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PREFACE TO THE SECOND EDITION

The construction of a consistent theory of quantum gravity continues to be the
major open problem in fundamental physics. The present second edition of my
book is an extended and revised version of the first edition. It contains, in par-
ticular, new sections on asymptotic safety, dynamical triangulation, primordial
black holes, the information-loss problem, loop quantum cosmology, and other
topics. The text has been revised throughout.
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address kiefer@thp.uni-koeln.de.

For helpful discussions and critical comments while preparing the second edi-
tion I am grateful to Mark Albers, Andrei Barvinsky, Martin Bojowald, Friedrich
Hehl, Gerhard Kolland, Renate Loll, Hermann Nicolai, Martin Reuter, Barbara
Sandhöfer, Stefan Theisen, and H.-Dieter Zeh.

Last but not least I want to thank Oxford University Press, and in particular
Sonke Adlung, for their efficient cooperation.

Cologne Claus Kiefer
December 2006
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PREFACE

The unification of quantum theory with Einstein’s theory of general relativity is
perhaps the biggest open problem of theoretical physics. Such a theory is not only
needed for conceptual reasons, but also for the understanding of fundamental
issues such as the origin of the Universe, the final evaporation of black holes,
and the structure of space and time.

Historically, the oldest approach is the direct quantization of Einstein’s the-
ory of general relativity, an approach which is still being actively pursued. This
includes covariant methods such as path-integral quantization as well as canon-
ical methods like the Wheeler–DeWitt approach or the more recent loop quan-
tization. Although one arrives at a perturbatively non-renormalizable theory,
quantum general relativity can yield physically interesting results in both the
perturbative and the non-perturbative regimes. It casts light, in particular, on
the fundamental nature of space and time.

The second main approach is string theory. It encapsulates the idea that the
problem of constructing a viable quantum theory of gravity can only be solved
within a unification of all interactions. In this respect, it goes far beyond quantum
general relativity. From a methodological point of view, however, string theory
does not stand much apart from it. It is a natural extension of perturbative
quantum gravity (from which it inherits the concept of a graviton), and methods
of constrained quantization, which are crucial for canonical quantum gravity,
appear at key stages in the theory.

Whereas there exist excellent textbooks that discuss string theory at great
depth, the present monograph is the first that, to my knowledge, covers quan-
tum gravity in this broad sense. The main part of the book is devoted to general
concepts, the quantization of general relativity, and applications to cosmology
and black holes. String theory is discussed from the point of view of its quan-
tum gravitational aspects and its connection to other approaches. The edifice
of theoretical physics cannot be completed without the conceptual unification
that will be provided by quantum gravity. I hope that my book will convince
my readers of this outstanding problem and encourage them to work on its
solution.

This book has grown out of lectures that I gave at the Universities of Zürich,
Freiburg, and Cologne between 1990 and 2003. My main intention is to discuss
the general features that a quantum theory of gravity is expected to show and
to give an up-to-date overview of the main approaches. The reader is assumed
to have some familiarity with general relativity and quantum field theory. Com-
ments can be sent to my e-mail address kiefer@thp.uni-koeln.de and are
highly welcome.
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1

WHY QUANTUM GRAVITY?

1.1 Quantum theory and the gravitational field

1.1.1 Introduction

Quantum theory seems to be a universal theory of nature. More precisely, it
provides a general framework for all theories describing particular interactions.
Quantum theory has passed a plethora of experimental tests and is considered
a well-established theory, except for the ongoing discussion about its interpreta-
tional foundations.

The only interaction that has not been fully accommodated within quantum
theory is the gravitational field, the oldest known interaction. It is described very
successfully by a classical (i.e. non-quantum) theory, Einstein’s general theory of
relativity (GR), also called geometrodynamics. From a theoretical, or even aes-
thetic, point of view, it is highly appealing, since the fundamental equations can
be formulated in simple geometrical terms. Moreover, there now exist plenty of
experimental tests that have been passed by this theory without problems. One
particularly impressive example is the case of the binary pulsar PSR 1913+16:
the decrease of its orbital period can be fully explained by the emission of grav-
itational waves as predicted by GR. The accuracy of this test is only limited by
the accuracy of clocks on Earth, which according to recent proposals for rubid-
ium fountain clocks (Fertig and Gibble 2000) should approach an accuracy of
about 10−16 (such a clock would go wrong by less than 1 s during a time as long
as the age of the Universe). The precision is so high that one even needs to model
the gravitational influence of the Milky Way on the binary pulsar in order to
find agreement with the theoretical prediction (Damour and Taylor 1991). There
exist phenomena that could point to a more fundamental theory than GR (Dark
Matter, Dark Energy, Pioneer anomaly), but this is not yet clear.

The formalism of general relativity is discussed in many textbooks; see, for
example, Hawking and Ellis (1973), Misner et al. (1973), Straumann (2004), or
Wald (1984). It can be defined by the Einstein–Hilbert action,

SEH =
c4

16πG

∫
M

d4x
√
−g (R − 2Λ) − c4

8πG

∫
∂M

d3x
√

hK . (1.1)

Note that c4/16πG ≈ 2.41× 1047 g cm s−2 ≈ 2.29× 1074(cm s)−1 �. The integra-
tion in the first integral of (1.1) covers a region M of the space–time manifold,
and the second integral is defined on its boundary ∂M which is assumed to
be space-like. The integrand of the latter contains the determinant, h, of the
three-dimensional metric on the boundary, and K is the trace of the second

1



2 WHY QUANTUM GRAVITY?

fundamental form (see Section 4.2.1). That a surface term is needed in order
to obtain a consistent variational principle had already been noted by Einstein
(1916a).

In addition to the action (1.1), one considers actions for non-gravitational
fields, in the following called Sm (‘matter action’). They give rise to the energy–
momentum tensor

Tµν =
2√−g

δSm

δgµν
, (1.2)

which acts as a ‘source’ of the gravitational field. In general, it does not coincide
with the canonical energy–momentum tensor. From the variation of SEH + Sm,
the Einstein field equations are obtained,

Gµν ≡ Rµν − 1
2
gµνR + Λgµν =

8πG

c4 Tµν . (1.3)

(Our convention is the one used by Misner et al. (1973), with a space–time metric
of signature (−1, 1, 1, 1), a Riemann tensor defined by Rα

βγδ = Γα
βδ,γ + · · · , and

a Ricci tensor defined by Rαβ = Rµ
αµβ .)

A natural generalization of general relativity is the Einstein–Cartan theory;
see, for example, Hehl (1985) and Hehl et al. (1976) for details. It is found by
introducing potentials connected with translations and Lorentz transformations
(i.e. with the Poincaré group): the tetrad eµ

n for the translations and the connec-
tion ωmk

µ for the Lorentz transformations. The corresponding gravitational field
strengths are torsion and curvature. Torsion vanishes outside matter and does
not propagate, but it is straightforward to formulate extensions with a propagat-
ing torsion by gauging the translations and the Lorentz transformations (leading
to the Poincaré gauge theory). The occurrence of torsion is a natural consequence
of the presence of spin currents. Its effects are tiny on macroscopic scales (which
is why it has not been seen experimentally), but it should be of high relevance
in the microscopic realm, for example, on the scale of the electronic Compton
wavelength and in the very early Universe. In fact, the Einstein–Cartan the-
ory is naturally embedded in theories of supergravity (see Section 2.3), where a
spin-3/2 particle (the ‘gravitino’) plays a central role.

In Chapter 2, we shall discuss some ‘uniqueness theorems’, which state that
every theory of the gravitational field must contain GR (or the Einstein–Cartan
theory) in an appropriate limit. Generalizations of GR such as the Jordan–Brans–
Dicke theory, which contains an additional scalar field in the gravitational sector,
are therefore mainly of interest as effective theories arising from fundamental
theories such as string theory (see Chapter 9). They are usually not meant as
classical alternatives to GR, except for the parametrization of experimental tests.
That GR cannot be true at the most fundamental level is clear from the singu-
larity theorems (cf. Hawking and Penrose 1996): under very general conditions,
singularities in space–time are unavoidable, signalling the breakdown of GR.
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The theme of this book is to investigate the possibilities of unifying the
gravitational field with the quantum framework in a consistent way. This may
lead to a general avoidance of space–time singularities.

1.1.2 Main motivations for quantizing gravity

The first motivation is unification. The history of science shows that a reduc-
tionist viewpoint has been very fruitful in physics (Weinberg 1993). The standard
model of particle physics is a quantum field theory that has united in a certain
sense all non-gravitational interactions. It has been very successful experimen-
tally, but one should be aware that its concepts are poorly understood beyond
the perturbative level; in this sense, the classical theory of GR is in a much better
condition.

The universal coupling of gravity to all forms of energy would make it plausi-
ble that gravity has to be implemented in a quantum framework too. Moreover,
attempts to construct an exact semiclassical theory, where gravity stays classical
but all other fields are quantum, have failed up to now; see Section 1.2. This
demonstrates, in particular, that classical and quantum concepts (phase space
versus Hilbert space, etc.) are most likely incompatible.

Physicists have also entertained the hope that unification entails a solution
to the notorious divergence problem of quantum field theory; as is shown in
Chapter 2, perturbative quantum GR leads to even worse divergences, due to its
non-renormalizability, but a full non-perturbative framework without any diver-
gences may exist. In fact, some of the approaches presented in this volume, such
as canonical quantum gravity or string theory, are candiates for a divergence-free
theory.

The second motivation comes from cosmology and black holes. As the sin-
gularity theorems and the ensuing breakdown of GR demonstrate, a fundamental
understanding of the early Universe—in particular, its initial conditions near the
‘big bang’—and of the final stages of black-hole evolution requires an encompass-
ing theory. From the historical analogy of quantum mechanics (which—due to
its stationary states—has rescued the atoms from collapse), the general expec-
tation is that this encompassing theory is a quantum theory. Classically, the
generic behaviour of a solution to Einstein’s equations near a big-bang singular-
ity is assumed to consist of ‘BKL oscillations’; cf. Belinskii at al. (1982) and the
references therein. A key feature of this scenario is the decoupling of different
spatial points. A central demand on a quantum theory of gravity is to provide a
consistent quantum description of BKL oscillations.

The concept of an ‘inflationary universe’1 is often invoked to claim that the
present universe can have emerged from generic initial conditions. This is only
partly true, since one can of course trace back any present conditions to the
past to find the ‘correct’ initial conditions. In fact, the crucial point lies in the
assumptions that enter the no-hair conjecture; see, for example, Frieman et al.

1Following Harrison (2000), we shall write ‘universe’ instead of ‘Universe’ to emphasize that
we talk about a model of the Universe, in contrast to ‘Universe’ which refers to ‘everything’.



4 WHY QUANTUM GRAVITY?

(1997). This conjecture states that space–time approaches locally a de Sitter
form for large times if a (probably effective) cosmological constant is present. The
conjecture can be proved, provided some assumptions are made. In particular,
it must be assumed that modes on very small scales (smaller than the Planck
length: see below) are not amplified to cosmological scales. This assumption thus
refers to the unknown regime of quantum gravity. Moreover, it seems that the
singularity theorems apply even to inflationary cosmology (Borde et al. 2003).

It must be emphasized that if gravity is quantized, the kinematical non-
separability of quantum theory demands that the whole universe must be de-
scribed in quantum terms. This leads to the concepts of quantum cosmology and
the wave function of the universe; see Chapters 8 and 10.

A third motivation is the problem of time. Quantum theory and GR (in
fact, every general covariant theory) contain a drastically different concept of
time (and space–time). Strictly speaking, they are incompatible. In quantum
theory, time is an external (absolute) element, not described by an operator (in
special relativistic quantum field theory, the role of time is played by the external
Minkowski space–time). In contrast, in GR, space–time is a dynamical object. It
is clear that a unification of quantum theory with GR must lead to modifications
of the concept of time. One might expect that the metric has to be turned into
an operator. In fact, as a detailed analysis will show (Chapters 5 and 9), this
will lead to novel features. Related problems concern the role of background
structures in quantum gravity, the role of the diffeomorphism group (Poincaré
invariance, as used in ordinary quantum field theory, is no longer a symmetry
group), and the notion of ‘observables’. That a crucial point lies in the presence
of a more general invariance group was already noted by Pauli (1955)2:
It seems to me . . . that it is not so much the linearity or non-linearity which forms the
heart of the matter, but the very fact that here a more general group than the Lorentz
group is present . . . .

1.1.3 Relevant scales

In a universally valid quantum theory, genuine quantum effects can occur on any
scale, while classical properties are an emergent phenomenon only (see Chap-
ter 10). This is a consequence of the superposition principle. Independent of
this, there exist scales where quantum effects of a particular interaction should
definitely be non-negligible.

It was already noted by Planck (1899) that the fundamental constants, speed
of light (c), gravitational constant (G), and quantum of action (�), can be com-
bined in a unique way to yield units of length, time, and mass. In Planck’s
honour, they are called the Planck length, lP, Planck time, tP, and Planck mass,
mP, respectively. They are given by the expressions

2‘Es scheint mir . . . , daß nicht so sehr die Linearität oder Nichtlinearität Kern der Sache ist,
sondern eben der Umstand, daß hier eine allgemeinere Gruppe als die Lorentzgruppe vorhanden
ist . . . .’
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lP =

√
�G

c3 ≈ 1.62 × 10−33 cm , (1.4)

tP =
lP
c

=

√
�G

c5 ≈ 5.40 × 10−44 s , (1.5)

mP =
�

lPc
=

√
�c

G
≈ 2.17 × 10−5 g ≈ 1.22 × 1019 GeV . (1.6)

The Planck mass seems to be a rather large quantity by microscopic stan-
dards. One has to keep in mind, however, that this mass (energy) must be con-
centrated in a region of linear dimension lP in order to see direct quantum-gravity
effects. In fact, the Planck scales are attained for an elementary particle whose
Compton wavelength is (apart from a factor of 2) equal to its Schwarzschild
radius,

�

mPc
≈ RS ≡ 2GmP

c2 ,

which means that the space–time curvature of an elementary particle is not
negligible. Sometimes (e.g. in cosmology), one also uses the Planck temperature,

TP =
mPc2

kB
≈ 1.41 × 1032 K , (1.7)

and the Planck density,

ρP =
mP

l3P
≈ 5 × 1093 g

cm3 . (1.8)

It is interesting to observe that Planck had introduced his units one year
before he wrote the famous paper containing the quantum of action; see Planck
(1899). How had this been possible? The constant � appears in Wien’s law,
�ωmax ≈ 2.82kBT , which was phenomenologically known at that time. Planck
learnt from this that a new constant of nature is contained in this law, and he
called it b. Planck concludes his article by writing3:

These quantities retain their natural meaning as long as the laws of gravitation, of light
propagation in vacuum, and the two laws of the theory of heat remain valid; they must
therefore, if measured in various ways by all kinds of intelligent beings, always turn out
to be the same.

It is also interesting that similar units had already been introduced by the
Irish physicist Johnstone Stoney (1881). Of course, � was not known at that time,
but one could (in principle) get the elementary electric charge e from Avogadro’s

3‘Diese Grössen behalten ihre natürliche Bedeutung so lange bei, als die Gesetze der Gra-
vitation, der Lichtfortpflanzung im Vacuum und die beiden Hauptsätze der Wärmetheorie in
Gültigkeit bleiben, sie müssen also, von den verschiedensten Intelligenzen nach den verschieden-
sten Methoden gemessen, sich immer wieder als die nämlichen ergeben.’
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number L and Faraday’s number F = eL. With e, G, and c, one can construct
the same fundamental units as with �, G, and c (since the fine-structure constant
is α = e2/�c ≈ 1/137); therefore, Stoney’s units differ from Planck’s units by
factors of

√
α. Quite generally one can argue that there are three fundamental

dimensional quantities (cf. Okun 1992).
The Planck length is indeed very small. If one imagines an atom to be the size

of the Moon’s orbit, lP would only be as small as about a tenth of the size of a
nucleus. Still, physicists have for some time entertained the idea that something
dramatic happens at the Planck length, from the breakdown of the continuum
to the emergence of non-trivial topology (‘space–time foam’); see, for example,
Misner et al. (1973). We shall see in the course of this book how such ideas can be
made more precise in quantum gravity. Unified theories may contain an intrinsic
length scale from which lP may be deduced. In string theory, for example, this is
the string length ls. A generalized uncertainty relation shows that scales smaller
than ls have no operational significance; see Chapter 9. We also remark that
the Einstein–Hilbert action (1.1) is of order � only for TL ∼ lPtP, where the
integration in the action is performed over a space–time region of extension
TL3.

Figure 1.1 presents some of the important structures in our Universe in a
mass-versus-length diagram. A central role is played by the ‘fine-structure con-
stant of gravity’,

αg =
Gm2

pr

�c
=

(
mpr

mP

)2

≈ 5.91 × 10−39 , (1.9)

where mpr denotes the proton mass. Its smallness is responsible for the unim-
portance of quantum-gravitational effects on laboratory and astrophysical scales,
and for the separation between micro- and macrophysics. As can be seen from
the diagram, important features occur for masses that contain simple powers of
αg (in terms of mpr); cf. Rees (1995). For example, the Chandrasekhar mass MC
is given by

MC ≈ α−3/2
g mpr ≈ 1.8M� . (1.10)

(A more precise value is MC ≈ 1.44M�.) It gives the upper limit for the mass
of a white dwarf and sets the scale for stellar masses. The minimum stellar
life times contain α

−3/2
g tP as the important factor. It is also interesting to note

that the geometric mean of the Planck length and the size of the observable
part of the Universe is about 0.1 mm—a scale of everyday’s life. It is an open
question whether fundamental theories such as quantum gravity can provide an
explanation for such values, for example, for the ratio mpr/mP, or not. Tegmark
et al. (2006) give a list of 31 dimensionless parameters in particle physics and
cosmology that demand a fundamental explanation. We shall come back to this
in Chapter 10.

As far as the relationship between quantum theory and the gravitational field
is concerned, one can distinguish between different levels. The first, lowest level
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Fig. 1.1. Structures in the Universe (adapted from Rees (1995)).

deals with quantum mechanics in external gravitational fields (either described
by GR or its Newtonian limit). No back reaction on the gravitational field is
taken into account. This is the only level where experiments exist so far. The
next level concerns quantum field theory in external gravitational fields described
by GR. Back reaction can be taken into account in a perturbative sense. These
two levels will be dealt with in the next two subsections. The highest-level, full
quantum gravity, will be discussed in the rest of this book.

1.1.4 Quantum mechanics and Newtonian gravity

Consider first the level of Newtonian gravity. There exist experiments that test
the classical trajectories of elementary particles, such as thermal neutrons that
fall like mass points; see, for example, Hehl et al. (1991). This is not so much of
interest here. We are more interested in quantum-mechanical interference exper-
iments concerning the motion of neutrons and atoms in external gravitational
fields.

Historically, two experiments have been of significance. The experiment by
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Fig. 1.2. Schematic description of the ‘COW’ experiment for neutron interfer-
ometry in the gravitational field of the Earth.

Colella, Overhauser, and Werner (‘COW’) in 1975 was concerned with neutron
interferometry in the gravitational field of the Earth. According to the equiv-
alence principle, an analogous experiment should be possible with neutrons in
accelerated frames. Such an experiment was performed by Bonse and Wroblewski
in 1983. Details and references can be found in the reviews by Hehl et al. (1991)
and Werner and Kaiser (1990).

In the following, we shall briefly describe the ‘COW’ experiment; see Fig. 1.2.
A beam of neutrons is split into two parts, such that they can travel at different
heights in the terrestrial gravitational field. They are then recombined and sent
to detectors. The whole apparatus can be rotated with a varying angle θ around
the horizontal axis. The interferences are then measured in dependence on θ.
The theoretical description makes use of the Schrödinger equation for neutrons
(Hehl et al. 1991). The Hamiltonian in the system of the rotating Earth is given
by

H =
p2

2mi
+ mggr− ωL . (1.11)

We have distinguished here between the inertial mass, mi, of the neutron and its
(passive) gravitational mass, mg, because ‘COW’ also used this experiment as a
test of the equivalence principle. In the last term, ω and L denote the angular
velocity of the Earth and the angular momentum of the neutron with respect
to the centre of the Earth (given by r = 0), respectively. This term describes
centrifugal and Coriolis forces. Note that the canonical momentum is given by

p = miṙ + miω × r . (1.12)

The phase shift in the interferometer experiment is given by

∆β =
1
�

∮
pdr , (1.13)

where the integration runs over the parallelogram ABDC of Fig. 1.2. According
to (1.12), there are two contributions to the phase shift. The term containing
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ω describes the influence of the terrestrial rotation on the interference pattern
(‘neutron Sagnac effect’). It yields

∆βSagnac =
mi

�

∮
(ω × r)dr =

2mi

�
ωA , (1.14)

where A denotes the normal area vector of the loop ABDC.
Of main interest here is the gravitational part of the phase shift. Since the

contributions of the sides AC and DB cancel, one has

∆βg =
mi

�

∮
vdr ≈ mi(v0 − v1)

�
AB , (1.15)

where v0 and v1 denote the absolute values of the velocities along AB and CD,
respectively. From energy conservation one gets

v1 = v0

√
1 − 2∆V

miv2
0
≈ v0 −

mggh0 sin θ

miv0
,

where ∆V = mggh0 sin θ is the potential difference, h0 denotes the perpendicular
distance between AB and CD, and the limit 2∆V/miv

2
0 � 1 (about 10−8 in

the experiment) has been used. The neutrons are prepared with a de Broglie
wavelength λ = 2π�/p ≈ 2π�/miv0 (neglecting the ω part, since the Sagnac
effect contributes only 2% of the effect), attaining a value of about 1.4 Å in the
experiment. One then gets for the gravitational phase shift the final result

∆βg ≈ mimggλA sin θ

2π�2 , (1.16)

where A denotes the area of the parallelogram ABDC. This result has been
confirmed by ‘COW’ with 1% accuracy. The phase shift (1.16) can be rewritten
in an alternative form such that only those quantities appear that are directly
observable in the experiment (Lämmerzahl 1996). It then reads

∆βg ≈ mg

mi
gGTT ′ , (1.17)

where T (T ′) denotes the flight time of the neutron from A to B (from A to
C), and G is the reciprocal lattice vector of the crystal layers (from which the
neutrons are scattered in the beam splitter). Now mg and mi appear as in the
classical theory as a ratio, not as a product. The ‘COW’ experiment has also
confirmed the validity of the (weak) equivalence principle in the quantum do-
main. Modern tests prefer to use atom interferometry because atoms are easier
to handle and the experiments allow tests of higher precision (Lämmerzahl 1996,
1998). There the flight time is just the time between laser pulses, that is, the
interaction time with the gravitational field; T is chosen by the experimentalist.
For example, Peters et al. (2001) have used atom interferometry to measure g
with a resolution of ∆g/g ∼ 10−10.
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Still, neutrons are useful for studying quantum systems in the gravitational
field. An experiment with ultracold neutrons has shown that their vertical mo-
tion in the gravitational field has discrete energy states, as predicted by the
Schrödinger equation (Nesvizhevsky et al. 2002). The minimum energy is 1.4 ×
10−12 eV, which is much smaller than the ground-state energy of the hydrogen
atom.

It is also of interest to discuss the Dirac equation instead of the Schrödinger
equation because this may give rise to additional effects. In Minkowski space
(and cartesian coordinates), it reads(

iγµ∂µ +
mc

�

)
ψ(x) = 0 , (1.18)

where ψ(x) is a Dirac spinor, and

[γµ, γν ]+ ≡ γµγν + γνγµ = 2ηµν . (1.19)

The transformation into an accelerated frame is achieved by replacing partial
derivatives with covariant derivatives (see, for example, Hehl et al. (1991))

∂µ −→ Dµ ≡ ∂µ +
i
4
σmkωµmk , (1.20)

where σmk = i[γm, γk]/2 is the generator of the Lorentz group, and ωµmk denotes
the components of the connection; Latin indices denote anholonomic compo-
nents, that is, components that are not derivable from a coordinate basis. From
the equivalence principle, one would expect that this also gives the appropriate
form in curved space–time, where

[γµ, γν ]+ = 2gµν . (1.21)

For the formulation of the Dirac equation in curved space–time, one has to use
the tetrad (‘vierbein’) formalism, in which a basis en = {e0, e1, e2, e3} is chosen
at each space–time point. This is the reason why anholonomic components come
into play. One can expand the tetrads with respect to the tangent vectors along
coordinate lines (‘holonomic basis’) according to

en = eµ
n∂µ . (1.22)

Usually one chooses the tetrad to be orthonormal,

en · em ≡ gµνeµ
neν

m = ηnm ≡ diag(−1, 1, 1, 1) . (1.23)

The reason why one has to go beyond the pure metric formalism is the fact that
spinors (describing fermions) are objects whose wave components transform with
respect to a two-valued representation of the Lorentz group. One therefore needs
a local Lorentz group and local orthonormal frames.
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One can define anholonomic Dirac matrices according to

γn ≡ en
µγµ , (1.24)

where eµ
nem

µ = δm
n . This leads to

[γn, γm]+ = 2ηnm . (1.25)

The Dirac equation in curved space–time or accelerated frames then reads, using
anholonomic components, (

iγnDn +
mc

�

)
ψ(x) = 0 . (1.26)

In order to study quantum effects of fermions in the gravitational field of the
Earth, one specializes this equation to the non-inertial frame of an accelerated
and rotating observer, with linear acceleration a and angular velocity ω (see e.g.
Hehl et al. 1991). A non-relativistic approximation with relativistic corrections
is then obtained by the standard Foldy–Wouthuysen transformation, decoupling
the positive and negative energy states. This leads to (writing β ≡ γ0)

i�
∂ψ

∂t
= HFWψ , (1.27)

with

HFW = βmc2 +
β

2m
p2 − β

8m3c2 p4 + βm(a x)

−ω(L + S) +
β

2m
p
a x
c2 p +

β�

4mc2
�Σ(a × p) + O

(
1
c3

)
, (1.28)

where �Σ are three spin matrices defined by Σk = εkmnσmn/2. In a convenient
representation one has �Σ = diag(�σ, �σ), where �σ are the Pauli matrices.

The interpretation of the various terms in (1.28) is straightforward. The first
four terms correspond to the rest mass, the usual non-relativistic kinetic term,
the first relativistic correction to the kinetic term, and the ‘COW’ effect (or its
analogue for pure acceleration), respectively. The term ωL describes the Sagnac
effect, while ωS corresponds to a new spin-rotation effect (‘Mashhoon effect’)
that cannot be found from the Schrödinger equation. One can estimate that
for typical values of a neutron interferometer experiment, the Mashhoon effect
contributes only 10−9 of the Sagnac effect. This is very small, but it has been
indirectly observed (Mashhoon 1995).

In the presence of torsion one would get additional terms in (1.28). Therefore,
from investigations of atomic spectra, one can get constraints on the torsion. For
example, Lämmerzahl (1997) found the following bound for the spatial compo-
nent K of the axial torsion: K ≤ 1.5×10−15 m−1. As has already been remarked
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above, torsion may play a significant role in the early Universe. It was estimated
that torsion effects should become important at a density (Hehl et al. 1976)

ρ =
me

λel2P
≈ 9 × 1048 g

cm3 � ρP ,

where me is the electron mass and λe its Compton wavelength. Under the as-
sumption of a radiation-dominated universe with critical density, the density
would already be higher than this value for times earlier than about 10−22 s,
which is much later than the time scale where the inflationary phase is assumed
to happen.

We mention that this framework is also of use in the study of a ‘general-
ized’ Dirac equation to parametrize quantum tests of general relativity (Läm-
merzahl 1998) and to construct an axiomatic approach to space–time geometry,
yielding a Riemann–Cartan geometry (see Audretsch et al. 1992). A detailed re-
view of the interaction of mesoscopic quantum systems with gravity is presented
in Kiefer and Weber (2005).

In concluding this subsection, we want to discuss briefly one important occa-
sion on which GR seemed to play a role in the foundations of quantum mechanics.
This is the discussion of the time–energy uncertainty relations by Bohr and Ein-
stein at the sixth Solvay conference, which took place in Brussels in 1930 (cf.
Bohr 1949).

Einstein came up with the following counter-argument against the validity of
this uncertainty relation. Consider a box filled with radiation. A clock controls
the opening of a shutter for a short time interval such that a single photon can
escape at a fixed time t. The energy E of the photon is, however, also fixed
because it can be determined by weighing the box before and after the escape
of the photon. It thus seems as if the time–energy uncertainty relation were
violated.

In his response to Einstein’s attack, Bohr came up with the following argu-
ments. Consider the details of the weighing process in which a spring is attached
to the box; see Fig. 1.3. The null position of the balance is known with an accu-
racy ∆q. This leads to an uncertainty in the momentum of the box, ∆p ∼ �/∆q.
Bohr then makes the assumption that ∆p must be smaller than the total mo-
mentum imposed by the gravitational field during the time T of the weighing
process on the mass uncertainty ∆m of the box. This leads to

∆p < v∆m = gT∆m , (1.29)

where g is the gravitational acceleration. Now GR enters the game: the tick
rate of clocks depends on the gravitational potential according to the ‘redshift
formula’

∆T

T
=

g∆q

c2 , (1.30)

so that, using (1.29), the uncertainty in ∆T after the weighing process is
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Fig. 1.3. Setting of the gedanken experiment of the Einstein–Bohr debate on
the time–energy uncertainty relation.

∆T =
g∆q

c2 T >
�

∆mc2 =
�

∆E
, (1.31)

in accordance with the time–energy uncertainty relation. (After this, Einstein
gave up trying to find an inconsistency in quantum mechanics, but focused in-
stead on its possible incompleteness.) But are Bohr’s arguments really consis-
tent? There are, in fact, some possible loopholes (cf. Shi 2000). First, it is unclear
whether (1.29) must really hold, since ∆p is an intrinsic property of the appa-
ratus. Second, the relation (1.30) cannot hold in this form, because T is not an
operator, and therefore ∆T cannot have the same interpretation as ∆q. In fact,
if T is considered a classical quantity, it would be more consistent to relate ∆q
to an uncertainty in g, which in fact would suggest considering the quantization
of the gravitational field. One can also change the gedanken experiment by using
an electrostatic field instead of the gravitational field, where a relation of the
form (1.30) no longer holds (see von Borzeszkowski and Treder 1988). It should
also be emphasized that not much of GR is needed; in fact, the relation (1.30)
follows from energy conservation and E = hν alone. A general criticism of all
these early gedanken experiments deals with their inconsistent interpretation of
measurements as being related to uncontrollable interactions; see Shi (2000) and
Chapter 10. The important feature is, however, entanglement between quantum
systems.

It thus seems as if Bohr’s analysis was mainly based on dimensional argu-
ments. In fact, the usual application of the time–energy uncertainty relation
relates line widths of spectra for unstable systems with the corresponding half-
life time. In quantum gravity, no time parameter appears on the fundamental
level (see Chapter 5). A time–energy uncertainty relation can only be derived in
the semiclassical limit.
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1.1.5 Quantum field theory in curved space–time
Some interesting new aspects appear when quantum fields play a role. They
mainly concern the notions of vacuum and particles. A vacuum is only invariant
with respect to Poincaré transformations, so that observers that are not related
by inertial motion refer in general to different types of vacua (Fulling 1973).
‘Particle creation’ can occur in the presence of external fields or for non-inertial
observers. An external electric field, for example, can lead to the creation of
electron–positron pairs (‘Schwinger effect’); see, for example, Grib et al. (1994).
We shall be mainly concerned with particle creation in the presence of exter-
nal gravitational fields (Birrell and Davies 1982). This was first discussed by
Schrödinger (1939).

One example of particular interest is particle creation from black holes (Hawk-
ing 1975); see, for example, Frolov and Novikov (1998), Fré et al. (1999), and
Hehl et al. (1998) for a detailed review. This is not only of fundamental theo-
retical interest, but could also lead to observational consequences. A black hole
radiates with a universal temperature (‘Hawking temperature’) according to

TBH =
�κ

2πkBc
, (1.32)

where κ is the surface gravity of a stationary black hole, which by the no-hair the-
orem is uniquely characterized by its mass M , its angular momentum J , and (if
present) its electric charge q. In the particular case of the spherically symmetric
Schwarzschild black hole, one has κ = c4/4GM = GM/R2

S and therefore

TBH =
�c3

8πkBGM
≈ 6.17 × 10−8

(
M�
M

)
K . (1.33)

This temperature is unobservationally small for solar-mass (and bigger) black
holes, but may be observable for primordial black holes. It must be empha-
sized that the expression for TBH contains all fundamental constants of Nature.
One may speculate that this expression—relating the macroscopic parameters
of a black hole with thermodynamic quantities—plays a similar role for quan-
tum gravity as de Broglie’s relations E = �ω and p = �k once played for the
development of quantum theory (Zeh 2001).

Hawking radiation was derived in the semiclassical limit in which the gravi-
tational field can be treated classically. According to (1.33), the black hole loses
mass through its radiation and becomes hotter. After it has reached a mass of
the size of the Planck mass (1.6), the semiclassical approximation breaks down
and the full theory of quantum gravity should be needed. Black-hole evaporation
thus plays a crucial role in any approach to quantum gravity; cf. Chapter 7.

There exists a related effect to (1.32) in flat Minkowski space. An observer
with uniform acceleration a experiences the standard Minkowski vacuum not as
empty, but as filled with thermal radiation with temperature

TDU =
�a

2πkBc
≈ 4.05 × 10−23 a

[cm
s2

]
K . (1.34)
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This temperature is often called the ‘Davies–Unruh temperature’ after the work
by Davies (1975) and Unruh (1976), with important contributions also by Fulling
(1973). Formally, it arises from (1.32) through the substitution of κ by a. This
can be understood from the fact that horizons are present in both the black-
hole case and the acceleration case; see, for example, Kiefer (1999) for a detailed
review. Although (1.34) seems to be a small effect, people have suggested looking
for it in accelerators (Leinaas 2002) or in experiments with ultraintense lasers
(Chen and Tajima 1999), without definite success up to now.

A central role in the theory of quantum fields on an external space–time is
played by the semiclassical Einstein equations. These equations are obtained by
replacing the energy–momentum tensor in (1.1) by the expectation value of the
energy–momentum operator with respect to some quantum state Ψ,

Rµν − 1
2
gµνR + Λgµν =

8πG

c4 〈Ψ|T̂µν |Ψ〉 . (1.35)

A particular issue is the regularization and renormalization of the object on the
right-hand side (Birrell and Davies 1982). This leads, for example, to a flux of
negative energy into the black hole, which can be interpreted as the origin of
Hawking radiation. As we shall discuss in the next section, (1.35) is of limited
value if seen from the viewpoint of the full quantum theory. We shall find in
Section 5.4 that (1.35) can be derived approximately from canonical quantum
gravity as a kind of mean-field equation.

1.2 Problems of a fundamentally semiclassical theory

When one is dealing with approaches to quantum gravity, the question is some-
times asked whether it is really necessary to quantize the gravitational field. And
even if it is, doubts have occasionally been put forward whether such a theory
can operationally be distinguished from an ‘exact’ semiclassical theory.4 As a
candidate for the latter, the semiclassical Einstein equations (1.35) are often
presented; cf. Møller (1962). The more general question behind this issue con-
cerns the possibility of a consistent hybrid dynamics through which a quantum
and a classical system is being coupled.

Eppley and Hannah (1977) argued that the coupling between a classical grav-
itational wave with a quantum system leads to inconsistencies. In fact, the gravi-
tational nature of this wave is not crucial—it can be any classical wave. Without
going into details, their arguments seem to suggest that the quantum nature of
the measuring apparatus has to be taken into account, in order to avoid inconsis-
tencies. This resembles the old debate between Bohr and Einstein, in which Bohr
had to impose the uncertainty relations also for a macroscopic object (the screen
in the double-slit experiment), in order to save them from Einstein’s attacks.

4‘Semiclassical’ here means an exact theory that couples quantum degrees of freedom to
classical degrees of freedom. It therefore has nothing to do with the WKB approximation, which
is usually referred to as the semiclassical approximation. The latter is discussed in Section 5.4.
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In this sense the arguments by Eppley and Hannah give a general hint for the
quantum nature of the gravitational field. It has, however, been criticized that
the gedanken experiments presented by Eppley and Hannah (1977) cannot even
be performed in principle, and even if they could, it does not necessarily follow
that gravity must be quantized (Mattingly 2006).

It is often argued that the famous gedanken experiments by Bohr and Rosen-
feld (1933) imply that a coupling between a classical and a quantum system is
inconsistent. For this reason, here we shall briefly review their arguments (see also
Heitler (1984) for a lucid discussion). Historically, Landau and Peierls (1931) had
claimed that the quantum nature of the electromagnetic field cannot be tested,
since there exists a fundamental minimal uncertainty for single field amplitudes,
not only for conjugate pairs. Bohr and Rosenfeld then showed that this is not
true. Their line of thought runs as follows. Consider a charged body with mass
M and charge Q, acting as a measuring device for the electric field being present
in a volume V ≡ l3. Momentum measurements of the body are being made at
the beginning and the end of the measurement time interval. In order to qualify
the body as a measurement device, the following assumptions are made (in order
to avoid back reaction, etc.); cf. also von Borzeszkowski and Treder (1988),

Q2 � �c ≈ 137e2 , (1.36)

l >
Q2

Mc2 . (1.37)

The latter condition expresses the fact that the electrostatic energy should be
smaller than the rest mass. Bohr and Rosenfeld then found from their detailed
analysis the following necessary conditions, with E denoting the average of an
electric field component over the volume V ,

∆E l2 � �c

Q
, (1.38)

∆E l3 � �Q

Mc
. (1.39)

One can now always choose a measurement device such that the ratio Q/M
in the last expression can be made arbitrarily small. Therefore, E can be mea-
sured with arbitrary precision, contrary to the arguments of Landau and Peierls
(1931). Bohr and Rosenfeld then showed that equations (1.38) and (1.39) are
in agreement with the uncertainty relations as being derived from the quantum
commutators of quantum electrodynamics (QED). The inaccuracy of the field
produced by the test body is therein responsible for the limitations in the simul-
taneous measurement of conjugate field quantities. Their discussion, therefore,
shows the consistency of the formalism with the measurement analysis. It does
not provide a logical proof that the electromagnetic field must be quantized; cf.
Rosenfeld (1963).5

5From empirical arguments, we know, of course, that the electromagnetic field is of quantum
nature.
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Although the final formalism for quantum gravity is not at hand, the Bohr–
Rosenfeld analysis can at least formally be extended to the gravitational field;
cf. Bronstein (1936), DeWitt (1962), and von Borzeszkowski and Treder (1988).
One can replace the electric field E with the Christoffel symbols Γ (‘gravitational
force’). Since one can then perform in the Newtonian approximation, where Γ ∼
GMg/r2c2 (Mg denoting the gravitational mass), the substitutions

∆E → c2∆Γ
G

, Q → Mg , (1.40)

one gets from (1.39) the relation (writing Mi instead of M to emphasize that it
is the inertial mass)

∆Γ l3 � �G

c3

Mg

Mi
. (1.41)

Using the (weak) equivalence principle, Mg = Mi, and recalling the definition
(1.4) of the Planck length, one can write

∆Γ � l2P
l3

. (1.42)

The analogous relation for the metric g would then read

∆g �
(

lP
l

)2

. (1.43)

Thus, the measurement of a single quantity (the metric) seems to be opera-
tionally restricted.6 This is, of course, possible because, unlike QED, the funda-
mental length scale lP is available. On the other hand, a gedanken experiment by
Smith and Bergmann (1979) shows that the magnetic-type components of the
Weyl tensor in linearized quantum gravity can be measured, provided a suitable
average over space–time domains is performed.

In a variant of the Bohr–Rosenfeld analysis, Bronstein (1936) found the fol-
lowing limitation on the measurability of the Christoffel symbols:

∆Γ � 1
c2T

(
�2G

cρV 2

)1/3

,

where ρ is the mass density of the test body, and an averaging is performed over
a time period T . In the limit ρ → ∞ no restriction on ∆Γ would result. However,
as has been noticed by Bronstein, the dimensions of the body cannot be smaller
than its Schwarzschild radius, that is,

GρV

c2 < V 1/3 .

6Equation (1.43) is similar to the heuristic relation ∆g � lP/l of Misner et al. (1973),
although the exponent is different.
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Writing again V ∼ l3, one then gets again a limitation on the measurability of
Γ,

∆Γ � 1
c2T

(
�2G2

c3l4

)1/3

=
1
cT

(
lP
l

)4/3

.

