears (relative to the one-loop contributions) with an additional factor of

3 Apart from the éTé coefficient! See section 22.10.
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O(x). This relative insensitivity of the radiative corrections to my, in the
limit of large my, was discovered by Veltman (1977) and called a ‘screening’
phenomenon by him: for large my (which also means, as we have seen, large
X), we have an effectively strongly interacting theory whose principal effects are
screened off from observables at lower energy. It was shown by Einhorn and
Wudka (1989) that this screening is also a consequence of the (approximate)
isospin SU(2) symmetry we have just discussed in connection with (22.173).
Phenomenologically, the upshot is that it is unfortunately very difficult to get a
good handle on the value of myg from fits to the precision data. With the top
quark, the situation was very different.

22.9 The top quark

Having drawn attention to the relative sensitivity of radiative connections to loops
containing virtual top quarks, it is worth devoting a little space to a ‘backward
glance’ at the year immediately prior to the discovery of the t-quark (Abe et al
1994a, b, 1995b, Abachi et al 1995b) at the CDF and DO detectors at FNAL’s
Tevatron, in p—p collisions at Ecy = 1.8 TeV.

The W and Z particles were, as we have seen, discovered in 1983 and at
that time, and for some years subsequently, the data were not precise enough to
be sensitive to virtual t effects. In the late 1980s and early 1990s, LEP at CERN
and SLC at Stanford began to produce new and highly accurate data which did
allow increasingly precise predictions to be made for the top quark mass, m;.
Thus, a kind of race began, between experimentalists searching for the real top
and theorists fitting ever more precise data to get tighter and tighter limits on m;
from its virtual effects.

In fact, by the time of the actual experimental discovery of the top quark, the
experimental error in m; was just about the same as the theoretical one (and—of
course—the central values were consistent). Thus, in their May 1994 review of
the electroweak theory (contained in Moutanet et al 1994, p 1304ff), Langacker
and Erler gave the result of a fit to all electroweak data as

my = 169 £15 +17 GeV, (22.191)

the central figure and first error being based on my = 300 GeV, the second
(+) error assuming my = 1000 GeV and the second (—) error assuming my =
60 GeV. At about the same time, Ellis ef al (1994) gave the extraordinarily precise
value

my = 162 £ 9 GeV (22.192)

without any assumption for my.

A month or so earlier, the CDF collaboration (Abe et al 1994a, b) announced
12 events consistent with the hypothesis of production of a tt pair and, on this
hypothesis, the mass was found to be

my =174+ 10 £13 GeV (22.193)
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and this was followed by nine similar events from DO (Abachi et al 1995a).
By February 1995 both groups had amassed more data and the discovery was
announced (Abe et al 1995b, Abachi e al 1995b). The 2002 experimental value
for m is 174.3 & 5.1 GeV (Hagiwara et al 2002) as compared to the value
predicted by fits to the electroweak data of 175.3 &+ 44 GeV. This represents an
extraordinary triumph for both theory and experiment. It is surely remarkable
how the quantum fluctuations of a yet-to-be detected new particle could pin down
its mass so precisely. It seems hard to deny that Nature has, indeed, made use
of the subtle intricacies of a renormalizable, spontaneously broken, non-Abelian
chiral gauge theory.

One feature of the ‘real’ top events is particularly noteworthy. Unlike the
mass of the other quarks, m is greater than Myw and this means that it can decay
to b+ W via real W emission:

t— Wt +b. (22.194)

In contrast, the b quark itself decays by the usual virfual W processes. Now we
have seen that the virtual process is supressed by ~ 1/ M%J if the energy release (as
in the case of b-decay) is well below My . But the real process (22.194) suffers
no such suppression and proceeds very much faster. In fact (problem 22.8) the
top quark lifetime from (22.194) is estimated to be ~ 4 x 10~2 s! This is quite
similar to the lifetime of the W itself, via WT — e, for example. Consider
now the production of a tt pair in the collision between two partons. As the t
and t separate, the strong interactions which should eventually ‘hadronize’ them
will not play a role until they are ~ 1 fm apart. But if they are travelling close
to the speed of light, they can only travel some 10~!¢ m before decaying. Thus
t’s tend to decay before they experience the confining QCD interactions. Instead,
the hadronization is associated with the b quark, which has a more typical weak
lifetime (~ 1.5 x 10712 5). By the same token, this fast decay of the t quark means
that there will be no detectable tt ‘toponium’, bound by QCD.

With the t quark now safely real, the one remaining missing particle in the
Standard Model is the Higgs boson, and its discovery is of the utmost importance.
It is fitting that we should end this final chapter with a brief review of Higgs
physics.

22.10 The Higgs sector

22.10.1 Introduction

The Lagrangian for an unbroken SU(2);, x U(1) gauge theory of vector bosons
and fermions is rather simple and elegant, all the interactions being determined
by just two Lagrangian parameters g and g’ in a ‘universal’ way. All the particles
in this hypothetical world are, however, massless. In the real world, while the
electroweak interactions are undoubtedly well described by the SU(2);, x U(1)
theory, neither the mediating gauge quanta (apart from the photon) nor the
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fermions are massless. They must acquire mass in some way that does not
break the gauge symmetry of the Lagrangian, or else the renormalizability of
the theory is destroyed and its remarkable empirical success (at a level which
includes loop corrections) would be some kind of freak accident. In chapter 19 we
discussed how such a breaking of a gauge symmetry does happen, dynamically,
in a superconductor. In that case ‘electron pairing’ was a crucial ingredient.
In particle physics, while a lot of effort has gone into examining various
analogous ‘dynamical symmetry breaking’ theories, none has yet emerged as
both theoretically compelling and phenomenologically viable. However, a simple
count of the number of degrees of freedom in a massive vector field, as opposed
to a massless one, indicates that some additional fields must be present in order
to give mass to the originally massless gauge bosons. And so, in the Standard
Model, it is simply assumed, following the original ideas of Higgs and others
(Higgs 1964, Englert and Brout 1964, Guralnik et al 1964; Higgs 1966) that a
suitable scalar (‘Higgs’) field exists, with a potential which breaks the symmetry
spontaneously. Furthermore, rather than (as in BCS theory) obtaining the fermion
mass gaps dynamically, they too are put in ‘by hand’ via Yukawa-like couplings
to the Higgs field.

It has to be admitted that this part of the Standard Model appears to be
the least satisfactory. While the coupling of the Higgs field to the gauge fields
is determined by the gauge symmetry, the Higgs self-coupling is not a gauge
interaction and is unrelated to anything else in the theory. Likewise, the Yukawa-
like fermion couplings are not gauge interactions either, and they are both
unconstrained and uncomfortably different in orders of magnitude. True, all these
are renormalizable couplings—but this basically means that their values are not
calculable and have all to be taken from experiment.

Such considerations may indicate that the ‘Higgs Sector’ of the Standard
Model is on a somewhat different footing from the rest of it—a commonly held
view, indeed. Perhaps it should be regarded as more a ‘phenomenology’ than a
‘theory’, much as the current—current model was. In this connection, we may
mention a point which has long worried many theorists. In section 22.8 we
noted that figure 22. 18 gives a quadratically divergent (O(AZ)) and positive
contribution to the qb ¢ term in the Lagrangian, at one-loop order. This term
would ordinarily, of course, be just the mass term of the scalar field. But in
the Higgs case, the matter is much more delicate. The whole phenomenology
depends on the renormalized coefficient having a negative value, triggering the
spontaneous breaking of the symmetry. This means that the O(Az) one-loop
correction must be cancelled by the ‘bare’ mass term ;mH 0¢ ¢ S0 as to achieve

a negative coefficient of order —v>. This cancellation between m%,’o and A2 will
have to be very precise indeed if A—the scale of ‘new physics’—is very high, as
is commonly assumed (say 10'® GeV).

The reader may wonder why attention should now be drawn to this particular
piece of renormalization: aren’t all divergences handled this way? In a sense
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they are, but the fact is that this is the first case we have had in which we
have to cancel a quadratic divergence. The other mass corrections have all been
logarithmic, for which there is nothing like such a dramatic ‘fine-tuning’ problem.
There is a good reason for this in the case of the electron mass, upon which
we remarked in section 11.2. Chiral symmetry forces self-energy corrections for
fermions to be proportional to their mass and, hence, to contain only logarithms
of the cut-off. Similarly, gauge invariance for the vector bosons prohibits any
O(A?) connections in perturbation theory. But there is no symmetry, within the
Standard Model, which ‘protects’ the coefficient of #7¢ in this way. It is hard
to understand what can be stopping it from being of order A2, if we take the
apparently reasonable point of view that the Standard Model will ultimately fail
at some scale A where new physics enters. Thus the difficulty is: why is the
empirical parameter v ‘shielded’ from the presumed high scale of new physics?
This ‘problem’ is often referred to as the ‘hierarchy problem’. We stress again that
we are dealing here with an absolutely crucial symmetry-breaking term, which
one would really like to understand far better.

Of course, the problem would go away if the scale A were as low as, say, a
few TeV. As we shall see in the next section this happens to be, not accidentally,
the same scale at which the Standard Model ceases to be a perturbatively
calculable theory. Various possibilities have been suggested for the kind of
physics that might enter at energies of a few TeV. For example, ‘technicolour’
models (Peskin 1997) regard the Higgs field as a composite of some new heavy
fermions, rather like the BCS-pairing idea referred to earlier. A second possibility
is supersymmetry (Peskin 1997), in which there is a ‘protective’ symmetry
operating, since scalar fields can be put alongside fermions in supermultiplets,
and benefit from the protection enjoyed by the fermions. A third possibility is
that of large extra dimensions (Antoniadis 2002).

These undoubtedly fascinating ideas obviously take us well beyond our
proper subject, to which we must now return. Whatever may lie ‘beyond’ it,
the Lagrangian of the Higgs sector of the Standard Model leads to many perfectly
definite predictions which may be confronted with experiment, as we shall briefly
discuss in section 22.10.3 (for a full account see Dawson et al (1990) and for more
compact ones see Ellis ef al (1996, chapter 11) and the review by Igo-Kemenes
in Hagiwara et al (2002)). The elucidation of the mechanism of gauge symmetry
breaking is undoubtedly of the greatest importance to particle physics: quite apart
from the SU(2)1, x U(1) theory, very many of the proposed theories which go
‘beyond the Standard Model’ face a similar ‘mass problem’ and generally appeal
to some variant of the ‘Higgs mechanism’ to deal with it.

The most significant prediction of the Higgs mechanism in SU(2)p, x U(1)—
and one originally pointed out by Peter Higgs himself (1964)—is that even
after the gauge bosons have swallowed three of the scalar fields to acquire
mass, one physical scalar field necessarily remains, with mass my = +/2u =
v / /2. The discovery of this Higgs boson has, therefore, always been
a vital goal in particle physics. Before turning to experiment, however, we
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want to mention some theoretical considerations concerning my by way of
orientation.

22.10.2 Theoretical considerations concerning myy

The coupling constant A, which determines myg given the known value of v, is
unfortunately undetermined in the Standard Model. However, some quite strong
theoretical arguments suggest that my cannot be arbitrarily large.

Like all coupling constants in a renormalizable theory, A must ‘run’. For the
((;ASTQAS)Z interaction of (22.8), a one-loop calculation of the 8-function leads to

A(v)

ME)= ————
1= 28 1n(E/v)

(22.195)

Like QED, this theory is not asymptotically free: the coupling increases with the
scale E. In fact, the theory becomes non-perturbative at the scale E* such that

8 2
E* ~ vexp ( 3;2”)) . (22.196)

Note that this is exponentially sensitive to the ‘low-energy’ coupling constant
A(v)—and that E* decreases rapidly as A(v) increases. But (see (22.18)) my
is essentially proportional to A'/2(v). Hence, as my increases, non-perturbative
behaviour sets in increasingly early. Suppose we say that we should like
perturbative behaviour to be maintained up to an energy scale A. Then we require

5 172
A 22.197)
M=V | (22

For A ~ 10'¢ GeV, this gives my < 160 GeV. However, if the non-perturbative
regime sets in at 1 TeV, then the bound on mpy is weaker, my < 750 GeV.

This is an oversimplified argument for various reasons, though the essential
point is correct. An important omission is the contribution of the top quark to the
running of A(E). More refined versions place both approximate upper, and lower,
bounds on my (Cabibbo et al 1979, Isidori et al 2001, Hambye and Riesselmann
1997). The conclusion is that for 130 GeV < my < 190 GeV the perturbative
regime could extend to ~10'® GeV, but that for myg < 130 GeV the theory would
be non-perturbative at a much lower scale. The precise critical values are sensitive
to the value of m;.

There is another, independent, argument which suggests that my cannot be
too large. We have previously considered violations of unitarity by the lowest-
order diagrams for certain processes (see chapter 21 and section 22.6). As we
saw, in a non-gauge theory with massive vector bosons, such violations are
associated with the longitudinal polarization states of the bosons, which carry
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factors proportional to the 4—momentum k* (see (21.30)). In a gauge theory,
strong cancellations in the high-energy behaviour occur between different lowest-
order diagrams. This behaviour is characteristic of gauge theories (Llewellyn
Smith 1973, Cornwall ef al 1974) and is related to their renormalizability. One
process of this sort which we have yet to consider, however, is that in which two
longitudinally polarized W’s scatter from each other. A considerable number of
diagrams (seven in all) contribute to this process, in leading order: exchange of
y, Z and Higgs particles, together with the W—W self-interaction. When all these
are added up the high-energy behaviour of the total amplitude turns out to be
proportional to A, the Higgs coupling constant (see, for example, Ellis et al (1996,
chapter 8)). This, at first sight, unexpected result can be understood as follows.
The longitudinal components of the W’s arise from the ‘3¢’ parts in (22.8)
(compare equation (19.48) in the U(1) case), which produce k* factors. Thus, the
scattering of longitudinal W’s is effectively the scattering of the three Goldstone
bosons in the complex Higgs doublet. These bosons have self-interactions arising
from the A(¢' )2 Higgs potential, for which the Feynman amplitude is just
proportional to A. Now, although such a constant term obviously cannot violate
unitarity as the energy increases (as has happened in the other cases), it can do so
if A itself is too big—and since A ma, this puts a bound on my. A constant
amplitude is pure J = 0 (compare (21.9)) and so, in order of magnitude, we
expect unitarity to imply A < 1. In terms of standard quantities,

A =miGE/V2 (22.198)

and so we expect

mu < G5/, (22.199)

A more refined analysis (Lee et al 1977a, b) gives

12
8v2a 1 TeV (22.200)
my < ~ eV. .
H 3GF

Like the preceding argument, this one does not say that my must be less
than some fixed number. Rather, it states that if myg gets bigger than a certain
value, perturbation theory will fail or ‘new physics’ will enter. It is, in fact,
curiously reminiscent of the original situation with the four-fermion current—
current interaction itself (compare (21.10) with (22.199)). Perhaps this is a clue
that we need to replace the Higgs phenomenology. At all events, this line of
reasoning seems to imply that the Higgs boson will either be found at a mass well
below 1 TeV, or else some electroweak interactions will become effectively strong
with new physical consequences. This ‘no lose’ situation provided powerful
motivation for the construction of the LHC.

We now consider some simple aspects of Higgs production and decay
processes at collider energies, as predicted by the Standard Model.
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Figure 22.19. Higgs boson production process by ‘gluon fusion’.

