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Preface

This book emerged from a long process of trying to write a monograph on the
experimental and theoretical aspects of flavour physics, with some focus on
heavy-flavour physics. This original scope turned out to be far too wide and
had to be narrowed down in order to end up with a monograph of reasonable
size. In addition, the field of flavour physics is evolving rapidly, theoretically
as well as experimentally, and in view of this it is impossible to cover all the
interesting subjects in an up-to-date fashion.

Thus the present book focuses on theoretical methods, restricting the pos-
sible applications to a small set of examples. In fact, the theoretical machinery
used in flavour physics can be summarized under the heading of effective field
theory, and some of the effective theories used (such as chiral perturbation
theory, heavy-quark effective theory and the heavy-mass expansion) are in
a very mature state, while other, more recent ideas (such as soft-collinear
effective theory) are currently under investigation.

The book tries to give a survey of the methods of effective field theory
in flavour physics, trying to keep a balance between textbook material and
topics of current research. It should be useful for advanced students who
want to get into active research in the field. It requires as a prerequisite
some knowledge about basic quantum field theory and the principles of the
Standard Model.

Many of my colleagues and students have contributed to the book in one
way or another. In the early stages, when the scope was still defined very
widely, I enjoyed discussions with Ahmed Ali and Henning Schröder. In the
later stages I had some help from Wolfgang Kilian, Jürgen Reuter, Alexan-
der Khodjamirian, Heike Boos and Martin Melcher, some of who were “test
persons”, who told me, which parts of the book were still incomprehensible.

Finally, I want to thank my wife Doris and my children Thurid, Birte and
Hendrik for their patience; a lot of time, which should have been dedicated
to them, went into writing this book.

Siegen, September 2004 Thomas Mannel
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1 Introduction

1.1 Historical Remarks

The beginning of flavour physics can be dated back to the discovery of nu-
clear β decay by Becquerel and Rutherford in the late nineteenth century
[1, 2]. Almost twenty years later it was noticed by Chadwick [3] that the “β
rays” had a continuous energy spectrum, which was at that time a complete
mystery. The measurements of the nuclear β decay

210
83 Bi −→ 210

84 Po

by Ellis and Wooster in 1927 [4] showed an average electron energy 〈Eβ〉 =
350 keV, while the mass difference of the two nuclei is Emax

β = 1050 keV. This
result was indeed mysterious, since it would imply the violation of energy
conservation.

In order to save energy conservation, Pauli postulated the existence of a
particle that escaped observation. In his famous letter to the “Radioaktive
Damen und Herren” (a reprint of this letter can be found in [5]) he postulated
the neutrino, the interactions of which had to be so weak that it did not leave
any trace in the experiments which could be performed at that time. It took
more than twenty years to find direct evidence for the neutrino: in 1953 the
process ν̄e + p → n + e+ was observed by Reines and collaborators [6, 7, 8].

On the theoretical side, the description of weak interactions started in
1933 with Fermi’s idea of writing the interaction for β decay as a current–
current coupling [9]. Motivated by the structure of electrodynamics, he wrote
the interaction for the β decay of a neutron as

Hint = G

∫
d3x [p̄(x)γµn(x)][ē(x)γµν(x)] , (1.1)

since at that time the proton and the neutron were considered as elementary
spin-1/2 particles. Comparison with data at that time showed that the neu-
trino mass was small compared with the electron mass and that the value of
the Fermi coupling was G ≈ 0.3 × 10−5 GeV−2.

With more precise data on nuclear β decays, inconsistencies with the
simple ansatz (1.1) became apparent and a generalization was necessary.
Gamov suggested in 1936 [10] that (1.1) should be generalized to

Thomas Mannel: Effective Field Theories in Flavour Physics,
STMP 203, 1–9 (2004)
c© Springer-Verlag Berlin Heidelberg 2004



2 1 Introduction

Hint =
∑

j

∫
d3x gj [p̄(x)Mjn(x)][ē(x)Mjν(x)] , (1.2)

where the Mj run over the set of Dirac matrices

Mj ⊗ Mj = 1 ⊗ 1 , γ5 ⊗ γ5 , γµ ⊗ γµ , γµγ5 ⊗ γµγ5 , σµν ⊗ σµν , (1.3)

and the gj are real parameters. The choice of (1.3) assumes that the discrete
symmetries parity (P) and charge conjugation (C) hold separately, which was
a standard assumption at that time, since the observed strong and electro-
magnetic interactions conserved those symmetries. Under these assumptions
Hint in (1.2) is the most general ansatz.

It was also noticed quite early that the strengths of the weak processes
known at that time were very similar. After the discovery of the pion and
the muon, the couplings of n → peν̄e, π → µν̄ and µ → eν̄ν turned out to
be similar, once an ansatz similar to (1.1) or (1.2) was taken for the pion
and muon decays [11]. This was taken very early on as a hint that weak
interactions were governed by some kind of universality. However, in the
1950’s it became clear that nuclear β decay was well described by (1.2) using
a combination of 1⊗ 1 and σµν ⊗ σµν , while muon decay was best described
by a combination of γµ ⊗ γµ and γµγ5 ⊗ γµγ5. Consequently, the universality
of weak interactions became questionable.

At about the same time, new particles were observed which showed a
strange behaviour. Being heavier than three pions they were expected to de-
cay strongly into two or three pions. These were indeed the main decay modes
of these particles, however, but they had a lifetime typical of a weak process.
These particles also triggered another breakthrough in our understanding of
weak interactions, which was called the Θ − −τ puzzle. The Θ and τ were
particles with decay modes Θ → π+π0 and τ → π+π+π−, which means that
their final states have different parities, assuming an s-wave decay. The puz-
zle consisted in the fact that the Θ and τ had the same mass and lifetime
within the accuracy of the measurements, but different parities.

The solution of this puzzle was given by Lee and Yang in 1956 [12], who
postulated that the Θ and τ are identical; in today’s naming scheme, this
particle is the K+. This implied the bold assumption that weak interactions
violate parity, which was considered unacceptable by many colleagues at the
time. However, soon after the idea of Lee and Yang, parity violation was
experimentally verified by Wu et al. [13] and Garwin et al. [14] in 1957.

For the theoretical description this means that (1.2) has to be modified
again to accommodate parity violation. The best fit for neutron β decay is
obtained with

Hint = −Gβ√
2

∫
d3x

[
p̄(x)γµ

(
1 − gA

gV
γ5

)
n(x)

]
[ē(x)γµ(1− γ5)ν(x)] , (1.4)

which is basically today’s description of neutron β decay; the values of the
parameters are
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Gβ = (1.14730 ± 0.00064) × 10−5 GeV−2 ,
gA

gV
= 1.255 ± 0.006 . (1.5)

From today’s point of view, the fact that gA/gV �= 1 comes from the fact
that neither the proton nor the neutron is an elementary particle.

After implementing parity violation, it became clear that pion, muon and
neutron weak decays are basically described by a “vector minus axial vector”
(V − A) current–current coupling with the same coupling constant for all
these decays. Weak interactions again exhibited universality.

The next breakthrough in weak-interaction physics came again from the
strange particles mentioned above. In the 1950’s the “particle zoo” developed,
staring with the kaons and other strange particles. The lifetimes of these
particles turned out to be long compared with typical lifetimes for strongly
decaying states, so decays such as K+ → π+π0 were identified with weak
decays. This was implemented by postulating a new quantum number S
(“strangeness”) [15, 16, 17], which is conserved in strong processes but may
change in weak processes.

From weak-interaction universality, one would conclude that the strange-
ness-changing processes should have the same coupling strength as the
strangeness-conserving ones, for example the coupling for K+ → π+π0 should
be the same as for π → µν̄. This turned out to be grossly wrong: the rates for
strangeness-changing processes are suppressed by about a factor of 20 com-
pared with the strangeness-conserving ones. This contradicted the concept of
universality of weak interactions.

In 1963, universality was resurrected by Cabibbo [18], who used current
algebra to argue that the total hadronic V −A current Hµ should have “unit
length”, i.e.

Hµ = H∆S=0
µ cos Θ + H∆S=1

µ sinΘ , (1.6)

where H∆S=0
µ is the hadronic current for strangeness-conserving processes,

H∆S=1
µ governs the strangeness-changing decays and Θ is the Cabibbo an-

gle. Experimentally it was found that sinΘ ≈ 0.22, which explained all
strangeness-changing processes consistently. Up to the rotation (1.6), weak
interactions were again universal.

A further step in developing our present understanding was the discussion
of neutral currents. Up to that point the weak V −A currents were all charged
currents, i.e. they connected particles which differed by one unit of charge.
Generically one would also expect neutral currents of similar strength, in
particular flavour-changing neutral currents. However, it was noticed quite
early on that

Γ (K+ → π+νν̄)
Γ (K+ → π0e+ν̄)

< 10−5 � 1 , (1.7)

which implied a strong suppression of flavour-changing neutral processes.
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The large zoo of particles was ordered once the quark substructure of
hadrons had been noticed [19]. Although at first it was only a model used
for the classification of the hadronic states, it also put the weak interactions
into a different perspective. Weak processes were understood as transitions
between different quark flavours. The hadronic current in (1.6) is written in
modern language as

Hµ = ūγµ(1 − γ5) [d cos Θ + s sin Θ] , (1.8)

where the s quark carries the strangeness quantum number −1. Consequently,
it is the combination [d cos Θ + s sin Θ] which participates in the weak inter-
action.

Given this point of view, a neutral current would have the general form

Hneutral = ūMu +
[
d̄ cos Θ + s̄ sin Θ

]
M ′ [d cos Θ + s sin Θ] , (1.9)

where M and M ′ are some Dirac matrices. Clearly (1.9) exhibits a ∆S = ±1
contribution

H∆S=±1
neutral = cos Θ sinΘ

[
d̄M ′s + s̄M ′d

]
, (1.10)

which would make the ratio (1.7) of order unity, in contradiction with obser-
vations.

The solution to this problem was found by Glashow, Ilipoulos and Maiani
[20] and is called the GIM mechanism. Their idea had the surprising con-
sequence that another quark with the quantum numbers of the up quark
has to exist. This new quark, the charm quark, couples to the “orthogonal”
combination [s cos Θ − d sin Θ] of the down and the strange quark. While the
charged current becomes

Hµ = ūγµ(1−γ5) [d cos Θ + s sin Θ]+ c̄γµ(1−γ5) [s cos Θ − d sin Θ] , (1.11)

the neutral current is

Hneutral = ūMu + c̄Mc

+
[
d̄ cos Θ + s̄ sin Θ

]
M ′ [d cos Θ + s sin Θ]

+
[
s̄ cos Θ − d̄ sin Θ

]
M ′ [s cos Θ − d sin Θ]

= ūMu + c̄Mcd̄M ′d + s̄M ′s , (1.12)

in which all flavour-changing components cancel. Note that this “GIM can-
cellation” is a direct consequence of the fact that the down-type quarks are
rotated by an orthogonal matrix

(
d′

s′

)
=

(
cos Θ sin Θ
− sin Θ cos Θ

)(
d′

s′

)
(1.13)

On the basis of this hypothesis, Gaillard and Lee [21] calculated the mass
difference in the neutral-Kaon system which depends on the mass of the
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charm quark, which at that time was hypothetical. Gaillard and Lee esti-
mated the mass of the charm quark to be about 1.5 GeV and published their
result in the summer of 1974. The experimental confirmation came in Novem-
ber 1974 with the discovery of narrow resonances in e+e− collisions and in
proton fixed-target scattering. The resonance found in this famous “Novem-
ber revolution” [22, 23] had a mass of about 3 GeV and was immediately
interpreted as a bound state of a charm quark–antiquark pair.

After the discovery of parity violation, it was soon noticed that the com-
bined charge conjugation and parity transformation CP still seemed to be
a good discrete symmetry of weak interactions. This belief lasted only un-
til the mid-1960’s when Cronin and Fitch discovered CP-violating decays
of neutral kaons [24]. Owing to the strangeness quantum number, the neu-
tral kaon cannot be its own antiparticle, and if CP were a good symmetry,
these two neutral kaons would combine into two states of definite CP. These
neutral kaons decay into either two or three pions, and, again assuming CP
symmetry, the CP-even neutral kaon can decay only into two pions, while the
CP-odd kaon can decay only into three pions. Since the mass of the kaons just
barely allows the decay into three pions, the CP-odd kaon has a much longer
lifetime. In their experiment, Cronin and Fitch discovered that the long-lived
kaon decayed into two pions in some rare cases, which clearly violates CP.

From the theoretical side, it was clear that the Fermi theory could not be
the fundamental theory of weak interactions. When the results were extrapo-
lated to higher energies, it turned out that the cross-sections for eν scattering,
for example, violated unitarity at energies of the order of 100 GeV. Although
this was a gigantic energy at the time Fermi wrote down (1.1), this argument
showed that there was a problem at least in principle.

Related to this, it was noticed that the interaction (1.4) allowed only tree-
level calculations; any quantum correction turned out to be divergent, and
even after the concept of renormalization was developed, Fermi’s theory did
not have any predictive power once loops were included. From today;s point
of view, the corresponding interaction is non-renormalizable and can only be
interpreted as an effective interaction valid at very small energies.

It was clear that the high-energy behaviour of Fermi’s theory could be
improved if, instead of a local interaction, an “intermediate vector boson”,
which plays the same role as the photon in electromagnetism, was postulated
[25]. However, the success of Fermi’s theory indicated that such an “inter-
mediate boson” must have a large mass. Naive estimates showed that this
mass had to be as large as 100 GeV. Although this improved the high-energy
behaviour of the theory, it did not completely solve the unitarity problem of
weak interactions. As an example, the scattering of longitudinal “intermedi-
ate bosons” still violated unitarity, althought at much larger energies.

The solution of this problem is well known and is only remotely con-
nected to flavour physics. Non-abelian gauge theories, in combination with
spontaneous symmetry breakdown, yield a highly predictive framework,
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certain aspects of which have been tested in detail at LEP. As it has been
shown by t’Hooft and Veltman [26], a non-abelian gauge theory with spon-
taneous symmetry breaking is indeed renormalizable.

Turning again to flavour physics, the Standard Model in its early version
contained only two families or, correspondingly, the four quarks mentioned
above. It soon became obvious that with only two families and the frame-
work of the Standard Model, CP violation is not possible. It was noticed by
Kobayashi and Maskawa in 1974 [27] that CP violation becomes possible in
the Standard Model if a third family is postulated. In this case the orthogonal
Cabibbo rotation of the down-type quarks is replaced by a unitary rotation,
the CKM (Cabibbo, Kobayashi and Maskawa) matrix, yielding an observable
phase which allows CP violation.

Subsequently, the particles of the third family were discovered: the τ lep-
ton [28] and the bottom quark [29]. Only the top quark escaped detection for
a long time owing to its large mass. While the Standard Model is unable to
predict the masses of the particles, a first hint of a possibly very large mass of
the top quark came from the observation of B0 −B0 oscillations by ARGUS
[30] and UA1 [31], indicating a top-quark mass of well beyond 100 GeV, at a
time when the top-quark mass was suspected to be around 25 GeV. Finally,
the top quark was discovered in the 1990’s at the Tevatron [32].

With the Standard Model, we have today a consistent theory of all particle
interactions. The gauge sector of this model has been tested in detail at LEP
in the last decade and no significant deviation has been found, despite the
fantastic precision of the experiments (see [33] for a review of the LEP results
and other results related to electroweak interactions). As far as the flavour
sector is concerned, the experiments of the next ten years will show, whether
the picture that has developed, in particular the CKM mixing, is correct.

1.2 Importance of Flavour Physics

Understanding flavour mixing in the quark and the leptonic sectors is one of
the most important problems of contemporary particle physics. While gauge
symmetries provide an elegant way to understand the basic interactions, the
sector needed for breaking these gauge symmetries remains a problem, al-
though the Higgs mechanism at least yields consistent quantum field theories.
The gauge principle fixes only the interactions of transverse gauge bosons;
the nature of the longitudinal polarizations of massive gauge bosons is not
yet understood.

The elegance of gauge theories comes from the fact that all interactions
are given in terms of a single coupling constant, even when quantum cor-
rections are included. For the Standard Model, this means that all gauge
interactions are given in terms of three coupling constants, which can be
translated into three parameters: the strong coupling constant αs, the elec-
tromagnetic coupling αem and the weak mixing angle ΘW . These three
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parameters correspond to the three factors of the Standard Model gauge
group SU(3)colour × SU(2)W × U(1)Y, each of which introduces a separate
gauge coupling. However, in a unified theory based on a simple Lie group,
only a single coupling is present in the gauge sector, which means that ΘW,
for example, can be computed. The best-known example for this is the SU(5)
prediction of the weak mixing angle [34].

Focusing on the Standard Model, this means that only three out of the
large number of parameters originate in the gauge sector. Including mixing
of the leptons (which implies neutrino masses), the Standard Model has 26
parameters in total, which means that the symmetry-breaking sector induces
23 parameters. Clearly this sector is not as elegant as the gauge sector, since
within the Standard Model all these parameters are unrelated.

Reducing the number of parameters in the flavour sector needs physics
beyond the Standard Model. In theories with gauge unification, typically the
multiplets are larger (containing in general both quarks and leptons) and
hence certain relations between masses emerge, such as the famous bottom–
τ unification in SU(5) grand unification. However, prediction of the angles
and phases of the CKM matrix needs additional input such as symmetries
between the families, so-called horizontal symmetries.

Over the next ten years, the sector of the Standard Model related to
masses and mixings will be tested experimentally. Hopefully these tests will
lead to a hint of what kind of physics beyond the Standard Model is respon-
sible for the flavour structure of the Standard Model. At future experiments
such as LHC, precision measurements of B decay will be possible and will
lead to a stringent test of the flavour structure of the Standard Model.

1.3 Scope of the Book

There are many excellent textbooks on all of the different aspects of the
Standard Model of elementary-particle physics, ranging from the theoretical
structure of gauge theories, including their quantization [35], to detailed dis-
cussions of the phenomenology of the Standard Model [36, 37, 38, 39, 40, 41],
and the present book is not intended to compete with any of these. Rather,
it focuses on a special method frequently used in computing the predictions
of the Standard Model, which is the method of effective field theory. This ap-
proach is well suited to problems involving widely disparate mass scales and
hence can even be applied to investigations reaching beyond the Standard
Model.

Flavour physics is the sector of the Standard Model which indeed involves
widely separated mass scales, and hence effective-field-theory methods are
best suited to this field. So it seems worthwhile to collect together the basic
ideas of effective field theories and show some of their applications as they
appear in the sector of flavour physics.
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Quark flavour physics involves scales as high as the weak scale (defined by
the weak-boson mass) and as low as ΛQCD, the scale defined by the strong
interactions binding the quarks into hadrons. In this sense, it is the ideal
field of application of effective field theories. In fact, various effective theories
can be constructed: the theory of weak interactions seen at the low scales
of weak decays of hadrons is an effective theory (mHadron � MW), as is the
effective theory for heavy quarks (ΛQCD � mQuark) and the chiral limit of
QCD (mπ � ΛχSB).

In recent times, lepton flavour physics has also started to become an inter-
esting subject, since neutrino oscillations and thus also neutrino masses seem
to have been established by recent experiments. However, the phenomenology
of quark flavour physics is currently much richer; this situation will remain
for some time, since the B factories will produce data for at least another five
years and after that there will be “second–generation” B physics experiments
yielding even more precise data. For this reason the emphasis of this book is
on quark flavour physics; lepton flavour physics is mentioned only briefly.

The book consists of three parts. After an introduction to flavour in the
Standard Model and the CKM mixing matrix, the general ideas of effective
field theories are given, followed by discussion of the effective-field-theory
approaches used for various purposes in flavour physics. In the subsequent
chapters some applications of these methods are considered. Here, we do not
aim at completeness; rather, we aim to show how these methods are applied.
Finally, the Standard Model itself can be considered an effective field theory,
and on this basis one can discuss the physics beyond the Standard Model in
general way; we close the book with a few remarks on this point of view.
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2 Flavour in the Standard Model

2.1 Basics of the Standard Model

All known phenomenology of elementary particles can be described in terms
of the so-called Standard Model [1, 2, 3, 4, 5, 6, 7], which has turned out to
be an extraordinarily successful theory. It describes all known phenomenol-
ogy from very low scales up to the highest experimentally accessible scales.
Certain aspects of the Standard Model, namely the couplings of the Z0 gauge
boson to the fermions, have been tested at a level of precision well below 1%,
and no significant deviation has been found.

The Standard Model is constructed as a spontaneously broken SU(3)colour×
SU(2)W × U(1)Y gauge theory [8, 9, 10, 11, 12, 13], where the SU(3)colour

corresponds to the strong interaction and the SU(2)W × U(1)Y induces the
electroweak interaction. The gauge group has 12 generators, corresponding
to eight gluons g for the strong interaction, three weak bosons W± and Z0,
and the photon mediating the electromagnetic interaction.

The matter fields, i.e. the quarks and leptons, have to be grouped into mul-
tiplets of the gauge group, i.e. they have to be assigned electroweak and strong
quantum numbers. Parity violation in weak interactions is implemented by
assigning different weak quantum numbers to left- and right-handed compo-
nents of the matter fields. In other words, the left- and right-handed com-
ponents of the quarks and leptons are associated with different multiplets of
the electroweak SU(2)W×U(1)Y group. The left-handed leptons are grouped
into doublets of SU(2) in the following way:

Le =
(

νe,L

eL

)
, Lm =

(
νµ,L

µL

)
, Lt =

(
ντ,L

τL

)
, (2.1)

where the subscript L means the left-handed projection of the spinor fields

ψL =
1
2
(1 − γ5)ψ .

Similarly, for the quarks the assignment is

Qd =
(

uL

dL

)
, Qs =

(
cL

sL

)
, Qb =

(
tL
bL

)
. (2.2)

Thomas Mannel: Effective Field Theories in Flavour Physics,
STMP 203, 11–21 (2004)
c© Springer-Verlag Berlin Heidelberg 2004
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A transformation Λ of SU(2)L is a unitary 2 × 2 matrix and these doublets
transform as

L′
i = ΛLi , Q′

i = ΛQi , for Λ ∈ SU(2)L . (2.3)

In order to introduce mass terms, one has also to have right-handed com-
ponents of the spinor fields, since a mass terms corresponds to a coupling term
between right- and left-handed components. As far as the weak SU(2)W group
is concerned, the right-handed components transform as singlets under this
group; in other words, they do not couple to the gauge bosons corresponding
to SU(2)W.

However, as we shall see below, the Higgs sector of the Standard Model
has in fact a larger symmetry, which is an SU(2)L ×SU(2)R symmetry. This
so-called custodial symmetry [14, 15, 16] is broken by the quark mass terms
and also by the gauge couplings, but it plays a role in unified models.

In anticipation of the discussion of custodial symmetry, it is useful to
group the right-handed quarks and leptons also into doublets, of a group
SU(2)R. Thus we write

1 =
(

νe,R

eR

)
, 2 =

(
νµ,R

µR

)
, 3 =

(
ντ,R

τR

)
(2.4)

for the right-handed leptons and

q1 =
(

uR

dR

)
, q2 =

(
cR

sR

)
, q3 =

(
tR
bR

)
(2.5)

for the right-handed quarks. A transformation of SU(2)R is a unitary 2 × 2
matrix R and the transformation for the doublets is

′i = RLi , q′i = RQi , for R ∈ SU(2)R . (2.6)

Only the left-handed group SU(2)L ≡ SU(2)W is gauged, and yields the
usual couplings of the gauge bosons to the quarks and leptons. The hyper-
charge group U(1)Y has to be identified with a combination of the phase
transformation of the fields and a transformation in the T3,R direction of
SU(2)R. Consequently, the right-handed SU(2)R is broken by the hyper-
charge gauge coupling and, as we shall see later, by the mass terms. The
hypercharge assignment is determined by the requirement that the particles
should have the correct charge. For the leptons we obtain

Y = −1 + 2T3,R , (2.7)

while for the quarks we obtain

Y =
1
3

+ 2T3,R . (2.8)
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The charge Q of these particles is obtained from

Q =
1
2

(2T3,L + Y ) . (2.9)

The hypercharge assignments for quarks and leptons can be written in the
form

Y = B − L + 2T3,R , (2.10)

where B is the baryon number and L is the lepton number of the state. The
relation (2.10) plays a role in unified theories, where typically quarks and
leptons appear in the same multiplet.

With these assignments, all couplings to the gauge bosons of the elec-
troweak interactions are fixed. Furthermore, as far as the strong SU(3)C
group is concerned, all leptons are singlets and all quarks (left- and right-
handed) are triplets, fixing also the coupling to the gluons via the gauge
principle.

Since we are dealing with a chiral gauge theory (i.e. left- and right-handed
components have different quantum numbers), the symmetry forbids mass
terms as long as it is unbroken, except for the right-handed neutrino, which
carries neither SU(2)L quantum numbers nor a hypercharge. In this case a
Majorana mass term is allowed, which we shall discuss in Sect. 2.3. All other
particles have to obtain their mass from symmetry breaking which we shall
discuss in the next section.

2.2 The Higgs Sector and Yukawa Couplings

It is interesting to note that the complete flavour structure of the Standard
Model is fixed by the Yukawa couplings of the quarks and leptons to the
Higgs sector. Furthermore, the fact that SU(2)L ≡ SU(2)W and U(1)Y are
gauged seems to be irrelevant for the flavour structure.

To discuss these issues, we start from the particle doublets (2.1), (2.2),
(2.4) and (2.5) and consider first the quarks. We can write a kinetic energy
for the quarks as

Lkin =
∑

i

[
Q̄i/∂Qi + q̄i/∂qi

]
, (2.11)

which is symmetric under U(2)L×U(2)R. A mass term would break this sym-
metry explicitly down to the diagonal symmetry SU(2)L+R (i.e. the trans-
formation of SU(2)L has to be chosen to be equal to that of SU(2)R), but
let us first maintain the larger symmetry.

In addition to the fermion fields we introduce a set of scalar fields, gath-
ered into a 2 × 2 matrix

H =
(

φ0 + iχ0

√
2φ+

−
√

2φ− φ0 − iχ0

)
, (2.12)
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where φ0 and χ0 are real fields, and φ∗
+ = φ− is a complex field. The trans-

formation properties of this matrix are

H → ΛHR† for Λ ∈ SU(2)L , R ∈ SU(2)R . (2.13)

With the help of this field, we can write a Lagrangian which is invariant
under SU(2)L × SU(2)R. The part for the scalar fields reads

LHiggs =
1
4
Tr

[
(∂µH)†(∂µH)

]
− V (Tr

[
H†H

]
) , (2.14)

where the Higgs potential V will be discussed below. The only possible renor-
malizable and SU(2)L × SU(2)R-invariant interaction between the scalar
fields and the quarks is

LI = −
∑
ij

yijQ̄iHqj + h.c. , (2.15)

where y is the 3 × 3 matrix of coupling constants.
The total Lagrangian is the sum of the terms (2.11), (2.14) and (2.15). It

has an SU(2)L × SU(2)R symmetry and is basically the Lagrangian of the
linear σ model [17]. The matrix y of Yukawa couplings can be diagonalized
by a bi-unitary transformation

y = U †ydiagW , (2.16)

with two unitary 3× 3 matrices U and W . Redefining left- and right-handed
quarks appropriately, we find that the total SU(2)L × SU(2)R-invariant
Lagrangian is diagonal as far as the family structure is concerned, i.e.

L =
∑

i

[
Q̄i/∂Qi + q̄i/∂qi

]
+

1
4
Tr

[
(∂µH)†(∂µH)

]
− V (Tr

[
H†H

]
) (2.17)

−
∑

i

yiQ̄iHqi + h.c. ,

and hence no mixing between different quark families can occur.
The Higgs potential is chosen in such a way that the field H acquires a

vacuum expectation value, which can be chosen as

〈φ0〉 = v or 〈H〉 = v 12×2 (2.18)

such that

H =
(

v + h0 + iχ0

√
2φ+

−
√

2φ− v + h0 − iχ0

)
. (2.19)

This vacuum expectation value breaks SU(2)L × SU(2)R down to the di-
agonal SU(2)L+R symmetry, which will be discussed below. The resulting
spectrum contains a massive Higgs boson h0 and three massless Goldstone
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bosons [18] (χ0, φ+ and φ−), which is typical for spontaneous breakdown.
Under SU(2)L+R h0 is a a singlet, while χ0, φ+ and φ− form a triplet.

This induces mass terms for the quarks, which originate from the Yukawa
couplings. We obtain

Lmass = −
∑

i

yivQ̄iqi + h.c. (2.20)

= −mu(ūu + d̄d) − mc(c̄c + s̄s) − mc(t̄t + b̄b) .

Clearly, the quark mass spectrum of this Lagrangian is phenomenologically
not acceptable. This is due to the fact that the symmetry of this Lagrangian is
larger than what is actually needed for the Standard Model. The hypercharge
of the Standard Model involves T3,R, one of the generators of SU(2)R. Thus
we can explicitly break SU(2)R with terms proportional to T3,R without
violating the symmetries of the Standard Model.

In the Higgs Lagrangian (2.14), we can introduce T3,R contributions by
considering

Tr
[
(∂µH)†(∂µH)T3,R

]
and V ′(Tr

[
H†HT3,R

]
) , (2.21)

but these terms vanish or yield an irrelevant constant owing to the relation
Tr

[
H†HT3,R

]
= 0. This means that the Standard Model Higgs sector auto-

matically has the larger SU(2)L × SU(2)R symmetry once one implements
the SU(2)L × U(1)Y symmetry of the Standard Model.

This custodial symmetry [14, 15, 16] is specific to the breaking of the
SU(2)L ×U(1)Y symmetry by a doublet of scalar fields. The vacuum expec-
tation value of the Higgs field is proportional to the 2 × 2 unit matrix and
thus is invariant under the diagonal SU(2)L+R group. Thus, after symmetry
breaking, the Higgs sector still has an unbroken custodial SU(2) symmetry,
under which the three Goldstone bosons transform as a triplet and the physi-
cal Higgs boson transforms as a singlet. After SU(2)L is gauged, the massless
Goldstone bosons become the longitudinal modes of the gauge bosons, and
thus the three gauge bosons are also a triplet under custodial SU(2).

This symmetry has has some interesting consequences. Since the gauge
bosons form a triplet under custodial SU(2), the strengths of charged and
neutral currents have to be equal. The ratio of these coupling strengths is
called the ρ parameter, which is fixed at unity in the symmetry limit. Fur-
thermore, exact custodial SU(2) would enforce equal up and down quark
masses within one family and it would forbid quark flavour mixing.

However, the quark Yukawa couplings break custodial SU(2); we can write
an additional Yukawa coupling term that explicitly breaks custodial SU(2),

L′
I = −

∑
ij

y′
ijQ̄iHT3,Rqj + h.c. , (2.22)

which will lead to both family mixing and a mass splitting of the up and
down quark masses within one family, since y and y′ cannot be diagonalized
simultaneously.
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For the following discussion, it is useful to introduce three-component
objects in the form

UL/R =


uL/R

cL/R

tL/R


 , DL/R =


dL/R

sL/R

bL/R


 . (2.23)

The total Lagrangian, consisting of (2.17) and (2.22), can be rewritten in
terms of (2.23) and reads

L = ŪL/∂UL + ŪR/∂UR + D̄L/∂DL + D̄R/∂DR

+ (∂φ+)(∂φ−) +
1
2
(∂φ0)(∂φ0) +

1
2
(∂χ0)(∂χ0) − V (2φ+φ− + φ2

0 + χ2
0)

+
[
1
v
ŪLMuφ0UR + h.c.

]
+

[
1
v
D̄LMdφ0DR + h.c.

]

+
[

i

v
ŪLMuχ0UR + h.c.

]
−

[
i

v
D̄LMdχ0DR + h.c.

]

+
[
1
v
D̄LMuφ+UR + h.c.

]
+

[
1
v
ŪLMdφ−DR + h.c.

]
, (2.24)

where we have defined the 3 × 3 mass matrices for the up and down quarks
as

Mu = v(y + y′) , Md = v(y − y′) . (2.25)

The somewhat lengthy expression (2.24) is the full Higgs and Yukawa sec-
tor of the Standard Model, containing its full flavour structure for the quarks.
After spontaneous symmetry breaking, the field φ0 acquires a vacuum-
expectation value in accordance with (2.18); this corresponds to the replace-
ment φ0 → v + φ0. The fields φ± are massless and become the longitudinal
components of the charged gauge bosons, while the massless field χ0 be-
comes the longitudinal mode of the neutral boson. We shall no present the
details of the Higgs mechanism here; rather, we refer the reader to textbooks
[8, 9, 10, 11, 12, 13, 19].

Mixing between different families occurs through the fact that the two
mass matrices Mu and Md not commute any more, i.e.

[Mu , Md] �= 0 , (2.26)

which is a direct consequence of the explicit breaking of custodial SU(2)
symmetry through the Yukawa couplings of the quarks. The mixing between
different quark families is encoded in the CKM matrix, which will be discussed
in the next chapter.

In summary, the structure of the Higgs sector of the Standard Model is
completely equivalent to the σ-model [17] which was invented in a totally
different context long before the construction of the Standard Model. The
way we have presented our derivation up to this point corresponds to the
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linear σ model, which means that the SU(2) × SU(2) symmetry is realized
linearly. We shall later also use the non-linear σ model, which is formally
obtained in the limit in which the mass of the physical Higgs boson h0 tends
to infinity. In this limit, this particle decouples and only the three Goldstone
bosons remain. Formally, this is obtained by the replacement

H → vΣ , (2.27)

where Σ has the same transformation properties as H but contains only the
three Goldstone boson fields. The SU(2) × SU(2) symmetry is realized on
these three fields in a non-linear way [20, 21]. The Higgs contribution to the
Lagrangian (2.17) simplifies, since

ΣΣ† = Σ†Σ = 1 (2.28)

such that

LHiggs =
v2

4
Tr

[
(∂µΣ)†(∂µΣ)

]
, (2.29)

since the potential becomes an irrelevant constant. Note that the discussion
of the masses and mixings of the quarks remains the same independent of
which representation (linear or non-linear σ model) is chosen for the Higgs
sector.

We have not yet introduced the gauge fields for the strong, weak and
electromagnetic interactions. However, in order to understand the flavour
structure of the Standard Model, these fields are not needed. In other words,
the flavour physics in the Standard Model originates completely in the scalar
sector responsible for the breaking of the electroweak SU(2)×U(1) symmetry,
since up to now we have used this symmetry only as a spontaneously broken
global symmetry. On the other hand, the spontaneous breakdown of a global
symmetry implies the appearance of massless Goldstone bosons, which is
phenomenologically not acceptable. To avoid the appearance of these states,
one can use the Higgs mechanism [4, 5, 6, 7] to turn them into longitudinal
modes of massive gauge bosons. We shall return to this point when we discuss
Fermi’s theory of weak interactions as an effective theory.

2.3 Neutrino Masses and Lepton Mixing

The leptonic sector can, in large part, be treated along the same lines. It
has been assumed until recently that neutrinos are massless, and in this case
no right-handed components are needed for those particles. This has the
consequence that all the rotation matrices needed to diagonalize the Yukawa
couplings can be rotated away such that no family mixing occurs in the
leptonic sector. In other words, in the case of massless neutrinos, separate
lepton numbers for the electron, the muon and the τ lepton exist, which are
conserved.
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However, there has been recent evidence that neutrinos have masses and
consequently also mixing [22, 23, 24]. It is still quite possible that the leptonic
sector is just a copy of what happens in the quark sector, but now neutrinos
have to have right-handed components, and a mixing matrix similar to the
CKM matrix appears. Grouping the leptons into doublets as in (2.1) and
(2.4), we can go through the same steps as for the quarks and obtain a very
similar structure.

There is, however, the possibility that the leptonic sector is different from
the quark sector in the following respect [25]. Looking at the relation for
the hypercharge of the leptons (2.7), we find that the right-handed neutrino
carries neither hypercharge nor weak SU(2)L charge, i.e. the right-handed
neutrino does not carry any U(1) charge. Thus we may assume that the
right-handed neutrino is equal to its antiparticle, i.e. we may assume that
the right-handed neutrino is a Majorana fermion. In this case one can write
a Majorana mass term for the right-handed neutrinos; this mass term does
not come from the Yukawa couplings to the Higgs field.

In order to write such a mass term, we observe that the charge conjugate-
field of a right-handed fermion is left-handed. Using the usual definition of
charge conjugation (see also Sect. 6.2)

ψc = Cψ̄T , where C = −iγ0γ2 , (2.30)

we can write a mass term for the right handed neutrinos of the form

LMM = −1
2
ν̄R,iMijν

c
R,j + h.c. , (2.31)

where i and j are now indices for the three families. The matrix Mij has to
be symmetric and is called the Majorana mass matrix. Note that this mass
term violates lepton number, since it carries two units of lepton number.

From the usual couplings with the Higgs field we obtain another mass
term for the neutrinos which is the usual Dirac mass term. This Dirac mass
term can be written as

LDM = −ν̄L,imijνR,j + h.c. (2.32)

and is obtained from the coupling of the lepton doublets to the Higgs field.
The complete mass term can thus be written as

LM = −1
2

(
ν̄L,i (νc

R)L,i

)(
0 mij

mT
ij Mij

)(
(νc

L)R,j

νR,j

)
, (2.33)

where we have made use of the relation

(νc
R)L(νc

L)R = ν̄Lν̄R (2.34)

and introduced a 6 × 6 matrix, which has the particular block structure
indicated in (2.33).
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The fact that right-handed neutrinos do not interact except through the
Lagrangian LM offers an interesting possibility of generating small neutrino
masses using the so-called see-saw mechanism. Since the Majorana mass term
(2.31) is not due to the Higgs mechanism, there is no connection to the
electroweak vacuum expectation value. Thus the Majorana masses of the
right-handed neutrinos can in principle be large, maybe even as large as
the scale of grand unification. In this case we can integrate out the right-
handed neutrinos and study the higher-dimensional operators induced by this
operation. In practical terms, this means that we can replace all right-handed
neutrino fields in the interaction terms with all other fields by

νRi
= M−1

ij mjkνL,k , (2.35)

which is the equation of motion for small momenta, i.e. he equation obtained
by neglecting the kinetic energy of the right-handed neutrino.

The main effect of this is that a dimension-five operator appears which
introduces a Majorana mass terms for the left-handed neutrinos of the form

L′
MM = −1

2

(
νT
L,i

[
mTM−1m

]
ij

CνL,j + ν̄L,i

[
mTM−1m

]
ij

Cν̄T
L,i

)
, (2.36)

where now the Majorana masses of the left-handed neutrinos are small, since
they are suppressed by the large Majorana masses of the right-handed neu-
trinos. This see-saw mechanism was discussed first in [25, 26] and offers a
natural way to obtain the small observed neutrino masses.

The mass matrices in (2.36) are still not diagonal; in order to diagonalize
the mass matrices one has to perform a rotation, which in this case is now
an orthogonal transformation, since the mass matrix is now symmetric:

mTM−1m = OTµdiagO , (2.37)

where µdiag is the diagonal matrix with the mass eigenvalues of the left-
handed neutrinos.

The masses of the charged leptons are generated in the same way as for
the down-type quarks; the resulting mass matrix ML is diagonalized by a
bi-unitary transformation

ML = U†ML,diagW . (2.38)

As in the quark case, the effect of these rotations can be observed in
the charged current only, where a mixing matrix similar to the CKM matrix
appears. The charged-current interaction in the mass eigenbasis reads

LCC =
g√
2
ν̄LγµVMNSlLW+

µ (2.39)

where lL are the three left-handed charged leptons, and

VMNS = UOT (2.40)

is the unitary Maki–Nakagawa–Sakata matrix [27].
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The counting of parameters is, however, slightly different from the case of
quarks. Since the left-handed neutrinos are now Majorana fermions, there is
no more freedom to rephase these fields. For n families, the unitary MNS ma-
trix again has n2 real parameters, but we have now the freedom to rephase
the n charged leptons, i.e. we may choose their n phases relative to the
left-handed neutrinos. When this has been done, we have n(n − 1) free real
parameters, of which n(n− 1)/2 can be interpreted as the Euler angles of an
orthogonal rotation. The remaining n(n − 1)/2 parameters are (irreducible)
phases, which lead to CP violation in the leptonic sector. One of these phases
is similar to that which appears in the CKM matrix and can be observed by
comparing the oscillation rates P (νi → νj) for neutrinos with the correspond-
ing rates for antineutrinos P (ν̄i → ν̄j). The other two phases are related to
the Majorana nature of the neutrino and are very difficult to extract from a
measurement.

As stated above, the presence of the Majorana mass terms violates lepton
number. After the heavy right-handed neutrino is integrated out, a Majorana
the mass term (2.36) appears for the light neutrinos, implying lepton number
violation. However, this contribution is suppressed by the large scale of the
Majorana mass of the right-handed neutrinos and hence this effect is very
small. We shall not go into any more detail concerning this subject and refer
the reader instead to dedicated textbooks on neutrino physics such as [28].
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3 The CKM Matrix and CP Violation

3.1 The CKM Matrix in the Standard Model

In the Standard Model and in all theories with gauge unification, the CKM
matrix originates from the fact that the mass matrices of the up and down
quarks do not commute (see (2.26)). This means that there is no basis in
family space where both matrices are diagonal. The CKM matrix emerges,
from this point of view, as the rotation between the two eigenbases of the up
and down mass matrices.