Bronstein concluded from this limitation that there are fundamental limits on
the notion of a Riemannian geometry. He writes in another paper (the quotation
is taken from Gorelik (1992)),

The elimination of the logical inconsistencies connected with this requires a radical
reconstruction of the theory, and in particular, the rejection of a Riemannian geometry
dealing, as we see here, with values unobservable in principle, and perhaps also the
rejection of our ordinary concepts of space and time, modifying them by some much
deeper and nonevident concepts. Wer’s nicht glaubt, bezahlt einen Taler.

For a historical account of early work on the measurement analysis, see Gorelik
(1992) and Stachel (1999).

Does (1.43) imply that the quantum nature of the gravitational field cannot
be tested? Not necessarily, for the following reasons. First, there might be other
measurement devices which do not necessarily obey the above relations. Second,
this analysis does not say anything about global situations (black holes, cos-
mology) and about non-trivial applications of the superposition principle. And
third, in fact, quantum gravity seems to predict the existence of a smallest scale
with operational meaning; see Chapters 6 and 9. Then, relations such as (1.43)
could be interpreted as a confirmation of quantum gravity. It might, of course,
be possible, as argued in von Borzeszkowski and Treder (1988), that quantum-
gravitational analogues of effects such as Compton scattering or the Lamb shift
are unobservable in the laboratory, and that only astrophysical tests could be
feasible.

Returning to the specific equations (1.35) for a semiclassical theory, there are
a number of problems attached with them. First, the expectation value of the
energy–momentum tensor that occurs on the right-hand side is usually divergent
and needs some regularization and renormalization. Such a procedure leads to an
essentially unique result for 〈T̂µν〉 if certain physical requirements are imposed;
cf. Birrell and Davies (1982). The ambiguities can then be absorbed by a redef-
inition of constants appearing in the action; cf. Section 2.2.3. In this process,
however, counter-terms arise that invoke higher powers of the curvature such as
R2, which may alter the semiclassical equations at a fundamental level. A pos-
sible consequence could be the instability of Minkowski space; see, for example,
Ford (2005) and the references therein. In certain exotic situations, 〈T̂µν〉 may
not even exist, for example, on a chronology horizon (Visser 2003).

Second, (1.35) introduces the following element of non-linearity. The space–
time metric g depends on the quantum state in a complicated way, since in
(1.35) |Ψ〉 also depends on g through the (functional) Schrödinger equation (an
equivalent statement holds in the Heisenberg picture). Consequently, if g1 and
g2 correspond to states |Ψ1〉 and |Ψ2〉, respectively, there is no obvious relation
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between the metric corresponding to a superposition A|Ψ1〉+ B|Ψ2〉 (which still
satisfies the Schrödinger equation) and the metrics g1 and g2. This was already
remarked by Anderson in Møller (1962) and by Belinfante in a discussion with
Rosenfeld (see Infeld 1964). According to von Borzeszkowski and Treder (1988)
it was also the reason why Dirac strongly objected to (1.35).

Rosenfeld insisted on (1.35) because he strongly followed Bohr’s interpreta-
tion of the measurement process for which classical concepts should be indis-
pensable. This holds in particular for the structure of space–time, so he wished
to have a c-number representation for the metric. He rejected a quantum de-
scription for the total system and answered to Belinfante in Infeld (1964) that
Einstein’s equations may merely be thermodynamical equations of state that
break down for large fluctuations, that is, the gravitational field may only be an
effective, not a fundamental, field; cf. also Jacobson (1995).

The problem with the superposition principle can be demonstrated by the
following argument that has even been put to an experimental test (Page and
Geilker 1981). One assumes that there is no explicit collapse of |Ψ〉, because
otherwise one would expect the covariant conservation law 〈T̂µν〉;ν = 0 to be
violated, in contradiction to (1.35). If the gravitational field were quantized, one
would expect that each component of the superposition in |Ψ〉 would act as a
source for the gravitational field. This is of course the Everett interpretation
of quantum theory; cf. Chapter 10. On the other hand, the semiclassical Ein-
stein equations (1.35) depend on all components of |Ψ〉 simultaneously. Page
and Geilker (1981) envisaged the following gedanken experiment, reminiscent of
Schrödinger’s cat, to distinguish between these options.

In a box, there is a radioactive source together with two masses that are
connected by a spring. Initially, the masses are rigidly connected, so that they
cannot move. If a radioactive decay happens, the rigid connection will be bro-
ken and the masses can swing towards each other. Outside the box, there is a
Cavendish balance that is sensitive to the location of the masses and therefore
acts as a device to ‘measure’ their position. Following Unruh (1984), the situ-
ation can be described by the following simple model. We denote with |0〉, the
quantum state of the masses with rigid connection, and with |1〉, the correspond-
ing state in which they can move towards each other. For the purpose of this
experiment, it is sufficient to go to the Newtonian approximation of GR and to
use the Hamilton operator Ĥ instead of the full energy–momentum tensor T̂µν .
For initial time t = 0, it is assumed that the state is given by |0〉. For t > 0, the
state then evolves into a superposition of |0〉 and |1〉,

|Ψ〉(t) = α(t)|0〉 + β(t)|1〉 ,

with the coefficients |α(t)|2 ≈ e−λt, |β|2 ≈ 1 − e−λt, according to the law of
radioactive decay, with a decay constant λ. From this, one finds for the evolution
of the expectation value

〈Ψ|Ĥ |Ψ〉(t) = |α(t)|2〈0|Ĥ |0〉 + |β(t)|2〈1|Ĥ |1〉 + 2Re
[
α∗β〈0|Ĥ |1〉

]
.
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If one makes the realistic assumption that the states are approximate eigen-
states of the Hamiltonian, the last term, which describes interferences, van-
ishes. Anyway, this is not devised as an interference experiment (in contrast
to Schrödinger’s cat), and interferences would become small due to decoherence
(Chapter 10). One is thus left with

〈Ψ|Ĥ |Ψ〉(t) ≈ e−λt〈0|Ĥ |0〉 +
(
1 − e−λt

)
〈1|Ĥ|1〉 . (1.44)

According to semiclassical gravity as described by (1.35), therefore, the Cavendish
balance would follow the dynamics of the expectation value and slightly swing in
the course of time. This is in sharp contrast to the prediction of linear quantum
gravity, where in each component the balance reacts to the mass configuration
and would thus be observed to swing instantaneously at a certain time. This is, in
fact, what has been observed in the actual experiment (Page and Geilker 1981).
This experiment, albeit simple, demonstrates that (1.35) cannot fundamentally
be true under the given assumption (validity of the Everett interpretation). If one
is unbiased with regard to the invoked interpretation, one can continue to search
for experimental tests of (1.35). Since these equations are very complicated, one
can try to address the ‘Schrödinger–Newton equation’

i�
∂ψ

∂t
= − �2

2m
∇2ψ − mΦψ , ∇2Φ = 4πGm|ψ|2 ,

which is a restricted version of (1.35) in the Newtonian limit. It has been claimed
that possible effects from such an equation could already be seen in the next
generation of molecular interferometry experiments (Salzman and Carlip 2006).

A fundamental non-linear equation such as (1.35) could have far-reaching
consequences. It has been remarked, for example, that the validity of the semi-
classical Einstein equations (or some non-linear theory of quantum gravity) could
be used to break the perfect security of protocols in quantum cryptography
(Plaga 2006).

In the Page–Geilker experiment, the reason for the deviation between the
predictions of the semiclassical theory and the ‘full’ theory lies in the large fluc-
tuation for the Hamiltonian. In fact, the experiment was devised to generate
such a case. Large fluctuations also occur in another interesting situation—the
gravitational radiation emitted by quantum systems (Ford 1982). The calcula-
tions are performed for linearized gravity, that is, for a small metric pertubation
around flat space–time with metric ηµν ; see, for example, Misner et al. (1973) and
Chapter 2. Denoting by Gr(x, x′) the retarded Green function, one finds for the
integrated energy–momentum tensor Sµν in the semiclassical theory described by
(1.35), the expression7

Sµν
sc = −8πG

c4

∫
d3xd4x′ d4x′′ ∂µGr(x, x′)∂νGr(x, x′′)

×
[
〈Tαβ(x′)〉〈T αβ(x′′)〉 − 1

2 〈T (x′)〉〈T (x′′)〉
]

, (1.45)

7Hats on operators are avoided for simplicity.
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where T ≡ T µνηµν denotes the trace of the energy–momentum tensor. On the
other hand, quantization of the linear theory (see Chapter 2) yields

Sµν
q = −8πG

c4

∫
d3xd4x′ d4x′′ ∂µGr(x, x′)∂νGr(x, x′′)

×
〈
Tαβ(x′)T αβ(x′′) − 1

2 T (x′)T (x′′)
〉

. (1.46)

The difference in these results can easily be interpreted: in the semiclassical
theory, 〈Tµν〉 acts as a source, and so no two-point functions 〈T . . . T 〉 can appear,
in contrast to linear quantum theory.

It is obvious that the above two expressions strongly differ, once the fluctua-
tion of the energy–momentum tensor is large. As a concrete example, Ford (1982)
takes a massless real scalar field as matter source. For coherent states there is
no difference between (1.45) and (1.46). This is not unexpected, since coherent
states are as ‘classical’ as possible, and so the semiclassical and the full theory
give identical results. For a superposition of coherent states, however, this is no
longer true, and the energies emitted by the quantum system via gravitational
waves can differ by macroscopic amounts. For example, if the scalar field is in
an eigenstate of the number operator, the semiclassical theory does not predict
any radiation at all (〈Tµν〉 is time-independent), whereas there is radiation in
quantum gravity (〈TµνTρλ〉 is time-dependent).8 Therefore, one can in principle
have macroscopic quantum-gravity effects even far away from the Planck scale!
This is a direct consequence of the superposition principle, which in a linear
theory of quantum gravity is valid independent of a particular scale.

Kuo and Ford (1993) have extended this analysis to situations where the
expectation value of the energy density can be negative. They show that in such
cases the fluctuations in the energy–momentum tensor are large and that the
semiclassical theory gives different predictions than the quantum theory. This is
true, in particular, for a squeezed vacuum state describing particle creation—a
case that is relevant, for example, for structure formation in the Universe; see
the remarks in Section 10.1.3. Another example is the Casimir effect. Kuo and
Ford (1993) show that the gravitational field produced by the Casimir energy is
not described by a fixed classical metric.

It will be discussed in Section 5.4 to what extent the semiclassical equations
(1.35) can be derived as approximations from full quantum gravity. Modern
developments in quantum mechanics discuss the possibility of a consistent for-
mulation of ‘hybrid dynamics’, coupling a quantum to a classical system; see,
for example, Diósi et al. (2000). This leads to equations that generalize mean-
field equations such as (1.35), although no one has applied this formalism to the
gravitational case. It seems that such a coupling can be formulated consistently
if the ‘classical’ system is, in fact, a decohered quantum system (Halliwell 1998).
However, this already refers to an effective and not to a fundamental level of
description. It seems that DeWitt is right, who wrote (DeWitt 1962):

8Analogous results hold for electrodynamics, with the current jµ instead of Tµν .
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It is shown in a quite general manner that the quantization of a given system implies
also the quantization of any other system to which it can be coupled.

1.3 Approaches to quantum gravity

As we have seen in the last sections, there exist strong arguments supporting
the idea that the gravitational field is of quantum nature at the fundamental
level. The major task, then, is the construction of a consistent quantum theory
of gravity that can be subject to experimental tests.

Can one get hints how to construct such a theory from observation? A direct
probe of the Planck scale (1.6) in high-energy experiments would be illusory. In
fact, an accelerator of current technology would have to be of the size of several
thousand lightyears in order to probe the Planck energy mPc2 ≈ 1019 GeV.
However, we have seen in Section 1.2 that macroscopic effects of quantum gravity
could in principle occur at lower energy scales, and we will encounter some other
examples in the course of this book. Among these there are effects of the full
theory such as non-trivial applications of the superposition principle for the
quantized gravitational field or the existence of discrete quantum states in black-
hole physics or the early universe. But one might also be able to observe quantum-
gravitational correction terms to established theories, such as correction terms
to the functional Schrödinger equation in an external space–time, or effective
terms violating the weak equivalence principle. Such effects could potentially
be measured in the anisotropy spectrum of the cosmic microwave background
radiation or in the forthcoming satellite tests of the equivalence principle such
as the missions MICROSCOPE and STEP.

One should also keep in mind that the final theory (which is not yet available)
will make its own predictions, some perhaps in a totally unexpected direction.
As Heisenberg recalls from a conversation with Einstein9:

From a fundamental point of view it is totally wrong to aim at basing a theory only on
observable quantities. For in reality it is just the other way around. Only the theory
decides about what can be observed.

A really fundamental theory should have such a rigid structure that all phe-
nomena in the low-energy regime, such as particle masses or coupling constants,
can be predicted in a unique way. As there is no direct experimental hint yet,
most work in quantum gravity focuses on the attempt to construct a mathemat-
ically and conceptually consistent (and appealing) framework.

There is, of course, no a priori given starting point in the methodological
sense. In this context, Isham (1987) makes a distinction between a ‘primary the-
ory of quantum gravity’ and a ‘secondary theory’. In the primary approach, one
starts with a given classical theory and applies heuristic quantization rules. This

9‘Aber vom prinzipiellen Standpunkt aus ist es ganz falsch, eine Theorie nur auf beobacht-
bare Größen gründen zu wollen. Denn es ist ja in Wirklichkeit genau umgekehrt. Erst die Theo-
rie entscheidet darüber, was man beobachten kann.’ (Einstein according to Heisenberg (1979))
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is the approach usually adopted, which was successful, for example, in QED. Of-
ten the starting point is general relativity, leading to ‘quantum general relativity’
or ‘quantum geometrodynamics’, but one could also start from another classi-
cal theory such as the Brans–Dicke theory. One usually distinguishes between
canonical and covariant approaches. The former employs at the classical level a
split of space–time into space and time, whereas the latter aims at preserving
four-dimensional covariance at each step. They will be discussed in Chapters 5,
6, and Chapter 2, respectively. The main advantage of these approaches is that
the starting point is given. The main disadvantage is that one does not arrive
immediately at a unified theory of all interactions.

The opposite holds for a ‘secondary theory’. One would like to start with a
fundamental quantum framework of all interactions and try to derive (quantum)
general relativity in certain limiting situations, for example, through an energy
expansion. The most important example here is string theory (see Chapter 9),
although in its present stage one still has to start by quantizing some classical
theory. The main advantage is that the fundamental quantum theory automati-
cally yields a unification, a ‘theory of everything’; cf. Weinberg (1993). The main
disadvantage is that the starting point is entirely speculative. A short review of
the main approaches to quantum gravity is given by Carlip (2001) and Kiefer
(2006).

In this book, we shall mainly focus on quantum GR because it is closer to
established theories and because it exhibits many general aspects clearer. In
any case, even if quantum GR is superseded by a more fundamental theory
such as string theory (which is not obvious), it should be valid as an effective
theory in some appropriate limit. The reason is that far away from the Planck
scale, classical general relativity is the appropriate theory, which in turn must
be the classical limit of an underlying quantum theory. Except perhaps close
to the Planck scale itself, quantum GR should be a viable framework (such as
QED, which is also supposed to be only an effective theory). It should also be
emphasized that string theory automatically implements many of the methods
used in the primary approach, such as quantization of constrained systems and
covariant perturbation theory.

An important question in the heuristic quantization of a given classical the-
ory is which of the classical structures should be subjected to the superposition
principle and which should remain classical (or absolute, non-dynamical) struc-
tures. Isham (1994) distinguishes the following hierarchy of structures; see also
Butterfield and Isham (1999),

Point set of events −→ topological structure −→ differentiable manifold −→
causal structure −→ Lorentzian structure.

Most approaches subject the Lorentzian and the causal structure to quanti-
zation, but keep the manifold structure fixed. More general approaches include
attempts to quantize topological structure (see, for example, Isham (1989)), or
to quantize causal sets (see, for example, Sorkin (2005) and Dowker (2006)). It
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is assumed therein that space–time is fundamentally discrete.
According to the Copenhagen interpretation of quantum theory, all structures

related to space–time would probably have to stay classical because they are
thought to be necessary ingredients for the measurement process; cf. Chapter 10.
For the purpose of quantum gravity, such a viewpoint is, however, insufficient
and probably inconsistent. The main aim in constructing a quantum theory of
gravity is just the opposite: to get rid of any external structure (‘background
independence’).

Historically, the first remark on the necessity of dealing with quantum gravity
was made by Einstein (1916b). This was, of course, in the framework of the ‘old’
quantum theory and does not yet reflect his critical attitude against quantum
theory, which he adopted later. He writes10:

In the same way, the atoms would have to emit, because of the inner atomic elec-
tronic motion, not only electromagnetic, but also gravitational energy, although in tiny
amounts. Since this hardly holds true in nature, it seems that quantum theory will have
to modify not only Maxwell’s electrodynamics, but also the new theory of gravitation.

One of the main motivations for dealing with the problem of quantum gravity
was spelled out by Peter Bergmann as follows (Bergmann 1992):

Today’s theoretical physics is largely built on two giant conceptual structures: quantum
theory and general relativity. As the former governs primarily the atomic and subatomic
worlds, whereas the latter’s principal applications so far have been in astronomy and
cosmology, our failure to harmonize quanta and gravitation has not yet stifled progress
on either front. Nevertheless, the possibility that there might be some deep dissonance
has caused physicists an esthetic unease, and it has caused a number of people to
explore avenues that might lead to a quantum theory of gravitation, no matter how
many decades away the observations of ‘gravitons’ might lie in the future.

The following chapters are devoted to the major avenues that are being ex-
plored.

10‘Gleichwohl müßten die Atome zufolge der inneratomischen Elektronenbewegung nicht nur
elektromagnetische, sondern auch Gravitationsenergie ausstrahlen, wenn auch in winzigem Be-
trage. Da dies in Wahrheit in der Natur nicht zutreffen dürfte, so scheint es, daß die Quanten-
theorie nicht nur die Maxwellsche Elektrodynamik, sondern auch die neue Gravitationstheorie
wird modifizieren müssen.’
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COVARIANT APPROACHES TO QUANTUM GRAVITY

2.1 The concept of a graviton
A central role in the quantization of the gravitational field is played by the
graviton—a massless particle of spin-2, which is the mediator of the gravita-
tional interaction. It is analogous to the photon in quantum electrodynamics. Its
definition requires, however, the presence of a background structure, at least in
an approximate sense. We shall, therefore, first review weak gravitational waves
in Minkowski space–time and the concept of helicity. It will then be explained
how gravitons are defined as spin-2 particles from representations of the Poincaré
group. Finally, the gravitational field in its linear approximation is quantized. It
is shown, in particular, how Poincaré invariance ensues the equivalence principle
and therefore the full theory of general relativity (GR) in the classical limit.

2.1.1 Weak gravitational waves
Our starting point is the decomposition of a space–time metric gµν into a fixed
(i.e. non-dynamical) background and a ‘perturbation’; see, for example, Weinberg
(1972) and Misner et al. (1973). In the following, we take for the background the
flat Minkowski space–time with the standard metric ηµν = diag(−1, 1, 1, 1) and
call the perturbation fµν . Thus,

gµν = ηµν + fµν . (2.1)

We assume that the perturbation is small, that is, that the components of fµν

are small in the standard cartesian coordinates. Using (2.1) without the Λ-term,
the Einstein equations (1.3) without the Λ-term read in the linear approximation

�fµν = −16πG
(
Tµν − 1

2 ηµνT
)

, (2.2)

where T ≡ ηµνTµν , and the ‘harmonic condition’ (also called the ‘de Donder
gauge’)

f ν
µν, =

1
2
fν

ν,µ (2.3)

has been used.1 This condition is analogous to the Lorenz2 gauge condition in
electrodynamics and is used here to partially fix the coordinates. Namely, the
invariance of the full theory under coordinate transformations

1Indices are raised and lowered by ηµν and ηµν , respectively. We set c = 1 in most expres-
sions.

2This is not a misprint. The Lorenz condition is named after the Danish physicist Ludwig
Lorenz (1829–91).

25
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xµ → x′µ = xµ + εµ(x) (2.4)

leads to the invariance of the linear theory under (using ε2 ≈ 0)

fµν → fµν − εµ,ν − εν,µ . (2.5)

It is often useful to employ instead of fµν , the combination

f̄µν ≡ fµν − 1
2 ηµνfρ

ρ , (2.6)

so that (2.2) assumes the simple form

�f̄µν = −16πGTµν . (2.7)

The harmonic gauge condition (2.3) then reads ∂ν f̄ ν
µ = 0, in direct analogy

to the Lorenz gauge condition ∂νAν = 0. Since (2.7) is analogous to the wave
equation �Aµ = −4πjµ, the usual solutions (retarded waves, etc.) can be found.
Note that the harmonic gauge condition is consistent with ∂νT µν = 0 (which
is analogous to ∂νjν = 0), but not with ∇νT µν = 0 (vanishing of covariant
derivative). Therefore, although Tµν acts as a source for fµν , there is in the linear
approximation no exchange of energy between matter and the gravitational field.

In the vacuum case (Tµν = 0), the simplest solutions to (2.2) are plane waves,

fµν = eµνeikx + e∗
µνe−ikx , (2.8)

where eµν is the polarization tensor. One has kµkµ = 0 and, from (2.3), kνeµν =
(1/2)kµeν

ν . With fµν still obeying (2.3), one can perform a new coordinate trans-
formation of the type (2.4) to get

f ′ ν
µν, − 1

2 f ′ν
ν,µ = −�εµ .

Without leaving the harmonic condition (2.3), one can thus fix the coordinates
by choosing the four functions εµ(x) to satisfy �εµ = 0 (this equation has plane-
wave solutions and is therefore not in conflict with (2.8)). In total, one thus
finds 10–4–4=2 independent degrees of freedom for the gravitational field in the
linear approximation. The question of how many degrees of freedom the full field
possesses will be dealt with in Chapter 4. With the εµ chosen as plane waves,
εµ(x) = 2Re[ifµeikx] (fµ being real numbers), the transformed plane wave reads
the same as (2.8), with

eµν → eµν + kµfν + kνfµ . (2.9)

It is most convenient for plane waves to choose the ‘transverse-traceless (TT)’
gauge, in which the wave is purely spatial and transverse to its own direction
of propagation (eµνkν = 0) and where eν

ν = 0. This turns out to have a gauge-
invariant meaning, so that the gravitational waves are really transversal. The
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two independent linear polarization states are usually called the + polarization
and the × polarization (Misner et al. 1973).

Consider, for example, a plane wave moving in x1 ≡ x direction. In the
transversal (y and z) directions, a ring of test particles will be deformed into
a pulsating ellipse, with the axis of the + polarization being rotated by 45◦

compared to the × polarization. One has explicitly

fµν = 2Re
(
eµνe−iω(t−x)

)
, (2.10)

with x0 ≡ t, k0 = k1 ≡ ω > 0, k2 = k3 = 0. Denoting with ey and ez the unit
vector in y and z direction, respectively, one has for the + and the × polarization,
the expressions

e22e+ = e22(ey ⊗ ey − ez ⊗ ez) (2.11)

and
e23e× = e23(ey ⊗ ez + ez ⊗ ey) (2.12)

for the polarization tensor, respectively (e22 and e23 are numbers giving the
amplitude of the wave.) General solutions of the wave equation can be found by
performing superpositions of the linear polarization states. In particular,

eR =
1√
2
(e+ + ie×), eL =

1√
2
(e+ − ie×) (2.13)

are the right and the left circular polarization states, respectively. The general
case of an elliptic polarization also changes the shape of the ellipse.

Of special interest is the behaviour of the waves with respect to a rotation
around the axis of propagation (here: the x-axis). Rotating counterclockwise with
an angle θ, the polarization states transform according to

e′
+ = e+ cos 2θ + e× sin 2θ ,

e′
× = e× cos 2θ − e+ sin 2θ . (2.14)

For (2.13), this corresponds to

e′
R = e−2iθeR , e′

L = e2iθeL . (2.15)

The polarization tensors thus rotate with an angle 2θ. This corresponds to a
symmetry with respect to a rotation by 180◦.

If a plane wave ϕ transforms as ϕ → eihθ under a rotation around the di-
rection of propagation, one calls h its helicity. The left (right) circular polarized
gravitational wave thus has helicity 2 (−2). In the quantum theory, these states
will become the states of the ‘graviton’, see Section 2.1.2. For plane waves with
helicity h, the axes of linear polarization are inclined towards each other by an
angle 90◦/h. For a spin-1/2 particle, for example, this is 180◦, which is why
invariance for them is only reached after a rotation by 720◦.
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For electrodynamics, right and left polarized states are given by the vectors

eR =
1√
2
(ey + iez) , eL =

1√
2
(ey − iez) . (2.16)

Under the above rotation, they transform as

e′
R = e−iθeR , e′

L = eiθeL . (2.17)

The left (right) circular polarized electromagnetic wave thus has helicity 1 (−1).
Instead of (2.8), one has here

Aµ = eµeikx + e∗
µe−ikx (2.18)

with kµkµ = 0 and kνeν = 0. It is possible to perform a gauge transformation
without leaving the Lorenz gauge, Aµ → A′

µ = Aµ + ∂µΛ with �Λ = 0. With Λ
being a plane-wave solution, Λ = 2Re[iλeikx], one has instead of (2.9),

eµ → eµ − λkµ . (2.19)

The field equations of linearized gravity can be obtained from the Lagrangian
(Fierz and Pauli 1939),

L =
1

64πG
(fµν,σfµν,σ − fµν,σfσν,µ − fνµ,σfσµ,ν

−fµ
µ,νfρ ν

ρ, + 2fρν
,νfσ

σ,ρ

)
+

1
2
Tµνfµν . (2.20)

The Euler–Lagrange field equations yield (writing f ≡ fµ
µ)

f σ
µν,σ − f σ

σµ,ν − f σ
σν,µ + f,µν + ηµν

(
fαβ

,αβ − f σ
,σ

)
= −16πGTµν . (2.21)

The left-hand side of this equation is −2 times the Einstein tensor, −2Gµν , in
the linear approximation. It obeys the linearized Bianchi identity ∂νGµν = 0,
which is consistent with ∂νT µν = 0. The Bianchi identity is a consequence of
the gauge invariance (modulo a total divergence) of the Lagrangian (2.20) with
respect to (2.4).3

Performing in (2.21) the trace and substituting the ηµν -term yields

�fµν − f σ
σµ,ν − f σ

σν,µ + f,µν = −16πG
(
Tµν − 1

2 ηµνT
)

. (2.22)

Using the harmonic condition (2.3), one finds the linearized Einstein equations
(2.2).4

3The Bianchi identity in electrodynamics reads ∂µ(∂νF µν) = 0, consistent with the charge-
conservation law ∂νjν = 0.

4It is often useful to make a redefinition fµν → √
32πGfµν ; cf. Section 2.2.2.
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Exploiting the Poincaré invariance of the flat background, one can calcu-
late from the Fierz–Pauli Lagrangian (2.20) without the Tµν-term the canonical
energy–momentum tensor of the linearized gravitational field,

tµν =
∂L

∂f ν
αβ,

fαβ,µ − ηµνL . (2.23)

The resulting expression is lengthy, but can be considerably simplified in the TT
gauge where fµν assumes the form

fµν =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 f22 f23
0 0 f23 −f22

⎞
⎟⎟⎠ .

Then,

t00
TT=

1
16πG

(
ḟ2
22 + ḟ2

23

)
= −t01 , (2.24)

which can be written covariantly as

tµν
TT=

1
32πG

fαβ,µfαβ
,ν . (2.25)

It is sometimes appropriate to average this expression over a region of space–time
much larger than ω−1, where ω is the frequency of the weak gravitational wave,
so that terms such as exp(−2iω(t− x)) drop out. In the TT gauge, this leads to

t̄µν =
kµkν

16πG
eαβ∗eαβ . (2.26)

In the general harmonic gauge, without necessarily specifying to the TT gauge,
the term eαβ∗eαβ is replaced by eαβ∗eαβ − 1

2 |eα
α|2. This expression remains in-

variant under the gauge transformations (2.9), as it should.
Regarding the Fierz–Pauli Lagrangian (2.20), the question arises whether it

could serve as a candidate for a fundamental helicity-2 theory of the gravitational
field in a flat background. As it stands, this is certainly not possible because, as
already mentioned, one has ∂νT µν = 0 and there is therefore no back reaction
of the gravitational field onto matter. One might thus wish to add the canonical
energy–momentum tensor tµν , eqn (2.23), to the right-hand side of the linearized
Einstein equations,

�f̄µν = −16πG(Tµν + tµν) .

This modified equation would, however, lead to a Lagrangian cubic in the fields
which in turn would give a new contribution to tµν , and so on. Deser (1970, 1987)
was able to show that this infinite process can actually be performed in one single
step. The result is that the original metric ηµν is unobservable and that all matter
couples to the metric gµν = ηµν +fµν ; the resulting action is the Einstein–Hilbert
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action and the theory therefore GR. Minkowski space–time as a background
structure has completely disappeared. Boulanger et al. (2001) have shown that,
starting from a finite number of Fierz–Pauli Lagrangians, no consistent coupling
between the various helicity-2 fields is possible if the fields occur at most with
second derivatives—leading only to a sum of uncoupled Einstein–Hilbert actions.

Since GR follows uniquely from (2.20), the question arises whether one would
be able to construct a pure scalar, fermionic, or vector theory of gravity, cf.
Feynman et al. (1995) and Straumann (2000). As has already been known to
Maxwell, a vector theory is excluded because it would lead to repulsing forces.
Fermions are excluded because the object that emits a fermion does not remain
in the same internal state (there are also problems with a two-fermion exchange).
A scalar theory, on the other hand, would only lead to attraction. In fact, even
before the advent of GR, Nordström had tried to describe gravity by a scalar
theory, which can be defined by the Lagrangian

L = − 1
2 ηµν∂µφ∂νφ − 4πGTφ + Lmatter , (2.27)

where T = ηµνT µν . This leads to the field equation

�φ = 4πGT . (2.28)

The physical metric (as measured by rods and clocks) turns out to be

gµν(x) ≡ φ2(x)ηµν .

It is thus conformally flat and possesses a vanishing Weyl tensor. A non-linear
generalization of the Nordström theory was given by Einstein and Fokker (1914);
their field equations read

R = 24πGT . (2.29)

However, this theory is in contradiction with observation, since it does not im-
plement an interaction between gravity and the electromagnetic field (the latter
has T = 0) and the perihelion motion of Mercury comes out incorrectly. More-
over, this theory contains an absolute structure; cf. Section 1.3: the conformal
structure (the ‘lightcone’) is given from the outset and the theory thus possesses
an invariance group (the conformal group), which in four dimensions is a finite-
dimensional Lie group and which must be conceptually distinguished from the
diffeomorphism group of GR. While pure scalar fields are thus unsuitable for
a theory of the gravitational field, they can nevertheless occur in addition to
the metric of GR. In fact, this happens quite frequently in unified theories; cf.
Chapter 9.

2.1.2 Gravitons from representations of the Poincaré group

We shall now turn to the quantum theory of the linear gravitational field. The
discussion of the previous subsection suggests that it is described by the be-
haviour of a massless spin-2 particle. Why massless? From the long-range nature
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of the gravitational interaction, it is clear that the graviton must have a small
mass. Since the presence of a non-vanishing mass, however small, affects the
deflection of light discontinuously, one may conclude that the graviton mass is
strictly zero; see van Dam and Veltman (1970) and Carrera and Giulini (2001).
Such an argument cannot be put forward for the photon.

In the following, we shall give a brief derivation of the spin-2 nature in the
framework of representation theory (see e.g. Weinberg 1995 or Sexl and Urbant-
ke 2001). In this subsection, we shall only deal with one-particle states (‘quantum
mechanics’), while field-theoretic aspects will be discussed in Section 2.1.3. The
important ingredient is the presence of flat Minkowski space–time with metric
ηµν as an absolute background structure and the ensuing Poincaré symmetry.
The use of the Poincaré group, not available beyond the linearized level, already
indicates the approximate nature of the graviton concept. We shall set � = 1 in
most of the following expressions.

According to Wigner, ‘particles’ are classified by irreducible representations
of the Poincaré group. We describe a Poincaré transformation as

x′µ = Λµ
νxν + aµ , (2.30)

where the Λµ
ν denote Lorentz transformations and the aµ denote space–time

translations. According to Wigner’s theorem, (2.30) induces a unitary transfor-
mation5 in the Hilbert space of the theory,

ψ → U(Λ, a)ψ . (2.31)

This ensures that probabilities remain unchanged under the Poincaré group.
Since this group is a Lie group, it is of advantage to study group elements close
to the identity,

Λµ
ν = δµ

ν + ωµ
ν , aµ = εµ , (2.32)

where ωµν = −ωνµ. This corresponds to the unitary transformation6

U(1 + ω, ε) = 1 + 1
2 iωµνJµν − iεµPµ + . . . , (2.33)

where Jµν and Pµ denote the 10 Hermitian generators of the Poincaré group,
which are the boost generators, the angular momentum and the four-momentum,
respectively. They obey the following Lie-algebra relations,

[Pµ, P ρ] = 0 , (2.34)
i[Jµν , Jλρ] = ηνλJµρ − ηµλJνρ − ηρµJλν + ηρνJλµ , (2.35)
i[Pµ, Jλρ] = ηµλP ρ − ηµρPλ . (2.36)

5The theorem also allows anti-unitary transformations, but these are relevant only for dis-
crete symmetries.

6The plus sign on the right-hand side is enforced by the commutation relations [Ji, Jk] =
iεiklJl (where J3 ≡ J12, etc.), whereas the minus sign in front of the second term is pure
convention.
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One-particle states are classified according to their behaviour with respect to
Poincaré transformations. Since the components Pµ of the four-momentum com-
mute with each other, we shall choose their eigenstates,

Pµψp,σ = pµψp,σ , (2.37)

where σ stands symbolically for all other variables. Application of the unitary
operator then yields

U(1, a)ψp,σ = e−ipµaµψp,σ . (2.38)

How do these states transform under Lorentz transformations (we only consider
orthochronous proper transformations)? According to the method of induced
representations, it is sufficient to find the representations of the little group.
This group is characterized by the fact that it leaves a ‘standard’ vector kµ

invariant (within each class of given p2 ≤ 07 and given sign of p0). For positive
p0, one can distinguish between the following two cases. The first possibility
is p2 = −m2 < 0. Here one can choose kµ = (m, 0, 0, 0), and the little group is
SO(3), since these are the only Lorentz transformations that leave a particle with
k = 0 at rest. The second possibility is p2 = 0. One chooses kµ = (1, 0, 0, 1), and
the little group is ISO(2), the invariance group of Euclidean geometry (rotations
and translations in two dimensions). Any pµ within a given class can be obtained
from the corresponding kµ by a Lorentz transformation. The normalization is
chosen such that

〈ψp′,σ′ , ψp,σ〉 = δσσ′δ(p− p′) . (2.39)

Consider first the case m 
= 0 where the little group is SO(3). As is well known
from quantum mechanics, its unitary representations are a direct sum of irre-
ducible unitary representations D(j)

σσ′ with dimensions 2j + 1 (j = 0, 1
2 , 1 . . .).

Denoting the angular momentum with respect to the z-axis by J
(j)
3 ≡ J

(j)
12 , one

has (J (j)
3 )σσ′ = σδσσ′ with σ = −j, . . . ,+j.

On the other hand, for m = 0, the little group is ISO(2). This is the case of
interest here. It turns out that the quantum-mechanical states are only distin-
guished by the eigenvalue of J3, the component of the angular momentum in the
direction of motion (recall kµ = (1, 0, 0, 1) from above),

J3ψk,σ = σψk,σ . (2.40)

The eigenvalue σ is called the helicity. One then gets

U(Λ, 0)ψp,σ = Neiσθ(Λ,p)ψΛp,σ , (2.41)

where θ denotes the angle contained in the rotation part of Λ. Since massless
particles are not at rest in any inertial system, helicity is a Lorentz-invariant
property and may be used to characterize a particle with m = 0. There remain

7This restriction is imposed in order to avoid tachyons (particles with m2 < 0).
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only the two possibilities of having the angular momentum in direction along or
opposite to the direction of propagation.

Comparison with (2.17) exhibits that σ = ±1 characterizes the photon.8 Be-
cause of the helicity-2 nature of weak gravitational waves in a flat background,
see (2.15), we attribute the particle with σ = ±2 with the gravitational interac-
tion and call it the graviton. Since for a massless particle, |σ| is called its spin, we
recognize that the graviton has spin 2. The helicity eigenstates (2.41) correspond
to circular polarization (see Section 2.1.1), while their superpositions correspond
in the generic case to elliptic polarization or (for equal absolute values of the
amplitudes) to linear polarization.

2.1.3 Quantization of the linear field theory

We now turn to field theory. One starts from a superposition of plane-wave
solutions (2.8) and formally turns this into an operator,

fµν(x) =
∑

σ=±2

∫
d3k√
2|k|

[
a(k, σ)eµν(k, σ)eikx + a†(k, σ)e∗

µν(k, σ)e−ikx
]

.

(2.42)
As in the usual interpretation of free quantum field theory, a(k, σ) (a†(k, σ)) is
interpreted as the annihilation (creation) operator for a graviton of momentum
�k and helicity σ (see e.g. Weinberg 1995). They obey

[a(k, σ), a†(k′, σ′)] = δσσ′δ(k − k′) , (2.43)

with all other commutators vanishing. The quantization of the linearized gravi-
tational field was already discussed by Bronstein (1936).

Since we only want the presence of helicities ±2, fµν cannot be a true tensor
with respect to Lorentz transformations (note that the TT-gauge condition is not
Lorentz invariant). As a consequence, one is forced to introduce gauge invariance
and demand that fµν transform under a Lorentz transformation according to

fµν → Λ λ
µ Λ ρ

ν fλρ − ∂νεµ − ∂µεν , (2.44)

in order to stay within the TT-gauge; cf. (2.5). Therefore, the coupling in the
Lagrangian (2.20) must be to a conserved source, ∂νT µν = 0, because otherwise
the coupling is not gauge invariant.

The occurrence of gauge invariance can also be understood in a group-
theoretic way. We start with a symmetric tensor field fµν with vanishing trace
(nine degrees of freedom). This field transforms according to the irreducible
D(1,1) representation of the Lorentz group; see, for example, section 5.6 in Wein-
berg (1995). Its restriction to the subgroup of rotations yields

8Because of space inversion symmetry, σ = 1 and σ = −1 describe the same particle.
This holds also for the graviton, but due to parity violation not, for example, for (massless)
neutrinos.
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D(1,1) = D(1) ⊗D(1) , (2.45)

where D(1) denotes the j = 1 representation of the rotation group. (Since one
has three ‘angles’ in each of them, this yields the 3× 3 = 9 degrees of freedom of
the trace-free fµν .) The representation (2.45) is reducible with ‘Clebsch–Gordon
decomposition’

D(1) ⊗D(1) = D(2) ⊕D(1) ⊕D(0) , (2.46)

corresponding to the five degrees of freedom for a massive spin-2 particle, three
degrees of freedom for a spin-1 particle, and one degree of freedom for a spin-
0 particle, respectively. The latter 3 + 1 degrees of freedom can be eliminated
by the four conditions ∂νfµν = 0 (transversality). To obtain only two degrees
of freedom one needs, however, to impose the gauge freedom (2.5). This yields
three additional conditions (the four εµ in (2.5) have to satisfy ∂µεµ = 0—one
condition—to preserve tracelessness; the condition �εµ = 0—needed to preserve
transversality—is automatically fulfilled for plane waves). In total, one arrives at
(10− 1)− 4− 3 = 2 degrees of freedom, corresponding to the two helicity states
of the graviton.9

The same arguments also apply of course to electrodynamics: Aµ cannot
transform as a Lorentz vector, since, for example, the temporal gauge A0 = 0
can be chosen. Instead, one is forced to introduce gauge invariance, and the
transformation law is

Aµ → Λ ν
µ Aν + ∂µε , (2.47)

in analogy to (2.44). Therefore, a Lagrangian is needed that couples to a con-
served source, ∂µjµ = 0.10 The group-theoretic argument for QED goes as fol-
lows. A vector field transforms according to the D(1/2,1/2) representation of the
Lorentz group which, if restricted to rotations, can be decomposed as

D(1/2,1/2) = D(1/2) ⊗D(1/2) = D(1) ⊕D(0) . (2.48)

The D(0) describes spin-0, which is eliminated by the Lorenz condition ∂νAν = 0.
The D(1) corresponds to the three degrees of freedom of a massive spin-1 particle.
One of these is eliminated by the gauge transformation Aµ → Aµ + ∂µε (with
�ε = 0 to preserve the Lorenz condition) to arrive at the two degrees of freedom
for the massless photon.