Figure 22.20. Higgs boson production process by ‘vector boson fusion’.

22.10.3 Higgs phenomenology

Our discussion is based on the existing lower bound on my established at LEP
(LEP 2003):
my > 114.4 GeV (95% c.1.). (22.201)

This already excludes many possibilities in both production and decay. At both
the Tevatron and the LHC, the dominant production mechanism is expected to
be ‘gluon fusion’ via an intermediate top quark loop as shown in figure 22.19
(Georgi et al 1978, Glashow et al 1978, Stange et al 1994a, b). Since the gluon
probability distribution rises rapidly at small x values, which are probed at larger
collider energy +/s, the cross-section for this process will rise with energy. At
the Tevatron with /s = 2 TeV, the production cross-section ranges from about
1 pb for myg =~ 100 GeV to 0.2 pb for my =~ 200 GeV. At an LHC energy of
/s = 14 TeV, the cross-section is about 50 pb for my =~ 100 GeV and 1 pb for
my =~ 700 GeV. The cross-section is the same for pp and for pp colliders.

The next largest cross-section, roughly ten times smaller, is for ‘vector
boson fusion’ via the diagram of figure 22.20. However, detection of H depends
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Figure 22.21. Higgs boson production in association with W or Z.

Figure 22.22. Higgs boson production in association with a tt pair.

crucially on being able to separate the signal from the large backgrounds expected
in many of the Higgs decay channels (to be discussed shortly). For this reason,
the mechanism of associated production of a Higgs boson with a vector boson,
shown in figure 22.21, could also be important since the leptonic decays of the
W or Z can be exploited for triggering. A pp collider gives a somewhat larger
cross-section for this process than a pp collider. A fourth possibility is ‘associated
production with top quarks’ as shown in figure 22.22, for example. Figure 22.23
(taken from Ellis ef al 1996) shows the cross-sections for the various production
processes as a function of my.

The Higgs boson will, of course, have to be detected via its decays. For
my < 140 GeV, decays to fermion—anti-fermion pairs dominate, of which bb has
the largest branching ratio. The width of H — £ f is easily calculated to lowest
order and is (problem 22.9)

_ CGszme 4m%c 3/2
TH— ff)= : 1 — - (22.202)

471«/5 2

my

where the colour factor C is three for quarks and one for leptons. For such
my values, T(H — f f) is less than 10 MeV. The final state ZH — utu~bb
provides a clean signature through tagging b-jets using the high- p leptons from
the decay b — ¢l v.

The situation changes significantly when mpyg becomes greater than twice the
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Figure 22.23. Higgs boson production cross-sections in pp collisions at the LHC (figure
from Ellis et al 1996, p 399).

Ql

Figure 22.24. Higgs boson decay via quark triangle.

vector boson masses. The tree-level width for H — WT W~ is (problem 22.9)

Grm3 4M3 4M3 M
PH— WHw) = 228 (20w ) (g 25w 4 p W) 20903
8w/2 my my

My
and the width for H — ZZ is the same with Mw — My and a factor of % to
allow for the two identical bosons in the final state. These widths rise rapidly
with my, reaching I’ ~ 1 GeV when myg ~ 200 GeV and ' ~ 100 GeV for
my ~ 500 GeV. It is apparent that for my any larger than this (say myg ~ 1 TeV)
the width of the state will become comparable to its mass, which is just another
facet of the ‘strong interaction’ regime discussed earlier.
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Figure 22.25. Branching ratios of the Higgs boson (from Ellis et al 1996, p 393).

The vector bosons themselves decay to leptons and quark jets, with the
latter having the larger branching ratios. But final states containing hadronic
jets will have to contend with large backgrounds at hadron collides. The rarer
purely leptonic final states such as I7/~IT[~ are likely to prove the best hope for
discovery. Another rare but characteristic decay is H — yy via intermediate W
and quark triangle loops (figure 22.24).

Figure 22.25, taken from Ellis et al (1996), shows the complete set of
phenomenologically relevant Higgs branching ratios for a ‘light’ Higgs boson.

The LHC is scheduled to start physics runs in the year 2007. The ATLAS
and CMS detectors have been optimized for Higgs boson searches and should be
well able to discover a Higgs boson with my in the range 100 GeV to 1 TeV.
Future machines, such as a high-energy eTe™ or ™ collider, will allow this
crucial energy regime to be explored with high precision.

Problems

22.1 By identifying the part of (22.23) which has the form (22.35), derive (22.36).
22.2 Using the vertex (22.26), verify (22.56).

22.3 Insert (22.7) into (22.125) to derive (22.127).

22.4 Verify that the neutral current part of (22.133) is diagonal in the ‘mass’ basis.
22.5 Verify (22.150).
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22.6 Suppose that the Higgs field is a triplet of SU(2)y, rather than a doublet; and
suppose that its vacuum value is

. 1 0 0
OlglO)=1 0 0 O
0 0 -1

in the gauge in which it is real. The non-vanishing component has t3 = —1, using
1 0 O
=0 0 O
0 0 -1

in the ‘angular-momentum-like’ basis. Since we want the charge of the vacuum
to be zero and we have Q = 3 + y/2, we must assign y(qAS) = 2. So the covariant
derivative on (;AS is

(3, +igt-W, +ig'B,)é

where 0 N 0 0 o 0
1 ﬁ 1 i ﬁ —i

n=x 0 & n=7 0 7

0 % 0 0 ﬁ 0

and 13 is as before (it is easy to check that these three matrices do satisfy the
required SU(2) commutation relations [t1, 2] = if3). Show that the photon and
Z fields are still given by (22.14) and (22.15), with the same sin Ay as in (22.17),
but that now

My = \/EMW/ cos Bw.

What is the value of the parameter p in this model?
22.7 Use (22.181) to verify (22.183).
22.8 Calculate the lifetime of the top quark to decay viat — W™ 4 b.

22.9 Using the Higgs couplings given in appendix Q, verify (22.202) and
(22.203).

Copyright 2004 IOP Publishing Ltd



APPENDIX M

GROUP THEORY

M.1 Definition and simple examples

A group G is a set of elements (a, b, ¢, ...) with a law for combining any two
elements a, b so as to form their ordered ‘product’ ab, such that the following
four conditions hold:

(i) Foreverya, b € G, the product ab € G (the symbol ‘€’ means ‘belongs to’
or ‘is a member of”).
(ii) The law of combination is associative, i.e.

(ab)c = a(bc). (M.1)

iii) G contains a unique identity element, e, such that for all a € G,
ae=ea =a. M.2)

(iv) Forall a € G, there is a unique inverse element, a !, such that
aa '=ala=e. (M.3)

Note that, in general, the law of combination is not commutative, i.e. ab # ba:
if it is commutative (ab = ba), the group is Abelian; if not, it is non-Abelian.
Any finite set of elements satisfying the conditions (i)—(iv) forms a finite group,
the order of the group being equal to the number of elements in the set. If the set
does not have a finite number of elements it is an infinite group.

As a simple example, the set of four numbers (1, i, —1, —i) form a
finite Abelian group of order 4, with the law of combination being ordinary
multiplication. The reader may check that each of (i)—(iv) is satisfied, with e
taken to be the number 1 and the inverse being the algebraic reciprocal. A second
group of order 4 is provided by the matrices

0 -1
( 0 - ) (M.4)

1 0 0 1 -1 0
0 1 -1 0 0o -1
with the combination law being matrix multiplication, ‘e’ being the first (unit)

matrix and the inverse being the usual matrix inverse. Although matrix
multiplication is not commutative in general, it happens to be so for these
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particular matrices. In fact, the way these four matrices multiply together is (as
the reader can verify) exactly the same as the way the four numbers (1, i, —1,
—1) (in that order) do. Further, the correspondence between the elements of the
two groups is ‘one to one’: that is, if we label the two sets of group elements by
(e,a,b,c)and (¢',a’, b, ¢'), we have the correspondencese <> €', a <> a’, b <
b', ¢ < c'. Two groups with the same multiplication structure and with a one-
to-one correspondence between their elements are said to be isomorphic. If they
have the same multiplication structure but the correspondence is not one-to-one,
they are homomorphic.

M.2 Lie groups

We are interested in continuous groups—that is, groups whose elements are
labelled by a number of continuously variable real parameters o1, a2, ..., o :
glay,an,...,0,) = g(a). In particular, we are concerned with various kinds of
‘coordinate transformations’ (not necessarily spacetime ones but including also
‘internal’ transformations such as those of SU(3)). For example, rotations in three
dimensions form a group whose elements are specified by three real parameters
(e.g. two for defining the axis of the rotation and one for the angle of rotation
about that axis). Lorentz transformations also form a group, this time with six
real parameters (three for 3D rotations, three for pure velocity transformations).
The matrices of SU(3) are specified by the values of eight real parameters. By
convention, parametrizations are arranged in such a way that g(0) is the identity
element of the group. For a continuous group, condition (i) takes the form

g@)g(B) = g(y (. B)) (M.5)

where the parameters y are continuous functions of the parameters a and 8. A
more restrictive condition is that y should be an analytic function of & and g; if
this is the case, the group is a Lie group.

The analyticity condition implies that if we are given the form of the group
elements in the neighbourhood of any one element, we can ‘move out’ from
that neighbourhood to other nearby elements, using the mathematical procedure
known as ‘analytic continuation’ (essentially, using a power series expansion);
by repeating the process, we should be able to reach all group elements which
are ‘continuously connected’ to the original element. The simplest group element
to consider is the identity, which we shall now denote by /. Lie proved that the
properties of the elements of a Lie group which can be reached continuously from
the identity / are determined from elements lying in the neighbourhood of 1.

M.3 Generators of Lie groups

Consider (following Lichtenberg 1970, chapter 5) a group of transformations
defined by
Xl = fi(X1, X0, oo XN QL 00, e, 0) (M.6)
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where the x;’s (i = 1,2,...,N) are the °‘coordinates’ on which the
transformations act, and the «’s are the (real) parameters of the transformations.
By convention, & = 0 is the identity transformation, so

xi = fi(X,0). (M.7)

A transformation in the neighbourhood of the identity is then given by

dx; = Z ofi da, (M.8)

where the {da,} are infinitesimal parameters and the partial derivative is
understood to be evaluated at the point (X, 0).

Consider now the change in a function F(X) under the infinitesimal
transformation (M.8). We have

oF
F— F+dF = F+ dx

i=1
o 4, 1OF
= F+ Z [Z 70 }8—)61
= {1 - Zdavif(v}F (M.9)
v=I

where

N
A . af; o
X, = — M.10
Y liz dory 0x; ( )

is a generator of infinitesimal transformations." Note that in (M.10) v runs from
1 to r, so there are as many generators as there are parameters labelling the group
elements. Finite transformations are obtained by ‘exponentiating’ the quantity in
braces in (M.9) (compare (12.30)):

U(a) = exp {—ia - X} (M.11)

where we have written ) | _ X, =a- X.
An important theorem states that the commutator of any two generators of a
Lie group is a linear combination of the generators:

(X3, Xp] =}, X, (M.12)

where the constants ¢} . are complex numbers called the structure constants of
the group; a sum over v from 1 to » is understood on the right-hand side. The
commutation relations (M.12) are called the algebra of the group.

1 Clearly there is lot of ‘convention’ (the sign, the i) in the definition of X v. Itis chosen for convenient
consistency with familiar generators, for example those of SO(3) (see section M.4.1).
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M.4 Examples

M4.1 SO(3) and three-dimensional rotations
Rotations in three dimensions are defined by
x" = RX (M.13)

where R is a real 3 x 3 matrix such that the length of X is preserved, i.e.
x'Tx’ = xTx. This implies that RTR = I, so that R is an orthogonal matrix.
It follows that

1 = det(RTR) = det R" det R = (det R)? (M.14)
and so det R = 1. Those R’s with det R = —1 include a parity transformation
(X’ = —x), which is not continuously connected to the identity. Those with

det R = 1 are ‘proper rotations’ and they form the elements of the group SO(3):
the S pecial O rthogonal group in 3 dimensions.
An R close to the identity matrix / can be written as R = I 4+ §R where

(I+8RTUI+8R) =1. (M.15)
Expanding this out to first order in § R gives
SRT = —8R (M.16)

so that SR is an anti-symmetric 3 x 3 matrix (compare (12.19)). We may
parametrize § R as

0 €g  —e
SR = —€3 0 €] M.17)
€  —€] 0

and an infinitesimal rotation is then given by
X' =X—€xX (M.18)
(compare (12.64)) or
dxi = —exx3+e€3x2 dxy = —e3x1 +€1x3 dx3 = —€1x2+ex1. (M.19)

Thus in (M.8), identifying do| = €1, day = €7, daz = €3, we have

a 0 a
Mo_y M M (M.20)
dog dan das
The generators (M.10) are then
% . ad
=ix3— —ixg—
! 3 0x2 0x3
A .0 .0
Xy =ixj— —ixg— M.21)
0x3 0x1
% .0 .0
=ixp— —ix;—
3 2 0xq ! 0x2
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which are easily recognized as the quantum-mechanical angular momentum

operators

A

X =xx—iV

which satisfy the SO(3) algebra

[X;, X ;] = ie;jx Xx.

(M.22)

(M.23)

The action of finite rotations, parametrized by &« = (a1, a2, «3), on functions F
is given by . A
U(a) = exp{—ia - X}. M.24)

The operators U(a) form a group which is isomorphic to SO(3). The structure
constants of SO(3) are i€k, from (M.23).
M4.2 SU(2)

We write the infinitesimal SU(2) transformation (acting on a general complex
two-component column vector) as (cf (12.27))

q; qi
'Y= +ie-1/2 M.25
( 4 ) ( / )< 2 ) (M-25)
so that
i€3 €] €
d = — —_— —
q1 2q1+(2+2>qz
—iej i€; €
dgp = —_—— = . M.26
q2 L + < 5 > ) q1 ( )

Then (with do; = € etc)
of _ig h _q 0 _ i

@2 Sh @2 Oh 4 (M.27)
0oq 2 doa 2 das 2
0 i d d i
Op g1 3 a1 dp 14 (M.28)
da 2 dap 2 das 2
and (from (M.10))
N 1 0 d
x’:——{ N 1—} (M.29)
: 2 |7 9q1 1 0g2
Y i{ 9 9 } (M.30)
= — 2— — 11— .
272 P0a  Moa
% 1{ S i } (M31)
=—-1—-qg1— P— ¢ - .
S I P A

It is an interesting exercise to check that the commutation relations of the
X[’s are exactly the same as those of the X;’s in (M.23). The two groups are
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therefore said to have the same algebra with the same structure constants, and
they are in fact isomorphic in the vicinity of their respective identity elements.
They are not the same for ‘large’ transformations, however, as we discuss in
section M.7.