We can first redefine the quark fields in such a way that both mass ma-
trices are Hermitian. Furthermore, since only the relative orientation of the
two bases is observable, we can perform an unobservable rotation which di-
agonalizes the up mass matrix; thus we can, without restriction of generality,
write

Mu =


mu 0 0

0 mc 0
0 0 mt


 , (3.1)

where mu, mc and mt are real, positive entries.
In this basis the down mass matrix has to be diagonalized by a non-

trivial rotation. Since the matrix is Hermitian, this can be done by a unitary
transformation, such that

Md = VCKMMdiag
d V †

CKM , (3.2)

where

Mdiag
d =


md 0 0

0 ms 0
0 0 mb


 , (3.3)

again with real, positive entries. The unitary rotation that transforms the
eigenbasis of the up-quark mass matrix Mu into that of the down-quark
mass matrix is called Cabibbo–Kobayashi–Maskawa matrix.1

Usually the fields in the Lagrangian are interpreted in terms of mass
eigenstates which means that one has to redefine the fields in such a way

1We could equally well have started from a basis in which the down-quark mass
matrix is diagonal. This would lead to the same result, i.e. V †

CKM would diagonalize
the up-quark mass matrix.

Thomas Mannel: Effective Field Theories in Flavour Physics,
STMP 203, 23–31 (2004)
c© Springer-Verlag Berlin Heidelberg 2004
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that the mass matrices are diagonal. This means that we have to redefine all
down-quark fields as

DL/R → VCKMDL/R . (3.4)

This unitary rotation makes the mass matrices Mu and Md diagonal.
However, this rotation affects the other terms in the Lagrangian. The

kinetic energy is invariant under a unitary redefinition of the fields. Likewise,
since the neutral currents, i.e. the interactions with the fields φ0 and χ0, are
also invariant under a rotation of the down quarks, there will be no flavour-
changing neutral currents in the Standard Model, at least at tree level. This
is the modern implementation of the GIM mechanism [1] discussed in Chap. 1

As we shall see later, loop processes will induce flavour-changing neutral
currents. However, either the corresponding loop diagrams are convergent
or the divergences cancel between different contributions. Consequently, no
renormalizing counterterms will be induced as a tree-level contribution and
thus the structure of the Lagrangian is preserved even at loop level. Phe-
nomenologically, this means that in the quantum field theory the processes
involving flavour-changing neutral currents remain suppressed by small cou-
plings and loop factors.

Only in the charged currents connecting up with down quarks will a visible
effectl occur, namely

LCC =
1
v

[
D̄LV †

CKMMuφ+UR + ŪLMdVCKMφ−DR + h.c.
]

. (3.5)

In this way, mixing between different quark families appears in the charged-
current interaction, which is in accordance with observations.

3.2 CP Violation and Unitarity Triangles

In this section we shall discuss some properties of the the CKM matrix, in
particular the CKM picture of CP violation.

From the above construction, it is clear that the (gauge) symmetries imply
that the CKM matrix has to be unitary. A unitary n×n matrix has in general
n2 independent real parameters. However, in the case of the CKM matrix we
may use our freedom to define the relative phases of the quark fields. For
the case of n families we have n up-type and n down-type quarks, leaving
us the freedom to chose 2n− 1 relative phases. Consequently, the number of
parameters N is

N = n2 − 2n + 1 = (n − 1)2 . (3.6)

Furthermore, if the CKM rotation were orthogonal (i.e. if the CKM matrix
were real after we had used our freedom to rephase fields) it would have
Nangles rotation angles; the remaining Nphases parameters necessarily would
be phases. We obtain
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Nangles =
n(n − 1)

2
, Nphases =

(n − 1)(n − 2)
2

. (3.7)

For the two-family case n = 2, there is only one parameter which is a
rotation angle, the Cabibbo angle θC ; furthermore, the CKM matrix is real
and is an orthogonal 2× 2 matrix. As we shall see below, this implies that a
Standard Model with two generations cannot have CP violation, at least not
for the minimal Higgs sector discussed in the previous chapter.

For the three-family case n = 3, we have four parameters and the CKM
matrix may be written in terms of the sines and cosines of three angles and
one complex phase factor. The case n = 3 is also the simplest case in which
CP violation originating from the CKM matrix occurs and in the framework
of the Standard Model this phase is in fact the only possible source of CP
violation.

For n = 3, the CKM matrix may be understood as a product of three
rotations in which one family always remains unchanged [2, 3, 4, 5, 6] This
corresponds to the three Euler angles for a rotation in real, three-dimensional
space. This leads us to define

U12 =


 c12 s12 0
−s12 c12 0

0 0 1


 , U13 =


 c13 0 s13

0 1 0
−s13 0 c13


 ,

U23 =


 1 0 0

0 c23 s23

0 −s23 c23


 (3.8)

These three rotations define the three angles θ12, θ13 and θ23, where cij =
cos θij and sij = sin θij are their cosines and sines.

The product of these three rotations yields a general orthogonal matrix,
and if this were the CKM matrix, no CP violation would be possible. In order
to obtain a CP-violating phase, we define another unitary matrix by

Uδ =


1 0 0

0 1 0
0 0 e−iδ13


 . (3.9)

The standard parametrization of the CKM matrix, as proposed in [7] is
given by a product of the three rotations, where U13 is transformed by the
matrix Uδ:

VCKM = U23U
†
δ U13UδU12 . (3.10)

Explicitly multiplying the matrices yields

VCKM

=


 c12c23 s12c13 s13e

−iδ13

−s12c13 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13


 . (3.11)
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In the limit in which θ13 = θ23 = 0, the third generation decouples and
the CKM matrix reduces to a orthogonal matrix describing Cabibbo mixing.

At present, the Particle Data Group [7] quotes the following range of
values for the absolute values of the CKM matrix elements:

|VCKM|

=


 0.9745 to 0.9757 0.219 to 0.224 0.002 to 0.005

0.218 to 0.224 0.9736 to 0.9750 0.036 to 0.046
0.004 to 0.014 0.034 to 0.046 0.9989 to 0.9993


 , (3.12)

where, for the last row, unitarity has been used. From these numbers it follows
that θ12 ≈ 12.7◦, θ23 ≈ 2.3◦ and θ13 ≈ 0.2◦, and hence θ12 � θ23 � θ13. This
means that transitions within the same family are favoured. The further off
the diagonal an entry is, the smaller is its absolute value. This is illustrated
in Fig. 3.1.

−

−

−

Fig. 3.1. Illustration of the relative strengths of charge current transitions

This phenomenological fact has led people to think of the CKM matrix
in terms of an expansion in a small parameter λ [8], which can be chosen to
be the sine of the Cabbibo angle λ = |Vus|. For the two-family case, we may
write λ = sin θC ≈ θC , and obtain

VCKM =
(

1 0
0 1

)
+

(
0 λ
−λ 0

)
+

(
−λ2/2 0

0 −λ2/2

)
+ O(λ3) . (3.13)

In the three-family case, we keep the same parameter λ and write

VCKM

=


 1 − λ2/2 λ λ3A(ρ − iη(1 − λ2/2))

−λ 1 − λ2/2 − iηA2λ4 λ2A(1 + iηλ2)
λ3A(1 − ρ − iη) −λ2A 1


 , (3.14)
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where terms of order λ4 in the real part and terms of order λ5 in the imaginary
part have been dropped. The three additional parameters A, ρ and η are all of
order unity; from present data on B meson decays the values A = 0.95±0.14
and

√
ρ2 + η2 = 0.45 ± 0.14 are obtained [10].

Unitarity of the CKM matrix implies that the rows and columns of the
matrix are orthonormal. In this way one can obtain 12 bilinear relations in to-
tal between the matrix elements. These are the six orthonormality conditions
of the rows, ∑

q′=u,c,t

Vq′qV
∗
q′q′′ = δqq′′ , (3.15)

and the six orthonormality conditions of the columns
∑

q′=d,s,b

Vqq′V ∗
q′′q′ = δqq′′ . (3.16)

Since the matrix elements of the CKM matrix are in general complex-valued,
these 12 relations may be depicted as triangles in the complex plane [9].
However, from consideration of the size of the CKM matrix elements, it is
found that almost all of these triangles have one very small and two large
sides, except for the two triangles

∑
q′=u,c,t

V ∗
q′bVq′d = V ∗

ubVud + V ∗
cbVcd + V ∗

tbVtd = 0 , (3.17)

corresponding to the product of the first column with the complex conjugate
of the last column, and

∑
q′=d,s,b

V ∗
uq′Vtq′ = V ∗

udVtd + V ∗
usVts + V ∗

ubVtb = 0 , (3.18)

corresponding to the product of the complex conjugate of the first row with
the last row. These two triangles both have sides of order λ3. However, owing
to the unitarity of the CKM matrix they both correspond, up to terms of
order λ5, to the same relation between the Wolfenstein parameters ρ and η:

Aλ3(ρ + iη) − Aλ3 + Aλ3(1 − ρ − iη) = 0 . (3.19)

The standard unitarity triangle is depicted in Fig. 3.2. In the Wolfenstein
parametrization, it is a triangle in the ρ–η plane with a base of unit length,
and its apex lies at the values of ρ and η given by (3.19).

The angles α, β and γ of the unitarity triangle are related to the phases
of the CKM matrix elements. However, these angles are independent of the
particular parametrization of the CKM matrix, and in the parametrization
(3.11) one finds that, to leading order in the Wolfenstein parametrization,
one has γ = δ13.

The non-vanishing phases in the CKM matrix imply CP violation in the
Standard Model. In later applications we shall make us of the standard
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Fig. 3.2. The unitarity triangle, with the definition of the angles α, β and γ

parametrization, in which Vub and Vtd are the matrix elements that carry
large phases, corresponding to the angles γ and β in Fig. 3.2. However, as
can be seen from (3.11), the elements Vcd, Vcs and Vts also carry phases, but
these are tiny and do not appear in the Wolfenstein parametrization.

A non-vanishing phase δ13 �= 0 and δ13 �= 180◦ means on the one hand
a non-degenerate unitarity triangle, on the other hand it means that there
is CP violation in the Standard Model. Since VCKM is unitary, it can be
shown that all 12 unitarity triangles have the same area and that this area
is independent of the phase conventions used. Mathematically, this is related
to the fourth-order rephasing invariants

∆(4)
αρ = VβσVγτV ∗

βτV ∗
γσ , where

{
α, β, γ = u, c, t cyclic
ρ, σ, τ = d, s, b cyclic , (3.20)

and owing to the unitarity of the CKM matrix there is only one fourth-order
rephasing invariant ∆. The imaginary part of ∆ corresponds to the area of
the unitarity triangles and hence may serve as a measure of CP violation [9].
Using the parametrization (3.11), one obtains

Im∆ = c12s12c
2
13s13s23c23 sin δ13 , (3.21)

which becomes simply Im ∆ = λ6A2η in the Wolfenstein parametrization.
In order to have non-vanishing CP violation, one has to have a non-zero

Im∆. This means that none of the angles θij may take the values 0, 90◦ or
180◦. On the other hand, Im∆ has a maximal value of 1/(6

√
3) ≈ 0.1. This

has to be compared with the value obtained from the measurement of CP
violation in the kaon system where one finds Im ∆ ∼ 10−4.

Finally, CP violation is also absent if any of the up- or down-type quarks
are degenerate in mass. In this case one may perform a rotation among the
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two degenerate quarks which removes the CP-violating phase. It is, however,
possible to define an invariant measure of CP violation by referring to the
mass matrices defined in the previous section. It has been shown [10] that
the determinant of the commutator of the two mass matrices

J = det([Mu , Md]) (3.22)

is an invariant measure of CP violation, which is called the Jarlskog invariant.
Explicit evaluation reveals that

J = 2i Im ∆

×(mu − mc)(mu − mt)(mc − mt)(md − ms)(md − mb)(ms − mb) , (3.23)

showing explicitly that CP violation vanishes if mass degeneracies appear.

3.3 The CKM Matrix and the Fermion Mass Spectrum

In the Standard Model, the CKM matrix originates from the fact that the
mass matrices (i.e. the matrices of Yukawa couplings) for the up and down
quarks do not commute, and hence the mass eigenbasis for the up quarks is
rotated relative to that for the down quarks, where the rotation is the CKM
matrix. This strongly suggests a relation between the CKM matrix and the
masses of the quarks. However, in the minimal version of the Standard Model
the four parameters of the CKM matrix and the six quark masses are inde-
pendent and thus unrelated parameters. The necessary information about
the structure of the Yukawa matrices has to come from a theory beyond the
Standard Model, which would need to explain the observed family structure.
Without this information, one can only make assumptions about the matri-
ces G and G′ of Yukawa couplings, and these assumptions imply relations
between the masses and the CKM matrix.

If we look at the quark mass spectrum, the only quark with a mass com-
parable to the weak scale (given by the vacuum expectation value of the
Higgs field) is the top quark. Hence an ansatz where only the diagonal top-
quark Yukawa coupling is non-vanishing can be used as a starting point. It
was proposed some time ago [11] to use a rank-one matrix for the up quark,
which may be cast into the form

G′ ∝


1 1 1

1 1 1
1 1 1


 (3.24)

by an appropriate rotation of the quark fields.
However, this ansatz does not yield a non-trivial CKM matrix, since the

down-type quarks still all have vanishing mass and hence no mixing can occur.
An ansatz for the down-quark mass matrix G has to have the property that
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it does not commute with G′. Thus, in a basis where G′ is diagonal, G has
to have non-zero off-diagonal entries.

There are a large number of ideas in the literature for inventing more or
less justified matrices of Yukawa couplings, and we shall not even try to review
these ideas; a recent review can be found in [12]. Rather, we restrict ourselves
to a simple, text-book like example which at least shows a mechanism of how
relations between masses and the CKM matrix may occur.

We restrict ourselves to two families, in which case we have four masses
and one mixing angle. Our ansatz for the Yukawa couplings has to have
fewer than five parameters in order to obtain the desired relations. Without
restrictions, we may assume that the matrix of Yukawa couplings for the
the up-type quarks is diagonal, where the diagonal entries are already two
parameters, namely the masses of the up quarks. For the down type quarks
we use the ansatz of a Hermitian matrix

G =
(

0 a
a 2b

)
, (3.25)

where we shall assume that a and b are real and that the off-diagonal ele-
ment a is much smaller than b. In this way, we have two more parameters
a and b and thus we expect one relation between masses and mixing angles.
Comparing this model with the general formulae of Sect. 3.1, we see that the
unitary matrix diagonalizing G is already the CKM matrix of this simple toy
model.

The two eigenvalues of the matrix G are

λ1 = b +
√

a2 + b2 ≈ 2b and λ2 = b −
√

a2 + b2 ≈ −a2

2b
, (3.26)

and the CKM matrix in this toy model becomes

VCKM =
(

cos θ sin θ
− sin θ cos θ

)
, where tan θ =

a

2b
. (3.27)

On the other hand, the masses of the down-type quarks are the moduli of
the eigenvalues of the matrix,

ms = λ1v ≈ 2bv and md = λ2v ≈ a2

2b
v (3.28)

where v is the vacuum expectation value of the Higgs field. Thus we end up
with the relation

tan θ =
√

md

ms
. (3.29)

Although this is only a toy model, the relation (3.29) is remarkably successful
phenomenologically. Using the Particle Data Group range of the mass ratio
17 ≤ ms/md ≤ 25, we find values of the mixing angle between 11◦ and
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14◦; this has to be compared with the measured value of the Cabibbo angle
θC ≈ 12.7◦.

Despite its simplicity, this little toy model shows a general feature of
many attempts to construct matrices of Yukawa couplings. The ansätze for
these matrices have to contain fewer parameters than does the Standard
Model, the parameters of which are the masses and the mixing angles. This
is usually achieved by setting some of the matrix elements to zero, and there
is a vast literature on deriving these “texture zeros” from e.g. symmetry
considerations, for example [12].

The final answer to the question, of whether there is a relation between
the CKM matrix and the mass spectrum and what it looks like has to wait for
some more fundamental theory beyond the Standard Model. Moreover, the
situation is different in the leptonic sector, since the possible right-handed
neutrino does not carry any SU(2)L × U(1) quantum number, and hence
a Majorana mass term for these right handed neutrinos becomes possible,
which is not generated by the Higgs mechanism. We shall make a few more
remarks on this subject in the last chapter of this book.
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4.1 What Are Effective Field Theories?

In describing a physical system, one can normally focus on the degrees of
freedom that are relevant at the distance scales under consideration. For
example, although it is well known that quantum mechanics is a more fun-
damental theory than classical mechanics, it would be difficult to describe
the earth’s motion around the sun by use of quantum mechanics. The state
would correspond to a complicated superposition of energy eigenstates ap-
proximating the classical motion. Clearly, classical mechanics is the correct
“effective theory”.

In particle physics, the “correct” effective field theory is defined by dis-
tance or energy scales. Although we know that nuclei are composed of quarks,
the appropriate degrees of freedom in nuclear physics are those of the nucle-
ons, while the quark structure becomes relevant at much smaller distances.
These smaller distance scales correspond to higher energies with which the
system is probed.

In cases where very disparate mass scales appear, it is advantageous to
construct an effective theory [1, 2, 3, 4, 5], where the degrees of freedom
which become relevant only at much smaller distances (or, in other words, at
much higher energy scales) do not appear explicitly. The most straightforward
example is a heavy particle which cannot be created at an energy scale smaller
than its mass; consequently, a Lagrangian valid at such small energies does
not contain this degree of freedom. The fact that this is possible is ensured by
the decoupling theorem proved by Applequist and Carazzone [6], who showed
that – with very few exceptions – heavy degrees of freedom actually decouple
at energy scales much lower than their mass. Decoupling means that any
effect of these heavy degrees of freedom is (up to logarithmic contributions,
which we shall discuss separately) suppressed by inverse powers of the heavy
scale.

A case relevant to this book is that of weak interactions. All weak in-
teractions among quarks are contained in the electroweak part of the Stan-
dard Model and in principle one could perform all calculations within the
framework of the full Standard Model. However, when one considers decay
processes of b hadrons (or even of lighter particles), the relevant scale of such
a transition is the mass of the b quark, i.e. a scale of order mb ∼ 5 GeV, while
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the full Standard Model also contains very massive degrees of freedom (the
top quark and the weak bosons, with masses of O(100 GeV)), at least com-
pared with the mass of the b quark. Thus it is advantageous to construct an
effective theory from the full Standard Model in which the weak bosons and
the heavy top quark do not appear explicitly any more [7]. We shall discuss
this case in more detail in the next section.

The advantage of using an effective theory instead of the full theory is that
many calculations simplify considerably. In particular, as we shall see below,
using the renormalization group of the effective field theory allows us to
perform resummations of large terms appearing in the radiative corrections.

The starting point for the construction of an effective field theory is the
presence of a large scale Λ (usually the mass of a heavy particle), which in
the case of weak interactions of hadrons is the mass of the weak boson MW .
The idea is to perform a separation of long- and short-distance contributions
to transition matrix elements. Consider now some field theory (called the
“full theory”), in which we consider a transition matrix element from some
initial state |i〉 to a final state |f〉. In the case in which these states involve
only energies Ei,f lower than the heavy scale Λ, we can construct an effective
Hamiltionian, since all effects of interactions from scales above Λ appear local
at the typical scales of the states |i〉 and |f〉. In other words, the transition
matrix elements for the interactions originating at the high scale Λ can be
written as a matrix element of a local effective Hamiltonian Heff [8],

〈f |Heff |i〉 =
∑

k

Ck(Λ) 〈f |Ok|i〉
∣∣∣∣
Λ

, (4.1)

where Ck(Λ) contains the short-distance contribution (i.e. the physics above
the scale Λ), and the matrix elements 〈f |Ok|i〉|Λ of the local operators Ok

contain the long-distance contributions from scales below Λ.
The sum in (4.1) in general runs over an infinite set of operators, and

hence (4.1) is only useful if we can truncate this infinite sum. The effective
Hamiltonian is a density and thus has mass dimension four; hence the mass
dimension of the short-distance coefficients Ck(Λ) has to combine with the
mass dimension of the operator in such a way that the total dimension of
each term is four. Since the short-distance coefficients, by definition, do not
depend on any long distance scale,1 the mass dimension of the coefficients
Ck(Λ) has to come from powers of the large scale Λ. In order to simplify
the counting of powers in 1/Λ, it is convenient to factor out an appropriate
power of 1/Λ and make the coefficient dimensionless. In this way the effective
Hamiltonian can be written as

〈f |Heff |i〉 =
∑

k

1
Λk

∑
i

ck,i 〈f |Ok,i|i〉
∣∣∣∣
Λ

, (4.2)

1This is of course connected to the fact that long and short distances can be
factorized, which is non-trivial. Once factorization is proven, the mass dimension
of the short-distance coefficients cannot originate from a long-distance scale.
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where k is the dimension and we have taken into account the possibility that,
for fixed dimension k, more than one operator (labelled by the subscript i)
can contribute. In this normalization, the coefficients ck,i are dimensionless
and hence – at least from naive dimensional arguments2 – cannot depend on
Λ [8].

The sum in (4.2) is thus ordered according to the dimension of the oper-
ators Ok, and a truncation of the sum which neglects operators of mass di-
mension n corresponds to dropping terms of order 1/Λn−4. Since the matrix
elements contain only the long-distance scales of the states, their dimension
is given by the energies of the states. In this way, one may construct a series
expansion in powers of Ei,f/Λ. In the case of weak decays of hadrons this is
a series in powers of mhadron/MW which converges rapidly.

In addition to these higher-dimensional operators, in general we still have
dimension-four operators, which define a renormalizable theory, but in an ef-
fective theory operators of dimension larger than four appear in the way
described above. However, these operators are not a problem concerning
renormalization: the dimension-four terms of the effective action define a
renormalizable theory, while all the higher-dimensional operators are sup-
pressed by powers of the large scale, the inverse powers of which are used
as an expansion parameter. Thus these higher-dimensional operators are in-
serted into the relevant Green’s functions only as many times as are needed
to compute to a definite order in the series in 1/Λ, and, in a renormalizable
theory, a finite number of insertions of higher-dimensional operators can al-
ways be renormalized. A detailed discussion of the subject of renormalization
is beyond the scope of this book; a textbook presentation can be found in [9].

Before considering renormalization and the renormalization group, let us
illustrate this idea with a simple example. If we consider the decay b → cν̄,
we can write the amplitude for this process in the full Standard Model. At
tree level, this amplitude contains the propagator of a W boson between two
left-handed currents. This process is depicted in the left Feynman diagram
of Fig. 4.1. The maximal momentum transferred through this propagator is
q2
max = (mb − mc)2, which is small compared with the W mass. Hence we

can safely make the approximation

1
M2

W − q2
=

1
M2

W

[
1 +

q2

M2
W

+ · · ·
]

, (4.3)

which, in position space, corresponds to an expansion of the W propagator
into local terms

2We shall see below that these naive arguments fail, since in a renormalizable
theory the coupling constant, although dimensionless, depends on a dimensional
quantity.
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Fig. 4.1. Feynman diagram of the full theory (left) and of the effective theory
(right). The shaded dot represents the insertion of the local effective Hamiltonian

〈0|T [W+
µ (x)W−

ν (0)]|0〉 =
∫

d4q

(2π)4
e−iqx (−i)gµν

M2
W − q2

=
(−i)gµν

M2
W

[
1 − ∂2

M2
W

+ · · ·
]

δ4(x) . (4.4)

This corresponds to the simple picture that the “range” of propagation of the
W is O(1/MW ), which becomes local at distance scales of order O(1/mb).

The transition amplitude corresponding to the first term may be written
as a local effective Hamiltonian of the form

Heff =
g2

8M2
W

(b̄γµ(1 − γ5)c)(ν̄γ
µ(1 − γ5)) , (4.5)

corresponding to the Feynman diagram on the right of Fig. 4.1. In this way
one recovers the well-known Fermi interaction, which is indeed the leading
term of a systematic expansion in inverse powers of the large weak-boson
masses.

The separation of long and short distances does not require the presence
of a degree of freedom with a heavy mass. One may equally well define an
arbitrary scale parameter µ which has the dimensions of a mass, and all
contributions to a matrix element above µ ≤ Λ can be called short-distance
pieces, while anything below µ belongs to the long-distance part. We may now
apply the same arguments used previously for the scale Λ for the arbitrary
scale µ, in which case (4.2) becomes

〈f |Heff |i〉 =
∑

k

1
Λk

∑
i

ck,i(Λ/µ) 〈f |Ok,i|i〉
∣∣∣∣
µ

, (4.6)

where the (dimensionless) coefficients ck,i(Λ/µ) contain the short-distance
contribution (i.e. the physics above the scale µ), which may now depend on
the ratio Λ/µ. The matrix elements 〈f |Ok,i|i〉|µ contain the long-distance
contributions from scales below µ. In other words, changing µ moves con-
tributions from the coefficient into the matrix element, and vice versa. The
fact that no power corrections of order 1/µ can appear is ensured by the
renormalizability of the dimension-four part of the effective theory.
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However, µ is an arbitrary scale parameter defining what are called the
long- and short distance contributions. The requirement that the matrix ele-
ments are independent of µ is the origin of the renormalization group equa-
tions (a modern formulation can be found in [10]) frequently used in effective-
field-theory calculations. These equations are derived from the requirement
that a physical matrix element may not depend on this arbitrary scale µ.
This has to hold for the matrix element of the effective Hamiltonian, and
thus we obtain

0 = µ
d

dµ
〈f |Heff |i〉 . (4.7)

The effect of a change in µ is twofold. First of all, lowering µ shifts parts of
the matrix elements of the operators Ok,i into the short-distance coefficients
Ck,i; secondly, the operators “mix” under renormalization; this means that,
starting at some scale µ, the contribution from a matrix element of an opera-
tor Ok,i turns at some other scale µ′ into a sum of contributions from all the
matrix elements of the operators Ok,j which have the same mass dimension
and quantum numbers as the original operator Ok,i.3

In order to derive these equations, we perform the differentiation in (4.7)
using (4.6). The relations that we are going to obtain will hold for each power
of Λ separately, and to keep things simple we shall drop the index k labelling
the dimension of the operator. Thus, in the following, the operators Oi are
a set of operators which have the same dimension; in fact they have to form
a basis closed under renormalization, i.e. any operator generated by mixing
can be written as a linear combination of the basis operators. We find

0 =
∑

i

[(
µ

d

dµ
ci(Λ/µ)

)
〈f |Oi|i〉

∣∣∣∣
µ

+ ci(Λ/µ)

(
µ

d

dµ
〈f |Oi|i〉

∣∣∣∣
µ

)]
. (4.8)

Mixing implies that, under an infinitesimal change in log µ, the operator Oi

turns into a linear combination of operators with the same mass dimension:

µ
d

dµ
〈f |Oi|i〉

∣∣∣∣
µ

=
∑

j

γij(µ) 〈f |Oj |i〉
∣∣∣∣
µ

, (4.9)

where the matrix γ is called the anomalous-dimension matrix, and depends
on the scale µ. Inserting this, we obtain

0 =
∑

i

(
µ

d

dµ
ci(Λ/µ)

)
〈f |Oi|i〉

∣∣∣∣
µ

+
∑

i

∑
j

ci(Λ/µ)γij(µ) 〈f |Oj |i〉
∣∣∣∣
µ

=
∑

i

∑
j

[
δijµ

d

dµ
+ γij(µ)

]
ci(Λ/µ) 〈f |Oj |i〉

∣∣∣∣
µ

. (4.10)

3The fact that mixing occurs only with operators of the same dimension (or at
worst with lower-dimensional operators) is again due to renormalizability [9]. We
shall also assume that a mass-independent regularization is used such that operator
mixing appears only among operators of the same mass dimension.
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As stated above, the operators Oi form a basis for the operators of a fixed
dimension, which means that none of the operators may be written as a
linear combination of the others. Consequently (4.10) is equivalent to the set
of equations for the coefficients

∑
i

[
δijµ

d

dµ
+ γT

ij(µ)
]

cj(Λ/µ) = 0 . (4.11)

Note that, owing to the definition of the anomalous-dimension matrix (4.9),
the transpose of this matrix appears in the renormalization group (4.11) for
the Wilson coefficients.

The anomalous dimension is a dimensionless quantity and, from a naive
point of view, cannot depend on the mass scale µ. However, in a renormaliz-
able theory there is a “hidden” scale, which is given by the scale dependence
of the coupling constant [9]. In other words, in a renormalizable theory such
as QCD one may arrange things in such a way that, for observable quanti-
ties, a change in scale may be compensated by an appropriate change in the
masses and the coupling constants of the theory.

In the following we shall consider the case of massless QCD, which is the
case considered throughout this book. In other words, we shall consider only
the renormalization group flow induced by strong interactions. In the case
of massless QCD only the strong coupling constant changes with scale. This
change is governed by the equation for the running coupling

µ
d

dµ
αs(µ) = β(αs(µ)) , (4.12)

where the function β(αs) depends on µ only through αs, which is used as a
parameter for a perturbative expansion of the β function.

Similarly, the anomalous-dimension matrix γkj(µ) depends on µ only
through the µ dependence of the strong coupling constant αs, i.e.

γij(µ) = γij(αs(µ)) . (4.13)

Like the β function, the anomalous-dimension matrix will be expanded in
powers of the strong coupling.

The coefficients ci depend on µ not only through Λ/µ but also through
their dependence on the coupling αs, since the coupling is scale-dependent in
QCD. This means that the total derivative with respect to µ must be replaced
by

µ
d

dµ
=

(
µ

∂

∂µ
+ β(αs)

∂

∂αs

)
. (4.14)

Inserting this, we may rewrite the renormalization group equation as
∑

i

[
δij

(
µ

∂

∂µ
+ β(αs)

∂

∂αs

)
+ γT

ij(αs)
]

cj(Λ/µ, αs) = 0 , (4.15)

where we display explicitly the αs dependence of the coefficients ci.
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The renormalization group equation is a linear partial differential equa-
tion which, for known β and γjk functions, has unique solutions once initial
values of the coefficients at some scale µ0 are given. The original idea for
constructing an effective Hamiltonian was to move the effects of scales above
Λ into the short-distance coefficients ci appearing in (4.2). This means that
the coefficients ci are determined by comparing the full theory with the ef-
fective theory at the scale Λ, which is usually called matching. Thus the ci in
(4.2) are actually the coefficients at µ = Λ, i.e. ci(Λ/µ = 1, αs(Λ)), and thus
the matching calculation yields the initial condition for the renormalization
group flow of the coefficients ci.

In any practical application, the coefficients ck,i as well as the anomalous
dimensions and the β function, are computed in perturbation theory as a
series in αs. Thus the coefficients take the general form

ci(Λ/µ = 1, αs) =
∑

n

a
(n)
i

(αs

4π

)n

, (4.16)

and the β function and the anomalous dimensions have the form

β(αs) = αs

∑
n=0

β(n)
(αs

4π

)n+1

, γij(αs) =
∑
n=0

γ
(n)
ij

(αs

4π

)n+1

(4.17)

where we have taken into account the fact that the first non-vanishing terms
in the β function are of second order, and (usually) of first order in the
anomalous dimensions. For later use, we quote the well-known first non-
vanishing term of the β function:

β(0) = −2
3
(33 − 2nf) , (4.18)

where nf is the number of active flavours, i.e. the number of quarks with
masses below the scale µ. We shall not go into any more details concerning
renormalization and computation of the perturbative series for the β function
and the anomalous dimensions; for this, we refer the reader to textbooks such
as [9] or the review paper [11].

Taking the perturbative expansion as an input for the renormalization
group equations, we may compute the coefficients ci at some lower scale µ.
Expanded in a perturbative series, the coefficients become

ci(Λ/µ, αs) = b00
i

+ b11
i

(αs

4π

)
ln

Λ

µ
+ b10

i

(αs

4π

)

+ b22
i

(αs

4π

)2

ln2 Λ

µ
+ b21

i

(αs

4π

)2

ln
Λ

µ
+ b20

i

(αs

4π

)2

+ b33
i

(αs

4π

)3

ln3 Λ

µ
+ b32

i

(αs

4π

)3

ln2 Λ

µ
+ b31

i

(αs

4π

)3

ln
Λ

µ
+ · · · ,

(4.19)



40 4 Effective Field Theories

where the superscripts of the coefficients bi denote the power of αs and the
power of the logarithm ln(Λ/µ). In particular, at Λ = µ all the logarithms
vanish and we have b

(n0)
i = a

(n)
i .

However, when we know the perturbative expansion of the renormaliza-
tion group functions β and γij , the renormalization group equations allow
us to resum the columns of the perturbative result (4.19). If we use the first
non-vanishing terms β(0) and γ

(0)
ij , the solution of the renormalization-group

equation contains all orders of αs and performs a resummation of all contri-
butions with coefficients bnn

k,i, where the power of the logarithm is equal to
the power of αs. This is called the leading-logarithmic approximation (LLA).
For the case where only a single operator with dimension k appears (i.e. no
mixing can occur), we can solve the renormalization group equation to obtain

ci(Λ/µ, αs(Λ)) = b00
i

(
αs(Λ)
αs(µ)

)γ(0)/β(0)

. (4.20)

Note that in this case the matching calculation needs to be performed only
at tree level, i.e. only the coefficient b00

i is needed. Taking as the expansion
parameter, for example, αs(Λ) one immediately reproduces the first column
of (4.19) in terms of β(0) and γ(0)

Going beyond the LLA requires us to know the next term in the per-
turbative expansion of the renormalization group functions β and γij . If, in
addition to this, the next term of the expansion of ci (which is the coefficient
b10
k,i) is known, one can resum the second column of (4.19), i.e. one can sum

the terms involving the coefficients bn n−1
i . However, this requires a matching

calculation at order αs which is usually a (complete) one-loop calculation.
Using the renormalization group machinery thus allows us to move con-

tributions from the matrix element to the coefficients ci, thereby resumming
logarithms ln(Λ/µ) in a systematic way. Ideally, one would like µ to be a
typical scale appearing in the matrix element, such as the mass of the de-
caying hadron. On the other hand, since we are using perturbation theory
for the calculation of the coefficients ci, µ has to be a perturbative scale. For
applications to weak interactions Λ is of the order of the weak-boson mass
MW , while it is usually assumed that the charm quark mass mc ∼ 1.5 GeV
is still a perturbative scale. Taking this as an estimate we see that ln(Λ/µ) =
ln(MW /mc) ∼ 4 is relatively large and that the contribution of the term
b22
i (αs/π)2 ln2(Λ/µ) could overwhelm that of b10

i (αs/π) even though it is for-
mally of higher order in perturbation theory. In such cases a resummation
becomes mandatory, and it is the strength of the effective-field-theory ap-
proach that this resummation can be performed using the renormalization
group.
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4.2 Fermi’s Theory as an Effective Field Theory

In this section we shall review Fermi’s theory in the light of the above dis-
cussion of effective theories. It turns out that Fermi’s theory is an effective
theory which, on one hand, can be obtained from the Standard Model in the
limit of infinitely heavy weak gauge bosons (and infinitely heavy top quark)
[7], and, on the other hand, is the most general effective theory that exhibits
a local SU(3) × SU(2) × U(1) symmetry [12]. The interesting (and perhaps
not so well known) fact is that (except for SU(3) × U(1)em, which remains
unbroken) the electroweak symmetry is implemented as a local symmetry
without gauge fields. However, this happens at the cost that dimension-six
operators appear and hence the resulting Lagrangian has to be interpreted
as an effective field theory.

In order to present the argument we shall start with a simplified version
with only a single doublet of left handed quarks and ignore the mass term.
Furthermore, we shall discuss only the left-handed SU(2) symmetry, ignoring
for the moment the presence of the U(1). Formally, this corresponds to the
case ΘW → 0 and vanishing quark masses. The Lagrangian of this simplified
version is

Lkin = Q̄i/∂Q +
v2

4
Tr

[
(∂µΣ)†(∂µΣ)

]
, (4.21)

where we shall make use of the non-linear representation of the Higgs field
where H → vΣ and ΣΣ† = Σ†Σ = 1 (see Sect. 2.2). This Lagrangian has a
global SU(2)L symmetry with

Σ → ΛΣ , Q → ΛQ , Λ ∈ SU(2)L . (4.22)

Note that Σ has a non-vanishing vacuum expectation value and hence SU(2)L

is spontaneously broken. In fact, the three degrees of freedom in Σ (see
(2.24)) are the Goldstone modes of this symmetry breaking. These massless
modes are not present in nature, but their appearance can be avoided by
promoting the global SU(2)L symmetry to a local symmetry. This requires us
to introduce gauge fields, which are used to construct a covariant derivative.
We shall not go into any detail on gauge theories here, and refer the reader
to textbooks on this subject [13, 14, 15, 16, 17, 18, 19].

However, for the case at hand, we have to introduce three gauge fields
W a

µ , a = 1, 2, 3 (corresponding to the charged W bosons and the neutral Z),
but these will only be auxiliary fields. We introduce the covariant derivative
in the usual way:

∂µQ → DµQ = ∂µQ − i

2
gW a

µ τaQ , (4.23)

∂µΣ → DµΣ = ∂µΣ − i

2
gW a

µ τaΣ , (4.24)

∂µΣ† → (DµΣ)† = ∂µΣ† − i

2
gW a

µΣ†τa , (4.25)
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where the τa are the usual Pauli matrices and the gauge fields have the proper
behaviour under SU(2)L gauge transformations

The usual way to construct a gauge theory is to introduce kinetic-energy
terms for all gauge fields. However, here we treat the W a only as auxiliary
fields, which means that we omit their kinetic-energy contribution from the
Lagrangian. Owing to the transformation properties of the gauge fields, the
Lagrangian

L = Q̄i /DQ +
v2

4
Tr

[
(DµΣ)†(DµΣ)

]
(4.26)

is now invariant under local SU(2)L transformations.
As the next step, we can write all terms of the Lagrangian explicitly,

which gives

L = Q̄i/∂Q +
v2

4
Tr

[
(∂µΣ)†(∂µΣ)

]

+
v2

4
gW a

µ

[
Jµ,a +

v2

4
jµ,a

]
+

v2

8
g2W a

µWµ,a , (4.27)

where we have defined

Ja
µ =

i

2
Tr

{
Σ†τa(∂µΣ) − (∂µΣ†)τaΣ

}
, (4.28)

ja
µ =

1
2
Q̄γµτaQ . (4.29)

As stated above, the fields W a
µ are only auxiliary degrees of freedom, which

means that they have an algebraic equation of motion. Replacing these fields
using this equation of motion (or, alternatively, removing all interactions by
quadrature and integrating out the auxiliary fields), we obtain

L = Q̄i/∂Q +
v2

4
Tr

[
(∂µΣ)†(∂µΣ)

]

− v2

8

[
Jµ,a +

v2

4
jµ,a

] [
Ja

µ +
v2

4
ja
µ

]
, (4.30)

which still is locally SU(2)L invariant.4 In fact, it is an easy exercise to show
that the contribution appearing, for example, from the non-invariance of the
kinetic term of fermions is compensated by a term that originates from the
product of the currents in the second line of (4.30).

Making use of this local symmetry, we may choose to use the unitary
gauge, where all Goldstone modes are gauged away, in which case we have
Σ ≡ 1 and thus Ja

µ ≡ 0, and the Lagrangian becomes

L = Q̄i/∂Q − 1
2v2

(
Q̄γµτaQ

) (
Q̄γµτaQ

)
, (4.31)

4L is not renormalizable any more, but we are considering it only as an effective
field theory valid at scales much less than v.
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which is the Fermi interaction in the limit ΘW = 0. Thus one can regard this
interaction as the result obtained in the unitary gauge of a spontaneously
broken local SU(2)L symmetry.

Of course, we can derive the same result for the full SU(2)L × U(1)Y

symmetry of the Standrd Model. We start again from an SU(2)L × SU(2)R

symmetry and use the same notation as in the last chapter. in addition to
quarks we introduce Higgs fields using the non-linear representation, such
that the kinetic term becomes (see (2.17))

Lkin =
∑

i

[
Q̄i/∂Qi + q̄i/∂qi

]
+

v2

4
Tr

[
(∂µΣ)†(∂µΣ)

]
. (4.32)

As before, we can write SU(2) × SU(2)-invariant (custodial-symmetry-
conserving) and SU(2)×U(1)-invariant (custodial-symmetry-breaking) terms,
yielding

L = Lkin − v
∑
ij

y′
ijQ̄iΣqj − v

∑
ij

y′
ijQ̄iΣT3,Rqj + h.c. , (4.33)

which contains the mass term since 〈0|Σ|0〉 = 1.
The Lagrangian (4.33) has a global SU(2) × U(1) symmetry, which is

spontaneously broken down to U(1)em. As in the simpler example, we can
again remove the massless Goldstone modes by gauging (4.33), i.e. by pro-
moting the global SU(2) × U(1) symmetry to a local one. The gauge fields
that are needed are the W , the Z boson and the A field. Since the electro-
magnetic U(1) symmetry remains unbroken, we can keep the corresponding
covariant derivative and write

∂µQA → DµQA = DµQA − i
g√
2

(
W+

µ τ+ + W−
µ τ−)

QA

−i
g

2 cos θW
Zµ

[
cos2 θW τ3 − sin2 θW

1
3

]
QA , (4.34)

∂µqA → DµqA = DµqA − i
g

2 cos θW
sin2 θW Zµ

[
τ3 +

1
3

]
qA , (4.35)

∂µΣ → DµΣ = DµΣ − i
g√
2

(
W+

µ τ+ + W−
µ τ−)

Σ

−i
g

2 cos θW
Zµ

[
cos2 θW τ3Σ − sin2 θW Στ3

]
, (4.36)

where τ± and τ3 are the usual Pauli matrices and D denotes the covariant
derivative with respect to the electromagnetic U(1)em symmetry (and also
with respect to the colour SU(3) symmetry, which we do not consider here).

