
1 Introduction

The problem of obtaining asymptotic expansions of Feynman integrals in
various limits of momenta and masses is a typical mathematical problem in
elementary-particle physics. In this book, it is explained how this problem is
solved. To characterize, briefly, the main steps of the solution let us consider,
for example, the process of e+e− annihilation, where an incoming electron
and positron produce, according to the quantum-theoretical description, a
virtual photon, e+e− → γ∗, which in turn produces some particles, for ex-
ample a quark–antiquark pair, γ∗ → qq̄, which may then be transformed
into mesons. The process of quark production is described, in perturbative
quantum field theory, by Feynman integrals corresponding to various graphs
generated by the Feynman rules. One of the three external legs of such a dia-
gram corresponds to a triple vertex associated with the quark vector current,
and the other two external legs correspond to the external quarks. If we are
interested in the total cross-section for the production of the quarks the prob-
lem reduces to the evaluation of the imaginary part of diagrams contributing
to the vacuum polarization and containing only two external vertices for the
two vector currents.

Suppose that the Euclidean momentum squared of the intermediate pho-
ton, Q2 = −q2, is much larger than the other parameters involved in the
problem. In operator language, the problem of the large-Q2 behaviour re-
duces to the analysis of the product of the two currents when the momentum
transfer between the currents is large. The corresponding diagrams are gen-
erated by the two vertices for the currents and a family of vertices associated
with interactions via the QCD Lagrangian. At the diagrammatic level, we
arrive at the problem of determining the asymptotic behaviour of such dia-
grams in the limit when Q2 and also the scalar products Q · qi with other
external momenta are much larger than the remaining kinematical invariants
and the squares of masses.

Let us take an example of such a diagram expanded in the large-
momentum limit. To simplify the situation let us turn to the scalar massless
φ4 theory and replace the quark currents by two composite operators of the
form φ2. In this case the simplest one-loop diagram with two external ver-
tices for the composite operators and one external vertex generated by the
interaction Lagrangian is that of Fig. 1.1. According to the Feynman rules,
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Fig. 1.1. One-loop triangle diagram with a large external
momentum q and a small external momentum p

this diagram is given by the following integral:

FΓ (q, p) =
∫

d4k

k2(q − k)2(p+ k)2 . (1.1)

The integration is over four components of the loop momentum k = (k0,k),
where k = (k1, k2, k3). The squares of four-vectors are implied in the pseudo-
Euclidean metrics: k2 = k2

0 − k2, etc. This Feynman integral, depending on
two four-vectors p and q, is a scalar quantity, so that it is a function of three
kinematical invariants, q2, p2 and p·q = p0q0 − p·q.

Let us suppose that the external momentum q is large with respect to
the external momentum p in the Euclidean sense, i.e. |p| � |q| where |p| =√
p20 + p2. Therefore at least one four-component of q is larger than any

component of p. We can measure the order of magnitude in powers of the
small momentum p so that q2 is large, p·q is small and of the first order, and
p2 is of the second order.

Although Feynman integrals are generally divergent, this specific integral
turns out to be convergent, which can be seen by power counting at small and
large values (in the Euclidean sense) of the four-dimensional momentum k.

Let us now pose the problem of expanding integral (1.1) in the given limit
without computing it for general values of the arguments. Moreover, we would
like to write down a result for the expansion in terms of Feynman integrals
that depend on a lower number of scales. To simplify the situation as much
as possible, let us confine ourselves to the leading asymptotics in this limit.
To further simplify the subsequent discussion let us consider the Euclidean
variant1 of the integral (1.1). The form of the integral stays the same but all
the scalar products are now defined in accordance with Euclidean metrics,
i.e. k2 = k2

0 + k2, k·q = k0q0 + k·q, etc.
Let us observe that if we naively take the limit p→ 0 in the integrand we

obtain the integral∫
d4k

(k2)2(q − k)2 , (1.2)

1We shall later see what will cause additional difficulties in the pseudo-Euclidean
case.
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which is divergent at small loop momenta k. This can be seen by introduc-
ing generalized spherical coordinates and counting powers of the correspond-
ing radial variable, r. The divergence is of the logarithmic type,

∫ Λ
0
dr/r.

The non-existence of such a naive limit and the character of the divergence
in (only) one of the local coordinates (i.e. r) provide a hint that the true
asymptotic behaviour, when p→ 0, is of the logarithmic type.

When one is solving the problem of the asymptotic behaviour of Feynman
diagrams, the goal can be quite different: it can range from the evaluation of
the coefficients of the leading logarithms to the evaluation of the coefficients
of all powers and logarithms. Suppose for a moment that we are interested
in only the leading logarithmic behaviour of our triangle diagram. In this
case the (standard) strategy based on regions can be used: one concentrates
on the contributions of only those regions of the loop momenta which are
responsible for the leading logarithmic behaviour. In our case, the relevant
region is that of small k so that we can restrict ourselves to the integral∫

|k|≤Λ

d4k

k2(q − k)2(p+ k)2 ,

with a cut-off at some non-zero value of Λ. Since the logarithmic divergence,
when p → 0, arises only at the point k = 0, can we put k = 0 in the factor
1/(q − k)2, which is independent of p.

Let us choose, for convenience, p = (p0,0), where p0 = |p|, and introduce
the spherical coordinates

k0 = r cos θ ,
k1 = r sin θ sinψ cosφ , k2 = r sin θ sinψ sinφ , k3 = r sin θ cosψ ,

where d4k = r3 dr sin2 θ dθ sinψdψ dφ. Integrating over the first two angles
φ and ψ, we obtain

4π
q2

∫ π

0

sin2 θ dθ
∫ Λ

0

r dr
r2 + 2|p|r cos θ + p2 . (1.3)

The internal integral in r can be evaluated in terms of elementary functions
with a result which has the asymptotic behaviour − ln |p| for general θ and
Λ. Multiplying this result by the integral

∫ π
0 sin2 θ dθ = π/2, we arrive at

the following asymptotic behaviour of the given Euclidean Feynman integral
when p→ 0:

FΓ (q, p) ∼ −π
2

q2
ln
(
p2/Λ2

)
. (1.4)

If we want to obtain not only the leading logarithm but also a constant
term in the leading power, 1/q2, we have to ‘honestly’ take into account
the contribution of the whole integration domain to the loop integral. Let
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us choose an intermediate scale Λ, where |p| � Λ � |q|, and divide2 our
integral into two parts corresponding to integrations over small and large
loop momenta:

FΓ = fsmall + flarge , (1.5)

where

fsmall =
∫
|k|≤Λ

d4k

k2(q − k)2(p+ k)2 , (1.6a)

flarge =
∫
|k|≥Λ

d4k

k2(q − k)2(p+ k)2 . (1.6b)

The limit p→ 0 can be taken safely in the integrand of the second integral.
On the other hand, the terms in the combination (q− k)2 = q2 − 2q·k+ k2 in
the first integral are of different orders so that is legitimate to take the limit
k → 0 there. Thus we have

fsmall ∼ f (0)
small ≡

1
q2

∫
|k|≤Λ

d4k

k2(p+ k)2
, (1.7a)

flarge ∼ f (0)
large ≡

∫
|k|≥Λ

d4k

(k2)2(q − k)2 , (1.7b)

and

FΓ ∼ f (0)
small + f

(0)
large (1.8)

in the limit p→ 0.
Up to now we have dealt with convergent integrals. Now we want to arrive

at a simple result for the behaviour of the initial integral in the given limit at
the cost of running into divergences. To handle such divergent quantities we
use a standard procedure called ‘regularization’ which means that, instead of
a given divergent integral, we turn our attention to a quantity which depends
on a (regularization) parameter, is well defined in some domain of the values
of this parameter and formally coincides with the initial divergent integral
at some limiting value of the regularization parameter. We shall use dimen-
sional regularization [28, 144], which, formally, reduces to replacing the space
dimension 4 by a complex number d ≡ 4 − 2ε. The integrals regularized in
this manner are denoted by switching from d4 to dd. It will be explained in
the next chapter how dimensional regularization is systematically introduced
but here we make use of the following practical recipe: evaluate the integral

2If we were dealing with the Feynman integral in Minkowski space then it would
be necessary to use the same decomposition with |k| understood to be in the Eu-
clidean metrics. (Still, this would look unnatural because the decomposition is not
Lorentz invariant.) On the other hand it would be necessary to suppose that the
external momentum is, for example, space-like. The statements that we have made
after the decomposition are also true in the Minkowski case but not so obvious as
in the Euclidean case.
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in a general integer number of dimensions and then replace the number of
dimensions by the complex number d in the corresponding explicit result.

Let us rewrite the result obtained by extending the integration, in both
f

(0)
small and f

(0)
large, to all values of the loop momentum k and subtracting the

corresponding additional terms:

FΓ ∼ 1
q2

∫
ddk

k2(p+ k)2
+
∫

ddk
(k2)2(q − k)2

− 1
q2

∫
|k|≥Λ

ddk
k2(p+ k)2

−
∫
|k|≤Λ

ddk
(k2)2(q − k)2 . (1.9)

Now we may take the limit p→ 0 in the first integral in the second line and
neglect k with respect to q in the factor 1/(q − k)2 in the second integral.
Thus the sum of the two integrals in the second line reduces, in the given
limit, to the integral

− 1
q2

∫
ddk
(k2)2

,

which is an integral without scale. Such integrals are generally set to zero
within dimensional regularization in accordance with a well-known conven-
tion. However, as we shall see later, such Feynman integrals are automatically
set to zero in the case of limits typical of Euclidean space, without referring
to additional prescriptions. On the other hand, for typical pseudo-Euclidean
limits, this convention still looks like an ad hoc prescription; it will be implied
for any integral without scale. So the second line is zero and we obtain the
following leading-power behaviour:

FΓ ∼ 1
q2

∫
ddk

k2(p+ k)2
+
∫

ddk
(k2)2(q − k)2 . (1.10)

Let us stop for a moment and observe that we have already solved the
problem of the expansion (in the leading order) because the initial quantity
depending on three kinematical invariants can be replaced, in the given limit
and order, by two integrals that depend only on one scale each, so that
both terms are homogeneous with respect to the expansion parameter. The
homogeneity degree (e.g. with respect to p) is easily computed by power
counting before integration: it equals −2ε and 0 for the first and second
term, respectively. Moreover, both terms on the right-hand side are nothing
but familiar Feynman integrals, rather than functions from another class,
Feynman integrals with additional integrations, etc. However, we have paid
a (negligible) price to obtain this result by introducing the regularization.
Without it, i.e. for d = 4, both terms would be ill-defined because the first
integral would be divergent at large k and the second integral at small k.

The two integrals in (1.10) are indeed much simpler quantities: in particu-
lar, they can be evaluated for general values of the regularization parameter d.
Following the above recipe, we can compute them at general integer values
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of d. Results for these integrals (which are of the same type) can be obtained
from the corresponding integral with general values of powers of propagators.
Results of this kind and similar ones are presented in the next chapter.3 In
accordance with the recipe formulated above, when evaluating this general
integral we can proceed in an integer number of dimensions, then arrive at
an explicit result in terms of gamma functions, insert the relevant values of
the powers of propagators and, finally, consider the number of dimensions, d,
as a complex number. Thus we obtain

FΓ ∼ πd/2
(
Γ (1− ε)2Γ (ε)
Γ (2− 2ε)

1
q2(p2)ε

− Γ (1− ε)
2Γ (ε)

Γ (1− 2ε)
1

(q2)1+ε

)
. (1.11)

If we allow d to tend to 4 (i.e. ε → 0), we see that the poles in the two
contributions cancel and we obtain the following leading-power behaviour:

FΓ ∼ π2 ln(p
2/q2)− 2
q2

. (1.12)

Let us now observe that we could arrive at our result (1.10) and, further,
at (1.11) and (1.12), by use of the following prescriptions:

(i) divide the integration domain into regions of small and large momenta
and use leading approximations for the integrand (i.e. take the zero-order
terms in Taylor series in the small parameters) (see (1.8));

(ii) extend the integration to all loop momenta in the expanded contribution
of every region.

In this book, the strategy of expansion by regions will be formulated for

• arbitrary order of expansion,
• a general diagram,
• any limit.

The greatest part of the book is devoted to details and subtleties of the
method, which are explained through numerous characteristic examples.

In our first example, we have justified this strategy. It will be justified
for some other examples also. But mathematical proofs for general diagrams
are unknown at present. It turns out, however, that for limits typical of
Euclidean space, expansion by regions leads to the same prescriptions for
expanding Feynman integrals as does another strategy [47, 126, 207, 208],
which we shall call the ‘strategy of expansion by subgraphs’. This second
strategy has been mathematically justified (in this simpler case of limits)
for general diagrams so that we obtain here an indirect confirmation of the
strategy of expansion by regions.

3 Another way to compute this general integral is to observe that it is of con-
volution type, and then apply a well-known theorem which says that the Fourier
transform of a convolution equals the product of the Fourier transforms of the ini-
tial factors, and also formula (A.51) for the Fourier transform of the function (q2)λ

(taken, for example, from [124]).



1 Introduction 7

Let us illustrate expansion by subgraphs, using the same diagram as in
Fig. 1.1. The key point of this strategy is to reduce the problem of the asymp-
totic expansion to the problem of the R-operation, i.e. diagrammatic renor-
malization. The goal of the R-operation is to make a Feynman integral finite
by removing its ultraviolet divergences. When a diagram is only overall di-
vergent and does not involve subdivergences, the R-operation is of the form
R = 1−M , whereM is a subtraction operator. When there is also a divergent
one-particle-irreducible subgraph then R takes the form R = (1−M)(1−M1),
where M1 performs subtractions in the subgraph. In a general situation, the
R-operation is given by the forest formula [245, 247]. It happens that, for typ-
ical Euclidean limits, the remainder of the asymptotic expansion can be also
determined by the forest formula written in terms of appropriate subtraction
operators which, in this case, perform subtractions in a certain family of sub-
graphs associated with the given limit and provide the desired asymptotic
behaviour of the remainder.

In the case of our one-loop triangle diagram, in the leading order of ex-
pansion in the limit of large q, the remainder can be written as

RFΓ = (1 −M)(1−M1)FΓ , (1.13)

where the subtraction operators M and M1 are defined by

MFΓ =
∫

ddk
1

k2(q − k)2 Tp
1

(p+ k)2
≡
∫

ddk
1

(k2)2(q − k)2 , (1.14a)

M1FΓ =
∫

ddk
k2(p+ k)2

Tk
1

(q − k)2 ≡ 1
q2

∫
ddk

k2(p+ k)2
, (1.14b)

and T... are operators that perform Taylor expansion in the corresponding
variable. In this example, these are Taylor expansions of zero order, i.e. they
just set the corresponding variable to zero.

The rule for choosing the operators M is very simple: they are operators
that perform Taylor expansion of the integrand of the Feynman integrals
in parameters that are considered small for a given subgraph. The operator
M performs Taylor expansion with respect to the small parameter of the
whole graph, i.e. the four-momentum p, and the operatorM1 performs Taylor
expansion with respect to the small parameter of the subgraph that consists
of the line with momentum q−k. (By definition, all the loop momenta of the
whole graph that are external for a given subgraph (e.g. k in our case) are
considered small.) Note that we have introduced a regularization to make it
possible to consider individual subtraction operators and their products, and
we always choose this regularization to be dimensional.

The remainder defined in this way can be rewritten as

RFΓ =
∫

ddk
1
k2

(
1

(p+ k)2
− 1
k2

)(
1

(q − k)2 − 1
q2

)

≡ 1
q2

∫
ddk

(p2 + 2p·k)(k2 − 2q ·k)
(k2)2(q − k)2(p+ k)2 . (1.15)
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We observe, by power counting at small and large values of k, that the remain-
der is both infrared and ultraviolet finite. On the other hand, it manifestly
involves the first power of the small expansion parameter p, so that it be-
haves, when p→ 0, as |p| modulo logarithms (and, in any case, as |p|1−α for
arbitrarily small α).

Starting from the remainder (1.13) with these properties, we represent
our Feynman integral as

FΓ = [1− (1−M)(1−M1)]FΓ +RFΓ
= MFΓ +M1FΓ −MM1FΓ +RFΓ . (1.16)

The third term,

−MM1FΓ = − 1
q2

∫
ddk
(k2)2

, (1.17)

is a massless vacuum integral, which we set to zero.
Hence the asymptotic expansion is given by the first two terms in the

second line of (1.16), and we recognize our previous result (1.10) obtained
above by expansion by regions. Let us also stress that, this time, all the
arguments used in the derivation of this result are equally applicable to a
Feynman integral in Minkowski space.

In this book, it will be explained how expansion by subgraphs can be
applied to

• arbitrary order of expansion,
• a general diagram,
• any limit typical of Euclidean space.

It is this strategy which we shall prefer to apply to limits of this kind, with the
corresponding prescriptions written by means of a simple formula containing
a summation over an appropriate family of subgraphs.

Let us remember that we have arrived at expansion of the triangle Feyn-
man diagram from the problem of the expansion of two vector quark currents.
Let us come back to the operator level. It turns out that the techniques for
expanding individual Feynman diagrams enable us to perform operator ex-
pansions. In this particular case, the prescriptions for expanding Feynman
integrals FΓ (q, p1, . . . , pn) in the limit where one of the external momenta, q,
is large and the other external momenta, pi, and all the masses are small can
be naturally extended to the operator level and reformulated for the expan-
sion of the time-ordered product of two composite operators at short distances
(large momenta q). For simplicity, let us continue to consider the scalar the-
ory, instead of QCD, and analyse the expansion of the time-ordered product
of two equal composite operators J = (1/2)φ2 in the massless φ4 model with
the interaction Lagrangian LI = −(g/4!)φ4:

TJ(x)J(0) ∼ C0(x)1 + C2(x)J(0) + . . . . (1.18)
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The expansion is performed in the limit where the difference between four-
coordinates of the operators tends to zero, so that the terms are ordered
according to the strength of their singular behaviour when x→ 0. It happens
that in these first terms of the operator product expansion (OPE), only the
unit operator and the operator J itself are present, as the operators with
the lowest possible canonical dimensions (zero and two, respectively, in mass
units). As is well known, the products of quantum field operators are singular
at points where their arguments coincide, so that the first coefficient functions
(Wilson coefficients) Ci are singular.

The limit x→ 0 can be translated into momentum space language as the
limit q → ∞ for Fourier transforms. Turning to momentum space, we have

T J̃(q)J(0) ≡
∫

d4x eiq·xTJ(x)J(0) ∼ C̃0(q)1 + C̃2(x)J(x) + . . . .

(1.19)

The Fourier transform T J̃(q)J(0) is represented in perturbation theory, ac-
cording to the Feynman rules, by diagrams which have two external vertices
for the two operators and a set of φ4 vertices (either external or internal)
generated by the interaction Lagrangian – see Fig. 1.2.

p1

p2

pn

q

�q �
P

pi
Fig. 1.2. The set of diagrams contributing to the
product of two φ2 operators

It is implied that all the quantities are renormalized. In the diagram-
matic language, this means that we have rules for removing ultraviolet di-
vergences from the diagrams. We shall usually assume a form of dimensional
renormalization [144] which is based on subtracting poles in the parame-
ter ε = (4 − d)/2 of dimensional regularization. In addition to the rules for
renormalizing diagrams constructed from the integration Lagrangian, we also
have similar prescriptions for making finite one-particle-irreducible diagrams
which involve one or both vertices corresponding to the composite operators.
At the operator level, the renormalization is performed by inserting countert-
erms into the Lagrangian and redefining bare composite operators and their
products. The renormalization of the Lagrangian (which reduces to a redef-
inition of the coupling constant) is irrelevant in our example up to one-loop
order. The one-loop renormalization of the composite operator J reduces,
in our massless case, to the substitution of the bare composite operator by
a renormalized one: JB → Z−1J , where Z is a renormalization factor. Dia-
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p1

p2

p1

p2

Fig. 1.3. Diagrams of zero and first order with two S-matrix external lines con-
tributing to the operator J

grams of zero and first order in g with two S-matrix external lines and one
vertex for the operator J are shown in Fig. 1.3.

Now, in accordance with the Feynman rules, we take into account a factor
i for each propagator, 1/(2π)d for the loop integration and −ig/4! for the S-
matrix vertices. In particular, the value of the first diagram in Fig. 1.3 is
one. The renormalization factor Z is generated, in one loop, by the second
diagram,

ig
2(2π)4

∫
ddk

k2(q − k)2 .

The MS subtraction (where one subtracts the combination 1/ε+ln(4π)−γE,
rather than the pure pole in ε) gives the value

Z = 1 +
g

2(16π2)
1
ε
. (1.20)

Multiplication of the sum of the two diagrams in Fig. 1.3 by this Z (equivalent
to the renormalization of the operator J) then produces a finite result when
ε→ 0.

The expansion of the product T J̃(q)J(0) reduces to the expansion of
the corresponding diagrams in the limit where q is much larger than all
the other external momenta, in the Euclidean sense. The coefficient function
C0 can be evaluated through diagrams that depend only on the external
momentum q and no other external momenta. The problem of the large-
momentum expansion does not arise for C0 and, since we are dealing with a
massless theory, these diagrams have only power and logarithmic dependences
on q. In this sense, the coefficient function C0 is trivial, and we turn now to
the Wilson coefficient C2.

Consider diagrams with two ‘ S-matrix’ external vertices. In other words,
consider the Green function

〈TJ(x)J(0)φ(y1)φ(y2)〉amp

=
〈
TJ(x)J(0) exp

(
i
∫

d4xLI(x)
)
φ(y1)φ(y2)

〉amp

0

,

where the symbol ‘amp’ denotes the contribution of one-particle-irreducible
diagrams in which the external y lines have been amputated (i.e. the prop-
agators corresponding to these lines are omitted). The vacuum expectation
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values are taken between vacuum states in the full and free theories, respec-
tively. Turning to the Fourier transforms with respect to the variables x, y1
and y2 we have〈

T J̃(q)J(0)φ̃(p1)φ̃(p2)
〉amp

=
〈
T J̃(q)J(0) exp

(
i
∫

d4xLI(x)
)
φ̃(p1)φ̃(p2)

〉amp

0

.

The diagrams contributing in the zero and first orders in the coupling con-
stant are shown in Fig. 1.4. The first two (zero-order) diagrams are expanded
in the limit q → ∞ just by Taylor expansion in the other external momenta,
p1 and p2. The leading term of this expansion gives the value 2i/q2. We can
write down this term as the zero order contribution (equal to unity) to the
Green function 〈TJ(0)φ(y1)φ(y2)〉 of the composite operator J times this
value which thus gives the zero order contribution to the Wilson coefficient
C2 in (1.19).

p1

p2

q p2

p1

q

p1

p2

q p2

p1

q
p1

p2

q

Fig. 1.4. Diagrams of zero and first order with two S-matrix external lines con-
tributing to the product of two operators J

The three diagrams in the second row of Fig. 1.4 contribute in the first
order of perturbation theory. The expansions of the first two diagrams in the
limit q → ∞ are given by Taylor expansion at zero values of p1,2. Note that
the UV divergences in the loops in these diagrams are connected with the
initial composite operators and are removed by subtracting poles in ε. (This
is equivalent to inserting the counterterm Z for the composite operator J .)

The third diagram in the second row of Fig. 1.4 is nothing but our diagram
shown in Fig. 1.1, where we now have two external lines incident on the left
vertex with a total external momentum p = p1 + p2, and pi is the Fourier
argument corresponding to yi. This diagram has to be expanded in the limit
where q is much larger than p. As we have seen, the leading behaviour of
this diagram is given by (1.10). Observe now that the two terms admit a
natural graph-theoretical interpretation, shown in Fig. 1.5. It turns out that
the contribution of the two diagrams on the right-hand side of Fig. 1.5 and
the first two diagrams in the second row of Fig. 1.4 can be represented in the
form



12 1 Introduction

p1

p2

q

�

q

+

p1

p2

�

q

Fig. 1.5. Graph-theoretical description of the leading-order expansion of Fig. 1.1
when q → ∞

〈T J̃(q)J(0)φ̃(0)φ̃(0)〉amp〈TJB(0)φ̃(p1)φ̃(p2)〉 , (1.21)

where the factors are evaluated in either the zero or the first order in g.
Indeed, the sum of the first term in Fig. 1.5 and the first two diagrams
in the second row of Fig. 1.4 can be written as the contribution of the
first order in g to 〈T J̃(q)J(0)φ̃(0)φ̃(0)〉amp times the zero-order contribu-
tion to the Green function 〈TJB(0)φ̃(p1)φ̃(p2)〉, equal to unity. Then the
second term in Fig. 1.5 can be naturally recognized as the zero-order con-
tribution to 〈T J̃(q)J(0)φ̃(0)φ̃(0)〉amp, equal to 2i/q2 in agreement with what
was obtained above, times the zero-order contribution to the Green function
〈TJB(0)φ̃(p1)φ̃(p2)〉 of the ‘unrenormalized’ composite operator JB given by
the relevant integral.

The presence of JB instead of J means that the UV divergence of the loop
in the last term in Fig. 1.5 is not removed. We can obtain the renormalized
operator by the substitution JB → Z−1J . After that, we obtain the following
representation for the contribution of the zero- and first-order diagrams in
Fig. 1.4 to C2:

C̃2 = Π [J̃(q)J(0)]Z−1 . (1.22)

Here Π is the projector on the operator J :

Π [J̃(q)J(0)] = 〈T J̃(q)J(0)φ̃(0)φ̃(0)〉amp , (1.23)

with the property ΠJ = 1 in the zero order in g.
Substituting the value of the second integral in (1.10), given by the second

term in the large parentheses in (1.11) (with a factor i when going from
Euclidean to Minkowski space), as well as the renormalization factor Z given
by (1.20), we obtain, up to the first order in g,

C̃2(q) =
i
q2

(
2− g

2(16π2)
ln
(
−q2/µ2

))
, (1.24)

where µ is a massive parameter that arises within dimensional regularization.
Our main goal here was to illustrate the origin of the very simple formula

(1.22) rather than directly calculate the Wilson coefficient C2. In this book,
one will also find
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• a generalization of (1.22) [128] applicable to any composite operators in an
arbitrary order of perturbation theory;

• operator expansions and expansions of Green functions corresponding to
other limits;

• various applications of asymptotic expansions in momenta and masses to
problems of phenomenological importance.

The OPE is a typical example of the so-called factorization procedure,
which separates factors responsible for the description of physical phenomena
that take place on different scales. In the case of the OPE, the coefficient
functions are responsible for the information about small distances (high
energies), so that they can be treated perturbatively while the information
about large distances (small energies) is encoded in the matrix elements of
the composite operators present in the OPE.

The most typical form of the factorization is achieved by use of an ef-
fective theory described by an effective Lagrangian. The standard ‘folklore’
procedure is to include all operators having the necessary symmetries, with
arbitrary coefficients. These ‘matching’ coefficients are then adjusted by solv-
ing a system of a sufficient number of equations which express the fact that
the same results are obtained for the amplitudes of the full theory and the
effective theory when expanded in the ratio of the small to the large scale.
(The OPE is an example of an operator expansion where the matching condi-
tions are explicitly solved in a general form, and the corresponding coefficient
functions can be evaluated [128] by means of formulae of the type (1.22).)
The effective Lagrangian consists of fields responsible for physics at lower
energies and is typically written as a series in the expansion parameter, while
the matching coefficients of the effective Lagrangian contain higher-energy in-
formation about the initial theory. The number and complexity of the terms
increase with the order of the expansion. In physical slang, the transition to
the effective theory is characterized as integrating out higher scales, although
an explicit integration over the fields corresponding to higher scales in the
functional integral appears to be an impossible task.

An essential point is that the strategy of expansion by regions turns out
to be a universal technique for treating any asymptotic regime. This proce-
dure gives a natural way of constructing effective field theories by providing
adequate information about the form of the effective Lagrangian.

To fulfil our programme, a sketch of basic facts connected with Feynman
integrals is first presented in Chap. 2. Chapter 3 then introduces the two
basic strategies for expanding Feynman integrals in infinite series in powers
and logarithms. Chapters 4 and 5 are devoted to typical Euclidean limits,
while Chaps. 6–8 deal with typical pseudo-Euclidean on-shell and threshold
limits. The threshold expansion in the case of one heavy (non-zero) mass in
the threshold is studied in Chap. 6, the case of two non-zero masses is treated
in Chap. 7 and limits of the Sudakov type are investigated in Chap. 8. The
structure of each of Chaps. 4–8 is the same: we start with one-loop examples,
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then formulate prescriptions for a given limit, present two-loop examples
and, finally, go up to the operator level and discuss applications to physical
problems.

We shall (almost) always take scalar Feynman integrals as examples, not
only because this choice simplifies our discussion, but also because, in real
practical calculations with non-scalar numerators, one usually performs a
tensor decomposition and reduces the problem to scalar diagrams.

In Chap. 9, I conclude by presenting some alternative approaches, charac-
terizing the status of the methods described and conclude with some advice.
In Appendix A, one can find a table of basic integrals and useful formulae, in
particular the definitions and basic properties of some special functions that
are used in the book. Basic notational conventions are presented below. The
notation is described in more detail in the List of Symbols. In Appendix B,
an analysis of the convergence of Feynman integrals and a proof of the pre-
scriptions for the off-shell large-momentum limit are presented.

1.1 Notation

We use Greek and Roman letters for four-indices and spatial indices, respec-
tively:

xµ = (x0,x) ,
q ·x = q0x0 − q·x ≡ gµνqµxν .
The four-dimensional Fourier transform and its inverse are defined as

f̃(q) =
∫

d4x eiq·xf(x) ,

f(x) =
1

(2π)4

∫
d4q e−ix·qf̃(q) .

The parameter of dimensional regularization is

d = 4− 2ε . (1.25)

The operator denoted by

T n
... ≡

n∑
j=0

T (j)
... , (1.26)

where

T... ≡ T ∞
... , (1.27)

performs a Taylor expansion of order n in the corresponding set of variables.
For example, in the one-dimensional case,

T n
x f(x) =

n∑
j=0

1
j!
f (j)(0)xj . (1.28)
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When one calculates Feynman integrals in the SU(N) non-Abelian gauge
theory, the following standard invariants appear:

CF =
N2 − 1
2N

, CA = N , TF =
1
2
. (1.29)

These are the quadratic Casimir operator of the fundamental representation
of the SU(N) group, the quadratic Casimir operator of the adjoint represen-
tation and the index of the fundamental representation, respectively.

The scalar product of a vector k and the four- (or d-) vector composed of
the gamma matrices is denoted by

/k = kµγµ .



2 Feynman Integrals: a Brief Review

In this chapter, it is briefly explained what Feynman integrals are, what
properties they have, and how they are regularized, renormalized and eval-
uated. Special attention is paid to various divergences of Feynman integrals
because their interplay is a characteristic feature of explicit prescriptions for
asymptotic expansions in momenta and masses. A brief review of methods
for analytic evaluation of Feynman integrals is presented. In addition to the
method which is itself based on the use of our prescriptions for the asymptotic
expansions, we need a number of methods for the evaluation of Feynman inte-
grals that appear on the right-hand side of the expansions. Basic definitions
connected with renormalization, in particular the forest formula, are also
listed, because the remainder of an asymptotic expansion, as obtained by the
method of expansion by subgraphs, has the structure of renormalization.

2.1 From Lagrangians to Feynman Integrals

In perturbation theory, any quantum field model is characterized by a La-
grangian, which is represented as a sum of a free-field part and an interaction
part, L = L0+LI. Amplitudes of the model, e.g. S-matrix elements and Green
functions, are represented as power series in coupling constants. In a fixed
perturbation order, the amplitudes are written as finite sums of Feynman di-
agrams which are constructed according to Feynman rules: lines correspond
to L0 and vertices are determined by LI.

The unrenormalized S-matrix is given by

S = T exp
(
i
∫
d4xLI(x)

)
(2.1)

=
∞∑
n=0

in

n!

∫
d4x1 . . . d4xn TLI(x1) . . .LI(xn) . (2.2)

The Wick theorem is then applied to time-ordered products of the free fields
that enter the right-hand side through the interaction Lagrangian, i.e. any
product is written as a sum of terms, where some pairs of fields of the same
sort are replaced by the corresponding propagators, in accordance with the
relation

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 17–50 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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Tφi(x1)φi(x2) = : φi(x1)φi(x2) : +Di(x1 − x2) . (2.3)

Here Di is the propagator of the field of type i and the colons denote a normal
product of the free fields. The Fourier transforms of the propagators have the
form

D̃i(p) ≡
∫
d4x eip·xDi(x) =

iZi(p)
(p2 −m2

i + i0)ai
, (2.4)

where mi is the corresponding mass, Zi is a polynomial and ai = 1 or 2 (for
the gluon propagator in the general covariant gauge). This is not the most
general form of the propagator. For example, in the axial or Coulomb gauge,
the gluon propagator has another form. We shall usually deal in the book
with the propagator (2.4), which we imply by default. We usually omit the
causal i0 for brevity. Polynomials associated with vertices of graphs can be
taken into account by means of the polynomials Zl. We also omit the factors
of i and (2π)4 that enter in the standard Feynman rules (in particular, in
(2.4)); these can be included at the end of a calculation.

Note that the products of the free fields in the Lagrangian are not required
to be normal-ordered, so that products of fields of the same sort at the same
point are allowed. The formal application of the Wick theorem therefore
generates values of the propagators at zero. For example, in the case of the
scalar free field, with the propagator

D(x) =
i

(2π)4

∫
d4k

e−ix·k

k2 −m2
, (2.5)

which satisfies (✷+m2)D(x) = −iδ(x), we have

Tφ(x)φ(x) = : φ2(x) : +D(0) . (2.6)

The value of D(x) at x = 0 does not exist, because the propagator is singular
at the origin:

D(x) =
i
4π2

1
x2 − i0 + . . . . (2.7)

However, we imply the formal value at the origin rather than the ‘honestly’
taken value. This means that we set x to zero in some integral representation
of this quantity. For example, using the inverse Fourier transformation, we
can define D(0) as the integral (2.5) with x set to zero in the integrand. Thus,
by definition,

D(0) =
i

(2π)4

∫
d4k

k2 −m2
. (2.8)

This integral is, however, divergent, as Feynman integrals typically are. We
shall turn to divergences shortly in the next section.

Eventually, we obtain, for any fixed perturbation order, a sum of Feynman
amplitudes labelled by Feynman graphs constructed from the given type of
vertices and lines. In the commonly accepted physical slang, the graph, the
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corresponding Feynman amplitude and the integral are all often called the
‘diagram’.

After the Wick theorem is applied, the S-matrix can be rewritten as

S =
∞∑
l=0

il

[l]!

∫
d4x1 . . . d4xl SN (x1, . . . , xl) : φ1(x1) . . . φ1(xl) : , (2.9)

where φi are the (free) fields present in the theory, and the coefficient func-
tions Sl of the operator S are constructed from Feynman diagrams with l
external lines. The vertices at the ends of these lines are external for any such
diagram, and they carry a dependence on the four-coordinates xi (or, after
Fourier transforming, on the corresponding four-momenta). All the other ver-
tices of any Feynman amplitude contributing to Sl are internal. The symbol
[l]! denotes the product of the li! corresponding to fields of different sorts.

Any operator A can be written in a similar form in perturbation theory. If
we replace normal products on the right-hand side by products of classical c-
fields we obtain a representation of this operator in terms of a (non-linear)
functional

A =
∞∑
n=0

iN

N !

∫
d4x1 . . . d4xN AN (x1, . . . , xN )φ1(x1) . . . φ1(xN ) . (2.10)

This language is useful in many situations. For example, the application of
the Wick theorem is performed by use of the operator

W = exp
(
1
2i

∫
dx1 dx2

δ

δφ(x1)
D(x1 − x2)

δ

δφ(x2)

)
, (2.11)

where the scalar case is assumed and D(x) is the corresponding propagator.
We shall now give some examples of Lagrangians. The Lagrangian of the

scalar φ4 theory is

L = 1
2
∂µφ∂

µφ− 1
2
m2φ2 − g

4!
φ4 . (2.12)

The first two terms generate the free field theory. The corresponding propa-
gator is (2.4) with Z = 1 , a = 1. The interaction term generates, according
to the Feynman rules, 4-vertices with factors −ig.

The Lagrangian of quantum electrodynamics (QED) is

L = ψ̄(i/∂ −m)ψ − 1
4
FµνF

µν − eψ̄γµψAµ , (2.13)

where ψ is the electron field, Aµ is the electromagnetic vector potential,
Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor, e is the electron
charge and γµ are the gamma matrices. In the h-loop order of perturbation
theory, a natural factor, e2/(16π2), arises in the calculation of Feynman h-
loop integrals. The standard way is to write this factor as α/(4π), where

α =
e2

4π
(2.14)

is the fine-structure constant.
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The Lagrangian of quantum chromodynamics (QCD) in the general co-
variant gauge has the form

L =
∑
i

q̄i(i /D −mi)qi −
1
4
GaµνG

aµν + LGF + LFP , (2.15)

where Gaµν is the gluon field strength tensor

Gaµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (2.16)

and fabc are the structure constants of the colour SU(3) group. The gauge-
fixing term and the ghost term are

LGF = − 1
2ξ
(∂µAµ)

2
, LFP = (∂µc̄a)(Dµca) , (2.17)

respectively. The Lagrangian includes the quark fields qi, the gluon field Aaµ
and the ghost field ca. The covariant derivative is defined by

Dµ = ∂µ − igAaµta , (2.18)

where ta are SU(3) generators. In addition to the flavour index i, the quark
field qi has also spinor and colour indices, which are usually suppressed. It
is useful to perform practical calculations in QCD in the case of the general
colour gauge group SU(N). This is done to obtain better control on individual
terms with different colour structures such as CF, CA and TF given by (1.29).
At the end of the calculation one can insert the number of colours N = 3. The
perturbative expansion is performed in the coupling constant g. Similarly to
QED, one defines the strong coupling

αs =
g2

4π
, (2.19)

which is the QCD analogue of the fine-structure constant. The QCD Feynman
rules can be found in [148, 74, 190]. In particular, the gluon propagator in
the ξ-gauge is

i
p2

(
−gµν + ξ

pµpν

p2

)
, (2.20)

where ξ is defined by (2.17).
Thus quantities that can be computed perturbatively are written, in any

given order of perturbation theory, through a sum over Feynman graphs. For
a given graph Γ , the corresponding Feynman amplitude

GΓ (q1, . . . , qn) = (2π)4δ

(∑
i

qi

)
FΓ (q1, . . . , qn−1) (2.21)

can be written in terms of an integral over loop momenta

FΓ (q1, . . . , qn−1) =
∫
d4k1 . . .

∫
d4kh

L∏
l=1

D̃l(pl) , (2.22)
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where d4ki = dk0
i dki. The Feynman integral FΓ depends on n − 1 linearly

independent external momenta qi = (q0
i ,qi); the corresponding integrand is

a function of L internal momenta pi, which are certain linear combinations of
the external momenta and h = L−V +1 chosen loop momenta ki, where L, V
and h are the numbers of lines, vertices and (independent) loops, respectively,
of the given graph.

2.2 Divergences

As has been known from early days of quantum field theory, Feynman in-
tegrals suffer from divergences. This word means that, taken naively, these
integrals are ill-defined because the integrals over the loop momenta generally
diverge. The ultraviolet (UV) divergences manifest themselves through diver-
gence of the Feynman integrals at large loop momenta. Consider, for example,
the Feynman integral corresponding to the one-loop graph Γ of Fig. 2.1 with
scalar propagators, i.e. with Z1,2 = 1 and a1,2 = 1. This integral can be
written as

FΓ (q) =
∫

d4k

(k2 −m2
1)[(q − k)2 −m2

2]
, (2.23)

where the loop momentum k is chosen as the momentum of the first line.
Introducing four-dimensional (generalized) spherical coordinates k = rk̂ in
(2.23), where k̂ is on the unit (generalized) sphere and is expressed by means
of three angles, and counting powers of propagators, we obtain, in the limit of
large r, the following divergent behaviour:

∫∞
Λ dr r−1. For a general diagram,

a similar power counting at large values of the loop momenta gives 4h(Γ )−
1 from the Jacobian that arises when one introduces generalized spherical
coordinates in the (4 × h)-dimensional space of h loop four-momenta, plus
a contribution from the powers of the propagators and the degrees of its
polynomials, and leads to an integral

∫∞
Λ dr r−ω−1, where

ω = 4h−
∑
l

(2al − nl) (2.24)

is the (UV) degree of divergence of the graph. (Here nl are the degrees of the
polynomials Zl.)

q
2

1

k

q � k

Fig. 2.1. One-loop self-energy diagram



22 2 Feynman Integrals: a Brief Review

This estimate shows that the Feynman integral is UV convergent overall
(no divergences arise from the region where all the loop momenta are large)
if the degree of divergence is negative. We say that the Feynman integral has
a logarithmic, linear, quadratic, etc. overall divergence when ω = 0, 1, 2, . . .,
respectively. To ensure a complete absence of UV divergences it is necessary
to check convergence in various regions where some of the loop momenta
become large, i.e. to satisfy the relation ω(γ) < 0 for all the subgraphs γ of
the graph. We call a subgraph UV divergent if ω(γ) ≥ 0. In fact, it is sufficient
to check these inequalities only for one-particle-irreducible (1PI) subgraphs
(which cannot be made disconnected by cutting a line). It turns out that
these rough estimates are indeed true – more comments will be made on this
later.

If we turn from momentum space integrals to some other representation
of Feynman diagrams the UV divergences will manifest themselves in other
ways. For example, in coordinate space, the Feynman amplitude (i.e. the
inverse Fourier transform of (2.21)) is expressed in terms of a product of the
Fourier transforms of propagators

L∏
l=1

Dl(xli − xlf ) , (2.25)

where li and lf are the beginning and the end, respectively, of a line l. The
propagators in coordinate space,

Dl(x) =
1

(2π)4

∫
d4p D̃l(p)e−ix·p , (2.26)

are singular at small values of coordinates x = (x0,x). For example, the
leading singularity of the scalar propagator at x = 0 is 1/(x2 − i0) (see
(2.7)). In this case the coordinate space version of (2.23) can be expressed
in terms of the square of the scalar propagator and involves the singularity
(x2−i0)−2. Power-counting shows that this singularity produces integrals that
are divergent in the vicinity of the point x = 0, and this is the coordinate
space manifestation of the UV divergence.

The divergences caused by singularities at small loop momenta are called
infrared (IR) divergences. First we distinguish IR divergences that arise at
general values of the external momenta. A typical example of such a diver-
gence is given by the graph of Fig. 2.1 when one of the lines contains the
second power of the corresponding propagator, so that a1 = 2. If the mass of
this line is zero we obtain a factor 1/(k2)2 in the integrand, where k is chosen
as the momentum of this line. Then, keeping in mind the introduction of
generalized spherical coordinates and performing power-counting at small k
(i.e. when all the components of the four-vector k are small), we again en-
counter a divergent behaviour

∫ Λ
0 dr r−1 but now at small values of r. There

is a similarity between the properties of IR divergences of this kind and those
of UV divergences. One can define, for such off-shell IR divergences, an IR
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degree of divergence, in a similar way to the UV case. A reasonable choice is
provided by the value

ω̃(γ) = −ω(Γ/γ) ≡ ω(γ)− ω(Γ ) , (2.27)

where γ ≡ Γ\γ is the completion of the subgraph γ in a given graph Γ .
The absence of off-shell IR divergences is guaranteed if the IR degrees of
divergence are negative for all subgraphs γ whose completions γ include all
the external vertices in the same connectivity component. (See details in [61,
208].) The off-shell IR divergences are the worst but they are in fact absent
in physically meaningful theories. However, they play an important role in
asymptotic expansions of Feynman diagrams, as we shall see shortly.

The other kinds of IR divergences arise when the external momenta con-
sidered are on a surface where the Feynman diagram is singular: either on a
mass shell or at a threshold. Consider, for example, the graph Fig. 2.1, with
the indices a1 = 2 and a2 = 1, with the masses, m1 = m �= 0 and m2 = 0,
on the mass shell, q2 = m2. With k as the momentum of the second line, the
corresponding Feynman integral is of the form

FΓ (q; d) =
∫

ddk
k2(k2 − 2q ·k)2 . (2.28)

At small values of k, the integrand behaves like 1/[4k2(q ·k)2], and, with the
help of power counting, we see that there is an on-shell IR divergence which
would not be present for q2 �= m2.

If we consider Fig. 2.1 with equal masses and indices a1 = a2 = 2 at
the threshold, i.e. at q2 = 4m2, it might seem that there is a threshold IR
divergence because, choosing the momenta of the lines as q/2+k and q/2−k,
we obtain the integral∫

ddk
(k2 + q ·k)2(k2 − q ·k)2 , (2.29)

with an integrand that behaves at small k as 1/(q ·k)4 and is formally diver-
gent. However, the divergence is in fact absent. (The threshold singularity at
q2 = 4m2 is, of course, present – see Chap. 7.) Nevertheless, threshold IR
divergences do exist. For example, the sunset diagram of Fig. 2.2 with general
masses at threshold, q2 = (m1 +m2 +m3)2, is divergent in this sense when
the sum of the integer powers of the propagators is greater than or equal to
five (see, e.g. [93]).

Fig. 2.2. Sunset diagram
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The IR divergences characterized above are local in momentum space,
i.e. they are connected with special points of the loop integration momenta.
Collinear divergences arise at lines parallel to certain light-like four-vectors. A
typical example of a collinear divergence is provided by the massless triangle
graph of Fig. 2.3.

p1 � p2

p1

p2 Fig. 2.3. One-loop triangle diagram

Let us take p2
1 = p2

2 = 0 and all the masses equal to zero. The correspond-
ing Feynman integral is∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2

. (2.30)

At least an on-shell IR divergence is present, because the integral is divergent
when k → 0 (componentwise). However, there are also divergences at non-
zero values of k that are collinear with p1 or p2 and where k2 ∼ 0. This
follows from the fact that the product 1/[(k2 − 2p ·k)k2], where p2 = 0 and
p �= 0, generates collinear divergences. To see this, let us take residues in the
upper complex half plane when integrating this product over k0. For example,
taking the residue at k0 = −|k|+ i0 leads to an integral containing 1/(p·k) =
1/[p0|k|(1 − cos θ)], where θ is the angle between the spatial components k
and p. Thus, for small θ, we have a divergent integration over angles because
of the factor d cos θ/(1−cos θ) ∼ dθ/θ. The second residue generates a similar
divergent behaviour – this can be seen by making the change k → p− k.

2.3 How They Are Regularized

The standard of way of dealing with divergent Feynman integrals is to in-
troduce a regularization. This means that, instead of the original ill-defined
Feynman integral, we consider a quantity which depends on a regulariza-
tion parameter, λ, and formally tends to the initial, meaningless expression
when this parameter takes some limiting value, λ = λ0. This new, regu-
larized, quantity turns out to be well-defined, and the divergence manifests
itself as a singularity with respect to the regularization parameter. Experi-
ence tells us that this singularity can be of a power or logarithmic type, i.e.
lnn(λ − λ0)/(λ− λ0)i.
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An obvious way of regularizing Feynman integrals is to introduce a cut-
off at large values of the loop momenta. Another well-known regularization
procedure is the Pauli–Villars regularization [187], which is described by the
replacement

1
p2 −m2

→ 1
p2 −m2

− 1
p2 −M2

and its generalizations. For finite values of the regularization parameter M ,
this procedure clearly improves the UV asymptotics of the integrand. Here
the limiting value is M =∞.

If we replace the integer powers al in the propagators by general com-
plex numbers λl we obtain an analytically regularized Feynman integral [219],
where the divergences of the diagram are encoded in the poles of this reg-
ularized quantity with respect to the analytic regularization parameters λl.
For example, power counting at large values of the loop momentum in the
analytically regularized version of (2.23) leads to the divergent behaviour∫∞
Λ dr rλ1+λ2−3, which results in a pole 1/(λ1+λ2−2) at the limiting values
of the regularization parameters λi = 1.

The analysis of the divergences can be greatly simplified by the use of
parametric integral representations of Feynman diagrams. The well-known
alpha representation is obtained by writing down each propagator (2.4) as

D̃l(p) = Zl

(
1
2i

∂

∂ul

)
e2iul·p

∣∣∣∣
ul=0

(−i)al

Γ (al)

∫ ∞

0

dαl αa−1
l ei(p

2−m2)αl .

(2.31)

Then the order of the integration over the loop momenta and the alpha
parameters αl is interchanged, and all the Gaussian momentum integrations
are explicitly performed using the formula∫

d4k ei(αk
2+2q·k) = −iπ2α−2e−iq2/α , (2.32)

which is nothing but a product of four one-dimensional Gauss integrals:∫ ∞

−∞
dk0 ei(αk

2
0+2q0k0) =

√
π

α
e−iq2/α+iπ/4 ,

∫ ∞

−∞
dkj e−i(αk2j +2qjkj) =

√
π

α
eiq

2
j /α−iπ/4 , j = 1, 2, 3 . (2.33)

For example, in the case of the analytically regularized integral of Fig. 2.1,
we obtain

FΓ (q;λ1, λ2) =
e−iπ(λ1+λ2+1)/2π2

Γ (λ1)Γ (λ2)

∫ ∞

0

∫ ∞

0

dα1 dα2
αλ1−1

1 αλ2−1
2

(α1 + α2)2

× exp
(
iq2 α1α2

(α1 + α2)
− i(m2

1α1 +m2
2α2)

)
. (2.34)
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After the change of variables η = α1 + α2, ξ = α1/(α1 + α2) and explicit
integration over η, we arrive at

FΓ (q;λ1, λ2) = eiπ(λ1+λ2) iπ
2Γ (λ1 + λ2 − 2)
Γ (λ1)Γ (λ2)

×
∫ 1

0

dξ
ξλ1−1(1− ξ)λ2−1

[m2
1ξ +m2

2(1− ξ)− q2ξ(1 − ξ)− i0]λ1+λ2−2
. (2.35)

Thus the UV divergence manifests itself through the first pole of the gamma
function Γ (λ1 + λ2 − 2) in (2.35), which results from the integration over
small values of η due to the power ηλ1+λ2−3.

Let us write down the representation (2.34) for the unregularized integral
of Fig. 2.1 (i.e. for λ1 = λ2 = 1):

FΓ (q) = iπ2

∫ ∞

0

∫ ∞

0

dα1 dα2 (α1 + α2)−2

× exp
(
iq2 α1α2

α1 + α2
− i(m2

1α1 +m2
2α2)

)
. (2.36)

This representation turns out to be very useful for the introduction of di-
mensional regularization, which is a commonly accepted computational tech-
nique successfully applied in practice and which will serve as the main kind
of regularization in this book. Let us imagine that the number of space–time
dimensions differs from four. To be more precise, the number of space di-
mensions is considered to be d − 1, rather than three. (But, of course, we
still think of an integer number of dimensions!) The derivation of the alpha
representation does not change much in this case. The only essential change
is that, instead of (2.32), we need to apply its generalization to an arbitrary
number of dimensions, d:∫

ddk ei(αk
2+2q·k) = eiπ(1−d/2)/2πd/2α−d/2e−iq2/α . (2.37)

So, instead of (2.36), we have the following in d dimensions:

FΓ (q; d) = e−iπ(1+d/2)/2πd/2
∫ ∞

0

∫ ∞

0

dα1 dα2 (α1 + α2)−d/2

× exp
(
iq2 α1α2

α1 + α2
− i(m2

1α1 +m2
2α2)

)
. (2.38)

The only two places where something has been changed are the exponent of
the combination (α1 + α2) in the integrand and the exponents of the overall
factors.

Now, in order to introduce dimensional regularization, we want to consider
the dimension d as a complex number. So, by definition, the dimensionally
regularized Feynman integral for Fig. 2.1 is given by (2.38) and is a function
of q2 as given by this integral representation. We choose d = 4−2ε, where the



2.3 How They Are Regularized 27

value ε = 0 corresponds to the physical number of the space–time dimensions.
By the same change of variables as used after (2.34), we obtain

FΓ (q; d) = e−iπ(1+d/2)/2πd/2
∫ ∞

0

dη ηε−1

∫ 1

0

dξ

× exp
{
iq2ξ(1− ξ)η − i[m2

1ξ +m2
2(1 − ξ)]η

}
. (2.39)

This integral is absolutely convergent for 0 < Re ε < Λ (where Λ =∞ if both
masses are non-zero and Λ = 1 otherwise; this follows from an IR analysis of
convergence, which we omit here) and defines an analytic function of ε, which
is extended from this domain to the whole complex plane as a meromorphic
function.

After evaluating the integral over η, we arrive at the following result:

FΓ (q; d) = iπd/2Γ (ε)
∫ 1

0

dξ
[m2

1ξ +m2
2(1− ξ)− q2ξ(1 − ξ)− i0]ε

. (2.40)

The UV divergence manifests itself through the first pole of the gamma func-
tion Γ (ε) in (2.40), which results from the integration over small values of η
in (2.39).

This procedure of introducing dimensional regularization is easily general-
ized [28, 35, 61] to an arbitrary Feynman integral. We first follow the standard
derivation (see, e.g., [181]) of the alpha representation (in an integer num-
ber of dimensions d) using (2.31), taking dh-dimensional Gauss integrals by
means of a generalization of (2.37) to the case of an arbitrary number of loop
integration momenta:

∫
ddk1 . . . ddkh exp


i


∑
i,j

Aijki ·kj + 2
∑
i

qi ·ki






= eiπh(1−d/2)/2πhd/2(detA)−d/2 exp


−i


∑
i,j

A−1
ij qi ·qj




 . (2.41)

Here A is an h× h matrix and A−1 its inverse.1

The elements of the inverse matrix involved here are rewritten in graph-
theoretical language (see details in [181, 27]), and the resulting alpha repre-
sentation takes the form [28, 35]

FΓ (q1, . . . , qn; d) = (−1)a e
iπ[a+h(1−d/2)]/2πhd/2∏

l Γ (al)

×
∫ ∞

0

dα1 . . .

∫ ∞

0

dαL
∏
l

αal−1
l D−d/2ZeiA/D−i

∑
m2

l αl , (2.42)

1In fact, the matrix A involved here equals eβe+ with the elements of an ar-
bitrarily chosen column and row with the same number deleted. Here e is the
incidence matrix of the graph, i.e. eil = ±1 if the vertex i is the beginning/end of
the line l, e+ is its transpose and β consists of the numbers 1/αl on the diagonal –
see, e.g., [181].
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where a =
∑

al, and D and A are the well-known functions (sometimes called
Symanzik polynomials)

D =
∑
T∈T 1

∏
l�∈T

αl , (2.43)

A =
∑
T∈T 2

∏
l�∈T

αl
(
qT

)2
. (2.44)

In (2.43), the sum runs over trees of the given graph, i.e. maximal connected
subgraphs without loops, and, in (2.44), over 2-trees, i.e. subgraphs that do
not involve loops and consist of two connectivity components; ±qT is the sum
of the external momenta that flow into one of the connectivity components
of the 2-tree T . (It does not matter which component is taken because of
the conservation law for the external momenta.) The products of the alpha
parameters involved are taken over the lines that do not belong to the given
tree T .

The factor Z is responsible for the non-scalar structure of the diagram:

Z =
∏
l

Zl

(
1
2i

∂

∂ul

)
ei(2B−K)/D

∣∣∣∣∣
u1=...uL=0

, (2.45)

where (see, e.g., [246, 208])

B =
∑
l

∑
T∈T 1

l

qT
∏
l�∈T

αl , (2.46)

K =
∑
T∈T 0

∏
l�∈T

αl

(∑
l

±ul

)2

. (2.47)

In (2.46), the sum is taken over trees T 1
l that include a given line l, and qT is

the total external momentum that flows through the line l (in the direction of
its orientation). In (2.47), the sum is taken over pseudotrees T 0 (a pseudotree
is obtained from a tree by adding a line), and the sum in l is performed
over the loop (circuit) of the pseudotree T , with a sign dependent on the
coincidence of the orientations of the line l and the pseudotree T .

The alpha representation of a general h-loop Feynman integral is useful for
general analyses. In practical calculations, e.g. at the two-loop level, one can
derive the alpha representation for concrete diagrams by hand, rather than
deduce it from the general formulae presented above. Still, even in practice,
such general formulae can provide advantages because the evaluation of the
functions of the alpha representation can be performed on a computer. It will
be described later how non-scalar Feynman integrals can be evaluated with
the help of the general formulae.

Let us stress that this terrible-looking machinery for evaluating the de-
terminant of the matrix A that arises from Feynman integrals, as well as
for evaluating the elements of the inverse matrix, together with interpreting
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these results from the graph-theoretical point of view, is exactly the same as
that used in the problem of solution of Kirchhoff’s laws, a problem typical of
the nineteenth century. Recall, for example, that the parameters αl play the
role of ohmic resistances and that the expression (2.43) for the function D as
a sum over trees is a Kirchhoff result.

Let us now define2 the dimensionally regularized Feynman integral by
means of (2.42), treating the quantity d as a complex number. This is a
function of kinematical invariants constructed from the external momenta
and contained in the function A. In addition to this, we have to take care of
polynomials in the external momenta and the auxiliary variables ul hidden
in the factor Z. We treat these objects qi and ul, as well as the metric tensor
gµν , as elements of an algebra of covariants, where we have, in particular,(

∂

∂uµl

)
uνl′ = gνµδl,l′ , gµµ = d .

This algebra also includes the γ-matrices with anticommutation relations
γµγν + γνγµ = 2gµν so that γµγµ = d, the tensor εκµνλ, etc.

Thus the dimensionally regularized Feynman integrals are defined as lin-
ear combinations of tensor monomials in the external momenta and other
algebraic objects with coefficients that are functions of the scalar products
qi ·qj . However, this is not all, because we have to see that the α-integral is
well-defined. Remember that it can be divergent, for various reasons. Let us
consider first a Feynman diagram with Euclidean external momenta qi, i.e.
when(∑

i∈I
qi

)2

< 0 (2.48)

for any subset I of external lines. This is the domain where the Feynman
integral does not have singularities as a function of the external momenta.
We exclude, in particular, on-shell and threshold configurations. Therefore
we can encounter only off-shell IR divergences, which have a deep analogy
with the UV ones.

2An alternative definition of algebraic character [242, 221] (see also [75]) exists
and is based on certain axioms for integration in a space with non-integer dimension.
It is unclear how to perform analysis within such a definition, for example, how to
apply the operations of taking a limit, differentiation, etc. to algebraically defined
Feynman integrals in d dimensions, in order to say something about the analytic
properties with respect to momenta and masses and the parameter of dimensional
regularization. After evaluating a Feynman integral according to the algebraic rules,
one arrives at some concrete function of these parameters but, before integration,
one is dealing with an abstract algebraic object. Let us remember, however, that, in
practical calculations, one usually does not bother about precise definitions. From
the purely pragmatic point of view, it is useless to think of a diagram when it is not
calculated. On the other hand, from the theoretical point of view, such a position
is beneath criticism.
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The alpha representation is a very convenient tool for the analysis of
convergence of Feynman integrals. This analysis is presented in detail in Ap-
pendix B.1; here only some of the steps and conclusions are presented. The
UV divergences come from the region of small values of the α-parameters
(2.42), where the factor Dε−2 and the negative integer powers of the func-
tion D arising from the non-scalar structure of the diagram are singular,
while the off-shell IR divergences arise from the integration over large αl.
The alpha representation is a very convenient tool for studying the diver-
gences by resolving the structure of the singularities of the integrand. The
standard way to perform the analysis of the UV convergence is to divide the
integration region into so-called ‘sectors’. These sectors can be of the type
α1 ≤ . . . ≤ αL (applied, for example, in [137, 219]) plus similar sectors ob-
tained by permutation of the indices, or more complicated sectors associated
with 1PI subgraphs [194, 222]. Then, in each sector, one introduces new inte-
gration variables in which the singularities of the integrand factorize, i.e. the
integral takes the form of a product of some powers of the sector variables
with a non-zero function. Using this analysis, the above mentioned statement
about the UV convergence of a Feynman diagram with negative degrees of
divergence of all subgraphs can be proven in a natural way.

Suppose that all the masses are non-zero so that the diagram is IR fi-
nite. In this case we can choose a sufficiently large real part of ε to make the
α-integral absolutely convergent. For such values of the regularization param-
eter, the alpha representation defines the dimensionally regularized Feynman
integral as an analytic function of ε. This integral is uniquely extended from
this domain to the whole complex plane as a meromorphic function of ε. (In
other words, the only possible singularities of this function are poles.)

If there are zero masses we need IR power counting. To perform simul-
taneously the analysis of UV and IR convergence one uses more general de-
composition of the α-integral and a subsequent introduction of sector vari-
ables [220, 222, 194, 208]. Here the similarity of UV and IR (off-shell) proper-
ties plays an important role. Eventually, in the new variables, the integrand
is factorized and the analysis of convergence reduces to power counting (for
both UV and IR convergence) in one-dimensional integrals.

This analysis of the alpha representation shows that if there are both UV
and IR divergences in a diagram then, for any ε, the integral is divergent. In
this case, we can introduce an auxiliary analytic regularization into all the
lines. The Feynman integrals, regularized both analytically and dimension-
ally, are obtained from the dimensionally regularized expressions by inserting
factors iλlαλl−1/Γ (λl) for each line. Let us assume one more condition: that
the diagram does not have massless detachable subgraphs. (According to a
‘physical’ definition, a subgraph is detachable if its external momenta are
zero. For example, a tadpole, i.e. a line with coincident end points, is a de-
tachable subgraph.) A general theorem [222] says that if a diagram without
massless detachable subgraphs is considered for Euclidean values of the exter-
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nal momenta there exists a non-empty domain of parameters (ε;λ1, . . . , λL)
where the alpha representation is absolutely convergent and defines an ana-
lytic function of these parameters. The dimensionally regularized Feynman
integral is then by definition [61] obtained as the analytic continuation of
this function to the point (ε; 1, . . . , 1) where the analytic regularization is
switched off.

And what does one do with the massless detachable subdiagrams? To
provide a definition for them, let us observe that we can separate the UV
and IR contributions of every propagator by dividing the integration region
for each αl into UV and IR regions, 0 ≤ αl ≤ µ−2 and µ−2 ≤ αl < ∞. The α-
parametric integral is then divided into 2L pieces, which can be characterized
by subsets of UV contributions (for example). For a given subset, the corre-
sponding contribution can certainly be made into an absolutely convergent
integral over αl by choosing the real parts of the regularization parameters
λl of the UV/IR lines sufficiently large/small. Then each piece is defined
as an analytic function of the regularization parameters. Collecting all the
pieces extended to the point (ε; 1, . . . , 1) gives, by definition [61], the dimen-
sionally regularized Feynman integral (still considered for Euclidean external
momenta) for an arbitrary graph.

2.4 Properties
of Dimensionally Regularized Feynman Integrals

We can formally write down dimensionally regularized Feynman integrals as
integrals in d-dimensional vectors ki:

FΓ (q1, . . . , qn; d) =
∫
ddk1 . . .

∫
ddkh

L∏
l=1

D̃l(pl) . (2.49)

In order to obtain dimensionally regularized integrals with their dimension
independent of ε, a factor of µ−2ε per loop, where µ is a massive parameter, is
introduced. This parameter serves as a renormalization parameter for schemes
based on dimensional regularization. However, we shall usually omit these
factors for brevity.

We have reasons for using the notation (2.49), because dimensionally reg-
ularized Feynman integrals as defined above possess the standard properties
of integrals of the usual type in integer dimensions. (We still assume that the
external momenta are Euclidean.) In particular,

• the integral of a linear combination of integrands equals the same linear
combination of the corresponding integrals;

• one may contract the same factors in the numerator and denominator of
integrands.

These properties follow directly from the above definition. A less trivial prop-
erty is that
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• a derivative of an integral with respect to a mass or momentum equals the
corresponding integral of the derivative.

This is also a consequence (see [61, 208]) of the above definition. To prove
this statement, one uses standard algebraic relations between the functions
entering the alpha representation [181, 35]. (We note again that these are
relations quite similar to those encoded in the solutions of Kirchhoff’s laws
for a circuit defined by the given graph.) A corollary of the last property is
the possibility of integrating by parts and always neglecting surface terms:

•
∫
ddk1 . . .

∫
ddkh

∂

∂kµi

L∏
l=1

D̃l(pl) = 0 , i = 1, . . . , h . (2.50)

This property is the basis of a powerful method of evaluation of Feynman
integrals – see the next section.

The next property says that

• any diagram with a detachable massless subgraph is zero.

Setting massless detachable subdiagrams to zero turns out to be a specific
case of a more general prescription (which we shall discuss in the next chapter
and use throughout the book).

This property can also be shown to be a consequence of the above def-
inition [61, 208], by use of an auxiliary analytic regularization using pieces
of the α-integral considered in different domains of the regularization pa-
rameters. Let us consider, for example, the massless tadpole diagram, which
can be reduced by means of alpha parameters to a scaleless one-dimensional
integral:∫

ddk
k2

= −iεπd/2
∫ ∞

0

dααε−2 . (2.51)

We divide this integral into two pieces, from 0 to 1 and from 1 to ∞, inte-
grate these two integrals and find results that are equal except for opposite
signs, which lead to the zero value. (These arguments can be found, for exam-
ple, in [163].) It should be stressed here that the two pieces that contribute
to the right-hand side of (2.51) are convergent in different domains of the
regularization parameter ε, namely, Re ε > −1 and Re ε < −1, with no in-
tersection, and that this procedure here is equivalent to introducing analytic
regularization and considering its parameter in different domains for different
pieces.

But let us distinguish between two qualitatively different situations: the
first when we have to deal with a massless Feynman integral which arises from
the Feynman rules, and the second when we obtain such integrals after some
manipulations: after using partial fractions, differentiation, integration by
parts, etc. We also include in this second class all such integrals that appear on
the right-hand side of explicit formulae for (off-shell) asymptotic expansions
in momenta and masses. In the first situation, the only possibility is to use the
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ad hoc prescription of setting the integral to zero. In the second situation, we
start with an α-integral which is convergent in some non-empty domain of the
regularization parameters. Then we can split the α-integral into our 2L pieces
and improve, in advance, its convergence as much as possible (increase Reλl
for the UV αl and decrease Reλl for the IR αl). A very important point here
is that all the properties of dimensionally regularized integrals given above,
apart from the last one, can be justified in a purely algebraic way [61, 208],
through identities between functions in the alpha representation. Therefore,
we may safely set to zero all the resulting massless Feynman integrals with
zero external momenta and need not bother about the subtlety of the non-
existence of an appropriate domain of the regularization parameters for them.
We shall come back later to a discussion of this point when we consider
scaleless integrals that arise on the right-hand side of asymptotic expansions.

Let us now remind ourselves of reality and observe that it is necessary to
deal in practice with diagrams on a mass shell or at a threshold. What about
the properties of dimensionally regularized Feynman integrals in this case?
At least the algebraic proof of the basic properties of dimensionally regular-
ized Feynman integrals is not sensitive to putting the external momenta in
any particular place. However, the bad news here is that a general analysis
of the convergence of such integrals, even in specific cases, is still absent,3 so
that we do not have any control over convergence. Technically, this means
that the sectors used for the analysis of the convergence in the off-shell case
are no longer sufficient for the resolution of the singularities of the integrand
of the alpha representation. These singularities are much more complicated
and can even appear (e.g. at a threshold) at non-zero, finite values of the
α-parameters. Thus we cannot guarantee that the standard analytic regular-
ization can be used to improve convergence.

However, the good news is that numerous practical applications have
shown that there is no sign of breakdown of these properties for on-shell
or threshold Feynman integrals. In particular, when the Feynman integrals
are evaluated on a mass shell or at a threshold, the convergence can be put
under control. We now switch to various methods of evaluation of Feynman
integrals and then come back to a discussion of Feynman integrals on a mass
shell or at a threshold.

3 We should, however, mention [23], where an algorithm for resolving singulari-
ties in ε for any concrete diagram in the situation where all kinematical invariants
have the same sign has been developed. There is no graph-theoretical interpretation
of the desired kind in this algorithm and it has not been formulated for a general,
rather than a specific diagram. This algorithm has been successfully applied to nu-
merical evaluation of multiloop diagrams with strong IR and collinear divergences
both for checks of analytic results [230, 215] and when no analytic results were
available.
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2.5 How They Are Evaluated

There exists a great variety of methods for evaluation of Feynman integrals.
Here is a brief summary of them, with special attention to the methods that
are applied in calculations in this book.

Let us note first that the asymptotic expansions which are the subject of
the book can be regarded, in a narrow sense, as a method of evaluation of
Feynman diagrams. Still, even when we apply an asymptotic expansion and
substitute a given Feynman integral by the first terms of its expansion, it is
necessary to compute these terms. As we shall see later, the functions that
are encountered on the right-hand side of the expansions are nothing but
Feynman integrals obtained from the primary Feynman integrals by Taylor
expansions of their integrands with respect to certain sets of variables. It turns
out that one can apply the same techniques as used for the usual integrals to
the evaluation of such more general integrals.

2.5.1 Alpha Representation as a Method of Evaluation

The alpha representation itself can serve as a method of evaluating Feynman
integrals. Let us evaluate, for example, the dimensionally regularized massless
Feynman diagram of Fig. 2.1 with general powers of propagators,

FΓ (q;λ1, λ2, d) =
∫

ddk
(−k2 +m2

1)λ1 [−(q − k)2 +m2
2]λ2

. (2.52)

From now on, we shall use the following convention: when powers of propaga-
tors are integers we use them with +k2 + i0, but when they are non-integral
or complex, we take the opposite sign, i.e. −k2−i0. The second choice is more
natural if we wish to obtain a Euclidean, −q2, dependence of the results (see,
e.g., (2.54)). We also prefer to use al for integer and λl for general complex
indices. Starting from its alpha representation, we obtain the analytically
regularized version of (2.40), i.e.