Weinberg (1964) concluded (see also p. 537 of Weinberg 1995) that one can
derive the equivalence principle (and thus GR if no other fields are present) from
the Lorentz invariance of the spin-2 theory (plus the pole structure of the S-
matrix). Similar arguments can be put forward in the electromagnetic case to
show that electric charge must be conserved. No arguments of gauge invariance

9The counting in the canonical version of the theory leads of course to the same result and
is presented in Section 4.2.3.

10This is also connected with the fact that massless spins ≥ 3 are usually excluded, because
no conserved tensor is available. Massless spins ≥ 3 cannot generate long-range forces; cf.
Weinberg (1995, p. 252).
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Fig. 2.1. Emission of a soft graviton.

are needed, at least not explicitly. The gravitational mass mg is defined in this
approach by the strength of interaction with a soft graviton, that is, a graviton
with four-momentum k → 0. The amplitude for the emission (see Fig. 2.1) of a
single soft graviton is given by the expression

Mµν
βα(k) = Mβα ·

∑
n

ηngnpµ
npν

n

pµ
nkµ − iηnε

, (2.49)

where Mβα denotes the amplitude for the process without soft-graviton emission,
and the sum runs over all ingoing and outgoing particles; α refers to the ingoing,
β to the outgoing particles (Fig. 2.1), gn denotes the coupling of the graviton
to particle n (ηn = 1 for outgoing, ηn = −1 for ingoing particles), and pn is the
four-momentum of the nth particle (in the initial and final state, respectively).

To calculate the amplitude for graviton emission with definite helicity, one
has to contract (2.49) with the polarization tensor eµν(k, σ). As argued above,
however, the latter is not a Lorentz tensor, but transforms according to

eµν → Λ λ
µ Λ ρ

ν eλρ + kνfµ + kµfν .

To obtain a Lorentz-invariant amplitude, one must therefore demand that

kµMµν
βα(k) = 0 .

From (2.49), one then finds



36 COVARIANT APPROACHES TO QUANTUM GRAVITY

∑
n

ηngnpν
n = 0 ,

which is equivalent to the statement that
∑

n gnpν
n is conserved. But for non-

trivial processes, the only linear combination of momenta that is conserved is
the total momentum

∑
n ηnpν

n. Consequently, the couplings gn must all be equal,
and one can set gn ≡

√
8πG. Therefore, all low-energy particles with spin 2 and

m = 0 couple to all forms of energy in an equal way. As in Section 2.1.1, this
shows the ‘equivalence’ of a spin-2 theory with GR. From this point of view,
GR is a consequence of quantum theory. Weinberg (1964) also showed that the
effective gravitational mass mg is given by

mg = 2E − m2
i

E
,

where mi denotes as in Section 1.1.4 the inertial mass, and E is the energy. For
E → mi, this leads to the usual equivalence of inertial and gravitational mass. On
the other hand, one has mg = 2E for mi → 0. How can this be interpreted? In his
1911-calculation of the deflection of light, Einstein found from the equivalence
principle alone (setting mg = E), the Newtonian expression for the deflection
angle. The full theory of GR, however, yields twice this value, corresponding to
mg = 2E.

Weinberg’s arguments, as well as the approaches presented in Section 2.1.1,
are important for unified theories such as string theory (see Chapter 9) in which
a massless spin-2 particle emerges with necessity, leading to the claim that such
theories contain GR in an appropriate limit.

Upon discussing linear quantum gravity, the question arises whether this
framework leads to observable effects in the laboratory. A brief estimate suggests
that such effects would be too tiny: comparing in atomic physics, the quantum-
gravitational decay rate Γg with its electromagnetic counterpart Γe, one would
expect for dimensional reasons

Γg

Γe
∼ αn

(
me

mP

)2

(2.50)

with some power n of the fine-structure constant α, and me being the electron
mass. The square of the mass ratio already yields the tiny number 10−45. Still,
it is instructive to discuss some example in detail. Following Weinberg (1972),
the transition rate from the 3d level to the 1s level in the hydrogen atom due
to the emission of a graviton will be calculated. One needs at least the 3d level,
since ∆l = 2 is needed for the emission of a spin-2 particle.

One starts from the classical formula for gravitational radiation and interprets
it as the emission rate of gravitons with energy �ω,

Γg =
P

�ω
, (2.51)



THE CONCEPT OF A GRAVITON 37

where P denotes the classical expression for the emitted power. This has already
been suggested by Bronstein (1936). In the quadrupole approximation one then
finds for the transition rate from an initial state i to a final state f (restoring c),

Γg(i → f) =
2Gω5

5�c5

(∑
kl

Q∗
kl(i → f)Qkl(i → f) − 1

3

∑
k

|Qkk(i → f)|2
)

,

(2.52)
where

Qkl(i → f) ≡ me

∫
d3x ψ∗

f (x)xkxlψi(x) (2.53)

is the quantum-mechanical analogue of the classical quadrupole moment,

Qkl =
1
c2

∫
d3x xkxlT00 . (2.54)

Inserting the hydrogen eigenfunctions ψ100 and ψ32m (m = −2, . . . , 2) for ψi and
ψf , respectively, and averaging over m, one finds after some calculations,11

Γg =
Gm3

ecα
6

360�2 ≈ 5.7 × 10−40 s−1 . (2.55)

This corresponds to a life-time of

τg ≈ 5.6 × 1031 years , (2.56)

which is too large to be observable (although it is of the same order as the value
for the proton life-time predicted by some unified theories). Since electromagnetic
dipole transitions are of the order of Γe ∼ meα

5c2/�, one has

Γg

Γe
∼ α

(
me

mP

)2

≈ 1.28 × 10−47 ; (2.57)

cf. (2.50). The result (2.55) is in fact much more general than its derivation;
field-theoretic methods lead to exactly the same decay rate (Boughn and Roth-
man 2006).

Through similar heuristic considerations, one can also calculate the number
N of gravitons per unit volume associated with a gravitational wave (Wein-
berg 1972). We recall from (2.26) and the accompanying remarks that the space–
time average of the energy–momentum tensor for the weak gravitational waves
is in the general harmonic gauge given by the expression

t̄µν =
kµkνc4

16πG

(
eαβ∗eαβ − 1

2
|eα

α|2
)

. (2.58)

11The result is different from Weinberg (1972) because it seems that Weinberg has used the
eigenfunctions from Messiah’s textbook on quantum mechanics, which contain a misprint. I
am grateful to N. Straumann for discussions on this point.
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Since the energy–momentum tensor of a collection of particles reads (cf. Wein-
berg 1972, section 2.8)

T µν = c2
∑

n

pµ
npν

n

En
δ(x − xn(t)) , (2.59)

a collection of gravitons with momenta pµ = �kµ possesses the energy–momentum
tensor

T µν
g =

�c2kµkνN

ω
. (2.60)

Comparison with (2.58) then yields

N =
ωc2

16π�G

(
eαβ∗eαβ − 1

2
|eα

α|2
)

, (2.61)

where the expression in parentheses is the amplitude squared, |A|2. Taking, for
example, ω ≈ 1 kHz, |A| ≈ 10−21 (typical values for gravitational waves arriving
from a supernova), one finds N ≈ 3×1014 cm−3. For the stochastic background of
gravitons from the early universe one would expect typical values of ω ≈ 10−3 Hz,
|A| ≈ 10−22, leading to N ≈ 106 cm−3. Effects of single gravitons are thus not
expected to be observable in gravitational-wave experiments, at least not in the
near future (one would have to reduce ω|A|2 by another factor of 106).

The ground-state wave function of the quantum-mechanical oscillator is given
by a Gaussian, ψ0(x) ∝ exp(−ωmx2/2�). Similarly, one can express the ground
state of a free quantum field as a Gaussian wave functional. We shall discuss
such functionals in detail in Section 5.3, but mention here that there exists an
explicit form for the ground-state functional of the linear graviton field discussed
above (Kuchař 1970). This has a form similar to the ground-state functional of
free QED, which reads

Ψ0[A] ∝ exp
(
−1

2

∫
d3x d3y Aa(x)ωab(x,y)Ab(y)

)
(2.62)

with

ωab(x, y) = (−∇2δab + ∂a∂b)
∫

d3p
e−ip(x−y)

|p| . (2.63)

Note that a and b are only spatial indices, since the wave functional is defined
on space-like hypersurfaces. This state can also be written in a manifest gauge-
invariant form,

Ψ0 ∝ exp
(
− c

4π2�

∫
d3x d3y

B(x)B(y)
|x − y|2

)
, (2.64)

where B is the magnetic field and c and � have been re-inserted. In the functional
picture, it is evident that the ground state is a highly non-local state. The ground
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state of the linearized gravitational field can be written in a manifest gauge-
invariant way similar to (2.64) as

Ψ0 ∝ exp

(
− c3

8π2G�

∫
d3x d3y

fTT
ab,c(x)fTT

ab,c(y)
|x − y|2

)
, (2.65)

where fab are the spatial components of the metric perturbation introduced in
(2.1).

2.2 Path-integral quantization

2.2.1 General properties of path integrals

A popular method in both quantum mechanics and quantum field theory is path-
integral quantization. In the case of quantum mechanics, the propagator for a
‘particle’ to go from position x′ at time t′ to position x′′ at time t′′ can be
expressed as a formal sum over all possible paths connecting these positions,

〈x′′, t′′|x′, t′〉 =
∫

Dx(t) eiS[x(t)]/� . (2.66)

It is important to remember that most ‘paths’ in this sum are continuous, but
nowhere differentiable, and that Dx(t) is, in fact, a formal notation for the fol-
lowing limiting process (spelled out for simplicity for a particle in one spatial
dimension),

〈x′′, t′′|x′, t′〉 = lim
N→∞

∫
dx1 · · ·dxN−1

(
mN

2πit�

)N/2

×
N−1∏
j=0

exp
(
−m(xj+1 − xj)2N

2it�
− itV (xj)

�N

)
, (2.67)

where m denotes the mass, V the potential, and t ≡ t′′ − t′. The path integral
is especially suited for performing a semiclassical approximation (expansion of
the action around classical solutions) and to develop a perturbation theory with
respect to some small interaction. The path integral (2.67) obeys for t > 0 the
Schrödinger equation. Since it is just the usual propagator (Green function), it
obeys a composition law of the form

〈x′′, t′′|x′, t′〉 =
∫ ∞

−∞
du 〈x′′, t′′|u, t̃〉〈u, t̃|x′, t′〉 .

This law holds because the propagator is a propagator in external time. For this
reason it will not hold in quantum gravity, which is fundamentally timeless; cf.
Section 5.3.4.

The quantum-mechanical path integral, which can be put on a firm mathe-
matical footing, can be formally generalized to quantum field theory where such
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a footing is lacking (there is no measure-theoretical foundation). Still, the field-
theoretical path integral is of great heuristic value and plays a key role especially
in gauge theories (see e.g. Böhm et al. (2001) among many other references). Con-
sider, for example, a real scalar field φ(x).12 Then one has instead of (2.66), the
expression (setting again � = 1)

Z[φ] =
∫

Dφ(x) eiS[φ(x)] , (2.68)

where Z[φ] is the usual abbreviation for the path integral in the field-theoretical
context (often referring to in-out transition amplitudes or to partition sums, see
below). The path integral is very useful in perturbation theory and gives a concise
possibility to derive Feynman rules (via the notion of the generating functional,
see below). Using the methods of Grassmann integration, a path integral such
as (2.68) can also be defined for fermions. For systems with constraints (such
as gauge theories and gravity), however, the path-integral formulation has to be
generalized, as will be discussed in the course of this section. It must also be noted
that the usual operator ordering ambiguities of quantum theory are also present
in the path-integral approach, in spite of integrating over classical configurations:
The ambiguities are here reflected in the ambiguities for the integration measure.

Instead of the original formulation in space–time, it is often appropriate to
perform a rotation to four-dimensional Euclidean space via the Wick rotation
t → −iτ . In the case of the scalar field, this leads to

iS[φ] = i
∫

dt d3x

(
1
2

(
∂φ

∂t

)2

− 1
2
(∇φ)2 − V (φ) + Lint

)

t→−iτ−→ −
∫

dτ d3x

(
1
2

(
∂φ

∂τ

)2

+
1
2
(∇φ)2 + V (φ) − Lint

)
,

≡ −SE[φ] , (2.69)

where V (φ) is the potential and an interaction Lint to other fields has been
taken into account. This formal rotation to Euclidean space has some advantages.
First, since SE is bounded from below, it improves the convergence properties
of the path integral: instead of an oscillating integrand one has an exponentially
damped integrand (remember, however, that e.g. the Fresnel integrals used in
optics are convergent in spite of the eix2

-integrand). Second, for the extremization
procedure, one has to deal with elliptic instead of hyperbolic equations, which
are more suitable for the boundary problem of specifying configurations at initial
and final instants of time. Third, in the Euclidean formulation, the path integral
can be directly related to the partition sum in statistical mechanics (e.g. for the

12The notation x is a shorthand for xµ, µ = 0, 1, 2, 3.
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canonical ensemble one has Z = tr e−βH). Fourth, the Euclidean formulation is
convenient for lattice gauge theory where one considers

Z[U ] =
∫

DU e−SW[U ] , (2.70)

with U denoting the lattice gauge fields defined on the links and SW the Wilson
action, see also Chapter 6. The justification of performing Wick rotations in
quantum field theory relies on the fact that Euclidean Green functions can be
analytically continued back to real time while preserving their pole structure; cf.
Osterwalder and Schrader (1975).

The quantum-gravitational path integral, first formulated by Misner (1957),
would be of the form

Z[g] =
∫

Dgµν(x) eiS[gµν(x)] , (2.71)

where the sum runs over all metrics on a four-dimensional manifold M divided
by the diffeomorphism group DiffM (see below). One might expect that an
additional sum has to be performed over all topologies, but this is a contentious
issue. As we shall see in Section 5.3.4, the path integral (2.71) behaves more like
an energy Green function instead of a propagator. The reason is the absence of
an external time as already emphasized above.

Needless to say that (2.71) is of a tremendously complicated nature, both
technically and conceptually. One might therefore try, for the reasons stated
above, to perform a Wick rotation to the Euclidean regime. This leads, however,
to problems which are not present in ordinary quantum field theory. First, not
every Euclidean metric (in fact, only very few) possesses a Lorentzian section,
that is, leads to a signature (–,+,+,+) upon τ → it. Such a section exists only for
metrics with special symmetries. (The Wick rotation is not a diffeomorphism-
invariant procedure.) Second, a sum over topologies cannot be performed even in
principle because four-manifolds are not classifiable (Geroch and Hartle 1986).13

The third, and perhaps most severe, problem is the fact that the Euclidean grav-
itational action is not bounded from below. Performing the same Wick rotation
as above (in order to be consistent with the matter part), one finds from (1.1)
for the Euclidean action, the expression

SE[g] = − 1
16πG

∫
M

d4x
√

g (R − 2Λ) − 1
8πG

∫
∂M

d3x
√

hK . (2.72)

To see the unboundedness of this action, consider a conformal transformation of
the metric, gµν → g̃µν = Ω2gµν . This yields (Gibbons et al. 1978; Hawking 1979)

SE[g̃] = − 1
16πG

∫
M

d4x
√

g(Ω2R+6Ω;µΩ;νgµν−2ΛΩ4)− 1
8πG

∫
∂M

d3x
√

hΩ2K .

(2.73)

13Still, it is possible that topology change in quantum gravity is required for reasons of
consistency; cf. Sorkin (1997).
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(Here we have transformed K → iK according to the convention used in Sec-
tion 4.2.1.) One recognizes that the action can be made arbitrarily negative by
choosing a highly varying conformal factor Ω. The presence of such metrics in the
path integral then leads to its divergence. This is known as the conformal-factor
problem. There are, however, strong indications for a solution of this problem. As
Dasgupta and Loll (2001) have argued, the conformal divergence can cancel with
a similar term of opposite sign arising from the measure in the path integral (cf.
Section 2.2.3 for a discussion of the measure); see Hartle and Schleich (1987) for
a similar result in the context of linearized gravity. Euclidean path integrals are
often used in quantum cosmology, being related to boundary conditions of the
universe (see Section 8.3), so a clarification of these issues is of central interest.

Since the gravitational path integral is of a highly complicated nature, the
question arises whether it can be evaluated by discretization and performing the
continuum limit. In fact, among others, the following two methods have been
employed (see Section 2.2.6 for details):

1. Regge calculus: Originally conceived by Tullio Regge as a method for classi-
cal numerical relativity, it was applied to the Euclidean path integral from
the 1980s on. The central idea is to decompose four-dimensional space into
a set of simplices and treat the edge lengths as dynamical entities.

2. Dynamical triangulation: In contrast to Regge calculus, all edge lengths
are kept fixed, and the sum in the path integral is instead taken over all
possible manifold-gluings of equilateral simplices. The evaluation is thus
reduced to a combinatorical problem. In contrast to Regge calculus, this
method is applied to Lorentzian geometries, emphasizing the importance
of the lightcone structure already at the level of geometries in the path
integral.

The discussion of path integrals will be continued in Section 2.2.3, where
emphasis is put on the integration measure and the derivation of Feynman rules
for gravity. In the next subsection, we shall give an introduction into the use of
perturbation theory in quantum gravity.

2.2.2 The perturbative non-renormalizability

In Section 2.1, we have treated the concept of a graviton similar to the photon—
within the representation theory of the Poincaré group. We have, in particular,
discussed the Fierz–Pauli Lagrangian (2.20) which is (up to a total derivative)
gauge invariant and which at the classical level inevitably leads to GR. The
question thus arises whether this Lagrangian can be quantized in a way similar
to electrodynamics where one arrives at the very successful theory of QED. More
generally then, why should one not perform a quantum perturbation theory of
the Einstein–Hilbert action (1.1)?

The typical situation for applications of perturbation theory in quantum field
theory addresses ‘scattering’ situations in which asymptotically free quantum
states (representing ingoing and outgoing particles) are connected by a region of
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interaction. This is the standard situation in accelerators. In fact, most quantum
field theories are only understood in the perturbative regime.

Perturbation theory in quantum gravity belongs to the class of covariant
quantization schemes to which also the path-integral methods belong. These
methods intend to maintain four-dimensional (space–time) covariance. They are
distinguished from the canonical methods to be discussed in Chapters 4–6. Can
perturbation theory be useful in quantum gravity? One might think that the
gravitational interaction is intrinsically non-perturbative, and that objects such
as black holes or the early universe cannot be described in perturbation theory.
On the other hand, as has been discussed in Chapter 1, it is hopeless to probe
Planck-scale effects in accelerators. While this is true, it is not excluded per se
that perturbative quantum gravity effects are unobservable. For example, such
effects could in principle show up in the anisotropy spectrum of the cosmic
microwave background, cf. Section 5.4.

A major obstacle to the viability of perturbation theory is the non-renorma-
lizability of quantum GR. What does this mean? Quantum field theory uses local
field operators φ(x). This leads to the occurrence of arbitrarily small distances
and, therefore, to arbitrarily large momenta. As a consequence, divergences show
up usually in calculations of cross-sections coming from integrals in momentum
space. The theory is called renormalizable if these divergences can all be removed
by a redefinition of a finite number of physical constants (masses, charges, etc.)
and fields; see e.g. Weinberg (1995) for details. These constants can only be
determined experimentally.14 A non-renormalizable theory thus needs an infinite
number of parameters to be determined experimentally, which corresponds to a
complete lack of predictability at the fundamental level.

It turns out that the mass dimensionality (in units where � = c = 1) of the
coupling constant for a certain interaction decides about renormalizability. This
dimensionality is given by a coefficient ∆ which is called the superficial degree of
divergence and which must not be negative. It can be calculated by the formula

∆ = 4 − d −
∑

f

nf (sf + 1) , (2.74)

where d is the number of derivatives, nf the number of fields of type f , and
sf = 0, 1/2, 1, 0 for scalars, fermions, massive vector fields, and photons and
gravitons, respectively. Considering, for example, the standard QED interaction
−ieψ̄Aµγµψ, one obtains ∆ = 4 − 0 − 3/2 − 3/2 − 1 = 0; the electric charge
e is thus dimensionless and the coupling is renormalizable. On the other hand,
the presence of a ‘Pauli term’ ψ̄[γµ, γν ]ψFµν , for example, would lead to ∆ =

14Many physicists have considered the theory of renormalization to be only preliminary in
nature, connected with a lack of understanding of the full theory: ‘Some physicists may be
happy to have a set of working rules leading to results in agreement with observation. They
may think that this is the goal of physics. But it is not enough. One wants to understand how
Nature works’ (Dirac 1981), and ‘Die Selbstenergie-Schwierigkeit kann nicht dadurch behoben
werden, daß man ein formales Verstecken-Spielen mit ihr veranstaltet’ (Pauli 1993).
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−1 (because of the additional derivative of Aµ contained in Fµν) and thus to
a non-renormalizable interaction. It was a major achievement to demonstrate
that Yang–Mills theories—which are used to describe the strong and electroweak
interactions—are renormalizable (’t Hooft and Veltman 1972). The Standard
Model of particle physics is thus given by a renormalizable theory.

Why is the success of the Standard Model not spoiled by the presence of
a non-renormalizable interaction at a large mass scale? Consider a non-renor-
malizable interaction g ∼ M−|∆|, where M is the corresponding mass scale.
For momenta k � M , therefore, g must be accompanied by a factor k|∆|; as
a consequence, this non-renormalizable interaction is suppressed by a factor
(k/M)|∆| � 1 and not seen at low momenta. The success of the renormaliz-
able Standard Model thus indicates that any such mass scale must be much
higher than currently accessible energies.

Whereas non-renormalizable theories had been fully discarded originally, a
more modern viewpoint attributes to them a possible use as effective theories
(Weinberg 1995). If all possible terms allowed by symmetries are included in
the Lagrangian, then there is a counterterm present for any ultraviolet (UV)
divergence. This will become explicit in our discussion of the gravitational field
below. For energies much smaller than M , effective theories might therefore lead
to useful predictions. Incidentally, also the standard model of particle physics,
albeit renormalizable, is today interpreted as an effective theory. The only truly
fundamental theories seem to be those which unify all interactions at the Planck
scale.

An early example of an effective theory is given by the Euler–Heisenberg
Lagrangian,

LE−H =
1
8π

(E2 − B2) +
e4�

360π2m4
e

[
(E2 − B2)2 + 7(EB)2

]
, (2.75)

where me is the electron mass, see for example, section 12.3 in Weinberg (1995) or
Dunne (2005). The second term in (2.75) arises after the electrons are integrated
out and terms with order ∝ �2 and higher are neglected. Already at this effective
level one can calculate observable physical effects such as Delbrück scattering
(scattering of a photon at an external field).

In the background-field method to quantize gravity (DeWitt 1967b, c), one ex-
pands the metric about an arbitrary curved background solution to the Einstein
equations,15

gµν = ḡµν +
√

32πGfµν . (2.76)

Here, ḡµν denotes the background field with respect to which (four-dimensional)
covariance will be implemented in the formalism; fµν denotes the quantized field,
which has the dimension of a mass. We shall present here a heuristic discussion
of the Feynman diagrams in order to demonstrate the non-renormalizability of

15Sometimes the factor
√

8πG is chosen instead of
√

32πG.
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quantum gravity; the details of the background-field method will be discussed in
the following subsections.

If one chooses a flat background space–time, ḡµν = ηµν (cf. (2.1)), one finds
from the Einstein–Hilbert Lagrangian the Fierz–Pauli Lagrangian (2.20) plus
higher-order terms having the symbolic form (omitting indices)

√
32πGf(∂f)(∂f) + · · · + (

√
32πGf)r(∂f)(∂f) + · · · (2.77)

These are infinitely many terms because the inverse of the metric, gµν , en-
ters the Einstein–Hilbert Lagrangian ∝ √−gRµνgµν . Each term contains two
f -derivatives because the Ricci scalar has two derivatives; each vertex has a
factor

√
G.

Before going into the details, we shall show that the gravitational interaction
is indeed non-renormalizable from the dimensional point of view. Considering
the first interaction term

√
Gf(∂f)(∂f) one finds from (2.74) a negative mass

dimension, ∆ = 4− 2− 3(0+ 1) = −1, consistent with the fact that
√

G ∝ m−1
P .

Recalling the discussion after (2.49), one could say that there is a connection
between the non-renormalizability for gravity and the validity of the equivalence
principle.

To see this more explicitly, let us first consider the kinetic term of (2.20): after
an appropriate gauge fixing (see Section 2.2.3), it leads to a propagator of the
usual form with momentum dependence D ∝ k−2. Since the interaction terms
in (2.77) all contain two derivatives, one finds for the vertex V ∝ k2 unlike,
for example, QED where the vertices are momentum-independent. Therefore,
DV ∝ 1 (k-independent). Consider now a Feynman diagram with one loop, r
propagators and r vertices (Fig. 2.2); cf. Duff (1975) and Deser (1989). It involves
momentum integrals that together lead to the following integral (assuming for
the moment n instead of four space–time dimensions):∫ pc

dnk (DV )r ∝
∫ pc

dnk ∝ pn
c ,

where pc is some cutoff momentum. The addition of a new internal line (Fig. 2.2)
then gives the new factor∫ pc

dnk D(DV )2 ∝
∫ pc

dnk D ∝ pn−2
c .

Therefore, if L loops are present, the degree of divergence is

pn
c · p(L−1)(n−2)

c = p(L−1)(n−2)+n
c .

For n = 4, for example, this yields p
2(L+1)
c and thus an unbounded increase

with increasing order of the diagram. In other words, since
√

G has inverse mass
dimension,

√
Gpc is dimensionless and can appear at any order. Consequently,

an infinite number of divergences emerges, making the perturbation theory non-
renormalizable. An exception is n = 2, where G is a pure number. GR is, however,
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Fig. 2.2. Adding a new internal line to a Feynman diagram.

trivial in two space–time dimensions, so that one can construct a sensible theory
only if additional fields are added to the gravitational sector; cf. Section 5.3.5.

It must be emphasized that the counting of the degree of divergences only
reflects the expectations. This degree might well be lower due to the presence of
symmetries and the ensuing cancellations of divergences. In QED, for example,
divergences are at worst logarithmic due to gauge invariance. The situation in
the gravitational case will be discussed more explicitly in the next subsection.

The situation with divergences would be improved if the propagator behaved
as D ∝ k−4 instead of D ∝ k−2, for then the factor corresponding to the new
internal line in Fig. 2.2 would be (one also has V ∝ k4)∫ pc

dnk D ∝ pn−4
c

and would therefore be independent of the cutoff in n = 4 dimensions, that
is, higher loops would not lead to new divergences. This can be achieved, for
example, by adding terms with the curvature squared to the Einstein–Hilbert
action because this would involve fourth-order derivatives. Such a theory would
indeed be renormalizable, but with a high price; as Stelle (1977) has shown (and
as has already been noted by DeWitt (1967b)), the ensuing quantum theory is
not unitary. The reason is that the propagator D can then be written in the
form

D ∝ 1
k4 + Ak2 =

1
A

(
1
k2 − 1

k2 + A

)
,

and the negative sign in front of the second term spoils unitarity (for A < 0 a
tachyon—a particle with a negative mass squared—can also appear). For this
reason, ‘exact’ R2-theories are abandoned. However, Lagrangians with R2-terms
can, and indeed do, appear as correction terms for not-too-big curvatures (see
below). (For high curvatures, R is comparable to R2-terms, and therefore also
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R3 and higher orders are needed.) On this effective level, R2-terms only lead to
a modification of the vertices, not the propagator.

Since the loop expansion of Feynman diagrams is also an expansion in �,
giving �L for L loops, one finds in the gravitational case a matching with the
G-expansion: since one recognizes from the above that there must be for n = 4
a factor GL+1 for L loops in order to compensate for the power of pc, it is clear
that G� is the relevant expansion parameter for pure gravity. (More precisely,
one has the factor �LGL−1 in the effective Lagrangian, see below.)

The occurrence of divergences in the quantization of gravity was first noticed
by Rosenfeld (1930). He calculated the gravitational energy generated by an
electromagnetic field to see whether an infinite self-energy occurs in this case
(the infinite self-energy for an electron had already been recognized) and found
in fact a quadratic divergence.

2.2.3 Effective action and Feynman rules

In order to apply path-integral methods to derive the effective action and Feyn-
man diagrams, the formalism of Section 2.2.1 must be generalized to include
‘gauge fixing’. There exists a general procedure which can be found in many
references (e.g. in Weinberg 1996 or Böhm et al. 2001) and which will be briefly
outlined before being applied to quantum gravity.

If we apply the general path integral in (2.71) to the expansion (2.76), we
find an integral over the quantum field fµν ,

Z =
∫

Dfµν eiS[fµν ,ḡµν ] , (2.78)

where in the following, we shall frequently use f as an abbreviation for fµν (and ḡ
for the background field). The point is now that (2.78) is formally infinite because
fµν is invariant under the gauge transformations (2.5), fµν → fµν−∂νεµ−∂µεν ≡
f ε

µν , the infinity arising from integrations over gauge directions. Faddeev and
Popov (1967) gave a general prescription on how to deal with this problem. This
prescription has become especially popular in Yang–Mills theories. It consists of
the following steps.

In a first step, a gauge constraint is chosen in order to fix the gauge. In the case
of gravity, this would be four conditions, Gα[f, ḡ] = 0. One desires to choose them
such that the gauge is uniquely fixed, that is, such that each ‘group orbit’ f ε is hit
exactly once. It is known, however, that this cannot always be achieved (‘Gribov
ambiguities’), but this problem is usually not relevant in perturbation theory. In
the path integral one then integrates over the subspace given by Gα[f, ḡ] = 0.
To implement this, one defines in a second step, a functional ∆G[f, ḡ] through
(neglecting in the following for notational convenience the dependence on the
background field ḡ)

∆G[f ] ·
∫

Dε
∏
α

δ(Gα[f ε]) = 1 . (2.79)
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The integration measure is a formal integration over the gauge group and is ‘left
invariant’, that is, Dε = D(ε′ε). Using this invariance of the measure one can
show that ∆G[f ] is gauge invariant, that is, ∆G[f ] = ∆G[f ε].

In a third step, one introduces the ‘1’ of (2.79) into the naive path integral
in (2.78). Making the substitution f ε → f and using the gauge invariance of ∆,
one gets the expression∫

Dε

∫
Df

∏
α

δ(Gα[f ])∆G[f ]eiS[f ] .

The infinite term coming from the Dε integration can now be omitted (it just
corresponds to the volume of the gauge orbit). One then arrives at the following
definition for the path integral (again called Z for simplicity):

Z ≡
∫

Df
∏
α

δ(Gα[f ])∆G[f ]eiS[f ] . (2.80)

It depends formally on the gauge G but is in fact gauge invariant; ∆G[f ] is called
the ‘Faddeev–Popov determinant’.

Since the delta function appears in (2.80), we can in (2.79) expand Gα[f ε]
around ε = 0 to evaluate ∆G,

Gα[f ε] = Gα[f0] + (Âε)α ,

where the first term on the right-hand side is zero (it is just the gauge condition),
and Â is the matrix (with elements Aαβ) containing the derivatives of the Gα

with respect to the εµ. Therefore, ∆G[f ] = detÂ. For the derivation of Feynman
rules it is convenient to use this expression and to rewrite the determinant as a
Grassmann path integral over anticommuting fields ηα(x),

detÂ =
∫ ∏

α

Dη∗α(x)Dηα(x) exp
(

i
∫

d4x η∗α(x)Aαβ(x)ηβ(x)
)

. (2.81)

The fields ηα(x) and η∗α(x) are called ‘vector ghosts’ or ‘Faddeev–Popov ghosts’
because they are fermions with spin 1; they cannot appear as physical particles
(external lines in a Feynman diagram) but are only introduced for mathematical
convenience (and only occur inside loops in Feynman diagrams).

Apart from ∆G, the gauge-fixing part δ(Gα) also can be rewritten as an ef-
fective term contributing to the action. Choosing instead of Gα = 0 a condition
of the form Gα(x) = cα(x), the corresponding path integral Zc is in fact inde-
pendent of the cα (shortly called c). Therefore, if one integrates Z over c with
an arbitrary weight function, only the (irrelevant) normalization of Z will be
changed. Using a Gaussian weight function, one obtains

Z ∝
∫

Dc exp
(
− i

4ξ

∫
d4x cαcα

)∫
Df

∏
α

∆G[f ]δ(Gα − cα)eiS . (2.82)
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Performing the c-integration then yields

Z ∝
∫

Df ∆G[f ] exp
(

iS[f ] − i
4ξ

∫
d4x GαGα

)
. (2.83)

The second term in the exponential is called ‘gauge-fixing term’. Taking all con-
tributions together, the final path integral can be written in the form (disregard-
ing all normalization terms and re-inserting the dependence on the background
field)

Z =
∫

DfDηαDη∗α eiStot[f,η,ḡ] , (2.84)

where

Stot[f, η, ḡ] = S[f, ḡ] − 1
4ξ

∫
d4x Gα[f, ḡ]Gα[f, ḡ]

+
∫

d4x η∗α(x)Aαβ [f, ḡ](x)ηβ(x)

≡
∫

d4x (Lg + Lgf + Lghost) . (2.85)

In this form, the path integral is suitable for the derivation of Feynman rules.
As it stands, (2.85) is also the starting point for the ‘conventional’ pertur-

bation theory (i.e. without an expansion around a background field). In that
case, the gauge-fixed Lagrangian is no longer gauge invariant but instead invari-
ant under more general transformations including the ghost fields. This is called
BRST symmetry (after the names Becchi, Rouet, Stora, Tyutin, see e.g. DeWitt
(2003) for the original references) and encodes the information about the original
gauge invariance at the gauge-fixed level. We shall give a brief introduction into
BRST quantization in the context of string theory; see Chapter 9. For gravita-
tional systems one needs a generalization of BRST quantization known as BFV
quantization; see Batalin and Vilkovisky (1977), and Batalin and Fradkin (1983).
This generalization is, for example, responsible for the occurrence of a four-ghost
vertex in perturbation theory.

In the background-field method, on the other hand, the gauge symmetry
(here: symmetry with respect to coordinate transformations) is preserved for
the background field ḡ. For this reason, one can call this method a covariant
approach to quantum gravity. The formal difference between ‘conventional’ and
background-field method is the form of the gauge-fixing terms (Duff 1975, Böhm
et al. 2001), leading to different diagrams in this sector. It turns out that, once the
Feynman rules are obtained, calculations are often simpler in the background-
field method. For non-gauge theories, both methods are identical. Background-
field method and BRST method are alternative procedures to arrive at the same
physical results.
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For the gravitational field, we have the following Lagrangian (for vanishing
cosmological constant), see ’t Hooft and Veltman (1974):

Lg =
√−gR

16πG
=

√
−ḡ

(
R̄

16πG
+ L(1)

g + L(2)
g + . . .

)
, (2.86)

where the ‘barred’ quantities refer to the background metric, see (2.76). We have
for L

(1)
g the expression

L(1)
g =

fµν√
32πG

(
ḡµνR̄ − 2R̄µν

)
. (2.87)

This vanishes if the background is a solution of the (vacuum) Einstein equations.
The expression for L

(2)
g reads

L(2)
g = 1

2 fµν;αfµν;α − 1
2 f;αf ;α + f;αfαβ

;β − fµβ;αfµα;β

+R̄(1
2 fµνfµν − 1

4 f2) + R̄µν
(
ffµν − 2f α

µ fνα

)
. (2.88)

The first line corresponds to the Fierz–Pauli Lagrangian (2.20), while the second
line describes the interaction with the background (not present in (2.20) because
there the background was flat); we recall that f ≡ f µ

µ . For the gauge-fixing part
Lgf , one chooses

Lgf =
√
−ḡ(f ;ν

µν − 1
2 f;µ)(fµρ

;ρ − 1
2 f ;µ) . (2.89)

This condition corresponds to the ‘harmonic gauge condition’ (2.3) and turns
out to be a convenient choice. For the ghost part, one finds

Lghost =
√
−ḡ η∗µ

(
η σ

µ;σ; − R̄µνην
)

. (2.90)

The first term in the brackets is the covariant d’Alembertian, �ηµ. The full
action in the path integral (2.84) then reads, with the background metric obeying
Einstein’s equations,

Stot =
∫

d4x
√
−ḡ

( R̄

16πG
− 1

2
fµνDµναβfαβ +

fµν√
32πG

[
ḡµνR̄ − 2R̄µν

]
+η∗µ(ḡµν� − R̄µν)ην + O(f3)

)
, (2.91)

where Dµναβ is a shorthand for the terms occurring in (2.88) and (2.89). The
desired Feynman diagrams can then be obtained from this action. The opera-
tor Dµναβ is—in contrast to the original action without gauge fixing—invertible
and defines both propagator and vertices (interaction with the background field).
The explicit expressions are complicated, see ’t Hooft and Veltman (1974) and
Donoghue (1994). They simplify considerably in the case of a flat background
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Fig. 2.3. (a) Graviton loop in interaction with the background field. (b) Ghost
loop in interaction with the background field.

where one has, for example, for the propagator (in harmonic gauge), the expres-
sion

Dµναβ =
1

2(k2 − iε)
(ηµαηνβ + ηµβηνα − ηµνηαβ) . (2.92)

(The structure of the term in brackets is reminiscent of the DeWitt metric dis-
cussed in Section 4.1.2.) The action (2.91) leads to diagrams with at most one
loop such as those depicted in Fig. 2.3 (‘one-loop approximation’). Figure 2.3 (a)
describes a graviton loop in interaction with the background field. It is a virtue
of the background-field method that an arbitrary number of external lines can
be considered. Figure 2.3 (b) describes a ghost loop interacting with the back-
ground field. Ghosts are needed to guarantee the unitarity of the S-matrix, as
has already been noted by Feynman (1963) and DeWitt (1967b).

The use of the background-field method guarantees covariance with respect
to the background field. This is achieved in particular by the implementation
of dimensional regularization to treat the arising divergences.16 The divergences
are local and give rise to covariant terms (such as R, R2, etc.) which must be
absorbed by terms of the same form already present in the Lagrangian. Since
curvature terms different from R are absent in the original Einstein–Hilbert
Lagrangian,17 one must start instead of Lg with a Lagrangian of the form

L̃g = Lg + L(2) + L(3) + . . . + Lm , (2.93)

where

L(2) =
√
−ḡ(c1R̄

2 + c2R̄µνR̄µν) ,

L(3) = O(R̄3) , etc. , (2.94)

and Lm denotes the Lagrangian for non-gravitational fields. Note that because
of the Gauss–Bonnet theorem, the expression

16Dimensional regularization employs an auxiliary extension of the number n of space–time
dimensions in a continuous way such that no divergences appear for n �= 4. The divergences
that occur for n → 4 are then subtracted.

17This is different from QED, where only terms occur with a form already present in the
Maxwell Lagrangian.
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∫
d4x

√
−g(Rµνστ Rµνστ − 4RµνRµν + R2)

is a topological invariant, which is why a term proportional to Rµνστ Rµνστ does
not have to be considered.

Can one justify the use of the modified gravitational Lagrangian (2.93)?
Higher powers in curvature emerge generically from fundamental theories in the
form of effective theories.18 This is the case, for example, in string theory (Chap-
ter 9). It thus has to be expected that the Einstein–Hilbert action (1.1) is not
exact even at the classical level, but has to be augmented by an action contain-
ing higher-order curvature terms. Experimental limits on the parameters c1, c2,
etc., are very weak because curvatures are usually very small (e.g. in the solar
system). Stelle (1978) has estimated that from the perihelion motion of Mercury
one only gets c1, c2 � 1088. As one would expect c1 and c2 to be of order one,
there is no hope to measure them in solar system experiments.

Using (2.91) in the path integral, integration over the fµν gives a term pro-
portional to (detD)−1/2 = exp(− 1

2 tr lnD), where D is a shorthand notation for
Dµναβ (’t Hooft and Veltman 1974). In the one-loop approximation used here,
this yields a divergent contribution to the Lagrangian of the form

L(div)
1−loop =

�

8π2ε

√
−ḡ

(
R̄2

120
+

7
20

R̄µνR̄µν

)
, (2.95)

where ε = 4− n is the parameter occurring in dimensional regularization, which
diverges in the limit of space–time dimension n → 4. For pure gravity L(div)

1−loop
is zero if the background field is ‘on-shell’, that is, a solution of the (vacuum)
Einstein equations. This is a feature of the background-field method. In the
presence of matter this does no longer hold. Adding (2.95) to (2.93), one obtains
the ‘renormalized’ values for c1 and c2,

c
(ren)
1 = c1 +

�

960π2ε
, c

(ren)
2 = c2 +

7�

160π2ε
. (2.96)

These constants can only be ‘measured’ (or determined from a fundamental
theory); here their use is just to absorb the divergences present in (2.95).