We can again remove the auxiliary fields W± and Z, since these fields
have an algebraic equation of motion. However, no mass term appears for
the electromagnetic field, which becomes a dynamic degree of freedom after
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a kinetic-energy term is included. We shall not discuss the electromagnetic
contribution any more, and set Aµ ≡ 0 in the following.

After eliminating the W± and Z we may again go to the unitary gauge,
in which case all contributions from the Goldstone modes vanish. The La-
grangian in the unitary gauge becomes

L =
∑

i

[
Q̄i/∂Qi + q̄i/∂qi

]

−


v

∑
ij

y′
ijQ̄iqj + v

∑
ij

y′
ijQ̄iT3,Rqj + h.c.




− GF√
2

[
Q̄iτ

+γµQi

] [
Q̄jτ

−γµQj

]

− GF

2
√

2

[
Q̄i

(
cos2 θW τ3 − 1

3
cos2 θW

)
γµQi + sin2 θW q̄i

(
τ3 +

1
3

)
γµqi

]

×
[
Q̄i

(
cos2 θW τ3 − 1

3
cos2 θW

)
γµQi + sin2 θW q̄i

(
τ3 +

1
3

)
γµqi

]
.

(4.37)

The interesting point about the Lagrangian (4.37) is that it is the unitary-
gauge version of a Lagrangian which is invariant under local SU(2) × U(1)
transformations, although the gauge fields do not appear any more. How-
ever, the price to be paid is that (4.37) is not renormalizable and must be
interpreted as an effective Lagrangian, valid for energies much lower than the
weak scale v.

Custodial SU(2) symmetry is also present in the Lagrangian (4.37). In the
limit θW = 0, the three components of the weak current (i.e. the two charged
currents and the neutral current) form a triplet under custodial SU(2), and
the symmetry of the Lagrangian implies that the coupling strengths of the
charged and neutral currents are the same in this limit. This is the low-energy
manifestation of custodial SU(2). The breaking of custodial SU(2) occurs
explicitly through a non-vanishing value of θW and the Yukawa couplings,
more precisely the second term in the second line of (4.37).

Diagonalizing the Yukawa-coupling matrices corresponds to the mass
eigenbasis for the quarks. In the same way as in Sect. 2.2 this affects only the
charged currents, which means that the CKM matrix appears in the third
line of (4.37), rotating the down-type quarks by the usual CKM rotation.

The Lagrangian (4.37) is the Lagrangian of Fermi’s theory of weak in-
teractions, which we have derived from the assumption of a spontaneously
broken, local SU(2)×U(1) symmetry. Clearly it is also the limit of the Stan-
dard Model for large gauge boson masses, since in this limit the kinetic-energy
term for the gauge bosons becomes irrelevant compared with their mass term,
which, owing to the Higgs mechanism, is contained in the kinetic-energy term
of the scalar particles.
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4.3 Heavy-Quark Effective Theory

Another example of an effective field theory is the effective theory for heavy
quarks (heavy-quark effective theory, HQET).5 This effective theory describes
a quark with a mass mQ much larger than ΛQCD, the scale parameter of
QCD. In this case the mass of the heavy quark is still a perturbative scale
such that αs(mQ) is small enough to allow a perturbative treatment.

Unlike in the Fermi theory of weak interactions, where the heavy particles
(the top quark and the W boson) do not appear any more in the effective
field theory, in HQET there is still a remnant of the heavy quark at scales
below mQ. In QCD, flavour numbers are conserved, and hence a heavy quark
with a definite flavour cannot decay and thus is present at any scale. What
remains at scales much less than mQ is a static source of colour [30], which
acts very similarly to the heavy proton inside a hydrogen atom.

This heavy-mass limit, which has been known since the 1930s [31], can
be formulated as an effective theory. In addition, one can construct the effec-
tive Hamiltonian explicitly by integrating out heavy degrees of freedom from
the functional integral of QCD Green’s functions. This integration may be
performed explicitly [32], since in the case at hand it amounts to a Gaussian
functional integration. We start from the generating functional of the QCD
Green’s functions

Z(η, η̄, λ)

=
∫

[dQ][dQ̄][dφλ] exp
{

iS + iSλ + i

∫
d4x (η̄Q + Q̄η + φλλ)

}
, (4.38)

where φλ = q, Aa
µ denotes the light degrees of freedom (light quarks q and

gluons Aµ) with an action Sλ, while S denotes the piece of the action for the
heavy quark Q, including its coupling to the gluons,

S =
∫

d4x Q̄(i /D − mQ)Q , (4.39)

where
Dµ = ∂µ + igAµ (4.40)

is the covariant derivative of QCD. We have introduced source terms η for
the heavy quark and λ for the light degrees of freedom.

We shall consider hadrons containing a single heavy quark, and we assume
that this heavy hadron moves with a certain velocity v,

v =
phadron

mhadron
; v2 = 1, v0 > 0 . (4.41)

5The original articles on this subject are [20, 21, 22, 23, 24, 25], review articles
are [26, 27, 28], and a textbook presentation is given in [29].
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The way to proceed is along the lines of the non-relativistic reduction of the
Dirac equation: the velocity vector may be used to split the heavy-quark field
Q into an “upper” component φ and a “lower” component χ

φv =
1
2
(1 + /v)Q, /vφv = φ, (4.42)

χv =
1
2
(1 − /v)Q, /vχv = −χ, (4.43)

and to define a decomposition of the covariant derivative into a “longitudinal”
and a “transverse” (⊥) part

Dµ = vµ(v · D) + D⊥
µ , D⊥

µ = (gµν − vµvν)Dν ,
{

/D⊥ , /v
}

= 0. (4.44)

Using (4.42–4.44) the action (4.39) of the heavy quark field takes the form

S =
∫

d4x

[
φ̄{i(v·D)−mQ}φ−χ̄{i(v·D)+mQ}χ+φ̄i /D⊥χ+χ̄i /D⊥φ

]
. (4.45)

The heavy quark in a meson is very close to being on shell, and thus the space–
time dependence of the heavy-quark field is mainly that of a free particle
moving with velocity v. This suggests a reparametrization of the fields by
removing the space–time dependence of a solution of the free Dirac equation.
We shall chose the “particle-type” parametrization, where we pick out the
“positive-energy solution” of the Dirac equation

φv = e−imQ(v·x)hv , χv = e−imQ(v·x)Hv, (4.46)

such that the space time dependence of the remaining fields hv and Hv is
determined by the residual momentum k = p−mQv, which is due to binding
effects of the heavy quark inside the heavy hadron and is a “small” quantity
of order ΛQCD.

Expressed in these fields, the action of the heavy quark becomes

S =
∫

d4x

×
[
h̄vi(v · D)hv − H̄v{i(v · D) + 2mQ}Hv + h̄vi /D⊥Hv + H̄vi /D⊥hv

]
.

(4.47)

The term containing the sources is also rewritten in terms of the fields hv

and Hv:
∫

d4x (η̄ψ + ψ̄η) =
∫

d4x (ρ̄vhv + h̄vρv + R̄vHv + H̄vRv), (4.48)

where ρv and Rv are now source terms for the upper-component field hv and
the lower component part Hv, respectively.
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In terms of the new variables, the generating functional reads

Z(ρv, ρ̄v, Rv, R̄v, λ) =
∫

[dhv][dh̄v][dHv][dH̄v][dφλ]

× exp
{

iS + Sλ + i

∫
d4x (ρ̄vhv + h̄vρv + R̄vHv + H̄vRv + φλλ)

}
,

(4.49)

where the action S for the heavy quark is given in (4.47).
From (4.47) it is obvious that the heavy degree of freedom is the lower-

component field Hv, since it has a mass term 2mQ, while the upper com-
ponent field hv is a massless field describing the static heavy quark. In the
heavy-mass limit only the Green’s functions involving the field hv have to be
calculated, and hence we integrate over Hv in the functional integral (4.49)
with the sources of the lower-component field Rv and R̄v set to zero. This
can be done explicitly, since it is a Gaussian integration

Z(ρv, ρ̄v, λ) =
∫

[dhv][dh̄v][dλ]∆

× exp
{

iS + Sλ + i

∫
d4x (ρ̄+

v h+
v + h̄+

v ρ+
v + φλλ)

}
, (4.50)

where now the action functional for the heavy quark becomes a non-local
object

S =
∫

d4x

[
h̄+

v i(v · D)h+
v − h̄+

v /D⊥
(

1
i(v · D) + 2mQ − iε

)
/D⊥h+

v

]
. (4.51)

Note that this is a formal way of writing the action, since 1/(i(v ·D)+2mQ−
iε) is a non-local distribution. This Gaussian integration corresponds to the
replacement

Hv =
(

1
2mQ + ivD

)
i /D⊥hv (4.52)

for the lower component field. The Gaussian integration yields a determinant
∆. In the full theory, one may also perform this Gaussian integration, and
the determinant obtained contains all closed loops of heavy quarks. After
renormalization of the full theory, their contribution starts at order 1/m2 with
a term corresponding to the leading contribution to the Uehling potential [33].
In the effective theory, one may take the determinant ∆ to be a constant,
if the terms of order 1/m2

Q and higher coming from the closed heavy quark
loops are included by matching to the full theory. Since we shall discuss only
the leading term of the 1/mQ expansion in this section, we may drop the
determinant in what follows.

The non-locality of the action functional is connected to the large scale
set by the heavy-quark mass, and the non-local terms may be expanded in
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terms of an infinite series of local operators, which have increasing powers of
1/mQ. In the context of a field theory, this corresponds to a short-distance
expansion and hence these operators have to be renormalized. The tree-level
relations may be read off from the geometric-series expansion of the non-
local term in (4.51). In this way, we obtain the expansions of the field and
the Lagrangian

Q(x) = e−imQvx

[
1 +

(
1

2m + ivD

)
i /D⊥

]
hv

= e−imQvx

[
1 +

1
2mQ

/D⊥ +
(

1
2mQ

)2

(−ivD) /D⊥ + · · ·
]

hv , (4.53)

L = h̄v(ivD)hv + h̄vi /D⊥

(
1

2m + ivD

)
i /D⊥hv

= h̄v(ivD)hv +
1

2m
h̄v(i /D⊥)2ihv +

(
1

2m

)
h̄v(i /D⊥)(−ivD)(i /D⊥)hv

+ · · · . (4.54)

The two expressions (4.54) and (4.53) can be used to express any matrix ele-
ment involving heavy-quark fields and heavy-quark states as an expansion in
1/mQ. As an example, consider a matrix element of a current q̄ΓQ mediating
a transition between a heavy meson and some arbitrary state |A〉. Using the
expansion of the full QCD field (4.53) and the corresponding expansion of
the Lagrangian (4.54), we have, up to order 1/mQ,

〈A|q̄ΓQ|M(v)〉 = 〈A|q̄Γhv|H(v)〉 +
1

2mQ
〈A|q̄ΓP−i /Dhv|H(v)〉

−i

∫
d4x〈A|T{L1(x)q̄Γhv}|H(v)〉 + O(1/m2) , (4.55)

where L1 is the 1/m corrections to the Lagrangian as given in (4.54). In
addition, |M(v)〉 is the state of the heavy meson in full QCD, including all of
its mass dependence, while |H(v)〉 is the corresponding state in the infinite-
mass limit.

Equation (4.55) displays the generic structure of the higher-order cor-
rections as they appear in any HQET calculation. There will be local con-
tributions coming from the expansion of the full QCD field; these may be
interpreted as the corrections to the currents. The non-local contributions,
i.e. the time-ordered products, are the corrections to the states and thus, in
the right-hand side of (4.55), only the states of the infinite-mass limit appear.

The derivation given above is not the only possible way to construct
the infinite-mass limit. Another possibility is to use the so called Foldy–
Wouthuysen transformation [34], which is used to construct the non-relativis-
tic limit of the Dirac equation. Using this transformation [35] in fact yields a
different expansion from the Lagrangian as the one given in (4.54), but the
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expansion of the fields also turns out to be different from (4.53). However,
there can only be a single 1/m expansion of a physical matrix element such
as (4.55), and it has been shown in [35] that the final result for a physical
matrix element is the same in both approaches. This means that terms can
be reshuffled from the Lagrangian to the fields without changing the physical
content of the theory.

4.4 Heavy-Quark Symmetries

The main impact of the heavy-quark limit is due to two additional symme-
tries which are not present in full QCD [20, 22]. These symmetries restrict
the long-distance contributions in a model-independent way. The first sym-
metry is the heavy-flavour symmetry. The interaction of the quarks with the
gluons is flavour independent; all flavour dependence in QCD is due only to
the different quark masses. To leading order in 1/m, the Lagrangian (4.54)
is mass-independent and hence a flavour symmetry relating heavy quarks
moving with the same velocity appears.

For the case of two flavours b and c we have, to leading order, the La-
grangian

Lheavy = b̄v(v · D)bv + c̄v(v · D)cv , (4.56)

where bv and cv are the field operator hv for the b and c quarks, respectively.
This Lagrangian is obviously invariant under the SU(2)HF rotations

(
bv

cv

)
→ Uv

(
bv

cv

)
, U ∈ SU(2)HF . (4.57)

We have put a subscript v on the transformation matrix U , since this sym-
metry relates only heavy quarks moving with the same velocity.

The second symmetry is the heavy-quark spin symmetry. As is clear from
the Lagrangian in the heavy-mass limit, both spin degrees of freedom of
the heavy quark couple in the same way to the gluons; we may rewrite the
leading-order Lagrangian as

L = h̄+s
v (ivD)h+s

v + h̄−s
v (ivD)h−s

v , (4.58)

where h±s
v are the projections of the heavy-quark field on a definite spin

direction s,

h±s
v =

1
2
(1 ± γ5/s)hv , s · v = 0 , s2 = −1 . (4.59)

This Lagrangian has a symmetry under the rotations of the heavy-quark spin
and hence all the heavy-hadron states moving with the velocity v fall into
spin-symmetry doublets as mQ → ∞. In Hilbert space, this symmetry is
generated by operators Sv(ε) as
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[hv, Sv(ε)] = i/ε/vγ5hv , (4.60)

where ε, with ε2 = −1, is the rotation axis. The simplest spin-symmetry
doublet in the mesonic case consists of the pseudoscalar meson H(v) and the
corresponding vector meson H∗(v, ε), since a spin rotation yields

exp
(
iSv(ε)

π

2

)
|H(v)〉 = (−i)|H∗(v, ε)〉 , (4.61)

where we have chosen an arbitrary phase to be (−i).
The spin symmetry relation between the pseudoscalar and the vector me-

son can be implemented by using the representation matrices for these states

H(v) =
1
2
√

mHγ5(/v − 1) for the pseudoscalar meson, (4.62)

H∗(v, ε) =
1
2
√

mH/ε(/v − 1) for the vector meson, (4.63)

where the two indices of the matrices correspond to the indices of the heavy
quark and the light anti-quark, respectively.

Using these matrices allows us to exploit the heavy-quark spin symmetry
in a very simple way. As an example, we may derive the analogue of the
Wigner–Eckart theorem for the heavy-quark spin symmetry. If H(v) denotes
either H(v) or H∗(v, ε) and if |H(v)〉 is the corresponding state, we have for
any heavy-to-heavy transition current, using the representation matrices on
the right-hand side:

〈H(v′)|h̄v′Γhv|H(v)〉 = ξ(v · v′) Tr
{
H(v′)ΓH(v)

}
, (4.64)

where Γ is some arbitrary combination of Dirac matrices. Equation (4.64) is
one of the most important results of heavy-quark symmetry in the mesonic
sector, since it relates every matrix element of heavy-to-heavy currents be-
tween two heavy mesons to a single form factor, called Isgur–Wise function
ξ. Note that the Isgur–Wise function is, in a group theoretical language, just
the reduced matrix element, which is universal for the whole spin–flavour
symmetry multiplet. Furthermore, the trace in (4.64) is the Clebsch–Gordan
coefficient, which is entirely determined by the current operator and the states
of the multiplet.

Furthermore, since the current

jµ = h̄vγµhv (4.65)

generates the heavy-flavour symmetry, we have a normalization statement for
the Isgur–Wise function

ξ(v · v′ = 1) = 1 (4.66)

since the generators of a symmetry have to have normalized matrix elements.
Treating both the charm and the bottom quark as heavy static quarks,

we find that only a single, normalized form factor describes the exclusive
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decays B → Dν̄ and B → D∗ν̄, which opens the possibility of a model-
independent determination of the CKM matrix element Vcb; we shall discuss
this when looking at sample applications.

In the heavy-mass limit, the spin-symmetry partners have to be degen-
erate and their splitting has to scale as 1/mQ. From the Lagrangian given
above, we can derive the mass relation for the heavy ground-state mesons up
to terms of order 1/mQ,

mH = mQ + Λ̄ +
1

2mQ
(λ1 + dHλ2) , (4.67)

where dH = 3 for the 0− meson and dH = −1 for the 1− meson. The pa-
rameters Λ̄, λ1 and λ2 correspond to matrix elements involving higher-order
terms that appear in the effective-theory Lagrangian,

Λ̄ =
〈0|q

←−
ivD γ5hv|H(v)〉

〈0|qγ5hv|H(v)〉 , (4.68)

λ1 =
〈H(v)|h̄v(iD)2hv|H(v)〉

2MH
, (4.69)

λ2 =
〈H(v)|h̄vσµνiDµiDνhv|H(v)〉

2MH
, (4.70)

where the normalization of the states has been chosen to be 〈H(v)|h̄vhv|H(v)〉
= 2MH = 2(mQ + Λ̄). These parameters may be interpreted as the binding
energy of the heavy meson in the infinite mass limit (Λ̄), the expectation
value of the kinetic energy of the heavy quark (λ1), and its energy due to the
chromomagnetic moment of the heavy quark (λ2) inside the heavy meson.
The latter two parameters play an important role since they parametrize the
non-perturbative input needed in the subleading order of the 1/mQ expan-
sion.

The prediction (4.67) from spin symmetry can be checked against data.
We have

m2
H∗ − m2

H ≈ 2mQ(mH∗ − mH) = 4λ2 , (4.71)

which yields λ2 = 0.12 GeV for the data for both the B and the D meson
systems. However, it must be considered an accident that one obtains similar
results for the light quark sector also: the mass differences m2

K∗ − m2
K and

mρ − mπ are consistent with the numbers obtained from the heavy mesons.
Heavy-quark symmetries also allow us to make statements about the be-

haviour of certain matrix elements once one introduces an explicit breaking
of the symmetry, such as the presence of 1/m terms. One of the most im-
portant results related to the 1/m corrections is called Luke’s theorem [36].
It is a generalization of the Ademollo–Gatto theorem [37], which states that
in the presence of explicit symmetry breaking, the matrix elements of the
currents that generate the symmetry are still normalized up to terms which
are second-order in the symmetry-breaking interaction.
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For the case at hand, the relevant symmetry is the heavy-flavor symmetry.
This symmetry is an SU(2) symmetry and is generated by three operators
Q± and Q3, where

Q+ =
∫

d3x b̄v(x)cv(x) , Q− =
∫

d3x c̄v(x)bv(x) ,

Q3 =
∫

d3x (b̄v(x)bv(x) − c̄v(x)cv(x)) ,

[Q+, Q−] = Q3 , [Q+, Q3] = −2Q+ , (Q+)† = Q− . (4.72)

Let us denote the ground-state flavour symmetry multiplet by |B〉 and
|D〉. The operators then act in the following way:

Q3|B〉 = |B〉 , Q3|D〉 = −|D〉 ,

Q+|D〉 = |B〉 , Q−|B〉 = |D〉 ,

Q+|B〉 = Q−|D〉 = 0 . (4.73)

The Hamiltonian of this system has a 1/mQ expansion of the form

H = H
(b)
0 + H

(c)
0 +

1
2mb

H
(b)
1 +

1
2mc

H
(c)
1 + · · ·

= H
(b)
0 + H

(c)
0 +

1
2

(
1

2mb
+

1
2mc

)
(H(b)

1 + H
(c)
1 )

+
1
2

(
1

2mb
− 1

2mc

)
(H(b)

1 − H
(c)
1 ) + · · ·

= Hsymm + Hbreak . (4.74)

In (4.74), the first line is still symmetric under heavy-flavour SU(2), while
the term in the second line does not commute any more with Q±, but still
commutes with Q3. In other words, to order 1/mQ we still have common
eigenstates of H and Q3, which we shall denote by ˜|B〉 and ˜|D〉. Sandwiching
the commutation relation, we obtain

1 = ˜〈B|Q3
˜|B〉 = ˜〈B|[Q+, Q−] ˜|B〉

=
∑

n

[
˜〈B|Q+

˜|n〉 ˜〈n|Q− ˜|B〉 − ˜〈B|Q− ˜|n〉 ˜〈n|Q+
˜|B〉

]

=
∑

n

[
| ˜〈B|Q+

˜|n〉|2 − | ˜〈B|Q− ˜|n〉|2
]

, (4.75)

where the ˜|n〉 form a complete set of states of the Hamiltonian Hsymm +
Hbreak. The matrix elements may be written as

˜〈B|Q± ˜|n〉 =
1

EB − En

˜〈B|[Hbreak, Q±] ˜|n〉 , (4.76)
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where EB and En are the energies of the states ˜|B〉 and ˜|n〉, respectively. In
the case ˜|n〉 = ˜|D〉 the matrix element on the left-hand side will be of order
unity, since both the numerator and the energy difference in the denominator
are of the order of the symmetry breaking. For all other states, the energy
difference in the denominator is non-vanishing in the symmetry limit, and
hence this difference is of order unity; thus the matrix element for these
states will be of the order of the symmetry breaking. From this we conclude
that

˜〈B|Q+
˜|D〉 = 1 + O

[(
1

2mb
− 1

2mc

)2
]

. (4.77)

In particular, the weak transition currents at the non-recoil point v = v′ are
proportional to these symmetry generators and hence we may conclude that
matrix elements that are related in the way shown above to the symmetry
generators, can have corrections only of the order 1/m2

Q. We shall return to
this point when we discuss the applications of the heavy-mass expansion.

Another kind of symmetry is due to the fact that full QCD has Lorentz
invariance, while the Lagrangian of HQET does not have this invariance
any more. This is obvious, since we have chosen a fixed vector v, which
corresponds to a choice of a specific coordinate frame. Only if we were to
transform the vector v “by hand” would we obtain invariance again.

On the other hand, when we started from the full QCD Lagrangian, there
was no dependence on the vector v, and even when v appeared explicitly in
the equations everything was still independent of v, as long as all orders in
1/mQ were taken into account. In other words, the dependence on v emerges
at the point where we truncate the 1/mQ expansion.

Hence the 1/mQ expansion has to exhibit an invariance under infinitesimal
changes of the vector v, which is called the reparametrization invariance
[38, 39]. Reparametrization connects different orders of the 1/mQ expansion
and hence there will be relations between coefficients of different orders.

In order to explore the consequences of reparametrization invariance, it is
convenient to use the representation (4.54) and (4.53), since we may obtain
closed expressions for all orders in the 1/mQ expansion. In fact, by performing
an infinitesimal shift of the velocity, combined with the corresponding shift
of the covariant derivative and the fields, one can check explicitly that the
Lagrangian is invariant under the transformation

v → v + δv , v · δv = 0 ,

hv → hv +
δ/v

2

(
1 + P−

1
2mQ + ivD

i /D

)
hv ,

iD → iD − mQ δv . (4.78)

Reparametrization invariance has to survive renormalization, which means
that the relations between coefficients of the Lagrangian derived from (4.78)
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hold true beyond tree level. One result is the relation between the renor-
malization of the leading-order Lagrangian and that of the subleading tems,
which implies that the kinetic-energy operator h̄v(iD)2hv is not renormalized
to all orders.

4.5 Heavy-Quark Expansion for Inclusive Decays

Inclusive decays of heavy hadrons can also be described using effective-field-
theory methods [40, 41, 42, 43, 44, 45].6 The method is set up in close analogy
to deep inelastic scattering and relies on the operator product expansion [8].
The result is an expansion in inverse powers of the heavy-quark mass for in-
clusive rates and also for spectra. We shall discuss applications of this method
in some detail in later chapters; here we shall only outline the theoretical in-
gredients.

The effective Hamiltonian for a transition in which a heavy flavour (rep-
resented by the quark field Q) changes by one unit contains a single Q-quark
field, the mass of which sets a large scale. Thus the effective Hamiltonian
takes the form

Heff = Q̄R , (4.79)

where R is other field operators of, for example, light quarks, photons or
leptons.

The inclusive decay rate for a heavy hadron H containing the quark Q
may be related, via unitarity and the optical theorem, to a forward matrix
element by

Γ ∝
∑
X

(2π)4δ4(PB − PX)|〈X|Heff |H(v)〉|2

=
∫

d4x 〈H(v)|Heff (x)H†
eff (0)|H(v)〉

= 2 Im
∫

d4x 〈H(v)|T{Heff (x)H†
eff (0)}|H(v)〉 , (4.80)

where |X〉 is the final state, which is summed over to obtain the inclusive
rate.

In order to exploit the fact that mQ is a scale large compared with ΛQCD,
we perform the same field redefinition as we did when deriving the Lagrangian
for HQET (see (4.46)),

Qv = e−imQ(v·x)Q . (4.81)

This leads to

Γ ∝ 2 Im
∫

d4x e−imQvx 〈H(v)|T{H̃eff (x)H̃†
eff (0)}|H(v)〉 , (4.82)

6Early work on inclusive decays and lifetimes, which actually pre-dates the
heavy-quark expansion, can be found in [46, 47, 48].
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where
H̃eff = Q̄vR . (4.83)

This relation exhibits the similarity between cross-section calculation for deep
inelastic scattering and this approach to total rates. In deep inelastic scat-
tering, there appears a large scale, which is the momentum transfer q to the
leptons, while here the mass of the heavy quark appears as a large scale.
However, in deep inelastic scattering the momentum transfer is in the deep
Euclidean region −q2 � ΛQCD, while in the case of the decay of a heavy
hadron this vector is in the Minkowskian region (mQv)2 � ΛQCD. A strict
proof of the operator product expansion exists only in the deep Euclidean
region, and the analytic continuation to the Minkowskian region could intro-
duce problems, which have been discussed recently in the context of duality
violations. We shall not discuss this question here any further; rather, we
refer the interested reader to recent reviews [49, 50, 51].

After the phase redefinition, the remaining matrix element does not in-
volve large momenta of the order of the heavy-quark mass any more, and
hence a short-distance expansion becomes useful if the mass mQ is large
compared with the scale Λ̄ determining the matrix element. The next step is
thus to perform an operator product expansion, which has the general form

∫
d4x eimQvx T{H̃eff (x)H̃†

eff (0)} =
∞∑

n=0

(
1

2mQ

)n

Ĉn+3(µ)On+3(µ) ,

(4.84)
where the On are operators of dimension n, with their matrix elements renor-
malized at scale µ, and Ĉn are the corresponding Wilson coefficients.

In order to compute the total rate, we have to take a forward matrix
element with the decaying heavy hadron, i.e.

Γ ∝ 2 Im
∞∑

n=0

(
1

2mQ

)n

Ĉn+3(µ)〈H(v)|On+3(µ)|H(v)〉, (4.85)

which shows that this expansion still does not yield the full expansion in in-
verse powers of the heavy mass, since the state |H(v)〉 is that of full QCD and
thus still has a dependence on the heavy mass. In order to obtain the complete
expansion in inverse powers of the heavy mass, we have to use the methods
of HQET as described in the last section and expand every matrix element
in 1/mQ. However, it has been argued that it is in fact advantageous to omit
the HQET expansion and to treat the matrix elements as phenomenological
parameters [52].

The lowest-order terms of the operator product expansion are the
dimension-three operators. Owing to Lorentz invariance and parity there are
only two combinations which can appear, namely Q̄v/vQv and Q̄vQv. Note
that the operators Qv differ from the full QCD operators only by a phase re-
definition, and hence Q̄v/vQv = Q̄/vQ and Q̄vQv = Q̄Q. The first combination
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is proportional to the Q-number current Q̄γµQ, which is normalized even in
full QCD, while the second combination differs from the first one only by
terms of order 1/m2

Q:

Q̄vQv = vµQ̄vγµQv +
1

2m2
Q

Q̄v

[
(iD)2 − (ivD)2 +

i

2
σµνGµν

]
Qv

+O(1/m3
Q) , (4.86)

where Gµν is the gluon field strength.
Thus the matrix elements of the dimension-three contribution are known;

in the standard normalization of the states this implies

〈H(v)|O3|H(v)〉 = 〈H(v)|Q̄v/vQv|B(v)〉 = 2mH , (4.87)

where mH is the mass of the heavy hadron. To lowest order in the heavy-mass
expansion we may furthermore replace mB = mQ and hence we may evaluate
the leading term in the 1/mq expansion without any hadronic uncertainty.
The evaluation of the corresponding Wilson coefficient yields the result that
this coefficient is the free quark decay rate. In this way the naive ansatz,
namely that of using the decay rate of a free heavy quark (i.e. the parton
model) as an approximation to the total decay rate of a heavy hadron, turns
out to be the leading term of a 1/mQ expansion.

A dimension-four operator contains an additional covariant derivative,
and thus we have matrix elements of the type

〈H(v)|O4|H(v)〉 ∝ 〈H(v)|Q̄vΓDµQv|H(v)〉 = AΓ vµ . (4.88)

Since the equations of motion apply to this tree-level matrix element, we find
that the constant AΓ has to vanish, and thus there are no dimension-four
contributions. This statement is completely equivalent to Luke’s theorem [36],
since we are considering a forward matrix element, i.e. a matrix element at
zero recoil [53].

The first non-trivial non-perturbative contributions come from dimension-
five operators and are thus of order 1/m2

Q. For mesonic decays there are only
the two parameters λ1 and λ2 given in (4.69) and (4.70), which correspond to
matrix elements of the subleading terms of the Lagrangian. They parametrize
the non-perturbative input at order 1/m2

Q. For ΛQ-type baryons the parame-
ter λ2 vanishes owing to heavy-quark spin symmetry, while the kinetic-energy
parameter λ1 is nonzero. In the framework of the 1/mQ expansion, this leads
to a difference in lifetimes between mesons and baryons, which we shall dis-
cuss in Sect. 5.4.

We can discuss differential rates along the same lines. However, here the
operator product expansion as outlined above is applied not to the full ef-
fective Hamiltonian, but only to the hadronic currents. As an example, we
discuss semileptonic decays of a heavy hadron. In this case the differential
rate is written as a product of the hadronic and leptonic tensors
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dΓ =
G2

F

4mB
|VQq|2WµνΛµνd(PS) , (4.89)

where d(PS) is the phase-space differential. The phase redefinition (4.81) of
the heavy-quark fields now yields the momentum-transfer variable

Q ≡ mQv − q , (4.90)

where q is the momentum transferred to the leptons. The variables Q2 and
(v · Q)2 (v is the velocity of the decaying heavy hadron) have to be large
compared with Λ2

QCD in order to justify the short-distance expansion.
The structure of the expansion of the spectrum is identical to that for

the total rate. The contribution of the dimension-three operators yields the
free-quark decay spectrum, there are no contributions from dimension-four
operators, and the 1/m2

b corrections are parametrized in terms of λ1 and λ2.
Calculating the spectrum for B → Xcν yields [44, 45]

dΓ

dy
=

G2
F |Vcb|2 m5

Q

192π3
Θ(1 − y − ρ)y2

[{
3(1 − ρ)(1 − R2) − 2y(1 − R3)

}

+
λ1

[mQ(1 − y)]2
(3R2 − 4R3) − λ1

m2
Q(1 − y)

(R2 − 2R3)

− 3λ2

m2
Q(1 − y)

(2R + 3R2 − 5R3) +
λ1

3m2
Q

[5y − 2(3 − ρ)R2 + 4R3]

+
λ2

m2
Q

[(6 + 5y) − 12R − (9 − 5ρ)R2 + 10R3]

]
+ O

[
(Λ/[mQ(1 − y)])3

]

(4.91)

where we have defined

ρ =
(

mf

mQ

)2

, R =
ρ

1 − y
, (4.92)

assuming that the final-state quark has the mass mf , and

y = 2E/mb (4.93)

is the rescaled energy of the charged lepton.
This expression is somewhat complicated, but it simplifies for the case

mf = 0. One finds

dΓ

dy
=

G2
F |Vub|2 m5

Q

192π3

[(
2y2(3 − 2y) +

10y2

3
λ1

m2
Q

+ 2y(6 + 5y)
λ2

m2
Q

)
Θ(1 − y)

−λ1 + 33λ2

3m2
Q

δ(1 − y) − λ1

3m2
Q

δ′(1 − y)

]
. (4.94)
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It is obvious from (4.91) and (4.94) that the spectra behave pathologically
in the endpoint region. This is to be expected, since the expansion parame-
ter for semileptonic decay is not really 1/mQ, but rather is 1/[mQ(1 − y)],
indicating that the expansion breaks down in the region y ≈ 1.

This problem is even more pronounced in the case of the inclusive process
B → Xsγ. The leading term is given by the partonic rate of b → sγ, which
is a two-particle decay at tree level. Thus the energy spectrum of the photon
is a δ-function

dΓ

dx
=

G2
F αm5

b

32π4
|VtsV

∗
tb|2|C7|2δ(1 − x) , (4.95)

where x = 2Eγ/mb and C7 is the Wilson coefficient of the effective Hamilto-
nian, which is described in some detail in the next section.

Including subleading terms in the 1/mb expansion (but still working at
tree level in the αs expansion) does not change the fact that the final state is
a two-particle state; hence the corrections are still given by local distributions
and read

dΓ

dx
=

G2
F αm5

b

32π4
|VtsV

∗
tb|2|C7|2

×
(

δ(1 − x) − λ1 + 3λ2

2m2
b

δ′(1 − x) +
λ1

6m2
b

δ′′(1 − x) + · · ·
)

, (4.96)

A non-trivial spectrum is obtained only after including the emission of
a real gluon, in which case the hadronic invariant mass of the final state is
non-zero and the photon spectrum extends over all the kinematically allowed
region.

It has been shown that these singular terms can be resummed using a
slightly different expansion, the called the twist expansion, which we shall
discuss in the next section.

4.6 Twist Expansion for Heavy-Hadron Decays

As we have seen in the last section, the endpoint regions of inclusive semilep-
tonic decays (i.e. the regions in which E ∼ Emax) and the endpoint region
in the inclusive process B → Xsγ (which is Eγ ∼ Emax) exhibit a singular
behaviour. This can be traced back to the fact that the expansion parame-
ter for spectra of inclusive decays is not 1/mb; rather, it is 1/[mQ(1 − y)] =
1/(mb − 2E) for the semileptonic decay and 1/[mQ(1− x)] = 1/(mb − 2Eγ)
for the decay B → Xsγ (see (4.91)). Close to the endpoint, these expansion
parameters become large and the expansion breaks down.

In order to cure this problem, it is instructive to study B → Xsγ. The
general structure of the rate for this decay at tree level (but including 1/mb

corrections) is
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dΓ

dx
=

G2
F αm5

b

32π4
|VtsV

∗
tb|2|C7|2

×
[∑

i

ai

(
1

mb

)i

δ(i)(1 − x) + O{(1/mb)i+1δ(i)(1 − x)}
]

, (4.97)

where δ(n) denotes the nth derivative of the δ-function.
The kinematics in the endpoint regions requires a different expansion [54,

55, 56, 57], which is analogous to the expansion performed in deep inelastic
scattering. From the kinematics we have pB = MBv = pX +q, where pX is the
hadronic momentum of the final state and q is the momentum of the photon.
In the case of semileptonic decay, pX would be the sum of the momenta of
the final-state hadrons and the neutrino, while q would be the momentum
of the charged lepton. The endpoint region is defined by the region where
the hadronic invariant mass is small, of order

√
ΛQCDmb while the hadronic

energy is still large of order mb:

(pB − q)2 ∼ O(ΛQCDmb) , MB − v · q ∼ O(mb) . (4.98)

It is convenient to introduce light-cone vectors n+ and n− in the form

q =
1
2
(n+ · q)n− , v =

1
2
(n+ + n−) , (4.99)

such that we may decompose every vector P as

P =
1
2
(n+ · P )n− +

1
2
(n− · P )n+ + P⊥ . (4.100)

Using these definitions we may now discuss the expansion of the correlator

R =
∫

d4x exp(−ix[mbv − q])〈B(pB)|b̄v(0)Γq(0)q̄(x)Γ †bv(x)|B(pB)〉 ,

(4.101)
where we have already performed the phase redefinition (4.46) of the heavy-
quark field. The usual 1/mb expansion is recovered by performing a short-
distance expansion of the matrix element, i.e. assuming xµ → 0. However, in
the case at hand we have in the exponent

x[mbv − q] =
m

2
(xn+) +

1
2
(mb − nq)(xn−) . (4.102)

Owing to the kinematics in the endpoint region, we have mb − n+q =
mb − 2(vq) ∼ ΛQCD such that the first term dominates. Non-vanishing con-
tributions are picked up only in a region where (xn) = O(1/mb), which is
the region close to the light cone.

Close to the light cone we can perform perturbative calculations and hence
we contract the light-quark propagator using the leading-order perturbative
result
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R =
∫

d4x

∫
d4Q

(2π)4
Θ(Q0)(2π)δ(Q2) exp(−ix[mbv − q − Q])

×〈B(v)|b̄v(0)Γ /QΓ †bv(x)|B(v)〉 , (4.103)

where now |B(v)〉 is the static B meson state. Performing a (gauge-covariant)
Taylor expansion of the remaining x dependence of the matrix element, we
obtain

R =
∫

d4x

∫
d4Q

(2π)4
Θ(Q0)(2π)δ(Q2) exp(−ix[mbv − q − Q])

×
∑

n

1
n!
〈B(v)|b̄v(0)Γ /QΓ †(−ix · iD)nbv(0)|B(v)〉

=
∫

d4x

∫
d4Q

(2π)4
Θ(Q0)(2π)δ(Q2)

×〈B(v)|b̄v(0)Γ /QΓ † exp(−ix[mbv − q − Q + iD])bv(0)|B(v)〉 .

(4.104)

When we use spin symmetry and the usual representation matrices of the 0−

B meson states, the matrix element which appears in (4.104) becomes

〈B(v)|b̄v(0)Γ /QΓ †(iDµ1)(iDµ2) · · · (iDµn
)bv(0)|B(v)〉

=
MB

2
Tr{γ5(/v + 1)Γ /QΓ †(/v + 1)γ5}

×[a(n)
1 vµ1vµ2 · · · vµn

+ a
(n)
2 gµ1µ2vµ3 · · · vµn

+ · · · ] , (4.105)

where the ellipses denote terms with one or more gµν ’s and also antisymmet-
ric terms, and the a

(n)
i are non-perturbative parameters. When this result is

contracted with xµ1xµ2 · · ·xµn , all antisymmetric contributions vanish; fur-
thermore, since the relevant kinematics restricts the xµ to be on the light
cone, also all the gµν terms are suppressed relative to the first term, which
has only vµ’s. Hence

〈B(v)|b̄v(0)Γ /QΓ †(−ix · iD)nbv(0)|B(v)〉
= MBTr{(/v + 1)Γ /QΓ †}a(n)

1 (v · x)n , (4.106)

In this way we have made explicit the fact that the kinematics we are
studying here forces us to resum the series in 1/mb. Defining the twist t of
an operator O in the usual way t = dim[O] − , where  is the spin of the
operator, we find that the resummation corresponds to the contributions of
leading twist, t = 3. Since xµ is light-like, it projects out only the light-cone
component n+D = D+ of the covariant derivative in (4.106). Hence we may
write a

(n)
1 as

2MBa
(n)
1 = 〈B(v)|b̄v(iD+)nbv|B(v)〉 , (4.107)
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and one obtains as a final result

R =
∫

d4x

∫
d4Q

(2π)4
Θ(Q0)(2π)δ(Q2)

1
2
Tr{(/v + 1)Γ /QΓ †}

〈B(v)|b̄v exp(−ix[(mb + iD+)v − q − Q])bv|B(v)〉 . (4.108)

Introducing the shape function (or light-cone distribution function) in the
form [54, 56, 57]

2MBf(k+) = 〈B(v)|b̄vδ(k+ − iD+)bv|B(v)〉 , (4.109)

we can write the result as

R =
∫

dk+f(k+)
∫

d4Q

(2π)4
Θ(Q0)(2π)δ(Q2)

×MBTr{(/v + 1)Γ /QΓ †}(2π)4δ4([mb + k+]v − Q − q) . (4.110)

Using the shape function corresponds to a resummation of the contribu-
tions of leading twist. This is analogous to what is done in deep inelastic
scattering, where the parton distribution functions correspond to the shape
function f . The only difference, which is already true for the usual 1/mb

expansion, is that the the operator product expansion to set up the heavy-
quark mass expansion is performed in the Minkowskian region. While in deep
inelastic scattering the momentum transfer to the proton is at q2 → −∞, one
has to continue analytically to q2 = m2

b > 0 in heavy-quark physics.
Subleading twist contributions were originally discussed in [58] and have

been applied to semileptonic decays in [59, 60, 61]. At leading twist, all con-
tributions to R can be rewritten as a convolution of two non-local operators
with a Wilson-coefficient function. The operators are given by

O0(ω) = h̄vδ(ω + iD+)hv (4.111)
Pα

0 (ω) = h̄v(0)γαγ5δ(ω + iD+)hv , (4.112)

The forward matrix element of the operator O0 is the shape function (see
(4.109)), while the forward matrix element of the operator Pα

0 vanishes for a
B meson, but is non-vanishing for a Λb baryon, for example.