FΓ (q;λ1, λ2, d) = iπd/2Γ (λ1 + λ2 + ε− 2)

×
∫ 1

0

dξ ξλ1 (1− ξ)λ2

[m2
1ξ +m2

2(1 − ξ)− q2ξ(1− ξ)− i0]λ1+λ2+ε−2
. (2.53)

Suppose that the masses are zero. In this case the integral over ξ can be
evaluated in terms of gamma functions, and we arrive at the following result:∫

ddk
(−k2)λ1 [−(q − k)2]λ2

= iπd/2
G(λ1, λ2)

(−q2)λ1+λ2+ε−2
, (2.54)

where

G(λ1, λ2) =
Γ (λ1 + λ2 + ε− 2)Γ (2− ε− λ1)Γ (2− ε− λ2)

Γ (λ1)Γ (λ2)Γ (4− λ1 − λ2 − 2ε)
. (2.55)

In the case where the powers of propagators are equal to one, we have



2.5 How They Are Evaluated 35

∫
ddk

k2(q − k)2
= iπd/2

Γ (ε)Γ (1− ε)2

Γ (2− 2ε)(−q2)ε
. (2.56)

Note that although the indices of the diagrams are integral at the begin-
ning, non-integral indices shifted by amounts proportional to ε appear after
intermediate integration, e.g. after the use of (2.56).

Let us present another example of evaluation of Feynman diagrams by
means of alpha parameters: consider Fig. 2.1 with m1 = 0, m2 = m, a1 =
1, a2 = 2. We shall use this example in the next chapter to illustrate pre-
scriptions for asymptotic expansions. Using (2.53), we have

FΓ (q; d) = −iπd/2Γ (1 + ε)
∫ 1

0

dξ ξ−ε

[m2 − q2(1 − ξ)− i0]1+ε . (2.57)

In fact, the initial Feynman integral is finite. If we want to evaluate it for
d = 4, we put ε = 0 in (2.57) and easily obtain an explicit result,

FΓ (q) = iπ2 ln
(
1− q2/m2

)
q2

. (2.58)

Suppose we now want to perform evaluation for general d. There could be
various reasons for doing this. First, when using the method of integration
by parts (see below), one obtains expressions with coefficients involving neg-
ative powers of ε. Second, when one performs renormalization, insertion of
counterterms also generates diagrams with coefficients singular in ε. In any
case, it is often necessary to know not only the pole and the finite part of a
diagram but also some initial terms of its Laurent expansion in ε.

Starting from (2.57) and referring to [195] or evaluating this expression
by computer, e.g. in MATHEMATICA [243], we see (on a page of [195] or on
the screen of the computer) an explicit result:

FΓ (q; d) = −iπd/2 Γ (1 + ε)
(1− ε)(m2)1+ε 2F1

(
1, 1 + ε; 2− ε; q2/m2

)
, (2.59)

where 2F1(a, b; c; z) is the Gauss hypergeometric function [103] (see (A.52))
so that we have obtained a result in the form of a series in q2/m2.

A lot of one-loop integration formulae can be derived by use of the alpha
representation and subsequent straightforward integration. A collection of
such formulae is presented in Appendix A.1.

2.5.2 Recursively One-Loop Feynman Integrals

Massless integrals are often evaluated with the help of successive application
of the one-loop formula (2.54). Consider, for example, the two-loop diagram
shown in Fig. 2.4. The internal one-loop integral can be evaluated by use of
(2.56) and is effectively replaced by a line with index ε. Then the sequence
of two lines with indices 1 and ε is replaced by one line with index 1 + ε,
and the one-loop diagram so obtained, which has indices 2 and 1 + ε, is
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Fig. 2.4. A recursively one-loop diagram

evaluated by means of the one-loop formula (2.54), with the following result
expressed in terms of gamma functions: G(1, 1)G(2, 1 + ε)/(−q2)1+2ε. The
class of Feynman diagrams that can be evaluated in this way by means of
(2.54) is called recursively one-loop.

2.5.3 Partial Fractions

When evaluating dimensionally regularized Feynman integrals one uses their
properties, in particular the possibility of manipulations based on the first
two of the properties listed earlier. Here the following standard decomposition
proves to be useful:

1
(x+ x1)a1(x+ x2)a2

=
a1−1∑
i=0

(
a2 − 1 + i

a2 − 1

)
(−1)i

(x2 − x1)a2+i(x+ x1)a1−i

+
a2−1∑
i=0

(
a1 − 1 + i

a1 − 1

)
(−1)a1

(x2 − x1)a1+i(x+ x2)a2−i
, (2.60)

where(
n

j

)
=

n!
j!(n− j)!

is a binomial coefficient.

2.5.4 Feynman Parameters

Let us now present the alpha representation of scalar dimensionally regular-
ized integrals in a modified form by making the change of variables αl = ηα′

l,
where

∑
α′
l = 1. Performing the integration over η from 0 to ∞ explicitly

and omitting primes from the new variables, we obtain

FΓ (q1, . . . , qn; d) = (−1)a
(
iπd/2

)h
Γ (a− hd/2)∏
l Γ (al)

×
∫ ∞

0

dα1 . . .

∫ ∞

0

dαL δ
(∑

αi − 1
) Da−(h+1)d/2

∏
l α
al−1
l

(A−D
∑

m2
l αl)

a−hd/2 . (2.61)

As is well known [45] (see also [24]), one can choose the sum of an arbitrary
subset of αl , i = l, . . . , L, in the argument of the delta function in (2.61).
This choice can greatly simplify the evaluation.
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In addition to alpha parameters, the closely related Feynman parameters
can also be used. For a product of two propagators, one writes down the
following relation:

1
(m2

1 − p2
1)λ1 (m2

2 − p2
2)λ2

=
Γ (λ1 + λ2)
Γ (λ1)Γ (λ2)

∫ 1

0

dξ ξλ1−1(1− ξ)λ2−1

[(m2
1 − p2

1)ξ + (m
2
2 − p2

2)(1− ξ)]λ1+λ2
. (2.62)

This relation is usually applied to a pair of appropriately chosen propagators
if an explicit integration over a loop momentum then becomes possible. Then
new Feynman parameters for other factors in the integral can be chosen, etc.
In fact, any choice of the Feynman parameters can be achieved by starting
from the alpha representation and making certain changes of variables. How-
ever, the possibility of an intermediate explicit loop integration of the kind
mentioned above can be hidden in the alpha integral.

The generalization of (2.62) to an arbitrary number of propagators is of
the form

1∏
Aλi

i

=
Γ (

∑
λi)∏

Γ (λi)

∫ 1

0

dξ1 . . .
∫ 1

0

dξL
∏
l

ξλl−1
l

δ (
∑

ξi − 1)
(
∑

Aiξi)
∑
λi

, (2.63)

where Ai = m2
i − p2

i .
For the evaluation of diagrams with a small number of loops, the choice of

applying either alpha or Feynman parameters is usually just a matter of taste.
In particular, if we apply (2.62) to a two-loop diagram and then integrate over
two loop momenta, with the help of (A.1) and its generalizations to integrals
with numerators, we obtain the same result as that obtained starting from
(2.61).

2.5.5 Reduction of Tensor Integrals

A lot of one-loop Feynman integrals with numerators can be found in Ap-
pendix A.1. One can use these tabulated integrals for traceless monomials,
e.g. (A.8). Sometimes it is reasonable to convert general monomials to trace-
less monomials or vice versa. Here formulae (A.40a) and (A.40b) are of use.

In the case of a general h-loop Feynman integral, let us observe that
the function (2.45) can be taken into account by shifting the space–time
dimension d and indices al of a given diagram, because any factor that arises
after the differentiation with respect to the auxiliary parameters ul is a sum of
products of positive integer powers of the α-parameters and negative integer
powers of the function D. In particular, the factor 1/Dn is taken into account
by the shift d → d + 2n. This observation enables us to express any given
Feynman integral with numerators through a linear combination of scalar
integrals with shifted indices and shifted dimensions. At the one-loop level,
this property has been used in [88] to derive general formulae for integrals
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with numerators. Systematic algorithms oriented towards realization on a
computer, with a demonstration up to two-loop level, have been constructed
in [228].

2.5.6 Integration by Parts

The next method in our list is based on integration by parts4 (IBP) [68]
within dimensional regularization, i.e. (2.50). The idea is to write down vari-
ous equations (2.50) and obtain a set of relations between Feynman integrals.
These relations can then be used for two purposes:

(a) to reduce any Feynman integral from a given family to a set of ‘master
integrals’, i.e. with the lowest powers of propagators, in addition to inte-
grals that are easily evaluated, for example, in terms of gamma functions;

(b) to evaluate the master integrals.

If both parts of this programme are fulfilled then the evaluation of the
given family of integrals reduces to algebraic manipulations and substitutions
of values of the master and ‘boundary’ integrals.

Let us illustrate how the IBP method works using the massless diagram
of Fig. 2.5 with arbitrary integer powers of the propagators:

J(a1, a2, a3, a4, a5)

=
∫ ∫

ddk ddl
(k2)a1 [(q − k)2]a2(l2)a3 [(q − l)2]a4 [(k − l)2]a5

. (2.64)

First we note that if a5 = 0 the integrals in k and l decouple and can be
evaluated in terms of gamma functions by use of (2.54). When some other
index al is zero, the integral can also be evaluated in terms of gamma func-
tions by successively applying the same one-loop formula. When some index
is negative, a generalization of this formula works.

Suppose now that all the indices are positive integers. Let us write down
the following IBP identity [68]:∫ ∫

ddk ddl
(l2)a3 [(q − l)2]a4

∂

∂kµ

(
kµ

(k2)a1 [(q − k)2]a2 [(k − l)2]a5

)
= 0 . (2.65)

Taking derivatives and recognizing terms on the left-hand side as integrals
(2.64), we arrive at the following relation:

(a1 + a2 + 2a5 − d)J =
[
a11+

(
3− − 5−)+ a22+

(
4− − 5−)] J , (2.66)

where the standard notation for increasing and lowering operators has been
used, e.g. 1+3−J(a1, a2, a3, a4, a5) = J(a1 + 1, a2, a3 − 1, a4, a5). Equation

4 For one loop, IBP was used in [146]. A crucial step – an appropriate modifica-
tion of the integrand before differentiation, with an application at the two-loop level
(to massless propagator diagrams) — was taken in [68] and, in a coordinate-space
approach, in [235]. The case of three-loop massless propagators has been treated
in [68].
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1

2

3

4

5

Fig. 2.5. The master two-loop self-energy diagram

(2.66) can be used as a recurrence relation for the given family of inte-
grals because, on the right-hand side, we encounter integrals where the sum
a3 + a4 + a5 is less by one than that on the left-hand side. Thus, successive
application of this relation reduces any given integral to integrals with some
index equal to zero.

We observe at this point that (2.66) gives a solution to both problems
(a) and (b) simultaneously. For example, the master integral, i.e. the integral
with all indices equal to one, is evaluated by means of the same equation
(2.66):

J(1, 1, 1, 1, 1) =
1
ε
[J(2, 1, 0, 1, 1)− J(2, 1, 1, 1, 0)] . (2.67)

The Feynman integral J(2, 1, 1, 1, 0) is recursively one-loop and has already
been considered in Sect. 2.5.3, and J(2, 1, 0, 1, 1) is a product of two one-
loop integrals that can be evaluated by means of (2.54). After expanding the
gamma functions as Laurent series in ε, we arrive at the well-known result
[198, 53]

J(1, 1, 1, 1, 1) =
1
ε
G(1, 1) [G(2, 1)−G(2, 1 + ε)]

1
(−q2)1+2ε

=
(
iπ2

)2 6ζ(3)
q2

+O(ε) . (2.68)

In this simple example, it was sufficient to use only one IBP relation,
which, in fact, follows from an IBP identity for the triangle massless diagram
of Fig. 2.6 with general indices. This ‘triangle’ rule takes the form

1 =
1

d− a1 − a2 − 2a3

[
a11+

(
3− − p2

1

)
+ a22+

(
3− − p2

2

)]
. (2.69)

When applied to the left triangle in Fig. 2.5 it provides (2.66).
Generally, one tries to use all possible IBP relations. For example, for a

two-loop Feynman integral over the loop momenta k and l depending on n
external momenta qi, all possible IBP relations for derivatives (∂/∂kµ)pµ and
(∂/∂lµ)pµ are used, where p = k, l, qi.

Step (a), i.e. reduction of a Feynman integral from a given family to mas-
ter integrals, can be a rather non-trivial problem even at the two-loop level.
Recently, there have been some attempts to make this step systematic. One
of them is based on the possibility, mentioned in the previous subsection,
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a2

a1

a3

p1

p2
Fig. 2.6. Triangle diagram with general integer indices

of reducing any integral with a numerator to scalar integrals with shifted di-
mension and indices. As was demonstrated in [228], this property can provide
a more general set of recurrence relations. Applications of this technique of
shifting dimensions for one and two loops have been presented in [228, 229].

Another new approach [122] applies so-called Lorentz invariance identities
together with IBP relations. This method is primarily oriented towards Feyn-
man integrals with four or more external lines and is based on the fact that
when the total dimension of the denominator and numerator in the Feyn-
man integrals associated with a given graph is increased the total number
of IBP and Lorentz invariance equations grows faster than the number of
independent Feynman integrals (labelled by the powers of propagators and
the powers of independent scalar products in the numerators). Therefore this
system of equations sooner or later becomes overconstrained, and one obtains
a possibility of performing a reduction to master integrals. This method has
been successfully applied to reduction of massless double box diagrams with
one leg off shell [123].

The IBP relations are consequences of the property (2.50), which is valid
at least for off-shell Feynman integrals. Let us now see how the IBP method
works for an on-shell Feynman integral with two scales. Consider the triangle
diagram shown in Fig. 2.6, with m3 = 0, p2

1 = m2
1, p

2
2 = m2

2 and (p1−p2)2 =
0:

FΓ (m1,m2; d) =
∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2

. (2.70)

Using the IBP identity∫
ddk

∂

∂kµ

(
kµ

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2

)
= 0 (2.71)

and changing the loop integration momentum, we obtain

FΓ (m1,m2; d)

=
1
2ε

(∫
ddk

(k2 −m2
1)2(k2 −m2

2)
+
∫

ddk
(k2 −m2

1)(k2 −m2
2)2

)
. (2.72)

The integrals on the right-hand side are then evaluated by means of partial
fractions (2.60) and the integral (A.1), with the following simple result:
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FΓ (m1,m2; d) = −iπd/2Γ (ε)
2ε

(m2
1)−ε − (m2

2)−ε

m2
1 −m2

2

. (2.73)

Let us stress that the method of IBP is successfully applied in practice,
without any hesitation, not only to off-shell Feynman integrals, where the
convergence is certainly under control, but also to Feynman integrals on the
mass shell or at threshold. Examples where IBP breaks down are unknown at
present. In particular, we shall systematically apply the method in what fol-
lows to integrals that appear on the right-hand side of asymptotic expansions.
As one of the first applications of IBP in such ‘non-standard’ situations, let
us refer to [41], where IBP was applied to Feynman integrals arising in the
Heavy Quark Effective Theory.

2.5.7 Mellin–Barnes Representation

One also often uses the Mellin transformation and, in particular, the Mellin–
Barnes representation of a factor which is decomposed into two pieces:

1
(X + Y )λ

=
1

Γ (λ)
1
2πi

∫ +i∞

−i∞
dz

Y z

Xλ+z
Γ (λ+ z)Γ (−z) . (2.74)

Here the contour of integration is chosen in the standard way: the poles with
a Γ (. . . + z) dependence (let us call them IR poles) are to the left of the
contour and the poles with a Γ (. . . − z) dependence (UV poles) are to the
right of it.

Such factors can be chosen as functions in parametric integrals. But the
simplest way to apply this representation is to write down a massive propa-
gator in terms of massless ones:

1
(m2 − k2)λ

=
1

Γ (λ)
1
2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)λ+z
Γ (λ+ z)Γ (−z) . (2.75)

We consider once again Fig. 2.1 with m1 = 0, m2 = m, a1 = 1, a2 = 2, insert
(2.75) with λ = 2 into the Feynman integral, apply the formula (2.54) and
obtain the following result:

FΓ (q; d) = −iπd/2 Γ (1 + ε)
(−q2)1+ε

× 1
2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z
Γ (1 + ε+ z)Γ (−ε− z)Γ (−z)

Γ (1− 2ε− z)
. (2.76)

By closing the integration contour to the left and taking a series of residues
at the points zn = −1− ε− n, where n = 0, 1, . . . , we reproduce (2.59).

2.6 Properties of Dimensionally Regularized Feynman
Integrals (Continued)

Although on-shell and threshold Feynman integrals have been already men-
tioned many times, let us now be more precise in our definitions. We must
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realize that, generally, an on-shell or threshold Feynman integral is not the
value of the given Feynman integral FΓ (q2, . . .), defined as a function of q2 and
other kinematical variables, at a value of q2 on a mass shell or at a threshold.
Consider, for example, the Feynman integral corresponding to Fig. 2.1, with
m1 = 0, m2 = m, a1 = 1, a2 = 2. We know an explicit result for the diagram,
given by (2.58). There is a logarithmic singularity at threshold, q2 = m2 so
that we cannot strictly speak about the value of the integral there. Still, we
can certainly define the threshold Feynman integral by putting q2 = m2 in
the integrand of the integral over the loop momentum or over the alpha pa-
rameters. And this is what was really meant and will be meant by ‘on-shell’
and ‘threshold’ integrals. In this example, we obtain an integral which can
be evaluated by means of (A.13):∫

ddk
k2(k2 − 2q ·k)2 = iπ

d/2 Γ (ε)
2(m2)1+ε

. (2.77)

This integral is divergent, in contrast to the original Feynman integral defined
for general q2.

Thus on-shell or threshold dimensionally regularized Feynman integrals
are defined by the alpha representation or by integrals over the loop mo-
menta with restriction of some kinematical invariants to appropriate values
in the corresponding integrands. In this sense, these regularized integrals are
‘formal’ values of general Feynman integrals at the chosen variables.

Another example of this sort is provided by the value D(0) of the scalar
propagator D(x) at the origin – see (2.8). According to (2.7), there is a
singularity, so that such a quantity does not exist in the naive sense. We can
understand this object as a dimensionally regularized formal value when we
put x = 0 in the Fourier integral and obtain, using (A.1),∫

ddk
k2 −m2

= iπd/2Γ (ε− 1)(m2)1−ε . (2.78)

This Feynman integral in fact corresponds to the tadpole φ4 theory graph
shown in Fig. 2.7. The corresponding quadratic divergence manifests itself
through an UV pole in ε – see (2.78).

Fig. 2.7. Tadpole

Observe that we successfully dealt with an on-shell Feynman integral in
Sect. 2.5.6 by applying IBP. Note also that one can trace the derivation of the
integrals tabulated in Appendix A.1 and see that the integrals are convergent
in some non-empty domains of the complex parameters λi and ε and that the
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results are analytic functions of these parameters with UV, IR and collinear
poles.

Before continuing our discussion of setting scaleless integrals to zero, let
us present an analytic result for the one-loop massless triangle integral with
two on-shell external momenta, p2

1 = p2
2 = 0. Using (A.28), we obtain∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2

= iπd/2
Γ (1 + ε)Γ (−ε)2

Γ (1− 2ε)(−q2)1+ε
. (2.79)

A double pole at ε = 0 arises from the IR and collinear divergences.
A similar formula with a monomial in the numerator is also straightfor-

wardly obtained:∫
ddk kµ

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2
= iπd/2

Γ (ε)Γ (1− ε)2

Γ (2− 2ε)
pµ1 + pµ2
(−q2)1+ε

.

(2.80)

Now only a simple pole is present, because the factor kµ kills the IR diver-
gence.

Consider now a massless one-loop integral with the external momentum
on the massless mass shell, p2 = 0:∫

ddk
(p− k)2k2

. (2.81)

If we write down the alpha representation for this integral we obtain the
same expression (2.51) as for p = 0 because only p2, equal to zero in both
cases, is involved there. In spite of this obvious fact, there is still a qualitative
difference: for p = 0, there are UV and IR poles which enter with opposite
signs and, for p2 = 0 (but with p �= 0 as a d-dimensional vector), there is a
similar interplay of UV and collinear poles.

Now we follow the arguments presented in [182] and write down the fol-
lowing identity for (2.81), with p = p1:∫

ddk
(k2 − 2p1 ·k)k2

=
∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)

−
∫

ddk 2p2 ·k
(k2 − 2p1 ·k)(k2 − 2p2 ·k)

,

(2.82)

where p2
2 = 0 and p1·p2 �= 0. We then evaluate the integrals on the right-hand

side by means of (2.56) and (2.80), respectively, and obtain a zero value. This
fact again exemplifies the consistency of our rules.

Thus we are going to systematically apply the properties of dimensionally
regularized Feynman integrals in any situation, no matter where the external
momenta are considered to be.
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2.7 How They Are Renormalized

Although a regularization makes it possible to deal with divergent Feynman
integrals, it does not actually remove UV divergences, because this operation
is of an auxiliary character so that sooner or later it will be necessary to switch
off the regularization. To provide finiteness of physical observables evalu-
ated through Feynman diagrams, another operation, called renormalization,
is used. This operation is described, at the Lagrangian level, as a redefinition
of the bare parameters of a given Lagrangian by inserting counterterms. A
very important class of theories is described by interaction Lagrangians with
dimensionless coupling constants, where the counterterms have the same form
as the terms of the original total Lagrangian. These theories are also called
exactly renormalizable.

It is usually rather difficult to carry out the programme of choosing the
renormalized parameters of the Lagrangian in order to make finite the sum of
diagrams of a given order. This problem is greatly simplified by introducing
renormalization at the diagrammatic level, which is called R-operation and
removes the UV divergence from individual Feynman integrals. We denote
this procedure symbolically by FΓ → RFΓ . Thus, for any R-operation, the
quantity RFΓ is UV finite.

Of course, not all operations that make Feynman integrals finite can be
described as renormalization. The requirement for the R-operation to be
implemented by inserting counterterms into the Lagrangian leads to the fol-
lowing structure [26, 137, 247, 35]:

RFΓ =
∑

γ1,...,γj

∆(γ1) . . . ∆(γj)FΓ ≡ R′ FΓ +∆(Γ )FΓ , (2.83)

where ∆(γ) is the corresponding counterterm operation, and the sum is over
all sets {γ1, . . . , γj} of disjoint divergent 1PI subgraphs, with ∆(∅) = 1. The
‘incomplete’ R-operation R′, by definition, includes all the counterterms
except the overall counterterm ∆(Γ ). For example, if a graph is primitively
divergent, i.e. does not have divergent subgraphs, the operation is of the form
RFΓ = [1 +∆(Γ )]FΓ .

The action of the counterterm operations is described by

∆(γ)FΓ = FΓ/γ ◦ Pγ , (2.84)

where FΓ/γ is the Feynman integral corresponding to the reduced graph Γ/γ,
and the right-hand side of (2.84) denotes the Feynman integral that differs
from FΓ/γ by insertion of the polynomial Pγ in the external momenta and
internal masses of γ into the vertex vγ to which the subgraph γ was reduced.
The degree of each Pγ equals the degree of divergence ω(γ). It is implied that
a UV regularization is present in (2.83) and (2.84) because these quantities
are UV divergent. The coefficients of the polynomial Pγ are connected in a
straightforward manner with the counterterms of the Lagrangian.
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A specific choice of the counterterm operations for the set of the graphs of
a given theory defines a renormalization scheme. In the framework of dimen-
sional renormalization, i.e. renormalization schemes based on dimensional
regularization, the polynomials Pγ have coefficients that are linear combi-
nations of pure poles in ε = (4 − d)/2. In the minimal subtraction (MS)
scheme [143], these polynomials are defined recursively by equations of the
form

Pγ ≡ ∆(γ)Fγ = −K̂εR
′ Fγ (2.85)

for the graphs γ of the given theory. Here K̂ε is the operator that picks up
the pole part of the Laurent series in ε. The modified MS scheme [13] (MS)
is obtained from the MS scheme by the replacement µ2 → µ2eγE/(4π) for
the massive parameter of dimensional regularization that enters through the
factors of µ−2ε per loop.

Note that the most important part of the basic theorem about the R-
operation in the framework of dimensional renormalization [35] is just the
above polynomial dependence of the diagrammatic counterterms Pγ(q,m) on
the masses and external momenta. Although a requirement for this polyno-
mial dependence on the masses [71] is not obligatory from the Lagrangian
point of view, it turns out to be rather natural. For example, it leads to
mass-independent renormalization group equations.

Another well-known renormalization scheme is the BPHZ renormalization
[26, 137, 247]. In its original variant [26, 137], it is based on counterterms de-
termined only for complete subgraphs (which include sets of vertices together
with all lines between them). This kind of renormalization is natural for
theories with a normal-ordered Lagrangian (and composite operators), while
renormalization in all 1PI subgraphs is designed for Lagrangian and compos-
ite operators without normal order. After the BPH renormalization scheme
had been reformulated for the latter case, the fourth letter in the acronym
appeared. This scheme is based on (2.83) and (2.84), with the counterterms
given recursively by

Pγ ≡ ∆(γ)Fγ = −MR′ Fγ , (2.86)

where the subtraction operator M of the BPHZ scheme performs Taylor
expansion of order ω(γ) of the subdiagram γ in its external momenta (but
not in the masses!) at their zero values.

The BPHZ subtraction procedure is not applicable to theories with mass-
less particles, because Taylor expansion at zero external momenta generates
IR divergences. An example of its safe generalization to such theories is the
auxiliary-mass renormalization scheme [169, 170], where an auxiliary mas-
sive parameter is introduced into subtracted terms in order to avoid these IR
divergences. One can also use momentum subtractions for various off-shell
configurations. This class of renormalization schemes is referred to as MOM
schemes – see, for example, [44].



46 2 Feynman Integrals: a Brief Review

Note that the introduction of a regularization is not always necessary
for defining renormalized Feynman integrals. Examples of renormalization
without regularization are BPHZ renormalization, in its last version [247],
and the recently developed differential renormalization [117] (see also [212]
for prescriptions formulated for an arbitrary diagram).

There exists a great variety of renormalization schemes. Let us also men-
tion a form of renormalization based on some normalization conditions where
the renormalization is fixed by requirements imposed on Green functions at
certain values of the external momenta. Another example is analytic renor-
malization, which was originally defined by the action of some operator on
analytically regularized Feynman integrals [219] but can be also formulated
in the style of the minimal subtractions, when one uses the same analytic
parameter for all the lines in the same manner as ε.

When one is proving the basic properties of the R-operation, different
points are non-trivial for different schemes: in contrast to dimensional renor-
malization, the most non-trivial point for the BPHZ renormalization and its
massless generalizations is the finiteness of renormalized Feynman integrals
(the Bogoliubov–Parasiuk theorem [26, 137]).

It is possible to resolve the recurrence structure of the R-operation and
express it in terms of the subtraction operator M that enters through (2.86)
(and can be chosen as the BPHZ subtraction or some other operator that pro-
vides the necessary properties of the renormalization). A well-known solution
is given by the forest formula [247] (written earlier in equivalent language
in [245])

R =
∑
f

∏
γ∈f

(−Mγ) , (2.87)

where the sum runs over forests (i.e. families of non-overlapping subgraphs),
consisting of 1PI divergent subgraphs. By definition, the empty forest is also
implied in the sum, with the corresponding term equal to unity. For example,
for the one-loop graph Γ of Fig. 2.1, there are two forests, ∅ and Γ , so that
the R-operation takes the form R = 1 − M . For the two-loop scalar graph
shown in Fig. 2.8, we have the following forests: {∅}, {γ}, {Γ} and {γ, Γ},
where γ is the one-loop subgraph. The corresponding R-operation takes the
form

R = 1−Mγ −MΓ +MΓMγ ≡ (1−MΓ ) (1−Mγ) . (2.88)

Moreover, for the two-loop QED graph shown in Fig. 2.9, with two logarith-
mically divergent partially overlapping one-loop vertex subgraphs γ1 and γ2,
the complete set of forests is {∅}, {γ1}, {γ2}, {Γ}, {γ1, Γ}, {γ2, Γ}. The
corresponding R-operation is

R = 1−Mγ1 −Mγ2 −MΓ +MΓMγ1 +MΓMγ2

≡ (1−MΓ ) (1−Mγ1 −Mγ2) . (2.89)
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Fig. 2.8. Two-loop scalar vertex graph with nested
UV divergent subgraphs

Fig. 2.9. Two-loop QED diagram

Although dimensional renormalization can be also described through an
appropriate subtraction operator [72], this is achieved by a cumbersome pro-
cedure, at the cost of introducing different space–time dimensions for 1PI sub-
graphs, so that it is more reasonable to apply the MS and MS schemes within
the recursive definition. However, we shall certainly need the forest formula
for another purpose: it happens that the structure of the R-operation repre-
sented by the forest formula arises when one solves the problem of asymp-
totic expansions in off-shell limits of momenta and masses. As we shall see,
the remainder of the expansion is obtained from the original diagram by
the action of an operation given by the forest formula with an appropriate
(pre-)subtraction operator.

2.8 Back to the Operator Level

The renormalized S-matrix

S = RT exp
(
i
∫
d4xLI(x)

)
(2.90)

can be obtained, on the one hand, by the action of an R-operation on the
Feynman diagrams contributing to the coefficient functions SN in (2.9). On
the other hand, it can also be obtained from the unrenormalized S-matrix
by replacing all the bare parameters in the Lagrangian by their renormalized
values. For example, for MS renormalized QCD, this means the following
replacement of the bare quantities present in (2.15), labelled here by the
index B:

gB = µεZgg , mB
i = Zmmi , ξB − 1 = Z3(ξ − 1) ,

qB
i =

√
Z2qi , AB,a

ν =
√

Z3A
a
ν , cB,a =

√
Z̃3ca , (2.91)
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where the factor µε makes the dimension of the coupling constant indepen-
dent of the parameter ε of dimensional regularization. Any counterterm Zi
within the MS or MS scheme is a linear combination of pure poles in ε:

Zi = 1 +
∑
n=0

n∑
j=0

znj

(αs

π

)n 1
εj

, (2.92)

where znj are dimensionless constants.
The fact that the diagrammatic renormalization performed by the R-

operation (2.83), with appropriate counterterm operations (2.84), can be im-
plemented by modifying parameters of the Lagrangian looks (almost) obvious
at the one-loop level. For a general perturbation order, this property is writ-
ten as

RT exp
(
i
∫
d4xLB

I (x)
)
= T exp

(
i
∫
d4xLR

I (x)
)

, (2.93)

where LR
I is the renormalized Lagrangian, which consists of the interaction

part of the bare Lagrangian, LB
I , and counterterms. The renormalized La-

grangian can be written explicitly in terms of the counterterm operation
involved in (2.83) and (2.84) by means of the so-called counterterm tech-
nique developed in [4, 246] and generalized to the case of Lagrangians and
composite operators without normal order in [63] (see also [234, 42]). In the
latter case,

LR
I =W∆

[
T exp

(
i
∫
dxLB

I (x)
)
− 1

]
, (2.94)

where the action of the counterterm operation ∆ reduces to the action of the
corresponding diagrammatic operation in (2.84) on Feynman integrals, and
the operation W removes the symbol that defines the normal order in repre-
sentations of operators of the form (2.9) (so that the Wick theorem is applied
again after the action of this operation). In the language of functionals, when
the quantum field operators are represented by (2.10), this operator is given
by (2.11).

The normal-ordered variant [4, 246] differs from (2.83) by omission of the
operatorW and use of the R-operation (2.84), where the sum runs only over
complete subgraphs. The proof of this formula is based on combinatorial argu-
ments that have been used in many situations, in particular for the transition
from full Green functions to connected Green functions (see, e.g., [147]). Here
is a sketch of the proof. After expansion of the exponent on the left-hand side
of (2.93) and application of the Wick theorem the diagrammatic R-operation
given by (2.83) and (2.84) is applied to the resulting diagrams. From the
order-N expansion term of the exponent, diagrams with N vertices arise.
The set of vertices is decomposed, according to (2.84), into subsets consist-
ing of a different number of vertices, and the number N is represented as
N1 + 2N2 + . . . + kNk + . . . , in N !/[

∏
Nk!(k!)Nk ] distinct ways. Then one

performs summation over the numbers Nk and eventually arrives at (2.94).
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A (bare) composite operator

JB(x) = T j(x) exp
(
i
∫
d4xLR

I (x)
)

(2.95)

is generated by a polynomial j(x) composed of the fields present in the theory.
As will be explained shortly (and, in detail, in Chap. 4), it is very convenient
to include powers of the masses of the theory in the composite operators. The
canonical dimension of the operator is defined in the standard way, in mass
units, as Nb+Nf+Nm, where Nb Nf and Nm are the number of boson fields,
the number of fermion fields and the total power of the masses involved in
the product j, respectively.

The bare composite operators are defined by means of the renormal-
ized Lagrangian so that all the UV divergences present in purely S-matrix
(sub)diagrams are removed. However, there are no prescriptions for removing
UV divergences from diagrams that involve the vertex corresponding to the
composite operator. The renormalized composite operators

J(x) = RJB(x) (2.96)

are obtained from the unrenormalized (i.e. incompletely renormalized) opera-
tors by including counterterms for these specific UV divergences. Usually, one
chooses a basis of composite operators Oi generated by some polynomials oi.
Then the local property of the counterterms in (2.83) leads to the following
expression for the renormalized composite operators:

Oi(x) ≡ ROB
i (x) =

∑
k

ZikO
B
k (x) , (2.97)

where Zik is a renormalization matrix. One says that the operators are mixed
by the renormalization. An example of mixing of operators (in QCD) can be
found in Sect. 4.5.

In diagrams that contribute to bare products of two renormalized com-
posite operators [TOi(x)Ok(0)]B, all the UV divergences present in purely S-
matrix 1PI (sub)diagrams and diagrams involving only one vertex corre-
sponding to a composite operator are removed. But one needs additional
prescriptions for removing UV divergences from diagrams that involve both
of the vertices connected with the composite operators. The renormalized
product of two composite operators is represented in a form similar to (2.97):

TOi(x)Ok(0) =
∑
i′k′

Zik,i′k′ [TOi′(x)Ok′ (0)]B , (2.98)

where Zik,i′k′ is a renormalization matrix of products of the composite oper-
ators.

Although the monomials of the fields present in the Lagrangian and the
composite operators were traditionally5 supposed, in the early days of quan-

5Even the very technique of definition of the composite operators and analysing
their properties was called the ‘Normal Product Algorithm’ [248]. So, now, ‘Abnor-
mal Product Algorithm’ is in use.
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tum field theory, to be normal-ordered, it is very important to consider them
as operators without normal order. This prescription results in the possibil-
ity of performing the factorization of contributions depending on phenom-
ena connected with different scales. We shall come to back to discussion of
this factorization in Chap. 4. Thus products of fields at the same point are
present both in the Lagrangian and in the composite fields, so that Feyn-
man diagrams can involve tadpoles. Note also that, within the method of
path integrals, Feynman diagrams naturally arise without any prescription
to exclude such diagrams. Anyway, the use of Lagrangians and composite
operators without normal order is now commonly accepted.
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Divide et impera

(A successful strategy)

Suppose that we have to analytically evaluate a two-loop Feynman diagram
which depends on two parameters, e.g. a mass squared and a momentum
squared. This is generally a rather complicated problem. It usually happens,
however, that the parameters involved differ in scale so that it is reasonable
to expand the diagram in their small ratio. We shall see in this book that
an asymptotic expansion in an arbitrary limit with two scales can be writ-
ten explicitly as an infinite series of products of certain one-scale Feynman
integrals, with a power and logarithmic dependence on the expansion param-
eter, which can be evaluated analytically much more easily than the initial
two-scale integral. The original Feynman integral can then be replaced by a
sufficiently large number of terms of its expansion.

In this chapter, the limits we are going to study are characterized and the
form of the asymptotic expansion we are aiming at is described. An example
of a one-loop Feynman integral in the large-momentum limit and a related
toy one-dimensional example are then used to formulate two basic strate-
gies for expanding Feynman integrals that we are going to apply. The first
of them, expansion by regions, is physically motivated and turns out to be
more general. In this strategy, one divides the whole integration domain into
various regions, then performs some simplifications and eventually obtains
an expansion as a sum of contributions from the regions that can be handled
in much easier way than the initial diagram. Although it is clearly a heuristic
strategy, examples where it breaks down are unknown at present. The second
strategy can, at present, be applied to off-shell limits of momenta and masses
and to some specific on-shell limits typical of Minkowski space. In contrast
to the first strategy, it has been mathematically proven. Since these strate-
gies lead to the same prescriptions for the off-shell limits, we thereby obtain
an indirect confirmation of the first, heuristic strategy for such a family of
simpler limits.

3.1 Limits and Asymptotic Expansions

The problem of expanding Feynman integrals in momenta and masses arises
quite naturally. Suppose that we consider phenomena at a given scale, Λ.

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 51–65 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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Then it is reasonable to consider small all the masses and kinematical invari-
ants that are below this scale, and the remaining parameters as large. So, it
is a decomposition of the given set of momenta and masses into these two
subsets that determines a limit of momenta and masses. For simplicity, let
us first consider an h-loop Feynman integral FΓ corresponding to a graph
Γ with two external vertices and depending on two parameters. To be spe-
cific, let us choose the small parameter to be the square of a mass and the
large parameter as the external momentum squared, i.e. m2 � −q2. We have
chosen q to be Euclidean so that q2 = −Q2, with Q > 0.

Experience tells us that, in all limits, we obtain expansions of Feynman
integrals in powers and logarithms. If we pull out an overall dimensional
factor, we expect that the corresponding expansion has the form

FΓ (Q2,m2) ∼ (Q2)ω
∞∑

n=n0

2h∑
j=0

Cnj x
n lnj x , (3.1)

where x = m2/Q2 and ω is the degree of divergence of the graph Γ .
The sum over n runs from some minimal value. The index n can generally

take, in some limits, not only integer but also half-integer values. The second
index, j, is bounded, for any n, by twice the number of loops. It should be
stressed that these expectations are, in general, a matter of experience rather
than a corollary of a mathematical theorem. However we shall see that, in
some simpler limits, these statements can indeed be justified.

According to a standard definition of an asymptotic expansion [185], (3.1)
means that, for an arbitrary number N , the remainder

RN (Q2,m2) = FΓ (Q2,m2)− (Q2)ω
N∑

n=N0

2h∑
j=0

Cnj x
n lnj x (3.2)

has order o(xN ), i.e., for Q in a finite interval A < Q < B, there exist C > 0
and ε > 0 such that∣∣x−NRN (Q2, Q2x)

∣∣ ≤ C (3.3)

for 0 < x < ε. The above formulae are modified just a little when there
are more than two parameters: we multiply each small parameter by a di-
mensionless variable x, and deal with the resulting function of x in the limit
x→ 0.

Another ‘experimental’ fact is the existence of a non-zero radius of con-
vergence of the asymptotic expansion of any Feynman integral in any limit.
Normally, we shall just point out this phenomenon in subsequent chapters
and shall not aim at a deep investigation of this problem. Nevertheless, we
shall believe in this property because we want to apply our expansions by
substituting given Feynman integrals by a sufficiently large number of initial
terms of the corresponding expansion.

We have already specified the natural requirement for an expansion in
powers and logarithms. Before formulating the next requirement let us note
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that, on the left-hand side of (3.1), we assumed a UV- and IR-finite quantity,
so that a regularization was not introduced. However, even if the original
Feynman integral is finite, it is necessary to introduce a regularization, which
we choose to be dimensional. The dimensionally regularized analogue of (3.1)
is of the form

FΓ (Q2,m2; ε) ∼ (Q2)ω−hε
∞∑

n=n0

2h∑
j=0

h∑
i=0

Cnji(ε)xn−jε lni x . (3.4)

The necessity for the regularization is explained by the fact that, without
it, it is very difficult to provide simple explicit prescriptions for the terms
of the expansion; it is a negligible price for obtaining a natural solution of
the problem. Here the dimensional regularization enables us to separate var-
ious terms on the right-hand side of the expansion which would be ill-defined
without it. Nevertheless, in all the limits that we are going to investigate, the
sum of terms at a fixed power of the expansion parameter turns out to be fi-
nite, provided the original integral is finite. We shall also see in Chap. 8 that,
in some cases, individual terms at a fixed power in the expansion become
unregularized when considered separately, even in the presence of dimen-
sional regularization. In this case a natural solution of this problem is to
temporarily introduce an auxiliary analytic regularization, which is switched
off immediately after these integrals have been evaluated and summation has
been performed over every ‘subset’ of such dangerous terms. We can keep, at
this step, dimensional regularization while the logarithms of the expansion
parameter in (3.4) ‘remember’ the above problem.

The second requirement is that, starting from the Feynman integral for the
given graph on the left-hand side, we would like to obtain Feynman integrals
on the right-hand side also. This appears rather natural because Feynman
integrals are the fundamental objects we are dealing with and it is better to
have them in the expansion rather than, say, in some artificially introduced
parametric integrals. Moreover we would like to formulate universal rules that
make a correspondence between the original Feynman integral and the terms
of its expansion, i.e. the rules should be formulated in the same way for an
arbitrary graph. After we have set out such rules, we shall be able to apply
them to any given diagram, with any number of loops, and not perform any
analytic work at this point. As we shall see, the application of these rules
will be just a task (which can in principle be done by computer) of looking
through all relevant subgraphs or regions, from a known list, and writing
down the corresponding contributions. Of course, the integrals that appear
on the right-hand side (which are much simpler than the initial Feynman
integral because they depend on a lower number of scales) have not yet been
calculated at this stage, but their calculation is another problem, while the
problem of expansion is already essentially solved.

Another very important reason for the second requirement is that, start-
ing from the expansions of individual Feynman integrals and analysing their
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right-hand sides written in terms of Feynman integrals, it is then much sim-
pler to arrive at the corresponding expansions at the operator level. At this
step, the above universality plays a crucial role.

We shall see, in Chaps. 4–8, that we can fulfil both requirements and, in all
the limits we are going to investigate, we shall encounter, on the right-hand
side, certain Feynman integrals generated, according to some rules that are
universal for the given limit, from the original integral by Taylor expansions
of the integrand in certain parameters.

In a great variety of limits associated with physical problems, we can
distinguish an important class of simpler limits which are typical of Euclidean
space, i.e. can be formulated for Euclidean Feynman integrals. It is not so
simple to characterize this class more explicitly. Ironically, this is the form of
the general prescriptions which we are aiming at, which is characteristic of
the classification of the limits. In fact, the limits for which prescriptions can
be written in the form of a sum of a specific family of subgraphs belong to
the Euclidean type of limit. Anyway, for typically Euclidean limits, all the
large external momenta are considered large in the Euclidean sense, so that
any scalar product of a large momentum Q and any other (either large or
small) external momentum q is considered large.

We shall investigate such limits in Chaps. 4 and 5. We shall see that the
corresponding prescriptions for expanding Feynman integrals in these limits
can be expressed simply in a graph-theoretical language, within our second
strategy. This is a ‘safe’ class of limits, in the sense that these results can be
proven – see Appendix B.2. At the operator level, this class of limits covers
the Wilson operator product expansion and the large-mass limit described
by an effective Lagrangian of light fields.

The remaining limits are connected with typically Minkowskian config-
urations of the large momenta, which are located on some singular surface,
either on a mass shell or at a threshold. Such limits cannot be formulated
for Feynman integrals in Euclidean space. For example, for a typical pseudo-
Euclidean limit, a momentum can be large, i.e. some its components are
large, while its momentum squared can be small, or even equal to zero from
the beginning (see Chap. 8). The method of expansion by subgraphs has
been developed only for some special cases of such limits and, in situations
where there is no mathematical confirmation of the methods used to deal
with these limits, we are forced to use expansion by regions and confine our-
selves to heuristic arguments and experimental computational confirmations.
We shall study these limits in Chaps. 6–8.

3.2 Expansion by Regions

Consider the example of a one-loop Feynman diagram Γ shown in Fig. 3.1
in the large-momentum limit, |q2| � m2. We suppose that the upper line
is massless. In order to deal with a convergent Feynman integral from the
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Fig. 3.1. One-loop self-energy graph. The dashed line de-
notes a massless propagator

beginning, we have chosen the second power of the lower propagator, which
is indicated by a dot on the line. The corresponding dimensionally regularized
Feynman integral takes the form

FΓ (q2,m2; d) =
∫

ddk
(k2 −m2)2(q − k)2

. (3.5)

Regularization has been consciously introduced for a finite initial quantity
because we shall obtain various divergences in individual terms of our result
for the expansion. This appearance of divergences is characteristic (well, al-
most) of all expansions in momenta and masses and is a negligible price paid
in order to obtain explicit formulae for individual terms that are as simple
as possible in the general order of the expansion.

In fact, we used this diagram in the previous chapter to illustrate methods
of evaluating Feynman integrals, so that we already know the result (2.59).
Since the argument of the hypergeometric functions is q2/m2, this result is
naturally written as an expansion in powers of this ratio. However, we want
an expansion in the opposite variable. To rewrite the result as an expansion in
m2/q2, we use the identity (A.54) that relates the hypergeometric functions
with arguments z and 1/z and obtain

FΓ (q2,m2; d) = iπd/2
[
(ε− 1)m2

εq2
2F1

(
1, ε; 1− ε;m2/q2

)

+
Γ (2− ε)Γ (ε)
Γ (1− 2ε)

(
−m

2

q2

)1+ε(
1− m2

q2

)−2ε
]
. (3.6)

We can obtain the same result by the Mellin–Barnes technique, using (2.76),
closing the integration contour to the right and taking two series of residues,
at the points z1,n = −ε+ n and z2,n = n, where n = 0, 1, . . . .

But we want to arrive at the terms of this expansion in an essentially easier
way, and by following some general prescriptions which will avoid the need
for us to evaluate this full result or to perform an analysis of MB integrals
oriented towards concrete expressions for the given diagram. Note that if we
proceed naively and begin to expand the corresponding integrand in a Taylor
series in our small parameterm2, we immediately obtain, in the leading order
of the expansion, an IR divergence, which comes from the factor 1/(k2)2.

To illustrate our strategies for expanding Feynman integrals let us simplify
the situation as much as possible and consider first a toy example of the
following one-dimensional analogue of (3.5):
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F (q,m, ε) =
∫ ∞

0

k−ε dk
(k +m)(k + q)

, (3.7)

where q and m are numbers, with 0 < m� q. The regularization factor k−ε

plays the role of dimensional regularization in (3.5). Of course, this integral
can be evaluated explicitly without any expansion (e.g. by use of partial
fractions), with the following result:

F (q,m, ε) = − π

sinπε
q−ε −m−ε

q −m
, (3.8)

which, in the limit ε = 0, gives

F (q,m, 0) =
ln(q/m)
q −m

. (3.9)

Let us now reproduce this result by expanding (3.7) following two different
strategies.

As with its four-dimensional prototype, we shall immediately obtain an
integral that is divergent for ε = 0 if we begin to expand the integrand into
a Taylor series in m:∫ ∞

0

k−ε−1 dk
k + q

+ . . . . (3.10)

It is clear that this cannot be the true leading-order term of the expansion,
since (3.7) is finite in ε. The breakdown of this ‘naive’ expansion is explained
by the fact that the Taylor series, in m, of the factor 1/(k +m) converges
only for |k| < m, rather than for arbitrary values of k. Still, let us continue
to be naive and evaluate the whole series that results from this expansion:

Flarge ∼
∫ ∞

0

dk
k−ε−1

k + q
−m

∫ Λ

0

dk
k−ε−2

k + q
+ . . . (3.11)

=
∞∑
n=0

(−1)nmn

∫ ∞

0

k−n−ε−1 dk
k + q

=
1
q

∞∑
n=0

(−1)nΓ (n+ 1 + ε)Γ (−n− ε)
(
m

q

)n

=
π

q1+ε sinπε

∞∑
n=0

(
m

q

)n
. (3.12)

We attach the label ‘large’ in the sense that the expansion of the integrand
is still legitimate at large values of k, of order q.

Now, suppose we were naive in the opposite way and looked at the region
of small values of k, i.e. of order m. Then we would see that was legitimate
to expand the second factor in k and would obtain the following series:
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Fsmall ∼
1
q

∫ ∞

0

dk
k−ε

k +m
− 1
q2

∫ ∞

0

dk
k−ε+1

k +m
+ . . . (3.13)

=
∞∑
n=0

(−1)n
qn+1

∫ ∞

0

kn−ε dk
k +m

=
1
qmε

∞∑
n=0

(−1)nΓ (n+ 1− ε)Γ (−n+ ε)
(
m

q

)n

= − π

qmε sinπε

∞∑
n=0

(
m

q

)n
. (3.14)

A curious fact is that if we add together these two naive results and sum up
the geometric progressions involved we obtain nothing but the true explicit
result (3.8), so that the desired expansion is given by

F ∼ Fsmall + Flarge . (3.15)

Let us now prove that such a way of expanding is indeed correct, in our
example, and that we really can obtain the final result by expanding the
integrand in two different ways. We note that the procedure for expanding
in m would work if the integration was taken strictly above the value m. Let
us therefore choose an intermediate scale Λ such that m < Λ < q and divide
our integral into two pieces:

F = fsmall + flarge , (3.16a)

fsmall(q,m,Λ) =
∫ Λ

0

k−ε dk
(k +m)(k + q)

, (3.16b)

flarge(q,m,Λ) =
∫ ∞

Λ

k−ε dk
(k +m)(k + q)

. (3.16c)

We can safely expand the integrand in m in the second piece:

flarge ∼
∫ ∞

Λ

dk
k−ε

k + q

(
1
k
− m

k2
+ . . .

)
. (3.17)

On the other hand, since k < Λ in the first piece, we may expand the second
factor there:

fsmall ∼
∫ Λ

0

dk
k−ε

k +m

(
1
q
− k

q2
+ . . .

)
. (3.18)

After this we rewrite the two contributions above in identical form by
extending the integrations to infinite limits and compensating this by sub-
tracting the corresponding additional pieces:

fsmall ∼ Fsmall −
(
1
q

∫ ∞

Λ

dk
k−ε

k +m
− 1
q2

∫ ∞

Λ

dk
k−ε+1

k +m
+ . . .

)
, (3.19a)

flarge ∼ Flarge −
(∫ Λ

0

dk
k−ε−1

k + q
−m

∫ Λ

0

dk
k−ε−2

k + q
+ . . .

)
, (3.19b)

where Fsmall and Flarge are given by (3.13) and (3.11), respectively.
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For each integral on the right-hand sides in (3.19a) and (3.19b) there
exists a domain of the regularization parameter ε for which it is absolutely
convergent. All these integrals can be defined for general ε by analytic con-
tinuation. Observe that we may now expand any given integral in the large
parentheses in (3.19a) and (3.19b) into Taylor series in m and k, respectively.
The resulting integrals are easily evaluated. In particular, the leading-order
terms that arise from the terms in the large parentheses are

−1
q

∫ ∞

Λ

dk k−ε−1 =
1

εqΛε
, (3.20a)

−1
q

∫ Λ

0

dk k−ε−1 = − 1
εqΛε

, (3.20b)

respectively.
It should be stressed that the above two integrals are initially defined

in different domains of the parameter ε, namely Re ε > 0 and Re ε < 0,
where they are absolutely convergent and from where they are analytically
continued to general values of ε. Note that, formally, the sum of these two
integrals equals an integral with the same integrand but taken from zero to
infinity. As we discussed in Chap. 2, it is natural to set such integrals to zero.
But here we do not need to refer to such ad hoc recipes, because the two
pieces of the integral arise quite naturally when they are evaluated with their
own values of ε which provide convergence.

It is easy to see that results with opposite signs arise not only from
the leading-order terms but from the whole series of the contributions from
(3.19a) and (3.19b). In fact, in both cases we obtain an integrand with factors
1/(k+m) and 1/(k+q) , expanded into Taylor series inm and k, respectively,
and the only difference is that (3.19a) and (3.19b) generate integrals from Λ
to ∞ and from 0 to Λ, respectively, when considered in their own initial do-
mains of the regularization parameter ε where they are convergent. Therefore
the terms in the large parentheses are mutually cancelled after this expansion
and calculation, and we arrive at the expansion of the given integral (3.7),
written as (3.15).

Thus the asymptotic expansion of the original integral is given by two con-
tributions, Fsmall and Flarge. All terms in both contributions are homogeneous
with respect to the expansion parameter, and the corresponding one-scale in-
tegrals can be evaluated trivially. Note that the regularization provided by
the parameter ε is necessary because, individually, these two contributions,
which would be divergent when ε = 0, contain poles in ε. Nevertheless, these
poles are cancelled in the sum of the two contributions for every power of the
expansion parameter.

We use on purpose the same labels in Fsmall and Flarge as in the integrals
fsmall and flarge, which are indeed integrals in the regions of small and large k.
We want thereby to stress the fact that these two contributions originate from
these regions and the corresponding Taylor expansions. Moreover, we see that
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we can obtain the result (3.15) using the following prescriptions for expanding
integrals∫ ∞

0

f(q,m, k) dk (3.21)

of arbitrary rational functions f(q,m, k) with positive denominators in the
limit q � m:

• Divide the integration domain into various regions and, in every region,
expand the integrand into a Taylor series with respect to the parameters
that are considered small there.

• Integrate every expanded integrand over the whole integration domain and
sum the resulting contributions from all the regions.

In our toy example, we already know two typical regions, namely those
of small and large k, i.e. k ∼ m and k ∼ q, respectively. Guided by the above
prescriptions, we immediately arrive at the result (3.15), without the proof
presented above. However, this is the first and the last example where a direct
confirmation of these prescriptions will be presented, because it happens to
be very difficult to provide mathematical proofs (even for one-loop Feynman
integrals!) of the second step.

Note that, in our later considerations, we shall not really use the word
‘region’ to denote a domain determined by inequalities, as was done in the
previous analysis, with a choice of some intermediate scale. Rather, we shall
treat this word in the physical sense and imply relations between the quanti-
ties involved that determine an order of the integration variables, expressed
in terms of the parameters of the problem.

Suppose now that we have not performed the above analysis and are
equipped only with the above two prescriptions. In that case we could ask
whether other regions contribute to the expansion. For example, why not
consider a region of the type k ∼ m2/q? According to our prescriptions, we
should expand both propagators in k because k � m and k � q. As a result,
we obtain a contribution that consists of scaleless integrals. In particular, in
the leading order, we have

1
mq

∫ ∞

0

k−ε dk . (3.22)

This is a scaleless integral, so that it is tempting to set it to zero, as we did
in the case of the scaleless integrals we met above. And this appears to be
a reasonable decision because we know that, in our example, there are no
other contributions in addition to those present in (3.15). By the way, if we
choose some more exotic region, e.g. k ∼ m7/2/q5/2, we end up with the same
scaleless integrals.

Thus, it appears necessary to supplement the above prescriptions with a
third one, which provides zero values for scaleless integrals. But let us now
come back to the Feynman integrals and formulate some prescriptions which
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we shall use systematically in the rest of the book. Suppose that we want
to expand a Feynman integral in some limit of momenta and masses. Let us
follow the rules formulated in [18]:

• Divide the space of the loop momenta into various regions and, in every
region, expand the integrand into a Taylor series with respect to the pa-
rameters that are considered small there.

• Integrate the integrand, expanded in the appropriate way in every region,
over the whole integration domain of the loop momenta.

• Set to zero any scaleless integral.

Remember that we have agreed to understand the term ‘region’ in the
sense of relations between the quantities involved. It is possible to formalize
these relations mathematically, and we shall do this in Sect. 9.3, but, in the
main part of the book, we shall still use our basic term in the heuristic sense
and indeed think of some regions also because this language certainly has an
unambiguous physical orientation.

Note that, in the last prescription, we do not mean only massless vac-
uum integrals. We shall meet various examples of scaleless integrals in later
chapters. In particular, sometimes the presence of a scaleless integral is man-
ifest only after several intermediate integrations rather than from the very
beginning.

Let us apply this strategy to our one-loop d-dimensional Feynman integral
(3.5). We have the regions of large and small loop momenta k:

large, k ∼ q ; (3.23a)
small, k ∼ m . (3.23b)

In the region of large k, the second propagator is unexpanded, while the
first propagator is expanded into a Taylor series in m. Here the Euclidean
sense is implied, i.e. the corresponding relations for any components of the
d-dimensional quantities involved are satisfied. In particular, when k is con-
sidered large, we consider its scalar products also to be large. For example,
k2 is considered large and we do not bother about possible cancellation of k2

0

and k2 in the combination k2 = k2
0 − k2.

In the region of small k, the second propagator is expanded into a Taylor
series in k because |k2|, |2q·k| � |q2| in the combination (q− k)2 ≡ q2 − (2q·
k− k2). Thus, the first propagator is unexpanded there, while the expansion
of the second propagator is given by a geometric progression:

1
(q − k)2

=
1
q2

+
2q ·k − k2

(q2)2
+

(2q ·k − k2)2

(q2)3
+ . . . . (3.24)

Here the degree of the terms, measured in powers of k, is not strictly ordered:
for example, k2/(q2)2 from the second term on the right-hand side has the
same degree as (2q ·k)2/(q2)3 from the third one.

Combining both contributions together, we arrive at the following expan-
sion:
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FΓ (q2,m2; d) ∼
∫

ddk
(k2)2(q − k)2

− 2m2

∫
ddk

(k2)3(q − k)2
+ . . .

+
1
q2

∫
ddk

(k2 −m2)2
+

1
(q2)2

∫
(2q ·k − k2) ddk
(k2 −m2)2

+ . . . . (3.25)

Evaluating the integrals on the right-hand side by use of (A.6) and (A.7),
we obtain the following result:

FΓ (q2,m2; d) ∼ iπd/2

(−q2)1+ε
Γ (1− ε)2Γ (ε)
Γ (1− 2ε)

(
1 + 2ε

m2

q2
+ . . .

)

+
iπd/2

q2(m2)ε
Γ (ε)

(
1 +

ε

1 + ε

m2

q2
+ . . .

)
. (3.26)

The pole in ε in the contribution from the region of large k is of IR nature,
while the pole in the contribution from the region of small k is UV. In fact,
poles are present only in the leading-order terms. We observe that the poles
are cancelled to produce a result finite at ε = 0:

FΓ (q2,m2; 4) ∼ iπ2

q2

[
ln
(
−q2
m2

)
− m2

q2
+ . . .

]
. (3.27)

An arbitrary, nth, term of the expansion can be easily evaluated, with a sub-
sequent summation to obtain the explicit analytic results (2.58) and (2.59).

3.3 Expansion by Subgraphs

Now we turn to the second strategy. According to the definition of the asymp-
totic expansion (see Sect. 3.1), we can take a sufficiently large number of
initial terms of the expansion in order to provide the desired asymptotic be-
haviour of the remainder. Let us define the remainder of order n for our toy
example by

RnF (q,m; ε) =
∫ ∞

0

dk k−ε
(

1
k +m

− 1
k
+
m

k2
− . . .− (−1)n mn

kn+1

)

×
(

1
k + q

− 1
q
+

k

q2
− . . .− (−1)n kn

qn+1

)
. (3.28)

We can rewrite this expression more concisely as

RnF (q,m; ε) =
∫ ∞

0

dk k−ε
(
(1− T n

m)
1

k +m

)(
(1− T n

k )
1

k + q

)
,

(3.29)

where T n is the operator of Taylor expansion of order n in the corresponding
variables, i.e., in the one-dimensional case,

T n
x f(x) =

n∑
j=0

1
j!
f (j)(0)xj . (3.30)
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Since the remainder involves the operator (1− T n
m), we see that it has

an asymptotic behaviour of order mn+1 (modulo logarithms), provided the
corresponding integral is convergent when ε → 0. To show this convergence,
let us consider first the region of small k. Here the terms originating from
T n
m are dangerous because they involve negative powers of k, the last term,

containing mn/kn+1, being the most dangerous of them. However this ‘po-
tential’ divergence is removed by the expression in the other parentheses in
the remainder. To see this, it suffices to apply a standard formula for the
remainder of a Taylor expansion (e.g. (B.40)) and conclude that the opera-
tor (1− T n

k ) generates an additional factor kn+1 in the numerator. Counting
powers, we can convince ourselves that there is convergence at small k.

The situation in the region of large k is quite opposite: the operator T n
k

generates ‘dangerous’ positive powers of k there. However, the combination
(1− T n

m) successfully cancels these powers. These are the arguments that will
be generalized further to the analysis of general Feynman integrals in off-shell
limits of momenta and masses. It should be pointed out, however, that in this
toy example, a more explicit estimate is possible: using a well-known formula
for the sum of the initial terms of a geometric progression, we obtain a very
simple relation,

RnF (q,m; ε) =
(
m

q

)n+1

F (q,m; ε) , (3.31)

which makes trivial the above statements about the remainder.
The operation that determines the remainder can be written as

Rn = (1−Mn
large)(1 −Mn

small) , (3.32)

where Mn
large corresponds to T n

m and Mn
small to T n

k . Starting from (3.29), let
us rewrite the original integral as

F = (1−Rn)F +RnF

≡ (Mn
large +Mn

small −Mn
largeMn

small)F +RnF . (3.33)

The last term is the remainder. The term containing the product of two
subtraction operators produces scaleless integrals, which are naturally set to
zero here. However we do not need to use such ad hoc prescriptions here.
Rather, we again divide the integral into two pieces, with separate terms
corresponding to the right-hand side of (3.33), so that these scaleless integrals
arise by definition as combinations of two integrals evaluated in their own
domains of the regularization parameter ε, where they are convergent and
then produce zero in the sum. Now we let n tend to infinity and observe that
the remaining two terms in the brackets generate nothing but the terms of
the asymptotic expansion (3.15), so that we have obtained the same result
in another way.

For our Feynman integral, the corresponding procedure looks quite simi-
lar. The remainder is defined as
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RnFΓ (q2,m2; d) =
∫

ddk
(
(1− T n

m)
1

(k2 −m2)2

)(
(1− T n

k )
1

(q − k)2

)

≡ (1−Mn
large)(1−Mn

small)FΓ (q
2,m2; d) ; (3.34)

the only difference is that the operator T n
k now performs Taylor expansion

in a d-dimensional rather than a one-dimensional variable. To show the con-
vergence and obtain the asymptotic estimate, we can simply repeat the ar-
guments presented after (3.30).

The operators involved can be associated naturally with subgraphs of the
given graph. The operatorMn

large can be labelled as MΓ because it performs
Taylor expansion in the small parameter m of the whole integrand of the
Feynman integral. (It acts only on the propagator containing the mass m
but would act on the second propagator if the corresponding (small) mass
were non-zero.) On the other hand, the second operator, Mn

small, acts on the
expression 1/(q − k)2 associated with the subgraph γ consisting of a single
massless line. This action reduces to expanding the expression into a Taylor
series in the loop momentum k of the whole graph which is external for the
subgraph. Let us now adopt the following convention:

• we consider all the loop momenta to be small by definition when associating
subtraction operators with subgraphs.

The second operator involved is then naturally identified as Mγ because
it is the Taylor expansion operator with respect to the small parameters of
the subgraph γ. Here we introduce one more convention:

• when considering an operator corresponding to a subgraph, we choose a
routing of the external momenta in such a way that they all flow through
the given subgraph.

Let us now ask why there is no contribution from the second subgraph,
consisting of two successive massive lines. According to the second of the
above conventions, we choose the loop momentum by letting the external
momentum flow through the massive lines. We then obtain the following
contribution from this subgraph:∫

ddk
1
k2

T n
k,m

1
[(q − k)2 −m2]2

=
1

(q2)2

∫
ddk

1
k2

+ . . . . (3.35)

Here the corresponding Taylor operator acts on m and (the new loop mo-
mentum) k, which are considered as small parameters with respect to this
subgraph. However, every resulting term is a scaleless integral, which we set
to zero. So the answer is that there is indeed a contribution from the second
subgraph but it is zero. However, it would be non-zero if this subgraph had
a non-zero mass – see Example 4.2 in Sect. 4.1.

Thus we have the following correspondence: Mn
Γ = Mn

large and Mn
γ =

Mn
small. We can rewrite the remainder (3.34) as

RnFΓ = (1−Mn
Γ )
(
1−Mn

γ

)
FΓ . (3.36)
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We then use the same manipulations as in (3.33) and obtain

FΓ = (Mn
Γ +Mn

γ −Mn
ΓMn

γ )FΓ +RnFΓ . (3.37)

We want to consider individual terms separately. It turns out that they
possess divergences, so that we introduce a regularization (which we always
choose to be dimensional) even if the original Feynman integral is UV and
IR finite. Let us also observe that the (dimensionally regularized) Feynman
integral expanded by the operator Mγ ,

MγFΓ =
∫

ddk
1

(k2 −m2)2
T n
k

1
(q − k)2

(3.38)

(equal to the last line of (3.25)), can be interpreted as an integral for the
reduced graph Γ/γ (which is obtained from Γ by contracting the subgraph γ
to a point and is nothing but a tadpole consisting of the two massive lines),
where the expansion of the expression corresponding to the subgraph MγFγ
in its small external momentum k is inserted. We formally write down this
insertion as

MγFΓ = FΓ/γ ◦MγFγ , (3.39)

where we use the same symbol for insertion of a polynomial into a reduced
vertex as in (2.84).

For both parts on the right-hand side in (3.37), there is a domain of
the regularization parameter ε where they are convergent. We can introduce
(in advance) an auxiliary analytic regularization in an appropriate way into
various UV/IR sectors in the alpha representation, as explained in Sect. 2.4,
and consider separately each term of the first part. The third term is then
set to zero according to one the properties of dimensional regularization. By
this process, we arrive at the asymptotic large-momentum expansion in the
form

FΓ ∼ MΓFΓ + FΓ/γ ◦MγFγ , (3.40)

and thereby reproduce results (3.25) and (3.26) obtained earlier within the
strategy of expansion by regions.

The operation (3.32) clearly has the structure of an R-operation and
corresponds to the situation where a given graph and one of its subgraphs
are divergent – see (2.88). It turns out that the similarity is rather deep and
applies to an arbitrary Feynman integral in an off-shell limit. Although the R-
operation and the operation that determines the remainder of the asymptotic
expansion have the same structure, the corresponding subtraction operators
serve different purposes. The subtraction operators entering the R-operation
remove UV divergences, while the goal of the operators in the remainders of
the asymptotic expansions is to remove a sufficiently large number of initial
terms of the expansion in the small parameters of the problem.

We shall see in the next two chapters how the remainder for a general di-
agram in an off-shell limit of momenta and masses can be represented, by the
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forest formula, through appropriate subtractions in a certain family of sub-
graphs of the given graph. This will enable us to obtain, in Chap. 4, a straight-
forward generalization of (3.40) to any diagram with an arbitrary number of
loops. On the other hand, this very representation of the remainder is ade-
quate for the proof of the asymptotic expansion presented in Appendix B.2,
which resembles very much proofs of the so-called Bogoliubov–Parasiuk the-
orem on renormalization.



4 Off-Shell Large-Momentum Expansion

In this and the next chapter, we investigate two limits where the method of
expansion by subgraphs can be applied and justified. First we consider the
off-shell large-momentum limit, i.e. when all the large momenta are large in
the Euclidean sense and there are no large masses. We have already seen an
example of a one-loop diagram in this limit in Chap. 3. After investigating
two more one-loop examples in Sect. 4.1 we formulate, in Sect. 4.2, general
prescriptions for the expansion and compare them with the prescriptions for
expansion by regions. We continue with two-loop examples and then go to
the operator level by investigating the concept of the operator product ex-
pansion (OPE), which is the operator analogue of the diagrammatic off-shell
large-momentum expansion. The chapter is concluded by presenting typical
applications of OPE. We shall discuss two-point quark current correlators in
the large-momentum limit and the calculation of the total cross-section for
hadron production in e+e− annihilation.

4.1 One-Loop Examples

Let us continue to consider instructive one-loop examples of the off-shell large-
momentum expansion. The next example to be considered is the following.

Example 4.1. The one-loop triangle diagram of Fig. 1.1 with all masses
equal to zero, and one large and one small external momentum, q and p,
respectively.
This is the diagram discussed in the introduction, where we derived its

leading asymptotics and illustrated the two basic strategies. The correspond-
ing Feynman integral is

F4.1(q, p; d) =
∫

ddk
k2(q − k)2(p+ k)2

. (4.1)

Guided by our first example in Chap. 3, let us construct an appropriate
remainder of the expansion in the limit q → ∞. As in Chap. 3, we introduce
dimensional regularization for the finite initial quantity because we know in
advance that divergences can appear in individual terms of the expansion.
In fact, the situation looks quite similar to the previous case: the factor
1/(k2 − m2)2 is replaced here by 1/[k2(p + k)2], and the Taylor expansion
Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 67–94 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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of the integrand in p here generates IR divergences, starting from the zero-
order term as the previous expansion in m. In the previous example, the
remainder was constructed by including the operator (1− T n

k ), together with
(1− T n

m). After that there appeared a balance between subtraction operators
that provided the convergence and the desired asymptotic behaviour. So we
construct the new remainder in the same way:

RnF4.1(q, p; d) =
∫
ddk
k2

((
1− T n

p

) 1
(p+ k)2

)(
(1− T n

k )
1

(q − k)2

)
.

(4.2)

The arguments which show the convergence and the asymptotic behaviour
of order n + 1 are exactly as in the previous case: in the region of small k,
the operator T n

p is dangerous but the factor (1− T n
k ) cures these potential

divergences and, in the region of large k, the operator
(
1− T n

p

)
removes the

divergences caused by T n
k .

We again identify the operators involved with subgraphs of the given
graph. The operator T n

p performs Taylor expansion of the integrand with
respect to the small quantity, p, of the problem and corresponds to the
whole graph. The operator T n

k performs Taylor expansion of the factor 1/(q−
k)2 associated with the subgraph consisting of this line and expands it in
the momentum k which is the loop momentum for the whole graph and is
considered small. Symbolically, we have

Rn = (1−Mn
Γ )

(
1−Mn

γ

)
, (4.3)

where the structure of the forest formula (2.87) can be recognized.
We then write down the given Feynman integral as

F4.1 = (1−Rn)F4.1 +RnF4.1 , (4.4)

where the last term is the remainder of the expansion, and substitute Rn,
given by (4.2), into the first term on the right-hand side. Any product of
two different subtraction operatorsM generates massless integrals with zero
external momenta, which are zero within dimensional regularization. Using
the same arguments as in the one-loop example in Chap. 3, we observe that
these integrals vanish automatically. Therefore only two terms survive, and
we arrive at the expansion

F4.1 =Mn
ΓF4.1 +Mn

γF4.1 +RnF4.1 , (4.5)

with terms up to order n with respect to p.
Letting n tend to infinity, we again obtain an asymptotic expansion of

the form (3.40):

F4.1(q, p; d) ∼
∫

ddk
k2(q − k)2

(
1
k2

− 2p·k + p2

(k2)2
+ . . .