If only a non-selfinteracting field is present in addition to the gravitational
field, the one-loop approximation for this field is exact. It is important to empha-
size that in this approximation the effect of the gravitons have to be implemented
on an equal footing with matter, since no G appears in the one-loop Lagrangian,
cf. (2.95). This is why the termini ‘quantum field theory in curved space–time’
and ‘one-loop quantum gravity’ are both used for this level of approximation.

The divergences at two-loop order were first calculated by Goroff and Sagnotti
(1985) using computer methods. Their result was later confirmed by van de

18To quote from Weinberg (1997): ‘Why would anyone suppose that these higher terms are
absent?’
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Ven (1992). An analytic calculation of two-loop divergences was performed by
Barvinsky and Vilkovisky (1987). The divergent part in the two-loop Lagrangian
was found to read

L(div)
2−loop =

209�2

2880
32πG

(16π2)2ε
√
−ḡR̄αβ

γδR̄
γδ

µνR̄µν
αβ . (2.97)

The divergence for ε → 0 can be absorbed by a corresponding term in L(3)
of (2.94). In contrast to (2.95), the gravitational constant G occurs here. For
higher loops one finds from dimensional analysis that the divergent part of the
Lagrangian is of the form

L(div)
L−loop ∼

√
−ḡ�LGL−1∇pR̄m 1

ε
, p + m = L + 1 (2.98)

(recall that the loop expansion is also a WKB expansion), where ∇pR̄m is a
shorthand for all curvature terms and their derivatives that can occur at this
order.

Divergences remain if other fields (scalars, photon, Yang–Mills fields) are
coupled (Deser et al. 1975). In the Einstein–Maxwell theory, for example, one
obtains instead of (2.95), the expression

L(div)
1−loop =

√
−ḡ

137�

60ε
R̄µνR̄µν . (2.99)

We shall see in Section 2.3 how supergravity can improve the situation without,
however, avoiding the occurrence of divergences.

The above treatment of divergences concerns the (ill-understood) UV-behav-
iour of the theory and does not lead to any new prediction.19 Genuine pre-
dictions can, however, be obtained from the action (2.91) in the infrared limit
(Donoghue 1994). These predictions are independent of the unknown coefficients
c1, c2, etc. Let us consider two examples. The first example is a quantum-
gravitational correction term to the Newtonian potential20

V (r) = −Gm1m2

r

between two masses m1 and m2. It is appropriate to define the potential through
the scattering amplitude. The non-analytic parts of this amplitude give the long-
range, low-energy corrections to the Newtonian potential. ‘Non-analytic’ here
refers to terms such as ln(−p2) and (−p2)−1/2, where p2 denotes the square of

19It has, however, been suggested that in certain situations, theories with infinitely many
couplings can be studied perturbatively also at high energies; cf. Anselmi (2003).

20The derivation of the Newtonian potential from linear quantum gravity was already per-
formed by Bronstein (1936).
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the four-momentum. After a rather long calculation, Bjerrum-Bohr et al. (2003a)
find (restoring c)

V (r) = −Gm1m2

r

(
1 + 3

G(m1 + m2)
rc2 +

41
10π

G�

r2c3

)
. (2.100)

All terms are fully determined by the non-analytic parts of the one-loop ampli-
tude; the parameters connected with the higher curvature terms in the action
contribute only to the analytic parts. It is for this reason that an unambiguous
result can be obtained. Note that (2.100) corresponds to an effective gravitational
constant Geff(r) > G.

Although arising from a one-loop amplitude, the first correction term is in fact
an effect of classical GR. It can be obtained from the Einstein–Infeld–Hoffmann
equations, in which none of the two bodies is treated as a test body. Interestingly,
such a term had already been derived from quantum-gravitational considerations
by Iwasaki (1971).

The second correction is proportional to � and is of genuine quantum-gravi-
tational origin. The sign in front of this term indicates that the strength of the
gravitational interaction is increased as compared to the pure Newtonian poten-
tial.21 The result (2.100) demonstrates that a definite prediction from quantum
gravity is in principle possible. Unfortunately, the correction term, being of the
order (lP/r)2 � 1, is not measurable in laboratory experiments: Taking for r the
Bohr radius, the correction is of the order of 10−49. We remark that similar tech-
niques are applied successfully in low-energy QCD (in the limit of pion masses
mπ → 0) and known under the term ‘chiral perturbation theory’ (which is also a
‘non-renormalizable theory’ with a dimensionful coupling constant); see, for ex-
ample, Gasser and Leutwyler (1984). Quantum corrections to the Schwarzschild
and Kerr metrics are calculated along these lines in Bjerrum-Bohr et al. (2003b).

The second example is graviton–graviton scattering. This is the simplest low-
energy process in quantum gravity. It was originally calculated in tree level by
DeWitt (1967c). For the scattering of a graviton with helicity +2 with a graviton
with helicity −2, for example, he found for the cross-section in the centre-of-mass
frame, the expression

dσ

dΩ
= 4G2E2 cos12 θ/2

sin4 θ/2
, (2.101)

where E is the centre-of-mass energy (and similar results for other combinations
of helicity). One recognizes in the denominator of (2.101) the term well known
from Rutherford scattering. DeWitt (1967c) also considered other processes such
as gravitational bremsstrahlung.

One-loop calculations can also be carried out. In the background-field method,
the quantum fields fµν occur only in internal lines; external lines contain only
the background field ḡµν . It was already mentioned that this makes the whole

21There had been some disagreement about the exact number in (2.100); see the discussion
in Bjerrum-Bohr et al. (2003a).



PATH-INTEGRAL QUANTIZATION 55

formalism ‘covariant’. Donoghue and Torma (1999) have shown that the one-loop
calculations of graviton–graviton scattering yield a finite result in the infrared
(IR) limit, independent of any parameters such as c1 or c2. The cancellation of
IR divergences with the emission of soft gravitons is needed and shown in fact to
occur (as e.g. in QED). This yields again a definite result from quantum gravity.
There is, in fact, a huge literature about IR-effects from quantum gravity. One
example is the dynamical relaxation of the cosmological constant and its possi-
ble relevance for the dark-matter problem (Tsamis and Woodard 1993). Another
way of addressing this issue is the investigation of renormalization-group equa-
tions, which can be applied also to effective theories; cf. Section 2.2.5. At least
in principle, one could understand from this method the occurrence of a small
positive cosmological constant in agreement with observations because it would
arise as a strong IR quantum effect.

The idea that non-renormalizable theories can be treated as ordinary physical
theories from which phenomenological consequences can be drawn was also dis-
cussed in other contexts. Kazakov (1988), for example, generalized the standard
formalism of the renormalization group to non-renormalizable theories. Barvin-
sky et al. (1993) developed a version of the renormalization-group formalism for
non-renormalizable theories, which is particularly convenient for applications to
GR coupled to a scalar field.

2.2.4 Semiclassical Einstein equations
In this subsection we shall give a general introduction into the concept of effective
action, which is of central importance for quantum field theory. We shall then
apply this to quantum gravity and present in particular a derivation of the
semiclassical Einstein equations (1.35). More details can be found in Barvinsky
(1990) and Buchbinder et al. (1992).22

For a general quantum field ϕ (with possible components ϕi), the generating
functional W [J ] is defined by the path integral

〈out, 0|in, 0〉J ≡ Z[J ] ≡ eiW [J] =
∫

Dϕ eiS[ϕ]+iJkϕk

, (2.102)

where J is an external current and Jkϕk is an abbreviation for
∫

d4xJi(x)ϕi(x).
This is also known as ‘DeWitt’s condensed notation’; cf. DeWitt (1965). We
write the index of ϕ usually only in expressions where more than one index
occurs. If ϕ is a gauge field, the measure in (2.102) is understood as including
gauge-fixing terms and Faddeev–Popov ghosts, see (2.85) above. Later ϕ will
be the gravitational field. W [J ] is called the generating functional because one
can calculate from it Green functions of the theory. More precisely, W generates
connected Green functions23 according to

22In the preparation of this subsection, I have benefited much from discussions with Andrei
Barvinsky.

23A connected Green function is a Green function referring to a connected graph, that is, a
graph for which any two of its points are connected by internal lines.
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〈ϕ1 · · ·ϕk〉J = e−iW [J]
(

1
i

)k
δk

δJ1 · · · δJk
eiW [J] , (2.103)

where the expectation value occurring on the left-hand side is defined by the
expression

〈A(ϕ)〉 ≡ 〈out, 0|T (A(ϕ))|in, 0〉
〈out, 0|in, 0〉 , (2.104)

where T is time ordering.24 The expectation value of the field in the presence of
the external current (the mean field) is given by the expression

〈ϕ〉J = Z−1
∫

Dϕ ϕ eiS[ϕ]+iJkϕk

.

One can then write

〈ϕ〉J =
δW [J ]

δJ
. (2.105)

The two-point function then follows from (2.103),

〈ϕiϕk〉J = −i
δ2W

δJiδJk
+ 〈ϕi〉J 〈ϕk〉J

≡ −iGik
J + 〈ϕi〉J 〈ϕk〉J . (2.106)

The ‘propagator’ that yields the complete two-point function of the theory is
then given by Gik

J evaluated at J = 0 and simply denoted by Gik.
The central concept in this formalism is the effective action, Γ[〈ϕ〉], which is

a functional of the mean field. It is here defined by the Legendre transformation

Γ[〈ϕ〉] = W [J ] −
∫

d4x J(x)〈ϕ(x)〉 , (2.107)

where J is expressed through 〈ϕ〉 (inversion of (2.105)). It therefore follows that

δΓ
δ〈ϕ〉 = −J(〈ϕ〉) . (2.108)

In the absence of external sources this is
δΓ

δ〈ϕ〉 = 0 , (2.109)

generalizing the classical equations δS/δϕcl = 0. Equation (2.109) describes the
dynamics of the mean field including all quantum corrections, since in the absence
of external sources one has

eiΓ[〈ϕ〉] =
∫

Dϕ eiS[ϕ] .

That Γ contains all information about the full theory can also be understood
as follows: solve (2.108) for 〈ϕ〉 and insert it into (2.106). This yields the two-
point function, and a similar procedure leads to all higher correlation functions.

24For fermionic fields one must distinguish between functional derivatives from the left and
from the right.
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Unfortunately, Γ is not invariant under field redefinitions, although the S-matrix
is; see Barvinsky (1990).

One can show that Γ generates all one-particle irreducible Feynman dia-
grams.25 The irreducible part of the two-point function is given by

Dik =
δ2Γ

δ〈ϕi〉δ〈ϕk〉 = −δJ(〈ϕk〉)
δ〈ϕi〉 . (2.110)

From (2.106), one has Gik
J Dkl = −δi

l .
The effective action is the appropriate generalization of the classical action

to quantum theory. This is exhibited in particular if one performs a semiclassical
(‘loop’) expansion. This will now be discussed to some detail. For this purpose
we re-introduce � into the formalism. Multiplication of (2.102) on both sides by
(using the condensed notation)

e−iJ〈ϕ〉/� = ei δΓ
δ〈ϕ〉 〈ϕ〉/�

gives

exp
(

i
�
Γ[〈ϕ〉]

)
=

∫
Dϕ exp

(
i
�
S[ϕ] − i

�

δΓ
δ〈ϕ〉 (ϕ − 〈ϕ〉)

)
. (2.111)

This is an exact equation for the effective action. It will be iteratively solved by
an expansion with respect to � (‘stationary-phase approximation’). Expanding
the classical action around the mean field yields (recall that we write the index
for ϕ usually only when at least two different indices occur)

S[ϕ] = S[〈ϕ〉] +
δS

δ〈ϕ〉 (ϕ − 〈ϕ〉)

+
1
2

δ2S

δ〈ϕi〉δ〈ϕk〉
(ϕi − 〈ϕi〉)(ϕk − 〈ϕk〉) + . . . .

Writing
Γ[〈ϕ〉] = S[〈ϕ〉] + Γloop[〈ϕ〉]

and introducing ∆k ≡ ϕk − 〈ϕk〉, one gets from (2.111) the expression

exp
(

i
�
Γloop[〈ϕ〉]

)
=

∫
D∆exp

(
i

2�

δ2S

δ〈ϕi〉δ〈ϕk〉
∆i∆k

)

×
(

1 − i
�

δΓloop

δ〈ϕ〉 ∆ +
i

3!�
S(3)∆∆∆

+
i

4!�
S(4)∆∆∆∆ +

(
i

3!�

)2

[S(3)∆∆∆]2 + . . .

)
. (2.112)

25A diagram is called irreducible if it does not decompose into two separate diagrams by just
cutting one internal line.
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We have introduced here the abbreviation

S(3)∆∆∆ ≡ δ3S

δ〈ϕi〉δ〈ϕk〉δ〈ϕl〉
∆i∆k∆l

(which also includes an integration), and similar abbreviations for the other
terms. We emphasize that the first functional derivative of S with respect to
the mean field has cancelled in (2.112); this derivative is not zero (as sometimes
claimed) because the mean field is at this stage arbitrary and does not have to
satisfy the classical field equations.

In the integral over ∆, the odd terms in ∆ vanish. Moreover, after this inte-
gration the terms of fourth and sixth power of ∆ yield terms proportional to �2

and �3, respectively. In the highest (‘one loop’) order for Γloop one thus has to
evaluate only the integral over the exponential in (2.112). This yields

Γloop =
i�
2

ln det
δ2S[〈ϕ〉]
δ〈ϕ〉δ〈ϕ〉 + O(�2) ≡ Γ(1) + O(�2) , (2.113)

where Γ(1) is the one-loop effective action. In general, one has the loop expansion

Γloop =
∞∑

L=1

Γ(L)[〈ϕ〉] , (2.114)

where Γ(L) is of order �L. We now want to investigate equation (2.108) at one-
loop order. Introducing the notation

δ2S[〈ϕ〉]
δ〈ϕi〉δ〈ϕk〉

≡ Sik ,

one gets

δΓ(1)

δ〈ϕj〉
=

i�
2

(detSmn)−1 δ(detSmn)
δ〈ϕj〉

=
i�
2

(
S−1)mn δSnm

δ〈ϕj〉
≡ − i�

2
Gmn δSnm

δ〈ϕj〉
, (2.115)

where Gmn denotes the propagator occurring in (2.106) evaluated at this order
of approximation. We introduce the notation

δSnm

δ〈ϕj〉
≡ Sjmn , Sik ≡ F (∇)δ(x, y) ,

where we have for simplicity suppressed possible discrete indices attached to the
differential operator F . (For example, for a free massless scalar field we just have
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F = −�.) This may look confusing, but in DeWitt’s condensed notation discrete
and continuous indices appear on the same footing. Then,

Gmn ≡ G(x, y) , F (∇)G(x, y) = −δ(x, y) ,

and (2.115) reads

δΓ(1)

δ〈ϕ(x)〉 = − i�
2

∫
dydz G(y, z)

δ3S

δ〈ϕ(z)〉δ〈ϕ(y)〉δ〈ϕ(x)〉 ≡ − i�
2
GmnSnmk .

(2.116)
From (2.108) we then get the effective field equation up to one-loop order,

δS

δ〈ϕ(x)〉 −
i�
2
GmnSnmk = −J(x) . (2.117)

The second term on the left-hand side thus yields the first quantum correction
to the classical field equations. According to the Feynman rules, it corresponds
to a one-loop diagram.

So far, the formalism applies to any quantum field. Let us now switch to
quantum gravity where ϕ(x) corresponds to (gµν(x), φ(x)), where φ(x) represents
a non-gravitational field. For the classical part in (2.117) we get, writing S =
SEH + Sm,

δSEH

δ〈gµν(x)〉 +
δSm

δ〈gµν(x)〉 =
√−g

16πG
(Rµν − 1

2
gµνR) −

√−g

2
Tµν , (2.118)

where the right-hand side is evaluated at the mean metric 〈gµν〉. For the quantum
correction in (2.117) we get the sum of a ‘matter loop’ and a ‘graviton loop’,

− i�
2
GmnSnmk ≡ − i�

2

∫
dzdy

δ3S

δ〈gµν(x)〉δ〈φ(z)〉δ〈φ(y)〉 Gm(z, y)

− i�
2

∫
dzdy

δ3S

δ〈gµν(x)〉δ〈gαβ(z)〉δ〈gγδ(y)〉G
αβ,γδ(z, y) . (2.119)

Using again the expression for the energy–momentum tensor as a variational
derivative of the matter action, one recognizes that the matter loop is given by

i�
2

√−g

2

∫
dzdy

δ2Tµν

δ〈φ(z)〉δ〈φ(y)〉Gm(z, y) .

A similar expression is obtained for the graviton loop if one replaces Tµν by
the energy–momentum tensor tµν for weak gravitational waves. Expanding the
expression for the matter energy–momentum tensor in powers of φ − 〈φ〉 and
performing its expectation value with respect to the matter state, one recognizes
that the matter terms in (2.117) are equivalent to this expectation value. The
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same holds for the graviton state. In summary, one thus gets from (2.117) in the
case of J = 0 the following semiclassical Einstein equations:

Rµν − 1
2
gµνR = 8πG (〈Tµν〉 + 〈tµν〉) , (2.120)

where the left-hand side is evaluated for the mean metric 〈gµν〉. This equation
demonstrates again the fact that at one-loop order the gravitons appear on the
same level as the matter fields; they both contribute to the right-hand side of
the semiclassical Einstein field equations. Of course, if there is a ‘macroscopic
contribution’ of the matter field, the graviton effect can be neglected and one
arrives at (1.35). Equation (2.120) is the analogue of the Ehrenfest equations in
quantum mechanics.

The expectation value on the right-hand side of (2.120) corresponds to the in–
out expectation value (2.102), in contrast to (1.35). It can, however, be related
to the ordinary expectation value; cf. Barvinsky and Nesterov (2001) and the
references therein. There is another difference to (1.35): whereas there the metric
is taken as classical from the outset, here the metric arises as the mean value of
an underlying metric operator. Thus there is here no obvious discrepancy with
the experiment by Page and Geilker (1981) discussed in Section 1.2.

We mention that the semiclassical Einstein equations are used as a starting
point for the formalism of ‘stochastic gravity’ where an approach to quantum
gravity is attempted in the spirit of open-systems quantum theory (Hu and
Verdaguer 2004).

As far as graviton effects can be neglected, the action Wφ[ḡ] defined by

eiWφ[ḡ] =
∫

Dφ eiSm[ḡ,φ] , (2.121)

where the mean field has been chosen identical to the background field ḡ, is
already the whole effective action.

For an evaluation of the effective action up to the one-loop order, one has to
calculate an operator of the form ln detD; cf. (2.113). This can be efficiently done
by using the ‘Schwinger–DeWitt technique’, which admits a covariant regular-
ization (Birrell and Davies 1982; Fulling 1989; Barvinsky 1990; DeWitt 2003). It
allows a local expansion of Green functions in powers of dimensional background
quantities. Technically, a proper-time representation for the Green functions is
used. This leads to a formulation of the effective action in terms of ‘DeWitt coef-
ficients’ a0(x), a1(x), a2(x), . . ., which are local scalars that are constructed from
curvature invariants. (From a3(x) on, these coefficients are finite after the coin-
cidence limit y → x is taken in the original version a3(x, y).) The effective action
is thereby expanded in powers of the inverse curvature scale of the background.
This only works in massive theories, although the divergent part of the action
can also be used in the massless case. The Schwinger–DeWitt technique can thus
be employed to compute UV-divergences for massless theories too. The arising
divergences can be absorbed into gravitational constant, cosmological constant,
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and c1 and c2. In this way, one can calculate the renormalized expectation value
of the energy–momentum tensor, 〈Tµν〉ren, for the right-hand side of (2.120).
The various methods of calculation are described in the above references. One
then ends up at the one-loop level with the following renormalized form of the
semiclassical Einstein equations:

Rµν − 1
2
gµνR + Λgµν + c1H

(1)
µν + c2H

(2)
µν = 8πG (〈Tµν〉ren + 〈tµν〉ren) , (2.122)

where the four parameters G, Λ, c1, and c2 have to be determined experimentally
(the latter two have already appeared in (2.96) above). The last two terms on
the left-hand side are given as follows:

H(1)
µν =

1√−g

δ

δgµν

∫
d4x

√
−gR2

= 2R;µν − 2gµν�R − 1
2
gµνR2 + 2RRµν ,

and

H(1)
µν =

1√−g

δ

δgµν

∫
d4x

√
−gRαβRαβ

= 2R α
µ;να − �Rµν − 1

2
gµν�R + 2R α

µ Rαν − 1
2
gµνRαβRαβ .

Usually one cannot evaluate expressions such as (2.121) exactly. An example
where this can be done is the case of a massless scalar field in two dimensions
(see e.g. Vilkovisky 1984). The result is, re-inserting �,

Wφ[ḡ] = − �

96π

∫
d2x

√
−ḡ (2)R̄

1
�

(2)R̄ , (2.123)

where (2)R̄ denotes the two-dimensional Ricci scalar. Equation (2.123) arises
directly from the so-called ‘Weyl anomaly’ (also called ‘trace anomaly’ or ‘con-
formal anomaly’), that is, the breakdown of conformal invariance upon quantiza-
tion: Classically, this invariance leads to the vanishing of the energy–momentum
tensor, cf. Section 3.2, while its breakdown in the quantum theory leads to a non-
vanishing value. This anomaly plays a central role in string theory (Chapter 9).26

It is given by

〈T µ
µ (x)〉ren = −a1(x)�

4π
= −

(2)R̄�

24π
. (2.124)

In four space–time dimensions the anomaly is proportional to the DeWitt coeffi-
cient a2(x) instead of a1(x).27 In the two-dimensional model of (2.123), the flux
of Hawking radiation (Section 7.1) is directly proportional to the anomaly.

26The prefactor then reads �c/96π, where c is the central charge; cf. (3.62).
27The anomaly occurs only for an even number n of space–time dimensions and is then

proportional to an/2.



62 COVARIANT APPROACHES TO QUANTUM GRAVITY

We have seen that quantum GR is perturbatively non-renormalizable. In spite
of this, we have argued that genuine predictions can be obtained through the
method of effective action. Still, one can speculate that the occurrence of diver-
gences could automatically be cured by going to a non-perturbative framework.
One can imagine that a theory exists which is perturbatively non-renormalizable,
but which can be consistently defined at the non-perturbative level. An of-
ten cited example is the Gross–Neveu model in three space–time dimensions
(de Calan 1995).28

We want to conclude this section by reviewing a simple example from Arnowitt
et al. (1962) showing how non-perturbative gravitational effects could in princi-
ple reach this goal. The example is the self-energy of a thin charged shell. Assume
that the shell has a ‘bare’ mass m0, a charge Q, and a radius ε. At the Newto-
nian level (plus energy-mass equivalence from special relativity), the energy of
the shell is given by

m(ε) = m0 +
Q2

2ε
, (2.125)

which diverges in the limit ε → 0 of a point charge. The inclusion of the gravi-
tational self-energy leads to

m(ε) = m0 +
Q2

2ε
− Gm2

0

2ε
, (2.126)

which also diverges (unless one fine-tunes the charge unnaturally). Implementing,
however, heuristically the (strong) equivalence principle by noting that gravity
contributes itself to gravitational energy, one must substitute in the above ex-
pression the term m2

0 by m2(ε),

m(ε) = m0 +
Q2

2ε
− Gm2(ε)

2ε
. (2.127)

As ε → 0 this now has a finite limit,

m(ε) ε→0−→ |Q|√
G

. (2.128)

Since G appears in the denominator, this is a genuine non-perturbative result
which cannot be found from any perturbation theory around G = 0.29 The same
result can be obtained within GR (Heusler et al. 1990). Such simple examples
give rise to the hope that a consistent non-perturbative theory of quantum grav-
ity will automatically prevent the occurrence of divergences, see, for example,
also the models by DeWitt (1964) and Padmanabhan (1985). One of the main
motivations of string theory (Chapter 9) is the avoidance of divergences in the

28However, no complete treatment is available in the published literature. I thank E. Seiler
for discussions on this point.

29Incidentally, m = |Q|/√G is the mass–charge relation of an extremal Reissner–Nordström
black hole; see Chapter 7.
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first place. Genuine non-perturbative approaches are also the canonical methods
described in Chapters 3–6, where established quantization rules are applied to
GR. Before we enter the discussion of these approaches, we shall address further
non-perturbative approaches to quantum general relativity and shall then end
with a brief review of quantum supergravity.

2.2.5 Asymptotic safety

As we have discussed in Sections 2.2.2 and 2.2.3, quantum gravity is perturba-
tively non-renormalizable. We have also seen that genuine effects can nevertheless
be calculated at sufficiently low energies if one employs the concept of effective
field theories. But what happens at large energies? There are two options. One
option is that the quantization of GR is impossible and that one has to embark
on a more general framework encompassing all interactions. This is the idea of
string theory to be discussed in Chapter 9. The other option is that quantum
GR is non-perturbatively renormalizable. This may happen in various ways. One
way is the direct non-perturbative quantization of the Einstein–Hilbert action;
this is attempted in the canonical approaches to be discussed in Chapters 4–6
and in the path-integral approach via Regge calculus or dynamical triangulation
to be discussed in Section 2.2.6. Another way employs the notion of asymptotic
safety, and this is the subject of the present subsection. Strictly speaking, it is
not a direct quantization of GR because more general actions than the Einstein–
Hilbert action are used in general. It is, however, close in spirit to it, especially
to the effective-action approach discussed above.

The notion of asymptotic safety was introduced by Weinberg (1979) and is
connected with the fact that coupling parameters in quantum field theory are
energy-dependent due to renormalization. A theory is called asymptotically safe
if all essential coupling parameters gi (these are the ones that are invariant under
field redefinitions) approach a non-trivial fixed point for energies k → ∞. The
‘asymptotic’ thus refers to the limit of large energies, and the ‘safe’ refers to the
absence of singularities in the coupling parameters. A non-trivial fixed point is
characterized by the fact that at least one of the gi is unequal to zero. We assume
that the gi are made dimensionless, that is,

gi(k) = k−di ḡi(k) ,

where ḡi(k) are the original coupling parameters with mass dimensions di.
A central notion in this approach is played by the ‘theory space’ defined by

all action functionals that depend on a given set of fields and contain all terms
that are consistent with a certain symmetry requirement; it is here where one
makes close contact with the effective-theory idea. In the gravity context the
symmetry is, of course, diffeomorphism invariance. One thus considers all ac-
tions S[gµν , . . .] with this invariance, that is, actions containing terms R/16πG,
c1R

2, c2RµνRµν , and so on. There are thus infinitely many coupling parameters
ḡi(k) given by G, Λ, c1, c2, . . . (all k-dependent, that is, ‘running’) and their di-
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mensionless versions gi(k). They obey the Callan–Symanzik or generalized Gell-
Mann–Low renormalization group equation,

k∂kgi = βi(g1, g2, . . .) , (2.129)

cf. Weinberg (1996). A specific theory is then distinguished by a trajectory in
the space of coupling parameters, where the trajectory is a solution of (2.129)
with a particular initial condition. The surface formed by trajectories gi(k) that
are attracted for k → ∞ by a non-trivial fixed point g∗i is called the ultraviolet
critical surface SUV. The non-trivial fixed point obeys βi(g∗j) = 0 for at least one
g∗j 
= 0. The dimensionality of SUV, ∆UV, thus gives the number of attractive
directions and is equal to the number of free parameters of the theory. One
expects that ∆UV < ∞ in an asymptotically safe theory (Weinberg 1979), which
means that all but a finite number of the gi are fixed. The finitely many gi that
remain have to be fixed by experiment or astronomical observation. If ∆UV was
infinite dimensional, infinitely many parameters would remain undetermined and
one would be faced with the same situation as in a non-renormalizable theory—
the loss of predictability. The optimal case would be ∆UV = 1, because then
only one free parameter would remain.

The dimension ∆UV can be determined by expanding βi around the fixed
point,

βi(gj(k)) = βi(g∗j)︸ ︷︷ ︸
=0

+
∑

j

∂βi

∂gj
(g∗j)(gj(k) − g∗j) + . . .

≡
∑

j

Bij(gj(k) − g∗j) + . . . .

The general solution of (2.129) then reads

gi(k) = g∗i +
∑

J

CJV J
i

(
k0

k

)θJ

, (2.130)

where CJ are constants of integration, k0 is a fixed reference scale, and∑
j

BijV
J
j = −θJV J

i .

It this obvious that Re(θJ ) must be positive in order for gi(k) to approach g∗i

for k → ∞. Thus, ∆UV is equal to the number of eigenvalues of Bij obeying
this condition. The θJ are called ‘critical exponents’; they are invariant under
reparametrizations, cf. p. 808 in Weinberg (1979).

Here we apply asymptotic safety in the framework of the effective average
action Γk; cf. Berges et al. (2002) for a review. This notion can be traced back
to the ideas of Kenneth Wilson on the coarse-grained version of the free-energy
functional. Its first application to gravity was done by Reuter (1998). This action
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is obtained by integrating out in the full path integral energies bigger than k. It
thus describes the physics at the scale k, but with the effects of energies higher
than k being implicitly implemented. In the limit k → ∞ one obtains from Γk the
classical action, while in the opposite limit k → 0 one obtains the conventional
effective action Γ discussed in Section 2.2.4. The effective average action obeys
(2.129) but with a complicated expression on the right-hand side (containing an
integration over all momenta). This equation can thus only be handled if some
truncation is being employed, that is, if the flow of the renormalization group
equation is projected onto a finite-dimensional subspace. The big question that
arises is, of course, whether such a truncation will survive in the full theory.

The simplest truncation is the ‘Einstein–Hilbert truncation’: the theory space
is fully described by the (Euclidean version) of the Einstein–Hilbert action. In d
dimensions it reads

ΓEH
k [gµν ] =

1
16πGk

∫
ddx

√
g(−R + 2λ̄k) . (2.131)

There are thus only two running (k-dependent) parameters: the gravitational
constant Gk and the cosmological constant λ̄k. Their dimensionless versions are
given by

λk = k−2λ̄k , gk = kd−2Gk ,

respectively. Their behaviour with respect to k is explicitly obtained after in-
serting (2.131) into (2.129). It follows that there exists both a trivial fixed point
at λ∗ = 0 = g∗ and a non-trivial one at λ∗ 
= 0, g∗ 
= 0; see Reuter (1998),
and Lauscher and Reuter (2001). This is a first indication that four-dimensional
quantum gravity may be asymptotically safe. Therefore, as k → ∞,

Gk ≈ g∗
kd−2 , λ̄k ≈ λ∗k2 . (2.132)

The gravitational constant thus vanishes (in d > 2 dimensions) for k → ∞, which
would correspond to a coupling that is asymptotically free (such as the gauge
coupling in QCD).

In order to test the reliability of the Einstein–Hilbert truncation, one can
investigate various generalizations of the truncation ansatz. For example, one
can consider instead of (2.131) an improved version of the form

Γ(1)
k = ΓEH

k +
∫

ddx
√

gc1kR2(g) ; (2.133)

cf. Lauscher and Reuter (2002). A class of non-local truncations was considered
in Reuter and Saueressig (2002). Although there exists no general proof, there is
numerical evidence that the non-trivial fixed point survives within the considered
class of truncations, making it very suggestive that this result holds for the exact
theory.

Already at this level, a number of intriguing results can be obtained. For the
classical dimensionality d = 4 one finds from the asymptotic form of the graviton
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propagator that in the vicinity of the non-trivial fixed point, corresponding to
scales l ≈ lP, space–time appears to be effectively two dimensional (Lauscher and
Reuter 2001). For large scales, l � lP, one gets four dimensions, as expected.
This behaviour is also found in the dynamical-triangulation approach discussed
in the next subsection.

If quantum GR is asymptotically safe in the sense discussed here, a number of
interesting cosmological conclusions may be reached (Reuter and Weyer 2004).
The gravitational ‘constant’ may actually grow with increasing distances. This
effect could be observable on the scale of galaxies and clusters of galaxies and
could mimic the existence of ‘dark matter’. Moreover, there is strong evidence
that a small positive cosmological constant is found as a strong infrared quantum
effect. This could give an explanation of ‘dark energy’. It is thus imaginable
that two of the most fundamental puzzles in astrophysics may be solved by a
macroscopic quantum effect of gravity.

2.2.6 Regge calculus and dynamical triangulation

Quantum-gravitational path integrals in four dimensions cannot be evaluated
analytically without making approximations (such as saddle-point approxima-
tions). It is thus understandable that attempts are being made to make them
amenable through numerical methods. As has already been mentioned, in the
so-called quantum Regge calculus one considers the Euclidean path integral and
decomposes a four-dimensional configuration into a set of simplices; see Williams
(1997) for a review. The edge lengths are treated as the dynamical entities. An
important feature for the calculation is the implementation of the triangle in-
equality for these lengths—one must implement into the formalism the fact that
the length of one side of a triangle is smaller than the sum of the other two sides.
The need for this implementation hinders an evaluation of the path integral in
the Regge framework other than numerically.

An alternative method, therefore, is to keep the edge lengths fixed and to
perform the sum in the path integral over all possible manifold-gluings of sim-
plices, reducing the evaluation to a combinatorial problem. This method is called
dynamical triangulation; see Loll (2003) for a detailed review. If one again ad-
dresses the Euclidean path integral, one encounters problems. First, there is the
conformal-factor problem (Section 2.2.1). Second, the sum over configurations
does not generate a four-dimensional geometry in the macroscopic limit; there
is either a ‘polymerization’ (occurrence of an effective dimension around two) or
the generation of geometries with a very large dimension for large scales. For this
reason Ambjørn and Loll (1998) have introduced a Lorentzian version of dynam-
ical triangulation. This has the advantage that the causal (lightcone) structure of
the space–time configurations in the path integral is directly implemented. The
branching points of the Euclidean approach are avoided and there is no change of
spatial topology. This gives rise to the differences from the Euclidean approach,
notably the occurrence of an effective four-dimensional geometry at large scales.

Let us give a brief introduction to Lorentzian dynamical triangulation. The
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t

t+1

(4,1)                                        (3,2)

Fig. 2.4. Shown are the two fundamental simplices which are used as building
blocks in four-dimensional dynamical triangulation. The surfaces t = constant
and t + 1 = constant represent two adjacent three-dimensional spaces. The
notation (a, b) means a vertices at time t and b vertices at time t + 1.

building blocks are the two four-dimensional simplices shown in Fig. 2.4 (plus
their time-reversed versions). They are completely described by their fixed squared
edge lengths {l2i }, where l2i is equal to a2 (space-like case) or −αa2, α > 0 (time-
like case). Here, a is a regularization parameter with the dimension of a length,
which should go to zero in the continuum limit. Because of their Lorentzian
nature, space-like and time-like edge lengths will in general not be equal. The
space of all gluings of such simplices will then be identified with the space of all
geometries.

Curvature in this approach is implemented as a sum over the Gaussian cur-
vatures of all two-dimensional submanifolds, where the deficit angle at a vertex
is a measure of the Gaussian curvature there.

The path integral (2.71) is then defined by the following identification:

Z =
∫

Dgµν(x) eiS[gµν(x)] −→
∑
T∈T

1
CT

eiSdiscrete(T ) , (2.134)

where T denotes inequivalent gluings from the class T of triangulations, and CT

is a symmetry factor that is almost always equal to one for large triangulations.
For technical reasons one has still to perform a Wick rotation in (2.134), t → −iτ
(mapping time-like links into space-like links). After this Wick rotation into the
Euclidean regime, the action Sdiscrete (also called the ‘Regge action’) is given by
the expression

Sdiscrete(T ) = κd−2Nd−2 − κdNd , (2.135)

where Nd is the number of d-dimensional simplices (which is proportional to the
total volume) and the κi are functions of the bare gravitational and cosmological
constants. Inserting the expression (2.135) into (2.134), one recognizes that there
are two separate sums, one over d-dimensional simplices (coming from the volume
term, that is, the second term in (2.135)) and one over d−2-dimensional simplices
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(coming from simplices of co-dimension two because the first term in (2.135) is
the curvature term and curvature is calculated from the Gaussian curvatures of
two-dimensional submanifolds).

At the end of the calculation one would like to perform an inverse Wick
rotation back to the Lorentzian regime. This is explicitly possible only in d =
2. In higher dimensions one typically considers observables that are invariant
under the Wick rotation and thus have the same value in the Euclidean and the
Lorentzian domain. The important fact is that the formalism is Lorentzian in
the first place.

For the continuum limit one takes Nd → ∞ and a → 0 while holding some
appropriate quantity fixed (such as the average total volume ∝ Nda

d of all sim-
plices together). In the course of this process one obtains a positive cosmological
constant. While this is in agreement with current observations, no numerical
value can be predicted for it.

Whereas the continuum limit cannot be performed analytically in the four-
dimensional case, this is fully possible for d = 2 and partially for d = 3. Let
us consider the two-dimensional case, which is illustrative and completely sol-
uble (Loll 2003). Only one type of building block exists here: an equilateral
Minkowskian triangle with squared lengths −a2 and a2, respectively. Periodic
boundary conditions are chosen for space (thus being topologically a circle, S1).
Since the curvature term in Sdiscrete(T ) is a topological invariant, it drops out of
the sum in (2.134) (the topology is fixed). Thus, only the second term in (2.135)
corresponding to the cosmological-constant term is present. The sum converges
for the bare cosmological constant being bigger than some critical (positive)
value. One obtains for the path integral (2.134) the expression

Z = exp
(
− coth(i

√
Λt)

√
Λ(lin + lout)

) √
Λlinlout

sinh(i
√

Λt)
I1

(
2
√

Λlinlout

sinh(i
√

Λt)

)
, (2.136)

where I1 denotes a Bessel function and lin (lout) denotes the size of the initial
(final) one-geometry (the circumferences of the S1); t is the proper-time distance
between initial and final one-geometry, and Λ is the renormalized cosmological
constant. The cosmological constant is the only dimensionful parameter here.30

Since pure GR in two dimensions is trivial, the result obtained here corresponds
to a pure quantum theory without classical limit. As mentioned above, the topol-
ogy is fixed here. A non-perturbative implementation of a sum over topologies
in two dimensions is discussed in Loll et al. (2006). An analytic result such as
(2.136) is impossible to obtain in the quantum Regge calculus.

The result (2.136) still contains the proper-time distance t. Strictly speaking,
one has to perform in addition a sum over all t in order to obtain the full quantum
gravitational path integral; see Kiefer (1991) and Section 5.3.4.

30One has, in fact, instead of Λ the combination Λ/G�, but G� is dimensionless in d = 2
and has therefore been set equal to a constant.
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For the two-dimensional theory the quantum effective Hamiltonian has been
calculated (again, see Loll 2003). It is self-adjoint and possesses a discrete spec-
trum given by

En = 2(n + 1)
√

Λ , n ∈ N . (2.137)

A useful notion in all dimensions is the effective Hausdorff dimension, dH. It is
defined by

〈V (R)〉 ∝ RdH ,

where V (R) denotes the volume of a geodesic ball of radius as a function of
the distance R. We emphasize that dH is a dynamical quantity and does not
have to coincide with the dimension d of the building blocks. Interestingly, for
d = 2 one obtains, in fact, dH = 2 from the Lorentzian path integral, whereas
the Euclidean approach yields dH = 4. What about the coupling to matter?
For d = 2 various copies of Ising models have been included. It turns out that
the critical matter exponents are within the measuring accuracy approximately
equal to the Onsager exponents in the standard Ising case, that is, the behaviour
is as if the spins lived on a static flat lattice (for the Euclidean case this does
not hold).

In the three-dimensional case the evaluation of the sum (2.134) is still pos-
sible, but one has to employ now a Monte-Carlo simulation (with the volume
of space–time approximately kept fixed). Of course, Monte-Carlo methods have
also to be used for the most interesting case d = 4. Although the continuum
limit has not been obtained analytically, there exists strong numerical evidence
that it exists, and a number of interesting results are available (Ambjørn et
al. 2005). In dependence of the bare gravitational constant and an asymmetry
parameter ∆ (measuring the difference in the sizes of the space-like and time-like
edge lengths), one there finds three phases. In one of them (for sufficiently large
coupling and ∆) there is strong evidence for the four-dimensionality of emergent
macroscopic space–times. This is different from the result of the corresponding
Euclidean approach. For this purpose various notions of dimensionality are em-
ployed: the Hausdorff dimension as well as other notions (scaling and spectral
dimension). On the other hand, space–time seems to assume only two dimensions
on small scales—a highly non-classical feature. This result is surprisingly similar
to the analogous result obtained from the renormalization-group flow discussed
in the last subsection.