Expanding f(ω) in powers of iD+ gives the series of increasingly singular
terms

f(ω) = δ(ω) − λ1

6m2
b

δ′′(ω) − ρ1

18m3
b

δ′′′(ω) + · · · , (4.113)

where

1
2mB

〈B|h̄v(iDα)(iDβ)hv|B〉 ≡ 1
3
(gαβ − vαvβ)λ1 , (4.114)

1
2mB

〈B|(iDα)(iDµ)(iDβ)|B〉 ≡ 1
3
(gαβ − vαvβ)vµρ1 , (4.115)

corresponding to the singular terms in the spectrum.
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The convolution takes the form

R̂ = − 1
2mb

∫ ∞

−∞
dω

[
C0(ω)O0(ω) + Cα

5,0(ω)P0,α(ω) + O
(

ΛQCD

mb

)]
, (4.116)

where the R discussed above is the forward matrix element of the operator R̂.
The subleading terms can be treated on a similar footing; they are given

by forward matrix elements of subleading operators convoluted with Wilson-
coeffcient functions. The parity-even operators are

Oµ
1 (ω) = h̄v {iDµ, δ(iD+ + ω)}hv ,

Oµ
2 (ω) = ih̄v [iDµ, δ(iD+ + ω)] hv ,

Oµν
3 (ω1, ω2) = h̄vδ(iD+ + ω2) {iDµ

⊥, iDν
⊥} δ(iD+ + ω1)hv ,

Oµν
4 (ω1, ω2) = gh̄vδ(iD+ + ω2)G

µν
⊥ δ(iD+ + ω1)hv . (4.117)

The parity-odd operators are

Pµ
1,α(ω) = h̄v {iDµ, δ(iD+ + ω)} γαγ5hv ,

Pµ
2,α(ω) = ih̄v [iDµ, δ(iD+ + ω)] γαγ5hv ,

Pµν
3,α(ω1, ω2) = h̄vδ(iD+ + ω2) {iDµ

⊥, iDν
⊥} δ(iD+ + ω1)γαγ5hv ,

Pµν
4,α(ω1, ω2) = gh̄vδ(iD+ + ω2)G

µν
⊥ δ(iD+ + ω1)γαγ5hv .

Finally, at subleading order there are also contributions from the time-
ordered products of O0(ω) with the subleading terms in the HQET La-
grangian,

O1/m(y) = h̄v(y)(iD)2hv(y) +
g

2
h̄v(y)σµνGµνhv(y) . (4.118)

This yields another two operators

OT (ω) = i

∫
d4y

1
2π

∫
dt e−iωtT

(
h̄v(0)hv(t)O1/m(y)

)
(4.119)

PT,α(ω) = i

∫
d4y

1
2π

∫
dt e−iωtT

(
h̄v(0)γαγ5hv(t)O1/m(y)

)
.

At subleading order, the nonlocal operator product expansion in (4.116) is

− 2mbR̂ =
∫

dω
(
C0(v, q, ω)O0(ω) + Cα

5,0(v, q, ω)P0,α(ω)
)

+
1

2mb

∑
i=1,2

∫
dω

(
Cµ

i (v, q, ω)Oi,µ(ω) + Cα,µ
5,i (v, q, ω)Pi,α,µ(ω)

)
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+
1

2mb

∑
i=3,4

∫
dω1dω2 (Cµν

i (v, q, ω1, ω2)Oi,µν(ω1, ω2)

+Cα,µν
5,i (v, q, ω1, ω2)Pi,α,µν(ω1, ω2)

)

+
1

2mb

∫
dω

(
CT (v, q, ω)OT (ω) + Cα

5,T (v, q, ω)PT,α(ω)
)

+O

(
Λ2

QCD

m2
b

)
. (4.120)

The matching at subleading order onto the operators (4.117) and (4.118)
is performed by computing the zero, one and two gluon matrix elements in
full QCD and comparing the result with the operators in (4.117) and (4.118).
Note that one also has to include the terms from the expansion of the b quark
field,

b =
(

1 +
i /D

2mb
+ . . .

)
hv. (4.121)

Subleading functions are defined by taking forward matrix elements of
these operators. Writing the most general ansatz consistent with the symme-
tries and the equation of motion (iv ·D)h = 0, we find that only the following
matrix elements are non-vanishing:

〈B(v)|Oµ
1 (ω)|B(v)〉 = 2mBg1(ω)(vµ − nµ

+) ,

〈B(v)|Oµν
3 (ω1, ω2)|B(v)〉 = 2mBg2(ω1, ω2)g

µν
⊥ ,

〈B(v)|Pµ
2,α(ω)|B(v)〉 = 2mBh1(ω)εµ

⊥,α , (4.122)

〈B(v)|Pµν
4,α(ω1, ω2)|B(v)〉 = 2mBh2(ω1, ω2)ερσαβ gµρ

⊥ gνσ
⊥ vβ ,

〈B(v)|OT (ω)|B(v)〉 = 2mBt(ω) , (4.123)

where we have defined
εµν
⊥ = εµναβvαn+ β , (4.124)

and ε0123 = 1. Owing to the equations of motion we can eliminate one of
these functions, since it is given in terms of the leading-order function:

2mBg1(ω) = nµ〈B(v)|Oµ
1 (ω)|B(v)〉 = 〈B(v)|h̄v {iD+, δ(iD+ + ω)}hv|B(v)〉

= −2(mb ω)〈B(v)|h̄vδ(iD+ + ω)hv|B(v)〉 = −4mB(mb ω) f(ω) . (4.125)

For the other subleading functions, we only have information about mo-
ments. The moment expansions of the leading and subleading functions read

f(ω) = δ(ω) − λ1

6m2
b

δ′′(ω) − ρ1

18m3
b

δ′′′(ω) + · · · ,

ωf(ω) =
λ1

3m2
b

δ′(ω) +
ρ1

6m3
b

δ′′(ω) + · · · ,

h1(ω) =
λ2

mb
δ′(ω) +

ρ2

2m2
b

δ′′(ω) + · · · ,
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g2(ω1, ω2) =
2λ1

3
δ(ω1)δ(ω2) + · · · ,

h2(ω1, ω2) = λ2δ(ω1)δ(ω2) + · · · ,

t(ω) = −λ1 + 3λ2

mb
δ′(ω) +

τ

2m2
b

δ′′(ω) + · · · .

We shall make use of these relations and definitions when we consider
examples in Sect. 5.4.

It turns out that the two subleading functions g2 and h2 appear in the
applications to be discussed later only in specific combinations, which are

G2(ω) =
∫

dω1 dω2
δ(ω − ω1) − δ(ω − ω2)

ω1 − ω2
g2(ω1, ω2) , (4.126)

H2(ω) =
∫

dω1 dω2
δ(ω − ω1) − δ(ω − ω2)

ω1 − ω2
h2(ω1, ω2) . (4.127)

Furthermore, reparametrization invariance (see the end of Sect. 4.4) can
also be used for the light-cone distributions functions [62, 63]. In this case,
reparametrization invariance requires that the subleading functions G2 given
in (4.126) and the contribution containing the time-ordered product involving
the kinetic-energy term (4.123) appear only in the combination

F (ω) = f(ω) +
1

2mb
G2(ω) + t(ω) , (4.128)

which reduces the number of unknown functions appearing at subleading
order to only three.

The light-cone distribution functions can also be derived using the lan-
guage of effective field theory. In particular, when one wants to consider
radiative corrections, an effective-field-theory picture simplifies matters con-
siderably. However, the effective theory that has to be formulated has a few
peculiar features, which will be discussed in the next section.

4.7 Soft-Collinear Effective Field Theory

Another effective field theory derived from QCD is soft-collinear effective
field theory [64, 65, 66, 67], which is similar to heavy-quark effective theory
(HQET). In HQET all the light degrees of freedom have to have momenta of
the order ΛQCD, i.e. the momentum p of the heavy quark inside a heavy meson
moving with velocity v = pMeson/MMeson is decomposed as p = mquarkv + k,
and all components of the residual momentum k are assumed to be of order
ΛQCD.

However, in a decay of a heavy quark into a light quark one may have a
kinematical situation in which the light degrees of freedom carry a large
energy in the rest frame of the heavy quark, i.e. vp ∼ mb, where p is
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the momentum of the light quark. As an example, one may consider the
inclusive decay B → Xsγ in the corner of phase space where the energy Eγ

of the outgoing photon is close to its maximal value7 of Emax = MB/2. In
this case the hadronic final state corresponds to a collimated “jet” of hadrons
with a small invariant mass but with a large energy in the rest frame of the
decaying B meson.

Soft-collinear effective theory (SCET) is designed to describe such a situ-
ation. It turned out that an early attempt (called “large-energy effective field
theory (LEET) [68]) failed to describe certain degrees of freedom correctly
and had to be supplemented. In order to give some idea about SCET, we
shall consider again the example of B → Xsγ. In this case we have

MBv = mbv + k = q + p , (4.129)

where q is the momentum of the photon and p that of the hadronic final
state.

As before, we introduce light-cone vectors n+ and n− by8

v =
1
2
(n+ + n−) , q =

1
2
(n+q)n− , n2

± = 0 , (n−n+) = 2 (4.130)

in terms of which we can decompose the metric as

gµν =
1
2
(nµ

+nν
− + nµ

−nν
+) + gµν

⊥ . (4.131)

Using this, we can write

mbv + k − q =
1
2

([mb + (n−k)]n+ + [mb + (n+k) − (n+q)]n−) + k⊥

=
1
2

((n−p)n+ + (n+p)n−) + p⊥ . (4.132)

In the endpoint region, where the photon energy is close to its maximal
value, we have (n+q) ∼ mb such that [mb − (n+q)] ∼ ΛQCD. This means that
in this region, the momentum of the final-state hadrons is an almost light-like
vector along the n+ direction:

(n−p) = [mb + (n−k)] ∼ O(mb) , (4.133)
(n+p) = [mb − (n+q) + (n+k)] ∼ O(ΛQCD) , (4.134)

p⊥ = k⊥ ∼ O(ΛQCD) . (4.135)

However, in order to define a consistent power counting, it is convenient
to introduce a dimensionless parameter λ such that the final-state invariant
mass is

7We ignore the mass of the final state for the moment.
8An explicit realization in the frame where v = (1, 0, 0, 0) would be n+ =

(1, 0, 0, 1) and n+ = (1, 0, 0,−1) .
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p2 = (n+p)(n−p) + p2
⊥ ∼ O(λ2m2

b) . (4.136)

Since (n+p) ∼ O(mb) we have to have (n+p) ∼ O(λ2mb), while p⊥ ∼ O(λm),
so the n− component (n+p) is down by one power of λ compared with the p⊥
component. Thus we have to include two kinds of “soft” degrees of freedom,
one of which scales as λ (which we shall call the soft degrees of freedom) and
the other of which scales as λ2 (which we shall call the ultrasoft degrees of
freedom).

As discussed in the last section, the endpoint region of inclusive decays is
defined by p2 ∼ ΛQCDmb, which means that, in the case at hand, that λ scales
as

√
ΛQCD/mb. This specific to the power counting for inclusive decays; for

exclusive channels, where SCET also applies the power counting has to be
different (see below).

One important consequence is that the light degrees of freedom of a heavy
hadron (given by the residual momentum k of the heavy quark) are actually
ultrasoft degrees of freedom. Since we have (n+p) ∼ O(λ2mb), we have to
have (n+k) ∼ O(λ2mb) as well; however, all momentum components of the
residual momentum scale the same way, so we have k ∼ O(λ2mb), i.e. they
are ultrasoft degrees of freedom.

Calculations in SCET are usually performed by constructing the La-
grangian for a collinear quark, from which Feynman rules have be derived.
The derivation is in fact very similar to that for HQET discussed in some de-
tail in Sect. 4.3. We may start out from the Lagrangian of a massless quark q,

L = q̄i /Dq , (4.137)

where D denotes the covariant derivative of QCD. We shall discuss the dy-
namics of this quark under the above kinematical assumptions, and so we
may use the two light-cone vectors to define the projectors

P =
1
4

/n−/n+ , Q =
1
4

/n+/n− ,where P + Q = 1 . (4.138)

In a similar way to that used in HQET, we can split the quark field q into
two components

ξ = Pq , η = Qq . (4.139)

Likewise, we can decompose

/D =
1
2

/n+(in−D) +
1
2

/n−(in+D) + /D⊥ . (4.140)

Inserting this and using /n−ξ = 0 = /n+η, we obtain

L =
1
2
ξ̄/n+(in−D)ξ +

1
2
η̄/n−(in+D)η + ξ̄i /D⊥η + η̄i /D⊥ξ . (4.141)

The next step is to use the power counting defined above to identify the
degrees of freedom that can be integrated out. Since (in+D) ∼ m and
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(in−D) ∼ λ2m, we want to integrate out the η field. This can be done
explicitly in the same way as was done in the HQET case by integrating over
the small component field Hv (see (4.51)) in the Green’s functions, written
as a functional integral over the quark fields. As in HQET, this integration
is a Gaussian integration, which can be done explicitly.

Performing this integration corresponds to using the equations of motion9

η = − 1
in+D + iε

/n+

2
i /D⊥ξ (4.142)

and inserting this result back into the Lagrangian

L =
1
2
ξ̄/n+(in−D)ξ − ξ̄i /D⊥

1
in+D + iε

/n+

2
i /D⊥ξ . (4.143)

This resulting Lagrangian is still completely equivalent to that of full
QCD, but it is now expressed in terms of the collinear quark field. However,
it is non-local and becomes local only after expansion. To perform this ex-
pansion, we have to identify the large contribution in the quantity in+D. In
order to do so, we split the gluon field A into a collinear contribution Ac and
an ultrasoft contribution Aus

in+D = in+∂ + gn+Ac + gn+Aus = in+Dc + gn+Aus (4.144)

where we have defined a collinear covariant derivative iDc = i∂ + gAc con-
taining the collinear gluon field. We now expand in the ultrasoft contribu-
tion, since it scales as mλ2. This expansion corresponds to that of (4.53) in
Sect. 4.3.

In order to have the complete Lagrangian, we need to do a similar decom-
position for the gluonic part of the QCD Lagrangian. Furthermore, we also
need to introduce ultrasoft quarks which appear, for example, as spectator
quarks in a heavy hadron.

Note that in the leading-order Lagrangian, the only coupling to ultrasoft
degrees of freedom is the coupling from (in−D) to the collinear quarks. A
very similar coupling appears in the gluonic sector, where one has an n−Aus

coupling of ultrasoft gluons to collinear gluons. This observation is the basis
for factorization theorems, which have been investigated intensively. In par-
ticular, one may derive a factorization statement for exclusive non-leptonic
decays, which puts the naive factorization used for phenomenological esti-
mates on a new basis. We shall not discuss this in detail here; rather, we
discuss a particular example, which is again B → Xsγ.

In order to discuss this example, we have to derive first the leading-order
matching of a heavy-to-light current taking into account the kinematical sit-
uation described above. Naively one would match this current as as

9The Gaussian integration again also yields a determinant, which is, for the
same reasons as in HQET, just an irrelevant constant.
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Q̄Γq −→ h̄vΓξ , (4.145)

since the light quark q turns into a collinear quark. However, the emission of
a collinear gluon from the ingoing heavy quark will put this quark far off its
mass shell and hence one would expect to obtain again a local interaction.
This situation is depicted in Fig. 4.2 It has been shown in [64] that the
emission of all these gluons can be resummed into a Wilson line W(0), such
that the correct matching is

Q̄Γq = h̄vW(0)Γξ (4.146)

where

W(x) = Pexp
(
−i

∫ 0

−∞
ds n− · Ac(x + sn−)

)
; (4.147)

here “Pexp” denotes the path-ordered exponential.

pb

p

qm

q2
q1

+ perms →

pb

p

qm

q2

q1

Fig. 4.2. Matching of the heavy-to-light current in SCET

In order to compute the rate, we consider again the correlator discussed
in (4.101). Performing the matching to leading order, we obtain

R =
∫

d4x exp(−ix[mbv − q])

×〈B(pB)|b̄v(0)ΓW(0)ξ(0)ξ̄(x)W†(x)Γ †bv(x)|B(pB)〉 . (4.148)

The key observation for obtaining factorization is that the ultrasoft de-
grees of freedom may be decoupled by a field redefinition. The procedure is
very similar to what can be done in the context of the QED infrared problem
[31], where the electron can be “dressed” with (ultra)soft photons by a field
redefinition. For the case at hand, we can find a unitary transformation

Y (x) = Pexp
(
−i

∫ 0

−∞
ds n− · Aus(x + sn−)

)
(4.149)

which removes all ultrasoft interactions from the leading-order Lagrangian of
the field ξ, since this depends only on the component n− · A of the ultrasoft
gluon field.
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In terms of the “dressed” field

ξ(0)(x) = Y (x)ξ(x) , (4.150)

the leading-order Lagrangian

Ll.o. =
1
2
ξ̄/n+(in−D)ξ =

1
2
ξ̄(0)/n+(in−Dc)ξ(0) (4.151)

does not depend on the ultrasoft gluon field any more, so any interaction
with the ultrasoft degrees of freedom has disappeared from the leading order.

Since the B meson contains only ultrasoft degrees of freedom, the matrix
element appearing in (4.148) can be factorized into a matrix element involving
the B meson and one containing only collinear fields. We obtain

R =
∫

d4x exp(−ix[mbv − q])〈B(pB)|b̄v(0)Y †(0)Y (x)bv(x)|B(pB)〉

×Tr 〈0|ΓW(0)ξ(0)(0)ξ̄(0)(x)W†(x)Γ †|0〉 , (4.152)

where the trace refers to the Dirac indices.10 Here we have explicitly written
the “dressed” b quark field to show that the ultrasoft matrix element is simply
a Wilson line connecting the two heavy quark fields at the points 0 and x.

We can rewrite (4.152) further, making use of the special kinematics of
SCET. Fourier-transforming the matrix element involving the collinear quark
fields,

Tr 〈0|ΓW(0)ξ(0)(0)ξ̄(0)(x)W†(x)Γ †|0〉 =
∫

d4l

(2π)4
e−ilxĴ(l) (4.153)

we find l = mv+k−q, where k is the residual momentum of the heavy quark
(i.e. the conjugate variable of x). Using the SCET power counting (4.133)
we find that l+ = m/2 and hence we may neglect k− in the momentum
conservation. Likewise, l⊥ is assumed to scale as λ (see (4.133)), so we can
neglect k⊥ in the momentum balance. Thus we end up having only k+ in the
momentum balance of the process, which in coordinate space corresponds to
keeping only the dependence on x− = n−x in the matrix element involving
the B mesons,11

R =
∫

d4x e−it(mb−n+q)〈B(v)|b̄v(0)Y †(0)Y (t)bv(t)|B(v)〉J(t) , (4.154)

where we have used the light-cone variable t = n−x/2 and the “jet function”

10Note that we have made use of heavy-quark spin symmetry, ensuring that only
the unit matrix can appear as the Dirac structure between the heavy-quark fields.

11It has been shown in [67] that this can be systematized in the form of a light-
cone multipole expansion of the ultrasoft fields, which in the case at hand is the
(static) b quark field.
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J(t) =
∫

dx+ d2x⊥ e(i m
2 x+)Tr 〈0|ΓW(0)ξ(0)(0)ξ̄(0)(x)W†(x)Γ †|0〉 . (4.155)

This result, namely that in this particular kinematic regime the rates can
be expressed in terms of a hard coefficient multiplied by a convolution of
a jet function (containing the collinear contributions) and a shape function
(containing the ultrasoft contributions) was derived in [69] even before SCET
had been formulated.

An effective-field-theory calculation allows a systematic discussion of ra-
diative corrections and a renormalization-group resummation of large loga-
rithms induced by radiative corrections. One can even use the machinery of
SCET to obtain the correct structure of the doubly logarithmic terms [70, 71].

SCET has also been extended to describe exclusive channels. However,
the power counting needs to be modified, since the mass of an exclusive
state of a light meson is now of order ΛQCD, while for the inclusive channel
considered above the mass has been of the order

√
mbΛQCD. This requires

us also to introduce, in addition to the hard collinear modes considered up
to now, new modes which have a different scaling from the scaling (4.133)
12 The SCET with the power counting appropriate to exclusive channels is
sometimes called SCETII as compared with SCETI for inclusive channels.

One of the main results concerning exclusive non-leptonic channels is the
proof of factorization for the decay mode B

0 → D+π− [73]. To leading order
in the large mass expansion the decay amplitude factorizes into the B → π
form factor and the pion decay constant; all corrections to this statement
are either of the order αs(ΛQCDmb) (and thus perturbatively calculable) or
suppressed by powers of 1/mb. We shall not go into any more details here,
since the investigation of the properties of SCET is currently in progress.
Some of the phenomenology of exclusive non-leptonic decays is discussed in
Sect. 5.4.

The development of SCET was pre-dated by a method called QCD factor-
ization [74, 75]. Although this method is not an obvious effective-field-theory
approach (for example, it does not rely on the construction of an effective
Lagrangian) it is still along similar lines, since it uses the heavy-mass limit
and performs a systematic power counting. However, the power counting is
performed on the basis of the Feynman diagrams of full QCD, and hence
the proofs in QCD factorization are proofs valid up to a fixed order in QCD
perturbation theory.

Exclusive non-leptonic decays into non-charmed final states have been
investigated using QCD factorization also [76]. At one loop, it has been shown
that also these decays factorize similarly to B

0 → D+π− to leading order in
the expansion in 1/mb. Again, these issues are still under investigation and
we shall not consider any more details here. In Sect. 5.4 we shall show some
of the phenomenological results.

12Some material can be found in in [64, 65]; a more recent discussion can be
found in [72].
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4.8 Chiral Perturbation Theory

Another effective field theory which is often used in the context of weak
decays is chiral perturbation theory. This effective theory describes QCD at
very low energies and is mainly determined by the symmetries of QCD and
the assumptions about how these symmetries are broken. It has been shown in
[78] that this information is sufficient to fix the interactions of the Goldstone
modes of the broken symmetry at low energies.

In a world with massless quarks (which is a good approximation for the
light quarks, i.e for the up, down and strange quarks), all quark flavours
and, separately, all quark helicities couple in the same way to the gluons.
Technically, this means that for three (approximately) massless quarks, QCD
exhibits a chiral SU(3)L ×SU(3)R symmetry, where the subscripts stand for
the left- and right-handed quarks.

If such a symmetry were realized in nature, one would observe parity
doublets of SU(3) multiplets of particles. While an SU(3) flavour symmme-
try is indeed observed (the well-known isospin being an SU(2) subgroup of
this flavour group SU(3)), there is no parity doubling, at least for the light
hadrons such as the pion. Consequently one of the SU(3) groups has to be
broken. This breaking has to be spontaneous, since the Lagrangian clearly
has the SU(3)L × SU(3)R symmetry.

One well-known consequence of spontaneous symmetry breaking is the
appearance of massless modes [77], and in the case at hand one expects the
appearance of an octet of massless particles corresponding to the sponta-
neous breaking of SU(3)L × SU(3)R → SU(3)V, where SU(3)V is the vector
subgoup of SU(3)L×SU(3)R. Hence the axial-vector subgroup is broken and
the corresponding Goldstone modes are pseudoscalar particles.

Thus this scenario predicts the presence of light pseudoscalar particles,
which are identifed with the light pseudoscalar octet consisting of pions and
kaons. These particles are not massless; however, their masses are small com-
pared with the typical hadronic scale set by, for example, the proton mass or
the mass of the ρ meson. Their masses may be related to the appearance of
quark masses breaking the chiral SU(3)L × SU(3)R symmetry.

As a consequence of these symmetries, the currents

V a
µ = q̄iγµT a

ijqj , and Aa
µ = q̄iγµγ5T

a
ijqj (4.156)

are conserved currents, since they generate the SU(3)L×SU(3)R ∼ SU(3)V ×
SU(3)A symmetry, where q1 = u, q2 = d, q3 = s and T a are the generators
of SU(3) in the fundamental representation. While the currents V a

µ generate
the usual SU(3) flavour symmetry, the axial currents generate the octet of
massless states from the vacuum, such that

〈0|Aa
µ|πb(p)〉 = ifπδabpµ , (4.157)
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where fπ is the pion decay constant which is determined by the decay of
the charged pion π → µν̄µ. This process will be considered in some detail in
Sect. 5.2.

The spontaneous breaking of the SU(3)L × SU(3)R symmetry down to
SU(3)V is signalled by the fact that the vacuum is not invariant any more
under SU(3)L × SU(3)R. The combination q̄q = (ūu + d̄d + s̄s)/3 couples
left- and right-handed components of the quarks and hence is not invariant
under SU(3)L × SU(3)R. A non-vanishing quark condensate

〈0|q̄q|0〉 �= 0 (4.158)

indicates that SU(3)L × SU(3)R is indeed spontaneously broken.
At very low energies, the complete dynamics of QCD is determined by

the Goldstone modes πa [78]. Using the currents as interpolating fields for
pions (which is the main asumption of the “partially conserved axial vector
current” (PCAC) hypothesis) one may compute transition matrix elements
solely in terms of the algebra of the generators of the spontaneously broken
SU(3)L × SU(3)R symmetry [79, 80].

Alternatively, since the dynamics of Goldstone modes is entirely fixed
by the (broken) symmetry, one may equally well write down a Lagrangian
encoding this information. Starting from the SU(3)L × SU(3)R symmetry,
we may define a field Σ with the transformation property

Σ → LΣR† , for L ∈ SU(3)L and R ∈ SU(3)R , (4.159)

and the simplest SU(3)L × SU(3)R invariant Lagrangian is given by

L =
f2

4
Tr

[
(∂µΣ)†(∂µΣ)

]
, (4.160)

where f is a constant which is considered below. Note that (4.160) is the
Lagrangian of the non-linear σ model.

The SU(3)L×SU(3)R symmetry is broken by a vacuum expectation value
of Σ such that

〈0|Σ|0〉 = 1 . (4.161)

This breaks the SU(3)L × SU(3)R symmetry down to SU(3)L+R = SU(3)V
which means that the transformations L and R appearing in (4.159) have to
be equal, i.e. L = R.

Owing to this breaking Goldstone bosons have to appear and the field Σ
can be expressed in terms of these Goldstone modes. One possible represen-
tation is given by

Σ = exp
(

i

f
T aπa

)
=




π0/
√

2 + η8/
√

6 π+ K+

π− −π0/
√

2 + η8/
√

6 K0

K− K
0 −2η8/

√
6




(4.162)
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where η8 is the octet contribution of the η, which is, owing to η–η′ mixing, a
linear combination of the physical η and η′ mesons.

From (4.160) and (4.162) we can obtain the possible interactions between
the Goldstone bosons. In particular, we may compute the currents Vµ and
Aµ from Noether’s theorem, and we find

V a
µ =

f2

4
Tr

[
ΣT a(∂µΣ)† + Σ†T a(∂µΣ)

]

= ifabc[πb , (∂µπc)] + · · · , (4.163)

Aa
µ =

f2

4
Tr

[
ΣT a(∂µΣ)† − Σ†T a(∂µΣ)

]
= if(∂µπa) + · · · , (4.164)

where the ellipses denote terms containing higher powers of fields. Comparing
(4.164) with (4.157), we infer that the normalization constant f appearing in
the Lagrangian is in fact the pion decay constant fπ.

The difference between the chiral Lagrangian (4.160) and the other effec-
tive field theories discussed so far is that the matching of the chiral Lagrangian
to full QCD cannot be performed explicitly. In principle, fπ is related to the
scale parameter ΛQCD of QCD, but the matching cannot be done, since all
the matching procedures discussed so far are perturbative.

Still (4.160) is a good starting point for a systematic expansion, which
is called chiral perturbation theory [81, 82]. The Lagrangian (4.160) is valid
for small momenta of the Goldstone bosons, where these bosons are the only
degrees of freedom present. This also indicates the region of validity, since at
scales of the order of the ρ-meson mass (which are the first “non-Goldstone”
excitations of a quark–anti quark pair), one expects to have additional inter-
actions which are not determined by the Goldstone modes alone. This scale is
usually called the chiral-symmetry-breaking scale ΛχSB and is, by the rules
of “naive dimenional analysis”, [1, 83, 84] of the order of 4πfπ.

The idea of chiral perturbation theory is to perform a systematic expan-
sion in the ratio pπ/ΛχSB , where pπ is the typical momentum of the Gold-
stone boson. This means that the subleading terms that need to be added to
(4.160) are the ones that contain more derivatives acting on the Goldstone
boson field Σ and which are compatible with the (spontaneously broken)
SU(3)L × SU(3)R symmetry.

Once subleading terms are considered, one also has to take into account
the presence of the explicit breaking of the SU(3)L × SU(3)R symmetry
through the small quark masses, since the masses are usually counted in the
same way as the momenta of the mesons. The breaking by quark mass terms
can be discussed by introducing a spurion field M, for which we assume the
transformation property

M → LMR† , for L ∈ SU(3)L and R ∈ SU(3)R . (4.165)

The Lagrangian is supplemented by adding all SU(3)L × SU(3)R-invariant
terms involving the spurion field, where one power of the spurion counts in



74 4 Effective Field Theories

the same way as one power of the momentum. Symmetry breaking is now
implemented by replacing the spurion field by the fixed matrix

M =


mu 0 0

0 md 0
0 0 ms


 . (4.166)

The simplest (i.e. of lowest order in the chiral expansion) term one can
write is

Lm =
f2B0

2
Tr

[
M†Σ + Σ†M

]
, (4.167)

which leads to a mass term for the Goldstone bosons. Here B0 is a new
constant.

The peculiar feature of the mass term (4.167) is that it implies that the
the square of the mass of the pseudo-Goldstone particles is linear in the quark
masses [85]. In fact, when we work out the details of these relations, we obtain

m2
π± = B0(mu + md), m2

K± = B0(mu + ms),

m2
K0 = B0(ms + md), m2

η8
=

B0

3
(mu + md + 4ms) . (4.168)

Eliminating the quark masses from these relations, we obtain the well-known
Gell–Mann Okubo mass relations [86, 87], which have been obtained solely
from SU(3) arguments. In fact, on the basis of symmetry only, we could
also have obtained similar relations relating the quark masses rather than
their squares, but the chiral Lagrangian predicts that the relations should
hold for the squares of the masses, which is in accordance with observations.
Furthermore, these relations predict the correct mass for the η meson.

Finally, the parameter B0 can be related to the quark condensate using
soft-pion techniques [81]; one finds

B0 = − 1
f2

π

〈0|q̄q|0〉 , (4.169)

where consistency requires that the quark condensate has to be negative.
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5 Applications I: ∆F = 1 Processes

In this chapter and the following one, we shall give a few sample applications
of effective field theories to the flavour physics of the Standard Model. We
shall discuss mainly the effective Hamiltonian for flavour transitions derived
in the context of the Standard Model, but an extension to models beyond
the Standard Model will be obvious. We shall consider first the Hamiltonian
for ∆F = ±1 processes, i.e. processes in which the flavour quantum numbers
change by one unit; ∆F = ±2 processes will be discussed in the next chapter.
After a few remarks on light-hadron decays, we shall study bottom and charm
decays, where one may use the heavy-quark mass expansion. We are not
aiming at completeness; rather, we shall only demonstrate how effective-field-
theory methods can be applied efficiently.

5.1 ∆F = 1 Effective Hamiltonian

In this section we shall discuss the effective Hamiltonian relevant to decays of
bottom, charm and strange hadrons. The masses of these particles are much
smaller than the masses of the weak gauge bosons and of the top quark,
and hence we can switch to an effective-theory description as discussed in
Sect. 4.2.

Since the top quark and the weak bosons have masses of the same order,
we may integrate out these particles at the same scale, which we choose to
be the scale MW . In the following subsections, we shall collect together the
relevant formulae for the various weak transitions of quarks.

5.1.1 Effective Hamiltonian for Semileptonic Processes

Semileptonic processes are mediated by operators involving one hadronic and
one leptonic current. Integrating out the weak bosons and the top quark yields
at tree level, the effective Hamiltonian

H(sl)
eff =

4GF√
2

(
ŪLγµVCKMDL

)
(ēLγµν̄e,L + µ̄Lγµν̄µ,L + τ̄Lγµν̄τ,L) + h.c. ,

(5.1)

Thomas Mannel: Effective Field Theories in Flavour Physics,
STMP 203, 79–130 (2004)
c© Springer-Verlag Berlin Heidelberg 2004
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where any operator involving the top quark is simply omitted and the ma-
trix notation introduced earlier is understood. Writing explicitly the various
possible transitions we obtain the following ( = e, µ or τ):

• Semileptonic decays of bottom hadrons:

Heff (b → cν̄) =
4GF√

2
Vcb (c̄LγµbL)

(
̄Lγµν,L

)
+ h.c. , (5.2)

Heff (b → uν̄) =
4GF√

2
Vub (ūLγµbL)

(
̄Lγµν,L

)
+ h.c. (5.3)

• Semileptonic kaon or hyperon decays:

Heff (s → uν̄) =
4GF√

2
Vus (ūLγµsL)

(
̄Lγµν,L

)
+ h.c. (5.4)

• Semileptonic decays of charmed hadrons:

Heff (c → sν̄) =
4GF√

2
Vcs (c̄LγµsL)

(
̄Lγµν,L

)
+ h.c. , (5.5)

Heff (c → dν̄) =
4GF√

2
Vcd (c̄LγµdL)

(
̄Lγµν,L

)
+ h.c. (5.6)

• β decays:

Heff (d → uν̄) =
4GF√

2
Vud (ūLγµdL)

(
̄Lγµν,L

)
+ h.c. (5.7)

These results hold at tree level, i.e. at leading order in the strong coupling
αs. When (5.2)-(5.7) are interpreted as local operators multiplied by Wilson
coefficients, these coefficients (after factoring out the common factor GF /

√
2

and the CKM factors) are simply unity. Furthermore, since in the limit of
vanishing quark masses both the axial-vector and the vector current are con-
served, the operators appearing in the effective Hamiltonians for semilep-
tonic transitions do not have an anomalous dimension in full QCD, owing
to current conservation. This means that no large logarithms of the form
(αs/π) ln(M2

W /µ2) can appear.

5.1.2 Effective Hamiltonian for Non-Leptonic Processes

Non-leptonic processes are mediated by operators involving two hadronic
currents. In the same way as for the semileptonic case, we obtain at tree level

H(sl)
eff =

4GF√
2

(
ŪLγµVCKMDL

) (
D̄LγµV †

CKMUL

)
+ h.c. (5.8)

Similarly to the case of semileptonic decays we can decompose (5.8) into
the various channels. We obtain the following:
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• Non-leptonic decays of bottom hadrons:

Heff (b → cūd) =
4GF√

2
VcbV

∗
ud (c̄LγµbL)

(
d̄LγµuL

)
+ h.c. , (5.9)

Heff (b → cc̄s) =
4GF√

2
VcbV

∗
cs (c̄LγµbL) (s̄LγµcL) + h.c. , (5.10)

Heff (b → cūs) =
4GF√

2
VcbV

∗
us (c̄LγµbL) (s̄LγµuL) + h.c. , (5.11)

Heff (b → cc̄d) =
4GF√

2
VcbV

∗
cd (c̄LγµbL)

(
d̄LγµcL

)
+ h.c. , (5.12)

Heff (b → uūd) =
4GF√

2
VubV

∗
ud (ūLγµbL)

(
d̄LγµuL

)
+ h.c. , (5.13)

Heff (b → uc̄s) =
4GF√

2
VubV

∗
cs (ūLγµbL) (s̄LγµcL) + h.c. , (5.14)

Heff (b → uūs) =
4GF√

2
VubV

∗
us (ūLγµbL) (s̄LγµuL) + h.c. , (5.15)

Heff (b → uc̄d) =
4GF√

2
VubV

∗
cd (ūLγµbL)

(
d̄LγµcL

)
+ h.c. (5.16)

• Non-leptonic decays of charmed hadrons:

Heff (c → sud̄) =
4GF√

2
VcsV

∗
ud (c̄LγµsL)

(
d̄LγµuL

)
+ h.c. , (5.17)

Heff (c → sus̄) =
4GF√

2
VcsV

∗
us (c̄LγµsL) (s̄LγµuL) + h.c. , (5.18)

Heff (c → dud̄) =
4GF√

2
VcdV

∗
ud (c̄LγµdL)

(
d̄LγµuL

)
+ h.c. , (5.19)

Heff (c → dus̄) =
4GF√

2
VcdV

∗
us (c̄LγµdL) (s̄LγµuL) + h.c. (5.20)

• Non-leptonic decays of strange hadrons:

Heff (s → uūd) =
4GF√

2
VusV

∗
ud (ūLγµsL)

(
d̄LγµuL

)
+ h.c. (5.21)

These results have to be interpreted as the tree-level matching for the rele-
vant operators that the effective Hamiltonian consists of. The current–current
operators appearing in the effective Hamiltonian are dimension-six operators
and, as discussed earlier, the renormalization of these operators induces mix-
ing with other operators of dimension six.

The simplest case is when four different flavours are involved. As an exam-
ple, we study the transition b → cūd. Owing to the fact that all quarks have
to be left-handed, we can have only two dimension-six operators differing by
their colour structure,
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O1 = (c̄L,iγµbL,j)
(
d̄L,jγµuL,i

)
, (5.22)

O2 = (c̄L,iγµbL,i)
(
d̄L,jγµuL,j

)
, (5.23)

where i, j = 1, 2, 3 are the colour indices of the quarks. The effective Hamil-
tonian is then given by

Heff (b → cūd) =
4GF√

2
VcbV

∗
ud [C1(µ)O1(µ) + C2(µ)O2(µ)] + h.c. , (5.24)

where the coefficients C1 and C2 are determined from the renormalization
group equations as discussed in Sect. 4.1. These have been calculated in [1] to
leading logarithmic accuracy, and a detailed discussion of the next-to-leading
logarithms can be found in [2].

The calculation of the anomalous-dimension matrix involves the diagrams
depicted in Fig. 5.1. It is clear from the colour flow in the diagram, that the
two operators O1 and O2 will mix under renormalization. The calculation of
the one-loop anomalous dimension is straightforward, and one finds [1]

γ =
αs

4π

(
−2 6

6 −2

)
+ O(α2

s) . (5.25)

Using this result together with the leading order term of the β function given
in (4.17) and (4.18) in Sect. 4.1 we can solve the renormalization group (4.15)
with the initial condition

C1(MW ) = 0 and C2(MW ) = 1 , (5.26)

Fig. 5.1. Feynman diagrams for the calculation of the anomalous dimension (5.25).
Self-energy diagrams are omitted
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and obtain, for scales above the b quark mass,

C1(µ) =
1
2

[(
αs(µ)

αs(MW )

)−6/23

−
(

αs(µ)
αs(MW )

)12/23
]

, (5.27)

C2(µ) =
1
2

[(
αs(µ)

αs(MW )

)−6/23

+
(

αs(µ)
αs(MW )

)12/23
]

. (5.28)

The typical scale for the matrix elements is the b quark mass, and hence we
evolve the coefficients down to mb. At mb, the values of the coefficients are

C1(mb ∼ 5GeV) ≈ −0.25 C2(mb ∼ 5GeV) ≈ 1.1 , (5.29)

indicating that the QCD corrections are sizeable.
We can discuss the transitions b → cūs, b → cūs, b → uc̄s, and b → uc̄d

in the same way, with the corresponding replacements in the operators O1

and O2.
Likewise, we can consider charm decays for a transition in which four

different flavours are involved, i.e. for the transitions c → sd̄u and c → ds̄u.
As an example, we consider the case c → sd̄u in which case the relevant
operators are

Ô1 = (c̄L,iγµsL,j)
(
d̄L,jγµuL,i

)
, (5.30)

Ô2 = (c̄L,iγµsL,i)
(
d̄L,jγµuL,j

)
. (5.31)

If we evolve the coefficient down from the scale MW , we have the same
renormalization group equation as before. However, in this case one would
like to evolve them down to a scale µ ∼ mc and so we have to take into
account the fact that at the scale of the b quark mass we have a change from
a theory with five active flavours to a theory with four active flavours. The
operator and the anomalous dimensions (at one-loop level) remain the same,
except that the number of active flavours changes from five to four in the β
function when we pass through the point µ = mb. Taking this into account
we obtain the following for the coefficients at µ ∼ mc:

Ĉ1(µ) =
1
2

[(
αs(µ)

αs(mb)

)−6/25 (
αs(mb)
αs(MW )

)−6/23

−
(

αs(µ)
αs(mb)

)12/25 (
αs(mb)
αs(MW )

)12/23
]

, (5.32)

Ĉ2(µ) =
1
2

[(
αs(µ)

αs(mb)

)−6/25 (
αs(mb)
αs(MW )

)−6/23

+
(

αs(µ)
αs(mb)

)12/25 (
αs(mb)
αs(MW )

)12/23
]

. (5.33)

Inserting numbers we find the values shown in Table 5.2.
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For all other decay modes, we have a quark–antiquark pair of the same
flavour involved; in particular, for all non-leptonic kaon decays, we have the
quark transition s → uūd. These operators differ in their flavour structure:
while in the operators previously analysed four quark flavours (two up-type
flavours and two down-type flavours) change by one unit, in this case only two
flavours (either two up-type or two down-type flavours) change by one unit.
For these transitions, we have more dimension-six operators mixing with the
initial operator. We shall discuss this issue by studying the quark transition
b → s, which involves two four-quark operators b → uūs and b → cc̄s.