)

+
∫

ddk
k2(p+ k)2

(
1
q2
+
2q ·k − k2

(q2)2
+ . . .

)
. (4.6)
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Each term in the first series (originating from MΓF4.1) and in the second
series (fromMγF4.1) can be analytically evaluated by means of (A.10):

F4.1(q, p; d) ∼ iπd/2
(
Γ (1− ε)2Γ (ε)
Γ (1− 2ε)

1
(−q2)1+ε

−Γ (1− ε)Γ (−ε)Γ (2 + ε)
Γ (1− 2ε)

q ·p
(−q2)2+ε

+ . . .

+
Γ (1− ε)2Γ (ε)
Γ (2− 2ε)

1
q2(−p2)ε

−2Γ (1− ε)Γ (2− ε)Γ (ε)
Γ (3− 2ε)

q ·p
(q2)2(−p2)ε

)
+ . . . . (4.7)

We have, on the right-hand side of (4.7), an interplay of IR (in the first
series) and UV (in the second series) divergences, which are cancelled in the
sum. We obtain, at ε = 0,

F4.1(q, p; 4) ∼ iπ2

(
2 + ln(q2/p2)

q2
− 1 + ln(q

2/p2)
(q2)2

q ·p

−2 + 3 ln(q
2/p2)

9(q2)3
[
q2p2 − 4(q ·p)2

]

+
1+ 2 ln(q2/p2)
2(q2)4

[
q2p2 − 2(q ·p)2

]
q ·p

+
2+ 5 ln(q2/p2)
25(q2)5

[
(q2p2)2 − 12(q ·p)2q2p2 + 16(q ·p)4

])
+ . . . . (4.8)

This expansion is in agreement with the following explicit result [145, 233]:

F4.1(q, p; 4) =
iπ2

q2
Φ1

(
p2

q2
,
(p+ q)2

q2

)
, (4.9)

where

Φ1(x, y) =
1
λ

(
2 [Li2(−ρx) + Li2(−ρy)]

+ ln
y

x
ln
1 + ρy

1 + ρx
+ ln(ρx) ln(ρy) +

π2

3

)
, (4.10)

λ(x, y) =
√
(1− x− y)2 − 4xy , ρ(x, y) =

2
1− x− y + λ(x, y)

, (4.11)

and Li2(z) is the dilogarithm (see (A.57)).
Let us now expand, in the large-momentum limit, a more general one-loop

diagram than the example treated in Chap. 3.
Example 4.2. The Feynman integral (2.23) with two non-zero masses, m1

and m2, in the limit m2
i /q

2 → 0.
Remember that the expansion of the diagram, with one non-zero mass,

was determined by the remainder (3.34). The operator Tm performs expansion
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and improves convergence at large values of the loop momentum, while the
operator Tk improves convergence at small values of the loop momentum and
cures dangerous terms generated by T n

m . Let us generalize this construction to
the new case. Since there are now non-zero (small) masses in both lines, the
Taylor expansion in m2

1 and m2
2 generates IR divergences not only at k = 0

but also at k = q. Thus, in addition to the operatorMn
1 , which reduces to the

Taylor expansion operator T n
k,m1

acting on the propagator 1/[(q− k)2 −m2
1],

we need to include a similar operator, Mn
2 , which reduces to the Taylor

expansion operator T n
k−q,m2

acting on the propagator 1/(k2 −m2
1). (One can

also change the variable by means of the replacement k → q − k, take the
expression forM1 and then change the variable back.)
We define the remainder as

RnF4.2 = (1 −Mn+2)(1 −Mn
1 −Mn

2 )F4.2 . (4.12)

As in the previous example, it has the structure of the forest formula (2.87).
Using explicit representations for the operatorsMi we obtain

RnF4.2(q) =
∫
dk

(
1− T n+2

m1,m2

) [ 1
(q − k)2 −m2

1

1
k2 −m2

2

− 1
k2 −m2

2

(
1
q2
+

m2
1 + 2q ·k − k2

(q2)2
+
(m2

1 + 2q ·k − k2)2

(q2)3
+ . . .

)

− 1
(q − k)2 −m2

1

(
1
q2
+

m2
2 + q2 − k2

(q2)2
+
(m2

2 + q2 − k2)2

(q2)3
+ . . .

)]
. (4.13)

The operators Mi are naturally associated with the subgraphs γ1 and γ2,
consisting of lines 1 and 2, respectively. We use here the shorthand notation
Mi instead ofMγi , and alsoM forMΓ .
An asymptotic behaviour of order n+3 up to logarithms will be achieved

because of the operator
(
1− T n+2

m1,m2

)
if the remainder is UV and IR finite.

Since we now have two overlapping subgraphs that contribute to the expan-
sion, the power counting in the remainder (as in the BPHZ R-operation) is
a little more complicated and we shall need some simple properties of Taylor
expansion operators. Let T (n) denote the terms of the nth order in the Taylor
expansion operator T n so that

T n =
n∑
j=0

T (j) . (4.14)

In the case of one variable, we have

T (j)
x f(x) =

f (j)(0)
j!

xj , (4.15)

and the following commutation relations:

T n
x xj = xjT n−j

x , (1− T n
x )x

j = xj(1− T n−j
x ) . (4.16)

In the case of two variables, the Leibniz rule gives
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T (n)
x,y =

n∑
j=0

T (j)
x T (n−j)

y , (4.17)

T n
x,y =

n∑
j=0

T (j)
x T n−j

y =
n∑
j=0

T j
x T (n−j)

y . (4.18)

These relations are also valid when x and y denote two groups of variables.
To analyse the (UV) convergence in the region of large k, we consider

separately the terms in (1−Mn
1 −Mn

2 ). The first of them is UV convergent
and the other two are similar. Let us chooseMn

1 and consider the termM(n)
1

with the highest degree of expansion. Using the commutation relations (4.16),
we transform the integrand as follows:

(
1− T n+2

m1,m2

) 1
k2 −m2

2

n∑
j=0

T (n−j)
k T (j)

m1

1
(q − k)2 −m2

1

=
n∑
j=0

(
T (n−j)
k T (j)

m1

1
(q − k)2 −m2

1

)(
1− T n+2−j

m2

) 1
k2 −m2

2

. (4.19)

Counting powers, we obtain 1/k5+n−j and kn−j from the last factor (where
we use a formula for the remainder of the Taylor expansion, e.g. in the form
(B.40)) and the first factor, respectively. Thus we have the asymptotic be-
haviour 1/k5, which guarantees convergence.
At finite values of k, there are only two dangerous points, k = 0 and

k = q, where the Taylor expansion in the masses can generate IR divergences.
The analysis of convergence at these points is quite similar, so that we may
confine ourselves to the point k = 0. First, we observe that in this region the
terms originating fromM2 are not dangerous, because this operator puts the
second denominator equal to q2 and Tm2 cannot generate an IR divergence
at k = 0 after that. We then consider 1−M1 and the most dangerous term
in

(
1− T n+2

m1,m2

)
, i.e. −T (n+2)

m1,m2 . We have

−
n+2∑
j=0

T (n+2−j)
m1

T (j)
m2

1
k2 −m2

2

[(
1− T n

m1,k

) 1
(q − k)2 −m2

1

]
. (4.20)

The expression in the square brackets can be represented as
n+1∑
i=0

pi(k)mn−i+1
1 fi(k,m1) , (4.21)

where pi(k) is a monomial of degree i in k, and fi(k,m1) is finite in the
vicinity of the point k = 0,m1 = 0. Using the commutation relations (4.16),
we rewrite (4.20) as

n+2∑
j=0

n+1∑
i=0

pi(k)mn−i+1
1

[
T (n+2−j)
m1

fi(k,m1)
] [

T (j)
m2

1
k2 −m2

2

]
. (4.22)
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Counting powers of k at small k, we obtain ki from pi(k) and 1/k2+j from
the last square brackets, so that the integral is convergent at k = 0.
Now we again write down the given Feynman integral as (4.4), set to zero

terms containing products of different operators and arrive at the expansion

F4.2 =Mn
1F4.2 +Mn

2F4.2 +Mn+2F4.2 +RnF4.2 . (4.23)

Letting n tend to infinity, we obtain

F4.2 ∼ Mγ1F4.2 +Mγ2F4.2 +MF4.2 . (4.24)

All the terms in the seriesMF4.2 (corresponding to the whole graph) and
MiF4.2 (corresponding to the two subgraphs) can be analytically evaluated
by means of (A.3) and (A.7), respectively. We obtain

MF4.2 ∼ iπd/2
(

Γ (1− ε)2Γ (ε)
Γ (2− 2ε)(−q2)ε

+
Γ (1− ε)2Γ (ε)(m2

1 +m2
2)

Γ (1− 2ε)(−q2)1+ε

+
[2m2

1m
2
2 + ε(m2

1 +m2
2)

2]Γ (−ε)2Γ (1 + ε)
2Γ (−2ε)(−q2)2+ε

)
+ . . . , (4.25)

M1F4.2 +M2F4.2 ∼ iπd/2
[
−
(
m1−ε

1 +m1−ε
2

) Γ (ε− 1)
q2

−
(
m2

1m
2
2

(
m−ε

1 +m−ε
2

)
+

ε

2− ε

(
m2−ε

1 +m2−ε
2

))

×Γ (ε− 1)
(q2)2

]
+ . . . . (4.26)

The pole in the first term in (4.25) is of UV nature and is present in the
original Feynman integral. All the other poles in the above series are artificial:
these are IR poles in (4.25) and UV poles in (4.26). They are cancelled in the
result when it is written as a Laurent expansion up to ε0:

F4.2 ∼ iπ2

(
2− ln(−q2) +

1
ε

+
[
m2

1 +m2
2 −m2

1 ln
(
−m2

1/q
2
)
−m2

2 ln
(
−m2

2/q
2
)] 1

q2

−
{
m4

1 +m4
2 + 2m

2
1m

2
2

[
ln
(
−m2

1/q
2
)
+ ln

(
−m2

2/q
2
)]} 1
2(q2)2

)

+O
(
ln(−q2)
(q2)3

)
. (4.27)

4.2 General Prescriptions

Let us now formulate explicit prescriptions for the asymptotic expansion in
the off-shell large-momentum limit. We consider a general Feynman diagram
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FΓ which depends on the large Euclidean external momenta Q1, . . . , Qn1 and
the small external momenta q1, . . . , qn2 . All the masses are supposed to be
small. Let us consider first a convergent diagram.
As in the previous examples, we start from an appropriate remainder.

In accordance with experience obtained from these examples, we define the
remainder by means of the forest formula (2.87):

RFΓ =
∑
f

∏
γ∈f

(
−Ma(γ)

γ

)
FΓ . (4.28)

We now need to characterize

• the set of subgraphs in this sum,
• the corresponding subtraction operators,
• how the order of expansion given by the subtraction degrees a(γ) is chosen.

Remember that the subtraction operators used in the previous examples
provided factors that tended to zero sufficiently fast at zero values of the
loop momenta. This was necessary to compensate the singular behaviour
generated by Taylor expansion in the masses and the small external momenta.
Suppose that we are dealing with an h-loop Feynman integral FΓ . Let γ be
a subgraph of Γ and let γ̄ be composed of the lines that do not belong to γ.
We can choose1 loop momenta starting from γ and continuing with the rest
of the lines so that the rest of the loop momenta correspond to those of the
reduced graph Γ/γ̄ [181]:

FΓ =
∫
dk1 . . . dkhΠΓ

=
∫
dk1 . . . dkh(γ) Πγ

∫
dkh(γ)+1 . . . dkhΠγ̄ , (4.29)

where the Π... denote products of propagators. Note that the number h−h(γ)
is nothing but the number of independent loop momenta of the reduced graph
Γ/γ and that we can label the product Πγ̄ as ΠΓ/γ also.
Suppose that we want to remove divergences in the loop momenta of Γ/γ

that are caused by expanding in the masses and the small external momenta
of the whole graph. Our examples tell us that we may do this by Taylor
expanding the rest of the integrand, Πγ , in these variables kh(γ)+1, . . . , kh. It
is sufficient to take care only of those products where no dependence on the
large external momenta Qi is present because, otherwise, the corresponding
propagators never become singular when they are expanded in the masses
and the small momenta. We come to the conclusion that we have to perform
subtractions only in those γ that can involve the flow of all the large external
momenta. Moreover, it should be possible to distribute the flow of the large

1One can choose a family of independent loop momenta by choosing first a tree
and then put a loop in correspondence with each line that does not belong to this
tree. One can follow this procedure starting from a tree of the subgraph γ.
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external momenta through all the lines of γ. This means that we exclude,
in γ, the existence of lines where only small momenta flow. If we do not do
this and perform subtraction in such γ, we shall obtain, owing to momentum
conservation, the corresponding propagator at zero values of the momentum
and the mass. So such lines should be attributed to γ̄. (Moreover, there is no
sense in removing IR divergences in γ̄ without such lines, so that these lines
have to be included in γ̄ to make these divergences stronger.)
We shall call subgraphs with the properties formulated above asymptot-

ically irreducible (AI), and this is the class of subgraphs that is involved in
(4.28).
To translate this ‘physical’ definition of the AI subgraphs into mathemat-

ical language, let us denote by γ̂ the graph that is obtained from a given
subgraph γ by identifying2 all the external vertices associated with the large
external momenta. All the graphs of this form are subgraphs of the graph Γ̂ .
So, a subgraph γ is AI if

(i) it contains all the vertices with the large external momenta and
(ii) γ̂ is 1PI.

Observe that these two properties correspond to the two physical require-
ments formulated above.
Now we define the subtraction operator corresponding to an AI subgraph

γ as the Taylor expansion operator with respect to its masses and small
external momenta:

Ma(γ)
γ FΓ =

∫
dk1 . . .dkhΠΓ/γTq1,...,m1,...,kh(γ)+1,...,kh

Πγ . (4.30)

As we have agreed earlier, the large external momenta flow through γ, so
that there is no dependence on them in ΠΓ/γ . Let us also remember that
the loop momenta kh(γ)+1, . . . , kh are external for γ and, by definition, are
considered small. Finally, we fix the order of the subtraction operators as

a(γ) = ω(γ) + ā , (4.31)

where ω is the UV degree of divergence, and the number of oversubtractions,
ā, is chosen to be the same for all the AI subgraphs.
Note that, according to the accepted definition of AI subgraphs, they

always have common vertices corresponding to the large external momenta
so that they certainly intersect each other. This means that the sum in (4.28)
runs over nests of AI subgraphs, i.e. families which can be ordered with
respect to the inclusion, γ1 ⊂ γ2 ⊂ . . . . (Of course, any nest is a forest.)
A general mathematical theorem [207] says that the remainder (4.28),

with a(γ) given by (4.31), i.e.

RāFΓ (Q1/ , . . . , Qn1/ , q1, . . . , qn2 ,m1, . . . ,mL) ,

2Another possibility is to introduce a new vertex and connect it with each
external vertex by a new line.
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has order  ā+1 modulo logarithms when  → 0. A simplified version of the
proof of this theorem is presented in Appendix B.2.
To derive the expansion we start, as in our examples, from the remainder

with a given number of oversubtractions ā, write down the identity

FΓ =
(
1−Rā

)
FΓ +RāFΓ , (4.32)

substitute R in (1−R) written as in (4.28), and consider each term sep-
arately. Note that, before this separation, we are dealing with Feynman
integrals without scaleless diagrams (i.e. without massless detachable sub-
graphs). Dimensional regularization can be unambiguously introduced for
these Feynman integrals, with the help of an auxiliary analytic regulariza-
tion, as explained in Sect. 2.4 and Appendix B.1, by analytic continuation
from a non-empty domain of regularization parameters where the integrals are
convergent. At this point we can switch to an equivalent extended definition,
by dividing the whole alpha integral into 2L pieces where the integration
over each αl is performed over either small or large values, when different
contributions to the alpha integral are considered in different domains of
the parameters λl of analytic regularization and one chooses Reλl � 0 and
Reλl 
 0 for the integrations at small and large values, respectively, of αl.
Then, using the properties of dimensionally regularized Feynman integrals

(see Chap. 2), we can separate contributions corresponding to various prod-
ucts of the subtraction operators in (1−Rā). In particular, we can set to zero
any massless integral that does not depend on the external momenta. But
this is a consequence of self-consistent rules for dealing with dimensionally
regularized integrals, rather than an additional assumption.
Thus we set to zero each term in the forest formula where a product of

at least two subtraction operators is involved, because it involves massless
integrals independent of the external momenta. As a result, only the contri-
bution from forests with one element survives. As in our examples, the action
of a subtraction operator is described graphically by (3.39), and we obtain
the following prescription for the expansion in the off-shell large-momentum
limit:

FΓ =
∑
γ

FΓ/γ ◦Ma(γ)
γ Fγ +RāFΓ , (4.33)

where the sum runs over all AI subgraphs of Γ and the remainder is explicitly
included. Letting the number of oversubtractions ā tend to infinity, we obtain

FΓ ∼
∑
γ

FΓ/γ ◦MγFγ . (4.34)

Note that we have fulfilled the two requirements formulated in Sect. 3.1:
we have Feynman integrals on the right-hand side and the expansion is in
powers and logarithms. Moreover, when ε is non-zero, the expansion is in
powers only. Indeed, if M(j)

γ is the contribution from the terms of the jth
order of the Taylor expansion involved in Mγ then it has a homogeneity
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degree equal to ω(γ)− j−2h(γ)ε with respect to the set of the large external
momenta Qi. Thus, in the contribution from the sum over subgraphs with
a given number of loops h(γ) = h0 ≤ h(Γ ), the dependence on ε is of the
form 1/(Q2)h0ε, where Q2 is a typical scale for the large momenta, i.e. each
Qi = ξiQ with fixed numbers ξi.
The terms with a given number ω(γ) − jγ generate contributions with

the same power dependence.3 (For example, in the situation with two scales,
we arrive at an expansion of the form (3.4) without logarithms.) It should
be stressed that such a contribution is finite in ε if the original Feynman
integral is finite. In the limit ε → 0, we obtain an expansion in powers and
logarithms, the maximal power of the logarithm being no greater than the
number of loops. This estimate, as well as the absence of logarithms when
ε �= 0, are essentially properties of asymptotic expansions typical of Euclidean
space.
The expansion of a renormalized Feynman integral RFΓ (by some R-

operation R) in the off-shell large-momentum limit can be obtained by start-
ing from an identity similar to (4.32),

RFΓ =
(
R−Rā

)
FΓ +RāFΓ . (4.35)

One then applies a diagrammatic Zimmermann identity for the difference
(R−Rā) and arrives at the following expansion (see, e.g., [208]):

RFΓ ∼
∑
γ

R̄FΓ/γ ◦MγRFγ , (4.36)

where R̄FΓ/γ is an ‘incompletely’ renormalized reduced Feynman diagram:

R̄ FΓ/γ =
∑

γ1,...,γj ��vγ

∆(γ1) . . . ∆(γj)FΓ/γ . (4.37)

Here vγ is the vertex to which the subgraph γ is collapsed when Γ/γ is
produced. In other words, R̄ is an incomplete R-operation (as compared with
(2.83)) in the sense that the counterterms for subgraphs with this vertex are
absent in R̄.
The expansion in the form (4.37) was first derived within the method of

gluing [46, 47]. Alternatively, one can informally obtain (4.37) from (4.34) by
saying that the renormalization can be taken into account by adjusting the
bare parameters of the Lagrangian. Then, any reduced diagram on the right-
hand side of the expansion obtained will be renormalized with the exception
of those subdiagrams which have a vertex of a new type (absent in the initial
Lagrangian) generated by collapsing a subgraph to a point.
Since, in the large-momentum limit, the graph itself contributes to the

sum in (4.34), there is always the term

Tq1,...,m1,...FΓ , (4.38)
3Note that the leading-power behaviour in the large-momentum limit, which is

described by the Weinberg theorem [237], naturally follows from (4.34).



4.2 General Prescriptions 77

which is nothing but a formal Taylor expansion (i.e. under the integral sign)
in the small parameters of the problem. This series involves IR divergences
starting from some minimal order of the expansion. The rest of the terms,
corresponding to various subgraphs γ, possess UV divergences as well. From a
practical point of view, the cancellation of the artificial poles is a good check
of the expansion procedure. It is possible to rewrite (4.34) in a modified form
where no new divergences, as compared with the divergences of the original
Feynman integral, appear on the right-hand side [47]. To do this, one applies
the so-called R∗-operation, which is a generalization of the R-operation to
the case of off-shell IR divergences [62].
Let us now remember our first strategy. We have two scales in the problem:

the large momenta are of the same order, Qi ∼ Q, and the masses and the
small momenta are much smaller, qi ∼ ml ∼ q, with q 
 Q. For a given loop
momentum we define regions where this momentum is large or small:

large, k ∼ Q , (4.39a)
small, k ∼ q . (4.39b)

Let us define the set of regions labelled by 1PI subgraphs of the given graph:

ki ∼ Q, if ki is a loop momentum of γ ,

ki ∼ q, if ki is not a loop momentum of γ . (4.40)

In the contribution from the region corresponding to a given γ, we can
expand every propagator from γ not only in its masses and the small external
momenta flowing through it but also in the rest of the loop momenta of the
whole graph (which actually correspond to the reduced graph Γ/γ). We thus
obtain nothing but the contribution of the subgraph γ within the method of
expansion by subgraphs. So we reproduce, within expansion by regions, the
general prescriptions (4.34). Observe that there is no need to hesitate and
look for other, probably exotic, regions, because we have already reproduced
the known, mathematically proven result.
Similar results for explicit prescriptions in the off-shell large-momentum

limit exist for Feynman integrals regarded as tempered distributions in the
large momenta. See [207, 209], where such a point of view is taken. The
corresponding prescriptions are almost the same. Only the class of AI sub-
graphs is a little bit different: one has to consider subgraphs of the graph Γ̂
obtained from Γ by identifying all the external vertices associated with the
large external momenta. (The empty subgraph is also included.) A distinc-
tion between the two versions manifests itself for the so-called contact terms
of type δ(q), which give zero asymptotics at infinity for Feynman integrals
considered as functions and certainly contribute to the expansion when Feyn-
man integrals are treated as functionals. This alternative treatment turns out
to be adequate in some phenomenological analyses where the contact terms
are important (see, e.g., [59]).
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4.3 Two-Loop Example

Let us illustrate the general prescriptions through the following example.
Example 4.3. The master two-loop diagram (see Fig. 2.5) with non-zero

masses, which are all considered small with respect to the external momen-
tum.
The Feynman integral has the form

Jm(a1, . . . , a5;m1, . . . ,m5) =
∫

ddk
(k2 −m2

1)a1 [(q − k)2 −m2
2]a2

×
∫

ddl
(l2 −m2

3)a3 [(q − l)2 −m2
4]a4 [(k − l)2 −m2

5]a5
. (4.41)

The corresponding set of AI subgraphs is shown in Fig. 4.1. The other sub-
graphs are not AI and do not contribute to (4.34). For example, the subgraph

Type 5:

Type 4:

Type 3:

Type 2:

Type 1:

Fig. 4.1. The subgraphs contributing to the large-momentum expansion of the
master two-loop diagram
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{1, 2, 5} does not have a path between external vertices, and the subgraph
{1, 3, 5} is one-particle reducible even after identifying the two external ver-
tices. In ‘physical’ language, the flow of the external momentum cannot be
distributed through line 5.
We shall discuss later the case of five general masses following [94], but

let us now choose a specific case, where m1 = . . . = m4 = m and m5 = 0 and
all the indices ai are equal to one.
The contribution of Type 1, i.e. when γ = Γ , is obtained by Taylor

expanding the propagators in the masses. The resulting massless two-loop
self-energy diagrams J(a1, . . . , a5) given by (2.64) are evaluated by means of
the recurrence relations obtained by IBP, presented in Sect. 2.5.6:

∞∑
n1,...,n4=0

(m2)n1+n2+n3+n4 J(a1 + n1, . . . , a4 + n4, 1)

= J(1, 1, 1, 1, 1) + 4m2J(2, 1, 1, 1, 1) + . . . . (4.42)

All four contributions of Type 2 (see Fig. 4.1) are equal to each other
because of the symmetry of the diagram. The subgraph {2, 3, 4, 5} generates
the following contribution:∫

ddk
k2 −m2

∫
ddl

l2 −m2
Tk,m

1
[(q − k)2 −m2](k − l)2[(q − l)2 −m2]

=
1
q2

∫
ddk

k2 −m2

∫
ddl

(l2)2(q − l)2
+ . . .

=
(
iπd/2

)2 Γ (ε− 1)G(2, 1)
(−q2)2+ε(m2)ε−1

+ . . . , (4.43)

where the function G is given by (2.55). All the terms in the Type 2 con-
tributions are products of massless one-loop integrals and massive vacuum
integrals with numerators and can be analytically evaluated by means of
(A.2) and (A.10), respectively.
In our simple case, the Type 3 contribution is zero because the fifth line

is massless. It would be non-zero in the case m5 �= 0, when the corresponding
series in the result would have the same structure as that of the Type 2
contribution and would be evaluated by means of the same formulae.
For Type 4, we have two equal contributions, from γ = {1, 4, 5} and

{2, 3, 5}. Let γ = {1, 4, 5}. According to our prescriptions, we choose the loop
momenta in a different way and let the external momentum flow through all
three lines of the subgraphs. We obtain the following contribution:∫

ddk
k2 −m2

∫
ddl

l2 −m2
Tk,l,m

1
[(q − l)2 −m2](q − k − l)2[(q − k)2 −m2]

=
1
(q2)3

∫
ddk

k2 −m2

∫
ddl

l2 −m2
+ . . .

=
(
iπd/2

)2 Γ (ε− 1)2
(q2)3(m2)2ε−2

+ . . . , (4.44)
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where all the terms on the right-hand side are products of tadpoles with
numerators evaluated by means of (A.2).
There are two subgraphs of Type 5, {1, 3} and {2, 4}, with equal contri-

butions. The subgraph {2, 4} gives∫ ∫
ddk ddl

(k2 −m2)(l2 −m2)[(k − l)2 −m2]

×Tk,l,m
1

[(q − k)2 −m2][(q − l)2 −m2]

=
1
(q2)2

∫ ∫
ddk ddl

(k2 −m2)(l2 −m2)[(k − l)2 −m2]
+ . . .

=
(
iπd/2

)2 Γ (ε)2

(1− ε)(1 − 2ε)(q2)2(m2)2ε−1
+ . . . , (4.45)

where all the terms on the right-hand side can be evaluated by means of
(A.38) and its generalization to the case with numerators.
In the leading order (LO) of the expansion of our diagram, only the Type 1

contributes. In the next-to-leading order (NLO), m2, we also have contribu-
tions of Types 2 and 5 because Type 3 gives zero and the Type 4 starts from
the order m4. Although the original diagram is finite, there are poles up to
the second order in the individual contributions: IR poles in Type 1, products
of UV and IR poles in Types 2–4 and UV poles in Type 5. Collecting the LO
and NLO contributions we observe that the poles in ε are cancelled and we
obtain the following result:

Jm(1, . . . , 1;m,m,m,m, 0)

∼
(
iπ2

)2 (6ζ(3)
q2
+
2m2

(q2)2
[
ln2

(
−q2/m2

)
+ 4 ln

(
−q2/m2

)
+ 6

])
+ . . . .

(4.46)

Even if all five masses are different, every term in the corresponding large-
momentum expansion can be analytically evaluated – see [94]. Each term
in the contributions of Types 1–4 can be evaluated by means of the same
tabulated formulae as in the previous specific case. For Type 5, vacuum two-
loop Feynman integrals with three different masses appear:

I(a1, a2, a3;m1,m2,m3)

=
∫ ∫

ddk ddl
(k2 −m2

1)a1(l2 −m2
2)a2 [(k − l)2 −m2

3]a3
. (4.47)

For example, in the case of three different masses and the indices ai = 1, one
has [95]

I (1, 1, 1;m1,m2,m3)

= −
(
iπd/2

)2

(m2
3)
A(ε)
2

(
− 1

ε2
(1 + x+ y) +

2
ε
(x ln x+ y ln y)

−x ln2 x− y ln2 y + (1 − x− y) lnx ln y − λ(x, y)2Φ2(x, y)
)
, (4.48)
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where

x =
m2

1

m2
3

, y =
m2

2

m2
3

, λ(x, y) =
√
(1− x− y)2 − 4xy ,

A(ε) =
Γ 2(1 + ε)

(1− ε)(1− 2ε) ,

Φ2(x, y) =
1
λ
{2 ln((1 + x− y − λ)/2) ln((1 − x+ y − λ)/2)− lnx ln y

−2Li2((1 + x− y − λ)/2)− 2Li2((1− x+ y − λ)/2) + π2/3
}
, (4.49)

and Li2(z)is the dilogarithm (see (A.57)). (Similar results were obtained ear-
lier in [21].)
For example, in the case ai = 1, i = 1, . . . , 5 and ε = 0 one has, for general

masses [94],

Jm(1, . . . , 1;m1, . . . ,m5) ∼
(
iπ2

)2 (6ζ(3)
q2

+
1
(q2)2

{
m2

1

2

[
ln2

(
− q2

m2
1

)
+ 4 ln

(
− q2

m2
1

)
− ln m

2
3

m2
1

ln
m2

5

m2
1

+ 6
]

+
(
similar terms containing m2

2, m
2
3, m

2
4

)

+
m2

5

2

[
2 ln2

(
− q2

m2
5

)
+ 4 ln

(
− q2

m2
5

)
− ln m

2
1

m2
5

ln
m2

3

m2
5

− ln m
2
2

m2
5

ln
m2

4

m2
5

]

+
1
2
[
F (m2

1,m
2
3,m

2
5) + F (m2

2,m
2
4,m

2
5)
]})

+ . . . , (4.50)

where the symmetric function F is defined by

F (m2
1,m

2
2,m

2
3) = m2

3λ(x, y)
2Φ2 (x, y) (4.51)

and (4.49).
Although the existence of the large-momentum expansion is guaranteed

only for Euclidean large momenta, it is in fact valid in a larger domain. In
particular, our example shows that we can consider the external momentum
to be time-like. Note also that the general theorem does not give any infor-
mation about the radius of convergence of the expansion. Our last example
shows that the expansion converges above the highest threshold of the dia-
gram – this can be seen by comparison with known explicit expressions in
cases where some non-zero masses are equal [36, 38, 200] and with numerical
calculations based on a twofold parametric representation [157] (see [94] for
details).

4.4 Operator Product Expansion

The operator analogue of the off-shell large-momentum expansion is the oper-
ator product expansion (OPE), i.e. an expansion of time-ordered products of
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two or more composite operators Ji(xi) in the limit where the coordinates xi
tend to each other. The expansion4 of the product of two composite operators
is of the form

TJ1(x)J2(0) ∼
∑
i

Ci(x)Oi(0) , (4.52)

where {Oi} is a basis of composite operators of a given theory and the Ci(x)
are coefficient functions (Wilson coefficients). The products of quantum field
operators are in general singular when the difference between their coordi-
nates vanish, so the first coefficient functions Ci are singular. The expansion
is performed in the limit where the difference between the four-coordinates of
the operators J1 and J2 tends to zero, so that the terms are ordered according
to the strength of their singular behaviour when x → 0. On the other hand,
the operators Oi are ordered according to their dimension, starting from the
unit operator O0 = 1 of zero dimension.
The simplest basis is given by all possible monomials composed of the

fields of the given theory and their derivatives taken at the same point. The
general monomial is

j{λ}(x) = φ
(λ1)
1 (x) . . . φ(λl)

l (x) ,

φ
(λi)
i (x) =

(
∂

∂xλi1

)
. . .

(
∂

∂xλiri

)
φi(x) ,

where φ1, . . . , φl are asymptotic free fields of the theory. The canonical di-
mension of this monomial, with a multi-Lorentz index {λ} = {(λ1), . . . , (λl)},
(λi) = (λi1, . . . , λiri ), equals

∑
i (δi + ri) where δi is the dimension of the field

φi. Since the composite operators are related to each other, owing to equa-
tions of motion, it is reasonable to include in the basis only independent
operators so that the most general monomial basis of this kind is inconve-
nient in practice. On the other hand, in gauge theories, it is important to
distinguish gauge-invariant combinations of the operators.
Turning to the Fourier transform with respect to the variable x, we have

T J̃1(q)J2(0) ≡
∫
d4x eiq·xTJ1(x)J2(0) ∼

∑
i

C̃i(q)Oi(0) , (4.53)

where the C̃i(q) are the Fourier transforms of Ci(x). Now the expansion is
performed in the limit5 q → ∞ and the terms are ordered according to their
asymptotic behaviour at large four-momenta q.

4Suggested by Wilson [241].
5For a tempered distribution F (x) = F (x1, x2, x3, x4), the behaviour at small x

understood as the behaviour of the functional F (ρx) where the parameter ρ tends to
zero, is in one-to-one correspondence with the asymptotic behaviour of its Fourier
transform F̃ (q) at large values of q, understood as the behaviour of F̃ (Λq) when
Λ→ ∞. If we consider Feynman integrals as functions (in momentum space) rather
than distributions, then the connection of asymptotics at small x to asymptotics
at large values of the Fourier transforms is not so straightforward. Still, the power
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Fig. 4.2. The general diagram contributing to the
product of two composite operators

The Fourier transform T J̃(q)J(0) is represented in perturbation theory,
according to the Feynman rules, through diagrams which have two external
vertices for the two composite operators and a set of vertices generated by the
interaction Lagrangian which can be either external or internal. The general
diagram is shown symbolically in Fig. 4.2, where a Fourier transform with
respect to all S-matrix external lines with external momenta p1, . . . , pn is im-
plied. So, the limit x → 0 is translated into momentum space language as the
limit |q| 
 |pi|,ml of the Feynman diagrams FΓ (q, p1, . . . , pn,m1, . . . ,mL)
contributing to Fig. 4.2.
The form of the asymptotic expansion (4.52) does not imply that the

coefficient functions Ci are homogeneous in x (or, at most have logarithmic
dependence). And, historically, in the OPE [248] based on the BPHZ renor-
malization, with subtraction only in complete subgraphs, where the general
term of the expansion was explicitly written in terms of Green functions of the
initial composite operators, the coefficient functions indeed were not homo-
geneous and involved a non-trivial dependence on the masses. Nevertheless, a
requirement for at most a logarithmic dependence of the coefficient functions
is rather natural, and the techniques described here certainly provide this
property.
Another important property of the Wilson coefficients is connected with

the possibility of providing a factorization of contributions from different
scales. If it was possible to explicitly separate contributions from fields cor-
responding to large and small distances in functional integrals then the fac-
torization of large and small scales would be manifestly achieved. However,
there is no such possibility so that one has to apply indirect criteria. A suf-
ficient factorization criterion is based on the polynomial dependence of the
coefficient functions on the small momenta and masses. In the case of the
OPE, this means a polynomial dependence on all the masses of a given the-
ory. If a non-polynomial dependence on the masses is involved then there
arises a new expansion parameter, ln(m2/µ2), in addition to the coupling
constant g(µ) and the renormalization group logarithm ln(Q2/µ2). It turns
out that, for sufficiently large Q2 = −q2 and small m2, it is impossible to
make all three expansion parameters small. In this situation, the coefficient
functions involve contributions from large distances (small momenta) because

and logarithmic terms of the expansions of a function and its Fourier transform are
certainly connected.
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the logarithm ln(m2/µ2) is generated by integration over regions of small loop
momenta (of order m) in the corresponding Feynman integrals. On the other
hand, if the coefficient functions depend only polynomially on the masses,
the standard renormalization group strategy of choosing µ ∼ Q can be used
provided g(µ) → 0 when µ → ∞, i.e. in asymptotically free theories (see,
e.g., [74]).
If this factorization criterion is satisfied then we can use the perturba-

tive OPE beyond perturbation theory: the coefficient functions are evaluated
perturbatively but one can then forget about the perturbative origin of the
composite operators and treat their matrix elements as nonperturbative ob-
jects (for example condensates, i.e. their vacuum expectation values).
An essential point in the realization of the factorization procedure by

means of OPE is the fact that the Lagrangian and all composite operators are
generated by monomials without normal order, which therefore have non-zero
perturbative vacuum expectation values.6 To illustrate this fact, let us again
consider the example of the OPE of two composite operators J = (1/2)φ2 in
the φ4 model with the interaction Lagrangian LI = −(g/4!)φ4:

TJ(x)J(0) ∼ C0(x)1+ Cm,2(x)m21+ CJ,2(x)J(0) + . . . . (4.54)

In contrast to Chap. 1 (see (1.18)), we now suppose that the mass is not zero,
so that there is an additional, second term in the expansion. Observe that
the evaluation of the coefficient CJ,2 in the first order in g is the same as
in the massless case, although the operator J is now mixed with m21 under
renormalization. The expansion of the triangle diagram contributing to CJ,2
is again described by Fig. 1.5, where now the lines on the right-hand side are
massless with the exception of the two lines in the loop in the second term.
But let us now look at the coefficient functions C0(x) and Cm,2. Suppose

for a moment that the operator J is generated by the normal-ordered prod-
uct φ2. In the zero order of perturbation theory, this means that the tadpole
diagram which would be generated by fields taken at the same space–time
point is now forbidden. Therefore the vacuum expectation value of the oper-
ator J vanishes. If we insert the OPE (4.54) between vacuum states, only the
contribution from operators proportional to the unity operator will survive.
The one-loop diagram contributing to 〈TJ(x)J(0)〉 in order g0 is shown on
the left-hand side of Fig. 4.3. The UV divergence in the loop is removed by
a renormalization constant for the product of the two composite operators.
Using the expansion (4.27) at m1 = m2 = m in the first two orders in m2/q2,
we obtain

6In [39, 64] it was realized that all the logarithms of the quark masses can
be included in the vacuum expectation values of non-trivial composite operators
which appear in the OPE of currents in QCD. Later, in [232, 50], it was shown
that minimal subtractions within dimensional regularization provide a polynomial
dependence of the coefficient functions on the masses in every order of perturbation
theory.
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Fig. 4.3. One-loop diagram contributing to the product of two composite operators
and its asymptotic expansion when m→ 0

〈TJ(x)J(0)〉0

∼ − i
2·16π2

(
− ln

(
−q2/µ2

)
+ 2 +

2m2

q2

[
ln
(
−q2/m2

)
+ 1

])
+ . . . .

(4.55)

A logarithm of m is inevitably present in the coefficient function Cm,2, so
that there is no chance of obtaining a factorization under the assumption of
normal order for the composite operators.
To improve the situation, it suffices just to forget the old-fashioned con-

vention about normal order. Moreover, the techniques presented here for ex-
panding Feynman integrals, applied within dimensional regularization, natu-
rally lead to a polynomial dependence of the Wilson coefficients on the masses
and therefore to a factorization. To see this in our example, we consider the
large-momentum expansion given by (4.24), (4.25) and (4.26) (before taking
the limit ε → 0). For the equal-mass case, the first two orders of the expansion
are pictured in Fig. 4.3 The first two terms of the expansion contribute to C0

and Cm,2, respectively, while the third term is naturally interpreted as the
vacuum expectation value 〈J〉0 times a factor 2i/q2, which is the zero-order
part of the corresponding coefficient function CJ,2, in agreement with (1.24).
We then consider the renormalized composite operator J . In the massive case
in the zero order in g, its renormalization is given by

J = JB +
1

2× 16π2

1
ε
m21 . (4.56)

After we express JB from this equation, we see that the second term gives a
contribution to Cm,2 and subtracts its pole part. We obtain

C̃m,2 = − i
16π2

ln(−q2/µ2)
q2

. (4.57)

We see that the logarithm of the mass has been transferred from (4.55) to
the vacuum expectation value of J and, now, C̃m,2 does not depend on the
mass.
Since the coefficient functions can now depend only polynomially on the

masses, it is natural to attribute all the powers of the masses to the composite
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operators and thereby deal with coefficient functions which do not depend at
all on the masses. Thus, any basis of composite operators can now be con-
structed from monomials of the fields and their derivatives (without normal
ordering, of course!) and monomials constructed from the masses.
To write down the OPE of a pair of composite operators in a given theory,

one starts with the construction of an appropriate basis. The next problem
is the evaluation of the Wilson coefficients. This problem has a very sim-
ple solution, given within the so-called method of projectors [128, 127] and
corresponding to the explicit formulae for the diagrammatic expansion in
the off-shell large-momentum limit (4.34) and (4.36). Let Πi be a family of
projectors7 corresponding to a chosen basis Oi generated by polynomials oi.
These projectors satisfy Πi(ok) = δik.
For example, in the general monomial basis J{λ}(x), in the case of an

operator F depending on several four-coordinates, we have

Π{λ}[F (x1, . . . , xn)] = c{λ}〈F (x1, . . . , xn)j̃{λ}(0)〉amp , (4.58)

where

c{λ} = i−|{λ}|/

(∏
i

li!(λi)!

)
, |{λ}| =

∑
i

|λi| ≡
∑
i

ri , (4.59)

and

〈F (x1, . . . , xn)j̃{λ}(0)〉amp =
(

∂

∂p1

)(λ1)

. . .

(
∂

∂pl

)(λl)

× 〈F (x1, . . . , xn)φ̃1(p1) . . . φ̃1(pl)〉amp
∣∣∣
p1=...=pl=0

. (4.60)

The superscript ‘amp’ denotes the contribution of graphs which are 1PI after
the amputation of the external p-lines. In the case F (x1, x2) = J1(x1)J2(x2)
(with x2 = 0), these diagrams have to be 1PI after contraction of the external
vertices corresponding to the composite fields J1 and J2. The presence of
the masses is trivially taken into account, by the corresponding parts of the
projectors that pick up coefficients of the Taylor expansion in the masses.
Now, the simplest formula for the Wilson coefficients in the OPE (4.53)

in a given basis Oi is [128]

C̃i =
∑
k

Πi[J̃1(q)J2(0)]Z−1
ik , (4.61)

where Z−1
ik are the elements of the matrix Z

−1 which is inverse to the renor-
malization matrix of the composite operators defined by (2.97).
Let us present a simple ‘informal proof’ [128] of this very simple for-

mula. Suppose that the OPE (4.52) is true. Let us act with the projector

7These are operations that define projections onto the operators of the given
basis, rather than real projectors satisfying Π2 = Π . To obtain projectors with this
property, it suffices to perform a trivial redefinition. In this case haveΠi(ok) = δikoi.



4.4 Operator Product Expansion 87

Πi on both sides of this equation. We have Πi[J̃1(q)J2(0)] on the left and∑
k Ck(x)Πi(Ok) on the right. When acting on diagrams contributing to Ok,

the projector Πi performs Taylor expansion in their masses and external mo-
menta, thereby producing massless Feynman integrals which are zero within
dimensional regularization. The only case in which it does not produce zero
is the tree contribution, i.e. the contribution without loops, where diagrams
have only lines corresponding to external S-matrix vertices. These lines are,
however, amputated according to the prescriptions encoded in any projector
Πi. Then Πi(Ok) reduces to Πi(ok) = δik. Observe now that the same result
holds for the ‘bare’ composite operators defined by (2.95), i.e. Πi(OB

k ) = δik.
An important point is that a similar relation does not hold for the renormal-
ized composite operators, which, in contrast to the bare operators, include
counterterms for diagrams with a vertex corresponding to the composite op-
erator. Indeed, if such a counterterm for the whole diagram is included, then
the projector can act non-trivially on this quantity.
Thus we arrive at the following explicit formula for the OPE:

T J̃1(q)J2(0) ∼
∑
i

Πi[J̃1(q)J2(0)]OB
i (0) . (4.62)

Now we turn to the renormalized composite operators by solving the system
of linear equations (2.97), to obtain∑

i

Πi[J̃1(q)J2(0)]OB
i (0) =

∑
ik

Z−1
ik Πi[J̃1(q)J2(0)]Ok(0) (4.63)

and therefore justify (4.61).
However, we must realize that we have made two (plausible) assump-

tions: the possibility of changing the order of differentiation with respect
to the momenta and masses at zero values and in the summation of the
asymptotic series, and the possibility of setting massless vacuum integrals to
zero. On the other hand, it is possible to derive (4.61) directly from the di-
agrammatic expansion (4.36). Consider the expansion of Feynman diagrams
with n S-matrix external momenta contributing to T J̃1(q)J2(0). In other
words, we consider the large-momentum expansion of the Green function
〈T J̃1(q)J2(0)φ̃(p1)φ̃(p2)〉amp. These diagrams FΓ (q, p1, . . . , pn) depend on one
large and n small external momenta. The expansion (4.36) in the case of one
large momentum is of the form

RFΓ (q, p1, . . . , pn) ∼
∑
γ

R̄FΓ/γ(p1, . . . , pn) ◦MγRFγ(q, . . .) , (4.64)

where the Taylor operator Mγ performs expansion in the masses of γ and
its small external momenta. The first factor, written for the reduced graph
Γ/γ, does not depend on q and the second factor depends on the small ex-
ternal momenta of γ, which can be either small external momenta pi or loop
momenta of the reduced graph.
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The expansion is shown graphically in Fig. 4.4. Now we turn from summa-
tion over Γ and γ to summation over γ′ = Γ/γ and γ. We can also distinguish
the contribution of graphs γ with a given number of external lines, l, without
the large external momentum q. The first factor on the right-hand side of
Fig. 4.4 can be recognized as the Green function of the composite operator,
while the second factor is the corresponding coefficient function in the OPE
(4.62) written in the general monomial basis. The fact that the reduced dia-
gram FΓ/γ (4.64) is renormalized by the incomplete R-operation, where the
counterterm for the reduced vertex is absent, results in the presence of the
bare composite operator in (4.62).
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Fig. 4.4. Asymptotic expansion of the sum of the diagrams contributing to the
product of two composite operators. The Taylor operator T expands in r1, . . . , rl−1

and the masses of γ

4.5 The OPE of Quark Currents and its Applications

A classic example of the application of the OPE is the calculation of the
total cross-section for hadron production in e+e− annihilation (see [58] for a
review), which is described by the ratio

R(s) ≡ σ(e+e− → hadrons)
σ0

, (4.65)

where s = q2 is the centre-of-mass energy. This ratio is normalized by σ0 =
4πα2/(3s), which is the cross-section for the reaction e+e− → µ+µ− (given
by a tree diagram). In the case of such a process mediated by an intermediate
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photon,8 the function R(s) is expressed through the two-point correlator (the
vacuum expectation value)

i
∫
dx eiq·x〈TJµ(x)Jν (0)〉 =

(
qµqν − gµνq

2
)
Π(q2) (4.66)

of the product of two vector currents Jµ = ψ̄γµψ in QCD as follows:

R(s) = 12π ImΠ(s+ i0) . (4.67)

In the first two orders of perturbative QCD, the function R(s) can be
straightforwardly evaluated:

R(s) = R(0)(s) +
αs

π
R(1)(s) +

(αs

π

)2

R(2)(s) + . . . ,

R(0)(s) =
3
2
β(3− β2) ,

R(1)(s) =
3
2
(3− β2)

{
(1 + β2)

[
2 Li2

(
1− β

1 + β

)
+ Li2

((
1− β

1 + β

)2
)

+ ln
1− β

1 + β
ln

8β2

(1 + β)3

]
− 2β ln 8β2

(1 + β)3

+
(
3β − 33 + 22β

2 − 7β4

8(3− β2)

)
ln
1− β

1 + β
+
3β(5− 3β2)
4(3− β2)

}
, (4.68)

where Li2 (z) is the dilogarithm (A.57) and

β =

√
1− 4m

2

s
. (4.69)

The next-to-next-to-leading order contribution R(2)(s) is not known ana-
lytically. However, in specific regimes, the method of asymptotic expansions
can be successfully applied. In particular, at large values of s, it is natural to
use the OPE, i.e. to expand the product of the currents in the limit of large q.
Taking into account the transverse structure, the OPE (4.53) is rewritten as

T J̃µ(q)Jν(0) ∼
qµqν − gµνq

2

(q2)2
∑
i

C̃i(q)Oi(0) . (4.70)

Let us illustrate how the formulae of the previous section work. For sim-
plicity, consider the situation with one quark flavour (nf = 1) with a mass m.
As usual, the number of colours N is kept general, and the value N = 3 is
fixed at the end of the calculation.
This is the list of the corresponding composite operators, up to dimension

four, that enter the right-hand side and have non-zero vacuum expectation
values:

O0 = 1 , O2 = m21 ,

O4,1 = m41 , O4,2 = Ga,µνGa
µν , O4,3 = mψ̄ψ . (4.71)

8Processes mediated by a Z boson are also considered.
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Three more operators of dimension four [223, 65] are

O4,4 = ψ̄

(
i

↔
/D /2−m

)
ψ ,

O4,5 = Aaν
(
∇ab
µ Gb,µν + gψ̄taγνψ

)
− ∂µc̄

a∂µca ,

O4,6 = (∇ab
µ ∂µc̄b)ca , (4.72)

where

∇ab
µ = δab∂µ − gfabcAcµ , (4.73)

and ta is the SU(N) generator.
The operator O4,4 vanishes owing to the equations of motion, and the op-

erators O4,5 and O4,6 are non-physical because they are not gauge-invariant.
They appear because the gauge invariance of the Lagrangian is broken by
the gauge fixing. Since matrix elements of these operators vanish for physical
states they do not really contribute to the OPE.
These are the corresponding projectors [227] that are applied to the initial

product of currents when (4.61) is used:

Π0(F ) = 〈F 〉amp|m2=0 , Π2(F ) =
∂

∂m2
〈F 〉amp

∣∣∣∣
m2=0

, (4.74)

Π4,1(F ) =
1
2

∂2

∂(m2)2
〈F 〉amp

∣∣∣∣
m2=0

, (4.75)

Π4,2(F ) =
1

4d(1− d)
∂

∂p1
· ∂

∂p2
〈FÃaµ(p1)Ãa,µ(p2)〉amp

∣∣∣∣
p1=p2=0,m=0

,

(4.76)

Π4,3(F ) =
1
4N
Tr

(
∂

∂m
+
1
d
γν

∂

∂pν

)
〈F ˜̄ψ(−p)ψ̃(p)〉amp

∣∣∣∣
p=0,m=0

,

(4.77)

Π4,5(F ) =
1
2d

∂

∂p1
· ∂

∂p2
〈F c̃a(p)c̃a(−p)〉amp

∣∣∣∣
p=0,m=0

, (4.78)

Π4,6(F ) =
1
d

ifabc

gN

∂

∂pµ
〈FÃcµ(0)c̃

a(p)c̃a(−p)〉amp

∣∣∣∣
p=0,m=0

, (4.79)

where no summation over repeated colour indices in (4.76), (4.78) and (4.79)
is implied.
The renormalization matrix Zij of the three physical composite operators

of dimension four, O4,1, O4,2 and O4,3, is [223]


1
1−β/ε

−4γm/ε
1−β/ε µ−2ε4Z−4

m αs
∂
∂αs

Z0

0 1 −µ−2ε4Z−4
m Z0

0 0 Z−4
m


 , (4.80)

where β and γm are the β-function and the anomalous dimension of the mass,
respectively. Z0 is defined through the equation
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EB
0 = µ−2ε

[
E0(µ)− Z0(αs)m4(µ)

]
, (4.81)

and EB
0 and E0 are the bare and renormalized densities, respectively, of the

vacuum energy (given by the sum of vacuum diagrams).
The non-physical composite operators do not mix with the physical ones

under renormalization, so that the whole renormalization matrix has a block
form. However, projectors for the non-physical operators contribute to (4.61)
because the inverse matrix is involved there.
So, the coefficient functions of the operators O0 and O2 are computed as

the first two terms of the Taylor expansion of the polarization function Π
in m2. The corresponding Feynman diagrams can be analytically evaluated
by means of an algorithm [161] based on the method of IBP [68]. For the
physical operators of dimension four, O4,1, O4,2 and O4,3, the following two-
loop results for the coefficient functions Ci in the OPE (4.70) have been
obtained [65] by use of (4.61):

C̃4,1 =
1
12

αs

π
+
2CA − CF

48

(αs

π

)2

, (4.82)

C̃4,2 = 2 +
CFαs

2π

+
( αs

12π

)2

CF [1161CF − 100CA − 344 + 432ζ(3) + 6(16 + 11CA)L] ,

(4.83)
C̃4,3

=
CA

16π2

[
−4(1 + 2L) + αs

π
CF

(
−64
3
+ 64ζ(3)− 22L− 12L2

)]
,

(4.84)

where the SU(N) colour factors CF and CA are given by (1.29), and L =
ln(−µ2/q2).
Besides the correlator of the vector currents, a lot of other correlators are

phenomenologically important. Various currents of the form ψ̄Γψ′ are used,
with (generally different) quark fields ψ and ψ′ and a matrix Γ which, in par-
ticular, defines (pseudo)scalar and (pseudo)vector currents. While the vector
and axial currents are relevant to the cross-section σ(e+e− → hadrons), the
scalar and pseudoscalar currents describe the decay of a scalar or pseudoscalar
Higgs boson.
The OPE of the general vector and axial currents,

T J̃µ(q)Jν(0) ∼
1
s2

∑
i

[
(qµqν − gµνq

2)C̃i(q) + qµqνC̃
L
i (q)

]
Oi(0) , (4.85)

generally contains not only a transverse but also a longitudinal part, which,
however, is irrelevant when inserted into the total cross-section.
Consider, for example, the ‘non-diagonal’ (pseudo)vector currents ūγµd

and ūγµγ5d, where u and d are quarks of two chosen flavours (not necessarily
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u and d quarks), with a general number of flavours nf . In this case, the
composite operators in the OPE are a little bit more general. The set of
dimension four operators is extended as follows:

O4,1 → Oij
4,1 = m2

im
2
j , Oi

4,1 = mumdm
2
i , (4.86)

O4,3 → Oij
4,3 = miq̄jqj , (4.87)

O4,4 → Oi
4,4 = q̄i

(
i
↔
/D /2−mi

)
qi , (4.88)

where the qi are other quark fields. For brevity, we omit the unit operator 1
here and in the following formula.
At the two-loop level, the contribution of dimension four physical oper-

ators to the transverse part of the OPE of two (pseudo)vector ūd currents
is [65]

C̃4,2O4,2 +
∑
ij

C̃ij
4,3O

ij
4,3 +

∑
i

C̃i
4,3O

i
4,3

=
αs

12π

(
1 +
2CA − CF

4
αs

π

)
Ga,µνGa

µν −
3CF

4
αs

π

×
(
1 +

αs

24π
[48CA − 21CF − 4nf + (22CA − 4nf)L]

)
(muūu+mdd̄d)

±
{
1 + CF

αs

π

[
1 +

αs

24π

(
81CF +

83
3
CA − 14

3
nf + (22CA − 4nf)L

)]}

×(mud̄d+mdūu) + CF

(αs

π

)2
(
ζ(3) +

L− 3
4

)∑
i

miq̄iqi

+
CA

16π2

[
CF

αs

π

(
38
3

− 8ζ(3)
)
m2
um

2
d −

(
2 + 3CF

αs

π
(1 + L)

)
(m4

u +m4
d)

∓
(
4L+ CF

αs

π

[
14− 12ζ(3) + 8L+ 6L2

])
(m3

umd +m3
dmu)

]
, (4.89)

where the upper and lower signs stand for the vector and pseudovector cases,
respectively.
The phenomenological applications of the OPE of two quark currents are

numerous. The OPE derived within dimensional renormalization, with oper-
ators without normal ordering, provides a factorization of the contributions
from small and large distances, as was explained in the previous section. The
coefficient functions involve information about short distances and therefore
can be computed by perturbation theory – see the above results. The vac-
uum expectation values (condensates) of the composite operators present in
the OPE can be used effectively to parameterize non-perturbative contribu-
tions. A classic example is provided by the QCD sum rule method [205]. In
particular, the OPE of two quark currents has been used for testing QCD
in hadronic tau decay and in the determination of the masses of the light
quarks (u, d, s) (for a recent review see [70]).
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However, there is no obligation to treat the matrix elements of the com-
posite operators as non-perturbative objects. Another important application
of OPE is the analysis of quark mass effects in e+e− annihilation into hadrons,
performed by evaluating not only the coefficient functions but also the vac-
uum expectation values of the composite operators by perturbation theory.
For example, in [56] the OPE of the two vector and axial quark currents dis-
cussed in this section has been used to obtain the terms of order αsm

4/s2 and
α2

sm
4/s2. One could proceed by computing the polarization of the vacuum

Π(q2) using the off-shell large-momentum expansion, i.e. by expanding it in
the ratio m2/q2 using the prescriptions of Sect. 4.2, where the expansion of a
given diagram is written as a sum over AI subgraphs according to (4.34). A
complication that arises when this is done is the problem of handling numer-
ous contributions9 from subgraphs of three-loop graphs. It has turned out
to be more effective [56] to use the OPE of the (pseudo)vector non-diagonal
currents and evaluate, in addition to the coefficient functions given by (4.82)
and (4.89), the vacuum expectation values of the physical composite oper-
ators O4,2 and Oij

4,3 defined by (4.71) and (4.87), respectively. The relevant
one- and two-loop diagrams are shown in Fig. 4.5.

(a) (b) (c)

Fig. 4.5a,b. One- and two-loop diagrams contributing to the vacuum expectation
values of the composite operator O4,2. (c) Two-loop diagram contributing to the
vacuum expectation value of the composite operator Oij

4,3

The corresponding results are [39, 64]

〈Oij
4,3〉 =

3mim
3
j

4π2

[
1 + ln

µ2

m2
j

+ 2
αs

π

(
ln2

µ2

m2
j

+
5
3
ln

µ2

m2
j

+
5
3

)]
(4.90)

and [34]

〈O4,2〉 = − αs

2π3

∑
i

(
9 + 8 ln

µ2

m2
i

+ 3 ln2
µ2

m2
i

)
m4
i . (4.91)

9 Nevertheless, this problem can be solved with the help of a computer. Prob-
ably the first non-trivial example of a realization of the procedure of asymptotic
expansion in a situation where there are contributions from several subgraphs can
be found in [51].
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Since the polynomial part in q2 does not contribute to the imaginary part,
one needs only terms involving logarithms ln(−q2 − i0) = ln |q2| − iπθ(q2). It
turns out, however, that to find the correction of order α2

sm
4/s2 to R(s) there

is no need to compute three-loop contributions of order α2
s to these vacuum

expectation values, and that the two-loop results for the coefficient functions
and vacuum expectation values of the composite operators are sufficient. To
do this, one applies [56] renormalization group equations for the coefficient
functions.
The terms of order m2 can be found in [57] and are given simply by

Taylor expansion in m2. The final result for the cross-section R(s), with
contributions up to order α2

sm
4/s2, in the case of the vector current and

nf − 1 massless flavours, is [56]

R(s) = 3
(
1− 6m̄

4

s2
+

α

π

(
1 + 12

m̄2

s
− 22m̄

4

s2

)

+
(α
π

)2
{
nf

(
−11
12
+
2
3
ζ(3)

)
+
365
24

− 11ζ(3) + m̄2

s

(
253
2

− 13
3
nf

)

+
m̄4

s2

[
nf

(
1
3
ln

m̄2

s
− 2
3
π2 − 8

3
ζ(3) +

143
18

)

−13
2
ln

m̄2

s
+ 27π2 + 108ζ(3)− 2977

12

]})
, (4.92)

This result can be written in terms of the MS mass given in the one-loop
approximation by m̄2 = m2/

{
1 + (αs/π)[−2 ln(m2/s) + 8/3]

}
) at the scale

µ = s. (With this choice, all the logarithms of s disappear in the terms of
order m0 and m2.) The number of colours has been here set to N = 3.
The αsm

4/s2 and α2
sm

4/s2 corrections are essential for calculating the
electron–positron annihilation cross-sections at LEP and at lower energies,
in particular, in the region between the charm and the bottom thresholds
and at energies of several GeV above the bb̄ threshold – see [56, 58] for a
discussion.
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At the diagrammatic level, the large-mass expansion, i.e. the expansion in
the large-mass limit, has almost the same structure as the off-shell large-
momentum expansion, so that we apply the method of expansion by sub-
graphs again here. We start with a one-loop example and then formulate gen-
eral prescriptions. These prescriptions are given by the same formula (4.34)
as for the off-shell large-momentum limit, with a suitable change of the class
of subgraphs involved. This general formula is illustrated through two-loop
examples. The large-mass expansion at the operator level is then described.
The asymptotic expansion of Green functions of light fields is governed by an
effective Lagrangian with coefficients containing information about the full
initial theory. The chapter concludes with examples of effective Lagrangians
that arise in the large-mass limit and are connected with typical physical
situations.

5.1 One-Loop Example

Let us consider the following example.
Example 5.1. The one-loop diagram of Fig. 5.1 with a large mass M , a

small mass m and a small external momentum q.

Fig. 5.1. One-loop self-energy diagram. The thick internal
line denotes the propagator with the heavy mass

The Feynman integral can be written as

F5.1(M2,m2, q2; d) =
∫

ddk
(k2 −m2)2[(q − k)2 −M2]

. (5.1)

Although this integral is convergent we have introduced dimensional regular-
ization in advance, for the same reason as in the previous chapter.

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 95–114 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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An obvious (but too straightforward) way to construct a remainder in the
limit of largeM is to include, in addition to the operator Tq,m corresponding
to the whole graph, the operator Tk acting on the propagator with the large
mass, 1/[(q−k)2−M2]. This operator could then be used to subtract the IR
divergences caused by Taylor expansion in m in another propagator. How-
ever, we would not provide homogeneity of the terms of the corresponding
expansion. It is more reasonable to follow our previous strategy of perform-
ing subtractions in all small parameters of subgraphs. So let us expand this
factor 1/[(q − k)2 −M2] in all small parameters, namely, q (which is small
in the given limit) and k (which is considered small, within our conventions,
like any other loop momentum). Thus we construct the remainder as follows:

RnF5.1(M2,m2, q2, d) =
∫

ddk
(
1− T n

m,q

) 1
(k2 −m2)2

×
((

1− T n
q,k

) 1
(q − k)2 −M2

)
. (5.2)

Note that the operator T n
m,q acts on the whole expression, rather than only

on the first factor.
An asymptotic behaviour of order n+1 up to logarithms will be achieved

because of the operator
(
1− T n

m,q

)
if the remainder is UV and IR finite. To

see the UV convergence, let us investigate the integration at large k. Only
terms in T n

q,k are dangerous here, because they generate positive powers of k.
Let us consider the contribution of order n. Using again the properties of
Taylor operators (4.16) and (4.18), we obtain, from

T (n)
q,k

1
(q − k)2 −M2

=
n∑
j=0

p1,j(k)p2,n−j(q) , (5.3)

where p1,j and p2,j are monomials of degree j, a sum of terms
[(
1− T n

m,q

) 1
(k2 −m2)2

] n∑
j=0

p1,j(k)p2,n−j(q)

=
n∑
j=0

p1,j(k)p2,n−j(q)
[(
1− T j

m,q

) 1
(k2 −m2)2

]
. (5.4)

Counting powers of k gives kj from p1,j(k) and 1/k5+j from the expressions
in square brackets. This provides convergence at large k.

Consider now the region of small k. In this case it is sufficient to investigate
the convergence of the terms originating from T n

m,q:

T n
m,q

1
(k2 −m2)2

[(
1− T n

q,k

) 1
(q − k)2 −M2

]
. (5.5)

The expression in the square brackets can be represented in a form similar
to (4.21),
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n+1∑
i=0

p1,j(k)p2,n+1−j(q)fj(k, q) , (5.6)

where p1,j and p2,j are monomials of degree j, and fj(k, q) is finite in the
vicinity of the point k = 0 , q = 0. Using the commutation relations (4.16),
we obtain

T n
m,q

1
(k2 −m2)2

p1,j(k)p2,n+1−j(q)fj(k, q)

= p1,j(k)p2,n+1−j(q)T j−1
m,q

1
(k2 −m2)2

fj(k, q) . (5.7)

Power counting gives kj from p1,j(k) and, at worst, 1/kj+3 from the last
factors, so that the integral is convergent at small k.

Using the same manipulations as in our previous examples and for the
general diagram in the off-shell large-momentum limit, we straightforwardly
arrive at the asymptotic expansion starting from the remainder (5.2):

F5.1 ∼ MΓF5.1 +MγF5.1

=
∫

ddk
(

1
(k2)2

+
2m2

(k2)3
+ . . .

)(
1

k2 −M2
+

2q ·k − k2
(k2 −M2)2

+ . . .
)

+
∫

ddk
(k2 −m2)2

(
− 1
M2

− (q − k)2
M4

+ . . .
)
. (5.8)

The integrals in the first and the second contributions can be computed by
means of (A.5) and (A.2), respectively. The poles in ε in the two contributions
are cancelled, and we obtain the following result:

F5.1 ∼ iπd/2
(
−Γ (ε− 1)
(M2)1+ε

+
2Γ (ε− 2)
(M2)2+ε

[
(ε− 2)m2 − (1 + ε)q2

]
+ . . .

− Γ (ε)
M2(m2)ε

+
Γ (ε− 1)

(M2)2(m2)ε
[
(ε− 2)m2 − (1− ε)q2

]
+ . . .

)

= iπ2
[
1− ln(M2/m2)

M2
+

2m2 + 5q2 + 2(2m2 + q2) ln(M2/m2)
2M4

+
3m4 + 24m2q2 + 10(q2)2 − 3[3m4 + 6m2q2 + (q2)2] ln(M2/m2)

3M6

+O
(
ε,

lnM
M8

)]
. (5.9)

5.2 General Prescriptions

For a general Feynman diagram FΓ which depends on the large masses
M1, . . . , small masses m1, . . . and small external momenta q1, . . . , the deriva-
tion of the general prescriptions is almost identical to the case of the off-shell
large-momentum limit. We start from the remainder in the form (4.28), with



98 5 Large-Mass Expansion

another class of subgraphs involved in the forest formula. The choice of these
subgraphs is explained in a way similar to the previous case.

When the integrand is expanded into a Taylor series in the small parame-
ters of the problem, the IR divergences can appear only in the lines with the
small masses. Thus subtractions in the remainder should be performed only
in AI subgraphs and, this time, we call a subgraph γ AI if it

(i) contains all the heavy lines,
(ii) is 1PI with respect to the light lines.

We call a line heavy if the corresponding mass is large, and light other-
wise. The second requirement is of the same origin as a similar requirement
for the off-shell large-momentum limit. Note that the AI subgraphs can be
disconnected and consist of several connectivity components, i.e., generally,
γ = ∪iγi, where every component is 1PI with respect to the light lines.

When defining the subtraction operators that enter the forest formula for
the remainder of the large-mass expansion, we follow the same rule as in
the previous case: they are Taylor expansion operators (4.30) with respect
to the small masses and small external momenta of AI subgraphs, with the
subtraction degrees chosen in the same way (4.31). The difference is that
FΓ and Πγ depend now on the large masses Mi, rather than on the large
momenta Qi. (The factor ΠΓ/γ is still independent of the large parameters.)

In this case the remainder

RnFΓ (M1/�, . . . ,Mi/�, . . . , q1, . . . , qn,m1, . . .)

has order �ā+1 modulo logarithms when � → 0. A proof of this estimate
can be obtained from a similar proof (see Appendix B.2) for the off-shell
large-momentum limit by trivial modifications.

Explicit prescriptions for the large-mass limit can be derived from the
remainder in the same way as in the previous case. The final formula is

FΓ ∼
∑
γ

FΓ/{γ1∪...∪γi} ◦
∏
i

MγiFγi , (5.10)

where the sum runs over all AI subgraphs of Γ and we have explicitly indi-
cated that the AI subgraphs generally consist of several connectivity compo-
nents γi.

For the large-mass expansion, the strategy of expansion by regions also
leads to the same prescription (5.10). There are two scales in the problem:
the large masses are of the same order, Mi ∼ M , and the momenta and the
small masses are much smaller, qi ∼ ml ∼ m, with m�M . The regions for
a given loop momentum are defined as follows:

large, k ∼M , (5.11a)
small, k ∼ m . (5.11b)

The set of regions labelled by 1PI subgraphs of the given graph is defined as
follows:
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ki ∼ M, if ki is a loop momentum of γ ;
ki ∼ m, if ki is not a loop momentum of γ . (5.12)

The same arguments as for the off-shell large-momentum limit then show
that these regions reproduce all the contributions in (5.10).

5.3 Two-Loop Examples

In the case of the large-momentum expansion (4.34), the contribution from
the whole graph has IR divergences starting from some minimal order and
there is at least one additional (to γ = Γ ) contribution due to some subgraph
γ �= Γ . In contrast, the large-mass expansion can be combinatorially trivial,
i.e. involve only a contribution from γ ≡ Γ (the contribution from the region
of the small loop momenta):

FΓ ∼ Tm1,...,q1,...FΓ . (5.13)

This happens when the given graph does not have cuts composed of light
lines. Observe that although in this situation the Taylor expansion of the
integrand formally breaks down for large loop momenta, i.e. when the loop
momenta are of the order of the large mass, the above contribution gives the
whole expansion in the large-mass limit. Moreover, in the case of one external
momentum, this Taylor expansion has a radius of convergence equal to the
value of the first threshold. This fact follows from the well-known analytic
properties of the Feynman amplitudes [98].

Consider, for example, the same diagram that we dealt with in Sect. 4.3
but in the ‘opposite’ limit:

Example 5.2. The master two-loop diagram (see Fig. 2.5) with non-zero
masses, which are all considered large with respect to the external momen-
tum.