Another interesting result concerns the form of the ‘minisuperspace effective
action’.31 It has the same form as the action found from a direct minisuperspace
approximation, but is now derived from a path integral that takes into account
‘all’ configurations, not only those respecting the symmetries. This puts quantum
cosmology (Chapter 8) on a firmer footing.

Regarding this and the last subsection one can say that non-perturbative
aspects of covariant quantum general relativity can be discussed on a rigorous

31Minisuperspace is the truncation of the geometries to highly symmetric spaces; cf. Chap-
ter 8.
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footing, with intriguing results, in spite of the formal non-renormalizability of
the perturbation theory.

2.3 Quantum supergravity

Supergravity (SUGRA) is a supersymmetric theory of gravity encompassing GR.
SUSY is a symmetry which mediates between bosons and fermions. It exhibits
interesting features; for example, the running coupling constants in the Standard
Model of particle physics can meet at an energy of around 1016 GeV if SUSY
is added. SUGRA is a theory in its own right; see, for example, van Nieuwen-
huizen (1981) for a review. The main question of concern here is whether the
perturbative UV behaviour of quantum gravity discussed in the last section can
be improved by going over to SUGRA.

SUSY arose from the question whether the Poincaré group (and therefore
space–time symmetries) can be unified with an internal (compact) group such as
SO(3). A no-go theorem states that in a relativistic quantum field theory, given
‘natural’ assumptions of locality, causality, positive energy, and a finite number
of elementary particles, such an invariance group can only be the direct product
of the Poincaré group with a compact group, preventing a real unification. There
is, however, a loophole. A true unification is possible if anticommutators are used
instead of commutators in the formulation of a symmetry, leading to a ‘graded Lie
algebra’.32 It was shown by Haag et al. (1975) that, with the above assumptions
of locality etc., the algebraic structure is essentially unique.

The SUSY algebra is given by the anticommutator

[Qi
α, Q̄j

β ]+ = 2δij(γn)αβPn , i, j = 1, . . . , N , (2.138)

where Qi
α denotes the corresponding generators, also called spinorial charges,

Q̄i
α = Qi

αγ0 with γ0 being one of Dirac’s gamma matrices, N is the number of
SUSY generators, and all anticommutators among the Qs and the Q̄s themselves
vanish. There are also the commutators

[Pn, Qi
α] = 0 , [Pm, Pn] = 0 . (2.139)

(Pn denotes the energy–momentum four vector, the generator of space–time
translations.) In addition, there are the remaining commutators of the Poincaré
group, (2.34)–(2.36), as well as

[Qi
α, Jmn] = (σmn)β

αQi
β , (2.140)

where here σmn = i[γm, γn]; cf. also Section 1.1. More details can be found, for
example, in Weinberg (2000). The SUSY algebra is compatible with relativistic

32Anticommutators were, of course, used before the advent of SUSY, in order to describe
fermions, but not in the context of symmetries.
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quantum field theory, that is, one can write the spinorial charges as an integral
over a conserved current,

Qi
α =

∫
d3x J i

0α(x) ,
∂J i

mα(x)
∂xm

= 0 . (2.141)

Fermions and bosons are combined into ‘super-multiplets’ by irreducible rep-
resentations of this algebra. There would be a fermionic super-partner to each
boson and vice versa. One would thus expect that the partners should have the
same mass. Since this is not observed in Nature, SUSY must be broken. The
presence of SUSY would guarantee that there are an equal number of bosonic
and fermionic degrees of freedom. For this reason, several divergences cancel due
to the presence of opposite signs (e.g. the ‘vacuum energy’). This gave rise to the
hope that SUSY might generally improve the UV behaviour of quantum field
theories.

Performing now an independent SUSY transformation at each space–time
point one arrives at a corresponding gauge symmetry. Because the anticommu-
tator (2.138) of two SUSY generators closes on the space–time momentum, this
means that space–time translations are performed independently at each space–
time point—these are nothing but general coordinate transformations. The gauge
theory therefore contains GR and is called SUGRA.33 To each generator one then
finds a corresponding gauge field: Pn corresponds to the vierbein field en

µ (see
Section 1.1), Jmn to the ‘spin connection’ ωmn

µ , and Qi
α to the ‘Rarita–Schwinger

fields’ ψα,i
µ . The latter are fields with spin 3/2 and describe the fermionic super-

partners to the graviton—the gravitinos. They are a priori massless, but can
acquire a mass by a Higgs mechanism. For N = 1 (simple SUGRA), one has
a single gravitino which sits together with the spin-2 graviton in one multiplet.
The cases N > 1 are referred to as ‘extended supergravities’. In the case N = 2,
for example, the photon, the graviton, and two gravitinos together form one
multiplet, yielding a ‘unified’ theory of gravity and electromagnetism. One de-
mands that 0 ≤ N ≤ 8 because otherwise there would be more than one graviton
and also particles with spin higher than two (for which no satisfactory coupling
exists).

For N = 1, the SUGRA action is the sum of the Einstein–Hilbert action and
the Rarita–Schwinger action for the gravitino,

S =
1

16πG

∫
d4x (det en

µ)R +
1
2

∫
d4x εµνρσψ̄µγ5γνDρψσ (2.142)

(recall det en
µ =

√−g, and we have γ5 = iγ0γ1γ2γ3), where we have introduced
here the spinorial covariant derivative

Dµ = ∂µ − 1
2 ωnm

µ σnm ,

33The gauging of the Poincaré group leads in fact to the Einstein–Cartan theory, which
besides curvature also contains torsion.
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cf. (1.20), and set Λ = 0. The action (2.142) is not only invariant under general
coordinate transformations and local Poincaré transformations, but also under
local SUSY transformations which for vierbein and gravitino field read

δem
µ = 1

2

√
8πGε̄αγm

αβψβ
µ ,

δψα
µ =

1√
8πG

Dµεα , (2.143)

where εα is an anticommuting parameter function and ε̄α its complex conjugate.
Note that the factors

√
G are needed already for dimensional reasons.

What can now be said about the divergence properties of a quantum SUGRA
perturbation theory? The situation is improved, but basically the same features
as in Section 2.2 hold: the theory is non-renormalizable (the occurrence of the
dimensionful coupling G due to the equivalence principle), and there is in general
no cancellation of divergences (Deser 2000). To give a short summary of the
situation, in n = 4 there are no one-loop or two-loop counterterms (due to SUSY
Ward identities), but divergences can occur in principle from three loops on. The
calculation of counterterms was, however, only possible after powerful methods
from string theory have been used, establishing a relation between gravity and
Yang–Mills theory, see Bern (2002) and references therein. It turns out that in
n = 4, N < 8-theories are three-loop infinite, while N = 8-theories are five-
loop infinite. The same seems to be true for dimensions 4 < n < 11. Dimension
n = 11 plays a special role. It is the maximal possible dimension for SUGRA
and only N = 1 is possible there. The theory is of importance in connection with
‘M-theory’, see Chapter 9. It turns out that there are infinities at two loops and
that there is thus no ‘magic’ avoidance of divergences from M-theory.

Therefore, as far as full quantum gravity is concerned (beyond its use in
the framework of effective theories), one must either try to construct a full non-
perturbative theory of the quantized gravitational field or a unified theory beyond
field theory. The following chapters are devoted to these directions.
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PARAMETRIZED AND RELATIONAL SYSTEMS

In this chapter, we shall consider some models that exhibit certain features of GR
but which are much easier to discuss. In this sense they constitute an important
conceptual preparation for the canonical quantization of GR, which is the topic
of the next chapters. In addition, they are of interest in their own right.

The central aspect is reparametrization invariance and the ensuing existence
of constraints; see, for example, Sundermeyer (1982) and Henneaux and Teitel-
boim (1992) for a general introduction into constrained systems. Kuchař (1973)
gives a detailed discussion of reparametrization-invariant systems, which we shall
partly follow in this chapter. Such invariance properties are often named as ‘gen-
eral covariance’ of the system because they refer to an invariance with respect to
a relabelling of the underlying space–time manifold. A more precise formulation
has been suggested by Anderson (1967), proposing that an invariance group is a
subgroup of the full covariance group which leaves the absolute, non-dynamical,
elements of a theory invariant; cf. also Ehlers (1995) and Giulini (2007). Such
an absolute element would, for example, be the conformal structure in the scalar
theory of gravity mentioned at the end of Section 2.1.1. In GR, the full metric
is dynamical and the invariance group coincides with the covariance group, the
group of all diffeomorphisms. According to Anderson (1967), general covariance
should be interpreted as absence of absolute structure, also called ‘background
independence’.

Whereas dynamical elements are subject to quantization, absolute elements
remain classical; see Section 1.3. Absolute elements can also appear in ‘disguised
form’ if a theory has been reparametrized artificially. This is the case in the
models of the non-relativistic particle and the parametrized field theory to be
discussed below, but not in GR or the other dynamical systems considered in
this chapter.

3.1 Particle systems

3.1.1 Parametrized non-relativistic particle

Consider the action for a point particle in classical mechanics

S[q(t)] =
∫ t2

t1

dt L

(
q,

dq

dt

)
. (3.1)

It is only for simplicity that a restriction to one particle is being made. The
following discussion can be easily generalized to n particles. For simplicity, the
Lagrangian in (3.1) has been chosen t-independent.

73
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We introduce now a formal time parameter τ (‘label time’) and elevate t
(Newton’s ‘absolute time’) formally to the rank of a dynamical variable (this
is an example for an absolute structure in disguise, as mentioned above). We
therefore write q(τ) and t(τ). Derivatives with respect to τ will be denoted by a
dot, and restriction to ṫ > 0 is made. The action (3.1) can then be rewritten as

S[q(τ), t(τ)] =
∫ τ2

τ1

dτ ṫL

(
q,

q̇

ṫ

)
≡

∫ τ2

τ1

dτ L̃(q, q̇, ṫ) . (3.2)

The Lagrangian L̃ possesses the important property that it is homogeneous (of
degree one) in the velocities, that is,

L̃(q, λq̇, λṫ) = λL̃(q, q̇, ṫ) , (3.3)

where λ 
= 0 can be an arbitrary function of τ . Homogeneous Lagrangians lead
to actions that are invariant under time reparametrizations τ → τ̃ ≡ f(τ) in
the sense that they can be written as a τ̃ -integral over the same Lagrangian
depending now on dq

dτ̃ . Assuming ḟ > 0 gives

S =
∫ τ2

τ1

dτ L(q, q̇) =
∫ τ̃2

τ̃1

dτ̃

ḟ
L

(
q,

dq

dτ̃
ḟ

)
=

∫ τ̃2

τ̃1

dτ̃ L

(
q,

dq

dτ̃

)
. (3.4)

The canonical momentum for q is found from (3.2) to read

p̃q =
∂L̃

∂q̇
= ṫ

∂L

∂
(

q̇
ṫ

) 1
ṫ

= pq , (3.5)

thus coinciding with the momentum corresponding to (3.1). But now there is
also a momentum canonically conjugate to t,

pt =
∂L̃

∂ṫ
= L

(
q,

q̇

ṫ

)
+ ṫ

∂L
(
q, q̇

ṫ

)
∂ṫ

= L

(
q,

dq

dt

)
− dq

dt

∂L(q, dq/dt)
∂(dq/dt)

= −H . (3.6)

Therefore, t and −H (the negative of the Hamiltonian corresponding to the
original action (3.1)) are canonically conjugate pairs. The Hamiltonian belonging
to L̃ is found as

H̃ = p̃qq̇ + ptṫ − L̃ = ṫ(H + pt) . (3.7)

But because of (3.6), this is constrained to vanish. It is appropriate at this stage
to introduce a new quantity called ‘Super-Hamiltonian’. It is defined as

HS ≡ H + pt , (3.8)

and one has the constraint
HS ≈ 0 . (3.9)

The ≈ in this and further equation(s) means ‘to vanish as a constraint’ or ‘weak
equality’ in the sense of Dirac (1964). It defines a subspace in phase space and
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can be set to zero only after all Poisson brackets have been evaluated. One can
now use instead of (3.1), the new action principle

S =
∫ τ2

τ1

dτ (pq q̇ + ptṫ − NHS) , (3.10)

where all quantities (including N) have to be varied; N is a Lagrange multiplier
and variation with respect to it just yields the constraint (3.9). From Hamilton’s
equations, one has

ṫ =
∂(NHS)

∂pt
= N . (3.11)

Therefore, N is called the lapse function because it gives the rate of change of
Newton’s time t with respect to label time τ .

The existence of the constraint (3.9) is a consequence of the reparametriza-
tion invariance with respect to τ . To see this explicitly, it will be proven that
having a Lagrangian being homogeneous in the velocities is equivalent to the
corresponding Hamiltonian being zero. Homogeneity has been shown above to
be equivalent to reparametrization invariance.

Given a homogeneous Lagrangian, one finds for the canonical Hamiltonian,

Hc =
∂L

∂q̇
q̇ − L = λ−1

(
∂L(q, λq̇)

∂(λq̇)
λq̇ − L(q, λq̇)

)
= λ−1Hc .

Since λ is arbitrary, Hc must vanish. On the other hand, if Hc vanishes, one gets
after substituting q̇ by λq̇,

∂L(q, λq̇)
∂q̇

q̇ = L(q, λq̇) .

The left-hand side can be written as λpq q̇ = λL, and one gets λL(q, q̇) = L(q, λq̇),
that is, L is homogeneous.

One can have reparametrization invariance without Hamiltonian constraint
if the q and p do not transform as scalars under reparametrizations (Henneaux
and Teitelboim 1992). This is, however, not a natural situation. In this case,
the theorem just proven remains true, but the connection to reparametrization
invariance is lost.

Although Newton’s time has been mixed amongst the other dynamical vari-
ables, it can easily be recovered, for its momentum pt enters linearly into (3.8)
(it is assumed that H has the usual form H = p2

q/2m + V (q)). Therefore, one
can easily solve (3.9) to find pt = −H , choose the label τ = t (‘fixing the gauge’),
and find from (3.10)

S =
∫

dt

(
pq

dq

dt
− H

)
, (3.12)

that is, just the standard action (the Hamiltonian form of (3.1)). This process
is called deparametrization. We shall see in Chapter 4 that there is an analogue
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to (3.8) and (3.9) in GR, but that, there in contrast to here, all momenta occur
quadratically. This leads to the interesting question whether a deparametrization
for GR, that is, the identification of a distinguished time-like variable, is possible.
It should be remarked that every system can be transformed artificially into
‘generally covariant’ form; cf. Kretschmann (1917). But this is possible only
at the price of disguising absolute structures which formally appear then as
dynamical variables, such as Newton’s absolute time t. The general covariance
of GR is natural in the sense that the metric is fully dynamical.

How does one quantize a system given by a constraint such as (3.9)? A
successful, although heuristic, procedure is the proposal made by Dirac (1964).
A classical constraint is implemented in the quantum theory as a restriction on
physically allowed wave functions. Thus, (3.9) is translated into

ĤSψ = 0 , (3.13)

where ĤS denotes the Super-Hamilton operator associated with the classical
Super-Hamiltonian HS. In the position representation, the q̂ are represented
by multiplication with q and the momenta p̂ are represented by derivatives
(�/i)∂/∂q. For the parametrized particle, this includes also p̂t = (�/i)∂/∂t.
Therefore, the quantum version of the constraint (3.8,3.9) reads(

Ĥ − i�
∂

∂t

)
ψ(q, t) = 0 , (3.14)

which is just the Schrödinger equation. Does this mean that t is a dynamical
variable in quantum mechanics? The answer is no. We have already mentioned
in Section 1.1.2 that time cannot be represented by an operator (e.g. it would
be in contradiction with the boundedness of energy). This is the consequence
of having an absolute structure in disguise—it remains an absolute structure in
quantum theory, in spite of its formal appearance as a quantum variable.

3.1.2 Some remarks on constrained systems

Since constraints play a crucial role in this and the following chapters, a brief
recapitulation of some of the basic properties of constrained systems are in order;
see, for example, Dirac (1964), Hanson et al. (1976), Sundermeyer (1982), and
Henneaux and Teitelboim (1992). Starting from early work by Léon Rosenfeld,
this formalism has been developed mainly by Peter Bergmann and Paul Dirac;
cf. Bergmann (1989) and Rovelli (2004).

Assume that φa(q, p), a = 1, . . . , n is a set of constraints,

φa(q, p) ≈ 0 , (3.15)

where q and p represent positions and momenta for N particles. In Dirac’s ter-
minology, they are assumed to be of first class, which means that they obey the
Poisson-bracket relations

{φa, φb} = f c
abφc (3.16)
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and are compatible with the time evolution,

{φa, H} = db
aφb . (3.17)

Constraints which do not obey these relations are called second-class constraints.
They play a role, for example, in supergravity; cf. Section 5.3.6.

We now add the first-class constraints to the action with Lagrange multipliers
λa,

S =
∫

dτ (pq̇ − H − λaφa) . (3.18)

(In the example given by (3.10) one has instead of −H − λaφa only the term
−NHS in the action, HS being the only constraint.) Therefore, the time evolution
of a function A(q, p) reads

Ȧ(q, p) = {A, H} + λa{A, φa} . (3.19)

The Lagrange parameters λa, therefore, introduce an arbitrariness into the time
evolution. In fact, first-class constraints generate gauge transformations: expand-
ing A(q(τ), p(τ)) around τ = 0 up to order ∆τ for two different values λ

(1)
a and

λ
(2)
a and performing the difference δA, one obtains the ‘gauge transformation’

δA = εa{A, φa} , (3.20)

where εa = ∆τ(λ(1)
a (0) − λ

(2)
a (0)). The constraints (3.15) define a hypersurface

Γc in phase space, the constraint hypersurface, and generate the gauge transfor-
mations (3.20) on this hypersurface.1 The sets of gauge equivalent configurations
are also called gauge orbits.

Functions A(q, p) for which {A, φa} ≈ 0 holds are often called ‘observables’
because they do not change under a gauge transformation. It must be empha-
sized that there is no a priori relation of these observables to observables in an
operational sense. This notion had been introduced by Bergmann in the hope
that these quantities might play the role of the standard observables in quantum
theory.

In order to select one physical representative amongst all equivalent con-
figurations, one frequently employs ‘gauge conditions’. This is important, for
example, in path-integral quantization; see Section 2.2.3. A gauge should be
chosen in such a way that there is no further gauge freedom left and that any
configuration can be transformed in one satisfying the gauge. The first condition
is sometimes violated (‘Gribov ambiguities’), but this is irrelevant for infinitesi-
mal gauge transformations. If one identifies all points on the same gauge orbit,
one arrives at the reduced phase space of the theory. In the general case, the re-
duced phase space is not a cotangent bundle, that is, one cannot identify which
variables are the q’s and which are the p’s.

1For second-class constraints, which do not fulfil (3.16), the Lagrange parameters can be
determined by choosing A = φb in (3.19) and demanding φ̇b = 0.
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Instead of gauge fixing, one can keep the gauge freedom in the classical theory
and perform a quantization by implementing the constraints in the way done in
(3.13).

3.1.3 The relativistic particle

We consider a free relativistic particle with mass m 
= 0. In units where c = 1,
its action can be taken to be proportional to the total proper time along its
worldline,

S = −m

∫ s2

s1

ds . (3.21)

Using instead of proper time an arbitrary parameter τ for the worldline xµ(τ),
the action reads

S = −m

∫ τ2

τ1

dτ
√
−ẋ2 , (3.22)

where ẋµ ≡ dxµ/dτ and ηµν ẋµẋν < 0 (tangent vector is time-like). One immedi-
ately recognizes that the Lagrangian is homogeneous in the velocities and that,
therefore, the action is invariant under τ → f(τ). The canonical momenta read

pµ =
mẋµ√
−ẋ2

. (3.23)

From this expression, it follows immediately that the momenta obey the ‘mass-
shell condition’

p2 + m2 = 0 . (3.24)

In fact, this is a constraint in phase space and thus should be more properly
written as p2 + m2 ≈ 0. Because of reparametrization invariance, the canonical
Hamiltonian vanishes,

Hc = pµẋµ − L =
mẋ2
√
−ẋ2

+ m
√
−ẋ2 = 0 .

In fact,

Hc(x, p) = −p0ẋ0 + pẋ − L = −p0ẋ0 +
p2ẋ0√
p2 + m2

+ m
√

(ẋ0)2 − ẋ2

= ẋ0(−p0 +
√

p2 + m2) ≈ 0 , (3.25)

where the positive square root has been chosen, p0 =
√

p2 + m2, in order to
render the energy positive. (The relation (3.23) has been used twice in order to
arrive at the expression in the first line.) Analogously to (3.10), one can transform
the action into Hamiltonian form,

S =
∫ τ2

τ1

dτ (pµẋµ − NHS) , (3.26)
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where here
HS ≡ ηµνpµpν + m2 ≈ 0 (3.27)

plays the role of the Super-Hamiltonian which is constrained to vanish. The inter-
pretation of the Lagrange multiplier N can be gained from Hamilton’s equations,

ẋ0 =
∂(NHS)

∂p0
= −2Np0 ,

to give

N =
ẋ0

2
√

p2 + m2
=

ẋ0

2mγ
=

1
2m

ds

dτ
, (3.28)

where γ is the standard relativistic factor. In contrast to (3.11), the lapse function
N here is proportional to the rate of change of proper time (not x0) with respect
to parameter time.2

If we apply Dirac’s quantization rule on the classical constraint (3.27), we get

ĤSψ(xµ) ≡
(
−�2� + m2)ψ(xµ) = 0 . (3.29)

This is the Klein–Gordon equation for relativistic one-particle quantum mechan-
ics (spinless particles). We emphasize that the classical parameter τ has com-
pletely disappeared since particle trajectories do not exist in quantum theory.

With regard to the Hamiltonian action (3.26), the question arises how x, p,
and N must transform under time reparametrizations in order to leave the action
invariant; cf. Teitelboim (1982). Since the first-class constraint HS generates
gauge transformations in the sense of (3.20), one has (neglecting the space–time
indices)

δx(τ) = ε(τ){x, HS} = ε
∂HS

∂p
, (3.30)

δp(τ) = ε(τ){p, HS} = −ε
∂HS

∂x
. (3.31)

(In the present case this yields δx = 2εp, δp = 0, but we shall keep the formalism
general for the moment.) But how does the Lagrange multiplier N transform?
We calculate for this purpose

δS =
∫ τ2

τ1

dτ (ẋδp + pδẋ − HSδN − NδHS) .

The last term is zero, and partial integration of the second term leads to

δS =
∫ τ2

τ1

dτ

(
−ε

∂HS

∂x
ẋ − ε

∂HS

∂p
ṗ − HSδN

)
+

[
pε

∂HS

∂p

]τ2

τ1

.

2If we had chosen (3.25) instead of (3.27), we would have found N = ẋ0.
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In order that only a surface term remains one has to choose

δN(τ) = ε̇(τ) . (3.32)

This leads to

δS =
[
ε(τ)

(
p
∂HS

∂p
− HS

)]τ2

τ1

. (3.33)

Since the term in brackets gives p2 − m2 
= 0, one must demand

ε(τ1) = 0 = ε(τ2) , (3.34)

that is, the boundaries must not be transformed.
We note that for a constraint of the form HS = α(x)p, the term in brackets

would vanish and there would be in this case no restriction at the boundaries.
Constraints of this form arise in electrodynamics and Yang–Mills theories (Gauss
constraint) provided the sources are treated dynamically too (otherwise, the
constraint would no longer be homogeneous in the momenta, see e.g. ∇E = ρ in
electrodynamics).

We shall now show how the gauge can be fixed for the relativistic particle.
If a gauge is independent of the lapse function N , it is called ‘canonical gauge’,
otherwise it is called ‘non-canonical’. Consider first a canonical gauge,

χ(x, p, τ) ≈ 0 . (3.35)

An example would be x0−τ ≈ 0 (such a gauge was used in the deparametrization
of the non-relativistic particle, see the paragraph before (3.12)). A potential
problem is that (3.35) holds at all times, including the endpoints, and may thus
be in conflict with ε(τ1) = ε(τ2) = 0—since there is no gauge freedom at the
endpoints, χ ≈ 0 could restrict physically relevant degrees of freedom.

For reparametrization-invariant systems, a canonical gauge must depend ex-
plicitly on τ . From the condition that (3.35) be invariant under time evolution,

0 ≈ dχ

dτ
=

∂χ

∂τ
+ N{χ, HS} ,

a τ -independent gauge χ would lead to the unacceptable value N = 0 (‘freezing’
of the motion). (In order for the gauge to break the reparametrization invariance
generated by HS, {χ, HS} must be non-vanishing.) For the relativistic particle,
this yields

0 ≈ ∂χ

∂τ
+ N

∂χ

∂xµ

∂HS

∂pµ
=

∂χ

∂τ
+ 2Npµ ∂χ

∂xµ
.

For the example x0 − τ ≈ 0, one has N = 1/2p0, in accordance with (3.28).
To avoid potential problems with the boundary, one can look for an equation

of second order in ε (since there are two conditions ε(τ1) = 0 = ε(τ2)). As x and
p transform proportional to ε, one would have to involve ẍ or p̈, which would
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render the action functional unnecessarily complicated. Therefore, since δN = ε̇,
see (3.32), one can choose the ‘non-canonical gauge’

Ṅ = χ(p, x, N) . (3.36)

In electrodynamics, A0 plays the role of N . Therefore, the Lorenz gauge ∂µAµ =
0 is a non-canonical gauge, whereas the Coulomb gauge ∂aAa = 0 would be an
example of a canonical gauge.

Some final remarks are in order; cf. Henneaux and Teitelboim (1992). First,
the restriction ε(τ1) = 0 = ε(τ2) only holds if the action is an integral over the
Lagrangian without additional boundary terms. If appropriate boundary terms
are present in the action principle, one can relax the condition on ε (but to
determine these boundary terms, one has to solve first the equations of motion).
Second, if such boundary terms are present, one can even choose τ -independent
canonical gauges (an extreme choice would be x0(τ) = 0 for all τ).

3.2 The free bosonic string

Nowadays superstring theory (or ‘M-theory’) is considered to be a candidate for
a unified theory of all interactions including quantum gravity. This aspect will be
discussed in Chapter 9. In this section, we shall consider the free bosonic string
as a model for (canonical) quantum gravity. However, the bosonic string (where
no supersymmetry is included) is also used in a heuristic way in the development
of superstring theory itself.

In the case of the relativistic particle, the action is proportional to the proper
time; see (3.21). A string is a finite one dimensional object that can either be
open (with two ends) or closed (having no ends). A straightforward generalization
to the string would thus be to use an action proportional to the area of the
worldsheet M, called the Nambu–Goto action,

S = − 1
2πα′

∫
M

d2σ
√
|detGαβ | . (3.37)

Here, d2σ ≡ dσdτ denotes the integration over the parameters of the worldsheet
(with both the space part σ and the time part τ chosen to be dimensionless),
and Gαβ is the metric on the worldsheet. The string tension is (2πα′)−1, that
is, there is a new fundamental parameter α′ with dimension length/mass. In the
quantum version, the fundamental string length

ls =
√

2α′� (3.38)

will occur. The string propagates in a higher dimensional space–time, and the
worldsheet metric Gαβ (α, β = 1, 2) is induced by the metric of the embedding
space–time. In the following, we shall assume that the string propagates in D-
dimensional Minkowski space, with the worldsheet given by Xµ(σ, τ), where
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µ = 0, . . . , D − 1. Denoting the derivative with respect to τ ≡ σ0 by a dot and
the derivative with respect to σ ≡ σ1 by a prime, one has

Gαβ = ηµν
∂Xµ

∂σα

∂Xν

∂σβ
, (3.39)

|detGαβ | = −detGαβ = (ẊX ′)2 − Ẋ2(X ′)2 . (3.40)

The embeddings Xµ(σ, τ) will play here the role of the dynamical variables. The
canonical momenta conjugated to them read

Pµ = − 1
2πα′√−detGαβ

[
(ẊX ′)X ′

µ − (X ′)2Ẋµ

]
. (3.41)

From this one gets the conditions

PµXµ′ = − 1
2πα′√−detGαβ

[
(ẊX ′)(X ′)2 − (X ′)2(ẊX ′)

]
= 0 (3.42)

as well as

PµPµ = − (X ′)2

4π2(α′)2
. (3.43)

In fact, the last two conditions are just constraints—a consequence of the repara-
metrization invariance

τ �→ τ ′(τ, σ) , σ �→ σ′(τ, σ) .

The constraint (3.43), in particular, is a direct analogue of (3.24).
As expected from the general considerations in Section 3.1.1, the Hamiltonian

is constrained to vanish. For the Hamiltonian density H, one finds that

H = NH⊥ + N1H1 , (3.44)

where N and N1 are Lagrange multipliers, and

H⊥ =
1
2

(
P 2 +

(X ′)2

4π2(α′)2

)
≈ 0 , (3.45)

H1 = PµXµ′ ≈ 0 . (3.46)

Quantization of these constraints is formally achieved by imposing the commu-
tation relations

[Xµ(σ), Pν (σ′)]|τ=τ ′ = i� δµ
ν δ(σ − σ′) (3.47)

and implementing the constraints à la Dirac as restrictions on physically allowed
wave functionals,

Ĥ⊥Ψ[Xµ(σ)] ≡ 1
2

(
−�2 δ2Ψ

δX2 +
(X ′)2Ψ
4π2(α′)2

)
= 0 , (3.48)
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and
Ĥ1Ψ[Xµ(σ)] ≡ �

i
Xµ′ δΨ

δXµ
= 0 , (3.49)

where the factor ordering has been chosen such that the momenta are on the
right. Note that in contrast to the examples in Section 3.1, one has now to deal
with functional derivatives, defined by the Taylor expansion

Ψ[φ(σ) + η(σ)] = Ψ[φ(σ)] +
∫

dσ
δΨ

δφ(σ)
η(σ) + · · · . (3.50)

The above implementation of the constraints is only possible if there are no
anomalies; see the end of this section and Section 5.3.5. An important property
of the quantized string is that such anomalies in fact occur, preventing the validity
of all quantum equations (3.48) and (3.49). Equations such as (3.48) and (3.49)
will occur at several places later and will be further discussed there, for example
in the context of parametrized field theories (Section 3.3).

Note that this level of quantization corresponds to a ‘first-quantized string’ in
analogy to first quantization of point particles (Section 3.1). The usual ‘second
quantization’ would mean to elevate the wave functions Ψ[Xµ(σ)] themselves
into operators (‘string field theory’). It must also be emphasized that ‘first’ and
‘second’ are at best heuristic notions since there is just one quantum theory (cf.
in this context Zeh (2003)).

In the following, we shall briefly discuss the connection with the standard
textbook treatment of the bosonic string; see, for example, Polchinski (1998a).
This will also be a useful preparation for the discussion of string theory in Chap-
ter 9. Usually one starts with the Polyakov action for the bosonic string,

SP = − 1
4πα′

∫
M

d2σ
√

hhαβ(σ, τ)∂αXµ∂βXµ , (3.51)

where hαβ denotes the intrinsic (not induced) metric on the worldsheet, and
h ≡ |dethαβ |. In contrast to the induced metric, it consists of independent degrees
of freedom with respect to which the action can be varied. The action (3.51)
can be interpreted as describing ‘two-dimensional gravity coupled to D massless
scalar fields’. Since the Einstein–Hilbert action is a topological invariant in two
dimensions, there is no pure gravity term present, and only the coupling of the
metric to the Xµ remains in (3.51). One can also take into account a cosmological
term, see Chapter 9. In contrast to (3.37), the Polyakov action is much easier to
handle, especially when used in a path integral.

The Polyakov action has many invariances. First, it is invariant with respect
to diffeomorphisms on the worldsheet. Second, and most importantly, it possesses
Weyl invariance, that is, an invariance under the transformations

hαβ(σ, τ) �→ e2ω(σ,τ)hαβ(σ, τ) (3.52)

with an arbitrary function ω(σ, τ). This is a special feature of two dimensions
where

√
hhαβ �→

√
hhαβ. It means that distances on the worldsheet have no
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intrinsic physical meaning. In addition, there is the Poincaré symmetry of the
background Minkowski space–time, which is of minor interest here.

Defining the two-dimensional energy–momentum tensor according to3

Tαβ = −4πα′
√

h

δSP

δhαβ
= ∂αXµ∂βXµ − 1

2
hαβhγδ∂γXµ∂δXµ , (3.53)

one finds
hαβTαβ = 0 . (3.54)

This tracelessness of the energy–momentum tensor is a consequence of Weyl
invariance. This can be easily seen as follows. Consider a general variation of the
action,

δS =
∫

d2σ
δS

δhαβ
δhαβ ∝

∫
d2σ

√
hTαβδhαβ .

Under (3.52) we have
δhαβ = −2(δω)hαβ .

Therefore, the demand that δS = 0 under (3.52) leads to (3.54). In the quantum
theory, a ‘Weyl anomaly’ may occur in which the trace of the energy–momentum
tensor is proportional to � times the two-dimensional Ricci scalar; see (2.124).
The demand for this anomaly to vanish leads to restrictions on the parameters
of the theory; see below.

Using the field equations δSP/δhαβ = 0, one finds

Tαβ = 0 . (3.55)

In a sense, these are the Einstein equations with the left-hand side missing, since
the Einstein–Hilbert action is a topological invariant. As (3.55) has no second
time derivatives, it is in fact a constraint—a consequence of diffeomorphism
invariance. From (3.55), one can easily derive that

detGαβ =
h

4
(hαβGαβ)2 , (3.56)

where Gαβ is the induced metric (3.39). Inserting this into (3.51) gives back
the action (3.37). Therefore, ‘on-shell’ (i.e., using the classical equations) both
actions are equivalent.

The constraints (3.42) and (3.43) can also be found directly from (3.51)—
defining the momenta conjugate to Xµ in the usual manner—after use has been
made of (3.55). One can thus formulate instead of (3.51) an alternative canonical
action principle,

S =
∫

M
d2σ (PµẊµ − NH⊥ − N1H1) , (3.57)

where H⊥ and H1 are given by (3.45) and (3.46), respectively.

3Compared to GR there is an additional factor −2π here, which is introduced for conve-
nience.
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In the standard treatment of the bosonic string, the ‘gauge freedom’ (with
respect to two diffeomorphisms and one Weyl transformation) is fixed by the
choice hαβ = ηαβ = diag(−1, 1). Instead of (3.51) one has then

SP = − 1
4πα′

∫
d2σ ηαβ∂αXµ∂βXµ , (3.58)

that is, the action for D free scalar fields in two dimensional Minkowski space.
In two dimensions there is a remaining symmetry which leaves the gauge-fixed
action invariant—the conformal transformations. These are angle-preserving co-
ordinate transformations4 which change the metric by a factor e2ω(σ,τ); they can
therefore be compensated by a Weyl transformation, and the action (3.58) is in-
variant under this combined transformations. A field theory with this invariance
is called a ‘conformal field theory’ (CFT). A particular feature of two dimensions
is that the conformal group is infinite-dimensional, giving rise to infinitely many
conserved charges (see below).

Consider in the following the case of open strings where σ ∈ (0, π). (Closed
strings ensue a doubling of degrees of freedom corresponding to left- and right-
movers.) The Hamiltonian of the gauge-fixed theory reads

H =
1

4πα′

∫ π

0
dσ

(
Ẋ2 + (X ′)2

)
. (3.59)

Introducing the components of the energy–momentum tensor with respect to the
lightcone coordinates σ− = τ − σ and σ+ = τ + σ, it is convenient to define the
quantities (m ∈ Z)

Lm =
1

2πα′

∫ π

0
dσ

(
eimσT++ + e−imσT−−

)
. (3.60)

One recognizes that L0 = H . Because the energy–momentum tensor vanishes
as a constraint, this holds also for the Lm, that is, Lm ≈ 0. The Lm obey the
classical Virasoro algebra

{Lm, Ln} = −i(m − n)Lm+n , (3.61)

exhibiting that they generate the group of conformal transformations (the resid-
ual symmetry of the gauge-fixed action). The {Ln} are the infinitely many con-
served charges mentioned above. It turns out that quantization does not preserve
this algebra but yields an additional term called ‘anomaly’, ‘central term’, or
‘Schwinger term’,

[L̂m, L̂n] = (m − n)�L̂m+n +
c�2

12
(m3 − m)δm+n,0 , (3.62)

where c is the central charge. For the case of the free fields Xµ, it is equal to
the number of space–time dimensions, c = D. Due to the presence of this extra

4In GR, the term ‘conformal transformation’ is usually employed for what is here called a
Weyl transformation.
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term, one cannot implement the constraints Lm ≈ 0 in the quantum theory as
restrictions on wave functions, that is, one cannot have L̂m|ψ〉 = 0 for all m.
Instead, one can choose

L̂n|ψ〉 = 0, n > 0 , L̂0|ψ〉 = a�|ψ〉 . (3.63)

It turns out that Weyl invariance can only be preserved at the quantum level
for a = 1 and D = 26, see for example, Polchinski (1998a) and Chapter 9. This
is achieved by the presence of Faddeev–Popov ghost degrees of freedom whose
central charge cancels against the central charge c of the fields Xµ precisely for
D = 26. It is most elegantly treated by ‘BRST quantization’ (see Section 9.2),
leading to an equation of the form QB|Ψtot〉 = 0, where QB is the BRST charge.
This weaker condition replaces the direct quantum implementation of the con-
straints.

Going back to the classical theory, one can also define the quantities

L̃n =
1
2

∫
dσ einσ

(√
(X ′)2H⊥ + H1

)
. (3.64)

Using the Poisson-bracket relations between the constraints H⊥ and H1 (see in
particular Section 3.3), one can show that

{L̃m, L̃n} = −i(m − n)L̃m+n , (3.65)

which coincides with the Virasoro algebra (3.61). In fact, for the gauge fixing
considered here—leading to (3.58)—one has L̃n = Ln. The result (3.62) then
shows that the naive implementation of the constraints (3.48) and (3.49) may
be inconsistent. This is a general problem in the quantization of constrained
systems and will be discussed further in Section 5.3. Kuchař and Torre (1991)
have treated the bosonic string as a model for quantum gravity. They have shown
that a covariant (covariant with respect to diffeomorphisms of the worldsheet)
quantization is possible, that is, there exists a quantization procedure in which
the algebra of constraints contains no anomalous terms. This is achieved by
extracting internal time variables (‘embeddings’) which are not represented as
operators.5 A potential problem is the dependence of the theory on the choice
of embedding. This is in fact a general problem; see Section 5.2. Kuchař and
Torre make use of the fact that string theory is an ‘already-parametrized theory’,
which brings us to a detailed discussion of parametrized field theories in the next
section.

3.3 Parametrized field theories

This example is a generalization of the parametrized non-relativistic particle
discussed in Section 3.1.1. As it will be field theoretic by nature, it has similarities

5The anomaly is still present in a subgroup of the conformal group, but it does not disturb
the Dirac quantization of the constraints.
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with the bosonic string discussed in the last section, but with notable differences.
A general reference to parametrized field theories is Kuchař (1973, 1981) from
which the following material is partially drawn.