In this case the c quarks and the u quarks can form a loop and, together
with the emission of a gluon, we can have the diagrams depicted in Fig. 5.2.
The contribution to the effective Hamiltonian consists of the four-quark op-
erators discussed above, which are

Q1 = (c̄L,iγµbL,j) (s̄L,jγµcL,i) , (5.34)
Q2 = (c̄L,iγµbL,i) (s̄L,jγµcL,j) , (5.35)
P1 = (ūL,iγµbL,j) (s̄L,jγµuL,i) , (5.36)
P2 = (ūL,iγµbL,i) (s̄L,jγµuL,j) (5.37)

for the c and u quarks; there will be further operators which the original
operators given in (5.10) and (5.13) can mix into. These operators are usually
called the QCD penguin operators [3, 4], and are given by

O3 = (s̄L,iγµbL,i)
∑

q=u,d,s,c,b

(q̄L,jγ
µqL,j) , (5.38)

O4 = (s̄L,iγµbL,j)
∑

q=u,d,s,c,b

(q̄L,jγ
µqL,i) , (5.39)

O5 = (s̄L,iγµbL,i)
∑

q=u,d,s,c,b

(q̄R,jγ
µqR,j) , (5.40)

O6 = (s̄L,iγµbL,j)
∑

q=u,d,s,c,b

(q̄R,jγ
µqR,i) . (5.41)

This contribution to the effective Hamiltonian for b → s = b → s(ūu+ c̄c)
takes the form

Fig. 5.2. QCD penguin diagrams for the transiton b → s. Here q is any of the
active quarks q = u, d, s, c, b
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Heff (b → s) =
4GF√

2

{
VcbV

∗
cd [C1(µ)Q1(µ) + C2(µ)Q2(µ)]

+VubV
∗
ud [C1(µ)P1(µ) + C2(µ)P2(µ)]

−VtbV
∗
td

6∑
i=3

Ci(µ)Qi(µ)

}
+ h.c. (5.42)

The renormalization group equation allows us to calculate the Wilson
coefficients of all the operators. Note that Q1 and P1 have the same coefficient
in the same way as Q2 and P2, such that the anomalous dimension is now a
6 × 6 matrix, given at leading order by [1, 3, 4, 5, 6, 7, 8]

γ =
αs

4π




−2 6 0 0 0 0

6 −2 −2/9 2/3 −2/9 2/3

0 0 −22/9 22/3 −4/9 4/3

0 0 6 − (2/9)nf −2 + (2/3)nf −(2/9)nf (2/3)nf

0 0 0 0 2 −6

0 0 −(2/9)nf (2/3)nf −(2/9)nf −16 + (2/3)nf




+O(α2
s) (5.43)

where the upper left corner of this matrix has been considered already and
yields the Wilson coefficients of the operators Q1, P1 and Q2, P2. Here, nf

denotes the number of “active” flavours.
The solution for the coefficients Ci(µ) cannot be given in a simple ana-

lytical form any more. When the coefficients are evolved from MW down to
mb the numerical values of the coefficients given in Table 5.1 are obtained.

Table 5.1. Values of the Wilson coefficients Ci(µ) at three different scales of the
order of the b quark mass, evaluated with the one-loop β function and the leading-
order anomalous-dimension matrix (5.43), taking ΛQCD = 225 MeV

Ci(µ) µ = 10.0 GeV µ = 5.0 GeV µ = 2.5 GeV

C1 0.182 0.275 0.40
C2 −1.074 −1.121 −1.193
C3 −0.008 −0.013 −0.019
C4 0.019 0.028 0.040
C5 −0.006 −0.008 −0.011
C6 0.022 0.035 0.055

All other flavour combinations (which are the b → cc̄d, b → uūs and
b → uūd transitions) have the same Wilson coefficients and differ from the
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example discussed above only in the CKM factors and the flavours entering
the four-quark operators.

For the non-leptonic interactions of charmed hadrons, one has to replace
the quark flavours accordingly. By the same arguments, the transition c → u
mediated by c → ss̄u and c → dd̄u will have penguin contributions. However,
unlike in the case of a down-type quark, where the penguin contributions are
driven by the large top-quark mass, we have for the charm-quark decays a
perfect GIM cancellation (see Sect. 1.1) for all scales above the bottom-quark
mass, since for such large scales all down-type quarks are treated as massless
and the coefficients of the penguin operators vanish. A penguin contribution
is induced at the scale of the b quark: when the b quark is integrated out,
the GIM cancellation is incomplete and a penguin contribution is induced
from the mixing of O1 and O2 into the penguin operators (5.38), where the
appropriate replacements of the quark fields are understood. However, the
2 × 2 Cabbibo submatrix of the CKM matrix is orthogonal to a very good
approximation, which makes the coefficients of the QCD penguins in charm
decays very small; they are of the order

αs(mb)
π

VubV
∗
cb ln

(
mb

mc

)
,

and thus we can safely ignore their contribution. Hence only the two Wilson
coefficients C1 and C2 are relevant, the values of which are given for µ ∼ mc

in Table 5.2.

Table 5.2. Values of the Wilson coefficients Ci(µ) at three different scales of the
order of the c quark mass, evaluated with the one-loop β function and the leading-
order anomalous-dimension matrix (5.43), taking ΛQCD = 215 MeV

Ci(µ) µ = 1.0 GeV µ = 1.5 GeV µ = 2.0 GeV

C1 −0.60 −0.48 −0.41
C2 1.32 1.24 1.20

In order to construct the effective hamiltonian for non-leptonic decays
of kaons, one has to eventually integrate out also the charm quark. The
effective Hamiltonian finally contains only the three light-quark flavours, and
the relevant transition is s → uūd, which has penguin contributions enhanced
by the large top mass. The renormalization group (with the same anomalous-
dimension matrix, but with a reduced number of active flavours) can be used
to evolve further down to small scales, but the (perturbative) renormalization
group evolution has to be stopped at scales µ ∼ 1 GeV, since one enters
the non-perturbative regime here. The relevant effective Hamiltonian can be
written as
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Heff (s → d) =
4GF√

2
VusV

∗
ud

6∑
i=1

[
zi(µ) − Vts

Vtd
yi(µ)

]
Ri(µ) + h.c. (5.44)

with the operators

R1 = (ūL,iγµsL,j)
(
d̄L,jγµuL,i

)
, (5.45)

R2 = (ūL,iγµsL,i)
(
d̄L,jγµuL,j

)
, (5.46)

R3 = (d̄L,iγµsL,i)
∑

q=u,d,s

(q̄L,jγ
µqL,j) , (5.47)

R4 = (d̄L,iγµsL,j)
∑

q=u,d,s

(q̄L,jγ
µqL,i) , (5.48)

R5 = (d̄L,iγµsL,i)
∑

q=u,d,s

(q̄R,jγ
µqR,j) , (5.49)

R6 = (d̄L,iγµsL,j)
∑

q=u,d,s

(q̄R,jγ
µqR,i) . (5.50)

The values of the Wilson coefficients zi and yi are tabulated in Table 5.3.

Table 5.3. Leading-log values of the Wilson coefficients zi(µ) and yi(µ) at three
different scales around 1.5 GeV for ΛQCD = 215 MeV. The entries marked with an
asterisk are numerically irrelevant

µ = 1.0 GeV µ = 1.3 GeV µ = 2.0 GeV

z1 −0.602 −0.518 −0.411
z2 1.323 1.266 1.199
z3 0.003 ∗ ∗
z4 −0.008 ∗ ∗
z5 0.003 ∗ ∗
z6 −0.009 ∗ ∗

y3 0.029 0.026 0.019
y4 −0.051 −0.050 −0.040
y5 0.012 0.013 0.011
y6 −0.084 −0.075 −0.055

5.1.3 Electroweak Penguins

Finally we can also have so-called electroweak penguin operators, which are
like the QCD penguins shown in Fig. 5.2, but with the gluon replaced by
an electroweak boson, i.e. a photon or a Z0. Although at first sight these
contributions seem to be small owing to the smaller electroweak coupling,
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they can have a sizeable effect for down-type quarks owing to the large top-
quark mass [9]. The structure of these operators is similar to that of the
QCD penguins, but the couplings differ. For the decay of a bottom quark,
we obtain

HEWP
eff (b → s) =

4GF√
2

αVtsV
∗
tb

10∑
i=7

Ci(µ)Oi(µ) , (5.51)

with the operators

O7 =
3
2
(s̄L,iγµbL,i)

∑
q=u,d,s,c,b

eq(q̄L,jγ
µqL,j) , (5.52)

O8 =
3
2
(s̄L,iγµbL,j)

∑
q=u,d,s,c,b

eq(q̄L,jγ
µqL,i) , (5.53)

O9 =
3
2
(s̄L,iγµbL,i)

∑
q=u,d,s,c,b

eq(q̄R,jγ
µqR,j) , (5.54)

O10 =
3
2
(s̄L,iγµbL,j)

∑
q=u,d,s,c,b

eq(q̄R,jγ
µqR,i) , (5.55)

where eq is the charge of the quark q in units of the electron charge. Anal-
ogously, we can write the contributions for b → d transitions by making
the replacement s → d, but these amplitudes are CKM suppressed relative
to b → s by a factor Vtd/Vts. The Wilson coefficients have been calculated
to the next-to-leading logarithms and their values can be found in [2]. In
Table 5.4, we give their values to leading logarithmic accuracy.

Table 5.4. Leading-log values of the Wilson coefficients Ci(µ) at the scale µ =
mb = 4.4 GeV for ΛQCD = 225 MeV; α is the electromagnetic coupling. The values
are taken from [2]

Ci(µ) µ = 1.0 GeV

C7/α 0.045
C8/α 0.048
C9/α −1.280
C10/α 0.328

Likewise, the operators for the decay of a strange quark are obtained by
the replacement b → s and s → d in (5.52) – (5.55), yielding R7, . . . , R10,
and the electroweak penguin contribution to the s → d transition becomes

HEWP
eff (s → d) = −4GF√

2
αVtsV

∗
td

10∑
i=7

yi(µ)Ri(µ) + h.c. , (5.56)

where the coefficients are given in Table 5.5.
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Table 5.5. Leading-log values of the Wilson coefficients yi(µ) of the electroweak
penguin contributions to s → d transitions for three different values of µ, for
ΛQCD = 215 MeV

µ = 1.0 GeV µ = 1.3 GeV µ = 2.0 GeV

y7/α 0.027 0.030 0.031
y8/α 0.114 0.092 0.068
y9/α −1.491 −1.428 −1.357
y10/α 0.650 0.558 0.442

5.1.4 Radiative and (Semi)leptonic Flavour-Changing
Neutral-Current Processes

Another important class of ∆F = ±1 processes is flavour-changing neutral-
current (FCNC) processes with photons and leptons [10, 11]. As has been
discussed above, such processes cannot happen at tree level in the Standard
Model, but they are allowed at one-loop level, going through two charged-
current vertices. An example of loop diagrams leading effectively to flavour-
changing neutral currents, the relevant diagrams for the process b → sγ are
depicted in Fig. 5.3.

Fig. 5.3. Flavour-changing neutral-current loops for b → sγ. Self-energy like dia-
grams are omitted. The third diagram contributes through its mixing

Although these loops diagram look divergent superficially, they actually
lead to a convergent result once the summation over the flavours of the in-
termediate quark is performed. Considering again the transition b → sγ, we
can write the amplitude as

A(b → sγ) = VubV
∗
usf(mu) + VcbV

∗
csf(mc) + VtbV

∗
tsf(mt) , (5.57)

where f(m) is the result of the loop integration, which depends on the quark
mass m of the intermediate up-type quark. Any contribution which is the
same for all intermediate quarks (i.e. a contribution independent of the quark
mass) will cancel: if the quark masses of the up-type quarks were degenerate,
mu = mc = mt = m the amplitude would vanish owing to CKM unitarity,
i.e.

A(b → sγ) = f(m) [VubV
∗
us + VcbV

∗
cs + VtbV

∗
ts] = 0 , (5.58)
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which means that the amplitude is finite and proportional to the mass split-
ting of the up-type quarks, leading to an amplitude in our example roughly
proportional to m2

t . This is the essence of the GIM mechanism of the Stan-
dard Model discussed in Sect. 1.1, where FCNC processes are suppressed by
loop factors 1/(16π2).

Similar arguments hold for the FCNC transitions of s quarks, while for t
or c quarks the intermediate quark is of down type. Since the mass splitting
between the down-type quarks is much smaller, the GIM suppression for
FCNC processes of up-type quarks is much more effective than for down-
type quarks.

We can now proceed to apply the machinery of effective field theories to
these processes. As above, we integrate out modes with masses of the order of
those of the top quark and the weak boson. In total, we obtain the following
for the contribution to the effective Hamiltonian:

Heff(b → sγ) =
4GF√

2
VtsV

∗
tb

∑
i=7,8

C ′
i(µ)Pi(µ) , (5.59)

with the operators

P7 =
e

16π2
mb(s̄L,ασµνbR,α)Fµν , (5.60)

P8 =
g

16π2
mb(s̄L,αT a

αβσµνbR,α)Gaµν . (5.61)

Note that these contributions are proportional to the b quark mass. The
corresponding Wilson coefficients at MW are obtained by calculating the
diagrams depicted in Fig. 5.3. Since the top quark appears in these diagrams,
the results will be functions of the ratio m2

t /M
2
W . These functions are called

the Inami–Lim functions [12], and are, in the case at hand,

C ′
7(MW ) =

1
2
x

[
2x2/3 + 5x/12 − 7/12

(x − 1)3
− 3x2/2 − x

(x − 1)4
ln x

]
, (5.62)

C ′
8(MW ) =

1
2
x

[
x2/4 − 5x/4 − 1/2

(x − 1)3
+

3x/2
(x − 1)4

ln x

]
, (5.63)

where x = m2
t /M

2
W .

We can discuss FCNC quark-level processes involving leptons in the same
way. We first consider the quark transition b → s+− where  = e, µ or τ .
The relevant diagrams are shown in Fig. 5.4. Using the effective-field-theory
picture and integrating out both the heavy top quark and the heavy weak
bosons, we obtain two contributions

Heff(b → s+−) =
4GF√

2
VtsV

∗
tb

∑
i=9,10

C ′
i(µ)Pi(µ) , (5.64)

with the operators



5.1 ∆F = 1 Effective Hamiltonian 91

Fig. 5.4. Contributions to b → s�+�−

P9 =
1
2
(s̄LγµbL)(̄γµ) , (5.65)

P10 =
1
2
(s̄LγµbL)(̄γµγ5) . (5.66)

The Wilson coefficients appearing in the effective Hamiltonian are ob-
tained by calculating the diagrams in Fig. 5.4, from which we obtain another
set of Inami–Lim functions,

C9(MW ) =
(

1
sin2 θW

B(x) +
−1 + 4 sin θW

sin2 θW

C(x) + D(x) +
4
9

)

C10(MW ) =
−1

sin2 θW

B(x) +
1

sin2 θW

C(x) (5.67)

where x = m2
t /M

2
W , and we have defined the auxiliary functions

B(x) =
1
4

[
−x

x − 1
+

x

(x − 1)2
ln x

]
, (5.68)

C(x) =
x

4

[
x/2 − 3
x − 1

+
3x/2 + 1
(x − 1)2

ln x

]
, (5.69)

D(x) =
[
−19x3/36 + 25x2/36

(x − 1)3

+
−x4/6 + 5x3/3 − 3x2 + 16x/9 − 4/9

(x − 1)4
ln x

]
. (5.70)

As in the case of the other operators, we may obtain the expressions for
the b → d+− and s → d+− transitions by the appropriate replacements.

The renormalization of these operators now involves also the operators
Oi and Pi considered earlier. Diagrams such as those shown in Fig. 5.5 in-
duce a mixing between the tree operators and the operators for b → sγ and
b → s+−. To perform this renormalization we have to introduce a 10 × 10
anomalous-dimension matrix which, is at order αs, the extension of (5.43)
and reads
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Fig. 5.5. Example of a diagramm leading to a mixing between O2 and O7

where f denotes the number of active flavours, and u and d are the number
of active up and down flavours, respectively.

It should be noted that the mixing of the operators O1, . . . , O6 into O7

and O8 depends on the regularization-scheme [13], and it is convenient to in-
troduce, instead of the scheme-dependent coefficients C7 and C8, the scheme-
independent ones

Ceff
7 (µ) = C7(µ) +

6∑
i=1

riCi(µ) , (5.72)

Ceff
8 (µ) = C8(µ) +

6∑
i=1

siCi(µ) , (5.73)

where the coefficients ri and si depend on the regularization scheme. However,
this is relevant only once next-leading-logarithms are included and we shall
not discuss this any further; details can be found in [2].

By solving the renormalization group (4.15) with this anomalous-dimension
matrix, we obtain the values for the Wilson coefficients shown in Table 5.6
[14].

Table 5.6. Values of the Wilson coefficients Ci(µ) for rare FCNC decays at three
different scales of the order of the b quark mass. We have defined C9 = (α/(2π))Ĉ9.
The values are taken from [2]

Ci(µ) µ = 2.5 GeV µ = 5GeV µ = 10 GeV

Ceff
7 −0.334 −0.299 −0.268

Ceff
8 −0.157 −0.143 −0.131

Ĉ9 1.933 1.788 1.494

Note that the last column of the anomalous-dimension matrix (5.71) van-
ishes, which means that C10 is not renormalized. The numerical value is thus
the same at all scales and is

C10(µ) = C10(MZ) = 4.69 (5.74)

for a top-quark mass of 174 GeV.
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Along the same, lines we can obtain the effective Hamiltonian for transi-
tions of the form s → d+−. The effective Hamiltonian reads

Hrare
eff (s → d) =

4GF√
2

VusV
∗
udα

∑
i=9,10

[
z′i(µ) − Vts

Vtd
y′

i(µ)
]

R′
i(µ) + h.c. , (5.75)

with the operators

R′
9 =

1
2
(d̄LγµsL)(̄γµ) , (5.76)

R′
10 =

1
2
(d̄LγµsL)(̄γµγ5) . (5.77)

By the same argument as in the case of B decays the coefficient of R′
10

is not renormalized; the other Wilson coefficients are tabulated in Table 5.7.
We have z′10 = 0 and the value of y′

10 is again not renormalized; y′
10 ≈ 0.45

for mt = 170 GeV.

Table 5.7. Leading-log values of the Wilson coefficients z′
9(µ) and y′

9 for the rare
FCNC processes mediated by s → d�+�− for three different values of µ and ΛQCD =
215 MeV

µ = 0.8 GeV µ = 1.0 GeV µ = 1.2 GeV

z′
9/α −0.031 −0.014 −0.004

y′
9/α 0.578 0.575 0.571

Finally, we may also discuss decays into a pair of neutrinos, e.g. the process
b → s

∑
ν̄ν, where the sum runs over the three neutrino species [15]. Here

we may safely ignore the mass of the neutrinos and hence only left-handed
neutrinos can appear. Consequently, we can have only a single operator

Heff(b → s
∑

ν̄ν) =
4GF√

2
VtsV

∗
tb

∑
ν

C ′(µ)P (µ) , (5.78)

with the operator

P =
1
2
(s̄LγµbL)(ν̄γµ(1 − γ5)ν) (5.79)

and the Wilson coefficient

C ′(MW ) =
α

2π sin2 θW

X

(
m2

t

M2
W

)
(5.80)

where

X(x) =
x

8

[
−2 + x

1 − x
+

3x − 6
(1 − x)2

ln x

]
. (5.81)
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Note that the left-handed current (s̄LγµbL) is a conserved current in QCD,
and so the operator P does not renormalize under QCD; thus

C ′(µ) = C ′(MW ) = 0.008 . (5.82)

The full effective Hamiltonian for all ∆F = 1 processesis in fact known
to next-to-leading-order accuracy. This has involved many contributions and
also many technical details which are nicely reviewed in [2]. We shall return to
some of the details in the sections where specific decay modes are discussed.

5.2 Remarks on ∆D = 1 Processes: Pions and Nucleons

The hadrons consisting of up and down quarks are the lightest hadrons and
hence no purely hadronic processes are possible. The leptonic and semilep-
tonic processes of these hadrons were the first weak processes to have been
observed, such as the decay of the charged pion and the β decay of the neu-
tron. Clearly there is a very rich phenomenology of d → u transitions (for
instance in nuclear β decays) which we cannot summarize here; we shall focus
instead on a few very simple processes and present a few important examples.

Using the effective Hamiltonian constructed in the last section, we may
start with the purely leptonic decays. The simplest process one may consider
is the leptonic decay of the charged pion, π+ → µ+ + νµ or π+ → e+ + νe.
The necessary hadronic matrix element can be parametrized in terms of one
constant fπ, the pion decay constant defined in (4.158) in Sect. 4.8.

The total decay rate can then be computed and yields

Γ (π+ → µ+ + νµ) =
G2

F

4π
f2

πm2
µ|Vud|2

(
1 −

m2
µ

m2
π

)
. (5.83)

For a given value of Vud, this may be used to extract a value of fπ for which
we obtain

fπ ≈ 93MeV . (5.84)

The interesting feature of (5.83) is its dependence on the mass of the
lepton. Comparing π+ → µ+ + νµ with π+ → e+ + νe we find that the ratio
of the two decay rates is

Γ (π+ → e+ + νe)
Γ (π+ → µ+ + νµ)

=
m2

e

m2
µ

(
m2

π − m2
e

m2
π − m2

µ

)2

∼ 1.283 × 10−4 , (5.85)

which is in accordance with the experimental findings.
This result is a consequence of the fact that the weak interaction is purely

left-handed. Since the axial- and the vector currents of the leptons are con-
served in the limit of vanishing lepton masses, the amplitude has to be pro-
portional to the mass of the lepton. This result severely constrains possible
scalar or tensor contributions to the weak hadronic current (see (1.2)).
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A second process which can be calculated is the semileptonic decay of the
charged pion π+ → π0 + e+ + νe. In this case the hadronic matrix element is
given in terms of two form factors f+(q2) and f−(q2)

〈π0(p′)|ūLγµdL|π+(p)〉 = f+(q2)(pµ + p′µ) + f−(q2)qµ , (5.86)

where q = p − p′ is the momentum transferred to the leptons.
In order to deal with this unknown matrix element we make use of isospin

symmetry which is a subgroup of the SU(3) flavour symmetry discussed in
Sect. 4.8. In the exact isospin limit the three pions would have identical
masses and thus the decay π+ → π0 + e+ + νe would have no phase space.
However, electromagnetic interactions break isospin by a small amount and
thus the charged pion is slightly heavier than the neutral one. This mass
difference is small, in which case we may neglect it in the form factors, which
means that the form factors can be approximated by their value at q2 = 0.

Writing the left-handed components in (5.86) explicitly we obtain two
terms, one is the vector current and the other is the axial-vector current.
Owing to parity, the axial current cannot contribute, and the vector current
is one of the vector currents appearing in (4.157) which generates the (ap-
proximate) SU(3) flavour symmetry. Thus this current is conserved, in which
case the matrix element can be written in terms of a single form factor f+:

〈π0(p′)|ūγµd|π+(p)〉 . = f+(q2)(pµ + p′µ) (5.87)

Furthermore, the corresponding charge is conserved, which fixes the value of
f+ at q2 = 0:

f+(q2 = 0) =
√

2 . (5.88)

Using this value, we can compute the decay rate for the decay π+ → π0 +
e+ + νe which becomes

Γ (π+ → π0 + e+ + νe) =
G2

F |Vud|2
30π3

(mπ+ − mπ0)5 . (5.89)

This result is indeed equal to the observed rate, supporting the hypothesis of
the conserved vector current [16].

We can discuss the β decay of the neutron n(p) → p(p′)eν̄e on the same
footing. The transition matrix elements of the vector and axial-vector currents
are parametrized in terms of six form factors in total:

〈n(p)|ūγµd|p(p′)〉 = ūn(p)
[
f1(q2)γµ + f2(q2)σµνqν + f3qµ

]
up(p′) ,

〈n(p)|ūγµγ5d|p(p′)〉
= ūn(p)

[
g1(q2)γµ + g2(q2)σµνqν + g3qµ

]
γ5up(p′) , (5.90)

where up and un are the spinors for the proton and the neutron. As in the case
of semileptonic π decay, the form factors are restricted by isospin or SU(3)
flavour symmetry. From the assumption that the vector current is conserved,
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we obtain f3(q2) = 0 in this limit. Furthermore, at vanishing momentum
transfer, we obtain the following result from the fact that the vector current
is conserved in the isospin limit (the CVC Hypothesis):

f1(q2 = 0) = 1 . (5.91)

For the axial-vector form factors, we cannot use arguments from current
conservation, since the axial vector is not conserved. The measured value [17]

GA ≡ g1(q2 = 0) = 1.2715 ± 0.0021 (5.92)

can be explained using arguments from chiral perturbation theory. From these
arguments one can obtain the Goldberger-Treiman relation for g1 [18],

g1(q2 = 0) =
gpnπfπ

mp + mn
∼ 1.31 , (5.93)

where gpnπ is the pion–nucleon coupling which is determined by experiment.
With this information, we can compute the rate for the β decay of the

neutron. Again we make use of the argument that the form factors are needed
only close to q2 = 0; however, unlike in the case for the pions we may not
neglect the electron mass here, since the mass difference between the neu-
tron and the proton is of the order of the electron mass. A straightforward
calculation yields

d2Γ

dEed cos θ
=

G2
F |Vud|2
4π3

(mn − mp − Ee)2Ee

√
E2

e − m2
e

[
1 + 3G2

A

]

×
[
1 +

√
E2

e − m2
e

Ee

1 − G2
A

1 + 3G2
A

cos θ

]
, (5.94)

where Ee is the electron energy and θ is the angle between the electron
and the neutrino. Using this doubly differential rate allows a simultaneous
extraction of both GA and Vud.

Finally, we mention some ways to determine the CKM matrix element
Vud. One precise way is to use super-allowed β decays of nuclei. Taking into
account all known data, a recent article [19] quotes

|Vud| = 0.9740 ± 0.0005 . (5.95)

Another way is to to use the β decay of the neutron discussed above [20].
However, in order to obtain a precise value, one has to put in the most precise
value for the form factor g1(q2 = 0) (5.92), and additional corrections such
as the Coulomb distortion of the electron wave function when the electron is
moving in the field of the proton. Taking into account all these effects yields

|Vud| = 0.9728 ± 0.0012 . (5.96)

A summary of the current status can be found in the proceedings of
a recent conference dedicated to the CKM matrix elements involving light
quarks [21].
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5.3 ∆S = 1 Processes: Kaon Physics

Kaons and hyperons have a richer phenomenology, since the kaons are heavy
enough to decay non-leptonically into two or three pions. We shall use the
effective Hamiltonian to discuss some aspects of the phenomenology of kaon
physics, starting from the simpler cases of leptonic and semileptonic decays,
and then give a qualitative discussion of the non-leptonic channels. Unfor-
tunately, the s-quark mass is not large enough to allow one to apply heavy
mass methods, so one has either to resort to flavour SU(3) and chiral pertur-
bation theory (with the disadvantage that the breaking of SU(3) is difficult
to control) or to use models.

5.3.1 Leptonic and Semileptonic Kaon Decays

The simplest decay is the purely leptonic decay of the charged kaon which is
computed in complete analogy to the decay of the charged pion. We find the
following for the decay K+ → µ+ + νµ:

Γ (K+ → µ+ + νµ) =
G2

F

4π
f2

Km2
µ|Vus|2

(
1 −

m2
µ

m2
K

)
, (5.97)

where the kaon decay constant is defined in a similar way to the pion decay
constant:

〈0|ūLγµsL|K+(p)〉 = ifKpµ . (5.98)

Of course, this shows the same helicity suppression as in the case of pions,
i.e. the rate is again proportional to the lepton mass.

If flavour SU(3) (i.e. the symmetry between the s, u and d quarks) were an
exact symmetry, we would have fπ = fK . Clearly this symmetry is violated,
since in this limit the pion mass would be equal to the kaon mass. However,
the SU(3)flavour violation for the decay constants is at the level of 20%, which
means that

fK = (1.23 ± 0.02)fπ ≈ 114MeV . (5.99)

We can discuss the semileptonic decay K → πν̄, called the Ke3 decay, in
the same way. This decay is used to determine the CKM matrix element Vus.
In order to compute the rate, we need the matrix element of the left-handed
current between a kaon and a pion. Owing to parity, only the vector current
can contribute; the matrix element of this current is parametrized in terms
of two form factors F+ and F−:

〈π−(p′)|ūγµs|K0(p)〉 = F+(q2)(pµ + p′µ) + F+(q2)qµ , (5.100)

〈π0(p′)|ūγµs|K+(p)〉 =
1√
2
F+(q2)(pµ + p′µ) +

1√
2
F+(q2)qµ , (5.101)

where the factors of
√

2 emerge from applying isospin symmetry.
In contrast to the case of pions, the mass difference between the initial

and the final state cannot be neglected. This has two consequences:
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1. The q2 dependence of the form factors cannot be neglected any more;
hence we need some ansatz for the (non-perturbative) form factors.

2. The form factor F− is non-zero and will contribute to the rate; however,
its contribution in a semileptonic decay will be proportional to the lepton
mass.

We shall neglect the lepton mass in the following, and hence only the first
point needs to be considered.

The usual ansatz for the q2 dependence of the form factor is based on
the assumption that it is dominated by the propagator of the nearest reso-
nance with the correct quantum numbers; this is commonly called the vector
dominance model and is schematically depicted in Fig. 5.6. In the case of the
K → π form factor this is the the K∗ resonance, from which we obtain

F+(q2) =
gKK∗πfK∗

m2
K∗ − q2

, (5.102)

which is called the pole ansatz for the form factor.

Fig. 5.6. Vector dominance model for the K → π form factor

Using this form factor, we can compute the rate for the decay K → πν̄ in
the limit of vanishing lepton mass. In order to be able to predict the (differen-
tial) rate quantitatively, we also need a value for gKK∗πfK∗ , or, equivalently,
for the form factor at q2 = 0. This value can again be obtained from sym-
metry considerations, assuming exact SU(3)flavour symmetry, in which case
we obtain F+(0) = 1. However, this approximation is not as good as in the
case of pions, since isospin breaking is much less than SU(3)flavour breaking.
Thus, for a precise value for F+(0), one has to include corrections, which can
be computed in the framework of chiral perturbation theory. This has been
done in a classic paper by Leutwyler and Roos [22], who find

F+(0) ≈ 0.65 . (5.103)

If we rely on the extrapolation given by the pole ansatz (5.102), we also
obtain a prediction for the spectra (q2 spectra as well as lepton energy spec-
tra), which can be compared with experiment. The agreement is satisfactory
and gives some confidence in the extraction of Vus from these decays.
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In fact, the determination of Vus relies mainly on the measurement of
these decays. The Particle Data Group [17] has extracted the value

Vus = 0.2196 ± 0.0023 (5.104)

which is consistent with other extractions, based on, for example, strange τ
decays.

5.3.2 Non-Leptonic Kaon Decays

The kaon states are sufficiently heavy to decay into two pions and also into
three pions, which is a non-leptonic decay. In terms of quarks, these transi-
tions are mediated by the effective Hamiltonian considered in (5.44). How-
ever, in contrast to the leptonic and semileptonic decays, these transitions
are much harder to describe, owing to hadronic uncertainties; in other words,
the matrix elements of (5.44) are hard to calculate.

Before we consider the effective Hamiltonian, we start with a few more
general considerations. As far as strong interactions are concerned, isospin is
a good symmetry, and thus it is useful to discuss the various isospin compo-
nents in the decay. The four kaon states K0, K+, K

0
and K− fall into two

isodoublets, which are the CP conjugates of each other
(

K+

K0

)
CP−→

(
K

0

−K−

)
. (5.105)

For the neutral kaon states, we have1

CP|K0〉 = −|K0〉 , CP|K0〉 = −|K0〉 . (5.106)

Thus we can form CP eigenstates from the two neutral kaons, which are

|K1〉 =
1√
2

[
|K0〉 − |K0〉

]
, CP|K1〉 = |K1〉 , (5.107)

|K2〉 =
1√
2

[
|K0〉 + |K0〉

]
, CP|K2〉 = −|K2〉 . (5.108)

The final state can be either two or three pions. We focus first on the two-
pion states; here the two pions have to be in a state with vanishing orbital
angular momentum , since the kaon is a pseudoscalar particle. Such a state
can be written as

|π+π−,  = 0〉 =
∫

dΩk√
4π

|π+(k)π−(−k)〉 , (5.109)

1In fact, this implies a phase convention for the relative phase between the

K0 and K
0

states. This convention is natural; the minus sign originates from the
negative parity of the kaon states.
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|π0π0,  = 0〉 =
1√
2

∫
dΩk√

4π
|π0(k)π0(−k)〉 , (5.110)

|π+π0,  = 0〉 =
∫

dΩk√
4π

|π+(k)π0(−k)〉 , (5.111)

where the additional factor of 1/
√

2 for the state with two neutral pions is
due to the indistinguishability of the two particles.

We can now decompose the pion states into their various isopin compo-
nents. A single pion has isospin I = 1 and consequently a two-pion state
can have either I = 0, 1 or 2. Since the momentum state is symmetric for
 = 0 (owing to the integration in (5.109)–(5.111), there is no way to couple
the pions to give I = 1 owing to Bose symmetry: the total state has to be
symmetric, and I = 1 corresponds to an antisymmetric combination of the
two pions. Using the appropriate Clebsch–Gordan coefficients we find

|π(k)π(−k), I = 0, I3 = 0〉

=
1√
3

[
|π+(k)π−(−k)〉 − |π0(k)π0(−k)〉 + |π−(k)π+(−k)〉

]
, (5.112)

|π(k)π(−k), I = 2, I3 = 0〉

=
1√
6

[
|π+(k)π−(−k)〉 + 2|π0(k)π0(−k)〉+|π−(k)π+(−k)〉

]
, (5.113)

|π(k)π(−k), I = 2, I3 = 1〉

=
1√
2

[
|π+(k)π0(−k)〉 + |π0(k)π+(−k)〉

]
. (5.114)

Inserting this into the states with orbital angular momentum  = 0,

|ππ, I, I3〉 =
1√
2

∫
dΩk√

4π
|π(k)π0(−k)I, I3〉 , (5.115)

we obtain

|π+π−,  = 0〉 =

√
2
3
|ππ, I = 0, I3 = 0〉 +

√
1
3
|ππ, I = 2, I3 = 0〉 ,

|π0π0,  = 0〉 = −
√

1
3
|ππ, I = 0, I3 = 0〉 +

√
2
3
|ππ, I = 2, I3 = 0〉 ,

|π+π0,  = 0〉 = |ππ, I = 2, I3 = 1〉 . (5.116)

The effective Hamiltonian mediating a transition K → ππ thus must have
either ∆I = 1/2, ∆I = 3/2 or ∆I = 5/2. The latter is not possible in the
Standard Model, at least with a single insertion of the weak Hamiltonian
discussed in Sect. 5.1. Omitting the possibility of a ∆I = 5/2 contribution
we can decompose the effective Hamiltonian into two pieces,

Heff = H1/2 + H3/2 , (5.117)
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where both components have I3 = 1/2. Using the Wigner–Eckart theorem,
we can write the three decay amplitudes A(K0 → π+π−), A(K0 → π0π0)
and A(K+ → π+π0) in terms of two reduced matrix elements:

〈ππ, I =0, I3 =0|Heff |K0〉 =
1√
2
〈I =0||H1/2||1/2〉 ≡ A0 ,

〈ππ, I =2, I3 =0|Heff |K0〉 = − 1√
10

〈I =2||H3/2||1/2〉 ≡ A2 ,

〈ππ, I =2, I3 =1|Heff |K+〉 = −
√

3
20

〈I =2||H3/2||1/2〉 =

√
3
2
A2 ,

(5.118)

where 〈|| ||〉 denotes the reduced matrix elements appearing in the Wigner–
Eckart theorem. We obtain the following for the decay amplitudes expressed
in these reduced matrix elements

〈π+π0|Heff |K+〉 = +

√
3
2

A2 ,

〈π0π0|Heff |K0〉 = −
√

1
3

A0 +

√
2
3

A2 ,

〈π+π−|Heff |K0〉 = +

√
2
3

A0 +

√
1
3

A2 . (5.119)

The absolute value of the ratio of the two reduced matrix elements can
be inferred from the lifetimes and branching ratios of charged and neutral
kaons. We shall neglect for the moment the small CP violation. Since all the
two-pion states with  = 0 are CP even, i.e.

CP|ππ,  = 0〉 = |ππ,  = 0〉 , (5.120)

only the K1 state given in (5.107) can decay into two pions, and the K2 state
has to decay into three pions. Since the phase space for the decay into three
pions is much smaller than that for the decay into two pions, the lifetimes of
the two states K1 and K2 are very different; if CP were conserved, we would
have

|K1〉 = |Kshort〉 , |K2〉 = |Klong〉 , (5.121)

where Kshort is the short-lived and Klong the long-lived neutral kaon. How-
ever, CP is not conserved and we return to this matter in Chap. 6.

Neglecting the small violation of CP we can write

|K0〉 ≈ 1√
2

[|Kshort〉 + |Klong〉] . (5.122)

From this we obtain
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Γ (K+ → ππ) =
1

τ(K+)
Br(K+ → π+π0) ∝ 3

2
|A2|2 , (5.123)

Γ (K0 → ππ) =
1

2τ(Kshort)
[
Br(Kshort → π0π0) + Br(Kshort → π+π−)

]

∝ |A0|2 + |A2|2 , (5.124)

where the factors of proportionality are the same up to phase space correc-
tions, which are tiny. Inserting the numbers we can calculate the ratio

|A0|
|A2|

=

√
3
2

Γ (K0 → ππ)
Γ (K+ → ππ)

− 1 ≈ 22 , (5.125)

showing that the contribution of H3/2 is strongly suppressed. This observa-
tion is one of the manifestations of the so-called ∆I = 1/2 rule. This rule
states that in decays of strange particles (Kaons and hyperons) the ∆I = 1/2
contribution to the effective interaction is dominant in comparison with the
∆I = 3/2 contribution; furthermore; no evidence for any ∆I = 5/2 contri-
bution has been found. As we shall see below, this substantial enhancement
of the ∆I = 1/2 interaction is one of the remaining mysteries; usually this is
blamed on strong-interaction effects, which are hard to calculate.

As an interesting side remark, we may also perform a similar analysis on
the D and B meson systems, since all the rates of the D → ππ and B → ππ
decays have been measured. Using the lifetimes given in [17] and the recent
measurement of the decay B → π0π0, we obtain

|AD→ππ
0 |

|AD→ππ
2 | ≈ 1.61 ,

|AB→ππ
0 |

|AB→ππ
2 | ≈ 0.92 , (5.126)

and thus we observe no significant enhancement of the ∆I = 1/2 contribution
in the decays of heavier mesons. Hence the ∆I = 1/2 enhancement must be
considered to be accidental and may be related to the fact that the two-pion
decays practically exhaust the inclusive non-leptonic rate, which is not the
case for the decays of heavier hadrons.

On the basis of this isospin analysis, we can now examine the effective
Hamiltonian discussed in Sect. 5.1 [23]. The tree-level Hamiltonian has the
flavour structure (see (5.21))

Heff ∼ (ūs)(d̄u) (5.127)

where we have suppressed all Dirac and colour indices. Clearly this Hamilto-
nian has a ∆I = 1/2 and a ∆I = 3/2 contribution; however, this Hamiltonian
does not exhibit a large enhancement of the ∆I = 1/2 contribution over the
∆I = 3/2 contribution.