M.4.3 SO(4): The special orthogonal group in four dimensions

This is the group whose elements are 4 x 4 matrices S such that STS = I, where
I is the 4 x 4 unit matrix, with the condition det S = +1. The Euclidean (length)2
x% + x% + x% + xf is left invariant under SO(4) transformations. Infinitesimal
SO(4) transformations are characterized by the 4D analogue of those for SO(3),
namely by 4 x 4 real anti-symmetric matrices §.5, which have six real parameters.
We choose to parametrize § S in such a way that the Euclidean 4-vector (X, x4) is
transformed to (cf (18.74), (18.75), (18.79) and (18.80))

X' =X—€xX—nx4
xy=x441n-X (M.32)
where X = (x1, x2, x3) and 5 = (1, 12, n3). Note that the first three components

transform by (M.18) when n = 0, so that SO(3) is a subgroup of SO(4). The six
generators are (with do; = € etc)

N 0 d
X|i=ix3— —ixp— (M.33)
0x2 0x3

and similarly for X » and X 3 as in (M.21), together with (defining dos = 17 etc)

N 0 ad

Xg=1|—x4— +x1— (M.34)
0x1 0x4

o 0 ad

Xs=1i|—x4— +xp— (M.35)
0x2 0x4

o . 0 ad

Xe=1|—-x4— +x3— ). (M.36)
dx3 0x4

Relabelling these last three generators as )% 1 = )A(4, 1?2 =X 5, 1?3 = )A(6, we find
the following algebra:

[)A(i, )A(j] = ieijkf(k M.37)
[)A(i, }A’j] = ifijk);k (M.38)
[);i, }A’j] = ieijkf(k (M.39)
together with
[X1, Y1] = [X2, V2] = [X3, Y3] = 0. (M.40)
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(M.37) confirms that the three generators controlling infinitesimal transformations
among the first three components X obey the angular momentum commutation
relations. (M.37)—(M.40) constitute the algebra of SO(4).

This algebra may be simplified by introducing the linear combinations

M; = 3 (X;i + ¥7) (M.41)
Np = 3(X; = ¥) (M.42)
which satisfy
[M;, Mj] = i€;jx My (M.43)
[N;, Nj1 = ieiji Nk (M.44)
[M;, Nj1=0. (M.45)

From (M.43)—(M.45) we see that, in this form, the six generators have separated
into two sets of three, each set obeying the algebra of SO(3) (or of SU(2)) and
commuting with the other set. They therefore behave like two independent
angular momentum operators. The algebra (M.43)-(M.45) is referred to as
SUR)xSU(Q2).

M.4.4 The Lorentz group

In this case the quadratic form left invariant by the transformation is the

Minkowskian one (xo)2 - x2 (see appendix D of volume 1). We may

think of infinitesimal Lorentz transformations as corresponding physically to

ordinary infinitesimal 3D rotations, together with infinitesimal pure velocity

transformations (‘boosts’). The basic 4-vector then transforms by
¥ = x0—p.x }

X = x—exx—nx° (M.46)

where » is now the infinitesimal velocity parameter (the reader may check that
x"2 — x2is indeed left invariant by (M.46), to first order in € and ). The six
generators are then X1, X2, X3 as in (M.21), together with

K ifx! 9 +x° 9 (M.47)
= —i|lx —+x — .
! 9x0 dx!
. 9 9
Ky = —i|x*— +x'— M.48
2 <x 5.0 7% 8x2> ( )
K P32 +x° 0 (M.49)
= — —— X —= . .
3 ax0 9x3
The corresponding algebra is
(X, )A(j] = iéijkf(k (M.50)
(X, K;] = ie;ju Ky (M.51)
(Ki, K;1 = —ieiji Xr. (M.52)
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Note the minus sign on the right-hand side of (M.52) as compared with (M.39).

M.4.5 SUQ)

A general infinitesimal SU(3) transformation may be written as (cf (12.71) and

(12.72))
/
q1 1 q1
9 | = <1 +i5n->~> q2 (M.53)
q3 q3
where there are now eight of these ’s, = (11, 12, ..., ng) and the A-matrices

are the Gell-Mann matrices

010 0 —i 0 1 0 0
A= 1 00 rmM=11i 0 0 A= 0 —1 0 |(M.54)
0 0 0 0 0 0 0 0 0
0 0 1 0 0 —i 0 00
AaMm=10 00 Aas=10 0 O r=1 0 0 1 (M.55)
1 00 i 0 0 010
1
00 0 » 0 0
=0 0 —i =1 0 J% 0o |. (M.56)
0 i O 2
0 O 7
In this parametrization the first three of the eight generators G, r=1,2,...,8)

are the same as X " X 5, X 4 of (M.29)—(M.30). The others may be constructed as
usual from (M.10); for example,

& i ( 0 ] > & i ( ] ] ) (M.57)
s=5 |\ B~ 1=\ B —02—]- .
2\Bog 1o 2\Pog; ~ T
The SU(3) algebra is found to be
[Ga, Gp] = i funcGe (M.58)

where a, b and ¢ each run from 1 to 8. The structure constants are i f,p., and the
non-vanishing f’s are as follows:

fiz=1 fir=1/2 fiss=-1/2 fus=1/2 fos7=1/2 (M.59)
fus=1/2 fre1=—1/2 fass=+3/2 fors =~3/2. (M.60)

Note that the f’s are anti-symmetric in all pairs of indices (Carruthers 1966,
chapter 2).
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M.S Matrix representations of generators and of Lie groups

We have shown how the generators X 1 X 2y, X » of a Lie group can be
constructed as differential operators, understood to be acting on functions of the
‘coordinates’ to which the transformations of the group refer. These generators
satisfy certain commutation relations, the Lie algebra of the group. For any given
Lie algebra, it is also possible to find sets of matrices X1, X, ..., X, (without
hats) which satisfy the same commutation relations as the X »’s—that is, they have
the same algebra. Such matrices are said to form a (matrix) representation of the
Lie algebra or, equivalently, of the generators. The idea is familiar from the study
of angular momentum in quantum mechanics (Schiff 1968, section 27), where the
entire theory may be developed from the commutation relations (with z = 1)

LJi, Jj1 = ieijx i (M.61)

for the angular momentum operators Ji, together with the physical requirement
that the J;’s (and the matrices representing them) must be Hermitian. In this case
the matrices are of the form (in quantum-mechanical notation)

(Jl.“)) = (IM) il My) (M.62)
MM,

where |J M) is an eigenstate of jz and of f3 with eigenvalues J(J + 1) and
M respectively. Since M; and M/, each run over the 2J + 1 values defined by
—-J < Mj, M; < J, the matrices Ji(J) are of dimension 2J + 1) x 2J + 1).
Clearly, since the generators of SU(2) have the same algebra as (M.61), an
identical matrix representation may be obtained for them: these matrices were
denoted by Ti(T) in section 12.1.2. It is important to note that J (or T') can take
an infinite sequence of values J = 0, 1/2,1,3/2, ..., corresponding physically
to various ‘spin’ magnitudes. Thus there are infinitely many sets of three matrices
(JI(J), JZ(J), J3(J)) all with the same commutation relations as (M.61).

A similar method for obtaining matrix representations of Lie algebras may
be followed in other cases. In physical terms, the problem amounts to finding
a correct labelling of the base states, analogous to |JM). In the latter case, the
quantum number J specifies each different representation. The reason it does so

. . . A2 .
is because (as should be familiar) the corresponding operator J commutes with
every generator:

3%, 71 =o. (M.63)

Such an operator is called a Casimir operator and by a lemma due to Schur
(Hammermesh 1962, pp 100-1) it must be a multiple of the unit operator. The
numerical value it has differs for each different representation and may, therefore,
be used to characterize a representation (namely as ‘J = 0, ‘J = 1/2’, etc).

In general, more than one such operator is needed to characterize a

A~

representation completely. For example, in SO(4), the two operators M~ and
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A

N commute with all the generators and take values M(M + 1) and N(N + 1)
respectively, where M, N = 0,1/2,1,.... Thus, the labelling of the matrix
elements of the generators is the same as it would be for two independent particles,
one of spin M and the other of spin N. For given M, N the matrices are of
dimension [2M + 1) x 2N + 1)] x [2M 4+ 1) + 2N + 1)]. The number of
Casimir operators required to characterize a representation is called the rank of the
group (or the algebra). This is also equal to the number of independent mutually
commuting generators (though this is by no means obvious). Thus, SO(4) is a rank
two group, with two commuting generators M3 and N3; so is SU(3), since G and
Gg commute. Two Casimir operators are therefore required to characterize the
representations of SU(3), which may be taken to be the ‘quadratic’ one

C =G+ Gi+ -+ G (M.64)
together with a ‘cubic’ one
C3 = durcGaG1Ge (M.65)
where the coefficients d . are defined by the relation
{has Ao} = 38ap + 2dgpehe (M.66)

and are symmetric in all pairs of indices (they are tabulated in Carruthers 1966,
table 2.1). In practice, for the few SU(3) representations that are actually required,
it is more common to denote them (as we have in the text) by their dimensionality,
which for the cases 1 (singlet), 3 (triplet), 3* (anti-triplet), 8 (octet) and 10
(decuplet) is, in fact, a unique labelling. The values of C» in these representations
are

=0 (3,39 =4/3 8 =3 (C(10)=6. (M.67)

Having characterized a given representation by the eigenvalues of the
Casimir operator(s), a further labelling is then required to characterize the states
within a given representation (the analogue of the eigenvalue of J3 for angular
momentum). For SO(4) these further labels may be taken to be the eigenvalues
of M3 and N3 for SU(3) they are the eigenvalues of G3 and Gg—l e. those
corresponding to the third component of isospin and hypercharge, in the flavour
case (see figures 12.3 and 12.4).

In the case of groups whose elements are themselves matrices, such as SO(3),
S0O4), SU(2), SU(3) and the Lorentz group, one particular representation of the
generators may always be obtained by considering the general form of a matrix
in the group which is infinitesimally close to the unit element. In a suitable
parametrization, we may write such a matrix as

1+i) e,x© (M.68)

v=1
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where (€1, €3, ..., €) are infinitesimal parameters, and (ng), ng), R Xig))
are matrices representing the generators of the (matrix) group G. This is exactly
the same procedure we followed for SU(2) in section 12.1.1, where we found
from (12.26) that the three X ESU(z))’s were just 7 /2, satisfying the SU(2) algebra.
Similarly, in section 12.2 we saw that the eight SU(3) X§SU(3))’S were just A/2,
satisfying the SU(3) algebra. These particular two representations are called the
Sfundamental representations of the SU(2) and SU(3) algebras, respectively; they
are the representations of lowest dimensionality. For SO(3), the three X 1(,50(3))’5
are (from (M.17))

00 O

xPOM =0 0 —i

0 i O

(SO(3)) 0 0

X5 = 0 00

-i 0 0

0 —1 0
xFPOD -1 o0 o (M.69)

0 0 O

which are the same as the 3 x 3 matrices Ti(l) of (12.48):
(Tl.(”)_ = —ieiji. (M.70)
jk

The matrices 7;/2 and Ti(l) correspond to the values J = 1/2, J = 1,

respectively, in angular momentum terms.

It is not a coincidence that the coefficients on the right-hand side of (M.70)
are (minus) the SO(3) structure constants. One representation of a Lie algebra is
always provided by a set of matrices {X ,(,R)} whose elements are defined by

(xi‘“) ——c}, (M.71)
nv

where the ¢’s are the structure constants of (M.12), and each of u, v, A runs from
1 to r. Thus, these matrices are of dimensionality r x r, where r is the number
of generators. That this prescription works is due to the fact that the generators
satisfy the Jacobi identity

(X, (X X1l 4 [X 0, (KXo, X311+ [Xo, [Xo, X101 = 0. (M.72)

Using (M.12) to evaluate the commutators, and the fact that the generators are
independent, we obtain

Cz,vcfa + Cg)ucga + Czucva = Vv (M73)
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The reader may fill in the steps leading from here to the desired result:

X X X X = X . M.74
( A va w off s va A off cku o vB ( )

(M.74) is, of course, precisely the (v8) matrix element of
R
X, x P =y, x® (M.75)

showing that the X ,(LR)’S satisfy the group algebra (M.12), as required. The
representation in which the generators are represented by (minus) the structure
constants, in the sense of (M.71), is called the regular or adjoint representation.

Having obtained any particular matrix representation X ® of the generators
of a group G, a corresponding matrix representation of the group elements can be
obtained by exponentiation, via

D® (a) = expfia - XV} (M.76)

where &« = (o1, @2, ..., ) (see (12.31) and (12.49) for SU(2), and (12.74)
and (12.81) for SU(3)). In the case of the groups whose elements are matrices,
exponentiating the generators X©@ just recreates the general matrices of the
group, so we may call this the ‘self-representation’: the one in which the group
elements are represented by themselves. In the more general case (M.76),
the crucial property of the matrices D®(a) is that they obey the same group
combination law as the elements of the group G they are representing; that is, if
the group elements obey

gla)g(B) =gy (a, B)) M.77)
then
D® () D®(B) = DD (y(a, B)). (M.78)

It is a rather remarkable fact that there are certain, say, 10 x 10 matrices which
multiply together in exactly the same way as the rotation matrices of SO(3).

M.6 The Lorentz group

Consideration of matrix representations of the Lorentz group provides insight into
the equations of relativistic quantum mechanics, for example the Dirac equation.
Consider the infinitesimal Lorentz transformation (M.46). The 4 x 4 matrix
corresponding to this may be written in the form

1 +ie- XTO _jp . KLO (M.79)
where
000 O
000 O
U= 0 0 o | e (M.80)
00 i 0
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(as in (M.69) but with an extra border of 0’s) and

0O -1 0 0

(LG) _ —i 0 0 O

Km"=19 0 0o

0O 0 O

0 —1 0

(LG) _ 0O 0 0 O

B7=1<0 0 o

0O 0 O

0 0 -—i

LG _ 0O 0 0 O
Ky = 0 00 0 (M.81)

-1 0 0 O

In (M.80) and (M.81) the matrices are understood to be acting on the four-
component vector

XO
1
X
2 (M.82)
x3

It is straightforward to check that the matrices X ;LG) and K l.(LG) satisfy the algebra
(M.50)-(M.52) as expected.

An important point to note is that the matrices K l.(LG), in contrast to X ELG)

or XESOO)), and to the corresponding matrices of SU(2) and SU(3), are not

Hermitian. A theorem states that only the generators of compact Lie groups can
be represented by finite-dimensional Hermitian matrices. Here ‘compact’ means
that the domain of variation of all the parameters is bounded (none exceeds a
given positive number p in absolute magnitude) and closed (the limit of every
convergent sequence of points in the set also lies in the set). For the Lorentz
group, the limiting velocity c¢ is not included (the y-factor goes to infinity), and
so the group is non-compact.

In a general representation of the Lorentz group, the generators X;, K; will
obey the algebra (M.50)—(M.52). Let us introduce the combinations

P=1(X+iK) (M.83)
Q= 3(X —iK). (M.84)
Then the algebra becomes
[P;, Pj] =ie;jx Py (M.85)
[Qi, O] = i€k Ok (M.86)
[P, 0;1=0 (M.87)

Copyright 2004 IOP Publishing Ltd



which are apparently the same as (M.43)—-(M.45). We can see from (M.81) that
the matrices iK O gre Hermitian, and the same is, in fact, true in a general finite-
dimensional representation. So we can appropriate standard angular momentum
theory to set up the representations of the algebra of the P’s and Q’s—namely,
they behave just like two independent (mutually commuting) angular momenta.
The eigenvalues of P2 are of the form P(P+1),for P =0,1/2, ..., and similarly
for QZ: the eigenvalues of Pz are Mp where —P < Mp < P, and similarly for
0s.