The starting point is a real scalar field in Minkowski space, φ(Xµ), where the
standard inertial coordinates are here called Xµ ≡ (T, Xa). We now introduce
arbitrary (in general curved) coordinates xµ ≡ (t, xa) and let the Xµ depend
parametrically on xµ. This is analogous to the dependence t(τ) in Section 3.1.1.
The functions Xµ(xν) describe a family of hypersurfaces in Minkowski space
parametrized by x0 ≡ t (we shall restrict ourselves to the space-like case). Anal-
ogously to Section 3.1.1, the standard action for a scalar field is rewritten in
terms of the arbitrary coordinates xµ. This yields

S =
∫

d4X L
(

φ,
∂φ

∂Xµ

)
≡

∫
d4x L̃ , (3.66)

where

L̃(φ, φ,a, φ̇; Xµ
,a, Ẋ

µ) = JL
(

φ, φ,ν
∂xν

∂Xµ

)
, (3.67)

and J denotes the Jacobi determinant of the X with respect to the x (a dot
is a differentiation with respect to t, and a comma is a differentiation with
respect to the xν). Instead of calculating directly the momentum canonically
conjugate to Xµ, it is more appropriate to consider first the Hamiltonian density
H̃ corresponding to L̃ with respect to φ,

H̃ = p̃φφ̇ − L̃ = J
∂L
∂φ̇

φ̇ − JL

= J
∂x0

∂Xµ

(
∂L

∂ (∂φ/∂Xµ)
∂φ

∂Xν
− δµ

νL
)

Ẋν

≡ J
∂x0

∂Xµ
T µ

νẊν . (3.68)

Both J and the canonical energy–momentum tensor T µ
ν do not, in fact, de-

pend on the ‘kinematical velocities’ Ẋµ. This can be seen as follows. The Jacobi
determinant J can be written as

J = ερνλσ
∂Xρ

∂x0

∂Xν

∂x1

∂Xλ

∂x2

∂Xσ

∂x3 ,

from which one gets

J
∂x0

∂Xµ
= εµνλσ

∂Xν

∂x1

∂Xλ

∂x2

∂Xσ

∂x3 ,

which is just the vectorial surface element on t = constant, which does not
depend on the Ẋµ. For the same reason, the energy–momentum tensor does not
depend on these velocities.
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As a generalization of (3.7) and (3.9), one may envisage to introduce the
kinematical momenta Πν via the constraint

Hν ≡ Πν + J
∂x0

∂Xµ
T µ

ν ≈ 0 . (3.69)

Taking then the action

S =
∫

d4x (p̃φφ̇ − H̃) ,

inserting (3.68) for H̃ and adding the constraints (3.69) with Lagrange multipliers
Nν , one gets the action principle

S =
∫

d4x (p̃φφ̇ + ΠνẊν − NνHν) . (3.70)

This is the result that one would also get by defining the kinematical momenta
directly from (3.67). It is analogous to (3.10).

It is convenient to decompose (3.69) into components orthogonal and parallel
to the hypersurfaces x0 = constant. Introducing the normal vector nµ (with
ηµνnµnν = −1) and the tangential vectors Xν

,a (obeying nνXν
,a = 0), one gets

the constraints

H⊥ ≡ Hνnν ≈ 0 , (3.71)
Ha ≡ HνXν

,a ≈ 0 . (3.72)

Equations (3.71) and (3.72) are called the Hamiltonian constraint and the mo-
mentum (or diffeomorphism) constraint, respectively. They are similar to the
corresponding constraints (3.45) and (3.46) in string theory.

The action (3.70) then reads

S =
∫

d4x (p̃φφ̇ + ΠνẊν − NH⊥ − NaHa) . (3.73)

To interpret the Lagrange multipliers N and Na, we vary this action with respect
to Πν and obtain

Ẋν ≡ tν = Nnν + NaXν
,a . (3.74)

The geometric interpretation is depicted in Fig. 3.1: Ẋν is a vector that points
from a point with (spatial) coordinates xa on t = constant to a point with the
same coordinates on a neighbouring hypersurface t + dt = constant. The purely
temporal distance between the hypersurfaces is given by N , and therefore N is
called the lapse function. Similarly, Na is a vector that points from the point
with coordinates xa on t = constant to the point on the same hypersurface from
which the normal is erected to reach the point with the same coordinates xa on
t + dt = constant. It is called the shift vector.
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Fig. 3.1. Geometric interpretation of lapse and shift.

Instead of Minkowski space one can also choose an arbitrary curved back-
ground for the embedding. Denoting the spatial metric by hab, that is

hab = gµν
∂Xµ

∂xa

∂Xν

∂xb
, (3.75)

the four-dimensional line element can be decomposed as follows:

ds2 = gµνdxµdxν = −N2dt2 + hab(dxa + Nadt)(dxb + N bdt)
= (habN

aN b − N2)dt2 + 2habN
adxbdt + habdxadxb . (3.76)

The action (3.73) is invariant under the reparametrizations

x0 → x0′
= x0 + f(xa) ,

xa → xa′
= g(xb) (3.77)

with arbitrary functions (obeying standard differentiability conditions) f and
g. This is not equivalent to the full set of space–time diffeomorphisms; see the
discussion at the end of this section.

A simple example of the above procedure is the case of a massless scalar
field on (1+1)-dimensional Minkowski space–time (Kuchař 1973, 1981). Its La-
grangian reads

L
(

φ,
∂φ

∂T
,

∂φ

∂X

)
= −1

2
ηµν ∂φ

∂Xµ

∂φ

∂Xν
=

1
2

[(
∂φ

∂T

)2

−
(

∂φ

∂X

)2
]

. (3.78)

For the Jacobi determinant we have

J = ṪX ′ − T ′Ẋ ,

and for the components of the normal vector,

nT =
X ′

√
X ′2 − T ′2 , nX =

T ′
√

X ′2 − T ′2 .

(Dots denote derivatives with respect to x0 ≡ t, and primes denote derivatives
with respect to x1 ≡ x.) The energy–momentum tensor assumes the well known
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form for a free scalar field. If the above procedure is followed, one finds for the
constraints (3.71) and (3.72) the expressions:

H⊥ =
1√

X ′2 − T ′2

(
X ′ΠT + T ′ΠX +

1
2
(p̃2

φ + φ′2)
)

, (3.79)

H1 = T ′ΠT + X ′ΠX + φ′p̃φ . (3.80)

(The space-like nature of the hypersurfaces guarantees that the discriminant of
the square root is positive.) One recognizes from (3.79) that the kinematical
momenta enter the Hamiltonian constraint linearly. This is different from the
string case (3.45) and distinguishes, in fact, a parametrized theory from a theory
which is intrinsically reparametrization invariant.

Quantization is performed by imposing the formal commutators

[Xµ(x), Πν(y)] = i� δµ
ν δ(x − y) (3.81)

and
[φ(x), p̃φ(y)] = i� δ(x − y) . (3.82)

From (3.71) and (3.72), one then finds according to Dirac’s prescription, the
quantum constraints

H⊥Ψ[φ(x), Xµ(x)] = 0 , (3.83)
HaΨ[φ(x), Xµ(x)] = 0 . (3.84)

In the above example of the free scalar field, the constraints read

H⊥Ψ =
1√

X ′2 − T ′2

(
−i�X ′(x)

δ

δT (x)
− i�T ′(x)

δ

δX(x)

+
1
2

[
−�2 δ2

δφ(x)δφ(x)
+ φ′2(x)

])
Ψ[φ(x), T (x), X(x)] = 0 , (3.85)

H1Ψ =
�

i

(
T ′(x)

δ

δT (x)
+ X ′(x)

δ

δX(x)
+ φ′(x)

δ

δφ(x)

)
Ψ = 0 . (3.86)

The functional derivatives occurring in these equations are treated formally, that
is, as if they were ordinary derivatives, and all derivatives are put to the right.
One should be aware that there is always the problem of factor ordering (as
in quantum mechanics) and that singularities arise if a functional derivative is
taken of an ordinary function with respect to the same argument. This is a
general problem of functional differential equations and will be further discussed
in Section 5.3.

The above equations are very different from the equations that one would get
from the standard Lagrangian (3.78) or the corresponding action. The reason is
that the wave functional is usually evolved along flat hypersurfaces T = constant
only, whereas in the parametrized version it can be evolved along any family of
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space-like hypersurfaces. The latter description needs two functions X(x) and
T (x), also called ‘many-fingered time’ or ‘bubble-time’ description. Like for the
non-relativistic particle, the parametrized theory can easily be deparametrized.
Choosing x = X as a coordinate on the hypersurfaces and evolving the wave
functionals along flat hypersurfaces described by T (x) = T0 ∈ (−∞,∞), one
finds (Kuchař 1973)

i�
∂Ψ
∂T0

=
1
2

∫
dX

(
−�2 δ2

δφ2(X)
+

[
∂φ

∂X

]2
)

Ψ , (3.87)

which is just the ordinary (functional) Schrödinger equation for the massless
scalar field. Note that this is only one equation instead of the infinitely many
equations (3.85) and (3.86).

The general interpretation of the momentum constraint can be easily recog-
nized from the example (3.86). Performing an infinitesimal coordinate transfor-
mation on T = constant, x → x̄ = x + δN1(x), one gets

T (x) → T (x + δN1(x)) = T (x) + T ′(x)δN1(x)

and similar equations for X(x) and φ(x). For the wave functional, the transfor-
mation yields

Ψ → Ψ[T (x) + T ′(x)δN1(x), . . .] = Ψ[T (x), . . .]

+
∫

dx

(
T ′(x)

δΨ
δT (x)

+ · · ·
)

δN1(x) . (3.88)

Therefore, the momentum constraint (3.86) enforces the independence of Ψ under
infinitesimal coordinate transformations on the hypersurfaces.

Going back to the general action (3.73), one finds that the Hamiltonian is,
as expected, a linear combination of constraints,

H =
∫

d3x (NH⊥ + NaHa) . (3.89)

Dynamical consistency of a constrained system is only gained if the constraints
are preserved in time (here, with respect to the time parameter x0). This is the
case only if the Poisson brackets between all constraints are combinations of the
constraints themselves. One finds in fact the Poisson-bracket algebra (Dirac 1964)

{H⊥(x),H⊥(y)} = −σδ,a(x,y)
(
hab(x)Hb(x) + hab(y)Hb(y)

)
, (3.90)

{Ha(x),H⊥(y)} = H⊥δ,a(x,y) , (3.91)
{Ha(x),Hb(y)} = Hb(x)δ,a(x,y) + Ha(y)δ,b(x,y) , (3.92)

with the derivatives all acting on x. We have here introduced a space–time metric
with signature diag (σ, 1, 1, 1) in order to exhibit the difference between the
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Lorentzian case (σ = −1, the relevant case here) and the Euclidean case (σ = 1).
This algebra will play a crucial role in canonical gravity, see Chapters 4–6. It is
often convenient to work with a ‘smeared-out’ version of the constraints, that is,

H[N ] =
∫

d3x N(x)H⊥(x) , H[Na] =
∫

d3x Na(x)Ha(x) . (3.93)

The constraint algebra then reads

{H[N ],H[M ]} = H[Ka] , Ka = −σhab(NM,b − N,bM) , (3.94)
{H[Na],H[N ]} = H[M ] , M = NaN,a ≡ LNN , (3.95)

{H[Na],H[M b]} = H[K] , K = [N,M] ≡ LNM , (3.96)

where L denotes here the Lie derivative. Some remarks are in order:

1. This algebra is not a Lie algebra, since (3.94) contains the (inverse) three-
metric hab(x) of the hypersurfaces x0 = constant (i.e. one has structure
functions depending on the canonical variables instead of structure con-
stants). An exception is two-dimensional space–time (Teitelboim 1984).

2. The signature σ of the embedding space–time can be read off directly from
(3.94).

3. The subalgebra of the diffeomorphism constraints is a Lie algebra as can be
seen from (3.96). Equation (3.95) means that the flow of the Hamiltonian
constraint does not leave the constraint hypersurface of the diffeomorphism
constraints invariant. Moreover, this equation expresses the fact that H⊥
transforms under diffeomorphisms as a scalar density of weight one; this
follows from (3.91) after integration with respect to the shift vector,

δH⊥(y) =
∫

d3x Na(x){H⊥(y),Ha(x)} = ∂a(NaH⊥)(y) ,

cf. (3.20).
4. The algebra is the same as for the corresponding constraints in the case

of the bosonic string, that is, it is in two dimensions equivalent to the
Virasoro algebra (3.61). The reason is its general geometric interpretation
to be discussed in the following.

It turns out that the above algebra has a purely kinematical interpretation.
It is just the algebra of surface deformations for hypersurfaces which are embed-
ded in a Riemannian (or pseudo-Riemannian) space. If a hypersurface is again
described by Xµ(x), the generators of coordinate transformations on the hyper-
surface are given by

Xax ≡ Xµ
,a(x)

δ

δXµ(x)
,

while the generators of the normal deformations are given by
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Xx ≡ nµ(x)
δ

δXµ(x)

with the normal vector obeying the normalization condition nµnµ = σ. Kuchař
(1973) calculated the algebra,

[Xx, Xy] = σδ,a(x,y)
(
hab(x)Xbx + hab(y)Xby

)
, (3.97)

[Xax, Xy] = −Xxδ,a(x,y) , (3.98)
[Xax, Xby] = −Xbxδ,a(x,y) − Xayδ,b(x,y) . (3.99)

Up to a sign, this algebra has the same structure as the constraint algebra (3.90)–
(3.92). The reason for the different sign is the relation

[Xf , Xg] = −X{f,g} ,

where {f, g} denotes the Poisson bracket between f and g. The constraints H⊥
and Ha generate, in fact, the algebra of hypersurface deformations, which are
given by (3.77) and which are not identical to the algebra of space–time diffeo-
morphisms; cf. also Chapter 4. That surface deformations form a larger class
of transformations than space–time diffeomorphism can be seen if one considers
surfaces which intersect each other at a point P. Under surface deformations this
point is shifted to two different points, depending on which of the two surfaces
one starts. On the other hand, a spacetime diffeomorphism shifts each point in
a unique way independent of the surface on which it lies; space–time diffeomor-
phisms thus induce only special surface deformations.

In Section 4.1, we will show that one can construct the theory of GR from
the above constraint algebra provided that the three-metric hab and its canonical
momentum are the only canonical variables. Before this will be done, we shall
discuss in the next section a ‘relational’ mechanical model which exhibits some
interesting features being of relevance for the quantization of gravity.

3.4 Relational dynamical systems

Newtonian mechanics needs for its formulation the concepts of absolute space and
absolute time. This was criticized already by some of Newton’s contemporaries,
notably Leibniz, who insisted that only observable quantities should appear in
the fundamental equations. In the nineteenth century Ernst Mach emphasized
that the concepts of absolute space and time should be abandoned altogether
and that physics should only use relational concepts.

Consider in a gedanken experiment two successive ‘snapshots’ of the uni-
verse within a short time interval (Barbour 1986). The universe is considered for
simplicity as a collection of n particles with masses mi, i = 1, . . . , n, evolving
in Euclidean space under the influence of Newtonian gravity. Due to the short
time interval, the relative distances will be only slightly different. Can one pre-
dict the future evolution from these two observations? The definite answer is no



94 PARAMETRIZED AND RELATIONAL SYSTEMS

because the two sets of relative separations give no information about the angu-
lar momentum or kinetic energy of the system, both of which affect the future
evolution.

This ‘Poincaré defect’ (because Poincaré pronounced this lack of predictabil-
ity) motivated Barbour and Bertotti (1982) to look for a slight generalization of
Newtonian mechanics in which the future can be predicted solely on the basis
of relative separations (and their rates of change). The key idea is to intro-
duce a ‘gauge freedom’ with respect to translations and rotations (because these
transformations leave the relative distances invariant) and the choice of the time
parameter τ . The theory should thus be invariant under the following gauge
transformations,

xk �→ x′
k = xk + a(τ) + α(τ) × xk , (3.100)

where a parametrizes translations, α rotations, and xk is the position vec-
tor of particle k. They depend on the ‘label time’ τ which can be arbitrarily
reparametrized,

τ �→ f(τ) , ḟ > 0 . (3.101)

Due to (3.100) one has instead of the original 3n only 3n − 6 parameters to
describe the relative distances. Equations (3.100) and (3.101) define the ‘Leibniz
group’ (Barbour and Bertotti 1982; Barbour 1986). One can now define a total
velocity for each particle according to

Dxk

Dτ
≡ ∂xk

∂τ
+ ȧ(τ) + α̇(τ) × xk , (3.102)

in which the first term on the right-hand side denotes the rate of change in
some chosen frame, and the second and third terms the rate of change due to a
τ -dependent change of frame. This velocity is not yet gauge invariant. A gauge-
invariant quantity can be constructed by minimizing the ‘kinetic energy’

n∑
k=1

Dxk

Dτ

Dxk

Dτ

with respect to a and α. This procedure is also called ‘horizontal stacking’ (Bar-
bour 1986). Intuitively it can be understood as putting two slides with the parti-
cle positions marked on them on top of each other and moving them relative to
each other until the centres of mass coincide and there is no overall rotation. The
result of the horizontal stacking is a gauge-invariant ‘intrinsic velocity’, dx/dτ .
Having these velocities for each particle at one’s disposal one can construct the
kinetic term

T =
1
2

n∑
k=1

mk

(
dxk

dτ

)2

. (3.103)

The potential is the standard Newtonian potential

V = −G
∑
k<l

mkml

rkl
, (3.104)
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where rkl = |xk − xl| is the relative distance (more generally, one can take any
potential V (rkl)). With this information at hand, one can construct the following
action,

S = 2
∫

dτ
√
−V T , (3.105)

which is homogeneous in the velocities dx/dτ and therefore reparametrization-
invariant with respect to τ ; cf. Section 3.1.1. After the horizontal stacking is
performed, one is in a preferred frame in which the intrinsic velocities coincide
with the ordinary velocities.

The equations of motion constructed from the action (3.105) read

d
dτ

(√
−V

T
mk

dxk

dτ

)
= −

√
T

−V

∂V

∂xk
. (3.106)

Note that this is a non-local equation because the frame is determined by the
global stacking procedure and also the total kinetic and potential energy of the
universe occur explicitly. The gauge invariance with respect to translations and
rotations leads to the constraints

P =
∑

k

pk = 0 , L =
∑

k

xk × pk = 0 , (3.107)

that is, the total momentum and angular momentum of the universe is con-
strained to vanish. Since the momentum of the kth particle is given by

pk =
∂L

∂ẋk
= mk

√
−V

T
ẋk ,

one finds the Hamiltonian constraint

H ≡
n∑

k=1

p2
k

2mk
+ V = 0 , (3.108)

which is a consequence of reparametrization invariance with respect to τ ; see
Section 3.1.1. Equation (3.106) can be drastically simplified if a convenient gauge
choice is being made for τ : it is chosen such as to make the total energy vanish,

T + V = 0 . (3.109)

Note that (3.109) is not the usual energy equation, since there is no external
time present here. On the contrary, this equation is used to define time.

With (3.109) one then gets from (3.106) just Newton’s equations. Therefore,
only after this choice the connection with Newtonian mechanics has been estab-
lished. The in-principle observational difference to Newtonian mechanics is that
here the total energy, momentum, and angular momentum must vanish. We note
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in this connection that in 1905 Henri Poincaré argued for a definition of time
that makes the equations of motion assume their simplest form. He writes6

Time must be defined in such a way that the equations of mechanics are as simple as
possible. In other words, there is no way to measure time that is more true than any
other; the one that is usually adopted is only more convenient.

It is, however, a fact that the choice (3.109) is not only distinguished because
then the equations of motion (3.106) take their simplest form but also because
only such a choice will ensure that the various clocks of (approximately isolated)
subsystems march in step, since

∑
k(Tk +Vk) =

∑
k Ek = 0 (Barbour 1994). The

only truly isolated system is the universe as a whole and to determine time it is
(in principle) necessary to monitor the whole universe. In practice this is done
even when atomic clocks are employed, for example, in the determination of the
pulse arrival times from binary pulsars (Damour and Taylor 1991).

In this approach, the inertial frame and absolute time of Newtonian mechan-
ics are constructed from observations through the minimization of the kinetic
energy and the above choice of τ . One could call this a Leibnizian or Machian
point of view. The operational time defined by (3.109) corresponds to the notion
of ‘ephemeris time’ used in astronomy. That time must be defined such that the
equations of motion be simple was already known by Ptolemy (Barbour 1989).
His theory of eclipses only took a simple form if sidereal time (defined by the
rotation of the heavens, i.e. the rotation of the Earth) is used. This choice cor-
responds to a ‘uniform flow of time’.

Time-reparametrization invariant systems have already been discussed in Sec-
tion 3.1.1 in connection with the parametrized non-relativistic particle. In con-
trast to there, however, no absolute time is present here and the theory relies
exclusively on observational elements.

A formal analogy of the action (3.105) is given by Jacobi’s action7 in classical
mechanics (Barbour 1986; Lanczos 1986; Brown and York 1989),

SJ =
∫

ds
√

E − V , (3.110)

where E is the total energy, and s parametrizes the paths in configuration space,

ds2 ≡
n∑

k=1

mkdxkdxk .

Writing ds = ṡdτ , one gets ṡ =
√

2T ; if E = 0, then, Jacobi’s action is propor-
tional to the action (3.105).

6‘Le temps doit être défini de telle façon que les équations de la mécanique soient aussi
simples que possible. En d’autres termes, il n’y a pas une manière de mesurer le temps qui
soit plus vraie qu’ une autre; celle qui est généralement adoptée est seulement plus commode.’
(Poincaré 1970)

7There is a close analogy of this formulation with Fermat’s principle of least time in geo-
metrical optics.
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This ‘timeless’ description of mechanics employs only paths in configuration
space. A ‘speed’ is determined later by solving the energy equation T +V = E (T
contains the velocities ẋk). Barbour (1986) argues that for an isolated system,
such as the universe is assumed to be, this demonstrates the redundancy of the
notion of an independent time. All the essential dynamical content is already
contained in the timeless paths. We shall see in Chapter 4 that GR can be
described by an action similar to (3.105) and thus can be interpreted as ‘already
parametrized’. In this sense, the constraints of relational mechanics correspond
to those of GR (see Chapter 4) more closely than the other examples considered
in this chapter and suggest that GR is time-less in a significant sense.

Quantization of the Barbour–Bertotti model then follows Dirac’s prescrip-
tion, leading to the quantized constraints

Ĥψ(xk) = 0 , P̂ψ(xk) = 0 , L̂ψ(xk) = 0 . (3.111)

Due to the latter two conditions, the wave function is actually defined on the
relative configuration space, that is, the space of relative distances. We shall see
in Section 4.2.3 how far the analogy between this model and GR reaches.



4

HAMILTONIAN FORMULATION OF GENERAL RELATIVITY

4.1 The seventh route to geometrodynamics

It is the purpose of this chapter to develop the Hamiltonian formulation of general
relativity, which will serve as the starting point for quantization in Chapters 5
and 6. In the present section, we shall derive it directly from the algebra of
surface deformations (Section 3.3), while in the next section, it will be recovered
from the Einstein–Hilbert action through a 3+1 decomposition. In these two
sections, the formalism will be applied to the traditional metric formulation,
while in the last section, a more recent formalism using connections will be used.
The quantization of the latter version will be treated in Chapter 6.

That the theory of GR in its Hamiltonian version can be constructed directly
from the algebra of surface deformations (3.90)–(3.92) was shown by Hojman et
al. (1976), and we shall follow their exposition in this section. They call their
approach the ‘seventh route to geometrodynamics’, complementing the six routes
presented in box 17.6 of Misner et al. (1973).1

4.1.1 Principle of path independence

Starting point is the assumption that the only gravitational canonical pair of
variables on the spatial hypersurfaces consists of the three-dimensional metric
hab(x) and its conjugate momentum pcd(y). In addition, matter fields may be
present. The constraints will not be imposed—in fact, they will be derived from
the algebra. Different classical theories of gravity typically contain additional
degrees of freedom in the configuration space of the gravitational sector (such as
a scalar field in the Brans–Dicke case or the extrinsic curvature for R2-theories).
The central idea in the derivation is the use of a ‘principle of path independence’.
Let us assume the presence of two different three-dimensional geometries (three-
geometries for short) Gin and Gfin and a set of observers distributed on Gin; the
observers bifurcate and follow different evolutions of intermediate hypersurfaces,
making records of them as well as of the fields on them, until they all end up
on Gfin. The principle of path independence states that the change in all field
variables must be independent of the route that is chosen between Gin and Gfin.
Only in this case can the evolution of three-geometries be interpreted as arising
from different foliations through the same four-dimensional space–time.2

1For more routes, see Section 3 in Anderson (2005).
2This holds only for cases where the sandwich conjecture is satisfied, that is, for which two

three-geometries uniquely determine the space–time ‘sandwiched’ between them.
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Fig. 4.1. Normal deformations along two different intermediate three-geome-
tries.

The evolution of a function F of the gravitational canonical variables is given
by (cf. (3.89))

Ḟ (hab(x), pcd(x)) =
∫

dx′ ({F,H⊥(x′)}N(x′) + {F,Ha(x′)}Na(x′))

≡
∫

dx′ {F,Hµ(x′)}Nµ(x′) , (4.1)

where dx′ is a shorthand for d3x′ and x for x, etc. Consider now an infinitesimal
evolution along two different intermediate hypersurfaces (Fig. 4.1): first, a normal
deformation from Gin to I and then from I to Gfin; second, a normal deformation
from Gin to II and then from II to Gfin. Evolving F along the first possibility
yields

F [Gfin] = F [Gin] +
∫

dx′ {F,H⊥(x′)}δNI(x′)

+
∫

dx′ {F,H⊥(x′)}δNII(x′)

+
∫

dx′dx′′ {{F,H⊥(x′)}δNI(x′),H⊥(x′′)} δNII(x′′) .

The first two terms on the right-hand side describe the evolution of F from Gin to
I, and the last two terms the evolution from I to Gfin. The option of reaching Gfin
via hypersurface II gives an analogous result. Performing the difference between
both expressions and using the Jacobi identity leads one to

δF = −
∫

dx′dx′′ {{H⊥(x′),H⊥(x′′)}, F} δNI(x′′)δNII(x′) . (4.2)

From (3.97) or (3.94) one knows that the difference between these two normal
deformations must be given by a tangential deformation,3

3Recall that Ha generates minus the surface deformations.
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δF = −
∫

dx′ {F,Ha(x′)}δNa(x′) , (4.3)

where
δNa = −σhab (δNIδNII,b − δNIIδNI,b) . (4.4)

Inserting for calculational purposes a delta function into (4.3) and performing a
partial integration, one has

−
∫

dx′ {F,Ha(x′)}δNa(x′) =

−σ

∫
dx′dx′′ ∂

∂x′b δ(x′ − x′′){F,Ha(x′′)}hab(x′′)δNI(x′′)δNII(x′)

−σ

∫
dx′dx′′ ∂

∂x′b δ(x′ − x′′){F,Ha(x′)}hab(x′)δNI(x′′)δNII(x′) . (4.5)

Setting this equal to (4.2) and using the arbitrariness of δNI(x′′)δNII(x′), one
finds

{F, {H⊥(x′),H⊥(x′′)}} = −σδ,b(x′ − x′′)hab(x′′){F,Ha(x′′)}
−σδ,b(x′ − x′′)hab(x′){F,Ha(x′)} . (4.6)

Inserting the Poisson bracket (3.90) on the left-hand side, one finds the condition

∂

∂x′a δ(x′ − x′′)
(
{F, hab(x′)}Hb(x′) + {F, hab(x′′)}Hb(x′′)

)
= 0 . (4.7)

As this should hold for all F , the generators Ha themselves must vanish as
constraints, Ha ≈ 0. This result from the principle of path independence only
follows because the Poisson bracket (3.90) depends on the metric hab. Since
Ha ≈ 0 must hold on every hypersurface, it must be conserved under a normal
deformation. From (3.91) one then finds that H⊥ must also vanish, H⊥ ≈ 0.
We have thus shown that the algebra of surface deformations, together with the
principle of path independence (equivalent to the principle of embeddability),
enforces the constraints

H⊥ ≈ 0 , Ha ≈ 0 . (4.8)

This result follows for all number of space–time dimensions different from two.
For two dimensions (after a suitable definition of the Hµ), the metric does not
appear on the right-hand side of the algebra (Teitelboim 1984). This leads to
the possibility of having path independence without constraints, resulting in
potential Schwinger terms in the quantum theory (cf. Sections 3.2 and 5.3.5).

4.1.2 Explicit form of generators

How does one find the explicit form of H⊥ and Ha? The constraints Ha generate
coordinate transformations on a hypersurface. If the transformation law of cer-
tain fields is given, Ha follows (or, conversely, the transformation properties are
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determined by a given Ha). Knowing Ha, one can consider the Poisson bracket
(3.90) as a system of infinitely many equations to determine H⊥, which must
then depend on hab because the right-hand side of (3.90) does. If, moreover,
the assumption is made that H⊥ depends only on hab (and its momentum) as
gravitational degrees of freedom, GR will follow.

Some general properties of Ha can be inferred without studying the change of
different fields under coordinate transformations, see Teitelboim (1980) for proofs
and more details. The general form of Ha can be restricted by the following two
requirements:

1. It must be linear in the momenta in order to generate transformations of the
fields under coordinate transformations (and not mix fields and momenta).

2. It should contain the momenta only up to the first spatial derivatives be-
cause it should generate first-order derivatives in the fields (Taylor expan-
sion to first order).

Therefore,
Ha = b b

a B(φC)pB
,b + aaB(φC)pB , (4.9)

where φA now is a symbolic notation for all fields, including gravity, and pA

denotes the corresponding momenta. If one demands the existence of ultralocal
solutions to (3.90) (i.e. a deformation localized at a point x0 can change the field
only at x0), one finds that

bab
B = bba

B . (4.10)

General requirements allow to restrict the form of H⊥ as well (Teitelboim 1980).
Writing H⊥ as the sum of a gravitational and a matter part (with ‘matter’
referring here to all non-gravitational bosonic fields4 symbolically denoted by
φ),

H⊥ = Hg
⊥[hab, p

cd] + Hm
⊥ [hab, p

cd; φ, pφ] , (4.11)

it follows from (3.90) that Hm
⊥ must depend on the gravitational degrees of

freedom, that is, gravity couples to all forms of matter. This is the Hamiltonian
version of Weinberg’s result discussed in Section 2.1. More restrictions can be
obtained if one assumes that Hm

⊥ does not depend on the gravitational momenta
pcd. This corresponds to the presence of ‘non-derivative couplings’ only, that is,
there are no gravitational velocities on the Lagrangian level and therefore there
is no modification of the relationship between momentum and velocity. Then
one can show that Hm

⊥ [hab; φ, pφ] depends on the hab only ultralocally, that is,
no derivatives or integrals of hab appear. From this one can infer that the terms
Hm

⊥ obey the relation (3.90) separately, that is,

{Hm
⊥(x),Hm

⊥(y)} = −σδ,a(x, y)
(
hab(x)Hm

b (x) + hab(y)Hm
b (y)

)
. (4.12)

One also finds from the demand of ultralocality that H⊥ must depend ultralocally
on the momenta.

4For the fermionic case, see the remarks below.
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Using these general properties, the behaviour of various fields under coordi-
nate transformations generated by Ha can be studied and the detailed form of
Ha and H⊥ be derived. The first case is a scalar field φ. Under an infinitesimal
coordinate transformation x′a = xa − δNa(x), it transforms as

δφ(x) ≡ φ′(x) − φ(x) ≈ ∂φ

∂xa
δNa ≡ LδNφ , (4.13)

where L denotes the Lie derivative. This is generated by

Ha = pφφ,a . (4.14)

Comparison with (4.9) shows that bab = 0 = bba, so that (4.10) is fulfilled and
ultralocality holds.

For a vector field, Aa(x), the transformation is

δAa = Aa,bδN
b + AbδN

b
,a ≡ (LδNA)a , (4.15)

which is generated by

Ha = −pb
,bAa + (Ab,a − Aa,b)pb . (4.16)

Comparison with (4.9) shows that

b b
a C = −Aaδb

C . (4.17)

Therefore, the condition for ultralocality (4.10) is not fulfilled for vector fields.
Its restoration will lead to the concept of gauge theories (Section 4.1.3).

For a covariant tensor field of second rank (not necessarily symmetric), tab(x),
one has

δtab = tab,cδN
c + tacδN

c
,b + tcbδN

c
,a ≡ (LδNt)ab , (4.18)

which is generated by

Ha = tbc,ap
bc − (tabp

cb),c − (tcapcb),b . (4.19)

It turns out that in order for (4.10) to be fulfilled, one must have

tab = f(x)hab (4.20)

with an arbitrary function f(x), that is, the tensor field must be proportional
to the metric itself. Choosing in particular tab = hab, one finds for the generator
(4.19) the expression

Hg
a = −2p c

a ,c + 2Γd
acp

c
d ≡ −2Dbp

b
a ≡ −2p b

a |b . (4.21)

The last two terms denote the covariant derivative in three dimensions (recall
that pab is a tensor density of weight one).
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Using the result (4.21) for Hg
a, one can construct from (3.90) the explicit

expression for Hg
⊥. A rather lengthy but straightforward calculation leads to

(Hojman et al. 1976; Teitelboim 1980)

Hg
⊥ = 16πGGabcdp

abpcd + V [hab] , (4.22)

with
Gabcd =

1
2
√

h
(hachbd + hadhbc − habhcd) (4.23)

as the (inverse) ‘DeWitt metric’,5 h denoting the determinant of hab, and

V =
σ
√

h

16πG
( (3)R − 2Λ) , (4.24)

where (3)R is the three-dimensional Ricci scalar.6 The inverse of (4.23) is called
‘DeWitt’ metric because it plays the role of a metric in the space of all metrics
(DeWitt 1967a); cf. Section 4.2.5. Due to this it is often referred to as ‘superme-
tric’. The explict expression reads

Gabcd =

√
h

2
(hachbd + hadhbc − 2habhcd) (4.25)

(the last term here is the same in all space dimensions), obeying

GabcdGcdef = 1
2

(
δa
e δb

f + δa
fδb

e

)
. (4.26)

We recall that the Poisson-bracket relation (3.91) states that H⊥ transforms as
a scalar density under coordinate transformations; this is explicitly fulfilled by
(4.22) (Gabcd has weight −1, pab and V have weight 1, so Hg

⊥ has weight 1). We
thus have

δHg
⊥(x) =

∫
dy {Hg

⊥(x),Hg
a(y)}δNa(y) =

∂

∂xa
(Hg

⊥(x)δNa(x)) . (4.27)

It will be shown in Section 4.2 that Hg
⊥ and Hg

a uniquely characterize GR, that
is, they follow from the Einstein–Hilbert action (1.1). Finally, we want to remark
that the uniqueness of the construction presented here ceases to hold in space
dimensions greater than three (Teitelboim and Zanelli 1987).

4.1.3 Geometrodynamics and gauge theories

We have seen that for vector fields Ha is of such a form that the condition
of ultralocality for H⊥ would be violated, see (4.16). Since vector fields are an
important ingredient in the description of nature, the question arises whether a

5In d space dimensions, the last term reads −2/(d − 1)habhcd.
6G and Λ are at this stage just free parameters. They will later be identified with the

gravitational constant and the cosmological constant, respectively.
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different formulation can be found that is in accordance with ultralocality. For
this purpose it is suggestive to omit the term −pb

,bAa in (4.16) because then the
b b
a B will become zero. This leads to the replacement (Teitelboim 1980)

Ha → H̄a ≡ Ha + pb
,bAa = (Ab,a − Aa,b)pb . (4.28)

What happens with the Poisson-bracket relation (3.92) after this modification?
A brief calculation shows

{H̄a(x), H̄b(y)} = H̄b(x)δ,a(x, y)+ H̄a(y)δ,b(x, y)−Fab(x)pc
,c(x)δ(x, y) , (4.29)

where Fab = ∂aAb − ∂bAa. The new term in (4.29) will only be harmless if it
generates physically irrelevant transformations (‘gauge transformations’). This
is the case if the new term actually vanishes as a constraint. Since setting Fab to
zero would appear too strong (leaving only the restricted option Aa = ∂aϕ), it
is suggestive to demand that pa

,a ≈ 0. One therefore introduces the constraint

G(x) ≡ −1
e
pa

,a(x) ≡ −1
e
Ea

,a(x) ≡ −1
e
∇E(x) . (4.30)

The constraint G ≈ 0 is just Gauss’ law of electrodynamics (in the sourceless
case) with the momentum being equal to the electric field E (the electric charge,
e, has been introduced for convenience). As usual, Gauss’ law generates gauge
transformations,

δAa(x) =
∫

dy {Aa(x),G(y)}ξ(y) =
1
e
∂aξ(x) , (4.31)

δpa(x) =
∫

dy {pa(x),G(y)}ξ(y) = 0 . (4.32)

The electric field is of course gauge invariant, and so is the field strength Fab. In
the modified constraint (4.28), the first term (Ha) generates the usual transfor-
mations for a vector field, see (4.15), while the second term (pb

,bAa) generates
gauge transformations for the ‘vector potential’ Aa(x). Therefore, Aa(x) trans-
forms under H̄a not like a covariant vector but only like a vector modulo a gauge
transformation. This fact was already encountered in the space–time picture;
see Section 2.1. The electric field, however, transforms as a contravariant tensor
density, since the additional term in (4.28) has no effect.

The above introduction of the gauge principle can be extended in a straight-
forward manner to the non-Abelian case. Consider instead of a single Aa(x)
now a set of several fields, Ai

a(x), i = 1, . . . , N . The simplest generalization of
the Abelian case consists in the assumptions that Ai

a(x) should not mix with its
momentum pa

i (x) under a gauge transformation, that the momenta should trans-
form homogeneously, and that the gauge constraint (the non-Abelian version of
Gauss’ law) is local. This then leads to (Teitelboim 1980)

Gi = − 1
f

p a
i ,a + C k

ij A j
a p a

k ≈ 0 , (4.33)
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where f and C k
ij are constants. Demanding that the commutation of two gauge

transformations be again a transformation it follows that the C k
ij are the struc-

ture constants of a Lie algebra. One then has

{Gi(x),Gj(y)} = C k
ij Gk(x)δ(x, y) , (4.34)

which characterizes a Yang–Mills theory.
As in the case of the gravitational field, one can construct the correspond-

ing part of the Hamiltonian constraint, HYM
⊥ , from the Poisson-bracket relation

(3.90). Writing
H⊥ = Hg

⊥ + HYM
⊥ , (4.35)

and demanding that the Yang–Mills part be independent of the gravitational mo-
menta (so that HYM

⊥ depends only ultralocally on the metric and must therefore
obey (3.90) separately), one is led to the form

HYM
⊥ =

1
2
√

h

(
habγ

ijpa
i p

b
j − σhabγijB

i
aBj

b

)
, (4.36)

where γij = C l
ik C k

jl is the ‘group metric’ (γij being its inverse), and Bi
a =

1
2εabcF

ibc are the non-Abelian ‘magnetic fields’. The non-Abelian field strength
is given by

F i
ab = ∂aAi

b − ∂bA
i
a + fCi

jkAj
aAk

b .

The Hamiltonian (4.36) can be found from the action

SYM = −σ

4

∫
d4x

√
−gγijF

i
µνF jµν , (4.37)

which is the usual Yang–Mills action.
To summarize, the principle of path independence together with the demand

that H⊥ be ultralocal7 in the momenta leads to the concept of gauge theories in
a natural way.

What about fermionic fields? Recalling that the Dirac equation is the ‘square
root’ of the Klein–Gordon equation, one may try to construct a similar ‘square
root’ for the generators of surface deformations. This has been done by Tabensky
and Teitelboim (1977); it leads to spin-3/2 fields and the concept of supergravity
(cf. Section 2.3) but not to spin-1/2. This could be a hint that the usual spin-1/2
fields only emerge through the use of superstrings (Chapter 9). The Hamiltonian
formalism for supergravity will be discussed in Section 5.3.6.

4.2 The 3+1 decomposition of general relativity

It will be shown in this section that GR is characterized by having (4.21) and
(4.22) as the constraints. This is achieved by choosing appropriate canonical
variables and casting the Einstein–Hilbert action (1.1) into Hamiltonian form.

7As one knows from the discussion of the Aharonov–Bohm effect, a formulation without
the vector potential can only be obtained in a non-local way.
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4.2.1 The canonical variables

The Hamiltonian formalism starts from the choice of a configuration variable
and the definition of its momentum. Since the latter requires a time coordinate
(‘p = ∂L/∂q̇’), one must cast GR in a form where it exhibits a ‘distinguished’
time. This is achieved by foliating the space–time described by (M, g) into a
set of three-dimensional space-like hypersurfaces Σt; cf. also Section 3.3. The
covariance of GR is preserved by allowing for the possibility to consider all
feasible foliations of this type.

This is not only of relevance for quantization (which is our motivation here),
but also for important applications in the classical theory. For example, numer-
ical relativity needs a description in terms of foliations in order to describe the
dynamical evolution of events, for example, the coalescence of black holes and
their emission of gravitational waves (Baumgarte and Shapiro 2003).

As a necessary condition we want to demand that (M, g) be globally hyper-
bolic, that is, it possesses a Cauchy surface Σ (an ‘instant of time’) on which
initial data can be described to determine uniquely the whole space–time, see
for example, Wald (1984) or Hawking and Ellis (1973) for details. In such cases,
the classical initial value formulation makes sense, and the Hamiltonian form of
GR can be constructed. The occurrence of naked singularities is prohibited by
this assumption.