It has been noted that once QCD corrections are switched on, the
∆S = ±1 Hamiltonian receives contributions from penguins also, as has
been discussed in Sect. 5.1. The contributions of the operators R3 , . . . , R6
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to (5.44) given in (5.47)–(5.50) involves a summation over the active quarks
which are u, d and s in the present case. Thus the flavour structure (if we
use the same “sloppy” notation as in (5.127)) of the penguin contributions
(5.47)–(5.50) is

R3 ,..., 6 ∼ (d̄s)[(ūu) + (d̄d) + (s̄s)] . (5.128)

The term in the square brackets is a flavour SU(3) singlet and thus also an
isosinglet, which adds the whole contribution from the QCD penguin oper-
ators to the ∆I = 1/2 piece of the effective Hamiltonian. The contribution
of the QCD penguins indeed leads to an enhancement of the ∆I = 1/2 con-
tribution compared with ∆I = 3/2, but – depending on the scale used in
the renormalization group evolution – the enhancement can be up to only
a factor of about five; thus one cannot explain the observed factor of 22 by
perturbative calculations and renormalization-group running [24].

5.4 ∆B = 1 Processes: B Physics

The phenomenology of b hadrons is very rich; owing to the large mass of the
bottom quark, there are many decay channels. On the other hand, the fact
that the b quark mass is large compared with the scale parameter of QCD
ΛQCD allows us to perform a heavy-mass expansion. This method has been
described in Sect. 4.3, and we shall discuss some of the main results in this
section. The section is divided into subsections on exclusive and inclusive
semileptonic decays, lifetimes, exclusive non-leptonic decays and rare decays.

5.4.1 Exclusive Semileptonic Decays

Semileptonic decays are mediated by the effective Hamiltonian shown in
Sect. 5.1 and the remaining task is to consider the matrix elements of the
hadronic currents of the b → c and b → u transitions between exclusive
states.

We shall concentrate in this section on transitions of B mesons into
the ground-state mesons D and D∗, mediated by the left-handed current
b̄γµ(1− γ5)c These decays are the master example of a heavy-to-heavy tran-
sition, since we shall treat the c quark also as a heavy quark, i.e. we shall
perform an expansion in 1/mc also. This is in contrast to the transition b → u,
which is a heavy-to-light decay and in which heavy quark symmetries cannot
be employed as efficiently.

The transition of a pseudoscalar into a pseudoscalar or vector meson is in
general described in terms of six form factors, which we can write as

〈D(v′)|c̄γµb|B(v)〉=√
mBmD

[
ξ+(y)(vµ + v′

µ)+ξ−(y)(vµ − v′
µ)

]
, (5.129)

〈D∗(v′, ε)|c̄γµb|B(v)〉 = i
√

mBmD∗ξV (y)εµαβρε
∗αv′βvρ , (5.130)

〈D∗(v′, ε)|c̄γµγ5b|B(v)〉 =
√

mBmD∗
[
ξA1(y)(vv′ + 1)ε∗µ − ξA2(y)(ε∗v)vµ

−ξA2(y)(ε∗v)v′
µ

]
, (5.131)
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where we have defined y = vv′ and introduced convenient normalization
factors. As we have discussed in Sect. 4.3, these six form factors are related
to the Isgur–Wise function in the heavy-mass limit for both the b and the c
quark. These relations are

ξi(y) = ξ(y) for i = +, V, A1, A3 , ξi(y) = 0 for i = −, A2 . (5.132)

In particular, at the non-recoil point v = v′ we have due to heavy quark
symmetry and Luke’s theorem,

ξi(1) = 1 + O(1/m2
Q) for i = +, V, A1, A3 ,

ξi(1) = O(1/mQ) for i = −, A2 . (5.133)

The differential rates for the exclusive semileptonic b → c transitions may
be expressed in terms of the six form factors of (5.129)–(5.131) as

dΓ

dy
(B → Dν) =

G2
F

48π3
|Vcb|2(mB + mD)2

(
mD

√
y2 − 1

)3

×
∣∣∣∣ξ+(y) − mB − mD

mB + mD
ξ−(y)

∣∣∣∣
2

(5.134)

dΓ

dy
(B → D∗ν) =

G2
F

48π3
|Vcb|2(mB − mD∗)2m2

D∗

(
mD∗

√
y2 − 1

)

×(y + 1)2|ξA1(y)|2
∑

i=0,±
|Hi(y)|2 (5.135)

with the squared helicity amplitudes

|H±(y)|2 =
m2

B − m2
D∗ − 2ymBmD∗

(mB − mD∗)2

[
1 ∓

√
y − 1
y + 1

R1(y)
]2

, (5.136)

|H0(y)|2 =
(

1 +
mB(y − 1)
mB − mD∗

[1 − R2(y)]
)2

. (5.137)

Here we have defined the form factor ratios

R1(y) =
ξV (y)
ξA1(y)

, R2(y) =
ξA3(y) + mB

mD∗ ξA2(y)

ξA1(y)
. (5.138)

In the heavy-mass limit mb,mc → ∞ these differential rates depend only on
the Isgur–Wise function:

dΓ

dy
(B → Dν)→

G2
F

48π3
|Vcb|2(mB+mD)2

(
mD

√
y2 − 1

)3

|ξ(y)|2 , (5.139)

dΓ

dy
(B → D∗ν)→

G2
F

48π3
|Vcb|2(mB − mD∗)2m2

D∗

(
mD∗

√
y2 − 1

)
(y + 1)2

×
[
1 +

4y

y + 1
m2

B − m2
D∗ − 2ymBmD∗

(mB − mD∗)2

]
|ξ(y)|2 . (5.140)
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These relations allow a test of heavy-quark symmetry, since the ratios of the
differential rates do not depend on any unknown form factor any more. In
particular the ratios R1 and R2 measure the ratio of the differential transverse
and longitudinal rates, respectively, to the total differential rate. In the heavy-
mass limit both R1 and R2 are unity; this should be compared with the
measurements by CLEO [25]

R1 = 1.24 ± 0.26 ± 0.12 , (5.141)
R2 = 0.72 ± 0.18 ± 0.07 . (5.142)

From the measured lepton invariant-mass spectrum, one may determine
Vcb in a model independent way by extrapolating to the kinematical endpoint
of maximal momentum transfer to the leptons, corresponding to the point
v = v′. At this point heavy-quark symmetries determine the absolute normal-
ization of some of the form factors, and the corrections to this normalization
have been discussed in Sect. 4.3 and Sect. 4.4.

The mode B → D∗ν has the advantage of a higher branching fraction,
and hence we shall start the discussion with this decay. The relevant formula
may be derived from (5.135) and reads

lim
y→1

1√
y2 − 1

dΓ

dy
(B → D∗ν) =

G2
F

4π3
(mB − mD∗)2m3

D∗ |Vcb|2|ξA1(1)|2 .

(5.143)
The form factor ξA1 is normalized, owing to heavy-quark symmetries, and is
hence protected against 1/mQ corrections at v = v′ by Luke’s theorem [26].
Hence we have

ξA1(1) = ηA(1 + δ1/m2) . (5.144)

Including QED corrections and the estimate of the 1/m2
Q corrections in the

way discussed in Sect. 4.3 and Sect. 4.4, we obtain [27]

ξA1(1) = 0.91+0.03
−0.04 . (5.145)

For the extraction of Vcb, an extrapolation to the edge of phase space where
vv′ = 1 is necessary, and this extrapolation involves an assumption about
the behaviour of the form factor ξA1(vv′) close to vv′ = 1. The extrapolation
usually uses a linear fit, in which the slope ρ2 defined by

ξA1(vv′) = ξA1(1)
(
1 − ρ2[vv′ − 1] + · · ·

)
(5.146)

is also extracted. From the theoretical side the slope is restricted by consid-
erations of unitarity and analyticity [28, 29, 30]. The current results from the
various experiments have been collected together and averaged by the Heavy
Flavor Averaging Group [31] and are shown in Figs. 5.7 and 5.8. The value

V excl
cb = (40.2 ± 0.9exp ± 1.8theo) × 10−3 (5.147)

has been extracted from these results [31].
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The uncertainty quoted in (5.145) arises mainly from the unknown con-
tributions of order 1/m2

c and higher, and constitutes a limitation of this
method until such time as lattice determinations improve our knowledge of
the higher-order terms. Some initial progress has been made on this, see [32].
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The plot is taken from [31]
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5.4.2 Inclusive Semileptonic Decays

Using the heavy-quark expansion described above, we may also calculate the
rates for inclusive semileptonic decays. Starting from the simplest case, the
total rate for B → Xcν̄), we may calculate straightforwardly the total rate
at tree level, including the first, non-trivial non-perturbative corrections. We
obtain the following for the total inclusive semileptonic decay rate B → Xcν:

Γ (B → Xcν)
G2

F m5
b

192π3
|Vcb|2

[(
1 +

λ1

2m2
c

)
f1

(
mc

mb

)
− 9λ2

2m2
c

f2

(
mc

mb

)]
, (5.148)

where the two fj are the phase-space functions

f1(x) = 1 − 8x2 + 8x6 − x8 − 24x4 log x ,

f2(x) = 1 − 8
3
x2 − 8x4 + 8x6 +

5
3
x8 + 8x4 log x . (5.149)

The result for B → Xuν is obtained from (5.148) by taking the limit mc → 0
and making the replacement Vcb → Vub:

Γ (B → Xuν) =
G2

F m5
b

192π3
|Vub|2

[
1 +

λ1 − 9λ2

2m2
b

]
. (5.150)

As discussed above, the leading non-perturbative corrections in (5.148)
and (5.150) are parametrized by λ1 and λ2. In order to estimate the total
effect of the non-perturbative effects we shall insert a range of values −0.3 >
λ1 > −0.6 GeV2; from this we obtain

λ1 − 9λ2

2m2
b

∼ −(3 − 4)% . (5.151)

This means that the non-perturbative contributions are small, in particular
when compared with the perturbative ones, which were calculated some time
ago [33, 34, 35, 36, 37, 38, 39]. For the decay B → Xuν̄, the lowest order
QCD corrections are given by

Γ (B → Xuν̄) =
G2

F m5
b

192π3
|Vub|2

[
1 +

2α

3π

(
25
4

− π2

)]

= 0.85|Vub|2Γb , (5.152)

and thus the typical size of QCD radiative corrections is of the order of
10–20%.

The method of the operator product expansion may also be used to obtain
the non-perturbative corrections to the charged-lepton energy spectrum [40,
41, 42, 43, 44, 45]. In this case the operator product expansion is applied not
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to the full effective Hamiltonian, but only to the hadronic currents. The rate
is written as a product of the hadronic tensor Wµν and the leptonic tensor
Λµν ,

dΓ =
G2

F

4mB
|VQq|2WµνΛµνd(PS) , (5.153)

where d(PS) is the phase-space differential. The short-distance expansion is
then performed for the two currents appearing in the hadronic tensor. After
the phase of the heavy-quark fields is redefined as in (4.47), it is found that
the momentum transfer variable relevant for the short-distance expansion is
mQv− q, where q is the momentum transfer to the leptons. After integration
over the momentum of the neutrino, the expansion variable is the energy
release (mQ/2) − E, where E is the energy of the charged lepton.

The structure of the expansion for the spectrum is identical to that for
the total rate. The contribution of the dimension-three operators yields the
free-quark decay spectrum, there are no contributions from dimension-four
operators, and the 1/m2

b corrections are parametrized in terms of λ1 and λ2.
The result has already been shown in (4.92). It is interesting to note that
even for finite charm mass the behaviour iat the endpoint is unphysical; this
becomes manifest when we take the limit mc → 0 given in (4.95).

Figure 5.9 shows the distributions for inclusive semileptonic decays of B
mesons. The spectrum close to the endpoint, where the lepton energy becomes
maximal, exhibits a sharp spike as y → ymax. In this region we have

dΓ

dy
∝ Θ(1 − y − ρ)

[
2 +

λ1

(mQ(1 − y))2

(
ρ

1 − ρ

)2 {
3 − 4

(
ρ

1 − ρ

)}]
, (5.154)

y
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__dΓ1_
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Fig. 5.9. The electron spectrum for free-quark b → c decay (dashed line), free-
quark b → u decay (grey line) and B → Xceν̄e decay including 1/m2

b corrections
(solid line) with λ1 = −0.5 GeV2 and λ2 = 0.12 GeV2. The figure is from [44]
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which behaves like a δ-function and its derivative as ρ → 0; this can be
seen in (4.95). This behaviour indicates a breakdown of the operator product
expansion close to the endpoint, since the expansion parameter for the spectra
is not 1/mQ, but rather 1/(mQ − qv), which becomes 1/(mQ[1−y]) after the
integration over the neutrino momentum. In order to obtain a description
of the endpoint region, one has to perform a resummation of the operator
product expansion.

This resummation is the twist expansion discussed in Sect. 4.6. The spec-
trum may be calculated in terms of the distribution function f introduced in
Sect. 4.6. It is interesting to note that, to leading order in the twist expan-
sion, one can write the result as a convolution with an “effective mass” m∗

b ;
one finds (assuming the final-state quark to be massless) that [46]

dΓ

dE
=

G2
F |Vqb|2
12π3

E2


∫
dk+ f(k+)Θ

[
m∗

b −2E

]{
3m∗2

b −4m∗
b E

}
, (5.155)

where m∗
b = mb + k+.

Note that the heavy quark mass mb no longer appears explicitly. For this
reason, in particular when the focus is on the endpoint region, it would be
unnatural to introduce the rescaled lepton energy y = 2E/mb. Hence, we
shall hereafter present our results as a function of the lepton energy E, which
is the quantity that is actually measured in experiments. Note in particular,
that (to the order we are working) the maximum value of the lepton energy
is correctly reproduced.

The result (5.155) represents a resummation of the most singular contri-
butions in the endpoint region, which corresponds to a resummation of the
highest derivatives of δ-functions that appear in (4.95), where the explicit cal-
culation to order 1/m2

Q has been performed. In order to illustrate the effect
of the convolution (5.155), we show in Fig. 5.10 the spectrum for B → Xuν

obtained using the ansatz [46]

f(k+) =
32

π2Λ̄
(1 − x)2 exp

{
− 4

π
(1 − x)2

}
Θ(1 − x) , (5.156)

where x = k+/Λ̄, and the choice Λ̄ = 570 MeV yields reasonable values for
the moments.

Including the non-perturbative effects yields a reasonably behaved spec-
trum in the endpoint region and the δ-function-like singularities have disap-
peared. Furthermore, the spectrum now extends beyond the parton model
endpoint; it is shifted from Emax

 = mQ/2 to the physical endpoint Emax
 =

MH/2, since f is non-vanishing for positive values of k+ < Λ̄ = MH − mQ.
Using the relations from Sect. 4.6, we may also include subleading light-

cone distributions. In terms of the functions defined in (4.129), (4.128) and
(4.123) we obtain the following for the lepton energy spectrum:
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Fig. 5.10. Charged-lepton spectrum for B → Xu�ν̄ decays. The solid line is (5.155)
with the ansatz (5.156), and the dashed line shows the prediction of the free-quark
decay model. The figure is from [46]

dΓ

dE
=

2Γ0

mb

∫
dω θ(mb − 2E − ω)

×
[
F (ω)

(
1 − ω

mb

)
− 1

mb
h1(ω)+

3
mb

H2(ω)
]

+ O
(

Λ2
QCD

m2
b

)
. (5.157)

However, in order to exploit this relation for, for example, a model indepen-
dent determination of Vub one needs to know something about the subleading
light-cone distributions. As has been discussed in [47], a knowledge of the first
moments of the subleading functions may be sufficient to obtain a reasonably
precise calculation of the rate close to the endpoint.

Currently, the most precise determination of Vub relies on inclusive chan-
nels, since any exclusive determination still suffers from hadronic uncertain-
ties that are larger than those in the inclusive calculation. In the inclusive
case one is restricted by a possibly large charm background, which can be sup-
pressed by various methods. One model-independent possibility is to compare
the lepton energy spectrum of B → Xuν̄ with the photon energy spectrum
of B → Xsγ, which is directly proportional to f(ω). Although this compari-
son can be performed, including even the subleading twist terms [47, 48, 49],
it still needs the function f(ω) as an input, which increases the theoretical
uncertainty of this method. Furthermore, only a small fraction, about 10%
of the rate is actually above the cut at E > (M2

B − M2
D)/(2MB) which is

needed to get rid of the charm background, so this method certainly has
serious drawbacks.

The advantage of the cut on the lepton energy spectrum is that the neu-
trino momentum does not need to be reconstructed. However, once the neu-
trino momentum is known, one may also use other variables to perform cuts.
One alternative is the hadronic invariant mass m2

X [50, 51], which is peaked
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at small values for charmless decays and thus may serve as a very efficient
cut. However, although in this case about 80% of the rate is still within a cut
M2

X < MD, there is still a dependence on the light-cone distribution function.
Another alternative is to cut on the leptonic invariant mass q2 [52, 53], which
still has about 20% of the rate within the cut q2 > (MB−MD)2, however, this
method does not depend on the light-cone distribution function. The effect
of the cuts is shown schematically in Fig. 5.11. The shaded bar indicates the
region which needs to be cut away in order to suppress the b → c background.
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Fig. 5.11. Effect of the different possible cuts on b → u semileptonic decays. The
region indicated by the shaded bar is contaminated by b → c decays. The solid line
is the tree-level result (including the effect of the light-cone distribution function);
the dashed line includes QCD radiative corrections. Plot (a) is the lepton energy
spectrum, plot (b) is the hadronic invariant-mass spectrum and plot (c) is the
leptonic invariant-mass spectrum. The figure is taken from [27]

By combining these different cuts in an optimized way one can arrive at
a scheme which still includes about 45% of the b → uν̄ rate and has only a
moderate dependence on the light-cone distribution function [54]. In such a
scheme, a theoretical uncertainty of ∆Vub/Vub ∼ 5% seems to be achievable
at the B factories.

On top of the large non-perturbative corrections in the endpoint region,
there are also large perturbative corrections, which have been known for a
long time [33]. While the corrections to the total rate are of the expected
size (see 5.152)), the endpoint region contains large logarithms, of which the
leading ones are the Sudakov-like double logarithms. Up to terms vanishing
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at the endpoint, we have, to order αs

dΓ

dy
=

dΓ (0)

dy

[
1 − 2αs

3π

(
ln2(1 − y) +

31
6

ln(1 − y) +
5
4

+ π2

)]
, (5.158)

where y = 2E/mb is again the rescaled energy variable and Γ (0) is the parton
model rate which becomes close to the endpoint

1
Γb

dΓ (0)

dy
= 2y2(3 − 2y)Θ(1 − y) → 2Θ(1 − y) . (5.159)

The doubly logarithmic terms are believed to exponentiate, yielding

dΓ

dy
=

dΓ (0)

dy
exp

[
−2αs

3π
ln2(1 − y)

]
, (5.160)

up to singly logarithmic terms which have been neglected in (5.160). Note that
the exponentiation strongly reduces the rate close to the endpoint, resulting
in a strong modification of the parton model result.

Since singly logarithmic terms are omitted, the choice of the scale µ in
αs is not obvious, and various suggestions have been made. In particular, the
choice µ2 = m2

b(1 − y) yields a drastic modification of the spectrum in the
endpoint region; using the one-loop result for αs, we have

dΓ

dy
=

dΓ (0)

dy
exp

[
− 8

25
ln2(1 − y)

ln[(m2
b/Λ2

QCD)(1 − y)]

]
, (5.161)

yielding a strong damping in the endpoint region, called the Sudakov sup-
pression.

Unlike the non-perturbative corrections, the perturbative corrections can-
not shift the endpoint of the spectrum away from the value given by the par-
ton model. However, both types, the perturbative and the non-perturbative
corrections, are strongly entangled in the endpoint region and a simultaneous
treatment of both is difficult [55].

5.4.3 Lifetimes of B±, B0 and Λb

The subject of heavy-hadron lifetimes is strongly related to non-leptonic pro-
cesses, which were considered some time ago [56, 57]; however, the systematic
application of the 1/mQ expansion has turned many assumptions into quanti-
tative arguments. As outlined in the last section, the 1/mQ expansion allows
one to calculate total rates, even for non-leptonic processes, and hence a
QCD-based calculation of lifetimes becomes possible.

Mainly as a result of the LEP experiments, the data on b-hadron lifetimes
are quite precise. In particular, the lifetime ratios are known with precisions
well below 10% [17]:
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τ(B−)
τ(Bd)

= 1.062 ± 0.029 ,

τ(Bs)
τ(Bd)

= 0.964 ± 0.045 ,

τ(Λb)
τ(Bd)

= 0.780 ± 0.037 . (5.162)

where τ(Bs) is the averaged Bs-meson lifetime.
To leading order in the 1/mQ expansion, all lifetime ratios are unity, since

the lifetimes are then determined by the free-quark decay. If we assume light-
flavour symmetry for the matrix elements λ1 and λ2, the correction to the
ratio between two meson lifetimes has to be of order 1/m3

Q and hence is given
by dimension-six operators. Since the value of λ1 is different for a meson and
a baryon and λ2 = 0 for a ΛQ baryon, we expect

τ(B−)
τ(Bd)

= 1 + O(1/m3
b) ,

τ(Bs)
τ(Bd)

= 1 + O(1/m3
b) ,

τ(Λb)
τ(Bd)

= 1 + O(1/m2
b) (5.163)

and we can recognize a potential problem with the lifetime ratio τ(Λb)/τ(Bd).
We shall return to this matter at the end of this subsection.

In order to discuss the lifetime ratios for mesons, one needs to consider
higher orders in the 1/mQ expansion. Unfortunately, in general the number of
dimension-six operators that appear at order 1/m3

Q is quite large. However,
not all of these operators contribute to lifetime ratios, since they have to be
sensitive to the light quark inside the heavy hadron.

These types of spectator effects have been reconsidered recently in [58],
and we shall follow the line of argument given there. Although intuitively
these dimension-six operators might seem to yield only small contributions,
their effect is enhanced by a phase space factor. The non-spectator effects
typically yield, at the partonic level, at least a three-particle phase space,
while the spectator effects have, to leading order only, a two particle final
state. This yields an enhancement of these contributions by a phase space
factor 16π2. Qualitatively, this means that the 1/mQ expansion for the life-
time ratios takes the form

τ(B−)
τ(Bd)

= 1 +
1

m3
b

[
a0 +

1
mb

a1 + · · ·
]

+
16π2

m3
b

[
b0 +

1
mb

b1 + · · ·
]

, (5.164)

and hence the coefficient b0 is the leading contribution to the lifetime ratio.
We start from the effective Hamiltonian for non-leptonic weak decays

given in Sect. 5.1. Performing the steps to construct a 1/m expansion
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for the total non-leptonic rate, we obtain first the partonic result, i.e. the
lifetime for the free-quark decay, which is the first term in (5.164). The first
non-vanishing terms will be the same for the neutral and the charged B me-
son, and hence the first terms will arise from dimension-six operators. The
correction to the decay rate due to the spectator effects may be expressed in
terms of four-quark operators, which we choose to be

Oq
V −A = b̄LγµqL q̄LγµbL ,

Oq
S−P = b̄R qL q̄L bR ,

T q
V −A = b̄LγµtaqL q̄LγµtabL ,

T q
S−P = b̄R taqL q̄L tabR , (5.165)

where ta = λa/2 are the generators of colour SU(3). In terms of these oper-
ators, the relevant contribution to the total decay rate becomes [58]

Γ = Γ0 +
2G2

F m2
b

π
|Vcb|2 (1 − z)2

{(
2c1c2 +

1
Nc

(c2
1 + c2

2)
)
〈Ou

V −A〉 + 2(c2
1 + c2

2)〈Tu
V −A〉

}

−2G2
F m2

b

3π
|Vcb|2 (1 − z)2

{(
2c1c2 +

1
Nc

c2
1 + Ncc

2
2

)

[(
1 +

z

2

)
〈Od′

V −A〉 − (1 + 2z)〈Od′

S−P 〉
]

+2c2
1

[(
1 +

z

2

)
〈T d′

V −A〉 − (1 + 2z)〈T d′

S−P 〉
]}

−2G2
F m2

b

3π
|Vcb|2

√
1 − 4z

{(
2c1c2 +

1
Nc

c2
1 + Ncc

2
2

)[
(1 − z) 〈Os′

V −A〉 − (1 + 2z)〈Os′

S−P 〉
]

+ 2c2
1

[
(1 − z)〈T s′

V −A〉 − (1 + 2z) 〈T s′

S−P 〉
]}

, (5.166)

where z = m2
c/m2

b , and Nc = 3 is the number of colours.
We shall focus here on the mesonic case; the baryonic case is discussed in

[58]. The matrix elements of the four-quark operators are parametrized as
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1
2mBq

〈Bq|Oq
V −A |Bq〉 ≡

f2
Bq

mBq

8
B1 ,

1
2mBq

〈Bq|Oq
S−P |Bq〉 ≡

f2
Bq

mBq

8
B2 ,

1
2mBq

〈Bq|T q
V −A |Bq〉 ≡

f2
Bq

mBq

8
ε1 ,

1
2mBq

〈Bq|T q
S−P |Bq〉 ≡

f2
Bq

mBq

8
ε2 , (5.167)

where this parametrization is motivated by naive factorization, which will be
discussed in connection with exclusive non-leptonic decays at the end of this
section. The assumption of factorization yields Bi = 1 and εi = 0. Naive
factorization holds exactly in the limit of large Nc and hence we expect

Bi = O(1) , εi = O(1/Nc) . (5.168)

Following [58] we may now evaluate the lifetime ratio between charged
and neutral B mesons in terms of Bi and εi,

τ(B−)
τ(Bd)

= 1 + k1B1 + k2B2 + k3ε1 + k4ε2 , (5.169)

where the coefficients ki are determined by the mass ratio z and the Wilson
coefficients c1 and c2 (Table 5.8).

Table 5.8. Values of the coefficients ki for different choices of the renormalization
scale µ. The value of z is fixed at z = 0.085. The table is taken from [58]

µ k1 k2 k3 k4

mb/2 +0.044 0.003 −0.735 0.201
mb +0.020 0.004 −0.697 0.195
2mb −0.008 0.007 −0.665 0.189

In earlier work [59], the assumption of factorization was made and hence
the matrix elements of the octet–octet operators εi vanish. Using this as-
sumption, one obtains

τ(B−)
τ(Bd)

= 1 + 0.05 × f2
B

(200 MeV)2
(5.170)

for the lifetime ratio, which is certainly compatible with the data. On the
other hand, the coefficients k3 and k4 of the octett–octett operators are larger
by a factor of five to ten, and if one expects these matrix elements to be
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suppressed by a factor 1/NC it is a possible scenario that the non-factorizable
contributions actually dominate the corrections to the lifetime ratio.

The lifetime of the Λb baryon has also been considered within the frame-
work of the 1/mQ expansion. Although naively the lifetime difference between
the Λb baryon and the B meson is of order 1/m2

b , we may estimate the con-
tributions of order 1/m2

b to be small. For the Λb, we have λ2 = 0 while the
kinetic energy can be estimated by using [58]

[M(Λb) − M(Λc)] − [M̄(B) − M̄(D)]

= (λ1(B) − λ1(Λb))
(

1
mc

− 1
mb

)
+ O(1/m3

c) (5.171)

where M̄(H) = (M(H0−) + 3M(H1−))/4 is the spin-averaged mass of the
mesons. From this estimate, we find that the O(1/m2

b) contribution to the
lifetime difference between Λb and B is as small as 2%. Thus the general
conclusion of the discussion is that the lifetime ratio τ(Λb)/τ(Bd) should
be slightly smaller than unity, but cannot be as low as the measured value
for “reasonable” values of the parameters. This fact constitutes a potential
problem for the 1/mQ expansion for inclusive non-leptonic decays, which is
still a subject of research.

5.4.4 FCNC Decays of B Mesons

In this subsection we consider rare decays based on the quark transition
b → s, i.e. FCNC processes involving b quarks. This class of transitions has
a rich phenomenology, which would fill a textbook on its own. However, the
application of effective-field-theory methods can be demonstrated by focusing
on a specific decay, which we chose to be the process b → sγ. This process is
currently the most interesting one, since on the one hand in a mature state
as far as the corresponding theory is concerned, and on the other hand there
are some data to compare the theory with.

Radiative rare B decays have attracted considerable attention in the last
few years. After the first observation in 1994, by the CLEO collaboration
[60], the data have become quite precise [61] so that even a measurement of
the CP asymmetry in these decays [62] has become possible. As far as data
are concerned, the situation clearly will improve further, after the excellent
start of th two B factories at KEK and SLAC.

B → Xsγ tests the Standard Model in a particular way. Since there are
no tree-level contributions to these processes in the Standard Model, these
processes can occur only at the one-loop level. The GIM cancellation, which
is present in all the FCNC processes, is lifted in this case by the large top-
quark mass; if the top quark were as light as the b quark, these decays would
be too rare to be observable.

Since the Standard Model contribution is small, these decays have a
good sensitivity to “new physics”, for example to new (heavy) particles
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contributing to the loop. In fact, already the first CLEO data could already
constrain some models for “new physics” in a stringent way [60].

The effective Hamiltonian has already been discussed in Sect. 5.1. How-
ever, when calculating the amplitude, one has to calculate the matrix element
of the effective Hamiltonian, leading to contributions from all operators with
the correct quantum numbers; for example, there will be a matrix element of
the operator O2.

We shall first discuss the non-perturbative corrections to this decay. These
arise from various sources, and we shall consider here only the subleading
terms in the heavy-mass expansion, which are 1/m2

b and 1/m2
c corrections,

and non-perturbative contributions to the photon energy spectrum, which
are obtained from another application of the twist expansion and QCD fac-
torization using SCET.

As far as the total rate is concerned, we have the subleading corrections
of order 1/m2

b , which are parametrized in terms of the kinetic energy λ1 and
the chromomagnetic moment λ2 defined in Sect. 4.3. In terms of these two
parameters, the total rate reads, at tree level up to order 1/m2

b ,

Γ =
G2

F αm5
b

32π4
|VtsVtb∗ |2|C7|2

(
1 +

λ1 − 9λ2

2m2
b

+ · · ·
)

. (5.172)

It is worth noting that if we assume that the charm quark is heavy too,
we obtain non-perturbative contributions from the 1/mc expansion also [63].
The relevant contribution originates from the four-fermion operators (e.g.
the operator O2) involving the charm quark; see Fig. 5.12a. Expanding the
matrix element of O2 in powers of 1/mc we obtain a local operator of the
form

O1/m2
c

=
1

m2
c

s̄γµ(1 − γ5)T abGa
νλεµνρσ∂λFρσ , (5.173)

which can interfere with the leading term O7 (see Fig. 5.12b).

(a) (b)

Fig. 5.12. Interference between O7 and one of the four-fermion operators (O2),
leading to a contribution of order 1/m2

c
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A detailed calculation [64, 65] reveals that this contribution is rather
small,

δΓ1/m2
c

Γ
= − C2

9C7

λ2

m2
c

≈ 0.03 , (5.174)

and thus can safely be ignored at the current precision.
The main perturbative corrections are the QCD corrections, which are

substantial. These corrections have been calculated using athe effective-field-
theory framework described in Sect. 4.1. For the b → sγ transition, it turns
out that the corrections at leading-logarithmic accuracy (which already in-
volves a two-loop calculation) are substantial and, in addition, exhibit a
sizeable dependence on the renormalization point. Thus the next-to-leading
contributions are also known. The calculation involves the matching at sub-
leading order

ci(MW ) = c
(0)
i (MW ) +

αs(MW )
π

c
(1)
i (MW ) + · · · (5.175)

and the calculation of the renormalization-group running using the anomalous-
dimension matrix (5.71), including the next term in αs, which we did not
show in (5.71). Note that from the anomalous dimension matrix this involves
a three-loop calculation.

The coefficient functions have the schematic form given in (4.19). Solving
the renormalization group equations yields a resummation of the logarithms
in the first and second columns of (4.19). Thus all terms of the form

ci(µ) = c
(0)
i (MW )

∑
n=0

b(0)
n

(
αs

π
ln

(
M2

W

µ2

))n

+
αs

π
c
(1)
i (MW )

∑
n=0

b(1)
n

(
αs

π
ln

(
M2

W

µ2

))n

+ · · · (5.176)

are included.
The last step is to compute the matrix elements of the operators at a scale

µ ≈ mb. This can be done for the inclusive case using the 1/mb expansion,
while for the exclusive case the form factors are needed, which involves non-
perturbative physics. Thus we shall focus on the inclusive case.

The leading and subleading terms of the coefficients have been calculated
[66, 67, 68, 69], including electroweak contributions [70], the main part of
which is due to the correct setting of the scale in αem. A complete and up-to-
date compilation can be found in [71]. Without going into any more detail,
we shall quote the result from [71],

Br(B → Xsγ) = (3.29 ± 0.33) × 10−4 , (5.177)

where this result includes a cut on the photon energy at Eγ,min = 0.05mb.
The QCD corrections are in fact dramatic; they increase the rate for

b → sγ by about a factor of two. For example, even at the leading-log level we
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have c7(mb)/c7(MW ) = 1.63. Another indication of this fact is a substantial
dependence of the leading-order result on the choice of the renormalization
scale µ. This is usually estimated by varying the scale µ between mb/2 and
2mb. In this way we obtain a variation of δµ = +27.4%

−20.4% for the leading-order
result. At subleading order this scale dependence is drastically reduced to
[71] δµ = +0.1%

−3.2%, which is actually smaller than one would expect.
However, it has recently been pointed out [72] that there is still a problem

related to the definition of the charm quark mass appearing in the calculation
of the matrix elements. In fact, at the two-loop level, one has contributions
from diagrams such as the ones shown in Fig. 5.13.

Fig. 5.13. Examples of diagrams leading to an mc/mb dependence at two loops

The main point is that the dependence on the parameter mc/mb is very
steep, and small variations change the prediction for the branching fraction
dramatically. It has been argued in [72] that one should use the pole mass
for the b quark, since the b quark is an external line with the b quark in
the B meson almost on-shell, while the c quark is inside a loop and hence a
short-distance mass such as the MS mass is appropriate. Of course, this is
only a guess for the higher-order corrections, but it indicates the range of the
uncertainties.

Inserting mMS
c (mb)/mpole

b shifts the prediction for the rate by one sigma
upwards compared with the values obtained with mpole

c /mpole
b , and hence the

uncertainties from this source are significant. Taking this as an estimate of
the uncertainties induced by higher orders, we conclude that

Br(B → Xsγ) = (3 − 4) × 10−4 , (5.178)

which indicates that at the current level of precision the usefulness of B →
Xsγ is reduced. In order to settle this issue, a next-to-next-to-leading-order
calculation will have to b performed, involving an anomalous dimension at
the four-loop level and the calculation of the three-loop finite terms. Clearly,
this is a technical challenge. The first steps have been performed, namely the
nf dependent terms have been investigated [73].

Finally we have to discuss the predictions for the photon energy spec-
trum. This spectrum is needed, because the extraction of the the process
B → Xsγ requires one to introduce a lower cut on the photon energy to get
rid of uninteresting processes such as ordinary bremsstrahlung. Clearly it is
desirable to have this cut as high as possible, but this makes the process “less
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inclusive” and hence more sensitive to non-perturbative contributions to the
photon energy spectrum.

Since we are dealing at tree level with a two-body decay, the naive cal-
culation of the photon spectrum yields a δ-function at partonic level, and
the 1/mn

b corrections are again distributions located at the partonic energy
Eγ = mb/2, which are derivatives of δ-functions (see also Sect. 4.6). The re-
sult of such a calculation is at tree level yields a result, which has been given
already in (4.97). Clearly, one cannot use such an expression to implement a
cut on the photon energy spectrum, since this is not a smooth function.

The perturbative contributions have been calculated [67] and yield a spec-
trum that is determined mainly by the bremsstrahlung of a radiated gluon.
This part of the calculation is fully perturbative and enters the next-to-
leading-order analysis described above. In particular, the partonic δ function
becomes smoother and turns into distributions of the form [74]

dΓ

dx
= · · · + αs

π

[(
ln(1 − x)

1 − x

)
+

,

(
1

1 − x

)
+

]
, (5.179)

where the ellipsis denotes terms that are regular as x → 1 and contributions
proportional to δ(1 − x), which are determined by virtual gluons.

Here we shall focus on the nonperturbative contributions close to the
endpoint. The general structure of the terms in the 1/mb expansion is

dΓ

dx
= Γ0

[∑
i

ai

(
1

mb

)i

δ(i)(1 − x) + O((1/mb)i+1δ(i)(1 − x))

]
, (5.180)

showing that the leading terms have to be resummed, since they are all of the
same size. This is in fact the master example of the twist expansion discussed
in Sect. 4.6. The result is

dΓ

dx
=

G2
F αm5

b

32π4
|VtsVtb∗ |2|C7|2f(mb[1 − x]) , (5.181)

where the light-cone distribution function f has been defined in (4.110).
Using the relations given in Sect. 4.6, we may also include subleading

contributions. To this end, we have to compute the matching from full QCD
to the twist expansion to obtain the Wilson-coefficient functions. We find for
the subleading terms [75]

mb

Γ s
0

dΓ

dEγ
= (4Eγ − mb)F (mb − 2Eγ)

+
1

mb
[h1(mb − 2Eγ) + H2(mb − 2Eγ)] , (5.182)

where

Γ s
0 =

G2
F |VtbV

∗
ts|2α|Ceff

7 |2m5
b

32π4
(5.183)
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and the functions F , H2 and h1 have been defined in (4.129), (4.128) and
(4.123).

As has been pointed out earlier in this section, the relation between the
photon spectrum for B → Xsγ and the lepton-energy spectrum in B → Xuν̄

can be used to perform a model-independent extraction of Vub, or, more
precisely, Vub/Vts. However, the current data on the photon energy spectrum
for B → Xsγ are not precise enough to be sensitive to the subleading shape
functions.

5.4.5 Exclusive Non-Leptonic Decays

This class of decays is notoriously difficult to describe and effective field
theory has been applied to these decays only recently [76, 77, 78, 79, 80, 81, 82,
83]. A model which has been frequently used in the past, mainly owing to the
lack of any other method, is the so-called naive factorization. This approach
estimates the matrix elements of four-quark operators by factorizing them
into a product of two currents. As an example, consider the decays B → Dπ,
mediated at tree level by the operator

O2 = (c̄L,iγµbL,i)
(
d̄L,jγµuL,j

)
. (5.184)

In order to compute the rate, one has to calculate the matrix element of this
operator between a B meson state and the Dπ final state. Starting with the
simplest case of a B

0 → D+π− decay, the naive factorization in this case is

〈D+π−|O2|B
0〉fact = 〈D+| (c̄L,iγµbL,i) |B

0〉〈π−|
(
d̄L,jγµuL,j

)
|0〉 . (5.185)

Here we have introduced the subscript “fact” to identify the matrix elements
which have been estimated by this approach.

Defining the form factors for the transition of a B meson into a pseu-
doscalar meson in the usual way,

〈M(p′)| (q̄L,iγµbL,i) |B(p)〉 = FB→M (q2)(pµ + p′µ) + fB→M (q2)qµ , (5.186)

where q = p − p′ we obtain the following for the matrix element in naive
factorization:

〈D+π−|O2|B
0〉fact = FB→D(M2

π)(M2
B − M2

D)fπ . (5.187)

That is, the matrix element of the four quark operator is estimated to be the
product of the B → D transition form factor at q2 = M2

π and the pion decay
constant. The relevant contribution is depicted in Fig. 5.14.

In the same way, this operator describes the decay B− → D0π− as a
product of a B → D form factor and the pion decay constant. B− → D0π−.
However, in this case there is a second contribution, which is depicted in
the second diagram of Fig. 5.15; here the roles of the two up quarks are
interchanged.
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Fig. 5.14. Illustration of the factorized matrix element of O2 for the transition

B
0 → D+π−. The diagram has to be understood as a flavour flow diagram

(a) (b)

Fig. 5.15. Illustration of the two contributions to the factorized matrix element of
O2 in naive factorization for B− → D0π−

This second contribution can be obtained by first performing a Fierz
transformation of the operator, which yields

O2 =
(
d̄L,jγµbL,i

)
(c̄L,iγµuL,j) . (5.188)

Factorizing this into two matrix elements yields

〈D0π−|O2|B−〉fact
= Fig. 5.15a + 〈π−|

(
d̄L,jγµbL,i

)
|B−〉〈D0| (c̄L,iγµuL,j) |0〉 (5.189)

Note that the two currents can now be decomposed into a colour singlet piece
and a colour octet piece, of which the colour octet cannot contribute, since
the states are color-neutral. The appropriate colour factor is 1/Nc = 1/3, and
hence we obtain

〈π−|
(
d̄L,jγµbL,i

)
|B−〉〈D0| (c̄L,iγµuL,j) |0〉

=
1

Nc
FB→π(M2

D)(M2
B − M2

π)fD , (5.190)

where fD is the D meson decay constant defined analogously to the pion
decay constant; see (4.158).