Consider the particular case where the eigenvalue of Q2 is zero (Q = 0) and
the value of P is 1/2. The first condition implies that the Q’s are identically zero,
so that

X =iK (M.88)

in this representation, while the second condition tells us that
P=1(X+iK)=1¢ (M.89)

the familiar matrices for spin—%. We label this representation by the values of

P (%) and Q (0) (these are the eigenvalues of the two Casimir operators). Then
using (M.88) and (M.89) we find that

X320 =1y (M.90)
and .
1

K30 = 50 (M.91)

Now recall that the general infinitesimal Lorentz transformation has the form
1 +ie- X —ip- K. M.92)

In the present case, this becomes
l+ie-0/2—n-0/2. (M.93)

These matrices are of dimension 2 x 2, and act on two-component spinors, which
therefore transform under an infinitesimal Lorentz transformation by

¢ =(+ie-0/2—n-0/2)¢. (M.94)

We say that ¢ ‘transforms as the (1/2, 0) representation of the Lorentz group’. The
‘1 + ie - 0 /2’ part is the familiar (infinitesimal) rotation matrix for spinors, first
met in section 4.4: it exponentiates to give exp(ie - a /2) for finite rotations. The
‘—n - 0 /2’ part shows how such a spinor transforms under a pure (infinitesimal)
velocity transformation. Exponentiating this part gives a transformation law

¢’ = exp(—ivA- o) (M.95)
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for a finite boost characterized by a speed v and a direction A.

There is, however, a second two-dimensional representation, which is
characterized by the labelling P = 0, Q = 1/2, which we denote by (0, 1/2).
In this case, the previous steps yield

X0 = lg (M.96)

as before, but )
K©:3) — %a. (M.97)

So the corresponding two-component spinor x transforms by
¥ =(+ie-a/24+n-0/2)x. (M.98)

We see that ¢ and x behave the same under rotations but ‘oppositely’ under
boosts.

How does all this relate to the spin-% wave equations we have introduced in
the text—that is, the Dirac equation of chapter 4 and the Weyl equation (4.150)
and its u, analogue (see also (20.56))? Consider the Weyl equation

(E—0a-pP¢p=0 (M.99)

for a massless spin—% particle with energy £ and momentum p such that £ = | p|.
The work of section 4.4 guarantees that, under a three-dimensional rotation, ¢ will
transform by

¢’ = explio - 6 /2)¢. (M.100)

So let us consider boosts. An infinitesimal velocity transformation (see M.46)
takes (E, p) to
E=E—qp-p (M.101)

p=p-nE. (M.102)

In this primed frame, (M.99) becomes
(E' —0-p)g =0. (M.103)

We shall verify that for (M.99), M.101), (M.102) and (M.103) to be consistent,
¢ must transform as
¢ =0—-n-0/2)¢ (M.104)

exactly as in (M.94), demonstrating that this ¢ is (as the notation has assumed) a
(1/2, 0) object.
Let
Vp=0—-1n-0/2). (M.105)

Then applying V, ! to (M.99) and inserting V,~ 'V, gives

[V, "(E -0 - p)V, '1Vy¢ =0. (M.106)
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The part in square brackets is, to first order in 7,

(I+n-0/2)(E—0-p(+n-06/2)=(E—n-p) —0o-(p—En)
=E —0o-p. (M.107)

Hence (M.103) follows with the identification (M.104), showing that also under
boosts ¢ transforms as a (1/2, 0) object. The reader who has worked through
problem 4.15 will recognize these manipulations, with a sign change for the
infinitesimal velocity parameters in (M.101) and (M.102) as compared with
(4.151) and (4.152). In a similar way, one can verify that the Weyl spinor yx
satisfying

(E4+o-px=0 (M.108)

transforms as a (0, 1/2) object.
The four-component Dirac wavefunction i is put together from one ¢ and

one x, via
Y= ( ¢ ) (M.109)
X
and describes a massive spin—% particle according to the equations

E¢=0-pp+my
Ex=—0 px+mo M.110)

as discussed in problem 4.15 and section 20.4. The ¢ and x spinors are projected
out of ¥ by the chirality operators

PrL = 3(1£ys) (M.111)

as discussed in section 20.4, in the representation such that

1 0
Ys = < 0 —1 > (M.112)

M.7 The relation between SU(2) and SO(3)

We have seen (sections M.4.1 and M.4.2) that the algebras of these two
groups are identical. So the groups are isomorphic in the vicinity of their
respective identity elements.  Furthermore, matrix representations of one
algebra automatically provide representations of the other. Since exponentiating
these infinitesimal matrix transformations produces matrices representing group
elements corresponding to finite transformations in both cases, it might appear
that the groups are fully isomorphic. But actually they are not, as we shall now
discuss.
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We begin by re-considering the parameters used to characterize elements of
SO(3) and SU(2). A general 3D rotation is described by the SO(3) matrix R(f, ),
where fi is the axis of the rotation and 6 is the angle of rotation. For example,

cosf sind 0
R(z,0) = —sinf® cosf® 0 |. M.113)
0 0 1

On the other hand, we can write the general SU(2) matrix V in the form

a b
v =< T ) (M.114)

where |a|?+|b|? = 1 from the unit determinant condition. It therefore depends on
three real parameters, the choice of which we are now going to examine in more
detail than previously. In (12.32) we wrote V as exp(ie - 7/2), which certainly
involves three real parameters «1, @z, @3; and below (12.35) we proposed, further,
to write &« = N6, where 6§ is an angle and f is a unit vector. Then, since (as the
reader may verify)

exp(ift - A/2) = cosO/2 + it - AisinH/2 M.115)
it follows that this latter parametrization corresponds to writing, in (M.114),
a=cos6/2+in,sin6/2 b= (ny+iny)sing/2 M.116)

with n +n +n = 1. Clearly the condition |a|? + |b|?> = 1 is satisfied, and one
can convince oneself that the full range of @ and b is covered if /2 lies between 0
and 7 (in particular, it is not necessary to extend the range of 6 /2 so as to include
the interval 7 to 2, since the corresponding region of a, b can be covered by
changing the orientation of fi, which has not been constrained in any way). It
follows that the parameters & satisfy a? < 472; that is, the space of the a’s is the
interior, and surface, of a sphere of radius 2, as shown in figure M.1.

What about the parameter space of SO(3)? In this case, the same parameters
f and O specify a rotation, but now 6 (rather than 6 /2) runs from 0 to 7. However,
we may allow the range of 6 to extend to 27, by taking advantage of the fact that

R(A, 7 +60) = R(—A, ). M.117)

Thus if we agree to limit f to directions in the upper hemisphere of figure M.1,
for 3D rotations, we can say that the whole sphere represents the parameter space
of SU(2), but that of SO(3) is provided by the upper half only.

Now let us consider the correspondence—or mapping—between the
matrices of SO(3) and SU(2): we want to see if it is one-to-one. The notation
strongly suggests that the matrix V (A, 8) = exp(idf - 7/2) of SU(2) corresponds
to the matrix R(f, #) of SO(3) but the way it actually works has a subtlety.
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Figure M.1. The parameter spaces of SO(3) and SU(2): the whole sphere is the parameter
space of SU(2), the upper (stippled) hemisphere that of SO(3).

We form the quantity X - T, and assert that
X -t=V{H o x-tViA,o (M.118)

where X’ = R(f,0)Xx. We can easily verify (M.118) for the special case
R(Z,0), using (M.113): the general case follows with more labour (but the
general infinitesimal case should, by now, be a familiar manipulation). (M.118)
establishes a precise mapping between the elements of SU(2) and those of SO(3)
but it is not one-to-one (i.e. not an isomorphism), since plainly V can always be
replaced by —V and x’ will be unchanged, and hence so will the associated SO(3)
matrix R(f, 0). It is, therefore, a homomorphism.

Next, we prove a little theorem to the effect that the identity element e of a
group G must be represented by the unit matrix of the representation: D(e) = I.
Let D(a), D(e) represent the elements a, e of G. Then D(ae) = D(a)D(e) by
the fundamental property (M.78) of representation matrices. However, ae = a by
the property of e. So we have D(a) = D(a)D(e), and hence D(e) = I.

Now let us return to the correspondence between SU(2) and SO(3). V (A, 0)
corresponds to R(f, 8), but can an SU(2) matrix be said to provide a valid
representation of SO(3)? Consider the case V(n = Z,6 = 2x). From (M.115)

this is equal to
-1 0
< 0 _1> M.119)

but the corresponding rotation matrix, from (M.113), is the identity matrix.
Hence, our theorem is violated, since (M.119) is plainly not the identity matrix
of SU(2). Thus, the SU(2) matrices cannot be said to represent rotations, in the
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strict sense. Nevertheless, spin—% particles certainly do exist, so Nature appears to
make use of these ‘not quite’ representations! The SU(2) identity element is, of
course, V(1 = z,60 = 4m), confirming that the rotational properties of a spinor
are quite other than those of a classical object.

In fact, two and only two distinct elements of SU(2), namely

( (1) (1) > and ( _01 _01 ) (M.120)

correspond to the identity element of SO(3) in the correspondence (M.118)—just
as, in general, V and —V correspond to the same SO(3) element R(A, 6), as we
saw. The failure to be a true representation is localized simply to a sign: we may
indeed say that, up to a sign, SU(2) matrices provide a representation of SO(3).
If we ‘factor out’ this sign, the groups are isomorphic. A more mathematically
precise way of saying this is given in Jones (1990, chapter 8).
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APPENDIX N

DIMENSIONAL REGULARIZATION

After combining propagator denominators of the form (p> — m? + ie)~! by
Feynman parameters (cf (10.40) and (11.16)) and shifting the origin of the loop
momentum to complete the square (cf (10.42) and (11.16)), all one-loop Feynman
integrals may be reduced to evaluating an integral of the form
d? k 1
Qm)d [k2 — A +ie]
or to a similar integral with factors of k (such as k,k,) in the numerator. We
consider (N.1) first.

For our purposes, the case of physical interest is d = 4, and n is commonly
2 (e.g. in one-loop self-energies). Power-counting shows that (N.1) diverges for
d > 2n. The idea behind dimensional regularization ('t Hooft and Veltman 1972)
is to treat d as a variable parameter, taking values smaller than 2n, so that (N.1)
converges and can be evaluated explicitly as a function of d (and, of course,
the other variables, including n). Then the nature of the divergence as d — 4
can be exposed (much as we did with the cut-off procedure in section 10.3)
and dealt with by a suitable renormalization scheme. The crucial advantage of
dimensional regularization is that it preserves gauge invariance, unlike the simple
cut-off regularization we used in chapters 10 and 11.

We write

Li(A,n) = (N.1)

L] o \"" [ d%k 1 N2)
T =1 \aa Qm K2 — A +iel’ '
The d dimensions are understood as one time-like dimension ° and d — 1
space-like dimensions. We begin (as discussed in connection with (15.75))
by ‘Euclideanizing’ the integral by setting k® = ik® with k¢ real. Then the
Minkowskian square k> becomes —(k¢)?> — k? = —kZ, and d¢ k becomes id” k,
so that now 1 .,
—i a\"" d*k 1
T
n—D!\oA Q2m)¢ (kg + A)

the ‘i€’ may be understood as included in A. The integral is evaluated by
introducing the following way of writing (klz3 +A) L

o0
K2+ A" = /0 dpePkE+a) (N.4)
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which leads to

—i 3 \"! e d? k
= _‘1)! <ﬁ> /0 dﬁ/ (2]1; o BUE+A) (N.5)

The interchange of the orders of the 8 and kg integrations is permissible since I
is convergent. The kg integrals are, in fact, a series of Gaussians:

dke _pazia) _ -pa H / o2
@m)? @m)°

e—ﬁA p dj2
~ @) (E) ’ (N0
Hence,
- 1 3 \"! Can
=) (4m)2 <_A) /dﬂe Php
—i (=Dt .
= (I’l _ 1)' (477:)(1/2 / ﬁ ﬂAﬁ @/2)- 1 (N7)

The last integral can be written in terms of Euler’s integral for the gamma function
I'(z) defined by

o
I'(z) =/ xi e dx. (N.8)
0
Since I'(n) = (n — 1)!, it is convenient to write (N.8) entirely in terms of '

functions as T 40
. =D" I'(n—d/ )A(d/Z)fn_
(4m)d/2 T(n)
This formula agrees with (15.76) for the case n = 2 (remembering that I; was
defined in Minkowski space).

Equation (N.9) gives an explicit definition of /; which can be used for any
value of d, not necessarily an integer. As a function of z, I"(z) has isolated poles
(see apppendix F of volume 1) at z = 0, —1, —2, .. .. The behaviour near z = 0
is given by

I; =

(N.9)

1
No)=-—-y+0@ (N.10)
Z
where y is the Euler—-Mascheroni constant having the value y ~ 0.5772. Using
') =T(E+1) (N.11)

we find the behaviour near z = —1:

—1
(=141 = 1Tl‘(r)

= — [;+1—y+0(t)} (N.12)
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similarly near z = —2:
171 3
N—2+H=z|-+z—-y+0@®|. (N.13)
21z 2

Consider now the case n = 2, for which I'(n —d/2) in (N.9) will have a pole
atd = 4. Setting d = 4 — ¢, the divergent behaviour is given by

2
F(2—d/2)=g—y+0(e) (N.14)
from (N.10), as stated in (15.78). I;(A, 2) is then given by
(A2 = — 22—y 1 o) (N.15)
’ (47.[)275/2 € : :

When A~¢/2 and (471)_2"’6/ 2 are expanded in powers of €, for small €, the terms
linear in € will produce terms independent of ¢ when multiplied by the ¢ ™! in the
bracket of (N.15). Using x¢ ~ 1 +elnx + 0(€2), we find (see (15.79)) that

Li(A,2) = ;[%—y+ln4n—lnA+O(e)i|. (N.16)
(4m)? | e

Another source of e-dependence arises from the fact (see problem 15.7) that
a gauge coupling which is dimensionless in d = 4 dimensions will acquire mass
dimension /% in d = 4 — € dimensions. A vacuum polarization loop with two
powers of the coupling will then contain a factor «¢. When expanded in powers
of e, this will convert the In A in (N.16) to In(A /u?).

Renormalization schemes will subtract the explicit pole pieces (which
diverge as ¢ — 0), but may also include in the subtraction certain finite terms as
well. For example, in the MS scheme one subtracts the pole and the ‘—y +In4x’
piece.

Finally, consider the integral

d? k kMY
Q2m) [k2 — A +ie]*

(A n) = (N.17)
From Lorentz covariance this must be proportional to the only second-rank tensor

available, namely g"":
1" = Agh”. (N.18)

The constant ‘A’ can be determined by contracting both sides of (N.17) with g,
using g"*V g,y = d in d dimensions. So

1 [ dk k2
A=— :
dJ) @Qm)d (k2 — A +ie)r
1 d?k 1 N dk 1
T d Qm)d (k2 — A +ie)r—1 Qm)d (k2 = A + ie)"
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i(—=1)" AWd/D-ntl {—F(n— 1—d/2) F(n—d/Z)}

T (4m)d/? d C'n—1) ['(n)

=D AP — 1 —d)2)

= Gmin 7 T {—n+ (n—4d/2)}
(=D)AL P — 1 —d)2)

- (47)d/2 2 T(n) (N-19)

Using these results, one can show straightforwardly (problem 15.5) that the
gauge-non-invariant part of (11.18)—i.e. the piece in braces—vanishes. With
the technique of dimensional regularization, starting from a gauge-invariant
formulation of the theory, the renormalization programme can be carried out while
retaining manifest gauge invariance.
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APPENDIX O

GRASSMANN VARIABLES

In the path integral representation of quantum amplitudes (chapter 16) the fields
are regarded as classical functions. Matrix elements of time-ordered products of
bosonic operators could be satisfactorily represented (see the discussion following
(16.71)). But something new is needed to represent, for example, the time-ordered
product of two fermionic operators: there must be a sign difference between the
two orderings, since the fermionic operators anti-commute. Thus, it seems that
to represent amplitudes involving fermionic operators by path integrals we must
think in terms of ‘classical’ anti-commuting variables.