The Feynman integral is (4.41). The large-mass expansion includes only
the contribution from the whole graph and is given by (5.13). Since all the
masses are large and this is a scalar diagram, the expansion reduces to a
power series in the external momentum squared [95]:

Jm(a1, . . . , a5,m1, . . . ,m5, q) ∼
∞∑
n=0

(q2)n

4nn!(d/2)n

(
✷n
q J
)∣∣
q=0

, (5.14)

where (x)n is the Pochhammer symbol (A.53).
In order to recursively evaluate coefficients in this power series one can

apply the following relations [94], which are obtained by differentiation of the
integrand with the flow of the external momentum through lines 1 and 3:

✷ = 4
[
(a1 + a2 + 1− d/2)(a11+ + a33+) + a1(a1 + 1)m2

11
++

+a3(a3 + 1)m2
33

++ + a1a3(m2
1 +m

2
3 −m2

5 − 5−)1+3+
]
. (5.15)
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(The notation for the increasing and lowering operators is explained after
(2.66).) Then, after using partial fractions, all the integrals involved are ex-
pressed through vacuum integrals of the form (4.47).

Let us now consider a combinatorially non-trivial two-loop diagram.
Example 5.3. The master two-loop diagram of Fig. 2.5 with the large

masses m1 = m2 = m5 = m, two other zero masses and a small external
momentum – see Fig. 5.2.

Fig. 5.2. Two-loop master diagram. The dashed and
thick internal lines denote propagators with zero and
heavy masses, respectively.

There are contributions from two AI subgraphs: Γ and γ = {1, 2, 5}. Any
term of the first contribution can be evaluated by means of (5.14) and (5.15)
and the tabulated two-loop formulae (A.38). (Non-trivial vacuum integrals
of the form (4.47) with three non-zero masses do not arise here.) We obtain
the following series:

− πd Γ (1 + ε)2

ε(1− ε)(m2)1+2ε

(
1

2(1 + 2ε)
− (3− ε)(1 + ε)

3(3 + 2ε)
q2

m2

)
+ . . . . (5.16)

The contribution of γ can be evaluated by means of (A.12) and (A.3):∫
ddl

l2(q − l)2
∫

ddk
k2 −m2

Tl
1

(k − l)2 −m2
Tq

1
(q − k)2 −m2

= −πd Γ (1 + ε)2Γ (1− ε)2
2εΓ (2− 2ε)(−q2)ε(m2)1+ε

+ . . . . (5.17)

It is possible to derive an explicit formula for a general term of this contri-
bution, written in terms of a three-fold finite sum.

Summing the two contributions, we observe that the UV and IR poles are
cancelled, and we obtain the following result:

F5.3

∼ − π4

m2

[
1
2
ln
(
−q2/m2

)
− 3

2
+
(

1
24

ln
(
−q2/m2

)
− 1

16

)
q2

m2

]
+ . . .

(5.18)

in agreement with an explicit result obtained in [38]:

F5.3

= −π4
√
π

4m2

∞∑
n=0

n!
Γ (n+ 3/2)(n+ 1)

(
ln
(
−q2/m2

)
− 3
n+ 1

)(
q2

4m2

)n
.

(5.19)
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p1 � p2

p1

p2

p1 � l

p2 � l

p1 � k

p2 � k

k � l k1

2

3

4

6 5

Fig. 5.3. Two-loop vertex diagram

(a) (b)

Fig. 5.4a,b. The two diagrams considered in Examples 5.4 and 5.5. The dashed and
thick internal lines denote propagators with zero and heavy masses, respectively

Other examples of expansions of two-loop self-energy diagrams with zero
thresholds in the large-mass limit can be found in [19].

Now we turn to examples of two-loop vertex diagrams in the large-mass
limit. We shall consider the planar two-loop diagram of Fig. 5.3 with two
external momenta on the massless mass shell, p21 = p22 = 0, and two different
distributions of masses shown as in Figs. 5.4a,b. Choosing the loop momenta
as in Fig. 5.3, we obtain the following expression for the corresponding Feyn-
man integral:

V (m1, . . . ,m6, q
2) =

∫
ddl

(l2 − 2p1 ·l−m2
1)(l2 − 2p2 ·l −m2

2)

×
∫

ddk
(k2 − 2p1 ·k −m2

3)(k2 − 2p2 ·k −m2
4)(k2 −m2

5)[(k − l)2 −m2
6]
. (5.20)

For any choice of the masses, all the terms in the contribution

TqV (m1, . . . ,m6, q
2) =

∞∑
n=0

An(m1, . . . ,m6)(q2)n (5.21)

corresponding to γ = Γ in (5.10) can be computed analytically using an algo-
rithm developed in [115, 116], based on relations following from differentiation
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of the integrand with the given choice of the flow of the external momenta.
We obtain the following expression for the resulting two-loop vacuum massive
integrals [115, 116]:

An(m1, . . . ,m6) =
∫ ∫

ddk ddl
(l2 −m2

1)(l2 −m2
2)

× Fn(m1, . . . ,m6, k, l)
(k2 −m2

3)(k2 −m2
4)(k2 −m2

5)[(k − l)2 −m2
6]
, (5.22)

where

Fn =
1

n+ 1

n∑
j=0

n∑
j′=0

min{n,[(j+j′)/2]}∑
i=max{0,j+j′−n}

anijj′

× (k2)i(l2)n−j−j
′+i(k·l)j+j′−2i

(k2 −m2
3)j(k2 −m2

4)j
′ (l2 −m2

1)n−j(l2 −m2
2)n−j

′ . (5.23)

The coefficients anijj′ have been evaluated up to n = 30 for ε = 0 in [115] and
in an expansion in ε up to ε2 in [116]. Here are a few of the initial values:

a2011 =
1
3
+
ε

6
+
ε2

108
,

a3011 =
4
9
+
ε

3
+

31ε2

324
, a3003 = 2 +

17ε
6

+
199ε2

72
, a3012 =

2
9
+
ε

6
+

31ε2

648
,

a4011 =
1
2
+

19ε
40

+
1459ε2

7200
, a4003 = 2 +

97ε
30

+
6139ε2

1800
,

a4012 =
1
3
+

19ε
60

+
1459ε2

10800
, . . . . (5.24)

Our next two-loop diagram is the following.
Example 5.4. The vertex two-loop diagram of Fig. 5.4a with large masses

m5 = m6 = m, four zero masses and a small external momentum q.
The set of subgraphs contributing to (5.10) consists of γ1 = Γ, γ2 =

{3456}, γ3 = {1256} and γ4 = {56}. Note that γ3 and γ4 are discon-
nected. To compute the contribution of γ1 we apply (5.21), (5.22) and
(5.23) and observe that the factor (k ·l)j+j′−2i in (5.23) can be replaced by[
(k2 + l2 −m2)/2

]j+j′−2i because cancelling the denominator (k − l)2 −m2

produces one-loop massless tadpoles, which are equal to zero. The product
(k2)i(k2 + l2 − m2)j+j

′−2i is then rewritten in terms of a combination of
products of powers of k2 and l2, and, by means of partial fractions (2.60),
the resulting expressions containing powers of k2 and k2−m2 in the denom-
inator are expressed in terms of ratios containing either k2 or k2 −m2. The
result is (5.21), where

An =

(
iπd/2

)2
(n+ 1)(m2)2+2ε+n

n∑
j=0

n∑
j′=0

min{n,[(j+j′)/2]}∑
i=max{0,j+j′−n}

(j + j′ − 2i)!anijj′
2j+j′−2i
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×
j+j′−2i∑
j1=0

j1∑
j2=0

(−1)n+i+j+j
′+j2

(j + j′ − 2i− j1)!j2!
[Vmm0(1, n+ j1 + i− j − j′ + 2, 1)

−
j+j′−i−j2+1∑

r=0

(−1)rV00m(n+ j1 + i− j − j′ + 2, 1 + r, 1)


 . (5.25)

Here Vmm0 and V00m are the ratios of gamma functions on the right-hand
sides of (A.38) and (A.39), respectively; they correspond to vacuum scalar
integrals with three lines.

We have the following contributions from the remaining three subgraphs:
for γ2,∫

ddl
l2(q − l)2

∫
ddk
k2

Tp1,q,l
1

[(p1 − k)2 −m2][(l − k)2 −m2](q − k)2 ;

(5.26)

for γ3,∫
ddk

k2(q − k)2 Tp1,k
1

(p1 − k)2 −m2

∫
ddl
l2

Tq,k
1

[(l − k)2 −m2](q − l)2 ;

(5.27)

and for γ4,∫
ddk

k2(q − k)2 Tp1,k
1

(p1 − k)2 −m2

∫
ddl

l2(q − l)2 Tl,k
1

(l − k)2 −m2
.

(5.28)

Each term in these contributions can be analytically evaluated by re-
cursive integration over the two loop momenta. The contributions of the
subgraphs γ2 and γ3 take the form(

iπd/2
)2

(m2)2+ε(−q2)ε
∞∑
n=0

c(2,3)n (ε) (q2/m2)n . (5.29)

Using (A.5) and (A.10) and the summation formulae (A.50), we obtain [113]

c(2)n (ε) =
∑

i1,i2,n3≥0, i1+i2+n3 even
i1+i2+n3≤2n

n3∑
j3≥0,

j3+n3even

(−1)(i1+i2+n3)/2

× Γ (ε)Γ (1− ε)Γ ((i1 + i2 − j3)/2 + 1− ε)(n− (i1 + i2 − n3)/2)!
Γ ((i1 + i2 − j3)/2 + 2− 2ε)(n− (i1 + i2 + n3)/2)!((n3 − j3)/2)!

× i1!i2!θ(i1 + i2 − j3)θ(i1 − i2 + j3)θ(−i1 + i2 + j3)
((i1 + i2 − j3)/2)!((i1 − i2 + j3)/2)!((−i1 + i2 + j3)/2)!

×C(2 + i1 + i2, 2 + n− (i1 + i2 − n3)/2; (i1 + i2 + n3)/2) , (5.30)
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where C(λ1, λ2;n) is the ratio of gamma functions on the right-hand side of
(A.5), and θ(n) = 1 for n ≥ 0 and θ(n) = 0 otherwise.

Using (A.5), (A.10) and (A.47), we also obtain

c(3)n (ε) = (−1)nΓ (ε)Γ (1− ε)
∑
i1≥0

i1−(n1−j1)/2≤n

i1∑
n1=0

n1∑
j1≥0,

j1+n1even

(−1)i1+j1

× i1!
(i1 − n1)!((n1 − j1)/2)!

Γ (n− i1 + (n1 − j1)/2 + 1− ε)
Γ (n− i1 + (n1 − j1)/2 + 2− 2ε)

×C(j1 + 1, i1 + 2; (n1 + j1)/2) , (5.31)

with the same function C(λ1, λ2;n).
Finally, for γ4, we obtain(

iπd/2
)2

(m2)2(−q2)2ε
∞∑
n=0

c(4)n (ε) (q2/m2)n , (5.32)

where

c(4)n (ε) = (−1)n[Γ (ε)Γ (1− ε)]2
n∑
j=0

Γ (j + 1− ε)Γ (n− j + 1− ε)
Γ (j + 2− 2ε)Γ (n− j + 2− 2ε)

. (5.33)

Summing the four contributions, we see that the poles in ε cancel and we
obtain, at ε = 0, the following series [113]:

F5.4 ∼ − π4

m4

[
L2 − L+

π2

2
− 4 − q2

m2

(
L2 − 5

6
L+

π2

2
− 341

72

)

+
(
q2

m2

)2(11
12
L2 − 79

120
L+

11π2

24
− 2617

600

)

−
(
q2

m2

)3(5
6
L2 − 89

168
L+

5π2

12
− 63051

15680

)
+ . . .

]
, (5.34)

where L = ln
(
−q2/m2

)
.

Note that there is again an interplay of UV and IR poles in the individual
contributions, which are IR in γ1, UV and IR in γ2,3 and IR in γ4. Now we
turn to the next example, where a new kind of divergence participates in the
game:

Example 5.5. The vertex two-loop diagram of Fig. 5.4b with a large mass
m6 = m, five zero masses and a small external momentum q.

This time, we have another set of AI subgraphs in (5.10): γ1 ≡ Γ, γ2 =
{3456}, γ3 = {126} and γ4 = {6}.

The contribution of γ1 is evaluated as in the previous case. We obtain
(5.21), where
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An =

(
iπd/2

)2
(n+ 1)(m2)2+2ε+n

n∑
j=0

n∑
j′=0

min{n,[(j+j′)/2]}∑
i=max{0,j+j′−n}

(j + j′ − 2i)!anijj′
2j+j′−2i

×
j+j′−2i∑
j1=0

j1∑
j2=0

(−1)n+i+j+j
′+j2

(j + j′ − 2i− j1)!j2!

×V00m(n+ j1 + i− j − j′ + 2, j + j′ − i− j2 + 3, 1) , (5.35)

where V00m again denotes the ratio of gamma functions on the right-hand
side of (A.39).

The contribution of γ2 is computed as in the previous example, with a
similar cumbersome result, given by (5.29) and

c(2)n (ε) =
∑

i1,i2,n3≥0, i1+i2+n3 even
i1+i2+n3≤2n

n3∑
j3≥0,

j3+n3even

(−1)(i1+i2+n3)/2

×Γ (1− ε)Γ (1 + ε)Γ ((i1 + i2 − j3)/2 + 1− ε)(n− (i1 + i2 − n3)/2)!
Γ ((i1 + i2 − j3)/2 + 2− 2ε)(n− (i1 + i2 + n3)/2)!

× i1!i2!θ(i1 + i2 − j3)θ(i1 − i2 + j3)θ(−i1 + i2 + j3)
((i1 + i2 − j3)/2)!((i1 − i2 + j3)/2)!((−i1 + i2 + j3)/2)!

×C(1 + i2, 3 + n+ (i1 − i2 + n3)/2; (i1 + i2 + n3)/2) . (5.36)

The third and the fourth contributions can be described graphically as
Taylor expansions of the triangle γ3 and the isolated line γ4, respectively, in
their external momenta, inserted into the corresponding reduced diagrams,
which are the light triangle consisting of lines {3, 4, 5} and the same triangle
connected with a one-loop propagator diagram with lines {1, 2}, respectively.
In any case, the insertion factors are scalar functions of the three invariants,
(p1 + k)2, (p2 + k)2 and q2. When these Taylor expansions are performed,
the factor (p1 + k)2 leads to a cancellation of one of the propagators in the
light triangle. This produces a one-loop massless diagram with its external
momentum on the light cone. This diagram is zero within dimensional reg-
ularization – see Chap. 2. Thus we come to the conclusion that only terms
without such factors survive, and one can set k2 to zero in the last two contri-
butions. So, the sum of the two terms for the subgraphs γ3 and γ4 happens to
be just a product of two factors: the light triangle with zero masses given by
(2.79), and the expansion in the large-mass limit of the lower triangle γ3 with
p1, p2, p1 − p2 as external momenta. The last expansion can be performed by
our general technique and leads to the following result for the sum of the
contributions of γ3 and γ4:

−
(
iπd/2

)2
(M2)1+ε(−q2)1+ε

1
ε3
Γ (1− ε)3
Γ (1− 2ε)

( ∞∑
n=0

n!
Γ (n+ 2− ε) (−q

2/M2)n
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−(−q2/M2)−ε
∞∑
n=0

Γ (n+ 1− ε)
Γ (n+ 2− 2ε)

(−q2/M2)n
)
. (5.37)

Combining all four contributions, we arrive at the following result [109],
written as an expansion in ε up to the finite part:

F5.5 ∼ −
(
iπd/2e−γEε

)2
m2q2

{
(−L+ 1)

1
ε2

+
(
3
2
L2 − 3L− π2

6
+ 3

)
1
ε

−7
6
L3 +

7
2
L2 +

(
π2

3
− 7

)
L− 2ζ(3)− π2

3
+ 7

− q2

m2

[(
−1
2
L+

1
4

)
1
ε2

+
(
3
4
L2 − 9

4
L− π2

12
+

5
8

)
1
ε

− 7
12
L3 +

17
8
L2 +

(
π2

6
− 49

8

)
L− ζ(3)− 2π2

3
+

89
16

]

+
(
q2

m2

)2 [(
−1
3
L+

1
9

)
1
ε2

+
(
1
2
L2 − 11

6
L− π2

18
+

31
36

)
1
ε

− 7
18
L3 +

59
36
L2 +

(
π2

9
− 160

27

)
L− 2ζ(3)

3
− 67π2

108
+

4709
648

]
+ . . .

}
. (5.38)

The dimensional regularization parameter µ (which is always implied) is set
to m here (so that all the logarithms ln(m2/µ2) drop out).

To see that the poles in ε in the sum of all four contributions are the same
as in the initial Feynman integral, let us apply the following formula for the
pole part in ε of the product of three propagators, namely 1/k2, 1/(k2−2p1k)
and 1/(k2 − 2p2k), formally considered as a generalized function of k:

iπd/2e−γEε

(−q2)1+ε

(
− 1
ε2
δ(d)(k)

+
1
ε

∫ 1

0

dz
z
[δ(d)(k − zp1) + δ(d)(k − zp2)− 2δ(d)(k)]

)
. (5.39)

(This formula can be obtained by transforming to coordinate space and cal-
culating the pole part using alpha parameters.) We observe that the term
containing δ(d)(k) corresponds to the pole part of the sum of the contribu-
tions from γ3 and γ4 given by (5.37). Thus, the term containing the integral
over z should give the pole part of the sum of the contributions from γ1 and
γ2. So, we perform integration over z of the one-loop triangle diagram with
one non-zero and two zero masses. We then apply the general formulae for
the large-mass expansion to this triangle and conclude that the pole part in
ε of the sum of the contributions from γ1 and γ2 should be equal to the pole
part of the following quantity:

− π4

 2Γ (ε)
(m2)1+εq2

∞∑
n=1

n!


 n∑
j=1

C(j + 1, 2n− j + 2;n)
j


(

q2/m2
)n
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+
2Γ (ε)2Γ (1− ε)
m2(−q2)1+ε

∞∑
n=1

snΓ (n+ 1− ε)
Γ (n+ 2− 2ε)

(
−q2/m2

)n]
, (5.40)

where sn =
∑n
j=1 j

−1. Note that the double poles in (5.40) cancel so that
there must also be a cancellation of the double poles in the sum of the con-
tributions from γ1 and γ2. This is indeed the case. One also can easily check
that the single-pole part agrees with that obtained by direct calculation of
the sum of the contributions from γ1 and γ2.

The double pole in ε originates only from the sum of the contributions
from γ3 and γ4. From (5.37), we obtain the following formula for its coefficient:

−π4
(q2)2

[
ln(−q2/m2) ln(1 + q2/m2) + Li2(−q2/m2)

]
. (5.41)

Although the given diagram can be expanded by formulae relevant to
limits typical of Euclidean space, where we usually have an interplay be-
tween UV and IR divergences, there is now an interplay between UV, IR and
collinear divergences. We have IR divergences in γ1, UV and IR divergences
in γ2, UV divergences in γ4, and collinear and IR divergences in γ3. It turns
out that a part of the original collinear divergence is transformed into diver-
gences of other types because the collinear divergences in γ3 correspond only
to the double pole arising from the ‘product’ of the original IR and collinear
divergences.

5.4 Decoupling and the Effective Lagrangian

At a fixed energy scale, the particles of a given theory are naturally subdi-
vided into heavy and light particles, with masses Mi and mj . Let us assume
that the theory is exactly renormalizable, i.e. all the terms in the correspond-
ing interaction Lagrangian have dimension four, in the mass units. A term
of the Lagrangian is called ‘heavy’ if it involves at least one heavy field (i.e.
a field with a heavy mass), and ‘light’ otherwise. So the Lagrangian can be
represented as L = Lheavy + Llight. Let

{
T exp

[
i
∫
d4xLI(x)

]}
light

be the
part of the renormalized S-matrix composed of diagrams which have only
light external lines. As before, the index ‘I’ denotes the sum of the interac-
tion Lagrangian, with a renormalized value of the coupling, and counterterms
corresponding to the free part of the Lagrangian. Equivalently, we can con-
sider the family of Green functions of the light fields. The so-called decoupling
theorem [5] says that in the leading power of the asymptotic behaviour in the
limit mj/Mi → 0, these Green functions are determined by the light part,
Llight, of the Lagrangian. Formally,[

T exp
(
i
∫

d4xLI(x)
)]

light

∼ T exp
(
i
∫

d4xLI,light(x)
)
. (5.42)
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This theorem in fact applies only for special renormalization schemes, for
example for the BPHZ renormalization [26, 137, 247] (valid only for theories
without massless particles). For example, for minimal subtractions within
dimensional regularization, the decoupling theorem is not true, in its naive
sense.1 Nevertheless, it is true in a generalized form,[

T exp
(
i
∫

d4xLI(x)
)]

light

∼ T exp
(
i
∫

d4xLeff(x)
)
, (5.43)

where the effective Lagrangian on the right-hand side is obtained from LI,light

by adjusting finite counterterms. In the general order of the expansion in
the inverse large masses, the left-hand side of (5.43) is again given by the
right-hand side, where the effective Lagrangian is written as a series of light
composite operators. In particular, in the case of one heavy mass, M , the
effective Lagrangian is

Leff(x) =
∑
δi≥4

Ci(M)
M δi−4

Oi(x) , (5.44)

where δi is the mass dimension of the operatorOi. The first terms with dimen-
sion four form the light Lagrangian, with finite changes in the corresponding
coupling, mass and wave-function renormalizations as compared with the cor-
responding values of the pure light theory. After the power dependence on
the heavy mass has been explicitly taken out, the coefficient functions Ci(M)
are polynomials in lnM2. The next terms in the effective Lagrangian typi-
cally involve operators of dimension six, so that they are power suppressed
by a factor 1/M2. These terms are already described by non-renormalizable
interactions.

To perform the large-mass operator expansion one can apply the gen-
eral strategy of constructing a low-energy effective theory, by assuming that
the latter is described by an effective Lagrangian of the form (5.44), with un-
known coefficients Ci for all possible operators Oi. These coefficients are then
found, order by order in perturbation theory, from a system of (matching)
equations that express the fact that the same results in the limit M → ∞
are obtained by starting from the full and effective theories. We shall shortly
describe this procedure and related procedures used to construct effective
Lagrangians.

One well-known example of an effective Lagrangian associated with the
large-mass limit describes the weak four-fermion interaction between quarks,
u and d, a charged lepton, l, and neutrino, ν, due to the exchange of a W
boson. This effective Lagrangian is proportional to the square of the weak
interaction coupling g and is given by

g2

2m2
W

l̄γµ
1− γ5

2
νūγµ

1− γ5
2

d , (5.45)

1This observation was first made in [238, 186].
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plus conjugate terms. The first factor is written in terms of the Fermi constant
GF = g2/(4

√
2m2

W ), which determines the strength of the weak interaction at
energies much smaller than the mass of the W boson, mW . This Lagrangian
is obtained by taking into account only tree exchange diagrams, where the
propagator of the W boson is replaced by its asymptotic behaviour in the
limit of large mW , and the factor 1/m2

W arises from this.
At the tree level, the construction of effective Lagrangians is rather trans-

parent. Examples where one-loop information is encoded are also well known.
One of them, the Euler–Heisenberg Lagrangian [136, 202] (see also [149]),
is related to one of the earliest quantum-field theoretical calculations and
describes one-loop quantum corrections, due to creation of electron–positron
pairs, to the Lagrangian −(1/4)F 2

µν in the case of a constant classical electro-
magnetic field. This Lagrangian, evaluated within the Schwinger proper-time
method [202], has the form

LEH =
1

8π2

∫ ∞

0

dT
T

e−im2T

(
e2ab

tan(eaT ) tanh(ebT )
− 1
T 2

)
, (5.46)

where a and b are related to the constant electric and magnetic fields by
a2 − b2 = E2 −B2 , ab = E·B. Expanding this exact result in e2, one obtains
a representation of this effective Lagrangian as a series in inverse powers
of the electron mass. The first power-suppressed term contains operators of
dimension eight:

L(8)
EH =

2α2

45m4

[
(E2 − B2)2 + 7(E·B)2

]

≡ α2

90m4

[
(FµνFµν)2 +

7
4
(Fµν F̃µν)2

]
, (5.47)

where α = e2/(4π) is the fine-structure constant and F̃µν = (1/2)εµνρσFρσ
is the dual electromagnetic tensor.

Let us now describe in more detail how the coefficient functions in the
effective Lagrangian are calculated. As in the previous chapter, in the case
of the off-shell large-momentum limit, let us start from the diagrammatic
expansion. Using the expansion of unrenormalized Feynman integrals (5.10)
and applying combinatorial arguments related to exponentiation, similar to
those applied in the derivation of (2.94) in Chap. 2, we arrive at the corre-
sponding operator expansion (first in the monomial basis and then rewritten
in a general basis) which has the form[

T exp
(
i
∫

d4xLB
I (x)

)]
light

∼ T exp
(
i
∫

d4xLB
eff(x)

)
, (5.48)

where

LB
eff(x) = LB

light − i
∑
i

Πi

[
exp

(
i
∫

d4xLB
I (x)

)
− 1

]
oi(x) , (5.49)
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and, in contrast to (5.42), the quantities are not renormalized, i.e. the pertur-
bative expansions are performed with the bare couplings, masses and fields.

Here the oi are composite operators from some basis and the Πi are
the corresponding projectors. Any projector involves Taylor expansion in the
external momenta and light masses, so that only heavy Feynman diagrams
(including at least one heavy line) which are 1PI with respect to the light
lines give non-zero contributions.

If we switch on the renormalization of the initial full theory, we arrive
at an operator expansion which differs from (5.48) and (5.49) by using the
renormalized Lagrangians LI and LI,light, i.e. we obtain (5.43), where

Leff(x) = Llight − i
∑
i

Πi

[
exp

(
i
∫

d4xLI(x)
)
− 1

]
oi(x) . (5.50)

This operator expansion is similar to the OPE in the form (4.62) and involves
an interplay between UV and IR divergences characteristic of any expansion
in momenta in masses. If a Feynman diagram generated by the right-hand
side of (5.43) involves a vertex associated with the second term in (5.50),
with some monomial oi(x), the corresponding overall UV divergence is not
removed. On the other hand, the projectors Πi generate IR divergences so
that, in every perturbation order, the total right-hand side of (5.43) is finite.2

Anyway, the expansion (5.50), which is a consequence of a diagrammatic
expansion valid for general diagrams, provides a kind of existence theorem
for the operator large-mass expansion governed by the effective Lagrangian.

Observe that the terms of dimension four in the second part of the right-
hand side of (5.50) are similar to those of the first part, so that it is not
natural to consider the same monomials on a different footing when gener-
ating diagrams. If we confine ourselves to only one insertion of the effective
Lagrangian, i.e. take only the first order of expansion of the exponent, we ob-
tain, from the second term, a bare composite operator which can be rewritten
in terms of renormalized operators of the same dimension by means of the
inverse matrix of the composite operators defined by (2.97). But, in any case,
these two parts of the effective Lagrangian are naturally combined, when one
is analysing the leading-power large-mass behaviour, in the framework of a
strategy based on direct matching of the coefficients in (5.44). Equivalently,
one can introduce, in addition to the renormalization constants of the given
theory, so-called decoupling constants. We shall shortly see an example of
such a procedure.

It can happen that, in a given order of perturbative expansion in the
given coupling constants, the projector Πi does not generate IR divergences.
In particular, this is the case when no massless cuts arise in Feynman dia-
grams of the given perturbation order. In this case one can straightforwardly
apply (5.50) for the evaluation of the coefficients of the effective Lagrangian.

2It is possible to write down a manifestly finite form of the large-mass operator
expansion, at the cost of introducing the R∗-operation [62] – see [208].
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For example, starting from QED in the limit of a large mass of the electron,
the power-suppressed contributions to the effective Lagrangian consisting of
the electromagnetic field start from operators of dimension eight, namely
(FµνFµν)2 and (Fµν F̃µν)2. At the one-loop level, only the diagram shown in
Fig. 5.5, generated by the first term in the expansion of exp

[
i
∫
dxLI(x)

]
in

(5.50), is needed for the evaluation of the corresponding coefficients. Eventu-
ally, one reproduces (5.47).

Fig. 5.5. One-loop diagram corresponding to dimen-
sion-eight operators in the Euler–Heisenberg effective La-
grangian

This is an example of a situation where an old-fashioned calculation turns
out to be more effective and provides, in the compact explicit form (5.46),
one-loop results for all operators in the effective Lagrangian. However, such
calculations, for a constant classical electromagnetic field, can hardly be rele-
vant, in higher loops, to effective Lagrangians corresponding to the quantum
electromagnetic potential, so that it is reasonable to turn our attention to the
evaluation of coefficients of individual operators in the effective Lagrangian
by the techniques presented earlier.

5.5 An Example: Decoupling of a Heavy Quark

Let us consider QCD with one heavy quark and nl = nf − 1 light quark
flavours, where the heavy part of the Lagrangian is ψ̄h(i /D − mh)ψh. The
resulting effective Lagrangian describes a low-energy theory with a decoupled
(‘integrated out’) heavy quark. In the leading order of the limit mh → ∞,
the construction of the effective Lagrangian at the three-loop level has been
performed in [55] as follows. The renormalization of the full QCD is given
by (2.91), and the renormalization of the resulting QCD with light flavours
is given by similar relations, where all the quantities related to the effective
theory will be indicated by primes. To describe the transition to the effective
theory, it is convenient to introduce decoupling (matching) constants at the
bare level, where they determine relations between bare quantities:

g
′B = ζBg g

B , m
′B
i = ζBmm

B
i , ξ

′B − 1 = ζB3 (ξ
B − 1) ,

ψ
′B
i =

√
ζB2 ψ

B
i , A

′B,a
ν =

√
ζB3 A

B,a
ν , c

′B,a =
√
ζ̃B3 c

B
a , (5.51)

where i denotes only the light flavours.
With these definitions, the couplings and the masses of the two theories

are connected by
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α′
s =

(
Zg
Z ′
g

ζBg

)2

αs ≡ ζ2gαs , (5.52)

m′
i =

Zm
Z ′
m

ζBmmi ≡ ζmmi . (5.53)

Note that the bare decoupling constants are singular in ε, in contrast to the
renormalized decoupling constants ζg and ζm.

The bare decoupling constants are determined from the decoupling
(matching) relations between the 1PI Green functions of the full and effective
theories. Let Σ(p) = � pΣV (p2) + mΣS(p2) be the light-quark propagator (a
1PI Green function of two light-quark fields). The decoupling relation for the
massless propagator then takes the form

i
�p[1 +ΣB

V (p2)]
=

1
ζB2

i
�p[1 +Σ′BV (p2)]

. (5.54)

In the limit mh → ∞, this relation is written at the point p = 0, where
Σ

′B
V (p2) vanishes because it involves massless tadpole integrals. This proce-

dure, of course, reproduces the action of the projector operators present in
(5.49) and (5.50). Therefore,

ζB2 = 1 +ΣB
V (0) . (5.55)

In a similar way, other expressions for the decoupling constants can be ob-
tained [55]:

ζBm =
1−ΣB

S (0)
1 +ΣB

V (0)
, ζB3 = 1 +ΠB

G(0) , (5.56)

ζ̃B3 = 1 +ΠB
c (0) , ζBg =

1 + ΓB
Gc̄c(0, 0)

ζ̃B3
√
ζB3

, (5.57)

where ΠG(p2) and Πc(p2) are the gluon and ghost vacuum polarizations,
respectively, and ΓB

Gc̄c(p, k) is defined through the 1PI part of the amputated
gluon–ghost–ghost Green function. Observe that only heavy diagrams, i.e.
those involving a heavy quark loop, contribute to these relations.

Thus the calculation, at the two- and three-loop levels, reduces to the
evaluation of two- and three-loop vacuum diagrams. For example, the only
two-loop diagram contributing to ζm is shown in Fig. 5.6. The three-loop
bubbles can be evaluated by the program MATAD [224], which is based on
an algorithm described in [37].

Fig. 5.6. Two-loop diagram contributing to ζm
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After taking into account the QCD renormalization constants Zm and
Zg (which are known up to the three-loop level [197, 49, 236]), the follow-
ing results for the three-loop decoupling constants ζg and ζm have been ob-
tained [55]:

ζm = 1 +
(αs
π

)2( 89
432

− 5
36

ln
µ2

m2
h

+
1
12

ln2
µ2

m2
h

)

+
(αs
π

)3 [2951
2916

− 407
864

ζ(3) +
5
4
ζ(4)− 1

36
B4

+
(
− 311
2592

− 5
6
ζ(3)

)
ln
µ2

m2
h

+
175
432

ln2
µ2

m2
h

+
29
216

ln3
µ2

m2
h

+ nl

(
1327
11664

− 2
27
ζ(3)− 53

432
ln
µ2

m2
h

− 1
108

ln3
µ2

m2
h

)]
, (5.58)

where B4 = 16Li4 (1/2)− (13/2)ζ(4)− 4ζ(2) ln2 2+ (2/3) ln4 2, and αs is the
coupling of the full theory with nf flavours at the scale µ. The two-loop part
of this result has been obtained in [239, 20].

Furthermore [55, 54],

ζ2g = 1 +
αs
π

(
−1
6
ln
µ2

m2
h

)
+
(αs
π

)2(11
72

− 11
24

ln
µ2

m2
h

+
1
36

ln2
µ2

m2
h

)

+
(αs
π

)3 [564731
124416

− 82043
27648

ζ(3)− 955
576

ln
µ2

m2
h

+
53
576

ln2
µ2

m2
h

− 1
216

ln3
µ2

m2
h

+ nl

(
− 2633
31104

+
67
576

ln
µ2

m2
h

− 1
36

ln2
µ2

m2
h

)]
. (5.59)

The two-loop part of this result agrees with [162].
These results for the decoupling constants have been used to derive low-

energy theorems for the ggH and q̄qH interactions [55], by expressing ef-
fective couplings of the Higgs boson to gluons and light quarks through the
decoupling constants ζg and ζm.

An example of an effective Lagrangian with power suppressed terms is
given by the same situation with the heavy quark decoupled. In the one-loop
approximation, one can use (5.43) and (5.50). The dimension-six correction
to the effective light QCD Lagrangian comes from the diagram of Fig. 5.7 and
is related to the operator ∇ab

ν G
aµν∇ab′

ν′ Gb
′ν′
µ , where the covariant derivative

∇ab
ν is given by (4.73). The corresponding projector can be chosen (at least in

the given one-loop approximation) to be proportional to gµν✷q, where q is the

Fig. 5.7. One-loop diagram contributing to the dimen-
sion-six term in the effective QCD Lagrangian
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external momentum of Fig. 5.7 and µ and ν are external vector indices. After
the calculation of the coefficient of this operator, one can use the equation of
motion, ∇ab

ν G
b,µν = −gψ̄γµtaψ, to transform to four-fermion operators. The

well-known result is (see, e.g., [184])

− α2s
15m2

h

ψ̄γµtaψ ψ̄γµt
aψ . (5.60)

The operator expansion in inverse powers of the heavy masses can be
performed not only for the S-matrix elements with light external lines but also
for light composite fields and their products. For example, the contribution
of operators of dimension four and six to the heavy-mass expansion of the
light vector current takes the form [48]

ψ̄γµψ ∼ ψ̄′γµψ′ +
(αs
π

)2( 1
135

ln
µ2

m2
h

− 56
2025

)
✷(ψ̄′γµψ′)

m2
h

+ . . . . (5.61)

Note that the contribution of the dimension six operators to the right-hand
side of (5.61) is in fact renormalization group invariant because the presence
of the extra term (5.60) in the effective QCD Lagrangian forces the vector
current to have a non-zero anomalous dimension:

µ2
d

dµ2
ψ̄γµψ = − 1

135

(αs
π

)2 ✷(ψ̄γµψ)
m2

h

. (5.62)



6 Threshold Expansion.

One Heavy Mass in the Threshold

In this and the next chapter, we investigate asymptotic expansions of Feyn-
man integrals near threshold, i.e. when an external momentum squared tends
to a threshold value, and their operator analogues. This chapter deals with
the case where only one particle with a heavy mass contributes to the thresh-
old. As is well known, thresholds are located at q2 = (

∑
mi)

2, where q is the
sum of the external momenta flowing through a cut in a diagram, and the
mi are the masses of the lines in the cut. We shall consider two kinds of such
threshold limits:

(A) The external momentum is on the mass shell corresponding to the heavy
mass M , and there is another mass m (or several masses) which is (are)
small. The limit is m/M → 0.

(B) The masses in the diagram are either heavy or zero. The threshold is com-
posed of one heavy mass and some zero masses. The external momentum
squared tends to its threshold value.

Limit (B) can be also considered as the on-shell limit, because the mass
shell and the threshold coincide. We prefer to use the variant given above
because of a similarity to Limit (A). For Limit (B), we shall keep in mind the
situation where one of the quarks is much heavier than all the other quarks.
In Chap. 7, we shall then consider the threshold expansion for thresholds
generated by quarks with non-zero masses.
We follow the strategy of expansion by regions. After studying typical

one-loop examples that show what regions are relevant to the limits under
consideration, we formulate general prescriptions in Sect. 6.2, where we also
use the language of subgraphs for Limit (A). Typical two-loop examples for
both threshold limits are then presented in Sect. 6.3. A typical phenomenolog-
ical application of the expansion of diagrams in Limit (A), connected with the
calculation of the muon anomalous magnetic moment in QED, is presented
in Sect. 6.4. Finally, in Sect. 6.5, we describe how Limit (B) leads, at the
operator level, to the Heavy Quark Effective Theory (HQET) [183, 174, 132].

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 115–133 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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6.1 One-Loop Examples

Let us consider first an example of a one-loop diagram with two masses, m
and M , in the threshold, with the external momentum on the mass shell
q2 =M2.

Fig. 6.1. One-loop propagator on-shell diagram with a
small mass m and a large mass M

Example 6.1. The on-shell diagram of Fig. 6.1 with q2 =M2, in Limit (A).
The position of the threshold, (M + m)2, and the external momentum

squared, M2, tend to each other in the limit. It is reasonable to let the
external momentum flow through the heavy line when the Feynman integral
takes the form

F6.1(M2,m2; d) =
∫

ddk
[(k − q)2 −M2](k2 −m2)

≡
∫

ddk
(k2 − 2q ·k)(k2 −m2)

. (6.1)

Before expanding this integral in the limit m2 � q2 = M2, let us observe
that in the general case, where m2 � q2 ∼ M2 and m2 � |q2 − M2|,
we could safely apply (5.10). The expansion would consist of contributions
from two subgraphs. The graph itself would generate the Taylor expansion
of 1/(k2 −m2) in m2, and the subgraph consisting of the line with mass M
would generate a Taylor expansion of its propagator in the loop momentum k
of the whole graph, which is, by definition, considered small. The leading
contribution from the latter subgraph is

1
q2 −M2

∫
ddk

k2 −m2
.

In our on-shell example, we can again write down a similar contribution
from the whole graph. However, we cannot write down the contribution of the
above subgraph because, now, q2−M2 = 0 so that the propagator 1/(k2−2q·k)
cannot be expanded into a Taylor series in k.
However, another formulation of the large-mass expansion, in the language

of regions, admits a straightforward generalization to the on-shell case. The
contribution from the whole subgraph is now interpreted as the contribution
from the region of large loop momenta. Let us use the word ‘hard’ instead of
‘large’ from now on. So, the hard contribution to the expansion is obtained
as a Taylor expansion of the propagator with mass m at m = 0:
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F
(h)
6.1 =

∞∑
n=0

(m2)n
∫

ddk
(k2 − 2q ·k)(k2)n+1

. (6.2)

Evaluating this integral by means of (A.13), we obtain

F
(h)
6.1 = iπ

d/2(M2)−ε
∞∑
n=0

Γ (n+ ε)Γ (−2n− 2ε+ 1)
Γ (−n− 2ε+ 2)

(
−m

2

M2

)n
. (6.3)

In the off-shell case, the contribution from the subgraph with the heavy
line is connected to the region of small loop momenta, k ∼ m. From now on
we shall use the word ‘soft’ instead of ‘small’. It turns out that in the on-
shell case, we again have to consider the region of soft loop momenta. In this
region, the propagator with massm is not expanded, while the terms k2 ∼ m2

and 2q ·k ∼
√
q2m in the second propagator are of different order, so that

the corresponding contribution generates a Taylor expansion of 1/(k2−2q·k)
in k2:

F
(s)
6.1 =

∞∑
n=0

(−1)n
∫
ddk

(k2)n

(−2q ·k)n+1(k2 −m2)
. (6.4)

We can again label this contribution in graph-theoretical language and at-
tribute it to the same subgraph consisting of the heavy line, as before. The
only difference is that instead of Taylor expanding the corresponding propa-
gator, we have to prescribe that we expand it into a Taylor series with respect
to k2.
In the above integral, (k2)n can be substituted by (m2)n because the fac-

tor k2 −m2 cancels the massive denominator and produces massless tadpole
integrals without scale. Calculating the above one-loop integral by means of
(A.3) gives

F
(s)
6.1 = iπ

d/2

√
π

2(m2)ε

∞∑
n=0

Γ ((n− 1)/2 + ε)
2nΓ (n/2 + 1)

(
m2

M2

)(n+1)/2

. (6.5)

In the sum of the two contributions, the artificial IR and UV poles are
cancelled, with the following result:

F6.1(M2,m2; d) ∼ iπd/2e−γEε
[
1
ε
+ 2− lnM2 +

1
2
m2

M2

(
ln
M2

m2
+ 2
)

+
1
2
m

M

∞∑
n=0

Γ (n+ 1/2)Γ (n− 1/2)
(2n)!

(m2/M2)n

−1
2
m4

M4

∞∑
n=0

(n+ 1)!n!
(2n+ 3)!

(m2/M2)n
]
. (6.6)

The pole in ε, which is present from the beginning, is of UV nature. This
expansion reproduces a known analytic result:
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F6.1(M2,m2; d)

= iπd/2e−γEε
(
1
ε
+ 2− lnM2 − x2 lnx− 2x

√
4− x2 arctan

√
2− x
2 + x

)
,

(6.7)

where x = m/M .
Now we turn to the second variant of tending to the threshold, when there

is one zero mass in the cut and the external momentum squared tends to its
threshold value, q2 → m2. The corresponding one-loop example is once again
Fig. 3.1 but in another limit:

Example 6.2. The Feynman diagram of Fig. 3.1 in Limit (B), i.e. q2 → m2.
It is again reasonable to use the previous routing of the external momen-

tum which is different from the choice used in Chap. 3 in the case of the
large-momentum limit. In particular, this makes explicit the dependence of
the integrand on the expansion parameter, y = m2 − q2, which goes to zero
at the threshold. In this case our Feynman integral takes the form

F6.2(q2, y; d) =
∫

ddk
k2[(q − k)2 −m2]2

≡
∫

ddk
k2(k2 − 2q ·k − y)2 . (6.8)

As in the previous chapters, we have introduced, in advance, dimensional
regularization for an initially finite quantity.
The situation is similar to the large-momentum or large-mass expansion:

if we expand the integrand into a Taylor series in y and do not do anything
else we obtain a wrong result, and the appearance of an IR divergence in
the zero-order term tells us about that. This is a typically pseudo-Euclidean
limit, so we shall use the strategy of expansion by regions. Thus, the hard
contribution is obtained by expanding the propagator 1/(k2−2q·k−y)2 in y.
The resulting terms can be evaluated by means of (A.13) in terms of gamma
functions and give

F
(h)
6.2 =

∫
ddk
k2

Ty
1

(k2 − 2q ·k − y)2 =
∫

ddk
k2(k2 − 2q ·k)2 + . . .

= iπd/2
1

(q2)1+ε

∞∑
n=0

(−1)nΓ (n+ 1 + ε)
n!(n+ 2ε)

(
y

q2

)n
. (6.9)

Let us now try the region of soft loop momentum, k ∼ √
y (i.e. where k is

of order one, in mass units). In this region, k2 is not expanded, while k2 − y
is of a higher order in y as compared with −2q ·k in k2 − 2q ·k − y. However,
we obtain an integral without scale, which we set to zero according to one of
the prescriptions of the strategy of expansion by regions:

F
(s)
6.2 =

∫
ddk

k2(−2q ·k)2 + . . . = 0 . (6.10)

The fact that this is an integral without scale can be seen immediately, be-
cause it is an integral of a homogeneous function, so that one can introduce
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spherical coordinates and the result is an integral of a pure power of the
radial variable.
It turns out that there is a missing contribution that is non-zero, unlike

the contribution from the region of soft k. We shall call the corresponding
region ultrasoft (us). This region is defined by the relation k ∼ y/

√
q2. In

this region, k2 is of order y2 while −2q·k− y is of order y, so that one has to
expand in k2. Starting from this region, we obtain

F
(us)
6.2 =

∫
ddk
k2

Tk2
1

(k2 − 2q ·k − y)2 =
∫

ddk
k2(−2q ·k − y)2 + . . .

= −iπd/2Γ (1− ε)Γ (2ε)
(q2)1−εy2ε

. (6.11)

Only the leading term survives, because, in the next terms, the factor k2

resulting from expansion cancels the massless propagator so that scaleless
integrals appear.
Observe that the remainder of the expansion obtained is of the form∫
ddk
k2

(
1− T N

y

) (
1− T N

k2

) 1
(k2 − 2q ·k − y)2 . (6.12)

To show its convergence and the desired asymptotic behaviour, one can apply
arguments similar to those used for the one-loop examples in Chaps. 3–5.
Note that the first term in (6.9) has an IR pole in ε, while (6.11) has a

UV pole. These poles are cancelled, and the resulting series reproduces the
known explicit result (2.58) at ε = 0:

iπd/2
1
q2

[
ln
y

q2
+

∞∑
n=1

(−1)n
n

(
y

q2

)n]
= iπ2 ln

(
1− q2/m2

)
q2

. (6.13)

We have worked here with the variables (q2, y). By a trivial process of
expanding powers of q2 in powers of m2 and y, all the contributions and the
final result can be written in terms of the variables (m2, y).
The next example is the same diagram without the dot:
Example 6.2a. The Feynman diagram of Fig. 3.1 with the first power of

the massive propagator, in Limit (B).
The Feynman integral is∫

ddk
k2(k2 − 2q ·k − y) . (6.14)

It is expanded in a similar way. The hard contribution is

iπd/2
1

(q2)ε

∞∑
n=0

(−1)nΓ (n+ ε)
n!(1− n− 2ε)

(
y

q2

)n
. (6.15)

The (us) contribution is
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iπd/2
Γ (1− ε)Γ (2ε− 1)
(q2)1−εy2ε−1

. (6.16)

The pole in the term with n = 0 in (6.15) is nothing but the UV pole that
is present from the beginning. The IR pole for n = 1 in (6.15) is cancelled by
the UV pole in (6.16).

6.2 General Prescriptions

Let us consider a general propagator-type diagram in one of the thresh-
old limits with one heavy line in the threshold. We suppose that there is
a path consisting of heavy lines connecting the two chosen external vertices.
In Limit (A), the two end points are on the mass shell, with q2 = M2, and
all the other masses mi (generally different) are of the same order and much
smaller thanM . In Limit (B), the external momentum squared, q2 = m2−y,
tends to the threshold value q2 = m2. Let us suppose that all the other
masses are zero. In both cases, it is natural to choose the loop momenta in
such a way that the external momentum q flows through the path consisting
of the heavy lines.
It turns out that we have already met all the kinds of regions relevant

to threshold regimes with one heavy mass in the threshold. So, to expand a
given diagram in these two limits, we have to consider the following regions
in Limit (A):

(h), k ∼M ,

(s), k ∼ m ;

and the following regions in Limit (B):

(h), k ∼
√
q2 ,

(us), k ∼ y/
√
q2 .

We then follow the other two prescriptions for expansion by regions.
The rules for Limit B have been formulated in the variables (q2, y). In

order to switch to the variables (m2, y) it is sufficient to expand powers of
q2 = m2 − y in y. In the leading order, this just means the replacement√
q2 → m.
In the case of diagrams with more than two endpoints, it is necessary

to characterize the external momenta squared. In particular, when the other
external momenta are off-shell, i.e.

(∑
i∈I Qi

)2 
= M2
j for any subset of in-

dices I different from the two vertices with momentum q, and hard, i.e. of
orderM , the above prescriptions can be extended straightforwardly. Observe
also that in this case, the prescriptions for the expansion in Limit (A) can
be described in graph-theoretical language [87]. These prescriptions resemble
very much the prescriptions for the off-shell large-mass limit based on (5.10).
The class of relevant (AI) subgraphs is the same:
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(a) in γ, there is a path between any pair of external vertices associated with
large external momenta Qi;

(b) γ contains all the lines with large masses;
(c) every connectivity component γj of the graph γ̂ obtained from γ by col-

lapsing all the external vertices with large external momenta to a point
is 1PI with respect to the lines with small masses.

Note that, generally, γ can be disconnected. One can distinguish the
connectivity component γ0 that contains external vertices with large mo-
menta. The corresponding subtraction operatorMγ turns out to be a product∏
iMγi of operators of Taylor expansion in certain momenta and masses. For

connectivity components γi other than γ0, the corresponding operator per-
forms Taylor expansion of the Feynman integral Fγi in its small masses and
external momenta. Now consider Mγ0 . The component γ0 can be naturally
represented as the union of its 1PI components and cut lines (after a cut line
is removed, the subgraph becomes disconnected; here these cut lines are of
course lines with large masses). By definition, Mγ0 is again factorized, and
the Taylor expansion of the 1PI components of γ0 is performed as in the case
of the c-components γi, i = 1, 2, . . . .
Finally, the action of the operator M on the cut lines with propagators

1/(k2−2q·k), where k is some loop momentum, is defined as Taylor expansion
in k2. If other external momenta flow through such a line, then this is just a
Taylor expansion in k.
Note that in all cases apart from the cut lines with propagators of the type

1/(k2 − 2q ·k), the action of the corresponding operatorM can be described
graphically (as for the off-shell limit) by contraction of the corresponding
subgraph to a point and insertion of the resulting polynomial into the reduced
vertex of the reduced graph.
In another typical case of Limit (A), where some external momentum

tends to the light cone, the situation becomes more complicated. The corre-
sponding rules for the expansion turn out to be of a mixed type, with hard
and soft regions typical of the threshold limit and with collinear regions that
are typical of the Sudakov limits and related limits studied in Chap. 8.
Limit (B) is very similar to Limit (A): now the ultrasoft regions play the

role of the soft regions. This similarity will be traced in the next section,
where we study two-loop examples. The corresponding prescriptions can also
be described similarly in graph-theoretical language. But let us now change
this language, using another labelling by subgraphs. In the language of re-
gions, the expansion of a given diagram is given in both limits by a sum of
contributions labelled by regions, i.e. in the present case, by decompositions
of the loop momenta into two subsets: hard and (ultra)soft. In other words,
these decompositions can be labelled by hard parts (with the rest of the loop
momenta being (ultra)soft), which are subgraphs consisting of 1PI connectiv-
ity components. To illustrate the difference between these graphical languages
consider Examples 6.1 and 6.2. The hard contributions to the expansion are
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naturally associated with the whole graph. In the first language, the contri-
bution from the expansion of the factor 1/(k2 − 2q ·k) (in Example 6.1) and
from the factor 1/(k2 − 2q ·k − y) (in Example 6.2) in k2 is labelled by the
subgraph consisting of the corresponding line. In the language that we are
now going to use, these expansions in k2 correspond to the empty subgraph
when the loop momentum is not hard, i.e. when it is soft (in Example 6.1)
or ultrasoft (in Example 6.2).
So, the asymptotic expansion in these limits can be written in the follow-

ing form:

FΓ ∼
∑
γ

Tk2FΓ/γ ◦MγFγ , (6.17)

where the operator Mγ performs Taylor expansion of the integrand of the
Feynman integral Fγ in its small external momenta, which are either loop
momenta of the whole graph or small momenta of the graph, i.e. all the
external momenta of Γ apart from the given large momentum q. By definition,
this operator reduces to a product of Taylor operators when the subgraph γ is
disconnected. Taylor expansion is also performed in the small masses and the
parameter y in Limits (A) and (B), respectively. The first Taylor operator Tk2

expands propagators with a dependence of the type 1/(k2−2q·k) (in the first
case) or 1/(k2−2q·k−y) (in the second case) in k2. Equation (6.17) resembles
very much the prescriptions (5.10) for the large-mass limit. The only new
feature is the expansion in k2, which is non-local, from the momentum space
point of view, in contrast to the Taylor expansions performed by the operators
Mγ .
We must realize, however, that (6.17) has not been completely written

in graph-theoretical language, because the definition of the operator Tk2 , in
contrast toMγ , is connected with some specific choice of the loop momenta.
A natural way to make the definition unrelated to the loop momenta is to
use the alpha representation. See Sect. 9.2 and Sect. 9.3 for some steps in
this direction.

6.3 Two-Loop Examples

Let us follow the strategy of expansion by regions, adjusted to the limits under
consideration. The next two examples are the master self-energy diagrams of
Fig. 6.2 with masses m and M in the limit m/M → 0.

Example 6.3. The on-shell (q2 = M2) master diagram of Fig. 6.2a with
two large masses M , two small masses m and a central line with zero mass,
in Limit (A).
Choosing the canonical routing of the external momentum through the

diagram, we have

F6.3(M2,m2; d)
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(a) (b)

Fig. 6.2a,b. Two-loop on-shell master diagrams in the threshold limit m/M → 0

=
∫ ∫

ddk ddl
(k2 −m2)(l2 −m2)(k2 − 2q ·k)(l2 − 2q ·l)(k − l)2 . (6.18)

The list of regions that contribute to the expansion of (6.18) consists of
(h–h), (h–s), (s–h) and (s–s). Any term of the hard contribution reduces to
one of the following family of on-shell integrals:

Jon,1(a1, . . . , a5)

=
∫ ∫

ddk ddl
(k2)a1(k2 − 2q ·k)a2(l2 − 2q ·l)a3(l2)a4 [(k − l)2]a5

. (6.19)

An algorithm for the analytic evaluation of general integrals with integer
powers of the propagators, based on IBP, has been developed in [129, 40, 37,
114]. The leading (h–h) contribution is given by [37]

Jon,1(1, . . . , 1) =

(
iπd/2e−γEε

)2
3q2

[
π2

(
1
2ε
+ 1− ln q2

)
+ 6ζ(3)

]
. (6.20)

where the result is written up to the finite part in ε.
The two equal (h–s) and (s–h) contributions can be recursively evaluated

by means of (A.18) and (A.23), in every order of expansion, in terms of
gamma functions for general ε. The leading term in this series starts from
the order m/M3:

F
(s−h)
6.3 (M2,m2; d) = −

(
iπd/2

)2 √
πΓ (ε− 1/2)Γ (ε)m1−2ε

4(1 + 2ε)M3+2ε
+ . . . . (6.21)

The evaluation of the (s–s) contribution, with Taylor expansion of the
heavy propagators in k2 and l2, requires a knowledge of the following family
of integrals:∫ ∫

ddk ddl
(−2q ·k)a1(k2 −m2)a2(−2q ·l)a3(l2 −m2)a4 [(k − l)2]a5

. (6.22)

These integrals can be evaluated using IBP, which provides the following
recurrence relation:

d− a1 − a2 − 2a5 + a11+3− + a22+(4− − 5−) = 0 (6.23)
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and the corresponding symmetrical relation. The boundary integrals, with
a2, a4 or a5 equal to zero, turn out to be recursively one-loop and can be
easily evaluated in terms of gamma functions by means of (A.22) and (A.25).
The boundary two-loop integral with a1 = a3 = 0 can be evaluated by means
of (A.38).
Combining the leading means of (h–h) and (s–s) terms, we see that the

poles are cancelled, and we obtain the leading order of expansion. At ε = 0,
this is

F6.3(M2,m2; 4) ∼
(
iπ2
)2

M2

[
π2

(
1
3
ln
m2

M2
+ ln 2

)
+
3
2
ζ(3)

]
. (6.24)

The next diagram possesses not only two-particle cuts, q2 = (M+m)2, but
also a three-particle cut at q2 = (M + 2m)2. Nevertheless, no complications
arise and this diagram can be expanded in the limit m/M → 0 by the same
method [87].

Example 6.4. The on-shell (q2 = M2) master diagram of Fig. 6.2b with
three large masses M and two small masses m, in Limit (A).
The Feynman integral is written as

F6.4(M2,m2; d) =
∫ ∫

ddk ddl
(k2 −m2)(l2 −m2)(k2 − 2q ·k)

× 1
(l2 − 2q ·l)[(k + l)2 − 2(q ·k + q ·l)] . (6.25)

We have the same list of regions as in the previous example: (h–h), (h–
s)=(s–h) and (s–s). The evaluation of the hard contribution reduces to the
evaluation of the following on-shell integrals:

Jon,2(a1, . . . , a5) =
∫ ∫

ddk ddl
(k2)a1(k2 − 2q ·k)a2

× 1
(l2 − 2q ·l)a3(l2)a4 [(k + l)2 − 2(q ·k + q ·l)]a5

. (6.26)

For these integrals, an analytic algorithm based on IBP has been developed
in [129, 40, 37, 114].
The leading term of the whole expansion reduces [36] to

Jon,2(1, . . . , 1) =

(
iπ2
)2

q2

(
3
2
ζ(3)− π2 ln 2

)
+O(ε) . (6.27)

The (h–s) contribution equals∫
ddl

l2 −m2
Tl2

1
l2 − 2q ·l

∫
ddk

k2 − 2q ·kTm2
1

k2 −m2

×Tl
1

(k + l)2 + 2q ·(k + l)
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=
∞∑

j1,j2,j3=0

(−1)j1m2(j1+j2)

j3∑
n=0

∫
ddl

(m2 − 2q ·l)j3−n
(l2 −m2)(−2q ·l)j1+1

(
j3
n

)

×
∫
ddk

(2k·l)n
(k2)j2+1(k2 − 2q ·k)j3+2

. (6.28)

The factors l2 in the numerator have been substituted by m2 because, when-
ever l2 −m2 appears, it cancels the corresponding factor in the denominator
and we obtain a massless tadpole integral, which vanishes. The calculation
of the two one-loop integrals in (6.28) can be performed straightforwardly
by means of (A.23) and (A.18). The leading contribution from the (h–s) and
(s–h) regions is

(
iπd/2

)2 √
πΓ (ε− 1/2)Γ (ε) m

1−2ε

2M3+2ε
. (6.29)

The (s–s) contribution is∫ ∫
ddk ddl

(k2 −m2)(l2 −m2)

× Tκ
1

(κk2 − 2q ·k)[κ(k + l)2 − 2q ·(k + l)](κl2 − 2q ·l)

∣∣∣∣
κ=1

≡
∞∑

j1,j2,j3=0

∫ ∫
ddk ddl

(k2 −m2)(l2 −m2)

×
(−m2)j1+j2

[
−(k + l)2

]j3
(−2q ·k)j1+1[−2q ·(k + l)]j3+1(−2q ·l)j2+1

. (6.30)

The problem therefore reduces to the evaluation of the following family of
integrals:

Jss(a1, a2, a3, a4, a5)

=
∫ ∫

ddk ddl (k·l)a5

(k2 −m2)a1(l2 −m2)a2(2q ·k + i0)a3(2q ·k + 2q ·l+ i0)a4
.

(6.31)

An algorithm for evaluating these integrals based on IBP has been presented
in [87]. After reducing the indices by use of recurrence relations, an explicit
result valid for general ε in the following specific case was used there:

Jss(1, 1, 0, a, 0) = −
(
2m2−2επ5/2−ε

Γ (3/2− ε)

)2
21−2ε

(−4Mm)a
cos (πε+ πa/2)

cos(πε)

×B
(
3
2
− ε, a

2
− 1 + ε

)
B

(
a

2
− 2 + 2ε,−a

2
+
3
2
− ε
)
, (6.32)

where B(a, b) = Γ (a)Γ (b)/Γ (a+ b) is the second Euler integral.
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The leading (s–s) contribution is

−
(
iπd/2

)2 √
πΓ (ε− 1/2)Γ (ε)m

1−4ε

2M3
. (6.33)

The first two leading terms of the expansion whenm/M → 0 are therefore

F6.4(M2,m2; 4) ∼
(
iπ2
)2

M2

(
3
2
ζ(3)− π2 ln 2− πm

M
ln
m2

M2

)
+ . . . . (6.34)

As was demonstrated in [87] by evaluating the first 18 terms, the expansion
converges very well, at least up to m/M = 0.5.
We now turn to the second type of threshold regime, with one non-zero

mass in the threshold.
Example 6.5. The Feynman diagram of Fig. 6.3a in Limit (B).

(a) (b)

Fig. 6.3a,b. Two-loop master diagrams in the threshold limit q2 → m2

With the canonical routing of the external momentum through heavy
lines, we have

F6.5(q2, y; d) =
∫ ∫

ddk ddl
k2(k2 − 2q ·k − y)l2(l2 − 2q ·l− y)(k − l)2 , (6.35)

where again y = m2 − q2.
The non-zero contributions are generated by the (h–h), (h–us), (us–h)

and (us–us) regions. Any term of the hard contribution can be expressed in
terms of the on-shell integrals (6.19), with the leading term given again by
(6.20).
The equal (us–h) and (h–us) contributions can easily be evaluated in every

order of expansion by use of (A.16) and (A.25). The leading term starts from
the NLO of the whole expansion:

F
(us−h)
6.5 (q2, y; d) = −

(
iπd/2

)2
Γ (1− ε)Γ (ε)Γ (2ε− 1)y1−2ε

(1 + 2ε)(q2)2
. (6.36)

The evaluation of the (us–us) contribution generated by Taylor expansion
of the heavy propagators in k2 and l2 requires a knowledge of the following
family of integrals:



6.3 Two-Loop Examples 127

∫ ∫
ddk ddl

(−2q ·k − y)a1(k2)a2(−2q ·l− y)a3(l2)a4 [(k − l)2]a5
. (6.37)

These integrals can be evaluated1 [41] using IBP, which provides exactly the
same relation (6.23) as in the case of the integrals (6.22). The boundary
integrals, with a3, a4 or a5 equal to zero, turn out to be recursively one-loop
and can easily be evaluated in terms of gamma functions by means of (A.7),
(A.16) and (A.25).
Combining the (h–h) and (us–us) terms, we see that the poles are can-

celled, and we obtain the leading order of expansion as follows:

F6.5(q2, y; d) ∼
(
iπ2
)2

q2

(
2
3
π2 ln

y

q2
+ 6ζ(3)

)
+ . . . . (6.38)

Finally, we consider one more example.
Example 6.6. The Feynman diagram of Fig. 6.3b in Limit (B).
With the canonical routing of the external momentum, the Feynman in-

tegral takes the form

F6.6(q2, y; d) =
∫ ∫

ddk ddl
k2(k2 − 2q ·k − y)l2(l2 − 2q ·l− y)

× 1
(k + l)2 − 2(q ·k + q ·l)− y . (6.39)

We are again left with the (h–h), (h–us), (us–h) and (us–us) contributions.
The hard contribution can be expressed in terms of the integrals (6.26),
with the leading term again given by (6.27). The equal (us–h) and (h–us)
contributions can be evaluated by means of (A.13) and (A.25). The leading
term is

F
(us−h)
6.6 (q2, y; d) =

(
iπd/2

)2

Γ (1− ε)Γ (ε)Γ (2ε− 1)y
1−2ε

(q2)2
. (6.40)

The (us–us) contribution is obtained by expanding the three heavy prop-
agators in k2, l2 and (k + l)2. To evaluate the corresponding integrals which
are typical of HQET, we first get rid of one of the three linear propagators
using the identity

1 =
1
y
[(−2q ·k − 2q ·l− y)− (−2q ·k − y)− (−2q ·l− y)] .

Then (A.26) is applied, with the results in terms of gamma functions.
Combining the first two leading (h–h) terms and the leading terms for the

other contributions, we arrive at the following first two orders of expansion:

1Even in the case of three loops, similar integrals, which are typical of the
HQET, have been evaluated by means of IBP recurrence relations – see [131].
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F6.6(q2, y; d) ∼
(
iπ2
)2

q2

[
3
2
ζ(3)− π2 ln 2

+
y

q2

(
ln2 y

q2
− 3 ln y

q2
+
π2

8
+ 3
)]
+ . . . . (6.41)

6.4 An Application:
the Muon Anomalous Magnetic Moment in QED

As an example of the application2 of the general prescriptions in the case of
Limit (A), let us consider the evaluation of the muon anomalous magnetic
moment at the three-loop level. The electron and muon anomalous magnetic
moments, al = (gl−2)/2, l = e, µ, have traditionally provided precision tests
of the Standard Model and stringent constraints on effects potentially con-
nected with ‘new physics’. From the point of view of multiloop calculations,
the muon anomalous magnetic moment is more challenging, because the exis-
tence of a lighter lepton (electron) enhances some diagrams by a logarithmic
factor of ln(mµ/me) � 5.33. As a result, diagrams with up to five photonic
and fermionic loops have to be included to match the present experimental
accuracy.3 The resulting QED prediction is expressed as a truncated series
in the fine-structure constant,

aQED
µ =

5∑
n=1

Cn

(α
π

)n
.

Let us consider Cvac.pol.
3 (e, τ), which is a part of the coefficient C3 in this

expansion. This part arises from the diagram of Fig. 6.4c, with electron and
tau lepton loops inserted into the photon propagator. Historically, this was
the last three-loop piece that was evaluated analytically [86]. Let us describe
how this was done.
Consider first the two two-loop diagrams shown in Figs. 6.4a,b, with p21,2 =

m2
µ. In fact the quantity that is needed is the first derivative with respect

to q at q = 0, when p1 = p + q/2 and p1 = p − q/2, so that, effectively, we
are dealing with propagator-type diagrams.
In the case of the tau lepton loop, the mass of this loop is much larger than

the muon mass; mµ ≡ m � M ≡ mτ . This is the large-mass limit typical
of Euclidean space. In the language of regions, to expand the corresponding
Feynman integral in this limit it is sufficient to consider contributions from
the (h–h) and (s–h) regions, where the loop momentum of the loop is indi-
cated by the second symbol, and the word ‘soft’ means k ∼ m = mµ. The
(h–h) contribution is obtained by Taylor expanding the integrand in the ex-
ternal momenta and the muon mass, and reduces to vacuum diagrams. The

2See [82, 6] for some other applications.
3Four loops are sufficient for ae: for a recent review see [81].
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q

p1

p2

(a)

q

p1

p2

(b)

�

�

�

e

(c)

Fig. 6.4a–c. Two- and three-loop graphs contributing to the muon anomalous
magnetic moment: (a) with a tau lepton loop, (b) with an electron loop, (c) with
a tau lepton loop and an electron loop

(s–h) contribution naturally factorizes and is given by the Taylor expansion
of the Feynman integral of the tau loop in its external momentum, inserted
into the photon line.
In the case of the graph of Fig. 6.4b with the electron loop, the mass of

this loop is much smaller than the muon mass; me ≡ m�M ≡ mµ. This is
nothing but our threshold Limit (A) (typical of pseudo-Euclidean space). Now
the muon mass is considered large rather than small, and a loop momentum is
called ‘soft’ if k ∼ m = me The regions that are relevant here are (h–h), (h–s)
and (s–s), where the loop momentum of the loop is again indicated by the
second symbol. The (h–h) contribution is now given by Taylor expanding the
integrand in the electron mass. The (h–s) contribution takes a factorized form
and reduces to electron vacuum bubbles. Finally, the (s–s) contribution is
typically Minkowskian and reduces to the expansion of the muon propagators
in k2, where k is the loop momentum flowing through these lines. Namely, one
needs [86] to calculate the following family of integrals with integer indices:

J(a1, a2) =
∫

ddk ddl
(k2)a1(−2p·k)a2(l2 −m2)[(k − l)2 −m2]

. (6.42)

Using Feynman parameters, these integrals can be evaluated in terms of
gamma functions for general ε.
These expansions of the two diagrams inmµ/mτ andme/mµ, respectively,

successfully reproduce the expansion of the known analytic result [102] (see
also a simpler form in [90]).
Analytic results for the three-loop diagram of Fig. 6.4c are not (yet?)

known. Within the semi-analytic approach based on expansion by regions,
this diagram has been expanded [86] up to the first three terms in mµ/mτ

and the first two terms in me/mµ. This is a problem with three scales, and
it is natural to consider the highest scale, mτ , as hard. Let us keep the word
‘soft’ for the middle scale, mµ, and characterize loop momenta of the order
of the lowest scale, k ∼ me, as ‘supersoft’ (ss). (We keep the word ‘ultrasoft’
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for the scale which is the square of the soft scale.) Let us now list the loop
momenta in the following order: the loop momenta of the τ lepton insertion,
the loop momentum flowing through the muon lines, and the loop momenta of
the electron insertion. The list of regions that generate non-zero contributions
in the given limit is

(h–h–h), (h–h–ss), (h–s–s), (h–s–ss), (h–ss–ss) .

The evaluation of the corresponding contributions is similar to the two-
loop case. In renormalized form, the contribution of Fig. 6.4c to the muon
anomalous magnetic moment, evaluated in an expansion in mµ/mτ and
me/mµ, is [86]

Cvac.pol.
3 (e, τ) =

m2
µ

m2
τ

(
4
135

ln
mµ

me
− 1
135

)
+
m4
µ

m4
τ

(
− 229213
12348000

+
π2

630

− 37
11025

ln
mτ

mµ
− 1
105

ln
mτ

mµ
ln
mτmµ

m2
e

+
3
4900

ln
mµ

me

)

+
m6
µ

m6
τ

(
− 1102961
75014100

+
4π2

2835
− 398
297675

ln
mτ

mµ
− 8
945

ln
mτ

mµ
ln
mτmµ

m2
e

− 524
297675

ln
mµ

me

)
+
2
15
m2
e

m2
τ

− 4π2

45
m3
e

m2
τmµ

. (6.43)

This result agrees with the numerical calculation of [160].
Another recent example of the use of the strategy of expansion by regions

for a limit related to those considered in this chapter can be found in [85],
where an expansion in the ratio of a small and a large mass was applied in
the framework of Non-Relativistic QCD (NRQCD). Spin-dependent and spin-
independent contributions to energy levels in simple atoms, such as hydrogen
or muonium, have been evaluated as expansions in the ratio of the mass of
the electron to that of the nucleus, m/M . A prescription for such expansions
has been given to all orders in m/M . The relevant regions turned out again
to be ‘hard’ and ‘soft’.