An important theorem states that for a globally hyperbolic space–time (M, g)
there exists a global ‘time function’ f such that each surface f = constant is a
Cauchy surface; therefore, M can be foliated into Cauchy hypersurfaces, and its
topology is a direct product,

M ∼= R × Σ . (4.38)

The topology of space–time is thus fixed. This may be a reasonable assumption in
the classical theory, since topology change is usually connected with singularities
or closed time-like curves. In the quantum theory, topology change may be a
viable option and its absence in the formalism could be a possible weakness of
the canonical approach.8 Nevertheless, the resulting quantum theory is general
enough to cope with many of the interesting situations.

One therefore starts with performing a foliation of space–time into Cauchy
surfaces Σt, with t denoting the global time function (‘3+1 decomposition’). The
corresponding vector field (‘flow of time’) is denoted by tµ, obeying tµ∇µt = 1.
The relation between infinitesimally neighboured hypersurfaces is the same as
shown in Fig. 3.1.9 The space–time metric gµν induces a three-dimensional metric
on each Σt according to

hµν = gµν + nµnν , (4.39)

where nµ denotes again the unit normal to Σt, with nµnµ = −1.

8A more general formulation allowing topology change to occur in principle is the path-
integral approach of Section 2.2.

9The vector field tµ was called Ẋµ in Fig. 3.1 and the relation (3.74).
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This is in accordance with the earlier definition (3.75): multiplication of (4.39)
with Xµ

,aX
ν
,b and application of Xµ

,anµ = 0 leads to (3.75). In fact, hµν is a
three-dimensional object only, since it acts as a projector on Σt, hµνnν = 0,
hµνhνρ = h ρ

µ . It is therefore really the three-dimensional metric, and we shall
write below for it hab, since there is an isomorphism between tensor fields on M
that are orthogonal to nµ in each index and tensor fields on Σt.

As in (3.74), one can decompose tµ into its components normal and tangential
to Σt,

tµ = Nnµ + Nµ , (4.40)

where N is the lapse function and Nµ (called NaXν
,a in (3.74)) the shift vector.

In fact, Nµ is a three-dimensional object and can be identified with Na. The
lapse function can be written as N = −tµnµ from which one can infer

N =
1

nµ∇µt
. (4.41)

Similar to (3.28), one can interpret this expression as the ratio between proper
time (given by tµ∇µt = 1) and coordinate time nµ∇µt. As in Section 3.3, the
four-metric can be decomposed into spatial and temporal components,

gµν =
(

NaNa − N2 Nb

Nc hab

)
. (4.42)

Its inverse reads

gµν =

(
− 1

N2
Nb

N2

Nc

N2 hab − NaNb

N2

)
. (4.43)

Here, hab is the inverse of the three-metric (i.e. obeying habhbc = δa
c ), and one

recognizes that the spatial part of gµν is not identical with hab but contains an
additional term involving the shift vector. The components of the normal vector
can be found from the one-form nµdxµ = −Ndt to read

nµ = gµνnν =
(

1
N

,−N
N

)
. (4.44)

The various hypersurfaces Σt can be identified by a diffeomorphism that is gen-
erated by the integral curves of tµ. The globally hyperbolic space–time (M, g)
can thus be interpreted as the time evolution of a Riemannian metric on a fixed
manifold Σ, that is, as an evolution from hab(t0) to hab(t). This suggests the
use of the three-metric hab as the appropriate dynamical variable for the canon-
ical formalism. Space–time then becomes nothing but a ‘trajectory of spaces’.
There is even no need to assume from the beginning that Σ is embedded in some
space–time; only after solving the equations of motion can we interpret hab(t) as
being brought about by ‘wafting’ Σ through M via a one-parameter family of
embeddings.
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Fig. 4.2. Geometric interpretation of the extrinsic curvature.

In order to introduce the corresponding ‘velocity’ for hab, one can start by
considering the following tensor field,10

Kµν = h ρ
µ ∇ρnν . (4.45)

Since Kµνnµ = 0 = Kµνnν , this tensor field is a purely spatial quantity and
can be mapped to its spatial version Kab (with indices being moved by the
three-metric). One can prove, using Frobenius’ theorem for the hypersurface-
orthogonal vector field nµ, that this tensor field is symmetric, Kµν = Kνµ.

Its geometric interpretation can be inferred from Fig. 4.2. Consider the nor-
mal vectors at two different points P and Q of a hypersurface. Be ñµ the vector
at P resulting from parallel transporting nµ along a geodesic from Q to P. The
difference between nµ and ñµ is a measure for the embedding curvature of Σ
into M at P. One therefore recognizes that the tensor field (4.45) can be used to
describe this embedding curvature, since it vanishes for nµ = ñµ. One can also
rewrite Kµν in terms of a Lie derivative,

Kµν =
1
2
Lnhµν , (4.46)

where n denotes the normal vector field. Therefore, Kab can be interpreted as
the ‘velocity’ associated with hab. It is called ‘extrinsic curvature’ or ‘second
fundamental form’. Its trace,

K ≡ K a
a = habKab ≡ θ (4.47)

can be interpreted as the ‘expansion’ of a geodesic congruence orthogonal to Σ.11

In terms of lapse and shift, the extrinsic curvature can be written as

Kab =
1

2N

(
ḣab − DaNb − DbNa

)
, (4.48)

and the two terms involving the spatial covariant derivative are together equiv-
alent to −LNhab. As we shall see in the next subsection, the components of the
canonical momentum are obtained by a linear combination of the Kab.

10Sometimes a different sign is used in this definition.
11For a Friedmann universe (cf. Section 8.1.2) K is three times the Hubble parameter.
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4.2.2 Hamiltonian form of the Einstein–Hilbert action

One can now reformulate the Einstein–Hilbert action (1.1) in terms of the three-
dimensional variables hab and Kab. For this purpose one needs the relationship
between the four-dimensional and the three-dimensional curvatures. This is given
by the Gauss equation as being generalized to higher dimensions,

(3)R ρ
µνλ = h µ′

µ h ν′
ν h λ′

λ hρ
ρ′R

ρ′
µ′ν′λ′ − KµλK ρ

ν + KνλK ρ
µ , (4.49)

and the generalized Codazzi equation,

DµKνλ − DνKµλ = h µ′
µ h ν′

ν h λ′
λ Rµ′ν′λ′ρn

ρ . (4.50)

Contraction of (4.50) with gµλ gives

DµKµ
ν − DνK = Rρλnλhρ

ν . (4.51)

In the much simpler case of a two-dimensional hypersurface embedded in three-
dimensional flat euclidean space, (4.49) is the famous theorema egregium of Gauss
(cf. the discussion by Kuchař 1993). In this case, the first term on the right-hand
side is zero, and the theorema connects the only independent component of the
two-dimensional Riemann tensor, (2)R2112, with the extrinsic curvature of the
hypersurface,

(2)R2112 = K11K22 − K21K12 ≡ detKab . (4.52)

With the aid of the two principal curvatures κ1 and κ2, this can be written as

(2)R = 2κ1κ2 . (4.53)

This gives the connection between intrinsic and extrinsic geometry, and its ex-
act form holds because the embedding three-dimensional space is flat. If this
embedding space has Lorentzian signature, one gets instead

(2)R = −2κ1κ2 . (4.54)

Kuchař (1993) expresses this in the form that the ‘law of the instant’ (because
the hypersurface refers to t = constant) implies the ‘dynamical law’ (expressing
the flatness of the whole embedding space–time).

In 3+1 dimensions the situation is more complicated. Addressing the vacuum
Einstein equations,12 Gµν = 0, one finds for its ‘space–time component’

0 = hµ
ρGµνnν = hµ

ρRµνnν ,

which can be rewritten with the help of (4.51) as

DbK
b
a − DaK = 0 . (4.55)

12The cosmological constant here is neglected for simplicity.
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For the ‘time–time component’ one has

0 = Gµνnµnν = Rµνnµnν +
R

2
. (4.56)

From (4.49) one finds upon contraction of indices,

(3)R + K µ
µ K ν

ν − KµνKµν = hµµ′
h ν′

ν h λ′
µ hν

ρ′R
ρ′

µ′ν′λ′ .

The right-hand side is equal to

R + 2Rµνnµnν = 2Gµνnµnν ,

and so the ‘time–time component’ of Einstein’s equations reads

K2 − KabK
ab + (3)R = 0 . (4.57)

This is the (3+1)-dimensional version of the theorema egregium. Both (4.55) and
(4.57) are constraints—they only contain first-order time derivatives. These con-
straints play a crucial role in the initial value formulation of classical GR, see for
example, Choquet-Bruhat and York (1980) for a review. There, one can specify
initial data (hab, Kcd) on Σ, where hab and Kcd satisfy the constraints (4.55) and
(4.57). One can then prove that there exists one globally hyperbolic space–time
obeying Einstein’s equations (i.e. a unique solution for the four-metric up to
diffeomorphisms), which has a Cauchy surface on which the induced metric and
the extrinsic curvature are just hab and Kcd, respectively.

In electrodynamics, for comparison, one has to specify A and E on Σ satis-
fying the constraint (Gauss’ law (4.30)) ∇E = 0. One then gets in space–time a
solution of Maxwell’s equations that is unique up to gauge transformation. The
important point is that the space–time is fixed in Maxwell’s theory, whereas in
the gravitational case it is part of the solution.

That the dynamical laws follow from the laws of the instant can be inferred
from the validity of the following ‘interconnection theorems’ (cf. Kuchař (1981))

1. If the constraints are valid on an initial hypersurface and if Gab = 0 (pure
spatial components of the vacuum Einstein equations) on space–time, the
constraints hold on every hypersurface.

2. If the constraints hold on every hypersurface, the equations Gab = 0 hold
on space–time.

Similar properties hold in Maxwell’s theory, cf. Giulini and Kiefer (2007). In
the presence of non-gravitational fields, ∇µT µν = 0 is needed as an integrability
condition (analogously to ∂µjµ = 0 for Maxwell’s equations).

In order to reformulate the Einstein–Hilbert action (1.1), one has to express
the volume element and the Ricci scalar in terms of hab and Kcd. For the volume
element one finds √

−g = N
√

h . (4.58)
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This can be seen as follows. Defining the three-dimensional volume element
as (see e.g. Wald 1984)

(3)eµνλ = eρµνλtρ ,

with tρ according to (4.40) and eρµνλ denoting the time-independent four-dimen-
sional volume element, one has by using ερµνλ =

√−g eρµνλ,

ερµνλtρ =
√
−g eµνλ =

√
− g

h
εµνλ ,

from which (4.58) follows after using (4.40) and taking purely spatial compo-
nents. Equation (4.58) can also be found from (4.42).

We shall now assume in the following that Σ is compact without boundary;
the boundary terms for the non-compact case will be discussed separately in
Section 4.2.4. In order to rewrite the curvature scalar, we use first (4.56) in the
following form,

R = (3)R + K2 − KabK
ab − 2Rµνnµnν . (4.59)

Using the definition of the Riemann tensor in terms of second covariant deriva-
tives,

Rρ
µρνnµ = ∇ρ∇νnρ −∇ν∇ρn

ρ ,

the second term on the right-hand side can be written as

−2Rµνnµnν = 2(∇ρn
ν)(∇νnρ) − 2∇ρ(nν∇νnρ)

−2(∇νnν)(∇ρn
ρ) + 2∇ν(nν∇ρn

ρ) . (4.60)

The second and fourth term are total divergences. They can thus be cast into sur-
face terms at the temporal boundaries. The first surface term yields −2(nν∇νnρ)
nρ = 0, while the second one gives 2∇µnµ = −2K (recall (4.45)). The two re-
maining terms in (4.60) can be written as 2KabK

ab and −2K2, respectively.
Inspecting the Einstein–Hilbert action (1.1), one recognizes that the temporal
surface term is cancelled, and that the action now reads

16πG SEH =
∫

M
dtd3x N

√
h(KabK

ab − K2 + (3)R − 2Λ)

≡
∫

M
dtd3x N

(
GabcdKabKcd +

√
h[ (3)R − 2Λ]

)
, (4.61)

where in the second line DeWitt’s metric (4.25) was introduced. The action (4.61)
is also called the ‘ADM action’ in recognition of the work by Arnowitt, Deser,
and Misner, see Arnowitt et al. (1962). It has the classic form of kinetic energy
minus potential energy, since the extrinsic curvature contains the ‘velocities’ ḣab,
see (4.48). Writing

SEH ≡
∫

M
dtd3x Lg ,

one gets for the canonical momenta the following expressions. First,
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pN ≡ ∂Lg

∂Ṅ
= 0 , pg

a ≡ ∂Lg

∂Ṅa
= 0 . (4.62)

Because lapse function and shift vector are only Lagrange multipliers (similar
to A0 in electrodynamics), these are constraints (called ‘primary constraints’
according to Dirac (1964), since they do not involve the dynamical equations).
Second,

pab ≡ ∂Lg

∂ḣab

=
1

16πG
GabcdKcd =

√
h

16πG

(
Kab − Khab

)
. (4.63)

Note that the gravitational constant G appears here explicitly, although no cou-
pling to matter is involved. This is the reason why it will appear in vacuum
quantum gravity; see Section 5.2. One therefore has the Poisson-bracket rela-
tion13

{hab(x), pcd(y)} = δc
(aδd

b)δ(x, y) . (4.64)

Recalling (4.48) and taking the trace of (4.63), one can express the velocities in
terms of the momenta,

ḣab =
32πGN√

h

(
pab −

1
2
phab

)
+ DaNb + DbNa , (4.65)

where p ≡ pabhab. One can now calculate the canonical Hamiltonian density

Hg = pabḣab − Lg ,

for which one gets the expression14

Hg = 16πGNGabcdp
abpcd − N

√
h( (3)R − 2Λ)

16πG
− 2Nb(Dapab) . (4.66)

The full Hamiltonian is found by integration,

Hg ≡
∫

d3x Hg ≡
∫

d3x (NHg
⊥ + NaHg

a) . (4.67)

The action (4.61) can be written in the form

16πG SEH =
∫

dtd3x
(
pabḣab − NHg

⊥ − NaHg
a

)
. (4.68)

Variation with respect to the Lagrange multipliers N and Na yields the con-
straints15

13This is formal at this stage since it does not take into account that
√

h > 0.
14This holds modulo a total divergence which does not contribute in the integral because Σ

is compact.
15These also follow from the preservation of the primary constraints, {pN , Hg} = 0 =

{pg
a, Hg}.
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Hg
⊥ = 16πGGabcdp

abpcd −
√

h

16πG
( (3)R − 2Λ) ≈ 0 , (4.69)

Hg
a = −2Dbp

b
a ≈ 0 . (4.70)

In fact, the constraint (4.69) is equivalent to (4.57), and (4.70) is equivalent to
(4.55)—they are called Hamiltonian constraint and diffeomorphism (or momen-
tum) constraint, respectively. From its structure, (4.69) has some similarity to the
constraint for the relativistic particle, Equation (3.24), while (4.70) is similar to
(4.30). It can now be seen explicitly that these constraints are equivalent to the
results from the ‘seventh route to geometrodynamics’, see (4.21) and (4.22). The
total Hamiltonian is thus constrained to vanish, a result that is in accordance
with our general discussion of reparametrization invariance of Section 3.1. In the
case of non-compact space, boundary terms are present in the Hamiltonian; see
Section 4.2.4.

In addition to the constraints, one has the six dynamical equations, the
Hamiltonian equations of motion. The first half, ḣab = {hab, H

g}, just gives
(4.65). The second half, ṗab = {pab, Hg}, yields a lengthy expression (see e.g.
Wald 1984) that is not needed for canonical quantization. It is, of course, needed
for applications of the classical canonical formalism such as gravitational-wave
emission from compact binary objects.

If non-gravitational fields are coupled, the constraints acquire extra terms.
In (4.56) one has to use that

2Gµνnµnν = 16πGTµνnµnν ≡ 16πGρ .

Instead of (4.69) one now has the following expression for the Hamiltonian con-
straint,

H⊥ = 16πGGabcdp
abpcd −

√
h

16πG
( (3)R − 2Λ) +

√
hρ ≈ 0 . (4.71)

Similarly, one has instead of (4.70) for the diffeomorphism constraints,

Ha = −2Dbp
b

a +
√

hJa ≈ 0 , (4.72)

where Ja ≡ h µ
a Tµνnν is the ‘Poynting vector’. Consider as special examples the

cases of a scalar field and the electromagnetic field. With the Lagrange density

L =
√
−g

(
− 1

2 gµνφ,µφ,ν − 1
2 m2φ2) (4.73)

for the scalar field one finds for its Hamiltonian

Hφ =
∫

d3x N

(
p2

φ

2
√

h
+

√
h

2
habφ,aφ,b +

1
2

√
hm2φ2

)

+
∫

d3x Napφφ,a . (4.74)
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The term in parentheses in the first integral has to be added to Hg
⊥, while the

term pφφ,a (which we have already encountered in (4.14)) must be added to Hg
a.

For the electromagnetic field, starting from

L = − 1
4

√
−ggµρgνσFµνFρσ , (4.75)

one gets for the Hamiltonian

HEM =
∫

d3x N

(
hab

2
√

h
papb +

√
h

2
habBaBb

)

+
∫

d3x Na (∂aAb − ∂bAa) pb −
∫

d3x A0∂apa , (4.76)

where pa = ∂L/∂Ȧa is the electric field and Ba = (1/2)εabcF
bc, the magnetic

field. Note that the term in parentheses in the second integral is just the H̄a from
(4.28), and variation with respect to the Lagrange multiplier A0 yields Gauss’
law (4.30). If fermionic degrees of freedom are present, one must perform the
3+1 decomposition with respect to the vierbein instead of the four-metric; see for
example, Ashtekar (1991). The classical canonical formalism for the gravitational
field as discussed up to now was pioneered by Peter Bergmann, Paul Dirac,
‘ADM’, and others in the 1950s. For a historical account and references, see
for example, Bergmann (1989, 1992) and Rovelli (2004). We finally want to
remark that the canonical quantization of higher-derivative theories such as R2-
gravity can also be performed (cf. Boulware 1984). The formalism is then more
complicated since one has to introduce additional configuration-space variables
and momenta.

4.2.3 Discussion of the constraints

The presence of the constraints derived in the last subsection means that only
part of the variables constitute physical degrees of freedom (cf. Section 3.1.2).
How may one count them? The three-metric hab(x) is characterized by six num-
bers per space point (often symbolically denoted as 6×∞3). The diffeomorphism
constraints (4.70) generate coordinate transformations on three-space. These are
characterized by three numbers, so 6−3 = 3 numbers per point remain. The con-
straint (4.69) corresponds to one variable per space point describing the location
of Σ in space–time (since Σ changes under normal deformations). In a sense,
this one variable therefore corresponds to ‘time’, and 2 × ∞3 degrees of free-
dom remain. Baierlein et al. (1962) have interpreted this as the ‘three-geometry
carrying information about time’.

The gravitational field thus seems to be characterized by 2 × ∞3 intrinsic
degrees of freedom. This is consistent with the corresponding number found in
linear quantum gravity—the two spin-2 states of the graviton (Section 2.1). One
can alternatively perform the following counting in phase space: the canonical
variables (hab(x), pcd(y)) are 12 ×∞3 variables. Due to the presence of the four
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constraints in phase space, 4×∞3 variables have to be subtracted. The remaining
8 × ∞3 variables define the constraint hypersurface Γc. Since the constraints
generate a four-parameter set of gauge transformations on Γc (see Section 3.1.2),
4 ×∞3 degrees of freedom must be subtracted in order to ‘fix the gauge’. The
remaining 4 × ∞3 variables define the reduced phase space Γr and correspond
to 2 × ∞3 degrees of freedom in configuration space—in accordance with the
counting above. It must be emphasized that this counting always holds modulo
a finite number of degrees of freedom—an example is gravity in 2+1 dimensions
(Section 8.1.3).

Does a three-dimensional geometry indeed contain information about time?
Consider a situation in non-gravitational physics, for example, electrodynamics.
There the specification of the, say, magnetic field on two hypersurfaces does not
suffice to determine the field everywhere. In addition, the time parameters of the
two surfaces must be specified for an appropriate boundary-value problem. In
contrast to the gravitational case, the background space–time is fixed here (i.e.,
it is non-dynamical). As we have seen in Section 3.4, two configurations (e.g. of a
clock) in classical mechanics do not suffice to determine the motion—one needs
in addition the two times of the clock configurations or its speed.

The situation in the gravitational case is related to the ‘sandwich conjecture’.
This conjecture states that two three-geometries do (in the generic case) deter-
mine the temporal separation (the proper times) along each time-like worldline
connecting them in the resulting space–time. Whereas not much is known about
the finite version of this conjecture, results are available for the infinitesimal
case. In this ‘thin-sandwich conjecture’, one specifies on one hypersurface the
three-metric hab and its ‘time derivative’ ∂hab/∂t—the latter is only required
up to a numerical factor, since the ‘speed’ itself is meaningless; only the ‘di-
rection’ in configuration space is of significance. The thin-sandwich conjecture
holds if one can determine from these initial conditions lapse and shift from the
constraints.16 It has been shown that this can be done locally for ‘generic’ sit-
uations; see Bartnik and Fodor (1993) for pure gravity and Giulini (1999) for
gravity plus matter.17

The ‘temporal’ degree of freedom of the three-geometry cannot in general be
separated from other variables, that is, all three degrees of freedom contained in
hab (after the diffeomorphism constraints have been considered) should be inter-
preted as physical variables, and be treated on equal footing. In the special case
of linear gravity (Section 2), a background structure is present. This enables one
to separate a distinguished time and to regard the remaining variables, the two
degrees of freedom of the graviton, as the only physical variables. The identifica-
tion of one variable contained in the hab(x) as ‘time’ thus seems only possible in
situations where the hypersurface is already embedded in a space–time satisfying

16This boundary-value problem must be distinguished from the one above where hab and
pcd are specified on Σ and a space–time can be chosen after lapse and shift are freely chosen.

17The condition is that the initial speed must have at each space point a negative square
with respect to the DeWitt metric.



116 HAMILTONIAN FORMULATION OF GENERAL RELATIVITY

Einstein’s equations (which will certainly not be the case in quantum gravity;
see Chapter 5). Moreover, Torre (1993) has shown that GR cannot globally be
equivalent to a deparametrized theory in the sense of Section 3.3, that is, no
distinguished time variable is available.

Starting from the ADM action (4.61), one may find an alternative formulation
by first varying the action with respect to N and then inserting the ensuing solu-
tion back into it. This corresponds to the solution of the Hamiltonian constraint.
Writing for the DeWitt metric

Gabcd ≡
√

hGabcd ,

a variation with respect to N yields (for Λ = 0)

N =
1
2

√
Gabcd(ḣab − 2D(aNb))(ḣcd − 2D(cNd))

(3)R
. (4.77)

Re-inserting (4.77) into (4.61), one finds the ‘Baierlein–Sharp–Wheeler (BSW)’
form of the action,

16πGSBSW =
∫

dt d3x
√

h

√
(3)RGabcd(ḣab − 2D(aNb))(ḣcd − 2D(cNd)) .

(4.78)
A justification of SBSW from a ‘Machian’ viewpoint can be found in Barbour
et al. (2002). This action resembles the Jacobi-type action (3.105), but is much
more sophisticated. Now only the shift functions Na have to be varied. If a
unique solution existed, one could employ the thin-sandwich conjecture, that
is, one could construct the space–time out of initial data hab and ḣab. This
procedure corresponds to the ‘horizontal stacking’ (also called ‘best matching’
or ‘G-frame method’) mentioned in Section 3.4. In such an approach, GR can
be derived without any prior assumptions of a space–time nature such as the
validity of the principle of path independence described in Section 4.1. It is not
necessary to require the constraints to close in the specific manner of the algebra
of surface deformations (3.90)–(3.92). Mere closure in any fashion is sufficient to
accommodate GR, universality of the lightcone and gauge theory (Barbour et
al. 2002; cf. also Anderson 2005).

In this connection, Barbour (1994) argues that the Hamiltonian constraint
does not further restrict the number of physical variables (i.e. does not restrict
them from 3×∞3 to 2×∞3), but is an identity that reflects the fact that only
the direction of the initial velocity matters, not its absolute value. In the model
of Section 3.4, one has for the canonical momentum the expression

pk =
√
−V

mkẋk√
1
2

∑
k mkẋ2

k

, (4.79)
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leading to the constraint (3.108). The second factor in (4.79) describes ‘direction
cosines’, their usual relation—the sum of their squares is equal to one—being
equivalent to (3.108). Here one finds from (4.78) for the momentum18

pab
BSW =

√
h

16πG

√
(3)R

T
Gabcd(ḣcd − 2D(cNd)) , (4.80)

where the ‘kinetic term’ is given by

T = Gabcd(ḣab − 2D(aNb))(ḣcd − 2D(cNd)) . (4.81)

Similar to (4.79), these momenta define direction cosines which due to the infinite
dimensions of configuration space are ‘local’ direction cosines.

The somewhat ambiguous nature of the Hamiltonian constraint (4.69) leads
to the question whether it really generates gauge transformations. The answer
should be ‘yes’ in view of the general fact (Section 3.1.2) that first-class con-
straints have this property. On the other hand, Hg

⊥ is also responsible for the
time evolution, mediating between different hypersurfaces. Can this time evolu-
tion be interpreted as the ‘unfolding’ of a gauge transformation? This is indeed
possible because the presence of the constraint Hg

⊥ ≈ 0 expresses the fact that
evolutions along different foliations are equivalent.

A related issue concerns the notion of an ‘observable’. This was defined in
Section 3.1.2 as a variable that weakly commutes with the constraints. In the
present situation, an observable O should then satisfy

{O,Hg
a} ≈ 0 , (4.82)

{O,Hg
⊥} ≈ 0 . (4.83)

While the first condition is certainly reasonable (observables should not depend
on the chosen coordinates of Σ), the situation is not so clear for the second
condition. To emphasize the difference between both equations, Kuchař (1993)
refers to quantities obeying (4.82) already as observables and to variables that
obey in addition (4.83) as ‘perennials’. Since perennials weakly commute with
the full Hamiltonian, they are constants of motion. The insistence on perennials
as the only allowed quantities in the theory would correspond to an (unphysical)
‘outside’ view of the world and would be in conflict with our experience of the
world evolving in time. The latter arises from tracking one part of the variables
with respect to the remaining part (‘inside view’). There can thus be a sensible
notion of time evolution with respect to intrinsic observers. We shall say more
about these interpretational issues in the context of the quantum theory; see
Chapter 5.

We have already seen in Section 4.1 that the transformations generated by
the constraints (4.69) and (4.70) are different from the original space–time diffeo-
morphisms of GR. The formal reason is that Hg

⊥ is non-linear in the momenta,

18This is of course equal to pab after the identification (4.77) for the lapse has been made.
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so the transformations in the phase space Γ spanned by (hab, p
cd) cannot be re-

duced to space–time transformations. What, then, is the relation between both
types of transformations? Let (M, g) be a globally hyperbolic space–time. We
shall denote by Riem M the space of all (pseudo-) Riemannian metrics on M.
Since the group of space–time diffeomorphisms, Diff M, does not act transitively,
there exist non-trivial orbits in Riem M. One can make a projection down to
the space of all four-geometries, Riem M/Diff M. By considering a particular
section,

σ : Riem M/Diff M �→ Riem M , (4.84)

one can choose a particular representative metric on M for each geometry. In
this way one can define formal points of the ‘background manifold’ M, which a
priori have no meaning (in GR, points cannot be disentangled from the metric
fields). The map between different sections is not a single diffeomorphism, but a
more complicated transformation (an element of the ‘Bergmann–Komar group’,
see Bergmann and Komar 1972). Háj́ıček and Kijowski (2000) have shown (see
also Háj́ıček and Kiefer 2001a and Section 7.2) that there exists a map from

Riem M/Diff M× Emb(Σ,M) ,

where Emb(Σ,M) denotes the space of all embeddings of Σ into M, into the
phase space Γ but excluding points where the constructed space–times admit an
isometry. Therefore, the identification between space–time diffeomorphisms and
the transformations in phase space proceeds via whole ‘histories’. The necessary
exclusion of points representing Cauchy data for space–times with Killing vec-
tors from Σ is one of the reasons why GR cannot be equivalent globally to a
deparametrized theory (Torre 1993).

One interesting limit for the Hamiltonian constraint (4.69) is the ‘strong-
coupling limit’ defined by setting formally G → ∞. This is the limit opposite to
the weak-coupling expansion of Chapter 2. It also corresponds formally to the
limit c → 0, that is, the limit opposite to the Galileian case of infinite speed
of light. This can be seen by noting that the constant in front of the potential
term in (4.69) in fact reads c4/16πG. Therefore, in this limit, the lightcones
effectively collapse to the axes x = constant; different spatial points decouple
because all spatial derivative terms being present in (3)R have disappeared. One
can show that this situation corresponds to having a ‘Kasner universe’ at each
space point; see Pilati (1982, 1983) for details. Since the potential term also
carries the signature σ, this limit also corresponds formally to σ = 0, that is,
the Poisson bracket between the Hamiltonian constraint (3.90) becomes zero.
The decoupling of space points can also be recognized in the BKL-oscillations
that occur when one approaches the cosmological singularity; cf. Belinskii et al.
(1982).

4.2.4 The case of open spaces
Up to now we have neglected the presence of possible spatial boundary terms
in the Hamiltonian. In this subsection, we shall briefly discuss the necessary
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modifications for the case of open spaces (where ‘open’ means ‘asymptotically
flat’). The necessary details can be found in Regge and Teitelboim (1974) and
Beig and Ó Murchadha (1987).

Variation of the full Hamiltonian Hg with respect to the canonical variables
hab and pcd yields

δHg =
∫

d3x
(
Aabδhab + Babδp

ab
)
− δC , (4.85)

where δC denotes surface terms. Because Hg must be a differentiable function
with respect to hab and pcd (otherwise Hamilton’s equations of motion would
not make sense), δC must be cancelled by introducing explicit surface terms to
Hg. For the derivation of such surface terms, one must impose fall-off conditions
for the canonical variables. For the three-metric they read

hab
r→∞∼ δab + O

(
1
r

)
, hab,c

r→∞∼ O
(

1
r2

)
, (4.86)

and analogously for the momenta. The lapse and shift, if again combined to the
four-vector Nµ, are supposed to obey

Nµ r→∞∼ αµ + βµ
a xa , (4.87)

where αµ describe space–time translations, βab = −βba spatial rotations, and
β⊥

a boosts. Together, they form the Poincaré group of Minkowski space–time,
which is a symmetry in the asymptotic sense. The procedure mentioned above
then leads to the following expression for the total Hamiltonian:

Hg =
∫

d3x (NHg
⊥ + NaHg

a) + αEADM − αaPa + 1
2 βµνJµν , (4.88)

where EADM (also called ‘ADM’ energy; see Arnowitt et al. 1962), Pa, and Jµν

are the total energy, the total momentum, and the total angular momentum
plus the generators of boosts, respectively. Together they form the generators of
the Poincaré group at infinity. They obey the standard commutation relations
(2.34)–(2.36). For the ADM energy, in particular, one finds the expression

EADM =
1

16πG

∮
r→∞

d2σa(hab,b − hbb,a) . (4.89)

Note that the total energy is defined by a surface integral over a sphere for
r → ∞ and not by a volume integral. One can prove that EADM ≥ 0.

The integral in (4.88) is the same integral as in (4.67). Because of the con-
straints (4.69) and (4.70), Hg is numerically equal to the surface terms. For
vanishing asymptotic shift and lapse equal to one, it is just given by the ADM
energy. We emphasize that the asymptotic Poincaré transformations must not
be interpreted as gauge transformations (otherwise EADM, P a, and Jµν would
be constrained to vanish), but as proper physical symmetries, see the remarks
in the following subsection.
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4.2.5 Structure of configuration space

An important preparation for the quantum theory is an investigation into the
structure of the configuration space because this will be the space on which the
wave functional will be defined.

We have seen that the canonical formalism deals with the set of all three-
metrics on a given manifold Σ. We call this space Riem Σ (not to be confused
with Riem M considered above). As configuration space of the theory we want to
address the quotient space in which all metrics corresponding to the same three-
geometry are identified. Following Wheeler (1968) we call this space ‘superspace’.
It is defined by

S(Σ) ≡ Riem Σ/Diff Σ . (4.90)

By going to superspace the momentum constraints (4.70) are automatically ful-
filled. Whereas Riem Σ has a simple topological structure (it is a cone in the
vector space of all symmetric second-rank tensor fields), the topological struc-
ture of S(Σ) is very complicated because it inherits (through Diff Σ) some of the
topological information contained in Σ.

In general, Diff Σ can be divided into a ‘symmetry part’ and a ‘redundancy
part’ (Giulini 1995a). Symmetries arise typically in the case of asymptotically
flat spaces (Section 4.2.4). They describe, for example, rotations with respect
to the remaining part of the universe (‘fixed stars’). Since they have physical
significance, they should not be factored out, and Diff Σ is then understood
to contain only the ‘true’ diffeomorphisms (redundancies). In the closed case
(relevant in particular for cosmology) only the redundancy part is present.

For closed Σ, S(Σ) has a non-trivial singularity structure due to the occur-
rence of metrics with isometries (Fischer 1970); at such singular points, super-
space is not a manifold (a situation like e.g. at the tip of a cone). A proposal
to avoid such singularities employing a ‘resolution space’ SR(Σ) was made by
DeWitt (1970).

In the open case, one can perform a ‘one-point compactification’, Σ̄ ≡ Σ ∪
{∞}. The corresponding superspace is then defined as

S(Σ) ≡ Riem Σ̄/DF(Σ̄) , (4.91)

where DF(Σ̄) are all diffeomorphisms that fix the frames at infinity. The open
and the closed case are closer to each other than expected. One can show (Fi-
scher 1986) that SR(Σ̄) and S(Σ) are diffeomorphic. For this reason, one can
restrict topological investigations to the former space (Giulini 1995a).

The DeWitt metric Gabcd, see (4.25), plays the role of a metric on Riem Σ,

G(l, k) ≡
∫

Σ
d3x Gabcdlabkcd , (4.92)

where l and k denote tangent vectors at h ∈ Riem Σ. Due to its symmetry
properties, it can formally be considered as a symmetric 6×6-matrix at each space
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point (DeWitt 1967a). At each point this matrix can therefore be diagonalized,
and the signature turns out to read

diag(−, +, +, +, +, +) .

A quantity with similar properties is known in elasticity theory—the fourth-rank
elasticity tensor cabcd possesses the same symmetry properties as DeWitt’s metric
and, therefore, has (in three spatial dimensions) 21 independent components; see
e.g. Marsden and Hughes (1983).

It must be emphasized that the negative sign in DeWitt’s metric has nothing
to do with the Lorentzian signature of space–time; in the Euclidean case, the
minus sign stays and only the relative sign between potential and kinetic term
will change (σ = 1 instead of −1 in (4.24)). Due to the presence of this minus
sign, the kinetic term for the gravitational field is indefinite. To gain a deeper un-
derstanding of its meaning, consider the following class of (generalized) DeWitt
metrics which exhaust (up to trivial transformations) the set of all ultralocal
metrics (DeWitt 1967a; cf. also Schmidt 1990),

Gabcd
β =

√
h

2
(
hachbd + hadhbc − 2βhabhcd

)
, (4.93)

where β is any real number (the GR-value is β = 1). Its inverse is then given by

Gα
abcd =

1
2
√

h
(hachbd + hadhbc − 2αhabhcd) , (4.94)

where
α + β = 3αβ (4.95)

(in GR, α = 0.5).19 What would be the meaning of the constraints Hg
⊥ and Hg

a

if the generalized metric (4.93) were used? Section 4.1 shows that for β 
= 1 the
principle of path independence must be violated, since the GR-value β = 1 fol-
lows uniquely from this principle. The theories defined by these more generalized
constraints can thus not correspond to reparametrization-invariant (‘covariant’)
theories at the Lagrangian level. In a sense, these would be genuinely Hamiltonian
theories. One can perform the following coordinate transformation in Riem Σ,

τ = 4
√
|β − 1/3 |h1/4 , h̃ab = h−1/3hab , (4.96)

thus decomposing the three-metric into ‘scale part’ τ and ‘conformal part’ h̃ab.
The ‘line element’ in Riem Σ can then be written as

Gabcd
β dhab ⊗ dhcd = −sgn (β − 1/3) dτ ⊗ dτ +

τ2

16|β − 1/3|tr
(
h̃−1dh̃ ⊗ h̃−1dh̃

)
(4.97)

(for the inverse metric entering (4.69) one must substitute β by α). It is evident
that the line element becomes degenerate for β = 1/3 (corresponding to α → ∞);

19In d space dimensions, one has α + β = dαβ.
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for β < 1/3 it becomes positive definite, whereas for β > 1/3 it is indefinite (this
includes the GR-case).

At each space point, Gabcd
β can be considered as a metric in the space of

symmetric positive definite 3 × 3 matrices, which is isomorphic to R6. Thus,

R6 ∼= GL(3, R)/SO(3) ∼= SL(3, R)/SO(3) × R+ . (4.98)

The h̃ab are coordinates on SL(3, R)/SO(3), and τ is the coordinate on R+. The
relation (4.98) corresponds to the form (4.97) of the line element. All structures
on SL(3, R)/SO(3)×R+ can be transferred to Riem Σ, since Gabcd

β is ultralocal.
One can give an interpretation of one consequence of the signature change

that occurs for β = 1/3 in (4.97). For this one calculates the acceleration of
the three-volume V =

∫
d3x

√
h (assuming it is finite) for N = 1. After some

calculation, one finds the expression (Giulini and Kiefer 1994)

d2

dt2

∫
d3x

√
h = −3(3α − 1)

∫
d3x

√
h

(
2
3

(3)R − 2Λ

−16πG

[
Hm − 1

3
hab ∂Hm

∂hab

])
. (4.99)

We call gravity ‘attractive’ if the sign in front of the integral on the right-hand
side is negative. This is because then

1. a positive (3)R contributes with a negative sign and leads to a deceleration
of the three-volume;

2. a positive cosmological constant acts repulsively;
3. in the coupling to matter, an overall sign change corresponds to a sign

change in G.20

In the Hamiltonian constraint (4.69), the inverse metric (4.94) enters. The
critical value separating the positive definite from the indefinite case is thus
α = 1/3. One, therefore, recognizes that there is an intimate relation between
the signature of the DeWitt metric and the attractivity of gravity: only for an
indefinite signature is gravity attractive. From observations (primordial Helium
abundance) one can estimate (Giulini and Kiefer 1994) that

0.4 � α � 0.55 . (4.100)

This is, of course, in accordance with the GR-value α = 0.5.
We return now to the case of GR. The discussion so far concerns the metric

on Riem Σ, given by the DeWitt metric (4.25). Does this metric also induce a
metric on superspace (Giulini 1995b)? In Riem Σ, one can distinguish between
‘vertical’ and ‘horizontal’ directions. The vertical directions are the directions
along the orbits generated by the three-dimensional diffeomorphisms. Metrics

20This does not, of course, necessarily mean that G changes sign in all relations.
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ve

rt
ic

al

horizontal

[h] [h′] [h′′]

h

h′
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Fig. 4.3. The space Riem Σ, fibred by the orbits of Diff Σ (curved vertical lines).

Tangent directions to these orbits are called ‘vertical’, the G-orthogonal directions

‘horizontal’. Horizontal and vertical directions intersect whenever the ‘hyper-light-

cone’ touches the vertical directions, as in point h′. At h, h′, and h′′ the vertical

direction is depicted as time-, light-, and spacelike respectively. Hence [h′] corre-

sponds to a transition point where the signature of the metric in superspace changes.

From Giulini and Kiefer (2007).

along a given orbit describe the same geometry. Horizontal directions are defined
as being orthogonal to the orbits, where orthogonality holds with respect to the
DeWitt metric. Since the latter is indefinite, the horizontal directions may also
contain vertical directions (this happens in the ‘light-like’ case for zero norm).
Calling Vh (Hh) the vertical (horizontal) subspace with respect to a given metric
hab, one can show that

1. if Vh ∩ Hh = {0}, then Gabcd can be projected to the horizontal subspace
where it defines a metric;

2. if Vh∩Hh 
= {0}, then there exist critical points in S(Σ) where the projected
metric changes signature.