Fortunately, the necessary mathematics was developed by Grassmann in
1855 and applied to quantum amplitudes by Berezin (1966). Any two Grassmann
numbers 01, 0, satisfy the fundamental relation

016, + 0261 = 0 0.1)

and, of course,
07 =63 = 0. (0.2)

Grassmann numbers can be added and subtracted in the ordinary way and
muliplied by ordinary numbers. For our application, the essential thing we need
to be able to do with Grassmann numbers is to integrate over them. It is natural
to think that, as with ordinary numbers and functions, integration would be some
kind of inverse of differentiation. So let us begin with differentiation.

We define 3(a8)
@ _, (0.3)
a6
where a is any ordinary number, and
9 (6162) = 02; (0.4)
then necessarily
d
—(6162) = —6,. 0.5
3 92( 162) 1 (0.5)

Consider now a function of one such variable, f(6). An expansion of f in
powers of 6 terminates after only two terms because of the property (O.2):

£(0) = a + be. (0.6)
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So

af©)
50 = b (0.7)
but also )
o f _
07 = 0 (0.8)

for any such f. Hence, the operator d/d6 has no inverse (think of the matrix
analogue A% = 0: if A~! existed, we could deduce 0 = A~1(A%) = (A~1A)A =
A for all A). Thus, we must approach Grassmann integration other than via an
inverse of differentiation.

We only need to consider integrals over the complete range of 9, of the form

/d@f(@) = /d@(a—i—b@). (0.9)

Such an integral should be linear in f; thus, it must be a linear function of a and
b. One further property fixes its value: we require the result to be invariant under
translations of 6 by 6 — 6 + n, where n is a Grassmann number. This property
is crucial to manipulations made in the path integral formalism, for instance in
‘completing the square’ manipulations similar to those in section 16.4, but with
Grassmann numbers. So we require

/d@(a—i—b@) :/d@([a—i—bn]—l—bé). (0.10)

This has changed the constant (independent of 6) term but left the linear term
unchanged. The only linear function of a and b which behaves like this is a
multiple of b, which is conventionally taken to be simply . Thus, we define

/d@(a—i—b@):b (O.11)

which means that integration is, in some sense, the same as differentiation!

When we integrate over products of different 8’s, we need to specify a
convention about the order in which the integrals are to be performed. We adopt
the convention

fdelfdezezel =1 (0.12)

that is, the innermost integral is done first, then the next, and so on.

Since our application will be to Dirac fields, which are complex-valued,
we need to introduce complex Grassmann numbers, which are built out of real
and imaginary parts in the usual way (this would not be necessary for Majorana
fermions). Thus we may define

1 1

(61 +162) Y= —(6) —i62) (0.13)

V=1 NG
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and then

—idyrdy™* = d6dos. (0.14)

It is convenient to define complex conjugation to include reversing the order of
quantities:

W) = x*y* (0.15)

Then (0O.14) is consistent under complex conjugation.
We are now ready to evaluate some Gaussian integrals over Grassmann
variables, which is essentially all we need in the path integral formalism. We

begin with
//dw*dwe*b‘”*% ffdx/f*dwa—bw*w

= //dt/f* dy (1 4+ byy™) =b. (0.16)
Note that the analogous integral with ordinary variables is

/ / dx dy e P62 — o p, (0.17)

The important point here is that, in the Grassman case, b appears with a positive,
rather than a negative, power on the right-hand side. However, if we insert a factor
Y™ into the integrand in (0.16), we find that it becomes

//dlﬁ* dy Yy (1 + byy™) =//d1#* dy gy =1 (0.18)

and the insertion has effectively produced a factor 5~!. This effect of an insertion
is the same in the ‘ordinary variables’ case:

/ / dx dy(x2 + y2) /2~ b2 o5 12, (0.19)
Now consider a Gaussian integral involving two different Grassmann
variables:
/ dyt dyry Ay} dyp eV MY (0.20)
where
(4
= 0.21
o=(1) o2

and M is a 2 x 2 matrix, whose entries are ordinary numbers. The only terms
which survive the integration are those which, in the expansion of the exponential,
contain each of ¥{', ¥, ¥ and v, exactly once. These are the terms

LMy Moy (W v + Vv v vn)
+ Mia Moy (Y Y5 ¥ + Y3 v va)l. (0.22)
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To integrate (0.22) conveniently, according to the convention (O.12), we need to
re-order the terms into the form Y21/ 1 4]'; this produces

(M1 M — MiaMa) (Y3 Yy, (0.23)

and the integral (O.20) is therefore just

/ / dyt dy dyd dyne V" MY = det M. (0.24)

The reader may show, or take on trust, the obvious generalization to N
independent complex Grassmann variables ¥y, Y2, ¥3, ..., ¥y. This result
is sufficient to establish the assertion made in section 16.4 concerning the integral
(16.82), when written in ‘discretized’ form.

We may contrast (O.24) with an analogous result for two ordinary complex
numbers z1, z2. In this case we consider the integral

/ / dz? dzy dz} dza e H2 (0.25)

where z is a two-component column matrix with elements z; and zo. We take
the matrix H to be Hermitian, with positive eigenvalues b; and by. Let H be
diagonalized by the unitary transformation

2\ L 21
(D-z) e

with UUT = I. Then

dz’l dz’2 =detU dz; dzp (0.27)
and so
dz} dz}* dz dz5° = dz) dz] dzp 23 (0.28)
since | det U|> = 1. The integral (0.25) then becomes
/ dz} dzjre~b1erw / dzh dzfe P22 % (0.29)
the integrals converging provided by, b, > 0. Next, setting z; = (x1 +

iv1)/v2, z2 = (x2 + iy2)/+/2, (0.29) can be evaulated using (0.17), and the
result is proportional to (b]bz)’l, which is the inverse of the determinant of
the matrix H, when diagonalized. Thus—compare (0.16) and (O.17)—Gaussian
integrals over complex Grassmann variables are proportional to the determinant
of the matrix in the exponent, while those over ordinary complex variables are
proportional to the inverse of the determinant.

Returning to integrals of the form (0.20), consider now a two-variable (both
complex) analogue of (0.18):

f dyrt dyry dysd dyry gy eV MY (0.30)
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This time, only the term v/ 2 in the expansion of the exponential will survive
the integration and the result is just —M72. By exploring a similar integral (still
with the term v/11/) in the case of three complex Grassmann variables, the reader
should be convinced that the general result is

H/dl//i* dyi Yarre ™V MY = (M) det M. (0.31)

With this result we can make plausible the fermionic analogue of (16.79),
namely

. [ DYDY (x1)¥ (x2) expl— [ d*xg ¥ (id — m)y]
QT Q) = - -
(QIT [y )Y ()} 1) Ty expl [ e 56—y

(0.32)
note that ¢ and v* are unitarily equivalent. The denominator of this expression
is | det(iy — m), while the numerator is this same determinant multiplied by the
inverse of the operator (ig — m); but this is just ( p— m)~! in momentum space,
the familiar Dirac propagator.

' The reader may interpret this as a finite-dimensional determinant, after discretization.

Copyright 2004 IOP Publishing Ltd



APPENDIX P

MAJORANA FERMIONS

In this appendix we aim to give an elementary introduction to ‘Majorana’
fermions—that is, spin—% particles with no conserved quantum number allowing
an observable distinction to be made between the ‘particle’ and the ‘anti-particle’.
Such particles (which clearly cannot be electrically charged) would then be
fermionic analogues of the ¥, for example, which is its own anti-particle. As we
saw in section 7.1, a charged scalar field (or one carrying some other conserved
quantum number) has two field degrees of freedom, whereas a neutral scalar field
has only one. The two degrees of freedom correspond to the physically distinct
states of particle and anti-particle, in that case. For the Dirac field, introduced in
section 7.2, there is an additional doubling of the number of degrees of freedom to
four in all, corresponding to particles and anti-particles with spin up or down (or
helicity +1 or —1, etc). But, for neutral fermions such as neutrinos, the possibility
exists that they might be their own anti-particles, and so have only two degrees of
freedom corresponding just to the two possible spin states.

It is not so clear, at first sight, where there is room for such a possibility
in the conventional presentation of the Dirac equation (see section 4.2), which
appears to lead inevitably to the ‘particle/anti-particle, up/down’ description with
four degrees of freedom. We therefore begin by re-considering relativistic wave
equations for spin—% particles.

P.1 Spin-% wave equations

Within the framework of quantum-mechanical wave equations (rather than that
of quantum fields), one way of approaching the ‘number of degrees of freedom’
issue is via the discussion of the Dirac equation in appendix M, section M.6—
that is, in terms of the way two-component spinors transform under Lorentz
transformations. Specifically, we saw there that the 4-component Dirac spinor

_( ¢
1//—()() (P.1)

could be understood as being built from two different kinds of spinor. One kind
(¢) transforms according to the (1/2, 0) representation of the Lorentz group, via

¢ = +ie-0/2—n-0/2)¢ (P2)
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for infinitesimal rotations and boosts. The other kind () transforms as a (0, 1/2)
representation via

x =(+ie-0/2+n-0/2)x%. (P.3)

The Dirac equation itself is then
(i0; +io - V)p =my (P.4)
(19, —io - V)x = me. (P5)

In (P4) and (P.5), the ‘id; £ io - V’ factors on the left-hand sides are just
what is required to change the transformation character of a ¢ into that of a
X or vice versa, since both sides must transform consistently under Lorentz
transformations. (In terms of the ‘R-L’ classification of section 20.4, ¢ is YR
and x is ¥).

We may ask the question: is it possible to find a spinor ¢, constructed from
the components of ¢ (and, hence, without additional degrees of freedom), which
transforms like a ‘x’ rather than a ‘¢’? Then we could, for example, replace x on
the right-hand side of (P.4) by ¢, and the two sides would transform consistently
but involve only the degees of fredom in ¢.

It is indeed possible to find such a ¢.: namely, consider!

P = i020". (P.6)
Then
¢ = (i02¢™) =ior(1 —i€-0/2 —n-0/2)"p*
=ioy(1+ie-a*/2 —5-0*/2)p*
=(0—ie-6/2+n-0/2)(i02¢9™) P.7)
using o' = 01, 0, = —02, 05 = 03 and 0;0; + 0j0; = 28;;. Equation (P.7)

shows that “iop¢™*’ does transform like a ‘x’ (the ‘i’ is inserted for convenience,
so as to make ioy real). In ‘R-L’ language, we may say that ioo g transforms like
Y1, and similarly with R < L.

Consider, then, the two-component wave equation

(i0; + io - V)¢ = m(iore*). (P8)

Take the complex conjugate of this equation, multiply from the left by iop, and
commute the o through the bracket on the left-hand side, as in (P.7): we find that

(=id; +io - V)(i029™) = —m¢. (P.9)
It follows from (P.8) and (P.9) that

(=19, +i0 - V[0, +i0 - V)] = m(—id; + io - V)(i026™)
= —m?¢, (P.10)

I The reader may usefully bear in mind, at this point, the discussion of the SU(2) representations 2
and 2* in the paragraph containing equations (12.53)—(12.57) in chapter 12.
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and, hence,
2=V 4mHp=0 (P.11)

showing that ¢ satisfies the KG equation, precisely the condition we imposed

in (4.27) on the Dirac wavefunction ¥y. Hence, even though it has only two

components, ¢ is a valid relativistic wavefunction for a massive spin—% particle.
Plane-wave solutions can be found, having the form

’ ze_ip,x( “ )+eip-x( y > (P.12)

where < 2 ) will be related to < Z ) via the wave equation (P.8). We find that

E . *
()= m(z)

We can also check that p = ¢T¢ and | = ¢To¢ satisfy the continuity
equation (cf (4.55)):
*p+V-j=0. (P.14)

These results were first given by Case (1957).
Comparison of (P.9) and (P.5) reveals that it is consistent to use a four-
component wavefunction of the type (P.1) in this case too, identifying x with

iop¢*, and writing
_ ¢
Ym = < iy | (P.15)
Consider now the charge conjugation operation Cy of section 20.5, assuming
that it is the ‘right’ operation in the present case as well. We find that

o, 0 —i *
YMc = iy = < ioy E)UZ )( i((fqu )
_ ¢ _
- < e ) = Y. (P.16)

Hence v\ satisfies the Majorana condition
Ymc = ¥Mm (P.17)

and, in this sense, may be said to describe a self-conjugate particle.
However, in terms of the ‘R—L’ classification

YMR = < (g ) YML = < i620¢* ) (P.18)

2 The true ‘anti-particle’ is defined via the operator CPT, since this is believed to be conserved by all
interactions.
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we obtain

YMRC = ¥M,L YMLC = ¥YMR- (P.19)

Inserting (P.12) and (P.13) into (P.15), we find that the four-component
wavefunction has the form

; (552). = (5 )

— a—ipx ipx
Ym=e (E_G_p) u +e i o
m b o2 p*

Let us take ( Z ) = ¢4, such that o - pg = | plp+ as in (20.46). Then g of

(P.20) can be written as

UM = +1) = e P u(p, A = +1) + P (it (p, A = +1))  (P21)

using (20.47) and the normalization (20.48). In the form (P.21), it is evident that
the Majorana condition (P.16) holds.

A problem arises, however, when we try to describe this theory in terms of
a Lagrangian. Mimicking what we learned in the Dirac case, we would expect to
derive (P.8) and (P.9) from the Lagrangian

Ly = ymGd — m)pwm. (P.22)

But consider the mass term:

mymym = m(@’ ¢T(—i02))( . ) ( iaf¢* )
= im{g 020" — ¢ 029}, (P23)
which can also be written, as usual, as

m{UMRYM.L + YM.LYMR). (P.24)

If ¢ is an ordinary c-number spinor of the form

a
¢ = < ) ) (P25)

then each term in (P.23) vanishes identically, since o5 is anti-symmetric, and we
seem unable to form the required Lagrangian.

The same point was noticed with respect to (22.119) but resolved there by the
fact that ¢ was replaced by a two-component fermionic (anti-commuting) field.
Let us therefore now consider the quantum field case.
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P.2 Majorana quantum fields

The field-theoretic charge-conjugation operator C was introduced in section 20.5,
with the property (20.71):

A A A A p . 2\T
Yo =GO =i =i (V) (P26)

The standard normal mode expansion of a Dirac field is

~ Bk 1 R ikex At ik-x
Vp(x) =/ (2n)3ﬁ;[q(k)u(k, e 4 3l vk, Me ] (P.27)

clearly showing the four degres of freedom—namely via the operators ¢, and c?I,
which respectively destroy particles with A = +1 and create anti-particles with
A = =£1. The charge-conjugate field is

o Bk 1 A wy kx5 gk —ikex
o) = Z I:C)L(lj/zlxt e * + dy (iy2v™)e ] (P.28)

(2n)* V2E 4

Let us write (with a slight abuse of notation)

(¢
u—(X ) (P29)

s “loax* N (P L
iyau _< ioyg* ) < X ) u (P.30)

where ‘~’ means ‘transforms in the same way as’—a result which follows from
the work of section P.1. Similarly,

as usual. Then

iy0* ~ u. (P31)

These results show that, as claimed in section 22.6, the charge-conjugate field
transforms in the same way as the original field. In fact, (20.70) shows more:
that, with our conventions, iy>v*(p, A = +1) is actually equal to u(p, . = +1)
and, similarly, iyou*(p, A = +1) = v(p, A = +1). Thus, in @Dc, the operators
¢ and d are interchanged, as required.