6.5 Threshold Expansion and HQET

If we are interested in processes with no heavy particles in the initial and
final states, we can use the large-mass off-shell limit and the corresponding
expansion, which leads, at the operator level, to a description of the theory by
an effective Lagrangian composed of the light fields, as explained in Chap. 5.
But if we want to study processes with external heavy particles, we need
another large-mass limit. It turns out that the threshold (on-shell) Limit (B)
leads straightforwardly, at the operator level, to the Heavy Quark Effective
Theory (HQET) [183, 174, 132], which is an effective theory designed to
reproduce QCD processes where the heavy quarks in the initial and final
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states are at energy scales much smaller than the mass of the heavy quark.
So it is supposed that one quark, with mass m, is much heavier than the
quarks of other flavours. For a heavy quark that stays almost at rest, the
four-momentum p = (p0,p) is such that |p|, |p0 − m| � m and the gluons
and the light quarks have smaller momenta, i.e. |ki|, |k0i| � m.
For the heavy-quark propagator in QCD, this means that

S(p) = i
/p+m

p2 −m2 + i0
= i

m(1 + γ0) + (p0 −m)γ0 − p·γ
2m(p0 −m) + (p0 −m)2 − p2 + i0

= i
1 + γ0

2
1

p0 −m+ i0
+O

(
1
m

)
. (6.44)

The leading term in the last line of (6.44) defines the HQET quark propaga-
tor, which is used in the corresponding Feynman rules in the leading order
in 1/m. The residual energy is denoted by ω = p0 −m.
So, the limit corresponding to HQET is nothing but the threshold

Limit (B). The parameter y ≡ m2 − p2 used for that limit is related to
ω as follows:

y = −2mω − ω2 , ω =
√
m2 − y −m = − y

2m
+O(y) .

In a manifestly covariant formulation, the four-momentum of the heavy
quark is written as p = mv + p̃, where vµ is the quark velocity, with v2 = 1.
The components of p̃ are considered small with respect to m. The covariant
HQET quark propagator generalizes the term in the last line in (6.44) and
takes the form

S̃(p) = i
1 + /v
2

1
p̃ · v . (6.45)

In order to see how the limit of HQET is performed in Feynman integrals,
consider now a quark propagator inserted into a diagram. Let us choose the
canonical routing of the external momentum of the heavy quark, p, through
a given heavy line, and let k be the sum of the loop momenta and other
(small) external momenta flowing through this line. We easily observe that
the quark QCD propagator reduces to the HQET quark propagator in the
leading order of expansion in y/m2,

S(p− k) = i /p− /k +m
(p− k)2 −m2

≡ i /p− /k +m
k2 − 2k·p− y

∼ i /p+m
−2k·p− y ∼ i 1 + /v

2
1

(p̃− k) · v = S̃(p− k) , (6.46)

if we expand it while thinking of the momentum k as ultrasoft. This means
that, in order to arrive at HQET diagrams starting from QCD, we have to
think about the region of ultrasoft loop momenta and consider, at the same
time, the other masses and external momenta to be of order y/m ∼ ω.
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The gluon propagator stays the same, and the QCD vertex factor igγµta

between the two factors (1 + /v)/2 corresponding to heavy-quark lines is re-
placed by igvµta. Thus the Feynman rules of the HQET are reproduced by
the pure ultrasoft contributions within the threshold (on-shell) Limit (B).
At the Lagrangian level, the transition to the HQETmeans that the quark

part of the QCD Lagrangian (2.15),∑
q̄i(i /D −mi)qi = Q̄(i /D −m)Q+

∑
light flavours

q̄i(i /D −mi)qi (6.47)

is replaced according to

Q̄(i /D −m)Q→ Q̃viv ·DQ̃v + · · · , (6.48)

where the static quark field Q̃v is a four-component spinor field satisfying the
relation /vQ̃v = Q̃v. This first term in the effective Lagrangian generates the
HQET quark propagator (6.45). To construct the HQET in the next orders
in the expansion in ω/m [183, 174, 132] one uses the standard strategy for
constructing an effective theory and writes down an effective Lagrangian
as a series in 1/m, by including in it all operators having the necessary
symmetries, with arbitrary (matching) coefficients, which are computed by
solving a system of equations that express the fact that the same results are
obtained for the HQET amplitudes and the corresponding QCD amplitudes
expanded at threshold.
The following are the operators of dimension four and five [99, 107] in the

HQET effective Lagrangian:

Q̃+iD0Q̃+
Ck
2m

Q̃+D2Q̃− Cm
2m

Q̃+B·σQ̃ , (6.49)

where B is the magnetic field and the σi are the Pauli matrices.
For simplicity, the non-covariant notation is used here. The two terms of

dimension five are the kinetic energy and the chromomagnetic interaction,
respectively. When dealing with the HQET, one uses the reparameterization
invariance [171], which is based on the fact that the velocity of the heavy
quark can be changed a little without changing the physical content of the
HQET. This property relates terms of different order in 1/m and, in partic-
ular, leads to the equation Ck = 1 to all orders of perturbation theory. The
matching coefficient Cm and the anomalous dimension of the chromomagnetic
operator have been calculated to two loops in [1, 79]. To do this, matching
conditions for on-shell scattering amplitudes in QCD (in an expansion in ω)
and in the HQET have been used in [79].
To arrive at the HQET, one can start from the general form (6.17) of the

asymptotic expansion in the threshold Limit (B). As in the case of the off-
shell large-momentum or large-mass limit, the factorMγFγ originating from
a hard contribution is a polynomial in the external momenta of γ inserted into
the reduced diagram FΓ/γ . This polynomial is a Taylor series in y ∼ −2mω
and other small parameters (light masses and small external momenta), i.e.
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it is given by formal Taylor expansion of the diagram γ at threshold (on-
shell). Therefore the hard contributions are exactly those on-shell diagrams
that participate in the matching calculations for the coefficients of the HQET
effective Lagrangian. On the other hand, the first factor on the right-hand
side of (6.17) determines a Feynman integral for FΓ/γ with the heavy-quark
propagators expanded in k2, i.e. written within the Feynman rules of the
HQET.
Thus, for the HQET, one needs either calculations of HQET diagrams or

calculations of on-shell QCD diagrams. We have already seen some techniques
for calculating these diagrams in Sects. 6.1 and 6.3: in the first case, the (us–
us–. . . –us) contributions are calculated and, in the second case, (h–h–. . . –h)
contributions in Limit (B).
The HQET is a well-established effective theory that has been success-

fully applied in practice – see, for example, [183, 175, 132, 174]. We should
realize that it has been developed by the standard ‘matching’ strategy for
constructing effective theories, without reference to expanding Feynman di-
agrams at threshold (on-shell). The transition to the HQET was performed
by a straightforward generalization of the construction of an effective the-
ory related to the off-shell large-momentum limit. Although the limit of the
HQET is specifically Minkowskian, the combinatorial structure is almost the
same as in the off-shell case. In particular, this is also a problem with two
scales. In the next chapter we shall turn our attention to the case of a thresh-
old expansion with at least two non-zero masses in the threshold, where the
structure of the expansion becomes much more complicated because this is
essentially a problem with three scales. We shall see that the diagrammatic
expansions help us very much to understand what happens at the operator
level.
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Two Masses in the Threshold

We continue to investigate expansion near threshold and now turn our atten-
tion to thresholds composed of at least two particles with non-zero masses. We
shall usually consider the case of two equal non-zero masses in the threshold,
so that we shall typically deal with expansion at q2 → 4m2. Guided by ex-
pansion by regions, we start with one-loop examples and a two-loop example,
which will help us to characterize all the relevant regions, i.e. hard, soft, po-
tential and ultrasoft, for the threshold expansion. Then general prescriptions
are formulated and subtle points about their application are explained. We
continue, in Sect. 7.3, with examples of two-loop diagrams for which analytic
results are unknown.

We then turn to an operator implementation of the threshold expansion.
The particles move slowly close to the threshold, so that a non-relativistic
description is naturally connected with this regime. For QCD, this means
a transition to Non-Relativistic QCD (NRQCD) [231, 164, 25] and, further,
to potential NRQCD [193, 17]. The complexity of the threshold expansion
can be seen from the presence of four characteristic regions and also of three
different scales in the problem: the mass of the heavy quark m, a typical
relative momentum mv and a typical kinetic energy mv2.

Finally, typical applications of the threshold expansion are briefly de-
scribed in Sects. 7.5 and 7.6: the two-loop correction to the leptonic decay
of quarkonium, with two-loop matching coefficients of the vector currents in
QCD and NRQCD used as an input, and the next-to-next-to-leading order
(NNLO) total cross-section for production of the top quark near threshold.

7.1 One-Loop Examples and a Two-Loop Example

Our first example in this chapter is the following.
Example 7.1. The Feynman diagram of Fig. 2.1 with equal non-zero

masses in the limit q2 → 4m2.
The Feynman integral is

F7.1(q2, y; d) =
∫

ddk
k2[(q − k)2 −m2]

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 135–164 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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q

q=2 + k

q=2� k

Fig. 7.1. One-loop propagator diagram with two non-zero
masses in the threshold

≡
∫

ddk
(k2 + q ·k − y)(k2 − q ·k − y)

, (7.1)

where the loop momentum is chosen in another way (see Fig. 7.1) in order to
make explicit the dependence of the propagators on the expansion parameter,
y = m2 − q2/4, of the problem. This will be our usual convention: in the case
of two equal non-zero masses in the threshold, to let half of the external
momentum flow through one of the massive lines and the other half of it
through the other massive line. So we have transformed to the new variables
(q2,m2) → (q2, y), which are more natural than the variables (m2, y).

Let us perform expansion by regions. The primary task is to identify all
relevant regions in the problem. The hard region always contributes to the
expansion in any limit. In this example, the hard region generates a ‘naive’
Taylor expansion of the integrand in y, where the integrals can be evaluated
by means of partial fractions and the tabulated formula (A.13):

F
(h)
7.1 =

∫
ddk Ty

1
(k2 + q ·k − y)(k2 − q ·k − y)

=
∫

ddk
(k2 + q ·k)(k2 − q ·k) + . . .

= iπd/2
(
4
q2

)ε ∞∑
n=0

Γ (n+ ε)
n!(1− 2ε− 2n)

(
−4y
q2

)n
. (7.2)

Observe now that, in contrast to the expansion considered in the previous
chapters, we have not generated new poles by this procedure. The pole in ε
is present only in the leading term on the right-hand side and is nothing but
the UV pole present from the beginning. Nevertheless, (7.2) is not the whole
result because this expansion procedure is really valid only in the hard region,
i.e. that of large k.

Let us look for other regions. The soft region region, k ∼ √
y, gives

F
(s)
7.1 =

∫
ddk

(q ·k + i0)(−q ·k + i0)
+ . . .

= −
∫

ddk
(q ·k + i0)(q ·k − i0)

+ . . . = 0 , (7.3)

because these are integrals without scale. Although the product in the in-
tegrand is, generally speaking, ill-defined because of pinching singularities,
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the presence of a scaleless integral in the components of k additional to the
linear combination q · k shows that the integral is zero, according to our
prescriptions.

The ultrasoft region, k ∼ y/
√

q2, also generates (for the same reason) a
zero contribution:∫

ddk
(q ·k − y + i0)(q ·k + y − i0)

+ . . . = 0 . (7.4)

In order to find the missing contribution, let us choose the frame q =
{q0,0} (keeping in mind the non-relativistic flavour of the problem). Al-
though the problem of the expansion has been stated in a completely Lorentz-
invariant way, its solution is greatly simplified by breaking down the Lorentz
invariance. We have

F7.1 =
∫

dk0 dd−1k
(k2 − k2

0 + q0k0 + y − i0)(k2 − k2
0 − q0k0 + y − i0)

. (7.5)

In any region other than the hard one, we have to suppose that some
component of k is small. It is easy to observe that we have no chance of
arriving at a non-zero contribution if we do not suppose that k0 is small.
When k0 is small, i.e. at least |k0| ≤

√
y, we can neglect k2

0 in comparison
with q0k0. Thus both propagators are expanded in k2

0 , and we obtain∫
dk0 dd−1k

(k2 + q0k0 + y − i0)(k2 − q0k0 + y − i0)
+ . . . . (7.6)

It turns out that this series is already composed of quantities that are ho-
mogeneous with respect to the expansion parameter, y. Each term can be
evaluated by, first, integrating over k0 using Cauchy’s theorem. To be consis-
tent we have to decide that, for any term arising from the Taylor expansion
in k2

0 , we shall close the integration contour in the same half-plane. Let this
be the upper half-plane, for definiteness. Observe that in this example and
other examples in this subsection, the results for the contributions of this
type do not depend on this choice. Note also that, starting from some order
of the expansion, the integrand does not vanish when k0 → ∞. Nevertheless,
we do not pay attention to this fact and all the resulting integrals are by
definition obtained by use of Cauchy’s theorem.

It turns out, however, that in this example, only the leading term of the
contribution (7.6) survives because, for any of the subsequent terms, the
resulting integrals in the vector component, k, are integrals without scale.
The leading term gives

πi√
q2

∫
dd−1k
k2 + y

= iπd/2Γ (ε− 1/2)
√

πy

q2
y−ε , (7.7)

where the spatial integral has been evaluated by means of the (d − 1)-
dimensional variant (with the replacement ε → ε+ 1/2) of (A.1).
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Let us now come back to (7.6) and remember that we supposed that
we had started from the region with small k0. We have to say something
about k. We do not want the combination k2 + q0k0 + y to be expanded
further because, otherwise, we shall arrive at zero scaleless integrals. This
requirement fixes absolutely the order of all the quantities involved, and we
arrive at the following characterization of this new region [18]:

potential (p), k0 ∼ y/
√

q2, k ∼ √
y . (7.8)

We call it ‘potential’ because it is connected with the Coulomb potential (see
Sect. 7.6).

Thus we have contributions from two regions, and the whole expansion of
the given diagram near threshold consists of (7.2) and

F
(p)
7.1 = iπd/2Γ (ε− 1/2)

√
πy

q2
y−ε . (7.9)

The sum of these two contributions successfully reproduces the known ana-
lytic result for the given diagram,

F7.1(q2, y; d) = iπd/2Γ (ε)y−ε 2F1

(
1
2
, ε;

3
2
;− q2

4y

)
, (7.10)

which can be obtained by means of Feynman parameters. By use of (A.54),
the right-hand side of (7.10) can be rewritten as a sum of two terms, exactly
corresponding to the hard and potential contributions (7.2) and (7.9).

The next example is the following.
Example 7.2. The Feynman diagram of Fig. 7.2 with two legs on the mass

shell, p2
1,2 = m2, and equal non-zero masses in the limit q2 → 4m2.

q

p1

p2

q=2� k

q=2 + k
Fig. 7.2. Triangle diagram with two non-zero masses in the
threshold

The Feynman integral is

F7.2(q2, y; d) =
∫

ddk
(k2 + q ·k − y)(k2 − q ·k − y)(k − p)2

, (7.11)

where q = p1 + p2, p = (p1 − p2)/2. We again have y = m2 − q2/4 → 0. We
choose a frame where q = (q0,0) and p1,2 = (p0,±p), p2 = −p2 = y.

The situation is quite similar to the previous diagram. The soft and ultra-
soft regions generate zero contributions because of the appearance of scaleless
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integrals. There are two non-zero contributions, generated by the hard and
potential regions. Each term of the (h) contribution obtained by Taylor ex-
pansion of the integrand in y and p,

F
(h)
7.2 =

∫
ddk

(k2 + q ·k)(k2 − q ·k)k2

= −iπd/2
(
4
q2

)1+ε
Γ (ε)

2(1 + 2ε)
+ . . . , (7.12)

can be evaluated by means of partial fractions and (A.13).
Each term of the (p) contribution,

F
(p)
7.2 = −

∫
dk0 dd−1k

(k2 − q0k0 + y − i0)(k2 + q0k0 + y − i0)(k− p)2
+ . . .

= iπd/2
y−ε√
q2y

√
πΓ (ε+ 1/2)

2ε
, (7.13)

can be evaluated by closing the integration contour over k0 in the upper
half-plane (as we have previously specified) and then evaluating (d − 1)-
dimensional integrals by means of Feynman parameters. As in the previous
example, only the leading term in the potential contribution is non-zero be-
cause, in the subsequent terms, all the resulting (d−1)-dimensional integrals
are scaleless.

One can check that the sum of the single potential term (7.13) and the
series (7.12) originating from the hard contribution equals the whole analytic
result for the given diagram, which can be evaluated by means of Feynman
parameters, for example:

F7.2(q2, y; d) = iπd/2
Γ (ε)
2y1+ε 2F1

(
1
2
, 1 + ε;

3
2
;− q2

4y

)

= iπd/2
(
4
q2

)1+ε
[√

πq2

y

(
q2

y

)ε
Γ (ε+ 1/2)
23+2εε

− Γ (ε)
2(1 + 2ε)

∞∑
n=0

Γ (1 + ε+ n)
Γ (1 + ε)

1 + 2ε
(1 + 2ε+ 2n)n!

(
−4y
q2

)n ]
. (7.14)

We now turn to the scalar scattering box diagram in the limit of small
relative momentum, where we encounter a non-zero contribution from the
soft region, k0 ∼ √

y, k ∼ √
y.

Example 7.3. The master box diagram of Fig. 7.3 with all four legs on
the mass shell, p2

i = m2, i = 1, 2, 3, 4, and equal non-zero masses in the limit
t ∼ y = m2 − q2/4 → 0.

Here t = (p1 − p3)2 is the Mandelstam variable. The Feynman integral is
written as

F7.3(q2, y, t; d) =
∫

ddk
[(k + p)2 + q ·k − y][(k + p)2 − q ·k − y]k2(k − r)
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p1 p3

p2 p4

q=2 + p+ k

q=2� p� k

Fig. 7.3. Box diagram with two non-zero masses in
the threshold

≡
∫

ddk
[k2

0 − (k+ p)2 + q0k0 − y][k2
0 − (k+ p)2 − q0k0 − y]

× 1
(k2

0 − k2)[k2
0 − (k − r)2]

, (7.15)

where r = p′−p, q = p1+p2 = p3+p4, p = (p1−p2)/2 and p′ = (p3−p4)/2.
We choose a frame where q = (q0,0), p = (p0,p) and p′ = (p0,p′). We have
p2 = (p′)2 = y, p·p′ = y − t/2 and r2 = t.

Let us confine ourselves to terms up to order y0, and let us consider
contributions generated by the regions characterized above. The hard region
generates an expansion of the integrand in (7.15) in p, p′ and y:

F
(h)
7.3 =

∫
ddk

(k2 + q ·k)(k2 − q ·k)(k2)2
+ . . . =

1
(q2)2

(
−8
3

)
+ . . . . (7.16)

Every integral in the hard contribution can be evaluated by means of partial
fractions and also by (A.13) and (A.14). We have, however, kept only the
finite part in ε.

The potential contribution is generated by Taylor expansion of all the
propagators in k2

0 . This contribution is evaluated by closing the integra-
tion contour over k0 in the upper half-plane and then evaluating (d − 1)-
dimensional integrals by means of Feynman parameters, as an expansion
in ε:

F
(p)
7.3 =

∫
dk0 dd−1k

(k2 − q0k0 + y − i0)(k2 + q0k0 + y − i0)k2(k − p)2

=
iπd/2+1

(q2)1/2+εt
√
y

(
1
ε
− ln(−t/q2)

)
+O(

√
y,
√
t) . (7.17)

Now not only the leading term gives a non-zero result. Nevertheless, at ε = 0,
the subleading terms vanish. Observe that starting from some order, the po-
tential contribution involves terms that do not decrease as k → ±∞ and are
just polynomials in k0. According to our convention, we set such integrals
to zero. Let us stress that these integrals are not regularized at all by di-
mensional regularization, which in fact regularizes only integration over the
vector components.
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The soft contribution

F
(s)
7.3 =

∫
ddk

(q0k0 + i0)(−q0k0 + i0)k2(k − r)2
+ . . .

= − 1
q2

∫
ddk

(k0 + i0)(k0 − i0)k2(k − r)2
+ . . . (7.18)

contains pinching singularities. In the language of distribution theory [124],
products of the functionals (x+ i0)λ1 and (x− i0)λ2 are generally ill-defined.
However, the product involved here can be defined as

1
(k0 + i0)(k0 − i0)

→ 1
(k0 ± i0)2

,

or, according to the principal-value prescription. These three variants differ
by terms proportional to δ′(k0). Since the rest of the integrand is an even
function of k0, no ambiguity arises. For definiteness, we can suppose that we
have defined this product with the +i0 prescription.

Each integral resulting from (7.18) can be evaluated by means of (A.27).
We obtain

F
(s)
7.3 =

4iπd/2e−γEε

(q2)2+ε

[(
−1
ε
+ ln(−t/q2)

)(
q2

t
− 4y

3t

)
+

2
3
+O(y, t)

]
.

(7.19)

Finally, the ultrasoft contribution

F
(us)
7.3 = −1

t

∫
ddk

(q0k0 + i0)(q0k0 − i0)k2
+ . . . = 0 (7.20)

is zero because it consists of scaleless integrals.
The sum of the (h), (s) and (p) contributions reproduces a very simple

exact result (up to a finite part in ε)

F7.3 =
2iπd/2e−γEε

(q2)1/2+εt
√
y

(π
2
− arctan

√
4y/q2

)(1
ε
− ln(−t/q2)

)
. (7.21)

This result can be derived, for example, using the following two-parameter
Mellin–Barnes representation, obtained by use of Feynman parameters:

F7.3(q2, y; d) =
iπd/2√

πΓ (−2ε)(q2)2+ε
1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz dz′

(
4y
q2

)z

×
(
−t

4y

)z′
Γ (2 + ε+ z)
3/2 + ε+ z

Γ (1 + z′)2Γ (−1/2− ε− z′)

×Γ (−1− ε− z′)Γ (−z + z′)Γ (−z′) . (7.22)

Since we are interested only in terms up to the finite part in ε, and the
overall factor 1/Γ (−2ε) contains a power of ε, we need to pick up only the
singular terms of the integral, and the only way to generate them is to take
the (negative) residue at z′ = −1−ε. After that, the resulting integral over z
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can be evaluated by expanding in ε and taking the sum of the residues which
are to the right of the integration contour, and (7.21) is reproduced.1

The representation (7.22) can be also used for picking up individual con-
tributions to the expansion. The terms of the asymptotic behaviour when
t ∼ y → 0 are obtained by shifting the integration contour over z to the
right and taking residues at the poles of the gamma functions with a (−z)
dependence. (The pole 1/(3/2+ ε+ z) is of this type because it has been ob-
tained from such a gamma function.) The pole at z = −3/2− ε corresponds
to the leading term of the potential contribution. All other poles in z appear
because of integration over z′. The hard contribution is generated by taking
residues of Γ (−z′) and then of the resulting gamma functions Γ (−z), etc.
The pole at z = −1/2− ε appears after taking the residue at z′ = −1/2− ε.
After taking the residue at this pole, we obtain the sum of the leading soft
and subleading potential contributions.

Here we would like again to compare expansion by (local) methods such
as Mellin–Barnes integrals and the (global) method of expansion by regions:
such a Mellin–Barnes representation must be individually derived for each
specific diagram, while the rules for expanding by regions for the given limit
have been formulated; the application of these rules requires one only to
consider various regions and to perform simple power counting, and analytic
manipulations and arguments are not used.

Let us now modify the previous diagram a little.
Example 7.3a. The box diagram of Fig. 7.3 as in Example 7.3 but with

the second power of the propagator of the lower line:

F7.3a(q2, y; d) =
∫

ddk
[(k + p)2 + q ·k − y]2[(k + p)2 − q ·k − y]k2(k − r)2

≡
∫

ddk
[k2

0 − (k+ p)2 + q0k0 − y]2[k2
0 − (k+ p)2 − q0k0 − y]

× 1
(k2

0 − k2)(k2
0 − (k − r)2)

. (7.23)

By considering only the first singular terms of the expansion in y and t,
we intend to illustrate some subtle points in the definition of the soft and
potential contributions. Therefore we ignore the hard contribution, which
starts from order y0 as usual. The ultrasoft contribution is again zero here.

The potential contribution, obtained by expanding all the propagators
in k2

0 ,

F
(p)
7.3a = −

∫
ddk

[(k+ p)2 − q0k0 + y − i0]2[(k+ p)2 + q0k0 + y − i0]

1 This result obtained by expansion in ε also follows from a similar result [14]
obtained by introducing a non-zero massM into the massless lines, using a ‘folklore’
correspondence rule lnM2 → 1/[εΓ (1− ε)], which, presumably works in one loop.
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× 1
k2(k − r)2

+ . . . , (7.24)

is dominant and starts from order −5/2, measured in powers of the small
expansion parameters, y and t, of the problem. When evaluating this contri-
bution by means of integration over k0 using Cauchy’s theorem, we encounter
an obstacle because, in contrast to the previous example with powers of prop-
agators equal to one, the result appears ambiguous.

Nevertheless, the leading potential contribution is unambiguous and can
be evaluated as an expansion in ε, up to the finite part:

F
(p), LO
7.3a = −iπd/2e−γEε

√
π

4
√

q2ty3/2

(
1
ε
+ 2− ln(−t)

)
. (7.25)

However, in the calculation of the subleading potential contribution, terms
that are logarithmically divergent at k0 → ±∞, such as 1/[(k+p)2 − q0k0 +
y − i0], appear. If these terms are treated straightforwardly using Cauchy’s
theorem (i.e. without paying attention to unsafe behaviour at large values of
k0), we obtain different results when the integration contour over k0 is closed
in the upper or the lower half-plane.

Further, the soft contribution

F
(s)
7.3a =

∫
ddk

(q0k0 + i0)2(−q0k0 + i0)k2(k − r)2
+ . . .

= − 1
(q2)3/2

∫
ddk

(k0 + i0)2(k0 − i0)k2(k − r)2
+ . . . (7.26)

turns out also to be ill-defined. In the present case, the following two variants

1
(k0 + i0)2(k0 − i0)

→ 1
(k0 ± i0)3

of the definition of the product involved will lead to results with opposite
signs.

Thus the potential and soft contributions are individually ill-defined. How-
ever, the sum of them is unambiguous. To see this in this particular example,
let us decide to evaluate the k0 integral first in the initial unexpanded inte-
gral and, for definiteness, choose to use Cauchy’s theorem (a sufficiently fast
decrease of the initial integrand at large values of k0 takes place here) by clos-
ing the contour in the upper half-plane. Then, after expanding by regions, we
continue to follow this prescription. For the potential contribution, this just
means the same recipe for closing the contour in the k0 plane (with arbitrary
behaviour at infinity). For the soft contribution, this also means the same
choice of the contour, which apparently is equivalent to nothing but treating
all the dangerous products in the integrand as follows:

1
(q0k0 + i0)n1(q0k0 − i0)n2

→ 1
(q0k0 + i0)n1+n2

.
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Evaluating the subleading integral in (7.24) and the leading term in (7.26),
with the above prescriptions, we obtain, for general ε,

F
(p), NLO
7.3a = iπd/2

21+2επ

(−t)3/2+ε(q2)3/2
Γ (1/2 + ε)Γ (1/2− ε)

Γ (−ε)
,

F
(s), LO
7.3a = −2iπd/2 21+2επ

(−t)3/2+ε(q2)3/2
Γ (1/2 + ε)Γ (1/2− ε)

Γ (−ε)
. (7.27)

This result can be confirmed by straightforward evaluation of the given
Feynman integral. Starting from the Feynman parameters and introducing
Mellin–Barnes (MB) integrals twice, one can arrive at the following twofold
MB representation similar to (7.22):

F7.3a(q2, y; d) =
iπd/2√

πΓ (−1− 2ε)(q2)3+ε
1

(2πi)2

∫ +i∞

−i∞
dz
(
4y
q2

)z

×
∫ +i∞

−i∞
dz′
(
−t

4y

)z′
Γ (3 + ε+ z)
5/2 + ε+ z

Γ (1 + z′)2Γ (−3/2− ε− z′)

×Γ (−1− ε− z′)Γ (−z + z′)Γ (−z′) , (7.28)

where the pole of 1/(5/2 + ε+ z) is to the right of the integration contour.
The leading and subleading asymptotic behaviour is obtained by shifting

the integration contour and taking residues, as in the case of (7.22):

F7.3a(q2, y; d) ∼ F
(p), LO
Γ − iπd/221+2επ

(−t)3/2+ε(q2)3/2
Γ (1/2 + ε)Γ (1/2− ε)

Γ (−ε)
.

(7.29)

The subleading term is indeed given by the sum of F (p), NLO
Γ and F

(s), LO
Γ .

(We are not much interested in the LO term here, because it is obviously
unambiguous, so that we keep only the finite part in ε and concentrate on
the next-to-leading power for general ε (although it is zero at ε = 0) to
illustrate the mixing of the soft and potential contributions.)

Up to now we have encountered non-zero contributions generated by the
hard, soft and potential regions. To find a non-trivial ultrasoft contribution,
we go to the two-loop level.

Example 7.4. The master two-loop diagram of Fig. 7.4 with four equal
non-zero masses and one zero mass in the limit y = m2 − q2/4 → 0.

q

q=2 + k

q=2� k

q=2 + l

q=2� l

Fig. 7.4. Master two-loop diagram with two non-zero
masses in the threshold
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The Feynman integral is written as

F7.4(q2, y; d) =
∫

ddk
(k2 + q ·k − y)(k2 − q ·k − y)

×
∫

ddl
(l2 + q ·l− y)(l2 − q ·l− y)(k − l)2

, (7.30)

where we again choose the frame q = {q0,0} and follow our rules for routing
the external momentum through the graph. We have already expanded this
diagram in the large-momentum limit in Sect. 4.3. Now we have two loop
momenta and, when analysing the regions, we consider every loop momentum
to be either hard, soft, potential or ultrasoft. When referring to a region, we
shall characterize the loop momentum by k in the first place. As we shall see
shortly, it is necessary to also consider other ways of introducing the loop
momenta, different from that of Fig. 7.4.

The (h–h) region generates a Taylor expansion of the integrand in y. The
corresponding integrals are the most difficult in the calculation, among all
possible contributions to the expansion, and can be expressed, using partial
fractions, through the following family of basic integrals:

J±(a1, . . . , a5) =
∫ ∫

ddk ddl
(k2)a1(l2)a2 [(k − l)2]a3(k2 + q ·k)a4(l2 ± q ·l)a5

.

(7.31)

The integrals of type J+ can be reduced to gamma functions [129] through
recurrence relations derived from IBP [68]. The integrals of type J− can be
expressed in terms of gamma functions and the integrals J−(0, 0, a3, a4, a5).
The latter integrals can be reduced to J−(0, 0, 1, 1, 1), using a simplified ver-
sion of some results in [228]. Then J−(0, 0, 1, 1, 1) (or a more convenient input
integral) can be calculated explicitly by means of Feynman parameters as an
expansion in ε. We obtain [18]

F
(h−h)
7.4 =

(
iπd/2e−γEε

)2
q2

[
π2

(
1
ε
− 2 ln q2 + 6 ln 2 + 2

)

+21ζ(3)− 4(8 + 3π2)
y

q2
+ O(y2)

]
. (7.32)

When one of the loop momenta is hard and the other loop momentum is
potential, soft or ultrasoft, only the following two equal, symmetrical contri-
butions (h–p) and (p–h) are non-zero; the others vanish because they contain
scaleless integrals. The leading contribution generated by the (h–p) region is

F
(h−p)
7.4

=
∫

ddl
(−l2 + q0l0 − y)(−l2 − q0l0 − y)

∫
ddk

k2(k2 + q ·k)(k2 − q ·k) .

(7.33)
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It follows from power counting that this integral contributes at order
√
y.

Keeping also the subleading term in the (h–p) contribution, we obtain [18]

F
(h−p)
7.4 = F

(p−h)
7.4 =

(
iπd/2e−γEε

)2
q2

[
8π
(
1
ε
− ln q2 − ln y

)(
y

q2

)1/2

−32π
3

(
1
ε
− ln q2 − ln y +

7
3

)(
y

q2

)3/2

+O(y5/2)

]
. (7.34)

When l is soft or ultrasoft, the integrand is almost the same as in (7.33) In
both cases, the resulting integrals vanish.

When both loop momenta are potential, all propagators are expanded in
their zero-order components squared. After the residues from the remaining
quark poles in k0 and l0 have been picked up, the resulting (d−1)-dimensional
two-loop integral is

F
(p−p)
7.4 =

1
q2

∫ ∫
dd−1kdd−1l

(k2 + y)(l2 + y)(k − l)2
+ . . .

=

(
iπd/2e−γEε

)2
q2y2ε

πΓ (ε+ 1/2)Γ (ε− 1/2)
2ε

+ . . .

=

(
iπd/2+1e−γEε

)2
q2

(
−1
ε
− 2 + 4 ln 2 + 2 ln y

)
, (7.35)

where the (d − 1)-dimensional version of (A.38) has been applied. The next
terms in the (p–p) contribution vanish for the same reason as in Examples 7.1
and 7.2.

All the regions where one of the loop momenta is soft generate only zero
contributions. If we consider two regions when one of the loop momenta, k
or l, is potential and the other is ultrasoft, we again obtain a zero contribution.
To find a missing (p–us) contribution we have to suppose that the momentum
flowing through the central line is ultrasoft. So it is better to choose this
momentum to be one of the loop momenta. Denoting this momentum by l and
the other loop momentum as k, we obtain the following (p–us) contribution:

F
(p−us)
7.4 =

∫ ∫
ddk ddl

[−k2 + q0(k0 − l0/2)− y][−k2 − q0(k0 − l0/2)− y]

× 1
[−k2 + q0(k0 + l0/2)− y][−k2 − q0(k0 + l0/2)− y] l2

+ . . . . (7.36)

The integral can be calculated by examining the poles in k0 and l0 and
closing the integration contours over k0, l0 such that the number of terms
is minimized. The resulting (d − 1)-dimensional integrals can be calculated
recursively in terms of gamma functions, and we arrive at [18]

F
(p−us)
7.4 =

(
iπd/2e−γEε

)2
q2

8π
(
−1

ε
− 8 + 10 ln 2− ln q2 + 3 ln y

)
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×
((

y

q2

)1/2

− 4
3

(
y

q2

)3/2

+O(y5/2)

)
. (7.37)

The (h–h) and (p–p) regions contribute only to even powers of
√
y and the

(h–p) and (p–us) regions contribute only to odd powers. Each separate con-
tribution contains poles in ε. The poles cancel between the (h–h) and (p–p)
contributions and the (h–p)= (p–h) and (p–us) contributions, leaving loga-
rithms of y. The terms computed above combine to give the finite threshold
expansion

F7.4 ∼
(
iπd/2

)2
q2

[
2π2 ln

32y
q2

+ 21ζ(3) + 16π
(
ln

32y
q2

− 4
)( y

q2

)1/2

−4(8 + 3π2)− 64π
3

(
ln

32y
q2

− 17
6

)(
y

q2

)3/2
]
+ . . . . (7.38)

For this diagram, an analytic result is known [97, 36]:

F7.4 =

(
iπd/2

)2
q2

[
F (1) + F (z2)− 2F (z)

]
, (7.39)

where

F (z) = 6Li3(z)− 4 ln z Li2(z)− ln2(z) ln(1− z) , (7.40)

z = −1− i
√
4y/q2

1 + i
√
4y/q2

. (7.41)

If we take care to correctly continue the logarithms in F (z2) to the second
sheet when y/q2 < 1/4, the expansion of the exact result reproduces (7.38).

We have concentrated on the situation of two equal non-zero masses in a
threshold because of its great importance, from the physical point of view.
For completeness, let us point out that, in the case where there are general
masses, mi ≡ ξim with

∑
ξi = 1, in a threshold at q2 = (

∑
mi)2, it is

reasonable to choose the routing of the external momentum in such a way
that a portion ξiq flows through the ith line. After that, the dependence
of the integrand on the expansion variable y = m2 − q2 becomes explicit.
For example, the master sunset diagram of Fig. 2.2, with such a canonical
routing, is represented as

FΓ (q2, y; d) =
∫ ∫

ddk ddl
(k2 −m2

1)(l2 −m2
2)[(q − k − l)2 −m2

3]

≡
∫ ∫

ddk ddl
(k2 + 2ξ1q ·k − ξ2

1 − y)(l2 + 2ξ2q ·l− ξ2
2y)

× 1
(k + l)2 − 2ξ3(q ·k + q ·l)− ξ2

3y
. (7.42)

The expansion in the case of three non-zero masses consists of (h–h) and
(p–p) contributions – see [93]. If one mass is zero and the other two masses
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are non-zero, there are (h–h) and (p–us) contributions, and when there is
one non-zero mass, one has contributions generated by the (h–h) and (us–us)
regions.

For the sunset diagram and its generalization to the case where the dia-
gram consists of L + 1 lines between two external vertices, the contribution
which is most complicated to evaluate is (h–h–. . . –h). In particular, the (p–
p–. . . –p) contribution to the expansion of this L-loop diagram in the case of
all non-zero masses can be expressed in terms of gamma functions for general
ε. Its leading term is [93]

iLπL(d+1)/2


L+1∏
j=1

ξ
1/2−ε
j


 Γ (1 + L(ε− 3/2))

(q2)L/2y1+L(ε−3/2)
. (7.43)

7.2 General Prescriptions

The prescriptions of the threshold expansion were confirmed by known an-
alytic results for the one- and two-loop examples presented above. Let us
now believe in these prescriptions and apply them to any diagram in the
threshold limit where, owing to kinematics, some other parameters, such as
the Mandelstam variable t (see the above examples of box diagrams), can be
small. With the physical orientation towards diagrams consisting of massive
fermion and massless boson lines, we suppose that a given diagram contains
two paths of massive particles, which can be disconnected, as in the case of
box diagrams, or joined together, as in the case of vertex diagrams. In accor-
dance with the strategy of expansion by regions, any given diagram can be
expanded at threshold by the following prescriptions [18]:

• Choose the canonical routing for the flow of the external momenta for the
given threshold. In particular, when there are two equal non-zero masses
in the threshold, let one half of the external momentum flow through one
of the massive lines and the other half of it through the other massive line.
In the general situation with masses mi ≡ ξim with

∑
ξi = 1, let a portion

ξiq flow through line i.
• Choose the frame2 q = {q0,0}.
• Consider the various regions where any loop momentum can be of one of
the following four types:

(h), k0 ∼
√

q2 , k ∼
√

q2 ,

(s), k0 ∼ √
y , k ∼ √

y ,

(p), k0 ∼ y/
√

q2 , k ∼ √
y ,

(us), k0 ∼ y/
√

q2 , k ∼ y/
√

q2 .

2A manifestly Lorentz-invariant treatment of the threshold expansion is possible
but very cumbersome.
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• Try various choices of the loop momenta (and at the same time avoid
double counting).

• In accordance with the general strategy of expansion by regions, extend
the integration to the whole space and set scaleless integrals to zero.

In addition, one has to take care of possible soft–potential mixing and in-
troduce consistent prescriptions for treating contributions from regions where
the same loop momentum k is either soft or potential (as in Example 7.3a),
i.e. one has to close the integration contour over k0 in the same half-plane
in both contributions. When considering various possibilities of treating the
momenta of the lines, one has to take into account conservation laws in the
vertices. In particular, both hard and soft lines always form 1PI subgraphs,
two ultrasoft lines cannot generate a potential or a soft line, etc. Note also
that massive lines can never be ultrasoft. Although we are considering var-
ious possibilities for the lines of the given graph, the prescriptions are not
formulated in a pure graph-theoretical language, because, as in the case of the
limits treated in Chap. 6, we are stuck to the fixed canonical routing of the ex-
ternal momenta. We shall come back to our ‘incompletely’ graph-theoretical
description of the threshold expansion in Sect. 7.4.

Let us emphasize that the leading order of the contributions of the regions
can be obtained in a very simple way, by power counting, without explicit
evaluation of any given contribution. The hard contribution always gives y0.
For the other three types of contributions, it is necessary to take account of
the following powers from the differentials: yd from the soft, y1+d from the
potential and y2d from the ultrasoft region. We can then estimate the leading
behaviour of the propagators. In particular, the quark QCD propagator gives
1/

√
y and 1/y from the soft and potential regions, respectively. The gluon

QCD propagator gives 1/y from the soft and potential regions and 1/y2 from
the ultrasoft region.

7.3 Two-Loop Examples

Let us turn to examples where explicit analytic results are not (yet?) known
and follow the prescriptions formulated in the previous subsection.

Example 7.5. The master two-loop vertex diagram of Fig. 7.5 with p2
1 =

p2
2 = m2 in the limit y = m2 − q2/4 → 0.
The Feynman integral is written as

F7.5(q2, y; d) =
∫

ddk
(k2 + q ·k − y)(k2 − q ·k − y)

×
∫

ddl
(l2 + q ·l− y)(l2 − q ·l− y)(k − l)2(l − p)2

, (7.44)

where k and l are chosen to be the loop momenta of the triangle and box
subgraphs, respectively.
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p1

p2

q

Fig. 7.5. Master two-loop vertex diagram with two
non-zero masses in the threshold

This is the list of regions that generate non-zero contributions, together
with their leading order [18]:

(h–h) y0

(h–p) 1/
√
y

(p–h)
√
y

(p–p) 1/y
(p–s) 1/

√
y

(p–us) 1/
√
y .

Here the loop momentum k is indicated in the first position and l in the
second position; the only exception is that (p–us) means that the momentum
of the central line is ultrasoft and the momenta of the other lines are potential.

These contributions can be evaluated as in the previous examples. For in-
stance, after partial fractions have been used, the integrals needed to evaluate
the (h–h) contribution reduce to J±, given by (7.31) (with additional scalar
products in the numerator), and the complexity of the integrals is essentially
the same as for the self-energy diagram in Example 7.4. The leading singular
behaviour at threshold comes from the (p–p) region.

Evaluation of all terms up to order y0 gives [18]

F7.5(q2, y; d) ∼
(
iπd/2e−γEε

)2
42+2ε

(q2)2+2ε

[
1
ε2

(
π2q2

128y
− π

√
q2

16
√
y
+

1
8

)

+
1
ε

(
−π2q2

64y
ln(16y/q2) +

π
√

q2

8
√
y

(2− ln 2)− 1
4

)

+
π2q2

64y

(
ln2(16y/q2) +

7π2

12

)

+
π
√

q2

8
√
y

(
ln2(16y/q2) + (3 ln 2− 4) ln(16y/q2) + ln2 2− 2 ln 2 +

π2

4

)

− 29π2

48
− 3

2

]
+O(y1/2) . (7.45)
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p1

p2

q

Fig. 7.6. Master two-loop non-Abelian vertex dia-
gram with two non-zero masses in the threshold

The coefficient of the double pole of these first three terms of the expan-
sion agrees [18] with an explicit result for the double-pole part of the given
diagram, which is IR divergent:

(
iπd/2e−γEε

)2 42ε

2ε2(q2)1+2εy

(π
2
− arctan

√
4y/q2

)2

. (7.46)

For the next diagram, explicit results are unknown.
Example 7.6. The master two-loop non-Abelian vertex diagram of Fig. 7.6

with p2
1 = p2

2 = m2 in the limit y = m2 − q2/4 → 0.
The Feynman integral is

F7.6(q2, y; d) =
∫

ddk
(k2 + q ·k − y)(k2 − q ·k − y)

×
∫

ddl
(l2 + q ·l− y)(k − l)2(k − p)2(l − p)2

, (7.47)

where k and l are the loop momenta of the box and triangle subgraphs,
respectively.

The list of regions that generate non-zero contributions is

(h–h) y0

(p–h) 1/
√
y

(p–s) 1/y
(p–us) 1/

√
y ,

where the loop momentum k is indicated in the first position and l in the
second position; the only exception is that (p–us) means that the momentum
of the line that is common to the box and triangle subgraphs is ultrasoft and
the momenta of other lines are potential.

The (p–p) region that could give a 1/y behaviour does not contribute
here, because the poles in l0 lie on only one side of the real axis, so that
the l0 integral vanishes. The contribution from the potential–soft region is
algebraically the most complicated. Since the soft triangle subgraph is less
symmetric than the box subgraph in the diagram of Fig. 7.5, the expansion in
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this region is in powers of
√
y and it is necessary to compute the first two sub-

leading terms to obtain an accuracy O(y0) at threshold. Other contributions
are evaluated as in the previous example.

Evaluation of terms up to order y0 gives [18]

F7.6(q2, y; d) ∼
(
iπd/2e−γEε

)2
42+2ε

(q2)2+2ε

[
1
ε2

(
−π
√

q2

32
√
y
+

1
8

)

+
1
ε

(
π2q2

64y
− π2

16
− 1

4

)
− π2q2

32y
[
ln(16y/q2) + 2

]

+
π
√

q2

32
√
y

(
ln2(16y/q2) + 8 ln(32y/q2) +

5π2

6

)
+

π2

8
ln(16y/q2)

−23π2

48
− 3

2

]
+O(y1/2) . (7.48)

As in the previous example, the double-pole part of this expansion can be
checked against an explicit result for the double-pole part of the unexpanded
diagram:

−
(
iπd/2e−γEε

)2
42ε

ε2(q2)3/2+2ε(1 + 4y/q2)
√
y

(π
2
− arctan

√
4y/q2

)
. (7.49)

In the expansion of the similar non-planar diagram of Fig. 7.7 near thresh-
old, the non-vanishing contributions are the same as for the non-Abelian di-
agram, except that the (h–p) contribution scales as

√
y in the leading order

and the (p–s) region as 1/
√
y, as for the planar diagram of Fig. 7.6. Further-

more, equal contributions (h–p)= (p–h) and (s–p)= (p–s) are present. The
(p–p) contribution vanishes again, for the same reason as in the previous
example.

Any integral present in the (h–h) contribution of any of the three basic
types of vertex diagrams can be reduced to either J±, given by (7.31), or

L±(a1, . . . , a5)

=
∫ ∫

ddk ddl
(k2)a1(l2)a2 [(k + l)2 + q ·(k + l)]a3(k2 + q ·k)a4(l2 ± q ·l)a5

. (7.50)

Fig. 7.7. Master two-loop non-planar vertex di-
agram with two non-zero masses in the thresh-
old
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Using recurrence relations that follow from IBP, one can reduce these in-
tegrals first to L+(0, 0, a3, a4, a5) = L−(0, 0, a3, a4, a5) and then to a single
integral such as L+(0, 0, 2, 2, 1). An algorithm for L+ has been formulated
in [129, 114]3. Complete algorithms4 for the evaluation of the J± and L±
integrals have been developed for the purpose of performing the calculations
in [84, 16]. Furthermore, the hard parts of all possible two-loop three-point
diagrams relevant to QCD calculations can be reduced to J± or L± and,
consequently, can be evaluated analytically.

7.4 Threshold Expansion and (P)NRQCD

Let us remember that we identified the potential region by studying Exam-
ple 7.1, where we supposed that the loop momentum was such that k = (k0,k)
with |k0|, |k|∼<

√
y. Let us not distinguish between the soft, potential and ul-

trasoft momenta which satisfy these relations. For such loop momenta k, we
have to neglect k2

0 with respect to q0k0 and therefore expand the massive
propagators in k2

0 . Considering the various possible ways in which the loop
momenta may be either hard (large) or small (here in the sense that they
are not large), we see that the resulting expansion can be written as a sum
of contributions labelled by the lines with hard loop momenta, which form
subgraphs consisting of 1PI connectivity components. Thus the expansion
near threshold takes the form

FΓ ∼
∑
γ

Tk2
0
FΓ/γ ◦MγFγ , (7.51)

where the operatorMγ , as before, performs Taylor expansion of the integrand
of Fγ in its small external momenta and other small parameters (y, the
Mandelstam variable t, small masses). The first Taylor operator Tk2

0
expands

propagators with a dependence of type 1/(k2 ± q0k0 − y) in k2
0 , where k

symbolizes any loop momentum of the reduced graph Γ/γ.
This expansion is almost identical to the threshold expansion (6.17) when

there is one heavy mass in the threshold. Formally, the only difference is that
we now have a Taylor expansion in k2

0 rather than in k2. A crucial point is
that expansion (7.51) is not yet homogeneous with respect to the expansion
parameter, while (6.17) already possesses the desired homogeneity property.

It is already clear how to make (7.51) homogeneous, i.e. to identify the
small momenta as soft, potential or ultrasoft and expand further. But let us
stay for some time at this level and study what the expansion (7.51) gives
at the Lagrangian level in the case of QCD. We suppose for simplicity that
there is one quark flavour with a heavy mass m and that other quarks can
be regarded as massless. If a diagram possesses two paths of quark lines,

3No details are given in these references.
4Descriptions of the two algorithms are still unpublished.
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we follow our conventions for the routing of external momenta. If a quark
propagator corresponds to such a line, let its momentum be q/2 + p − k,
where q = (q0,0) is the momentum that is typically written as the sum
p1 + p2 of the external momenta of two incoming quarks with mass m and
tends to the threshold q2 ≡ s → 4m2. Moreover, k is a loop momentum (or,
in a more general situation, a linear combination of loop momenta), and p is
an external momentum whose square is of order y = m2 − s/4. When k is
supposed to be small, we expand the denominator in k2

0 and neglect p and k
with respect to q. So the quark propagator becomes

S(q/2 + p+ k) = i
/q/2 + /p+ /k +m

(q/2 + p+ k)2 −m2 + i0

∼ i
2m/q0 + γ0

2
1

k0 − (p+ k)2/q0 − y/q0 + i0
. (7.52)

The threshold limit is a non-relativistic limit when the relative velocities
of the quarks are small. In practice, one uses, instead of the ‘pure’ difference
y = −(s − 4m2)/4, the parameter β ≡

√
−4y/s given by (4.69), which is

called the ‘velocity’ because it is connected with the ‘real’ non-relativistic
velocity v =

√
E/m by

β =

√
1− 4

(v2 + 2)2
= v − 3

8
v3 + . . . , (7.53)

where E = s− 2m is the residual energy of the quarks.
Changing the variables (y, s) in (7.52) to (v,m), we obtain

i
1 + γ0

2
1

p0 + k0 − (p+ k)2/(2m) + i0
, (7.54)

where p0 = p2/(2m) = mv2/2 ∼ −y/q0 is the zero component of the four-
vector p = (p0,p), restricted by the non-relativistic on-shell condition. The
first factor is a projector that distinguishes quarks from antiquarks and, thus,
we arrive at the propagator of NRQCD [231, 164, 25] (which was constructed
analogously to NRQED [43]):

S̃(p) =
i

p0 − p2/(2m) + i0
. (7.55)

The antiquark propagator differs in the overall sign and the sign of p0. The
other Feynman rules of NRQCD can be found in [231, 164, 25]. These rules
are determined by the NRQCD Lagrangian [231, 164, 25]

LNRQCD = Lheavy + Llight , (7.56)

Llight =
∑
i

q̄ii /Dqi −
1
4
Ga
µνG

aµν + LGF + LFP , (7.57)
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Lheavy = ψ†
(
iD0 +

D2

2m

)
ψ +

1
8m3

ψ†D4ψ

−d1 g

2m
ψ†σ ·Bψ +

d2 g

8m2
ψ† (D·E− E·D)ψ

+
d3 ig
8m2

ψ†σ ·(D× E− E × D)ψ + . . . , (7.58)

where the σi are the Pauli matrices. Colour indices are omitted in the fermion
fields, in the gluon potential Aaµ ≡ Aaµt

a and in the electric and magnetic fields
E ≡ Ea

µt
a , B ≡ Ba

µt
a, where ta is the SU(3) generator.

The light part describes gluons and light (massless) quarks exactly as in
QCD (2.15). In the heavy part, the bispinor ψ for the heavy-quark field is
decoupled, ψ → (ψ, χ), and consists of non-relativistic two-spinors ψ and χ
describing quarks and antiquarks in the non-relativistic limit. The ellipsis
stands for similar antiquark terms bilinear in χ and χ†, four-fermion opera-
tors, and operators with higher dimensions. The quark propagator is deter-
mined by the first term and a part of the second term, ψ† [iD0 + ∂2/(2m)

]
ψ,

in the heavy Lagrangian.
The coefficients d1, d2, d3, . . . are determined by matching conditions

which relate the diagrams of QCD and NRQCD evaluated at threshold.
Therefore the matching calculations reduce to the evaluation of the hard
contributions (more precisely, (h–h–. . . –h) for a general number of loops) to
the diagrammatic threshold expansions of QCD diagrams.

When one transforms to NRQCD from QCD, the composite QCD oper-
ators are written in a way similar to the terms of the effective Lagrangian.
For example, the vector current is represented as

ψ̄γiψ = C0ψ
†σiχ+

C1

6m2
ψ†D2σiχ+ . . . , (7.59)

where the matching coefficients C0, C1, . . . are determined similarly to the
matching coefficients in the effective Lagrangian, and terms are omitted start-
ing from order v4.

The matching coefficients include information about the scale of the mass
of the heavy quark m (distances of order 1/m), which corresponds to the
relativistic physics of annihilation and production of quarks. NRQCD is de-
signed for the description of phenomena that happen at lower energies (larger
distances), i.e. dynamics of bound states (mesons) composed of a quark and
antiquark. The velocities of the quark and antiquark, v, are small so that
there are three well-separated scales in the problem: m, mv and mv2, the
first two of which have already been separated in the transition to NRQCD.
The fact that the last two, a typical momentum and a typical energy, are
not yet separated corresponds exactly to the absence of homogeneity of the
diagrammatic expansion (7.51).

To continue the process of factorization of the scales, let us come back to
the diagrammatic level and distinguish now the soft, potential and ultrasoft
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regions. The soft region is first in this hierarchy. As in the case of the hard re-
gions, the soft contributions are generated by 1PI subgraphs all of whose lines
consist of soft momenta. The corresponding Feynman integral is expanded
into a Taylor series with respect to its ultrasoft external momenta but, if an
external momentum is potential, the Taylor expansion is performed only in
its time component, which has order v2, in contrast to its vector components,
which have the same order, v, as the soft loop momentum. Therefore the soft
contributions are described, at the operator level, by insertion into the ef-
fective Lagrangian of spatially non-local four-fermion operators, which, on
the other hand, are naturally treated as parts of the non-relativistic poten-
tial that is used to describe the interaction of quarks by means of quantum
mechanics with the Schrödinger equation.

Ultrasoft lines are typically connected by a vertex with two potential
lines – see Examples 7.4, 7.5 and 7.6. Let the momentum of an ultrasoft line
be l and the momentum of one of the incident quark lines be k + l. Then,
according to the rules formulated above, the quark–gluon vertex and the
quark propagator have to be expanded in the ratio |l|/|k|, which is of order
v ∼ √

y. This procedure corresponds to a multipole expansion.
After all the relevant regions have been distinguished, the soft quarks and

gluons, as well as potential gluons, are ‘integrated out’, in the above sense, and
the resulting effective theory, called potential NRQCD (PNRQCD), includes
only potential quarks and ultrasoft gluons. The Lagrangian of PNRQCD is
of the form5

LPNRQCD = ψ†
(
i∂0 +

∂2

2m
+ gsA

0(t,0)− gsx
iEi(t,0)

)
ψ

+χ†
(
i∂0 − ∂2

2m
+ gsA

0(t, 0)− gsx
iEi(t, 0)

)
χ

+
∫

dd−1x
[
ψ†ψ

]
(r)
(
−CFαs

r

)[
χ†χ

]
(0) +

1
8m3

ψ†∂4ψ

− 1
8m3

χ†∂4χ+
∫

dd−1x
[
ψ†ψ

]
(r) δV (r)

[
χ†χ

]
(0) + . . . , (7.60)

where r = |x|. The terms containing A0(t,0) and Ei(t,0) have appeared be-
cause of the multipole expansion, e.g. A0(t,x) = A0(t,0) + x·∂A0(t,0) + . . .
According to the power-counting rules, the first two terms and the term con-
taining the Coulomb potential have the same order, v5, so that the Coulomb
potential cannot be treated as a perturbation. In contrast, the rest of the
terms have to be treated perturbatively. Note that the potential δV (r) con-
tains both a local and a non-local part.

5 Such a construction, obtained by tree-level matching, was first proposed
in [193]. The term ‘potential’, when applied to NRQCD, is taken from [193]. In
the context of the threshold expansion, which provides a matching prescription
for loop graphs, PNRQCD has been discussed in [17]. A somewhat different, but
probably conceptually equivalent, construction has been proposed in [172].
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Let us note, for completeness, that it is possible introduce different fields
for the soft and potential quarks, as well as for the soft, potential and ul-
trasoft gluons, and implement the threshold expansion at the operator level
by introducing individual effective propagators and vertices for each of these
particles [130].

7.5 Two-Loop Correction to the Leptonic Decay
of Quarkonium

It turns out that a knowledge of the QCD/NRQCD matching coefficients for
the vector current in (7.59) provides the possibility of obtaining corrections
to the partial decay rate

Γ (J/ψ → l+l−) =
4πe2

Qαf
2
J/ψ

3MJ/ψ
(7.61)

of the J/ψ meson, whose leptonic decay is described by the interaction with
the electromagnetic current. In (7.61), the tiny lepton masses are neglected,
MJ/ψ is the mass of the J/ψ, α is the fine-structure constant and eQ is
the electric charge of the heavy quark in units of the electron charge. The
decay constant fJ/ψ is defined through the following matrix element of the
electromagnetic current:

〈Ψ(p)|ψ̄γµψ|0〉 = −ifJ/ψMJ/ψ ε∗µ(p) , (7.62)

where Ψ is a one-particle J/ψ state, εµ(p) is the polarization vector and p is
its momentum.

The decay constant parameterizes the strong-interaction effects and con-
tains long- and short-distance contributions. According to the previous sec-
tion, the transition to NRQCD and, in particular, the use of (7.59) makes
it possible to factorize effects connected with short distances, i.e. of or-
der 1/MJ/ψ, from the bound-state effects associated with the next scales,
1/(MJ/ψv) and 1/(MJ/ψv

2). The matching relation (7.59) is inserted be-
tween the vacuum state and the one-particle state Ψ(p) on the left-hand side
of (7.62). These matrix elements are defined in the J/ψ rest frame, so that
an appropriate Lorentz boost into this frame is introduced.

The matching coefficients C0 and C1 are calculated perturbatively as se-
ries in the strong coupling αs and account for the short-distance QCD effects.
The matching coefficients and matrix elements depend individually on a fac-
torization scale µ in NRQCD. The coefficient C1 is defined (as in [33]) such
that C1 = 1 +O(αs) and [12]

C0 (αs,m/µ) = 1− 2CF αs
π

+ c2(m/µ)
(αs

π

)2

+ . . . . (7.63)

The two-loop matching coefficient c2 has been calculated in [84, 16]. Since
the matching coefficient contains only short-distance effects, it can be ob-
tained by projecting (7.59) onto the state consisting of a free quark–antiquark
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pair of on-shell quarks considered at threshold. In terms of this on-shell ma-
trix element, the matching relation can be rewritten as

Z2,QCD GQCD = C0 Z2,NRQCD Z−1
J GNRQCD +O(v2) , (7.64)

where Z2,... are the on-shell wave function renormalization constants in QCD
and NRQCD, and G... are the amputated, bare electromagnetic annihilation
vertices in QCD and NRQCD. The two-loop Feynman diagrams for GQCD

are shown in Fig. 7.8. Since the current J = ψ†σiχ need not be conserved
in NRQCD, its renormalization, JB = ZJJ , is taken into account on the
right-hand side.

Let us stress that only the leading (h–h) contributions, i.e. from the dia-
grams considered exactly at threshold (in the naive sense, under the sign of
the integral over the loop momenta), are needed for the calculation of C0.
Even if an explicit analytic result for the unexpanded diagrams was known,
it would be not so easy to extract the desired information about the hard
part from it, because the contributions from other regions, e.g. the potential
region, which are not relevant here, produce constants which mix with the
constants in the hard part.

It should be also pointed out that NRQCD has traditionally been intro-
duced and applied with momentum cut-offs. Matching calculations of the

D1 D2

D3 D4

D5 D6 { D9

Fig. 7.8. Diagrams that contribute to GQCD. Symmetrically related diagrams
exist for D2,3,5. The last diagram summarizes vacuum polarization contributions
from massless fermions (D6), gluons (D7), ghosts (D8) and a massive fermion with
mass m (D9)
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type considered in this section were performed with an additional dimension-
ful cut-off. In the present approach, within dimensional regularization and
without extra cut-offs, the matching calculations are much easier. Further-
more, NRQCD itself is understood in a slightly modified sense: when one
writes down the Feynman integrals of NRQCD, according to its Feynman
rules, there is an obligation to expand every quark propagator by consider-
ing its momentum to be either soft or potential and to expand every gluon
propagator by considering its momentum to be either soft, potential or ultra-
soft. If we do not follow this prescription, we obtain, in particular, non-zero
values for NRQCD diagrams at threshold, and the results for the matching
coefficients are different.

Let us come back to our matching calculation. The spinor structure of
the on-shell matrix element in QCD is conventionally parameterized by two
form factors, F1 and F2:

igū(p′)
(
γµF1(q2) +

iσµνqν

2m
F2(q2)

)
v(p) , (7.65)

where σµν = (i/2) [γµ, γν ], and u(p′) and v(p) denote bispinors for external
quarks. Only the combination F1 + F2 is required for the calculation, which
eventually reduces [84, 16] to the integrals (7.31) and (7.50).

After summing up all the diagrams, multiplying by the two-loop QCD
on-shell wave function renormalization constant [40] and performing (one-
loop) coupling and mass renormalization, the result still contains poles in ε.
The final result for c2(m/µ) in the MS scheme, with separated contributions
from the different colour group factors defined by (1.29), takes the following
form [84, 16]:

c2(m/µ) = C2
F c2,A + CFCA c2,NA + CFTF nf c2,L + CFTF c2,H ,

(7.66)

c2,A = π2

[
1
6
ln
(
m2

µ2

)
− 79

36
+ ln 2

]
+

23
8

− ζ(3)
2

,

c2,NA = π2

[
1
4
ln
(
m2

µ2

)
+

89
144

− 5
6
ln 2
]
− 151

72
− 13ζ(3)

4
,

c2,L =
11
18

,

c2,H = −2π2

9
+

22
9

. (7.67)

Here all fermions with masses less than m are considered massless, which
is a good approximation even for m = mb, the bottom quark mass, when
the charm quark mass mc is neglected. The coefficient c2,L, proportional to
nf , the number of light fermions, agrees with [33], and the C2

F term agrees
with [138]. The two-loop correction turns out to be very large. See [84, 16]
for phenomenological discussions of this result.



160 7 Threshold Expansion. Two Masses in the Threshold

7.6 Top Quark Production near Threshold

The total cross-section for tt̄ production is expressed through the correlation
function of two vector currents by (4.65) and (4.66), where the vector current
for the top quark, with mass m = mt is now implied.

One complication connected with the case of the top quark is that it is
an unstable particle, with a decay t → bW . This fact is taken into account
by introducing a width Γt, which is of order mtα

2
s .

Another complication typical of threshold calculations is that the dom-
inant interaction between the t quark and its antiquark, described by the
colour-singlet Coulomb potential, has to be treated non-perturbatively. This
means that it is natural to consider the velocity v to be of the same order as
the strong coupling αs, so that summation of the corresponding series in αs/v
is obligatory. In the language of threshold expansion, this is the contribution
from the region where all the loop momenta are potential to the ladder di-
agrams generated by exchange gluons6 that gives the dominant singularity
in v, in every perturbative order of QCD. Equivalently, in NRQCD, one con-
siders the same family of diagrams and applies the Coulomb gauge, ∇·A = 0,
which is very useful in non-relativistic problems, where the leading threshold
behaviour comes from the exchange of longitudinal gluons with a propagator
i/p2 so that not only the quark propagators but also the gluon propagator
takes exactly the same form as in the (p–p–. . . –p) QCD contribution. In each
integral in this family, one first trivially evaluates all the integrals over the
zero components of the loop momenta.

The summation of such ladder diagrams can be effectively performed by
solving the Schrödinger equation with the Coulomb potential – see, for ex-
ample, [191] for a proof. The corresponding equation for the Coulomb Green
function is(

−∇2

m
− CFαs

r
− E

)
GC(r, r′;E) = δ(3) (r − r′) , (7.68)

where E =
√
s− 2mt. The corresponding equation in momentum space is(

p2

mt
− Ē

)
G̃C(p,p′;E) +

∫
dd−1k
(2π)d−1

(
−4πCFαs

k2

)
G̃C(p − k,p′;E)

= (2π)d−1 δ(d−1)(p − p′) . (7.69)

Graphically, the momentum space Coulomb Green function

G̃C(p,p′;E) = (2π)3δ(3) (p− p′) /(E − p2/m) + . . .

can be represented by the sum of the ladder diagram shown in Fig. 7.9.

6The term with one exchange gluon determines the Coulomb potential itself.
Although there is no integration over loop momenta, the gluon propagator takes
the same form as in the potential contributions because of the kinematics of the
present problem.
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+ + + + : : :

Fig. 7.9. Representation of the Coulomb Green function by a sum of ladder
diagrams

So, the summation of the power series in αs/v reduces to the use of the
well-known explicit solution of (7.68). In particular, this is a simple repre-
sentation of the Coulomb Green function with one argument (in coordinate
space) set to zero:

GC(0, r;E) =
−im2v

2π
eimvr

∫ ∞

0

dt
(
1 +

1
t

)ν
e2imvrt , (7.70)

where ν = iCFαs/(2v). The Coulomb Green function with two zero coordi-
nate space arguments,

GC(0, 0;E) = − 1
(2π)d−1

∫
dd−1p

E − p2/m
+ . . . ,

is shown graphically in Fig. 7.10. The first two integrals in this series are UV
divergent and lead to poles in ε:

GC(0, 0;E) = −m2αs

4π

{
iv − CFαs

[
1
2
ln
(
−mE

µ2

)
− 1

4ε
− 1

2

+ ln 2 + γE + ψ

(
1− i

CFαs

2v

)]}
. (7.71)

In fact, the pole does not involve an imaginary part and is irrelevant to the cal-
culation of the leading order (LO) and the next-to-leading order (NLO) cross-
sections but it is important in the next-to-next-to-leading order (NNLO) ap-
proximation because there are corrections containing GC(0, 0, E)2.

In the double expansion in αs and v, with the power-counting prescription
v ∼ αs, the ratio R(s) near threshold is represented by

RLO +RNLO +RNNLO + . . . ,

where the LO cross-section in the resummed form is

+ + + : : :

Fig. 7.10. Representation of the Coulomb Green function with two zero coordinate
space arguments by a sum of two-point ladder diagrams
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RLO =
6π
m2

Ne2
Q ImGC(0, 0;E) . (7.72)

Here N is the number of colours and eQ is the charge of the top quark.
In particular, for E ≡ s − 2m > 0, the explicit formula (7.71) gives an

expression containing the well-known Sommerfeld–Sakharov factor [218, 199]

RLO =
3
2
Ne2

Q

CFπαs

1− e−CFπαs/v
. (7.73)

When αs → 0, the leading threshold behaviour (∼ v) in (4.68) is reproduced.
The LO result (7.72) has been derived in [104] for the case of the top

quark under the assumption of a large width (as compared with ΛQCD), and
conclusions about the reliability of perturbative QCD calculations for RLO

were drawn. Formally, this result is similar to (7.72), with E → E + iΓt.
The NLO and NNLO contributions to the cross-section have the form

RNLO = v
(
R1

NLOαs +R2
NLOv

)
, (7.74)

RNNLO = v
(
R11

NNLOα2
s +R12

NNLOαsv +R22
NNLOv2

)
, (7.75)

where the functions involved are series of the form
∑

an(αs/v)n, which are
summed by solving the Schrödinger equation. The NLO contribution has
been calculated by taking into account the one-loop matching coefficients in
(7.59) [151] and the one-loop corrections to the Coulomb potential [108, 22].

The NNLO evaluation is much more non-trivial, not only because it is of
the next order but also because complications connected with UV divergences
that appear owing to additional terms in the potential in the Schrödinger
equation. Nevertheless, one uses again as the input two similar pieces of com-
putationally non-trivial information, which are now of two-loop character: the
two-loop matching coefficients in (7.59) given by (7.67) and the two-loop cor-
rections to the Coulomb potential [192, 201] (see below). Similar calculations
have been performed by several groups7 [142, 177, 244, 17, 180, 189], which all
used that information. The approach of [17] made maximal use of the strat-
egy of constructing effective field theories by expansion by regions described
above. Here is a sketch of main points of this calculation.

The vector currents involved in the polarization function were represented
by the matching relations (7.59) and then the correlation function of the non-
relativistic currents was computed with the effective Lagrangian (7.58), with
a further separation of the scales and an immediate transition to PNRQCD.
The presence of the width was taken into account by including the term iΓt
in the first expression in parentheses in (7.58) and (7.60). After carrying out
a colour and spin projection onto the components relevant to the calculation
of the cross-section, the authors of [17] obtained the following result for the
heavy-quark potential by matching the on-shell tt̄ scattering amplitudes in
NRQCD and PNRQCD:

7See summarizing publication [141].
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Ṽ (p,q) = −4πCFαs
q2

+ δṼ (p,q) , (7.76)

δṼ (p,q) = −4πCFαs
q2

[(
a1 − b0 ln

q2

µ2

)
αs
4π

+
(
a2 − (2a1b0 + b1) ln

q2

µ2
+ b20 ln

2 q2

µ2

)
α2
s

(4π)2

+
παs|q|1−2εeγEεµ2ε

4mt

Γ (1/2− ε)2Γ (1/2 + ε)
π3/2Γ (1− 2ε)

(
CF

2
(2ε− 1) + CA(1− ε)

)

+
p2

m2
t

+
q2

m2
t

(
d2 − 7d+ 10
4(d− 1)

d 2
1 − 1

4
(1 + d2)

)]
, (7.77)

where one can take d1 = d2 = 1 in the present NNLO approximation, and
b1 = 102 − 38nf/3 is the two-loop coefficient of the QCD β-function. The
one- and two-loop corrections to the Coulomb potential are determined by
a1 = (31CA/9− 10nf/9) [108, 22] and

a2 = C2
A

(
4343
162

+
22ζ(3)

3
+ 4π2 − π4

4

)
− CAnf

(
899
81

+
28ζ(3)

3

)

−CFnf

(
55
6

− 8ζ(3)
)
+

100n2
f

81
(7.78)

[201], respectively.
This result is gauge invariant. To achieve this property it was necessary

to combine the contribution from the soft modes with the contribution from
potential gluons. (This necessity is connected with the fact, pointed out in
Sects. 7.1 and 7.2, that the soft and potential contributions generally mix
together.) An ‘RG-improved’ version of the two-loop matching coefficients
(7.67) was used. This allows effective summation of the logarithms of v.