The prescription of naive factorization is to sum all the possible contri-
butions. Thus, in total, we obtain



124 5 Applications I: ∆F = 1 Processes

〈D0π−|O2|B−〉fact
= FB→D(M2

π)(M2
B − M2

D)fπ − 1
Nc

FB→π(M2
D)(M2

B − M2
π)fD ,

(5.191)

where the minus sign between the two terms originates from the Pauli prin-
ciple, since the amplitude has to be antisymmetric with respect to the inter-
change of the two ū quarks in the final state. However, this so-called Pauli
interference can in principle be constructive as well as destructive; see below.

Finally, the operator O2 can also mediate the decay B
0 → D0π0 which is

due to the diagram shown in Fig. 5.16; this diagram is the same as that of
Fig. 5.15b with the spectator u quark replaced by a spectator d quark. The
matrix element in naive factorization reads

〈D0π0|O2|B
0〉fact =

1
Nc

FB→π(M2
D)(M2

B − M2
π)fD . (5.192)

Note that for this decay, this is the only contribution which is suppressed by
a colour factor 1/Nc.

Fig. 5.16. Illustration of the factorized matrix element of O2 for the transition

B
0 → D0π0

The shortcomings of this ansatz are obvious. As was discussed in Sect. 5.1,
the operator O2 renormalizes; in particular, it mixes into the operator O1

and, in more complicated cases, into a whole set of other operators. On the
other hand, once naive factorization is performed, the matrix elements do
not renormalize any more, since the left-handed currents do not have an
anomalous dimension. This means that the two sides of (5.185) renormalize
differently if the left-hand side is taken as the real QCD matrix element (i.e.
without the subscript “fact”). In other words, the result of naive factorization
depends on the scale at which it is performed.

Bauer, Stech and Wirbel (BSW) [84, 85] used this simple ansatz to define
a model for non-leptonic two-body decays. They used the effective Hamilto-
nian as discussed in Sect. 5.1 and applied the above procedure to the matrix
elements needed for a given transition. To circumvent the problem of the
scale dependence, all the Wilson coefficients in the expressions for the effec-
tive Hamiltonian were replaced by phenomenological constants, which were
assumed to be universal in the same way as the Wilson coefficients.
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This model turns out to be surprisingly successful for non-leptonic two-
body B decays. As an example, we again study the decay B

0 → D+π−, to
which we have contributions from both O1 and O2 (see (5.22), (5.23) and
(5.24)). Using naive factorization, we obtain

〈D+π−|Heff |B
0〉fact = i

GF√
2

VcbV
∗
uda1FB→D(M2

π)(M2
B − M2

D)fπ , (5.193)

where a1 is a phenomenological constant. If we assume that naive factoriza-
tion is actually valid at some scale µf , one obtains

a1 = C2(µf) +
C1(µf)

Nc
, (5.194)

where the second term comes from the Fierz-rearranged operator O1. Note
that the essence of the BSW model is that the parameter a1 is treated as a
universal quantity.

This type of transition is usually called a class I transition, since the cur-
rent creating the meson from the vacuum is a charged current. All such decays
are described by the universal parameter a1 in the BSW model. Similarly,
those transitions which have only a contribution from the Fierz-rearranged
operators such that the current creating the meson from the vacuum is a neu-
tral current are called class II transitions. One example has been considered
above, which is the decay B

0 → D0π0, for which we obtain

〈D0π0|Heff |B
0〉fact = i

GF√
2

VcbV
∗
uda2FB→π(M2

D)(M2
B − M2

π)fD , (5.195)

where a2 is a universal parameter for these decays. If we again assume that
naive factorization is actually valid at some scale µf , one obtains

a2 = C1(µf) +
C2(µf)

Nc
. (5.196)

Owing to the signs and the relative sizes of the Wilson coefficients a2 is much
more sensitive to the scale µf than is a1.

Finally, there are class III decays which have contributions from both,
a1 and a2. An example for such a decay is B− → D0π−, where the two
contributions are shown in Fig. 5.15. In the BSW approach, one obtains

〈D0π−|Heff |B
−〉fact = i

GF√
2

VcbV
∗
ud

×
[
a1FB→D(M2

π)(M2
B − M2

D)fπ − a2FB→π(M2
D)(M2

B − M2
π)fD

]
.

(5.197)

Only this class of decays can be used to determine the relative phase of a1 and
a2, i.e. one can determine from these decays whether the Pauli interference
is constructive or destructive.
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It is worthwhile to point out that naive factorization is actually valid in the
formal limit Nc → ∞. In particular, the off-diagonal entries in the anomalous-
dimension matrix (5.25) behave like 1/Nc which solves the problem of scale
dependence mentioned above.

The approach of naive factorization can be employed further to include
the penguin operators, the matrix elements of which are then evaluated along
the same lines. Furthermore, one may investigate decays into two-body final
states with a vector and a pseudoscalar particle as well as decays into two
vector particles , in a similar way [86, 87].

Recently this naive factorization has been put on a more sound theoretical
basis by a technique called QCD factorization [81]. The main problem with
naive factorization is that in full QCD, non-factorizable contributions such as
that shown in Fig. 5.17b are present. In [81], all diagrams at order αs (among
which are the ones shown in Fig. 5.17) have been investigated, assuming that
the kinematics of the outgoing quarks are such that those quarks can form
the final-state mesons, i.e. the u and d quarks forming the pion are assumed
to move collinearily. It turns out that in the infinite-mass limit for the B
meson, all infrared contributions can be absorbed into the form factor and
pion decay constant just as in naive factorization. In turn, all corrections
violating factorization either are of order αs(µb) (where µb turns out to be
given by µ2

b = mbΛQCD) or are suppressed by inverse powers of mb.2

(a) (b)

Fig. 5.17. QCD corrections to non-leptonic decays. (a) a factorizable contribution;
(b) a non-factorizable contribution

Since QCD corrections can be computed systematically in QCD factor-
ization, the problem of naive factorization concerning the scale dependence
is not present. It has been shown in [81] that the scale dependence cancels
properly order by order.

The systematics of this expansion and its relation to effective-field-theory
approaches, in particular those approaches using a properly defined SCET,

2This statement is derived in [81] from perturbation theory. It could be that
there are non-perturbative contributions which vanish more slowly than 1/mb.
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are currently under investigation. In fact, SCET has been used to prove
factorization to all orders in αs for the case of the class I decay B

0 → D+π−.
However, factorization for non-leptonic charmless decays has been proven up
to now only on the basis of investigating the one-loop Feynman diagrams.

In parallel, the phenomenology of QCD factorization has been investi-
gated. In particular, decays into two pseudoscalar particles [83] and two-body
decays involving vector particles in the final state [88] have been investigated.

Exclusive non-leptonic decays not only are extremely relevant with respect
to the branching ratio of each individual mode, they are also indispensable
with respect to CP violation studies. Since both the form factors and the
decay constants are real quantities in the usual convention, all the strong
phases in the decays of B mesons will be either calculable perturbatively or
suppressed by the large b quark mass, if QCD factorization holds. In this
way, one can remove the most severe uncertainty in the evaluation of CP
asymmetries of exclusive non-leptonic decays; we shall return to this point
when considering CP violation in the next chapter.
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6 Applications II: ∆F = 2 Processes
and CP Violation

In this chapter we discuss processes where flavour quantum numbers change
by two units; these processes correspond mainly to the phenomenon of
particle–antiparticle mixing. This phenomenon is related to CP violation ow-
ing to the fact that mixing can induce CP violation, and for that reason we
discuss the application of effective field theories to these effects in a single
chapter.

As far as the application of effective-field-theory methods is concerned,
we have to deal mainly with the construction of the effective interaction
mediating a ∆F = 2 transition. However, to make quantitative predictions,
we again have the problem of calculating hadronic matrix elements which
is in general not possible. One exception may be the processes involving B
mesons, for which one may use the heavy-mass expansion.

Concerning the application of effective field theory to CP violation, it
is only very recently that some progress has been made, since significant
CP asymmetries appear mainly in exclusive non-leptonic decays. As already
discussed in previous chapters, this class of decays is still the most difficult
one and is a subject of current research. In this book we shall concentrate on
giving a few examples only. A very complete discussion of all aspects of CP
violation can be found in a dedicated textbook [1].

After a discussion of how CP violation emerges in the Standard Model,
we collect together some basic relations needed to describe the phenomena.
Particle-antiparticle mixing is described in the Wigner–Weisskopf approxima-
tion described in Sect. 6.2. After considering the effects of mixing, we turn
to CP violation, restricting ourselves to a few general remarks.

6.1 CP Symmetry in the Standard Model

In order to investigate CP violation, in general we have to first define the
action of a CP transformation on the various fields. The charge conjugation
transformation exchanges the roles of particles and antiparticles, while parity
transformation is the inversion of the space coordinates.

Hermitian (or real) scalar fields describe particles which are their own
antiparticles; furthermore, these fields are invariant under a parity transfor-
mation and thus are invariant under the combined transformations C and P.

Thomas Mannel: Effective Field Theories in Flavour Physics,
STMP 203, 131–155 (2004)
c© Springer-Verlag Berlin Heidelberg 2004
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Hermitian (or real) pseudoscalar fields are invariant under CP, but change
their sign under P, so they will change their sign under the combined trans-
formations C and P.

Complex scalar fields describe charged scalar particles, and thus there
are particle–antiparticle pairs with equal but opposite charges. Under a CP
transformation the particles turn into their antiparticles, while they remain
invariant under P, since they are scalars, whereas a complex pseudoscalar
field would change its sign.

The transformation properties of a spinor field can be defined by looking
at currents. The electromagnetic current obviously changes its sign when one
goes from the particle to the antiparticle:

Jµ
em

C−→ −Jµ
em . (6.1)

If this current is due to an electron, we have to define the charge conjugation
matrix C acting on the electron spinor ψ

ψ
C−→ ψC = Cψ̄T , (6.2)

where the the superscript T means the transposed spinor. The matrix C is
defined in such a way that the Dirac matrices transform as

C−1γµC = −γT
µ , (6.3)

from which (6.1) follows immediately. In order to make the electromagnetic
interaction invariant under C, we assign C = −1 to the photon. Since the
action

Sem =
∫

d4xJµ
em(x)Aµ(x) (6.4)

is also invariant under P, the electromagnetic part of the Standard Model is
CP-invariant.

The same argument applies for the weak neutral current, which also is
invariant under a combined CP transformation. In order to show this, we
have to take into account the fact that the CP transformation turns left-
handed particles into right-handed antiparticles. Taking this together with
the transformation properties of the scalar (i.e. the Higgs) sector of the Stan-
dard Model, we conclude that a possible CP violation can occur only in the
charged currents.

In order to investigate the charged currents, we have to perform a charge
conjugation transformation using (6.2) on a charged current. For the charged
current of quarks (in the mass eigenbasis)

Jµ
cc = ŪLγµVCKMDL , (6.5)

we obtain the following for the charge-conjugate current:

Jµ
cc

C−→ D̄LV T
CKMγµUL . (6.6)
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The charged-current contribution to the action is

Scc =
∫

d4x
[
ŪLγµVCKMDLW+

µ + D̄LV †
CKMγµULW−

µ

]
(6.7)

and hence we would have CP invariance if

V †
CKM = V T

CKM or VCKM = V ∗
CKM , (6.8)

i.e. for a real CKM matrix.
Obviously these arguments are somewhat simplified, since there is always

the freedom to redefine the phases of the spinor fields. For a more detailed
discussion we refer the reader to a textbook, such as [2]. In more general terms
this means that CP violation can occur if there is no choice of the phases
of the fields in which the CKM matrix can be made real. Note that the
possibility of rephasing the quark fields has been already taken into account
when we considered the CKM matrix in Sect. 3.2.

Thus in the Standard Model with three families and only a single Higgs
doublet, the only source for CP violation is the single complex phase which
remains even after using the freedom to rephase the fields. In other words,
there is a coupling constant in the Lagrangian which has an “irreducible”
phase, i.e. is complex. What remains to be discussed is how such a complex
coupling leads to CP violation.

In practical terms CP violation means that there are observables which
have different values if their CP images are considered. In the following we
show that this always needs a CP-violating phase (e.g. a complex coupling)
but also a non-trivial CP-conserving phase.

Any phase information can be obtained only by an interference experi-
ment. Therefore we assume that an amplitude for some process consists of
two contributions which can interfere; schematically, we obtaint

A = λ1a1 + λ2a2 , (6.9)

where we have extracted the complex couplings λ1 and λ2 explicitly, and
a1 and a2 are matrix elements of the operators appearing in the (effective)
Lagrangian. As an example, we may consider a weak decay of a particle: in
this case λ1 and λ2 are combinations of CKM matrix elements, and a1 and
a2 are usually hadronic matrix elements of quark currents.

From the amplitude, we compute the probability Γ (which, in the case of
a particle decay, is the decay rate) and obtain

Γ = |λ1|2|a1|2 + |λ2|2|a2|2 + Re(λ1λ
∗
2a1a

∗
2) (6.10)

where the last term is the desired interference term. For the CP-conjugate
process, we calculate the amplitude A. As we have seen above, the com-
plex couplings turn into their complex conjugates, while a1 and a2 are CP-
conserving matrix elements which do not change. Thus we obtain
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A = λ∗
1a1 + λ∗

2a2 , (6.11)

and the probability becomes

Γ = |λ1|2|a1|2 + |λ2|2|a2|2 + Re(λ∗
1λ2a1a

∗
2) . (6.12)

Clearly the interference term is different for the CP image; we define the CP
asymmetry as

ACP = Γ − Γ = 2 Im[λ1λ
∗
2] Im[a1a

∗
2] , (6.13)

which is non-vanishing only if we have an imaginary part of the couplings and
a non-vanishing phase difference between the two contributions a1 and a2.

There are various origins of the CP-conserving phase difference. In the
case of particle decays, it is in general a phase difference originating from
strong interactions, but it can also be a phase difference originating from the
time evolution, as it is the case for the time-dependent CP asymmetries to
be discussed below.

6.2 ∆F = 2 Processes: Particle–Antiparticle Mixing

Although the effect of particle–antiparticle mixing is not related to the phe-
nomenon of CP violation, it is often mentioned in this context, and we shall
give an outline of the effect here. The systems in which particle–antiparticle
mixing has been observed are the K0–K

0
and the B0–B

0
systems; corre-

sponding effects are expected in the Bs–Bs system.
We shall denote a (neutral) meson generically by H, i.e.

(
H
H

)
=

(
K0

K
0

)
or

(
B0

B
0

)
or

(
Bs

Bs

)
, (6.14)

and discuss the common features first.
Seond-order weak interactions can mediate transitions with ∆F = 2, in

which case we can have transitions between H and H. A state prepared as
a pure H state will develop a component of the state H after some time t,
and thus we have to consider the time evolution of the system consisting of
H and H. Thus we have to consider the state

|ψ(t)〉 = a(t)|H〉 + a(t)|H〉 , (6.15)

with time dependent coefficients a(t) and a(t). The time dependence of the
coefficients is given by a Schrödinger equation

i
d

dt

(
a(t)
a(t)

)
=

[
M− i

2
Γ

](
a(t)
a(t)

)
, (6.16)

where M and Γ are Hermitian 2× 2 matrices. Note that the “Hamiltonian”
appearing in (6.16) is non-Hermitian owing to the fact that H and H can
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decay and thus probability cannot be conserved in the simple 2 × 2 space
spanned by H and H.

In the rest frame of the meson H, the matrices M and Γ are given by
[
M− i

2
Γ

]
ij

= m
(0)
H δij +

1
2mH

∑
n

〈Hi|Hweak|n〉〈n|Hweak|Hj〉
m

(0)
H − En + iε

+· · · , (6.17)

where the ellipsis denotes higher orders in Hweak, which we do not consider
here. We use H1 ≡ H and H2 ≡ H to simplify the notation.

The “absorptive piece” Γ is obtained by applying the identity

1
ω + iε

= P
(

1
ω

)
− iπδ(ω) , (6.18)

where P() denotes the principal-value prescription yielding a real result. Thus
we find

Γij =
1

2mH

∑
n

〈Hi|Hweak|n〉〈n|Hweak|Hj〉(2π)δ(m(0)
H − En) (6.19)

for the absorptive piece. The diagonal entries are just the total width of H
and H.

Both M and Γ are Hermitian and so we have M12 = M∗
21 and Mii =

M∗
ii, as well as Γ12 = Γ ∗

21 and Γii = Γ ∗
ii. Furthermore, CPT invariance

requires the two diagonal elements to be equal, and thus the most general
form is

M− i

2
Γ =

(
M11 − (i/2)Γ11 M12 − (i/2)Γ12

M∗
12 − (i/2)Γ ∗

12 M11 − (i/2)Γ11

)
=

(
A p2

q2 A

)
, (6.20)

where A, p and q can be complex and

p

q
=

√
M12 − (i/2)Γ12

M∗
12 − (i/2)Γ ∗

12

. (6.21)

If CP were conserved, we would have p = q and – using our freedom to
chose the relative phase between H and H – we would end up with p and q
being real. The eigenstates of the “Hamiltonian” M− (i/2)Γ would be the
CP eigenstates K1 and K2 given in (5.107) and (5.108).

However, this is only true if the coupling constants appearing in the effec-
tive Hamiltonian are real in a suitable basis for the fields. If phases appear,
for example through imaginary parts of the CKM factors, one cannot make
these matrix elements real, and hence the eigenstates are not eigenstates of
CP.

Even without CP invariance, we can still calculate the eigenstates of M−
(i/2)Γ , which become
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|Hshort〉 =
1√

|p|2 + |q|2
(
p|H〉 − q|H〉

)
(6.22)

|Hlong〉 =
1√

|p|2 + |q|2
(
p|H〉 + q|H〉

)
. (6.23)

The difference of the two eigenvalues mshort − (i/2)Γshort and mlong −
(i/2)Γlong is given by

2pq = (mlong − mshort) −
i

2
(Γlong − Γshort)

= 2

√(
M12 −

i

2
Γ12

)(
M∗

12 −
i

2
Γ ∗

12

)
. (6.24)

The solution of the time evolution (6.16) is given by
(

a(t)
a(t)

)
= R(t) ·

(
a(0)
a(0)

)
, with R(t) =

(
g+(t) (q/p)g−(t)
(p/q)g−(t) g+(t)

)
,

(6.25)
where

g± =
1
2

(
exp

[
imlongt −

1
2
Γlongt

]
± exp

[
imshortt −

1
2
Γshortt

])
, (6.26)

such that a state that is a pure H state at t = 0 evolves as

|ψ(t)〉 = g+(t)|H〉 +
p

q
g−(t)|H〉 . (6.27)

The calculation of M− (i/2)Γ is generally not an easy task. Studying the
relevant quark diagrams, we find that the ∆F = 2 effects are induced by box
diagrams of the type depicted in Fig. 6.1. In particular, the imaginary parts
relevant to CP violation appear as a result of the irreducible phase in the
CKM matrix. The question of which effects are phenomenologically relevant
and of how to calculate or estimate them, depends on the particular system
under consideration.

Fig. 6.1. Box diagrams mediating ∆F = ±2 transitions. Only the case of a B0 →
B0 transition is shown. For a K0 → K0 transitions the b quark has to be replaced
by an s quark. Similarly, for a Bs → Bs transition the d quark has to be replaced
by an s quark
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6.2.1 Mixing in the Kaon System

The kaon system is characterized by a large lifetime difference between the
two neutral states. This has been discussed in Sect. 5.3: if CP were conserved,
the Klong state would be a CP-odd state, which could not decay into two
pions. This argument remains almost true, since CP violation is a small effect,
i.e. the branching ratios for the CP-violating decays are small (see Sect. 6.3).
Owing to the smaller phase space, the lifetimes differ in fact by a factor of
about 580.

Since CP violation is small, we can write the states Klong and Kshort in
terms of CP eigenstates, where the small admixture of the “wrong” CP state
is parametrized by a small (complex) quantity ε̄

|Kshort〉 =
1√

1 + |ε̄|2
(|K1〉 + ε̄|K2〉) , (6.28)

|Klong〉 =
1√

1 + |ε̄|2
(|K2〉 + ε̄|K1〉) , (6.29)

where we have

ε̄ =
p − q

p + q
=

i

2
ImM12 − (i/2)Im Γ12

ReM12 − (i/2)Re Γ12
. (6.30)

The mixing of the kaons can be discussed in the language of effective field
theory. Constructing the effective interaction as described in Sect. 5.1 yields a
∆S = ±1 effective Hamiltonian as given in (5.44). This effective Hamiltonian
mediates transitions into final states which are common to both K0 and K0.
To second order in this effective Hamiltonian, we can have the process

K0
Heff−→




π+π−

π0π0

· · ·




Heff−→ K0 .

These transitions contribute to both M12 and Γ12 and are called long-
distance contributions. They are very difficult to calculate for the case of
kaons, which is one of the reasons why the parameters of Kaon CP violation
are difficult to compute.

However, in addition to these long-distance contributions, we have (from
the point of view of the scales involved in kaon decay) short-distance contri-
butions which enter as effective interactions with ∆S = ±2. These originate
from the top- and charm-quark contributions appearing in the box diagrams
depicted in Fig. 6.1. These contributions can be calculated, since the inter-
mediate states can be treated as free quarks owing to their short-distance
nature. Computing the box diagrams yields a ∆S = ±2 contribution of the
form
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Heff (∆S = ±2) =
G2

F

16π2

[
(V ∗

tdVts)2F (xt)m2
t η1 + (V ∗

cdVcs)2F (xc)m2
cη2

+2(V ∗
tdVtsV

∗
cdVcs)G(xc, xt)m2

cη3

]
O∆S=2 + h.c. , (6.31)

with a single operator mediating ∆S = 2 transitions,

O∆S=2 = (d̄γµ(1 − γ5)s)(d̄γµ(1 − γ5)s) . (6.32)

In (6.31) xi = m2
i /M

2
W , and

F (x) =
1
4

[
1 +

9
(1 − x)

− 6
(1 − x)2

− 6x2

(1 − x)3
ln x

]
,

G(x, y) =
y

4

[
ln x

x − y

(
1 +

6
(1 − x)

− 3
(1 − x)2

)
+ (x ↔ y) − 6

(1 − x)(1 − y)

]

(6.33)

are the relevant Inami–Lim functions [3]. The factors ηi are the short-distance
QCD corrections calculated along the lines discussed in Sect. 5.1. These fac-
tors have been calculated in [4]; their values at leading logarithmic accuracy
are

η1 = 0.61 η2 = 0.85 η3 = 0.36 . (6.34)

Including the known next-to-leading-order corrections, the values are [5, 6]

η1 = 0.57 η2 = 1.38 η3 = 0.47 , (6.35)

where we have quoted the so called renormalization scale and scheme inde-
pendent coefficients. Note that the matrix elements have to be calculated
using the same procedure; see below.

Note that the mass factors m2
t and m2

c indicate that the GIM mechanism
is at work for these contributions. If all masses of the up-type quarks were
equal, all the ∆S = ±2 effects would vanish owing to an exact cancellation
between the up, charm and top contributions. However, the masses of the
up-type quarks are very different and thus a net effect remains. At first sight
the top contribution seems enhanced by the large top mass; however, this
contribution suffers from a substantial CKM suppression through the factor
(V ∗

tdVts)2 ∼ λ10 ∼ 2×10−7, which is sufficient to make the charm contribution
the dominant one, since it overcompensates the relative factor m2

t /m2
c ∼

104. The charm contribution is much less CKM suppressed, by only a factor
V ∗

cdVcs ∼ λ ∼ 0.2. Taking into account the fact that xc � 1 and F (0) = 1,
we obtain approximately

Heff (∆S = ±2) =
G2

F

16π2
(V ∗

cdVcs)2m2
cη2O∆S=2 + h.c. (6.36)

Aside from the problem of the long-distance contributions, we still have to
evaluate the matrix element of O∆S=2 between a K0 and a K0 state to obtain
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the short-distance contribution to M12. This matrix element is usually esti-
mated byuse of the naive factorization discussed in Sect. 5.1. In this approach,
we have

〈K0|O∆S=2|K0〉 =
16
3

f2
Km2

KBK , (6.37)

where we have introduced a so-called bag factor BK , which is unity in naive
factorization.

In general, the bag factor BK depends on the renormalization scale and
scheme. This dependence is unphysical and is compensated by the corre-
sponding dependence of the short-distance QCD coefficients ηi.

It has become customary to quote the so-called renormalization-scale- and
scheme-independent bag factor BK , which at leading-log level is given by

BK = [αs(µ)]−2/9BK(µ) . (6.38)

Including the next-to-leading-order terms, the following result is obtained
from lattice calculations [7]:

BK ∼ 0.87(6)(13) . (6.39)

6.2.2 Mixing in the B0-Meson System

The situation in the B system allows more precise estimates of the mixing
parameters and of the CP violation induced by this effect. The main advan-
tage is that the ∆B = ±2 contributions are dominated by the top quark,
since its CKM suppression through the factor (VtdV

∗
tb)

2 ∼ λ6 is much weaker.
Furthermore, the CKM factors of the other contributions are comparable,
and consequently the large top-quark mass wins in the case of the B mesons.
Thus the main conclusion is that the mixing of the B mesons is dominated
by short-distance contributions.

Furthermore, the lifetime differences in the Bd meson system are small,
since the absorptive part Γ12 is strongly CKM suppressed, such that one
may equate Γlong to Γshort in the formula (6.26) for the time evolution of the
neutral Bd states. The lifetime differences can be calculated using the heavy-
mass expansion and are known even to next-to-leading-logarithmic accuracy
[8].

For the Bs mesons, the lifetime differences have been estimated to be
larger than in the Bd system [8], but we shall not discuss this matter here,
since still the lifetime differences are still relatively small, roughly ∆Γ/Γ ∼
10%.

If we neglect the lifetime differences, the formulae for the time evolu-
tion simplify considerably. The 2 × 2 matrix describing the time evolution
simplifies to
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R(t) = e−iMt−(1/2)Γt




cos
(

1
2
∆m t

)
q

p
i sin

(
1
2
∆m t

)

−q

p
i sin

(
1
2
∆m t

)
cos

(
1
2
∆m t

)

 (6.40)

where we have defined the average mass M = (mlong + mshort)/2 and the
mass difference ∆m = mlong − mshort.

Furthermore, as M12 � Γ12, the ratio p/q becomes just a phase,

p

q
=

√
M12

M∗
12

= exp(iΦM ) (6.41)

where ΦM is the weak mixing phase, coming from the CKM factors of the
∆B = 2 effective Hamiltonian. Thus the final result for the time evolution is

R(t) = e−iMt−(1/2)Γt




cos
(

1
2
∆m t

)
ie−iΦM sin

(
1
2
∆m t

)

−ieiΦM i sin
(

1
2
∆m t

)
cos

(
1
2
∆m t

)

 .

(6.42)
The quantity ∆m can be computed in the effective-field-theory approach,

since the it is dominated by short-distance effects, namely those of the W
boson and the top quark. Evaluating the box diagrams shown in Fig. 6.1 we
obtains the following for the mixing in the Bd system:

Heff (∆B = ±2)=
G2

F

16π2

[
(V ∗

tdVtb)2F (xt)m2
t η

′
1O∆B=2 + h.c.

]
, (6.43)

with the operator

O∆B=2 = (d̄γµ(1 − γ5)b)(d̄γµ(1 − γ5)b) ; (6.44)

the function F (xt) is the same as for the ∆S = 2 Hamiltonian. The QCD
coefficient η′

1 depends in general on the scheme and scale of renormalization.
Using the so-called scale- and scheme-independent definition of this parame-
ter, we obtain, at next-to-leading order accuracy [5],

η1 = 0.551 . (6.45)

In order to obtain the mass difference one has to calculate the matrix
elements of the effective Hamiltonian between a B and a B state. One finds

∆m =
G2

F

8π2
(V ∗

tdVtb)2F (xt)m2
t η

′
1〈B|O∆B=2|B〉 . (6.46)

The remaining task is to evaluate the matrix element of the local operator
O∆B=2 which contains the necessary non-perturbative information. It has
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become customary to parametrize this matrix element in the same way as in
the kaon system by

〈B0|O∆B=2|B0〉 =
16
3

f2
Bm2

BBB , (6.47)

where the “bag factor” BB is unity in naive factorization. In the scheme-
and scale-independent definition (which has been used already for the QCD
coefficient η′

1),
BB = [αs(µ)]−6/23BB(µ) . (6.48)

A numerical value can be obtained from lattice simulation, and the result
obtained is [9]

BB =
{

230 ± 30MeV for the Bs

189 ± 30MeV for the Bd
. (6.49)

In order to compute a number for ∆m, we still need an input for the B meson
decay constant, which has not been measured yet. Thus we have to rely on
lattice simulations for this quantity also, and the result obtained is

fB =
{

1.34 ± 0.10 for the Bs

1.30 ± 0.12 for the Bd
. (6.50)

This calculation has been used to obtain a value for the CKM matrix
element Vtd; the result is [10]

|Vtd| = 0.0079 ± 0.0015 . (6.51)

We may consider Bs oscillations in the same way: we have the same
relations except that, in the effective Hamiltonian, Vtd is replaced by Vts and
the d quark is replaced by an s quark. Thus the oscillation frequency in the
Bs system is much larger than in the Bd system, roughly by a factor [10]

∆ms

∆md
=

∣∣∣∣Vts

Vtd

∣∣∣∣
2

∼ 100 . (6.52)

Futhermore, the mixing phase ΦM introduced in (6.41) is, in the standard
convention,

ΦM =
{

2β for Bd

2δγ for Bs
(6.53)

where δγ is small, of the order of λ6.

6.2.3 Mixing in the D0-Meson System

The situation in the neutral D meson system is very different owing to the
fact that the roles of up-type and down-type quarks in Fig. 6.1 are reversed:
the external quarks are the valence quarks c and ū of a neutral D meson,
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while the sum over the internal quarks runs over the down-type quarks d,
s and b. Since the differences in masses for the down-type quarks are much
smaller than the differences for the up-type quarks (which are mainly driven
by the top quark), the GIM mechanism works much more efficiently than for
the kaons and B mesons. Furthermore, owing to the small CKM angles the
coupling to the third family is negligible, such that effectively only the first
two generations play a role, making the GIM mechanism even more efficient.

In comparison with the cases of K–K and B–B mixing, the main contribu-
tion to D–D mixing is mainly from long-distance effects, involving processes
such as

D0
Heff−→




K+K−

K0K
0

· · ·




Heff−→ D0 , (6.54)

which are again difficult to calculate. However, assuming that the charm mass
mc is still a perturbative scale, one may apply heavy-quark effective theory
to calculate the corresponding matrix elements [11, 12, 13].

The operators of leading dimensionality are operators of dimension six.
Calculating the matching obtained from the diagrams shown in Fig. 6.2, we
find

H∆c=2
eff,a =

G2
F

2π2
sin2 θC cos2 θC

m4
s

m2
c

× [2(ūLγµcv)(ūLγµc−v) + 4(ūLcv)(ūLc−v)] (6.55)

The GIM mechanism predicts that the result for D–D mixing has to be
proportional to m2

s when the mass of the down quark is neglected. However,
the loop diagram of Fig. 6.2 yields a suppression by another factor of m2

s, so
the total contribution is of the order of m4

s.

Fig. 6.2. One-loop contribution to the matching to the dimension-six operator for
D–D mixing

This is in contradiction to calculations where the intermediate states
shown in (6.54) are studied explicitly. The result is obtained, model
independently, that each channel may be combined with its counterpart where
s ↔ d, yielding a result proportional to m2

s. From the effective-field-theory
calculation, one would conclude that the amplitudes of the individual chan-
nels have to conspire in such a way that the leading term proportional to m2

s

cancels, leaving the result (6.55).
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The next order in the operator product expansion is the six-quark op-
erators, which are obtained from Fig. 6.3. The contribution to the effective
Hamiltonian reads schematically

H∆c=2
eff,b = G2

F sin θC cos θC
m2

s

m3
c

(ūLΓ1cv)(ūLΓ2c−v)(d̄LΓ3d) , (6.56)

where the Γi are sums of combinations of Dirac matrices. Note that (6.56) is
of the expected order in ms.

Fig. 6.3. Contribution to the matching to the dimension-nine (six-quark) operators
for D–D mixing

Including also the eight-quark operators, the QCD renormalization prop-
erties of these operators have been studied at one loop in [13]. The results in
that paper exclude the possibility that QCD effects are large and overcome
the suppression by the factors ms/mc of these subleading terms, so as to
make them the leading contribution. The result quoted for ∆mc in [13] is

∆mc = (0.9 − 3.7) × 10−17GeV , (6.57)

where the uncertainty is due to the estimates of the hadronic matrix elements.
The contributions of the third family to D–D mixing is extremely small

and can be neglected. Thus D–D mixing (and in fact all charm physics) hap-
pens in the first two families. This has the consequence that CP-violating
effects are practically absent; in particular, the mixing phase in D–D mixing
is extremely small, leaving only a ridiculously small Standard Model contri-
bution to mixing-induced CP violation in the D system.

6.3 Phenomenology of CP Violation: Kaons

The first, and very unexpected, manifestation of a violation of CP symmetry
was found through non-leptonic decays in the system of neutral kaons. The
phenomenology of these decays has been discussed already in Sect. 5.3. In
that section we introduced the CP eigenstates of neutral kaons K1 and K2 in
(5.107) and (5.108). If CP were a good symmetry, the long-lived kaon state
would be identical to K2 and could not decay into two pions. However, it
was the surprising observation of Christensen, Cronin, Fitch and Turlay [14]
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that this decay indeed happens; the current values for the branching ratios
are [10]

Br(Klong → π+π−) = (2.056 ± 0.033) × 10−3 , (6.58)
Br(Klong → π0π0) = (9.27 ± 0.19) × 10−4 , (6.59)

and clearly this effect is well established.
As already mentioned in Sect. 5.3, the two iso-doublet kaon states are

connected through a CP transformation (see (5.105)). The decay amplitudes
for the K → ππ decays were discussed for the K+ and K0, where we intro-
duced the isospin amplitudes A0 and A2. Analogously, we introduce the CP
images of these amplitudes as

〈π−π0|Heff |K−〉 = +

√
3
2

A2 , (6.60)

〈π0π0|Heff |K
0〉 = −

√
1
3

A0 +

√
2
3

A2 , (6.61)

〈π+π−|Heff |K
0〉 = +

√
2
3

A0 +

√
1
3

A2 . (6.62)

If CP were conserved, we would have A0 = A0 and A2 = A2. Using the
definitions of the eigenvectors Kshort and Klong, we obtain the following for
the CP-violating decays Klong → ππ:

A(Klong → π0π0) = −
√

1
3

pA0 − qA0√
|p|2 + |q|2

+

√
2
3

pA2 − qA2√
|p|2 + |q|2

, (6.63)

A(Klong → π+π−) =

√
2
3

pA0 − qA0√
|p|2 + |q|2

+

√
1
3

pA2 − qA2√
|p|2 + |q|2

. (6.64)

It has become customary to consider the amplitude ratios

η+− =
〈π+π−|Heff |Klong〉
〈π+π−|Heff |Kshort〉

= ε + ε′ , (6.65)

η00 =
〈π0π0|Heff |Klong〉
〈π0π0|Heff |Kshort〉

= ε − 2ε′ , (6.66)

which vanish in the limit of CP conservation.
Let us first study the simplified case in which we neglect the amplitude

A2 in comparison with A0, which is a reasonable approximation in view of
the ∆I = 1/2 rule. Approximately, we can set A2 ≈ 0 and A2 ≈ 0, and we
obtain the following for the amplitude ratios:

η+− = η00 = ε =
1√
2

(
1 − q

p

A0

A0

)
and ε′ = 0 . (6.67)
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A non-vanishing ε′ can only appear if we have a non-vanishing A2. Thus,
owing to the ∆I = 1/2 rule, we expect ε′ to be much smaller than ε. In fact,
if we keep the A2 amplitudes, we find

ε′ =
1
2

q

p

A2

A0

(
A0

A0
− A2

A2

)
(6.68)

while the result for ε remains the same even in the presence of a non-vanishing
A2.

These results have a simple interpretation. A non-vanishing value of ε
can appear even if the decay amplitudes are CP-conserving, in which case
we have A0 = A0. Then we have to have p �= q and thus CP violation
originates from the interference of the two amplitudes A(K0 → ππ) and
A(K0 → K

0 → ππ). Clearly this is an effect of kaon mixing and hence is
the same for both two-pion final states. In fact, a non-vanishing value of ε′

has been established only recently (see below), and before this discovery it
was a realistic scenario that the CP violation in the kaon sector (which at
that time was the only CP violation that had been observed) originated from
an effect beyond the standard model. In such a “superweak” model [15] the
CKM matrix may be assumed to be real, while the observed CP violation is
due to a complex coupling in the ∆S = 2 effective Hamiltonian originating
from an effect beyond the Standard Model.

Similarly, ε′ needs the presence of the A2 amplitude, and CP violation
is induced by an interference between the two contributions with different
isospin, i.e. an interference of A0 and A2.

Experimentally, a non-vanishing value is found for both parameters ε
and ε′, where the latter rules out the superweak scenario. The Particle Data
Group quotes

|ε| = (2.282 ± 0.017) × 10−3 , Re
ε′

ε
≈ ε′

ε
= (1.8 ± 0.4) × 10−3 . (6.69)

A theoretical prediction of these parameters is very difficult; one may
consider the various quark diagrams contributing to the amplitudes to relate
the two parameters ε and ε′ to the phases in the CKM matrix. However, this
is quite complicated for the kaon system, owing to our inability to calculate
hadronic matrix elements reliably. Various groups have given estimates of ε′,
based on the effective Hamiltonian discussed in Sect. 5.1. A review on this
subject has been given recently in [16]. In Fig. 6.4, the theoretical predictions
of the various groups are compared to the experimental values.

6.4 Phenomenology of CP Violation: B Mesons

In this section we shall discuss some general aspects of the phenomenology
of CP violation in the B meson system. While kaons have very few decay
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Fig. 6.4. Predictions of ε′/ε versus the data. “VSA” is the “vacuum satura-
tion approximation”, corresponding to naive factorization in two different schemes.
“Muenchen” means [17], “Roma” means [18] and “Trieste” means [19]. The figure
is taken from [20]

channels, B mesons can decay into many channels owing to their large mass.
Unlike kaons, where we have only two relevant non-leptonic decay modes,
B mesons have many non-leptonic decay modes, which yield a very rich CP
phenomenology. Clearly, a complete description is beyond the scope of this
book; furthermore, effective field theories are of only limited use here, since
we are dealing mainly with non-leptonic decays. For a complete discussion of
CP phenomenology, we refer the reader to a monography dealing exclusively
with CP violation [1].

The situation in the system of B mesons is also different owing to the
fact that the lifetime difference between the two eigenstates of B mesons is
small. Clearly, this has an impact on how a CP asymmetry is measured in
the system of B mesons.

We shall start our discussion with a collection of general relations. As
already discussed in Sect. 6.1, a measurement of CP violation in general
requires the interference of two amplitudes which have both a strong and
a weak phase difference. In B decays this means that one can have a CP
asymmetry

ACP (B+ → f) =
Γ (B+ → f) − Γ (B− → f)
Γ (B+ → f) + Γ (B− → f)

(6.70)

in decays a charged B meson into a final state f . Such an effect is called direct
CP violation and can also happen in neutral-B-meson decays. However, due
to B–B oscillations, the situation in the system of neutral B mesons is more
complicated.

The weak phases are, in the Standard Model, due to the CKM matrix
elements; as an example we consider the decays B → Kπ. In these decays,
we have two possible contributions, shown in Fig. 6.5.
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(a) (b)

Fig. 6.5. Tree a and penguin b contributions to the decay B → Kπ

Looking at the corresponding matrix elements, we find the following for
the two decays Bd → K+π− and B+ → K0π+:

〈π−K+|Heff |Bd〉 = −(P + T ) , (6.71)
〈π+K0|Heff |B+〉 = P ,

where P is the amplitude corresponding to “QCD penguin-like diagrams”
(Fig. 6.5b) and T corresponds to the “tree amplitude” (Fig. 6.5a). The elec-
troweak penguin contributions are colour suppressed, and we shall neglect
them in the following.

When discussing CP asymmetries, we have to consider the CP image
of the processes considered in (6.71). To this end, we have to identify the
weak phases appearing in the amplitudes (6.71). Clearly the tree amplitude
carries a weak phase factor exp(−iγ), while the CKM factors of the penguin
amplitude are real in the usual convention.

From this we obtain

Br(Bd → π−K+)
Br(B+ → π+K0)

= 1 + r2 − 2r cos(δ + γ) , (6.72)

Br(Bd → π+K−)
Br(B+ → π+K0)

= 1 + r2 − 2r cos(δ − γ) , (6.73)

where δ is the strong phase difference between P and T , and r = |T |/|P |.
It has been argued in [21] that the combined branching ratios

Br(B±→π±K) ≡ 1
2

[
Br(B+→π+K0) + Br(B− → π−K0)

]
, (6.74)

Br(Bd → π∓K±) ≡ 1
2

[
Br(B0

d → π−K+) + Br(B0
d → π+K−)

]
(6.75)

may be used to constrain the CKM angle γ. The quantity of interest is the
ratio

R =
BR(Bd → π∓K±)
BR(B± → π±K)

, (6.76)

which can be computed in terms of r, δ and γ to be
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R = 1 + r2 − 2r cos δ cos γ . (6.77)

This may be solved for the product of the cosines

C(R, r) = cos δ cos γ =
1
2r

(1 − R) +
r

2
. (6.78)

Since |cos δ| ≤ 1 on has the inequality |cos γ| ≥ |C(R, r)|, which in general
requires a knowledge of the tree-to-penguin ratio r. Unfortunately, this quan-
tity suffers from unknown hadronic uncertainties and thus (6.78) is only of
limited use.