Apart from the spinor factors, (P.27) is analogous to the expansion (7.16)
of a complex scalar field, which also has two distinct kinds of mode operator, a
and bT. In contrast, the expansion of the real scalar field in (5.116) has only one
type of operator, @ and its Hermitian conjugate a'. Consider, therefore, the field
obtained by replacing c?I in (P.27) by 6; (compare (P.21)):

Bkl A o .
/ 2n)3 «/ﬁ Z [Ck(k)u(k, A)e kx + &, (k) (iy2u™ (k, 2)ek ]

(P32)
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where we have used v = iyou™. Then it is easy to see that
CimC™" = Yu (P.33)

and the Majorana condition is satisfied for the field Ym. The operators ¢ and 6;
in (P.32) destroy and create just one kind of particle, which has two possible spin
states.

The mass term considered at the end of the previous section is now clearly
possible in this quantum field formalism, taking the fermionic operators to anti-
commute as usual. But so are other types of mass term. Reverting to the L-R
notation, we may have a ‘Dirac’ mass of the form

—mp (ardur + arsimr ) (P34)
and also two ‘Majorana’ mass terms, one of the form
—imy (m ImL + @T,L@M,LC) (P.35)
as in (22.116), and also
L (Irc hmr + Imr darc) (P36)

These may all be combined into the most general Lorentz-invariant mass term (for
one neutrino flavour)

—%(NLcMNL+1§7LMNLc> P.37)
where R .
S YM.L ) o ( YM.LC >
NL = < ~ ’ NLC = A (P38)
YMRC YM,R
and the matrix M is given by
M =( i mp ) (P39)
mp mR

We shall assume for simplicity that the parameters m., mr and mp are all real,
which coresponds to a CP-conserving theory in this sector.

The theory of (one-flavour) neutrino mixing may now be developed, by
finding the matrix which diagonalizes M, and hence obtaining the fields in the
‘mass’ basis as linear combinations of those in the ‘weak interaction (L-R)’ basis.
A clear discussion is given in Bilenky (2000), for example. One case that has
attracted considerable attention is that in which mp, = 0 and mp < mgR. Then the
eigenvalues of (P.39) are approximately given by

my~mR  my~ —md/mg; (P.40)
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where the apparently troubling minus sign in m; can be absorbed into the mixing
parameters. Thus, one eigenvalue is (by assumption) very large compared to mp
and one is very much smaller. The condition m, = 0 ensures that the lepton-
number-violating term (P.36) is characterized by a large mass scale mg. It may be
natural to assume that mp is a ‘typical’ quark or lepton mass term, which would
then imply that m; of (P.40) is very much lighter than that—as, of course, appears
to be true for the neutrinos. This is the well-known ‘see-saw’ mechanism of Gell-
Mann et al (1979), Yanagida (1979) and Mohapatra and Senjanovic (1980, 1981).
If, in fact, mr ~ 1016 Gev, we recover an estimate for my which is similar to
that in (22.122). The reader may consult Bilenky (2000), for example, or Kayser
et al (1989), for the devlopment of the theory of neutrino masses, mixing, and
oscillations. The experimental status is reviewed by Kayser in Hagiwara et al
(2002).
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APPENDIX Q

FEYNMAN RULES FOR TREE GRAPHS IN QCD
AND THE ELECTROWEAK THEORY

Q1 QCD
Q.1.1 External particles

Quarks

The SU(3) colour degree of freedom is not written explicitly: the spinors have 3
(colour) x 4 (Dirac) components. For each fermion or anti-fermion line entering
the graph include the spinor

u(p,s) —or  v(p,s) Q.1
and for spin—% particles leaving the graph, the spinor
u(p’,s’y  or  w(p's) Q2

as for QED.

Gluons

Besides the spin-1 polarization vector, external gluons also have a ‘colour
polarization’ vector a“(c = 1,2,...,8) specifying the particular colour state
involved. For each gluon line entering the graph include the factor

€k, 1)a Q3)
and for gluons leaving the graph, the factor

en (k' \ya™. Q4)

Q.1.2 Propagators
Quark

—- @Q53)
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Gluon

i k" kY
00000000 = 2 <—gW +( - s)7> 5P (Q.6)
for a general £ gauge. Calculations are usually performed in Lorentz or Feynman
gauge with £ = 1 and gluon propagator equal to

_ oHhvysab
00000000 _ (=88 Q7

k2
Here a and b run over the eight colour indices 1, 2, .. ., 8.
Q.1.3 Vertices
w,a
Wk, .a .
— gs fabelguv (k1 — k2)a + gualka — k3)p + gap (ks — k1)v]
V,ky,b k,k3,c
wk a piky.d

- igsz[fabefcde(gukgup - g,upgv)») + fadefbce(guug)»p - gukgup)
+ face fave(8rp&va — &uv&ip)]

It is important to remember that the rules given here are only adequate for
tree-diagram calculations in QCD (see section 13.5.3).

Q.2 The electroweak theory

For tree-graph calculations, it is convenient to use the U-gauge Feynman rules
(sections 19.5 and 19.6) in which no unphysical particles appear. These U-gauge
rules are given here for the leptons I = (e, u, 7), vi = (ve, vy, vr); for the
3 = —1—% quarks denoted by f, where f = u, c, t; and for the 3 = —1/2 CKM-
mixed quarks denoted by f’ where f' = d, s, b. The mixing matrix Vip is discussed
in section 22.7.1.
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Note that for simplicity we do not include neutrino flavour mixing; see
section 22.7.2.

Q.2.1 External particles
Leptons and quarks

For each fermion or anti-fermion line entering the graph include the spinor

u(p,s) —or  v(p,s) (Q.8)

and for spin—% particles leaving the graph, the spinor

u(p';s’y or  v(p,sh). Q9

Vector bosons

For each vector boson line entering the graph include the factor

€ulk, ) (Q.10)

and for vector bosons leaving the graph, the factor

e, ), Q11)

Q.2.2 Propagators

Leptons and quarks

. Q.12)

Vector bosons (U gauge)

w70 i )
ANNNAANNN = m(—gﬂu +kluku/mv) (Q13)
"

where ‘V’ stands for either ‘W’ (the W-boson) or ‘Z’ (the 79).

Higgs particle

PG = (Q.14)
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Q.2.3 Vertices

Charged-current weak interactions

Leptons
W
! v,
SV Rt 7
V2 2
Quarks

Neutral-current weak interactions (no neutrino mixing)

Fermions

where

C‘Ilj = l‘jf

— sin® Gw Q (Q.15)

c‘{{ = —sin®OwQ; (Q.16)

and f stands for any fermion.
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Vector boson couplings

(a) Trilinear couplings:
yWHTW~ vertex

ie[gualks — k) + gap(ka — ky)v + guv(ky — k1)il

ZOWHW~ vertex

igcosOwlgu(kr — k2)p + grpuko — k3)y + guv (ks — k1)x]

(b) Quadrilinear couplings:

W W,v

Y,0 7B

- iez(zgaﬂg,uv — 8an8pv — gavgﬂu)

W Wv

7,0 z°8

— ieg cos Ow (280p81v — 8an&Bv — av8pu)
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Wi W,v

70 78
—ig? cos® Ow(28upgur — Lan&py — Sav€pu)

W W,v

W a W

igz(Zg,wgwg — uB8av — g;wgaﬁ)

Higgs couplings

(a) Trilinear couplings:
HWTW™ vertex

Wtk]MJr,er

igMngA

HZ°Z9 vertex

0 0
Va ’k"M o

ig

Mzg.x
CoS Bw
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Fermion—Yukawa couplings (fermion mass m 7 )

Trilinear self-coupling

3m%g

2Mw

(b) Quadrilinear couplings:
HHWTW~™ vertex

HHZZ vertex
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Quadrilinear self-coupling

i3m%g2
2
4My

Copyright 2004 IOP Publishing Ltd



REFERENCES

Abachi S et al 1995a DO collaboration Phys. Rev. Lett. 74 2422

——1995b Phys. Rev. Lett. 74 2632

Abbiendi G et al 2000 Eur. Phys. J. C 13 553

Abbott B et al 2000 Phys. Rev. Lett. 84 222

Abe F et al 1994a CDF collaboration Phys. Rev. D 50 2966

——1994b Phys. Rev. Lett. 73 225

——1995a Phys. Rev. D 52 4784

——1995b Phys. Rev. Lett. 74 2626

Abe K 1991 Proc. 25th Int. Conf. on High Energy Physics ed K K Phua and Y Yamaguchi
(Singapore: World Scientific) p 33

Abe K et al 2000 Phys. Rev. Lett. 84 5945

——2002 Belle collaboration Phys. Rev. D 66 032007

Abramovicz H et al 1982a Z. Phys. C 12 289

——1982b Z. Phys. C 13 199

——1983 Z. Phys. C 17 283

Abreu P et al 1990 Phys. Lett. B 242 536

Acciari M et al 2000 Phys. Lett. B 476 40

Adler S L 1963 Phys. Rev. 143 1144

——1965 Phys. Rev. Lett. 14 1051

——1969 Phys. Rev. 177 2426

——1970 Lectures on Elementary Particles and Quantum Field Theory (Proceedings of
the Brandeis Summer Institute) vol 1, ed S Deser et al (Boston, MA: MIT)

Adler S L and Bardeen W A 1969 Phys. Rev. 182 1517

Affolder T et al 2001 Phys. Rev. D 64 052001

Aitchison I J R ef al 1995 Phys. Rev. B 51 6531

Akhundov A A et al 1986 Nucl. Phys. B 276 1

Akrawy M Z et al 1990 OPAL collaboration Phys. Lett. B 235 389

Alitti S et al 1992 Phys. Lett. B 276 354

Allaby J et al 1988 J. Phys. C: Solid State Phys. 38 403

Allasia D et al 1984 Phys. Lett. B 135 231

——1985 Z. Phys. C 28 321

Allton CR et al 1995 Nucl. Phys. B 437 641

——2002 UKQCD collaboration Phys. Rev. D 65 054502

Alper B et al 1973 Phys. Lett. B 44 521

Altarelli G 1982 Phys. Rep. 81 1

Altarelli G and Parisi G 1977 Nucl. Phys. B 126 298

Altarelli G et al 1978a Nucl. Phys. B 143 521

——1978b Nucl. Phys. B 146 544(E)

——1979 Nucl. Phys. B 157 461

Copyright 2004 IOP Publishing Ltd



——1989 Z. Phys. at LEP-1 CERN 89-08 (Geneva)

Amaudruz P et al 1992 NMC collaboration Phys. Lett. B 295 159

Anderson P W 1963 Phys. Rev. 130 439

Antoniadis I 2002 2001 European School of High Energy Physics ed N Ellis and J March-
Russell CERN 2002-002 (Geneva) pp 301ff

Aoki S et al 2000 CP-PACS collaboration Phys. Rev. Lett. 84 238

Appel J A et al 1986 Z. Phys. C 30 341

Appelquist T and Chanowitz M S 1987 Phys. Rev. Lett. 59 2405

Arnison G et al 1983a Phys. Lett. B 122 103

——1983b Phys. Lett. B 126 398

——1984 Phys. Lett. B 136 294

——1985 Phys. Lett. B 158 494

——1986 Phys. Lett. B 166 484

Aubert B et al 2002 BaBar collaboration Phys. Rev. Lett. 89 201802

Bagnaia P et al 1983 Phys. Lett. B 129 130

——1984 Phys. Lett. B 144 283

Bahcall J 1989 Neutrino Astrophysics (Cambridge: Cambridge University Press)

Bailin D 1982 Weak Interactions (Bristol: Adam Hilger)

Banks T et al 1976 Phys. Rev. D 13 1043

Banner M et al 1982 Phys. Lett. B 118 203

——1983 Phys. Lett. B 122 476

Barber D P et al 1979 Phys. Rev. Lett. 43 830

Bardeen J 1957 Nuovo Cimento 5 1766

Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175

Bardeen W A et al 1978 Phys. Rev. D 18 3998

Bardin D Yu et al 1989 Z. Phys. C 44 493

Barger V et al 1983 Z. Phys. C 21 99

Beenakker W and Hollik W 1988 Z. Phys. C 40 569

Bergsma F et al 1983 Phys. Lett. B 122 465

Berends F A et al 1981 Phys. Lett. B 103 124

Belavin A A et al 1975 Phys. Lett. B 59 85

Bell J S and Jackiw R 1969 Nuovo Cimento A 60 47

Benvenuti A C et al 1989 BCDMS collaboration Phys. Lett. B 223 485

Berezin F A 1966 The Method of Second Quantisation (New York: Academic)

Berman S M, Bjorken J D and Kogut J B 1971 Phys. Rev. D 4 3388

Bernard C W and Golterman M F 1992 Phys. Rev. D 46 853

Bernstein J 1974 Rev. Mod. Phys. 46 7

Bigi I I and Sanda A 12000 CP Violation (Cambridge: Cambridge University Press)

Bilenky S M 2000 in 1999 European School of High Energy Physics ed A Olchevski CERN
2000-007 (Geneva)

Binney J J et al 1992 The Modern Theory of Critical Phenomena (Oxford: Clarendon)

Bjorken J D 1973 Phys. Rev. D 8 4098

Bjorken J D and Drell S D 1965 Relativistic Quantum Fields (New York: McGraw-Hill)

Bjorken J D and Glashow S L 1964 Phys. Lett. 11 255

Blatt J M 1964 Theory of Superconductivity (New York: Academic)

Bloch F and Nordsieck A 1937 Phys. Rev. 52 54

Bludman S A 1958 Nuovo Cimento 9 443

Boas M L 1983 Mathematical Methods in the Physical Sciences (New York: Wiley)

Copyright 2004 IOP Publishing Ltd



Boehm F and Vogel P 1987 Physics of Massive Neutrinos (Cambridge: Cambridge
University Press)

Bogoliubov N N 1947 J. Phys. USSR 11 23

——1958 Nuovo Cimento 7 794

Bogoliubov N N et al 1959 A New Method in the Theory of Superconductivity (New York:
Consultants Bureau, Inc.)