Equation (7.77) defines a dimensionally regularized version of the poten-
tial, which is needed here because the terms in the last two lines generate
UV divergences. The presence of these divergences leads to a factorization
scale dependence, which cancels with the factorization scale dependence in
the coefficient function (7.67) of the non-relativistic current. The Coulomb
potential itself does not generate divergences, so that a1,2 can be evaluated
in four dimensions.

The potential (7.77) can be treated perturbatively. In the present NNLO
approximation, one needs the following typical integrals:

I1[Ṽ1] =
∫ 4∏

i=1

dd−1pi
(2π)d−1

G̃C(p1,p2)Ṽ1(p2 − p3)G̃C(p3,p4) , (7.79)

I2[Ṽ2, Ṽ
′
2 ] =

∫ 6∏
i=1

dd−1pi
(2π)d−1

G̃C(p1,p2)Ṽ2(p2 − p3)

×G̃C(p3,p4)Ṽ ′
2 (p4 − p5)G̃C(p5,p6) . (7.80)
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Here the Ṽi are various contributions to the potential (7.77): Ṽ1 can be
equal to (lnj q2/µ2)/q2, j = 0, 1, 2, or to 1/q1+2ε or just to a constant, and
Ṽ2 = Ṽ ′

2 = (ln q2/µ2)/q2. By definition, these integrals are understood as
dimensionally regularized quantities. Moreover, in Ṽ1 = 1/q1+2ε, the ε de-
pendence of the exponent is kept because the corresponding integrals have
stronger UV divergences. For various pieces of the potential (7.77), one needs
either one or two iterations (given by (7.79) and (7.80), respectively).

The NNLO corrections have been found [142, 177, 244, 180, 189, 17] to
be much larger than those expected from the known NLO calculations, with
minor differences between results of these groups. Owing to the large top
width, the total cross-section is a smooth function of the energy, with a
clearly distinguished maximum corresponding to a toponium 1S resonance.
The position of this peak and its shape and height can be used to determine
the top quark mass and Γt, as well as some other parameters. A detailed
phenomenological discussion of the NNLO results is beyond the scope of the
book. (See, e.g., [141].)

The evaluation of the next (N3LO) corrections is a hard problem but the
first results have been already appeared. In [152], the leading retardation
contributions (which are absent in the NNLO and NLO approximations), i.e.
those from the chromoelectric dipole interaction of the heavy quarkonium
with virtual ultrasoft gluons, have been obtained, and the corresponding
shifts of the quarkonium energy levels and the wave functions at the origin
have been calculated. Another group of applications of the threshold expan-
sion is related to the case of the b quark, within the QCD sum rules. The
main technical features of the corresponding NNLO calculations are almost
the same as for the top quark – see [188, 139, 178, 140, 15].

The threshold expansion can be applied not only in QED and QCD but
also in other cases – see, e.g., [121], where an effective non-relativistic theory
that describes bound states of π+π− pairs and their hadronic decays was
investigated.



8 Sudakov Limits

In this chapter we investigate the Sudakov limit and related limits. We expand
diagrams contributing to the quark or electron form factor and four-point
amplitudes – see Fig. 8.1. These diagrams are relevant to a large number
of physical processes. In the Sudakov limit for the form factor, the square
of the momentum transfer Q2 ≡ −(p1 − p2)2 is large compared with the
masses, and, for the four-point amplitudes, the Mandelstam variables s =
(p1 + p2)2, t = (p1 − p3)2 are larger than the masses. In the latter case,
one has t = −s(1− cos θ)/2 in the centre-of-mass frame, so that this limit is
connected with scattering at fixed angles.

p1

p2

(a) (b)

p2

p1

p4

p3

Fig. 8.1. (a) Form factor. (b) Four-point amplitude

In the Regge limit, one has |t| � |s|, and this corresponds to the scat-
tering at small angles. In the crossed channel, this corresponds to backward
scattering, with |u| � |s| and u = (p1 − p4)2 = −s(1 + cos θ)/2.

We start from one-loop examples, as usual. Then, as in Chap. 7, we con-
tinue with two-loop examples because not all relevant regions arise at the
one-loop level. After we have discovered all the typical regions, we present
some general prescriptions. Finally, we describe how the leading and sub-
leading logarithms in the Sudakov limit are summed up by use of evolution
equations [73, 75, 203, 204, 155] that govern the dynamics of the amplitudes
in the Sudakov limit. We shall consider, as examples, the Abelian form factor
in the SU(N) gauge theory and the four-fermion amplitude. This analysis is
applied to the fermion annihilation process f ′f̄ ′ → f f̄ at high energies. The

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 165–208 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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chapter is concluded by summing up the leading logarithms in the Regge
limit.

8.1 List of Limits

There are three standard variants of the Sudakov limit s = (p1−p2)2 → −∞
[226, 150] for vertex diagrams:

(i) On-shell massless fermions, p2
1 = p2

2 = 0, and gauge bosons with a
small non-zero mass, m2 � −s ≡ Q2. Let us choose, for convenience,

p1,2 = (Q/2, 0, 0,∓Q/2) (8.1)

so that 2p1 ·p2 = Q2.
(ii) Massless gauge bosons and off-shell massless fermions p2

1 = p2
2 = −M2,

M2 � −s. We choose

p1,2 = p̃1,2 −
M2

Q2
p̃2,1 , (8.2)

where p̃1,2 are defined as p1,2 in Limit (i). We have s = −(1 + M2/Q2)2Q2

and 2p1 ·p2 = (1 + M4/Q4)Q2. It is more convenient to expand Feynman
diagrams in the ratio M2/Q2 rather than M2/(−s). However, in the leading-
power approximation, this makes no difference, so that Q2 ∼ −s ∼ 2p1 ·p2.

(iii) Massless gauge bosons and on-shell massive fermions p2
1 = p2

2 =
m2 � −s. We choose p1,2 to be as in (8.2) with M2 replaced by −m2.

A limit closely related to the Sudakov limit is the following:
(iv) Massless gauge bosons and on-shell fermions of two types, with a

small and a large mass, p2
1 = M2, p2

2 = m2 and q2 = 0, with m � M .
In fact, this is a particular case, with q2 = 0, of the limit with general q2

of order M2 (but q2 
= M2), which has a clear phenomenological relevance:
it applies to a decay of a heavy particle into a light particle (for example,
muon decay). It turns out that the structure of the asymptotic expansion in
Limit (iv) is the same as in this general limit, and hence we consider this
particular case for simplicity.

The Sudakov limits (i)–(iii) are defined for four-point diagrams, with
both Mandelstam variables t and s of the same order and m2 � |s|, |t| (or
M2 � |s|, |t|).

The Regge limit for the four-point amplitudes, with zero masses, can be
formulated as the following limit:

(v) t � |s|.
Another possible variant is to consider t = 0 and expand in the ratio m/s.
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8.2 One-Loop Examples: Triangles

Consider first the following example.
Example 8.1. The scalar triangle diagram of Fig. 8.2a in Limit (i).
Choosing the loop momentum to be the momentum of the massive line,

we have

F8.1(Q2,m2; d) =
∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)(k2 −m2)

=
∫

dk+ dk− dd−2k

(k+k− − k2 −Qk+)(k+k− − k2 −Qk−)(k+k− − k2 −m2)
, (8.3)

where we have introduced the light-cone coordinates k± = k0 ± k3, k =
(k1, k2), where 2p1,2 ·k = Qk±.

p
2

1
= 0

p
2

2
= 0

1

2

3

(a)

p
2

1
= �M2

p2
2
= �M2

(b)

p2
1
= m2

p2
2
= m2

(c)

p2
1
=M2

p2
2
= m2

(d)

Fig. 8.2a-d. Triangle diagrams in Limits (i)–(iv)

The diagram is finite at d = 4 but we introduce dimensional regularization
in advance, as we usually do. An expansion for m → 0 performed naively in
the integrand gives the wrong result because it generates IR and collinear
divergences starting from the zero-order term. To expand this diagram, let
us follow the strategy of expansion by regions. The hard region, k ∼ Q, gives
the expansion of the integrand into a Taylor series in m. The corresponding
integrals can be evaluated by means of (A.28):

F
(h)
8.1 =

∞∑
n=0

(m2)n
∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)(k2)n+1

= iπd/2
Γ (ε)Γ (1− ε)

(Q2)1+ε

∞∑
n=0

Γ (−n− ε)
Γ (1− n− 2ε)

(
m2

Q2

)n

= −iπd/2
1

(Q2)1+ε
Γ (1 + ε)Γ (−ε)2

Γ (1− 2ε)
+ . . . . (8.4)

Let us look for other non-trivial contributions. The soft region, k ∼ m,
gives, in the leading order,
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F
(s), LO
8.1 =

∫
ddk

(−2p1 ·k)(−2p2 ·k)(k2 −m2)

=
1

2Q2

∫ ∞

−∞
dk+ dk−

∫
dd−2k

(k+ − i0)(k− − i0)(k2 −m2 + i0)
. (8.5)

Closing the contour of integration over k+ in the upper half-plane of the
complex variable k+ (only in the case k− > 0, where there is another pole
in the lower half-plane; otherwise, both poles would be in the upper half-
plane and we would obtain a zero result by closing the contour in the lower
half-plane) and taking the residue at k+ = 0, we have

F
(s), LO
8.1 =

πi
Q2

∫ ∞

0

dk−
k−

∫
dd−2k

k2 +m2
. (8.6)

According to our convention, we set the above integral over k− to zero be-
cause it is an integral without scale. Note that this integral is not regularized
by dimensional regularization; this has already happened with integrals oc-
curring in the threshold expansion in Chap. 7. All other terms of the soft
contribution vanish for the same reason.

The ultrasoft region, k ∼ m2/Q, has even less chance of giving a non-zero
contribution because in this case we have to neglect k2 with respect to m2

and obtain, in the leading order, the integral

F
(us), LO
8.1 =

1
m2

∫
ddk

(−2p1 ·k)(−2p2 ·k)
, (8.7)

which is immediately set to zero because it is an integral of a homogeneous
function.

It looks reasonable to pay attention to regions where k2 is of order m2

and the last propagator is not expanded. Let us consider the following pair
of regions:1

1-collinear (1c), k+ ∼ m2/Q, k− ∼ Q , k ∼ m ; (8.8)
2-collinear (2c), k+ ∼ Q, k− ∼ m2/Q , k ∼ m. (8.9)

When m → 0, d-vectors from the (1c) and (2c) region become collinear with
p1 and p2, respectively. In both regions, k2 is indeed of order m2. In the (1c)
region, the first propagator is not expanded, while the second one is expanded
in k2:

1
k2 − 2p2 ·k

→
∞∑
n=0

(k2)n

(−2p2 ·k)n+1
.

A similar expansion should be performed in the (2c) region. It turns out,
however, that, when taken alone, the (1c) and (2c) contributions contain
divergences that are not dimensionally regularized. To overcome this obstacle,

1 Collinear regions have been introduced within the ‘standard’ method based
on regions [225, 166, 179] and momentum cut-offs.
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we introduce an auxiliary analytic regularization by considering the powers
of the first two propagators to be 1 + λ1 and 1 + λ2, with λ1 
= λ2, evaluate
both contributions and then take the limit λ2 → λ1 → 0 in the sum of these
contributions. Observing that we can replace factors of k2 by factors of m2

in the numerators (because cancelling the denominator k2 − m2 produces
scaleless integrals) and using (A.30), we obtain

F
(1c)
8.1 (λ1, λ2) = − 1

Γ (1 + λ2)

∞∑
n=0

Γ (1 + λ2 + n)
n!

(m2)n

×
∫

ddk
(−k2 + 2p1 ·k)1+λ1(2p2 ·k)n+1+λ2(m2 − k2)

= −iπd/2
Γ (λ1 + ε)Γ (1− λ1 − ε)

Γ (1 + λ1)Γ (1 + λ2)(m2)λ1+ε(Q2)1+λ2

×
∞∑
n=0

Γ (λ1 − λ2 − n)Γ (1 + λ2 + n)
Γ (1− λ2 − n− ε)

(
m2

Q2

)n

= −iπd/2
Γ (λ1 − λ2)Γ (λ1 + ε)Γ (1− λ1 − ε)

Γ (1 + λ1)Γ (1− λ2 − ε)(m2)λ1+ε(Q2)1+λ2
+ . . . . (8.10)

The (2c) contribution is obtained from (8.10) by the permutation λ1 ↔ λ2.
Now we observe that the pole in λ1 − λ2 drops out in the sum of the two
collinear contributions and, in the limit λ2 → λ1 → 0, we obtain

F
(c)
8.1 = lim

λ2→λ1→0

(
F

(1c)
8.1 (λ1, λ2) + F

(2c)
8.1 (λ1, λ2)

)

= −iπd/2
1

Q2(m2)ε
Γ (ε)Γ (1− ε)

∞∑
n=0

(−1)n

n!Γ (1− n− ε)

(
m2

Q2

)n

×
[
ln(Q2/m2) + ψ(ε) + ψ(n+ 1)− ψ(1− ε)− ψ(1 − n− ε)

]
= −iπd/2

Γ (ε)
Q2(m2)ε

[
ln(Q2/m2) + ψ(ε)− γE − 2ψ(1− ε)

]
+ . . . . (8.11)

We fail in further attempts to find a region with a non-zero contribu-
tions and are left with (8.4) and (8.11). For example, if we choose the loop
momentum to be the momentum of the first or the second line, we find no
new non-trivial contributions but the description of the previous regions is
more complicated. Still, it is useful to think of different choices of the loop
momenta – we have seen this in the previous chapters and shall see this again
later.

Although the initial quantity is UV and IR finite, we have poles in ε in
the individual contributions. Now, the poles are up to the second order, and
there are not only UV and IR but also collinear divergences on the right-
hand side. Nevertheless, the poles are successfully cancelled and, in the limit
ε → 0, the sum of the (h) and (c) contributions provides, after summing up
the power series, the following result at ε = 0:
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F8.1 ∼ iπ2

Q2

(
Li2(x) −

1
2
ln2 x+ lnx ln(1− x)− π2

3

)
, (8.12)

where Li2(x) is the dilogarithm (see (A.57)) and x = m2/Q2. This result
coincides with an explicit result which can be obtained, for example, from an
expression for a triangle with general squares of the external momenta [30,
89]. This means that we have indeed missed no other contributions. We can,
however, check the result obtained by an alternative approach based on the
Mellin–Barnes representation. Using (2.74) for the massive propagator and
evaluating the resulting momentum integral by means of (A.28), we have

F8.1 = − iπd/2

(Q2)1+ε

× 1
2πi

∫ +i∞

−i∞
dz
(
m2

Q2

)z
Γ (1 + z)Γ (1 + ε+ z)Γ (−ε− z)2Γ (−z)

Γ (1− 2ε− z)
. (8.13)

Setting ε = 0, closing the integration contour on the right and taking a series
of residues at the points zn = 0, 1, . . . , we reproduce (8.12). But before we
set ε to zero we can distinguish poles at z

(h)
n = n and z

(c)
n = −ε + n, which

correspond exactly to the hard and collinear contributions.
It appears, in this concrete example, that the Mellin–Barnes technique is

simpler than expansion by regions. In particular, we encounter no trouble at
all with dimensional regularization in (8.13). (To be more precise, the pres-
ence of double poles at z = z

(c)
n is connected with those troubles which we

had with the individual (1c) and (2c) contributions and cured by analytic
regularization.) But we are aiming at a general strategy of expansion by re-
gions which will work for any diagram with any number of loops by producing
a result in terms of products of integrals depending on a smaller number of
scales, while the Mellin–Barnes technique is applied to each Feynman integral
in its own way; at two loops, the optimal choice of Mellin–Barnes integrations
is not obvious and, for three or more loops, the problem becomes, generally,
almost impossible to solve by this method.

For Limit (i), it is possible to formulate prescriptions within the method
of expansion by subgraphs [210, 211]. In this one-loop example, the remainder
of the asymptotic expansion can be defined in the usual way, as RaFΓ , where

Ra = (1−Ma
0)(1−Ma

1 −Ma
2) (8.14)

and the pre-subtraction operators Ma
i correspond to the subgraphs {1}, {2}

and the graph Γ itself, with corresponding pre-subtraction operatorsMa
1 ,Ma

2

and Ma
0 . The first two of these operators perform expansion in k2 of the first

and the second propagator, respectively, while the operator M0 expands the
integrand in m. The remainder is UV and IR finite, for any a. Its asymp-
totic behaviour is (m2)a+1/(Q2)a+2 modulo logarithms. There is an interplay
between various divergences: the operator M0 generates IR and collinear di-
vergences, which are removed by M1 and M2. In turn, the operators M1,2
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generate UV and collinear divergences, which are removed by M0. The terms
of the expansion are obtained from the Zimmermann identity:

1 = (1−R) +R = M0 +M1 +M2 + . . . , (8.15)

where we have dropped products of different operators equal to zero and
taken the limit a → ∞ (with Mi = M∞

i ).
Although the expansion of the triangle diagram in Example 8.1 consists

of hard and collinear contributions and does not involve a soft contribution,
collinear and soft contributions can sometimes transform into each other.
To illustrate this phenomenon, let us consider the Feynman integral F8.1;µ,
with an additional factor kµ in the numerator. Its expansion can be obtained
as before and consists of hard and collinear contributions. Let us, however,
calculate the leading order of the expansion in another way. The integral
is represented as (p1 + p2)µC(q2,m2), where C is a scalar function which
equals 1/q2 times an integral with the same denominators as in (8.3) and a
numerator−2p2·k ≡ −(k2−m2)+(k2−2p2·k)−m2. The third term here gives
a contribution that starts only from the next-to-leading power, m2. The first
term, −(k2−m2), cancels one of the factors in the denominator and produces
exactly the leading order of the hard contribution (8.4). Finally, the second
term, (k2 − 2p2 ·k), cancels another factor in the denominator and produces
the integral∫

ddk
(k2 − 2p1 ·k)(k2 −m2)

,

which depends only on one scale, m2. Of course, if we dealt with this integral
from the beginning, it would be useless to think about its expansion because
there would be no expansion parameter. But we obtain such an integral in
the problem of expansion when m2/q2 → 0 when we have to think about ex-
pansion of all the quantities involved. In the method of expansion by regions,
only the contribution of the soft region, k ∼ m, is non-zero, and we observe
that the initial collinear contributions have been transformed into soft ones.

Now we turn to the next example.
Example 8.2. The scalar triangle diagram of Fig. 8.2b in Limit (ii).
With the same choice of loop momentum, we have

F8.2(Q2,M2; d) =
∫

ddk
(k2 − 2p1 ·k −M2)(k2 − 2p2 ·k −M2)k2

, (8.16)

where p1,2 are given by (8.2).
The (h) region generates a contribution obtained from the following ex-

pansion of the first two propagators:

1
k2 − 2p1,2 ·k −M2

→ 1
k2 − 2p̃1,2 ·k

+ . . . .

The leading-order term of the expansion equals the term in the last line of
(8.4).
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As in the previous example, we have non-zero collinear contributions. The
(1c) contribution is obtained by expanding the second propagator as

1
k2 − 2p2 ·k −M2

→
∞∑
n=0

[
M2 − k2 − 2(M2/Q2)p̃1 ·k

]n
(−2p̃2 ·k)n+1

.

The resulting integrals can be evaluated by means of (A.33). We obtain

F
(1c)
8.2 = iπd/2

1
Q2(M2)ε

Γ (1 + ε)Γ (−ε)2

Γ (1− 2ε)
+ . . . . (8.17)

There are no troubles with dimensional regularization, so that the (2c) con-
tribution is identical to (1c).

If we sum up the (h) and (c) contributions, we see that the poles are not
cancelled. Indeed, we have forgotten to look at the (us) region, k ∼ M2/Q,
which generates a simultaneous expansion of the first two propagators:

1
k2 − 2p1,2 ·k −M2

→
∞∑
n=0

(−1)n
[
k2 + 2(M2/Q2)p̃2 ·k

]n
(−2p̃1 ·k −M2)n+1 .

Evaluating the resulting integrals by means of (A.32), we obtain

F
(us)
8.2 = −iπd/2

1
(Q2)1−ε(M2)2ε

Γ (1− ε)Γ (ε)2 + . . . . (8.18)

Then the sum of the (h), (1c), (2c) and (us) contributions gives, at ε = 0,

F8.2 ∼ − iπ2

Q2

[
ln2 x+

π2

3
+ 2x

(
ln2 x+ 2 lnx+

π2

3
− 2
)

+x2
(
6 ln2 x+ 14 lnx+ 2π2 − 11

) ]
+ . . . , (8.19)

where x = M2/Q2. This expansion is in agreement with an explicit result,
which can be derived, for example, from the value of the massless triangle
diagram at general values of the external momenta [29].

In the next example we consider an expansion of a diagram which is IR
divergent.

Example 8.3. The scalar triangle diagram of Fig. 8.2c in Limit (iii).
The Feynman integral is of the form

F8.3(Q2,m2; d) =
∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2

, (8.20)

where p1,2 are given by (8.2) with M2 replaced by −m2. We have already
expanded this diagram at threshold – see Example 7.2 in Sect. 7.1.

This time, the expansion consists of contributions from the hard region
and two collinear regions. The hard contribution is obtained by the expansion
of the first two propagators in m2. In the leading order, the result is the same
as in the previous two examples – see the last line of (8.4).
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The (1c) and (2c) contributions are equal to each other and can be suc-
cessfully regularized by dimensional regularization. The (1c) contribution is
obtained by the replacement

1
k2 − 2p2 ·k

→
∞∑
n=0

[
2(m2/Q2)p̃1 ·k − k2

]n
(−2p̃2 ·k)n+1

.

After evaluation of the resulting integrals by means of (A.37), we have

F
(1c)
8.3 = iπd/2

Γ (ε)
εQ2(m2)ε

+ . . . . (8.21)

The sum of the hard and collinear contributions gives

F8.3 ∼ iπd/2e−γEε

(Q2)1+ε

{
− lnx

1
ε
+

1
2
ln2 x+

π2

6

+x

[
(lnx+ 1)

2
ε
−
(
ln2 x− 2 lnx+

π2

3
+ 2
)]

+x2

[
− (6 lnx+ 7)

1
ε
+
(
3 ln2 x− 9 lnx+ π2 +

5
2

)]}
+ . . . , (8.22)

where x = m2/Q2. The expansion obtained is in agreement with an explicit
result for general ε:

F8.3 = iπd/2
Γ (ε)

2(m2)1+ε 2F1

(
1, 1 + ε;

3
2
;− Q2

4m2

)
, (8.23)

which can be obtained from (7.14) using (A.55) and can be rewritten, using
(A.54), in terms of hypergeometric functions depending on the inverse ratio,
m2/Q2.

The triangle diagram of Fig. 8.2c with general powers of the propagators
can be expanded in Limit (iii) in the same way, with (h), (1c) and (2c)
contributions. It is interesting to analyse the limiting case where the power
of the third propagator tends to zero (or to some negative integer) and the
resulting diagram is Fig. 2.1, with two masses m. For this diagram, there is
no sense in considering collinear regions because the diagram depends only
on one external momentum, q. The expansion in the limit m2/q2 → 0 is of
Euclidean nature when there are contributions from the region of large/hard
momentum (i.e. the contribution of the whole graph) and two contributions
corresponding to the regions where the momentum of one of the two lines is
small/soft (i.e. the contributions of the two subgraphs) – see Example 4.2. It
turns out that when the third line is reduced to a point, the (1c) and (2c)
contributions are transformed into the corresponding soft contributions. In
particular,

F
(1c)
8.3 (Q2,m2; d, λ) =

∫
ddk

(k2 − 2p1 ·k)(−2p̃2 ·k)(k2)λ
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→
∫

ddk
(k2 − 2p1 ·k)(−2p̃2 ·k)

=
∫

ddk
(k2 −m2)(q2 − 2p̃2 ·k)

=
1
q2

∫
ddk

k2 −m2
= F

(1s)
8.3 (Q2,m2; d, 0) , (8.24)

when λ → 0. The symbol (1s) means that the momentum of the first line
is considered to be soft. Here the change of variables k → k + p1 has been
used. Observe also that q2 − 2p̃2 ·k in the denominator has been replaced by
q2 because the value of the integral is in fact the same both for p̃2 
= 0 with
p̃2
2 = 0 and for p̃2 = 0.
The last triangle example is the following.
Example 8.4. The scalar triangle diagram of Fig. 8.2d in Limit (iv).
Let us choose the external momenta as follows: p1 = (M,0), p2 = Mn1+

(m2/M)n2, where n1,2 = (1/2, 0, 0,∓1/2). We have 2n1,2 · k = k± for any d-
vector k. We use the same characterization of the regions in terms of the
components k± and k as in Limit (iii), with the substitution Q → M . The
Feynman integral can be written exactly as the right-hand side of (8.20) but
with another assignment of the external momenta.

In the hard region, the first and the third propagator are not expanded,
and the second propagator is expanded as

1
k2 − 2p2 ·k

→ 1
k2 − 2P1 ·k

+ . . . ,

where P1 = Mn1. The resulting integrals can be evaluated by means of
(A.35). In the summed form, we obtain

F
(h)
8.4 = iπd/2

Γ (ε)
2ε(M2)1+ε

1
1−m2/M2

. (8.25)

The (2c) region does not contribute, because it produces integrals without
scale:

F
(2c)
8.4 =

∫
ddk

(−2P1 ·k)2k2
+ . . . . (8.26)

The contribution of the (1c) region is obtained by use of the following
prescriptions:

(a) Expand the propagator 1/(k2 − 2p1 ·k) into a Taylor series in k2.
(b) Expand each resulting term, which is a function of three kinematical

invariants, p2
1 = M2, p2

2 = m2 and 2p1·p2 = m2+M2, into a Taylor series
at the point p2

1 = 0 and 2p1p2 = M2 (do not touch p2
2 = m2).

It might seem that we expand in the large mass M , but this is just an
illusion! The integrals involved can be calculated by means of (A.37) and we
obtain

F
(1c)
8.4 = −iπd/2

Γ (ε)
2εM2(m2)ε

1
1−m2/M2

. (8.27)

Summing (8.25) and (8.27), we reproduce the explicit result (2.73).
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8.3 One-Loop Examples: Boxes

We now turn to box diagrams.
Example 8.5. The massless on-shell box diagram of Fig. 8.3 in Limit (v),

i.e. with p2
i = 0, i = 1, 2, 3, 4 and t � |s|.

p1 p3

p2 p4

3 4

1

2

k k + p1 + p3

k + p1

k � p2

Fig. 8.3. Box diagram

With the loop momentum chosen as in Fig. 8.3, the Feynman integral
takes the form

F8.5(s, t; d) =
∫

ddk
(k2 + 2p1 ·k)(k2 − 2p2 ·k)k2(k + r)2

, (8.28)

where r = p1 + p3. Let us choose the external momenta as follows:

p1,2 = (∓Q/2, 0, 0, Q/2), r = (T/Q, 0,
√

T + T 2/Q2, 0) , (8.29)

where s = −Q2 and t = −T . As in the above examples, the regions that are
typical in this limit are hard and collinear. They are defined in the same way,
the Mandelstam variable t playing the role of m2. We have, in particular, the
following region:

1-collinear (1c), k+ ∼ T/Q, k− ∼ Q , k ∼
√
T . (8.30)

The (2c) region is defined by replacing k+ and k− (i.e. p1 and p2).
The hard region generates a Taylor expansion of the integrand in t but,

owing to the kinematics, this is a Taylor expansion in the four-vector r = p1+
p3. The leading hard term contributes in the next-to-leading-order, 1/s2. This
term is given by the forward-scattering box, with p3 = −p1 and p4 = −p2,
and can be evaluated by means of alpha parameters, with the following result:

F
(h), LO
8.5 = iπd/2

Γ (−ε)2Γ (1 + ε)
(1 + ε)Γ (−2ε)(−s)2+ε

. (8.31)

In the (2c) region, k2 and p2 ·k are of order T , while p1 ·k is of order Q2.
Moreover, (k + r)2 ≡ k2 + 2k·r − T ∼ (l + r̃)2, where

r̃ = (T/(2Q),
√
T , 0,−T/(2Q)) , (8.32)

with 2p1 · r̃ = 0, 2p2 · r̃ = r̃2 = −T .
Thus the (2c) contribution is obtained by expanding the propagator

1/(k2 + 2p1 · k) into a Taylor series in k2, and by expansion also into a
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Taylor series in 2p1 · r. (Note that we are dealing with a function of three
kinematical variables, 2p1 · r, 2p2 · r and r2. So we expand the integrand (e.g.
in the alpha representation) in 2p1 · r and then set 2p1 · r = T .) Only the
leading term in the Taylor expansion in k2 is non-zero, because, starting from
the next order, the factor k2 cancels the propagator 1/k2 and we obtain a
zero scaleless integral.

As in Example 8.1, the individual collinear contributions are not regular-
ized dimensionally, so that we introduce an auxiliary analytic regularization
by considering the powers of the first two propagators to be 1 + λ1 and
1 + λ2, with λ1 
= λ2, evaluate both contributions and then take the limit
λ2 → λ1 → 0 in the sum of the two contributions. The leading analyti-
cally regularized (2c) contribution is then easily evaluated by means of alpha
parameters, with the following result:

F
(2c), LO
8.5 = iπd

Γ (λ2 − λ1)Γ (1 + λ2 + ε)Γ (−λ2 − ε)2

Γ (1 + λ2)Γ (−λ1 − λ2 − 2ε)(Q2)1+λ1T 1+λ2+ε
. (8.33)

The (1c) contribution is obtained by the change λ1 ↔ λ2. Summing up the
two collinear contributions and evaluating the next-to-leading contribution
in a similar way, we obtain, in the limit λ1,2 → 0,

F
(c)
8.5 = iπd/2

Γ (−ε)2Γ (1 + ε)
Γ (−2ε)s(−t)1+ε

[
ln(t/s) + ψ(−ε)− 2ψ(1 + ε) + γE

+ε
t

s

(
ln

t

s
+ ψ(−ε)− 2ψ(1 + ε) + γE − 1

ε
− 1
)
+ . . .

]
. (8.34)

Combining (8.31) and (8.34) in the limit ε → 0. we see that, up to the
finite part in ε, the hard and collinear terms of the next-to-leading order
cancel each other. In fact, this phenomenon takes place in an arbitrary order
of the expansion starting from the NLO, so that we are left with only the
leading collinear contribution:

F8.5 =
iπd/2e−γEε

st

(
4
ε2

− [ln(−s) + ln(−t)]
2
ε

+2 ln(−s) ln(−t)− 4π2

3

)
+O(ε) . (8.35)

It turns out that, in this example, straightforward evaluation is simpler
than evaluation by expanding in the limit t/s → 0 with the help of expansion
by regions. Indeed, using Feynman parameters, we obtain

F8.5 = iπd/2Γ (2 + ε)
∫ 1

0

∫ 1

0

∫ 1

0

dξ1 dξ2 dη η(1 − η)

×
[
−sξ1(1 − ξ1)(1 − η)2 − tξ2(1− ξ2)η2 − i0

]−2−ε
. (8.36)

The Mellin–Barnes representation (2.74) is then used to replace the two terms
in the square brackets by a product of some powers of these terms, and, after



8.3 One-Loop Examples: Boxes 177

evaluating parametric integrals in terms of gamma functions, we obtain

F8.5 =
iπd/2

(−s)2+εΓ (−2ε)
1
2πi

∫ +i∞

−i∞
dz
(

t

s

)z

×Γ (2 + ε+ z)Γ (1 + z)2Γ (−1− ε− z)2Γ (−z) , (8.37)

where the standard prescription for dealing with poles has been used. The
poles at z = z

(h)
n = n and z = z

(c)
n = −1 − ε + n, with n = 0, 1, . . . ,

correspond to the hard and collinear contributions, respectively. Our result
(8.35), written up to ε0, is reproduced starting from (8.37) by taking just one
residue (with a minus sign, of course) at the first collinear pole z = −1− ε.

We shall see later in this section that the double box provides an even
more striking example of this kind.

Example 8.6. The box diagram of Fig. 8.3 with m1 = m2 = m, m3 =
m4 = 0 and p2

i = 0, i = 1, 2, 3, 4, in Limit (i), i.e. m2 � |s|, |t|.
With the loop momentum shown in Fig. 8.3, the Feynman integral takes

the form

F8.6(s, t,m2; d) =
∫

ddk
(k2 + 2p1 ·k −m2)(k2 − 2p2 ·k −m2)

× 1
k2[k2 + 2(p1 + p3)·k + t]

. (8.38)

Let us choose the external momenta p1,2 as in (8.1) and confine ourselves
to the leading order of expansion. We obtain the contribution from the hard
region, which is nothing but the massless box (8.35). In the (1c) region,
we have k2 ∼ m2, 2p1 ·k ∼ m2, 2p2 ·k ∼ Q2 and 2p3 ·k ∼ (p3)+k− ≡
(−t/Q2)(2p2 ·k). Thus

F
(1c), LO
8.6 = −s

t

∫
ddk

(k2 + 2p1 ·k −m2)(−2p2 ·k)k2(2p2 ·k +Q2)
. (8.39)

The (2c) contribution is obtained by interchanging p1 and p2. There are,
however, two more collinear contributions, which are defined more naturally
with another choice of the loop momentum. But it is simpler to think of the
interchanges p1 ↔ p3 and p2 ↔ p4. In this way we obtain the (3c) and (4c)
contributions, which correspond to regions where k is almost parallel to p3

and p4, respectively. The individual collinear contributions are, again, not
regularized dimensionally. Using analytic regularization and evaluating the
integrals involved by means of (A.34), we obtain the following result for the
sum of all four collinear contributions:

F
(c), LO
8.6 = −iπd/2

2Γ (ε)
st(m2)ε

[
ln
(
m2

−t

)
+ 2ψ(−ε)− ψ(ε) + γE

]
. (8.40)

The ultrasoft contribution is also non-zero here. Moreover, there are two
equal (us) contributions: one of them corresponds to the choice of the loop
momentum in Fig. 8.3, and the other corresponds to the loop momentum
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being the momentum flowing through the fourth line. Using (A.32) we have,
in the leading order,

F
(us), LO
8.6 =

2
t

∫
ddk

(2p1 ·k −m2)(−2p2 ·k −m2)k2

= −2iπd/2
Γ (1− ε)Γ (ε)2

(−s)1−εt(m2)2ε
. (8.41)

Collecting all the contributions, we arrive at the following result for the
leading power of the expansion when m2 � |s|, |t|, written at ε = 0:

FLO
8.6 =

iπd/2

st

[
ln2

(
m2

−s

)
+ 2 ln

(
m2

−s

)
ln
(
m2

−t

)
− π2

3

]
. (8.42)

8.4 Two-Loop Examples: Vertex Diagrams

It turns out that, as in Chap. 7 and in contrast to the limits analysed in
Chaps. 4–6, we have not encountered at the one-loop level all the regions
that are characteristic of the Sudakov and Regge limits. Thus we continue by
analysing examples at the two-loop level. Consider now the following example.

Example 8.7. The diagram of Fig. 8.4 with masses m1 = m2 = m3 =
m4 = 0, m5 = m6 = m in Limit (i).

p1

p2

q

Fig. 8.4. Vertex diagram with two non-zero masses
and p2

1 = p2
2 = 0

This Feynman integral can be written as

F8.7(Q2,m2; d) =
∫

ddl
(l2 − 2p1 ·l)(l2 − 2p2 ·l)

×
∫

ddk
(k2 − 2p1 ·k)(k2 − 2p2 ·k)(k2 −m2)[(k − l)2 −m2]

, (8.43)

where k and l are the loop momenta of the box and triangle, respectively.
In this particular example, we do not encounter new regions. This is the list
of all non-trivial contributions: (h–h), (1c–h), (2c–h), (1c–1c) and (2c–2c),
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where the loop momentum k is characterized in the first position, and the
(h–s) contribution, where the momentum flowing through the middle line,
k − l, is soft.

The (h–h) contribution is obtained by expanding the two massive prop-
agators in a geometric series in m2. In the leading order, this is (8.43) with
pure zero masses, which was first calculated in [125, 182, 156]:

(iπd/2)2

(Q2)2+2ε

1
ε

[
1
2ε

G2(2, 2)G3(2 + ε, 1, 1)

−G2(2, 1)
(
1
ε
G3(2, 1, 1 + ε) +G3(1, 1, 1)

)]

=
(iπd/2e−γEε)2

(Q2)2+2ε

(
1
4ε4

+
5π2

24ε2
+

29ζ(3)
6ε

+
3π4

32
+O(ε)

)
, (8.44)

where G2(λ1, λ2) is given by (2.55) and G3(λ1, λ2, λ3) is given by the ratio
of gamma functions on the right-hand side of (A.28).

All the resulting Feynman integrals in the (h–h) contribution, in an arbi-
trary order of the expansion, are special cases of the integral∫

ddl
(l2 − 2p1 ·l)a1(l2 − 2p2 ·l)a2

×
∫

ddk
(k2 − 2p1 ·k)a3(k2 − 2p2 ·k)a4(k2)a5 [(k − l)2]a6

, (8.45)

with integer powers of the propagators. These integrals can be evaluated by
integration by parts [68] (as in [156]) and can be expressed, for general ε,
in terms of gamma functions. In fact, one can use the triangle rule (2.69)
for the triangle subgraph of Fig. 8.4 with zero masses and reduce either a3,
a4 or a6 to zero. The integrals with a6 = 0 factorize and can be evaluated
in terms of gamma functions by means of (A.7) and (A.28). If a4 = 0, the
fourth line is contracted and then (2.69) is applied again to the triangle with
lines 3, 5 and 6 to reduce either a1 or a3 to zero; the resulting integrals can
be expressed in terms of gamma functions.

Using another choice of the loop momenta, the (h–s) contribution can be
written as

F
(h−s)
8.7 =

∫
ddl

l2 −m2

∫
ddk

(k2 − 2p1 ·k)(k2 − 2p2 ·k)
Tm

1
k2 −m2

×Tl
1

[(k + l)2 − 2p1 ·(k + l)][(k + l)2 − 2p2 ·(k + l)]
. (8.46)

The calculation of this contribution is rather simple and reduces to successive
application of the one-loop integration formulae (A.7) and (A.28), with the G-
functions G2 and G3 in the results. The (h–s) contribution is more typical
of off-shell limits. This contribution starts from the next-to-leading order,
m2/(Q2)3.
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Consider now the (1c–h) and (2c–h) contributions. According to the
general prescription, the (1c–h) contribution is written in terms of the
product of the expansion of the propagator 1/(k2 − 2p2 ·k) in a geomet-
ric series with respect to k2 and an expansion of the triangle subdiagram,
which is a function f(q2

1 , q
2
2 , q

2
3) of the following external momenta squared:

q2
1 = k2 − 2p1·k, q2

2 = k2 − 2p2·k and q2
3 = q2. So, this second expansion of f

is a Taylor series (again in the sense of an expansion under the integral sign)
in q2

2 , with subsequent expansion of the result, as a function of k2 − 2p2 ·k,
in k2. All the derivatives of that triangle with respect to q2

2 at q2
2 = 0 can

be calculated by means of recurrence relations based on integration by parts
(see, e.g., the results for the first two derivatives in [92]).

This product of the expansion of the fourth line and the lower triangle
is then integrated with the product of the other propagators (numbers 4
and 6), using the one-loop integration formulae (A.31). However, the (1c–h)
contribution taken alone is not regularized dimensionally, so that it is natural
to consider the sum of the (1c–h) and (2c–h) contributions. To handle these
terms individually, one can introduce an auxiliary analytic regularization into
lines 3 and 4, calculate the terms and switch off the analytic regularization
in the sum.

Following this procedure, the (1c–h) and (2c–h) contributions can be eval-
uated in terms of gamma functions in every order of the expansion, for arbi-
trary ε. For example, the leading, 1/(Q2)2, contribution takes the form

(iπd/2)2

(Q2)2+ε(m2)ε
Γ (ε)2Γ (1− ε)2

εΓ (1− 2ε)

×
(
−2

Γ (−ε)2

Γ (−2ε)
− lnx+ ψ(ε)− 2ψ(−ε)− γE

)
, (8.47)

where again x = m2/Q2.
To calculate the (1c–1c) and (2c–2c) contributions, it is reasonable to

use the Mellin–Barnes representation for the fifth propagator and reduce the
problem to calculation of the corresponding contribution from the diagram
with m5 = 0 in the case where the corresponding propagator is analytically
regularized. In particular, the leading, 1/(Q2)2, contribution is obtained as
the following Mellin–Barnes integral:

− (iπd/2)2

(Q2)2+ε(m2)ε
1
2πi

∫ i∞

−i∞
dz Γ (2ε+ z)Γ (ε+ z)Γ (−ε− z)Γ (−z)

× [− lnx+ ψ(2ε+ z) + ψ(1 + ε+ z)− 2ψ(1 + z)] . (8.48)

The integration contour is chosen in the standard way, with the qualification
that the pole at z = −ε is to the right of it, i.e. it is considered to be UV.
The pole and the finite part of (8.48) are evaluated separately and produce
the following result, given up to ε0:

− (iπd/2)2

(Q2)2(m2)2ε
(
− 2ζ(3) lnx+

π4

30
+ Γ (−ε)Γ (ε)Γ (2ε)
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× [− lnx+ ψ(1 − ε)− 2ψ(1− 2ε)− ψ(−ε) + ψ(ε) + ψ(2ε)]
)
. (8.49)

Using the method of integration by parts [68], one can arrive at recurrence
relations that provide all the integrals contributing to an arbitrary power of
the expansion [211].

Note that the (h–h) contribution involves IR and collinear divergences,
the (c–c) contribution involves UV and collinear divergences, and the (c–h)
and (s–h) contributions possess all three kinds of divergence. All the poles,
up to 1/ε4, are cancelled, however, and, summing up all the contributions,
we have [211, 209]

F8.7(Q2,m2) ∼ −π4

(Q2)2

[
1
24

ln4 x+
π2

3
ln2 x+ 6ζ(3) lnx+

31π4

180

+x

(
1
6
ln3 x+

3
2
ln2 x+ 6 lnx+

2π2

3
lnx− 18 +

π2

3
+ 6ζ(3)

)

+x2

(
1
12

ln3 x+
35
8

ln2 x+
29
4

lnx+
π2

3
lnx

−153
8

+
19π2

12
+ 3ζ(3)

)]
+ . . . . (8.50)

We now turn to the next example.
Example 8.8. The non-planar vertex diagram of Fig. 8.5 with p2

1 = p2
2 = 0

and masses m1 = m2 = m3 = m4 = 0, m5 = m6 = m in Limit (i).

q

p1

p2

1

2

3

4

5

6

Fig. 8.5. Non-planar vertex diagram

The Feynman integral can be written as

F8.8(Q2,m2; d) =
∫ ∫

ddk ddl
[(k + l)2 − 2p1 ·(k + l)][(k + l)2 − 2p2 ·(k + l)]

× 1
(k2 − 2p1 ·k)(l2 − 2p2 ·l)(k2 −m2)(l2 −m2)

, (8.51)

where the loop momenta are chosen as the momenta flowing through lines 5
and 6. We shall also use a second choice of the loop momenta, where k and l
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are chosen as the momenta of lines 3 and 4, respectively; this is obtained by
permutation of the masses and corresponds to (8.51) with m1 = m2 = m5 =
m6 = 0, m3 = m4 = m.

Let us restrict ourselves to the leading order of expansion. In this case,
non-zero contributions are generated by the following regions: (h–h), (h–1c),
(1c–h), (1c–1c), (2c–2c), (1c–2c), (1c–1c)′, (2c–2c)′ and (us–us)′. As above,
we indicate the region of the loop momentum k in the first position and that
of l in the second position. We indicate by primes the regions for the second
natural choice of the loop momenta. The (h–h) contribution is given by the
massless non-planar diagram. The result, as an expansion in ε, can be found
in [125]:

F
(h−h), LO
8.8 =

∫ ∫
ddk ddl

[(k + l)2 − 2p1 ·(k + l)][(k + l)2 − 2p2 ·(k + l)]

× 1
(k2 − 2p1 ·k)(l2 − 2p2 ·l)k2l2

=

(
iπd/2e−γEε

)2
(Q2)2+2ε

(
1
ε4

− π2

ε2
− 83ζ(3)

3ε
− 59π4

120

)
+O(ε) . (8.52)

An algorithm for the evaluation of general integrals of type (8.52) with ar-
bitrary numerators and integer powers of propagators has been presented
in [9, 3].

The (us–us)′ contribution is easily evaluated in terms of gamma functions
by means of alpha parameters:

F
(us−us)′, LO
8.8 =

∫ ∫
ddk ddl

[−2p1 ·(k + l)][−2p2 ·(k + l)]

× 1
(−2p1 ·k +m2)(−2p2 ·l+m2)k2l2

=

(
iπd/2

)2
(Q2)2−2ε(m2)4ε

[Γ (ε)Γ (2ε)Γ (1− 2ε)]2 . (8.53)

The (1c–h) contribution is given by

F
(1c−h), LO
8.8 =

∫ ∫
ddk ddl

l2 − 2p1 ·l+ (2p2 ·k)(2p1 ·l)/Q2

× 1
l2 − 2p2 ·(k + l) + (2p2 ·k)(2p1 ·l)/Q2

× 1
(k2 − 2p1 ·k)(l2 − 2p2 ·l)(k2 −m2)l2

, (8.54)

and the same leading-order (h–1c) contribution is obtained by permutation
of k and l. Using alpha parameters and Mellin–Barnes representation (twice),
we obtain
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F
(h−1c), LO
8.8 = F

(1c−h), LO
8.8

=

(
iπd/2e−γEε

)2
(Q2)2+ε(m2)ε

(
− 3

ε4
+

π2

ε2
+

22ζ(3)
ε

+
16π4

45

)
+O(ε) . (8.55)

The (1c–1c) contribution is given by

F
(1c−1c), LO
8.8 =

∫ ∫
ddk ddl

[(k + l)2 − 2p1 ·(k + l)][−2p2 ·(k + l)]

× 1
(k2 − 2p1 ·k)(−2p2 ·l)(k2 −m2)(l2 −m2)

, (8.56)

and the (2c–2c) contribution is obtained by permutation of k and l. We
should also consider the similar (1c–1c)′ and (2c–2c)′ contributions with the
second choice of the loop momenta. The corresponding expressions are ob-
tained by a permutation of the masses (see above). The fifth non-zero contri-
bution of collinear–collinear type originates from the (1c–2c) region. It turns
out that these five contributions are dimensionally regularized only in the
sum. It is convenient to introduce an auxiliary analytic regularization into
lines 3 and 4 by inserting the factor (k2−2p1k)−x1(l2−2p2l)−x2 . In contrast
to Example 8.7, we encounter, in this example, poles in xi up to the second
order. In particular, the (1c–2c) contribution can be evaluated in terms of
gamma functions, for general ε:

F
(1c−2c), LO
8.8 (x1, x2) =

∫ ∫
ddk ddl

(k2 − 2p1 ·k)1+x1(l2 − 2p2 ·l)1+x2

× 1
[−2p1 ·l + (2p2 ·k)(2p1 ·l)/Q2][−2p2 ·k + (2p2 ·k)(2p1 ·l)/Q2]

× 1
(k2 −m2)(l2 −m2)

=
(
iπd/2

)2 Γ (−x1 − ε)Γ (−x2 − ε)Γ (x1 + ε)Γ (x2 + ε)
x1x2Γ (−ε)2(−m2)x1+x2+2ε(Q2)2

. (8.57)

Using the technique of alpha parameters and the Mellin–Barnes represen-
tation for the other four (c–c) contributions, we obtain, for each of them,
a result in the form of an expansion in xi. We then switch off the analytic
regularization (first x2 → x1 and then x1 → 0), observe that in the sum of all
five contributions, the singular dependence on xi drops out and obtain the
following result as an expansion in ε:

F
(1c−1c), LO
8.8 + F

(2c−2c), LO
8.8

+F
(1c−1c)′, LO
8.8 + F

(2c−2c)′, LO
8.8 + F

(1c−2c), LO
8.8

=

(
iπd/2e−γEε

)2
(Q2)2

[
19
4ε4

− 9
2ε3

L+
(
L2 − 11π2

4

)
1
2ε2

−
(
3π2

4
L+

97ζ(3)
6

)
1
ε
+

π2

12
L2 + 9ζ(3)L− 23π4

32

]
+O(ε) , (8.58)
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where L = ln(Q2/m2), and we have set m = 1 for brevity (to drop the lnm2

that occurs with L).
Collecting all the leading-order contributions, we see that the poles in ε

are cancelled and we arrive at the following result:

F8.8(Q2,m2) ∼
(
iπd/2

)2
(Q2)2

(
7
12

L4 − π2

2
L2 + 20ζ(3)L− 31π4

180

)
. (8.59)

At the cost of computer algebra, it is possible to extend this result to any
order in 1/Q2.

We have found no new types of regions in this example. However, we have
observed a rich structure of regions, and poles up to the second order in the
auxiliary analytic regularization which are cancelled in the sum of the five
contributions. We have also checked that the poles in ε are cancelled. There
is, however, no check of the finite part because an explicit result for this
diagram is not available. In the next example we shall be able to check the
expansion against a known result.

Example 8.9. The massless planar vertex diagram of Fig. 5.3 with p2
1 =

p2
2 = −M2 in Limit (ii), i.e. M2 � −s.

The Feynman integral can be written as

F8.9(Q2,M2; d) =
∫ ∫

ddk ddl
(l2 − 2p1 ·l−M2)(l2 − 2p2 ·l −M2)

× 1
(k2 − 2p1 ·k −M2)(k2 − 2p2 ·k −M2)k2(k − l)2

. (8.60)

We again restrict ourselves to the leading order, 1/Q4, where we obtain
contributions from the following nine regions: (h–h), (1c–h), (2c–h), (1c–1c),
(2c–2c), (us–h), (us–1c), (us–2c) and (us–us). The (h–h) region generates
terms obtained by Taylor expanding the integrand in the expansion param-
eter, M . In the leading order, the contribution from this region is again, as
in Example 8.7, the massless master vertex diagram given by (8.44).

All the contributions connected with ultrasoft regions can be easily evalu-
ated in terms of gamma functions by use of alpha parameters. In the leading
order, we have

F
(us−us), LO
8.9 =

∫ ∫
ddk ddl

(−2p̃1 ·l −M2)(−2p̃2 ·l−M2)

× 1
(−2p̃1 ·k −M2)(−2p̃2 ·k −M2)k2(k − l)2

=
Γ (ε)2Γ (2ε)2

(M2)4ε(Q2)2−2ε
, (8.61)

F
(us−h), LO
8.9

=
∫ ∫

ddk ddl
(l2 − 2p̃1 ·l)(l2 − 2p̃2 ·l)(−2p̃1 ·k −M2)(−2p̃2 ·k −M2)k2l2
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=
Γ (1 + ε)Γ (1− ε)Γ (ε)2Γ (−ε)2

Γ (1− 2ε)(M2)2ε(Q2)2
, (8.62)

F
(us−1c), LO
8.9 =

∫ ∫
ddk ddl

(l2 − 2p1 ·l−M2)(−2p̃2 ·l)(−2p̃1 ·k −M2)

× 1
(−2p̃2 ·k −M2)k2[l2 − (2p̃1 ·k)(2p̃2 ·l)/Q2]

=
Γ (1− ε)2Γ (ε)Γ (2ε)Γ (−ε)
εΓ (1− 2ε)(M2)3ε(Q2)2−ε

≡ F
(us−2c), LO
8.9 . (8.63)

Using alpha parameters, the rest of the contributions can be evaluated in
terms of onefold Mellin–Barnes integrals:

F
(1c−1c), LO
8.9 =

∫ ∫
ddk ddl

(−2p̃1 ·l)(l2 − 2p2 ·l −M2)(−2p̃1 ·k)

× 1
(k2 − 2p2 ·k −M2)k2(k − l)2

=
Γ (ε)Γ (−ε)Γ (2ε)

Γ (1 + ε)(M2)2ε(Q2)2

× 1
2πi

∫ +i∞

−i∞
dz

Γ (z − 3ε)Γ (z + 1− 2ε)Γ (1 + z − ε)Γ (ε− z)Γ (−z)
Γ (1 + z − 3ε)

≡ F
(2c−2c), LO
8.9 , (8.64)

F
(1c−h), LO
8.9 =

∫ ∫
ddk ddl

(l2 − 2p̃1 ·l)(l2 − 2p̃2 ·l)(−2p̃1 ·k)(k2 − 2p2 ·k −M2)

× 1
k2[l2 − (2p̃1 ·k)(2p̃2 ·l)/Q2]

=
Γ (ε)Γ (−ε)Γ (1− ε)

Γ (1− 2ε)(M2)ε(Q2)2+ε

× 1
2πi

∫ +i∞

−i∞
dz

Γ (1 + z)Γ (z − ε)Γ (1 + z + ε)Γ (−ε− z)Γ (−z)
Γ (1 + z − 2ε)

≡ F
(2c−h), LO
8.9 , (8.65)

where the contours are chosen in the standard way.
The following is the result for the sum of all four (c–c) and (c–h) contri-

butions [216]:

F
(1c−1c), LO
8.9 + F

(2c−2c), LO
8.9 + F

(1c−h), LO
8.9 + F

(2c−h), LO
8.9

=

(
iπd/2e−γEε

)2
(Q2)2

[
− 1
2ε4

+
(
L2 − π2

2

)
1
2ε2

+
(
1
2
L3 − π2

6
L− 17ζ(3)

3

)
1
ε
+

7
24

L4 − 4ζ(3)L− π4

144

]
+O(ε) , (8.66)

where L = ln(Q2/M2) and we have dropped terms containing lnM2.
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Collecting all nine contributions together, we observe that the poles in ε,
which turn out to be of very different (UV, IR and collinear) nature, cancel,
with the following result:

F8.9(Q2,M2) ∼
(
iπd/2

)2
(Q2)2

(
1
4
L4 +

π2

2
L2 +

7π4

60

)
. (8.67)

This is in agreement with the leading-order expansion of the well-known
explicit result [233].

It is in the next example where we shall finally encounter a new region.
Example 8.10. The planar vertex diagram of Fig. 7.5 with m1 = m2 =

m3 = m4 = m, m5 = m6 = 0 and p2
1 = p2

2 = m2 in Limit (iii), i.e. when
m2 � −s.

We have already expanded this diagram at threshold, q2 − 4m2 ∼ 0, in
Example 7.5. Now we write down the Feynman integral as

F8.10(Q2,m2; d)

=
∫ ∫

ddk ddl
(l2 − 2p1 ·l)(l2 − 2p2 ·l)(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2(k − l)2

,

(8.68)

where p1,2 are given by (8.2) with M2 replaced by −m2, so that 2p̃1 · p̃2 =
2p̃1 ·p2 = Q2.

In the leading order, 1/Q4, we obtain five contributions generated by the
following regions: (h–h), (1c–h), (2c–h), (1c–1c) and (2c–2c). In contrast to
Example 8.8, every term can now be considered separately, and we have,
symbolically, (2c–h)= (1c–h), (2c–2c)= (1c–1c).

The (h–h) region generates terms obtained by Taylor expanding the inte-
grand in the expansion parameter, m. In the leading order, this is again the
value of the massless planar diagram at p2

1 = p2
2 = 0 given by (8.44).

We then have

F
(1c−1c), LO
8.10

=
∫ ∫

ddk ddl
(l2 − 2p1 ·l)(−2p̃2 ·l)(k2 − 2p1 ·k)(−2p̃2 ·k)k2(k − l)2

,

(8.69)

F
(1c−h), LO
8.10 =

∫ ∫
ddk ddl

(l2 − 2p̃1 ·l)(l2 − 2p̃2 ·l)(k2 − 2p1 ·k)(−2p̃2 ·k)

× 1
k2[l2 − (2p̃1 ·l)(2p̃2 ·k)/Q2]

. (8.70)

Using the technique of alpha parameters the and Mellin–Barnes representa-
tion, we obtain the following results up to the finite part in ε:

F
(1c−1c), LO
8.10 =

(
iπd/2e−γEε

)2
(Q2)2(m2)2ε

(
− π2

24ε2
+

5ζ(3)
4ε

+
π4

48

)
, (8.71)
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F
(1c−h), LO
8.10 =

−
(
iπd/2e−γEε

)2
(Q2)2+ε(m2)ε

(
1
6ε4

+
π2

6ε2
+

41ζ(3)
9ε

+
37π4

180

)
. (8.72)

If we combine all these five contributions we shall obviously obtain the
wrong result because the poles of the third and fourth order fail to cancel. It
turns out that the following non-standard region has to be included in our
list [214]:

1-ultracollinear (1uc), k+ ∼ m4

Q3
, k− ∼ m2

Q
, k ∼ m3

Q2
. (8.73)

The missing contributions are (1uc–2c) and (2uc–1c), which are equal to each
other and can easily be evaluated by means of alpha parameters for general
ε. In the leading order, we have

F
(1uc−2c), LO
8.10 =

∫ ∫
ddk ddl

(−2p̃1 ·l)(l2 − 2p2 ·l)(−2p1 ·k)(−2p̃2 ·k)k2

× 1
l2 − (2p̃1 ·l)(2p̃2 ·k)/Q2

= −
(
iπd/2

)2
(Q2)2−2ε(m2)4ε

Γ (ε)Γ (2ε)Γ (3ε)Γ (−4ε)

=

(
iπd/2e−γEε

)2
(Q2)2−2ε(m2)4ε

(
1

24ε4
+

5π2

48ε2
+

7ζ(3)
18ε

+
493π4

2880

)
+O(ε) . (8.74)

Collecting all seven contributions together, we observe that the poles of
the third and fourth order in ε cancel, and we arrive at the following result:

F8.10(Q2,m2; d) ∼

=

(
iπd/2e−γEε

)2
(Q2)2+2ε

[
ln2 m2

Q2

1
2ε2

−
(
5
6
ln3 m2

Q2
+

π2

3
ln

m2

Q2
+ ζ(3)

)
1
ε

+
7
8
ln4 m2

Q2
+

4π2

3
ln2 m2

Q2
+ ζ(3) ln

m2

Q2
+

π4

15

]
+O(ε) , (8.75)

which has the proper coefficient of the double pole, given by (7.46).
Note that in the case of the non-planar diagram in Limit (iii), with p2

1 =
p2
2 = m2, there are exactly the same problems with dimensional regularization

as in case of the Limit (i) with p2
1 = p2

2 = 0 – see Example 8.7.
In the above example we encountered the ultracollinear regions which can

be symbolically described as 1uc = (m2/Q2) × 1c and 2uc = (m2/Q2) × 2c.
A 1-ultra-. . . -ultracollinear region 1uc = (m2/Q2)h × 1c can occur for an
arbitrary h. Consider the h-loop ladder diagram in Limit (iii). In this case the
contributions from the (2uh−1c–1uh−2c–. . . –1c) and (1uh−1c–2uh−2c–. . . –2c)
regions are non-zero (here h is supposed to be even, for definiteness).

For completeness, we consider also the master planar diagram in Limit (iv):
Example 8.11. The planar vertex diagram of Fig. 5.3 with m1 = m3 =

M, m2 = m4 = m, m5 = m6 = 0 in Limit (iv).
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The corresponding Feynman integral F8.11(M2,m2; d) has the same form
as (8.68), but the assignments for the external momenta are chosen as in
one-loop Example 8.4.

No new regions are relevant here. In the leading order, there are four
non-zero contributions, corresponding to the (h–h), (1c–h),(1c–1c) and (us–
1c) regions. The (h–h) contribution is obtained by expanding the integrand
into a Taylor series in m2. Using again the technique of alpha parameters
and Mellin–Barnes representation, we arrive at the following result as an
expansion in ε up to the finite part:

F
(h−h), LO
8.11 =

(
iπd/2e−γEε

)2
(M2)2+2ε

(
1

12ε4
+

π2

12ε2
+

91ζ(3)
36ε

+
179π4

1440

)
. (8.76)

The contribution of the (1c–1c) region is obtained by almost the same
prescriptions (a) and (b) as in the corresponding one-loop Example 8.4; in
addition, the propagator 1/(l2 − 2p1·l) is expanded into a Taylor series in l2.
The (1c–h) contribution is of an intermediate character. In the leading order,
we have

F
(1c−1c), LO
8.11

=
∫ ∫

ddk ddl
(−2P2 ·l)(l2 − 2p2 ·l)(−2P2 ·k)(k2 − 2p2 ·k)k2(k − l)2

, (8.77)

F
(1c−h), LO
8.11 =

∫ ∫
ddk ddl

(l2 − 2p1 ·l)(l2 − 2P1 ·l)

× 1
(−2P2 ·k)(k2 − 2p2 ·k)k2[l2 − (2n1 ·l)(2P2 ·k)/M ]

, (8.78)

where P1 = Mn1, P2 = Mn2. These contributions can be evaluated by the
same techniques as before, with the following results as expansions in ε:

F
(1c−1c), LO
8.11 =

(
iπd/2e−γEε

)2
(M2)2(m2)2ε

(
− π2

24ε2
+

5ζ(3)
4ε

+
π4

48

)
+O(ε) , (8.79)

F
(2c−h), LO
8.11

=
−
(
iπd/2e−γEε

)2
(M2)2+ε(m2)ε

(
1
8ε4

+
7π2

48ε2
+

31ζ(3)
6ε

+
871π4

2880

)
+O(ε) .

(8.80)

The (us–1c) contribution

F
(us−1c), LO
8.11 =

∫ ∫
ddk ddl

(−2P2 ·l)(l2 − 2p2 ·l)

× 1
(−2p1 ·k)(−2P1 ·k)k2[l2 − (2n1 ·k)(2P2 ·l)/M ]

(8.81)

can be evaluated in terms of gamma functions, with a result which is closely
related to the (2uc–1c) and (1uc–2c) contributions in Example 8.10:
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F
(us−2c), LO
8.11

=

(
iπd/2e−γEε

)2
(Q2)2−ε(m2)3ε

(
1

24ε4
+

5π2

48ε2
+

7ζ(3)
18ε

+
493π4

2880

)
+O(ε) .

(8.82)

Collecting all four contributions together, we observe that the poles of the
third and fourth order in ε cancel, and we arrive the following result:

F8.11(M2,m2; d)

∼
(
iπd/2e−γEε

)2
(M2)2+2ε

[
ln2 x

1
8ε2

−
(
1
6
ln3 x+

π2

12
lnx+ ζ(3)

)
1
ε

+
13
96

ln4 x+
5π2

16
ln2 x+

3ζ(3)
2

lnx+
π4

72

]
+O(ε) , (8.83)

where x = m2/M2, with the proper coefficient of the double pole, which can
be evaluated starting from the full diagram.

8.5 Two-Loop Example: the Double Box
in the Regge Limit

Our last example in this chapter is the following.
Example 8.12. The massless on-shell (i.e. with p2

i = 0) double box diagram
of Fig. 8.6 in Limit (v).

p1 p3

p2 p4

5 6 7

3 1

4 2

k k � l l + p1 + p3

k + p1 l + p1

k � p2 l � p2

Fig. 8.6. Double box diagram

We consider the master double box, i.e. with all powers of propagators
equal to one. With the assignments of the loop momenta shown in Fig. 8.6,
the Feynman integral takes the form

F8.12 =
∫ ∫

ddk ddl
(l2 + 2p1 ·l)(l2 − 2p2 ·l)(k2 + 2p1 ·k)(k2 − 2p2 ·k)

× 1
k2(k − l)2(l + r)2

≡
(
iπd/2e−γEε

)2
(−s)2+2ε(−t)

K(t/s; ε) . (8.84)
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We again choose the external momenta (8.29). It turns out that the (h–h),
(1c–1c) and (2c–2c) contributions are the only non-zero contributions to the
asymptotic expansion in the limit t/s → 0. In particular, both of the (c–h)
contributions and all the contributions with soft or ultrasoft momenta are
zero because they generate scaleless integrals.

The (h–h) region generates a contribution given by Taylor expansion of
the integrand in the vector r. Every diagram from this contribution corre-
sponds to the forward-scattering configuration, i.e. p3 = −p1 and p4 = −p2.
Such diagrams, with arbitrary numerators and integer powers of propaga-
tors, can be evaluated for general ε in terms of gamma functions by resolving
recurrence relations following from integration by parts [68]. The first step
of this procedure is to reduce the index a5 or a7 to zero and thereby obtain
vertex massless diagrams. The latter reduction, in the scalar case [211], has
been described in the previous section – see Example 8.7. (In the case without
numerators, the reduction of the forward-scattering double box diagram was
presented in [91].) In [217], two different procedures for the evaluation of the
(h–h) contribution were used: one procedure along the lines of this standard
recursion, and another that expands the integrand of the alpha representation
in the variable t and uses tricks based on a shift of the dimension [228].

The (h–h) contribution starts from the next-to-leading order of the ex-
pansion, 1/s3, with the first term equal to the forward-scattering double box
diagram. Although this contribution can be expressed in terms of gamma
functions for general ε, we present it here as an expansion up to ε0:

K(h−h), NLO(x; ε)

= x

(
1
ε3

− 5
ε2

+
5π2 + 96

6ε
+

58ζ(3)
3

− π2

6
− 44

)
, (8.85)

where K(x; ε) is given by (8.84).
The (1c–1c) and (2c–2c) contributions are defined by generalizing the

arguments used in Example 8.5 for the box. The (2c–2c) contribution is
obtained by expanding the propagators 1/(k2+2p1·k) and 1/(l2+2p1·l) into
Taylor series in k2 and l2, respectively, and also by expanding the integrands
into Taylor series in 2p1 ·r.

Thus, we need integrals of the type

J(a1, . . . , a9; d, s, t)

=
1
a8!

(
∂

∂X

)a8 ∫ ∫ ddk ddl
(2p1 ·l)a1(l2 − 2p2 ·l)a2(2p1 ·k)a3

× (l2)a9

(k2 − 2p2 ·k)a4(k2)a5 [(k − l)2]a6 [(l + r)2]a7

∣∣∣∣
X=0

, (8.86)

where X = 2p1 · r, for integer ai. However, this integral, taken alone, is
not generally regularized dimensionally. Only if we add the correspond-
ing symmetrically related contribution (i.e. if we make the replacements
a1 ↔ a2, a3 ↔ a4) do we obtain a result that exists within dimensional
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regularization. As usual, we introduce an auxiliary analytic regularization
which enables us to consider the above terms separately. Let us introduce
this regularization into lines 1 and 2 (although we could just as well choose 3
and 4, or all these four lines), i.e. a1 → a1+x1, a2 → a2+x2 plus a symmetri-
cally related contribution which is given by interchanging a1+x1 and a2+x2.
Only in the sum may we switch off this regularization, i.e. let x1 → 0, x2 → 0.

The integrals with a9 > 0 can be reduced [217] to those with a9 = 0
by recurrence relations following from IBP [68]. Then the alpha representa-
tion can be used for a general integral (8.86) with a9 = 0. By introducing
Mellin–Barnes integrations in an appropriate way, any resulting integral can
be written in terms of a threefold Mellin–Barnes integral representation of a
ratio of gamma functions. These integrals can be evaluated, as an expansion
in ε, by the standard technique of shifting contours and expansion in MB
integrals. First, the singularities in x1 − x2 are localized. Second, the same
technique is applied for picking up the singularities in ε – see [217] for details.

The collinear contributions start from the order 1/(s2t). The following
are the results for the LO (1/(s2t)) and NLO (1/(s3)) contributions [217]:

K(c−c), LO+NLO(x; ε) = x−2ε

[
− 4

ε4
− 3 lnx

ε3
+

5π2

2ε2

−
(
π2

2
lnx− 65

3
ζ(3)

)
1
ε
+ 14ζ(3) lnx+

29
30

π4

]

+x1−2ε

[
1
ε3

+ (2 lnx− 5)
1
ε2

−
(
6 lnx+

7π2

6
− 12

)
1
ε

+π2 lnx+
46
3
ζ(3) +

13π2

2

]
. (8.87)

Combining the result above with the order 1/s3 (h–h) contribution given
by (8.85), we obtain

K(x, ε) = − 4
ε4

+
5 lnx

ε3
−
(
2 ln2 x− 5

2
π2

)
1
ε2

−
(
2
3
ln3 x+

11
2
π2 lnx− 65

3
ζ(3)

)
1
ε

+
4
3
ln4 x+ 6π2 ln2 x− 88

3
ζ(3) lnx+

29
30

π4

+2x
(
1
ε

(
ln2 x− 2 lnx+ π2 + 2

)

−1
3
{
4 ln3 x+ 3 ln2 x+ (5π2 − 36) lnx+ 2[33 + 5π2 − 3ζ(3)]

})

+O(x2 ln3 x) . (8.88)

The expansion in the limit s/t → 0 has the same structure as in the
previous case: only the (h–h) and (c–c) contributions are non-zero. However,
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in this case, there are three (c–c) contributions, and the poles with respect to
the auxiliary parameter of analytic regularization are of up to second order,
as in Example 8.8.