However, it has been noted in [21] that the function C(R, r) has a mini-
mum with a value less than one. This minimum occurs at r0 =

√
1 − R and

the value of C becomes

C(R,
√

1 − R) =
√

1 − R < 1 . (6.79)

Hence for R < 1 we can obtain a bound on γ independent of the tree-to-
penguin ratio r; this bound is

|cos γ| ≥
√

1 − R or |sin γ| ≤
√

R . (6.80)

For a value of R < 1 one would exclude values of γ around 90◦, which
would be complementary to other bounds on γ, obtained from a global fit,
for example.

Other bounds using similar ideas have been derived and tested [22]; how-
ever, current data yield [23]

R = 0.92 ± 0.15 or R < 1.07 , (6.81)

making this bound inefficient.
The discussion of the bounds does not need any information about the

hadronic matrix elements. However, one may use QCD factorization to cal-
culate the matrix elements of the effective Hamiltonian. In this way one may
compute the rates of various non-leptonic charmless B decays as a function of
the CKM angle γ. This has been done in [24], where a detailed phenomenolog-
ical analysis was performed. The result for ratios of various rates are shown
in Fig. 6.6.

As mentioned above, the situation is more complicated in the system
of neutral B mesons owing to B–B oscillations. If initially a B0 has been
created, there will be oscillations in accordance with (6.25) and (6.27); hence
we discuss the time-dependent rate into a state f common to both B0 and
B

0
;

Γ (B0(t) → f) =
1
2
e−Γt|A(B0 → f)|2

[
a(f) + b(f)e∆Γ t

+ c(f)e∆Γ t cos(∆m t) + s(f)e∆Γ t sin(∆m t)
]

, (6.82)
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Fig. 6.6. Predictions of QCD factorization [24] for ratios of rates versus the CKM
angle γ in comparison with data. The widths of the [bands indicate the theoretical
and experimental uncertainties. The plot has been taken from [24, 25]

where we obtain, from the discussion in Sect. 6.2,

a(f) =
1
2

(
1 +

∣∣∣∣qpR(f)
∣∣∣∣
2
)

+ Re
(

q

p
R(f)

)
, (6.83)

b(f) =
1
2

(
1 +

∣∣∣∣qpR(f)
∣∣∣∣
2
)

− Re
(

q

p
R(f)

)
, (6.84)

c(f) = 1 −
∣∣∣∣qpR(f)

∣∣∣∣
2

(6.85)

s(f) = −2Im
(

q

p
R(f)

)
, (6.86)

R(f) =
A(B

0 → f)
A(B0 → f)

. (6.87)

In the same way, we obtain the following for the time-dependent decay rate
into the state f :

Γ (B
0
(t) → f) =

1
2
e−Γ t|A(B

0 → f)|2
[
a(f) + b(f)e∆Γt

+ c(f)e∆Γ t cos(∆m t) + s(f)e∆Γ t sin(∆m t)
]

, (6.88)

where the quantities a, . . . , s are the same as a, . . . , s with the replacements

p

q
→ q

p
, R(f) → R(f) =

A(B0 → f)

A(B
0
(t) → f)

. (6.89)
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These very general formulae simplify considerably once we take into ac-
count the fact that the lifetime difference in the system of Bd mesons is very
small; this may be different for Bs, where a lifetime difference of up to 20%
is possible (see Sect. 5.1). Furthermore, it has been shown in Sect. 6.2 that
the ratio p/q for B mesons is simply a phase, i.e.

p

q
≈

√
M12

M∗
12

= eiφM =
{

e2iβ for Bb

e2iδγ for Bs
(6.90)

where φM is the B–B mixing phase discussed in Sect. 6.2.
A special role is played by decay modes of neutral B mesons into CP

eigenstates fCP . In this case we have

fCP = ηfCP , η = ±1 , (6.91)

where η is the CP quantum number of the final state fCP .
Taking into account the simplifications mentioned above, we obtain

Γ (B0(t) → fCP ) =
1
2
e−Γt|A(B0 → fCP )|2 (6.92)

×
[
d(fCP ) + c(fCP ) cos(∆m t) + s(fCP ) sin(∆m t)

]

where

d(fCP ) =
1
2


1 +

∣∣∣∣∣
A(B0 → fCP )
A(B0 → fCP )

∣∣∣∣∣
2

 . (6.93)

Using also (6.88), we can define a time-dependent CP asymmetry ACP (t)
as

ACP (t) =
Γ (B0(t) → fCP ) − Γ (B

0
(t) → fCP )

Γ (B0(t) → fCP ) + Γ (B
0
(t) → fCP )

= Ĉ(fCP ) cos(∆m t) + Ŝ(fCP ) sin(∆m t) , (6.94)

where

Ĉ(fCP ) =
Γ (B0 → fCP ) − Γ (B

0 → fCP )

Γ (B0 → fCP ) + Γ (B
0 → fCP )

, (6.95)

Ŝ(fCP ) = − 2
1 + |R(fCP )|2

Im
[
eiφM R(fCP )

]
. (6.96)

Note that the first term is simply the direct CP asymmetry (6.70) for the
neutral B mesons, while the second term is due to mixing and is called the
mixing-induced CP asymmetry. A non-vanishing contribution to the first term
can only from the existence of a weak and a strong phase difference between
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different contributions to the rate, while the second term appears because
the time evolution itself generates a “strong” phase difference exp(i∆m t)
between the two neutral B meson states, which – together with the weak
phases – leads to a CP asymmetry.

As stated above, the B mesons have numerous decay channels and it is
beyond the scope of this book to consider all the possible channels. We refer
the interested reader to excellent reviews such as [26] for the various strategies
to extract CKM angles from various decay modes.

CP violation studies mainly use exclusive non-leptonic decays, for which
no reliable theoretical description, based for example on an effective-field-
theory picture derived from QCD, exists at present. The strategies discussed
in [26] are based mainly on flavour symmetries sometimes combined with
plausible dynamical assumptions, and, since they are not an application of
effective-field-theory methods, we shall not consider them here.

For this reason we shall restrict ourselves to classifying the various possi-
ble modes by their underlying quark transitions. Thus we have to study the
effective Hamiltonian for the weak decays discussed in Sect. 5.1 and collect
the terms with weak phases. At tree level, we look at the contributions given
in (5.9)–(5.16) and identify the terms that carry weak phases, where we shall
use the standard convention for the phases introduced in (3.11). In this con-
vention all CKM elements appearing in (5.9)–(5.16) are, to leading order in
the Wolfenstein parametrization, real except for the matrix element Vub.

If we were to assume for the moment that the tree-level diagram were the
only contributions to a decay, we would only have a single amplitude and
hence no direct CP violation could occur. This is manifest, since we then
would have

|A(B0 → fCP )| = |A(B
0 → fCP )| → |R(fCP )| = 1 . (6.97)

However, the time-dependent CP asymmetry may still be non-vanishing due
to the weak phase in the mixing; for such a mixing-induced CP asymmetry
we obtain from (6.94)

ACP (t) = −Im
[
e(iφM+2φfCP

)
]
sin(∆m t) , (6.98)

where φfCP
is the weak decay phase of the single contribution.

In this way, we can easily classify the possible decay modes. All modes
which have a vanishing decay phase are sensitive to the mixing phase, which
is 2β for Bd decays and 2δγ for Bs decays. Thus, for Bd decays where the
amplitude carries no weak phase (i.e. the processes due to the quark transition
b → cq̄q′ with q = u, c and q′ = s, d), we obtain

Ab→cq̄q′

CP (t) = − sin(2β) sin(∆m t) . (6.99)

Similarly, for Bd decays with a decay amplitude proportional to Vub (i.e.
the processes due to the quark transition b → uq̄q′ with q = u, c and q′ = s, d)
we find
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Ab→uq̄q′

CP (t) = − sin(2β + 2γ) sin(∆m t) = sin 2α sin(∆m t) , (6.100)

where we have used the triangle relation α + β + γ = π.
However, including QCD corrections and taking into account the fact that

in general two or more amplitudes, which can have different weak phases,
can contribute complicates the situation. In particular, a direct CP violation
(i.e. a term proportional to cos(∆m t) will appear. In order to study this in
detail we have to consider individual decay modes. However, discussing all
interesting modes is beyond the scope of this book, and we shall pick only
two examples.

The mode which was considered most intensively in the first years of
the B factories was the mode B0 → J/ΨKs, originating from the quark
transition b → cc̄s. Here the combination of quarks in the final state is not a
CP eigentstate; however, as discussed in Sect. 5.3, the state Ks is a coherent
superposition of the quark states s̄d and d̄s. If we now consider the CP-
conjugate process, we have the quark transition b̄ → c̄cs̄, which has the same
matrix element with the Ks state.1

As discussed above the combination of CKM matrix elements appearing
in the decay B0 → J/ΨKs is real, and hence we expect

R(J/ΨKs) = 1 (6.101)

and
AB0→J/ΨKs

CP (t) = − sin 2β sin(∆m t) . (6.102)

Once the full effective Hamiltonian, as discussed in Sect. 5.1, is taken
into account, we have to calculate radiative corrections due to gluon ex-
change. Considering the full b → s effective Hamiltonian, we have to include
contributions from radiative corrections which induce penguin contributions.
Looking at the CKM factors of the penguin contributions we find that the
leading contribution is that from the charm quark, and has the CKM factor
VcbV

∗
cs, which is the same CKM factor as that of the contributions from tree

level. Thus this contribution carries the same weak phase and hence will not
lead to any direct CP violation. The remaining penguin contributions in fact
carry a different weak phase (such as the quark transition b → uūs, which
carries the phase exp(−iγ) in the usual convention), but these are strongly
CKM suppressed. Thus we have in the Standard Model

R(J/ΨKs) = 1 + O(λ2) , (6.103)

where λ is the Wolfenstein parameter of the CKM matrix introduced in (3.13)
and (3.14). As a consequence, we expect that (6.102) will hold at the level
of a few per cent, and thus this so-called gold-plated mode allows a clean
determination of the CKM angle β [27].

1We ignore here the tiny effect of CP violation in the kaon system.
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In fact, the current data from the B factories already allow a significant
measurement of the CKM phase β. The current average is [28]

sin 2β = 0.736 ± 0.049 . (6.104)

which already has an accuracy below 10%, meaning that CP violation in the
B system is clearly established. In fact, this result may be used to constrain
possible new-physics effects [29].

The same discussion can be performed for the decays B0 → π+π− and
B0 → π0π0, which are mediated by the same quark transition b → uūd. At
tree level we would expect

R(π+π−) = e2iγ = R(π0π0) , (6.105)

which, as discussed above, leads to the naive result

AB0→π+π−

CP (t) = AB0→π0π0

CP (t) = sin 2α sin(∆m t) . (6.106)

However, in this case the situation becomes more complicated once the
full effective Hamiltonian is taken into account. Here we have to consider
the full effective interaction for a b → u transition, which contains penguin
contributions that could lead to a sizeable direct CP violation. From the point
of view of isospin, the situation is very similar to that in the decays K → ππ:
there are two contributions with ∆I = 1/2 and ∆I = 3/2, which can interfere,
having in general different strong phases. The ∆I = 3/2 contribution comes
purely from the tree diagram and thus carries the weak phase e−iγ , while the
penguins induce only ∆I = 1/2 contributions and carry, together with the
∆I = 1/2 piece of the tree contribution, a different weak phase. However, here
there is no ∆I = 1/2 rule at work (see (5.126)), both amplitudes are expected
to be of the same order. The leading contribution to the penguins will be the
one from the operator b → cc̄d, which is of the same order in the Wolfenstein
parameter λ as the tree-level contribution, and thus no suppression of the
penguin contribution is expected. Thus we have

|R(π+π−)| �= 1 , |R(π0π0) �= 1 . (6.107)

In order to obtain a quantitative statement about this decay, we have
to get some information on the size and the (strong) phase of the penguin
amplitudes relative to the tree amplitudes. One way to do this is by using
isospin relations, which need full information about all B → ππ decays; the
details of this method can be found in [30].

Alternatively, one can use QCD factorization to calculate the relative sizes
and phases of the penguin contribution. This analysis has been performed in
[24], where the time-dependent CP asymmetry for Bd → π+π− has been com-
puted. Owing to the penguin contribution, Ŝ(π+π−) deviates from sin 2α,
and the deviation is a function of the weak phase γ. One may compute the
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Fig. 6.7. Allowed region in the Sππ–sin 2α plane as predicted from QCD factoriza-
tion. The width of the band indicates the theoretical uncertainty. Plot taken from
[24]

relation between Ŝ(π+π−) and sin(2α) in QCD factorization, and the result
is shown in Fig. 6.7.

Once time-dependent CP aymmetries are measured in the Bs system, a
more precise determination of the CKM angles will become possible. This is
mainly due to the fact that the mixing phase in the Bs system is very small,
and a stringent test of the Standard Model will be provided by the measure-
ment of this mixing phase in a decay such as Bs → J/Ψφ. Furthermore, the
Bs system will also open the road to clean determinations of the CKM angle
γ; however, a discssion of this matter is beyond the scope of this book and
we have to refer the reader to excellent reviews such as [26].
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7 Beyond the Standard Model

As of today, the Standard Model has passed all tests and no significant hint
of any physics beyond this model has been found. On the other hand, be-
ing the most general renormalizable theory (if the minimal Higgs sector is
included) with the desired particle spectrum and the observed interactions,
it is mainly parametrizing our ignorance about physics at higher scales. This
parametrization requires 27 parameters, of which only three (the gauge cou-
plings) are generically related to its gauge theory structure. All other param-
eters originate from the symmetry-breaking sector. We have as a possible set
of parameters the electroweak vacuum-expectation value, the Higgs mass, six
quark masses and six lepton masses, three mixing angles in the quark sector
and another three for the leptons, and four CP-violating phases, of which
three originate from the lepton sector, assuming Majorana neutrinos.

It has to be considered a great success to be able to describe all known
phenomena in terms of these parameters, but it is also, on the other hand,
unsatisfactory not to be able to compute, for example, the ratio of the electron
mass to the muon mass. However, the observed structure of the parameters
may lead to interesting clues about what is behind the Standard Model. Some
open questions of this kind are

• Why are the off-diagonal matrix elements of the CKM matrix so small?
Why is the CKM matrix in this sense hierarchical, while its leptonic coun-
terpart, the MNS matrix, is (as far as we can tell today) not?

• Why are the quark masses (except for the top quark) so small compared
with the electroweak vacuum expectation value? Does the top quark (or,
more generally, the third generation) play a special role?

• Why do we observe three families? Is there a symmetry behind this?
• Why is CP violation so small? Why is CP violation in flavour-neutral

processes (such as electric dipole moments of particles) not observed?

It is the current hope that we shall be able to gain some insight into
these questions by testing the flavour structure of the Standard Model in
some detail. While the experiments at LEP and SLC have tested the gauge
structure of the Standard Model with extreme precision, it will be hard to
obtain similarly accurate information about the parameters in the flavour
sector, since severe limitations due to hadronic uncertainties exist here, at
least at present.

Thomas Mannel: Effective Field Theories in Flavour Physics,
STMP 203, 157–166 (2004)
c© Springer-Verlag Berlin Heidelberg 2004
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Theoretical ideas about physics beyond the Standard Model have been
strongly influenced by the success of gauge theories. For example, grand uni-
fied theories (GUTs) have been considered as a natural extension of the
Standard Model, but GUTs still simply triplicate the particle content to take
into account the three families. Except for the fact that leptons and quarks
are members of the same multiplet of the group used for grand unification,
and thus their masses have to be equal at the GUT scale, these theories do
not provide any ansatz that might answer all or at least some of the above
questions.

Supersymmetric theories have been widely used to parametrize possible
physics beyond the Standard Model, for example in the analysis of high-
energy-physics data. As far as the symmetry-breaking sector and the mixing
of flavours are concerned, the situation in a supersymmetric theory becomes
much worse than in the Standard Model. Aside from the fact that the three
generations are introduced by hand just as in the Standard Model, the Higgs
sector needs to be extended in order to comply with supersymmetry. Further-
more, the duplication of the particle spectrum (i.e. the introduction of the
supersymmetric partners) yields many more sources of flavour mixing and
CP violation, and a serious fine tuning (or some other special assumption) is
needed for the theory to be consistent with data. In particular, the observed
small CP violation, appearing only in the charged-current sector, cannot be
introduced into a supersymmetric theory in a natural way. On the basis of
our current knowledge, it is fair to say that supersymmetry clearly has a
flavour problem.

There are many more ideas about how to extend the Standard Model,
but generically these ideas run into problems when it comes to flavour. In
particular, most extensions yield additional sources of CP violation, in most
cases also in the flavour-neutral sector. In all those cases some fine tuning is
needed to adjust the couplings in such a way that experimental constraints
are met.

Unfortunately, as of today, we do not have any theory of flavour nor do
we have an efficient parametrization of deviations from the flavour sector
of the Standard Model, such as the Peskin–Takeuchi parameters [1], which
have been used in the gauge sector. In the next section we shall discuss, in
an effective-theory language, why this is so much more difficult in the flavour
sector.

It is tempting to use symmetry arguments to explain the flavour structure
of the Standard Model. Such a family symmetry (or horizontal symmetry)
is restricted by the observed flavour structure, and we discuss some general
properties in Sect. 7.2.
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7.1 The Standard Model as an Effective Field Theory

One generic way to discuss effects of physics beyond the Standard Model is
to look at the Standard Model as the renormalizable piece of an effective
theory, obtained from integrating out the new physics happening at some
large scale Λ. Any effect of physics at the large scale Λ is at scales of the order
of the electroweak vacuum expectation value encoded in higher-dimensional
operators.

We can turn this argument around and write all possible operators of
higher dimension with unknown coupling constants, thereby parametrizing
any scenario of new physics. Postulating invariance under the electroweak
symmetry group SU(3)QCD × SU(2)W × U(1)Y we find that the lowest-
dimensional operators are those of dimension six, which are thus suppressed
by two powers of the large scale Λ.

Thus we have in general

L = LSM +
1
Λ2

∑
i

giOi , (7.1)

where the Oi are all possible dimension-six operators compatible with the
Standard Model symmetry, i.e. SU(3)QCD × SU(2)W × U(1)Y .

The possible dimension-six operators were considered some time ago [2];
they fall into three classes. There is one class which does not contain any
quark or lepton field, that is, these operators consist only of gauge and Higgs
fields. Clearly, these operators are irrelevant with respect to flavour physics,
but they have been used to parametrize new-physics effects in the gauge sector
[3, 4]. In fact, one may reformulate the analysis of Peskin and Takeuchi [1]
in terms of this class of dimension-six operators [4]. Clearly these operators
cannot mix under renormalization with any operator having a non-trivial
flavour structure.

The operators having a non-trivial flavour structure can be divided into
two classes. The first class are four-fermion operators, the second class con-
sists of operators with two quark or lepton fields, where the remaining fields
needed to obtain a dimension-six operator are gauge and Higgs fields. After
using the equations of motion, we have the operators

O
(1)
LL = QA/LG

(1)
AB QB , (7.2)

O
(2)
LL = QA /L3G

(2)
AB QB , (7.3)

O
(1)
RR = qA /RF

(1)
AB qB , (7.4)

O
(2)
RR = qA {τ3, /R}F

(2)
AB qB , (7.5)

O
(3)
RR = iqA [τ3, /R] F (3)

AB qB , (7.6)

O
(4)
RR = qAτ3 /Rτ3F

(4)
AB qB , (7.7)
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O
(1)
LR = QAHH†HK̂

(1)
AB qB + h.c. , (7.8)

O
(2)
LR = QA (σµνBµν) HK̂

(2)
AB qB + h.c. , (7.9)

O
(3)
LR = QA (σµνWµν) HK̂

(3)
AB qB + h.c. , (7.10)

O
(4)
LR = QA (iDµH) iDµK̂

(4)
AB qB + h.c. , (7.11)

with the definitions

Lµ = H (iDµH)† + (iDµH) H† , (7.12)

Lµ
3 = Hτ3 (iDµH)† + (iDµH) τ3H

† , (7.13)

Rµ = H† (iDµH) + (iDµH)† H , (7.14)

and
K̂

(i)
AB = K

(i)
AB + τ3K

(i)′
AB . (7.15)

Note that the operators involving explicit factors of τ3 violate the custodial
SU(2) symmetry, while the other operators conserve that symmetry.

The flavour structure is encoded in the coupling matrices G
(i)
AB , F

(i)
AB, K

(i)
AB

and K
(i)′
AB , leaving an enormous number of parameters. To reduce the number

of parameters, one has to make restrictive assumptions, for example by using
a specific model, from which these matrices can be computed. We shall not
go into any detail about this, and instead refer the reader to recent attempts
along these lines [5, 6].

Even more parameters are present once the four-fermion operators are in-
cluded, since there are many possible Dirac structures, as well as two possible
colour structures [2]. In order to give a flavour of the variety, we discuss first
the four-quark operators corresponding to charged currents for ∆B = 1.

A general charged-current ∆B = ±1 interaction is given by

C(C)kl
q;α;λλ′σσ′ = (b̄λΓαCUk

λ′)(Ū l
σΓαCqσ′) , (7.16)

where Ui labels the up quarks and q is either s or d. The subscript α refers
to the Dirac structure of the operator, for which we have the usual five
possibilities:

Γα ⊗ Γα =




1 ⊗ 1
γµ ⊗ γµ

σµν ⊗ σµν

γµγ5 ⊗ γ5γ
µ

γ5 ⊗ γ5

. (7.17)

The superscript C = 1, 8 refers to the colour structure, for which we have

C ⊗ C =
{

1 ⊗ 1 for C = 1
T a ⊗ T a for C = 8 , (7.18)

the indices λ, λ′, σ, σ′ = L, R label the left and right handed helicity compo-
nents of the quarks, and k, l are the flavour indices referring to the up-type
quarks.
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Similarly, a general ∆B = ±1 neutral-current operator contains only
down-type quarks and can be written as

N (C)klm
α;λλ′σσ′ = (b̄λΓαCDk

λ′)(D̄l
σΓαCDm

σ′) , (7.19)

where the notation concerning the indices is the same as for the charged-
current interaction.

Thus the most general effective Hamiltonian for ∆B = 1 will be a lin-
ear combination of these operators with coefficients depending on the new
physics. Clearly, there are too many parameters for a generic description
through this most general effective Hamiltonian.

The number of possible operators can in principle be reduced by using a
Fierz rearrangement of the quark fields, which will relate some of the opera-
tors to each other. We shall not discuss this here, since there will be still too
large a number of operators to make this general approach useful.

7.2 Flavour in Models Beyond the Standard Model

The fact that three families exist in which the particles have identical quan-
tum numbers with respect to SU(3)QCD×SU(2)W ×U(1)Y suggests strongly
that a symmetry, called a family symmetry or horizontal symmetry, lies be-
hind this triplication of the observed particle spectrum. However, it is fair
to say that as of now there is neither a generally accepted nor a predictive
framework for flavour.

In this section we shall discuss the general properties of a possible flavour
symmetry. It will become clear what the problems are, and how a possible
scenario which explains the hierarchical structure of the masses and the CKM
matrix could look. These ideas are in fact quite old and date back to the
classic paper by Froggatt and Nielsen [7]; they recently have been discussed
in a more general framework in [8, 9].

A horizontal symmetry group F has to satisfy certain constraints which
can be discussed very generically. The general assumption is that such a
symmetry gives the observed structure to the quark mass matrices. We shall
first prove two well-known facts about the symmetry group F :

• The symmetry F cannot be exact, i.e. it has to be broken.
• The simple scalar sector of the Standard Model has to be extended.

In order to discuss these issues we shall first define the action of H on the
fields introduced in Chap. 2. Since the horizontal symmetry is assumed to
commute with the Standard Model gauge symmetry SU(3)QCD ×SU(2)W ×
U(1)Y , we have the following for the quark fields1 in the notation of Chap. 2:

1We discuss these issues for the quarks, the same can be done for the leptons.
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QA → (FL)ABQB , (P+q)A = (Fu)AB(P+q)B , P−qA = (Fd)ABP−qB ,
(7.20)

where P± = (1±τ3)/2 projects out up- and down-type quarks. For a compact
notation we shall suppress the family indices in the following, i.e. we write

Q → FLQ , (P+q) = Fu(P+q) , (P−q) = Fd(P−q) . (7.21)

Note that FL, Fu and Fd are three-dimensional unitary representations of
the horizontal symmetry F .

As has been discussed in Chap. 2, we do not need to consider the gauge
fields to understand the flavour structure of the Standard Model. However, we
have to discuss the Higgs field. Since there is only a single Higgs doublet in the
Standard Model, it has to transform under a one-dimensional representation
which is similar to a U(1)Y transformation, i.e.

H → H exp(iφτ3) , (7.22)

where φ is a phase.
The only couplings of interest for the discussion of the horizontal symme-

try and its effect on masses and mixings are the Yukawa couplings. We write
these couplings using the above compact notation as

LYuk =
1
v

(
Q̄MuH(P+q) + Q̄MdH(P−q)

)
, (7.23)

where Mu/d are the up/down quark mass matrices.
Performing now a symmetry transformation of the horizontal symmetry

F and requiring that LYuk is invariant under F , we find that

Mu = F †
LMuFu eiφ , Md = F †

LMdFd e−iφ , (7.24)

from which we obtain
[
MuM†

u , FL

]
= 0 ,

[
MdM†

d , FL

]
= 0 , (7.25)

[
M†

uMu , Fu

]
= 0 ,

[
M†

dMd , Fd

]
= 0 . (7.26)

From the relations (7.25), we may draw a few interesting conclusions.
Assuming that the representations of the quark fields with respect to F are
irreducible, we find that both quark mass matrices have to be proportional
to the unit matrix, i.e. we obtain degenerate quark masses. Alternatively,
the representations can be reducible, in which case FL, Fu and Fd can be
diagonal, and the CKM matrix becomes trivial. Since there are both non-
degenerate quark masses and non-trivial mixing, the symmetry F has to be
broken.

The second observation, namely that F cannot be spontaneously broken
by the vacuum expectation value of a single Higgs field (i.e. the Standard
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Model case), follows from the fact that the transformation of the Higgs field
under F is the same as a hypercharge transformation. This implies that the
phase φ can always be removed by a compensating hypercharge transforma-
tion, in which case the Higgs field can be regarded as invariant under F .
Since an invariant field can never break a symmetry by acquiring a vacuum
expectation value, we may apply the above steps again to conclude that we
have to have either degenerate quarks or vanishing mixing. In turn, the scalar
sector needs to be extended.

Given the large splitting of the quark masses any non-abelian horizon-
tal symmetry will effectively become a abelian symmetry. If a non-abelian
symmetry is introduced, all up-type quarks are in the same mulitiplet and
different masses can be generated only by a large breaking of this symmetry.
In order to study the mixing between families, it will be sufficient to consider
an abelian symmetry.

It is well known that introducing more than one Higgs field carries the
danger of large flavour-changing neutral currents. The simplest extension is
a two-Higgs-doublet model, of which only two types are safe with respect to
flavour changing neutral currents. We discuss the type of two-Higgs-doublet
models which is also relevant for supersymmetric theories. The Lagrangian
for the Yukawa terms reads

LIIHDM
Yuk =

1
v

(
Q̄MuHu(P+q) + Q̄MdHd(P−q)

)
, (7.27)

where we have introduced two Higgs fields Hu and Hd, giving masses to the
up and down quarks. The two Higgs fields are again in a one-dimensional
representation of the horizontal symmetry and transform as

Hu → Hu exp(iφuτ3) , Hd → Hd exp(iφdτ3) . (7.28)

The Yukawa interaction (7.27) still has a symmetry on top of the U(1)Y

that has been used above, which is a transformation of the form

Hd → Hd exp(iψτ3) , d → d exp(iψ) , (7.29)

while all other fields remain unchanged. Thus, by the same argument as
for the single Higgs doublet of the Standard Model, we can compensate the
phase of the horizontal-symmetry transformation by adjusting the phase ψ in
(7.29). Thus the two Higgs fields Hu and Hd again cannot break the horizontal
symmetry.

One way to avoid these “no-go” statements concerning the spontaneous
breaking of the horizontal symmetry is to introduce non-renormalizable terms
suppressed by a large scale Λ. This is natural since it introduces the mixing
between families as a power-suppressed contribution, explaining the smallness
of this effect. We wish only to discuss these models schematically, so we shall
consider a simplified model, where the horizontal symmetry is simply a U(1)H

phase transformation. We shall define the two Higgs doublets to be in the
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trivial representation of the horizontal symmetry, i.e. φu = 0 = φd. We
introduce an additional scalar field S, which carries one unit of charge under
the horizontal symmetry

S → S exp(−iφ) , (7.30)

while the quarks transform as

FL = exp(iTLφ) , Fu = exp(iTuφ) , Fd = exp(iTdφ) . (7.31)

The charges T are 3 × 3 matrices that can be chosen to be diagonal:

TL =




t
(1)
L 0 0
0 t

(2)
L 0

0 0 t
(3)
L


 , Tu =




t
(1)
u 0 0
0 t

(2)
u 0

0 0 t
(3)
u


 , Td =




t
(1)
d 0 0
0 t

(2)
d 0

0 0 t
(3)
d


 ,

(7.32)
where the diagonal entries are assumed to be integer numbers.

A U(1)H -invariant, non-renormalizable Yukawa interaction term can now
be written as

Lnr
Yuk =

(
1

ΛnAB
Q̄Aλu,ABSnABHu(P+q)B

+
1

ΛmAB
Q̄Aλd,ABSmABHd(P−q)B

)
, (7.33)

where we have re-inserted the family indices A and B, and Λ is a scale of
new physics which induces the nonrenomalizable terms (7.33). The powers of
the field S are determined from the requirement that the Lagrangian Lnr

Yuk is
invariant under U(1)H , which yields the relations

nAB = t
(A)
L − t(B)

u , mAB = t
(A)
L − t

(B)
d . (7.34)

Spontaneous breaking of the horizontal symmetry means that S acquires
a vacuum expectation value, which we write as

〈S〉 = εΛ , (7.35)

introducing a small quantity ε.
Hierarchical mass matrices and mixing can now be introduced by a suit-

able choice of the charges for the different generations, and the hierarchy is
determined by the small parameter epsilon. Assuming for purposes of illus-
tration λu,AB = 1 and λd,AB = 1 for all values of A and B, we find a mass
term in the Lagrangian of the form

LMass = v
(
Q̄AεnAB (P+q)B + Q̄AεmAB (P−q)B

)
, (7.36)

where we have used a simplified picture in which 〈Hu〉 = 〈Hd〉 = v.
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In this simple picture, the mixing angles are related to the charge dif-
ferences between the left-handed components of the families; we obtain, as
order-of-magnitude relations,

|Vus| ∼ εt
(2)
L −t

(1)
L , |Vcb| ∼ εt

(3)
L −t

(2)
L , |Vub| ∼ εt

(3)
L −t

(1)
L , (7.37)

which implies a structure corresponding to the Wolfenstein parametrization.
In particular, we obtain

|Vub| ∼ |Vcb||Vus| . (7.38)

Similarly, the mass ratios depend on the charges of the right-handed par-
ticles; we find, as order-of-magnitude estimates,

m
(A)
d

m
(B)
d

∼ εt
(A)
L −t

(B)
L +t

(A)
d −t

(B)
d ,

m
(A)
u

m
(B)
u

∼ εt
(A)
L −t

(B)
L +t(A)

u −t(B)
u . (7.39)

We shall not go into any quantitative details here, since for a quantita-
tively satisfactory model this simple toy model needs to be extended [8, 9].
However, we may relate this model to the simple relation discussed already
in Sect. 3.3 which has been explicitly been derived for the two family case.
For the case that

t
(A)
L − t

(B)
L = t

(A)
d − t

(B)
d (7.40)

one has the order-of-magnitude relation

Vus ∼
√

mu

ms
(7.41)

which is of a similar form as relation (3.29).
However, this type of model has various problems. Aside from the fact

that the above discussion is only qualitative, the simple U(1)H model used
here for illustrative purposes does not yield a sensible phenomenology. As
has been discussed in [9], one needs to extend the symmetry to satisfy the
phenomenological constraints from the observed masses and mixings.

Furthermore, a spontaneously broken global horizontal symmetry will re-
sult in massless (or at least light) scalar fields, which are not observed. This
can in principle be avoided by elevating the global horizontal symmetry into
a local one, in which case one can trade the massless modes for the longi-
tudinal modes of massive gauge bosons. However, the masses of these gauge
bosons have to be very large in order to avoid problems with flavour-changing
currents.

Going beyond these qualtitative remarks is beyond the scope of this book;
in particular, the ansatz discussed above is again only an effective field theory,
which cannot explain the origin of the higher-dimensional operators. However,
its nice feature is a qualitative explanation of the hierarchical structure of the
mass matrices. Still, it is fair to say that at present there is no working model
that explains the flavour structure of the Standard Model.
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8 Prospects

8.1 Current and Future Experiments

Flavour physics is currently one of the most active fields in particle physics.
This is mainly due to the fact that a lot of experimental activity has gathered
an impressive amount of data.

After the discovery of the upsilon resonances, it did not take too long to
use cross-section enhancement through the Υ (4S) to produce a significant
number of bottom mesons. Two experiments opened the road to today’s pre-
cision flavour physics: The ARGUS experiment at Hamburg and the CLEO
experiment at Cornell. These experiments were very successful in giving us
our first insights into the rich phenomenology of B meson physics. In par-
ticular, it is interesting to note that the first hint of a very large top-quark
mass of far above 100 GeV came from the discovery at ARGUS (together
with the UA1 experiment at CERN) of B–B oscillations. This happened at
a time when the top quark was still believed to lie just above the cms-energy
of the PETRA ring at Hamburg, which was at that time in the region of 30
to 40 GeV.

Both ARGUS and CLEO were successful in measuring details of semilep-
tonic and non-leptonic decays, thereby also proving the existence of charmless
decays. However, an breakthrough not originally expected came through the
development of silicon vertex devices, which allowed very precise tracking at
the experiments performed at the LEP collider at CERN and at the Tevatron
at Fermilab. This opened the road to identifying B mesons (or more generally
b quarks) in the decay products of the Z0 or in hadronic collisions at very high
energies, and so these experiments collected results for a significant number
of B mesons and were able to identify all kinds of decay modes. Through
this technological development the high-energy colliders could contribute to
B physics significantly; for example, the lifetime values for bottom hadrons
are still dominated by the collider measurements.

One key point in flavour physics could not, however, be checked by the
symmetric B factories at Hamburg and Cornell, which was the measurement
of the CP violation in the B system. This was the motivation for constructing
asymmetric B factories with much higher luminosities, which can perform a
measurement of the time-dependent CP asymmetry in B decays. It clearly
marked a milestone in flavour physics when the BaBar experiment at the
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STMP 203, 167–171 (2004)
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SLAC B factory and the Belle experiment at the KEK B factory measured
the time-dependent CP asymmetry in B → J/ΨKs in 2001. In the meantime,
the measurement of the CKM angle β has become a precision measurement
with an uncertainty of about 5%. Unfortunately, the measured CP asymmetry
is in accord with the prediction of the CKM picture.

Currently, the B factories are producing an enormous amount of data. The
analysis of these data will also boost the theoretical developments aimed at
obtaining a better understanding of non-leptonic decays. This is obviously of
vital importance in overconstraining the unitarity triangle by a measurement
of the two other CKM angles α and γ. Still it will be a theoretical challenge
to assess the uncertainties for extracting α and γ from the observed CP
asymmetries.

Similarly, the measurement of rare decay modes is important for a further
understanding of flavour. In particular, FCNC modes such as those based
on the quark transition b → sγ will give us deeper insight into the GIM
mechanism and possibly open a window onto new physics.

Clearly, the B factories alone will not allow a complete check of the flavour
sector. It is important to include data on Bs decays in the analysis. How-
ever, the B factories are running below the Bs threshold and thus second-
generation B physics experiments are needed.

These experiments are on their way. On one hand, the experiments at the
Tevatron will provide a significant sample of Bs mesons and the discovery of
Bs–Bs oscillations is around the corner and is just a matter of sufficient in-
tegrated luminosity. A measurement of these oscillations will give us another
important constraint on the unitarity triangle, which cannot be obtained
from the B factories. On the other hand, there are plans to have dedicated
experiments at the LHC (LHC-b) and at the Tevatron (B-TeV), which are
designed to give us precise information on Bs decays also.

To get a full picture, it will be necessary to measure various Bs decays,
and, in particular, the CP asymmetry in these decays. The mode Bs →
J/Ψφ plays a similar role in the Bs system to the mode B → J/ΨKs in
the B system: it measures the phase of the mixing, which is predicted to be
very small. Clearly a large time-dependent CP asymmetry would be a clear
signal of new physics. Similarly, many strategies to extract γ using flavour
symmetries need information on Bs decays.

In addition, there have been initial discussions about increasing the lumi-
nosity of the SLAC and KEK B factories by a factor of about 100 to allow
the measurement of B decays with very small branching ratios. Even if the
number of B mesons produced is comparable to the numbers at LHC-b or
B-TeV, the cleaner environment at an e+e− B factory may be an advantage.
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8.2 Theoretical Perspectives

With this enormous amount of experimental information, we are entering the
era of precision flavour physics. The theoretical methods based on effective
field theories are in a mature state, and many effective-theory approaches
have been studied extensively.

As far as the effective Hamiltonian for weak interactions is concerned, the
full renormalization group result is known to next-to-leading order. In most
cases this is sufficient, since the limitations arise from the matrix elements of
the operators. However, in a few cases, such as the FCNC process B → Xsγ,
it turns out that the theoretical prediction obtained from the next-to-leading-
order calculation is not sufficient. Thus we need to go beyond the next-to-
leading order which is a technical challenge, since it requires a four-loop
calculation of an anomalous dimension, a three-loop matching calculation
and the calculation of the matrix element at the two-loop level.

Some progress has been achieved by applying effective-field-theory meth-
ods to QCD, exploiting the fact that the mass of the b quark is large compared
with the scale parameter ΛQCD. The classical applications known as “heavy-
quark effective theory” and “heavy-quark expansion” can be applied to both
exclusive and inclusive processes. The applications in which the light degrees
of freedom are treated as soft are in a mature state and have resulted in a
precise determination of Vcb, which is by now the second-best-known CKM
matrix element. With more data, a clean determination of Vub will become
possible, since the theoretical tools exist.

More recently, ideas have been discussed for using an effective-field-theory
picture for a situation in which the light degrees of freedom have large mo-
menta and result in collimated, energetic jets of light hadrons or even, in the
exclusive case, in a single, energetic light hadron. These developments are
known under the name of “soft collinear effective theory” (SCET) and are
currently under investigation.

The main impact of these new ideas is that SCET opens the way to a
QCD-based calculation of exclusive non-leptonic processes. The key ingre-
dients are factorization theorems that allow us to relate different processes,
thereby eliminating non-perturbative quantities. However, currently the data
indicatie that the leading terms in the SCET expansion might receive sub-
stantial subleading corrections and it is currently unclear how reliable this
method is.

Combining the theoretical methods with the current data has already
provided a significant test of the CKM picture. The current constraints in the
ρ–η plane are shown in Fig. 8.1. The plot shows the remarkable consistency of
the current data, which do not show any significant deviation from the CKM
picture of the Standard Model. As of today, there are only a few ”hints”
which do not have any statistical significance (see [2]).

In order to discuss effects beyond the Standard Model, one can interpret
the Standard Model itself as the renormalizable piece of an effective field
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Fig. 8.1. Current constraints in the ρ-η. The figure is taken from [1]

theory. From this point of view any physics beyond the Standard Model is
parametrized by operators of higher dimension. While this idea has been
applied with great success to the gauge sector, it is not well suited to the
flavour sector, since the number of unknown parameters is too large to make
this approach useful.

A restriction on the number of parameters requires to assume some model
framework for the new physics, of which we do not have any indication from
precision measurements. However, as far as flavour is concerned, it is not easy
to invent a mechanism which explains the hierarchy of masses and mixing
angles. It is fair to say that no plausible model of flavour exists.

Effective-field-theory methods have developed into a standard tool in par-
ticle physics, and a lot of the theoretical progress has originated from a clever
use of these methods. On the other hand, a stringent test of the flavour sec-
tor of the Standard Model requires further work; as far as experiments are
concerned, the experimental uncertainties will become really small at the end
of the B-factory era, at least for a large variety of observables. It will be a
challenge for the theoretical side to match this precision; this, however, will
be vital for exploiting the full information contained in the experimental data
that will be available ten years from now.
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