Bosetti P C et al 1978 Nucl. Phys. B 142 1

Bouchiat C C et al 1972 Phys. Lett. B 38 519

Branco G C et al CP Violation (Oxford: Oxford University Press)

Brandelik R ef al 1979 Phys. Lett. B 86 243

Budny R 1975 Phys. Lett. B 55 227

Biisser F W et al 1972 Proc. XVI Int. Conf. on High Energy Physics (Chicago, IL) vol 3
(Batavia: FNAL)

——1973 Phys. Lett. B 46 471

Cabibbo N 1963 Phys. Rev. Lett. 10 531

Cabibbo N et al 1979 Nucl. Phys. B 158 295

Callan C G 1970 Phys. Rev. D 2 1541

Carruthers P A 1966 Introduction to Unitary Symmetry (New York: Wiley)

Case KM 1957 Phys. Rev. 107 307

Caswell W E 1974 Phys. Rev. Lett. 33 244

Celmaster W and Gonsalves R J 1980 Phys. Rev. Lett. 44 560

Chadwick J 1932 Proc. R. Soc. A 136 692

Chanowitz M et al 1978 Phys. Lett. B 78 285

——1979 Nucl. Phys. B 153 402

Chen M-S and Zerwas P 1975 Phys. Rev. D 12 187

Cheng T-P and Li L-F 1984 Gauge Theory of Elementary Particle Physics (Oxford:
Clarendon)

Chetyrkin K G et al 1979 Phys. Lett. B 85 277

Chetyrkin K G and Kuhn J H 1993 Phys. Lett. B 308 127

Christenson J H ef al 1964 Phys. Rev. Lett. 13 138

Coleman S 1985 Aspects of Symmetry (Cambridge: Cambridge University Press)

——1966 J. Math. Phys. 7 787

Coleman S and Gross D J 1973 Phys. Rev. Lett. 31 851

Collins J C and Soper D E 1987 Annu. Rev. Nucl. Part. Sci. 37 383

Collins P D B and Martin A D 1984 Hadron Interactions (Bristol: Adam Hilger)

Combridge B L et al 1977 Phys. Lett. B 70 234

Combridge B L and Maxwell C J 1984 Nucl. Phys. B 239 429

Commins E D and Bucksbaum P H 1983 Weak Interactions of Quarks and Leptons
(Cambridge: Cambridge University Press)

Consoli M et al 1989 Z. Phys. at LEP-I ed G Altarelli et al CERN 89-08 (Geneva)

Cooper L N 1956 Phys. Rev. 104 1189

Cornwall ] M et al 1974 Phys. Rev. D 10 1145

Cowan C L et al 1956 Science 124 103

Dalitz R H 1953 Phil. Mag. 44 1068

——1965 High Energy Physics ed C de Witt and M Jacob (New York: Gordon and Breach)

Danby G et al 1962 Phys. Rev. Lett. 9 36

Davis R 1955 Phys. Rev. 97 766

Dawson S et al 1990 The Higgs Hunter’s Guide (Reading, MA: Addison-Wesley)

Copyright 2004 IOP Publishing Ltd



de Groot J GH et al 1979 Z. Phys. C1 143

DilLella L 1985 Annu. Rev. Nucl. Sci. 35 107

——1986 Proc. Int. Europhysics Conf. on High Energy Physics, Bari, Italy, July 1985 ed
L Nitti and G Preparata (Bari: Laterza) pp 761ff

Dine M and Sapirstein J 1979 Phys. Rev. Lett. 43 668

Dirac P A M 1931 Proc. R. Soc. A 133 60

Dokshitzer Yu L 1977 Sov. Phys.—JETP 46 641

Donoghue J F, Golowich E and Holstein B R 1992 Dynamics of the Standard Model
(Cambridge: Cambridge University Press)

Draper T et al 2002 Talk Presented at 20th Int. Symp. on Lattice Field Theory (LATTICE
2002) Boston, MA, June 2002 hep-1at/0208045

Duke D W and Owens J F 1984 Phys. Rev. D 30 49

Eden R J, Landshoff P V, Olive D I and Polkinghorne J C 1966 The Analytic S-Matrix
(Cambridge: Cambridge University Press)

Eichten E et al 1980 Phys. Rev. D 21 203

Einhorn M B and Wudka J 1989 Phys. Rev. D 39 2758

Ellis J et al 1976 Nucl. Phys. B 111 253

——1994 Phys. Lett. B 333 118

Ellis R K, Stirling W J and Webber B R 1996 QCD and Collider Physics (Cambridge:
Cambridge University Press)

Ellis S D, Kunszt Z and Soper D E 1992 Phys. Rev. Lett. 69 3615

Englert F and Brout R 1964 Phys. Rev. Lett. 13 321

Enz C P 1992 A Course on Many-Body Theory Applied to Solid-State Physics (World
Scientific Lecture Notes in Physics 11) (Singapore: World Scientific)

——2002 No Time to be Brief (Oxford: Oxford University Press)

Fabri E and Picasso L E 1966 Phys. Rev. Lett. 16 408

Faddeev L D and Popov V N 1967 Phys. Lett. B 25 29

Feinberg G et al 1959 Phys. Rev. Lett. 3 527, especially footnote 9

Fermi E 1934a Nuovo Cimento 11 1

——1934b Z. Phys. 88 161

Feynman R P 1963 Acta Phys. Polon. 26 697

——1977 in Weak and Electromagnetic Interactions at High Energies ed R Balian and
C H Llewellyn Smith (Amsterdam: North-Holland) p 121

Feynman R P and Gell-Mann M 1958 Phys. Rev. 109 193

Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Intergrals (New York:
McGraw-Hill)

Gaillard M K and Lee B W 1974 Phys. Rev. D 10 897

Gamow G and Teller E 1936 Phys. Rev. 49 895

Gasser J and Leutwyler H 1982 Phys. Rep. 87 77

Gastmans R 1975 Weak and Electromagnetic Interactions at High Energies, Cargese, 1975
ed M Levy ef al (New York: Plenum) pp 109ff

Geer S 1986 High Energy Physics 1985, Proc. Yale Theoretical Advanced Study Institute
(Singapore: World Scientific)

Gell-Mann M 1961 California Institute of Technology Report CTSL-20 (reprinted in Gell-
Mann and Ne’eman 1964)

Gell-Mann M et al 1979 Supergravity ed D Freedman and P van Nieuwenhuizen
(Amsterdam: North-Holland) p 315

Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300

Copyright 2004 IOP Publishing Ltd



Gell-Mann M and Ne’eman 1964 The Eightfold Way (New York: Benjamin)

Georgi H 1984 weak Interactions and Modern Particle Theory (Menlo Park, CA:
Benjamin/Cummings)

Georgi H et al 1978 Phys. Rev. Lett. 40 692

Georgi H and Politzer H D 1974 Phys. Rev. D 9 416

Ginsparg P and Wilson K G 1982 Phys. Rev. D 25 25

Ginzburg V I and Landau L D 1950 Zh. Eksp. Teor. Fiz. 20 1064

Giusti L 2002 plenary talk at 20th Int. Symp. on Lattice Field Theory (LATTICE 2002)
Boston, MA hep-1at/0211009

Glashow S L 1961 Nucl. Phys. 22 579

Glashow S L et al 1978 Phys. Rev. D 18 1724

Glashow S L, Iliopoulos J and Maiani L 1970 Phys. Rev. D 2 1285

Goldberger M L and Treiman S B 1958 Phys. Rev. 95 1300

Goldhaber M et al 1958 Phys. Rev. 109 1015

Goldstone J 1961 Nuovo Cimento 19 154

Goldstone J, Salam A and Weinberg S 1962 Phys. Rev. 127 965

Gorishny S G et al 1991 Phys. Lett. B 259 144

Gorkov L P 1959 Zh. Eksp. Teor. Fiz. 36 1918

Gottschalk T and Sivers D 1980 Phys. Rev. D 21 102

Greenberg O W 1964 Phys. Rev. Lett. 13 598

Gribov V N and Lipatov L N 1972 Sov. J. Nucl. Phys. 15 438

Gross D J and Llewellyn Smith C H 1969 Nucl. Phys. B 14 337

Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343

——1974 Phys. Rev. D 9 980

Guralnik G S et al 1964 Phys. Rev. Lett. 13 585

——1968 Advances in Particle Physics vol 2, ed R Cool and R E Marshak (New York:
Interscience) pp 567ff

Hagiwara K et al 2002 Phys. Rev. D 66 010001

Halzen F and Martin A D 1984 Quarks and Leptons (New York: Wiley)

Hamberg R et al 1991 Nucl. Phys. B 359 343

Hambye T and Reisselmann K 1997 Phys. Rev. D 55 7255

Hammermesh M 1962 Group Theory and its Applications to Physical Problems (Reading,
MA: Addison-Wesley)

Han M Y and Nambu Y 1965 Phys. Rev. B 139 1066

Hasenfratz P et al 1998 Phys. Lett. B 427 125

Hasenfratz P and Niedermayer F 1994 Nucl. Phys. B 414 785

Hasert F J et al 1973 Phys. Lett. B 46 138

Heisenberg W 1932 Z. Phys. 77 1

Higgs P W 1964 Phys. Rev. Lett. 13 508

——1966 Phys. Rev. 145 1156

Hollik W 1990 Fortsch. Phys. 38 165

——1991 1989 CERN-JINR School of Physics CERN 91-07 (Geneva) p 50ff

Hughes R J 1980 Phys. Lett. B 97 246

——1981 Nucl. Phys. B 186 376

Isgur N and Wise M B 1989 Phys. Lett. B 232 113

——1990 Phys. Lett. B 237 527

Isidori G et al 2001 Nucl. Phys. B 609 387

Itzykson C and Zuber J-B 1980 Quantum Field Theory (New York: McGraw-Hill)

Copyright 2004 IOP Publishing Ltd



Jackiw R 1972 Lectures in Current Algebra and its Applications ed S B Treiman, R Jackiw
and D J Gross (Princeton, NJ: Princeton University Press) pp 97-254

Jacob M and Landshoff P V 1978 Phys. Rep. C 48 285

Jarlskog C 1985a Phys. Rev. Lett. 55 1039

——1985b Z. Phys. C 29 491

Jones D R T 1974 Nucl. Phys. B 75 531

Jones H F 1990 Groups, Representations and Physics (Bristol: IOP Publishing)

Kadanoff L P 1977 Rev. Mod. Phys. 49 267

Kaplan D B Phys. Lett. B 288 342

Kayser B et al 1989 The Physics of Massive Neutrinos (Singapore: World Scientific)

Kennedy D C er al 1989 Nucl. Phys. B 321 83

Kennedy D C and Lynn B W 1989 Nucl. Phys. B 322 1

Kibble T W B 1967 Phys. Rev. 155 1554

Kim K J and Schilcher K 1978 Phys. Rev. D 17 2800

Kinoshita T 1962 J. Math. Phys. 3 650

Kittel C 1987 Quantum Theory of Solids second revised printing (New York: Wiley)

Klein O 1948 Nature 161 897

Kobayashi M and Maskawa K 1973 Prog. Theor. Phys. 49 652

Kugo T and Ojima I 1979 Prog. Theor. Phys. Suppl. 66 1

Kunszt Z and Pietarinen E 1980 Nucl. Phys. B 164 45

Landau L D 1957 Nucl. Phys. 3 127

Landau L D and Lifshitz E M 1980 Statistical Mechanics part 1, 3rd edn (Oxford:
Pergamon)

Langacker P (ed) 1995 Precision Tests of the Standard Electroweak Model (Singapore:
World Scientific)

Larin S A and Vermaseren J A M 1991 Phys. Lett. B 259 345

——1993 Phys. Lett. B 303 334

Lautrup B 1967 Kon. Dan. Vid. Selsk. Mat.-Fys. Med. 35 1

Leader E and Predazzi E 1996 An Introduction to Gauge Theories and Modern Particle
Physics vol 2 (Cambridge: Cambridge University Press)

Lee B W et al 1977a Phys. Rev. Lett. 38 883

——1977b Phys. Rev. D 16 1519

Lee T D and Nauenberg M 1964 Phys. Rev. B 133 1549

Lee T D, Rosenbluth R and Yang C N 1949 Phys. Rev. 75 9905

Lee T D and Yang C N 1956 Phys. Rev. 104 254

——1957 Phys. Rev. 105 1671

——1962 Phys. Rev. 128 885

LEP 2003 (The LEP working Group for Higgs Searches, ALEPH, DELPHI, L3 and OPAL
collaborations) Phys. Lett. B 565 61

LEP Higgs 2001 (LEP Higgs Working Group) CERN-EP/2001-055 (Geneva)

Levine I et al 1997 Phys. Rev. Lett. 78 424

Lichtenberg D B 1970 Unitary Symmetry and Elementary Particles (New York: Academic)

Llewellyn Smith C H 1973 Phys. Lett. B 46 233

London F 1950 Superfluids Vol I, Macroscopic theory of Superconductivity (New York:
Wiley)

Liischer M 1981 Nucl. Phys. B 180 317

——1998 Phys. Lett. B 428 342

Liischer M et al 1980 Nucl. Phys. B 173 365

Copyright 2004 IOP Publishing Ltd



Maki Z et al 1962 Prog. Theor. Phys. 28 247

Mandelstam S 1976 Phys. Rep. C 23 245

Mandl F 1992 Quantum Mechanics (New York: Wiley)

Marciano W J and Sirlin A 1988 Phys. Rev. Lett. 61 1815

Marshak R E et al 1969 Theory of Weak Interactions in Particle Physics (New York: Wiley)

Martin A D et al 1994 Phys. Rev. D 50 6734

—2002 Eur. Phys. J. C2373

Merzbacher E 1998 Quantum Mechanics 3rd edn (New York: Wiley)

Mohapatra R N et al 1968 Phys. Rev. Lett. 20 1081

Mohapatra R N and Pal P B 1991 Massive Neutrinos in Physics and Astrophysics
(Singapore: World Scientific)

Mohapatra R N and Senjanovic G 1980 Phys. Rev. Lett. 44 912

——1981 Phys. Rev. D 23 165

Mohr P J and Taylor B N 2000 Rev. Mod. Phys. 72 351

Montanet L et al 1994 Phys. Rev. D 50 1173

Montvay I and Minster G 1994 Quantum Fields on a Lattice (Cambridge: Cambridge
University Press)

Nambu Y 1960 Phys. Rev. Lett. 4 380

——1974 Phys. Rev. D 10 4262

Nambu Y and Jona-Lasinio G 1961a Phys. Rev. 122 345

——1961b Phys. Rev. 124 246

Nambu Y and Lurie D 1962 Phys. Rev. 125 1429

Nambu Y and Schrauner E 1962 Phys. Rev. 128 862

Narayanan R and Neuberger H 1993a Phys. Lett. B 302 62

——1993b Phys. Rev. Lett. 71 3251

——1994 Nucl. Phys. B 412 574

——1995 Nucl. Phys. B 443 305

Ne’eman Y 1961 Nucl. Phys. 26 222

Nielsen N K 1981 Am. J. Phys. 49 1171

Nielsen H B and Ninomaya M 1981a Nucl. Phys. B 185 20

——1981b Nucl. Phys. B 193 173

——1981c Nucl. Phys. B 195 541

Noether E 1918 Nachr. Ges. Wiss. Géttingen 171

Okada S et al 1998 Phys. Rev. Lett. 81 2428

Pais A 2000 The Genius of Science (Oxford: Oxford University Press)

Parry W E 1973 The Many Body Problem (Oxford: Clarendon)

Pauli W 1934 Rapp. Septieme Conseil Phys. Solvay, Brussels 1933 (Paris: Gautier-Villars),
reprinted in Winter (2000) pp 7, 8

Pennington M R 1983 Rep. Prog. Phys. 46 393

Perkins D H in Proc. Int. Symp. on Lepton and Photon Interactions at High Energies,
Stanford, CA p 571