The above initial terms of the expansion are in agreement with an explicit
analytic result [213] obtained by use of alpha parameters and an intermediate
fivefold Mellin–Barnes representation:

K(x, ε) = − 4
ε4

+
5 lnx

ε3
−
(
2 ln2 x− 5

2
π2

)
1
ε2

−
(
2
3
ln3 x+

11
2
π2 lnx− 65

3
ζ(3)

)
1
ε

+
4
3
ln4 x+ 6π2 ln2 x− 88

3
ζ(3) lnx+

29
30

π4

−
[
2 Li3 (−x)− 2 lnxLi2 (−x)−

(
ln2 x+ π2

)
ln(1 + x)

] 2
ε

−4 [S2,2(−x)− lnxS1,2(−x)] + 44 Li4 (−x)
−4 [ln(1 + x) + 6 lnx] Li3 (−x)

+2
(
ln2 x+ 2 lnx ln(1 + x) +

10
3
π2

)
Li2 (−x)

+
(
ln2 x+ π2

)
ln2(1 + x)

−2
3
[
4 ln3 x+ 5π2 lnx− 6ζ(3)

]
ln(1 + x) , (8.89)

where, in addition to the polylogarithms (A.57), the generalized polyloga-
rithms defined by (A.58) also occur.

The very existence of this analytic result provides a new, curious two-loop
example (in addition to Example 8.8) of a diagram whose analytic evaluation
happens to be possible while the terms of its expansion (here in the limit
t/s → 0) cannot be evaluated so easily. It turns out that even a general
massless on-shell double box with arbitrary numerators and integer powers
of the propagators can be evaluated analytically – see an algorithm developed
in [217]. Let us note, for completeness, that in the case of the second two-loop
non-trivial scattering graph, the non-planar double box shown in Fig. 8.7,
the master diagram has been evaluated analytically in [230]. This result is
expressed in terms of the same class of functions as for the master planar
double box. A reduction of general massless on-shell non-planar double box
diagrams with arbitrary numerators and integer powers of the propagators

Fig. 8.7. Non-planar double box
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has been presented in [3]. For a simpler scattering graph, called the pentabox,
the problem of its evaluation has been solved in [2].

It is possible to analytically evaluate [215, 123] double boxes even with
one leg off shell, p2

1 = q2 
= 0, p2
2 = p2

3 = p2
4 = 0. In [215], an asymptotic ex-

pansion, obtained within the strategy of expansion by regions, in the leading
power when q2 → 0 has been used for crucial checks.

8.6 General Prescriptions

Now we are ready to present the list of regions which are involved in the
Sudakov and Regge limits:

(h), (s), (us), (1c), (2c), (1uc), (2uc), (1uuc), (2uuc) , . . . .

When considering various regions, there is a risk of double counting. To
illustrate this fact consider again Examples 8.10 and 8.11. There are con-
tributions from the (h–1c) region (in both examples) and the (h–2c) region
(in Example 8.10) which can be evaluated in terms of gamma functions for
general ε and start from the next-to-leading order, m2. Consider now another
choice of the loop momenta, where the momentum l is chosen as the momen-
tum of the second line. In this case we can recognize a non-zero contribution
from the (h–s) region (where k is hard and this new momentum l is soft).
However, we obtain nothing but double counting because these contributions
coincide with the previous ones: this can be seen by analysing this shift of
the variables l → l− p2. This example shows that one has to be careful when
testing different choices of the loop momenta. Of course, there is no sense
in choosing different assignments of the loop momenta for the hard regions.
But for other types of regions, certain choices of loop momenta are crucial –
see, for example, the two-loop examples in the case of the threshold expan-
sion in Chapter 7, particularly in the case of the ultrasoft regions. There is
a possibility of completely avoiding such double counting by using the alpha
representation and a similar strategy of expansion by regions in the language
of alpha parameters – see Sect. 9.1.

In the Sudakov and Regge limits, individual (1c), (2c), (3c), . . . , (1c–
h), (2c–h), . . . contributions sometimes are not regularized by dimensional
regularization, in which case a natural procedure is to introduce an auxiliary
analytic regularization, which is switched off after picking up spurious poles.
The structure of regions can be very rich. To illustrate this point let us
consider one more example: the scalar master box diagram of Fig. 8.8 with
three massless lines, four lines with mass m, and on-shell external momenta
p2
i = m2, i = 1, 2, 3, 4, in the leading order,m0, of expansion in the (Sudakov)

limit of fixed-angle scattering, m2 � |s|, |t|.
The following family of seventeen regions participates here:
(h–h), (1c–h), . . . , (4c–h), (1c–1c), . . . , (4c–4c),
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p1 p3

p2 p4

Fig. 8.8. Double box diagram with ex-
ternal momenta p2

i = m2

(1c–3c), (2c–4c), (1c–4c), (2c–3c),
(1uc–2c), (2uc–1c), (3uc–4c), (4uc–3c).
The contributions (1c–1c), (3c–3c), (1c–3c), as well as the symmetrical

contributions (2c–2c), (4c–4c) and (2c–4c), are not individually regularized by
dimensional regularization. The poles in the auxiliary analytic regularization
turn out to be of the second order and are cancelled in the sum. After adding
the rest of the contributions, the poles of the third and fourth order in ε
are cancelled and, using the techniques described above, one can observe
that the coefficient of the double pole of the initial diagram in ε (which can
be evaluated simply) is reproduced in the limit m → 0 in the sum of the
contributions on the right-hand side.

Let us point out that the expansion in k2 in the collinear contributions (as
well as in the soft contributions in the case of Limit (A) considered in Chap. 6)
reminds us of the prescriptions of the eikonal2 approximation (see, e.g., [100]).
There are, however, essential differences. In the eikonal approximation, both
propagators containing k2 − 2p1 ·k or k2 − 2p2 ·k would be expanded in k2,
while we expand only one of them. Moreover, a (momentum) cut-off is implied
when the eikonal approximation is used, while we systematically work only
with dimensional (and, sometimes, analytic) regularization without any other
cut-off and have manifest homogeneity of the terms of the expansion from
the beginning. For us, such a contribution with both propagators expanded
in k2 is zero because it involves a scaleless integral.

8.7 Summing up Sudakov Logarithms

8.7.1 Form Factor

As we saw in the examples, there is a double power of a logarithm per loop
in the Sudakov limit. Indeed, the leading logarithms in QED/QCD enter
at the n-loop level in the combination αn ln2nQ2 (with αs in place of α in
QCD). Starting from the pioneering work of Sudakov [226], it has become
well known how to sum up these leading logarithms. The corresponding nice

2The bad news is that there are doubts whether the eikonal approximation is
always valid. But the good news is that the method of expansion by regions can
be successfully applied. At least one can take the diagrams considered in [100] and
expand them in accordance with the prescriptions formulated in this section.
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combinatorial arguments, which are the same as those used in the summation
of IR and collinear divergences, can be found in many books (see, e.g., [190])
and are not presented here. In Limit (ii), the leading logarithms contributing
to the electron form factor can be summed up [226] to give

exp
(
− α

4π
ln2 Q2

M2

)
, (8.90)

and, in Limit (i), one has [150]

exp
(
− α

2π
ln2 Q2

m2

)
. (8.91)

The summation of the leading and subleading (i.e. αn ln2n−1 Q2) logarithms
was studied in [226, 150, 77, 120] and [206, 73, 203, 204, 154, 155, 173],
respectively.

Let us rely on evolution equations obtained by means of non-trivial di-
agrammatic analyses within standard methods [73, 75, 203, 204, 155] and
insert, as an input, the leading-power behaviour of diagrams obtained within
the strategy of expansion by regions following [159].

Further, let us consider the vector form factor in the SU(N) non-Abelian
gauge theory which determines the amplitude of fermion scattering in an
external Abelian field – see Fig. 8.1a. The form factor is parameterized ac-
cording to (7.65). The contribution of F2 is, however, suppressed by a power
of Q2 so that we are left with F1. At the tree level (in the Born approxima-
tion), the form factor is

FB,µ = ψ̄(p2)γµψ(p1) . (8.92)

In Limit (i), the evolution equation is of the form [72, 203]

∂

∂ lnQ2
F =

[∫ Q2

m2

dx
x

γ(α(x)) + ζ(α(Q2)) + ξ(α(m2))

]
F , (8.93)

with the solution

F (i) = F0(α(m2))

× exp

{∫ Q2

m2

dx
x

[∫ x

m2

dx′

x′ γ(α(x′)) + ζ(α(x)) + ξ(α(m2))
]}

. (8.94)

In Limit (ii), one has [155]

∂

∂ lnQ2
F

=

[∫ Q2

M4/Q2

dx
x

γ(α(x)) + ζ(α(Q2)) + ζ1(α(M4/Q2)) + ξ(α(M2))

]
F ,

(8.95)

with the solution
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F (ii) = F0(α(M2))

× exp

{∫ Q2

M2

dx
x

[∫ x

M2

dx′

x′ γ(α(x′)) + ζ(α(x)) + ξ(α(M2))
]

+
∫ M2

M4/Q2

dx
x

[∫ M2

x

dx′

x′ γ(α(x′)) + ζ1(α(x))

]}
. (8.96)

The functions F0 and ξ are, generally, different in these two limits. We omit
the corresponding label ((i) or (ii)) and the Lorentz index µ for brevity.

As we saw in the examples in this chapter, there are logarithms of types
ln(Q2/m2) and log(Q2/µ2), where µ is the massive parameter which is al-
ways implicitly present within dimensional regularization. We shall call the
former logarithms ‘infrared’ because they involve logarithms of the masses
and are singular in the massless limit. The latter logarithms will be called
‘renormalization group’ (RG) logarithms because they are connected with
the UV properties of the theory and are effectively summed up by solving
RG equations [27, 74]. Similarly, the evolution equations (8.93) and (8.95),
with information about the first orders of perturbation theory used as an
input, gives the possibility of summing up the (sub)leading IR logarithms.
Since the RG logarithms also contribute to the asymptotic behaviour at large
Q2, starting from the level of subleading logarithms, we have to keep RG cor-
rections to the leading logarithmic approximation as well as single one-loop
IR and RG logarithms. In this approximation, the form factor F (i) takes the
form

F (i)

= F0(α) exp

[∫ Q2

m2

dx
x

∫ x

m2

dx′

x′ γ(α(x′)) + (ζ(α) + ξ(α)) ln (Q2/m2)

]

(8.97)

and, in the case of Limit (ii), we have

F (ii) = F0(α)

× exp

{∫ Q2

M2

dx
x

∫ x

M2

dx′

x′ γ(α(x′)) +
∫ M2

M4/Q2

dx
x

∫ M2

x

dx′

x′ γ(α(x′))

+(ζ(α) + ζ1(α) + ξ(α)) ln (Q2/M2)
}

. (8.98)

All the functions in the exponent have to be computed in one loop, and the
one-loop running of α (according to the RG equations) in the argument of
the γ function should be taken into account.

We proceed in the covariant gauge, where the self-energy insertions in the
external fermion lines are independent of Q. The calculation of the one-loop
triangle diagram gives

F a =
α

2π
CF

[
−V a0 + 2V a1 + 2(1− 2ε)V a2 − V̄ a

2

]
FB , (8.99)
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where a = (i) or (ii) and CF is defined by (1.29) The functions V a
i and V̄ a

2

are given by

F8.1 = −iπd/2e−γEε
V

(i)
0

Q2
,

F8.1;µ = −iπd/2e−γEε(p1 + p2)µ
V

(i)
1

Q2
,

F8.1;µν = iπd/2e−γEε
(
gµνV

(i)
2 − (p1)µ(p2)ν − (p2)µ(p1)ν

Q2
V̄

(i)
2

)
. (8.100)

Here F8.1 is given by (8.3), and F8.1;µ and F8.1;µν are defined in a similar way
with factors kµ and kµkν , respectively, in the numerator. The corresponding
functions in Limit (ii) are defined similarly, with F8.1 replaced by F8.2 – see
(8.16). In the representation of the third integral, tensor structures that are
power suppressed in the expansion when Q → ∞ are omitted.

Keeping the leading power in (8.4), (8.11), (8.17) and (8.18), as well as in
similar expansions for the integrals with numerators, we obtain,3 in Limit (i),

V
(i)h
0 =

1
ε2

− 1
ε
lnQ2 +

1
2
ln2 Q2 − π2

12
,

V
(i)c
0 = − 1

ε2
+

1
ε
lnQ2 − (lnm2) lnQ2 +

1
2
ln2 m2 +

5π2

12
,

V
(i)
0 ∼ 1

2
ln2 Q2

m2
+

π2

3
; (8.101)

V
(i)h
1 = −1

ε
+ lnQ2 − 2 , V

(i)c
1 =

1
ε
− lnm2 + 1 ,

V
(i)
1 ∼ ln

Q2

m2
− 1 ; (8.102)

V
(i)
2 ∼ V

(i)h
2 =

1
4

(
1
ε
− ln

Q2

µ2
+ 3
)

, (8.103)

V̄
(i)
2 ∼ V̄

(i)h
2 ∼ 1

2
. (8.104)

The pole in (8.103) and the corresponding logarithm are of UV nature. Ob-
serve that this RG logarithm contributes only to the function ζ. We explicitly
insert there the dependence on the renormalization parameter µ which is usu-
ally implied (and omitted) within dimensional regularization. All other poles
in the hard contributions are cancelled, together with the poles in the collinear
and/or ultrasoft contributions. Correspondingly, all other logarithms lnQ2

are naturally combined with logarithms of the mass squared and provide the
IR logarithms ln(Q2/m2).

3In fact, in summing up the leading and next-to-leading logarithms, we do not
need the finite parts present in these and similar results. These parts are, however,
needed for the summation of NNLL logarithms (see [158]).
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The hard contribution (in the leading power) in Limit (ii) is the same.
The new ingredients are

V
(ii)c
0 = − 2

ε2
+

2
ε
lnM2 − ln2 M2 +

π2

6
,

V
(ii)us
0 =

1
ε2

+
1
ε

(
lnQ2 − 2 lnM2

)
+

1
2
ln2 Q2

−2(lnM2) lnQ2 + 2 lnM2 +
π2

4
,

V
(ii)
0 ∼ ln2 Q2

M2
+

π2

3
; (8.105)

V
(ii)c
1 =

1
ε
− lnM2 + 2 , V

(ii)
1 ∼ ln

Q2

M2
. (8.106)

The strategy of expansion by regions enables us to straightforwardly iden-
tify the regions relevant to determining any given function of the evolution
equation and to compute them separately to the required accuracy. For ex-
ample, the anomalous dimensions γ(α) and ζ(α) in an arbitrary order are
completely determined by the coefficients of the double and single poles, re-
spectively, of the hard contribution. In contrast, the functions ξ(α) and F0(α)
determine the initial conditions for the evolution equation and depend on the
infrared sector of the model. To determine the function ξ(α) one has to know
also the singularities of the collinear contribution, while F0(α) requires com-
plete information about the contributions of all the regions.

From the one-loop result, we find

γ(α) = −CF
α

2π
. (8.107)

Moreover, it is clear from the above expressions that in Limit (i), the total
double logarithm of Q2 comes from the hard contribution, while in Limit (ii)
one-half of the double logarithm comes from the ultrasoft contribution. This
explicitly determines the scale of the coupling constant in the second order
logarithmic derivative of the form factor with respect to Q. This scale is Q2

in Limit (i) and M2 in Limit (ii). Furthermore, all the Q-dependent terms in
the ultrasoft contribution of (8.105) are related to the γ term, and therefore
ζ1(α) = 0 and ξ(α) = 0. Moreover, we find

ζ(α) = 3CF
α

4π
. (8.108)

To complete the Q-independent part of the one-loop corrections to the
form factor, one has to include the fermion wave function renormalization
determined by the self-energy insertions into the external lines, which are
nothing but the soft contributions,4 which, for a 1PI vertex diagram, play a

4 Such integrals depend on one scale, m2 or M2, and it is natural to think of
the loop momentum as soft. See a similar situation at the end of the discussion
of Example 8.1, where the connection between collinear and soft contributions was
exemplified.
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minor role in the leading-power approximation, within our strategy of expan-
sion by regions. (They are definitely more important in the standard strategy
of expansion by regions, with momentum space cut-offs [75].) In Limit (i),
these insertions lead the factor

1 + CF
α

4π

(
−1

ε
+ ln

m2

µ2
+

1
2

)
, (8.109)

and, in Limit (ii),

1 + CF
α

4π

(
−1

ε
+ ln

M2

µ2
− 1
)

. (8.110)

The UV poles of (8.109) and (8.110) cancel the UV pole that arises from
(8.103), in accordance with the Ward identity and the non-renormalization
property of the conserved vector current. Finally, in the next-to-leading log-
arithmic approximation, we find the form factor (i) to be

F (i) = FB

[
1− CF

α

4π

(
7
2
+

2π2

3

)]

× exp

[
CF

2π

(
−
∫ Q2

m2

dx
x

∫ x

m2

dx′

x′ α(x′) + 3α ln (Q2/m2)
)]

(8.111)

and the form factor (ii) to be

F (ii) = FB

[
1− CF

α

4π

(
1 +

2π2

3

)]

× exp

[
CF

2π

(
−
∫ Q2

M2

dx
x

∫ x

M2

dx′

x′ α(x′)

−
∫ M2

M4/Q2

dx
x

∫ M2

x

dx′

x′ α(x′) + 3α ln (Q2/M2)
)]

. (8.112)

Equations (8.111) and (8.112) are in agreement with a similar result of [154,
155].

Let us show, using expansion by regions, that the single logarithmic term
in the exponents of (8.111) and (8.112) can be symbolically represented as

3 ln (Q2/m2) = 4 ln (Q2/m2)(IR) − ln (Q2/m2)(RG) , (8.113)

where m → M in the second case. We explicitly separate the IR and renor-
malization group5 logarithms, which are of essentially different nature and
are related here to the V1 and V2 integrals, respectively.

5Although this logarithm originates from the integration over the virtual mo-
mentum region between the M2 and Q2 scales and does not depend on µ, we call it
‘RG’ because it is directly related to and can be read off the renormalization group
properties of the Abelian vertex and the fermion wave function.
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It is useful to distinguish between the collinear6 and IR poles in ε (result-
ing in logarithms of Q2) in the hard contribution. The collinear logarithms,
in a physical (Coulomb or axial) gauge originate only from the self-energy
insertions into the external fermion lines [120, 73, 203, 204, 119, 118] and
therefore are universal, i.e. independent of specific processes.

Within expansion by regions, the total pole part in ε of the collinear
contribution in Limit (i) cancels both the IR and the collinear poles of the
hard contribution. Hence it is not straightforward to separate the collinear
logarithms. Let us note that the collinear poles (but not the IR ones) can
be removed by considering Limit (iii), with a finite fermion mass and zero
gauge boson mass. This enables us to distinguish the IR and collinear poles.
In Limit (iii), the collinear poles in the hard contribution are cancelled by
the poles of the collinear contribution when the logarithms are obtained,
while the IR poles in the hard contribution are not cancelled. Thus one can
determine the origin of the poles in the hard contribution and therefore the
origin of the logarithms. For example, in the hard contribution to the integral
V1, the pole is collinear since it is cancelled in Limit (iii) by

V
(iii)c
1 =

1
ε
− lnm2 + 2 . (8.114)

Thus the single infrared logarithm in (8.113) is of collinear origin and there-
fore is universal. We should emphasize that this is not true for the RG log-
arithm in (8.113), which depends on a specific amplitude and model. For
example, this logarithm is different for a scalar form factor or for a vector
form factor in a model containing an additional Yukawa interaction of the
fermions with the scalar bosons.

A less trivial example is the Feynman integral (8.20):

F8.3 = −iπd/2e−γEε
V

(iii)
0

Q2
. (8.115)

In the hard contribution to this integral in Limit (iii), the collinear part
of the double pole is cancelled by poles in the collinear contribution (8.21)
and transforms into the logarithm of Q2/m2, but an IR single pole in the
leading-power asymptotics is left:

V
(iii)
0 ∼ −1

ε
ln

Q2

m2
+
(
ln

Q2

m2

)
lnQ2 − 1

2
ln2 Q2

m2
− π2

6
. (8.116)

8.7.2 Four-Fermion Amplitude

Now we turn to the Sudakov limit for the four-fermion amplitude (follow-
ing [159]), where all the invariant energy and momentum transfers of the

6 Although IR divergences are sometimes called ‘soft’ we prefer not to use this
word here, in order not to interfere with the word ‘soft’ used to denote soft re-
gions/contributions. The same word ‘collinear’ is, however, used to denote both
collinear regions/contributions and collinear divergences.
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process are much larger than the typical mass scale of the internal particles,
i.e. |s| ∼ |t| ∼ |u| � M2. Besides the extra kinematical variable, the analysis
of the four-fermion amplitude is made more complicated by the presence of
different colour and Lorentz structures. The Born amplitude, for example,
can be expanded in a basis of colour/chiral amplitudes:

AB =
ig2

s
Aλ =

ig2

s
TF

(
−Ad

LL +Ad
LR

N
+Ac

LL +Ac
LR + . . .

)
, (8.117)

where

Aλ = ψ̄2(p2)taγµψ1(p1)ψ̄4(p4)taγµψ3(p3) ,

AdLL = ψ̄2
i
Lγµψ1

i
Lψ̄4

j
Lγµψ3

j
L , AcLR = ψ̄2

j
Lγµψ1

i
Lψ̄4

i
Rγµψ3

j
R , (8.118)

ψL/R = (1∓γ5)ψ/2, TF is defined by (1.29), the ellipsis stands for terms with
L↔R, and the superscripts d and c denote direct and crossed tree diagrams,
respectively. Further, ta is the SU(N) generator, p1, p3 are the incoming mo-
menta, and p2, p4 are the outgoing momenta, and the Mandelstam variables
are s = (p1 − p2)2, t = (p1 − p4)2 and u = (p1 + p3)2 = −(s + t). For the
moment we consider a parity-conserving theory. Hence only two chiral am-
plitudes are independent, for example LL and LR. Similarly, only two colour
amplitudes are independent, for example λ and d.

Let us first compute the one-loop corrections in Limit (i), keeping the
leading-power behaviour. Vertex diagrams are expanded as in the previous
subsection, with the following total contribution:

α

π

(
CF (−V0 + 2V1) +

CA

2
V0 + . . .

)
AB , (8.119)

where the ellipsis stands for the contribution without IR logarithms, and CA

is defined by (1.29). In the vertex correction involving the gauge boson self-
coupling, a contribution of the form (8.114) appears with m replaced by M ,
and we have used the fact that the pole (logarithmic) term of V c

1 is the same
in both (8.102) and (8.106).

When dealing with (crossed) box diagrams, it is convenient to take into
account polynomials of the loop momenta in the numerator by shifting the
dimension d and the powers of propagators. The box diagrams give

ig2

s

α

4π

{
(5B0 + 3B1 + 4B2 − 3B3 − 6B4 + 2B5)

×
[(

CF − TF

N

)
ψ̄2t

aγµψ1ψ̄4t
aγµψ3 + CF

TF

N
ψ̄2γµψ1ψ̄4γµψ3

]

− (3B0 +B1 −B3 − 2B4 + 2B5)

×
[(

CF − TF

N

)
ψ̄2t

aγµγ5ψ1ψ̄4t
aγµγ5ψ3 + CF

TF

N
ψ̄2γµγ5ψ1ψ̄4γµγ5ψ3

]}
,

(8.120)
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where

B0 = −is J(1, 1, 1, 1, 1) , B1 = st J(1, 2, 1, 1, 1) ,
B2 = st J(1, 1, 2, 1, 1) , B3 = st J(1, 3, 1, 1, 2) ,
B4 = st J(2, 1, 2, 1, 2) , B5 = s2 J(1, 1, 2, 2, 2) , (8.121)

and the functions J(a1, a2, a3, a4, n) are proportional to scalar box integrals
in shifted dimensions:

J(a1, a2, a3, a4, n) = i−a1−a2−a3−a4−1+d/2+n
∏
i

(ai − 1)!

×
∫

dd+nk
(k2)a1(k2 − 2p1 ·k −m2)a2(k2 − 2p2 ·k −m2)a3

× 1
(k2 − 2(p1 − p4)·k + t)a4

. (8.122)

The expansion of the master integral J(1, 1, 1, 1, 0) has been described
in Example 8.6. All other integrals (8.122) are expanded similarly. Keeping
the leading power in the expansion and the terms containing the leading and
subleading logarithms, we have

B0 ∼ B5 ∼ B1 −B3 − 2B4 ∼ 0 , (8.123)

Bh
2 (s, t) = − 1

ε2
+

1
ε
ln (−t) +

1
2
ln2 (−s)− ln (−s) ln (−t) ,

Bc
2(s, t) =

1
ε2

− 1
ε
ln (−t)− lnM2 ln (−t)− 1

2
ln2 M2 ,

B2(s, t) ∼
1
2
ln2

(
−s

M2

)
+ ln

(
−s

M2

)
ln

t

s
, (8.124)

and the box contribution takes the form

− ig2

s

α

π
B2(s, t)

[(
CF − TF

N

)
Aλ + CF

TF

N
Ad
]

. (8.125)

The crossed box diagrams give

ig2

s

α

π
B2(s, u)

[(
CF − TF

N
− CA

2

)
Aλ + CF

TF

N
Ad
]

. (8.126)

The rest of the one-loop logarithmic contributions from the vertex dia-
grams and the self-energy insertions are of renormalization group nature. In
addition to the vertex and external-fermion self-energy diagrams considered
in the previous subsection, the renormalization group logarithms set the scale
of g in the Born amplitude as Q2.
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The total one-loop correction in the logarithmic approximation becomes

ig2(Q2)
s

α

2π

({
−CF ln2

(
−s

M2

)

+
[
3CF − CA ln

u

s
+ 2

(
CF − TF

N

)
ln

u

t

]
ln
(
−s

M2

)}
Aλ

+2
CFTF

N
ln

u

t
ln
(
−s

M2

)
Ad
)

. (8.127)

Note that the next-to-leading logarithms do not depend on chirality and are
the same for both the LL and LR amplitudes.

The collinear logarithms can be now separated from the total one-loop
correction. For each fermion–antifermion pair, they form the exponential fac-
tor (8.111). This factor incorporates in addition the renormalization group
logarithms which are not absorbed by changing the normalization scale of
the gauge coupling. The remaining single logarithms in (8.127) are of IR na-
ture. Let us denote by Ã the amplitude with the collinear logarithms factored
out. This amplitude can be represented as a vector in the basis Aλ, Ad and
satisfies the following matrix evolution equation [204, 31]:

∂

∂ lnQ2
Ã = χ(α(Q2))Ã , (8.128)

where χ is the matrix of the ‘soft’ (IR) anomalous dimensions. From (8.128),
we find the elements of this matrix to be, in units of α/(4π),

χλλ = −2CA ln
u

s
+ 4

(
CF − TF

N

)
ln

u

t
,

χλd = 4
CFTF

N
ln

u

t
, χdλ = 4 ln

u

t
, χdd = 0 . (8.129)

The solution of (8.128) reads

Ã = A0
1(α(M

2)) exp

[∫ Q2

M2

dx
x

χ1(α(x))

]

+A0
2(α(M

2)) exp

[∫ Q2

M2

dx
x

χ2(α(x))

]
, (8.130)

where the χi are the eigenvalues of the χ matrix and the A0
i are Q-

independent vectors.
Equations (8.124) imply that only the hard contributions are relevant to

(8.128). This fixes the scale of α in this equation to be Q. For this reason, the
matrix (8.129) is the same in Limit (ii). Hence, in the next-to-leading logarith-
mic approximation, the difference between the corrections to the four-quark
amplitude in Limits (i) and (ii) is explained by the different factors (8.111)
and (8.112).
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In particular, in the Abelian case, there are no different colour amplitudes
and there is only one anomalous dimension,

χ = 4 ln
u

t
. (8.131)

8.8 An Application: Electroweak Processes
at High Energies

Let us apply (following [159] where details can be found) the results of the
previous section to the fermion annihilation process f ′f̄ ′ → f f̄ at high ener-
gies. At the tree level (Born approximation), its amplitude is

AB =
ig2

s

∑
I,J=L,R

(
T 3
f ′T 3

f + t2W
Yf ′Yf
4

)
Af

′f
IJ . (8.132)

Here

Af
′f
IJ = f̄ ′

Iγµf
′
I f̄JγµfJ , (8.133)

tW = tan θW, where θW is the Weinberg angle, and Tf and Yf are the isospin
and hypercharge, respectively, of the fermion, which depend on the fermion
chirality.

To analyse the electroweak corrections to the above process we shall pro-
ceed in two steps. First, we use an approximation in which the W and Z
bosons have the same mass M and the quarks and leptons are massless.
Moreover, a fictitious photon mass λ is introduced to regularize the IR di-
vergences, and the equal-mass case λ = M is considered. Now we can work
in terms of fields of unbroken phase and directly apply the results of the
previous section for Limit (i) by projecting onto a relevant initial/final state.
For each fermion–antifermion pair, the factor (8.111) takes the form

exp

[
−
(
Tf(Tf + 1) + t2W

Y 2
f

4

)
[L(s)− 3l(s)]

]
, (8.134)

where

L(s) =
g2

16π2
ln2

(
−s

M2

)
, l(s) =

g2

16π2
ln
(
−s

M2

)
, (8.135)

and we neglect the running of the coupling constant in the integral in (8.111)
but fix the scale of the couplings g and tWg in the double logarithmic contri-
bution to be Q. The soft anomalous dimension for I and/or J =R is Abelian
and, in units of α/(4π), reads

χ = t2WYf ′Yf ln
u

t
. (8.136)

The matrix of the soft anomalous dimensions for I = J =L is the sum of the
Abelian and non-Abelian parts:
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χλλ = −4 ln
u

s
+
(
t2WYf ′Yf + 2

)
ln

u

t
, χλd =

3
4
ln

u

t
,

χdλ = 4 ln
u

t
, χdd = t2WYf ′Yf ln

u

t
. (8.137)

Second, it is necessary to switch to the situation of a massless photon,
where the corresponding IR-divergent contributions should be accompanied
by integration of the real soft-photon radiation over some energy resolution
ωres to obtain an infrared-safe cross-section independent of the auxiliary pho-
ton mass. At the same time, the massive gauge bosons are supposed to be
detected as separate particles. In practice, the energy resolution is much less
than the W and Z boson mass so that the soft-photon emission is of QED
nature. This cancels the IR singularities of the QED virtual correction. We
should therefore separate the QED virtual correction from the complete result
computed for a photon of some mass λ and then evaluate the QED virtual
correction together with the real soft-photon radiation effects for vanishing
λ. It is convenient to subtract the QED contribution computed for a photon
of mass M from the result obtained for the virtual corrections and then take
the limit λ → 0 for the sum of the QED virtual and real photon contribu-
tions to the total amplitude. In the language of the approach of [106], this
prescription means that we use the auxiliary photon mass λ as a variable of
the evolution equation below the scale M , and the subtraction fixes a relevant
initial condition for this differential equation. This leads to a modification of
the factor (8.134) and the soft anomalous dimensions (8.136), (8.137).

The common factor for each fermion–antifermion pair becomes

exp

[
−
(
Tf(Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f

)
[L(s)− 3l(s)]

]
, (8.138)

where sW = sin θW. We then have

χ =
(
t2WYf ′Yf − 4s2

WQf ′Qf
)
ln

u

t
, (8.139)

and the matrix of the soft anomalous dimension for I = J = L is

χλλ = −4 ln
u

s
+
(
t2WYf ′Yf − 4s2

WQf ′Qf + 2
)
ln

u

t
, χλd =

3
4
ln

u

t
,

χdλ = 4 ln
u

t
, χdd =

(
t2WYf ′Yf − 4s2

WQf ′Qf
)
ln

u

t
. (8.140)

We can now estimate the dominant one- and two-loop logarithmic cor-
rections. The renormalization group logarithms which are not included in
(8.138) can be taken into account trivially by choosing the relevant scale
of the coupling constants in the Born amplitude. At the same time, the re-
maining logarithmic corrections are the main feature of interest because they
are expected to dominate the (still unknown) total two-loop electroweak cor-
rections. The one-loop leading and subleading logarithms can be obtained
directly from (8.127). The corresponding corrections to the chiral amplitudes
read
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{(
Tf (Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

)(
T 3
f ′T 3

f + t2W
Yf ′Yf
4

)

× [3l(s)− L(s)] +

[ [
−4 ln

u

s
+ 2 ln

u

t
+
(
ln

u

t

)
t2WYf ′Yf

]
T 3
f ′T 3

f

+
3
4

(
ln

u

t

)
δILδJL + ln

u

t

×
(
t2WYf ′Yf − 4s2

WQf ′Qf
)(

T 3
f ′T 3

f + t2W
Yf ′Yf
4

)]
l(s)

}
Af

′f
IJ ,

where δIL = 1 for I =L and zero otherwise. The two-loop leading (IR) log-
arithms are determined by the second-order term of the expansion of the
double (soft× collinear) logarithmic part of the collinear factors (8.138). The
corresponding corrections to the chiral amplitudes are

1
2

(
Tf(Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

)2

×
(
T 3
f ′T 3

f + t2W
Yf ′Yf
4

)
L2(s)Af

′f
IJ . (8.141)

The two-loop next-to-leading logarithms are generated by the interference
between the first order terms of the expansions of the double (soft× collinear)
and single (soft+ collinear+RG) logarithmic exponents. The corresponding
corrections to the chiral amplitudes are of the following form:

−
(
Tf(Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

)

×
[
3

(
Tf (Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

)(
T 3
f ′T 3

f + t2W
Yf ′Yf
4

)

+
[
−4 ln

u

s
+ 2 ln

u

t
+
(
ln

u

t

)
t2WYf ′Yf

]
T 3
f ′T 3

f +
3
4

(
ln

u

t

)
δILδJL

+
(
ln

u

t

) (
t2WYf ′Yf − 4s2

WQf ′Qf
)(

T 3
f ′T 3

f + t2W
Yf ′Yf
4

)]
L(s)l(s)Af

′f
IJ .

With the expression for the chiral amplitudes to hand, one can compute
the leading and subleading logarithmic corrections to the basic observables
for e+e− → f f̄ using standard formulae. In [159] one can find numerical
estimates which result, in particular, in the conclusion that at energies of 1
and 2 TeV the two-loop corrections are huge and amount to 5% and 7%,
respectively.
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8.9 An Application: Small-Angle Scattering
of Massless Quarks at High Energies

Now we study the Regge limit (v), i.e. the regime of the small-angle scattering
of massless quarks when |s| ≈ |u| � |t|. The scattering amplitude can be
expanded in the following basis of four independent colour/chiral four-quark
operators:

Aλv = ψ̄4(p4)taγµψ1(p1)ψ̄2(p2)taγµψ3(p3) ,
Ad

a = ψ̄4(p4)γµγ5ψ1(p1)ψ̄2(p2)γµγ5ψ3(p3) , (8.142)

with similar expressions for Aλa and Ad
v. The expansion in the vector/axial

basis (symbolized by the indices v and a) is now more convenient than the
expansion in the left/right one.

According to Regge theory [76], the behaviour of the amplitude in this
limit is determined by the Regge pole with gluon quantum numbers and neg-
ative signature. Thus the t channel exchange of the reggeized gluon (reggeon)
saturates the amplitude, which takes the form

A(qq̄ → qq̄) =
i
2t

[(
s

−t

)ω(t)

+
(s
t

)ω(t)
]
Γ 2
qq̄(t)A

λ
v , (8.143)

where 1 + ω(t) is the reggeon trajectory and Γqq̄(t) is the quark–quark–
reggeon vertex. In the Born approximation ω(t) = 0 and Γqq̄(t) = g. The
reggeon trajectory is of special interest since it enters the kernel of the BFKL
equation [167, 105, 11] describing small-x QCD processes (see [168] for a
review). Let us consider the one-loop amplitude. The box diagrams give

ig2

t

α

2π

{
(3B1 + 2B2)

[(
CF − TF

N

)
Aλv + CF

TF

N
Ad

v

]

−2B1

[(
CF − TF

N

)
Aλa + CF

TF

N
Ad

a

]}
, (8.144)

where

B1 = st [J(1, 3, 1, 1, 2) + J(1, 2, 2, 1, 2) + J(1, 2, 1, 2, 2)
−J(1, 2, 1, 1, 1)− J(1, 1, 1, 2, 1)] ,

B2 = st J(1, 2, 1, 1, 1) , (8.145)

and, as in the previous section, we reduce box integrals with polynomials in
the numerator to scalar box integrals with shifted dimensions:

J(a1, a2, a3, a4, n) = i−a1−a2−a3−a4−1+d/2+n
∏
i

(ai − 1)!

×
∫

dd+nk
(k2)a1(k2 + 2p4 ·k)a2(k2 + 2p1 ·k)a3 [k2 + 2(p1 − p2)·k + s]a4

. (8.146)

This time, the integrals J are massless boxes. The expansion of the master
integral J(1, 1, 1, 1, 0) has been described in Example 8.5. All other integrals
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(8.146) can be expanded similarly and, keeping the leading power in the
expansion, we find

B1 ∼ 0 , B2 ∼
(
1
ε
− ln (−t)

)
ln

s

t
, (8.147)

so that the box contribution takes the form

− ig2

t

α

π
B2(s, t)

(
CF − TF

N

)
Aλv . (8.148)

The crossed-box contribution is expanded in the same way and gives

ig2

t

α

π
B2(−s, t)

(
CF − TF

N
− CA

2

)
Aov . (8.149)

The rest of the one-loop contributions are trivial one-scale vertices and self-
energy insertions which do not depend on s and do not affect ω(t). From
(8.143), (8.148) and (8.149) we reproduce the well-known result [167]

ω(t) =
α

2π
CA

(
1
ε
− ln (−t)

)
. (8.150)

In the BFKL kernel, the pole of (8.150) is cancelled by the singular part of
the real radiation contribution.

We have seen how the one-loop result for the reggeon trajectory can be
reproduced in a simple way using expansion by regions. To reproduce the
existing two-loop results in a similar way, the (c–c) contributions to the ex-
pansions of double boxes (see Sect. 8.5) have to be used as an input. One
may hope that new results will be obtained by this technique.
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‘But one must have some proof. . . ’ began Berlioz. ‘There’s no need for
any proof,’ answered the professor.1

(M.A. Bulgakov, The Master and Margarita)

Renormalization theory has a history of egregious errors by distinguished
savants. It has a justified reputation for perversity; a method that works up
to 13th order in the perturbation series fails in the 14th order. Arguments
that sound plausible often dissolve into mush when examined closely. The
worst that can happen often happens.

(A.S. Wightman [240])

In this final chapter, various auxiliary techniques related to the expansion
of Feynman diagrams in various limits of momenta and masses are first de-
scribed: summation by Padé approximants, summing up expansions by guess,
Taylor expansion in a mass difference, and a method of direct evaluation of
general integrals appearing in contributions to the asymptotic expansions by
use of IBP. An alternative approach within the strategy of expansion by re-
gions, which is based on the alpha representation and thereby is manifestly
independent of the choice of the loop momenta, is then described. I conclude
by characterizing the present status of expansion by regions and giving some
advice about its application.

9.1 Related Techniques

9.1.1 Summation by Padé Approximants

If a sufficiently large number of terms in the asymptotic expansion of a given
Feynman diagram in a limit of momenta and masses is known, one often
applies the method of summing up series by the use of Padé approximants.
Suppose we have a Feynman diagram in the large-mass (small-momentum)
limit and there are no massless thresholds. For example, let us keep in mind
the self-energy diagram of Fig. 2.5 or the vertex diagram of Fig. 5.3 with equal
masses, with the first threshold at q2 = 4m2. In this case the combinatorial
structure of the expansion is trivial, and the expansion is given by a Taylor
series in z = q2,

f(z) =
∞∑
n=0

anz
n , (9.1)

1Translated from the Russian by M. Glenny. Collins and Harvill Press, London,
1967.

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 209–224 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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with a non-zero radius of convergence z0, which equals 4m2 in our case.
The function f(z) is analytically continued from the circle |z| < z0 to the
wholer z plane with a cut starting at z0. To do this, one applies some sum-
mation technique (see, e.g., [135]).

In the case of Feynman diagrams, the method of Padé approximants has
turned out to be very effective. If the first N coefficients of the series (9.1) are
known, one can construct N different Padé approximants, which are denoted
by [N −M/M ] for M = 0, 1, . . . , N − 1 and are defined as rational functions
of the form (see, e.g., [10])

b0 + b1z + b2z
2 + . . .+ bJz

J

1 + c1z + c2z2 + . . .+ cKzK
. (9.2)

Such a function is called a [J/K] Padé approximant if its expansion into a
Taylor series in z reproduces the first J +K coefficients of (9.1). Usually one
applies ‘diagonal’ Padé approximants [J/J ] or [J/J ± 1]. The coefficients bi
and ci in (9.2) are uniquely determined by the given Taylor series. In practice,
one uses various specific methods to evaluate these coefficients [10].

Summation by Padé approximants can be applied to the initial power
series. It turns out, however, that it is worthwhile first to perform a conformal
mapping [69]. When the initial function is analytic with a cut starting at
z = z0, a very useful trick is to transform to a new variable by means of the
conformal mapping

ω =
1−

√
1− z/z0

1 +
√
1− z/z0

, (9.3)

which maps the whole domain of analyticity of the function f(z) into the
interior of the unit circle in the ω plane. By means of this conformal transfor-
mation of the z plane, the cut from z0 to +∞ is mapped onto the boundary
of the unit circle. The upper semicircle corresponds to the upper side of the
cut. The initial power series is transformed into the following series in ω,
which is eventually summed up by Padé approximants:

f(z(ω)) =
∞∑
n=0

φnω
n , (9.4)

where

φ0 = a0 ,

φn =
n∑
k=1

(n+ k − 1)!(−1)n−k
(2k − 1)!(n − k)!

(4z0)kak , if n ≥ 1 . (9.5)

As was shown in [115], this procedure works very well for Feynman di-
agrams without massless thresholds. Suppose now that a given Feynman
integral has massless thresholds so that the corresponding large-mass ex-
pansion consists of contributions from various subgraphs – see, for instance,
Examples 5.4 and 5.5. The expansion is no longer a Taylor series in q2. It
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can, however, be represented as a finite sum of powers of the logarithm of q2

times Taylor series:

FΓ (q2,M2) =
1

M4

[
f0(z) + f1(z) ln(−z) + f2(z) ln2(−z)

]
. (9.6)

(For a similar general h-loop diagram, the maximal power of the logarithm
would be h in this typical Euclidean limit.) Remember that in the case with-
out massless thresholds, the value of the radius of convergence of the Taylor
series is determined, according to well-known theorems [98], by the position
of the lowest threshold. No similar mathematical results are known for the
functions fi in (9.6) that arise after expanding the given Feynman integral in
the large-mass limit. It is, however, quite plausible to suppose that the radius
of convergence of the power series associated with the functions fi is deter-
mined by the position of the next threshold of the initial diagram. (Remember
that the first threshold is at z = 0.) A natural idea is to apply the technique
of Padé approximants to each of the power series fi on the right-hand side
of the asymptotic expansion. This procedure was suggested in [113] and was
‘experimentally’ confirmed [113, 109] using Examples 5.4 and 5.5 and other
typical vertex diagrams. It has been shown that the resulting convergence is
very good and gives the possibility to perform precise calculations far beyond
the lowest non-zero threshold. The method of summation by Padé approxi-
mants combined with the expansion of Feynman integrals in momenta and
masses has been applied successfully in phenomenological calculations – see,
for example, [58, 52, 66, 101, 134, 110].

9.1.2 Summing up an Expansion by Guess, Taylor Expansion
in a Mass Difference and Expansion without Small Parameters

When many terms in an asymptotic expansion of a given Feynman diagram
are known, summation by Padé approximants is not the only possibility.
An alternative is to carefully analyse the available terms and make a guess
about the exact analytic dependence of the general term on the order of
expansion, n. An example of such a strategy can be found in [80], where two-
loop QCD and electroweak corrections to the hadronic Z boson decay rate
have been calculated with the help of asymptotic expansions in the limits of
both small and large values of q2/M2

Z . A guess about the general structure of
the series in q2/M2

Z led to explicit summation in terms of rather complicated
functions expressed in terms of tetralogarithms.

Other examples of summing up series by guess are some calculations of
QCD corrections to the decay Z → Wud̄ in [83], with explicit results for
summed up series in terms of polylogarithms up to the fourth order, and
some calculations of two-loop QED corrections to the muon lifetime in [196],
within the large-mass expansion, where the resulting series in x = −q2/m2

µ

were summed up with subsequent continuation of the explicit results to the
point x = 1.
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Reference [83] provides another type of expansion used in practice, in
powers of a difference between masses, (M−m)/M , with the choice M = MZ

and m = MW . As in the case of the small momentum expansion without
massless thresholds, such an expansion does not require special techniques
and reduces just to expanding the integrand into a Taylor series. Technically,
the simplifications arise because one obtains integrals depending on one mass
instead of two. An earlier example of an expansion in (M − m)/M can be
taken from [78], with M = mb and m = mc, where complete two-loop QCD
corrections to the b → c transitions have been calculated in the limit of zero
recoil.

It is not always clear what the domain of convergence of a given asymp-
totic expansion is. Sometimes it is possible to determine the domain ‘exper-
imentally’ and then successfully apply the expansion even if there are no
natural small parameters in the problem. The experience accumulated in the
course of numerous practical applications shows that asymptotic expansions
in momenta and masses can work even for large values of the expansion
parameters. To illustrate this point, let us recall Example 4.1, where the ex-
pansion in the limit p2 � q2, (p + q)2 was given by (4.8). Imagine now that
we are interested in the value of this triangle diagram at the symmetrical
kinematical point p2 = q2 = (p + q)2. (This value is of special importance
because it is used to define the so-called symmetrical MOM scheme, which
is significantly more suited (than MS [13]) to analysing lattice results.) A
comparison with the known analytical result (4.9) shows that even a limited
number (e.g. four or five) of terms of the expansion (4.8) provides a reason-
ably accurate approximation at the point where the parameter of expansion
p2/q2 equals unity, rather than being small. As has been shown in [60] by
comparison with known analytical results [233] for two-loop, massless, finite
scalar vertex diagrams, this phenomenon takes place also at the two-loop
level. Since no analytical results for two-loop vertex diagrams (which are
typically UV divergent) with general numerators and integer powers of prop-
agators are available at the moment, the authors of [60] have applied this
strategy of expanding in the limit p2 � q2, (p + q)2 to compute the three-
gluon QCD vertex at the symmetrical kinematical point. The result obtained
has been applied to construct the first non-universal (three-loop) term in
the QCD MOM-scheme beta function, which has already found important
applications in lattice calculations [32].

A similar situation is exemplified by the diagram of Fig. 9.1 To calculate
this diagram, one can consider one of the three equal masses, M , to be dif-
ferent from the other two, m �= M , i.e. we consider a diagram with masses
(M,M, 0,m), and apply the asymptotic expansion in the limit m/M → 0. Ac-
cording to the prescriptions of the large-mass expansion described in Chap. 5,
two subgraphs give non-zero contributions: the graph itself and the subgraph
consisting of the lines with masses (M,M, 0). Any term in these two series
can be evaluated by means of (A.7), (A.38) and (A.3). It turns out that
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Fig. 9.1. Three-loop vacuum diagram with one massless and
three massive lines

the resulting expansion in the ratio m2/M2 converges very well at the point
m = M . The evaluation of the terms of this asymptotic expansion is easily
performed by computer. This technique has been applied in [67], where it
has been shown, in particular, that the first twenty expansion terms of the
diagram of Fig. 9.1 reproduce the first ten digits of the exact result [66, 111],
given up to terms of order ε:

1
ε3

+
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4ε2

+
1
ε

(
65
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+
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4
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+
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√
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√
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Here Cl2 is the Clausen function [165].
This trick can be used for the (semi-)analytic evaluation of diagrams where

explicit results are unknown. It is very effective in any situation where Taylor
expansion in some of the non-zero masses leads to Feynman integrals that
can be evaluated in terms of gamma functions for general powers of the
propagators.

9.1.3 A Direct Algorithm to Evaluate Contributions
to the Asymptotic Expansion

A standard problem that arises when expanding Feynman diagrams in vari-
ous limits of momenta and masses is the evaluation of the class of integrals
that occur in the contribution from a given specific region. A standard way
to solve this problem is based on solving recurrence relations obtained by the
method of IBP [68] for these integrals. Any dimensionally regularized Feyn-
man integral that appears in the asymptotic expansions when the strategy
of expansion by regions is used, can be represented as

F (n) ≡
∫

· · ·
∫

ddk1 . . . ddkh
Dn1

1 . . .DnN

N

, (9.7)

where the ki, i = 1, . . . , h, are loop momenta, the ni are integer indices
and the Da =

∑
i,j=1 Aija pi · pj − m2

a, with a = 1, . . . , N , are denomina-
tors. Irreducible numerators which cannot be expressed through a given set
of propagators are naturally treated as extra denominators with a negative
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power. The momenta pi are either the loop momenta pi = ki, i = 1, . . . , h,
or external momenta of the graph ph+1, . . . , so that the denominators can be
either quadratic or linear with respect to the loop momenta ki. Underlined
letters denote collections of variables here, i.e. n = (n1, . . . , nN ). The IBP
identities that prescribe zero values for the integrals containing (∂/∂pi)·pk,
for i = 1, . . . , h, can be symbolically written as

Pik(I+, I−)F (n) = 0 , (9.8)

where Pi are polynomials in the increasing and lowering operators I+a and
I−a , where

I+a F (. . . , na, . . .) = F (. . . , na + 1, . . .) ,

I−a F (. . . , na, . . .) = F (. . . , na − 1, . . .) .

One says that these relations can be recursively solved if an integral with a
given value of the multi-index n can be expressed in terms of simpler integrals
corresponding to some finite family of multi-indices n = ni, where usually
ni = (ni1, . . . , niN ) consists of nia = 0 or 1:

F (n) =
k∑
i=1

ci(n)F (ni) , (9.9)

where

ci(nj) = δji . (9.10)

The integrals F (ni) are called master, basic or irreducible integrals and are
usually calculated without using IBP.

In concrete situations, the realization of this procedure turns out to be
far from straightforward. Examples of solving IBP recurrence relations have
been presented in the previous chapters. Some attempts [228, 229, 122, 123] to
make this procedure systematic have been mentioned in Sect. 2.5.6. Another
attempt to solve recurrence relations systematically was made in [7]. This
procedure is manifestly universal with respect to the form of the integrand
and can be applied to a contribution from an arbitrary region on the right-
hand side of an asymptotic expansion in momenta and masses. The goal of
this method is to find an algorithm for direct evaluation of the coefficients
ci(n), i.e. to understand

(1) which integrals should be taken as master integrals and
(2) how to calculate the coefficients ci(n).

The first problem is connected with the formulation of an adequate cri-
terion for irreducibility of a given Feynman integral to a fixed set of master
integrals. See [8], where such a criterion has been suggested.

Consider the second problem and assume that the integrals F (ni) are
irreducible. Then the ci(n) have to be solutions of the relations (9.8). Indeed,
acting with Pik(I+, I−) on (9.9), we obtain zero on the left-hand side and



9.2 Expansion by Regions in the Alpha Representation 215

linear combinations of F (ni) on the right-hand side. If F (ni) is irreducible,
all coefficients in this linear combination have to vanish. This means that the
ci(n) are solutions of (9.8). So, if one finds c̃i(n) as some solutions of (9.8)
one can obtain ci(n) as their linear combinations which fit (9.10).

To construct c̃i(n), the following integral representation has been sug-
gested [7]:

c̃(n) =
∫

dx1 . . . dxN
xn1

1 ...xnN

N

g(x) . (9.11)

This parametric integral can be chosen to be a contour integral or an integral
over some appropriately chosen real domain. The action of (9.8) on (9.11),
after formal IBP of the integral over xi, leads to a differential equation for
g(x), which can then be solved [7] for Feynman integrals with an arbitrary
number of legs and with arbitrary masses. In some practically important
cases (see [7, 8]), (9.11) can be solved in terms of rational combinations of
Pochhammer symbols, thus providing the desired direct solutions of (9.8).

9.2 Expansion by Regions in the Alpha Representation

Let us turn our attention to the strategy expansion by regions in the alpha-
parameter representation. In this case, the strategy is formulated in the same
way as for the integrals over the loop momenta. One has to consider the
alpha parameters to be of different orders, measured in terms of the given
masses and kinematical invariants. Since the functions involved in the alpha
representation (2.42) are homogeneous in αl, only the relative order of the
alpha parameters is relevant when specifying a region. Let us measure this
order in terms of the small parameters associated with a given limit. For
example, when there are two parameters, q2 � m2, let us characterize the
regions in terms of powers of m. Thus the hard region, which participates in
every limit, is characterized by αl ∼ m0 for every l, so that the corresponding
contribution is defined as a Taylor expansion of the exponent in (2.42) in the
small external parameters.

In particular, in the case of the limits typical of Euclidean space, it is
enough to consider only the regions of large (hard) and small (soft) alpha
parameters, i.e. where αl ∼ 1/q2 and αl ∼ m2/(q2)2, respectively, and by q2

and m2 we denote the large and small typical parameters, respectively, of the
problem.

Although the Feynman parametric representation (2.63) is obtained from
the alpha-parameter representation just by one integration over the over-
all scaling variable, it is not so convenient for expansion by regions as the
representation (2.42), because, when one uses regions defined by the use of
Feynman parameters, one arrives at terms of the expansion without manifest
homogeneity.
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Let us illustrate the strategy of expansion by regions in the alpha repre-
sentation in the case of some limits typical of pseudo-Euclidean space, using
Examples 8.10 and 8.11. The function (2.43) is the same in both cases:

D = (α1 + α2)(α3 + α4 + α5) + α6(α1 + α2 + α3 + α4 + α5) . (9.12)

The functions (2.44) are

A8.10

= [(α1 + α3)(α2 + α4)α6 + (α1 + α2)α3α4 + α1α2(α3 + α4 + α5)]Q2

+{(α1 + α2 + α3 + α4)2α6

+(α1 + α2)[(α3 + α4)(α1 + α2 + α3 + α4) + (α1 + α2)α5]}m2 ,

A8.11 = [(α1 + α2 + α3 + α4)α6 + (α1 + α2)(α3 + α4)]
×[M2(α1 + α3) +m2(α2 + α4)] + (M2α1 +m2α2)(α1 + α2)α5 . (9.13)

In the (h–h) alpha region all the αl are of order m0, so that the function D
is not expanded and the part of the exponent proportional to m2 is expanded
into a Taylor series in m.

In Example 8.10, we reproduce the contributions of the previously found
momentum space regions as follows:

(1c–h) → {α3,5 ∼ m0 , α1,2,4,6 ∼ m2} ,

(1c–1c) → {α1,3,5,6 ∼ m0 , α2,4 ∼ m2} ,

(h–1c) → {α1 ∼ m0 , α2,3,4,5,6 ∼ m2} ,

(1uc–2c) → {α5 ∼ m0 , α3 ∼ m2 , α2,4,6 ∼ m4 , α1 ∼ m6} . (9.14)

The alpha parameters have dimension m−2 but, to simplify the relations, we
set Q and M to one. The remaining regions are obtained by permutations.

In Example 8.11, we have

(1c–h) → {α4,5 ∼ m0 , α1,2,3,6 ∼ m2} ,

(1c–1c) → {α2,4,5,6 ∼ m0 , α1,3 ∼ m2} ,

(h–1c) → {α2 ∼ m0 , α1,3,4,5,6 ∼ m2} ,

(us–1c) → {α5 ∼ m0 , α2,3,4,6 ∼ m2 , α1 ∼ m4} . (9.15)

Note that here we do not risk performing double counting of the (h–1c)
and (h–s) regions (with another choice of the second loop momentum) as
was discussed in Chap. 8. Moreover, the description of the regions in the
alpha-parameter language is manifestly Lorentz invariant. Some regions are,
however, described in a rather non-trivial way: for example, in the case of
the (us–1c) and (1uc–2c) regions, the alpha parameters are subdivided into
three and four groups, respectively, with different orders measured in powers
of the expansion parameter.

Let us now describe the contributions to the asymptotic expansion in
the limits t/s → 0 and s/t → 0 for Example 8.12 in the language of alpha
parameters. The functions (2.43) and (2.44) for the double box are
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D8.12 = (α1 + α2 + α7)(α3 + α4 + α5)
+α6(α1 + α2 + α3 + α4 + α5 + α7) , (9.16)

A8.12 = [α1α2(α3 + α4 + α5) + α3α4(α1 + α2 + α7)
+α6(α1 + α3)(α2 + α4)]s+ α5α6α7t . (9.17)

The (h–h) contributions are reproduced by considering all the alpha parame-
ters to be of the same order. Let us again use dimensionless alpha parameters
by putting s = −1 in the first limit and t = −1 in the second limit. In the
limit t/s → 0, we reproduce the contributions of the collinear momentum
space regions considered previously as follows:

(1c–1c) → {α1,3,5,6,7 ∼ t0 , α2,4 ∼ −t} ,

(2c–2c) → {α2,4,5,6,7 ∼ t0 , α1,3 ∼ −t} . (9.18)

In the limit s/t → 0, we have

(1c–1c) → {α1,2,3,4,6,7 ∼ s0 , α7 ∼ −s} ,

(2c–2c) → {α1,2,3,4,5,6 ∼ s0 , α5 ∼ −s} ,

(1c–2c) → {α1,2,3,4,5,7 ∼ s0 , α6 ∼ −s} . (9.19)

We see that, in this example, the description of the collinear contributions
in the language of alpha parameters is certainly simpler than in momentum
space. In practice, an appropriate choice of either momentum space or the
alpha representation language for expansion by regions can considerably sim-
plify calculations. When the languages are of the same complexity, one can
use them both in order to obtain an extra natural check based on the inde-
pendence of the results obtained in the two approaches.

9.3 Mathematical Formulation of Expansion by Regions

Let us realize that we are dealing with a heuristic strategy. The very word
‘region’ is understood in the ‘physical’ sense. In fact, it indicates relations
between components of the loop momenta, expressed in terms of the given
masses and kinematical invariants. This is clearly not the mathematical sense,
where a region is determined by inequalities. We do not even bother about
the decomposition of unity, i.e. the fact that our initial integral over the whole
space of the loop momenta is divided into a sum of integrals over all possible
regions, which, presumably, have zero measure in the intersection of any pair,
with their union being the whole integration space.

Although this pragmatic point of view has proven to be quite successful,
let us change our orientation and formulate, at last, the strategy of expansion
by regions in a mathematical language. Let us use, for this purpose, the
variant of the strategy based on alpha parameters, which is, mathematically,
certainly preferable.
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Let Γ be a graph and FΓ the corresponding Feynman integral. Let us
suppose, for simplicity, that it is a scalar integral and that it depends on two
parameters, for example a kinematical invariant q2 and a mass m2. Let us
consider the limit m2 � q2. The diagram can have more than two external
legs, so that this can be either an off-shell large-momentum limit or some
limit typical of Minkowski space, in particular, some version of the Sudakov
limit. Generalizations to other cases are, in most cases, straightforward.

Let us use the alpha representation (2.42). The function A (2.44), with the
restrictions on the external momenta, specified above, depends only on one
invariant, q2. Let us include the mass term of the exponent in the function A
so that now we have

FΓ (q2,m2; d) = CΓ

∫ ∞

0

dα1 . . .

∫ ∞

0

dαL D−d/2eiĀ/D , (9.20)

where CΓ is the factor given by (2.42) and

Ā(q2,m2;α1, . . . , αL) = A(q2;α1, . . . , αL)− D(α1, . . . , αL)
∑
l

m2
l αl .

(9.21)

Let ν = (n1, n2, . . . , nL) be a family of non-negative integers correspond-
ing to L lines of the given graph, and let us define α′

l(κ) = κnlαl. The
functions (2.43) and (9.21) of α′

l(κ), with the mass rescaled as m → κm, take
the form

D(α′
1(κ), . . .) =

∑
j=n(ν,D)

κjDj(α1, . . .) , (9.22a)

Ā(q2, κ2m2;α′
1(κ), . . .) =

∑
j=n(ν,A)

κjĀj(q2,m2;α1, . . .) , (9.22b)

where the finite sums run from some minimal numbers n(ν,D) and n(ν,A).
The initial functions D and Ā of the variables αl take the form

D = Dn(ν,D) +D′ , (9.23a)
Ā = Ān(ν,A) + Ā′ , (9.23b)

where the first terms on the right-hand side correspond to the terms in (9.22a)
and (9.22b) with the minimal powers of κ.

Let us associate with the given multi-index ν the following formal infinite
series:

F ν
Γ (q

2,m2; d) = CΓ

∫ ∞

0

dα1 . . .

∫ ∞

0

dαL Tκ

[ (
Dn(ν,D) + κD′)−d/2

× exp
(
iκn(ν,A)−n(ν,D) Ān(ν,A) + κĀ′

Dn(ν,D) + κD′

)]∣∣∣∣∣
κ=1

. (9.24)

Note that the number n(ν,A) − n(ν,D) is always non-negative. In our pre-
vious language, (9.24) is nothing but the contribution of the region of alpha
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parameters where αl is of order mnl for l = 1, . . . , L. The experience ob-
tained in the previous chapters tells us that the following statement looks
quite plausible.

Conjecture. The asymptotic expansion of the Feynman integral FΓ in
the limit described above is given by

FΓ ∼
∑
ν

F ν
Γ , (9.25)

where the sum runs over all multi-indices consisting of non-negative integers.
Comments.
1. Experience tells us that the numbers nl are indeed integers. For limits

typical of Euclidean space and for threshold limits with one heavy mass in
the threshold (see Chap. 6), the relevant multi-indices consist of nl = 2 or
nl = 0.

2. The prescription of expansion by regions that scaleless integrals are
set to zero is assumed in the definition of the contribution F ν

Γ . For example,
if the number n(ν,A) − n(ν,D) is positive, the resulting contribution is a
scaleless integral because the exponent is expanded and the factor Dn(ν,D) is
a homogeneous function of the alpha parameters. It is therefore sufficient to
consider only contributions with n(ν,A) = n(ν,D).

3. The leading order of any given contribution F ν
Γ ,

CΓ

∫ ∞

0

dα1 . . .

∫ ∞

0

dαLD
−d/2
n(ν,D) exp

(
i
Ān(ν,A)

Dn(ν,D)

)
, (9.26)

can be obtained without calculation, just by power counting: its dependence
on the small expansion parameter m of the problem is of the form mδ(ν,D),
where δ(ν,D) =

∑
nl − dn(ν,D)/2 (up to logarithms, which could arise in

limits of the Sudakov type – see Chap. 8.)
4. The description of expansion by regions in the language of this section

can be easily applied to almost all of the limits and the corresponding re-
gions considered in Chaps. 4–8. The only exception is the contribution of the
potential region in the threshold expansion, which is tricky to write in terms
of alpha parameters.

5. The language of this section can easily be formulated for Feynman
integrals written in terms of momentum space, with qualifications concerning
some problems with the mathematical definition of dimensionally regularized
integrals over loop momenta in the case of typical Minkowskian momentum
configurations. The potential regions can then be treated on the same footing
as all the other regions that we have considered.

6. One may hope that the strategy of expansion by regions can be applied
not only to Feynman integrals but also to much more general integrals of
rational functions. A reasonable problem would be to develop the strategy of
expansion by regions for the phase space integrals that arise in the evaluation
of real radiation processes.
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9.4 Mathematical Status of Expansion by Regions

From the purely pragmatic point of view, there is no need to prove the strat-
egy of expansion by regions, because it has worked successfully in various
situations. For practically oriented people, the simple arguments used in the
toy example and the one-loop example in Chap. 3 could be quite enough
to convince them that a similar mechanism connected with vanishing mass-
less vacuum Feynman integrals works for any limit and any diagram. Let
us realize, however, that this is just a one-loop example2 in a limit typi-
cal of Euclidean space, where we have a general proof for any diagram (see
Appendix B.2).

From the mathematical point of view, it is not guaranteed that expansion
by regions works in all situations, so that it is necessary either to prove that
it does or to invent a counterexample. This indeed appears to be a very good
mathematical problem. It hardly possible to generalize the direct arguments
used in Chap. 3 to prove the validity of the strategy of expansion by regions
for a typically pseudo-Euclidean limit. It looks reasonable to try to generalize
the proof for the off-shell large-momentum limit presented in Appendix B.2,
based on the alpha representation, and to start from the formulation of the
strategy in the form of the conjecture formulated in the previous section.
One may hope that the remainder of the expansion can be defined in a
way similar to the case of limits typical of Euclidean space. In fact, the
language of Sect. 9.3 already provides a natural definition, given by (9.24), of
the subtraction operator corresponding to a given multi-index (i.e. ‘region’)
ν = (n1, n2, . . . , nL).

Then one would need to carry out an analysis of convergence by means
of the introduction of appropriate sectors and sector variables, which would
provide a factorization of the corresponding integrand. The sectors described
in Appendix B.1 are insufficient for typical Minkowskian situations – this
can be seen even in one-loop examples. It should be also stressed that, for
each on-shell or threshold limit, this problem of resolution of singularities has
to be solved separately, with specific sectors and sector variables. One may
hope that the prescription to set all the scaleless integrals to zero3 may arise
automatically, similarly to the off-shell case.

Among the limits typical of pseudo-Euclidean space, the threshold limits
with one heavy mass in the threshold considered in Chap. 6 are certainly

2Direct arguments of this kind for the diagram in Example 4.2 can be found
in [133]. This is, however, again an example of the off-shell large-momentum limit.

3 Let us emphasize that this prescription, which has at present an ad hoc status
for typical Minkowskian limits, does not depend on the use of dimensional regu-
larization. For example, some integrals generated by potential contributions in the
threshold expansion are not regularized at all – see the examples in Sect. 7.1. Never-
theless, the rule that one sets such scaleless integrals to zero has been experimentally
checked, through numerous examples, as part of the whole list of prescriptions for
expansion by regions.
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simpler, so that it looks reasonable to justify the strategy of expansion by
regions for these limits first. At least the combinatorics of the expansion is
similar to that of the off-shell limits, and the new subtraction operators can
be defined, through (9.24), by a slight modification of the operators (B.27).

9.5 The Last Advice

9.5.1 When There Are More than Two Scales

In fact we have already considered examples of limits with more than two
scales: the threshold expansion with two non-zero masses in a threshold when
there are three scales, m, mv and mv2, in Chap. 7, and the example of
Fig. 6.4c, which is a graph contributing to the muon anomalous magnetic
moment in QED – see Sect. 6.4. In a general situation with several groups of
masses and kinematical invariants which differ in their orders of magnitude,
one can proceed sequentially by first decomposing the given set of parame-
ters into two groups and applying the corresponding prescriptions associated
with two scales, and then one considers the diagrams on the right-hand side,
decomposes the parameters further into two groups, and so on. For example,
one can proceed by distinguishing first the group with the smallest parame-
ters or, alternatively, by considering all the parameters apart from the group
with the largest parameters to be small. Presumably, the results have to be
independent of this order.

To illustrate this procedure, let us consider an example of a typical two-
loop vertex diagram contributing to the decay of the Z boson into a b quark
and antiquark – see Fig. 9.2. The b quarks are taken as massless so that
p2
1 = p2

2 = 0. Although the external momentum q has to be taken on shell,
q2 = m2

Z , let us consider it as a small quantity keeping in mind that, using
the small momentum expansion and evaluating a sufficiently large number of
terms in the corresponding expansion, we can arrive, with the help of Padé
approximants, at precise results for large values of q2 – see Sect. 9.1.1. So, we
arrive at a problem with three scales, q2 � m2

W � m2
t . One can start from

two different (large-mass) limits with two scales:

Z

b

b

W

W

b

b

t 

q

p1

p2
Fig. 9.2. A typical two-loop vertex diagram
contributing to the process Z → bb̄
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(a) q2 � m2
W ,m2

t and
(b) q2,m2

W � m2
t .

These limits are typical of Euclidean space, so that one can apply the
corresponding prescriptions of Chap. 5 in the language of subgraphs. In
Limit (a), two subgraphs contribute: the graph itself and the triangle sub-
graph. The first of them gives the most non-trivial piece, which can be ex-
pressed in terms of two-loop bubbles (with numerators) with three lines, with
masses (mt,mW , 0).

In Limit (b), there are four contributions: the graph itself, the triangle
subgraph, the box subgraph and the subgraph consisting of the heavy central
line. As was demonstrated in [112] for this and similar diagrams contributing
to the process Z → bb̄ (where calculations have been performed with the
help of the large-mass expansion and Padé approximants4 in [134, 110]), both
strategies provide very precise results in the physically important region of
the parameters involved. A disadvantage of Limit (a) is the presence of the
above-mentioned two-loop bubbles with two different non-zero masses. These
diagrams can be expressed in terms of polylogarithms. One can, however,
continue to expand ad nauseam the diagrams that appear in the first step.
In Limit (a), each two-loop bubble is expanded in the ratio of the masses
mW /mt by the previous technique for the large-mass limit. Here there are
two subgraphs that generate non-zero contributions: the bubble itself and the
one-loop subgraph consisting of the lines with mass mt and the zero mass.
On the other hand, one can start from Limit (b) (where the largest scale, mt,
is decoupled) and expand every resulting one-loop diagram that depends on
the two scales q2 and m2

W in the small momentum limit q2 � m2
W .

One can, however, proceed as in Sect. 6.4 and apply the strategy of regions
with three scales of loop momenta: hard (∼ mt), soft (∼ mW ) and supersoft
(∼ q).

9.5.2 Expansion Versus Analytic Evaluation

There are some curious examples where it is easier to evaluate Feynman
integrals analytically than to expand them up to a desired order – see Ex-
amples 8.9 and 8.12. In such cases, one can use the strategy of expansion by
regions for crucial checks.

Sometimes the problem is such that it is necessary to evaluate just specific
contributions to the expansion. It can also happen that known analytic results
are inappropriate for picking up individual contributions. For example, to
calculate the matching coefficients (7.59) of the vector current in QCD and
NRQCD one needs only the hard contributions, which could hardly be derived
from a complete result, even if it existed. In fact, in any matching calculation,
only the hard contributions are relevant. Another example of this kind is the

4In [134] one can also find an example of a nested application of asymptotic
expansions in a situation with three different scales.
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calculation of the reggeon trajectory (see Sect. 8.9) where one needs just the
collinear contributions of the scattering diagrams in the Regge limit (e.g.
(8.88)), rather than complete results (e.g. (8.89)).

We have seen in Examples 7.3, 7.3a, 8.1 and 8.5 that the method based
on the use of the Mellin–Barnes representation (see Sect. 2.5.7) is a successful
competitive method with respect to our expansion methods, both for ana-
lytical evaluation and for expansion. Let us stress, however, that the MB
technique must be applied individually to a given diagram, where non-trivial
analytic work has to be done, in particular to find an appropriate way to sep-
arate terms in the functions that enter parametric integrals. The technique
is hardly applicable to a general diagram, whereas we can write down a re-
sult for the terms of the expansion by straightforwardly applying our general
rules, without analytic work.

9.5.3 What to Do when Studying a New Limit

I have not tried to cover all possible limits that can arise in elementary-
particle physics and have considered in this book the limits that appear
to be most typical. The statuses of these limits are different: for the off-
shell large-momentum and large-mass limits, as well as for any other typical
Euclidean limit, the strategy of expansion by subgraphs is a well-established
procedure; for the threshold expansion with two non-zero masses, expansion
by regions has played a crucial role, with a lot of physical applications; for
one of the threshold limits with one heavy mass, expansion by regions has
also been successfully applied; some new results have been obtained by the
strategy of expansion by regions for the Sudakov limit; while the strategies
described above have not (yet?) provided new results for the limit connected
with HQET and the Regge limit. However, one of the goals of the book
was to investigate all these limits on the same footing, by means of the
two strategies which pretend to be universal, in the hope that expansion
by regions will be successfully applied in other situations and, in particular,
used to systematically construct effective theories starting from diagrammatic
experience.

Suppose now that we have to expand Feynman diagrams in some other
limit typical of Minkowski space. The first step is to discover all relevant
regions that can generate non-zero contributions in the given limit. It can
turn out that these regions are similar to the hard, soft, ultrasoft, poten-
tial and collinear regions connected with the limits considered in this book.
Performing this step successfully is a matter of experience and (both physi-
cal and mathematical) intuition. The physical flavour of the problem is the
correspondence of the classes of the regions to certain operators and the sub-
sequent translation of the prescriptions for the diagrammatic expansion into
the operator language.

When testing various regions it is necessary to be aware of possible double
counting. A combination of searches of the relevant regions both in momen-
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tum space and in alpha integrals looks rather reasonable. But how can we
decide that we have found all the contributions to the asymptotic expansion?
Unfortunately, there is no definite answer to this question. At least one can
check the results by comparing them with one-loop examples where explicit
analytic results can be obtained. Sometimes comparisons with analytic two-
loop results are also available. One can also use checks based on numerical
evaluation of the given diagram. Another important partial check is the can-
cellation of poles in ε, up to a certain order, and analysis of the coefficient of
the highest pole, which can be evaluated by an independent method.

Thus, if the situation with the poles is unsatisfactory there are at least
two options:

(a) to decide that the strategy of expansion by regions breaks down in the
given limit and one has found a counterexample;

(b) to look for missing regions.

But even if the terms of the expansion satisfy the check of poles, success
is not guaranteed, because one cannot exclude the existence of a region that
enters with simple poles in ε, or even without poles, and is insensitive to this
check.

I believe, however, that with the experience obtained by reading this book
you will find all the relevant regions and, after the check of poles, as well as
the other above mentioned checks, is satisfied, you will stay optimistic.
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This appendix contains a collection of useful formulae. Almost all of them
are used in this book, and some other related formulae are included for com-
pleteness.

A.1 Table of Integrals

Each Feynman integral presented here can be evaluated straightforwardly
by use of alpha or Feynman parameters. Results are presented for the ‘Eu-
clidean’ dependence, −k2, of the denominators, which is more natural when
the powers of propagators are general complex numbers. As usual, −k2 is un-
derstood in the sense of −k2 − i0, etc. Moreover, denominators with a linear
dependence on k are also understood in this sense, e.g. 2p · k → 2p · k − i0,
although sometimes this i0 dependence is explicitly indicated to avoid mis-
understanding.∫

ddk
(−k2 + m2)λ

= iπd/2
Γ (λ + ε− 2)

Γ (λ)
1

(m2)λ+ε−2
. (A.1)

∫
ddk

kα1 . . . kα2n

(−k2 + m2)λ
= iπd/2

Γ (λ− n + ε− 2)
2nΓ (λ)

(−1)ngα1...α2n
s

(m2)λ−n+ε−2
, (A.2)

where gα1...α2n
s = gα1α2 . . . gα2n−1α2n +. . . (with (2n−1)!! terms in the sum) is

a combination symmetrical with respect to the permutation of any pair of in-
dices. If the number of monomials in the numerator is odd, the corresponding
integral is zero.∫

ddk
(2l·k)2n

(−k2 + m2)λ

= iπd/2(−1)n(2n− 1)!!
Γ (λ− n + ε− 2)

Γ (λ)
(l2)n

(m2)λ−n+ε−2
. (A.3)

∫
ddk

(−k2 + m2)λ1(−k2)λ2

= iπd/2
Γ (λ1 + λ2 + ε− 2)Γ (−λ2 − ε + 2)

Γ (λ1)Γ (2 − ε)
1

(m2)λ1+λ2+ε−2
. (A.4)

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 225–233 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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∫
ddk

kα1 . . . kα2n

(−k2 + m2)λ1 (−k2)λ2

= iπd/2
(−1)n

2n
gα1...α2n
s

Γ (λ1 + λ2 − n + ε− 2)Γ (n− λ2 − ε + 2)
Γ (λ1)Γ (n− ε + 2)(m2)λ1+λ2−n+ε−2

. (A.5)

∫
ddk

(2l·k)2n

(−k2 + m2)λ1 (−k2)λ2
= iπd/2(−1)n(2n− 1)!!

×Γ (λ1 + λ2 − n + ε− 2)Γ (n− λ2 − ε + 2)(l2)n

Γ (λ1)Γ (n− ε + 2)(m2)λ1+λ2−n+ε−2
. (A.6)

∫
ddk

(−k2)λ1 [−(q − k)2]λ2

= iπd/2
Γ (2 − ε− λ1)Γ (2 − ε− λ2)

Γ (λ1)Γ (λ2)Γ (4 − λ1 − λ2 − 2ε)
Γ (λ1 + λ2 + ε− 2)
(−q2)λ1+λ2+ε−2

. (A.7)

Let k(α1...αN ) = kα1 . . . kαn + . . . be traceless with respect to any pair of
indices. Then∫

ddk
k(α1...αn)

(−k2)λ1(−(q − k)2)λ2
= iπd/2

AT(λ1, λ2;n)q(α1...αn)

(−q2)λ1+λ2+ε−2
, (A.8)

where

AT(λ1, λ2;n) =
Γ (λ1 + λ2 + ε− 2)Γ (n + 2 − ε− λ1)Γ (2 − ε− λ2)

Γ (λ1)Γ (λ2)Γ (4 + n− λ1 − λ2 − 2ε)
. (A.9)

For pure monomials, the corresponding formula has one more finite sum-
mation:∫

ddk
kα1 . . . kαn

(−k2)λ1 [−(q − k)2]λ2

=
iπd/2

(−q2)λ1+λ2+ε−2

[n/2]∑
r=0

ANT(λ1, λ2; r, n)
1
2r

(q2)r{[g]r[q]n−2r}α1...αn ,

(A.10)

where

ANT(λ1, λ2; r, n)

=
Γ (λ1 + λ2 + ε− 2 − r)Γ (n + 2 − ε− λ1 − r)Γ (2 − ε− λ2 + r)

Γ (λ1)Γ (λ2)Γ (4 + n− λ1 − λ2 − 2ε)
,

(A.11)

and {[g]r[q]n−2r}α1...αn is symmetric in its indices and is composed of the
metric tensor and the vector q.∫

ddk
(2l·k)n

(−k2)λ1 [−(q − k)2]λ2
=

iπd/2

(−q2)λ1+λ2+ε−2

×
[n/2]∑
r=0

ANT(λ1, λ2; r, n)
n!

r!(n− 2r)!
(q2)r(l2)r(2q ·l)n−2r , (A.12)
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∫
ddk

(−k2)λ1(−k2 + 2p·k)λ2

= iπd/2
Γ (λ1 + λ2 + ε− 2)Γ (−2λ1 − λ2 − 2ε + 4)

Γ (λ2)Γ (−λ1 − λ2 − 2ε + 4)
1

(p2)λ1+λ2+ε−2
.

(A.13)

∫
ddk

k(α1...αn)

(−k2)λ1(−k2 + 2p·k)λ2
= iπd/2BT(λ1, λ2;n)

p(α1...αn)

(p2)λ1+λ2+ε−2
,

(A.14)

where

BT(λ1, λ2;n) =
Γ (λ1 + λ2 + ε− 2)Γ (−2λ1 − λ2 + n− 2ε + 4)

Γ (λ2)Γ (−λ1 − λ2 + n− 2ε + 4)
. (A.15)

∫
ddk

kα1 . . . kαn

(−k2)λ1(−k2 + 2p·k)λ2
=

iπd/2

(p2)λ1+λ2+ε−2

×
[n/2]∑
r=0

BNT(λ1, λ2; r, n)
(−1)r

2r
(p2)r{[g]r[p]n−2r}α1...αn , (A.16)

where

BNT(λ1, λ2; r, n)

=
Γ (λ1 + λ2 + ε− 2 − r)Γ (−2λ1 − λ2 + n− 2ε + 4)

Γ (λ2)Γ (−λ1 − λ2 + n− 2ε + 4)
. (A.17)

∫
ddk

(2l·k)n

(−k2)λ1(−k2 + 2p·k)λ2
=

iπd/2

(q2)λ1+λ2+ε−2

×
[n/2]∑
r=0

BNT(λ1, λ2; r, n)(−1)r
n!

r!(n − 2r)!
(p2)r(l2)r(2p·l)n−2r . (A.18)

Let p·q = 0. Then∫
ddk

(p·k)b1(q ·k)b2

(−k2)λ1 [−(l − k)2]λ2

=
iπd/2

(−l2)λ1+λ2+ε−2

[(b1+b2)/2]∑
r=0

ANT(λ1, λ2; r, b1 + b2)
b1!b2!

4r
(l2)r

×
min{r,[b1/2]}∑

r1=max{0,r−[b2/2]}

(p·l)b1−2r1(q ·l)b2−2r+2r1(p2)r1(q2)r−r1

r1!(r − r1)!(b1 − 2r1)!(b2 − 2r + 2r1)!
, (A.19)
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and∫
ddk

(p·k)b1(q ·k)b2

(−k2)λ1(−k2 + 2q ·k)λ2

= iπd/2
(p2)b1/2

(q2)λ1+λ2+ε−2−b1/2−b2 Bpq(λ1, λ2; b1, b2) , (A.20)

for even b1 (and are equal to zero for odd b1), where

Bpq(λ1, λ2; b1, b2)

=
b1/2+[b2/2]∑
r=b1/2

(−1)r

4r
b1!b2!

(b1/2)!(r − b1/2)!
BNT(λ1, λ2; r, b1 + b2) . (A.21)

∫
ddk

(−k2 + m2)λ1(2p·k)λ2

=
iπd/2

(p2)λ2/2(m2)λ1+λ2/2+ε−2

Γ (λ2/2)Γ (λ1 + λ2/2 + ε− 2)
2Γ (λ1)Γ (λ2)

. (A.22)

∫
ddk

k(α1,...,αn)

(−k2 + m2)λ1 (2p·k)λ2

= iπd/2
Γ ((λ2 + n)/2)
2Γ (λ1)Γ (λ2)

Γ (λ1 + (λ2 − n)/2 + ε− 2)
(m2)λ1+(λ2−n)/2+ε−2

p(α1,...,αn)

(p2)(λ2+n)/2
.

(A.23)

∫
ddk

(−k2 + 2p·k)λ1(2p·k)λ2

=
iπd/2

(p2)λ1+λ2+ε−2

Γ (λ1 + λ2 + ε− 2)Γ (2λ1 + λ2 + 2ε− 4)
Γ (λ1)Γ (2λ1 + 2λ2 + 2ε− 4)

. (A.24)

∫
ddk

(−k2)λ1(2p·k + y − i0)λ2

= iπd/2
Γ (2 − λ1 − ε)Γ (2λ1 + λ2 + 2ε− 4)

Γ (λ1)Γ (λ2)
(p2)λ1+ε−2y−2λ1−λ2−2ε+4 .

(A.25)

∫
ddk

k(α1,...,αn)

(−k2)λ1(2p·k + y − i0)λ2
= iπd/2y−2λ1−λ2+n−2ε+4

× p(α1,...,αn)

(p2)−λ1+n−ε+2

Γ (2 − λ1 + n− ε)Γ (2λ1 + λ2 − n + 2ε− 4)
Γ (λ1)Γ (λ2)

. (A.26)
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Let p·q = 0. Then∫
ddk

(−k2)λ1 [−(p− k)2]λ2(−2q ·k − i0)λ3

= iπd/2
Γ (−λ1 − λ3/2 − ε + 2)Γ (−λ2 − λ3/2 − ε + 2)

Γ (−λ1 − λ2 − λ3 − 2ε + 4)

× Γ (λ1 + λ2 + λ3/2 + ε− 2)Γ (λ3/2)
2Γ (λ1)Γ (λ2)Γ (λ3)(−p2)λ1+λ2+λ3/2+ε−2(q2)λ3/2

. (A.27)

Let p2
1 = p2

2 = 0, q = p1 − p2. Then∫
ddk

(−k2 + 2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3

= iπd/2
Γ (−λ1 − λ3 − ε + 2)Γ (−λ2 − λ3 − ε + 2)
Γ (λ1)Γ (λ2)Γ (−λ1 − λ2 − λ3 − 2ε + 4)

×Γ (λ1 + λ2 + λ3 + ε− 2)
(−q2)λ1+λ2+λ3+ε−2

, (A.28)

∫
ddk

(−k2 + 2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(2p2 ·k)λ3
= iπd/2

Γ (−λ1 − ε + 2)
Γ (λ1)Γ (λ2)

× Γ (λ1 + λ2 + ε− 2)Γ (−λ2 − λ3 − ε + 2)
Γ (−λ1 − λ2 − λ3 − 2ε + 4)(−q2)λ1+λ2+λ3+ε−2

, (A.29)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2 + m2)λ3

= iπd/2
Γ (λ2 − λ1)Γ (λ2 + λ3 + ε− 2)Γ (−λ2 − ε + 2)

Γ (λ2)Γ (λ3)Γ (−λ1 − ε + 2)(−q2)λ1(m2)λ2+λ3+ε−2
, (A.30)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2 + m2)λ3(Q2 − 2p1 ·k)λ4

= iπd/2
Γ (λ2 − λ1)Γ (λ2 + λ3 + ε− 2)Γ (−λ2 − λ4 − ε + 2)

Γ (λ2)Γ (λ3)Γ (−λ1 − λ4 − ε + 2)

× 1
(Q2)λ1+λ4(m2)λ2+λ3+ε−2

, (A.31)

∫
ddk

(2p1 ·k + m2)λ1(2p2 ·k + m2)λ2(−k2)λ3

= iπd/2
Γ (λ1 + λ3 + ε− 2)Γ (λ2 + λ3 + ε− 2)Γ (−λ3 − ε + 2)
Γ (λ1)Γ (λ2)Γ (λ3)(−q2)−λ3−ε+2(m2)λ1+λ2+2λ3+2ε−4

. (A.32)
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Let p2
1 = 0, p2

2 = −m2, q = p1 − p2. Then∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k + m2)λ2(−k2)λ3
= iπd/2

Γ (λ2 + λ3 + ε− 2)
(m2)λ2+λ3+ε−2

× Γ (−λ1 − λ3 − ε + 2)Γ (−λ2 − ε + 2)
Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − 2ε + 4)(−q2)λ1

, (A.33)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k −m2)λ2(−k2)λ3(−q2 − 2p1 ·k)λ4

= iπd/2
Γ (λ2 + λ3 + ε− 2)

(m2)λ2+λ3+ε−2

× Γ (−λ1 − λ3 − ε + 2)Γ (−λ2 − λ4 − ε + 2)
Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − λ4 − 2ε + 4)(−q2)λ1+λ4

. (A.34)

Let P 2 = M2, p2 = 0, (P − p)2 = 0. Then∫
ddk

(−k2 + 2P ·k)λ1(−k2 + 2p·k)λ2(−k2)λ3

= iπd/2
Γ (−λ1 − λ2 − 2λ3 − 2ε + 4)Γ (λ1 + λ2 + λ3 + ε− 2)

Γ (λ1)Γ (−λ1 − λ2 − λ3 − 2ε + 4)

× Γ (−λ2 − λ3 − ε + 2)
Γ (−λ3 − ε + 2)(M2)λ1+λ2+λ3+ε−2

. (A.35)

Let p2
1 = 0, p2

2 = m2, Q2 = 2p1 ·p2. Then∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3(Q2 − 2p1 ·k)λ4

= iπd/2
Γ (λ3 − λ4)Γ (−λ1 − λ2 − 2λ3 − 2ε + 4)

Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − λ4 − 2ε + 4)

× Γ (λ2 + λ3 + ε− 2)
(Q2)λ1+λ4(m2)λ2+λ3+ε−2

, (A.36)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3
=

iπd/2

(Q2)λ1(m2)λ2+λ3+ε−2

×Γ (λ2 + λ3 + ε− 2)Γ (−λ1 − λ2 − 2λ3 − 2ε + 4)
Γ (λ2)Γ (−λ1 − λ2 − λ3 − 2ε + 4)

. (A.37)

The following integrals are related to two-loop diagrams:∫ ∫
ddk ddl

(−k2 + m2)λ1 [−(k + l)2]λ2(−l2 + m2)λ3

=
(
iπd/2

)2 Γ (λ1 + λ2 + ε− 2)Γ (λ2 + λ3 + ε− 2)Γ (2 − ε− λ2)
Γ (λ1)Γ (λ3)

× Γ (λ1 + λ2 + λ3 + 2ε− 4)
Γ (λ1 + 2λ2 + λ3 + 2ε− 4)Γ (2 − ε)(m2)λ1+λ2+λ3+2ε−4

, (A.38)
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∫ ∫
ddk ddl

(−k2)λ1 [−(k + l)2]λ2(m2 − l2)λ3

=
(
iπd/2

)2 Γ (λ1 + λ2 + λ3 + 2ε− 4)
(m2)λ1+λ2+λ3+2ε−4

×Γ (λ1 + λ2 + ε− 2)Γ (2 − ε− λ1)Γ (2 − ε− λ2)
Γ (λ1)Γ (λ2)Γ (λ3)Γ (2 − ε)

. (A.39)

A.2 Some Useful Formulae

To traceless expressions and back:

kα1 . . . kαN =
1
N !

[N/2]∑
r=0

1
2r(d/2 + N − 2r)r

(k2)r{[g]r[k](N−2r)}α1...αN ,

(A.40a)

k(α1...αN ) =
1
N !

[N/2]∑
r=0

1
2r(2 −N − d/2)r

(k2)r{[g]r[k]N−2r}α1...αN ,

(A.40b)

where k(α1...αN ) and {[g]r[k]N−2r}α1...αN are defined before (A.8) and after
(A.11), respectively, and (a)n is the Pochhammer symbol (A.53).

Furthermore,

(k·p)N =
[N/2]∑
r=0

aN,r(k2)r(p2)r(k·p)(N−2r) , (A.41)

(k·p)(N) =
[N/2]∑
r=0

bN,r(k2)r(p2)r(k·p)N−2r , (A.42)

k(α1...αN )k
(α1...αN ) =

(d− 2)N
2N ((d− 2)/2)N

(k2)N , (A.43)

where (k · p)(N) = k(α1...αN )p
(α1...αN ) and

aN,r =
N !

4rr!(N − 2r)!(d/2 + N − 2r)r
, (A.44)

bN,r =
1

4rr!(N − 2r)!(2 −N − d/2)r
. (A.45)

Summation formulae:

[(k1)m(k2)n ∗ gs] ≡ kα1
1 . . . kαm

1 k
αm+1
2 . . . k

αm+n

2 gs, α1...αm+n

=
min{m,n}∑

j≥0, j+min{m,n} even

m!n!
2(m+n)/2−j((m− j)/2)!((n− j)/2)!j!

×(k2
1)

(m−j)/2(k2
2)(n−j)/2(k1 ·k2)j , (A.46)
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[(k1)m(k2)n ∗ {[g]r(k3)m+n−2r}]

=
min{2r,m}∑

r1=max{0,2r−n}

min{r1,2r−r1}∑
j≥0, j+r1 even

1
(m− r1)!(n− 2r + r1)!

× m!n!
2r−j((r1 − j)/2)!(r − (r1 + j)/2)!j!

(k2
1)

(r1−j)/2 (k2
2)r−(r1+j)/2

×(k1 ·k2)j (k1 ·k3)m−r1 (k2 ·k3)n−2r+r1 . (A.47)

In particular,

[(k1)m(k2)n ∗ {[g]r(k3)N−2r}]

=
(

n

N − 2r

)
(k2 ·k3)N−2r[(k1)m(k2)n−N+2r ∗ gs] , (A.48)

where k1 ·k3 = 0, and

[pb1qb2 ∗ {[g]r(l)n−2r}]

=
b1!b2!

2r

min{r,[b1/2]}∑
r1=max{0,r−[b2/2]}

(p·l)b1−2r1(q ·l)b2−2r+2r1(p2)r1(q2)r−r1

r1!(r − r1)!(b1 − 2r1)!(b2 − 2r + 2r1)!
,

(A.49)

where p·q = 0.

[(k1)m(k2)n(k3)l−m−n ∗ gs]

=
∑

j1≥0, j1+m even

∑
j2≥0, j2+n even

∑
j3≥0, j3+l−m−n even

a(l,m, n, j1, j2, j3)

×(k2
1)

(m−j1)/2(k2
2)

(n−j2)/2(k2
3)(l−m−n−j3)/2

×(k1 ·k2)(j1+j2−j3)/2(k1 ·k3)(j1−j2+j3)/2(k2 ·k3)(−j1+j2+j3)/2 ,

a(l,m, n, j1, j2, j3) =
2(j1+j2+j3−l)/2m!n!(l −m− n)!

((m− j1)/2)!((n− j2)/2)!((l −m− n− j3)/2)!

× θ(j1 + j2 − j3)θ(j1 − j2 + j3)θ(−j1 + j2 + j3)
((j1 + j2 − j3)/2)!((j1 − j2 + j3)/2)!((−j1 + j2 + j3)/2)!

, (A.50)

where θ(n) = 1 for n ≥ 0 and θ(n) = 0 otherwise.

The (inverse) Fourier transformation in d dimensions:

1
(2π)d

∫
ddq

e−ix·q

(−q2 − i0)λ
=

Γ (d/2 − λ)
4λπd/2Γ (λ)

1
(−x2 + i0)d/2−λ

. (A.51)
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A.3 Some Special Functions

The Gauss hypergeometric function is defined by the series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)nn!

zn , (A.52)

where

(x)n = Γ (x + n)/Γ (x) (A.53)

is the Pochhammer symbol. This power series has a radius of convergence
equal to one. It is analytically continued to the whole complex plane, with a
cut, usually chosen as [1,∞). The analytic continuation to values of z where
|z| > 1 is given by

2F1(a, b; c; z) =
Γ (c)Γ (b− a)
Γ (b)Γ (c− a)

(−z)−a 2F1

(
a, 1 − c + a; 1 − b + a;

1
z

)

+
Γ (c)Γ (a− b)
Γ (a)Γ (c− b)

(−z)−b 2F1

(
b, 1 − c + b; 1 − a + b;

1
z

)
. (A.54)

Another formula for the analytic continuation is

2F1(a, b; c; z) = (1 − z)−a 2F1

(
a, c− b; c;

z

z − 1

)
. (A.55)

The polylogarithms [165] and generalized polylogarithms [153, 96] are
defined by

Lia (z) =
∞∑
n=1

zn

na
(A.56)

=
∫ 1

0

lna(1 − zt)
t

dt (A.57)

and

Sa,b(z) =
(−1)a+b−1

(a− 1)!b!

∫ 1

0

lna−1 t lnb(1 − zt)
t

dt , (A.58)

where a and b are positive integers.



B Technical Details:

Convergence and Asymptotic Behaviour

The difficulty, as in all this work, is to find a notation
which is both concise and intelligible to at least two
people of whom one may be the author.

(P.T. Matthews and A. Salam [176])

In this appendix, details connected with the analysis of the convergence of
Feynman integrals and a proof of the asymptotic behaviour of the remainder
in the off-shell large-momentum expansion are presented.

B.1 Analysis of Convergence

We obtain the alpha representation of an analytically and dimensionally reg-
ularized Feynman integral corresponding to a graph Γ starting from the
alpha representation (2.42) and substituting the powers of propagators al by
al + λl with general complex numbers λl. For simplicity, let us assume the
scalar case and that the powers of propagators are equal to one. (If al > 1,
one can represent such a line by a sequence of al lines.) In this case the alpha
representation takes a simpler form

FΓ (q,m; d, λ)

=
∫ ∞

0

dα
∏
l

αλl

l D(α)−d/2 exp

(
iA(q, α)/D(α)− i

∑
l

m2
l αl

)
, (B.1)

where the functions A and D are given by (2.44) and (2.43), and from now
on we omit the coefficient

(−1)Leiπ(
∑
λl+h(1−d/2))/2πhd/2

∏
l

Γ (λl + 1) ,

which is irrelevant to the analysis of convergence and the proof of the asymp-
totic estimate. In this appendix (as in Sect. 9.1.3), families of variables are
denoted by underlined letters, i.e. q = (q1, . . . , qn), m = (m1, . . . ,mL), λ =
(λ1, . . . , λL), α = (α1, . . . , αL), etc., with dα = dα1 . . .dαL. Let us also as-
sume here and later that the limit of integration refers to all of the integration
variables involved.

The alpha parameters have dimension −2 in mass units. By making the
change of variables αl → µ−2αl, where µ is a massive parameter, we can
transform to dimensionless alpha parameters. For simplicity, let us take µ = 1
in this appendix. To separate the analysis of the UV and IR convergence as
much as possible let us decompose the integration from 0 to ∞ over each

Vladimir A. Smirnov: Applied Asymptotic Expansions in Momenta and Masses,
STMP 177, 235–251 (2002)
c© Springer-Verlag Berlin Heidelberg 2002
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alpha parameter into two regions: from 0 to 1 and from 1 to ∞. The inte-
gral (B.1) is then divided into 2L pieces, each of which is determined by a
decomposition of the set of lines L of the given graph into two subsets, Lα
and Lβ , corresponding to the integrations over the UV region (from 0 to 1)
and the IR region (from 1 to ∞), respectively. For a given piece generated by
a subset Lα, let us change the variables αl for l ∈ Lβ according to αl = 1/βl.
The corresponding integral then takes the form

FLα

Γ (q,m; d, λ) =
∫ 1

0

dα dβ
∏
l∈Lα

αλl

l

∏
l∈Lβ

β−λl−ε
l D(α, β)−d/2

× exp


iA(q, α, β)/D(α, β)− i

∑
l∈Lα

m2
l αl − i

∑
l∈Lβ

m2
l /βl


 . (B.2)

For brevity, the new functions D and A are denoted by the same letters,
although they are now of the form

D(α, β) =


∏
l∈Lβ

βl


 D(α)|αl→1/βl,l∈Lβ

=
∑
T∈T 1


 ∏
l∈Lα\T

αl




 ∏
l∈Lβ∩T

βl


 , (B.3)

A(q, α, β) =


∏
l∈Lβ

βl


 A(q, α)

∣∣
αl→1/βl,l∈Lβ

=
∑
T∈T 2


 ∏
l∈Lα\T

αl




 ∏
l∈Lβ∩T

βl


(qT )2 . (B.4)

Remember that ±qT is the sum of the external momenta that flow into one
of the connectivity components of a 2-tree T .

For a given piece FLα

Γ , let us change the numbering of the lines in such
a way that the UV lines (i.e. those with αl ≤ 1) have smaller numbers.
Thus we perform integration in the domain 0 ≤ αl ≤ 1, 1 ≤ l ≤ l̄ and
0 ≤ βl ≤ 1, l̄ + 1 ≤ l ≤ L, where l̄ = |Lα|. If S is a finite set, we denote by
|S| the number of its elements.

As we shall see, the analysis of UV and IR convergence is now decoupled.
To analyse the UV convergence let us divide the domain of integration over αl
into sectors. In the following, we shall use sectors of two types associated with
nest and forests, respectively. The sectors connected with nests of subgraphs
[137] (let us call them N -sectors) are defined by

α1 ≤ . . . ≤ αl̄ (B.5)
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and similar domains obtained by permutations. Without loss of generality, let
us consider only the sector (B.5). Let us then change the integration variables
according to

αl = tl . . . tl̄ . (B.6)

The new (N -sector) variables tl are expressed in terms of αl by

tl =
{
αl/αl+1 if l < l̄
αl̄ if l = l̄

. (B.7)

The corresponding Jacobian equals
∏
tl−1
l .

The decomposition of the IR integration, over βl, is performed in a quite
similar way. The following are the corresponding analogues of N -sectors and
sector variables:

βL ≥ . . . ≥ βl̄+1 , (B.8)
βl = τl̄+1 . . . τl , (B.9)

τl =
{
βl/βl−1 if l > l̄ + 1
βl̄+1 if l = l̄ + 1 , (B.10)

and the corresponding Jacobian is
∏
τL−ll .

So, the initial integral is eventually divided into (L + 1)! sectors

απ(1) ≤ . . . ≤ απ(l̄) ≤ 1 ≤ βπ(l̄+1) ≤ βπ(L) , (B.11)

which are labelled by permutations π of the numbers 1, . . . , L and the num-
ber l̄. As we have stated, we consider only the contribution of the identical
permutation, i.e. π(l) = l, l = 1, . . . , L.

Although these sectors provide a resolution of the singularities of the
integrand, they can turn out to be too rough for analysing convergence. (But,
as we shall see, the N -sectors will be still used when we analyse the estimate
of the remainder of the asymptotic expansion.) A more sophisticated set
of sectors corresponds to the maximal UV and IR forests. A set f of 1PI
subgraphs and single lines with non-coincident end points is called a UV forest
[194, 222, 35] if the following conditions hold: (i) for any pair γ, γ′ ∈ f , we
have either γ ⊂ γ′, γ′ ⊂ γ or L(γ ∩ γ′) = ∅; (ii) if γ1, . . . , γ

n ∈ f and
L(γi ∩ γj) = ∅ for any pair from this family, the subgraph ∪iγi is one-vertex
reducible (i.e. can be made disconnected by deleting a vertex).

Let F be a maximal UV forest (i.e. there are no UV forests that include
F) of a given graph Γ . An element γ ∈ F is called trivial if it consists of
a single line and is not a loop line. Any maximal UV forest has h(Γ ) non-
trivial and L − h(Γ ) trivial elements. Let us define the mapping σ : F → L
such that σ(γ) ∈ L(γ) and σ(γ) �∈ L(γ′) for any γ′ ⊂ γ, γ′ ∈ F . Its inverse
σ−1 uniquely determines the minimal element σ−1(l) of the UV forest F that
contains the line l. Let us denote by γ+ the minimal element of F that strictly
includes the given element γ.
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For a given maximal UV forest F , let us define the corresponding sector
(F -sector) as

DF =
{
α|αl ≤ ασ(γ) ≤ 1, l ∈ γ ∈ F

}
. (B.12)

The intersection of two different F -sectors has zero measure and the union of
all the sectors gives the whole integration domain of the UV alpha parameters
(i.e. αl ≤ 1) (see [194, 222, 35, 208]). For a given F -sector, let us introduce
new variables labelled by the elements of F ,

αl =
∏

γ∈F : l∈γ
tγ , (B.13)

where the corresponding Jacobian is
∏
γ t
L(γ)−1
γ . The inverse formula is

tγ =
{
ασ(γ)/ασ(γ+) if γ is not maximal
ασ(γ) if γ is maximal . (B.14)

Consider, for example, the two-loop self-energy diagram of Fig. 2.5 and
the following maximal UV forest: F = γ1 = {1}, γ2 = {2}, γ3 = {3}, γ4 =
{1, 2, 5}, γ5 = Γ . The mapping σ is σ(γ1) = 1, σ(γ2) = 2, σ(γ3) =
3, σ(γ4) = 5, σ(γ5) = 4. The sector associated with this maximal UV
forest is given by DF = {α1,2 ≤ α5 ≤ α4, α3 ≤ α4} and the sector variables
are tγ1 = α1/α5, tγ2 = α2/α5, tγ3 = α3/α4, tγ4 = α5/α4, tγ5 = α4.

The IR F -sectors and variables are introduced in a quite analogous way.
New variables τγ are associated with maximal IR forests composed of IR-
irreducible subgraphs – see [208]. (A subgraph γ of Γ is called IR irre-
ducible [62, 208] if the reduced graph Γ/γ is one-vertex-irreducible. It is
also implied that the completion γ ≡ Γ\γ includes all the external vertices
in the same connectivity component.) The UV and IR maximal forests Fα
and Fβ, composed of lines Lα and Lβ , respectively, are then combined in
pairs to generate ‘generalized maximal forests’, with corresponding variables
{tγ , τγ′}, γ ∈ Fβ , γ ∈ Fβ . As a result, the initial integration domain is
divided into F -sectors associated with generalized maximal forests.

In each of the N - or F -sectors, the function (B.3) takes a factorized form
in the new variables [194, 222, 35, 208, 246]:

D =


 l̄∏
l=1

t
h(γl)
l




 L∏
l=l̄+1

τ
L−l+1−h(Γ/γl−1)
l


 [1 + PN(t, τ)] (B.15)

=


 ∏
γ∈Fα

th(γ)γ




 ∏
γ∈Fβ

τL(γ)−h(Γ/γ)
γ


 [1 + PF(t, τ )] , (B.16)

where PN and PF are non-negative polynomials, γl denotes the subgraph
consisting of the lines {1, . . . , l}, and again γ = Γ\γ. The factorization of the
function (B.4) in the N -sector variables is of the form
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A =


 l̄∏
l=1

t
h(γl)
l


 L∏
l=l̄+1

τ
L−l+1−h(Γ/γl−1)
l

(
τl̄+1 . . . τl0

)−1

×
[(
qT0
)2

+ P0(q, t, τ )
]
, (B.17)

where l0 denotes the number such that all the external vertices belong to the
same connectivity component of the subgraphs γl for l ≥ l0. In the Euclidean
domain, we have

(
qT0
)2
< 0 and P0(q, t, τ ) ≤ 0.

These factorization formulae are proven by constructing an appropriate
(2-)tree. In particular, in the case of pure α-variables, one uses the formula∏

l∈Lα\T
αl =

∏
γ∈Fα

th(γ)+c(γ∩T )−c(γ)
γ , (B.18)

where T is a tree or 2-tree and c(γ) is the number of connectivity components
of γ, so that the factorization reduces to constructing a (2-)tree that provides
the minimal value of the non-negative quantity c(γ∩T )− c(γ). In particular,
the unity term in the square brackets in (B.15) corresponds to the tree which
is constructed as follows: one considers the lines l = 1, 2, . . . consecutively
and includes the given line in the tree if a loop is not generated. In (B.16),
the minimal power of the sector variables is achieved for the tree which is
composed of all trivial elements of the given maximal UV forest F .

The 2-tree T0 that gives q2T0 in (B.17) is constructed by a similar procedure
with the additional requirement that a line is not included when it could
connect all the external vertices of the graph. The factorization in the F -
sector variables is a little bit more complicated (see [208]); instead of the
contribution of the 2-tree T0, there is a sum of contributions from some
family of 2-trees.

These formulae provide a factorization of the integrand of the alpha rep-
resentation and make manifest the analysis of the UV and IR convergence.
The contribution of the N -sector (B.11) takes the form

F l̄Γ (q,m; d, λ) =
∫ 1

0

dt dτ


 l̄∏
l=1

t
λ(γl)+h(γl)ε−[ω(γl)/2]−1
l




×


 L∏
l=l̄+1

τ
λ(γ′l)−h(Γ/γl−1)ε+[(ω(Γ )−ω(γ′l)+1)/2]−1
l




× [1 + PN(t, τ)]
ε−2 exp

(
i
q2T0 + P0(q, t, τ )
1 + PN(t, τ )

(
τl̄+1 . . . τl0

)−1

−i
l̄∑
l=1

m2
l αl(t)− i

L∑
l=l̄+1

m2
l /βl(τ )

)
, (B.19)

where
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λ(γ) =
∑
l∈γ

λl , (B.20)

and, in addition to γl, we have introduced the notation γ′l ≡ Γ\γl−1 for the
subgraph composed of the lines {l, l + 1, . . . , L}. The general case l̄ < l0 is
assumed. The square brackets in the exponents denote the integer parts of
numbers, and h(γ) and ω(γ), as before, denote the number of loops and the
UV degree of divergence, respectively. This factorization is given here for a
general graph. In the scalar case, on which we are concentrating, the degrees
of divergence are even numbers so that one can avoid the need to take those
integer parts.

The structure of the factorized representation in the F -sector variables is
similar, where the product of powers of the sector variables now takes the
form
 ∏
γ∈Fα

tλ(γ)+h(γ)ε−[ω(γ)/2]−1
γ




×


 ∏
γ∈Fβ

τλ(γ)−h(Γ/γ)ε+[(ω(Γ )−ω(γ)+1)/2]−1
γ


 . (B.21)

So the factorized N -sector integrals take the same form as the F -sector in-
tegrals if we let the UV subgraph γ be any graph of type γl and the IR
subgraph γ be any graph of type γ′l , no matter whether they are UV/IR
irreducible. Therefore, to analyse the UV and IR convergence, the F -sectors
are certainly preferable because it suffices to check convergence in a smaller
family of integrals.

The analysis of convergence has therefore been reduced to counting powers
in products of one-dimensional integrals over the sector variables. Note that
(IR) convergence in the variables τl is guaranteed if τ−1

l is present in the ex-
ponent. This property can be explained by the fact that the one-dimensional
integral

∫∞
0

dτ e−im2/ττλφ(τ), with an infinitely differentiable function φ and
a sufficient decrease at infinity, is well defined even at arbitrary values of
Reλ ≤ −2 (where it is, strictly speaking, divergent): this is true both in
the sense of the analytic continuation from the domain Reλ > −1 and in
the sense of the limit δ → +0 with m2 → m2 − iδ (with identical resulting
prescriptions in both these variants). In particular, such integrals are well
defined for the integer values λ = −1,−2, . . .

Thus we have IR convergence when either the subgraph γ′l (or just γ)
has at least one non-zero mass or its completion γl−1 (or γ) does not have
all the external vertices in the same connectivity component. Therefore it is
sufficient to check the IR convergence for the other IR-irreducible subgraphs.
The domain of the regularization parameters λl and ε where these sector
integrals are convergent is determined by the inequalities

Reλ(γ) + h(γ)Re ε > [ω(γ)/2] , (B.22a)



B.2 Proof of the Asymptotic Estimate 241

Reλ(γ)− h(Γ/γ)Re ε < [(ω(Γ )− ω(γ) + 1)/2] , (B.22b)

which correspond to UV-irreducible subgraphs and IR-irreducible subgraphs
with essential completions γ, respectively.

It turns out that this domain is non-empty for any graph without massless
detachable subgraphs. This statement can be proven [222] by observing that
the parameters

λ
(0)
l = (2− ε)

(
1 + δ − |T 1

l |
|T 1|

)
− 1 , (B.23)

where T 1
l is the set of trees containing the line l, satisfy (B.22a) and (B.22b)

for sufficiently small δ > 0. (As before, | . . . | is the number of elements in
the corresponding finite set.) Here again the scalar case is assumed. The
generalization to a general diagram is straightforward: one adds al/2 to the
right-hand side of (B.23), where al is the degree of the polynomial in the
numerator of the lth propagator.

It follows from the factorizations (B.19), when they are written for all the
sectors, that the Feynman integral can be continued from the above domain
of mutual convergence to the whole hypercomplex plane of the variables (λ, ε)
as a meromorphic function, with series of UV and IR poles. In this step one
uses the well-known property of the integrals

∫∞
0 dxxλφ(x) that they are

analytic functions of the parameter λ with simple poles at λ = −1,−2, . . .
(In distributional language, this is the analytic property of the distribution
xλ+ – see [124].)

It is also clear that, in the case where there is no non-empty mutual-
convergence domain, the contribution from any sector can be made conver-
gent by choosing the absolute values of the real parts of the UV/IR analytic-
regularization parameters to be sufficiently large (positive and negative for
l ≤ l̄ and l > l̄, respectively). The analytic regularization can then be switched
off, by analytic continuation, and one obtains [61] a dimensionally regular-
ized Feynman integral as the sum of its sector contributions, which were
defined in their own initial analyticity domains using the auxiliary analytic
regularization.

B.2 Proof of the Asymptotic Estimate

Let us first formulate a statement1 about the asymptotic behaviour of the
remainder (4.28) of the off-shell large-momentum expansion (4.33). To get
rid of inessential details, we consider a general scalar, convergent Feynman
integral. We comment on various (mostly straightforward) generalizations at
the end of this appendix.

1 This formulation differs slightly from that in [207, 208], where the asymptotic
behaviour at large momenta (≡ short distances) was understood in the distribu-
tional sense. The main points of the proof are almost the same in both formulations.
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Theorem. Let FΓ (q, p,m) be a UV- and IR-convergent Feynman integral
corresponding to a 1PI graph Γ and let RāFΓ be the remainder in the large-
momentum limit, where q is large with respect to the massesm and the rest of
the external momenta p, given by the forest formula (4.28), with subtraction
degrees a(γ) = ω(γ)+ā defined for all AI subgraphs. Let q and p be Euclidean,
i.e. q2 < 0 and (

∑
i pi)

2
< 0 for any subset of the small external momenta pi.

Then∣∣RāFΓ (q/&, p,m)
∣∣ < C&ā+1+δ (B.24)

for any δ > 0 and a constant C that depends on (q, p,m).
Before proving this theorem, let us first introduce an explicit represen-

tation for the subtraction operators acting on the integrand in the alpha
representation. The operator MΓ corresponding to the whole graph Γ ex-
pands the integrand in the masses m and small external momenta p. Using
the homogeneity of the functions A and D, we can write

Ma
ΓFΓ (q, p,m; d) =

∫ ∞

0

dαD(α)−d/2 T ap,m exp
[
iW (q, p,m, α)

]

=
∫ ∞

0

dαD(α)−d/2 T aκ exp
[
iW (q/κ, p,m, κ2α)

]∣∣∣∣
κ=1

=
∫ ∞

0

dα T aκ κhdD(κ2α)−d/2 exp
[
iW (q/κ, p,m, κ2α)

]∣∣∣∣
κ=1

, (B.25)

where

W (q, p,m, α) = A(q, p, α)/D(α)−
∑

m2
l αl . (B.26)

Therefore the action of the subtraction operator for an AI subgraph γ on the
whole Feynman integral is given by

Ma(γ)FΓ (q, p,m; d)

=
∫ ∞

0

dα T aκ κh(γ)d D(α(κ))−d/2 exp
{
iW (q/κ, p,m, α(κ))

}∣∣∣
κ=1

, (B.27)

where

αl(κ) =
{
κ2αl if l ∈ γ
αl if l �∈ γ

, (B.28)

with αl(1) = αl.
Thus the remainder takes the form

RāFΓ (q, p,m; d) =
∫ ∞

0

dα
∑
N

∏
γ∈N

(
−OκγT a(γ)κγ

)
κh(γ)dγ

×D(α(κ))−d/2 exp


iW


∏
γ∈N

κ−1
γ q, p,m, α(κ)




 , (B.29)

where
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αl(κ) =


∏
γ�l

κ2
γ


αl , (B.30)

and the operator O acts such that Oκf(κ) = f(1). As was pointed out in
Chap. 4, the sum runs over nests of AI subgraphs, rather than over arbitrary
forests.

Although the given Feynman integral is UV and IR finite we introduce
dimensional regularization in order to make it possible to generalize the ar-
guments presented here to the case with divergences.

We shall prove our theorem in three steps:

1. The decomposition of the integration domain of the alpha parameters
into N -sectors and rearrangement of terms contributing to the operation
R according to an equivalence relation.

2. The factorization of the integrand in the sector variables, which follows
from the factorization in the auxiliary sector variables associated with
the given equivalence class.

3. Power counting in the sector variables.

1. Rearrangement in the forest formula.
We need the following additional notation. Let us call the two external

vertices with the large external momentum q q-vertices. A line of a subgraph is
called a cut line if the number of its connectivity components increases when
this line is deleted. Any one-particle-reducible subgraph can be decomposed
into cut lines and 1PI parts, which we call 1PI components. Similarly, any
subgraph with a path between q-vertices can be naturally decomposed into
its AI components, which consist of its maximal AI subgraph and other pieces
that are either cut lines or 1PI subgraphs.

Using (B.1) with analytic regularization switched off (λl = 0), we decom-
pose the alpha integral into N -sector integrals. Without loss of generality,
we consider only the contribution RF l̄Γ of the sector (B.11), with a fixed l̄.
To rearrange the contributions of forests to the operation R, let us introduce
an appropriate equivalence relation. We call two forests f1 and f2 equivalent
if f1 = f2 where the operation f → f puts a maximal UV forest F ≡ f in
correspondence with a given forest f according to the following construction
procedure.

Let γ ∈ f . First, let us include in f the element Γ . Consider then the
nest {γ ∩ γl ∪ γ− , l = 1, . . . , L}, where γ− denotes the union of the elements
of the forest f which are inside γ. Let us enumerate the distinct elements
of this nest in the natural order: γ1 ⊂ γ2 ⊂ . . . . The difference between the
number of lines in γi and γi−1 is therefore equal to one. If the q-vertices are
not connected in γi, we include in f a subgraph which is either a cut line or
the 1PI component of γi containing the line L(γi\γi−1). If the q-vertices are
connected by a path in γi, we include in f the AI component of γi containing
the line L(γi\γi−1).
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As a result, the set of all the UV forests f of Γ is decomposed into
classes with respect to the above equivalence relation. Each equivalence class
is labelled by a maximal UV forest. Therefore the pre-subtraction operation
that determines the remainder is represented as

R =
∑
F

RF , (B.31)

RF =
∑
f : f=F

∏
γ∈f

(
−Ma(γ)

γ

)
, (B.32)

where the first sum runs over all maximal UV forests of Γ (for which F = F).
Now RF l̄Γ , given by the integral over the sector (B.11), is represented

as a sum over maximal UV forests, according to (B.31), and we consider
the contribution RFF l̄Γ of a given F . Let us introduce sector variables by
means of (B.7) and (B.10). To derive a factorization of the integrand in these
variables, we shall use factorization in the auxiliary F -sector variables t′γ given
by (B.14) that correspond to the given maximal UV forest F ; these variables
are indicated by a prime. Note that the AI elements of F can be one-particle-
reducible and that the maximal UV forests contributing to (B.31) are in
one-to-one correspondence with the maximal UV forests with 1PI non-trivial
elements for the graph Γ̂ obtained from Γ by identifying the two q-vertices. To
illustrate the difference between the maximal UV forests of Γ and Γ̂ , consider
the same example of Fig. 2.5. Now γ3 = {3} cannot be present in F together
with γ4 = {1, 2, 5}, because their union is an AI subgraph since it includes
both q-vertices. The following is an example of a maximal UV forest of the
graph Γ̂ : F = γ1 = {1}, γ2 = {2}, γ4 = {1, 2, 5}, γ3 = {1, 2, 3, 5}, γ5 = Γ .

Using (B.14), (B.6) and (B.9), we obtain the following expression for the
auxiliary F -sector variables in terms of the initial N -sector variables:

t′γ =




tσ(γ) . . . tσ(γ+)−1 if σ(γ) < σ(γ+) ≤ l̄
1/
(
tσ(γ+) . . . tσ(γ)−1

)
if σ(γ+) < σ(γ) ≤ l̄

tσ(γ) . . . tl̄τl̄+1 . . . τσ(γ+) if σ(γ) ≤ l̄ < σ(γ+)
1/
(
tσ(γ+) . . . tl̄τl̄+1 . . . τσ(γ)

)
if σ(γ+) ≤ l̄ < σ(γ)

τσ(γ)+1 . . . τσ(γ+) if l̄ < σ(γ) < σ(γ+)
1/
(
τσ(γ+)+1 . . . τσ(γ)

)
if l̄ < σ(γ+) < σ(γ)

(B.33)

if γ is not a maximal element of a given maximal UV forest F , and

t′γ =
{
tσ(γ) . . . tl̄ if σ(γ) ≤ l̄
1/
(
τl̄+1 . . . τσ(γ)

)
if σ(γ) > l̄

(B.34)

for a maximal γ. Since the given graph is supposed to be 1PI, there is only
one maximal element in every maximal UV forest, namely Γ .

Any maximal UV forest F can be decomposed as F+∪F−, where γ ∈ F+,
if either σ(γ) < σ(γ+) or γ = Γ . We observe that, if F = f , the maximal
UV forest F can be constructed by adding elements of F+ to f . Therefore
an element of an equivalence class of UV forests is characterized by the set
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F− and a subset of the set F+, so that the contribution of the equivalence
class is represented as

RF =
∏
γ∈F+

(
1−Ma(γ)

γ

) ∏
γ∈F−

(
−Ma(γ)

γ

)
. (B.35)

Note, however, that the operators Mγ are non-zero only for the AI elements
which form a nest N ⊆ F . For all other γ we formally put Mγ = 0. Observe
also that F− is composed of AI elements only.

2. Factorization of the integrand.
Using the notation defined above, we have

D(t, τ) ≡ D(α(t), β(τ )) =
L∏

l=l̄+1

τL−l+1
l D(t′) , (B.36)

where we can use the factorization (B.16) for D(t′).
We need a generalization of the factorization (B.17) to the case where we

have large and small momenta and where the function A is decomposed as
Aq +Ap, with Aq given by a sum over 2-trees such that the q-vertices are in
different components of each 2-tree. In fact Aq equals the function D for the
graph Γ̂ obtained from Γ by identifying the q-vertices, so that we can use
the factorization (B.36) and take into account the connection between the
numbers of independent loops h(γ) in subgraphs of Γ and Γ̂ . We obtain

Aq/D =


 ∏
γ∈F :γ1⊆γ

t′γ


[q2 + P1(q, p, t′)

]
[1 + PF(t′)]

−1
, (B.37)

where γ1 is the minimal AI subgraph in F , and P1 is a polynomial in q and p
with coefficients which are non-negative polynomials in t′. In the Euclidean
domain, P1 ≤ 0.

The function Ap is given by the sum over the rest of the 2-trees, i.e.
those which do not have all the external vertices in the same connectivity
component. Its factorization is obtained by minimizing the powers of the
variables t′γ in the same 2-tree TA as in the case of the factorization (B.17)
in the N -sector variables:

Ap/D =


 ∏
γ∈N :γq⊆γ

t′γ


[(qTA

)2
+ P2(p, t′)

]
[1 + PF(t′)]

−1
, (B.38)

where γq is the minimal subgraph in F that includes all the external vertices
in the same connectivity component, and P2 has the same properties as P1.
Note that qTA is independent of the large momentum q. We have γ1 ⊂ γq

and, generally, these elements are distinct.
According to (B.33) and (B.34), the auxiliary variables {t′γ , γ ∈ F−} are

proportional to negative powers of the initial N -sector variables tl and/or τl,
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and {t′γ , γ ∈ F+} are proportional to positive powers of tl and τl, the only
exception being γ = Γ when σ(Γ ) > l̄.

The factorization in the auxiliary variables enables us to take into account
the action of the subtraction operators corresponding to the elements of the
given maximal forest F . (Only operators corresponding to the nest N ⊂ F
are present.) It turns out that the integrand depends in a rather specific way
on the auxiliary parameters κγ . Since the functions involved in the integrand
depend on sums over trees and 2-trees of products

ΠT (α′, κ) =
∏
l�∈T

αl
∏
γ∈F

κ2L(γ\T )
γ ≡

∏
γ∈F

(
κ2
γt

′
γ

)L(γ\T )
, (B.39)

the parameter κγ can enter (up to overall factors) only in the combination
κ2
γt

′
γ .
Observe now that, after the action of an operator Mγ for γ ∈ F−, the

corresponding parameter κγ is set to zero. Although κΓ is not set to zero
even in the case where t′Γ involves negative powers of the IR variables τl,
the factorizations (B.36), (B.37) and (B.38) with respect to the auxiliary
variables provide a factorization in the initial N -sector variables because the
variable t′Γ enters the factorizations (B.36), (B.37) and (B.38) trivially, with
the polynomials PF and P1,2 being independent of t′Γ .

We use the following formula for the remainder of a one-dimensional Tay-
lor expansion:

(1− T aκ ) g(κ)|κ=1 =
1
a!

∫ 1

0

dκ (1− κ)ag(a+1)(κ) . (B.40)

Let us now consider the contribution of a maximal UV forest F to the
integral over the sector (B.11) with the identical permutation π and a given
number l̄. Using the arguments presented above, we obtain the following
representation for this contribution:

RFF āl̄ (q, p,m; ε) =
∫ 1

0


 ∏
γ∈N+

dκγ (1− κγ)
a(γ)




×
∫ 1

0

dt dτ


 l̄∏
l=1

tl−1
l




 L∏
l̄+1

τ−L+l−2
l




∏
γ∈F

(
t′γ
)−dh(γ)/2




×


 ∏
γ∈N+

(
∂

∂κγ

)a(γ)+1

 ∏
γ∈N−

(
−OκγT a(γ)κγ

)

× [1 + PF (κ, t′)]
−d/2 exp


iW


q ∏

γ∈N
κ−1
γ , p,m, κ, t′




 , (B.41)

where the last two factors depend on κγ , γ ∈ N through the combinations
κ2
γt

′
γ .
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The products of the auxiliary sector variables that are factored out in the
functions Aq and Ap can be rewritten in terms of the initial variables as

∏
γ∈F :γ′⊆γ

t′γ =
{
tσ(γ′) . . . tl̄ if σ(γ′) ≤ l̄(
τl̄+1 . . . τσ(γ′)

)−1 if σ(γ′) > l̄
. (B.42)

After differentiation with respect to the parameters κγ at zero values of
κγ , γ ∈ N−, the function W that remains in the exponent takes a form
similar to the previous function (B.26), with factorizations given by (B.37),
(B.38):

W = [1 + PF(t′)]
−1
{(
τl̄+1 . . . τl1

)−1 [
q2 + P 1(p, t, τ )

]

+
(
τl̄+1 . . . τl2

)−1
[(
qTA
)2

+ P 2(p, t, τ )
]}

−
∑

m2
l αl(t, τ) . (B.43)

Modified polynomials P 1,2, which also depend on κγ , γ ∈ N+, are obtained
from P1,2 and have similar properties. Here l1 = σ(γ1), l2 = σ(γq). The
element γ1 is the first in the nest N , and γq is the minimal element in N
with all the external vertices in the same connectivity component. The mass
term is factorized trivially, with the product

(
τl̄+1 . . . τlm

)−1, where lm is the
maximal number of the massive line.

3. Power counting.
Thus we obtain the following expression for the sector integral:

RFF āl̄ (q, p,m; ε) =
∫ 1

0

∏
γ∈N+

dκγ (1− κγ)
a(γ)

×
∫ 1

0

dt dτ


 l̄∏
l=1

tNl−1
l




 L∏
l=l̄+1

τ Ñl−1
l


GeiW , (B.44)

where G is an infinitely differentiable function and W is as described above.
The exponent of the parametric integral is not relevant to the UV analysis

of convergence. Thus it is necessary to count powers of all the integration
variables tl, l = 1, . . . , l̄. We take into account the fact that differentiation
with respect to κγ for γ ∈ N± ≡ F± ∩ N increases (decreases) powers of
tl (and of τl). If we ignore contributions proportional to ε, we obtain the
following estimate:

Nl ≥ l +
∑

γ∈N :σ(γ)≤l<σ(γ+)

{−2h(γ) + [a(γ)/2] + 1}

−
∑

γ∈N :σ(γ+)≤l<σ(γ)
{−2h(γ) + [a(γ)/2]}

+
∑

γ �∈N :σ(γ)≤l<σ(γ+)

{−2h(γ)} , (B.45)

where summation over γ ∈ F is understood.
Now we use the following (cumbersome but simple) summation formulae:
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∑
γ:σ(γ)≤l<σ(γ+)

Nγ =
∑

γ:σ(γ)≤l
Nγ −

∑
γ:σ(γ),σ(γ+)≤l

Nγ ,

∑
γ:σ(γ+)≤l<σ(γ)

Nγ =
∑

γ:σ(γ+)≤l
Nγ −

∑
γ:σ(γ),σ(γ+)≤l

Nγ ,

∑
γ:σ(γ+)≤l

Nγ =
∑

γ:σ(γ)≤l

∑
γ′: γ′+=γ

Nγ′ . (B.46)

These formulae give∑
γ:σ(γ)≤l<σ(γ+)

Nγ −
∑

γ:σ(γ+)≤l<σ(γ)
Nγ

=
∑

γ:σ(γ)≤l


Nγ − ∑

γ′: γ′+=γ

Nγ′


 . (B.47)

To count IR powers, we shall shortly need the analogues of (B.46), which
give ∑

γ:σ(γ)<l≤σ(γ+)

Nγ −
∑

γ:σ(γ+)<l≤σ(γ)
Nγ

= −
∑

γ:σ(γ)≥l


Nγ − ∑

γ′: γ′+=γ

Nγ′


 . (B.48)

In particular, we have∑
γ:σ(γ)≤l<σ(γ+)

L(γ)−
∑

γ:σ(γ+)≤l<σ(γ)
L(γ) = l , (B.49a)

∑
γ:σ(γ)<l≤σ(γ+)

L(γ)−
∑

γ:σ(γ+)<l≤σ(γ)
L(γ) = −(L− l + 1) . (B.49b)

We represent l in (B.45) using (B.49a), substitute a(γ) by ω(γ) + ā with
the same ā for all γ ∈ N , use the UV finiteness of Γ , i.e. the conditions
ω(γ) < 0 for any 1PI subgraph, and arrive at

Nl ≥
∑

γ:σ(γ)≤l<σ(γ+)

1 . (B.50)

The last sum is always positive. (Suppose that this is not true. Then σ(Γ ) >
l. Let γi be the maximal elements of F\Γ . According to the assumption,
σ(γi) > l. Repeating the above arguments, we conclude that σ(γ) > l for all
elements of F , but any maximal UV forest consists of exactly L elements.)
Therefore Nl > 0 for any l and this means a UV convergence.

Note that, using the same summation formulae, the part of the power of
tl proportional to ε can be written as
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ε
∑

γ:σ(γ)≤l


h(γ)− ∑

γ′: γ′+=γ

h(γ′)


 .

To analyse the IR convergence, let us remember the exponent (B.43),
which involves τ−1

l for l ≤ l1 ≡ σ(γ1) multiplied by the quantity q2 + . . . ,
which does not tend to zero when p and m vanish. These powers provide
(IR) convergence in the corresponding variable τl – see the arguments in
the previous section. Convergence in the variables τl for l > max{lq, lm} is
analysed as in the case where the operation R is absent. This convergence
is guaranteed by the IR convergence conditions ω(Γ )− ω(γ) > 0 applied to
the subgraphs γ involving all the external momenta in the same connectivity
component.

In the case l = l̄ + 1, . . . , l1, the presence of the second term in the ex-
ponent (B.43) provides the IR convergence. We need, however, the necessary
asymptotic estimate in the limit under consideration.

To do this, let us treat the last subtraction operator, MΓ , as a Taylor
expansion in p and m, and let us pull out the factor

1−MΓ = 1− T ω(Γ )+ā
p,m .

Using the homogeneity of the Feynman integral with respect to all momenta
and masses,

FΓ (q/&, p,m; ε) = ρ−ω(Γ )+2h(Γ )εFΓ (q, &p, &m) (B.51)

we see that a sufficiently fast decrease as & → 0 can be achieved when the
behaviour of R′

FF
ā
l̄
(q, &p, &m; ε) with respect to & is smooth enough. (Here

R′ is the operation R without a subtraction operator for the whole graph.)
According to a proposition that we shall present shortly, this means that we
need sufficiently large values for the powers Ñl for l = l1+1, . . . ,max{lq, lm}.

Using the factorization presented above, we have

Ñl ≥ −(L− l + 1) + [a(Γ )/2]

+
∑

γ∈N :σ(γ)<l≤σ(γ+)

{−2h(γ) + [a(γ)/2] + 1}

−
∑

γ∈N :σ(γ+)<l≤σ(γ)
{−2h(γ) + [a(γ)/2]}

+
∑

γ �∈N :σ(γ)<l≤σ(γ+)

{−2h(γ)} , (B.52)

where the part proportional to ε is omitted. The term [a(Γ )/2] has appeared
because of the absence of the contribution from MΓ in R′.

We represent −(L− l + 1) in (B.52) using (B.49b), apply the conditions
ω(γ) < 0 for any 1PI subgraph, and arrive at the following estimate:
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Ñl ≥ [a(Γ )/2] +


 ∑
γ:σ(γ)<l≤σ(γ+)

1− 1




−[ā/2]
∑

γ:σ(γ)≥l


1−

∑
γ′: γ′+=γ

1


 . (B.53)

In the last sum over the elements γ of the nest N , the term
∑
γ′: γ′+=γ 1 equals

zero only if the subgraph γ is the first element of the nest N . Thus the con-
tribution of the last line can be negative only if γ is such an element. But
this cannot happen for the numbers l under consideration. The first paren-
theses in (B.53) give only a non-negative contribution owing to arguments
similar to those used in the UV case. We thus obtain the estimate Ñl ≥ a(Γ ).
Now, by a smooth change of the variables τl, we reduce the analysis to the
following auxiliary statement [207, 208], which is a generalization of a similar
statement in [246].

Proposition. The integral

g(&) =
∫ 1

0

∏
l

dτl τ Ñl−rlε
l exp {−i&/ (τ1 . . . τL)}φ(τ ) , (B.54)

where φ ∈ C∞ and r1 > r2 > . . . , has the following asymptotic expansion
when &→ 0:

g(&) ∼
∞∑

n=Ñ+1

r1∑
j=0

gn,j&
n−jε +

∞∑
n=0

g(0)
n &n , (B.55)

where Ñ = minl{Ñl}.
Now, the ε term in the exponent of τl is

−ε
∑

γ:σ(γ)≥l


h(γ)− ∑

γ′: γ′+=γ

h(γ′)


 .

Observe that in the case l1 > max{lq, lm}, the sector contribution con-
sidered here turns out to be an analytic function of p,m so that the con-
clusion about the desired asymptotic behaviour becomes trivial. In the
considered case, where l1 ≤ max{lq, lm}, we take into account the fac-
tor ρ−ω(Γ )+2h(Γ )ε in (B.51), use the above estimate for the powers Ñl for
l = l1 + 1, . . . ,max{lq, lm}, with the help of the above proposition, and fi-
nally arrive at the desired asymptotic estimate (B.24).

Comments.
1. The generalization to the non-scalar case is straightforward.
2. The generalization to Feynman integrals with UV and/or IR diver-

gences is almost straightforward. The main difference is that the integrals
over some of the sector variables tl and τl become divergent because of neg-
ative powers. The crucial point for the asymptotic estimate is, however, the
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analysis of the powers τl for l = l1 + 1, . . . ,max{lq, lm}, which proves the
existence of a sufficiently large number of derivatives with respect to & of
R′FΓ (q, &p, &m) at & = 0. The desired estimate for dimensionally regularized
Feynman integrals can be obtained in a similar way.

3. A further generalization to renormalized Feynman integrals reduces to
obtaining asymptotic estimates for regularized quantities.

4. The generalization to the large-mass limit and the general off-shell limit
of momenta and masses is straightforward. The decisive point is the use of
another definition of the asymptotically irreducible subgraph.

5. From the above proof of the validity of the asymptotic estimate, one
can obtain, as a by-product, a simple proof of the Bogoliubov–Parasiuk the-
orem [26, 137, 247]. In its generalized version with oversubtractions [246],
it states that the BPHZ-renormalized Feynman integral RFΓ correspond-
ing to a massive graph Γ is finite provided the degrees of oversubtraction
ā(γ) = a(γ)− ω(γ) satisfy the relations

∑
i ā(γi) ≤ ā(γ) for any family {γi}

of disjoint subgraphs γi ⊂ γ. The BPHZ R-operation is given by the forest
formula (2.87) with subtractions in all 1PI subgraphs, subtraction degrees
a(γ) and a subtraction operator Mγ that expands diagrams into Taylor se-
ries of order a(γ). In particular, one can chose minimal BPHZ subtractions
with a(γ) = ω(γ).

To prove this theorem one can use the same strategy as above (see also
a similar strategy in [246]), consisting of the above three steps. In the para-
metric representation, the operator Mγ has a form similar to (B.25) but now
it expands integrands in all the external momenta and does not expand in
the masses. One does not need IR power counting because the presence of
non-zero masses provides it. The UV power counting is almost the same as
in the above proof.
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A young man from the far north-east of the Soviet Union who wants to
become a writer comes to Moscow. He tries to pass an exam in Russian
literature and enter the Literary Institute. The professor at the exam
suddenly realizes that the student has never read any poems by Pushkin
or any novels by Tolstoy.
‘Look, you are going to be a writer, and still you have not read Tolstoy!’,
exclaims the professor.
‘But I am going to be a writer, not a reader!’

(A Soviet anecdote from the 1970s)

1. G. Amorós, M. Beneke and M. Neubert, Phys. Lett. B 401 (1997) 81. 132
2. C. Anastasiou, E.W.N. Glover and C. Oleari, Nucl. Phys. B 575 (2000) 416.

193
3. C. Anastasiou, T. Gehrmann, C. Oleari, E. Remiddi and J.B. Tausk, Nucl.

Phys. B 580 (2000) 577. 182, 193
4. S.A. Anikin and O.I. Zavialov, Teor. Mat. Fiz. 26 (1976) 162; S.A. Anikin,

M.C. Polivanov and O.I. Zavialov, Fortschr. Phys. 27 (1977) 459; S.A. Anikin
and O.I. Zavialov, Ann. Phys. 116 (1978) 135. 48, 48

5. T. Appelquist and J. Carazzone, Phys. Rev. D 11 (1975) 2856. 107
6. L.V. Avdeev and M.Yu. Kalmykov, Nucl. Phys. B 502 (1997) 419. 128
7. P.A. Baikov, Phys. Lett. B 385 (1996) 404; Nucl. Instrum. Methods A 389

(1997) 347; P.A. Baikov and M. Steinhauser, Comput. Phys. Commun. 115
(1998) 161. 214, 215, 215, 215

8. P.A. Baikov, Phys. Lett. B 474 (2000) 385. 214, 215
9. P.A. Baikov and V.A. Smirnov, Phys. Lett. B 477 (2000) 367. 182
10. G.A. Baker and P. Graves-Morris, Padé Approximants, Encyclopedia of Math-
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158. J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, hep-ph 0106298 197
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List of Symbols

A – function in the alpha representation

Aµ – electromagnetic vector potential

Aa
µ – gluon field

ā – number of oversubtractions

al – power of propagator

B – magnetic field

Ci – coefficient function

CA = N – the quadratic Casimir oper-
ator of the adjoint representation of
the SU(N) group

CF = (N2 − 1)/(2N) – the quadratic
Casimir operator of the fundamental
representation of the SU(N) group

ca – ghost field

D – function in the alpha representation

Dµ = ∂µ − igAa
µt

a – covariant derivative

D(x) – propagator in coordinate space

D̃(p) – propagator

d = 4 − 2ε – parameter of dimensional
regularization

E – energy

E – electric field

e – electron charge

FΓ – Feynman integral

F1,2 – form factors

2F1(a, b; c; z) – the Gauss hypergeomet-
ric function

Fµν – electromagnetic field tensor

f – forest

G(λ1, λ2) – function in one-loop
massless integration formula

GC(r, r′;E) – Coulomb Green function

GΓ – Feynman amplitude

Ga
µν – gluon field strength tensor

g – coupling constant

gµν – metric tensor

h – number of loops

Ji(x) – composite operator

k – loop momentum

L – number of lines

L – Lagrangian

Lia (z) – polylogarithm

l – loop momentum

M – mass

M, M – subtraction operator

m – mass

N – number of colours

nf – number of flavours

Oi(x) – composite operator

p – external or internal momentum

Q – external momentum

Q2 = −q2 – Euclidean external
momentum squared

q – external momentum

q(x) – quark field

R – R-operation

R – operation that determines
a remainder in an asymptotic
expansion

R(s) – total cross section for hadron
production in e+e− annihilation

S – S-matrix

Sa,b(z) – generalized polylogarithm

s – Mandelstam variable

T – tree, 2-tree, pseudotree

T – operator of Taylor expansion

TF = 1/2 – the index of the funda-
mental representation the SU(N)
group

t – Mandelstam variable

ta – SU(3) generator

tl – sector variable

u – Mandelstam variable

ul – auxiliary parameter
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V – number of vertices
v – velocity
W – operator
x – coordinate
y = m2 − q2/4 – threshold variable
Zi – counterterm
Zik – renormalization matrix of

composite operators
Zl – polynomial in propagator

α = e2/(4π) – fine-structure constant
αs = g2/(4π) – strong coupling
αl – alpha parameter
B(x) – beta function (second Euler

integral)
βl = 1/αl – inverse alpha parameter

β =
√

1− 4m2/s – velocity
β(g) – beta function
Γ – graph
Γ (x) – gamma function (first Euler

integral)
γ – (sub)graph
γ(α) – function in evolution equation
γE = 0.577216 . . . – Euler constant

γµ – gamma matrices

∆(γ) – counterterm operation

δ(x) – delta function

ε = (4 − d)/2 – parameter of
dimensional regularization

ζ(x) – Riemann zeta function

ζ(α) – function in evolution equation

Λ – cut-off

λl – parameter of analytic regularization

µ – mass parameter within dimensional
regularization

ξ – gauge parameter

ξi – Feynman parameter

ξ(α) – function in evolution equation

Πi – projector

Π(q2) – polarization of vacuum

σ – mapping

σi – Pauli matrices

τl – sector variable

φ(x) – scalar field

χ(x) – quark field

ψ(x) – quark field

ω – degree of divergence
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