——2000 Introduction to High Energy Physics 4th edn (Cambridge: Cambridge
University Press)

Peskin M E 1997 in 1996 European School of High-Energy Physics ed N Ellis and
M Neubert CERN 97-03 (Geneva) pp 49-142

Peskin M E and Schroeder D V 1995 an Introduction to Quantum Field Theory (Reading,
MA: Addison-Wesley)

Politzer H D 1973 Phys. Rev. Lett. 30 1346

Copyright 2004 IOP Publishing Ltd



Pontecorvo B 1947 Phys. Rev. 72 246

——1948 Chalk River Laboratory Report PD-205

——1967 Zh. Eksp. Theor. Phys. 53 1717 (Engl. transl. Sov. Phys.—JETP 26 989)

Prescott C Y et al 1978 Phys. Lett. B 77 347

Puppi G 1948 Nuovo Cimento 5§ 505

Quigg C 1977 Rev. Mod. Phys. 49 297

Reines F and Cowan C 1956 Nature 178 446

Reines F, Gurr H and Sobel H 1976 Phys. Rev. Lett. 37 315

Renton P 1990 Electroweak Interactions (Cambridge: Cambridge University Press)

Richardson J L 1979 Phys. Lett. B 82 272

Ross D A and Veltman M 1975 Nucl. Phys. B 95 135

Rubbia C et al 1977 Proc. Int. Neutrino Conf., Aachen, 1976 (Braunschweig: Vieweg)
p 683

Ryder L H 1996 Quantum Field Theory 2nd edn (Cambridge: Cambridge University Press)

Sakurai J J 1958 Nuovo Cimento 7 649

——1960 Ann. Phys., NY 11 1

Salam A 1957 Nuovo Cimento 5 299

——1968 Elementary Particle Physics ed N Svartholm (Stockholm: Almqvist and
Wiksells)

Salam A and Ward J C 1964 Phys. Lett. 13 168

Samuel M A and Surguladze L R 1991 Phys. Rev. Lett. 66 560

Schiff L 1 1968 Quantum Mechanics 3rd edn (New York: McGraw-Hill)

Schrieffer J R 1964 Theory of Superconductivity (New York: Benjamin)

Schutz B F 1988 A First Course in General Relativity (Cambridge: Cambridge University
Press)

Schwinger J 1951 Phys. Rev. 82 664

——1957 Ann. Phys., NY 2 407

——1962 Phys. Rev. 125 397

Shaevitz et al 1995 CCFR collaboration Nucl. Phys. B Proc. Suppl. 38 188

Sharpe S R 1992 Phys. Rev. D 46 3146

Shaw R 1995 The problem of particle types and other contributions to the theory of
elementary particles PhD Thesis University of Cambridge

Slavnov A A 1972 Teor. Mat. Fiz. 10 153 (Engl. transl. Theor. and Math. Phys. 10 99)

Sikivie P et al 1980 Nucl. Phys. B 173 189

Sirlin A 1980 Phys. Rev. D 22 971

——1984 Phys. Rev. D 29 89

Sommer R 1994 Nucl. Phys. B 411 839

Staff of the CERN pp project 1991 Phys. Lett. B 107 306

Stange A et al 1994a Phys. Rev. D 49 1354

——1994b Phys. Rev. D 50 4491

Steinberger J 1949 Phys. Rev. 76 1180

Sterman G and Weinberg S 1977 Phys. Rev. Lett. 39 1436

Stueckelberg E C G and Peterman A 1953 Helv. Phys. Acta 26 499

Sudarshan E C G and Marshak R E 1958 Phys. Rev. 109 1860

Susskind L 1977 Phys. Rev. D 16 3031

——1979 Phys. Rev. D 19 2619

Sutherland D G 1967 Nucl. Phys. B 2 433

Symanzik K 1970 Commun. Math. Phys. 18 227

Copyright 2004 IOP Publishing Ltd



Tarasov O V et al 1980 Phys. Lett. B 93 429

Tavkhelidze A 1965 Seminar on High Energy Physics and Elementary Particles (Vienna:
IAEA) p 763

Taylor J C 1971 Nucl. Phys. B 33 436

1976 Gauge Theories of Weak Interactions (Cambridge: Cambridge University Press)

’t Hooft G 1971a Nucl. Phys. B 33 173

——1971b Nucl. Phys. B 35 167

——1971c Phys. Lett. B 37 195

——1976a Phys. Rev. D 14 3432

——1976b High Energy Physics, Proc. European Physical Society Int. Conf. ed A Zichichi
(Bologna: Editrice Composition) p 1225

——1980 Recent Developments in Gauge Theories, Cargese Summer Institute 1979 ed

G 't Hooft et al (New York: Plenum)

1986 Phys. Rep. 142 357

’t Hooft G and Veltman M 1972 Nucl. Phys. B 44 189

Tiomno J and Wheeler J A 1949 Rev. Mod. Phys. 21 153

Tournefier E 2001 LEP collaborations Proc. 36th Rencontre de Moriond: Electroweak
Interactions and Unified Theories (Les Arcs)

Valatin J G 1958 Nuovo Cimento T 843

van der Bij J J 1984 Nucl. Phys. B 248 141

van der Bij J J and Veltman M 1984 Nucl. Phys. B 231 205

van der Neerven W L and Zijlstra E B 1992 Nucl. Phys. B 382 11

van Ritbergen T and Stuart R G 1999 Phys. Rev. Lett. 82 488

Veltman M 1967 Proc. R. Soc. A 301 107

——1968 Nucl. Phys. B 7 637

——1970 Nucl. Phys. B 21 288

——1977 Acta Phys. Polon. B 8 475

von Weiszacker C F 1934 Z. Phys. 88 612

Weerts H 1994 DO collaboration Proc. 31st Rencontre de Moriond: QCD and High-energy
Hadronic Interactions (Les Arcs) FermiLab-Conf-96-132-E

Wegner F 1972 Phys. Rev. B 5 4529

Weinberg S 1966 Phys. Rev. Lett. 17 616

——1967 Phys. Rev. Lett. 19 1264

——1973 Phys. Rev. D 8 605, especially footnote 8

——1975 Phys. Rev. D 11 3583

——1979 Phys. Rev. D 19 1277

——1996 The Quantum Theory of Fields Vol II Modern Applications (Cambridge:
Cambridge University Press)

Weisberger W 1965 Phys. Rev. Lett. 14 1047

Williams E J 1934 Phys. Rev. 45 729

Wilson K G 1969 Phys. Rev. 179 1499

——1971a Phys. Rev. B 43174

——1971b Phys. Rev. B 43184

——1974 Phys. Rev. D 10 2445

——1975 New Phenomena in Subnuclear Physics, Proc. 1975 Int. School on Subnuclear
Physics ‘Ettore Majorana’ ed A Zichichi (New York: Plenum)

Wilson K G and Kogut J 1974 Phys. Rep 12C 75

Winter K 2000 Neutrino Physics 2nd edn (Cambridge: Cambridge University Press)

Copyright 2004 IOP Publishing Ltd



Wolfenstein L 1983 Phys. Rev. Lett. 51 1945

Wu C S et al 1957 Phys. Rev. 105 1413

Yanagida T 1979 Proc. Workshop on Unified Theory and Baryon Number in the Universe
ed O Sawada and A Sugamoto (Tsukuba: KEK)

Yang C N and Mills R L 1954 Phys. Rev. 96 191

Yosida K 1958 Phys. Rev. 111 1255

Copyright 2004 IOP Publishing Ltd



	Gauge Theories in Particle Physics: A Practical Introduction, Third Edition, Vol. 2
	CONTENTS
	PREFACE TO VOLUME 2 OF THE THIRD EDITION
	Acknowledgments

	Part 5: Non Abelian Symmetries
	Chapter 12: Global Non-Abelian Symmetries
	12.1 The flavour symmetry SU(2)f
	12.1.1 The nucleon isospin doublet and the group SU(2)
	12.1.2 Larger (higher-dimensional) multiplets of SU(2) in nuclear physics
	12.1.3 Isospin in particle physics

	12.2 Flavour SU(3)f
	12.3 Non-Abelian global symmetries in Lagrangian quantum field theory
	12.3.1 SU(2)f and SU(3)f
	12.3.2 Chiral symmetry

	Problems

	Chapter 13: Local Non-Abelian (Gauge) Symmetries
	13.1 Local SU(2) symmetry: the covariant derivative and interactions with matter
	13.2 Covariant derivatives and coordinate transformations
	13.3 Geometrical curvature and the gauge field strength tensor
	13.4 Local SU(3) symmetry
	13.5 Local non-Abelian symmetries in Lagrangian quantum field theory
	13.5.1 Local SU(2) and SU(3) Lagrangians
	13.5.2 Gauge field self-interactions
	13.5.3 Quantizing non-Abelian gauge fields

	Problems


	Part 6: QCD and the Renormalization Group
	Chapter 14: QCD I: Introduction and Tree-Graph Predictions
	14.1 The colour degree of freedom
	14.2 The dynamics of colour
	14.2.1 Colour as an SU(3) group
	14.2.2 Global SU(3)c invariance and ‘scalar gluons’
	14.2.3 Local SU(3)c invariance: the QCD Lagrangian

	14.3 Hard scattering processes and QCD tree graphs
	14.3.1 Two-jet events in ¯pp collisions
	14.3.2 Three-jet events

	14.4 Three-jet events in e+e- annihilation
	Problems

	Chapter 15: QCD II: Asymptotic Freedom, The Renormalization Group and Scaling Violations in Deep Inelastic Scattering
	15.1 QCD corrections to the parton model prediction for
	15.2 The renormalization group and related ideas
	15.2.1 Where do the large logs come from?
	15.2.2 Changing the renormalization scale
	15.2.3 The renormalization group equation and large -q2 behaviour in QED

	15.3 Back to QCD: asymptotic freedom
	15.4 A more general form of the RGE: anomalous dimensions and running masses
	15.5 Some technicalities
	15.6 Hadrons revisited
	15.7 QCD corrections to the parton model predictions for deep inelastic scattering: scaling violations
	15.7.1 Uncancelled mass singularities
	15.7.2 Factorization and the DGLAP equation
	15.7.3 Comparison with experiment

	Problems

	Chapter 16: Lattice Field Theory and the Renormalization Group Revisited
	16.1 Introduction
	16.2 Discretization
	16.3 Gauge invariance on the lattice
	16.4 Representation of quantum amplitudes
	16.5 Connection with statistical mechanics
	16.6 Renormalization and the renormalization group on the lattice
	16.6.1 Introduction
	16.6.2 The one-dimensional Ising model
	16.6.3 Further developments and some connections with particle physics

	16.7 Numerical calculations
	Problems


	Part 7: Spontaneously Broken Symmetry
	Chapter 17: Spontaneously Broken Global Symmetry
	17.1 Introduction
	17.2 The Fabri–Picasso theorem
	17.3 Spontaneously broken symmetry in condensed matter physics
	17.3.1 The ferromagnet
	17.3.2 The Bogoliubov superfluid

	17.4 Goldstone’s theorem
	17.5 Spontaneously broken global U(1) symmetry: the Goldstone model
	17.6 Spontaneously broken global non-Abelian symmetry
	17.7 The BCS superconducting ground state
	Problems

	Chapter 18: Chiral Symmetry Breaking
	18.1 The Nambu analogy
	18.1.1 Two flavour QCD and SU(2)f L×SU(2)fR

	18.2 Pion decay and the Goldberger–Treiman relation
	18.3 The linear and nonlinear σ-models
	18.4 Chiral anomalies
	Problems

	Chapter 19: Spontaneously Broken Local Symmetry
	19.1 Massive and massless vector particles
	19.2 The generation of ‘photon mass’ in a superconductor: the Meissner effect
	19.3 Spontaneously broken local U(1) symmetry: the Abelian Higgs model
	19.4 Flux quantization in a superconductor
	19.5 ’t Hooft’s gauges
	19.6 Spontaneously broken local SU(2)×U(1) symmetry
	Problems


	Part 8: Weak Interactions and the Electroweak Theory
	Chapter 20: Introduction to the Phenomenology of Weak Interactions
	20.1 Fermi’s ‘current–current’ theory of nuclear β-decay and its 
	20.2 Parity violation in weak interactions
	20.3 Parity transformation of Dirac wavefunctions and field operators
	20.4 V - A theory: chirality and helicity
	20.5 Charge conjugation for fermion wavefunctions and field operators
	20.6 Lepton number
	20.7 The universal current–current theory for weak interactions of leptons
	20.8 Calculation of the cross-section for νμ + e ->μ + νe
	20.9 Leptonic weak neutral currents
	20.10 Quark weak currents
	20.11 Deep inelastic neutrino scattering
	20.12 Non-leptonic weak interactions
	Problems

	Chapter 21: Difficulties With the Current-Current and 'Naive' Intermediate Vector Boson Models
	21.1 Violation of unitarity in the current–current model
	21.2 The IVB model
	21.3 Violation of unitarity bounds in the IVB model
	21.4 The problem of non-renormalizability in weak interactions
	Problems

	Chapter 22: The Glashow-Salam-Weinberg Gauge Theory of Electroweak Interactions
	22.1 Weak isospin and hypercharge: the SU(2) × U(1) group of the electroweak interactions: quantum number assignments andW and Z masses
	22.2 The leptonic currents (massless neutrinos): relation to current–current model
	22.3 The quark currents
	22.4 Simple (tree-level) predictions
	22.5 The discovery of the W± and Z0 at the CERN p¯p collider
	22.5.1 Production cross-sections forWand Z in p¯p colliders
	22.5.2 Charge asymmetry inW± decay
	22.5.3 Discovery of the W± and Z0 at the p¯p collider and their properties

	22.6 The fermion mass problem
	22.7 Three-family mixing
	22.7.1 Quark flavour mixing
	22.7.2 Neutrino flavour mixing

	22.8 Higher-order corrections
	22.9 The top quark
	22.10 The Higgs sector
	22.10.1 Introduction
	22.10.2 Theoretical considerations concerning mH
	22.10.3 Higgs phenomenology

	Problems


	Appendix M: Group Theory
	M.1 Definition and simple examples
	M.2 Lie groups
	M.3 Generators of Lie groups
	M.4 Examples
	M.4.1 SO(3) and three-dimensional rotations
	M.4.2 SU(2)
	M.4.3 SO(4): The special orthogonal group in four dimensions
	M.4.4 The Lorentz group
	M.4.5 SU(3)

	M.5 Matrix representations of generators and of Lie groups
	M.6 The Lorentz group
	M.7 The relation between SU(2) and SO(3)

	Appendix N: Dimensional Regularization
	Appendix O: Grassmann Variables
	Appendix P: Majorana Fermions
	P.1 Spin- 1/2 wave equations
	P.2 Majorana quantum fields

	Appendix Q: Feynman Rules for Tree Graphs in QCD and the Electroweak Theory
	Q.1 QCD
	Q.1.1 External particles
	Quarks
	Gluons

	Q.1.2 Propagators
	Quark
	Gluon

	Q.1.3 Vertices

	Q.2 The electroweak theory
	Q.2.1 External particles
	Leptons and quarks
	Vector bosons

	Q.2.2 Propagators
	Leptons and quarks
	Higgs particle

	Q.2.3 Vertices
	Charged-current weak interactions
	Neutral-current weak interactions (no neutrino mixing)
	Vector boson couplings
	Higgs couplings



	References