The situation is illustrated in Fig. 4.3.
The task is then to classify the regions in Riem Σ according to these two

cases. There exist some partial results (Giulini 1995b). For metrics obeying
(3)Rab = λhab (‘Einstein metrics’), one has Vh ∩ Hh = {0} and, consequently, a
metric on S(Σ) exists. Moreover, one can show that for (3)R > 0 (three-sphere)
there remains only one negative direction in Hh out of the infinitely many neg-
ative directions in the DeWitt metric (in Vh there are infinitely many negative
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directions). The kinetic term in the Hamiltonian constraint is then of a truly hy-
perbolic nature (in contrast to the general hyperbolicity in the pointwise sense).
This holds in particular in the vicinity of closed Friedmann universes which are
therefore distinguished in this respect. A perturbation around homogeneity and
isotropy has exhibited this property explicitly (Halliwell and Hawking 1985). It is
an open question ‘how far’ one has to go from the hyperbolic case near (3)R > 0
in order to reach the first points where the signature changes.

For Ricci-negative metrics21 (i.e. all eigenvalues of (3)Rab are negative), one
finds that Vh ∩Hh = {0}, and that the projected metric on superspace contains
infinitely many plus and minus signs. For flat metrics, one has Vh ∩ Hh 
= {0}.
Some of these results can explicitly be confirmed in Regge calculus; cf. Sec-
tion 2.2.6.

4.3 Canonical gravity with connections and loops

4.3.1 The canonical variables

One of the key ingredients in the canonical formalism is the choice of the sym-
plectic structure, that is, the choice of the canonical variables. In the previous
sections, we have chosen the three-metric hab and its momentum pcd. In this
section, we shall introduce different variables introduced by Ashtekar (1986) fol-
lowing earlier work by Sen (1982). These ‘new variables’ will exhibit their main
power in the quantum theory; see Chapter 6. Since they are analogous to Yang–
Mills variables (using connections), the name ‘connection dynamics’ is also used.
A more detailed introduction into these variables can be found in Ashtekar (1988,
1991) and—taking into account more recent developments—Thiemann (2001).

The first step consists in the introduction of triads (or dreibeine). They will
play the role of the canonical momentum. Similar to the tetrads (vierbeine)
used in Section 1.1.4, they are given by the variables ea

i (x) which define an
orthonormal basis at each space point. Here, a = 1, 2, 3 is the usual space index
(referring to the tangent space Tx(Σ) at x) and i = 1, 2, 3 are internal indices
enumbering the vectors. The position of the internal indices is arbitrary. One has
the orthonormality condition

habe
a
i eb

j = δij , (4.101)

from which one gets
hab = δijea

i eb
j ≡ ea

i eb
i . (4.102)

This introduces an SO(3) (or SU(2)) symmetry into the formalism, since the
metric is invariant under local rotations of the triad. Associated with ea

i (x) is
an orthonormal frame in the cotangent space T ∗

x (Σ), denoted by ei
a(x) (basis of

one-forms). It obeys
ei

ae
a
j = δi

j , ei
aeb

i = δb
a . (4.103)

21Any Σ admits such metrics.
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The three-dimensional formalism using triads can be obtained from the corre-
sponding space–time formalism by using the ‘time gauge’ e0

a = −na = Nt,a
(Schwinger 1963) for the one-forms.

The variable of interest is not the triad itself, but its densitized version (be-
cause it will play the role of the momentum),

Ea
i (x) ≡

√
hea

i (x) , (4.104)

where from (4.101) one has
√

h = |det(ei
a)|. We note that one has the freedom

to allow for different orientations of the triad (right-handed or left-handed).
To find the canonically conjugate quantity, consider first the extrinsic curva-

ture in the form
Ki

a(x) ≡ Kab(x)ebi(x) , (4.105)

where Kab(x) denotes the previous expression for the extrinsic curvature; cf.
(4.45) and (4.48). One can show that Ki

a is canonically conjugate to Ea
i ,

Ki
aδEia =

Kab

2
√

h
δ
(
EiaEib

)
=

Kab

2
√

h

(
hδhab + habδh

)
= −

√
h

2
(
Kab − Khab

)
δhab = −8πGpabδhab ,

where (4.102) has been used and δh = −hhcdδh
cd. The SO(3)-rotation connected

with the introduction of the triads is generated by the constraints

Gi(x) ≡ εijkKj
a(x)Eka(x) ≈ 0 , (4.106)

which has the structure of ‘x×p’ (generator of rotations). They are called ‘Gauss
constraints’. Their presence also guarantees the symmetry of Kab. (This can be
seen by inserting (4.105) into (4.106), multiplying with εilm and contracting.)

An arbitrary vector field can be decomposed with respect to the triad as

va = viea
i . (4.107)

The covariant derivative with respect to internal indices is defined by

Davi = ∂avi + ω i
a jv

j , (4.108)

where ω i
a j are the components of the spatial ‘spin connection’; cf. also Sec-

tion 1.1.4 where the space–time spin connection ωµmk was used. One has the
following relation between the spin connection and the Levi–Cività connection,

ω i
a j = Γi

kje
k
a , (4.109)

where Γi
kj are the components of the Levi–Cività connection with respect to the

triads. The usual coordinate components are found from
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Γi
kj = ed

kef
j ei

cΓ
c
df − ed

kef
j ∂de

i
f . (4.110)

Inserting (4.109) and (4.110) into

Daei
b = ∂aei

b − Γc
abe

i
c + ω i

a je
j
b ,

one finds the covariant constancy of the triads,

Daei
b = 0 , (4.111)

in analogy to Dahbc = 0. Parallel transport is defined by

dvi = −ω i
a jv

jdxa .

Defining22

Γi
a = − 1

2 ωajkεijk , (4.112)

this parallel transport corresponds to the infinitesimal rotation of the vector vi

by an angle
δωi = Γi

adxa , (4.113)

that is,
dvi = εi

jkvjδωk .

(Recall that for an orthonormal frame we have ωajk = −ωakj .) From (4.111)
one finds

∂[aei
b] = −ω i

[a je
j
b] = −εi

jkΓj
[aek

b] . (4.114)

Parallel transport around a closed loop yields

dvi = −Ri
jabv

jdxadxb ≡ εi
jkvjδωk ,

where Ri
jab are the components of the curvature two-form. The angle δωk can

be written as
δωk = −Rk

abdxadxb , (4.115)

with Rk
abε

i
jk ≡ Ri

jab. The curvature components Ri
ab obey (from Cartan’s second

equation)
Ri

ab = 2∂[aΓi
b] + εi

jkΓj
aΓk

b (4.116)

and the ‘cyclic identity’
Ri

abe
b
i = 0 . (4.117)

The curvature scalar is given by

R[e] = −Ri
abε

jk
i ea

j eb
k = −Rj

kabe
a
j ebk . (4.118)

The triad ea
i (and similarly Ki

a) contains nine variables instead of the six variables
of hab. The Gauss constraints (4.106) reduce the number again from nine to six.

22εijk is here always the invariant tensor density, that is, ε123 = 1, etc.
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The formalism presented up to now was known long ago. The progress achieved
by Ashtekar (1986) consists in the second step—the mixing of Ea

i and Ki
a into

a connection Ai
a. This is defined by

GAi
a(x) = Γi

a(x) + βKi
a(x) , (4.119)

where the ‘Barbero–Immirzi’ parameter β can be any (non-vanishing) complex
number. It must be emphasized that the product GAi

a has the dimension of an
inverse length (like a Yang–Mills connection), but Ai

a itself has dimension mass
over length squared. Therefore, GA is the relevant quantity (

∫
GAdx is dimen-

sionless). The important fact is that Ai
a and Eb

j/8πβ are canonically conjugate
variables,

{Ai
a(x), Eb

j (y)} = 8πβδi
jδ

b
aδ(x, y) . (4.120)

In addition, one has
{Ai

a(x), Aj
b(y)} = 0 . (4.121)

In the following, Ai
a will be considered as the new configuration variable and Eb

j

will be the corresponding canonical momentum.

4.3.2 Discussion of the constraints

The task now is to rewrite all constraints in terms of the new variables. We start
with the Gauss constraints which itself are only present due to the use of triads
instead of metrics and the associated SO(3) redundancy. Using (4.119) one finds
after some straightforward calculations23

Gi = ∂aEa
i + GεijkAj

aEka ≡ DaEa
i ≈ 0 . (4.122)

The terminus ‘Gauss constraints’ now becomes evident since it has a form similar
to the Gauss constraints of Yang–Mills theories; cf. (4.33). In (4.122) we have also
defined the covariant derivative Da associated with Ai

a. Its associated curvature
is

F i
ab = 2G∂[aAi

b] + G2εijkAj
aAk

b . (4.123)

The Gauss constraints generate transformations similar to the Yang–Mills case,

δEa
j (x) =

∫
dy {Ea

j (x),Gi(y)}ξi(y) = −8πβGεijkEkaξi ,

and
δAi

a(x) =
∫

dy {Ai
a(x),Gi(y)}ξi(y) = −8πβDaξi .

Sometimes it is also convenient to introduce su(2)-valued matrices

Ea = τiE
a
i , Aa = τiA

i
a , (4.124)

23The constraint is also redefined through multiplication with β.
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where τi = iσi/2 with σi as the Pauli matrices. Under an SU(2)-transformation
g, one then has

Ea → gEag−1 , Aa → g(Aa + ∂a)g−1 . (4.125)

The next step is to rewrite the genuine gravitational constraints (4.69) and
(4.70) in terms of the new variables. Introducing H̃⊥ = −8πGβ2Hg

⊥ (plus terms
proportional to the Gauss constraints) and H̃a = −8πGβHg

a (plus terms propor-
tional to the Gauss constraints), the new form of the constraints is

H̃⊥ = −σ

2
εijkFabk√
|detEa

i |
Ea

i Eb
j

+
β2σ − 1

β2
√
|detEa

i |
Ea

[iE
b
j](GAi

a − Γi
a)(GAj

b − Γj
b) ≈ 0 , (4.126)

and

H̃a = F i
abE

b
i ≈ 0 . (4.127)

Equation (4.127) has the form of the cyclic identity (4.117) with Ri
ab replaced

by F i
ab. If applied on Ai

a, the constraint (4.127) yields a transformation that can
be written as a sum of a gauge transformation and a pure diffeomorphism.

As in Section 4.1, one has σ = −1 for the Lorentzian and σ = 1 for the
Euclidean case. One recognizes that (4.126) can be considerably simplified by
choosing β = i (or β = −i) for the Lorentzian and β = 1 (or β = −1) for the
Euclidean case, because then the second term vanishes. The potential term has
disappeared, leading to a situation resembling the strong-coupling limit discussed
at the end of Section 4.2.3 (see also section III.4 of Ashtekar (1988)). In fact, the
original choice was β = i for the relevant Lorentzian case. Then,

2
√
|detEa

i |H̃⊥ = εijkFabkEa
i Eb

j ≈ 0 .

This leads to a complex connection Ai
a, see (4.119), and makes it necessary to

implement reality conditions in order to recover GR—a task that seems impos-
sible to achieve in the quantum theory. However, this choice is geometrically
preferred (Rovelli 1991a); Ai

a is then the three-dimensional projection of a four-
dimensional self-dual spin connection AIJ

µ ,

AIJ
µ = ωIJ

µ − 1
2 iεIJ

MNωMN
µ . (4.128)

(It turns out that the curvature F IJ
µν of the self-dual connection is the self-

dual part of the Riemann curvature.) To avoid the problems with the reality
conditions, however, it is better to work with real variables. Barbero (1995) has
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chosen β = −1 for the Lorentzian case (which does not seem to have a special
geometrical significance), so the Hamiltonian constraint reads

H̃⊥ =
εijkEa

i Eb
j

2
√

h
(Fabk − 2Rabk) ≈ 0 . (4.129)

An alternative form using (4.124) is

H̃⊥ =
1√
h

tr
(
(Fab − 2Rab)[Ea, Eb]

)
. (4.130)

The constraint algebra (3.90)–(3.92) remains practically unchanged, but one
should keep in mind that the constraints have been modified by a term pro-
portional to the Gauss constraints Gi; cf. also (4.28). In addition, one has, of
course, the relation for the generators of SO(3),

{Gi(x),Gj(y)} = ε k
ij Gk(x)δ(x, y) . (4.131)

Following Thiemann (1996), we shall now rewrite the Hamiltonian constraint in
a way that will turn out to be very useful in the quantum theory (Section 6.3).
This will be achieved by expressing the Hamiltonian through Poisson brackets
involving geometric quantities (area and volume). Consider for this purpose first
the ‘Euclidean part’24 of H̃⊥,

HE =
tr(Fab[Ea, Eb])√

h
. (4.132)

(As we have discussed above, for β = i only this term remains.) Recalling (4.124),
one finds

[Ea, Eb]i = −
√

hεabcei
c . (4.133)

Here, use of the ‘determinant formula’

(deted
i )ε

abc = ea
i eb

je
c
kεijk

has been made. From the expression for the volume,

V =
∫

Σ
d3x

√
h =

∫
Σ

d3x
√
|detEa

i | , (4.134)

one gets 2δV/δEc
i (x) = ei

c(x) and therefore

[Ea, Eb]i√
h

= −2εabc δV

δEc
i

= −2
εabc

8πβ
{Ai

c, V } . (4.135)

24The name stems from the fact that for β = 1 and the Euclidean signature σ = 1, this is
already the full Hamiltonian H̃⊥.
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This yields for HE the expression

HE = − 1
4πβ

εabctr(Fab{Ac, V }) . (4.136)

Thiemann (1996) also considered the integrated trace of the extrinsic curvature,

T ≡
∫

Σ
d3x

√
hK =

∫
Σ

d3x Ki
aE

a
i ,

for which one gets
{Ai

a(x), T } = 8πβKi
a(x) . (4.137)

For HE ≡
∫

d3x HE, one finds, using (4.114),

{HE, V } = 8πβ2GT . (4.138)

One now considers the following sum (written here for general β),

H̃⊥ +
1 − β2(σ + 1)

β2 HE =
β2σ − 1

2β2|detEa
i |

(
F i

ab − Ri
ab

)
[Ea, Eb]i . (4.139)

The reason for performing this combination is to get rid of the curvature term.
From (4.116) and using (4.119), one can write

Ri
ab = F i

ab + β2εi
jkKj

aKk
b + 2βD[bK

i
a] .

With the help of (4.137) and (4.133), one then finds after some straightforward
manipulations,

H̃⊥ = −1 − β2(σ + 1)
β2 HE +

β2σ − 1
2(4πβ)3

εabctr ({Aa, T }{Ab, T }{Ac, V }) . (4.140)

This will serve as the starting point for the discussion of the quantum Hamilto-
nian constraint in Section 6.3. The advantage of this formulation is that H̃⊥ is
fully expressed through Poisson brackets with geometric operators.

4.3.3 Loop variables

An alternative formulation that is closely related to the variables discussed in
the last subsections employs so-called ‘loop variables’ introduced by Rovelli and
Smolin (1990). This is presently the most frequently used formulation in the
quantum theory (Chapter 6). Consider for this purpose a closed loop on Σ, that
is, a continuous piecewise analytic map from the interval [0, 1] to Σ,

α : [0, 1] → Σ , s �→ {αa(s)} . (4.141)

The holonomy U [A, α] corresponding to Aa = Ai
aτi along the curve α is given by
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U [A, α](s) ∈ SU(2) , U [A, α](0) = I ,

d
ds

U [A, α](s) − GAa(α(s))α̇a(s)U [A, α](s) = 0 , (4.142)

where α̇a(s) ≡ dαa/ds (tangential vector to the curve) and U [A, α](s) is a short-
hand for U [A, α](0, s). The formal solution for the holonomy reads

U [A, α](0, s) = P exp
(

G

∫
α

A

)
≡ P exp

(
G

∫ s

0
ds̃ α̇aAi

a(α(s̃))τi

)
. (4.143)

Here, P denotes path ordering which is necessary because the A are matrices
(like in Yang–Mills theories). One has for example for s = 1,

P exp
(

G

∫ 1

0
ds A(α(s))

)
≡ U [A, α]

= I + G

∫ 1

0
ds A(α(s)) + G2

∫ 1

0
ds

∫ s

0
dt A(α(t))A(α(s)) + . . . .

We note that the Ai
a can be reconstructed uniquely if all holonomies are known

(Giles 1981).
The holonomy is not yet gauge invariant with respect to SU(2)-transforma-

tions. Under g ∈ SU(2) it transforms as

U [A, α] → Ug[A, α] = gU [A, α]g−1 .

Gauge invariance is achieved after performing the trace, thus arriving at the
‘Wilson loop’ known, for example, from lattice gauge theories,

T [α] = tr U [A, α] . (4.144)

One can also define

T a[α](s) = tr [U [A, α](s, s)Ea(s)] , (4.145)

where Ea is inserted at the point s of the loop. Analogously one can define higher
‘loop observables’,

T a1...aN [α](s1, . . . , sn) ,

by inserting Ea at the corresponding points described by the s-values. These
loop observables obey a closed Poisson algebra called the loop algebra. One has,
for example,

{T [α], T a[β](s)} = ∆a[α, β(s)]
(
T [α#β] − T [α#β−1]

)
, (4.146)

where
∆a[α, x] =

∫
ds α̇a(s)δ(α(s), x) , (4.147)

and β−1 denotes the loop β with the reversed direction. The right-hand side of
(4.147) is only non-vanishing if α and β have an intersection at a point P; α#β
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is then defined as starting from P, going through the loop α, then through β,
and ending at P.

Of particular interest is the quantity

E[S, f ] ≡
∫

S
dσa Ea

i f i , (4.148)

where S denotes a two-dimensional surface in Σ and f = f iτi. The variable
(4.148) describes the flux of Ea

i through the two-dimensional surface; it is the
variable conjugate to the holonomy U [A, α]. Note that both the holonomy and the
flux are of a distributional nature because they have support on one-dimensional
and two-dimensional submanifolds, respectively.

These variables will be used in the quantum theory; see Chapter 6.



5

QUANTUM GEOMETRODYNAMICS

5.1 The programme of canonical quantization
Given a classical theory, one cannot derive a unique ‘quantum theory’ from it.
The only possibility is to ‘guess’ such a theory and to test it by experiment. For
this purpose, one has devised sets of ‘quantization rules’ which turned out to
be successful in the construction of quantum theories, for example, of quantum
electrodynamics. Strictly speaking, the task is to construct a quantum theory
from its classical limit.

In Chapter 4, we have developed a Hamiltonian formulation of GR. This is
the appropriate starting point for a canonical quantization, which requires the
definition of a configuration variable and its conjugate momentum. A special fea-
ture of GR is the fact, as is the case in all reparametrization-invariant systems,
that the dynamics is entirely generated by constraints: the total Hamiltonian
either vanishes as a constraint (for the spatially compact case) or solely con-
sists of surfaces terms (in the asymptotically flat case). The central difficulty is
thus, both conceptually and technically, the correct treatment of the quantum
constraints, that is, the quantum version of the constraints (4.69) and (4.70) or
their versions in the connection or loop representation.

In Chapter 3, we presented a general procedure for the quantization of con-
strained systems. Following Dirac (1964), a classical constraint is turned into a
restriction on physically allowed wave functionals, see Section 3.1,

Ga ≈ 0 −→ ĜaΨ = 0 . (5.1)

At this stage, such a transition is only a heuristic recipe which has to be made
more precise. Following Ashtekar (1991) and Kuchař (1993) we shall divide the
‘programme of canonical quantization’ into six steps which will shortly be pre-
sented here and then implemented (or attempted to be implemented) in the
following sections.

The first step consists in the identification of configuration variables and
their momenta. In the language of geometric quantization (Woodhouse 1992), it
is the choice of polarization. Together with the unit operator, these variables are
called the ‘fundamental variables’ Vi. The implementation of Dirac’s procedure
is the translation of Poisson brackets into commutators for the fundamental
variables, that is,

V3 = {V1, V2} −→ V̂3 = − i
�
[V̂1, V̂2] . (5.2)

In the geometrodynamical formulation of GR (see Sections 4.1 and 4.2) the
fundamental variables are, apart from the unit operator, the three-metric hab(x)

133
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and its momentum pcd(x) (or, in the approach of reduced quantization, a subset
of them, see Section 5.2 below). In the connection formulation of Section 4.3
one has the connection Ai

a(x) and the densitized triad Eb
j (y), while in the loop-

space formulation one takes the holonomy U [A, α] and the flux of Eb
j through a

two-dimensional surface.
In this chapter, restriction will be made to the quantization of the geometro-

dynamical formulation, while quantum connection dynamics and quantum loop
dynamics will be discussed in Chapter 6. Application of (5.2) to (4.64) would
yield

[ĥab(x), p̂cd(y)] = i�δc
(aδ

d
b)δ(x,y) , (5.3)

plus vanishing commutators between, respectively, the metric components and
the momentum components. Since pcd is linearly related to the extrinsic curva-
ture, describing the embedding of the three-geometry into the fourth dimension,
the presence of the commutator (5.3) and the ensuing ‘uncertainty relation’ be-
tween intrinsic and extrinsic geometry means that the classical space–time pic-
ture has completely dissolved in quantum gravity. This is fully analogous to
the disappearance of particle trajectories as fundamental concepts in quantum
mechanics and constitutes one of the central interpretational ingredients of quan-
tum gravity. The fundamental variables form a vector space that is closed under
Poisson brackets and complete in the sense that every dynamical variable can
be expressed as a sum of products of fundamental variables.

Equation (5.3) does not implement the positivity requirement deth > 0 of
the classical theory. But this could only be a problem if (the smeared version of)
p̂ab were self-adjoint and its exponentiation therefore a unitary operator, which
could ‘shift’ the metric to negative values.

The second step addresses the quantization of a general variable, F , of the
fundamental variables. Does the rule (5.2) still apply? As Dirac writes (Dirac 1958,
p. 87),1

The strong analogy between the quantum P.B. . . . and the classical P.B. . . . leads us to
make the assumption that the quantum P.B.s, or at any rate the simpler ones of them,
have the same values as the corresponding classical P.B.s. The simplest P.B.s are those
involving the canonical coordinates and momenta themselves . . .

In fact, from general theorems of quantum theory (going back to Groenewald
and van Hove), one knows that it is impossible to respect the transformation
rule (5.2) in the general case, while assuming an irreducible representation of
the commutation rules; cf. Giulini (2003). In Dirac’s quote this is anticipated by
the statement ‘or at any rate the simple ones of them’. This failure is related to
the problem of ‘factor ordering’. Therefore, additional criteria must be invoked
to find the ‘correct’ quantization, such as the demand for ‘Dirac consistency’ to
be discussed in Section 5.3.

The third step concerns the construction of an appropriate representation
space, F , for the dynamical variables, on which they should act as operators. We

1P.B. stands for Poisson bracket.
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shall usually employ the functional Schrödinger picture, in which the operators
act on wave functionals defined in an appropriate functional space. For example,
the implementation of (5.3) would be achieved by implementing

ĥab(x)Ψ [hab(x)] = hab(x) · Ψ [hab(x)] , (5.4)

p̂cd(x)Ψ [hab(x)] =
�

i
δ

δhcd(x)
Ψ [hab(x)] . (5.5)

These relations do not define self-adjoint operators since there is no Lebesgue
measure on Riem Σ (which would have to be invariant under translations in
function space). Thus, one would not expect the fundamental relations (5.3)
to be necessarily in conflict with deth > 0. Other examples for the use of the
functional Schrödinger picture have already been presented in Chapter 3.

The representation space F is only an auxiliary space: before the constraints
are implemented, it does not necessarily contain only physical states. Therefore,
neither does it have to be a Hilbert space nor do operators acting on F have to
be self-adjoint. It might even be inconsistent to demand that the constraints be
self-adjoint operators on an auxiliary Hilbert space F .

The fourth step consists in the implementation of the constraints. According
to (5.1), one would implement the classical constraints H⊥ ≈ 0 and Ha ≈ 0 as

H⊥Ψ = 0 , (5.6)
HaΨ = 0 . (5.7)

These are infinitely many equations (one equation at each space point), collec-
tively called HµΨ = 0. Only solutions to these ‘quantum constraints’ can be
regarded as candidates for physical states. The solution space will be called F0.
How the constraints (5.6) and (5.7) are written in detail depends on one’s ap-
proach to the ‘problem of time’; see Section 5.2. It has to be expected that the
solution space is still too large; as in quantum mechanics, one may have to impose
further conditions on the wave functions, such as normalizability. This require-
ment is needed in quantum mechanics because of the probability interpretation,
but it is far from clear whether this interpretation can be maintained in quantum
gravity; cf. Chapter 10. The physical space on which wave functionals act, Fphys,
should thus form in the ideal case a genuine subspace, Fphys ⊂ F0 ⊂ F .

The fifth step concerns the role of observables. We have already mentioned
in Section 3.1 that ‘observables’ are characterized by having weakly vanishing
Poisson brackets with the constraints, {O,Ga} ≈ 0. They should not be confused
with observables in an operationalistic sense. In quantum mechanics, observ-
ables are associated in a somewhat vague manner with self-adjoint operators
(only this concept is mathematically precise). In practice, however, only few op-
erators correspond in fact with quantities that are ‘measured’. Only the latter
represent ‘beables’ in the sense of John Bell, supposingly describing ‘reality’; see
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Bell (1987).2 For an operator corresponding to a classical observable satisfying
{O,Hµ} ≈ 0, one would expect that in the quantum theory the relation

[Ô, Ĥµ]Ψ = 0 (5.8)

holds. For operators F̂ with [F̂ , Ĥµ]Ψ 
= 0 one would have Ĥµ(F̂Ψ) 
= 0. This is
sometimes interpreted as meaning that the ‘measurement’ of the quantity being
related to this operator leads to a state that is no longer annihilated by the
constraints, ‘throwing one out’ of the solution space. This would, however, only
be a problem for a ‘collapse’ interpretation of quantum gravity, an interpretation
that seems to be highly unlikely to hold in quantum gravity; see Chapter 10.

Since the classical Hamiltonian and diffeomorphism constraints differ from
each other in their interpretation (Chapter 4), the same should hold for their
quantum versions (5.6) and (5.7). This is, in fact, the case and will be discussed
in detail in this chapter. The distinction between ‘observables’ and ‘perennials’,
see (4.82) and (4.83), thus applies also to the quantum case.

The sixth (and last) step concerns the role of the physical Hilbert space (cf.
also step 3). Do the observables have to be represented in some Hilbert space?
If yes, which one? It can certainly not be the auxiliary space F , but it is unclear
whether it is F0 or only Fphys ⊂ F0. Moreover, it may turn out that only a
construction with rigged Hilbert spaces (Gel’fand triples) is possible; this is in
fact the case in the loop representation (Section 6.1.2).

A general method to deal with the construction of a physical Hilbert space
in the quantization of constrained systems is the group averaging procedure. It
has been shown that this method works and yields a unique Fphys at least for
finite dimensional compact Lie groups; cf. Giulini and Marolf (1999). (As for an
extension to non-compact Lie groups, see Louko (2006).) The situation for GR,
where the constraint algebra is not a Lie algebra at all, remains unclear.

To represent all perennials by self-adjoint operators in Hilbert space would
be contradictory: be F̂ and Ĝ self-adjoint perennials, then the product F̂ Ĝ is
again a perennial, but no longer self-adjoint, since

(
F̂ Ĝ

)†
= Ĝ†F̂ † = ĜF̂

in general

= F̂ Ĝ .

Since, moreover, the fundamental variables hab and pcd are not perennials, one
might, at this stage, forget about this notion. The ‘problem of Hilbert space’ is
intimately connected with the ‘problem of time’ in quantum gravity, to which
we shall now turn.

5.2 The problem of time

The concepts of time in GR and quantum theory differ drastically from each
other. As already remarked in Section 1.1, time in quantum theory is an external

2These are quantities that are subject to decoherence; see Chapter 10.
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parameter (an absolute element of the theory), whereas time in GR is dynamical.
A consistent theory of quantum gravity should, therefore, exhibit a novel concept
of time. The history of physics has shown that new theories often entail a new
concept of space and time (Ehlers 1973). The same should happen again with
quantum gravity.

The absolute nature of time in quantum mechanics is crucial for its interpre-
tation. Matrix elements are usually evaluated at fixed t, and the scalar product is
conserved in time (‘unitarity’). Unitarity expresses the conservation of the total
probability. ‘Time’ is part of the classical background which, according to the
Copenhagen interpretation, is needed for the interpretation of measurements. As
we have remarked at the end of Section 3.1, the introduction of a time operator
in quantum mechanics is problematic. The time parameter t appears explicitly
in the Schrödinger equation (3.14). Note that it comes together with the imagi-
nary unit i, a fact that finds an explanation in the semiclassical approximation
to quantum geometrodynamics (Section 5.4). The occurrence of the imaginary
unit in the Schrödinger equation was already discussed in an interesting corre-
spondence between Ehrenfest and Pauli; see Pauli (1985, p. 127). Pauli pointed
out that the use of complex wave functions can be traced back to the probability
interpretation:3

I now turn to the initially asked question about the necessity of at least two scalars
for the de Broglie–Schrödinger waves. I claim that this necessity and thus also the
imaginary unit come into play through the search for an expression for the probabil-
ity density W which satisfies conditions (1) and (2) and which does not contain the
temporal derivatives of ψ.

Conditions (1) and (2) are the non-negativity of W and its normalization to one,
respectively.

In GR, space–time is dynamical and therefore there is no absolute time.
Space–time influences material clocks in order to allow them to show proper
time. The clocks, in turn, react on the metric and change the geometry. In this
sense, the metric itself is a clock (Zeh 2001). A quantization of the metric can
thus be interpreted as a quantization of the concept of time. Since the nature of
time in quantum gravity is not yet clear—the classical constraints do not contain
any time parameter—one speaks of the ‘problem of time’. One can distinguish
basically three possible solutions of this problem, as reviewed, in particular, by
Isham (1993) and Kuchař (1992):

1. choice of a concept of time before quantization;

2. identification of a concept of time after quantization;

3. ‘timeless’ options.

3Nun komme ich zur anfangs gestellten Frage über die Notwendigkeit von mindestens zwei
reellen Skalaren bei den de Broglie–Schrödinger-Wellen. Ich behaupte, diese Notwendigkeit und
damit auch die imaginäre Einheit kommt hinein beim Suchen nach einem Ausdruck für die
Wahrscheinlichkeitsdichte W , der die Forderungen (1) und (2) befriedigt und der die zeitlichen
Ableitungen der ψ nicht enthält.
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The first two possibilities will be discussed in the following, while the third option
will be addressed in Sections 5.3 and 5.4.

5.2.1 Time before quantization

In Section 4.2, it was argued that the three-dimensional geometry in GR contains
information about time. Motivated by the parametrized theories discussed in
Chapter 3, one can attempt to perform a canonical transformation aiming at
an isolation of time from the ‘true degrees of freedom’. Starting from the ‘ADM
variables’ hab(x) and pcd(x), one would like to perform the step(

hab(x), pcd(x)
)
−→

(
XA(x), PB(x); φr(x), ps(x)

)
, (5.9)

where the 8 × ∞3 variables XA and PB (A, B = 0, 1, 2, 3) are the ‘embedding
variables’ and their canonical momenta, while the 4 × ∞3 variables φr and ps

(r, s = 1, 2) denote the ‘true’ degrees of freedom of the gravitational field, cf.
also Section 7.4. As already remarked in Section 4.2, GR is not equivalent to
a deparametrized theory. Therefore, (5.9) is certainly non-unique and not valid
globally (see in this context Háj́ıček and Kijowski 2000). The next step is the
elimination of 4×∞3 of the 8×∞3 embedding variables by casting the classical
constraints Hµ ≈ 0 into the form4

PA(x) + hA(x; XB, φr, ps] ≈ 0 . (5.10)

This is referred to as ‘solving the constraints on the classical level’ or ‘reduced
quantization’ and corresponds in the case of particle systems to (3.9). As in
Section 3.1, the remaining 4 × ∞3 variables are eliminated by inserting (5.10)
into the action

S =
∫

dt

∫
Σ

d3x
(
PAẊA + prφ̇

r − NH⊥ − NaHa

)
, (5.11)

where all fields are functions of x and t, and going to the constraint hypersurface
(‘deparametrization’), yielding

S =
∫

dt

∫
Σ

d3x
(
prφ̇

r − hA(x; XB
t , φr, ps]ẊA

t (x)
)

, (5.12)

where ẊA
t (x) is now a prescribed function of t and x, which must not be varied.

This action corresponds to the action (3.12) in which the prescribed function is
t(τ). The action (5.12) describes an ordinary canonical system with a ‘true’, that
is, un-constrained Hamiltonian given by

Htrue(t) =
∫

Σ
d3x hA(x; XB

t , φr, ps]ẊA
t (x) . (5.13)

4(x etc. means: dependence on x as a function, while ps] etc. means: dependence on ps(x)
as a functional.
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One can derive from Htrue Hamilton’s equations of motion for φr and ps. The
variables XA

t (x) can only be interpreted as describing embeddings in a space–
time after these equations (together with the choice for lapse and shift) have
been solved.

The constraint (5.10) can be quantized in a straightforward manner by in-
troducing wave functionals Ψ[φr(x)], with the result

i�
δΨ[φr(x)]
δXA(x)

= hA

(
x; XB, φ̂r, p̂s

]
Ψ[φr(x)] , (5.14)

in which the XA have not been turned into an operator. In this respect, the
quantization is of a hybrid nature: momenta occurring linearly in the constraints
are formally turned into derivatives, although the corresponding configuration
variables stay classical—like the t in the Schrödinger equation. Equation (5.14)
has the form of a local Schrödinger equation. Such an equation is usually called a
‘Tomonaga–Schwinger equation’; strictly speaking, it consists of infinitely many
equations with respect to the local ‘bubble time’ XA(x). We shall say more
about such equations in Section 5.4. The main advantages of this approach to
quantization are:

1. One has isolated already at the classical level a time variable (here: ‘em-
bedding variables’) that is external to the quantum system described by
φ̂r, p̂s. The formalism thus looks similar to ordinary quantum field theory.

2. Together with such a distinguished notion of time comes a natural Hilbert-
space structure and its ensuing probability interpretation.

3. One would consider observables to be any function of the ‘genuine’ op-
erators φ̂r and p̂s. As in the linearized approximation (Chapter 2), the
gravitational field would have two degrees of freedom.

On the other hand, one faces many problems:

1. ‘Multiple-choice problem’: The canonical transformation (5.9) is certainly
non-unique and the question arises which choice should be made. One
would expect that different choices of ‘time’ lead to non-unitarily connected
quantum theories.

2. ‘Global-time problem’: One cannot find a canonical transformation (5.9)
to find a global time variable (Torre 1993).

3. ‘hA-problem’: The ‘true’ Hamiltonian (5.13) depends on ‘time’, that is, on
the embedding variables XA. This dependence is expected to be very com-
plicated (leading to square roots of operators, etc.), prohibiting in general
a rigorous definition.

4. ‘XA-problem’: In the classical theory, the ‘bubble time’ XA describes a hy-
persurface in space–time only after the classical equations have been solved.
Since no classical equations and therefore no space–time are available in
the quantum theory, (5.14) has no obvious space–time interpretation. In
particular, an operational treatment of time is unknown.
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5. ‘Space–time problem’: Writing XA = (T, X i), the ‘time’ T must be a
space–time scalar. This means that, although it is constructed from the
canonical data hab and pcd on Σ, it must weakly vanish with the Hamilto-
nian constraint, {

T (x),
∫

Σ
d3y H⊥(y)N(y)

}
≈ 0 (5.15)

for all lapse functions N(y) with N(x) = 0. Otherwise, one would get
from two hypersurfaces Σ and Σ′ crossing at x, two different values of T ,
depending on whether the canonical data of Σ or of Σ′ are used. The vari-
able T would in this case have no use as a time variable. This problem is
related to the fact that the algebra of hypersurface transformations does
not coincide with space–time diffeomorphisms. A possible solution to the
space–time problem can be obtained by using matter variables, for exam-
ple, the ‘reference fluid’ used by Brown and Kuchař (1995). The ‘space–time
problem’ already anticipates a space–time picture which, however, is ab-
sent in quantum gravity. The space–time problem therefore refers mainly
to the classical theory.

6. ‘Anomalies’: Quantum anomalies may spoil the consistency of this ap-
proach; cf. Section 5.3.

7. ‘Problem of construction’: The actual transformation (5.9) has been per-
formed only in very special cases, for example, linearized gravity, cylin-
drical gravitational waves, black holes, and dust shells (Chapter 7), and
homogeneous cosmological models (Chapter 8).

In the full theory, concrete proposals for the canonical transformation (5.9)
are rare. A possibility that was developed to a certain extent makes use of ‘York’s
time’ or ‘extrinsic time’, which is defined by

T
(
x; hab, p

cd
]

=
2

3
√

h
pcdhcd , PT = −

√
h ; (5.16)

cf. Al’tshuler and Barvinsky (1996) and the references therein. Since pcdhcd =
−
√

hK/8πG, cf. (4.63), T is proportional to the trace of the extrinsic curvature
K. It is canonically conjugated to PT . Note that T does not obey (5.15) and is
thus not a space–time scalar. It has been shown5 that the Hamiltonian constraint
can be written in the form (5.10), that is, written as PT + hT ≈ 0, where hA is
known to exist, but not known in explicit form, that is, not known as an explicit
function of T and the remaining variables. From (5.16) it is clear that the ‘true’
Hamiltonian contains the three-dimensional volume as its dynamical part, that
is,

Htrue =
∫

d3x
√

h +
∫

d3x NaHa . (5.17)

5This involves a detailed study of the ‘Lichnerowicz equation’, a non-linear (but quasi-linear)
elliptical equation for PT , which under appropriate conditions possesses a unique solution (cf.
Choquet-Bruhat and York 1980).
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The main problem with this approach towards the issue of time in quantum
gravity is perhaps its closeness to a classical space–time picture. From various
equations, such as (5.14), one gets the illusion that a space–time exists even
in the quantum theory, although this cannot be the case, see (5.3). One can,
therefore, conclude that attempting to identify time before quantization does
not solve the problem of time in the general case, although it might help in
special cases (Section 7.4).

5.2.2 Time after quantization
Using the commutation rules (5.3) and their formal implementation (5.4) and
(5.5) directly, one arrives at wave functionals Ψ[hab(x)] defined on Riem Σ, the
space of all three-metrics. This is the central kinematical quantity. The ‘dy-
namics’ must be implemented through the quantization of the constraints (4.69)
and (4.70)—this is all that remains in the quantum theory. One then gets the
following equations for the wave functional:

Ĥg
⊥Ψ ≡

(
−16πG�2Gabcd

δ2

δhabδhcd
−

√
h

16πG
( (3)R − 2Λ)

)
Ψ = 0 , (5.18)

Ĥg
aΨ ≡ −2Dbhac

�

i
δΨ
δhbc

= 0 . (5.19)

Equation (5.18) is called the Wheeler–DeWitt equation6 in honour of the work
by DeWitt (1967a) and Wheeler (1968). In fact, these are again infinitely many
equations. The constraints (5.19) are called the quantum diffeomorphism (or
momentum) constraints. Occasionally, both (5.18) and (5.19) are referred to as
Wheeler–DeWitt equations. In the presence of non-gravitational fields, these
equations are augmented by the corresponding terms.

There are many problems associated with these equations. An obvious prob-
lem is the ‘factor-ordering problem’: the precise form of the kinetic term is
open—there could be additional terms proportional to � containing at most
first derivatives in the metric. Since second functional derivatives at the same
space point usually lead to undefined expressions such as δ(0), a regularization
(and perhaps renormalization) scheme has to be employed. Connected with this
is the potential presence of anomalies. The general discussion of these problems
is continued in Section 5.3. Here we shall address again the problem of time and
the related Hilbert-space problem. Since (5.18) does not have the structure of
a local Schrödinger equation (5.14), the choice of Hilbert space is not clear a
priori.

The first option for an appropriate Hilbert space is related to the use of a
Schrödinger-type inner product, that is, the standard quantum-mechanical inner
product as generalized to quantum field theory,

〈Ψ1|Ψ2〉 =
∫

Riem Σ
Dµ[h] Ψ∗

1[h]Ψ2[h] , (5.20)

6In earlier years the name ‘Einstein–Schrödinger equation’ was used.
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where h is here a shorthand for hab. It is known that such a construction is at
best formal, since the measure Dµ[h] cannot be rigorously defined, that is, there
is no Lebesgue measure in the functional case. The elementary operators ĥab and
p̂cd are at best formally self-adjoint with respect to this inner product.

Besides the lack of mathematical rigour, this inner product has other prob-
lems. The integration runs over all metric components, including potential un-
physical ones (the constraints have not yet been imposed at this stage). This
could lead to divergences—similar to an integration over t in the quantum-mecha-
nical case—which one would have to cure by changing the measure, similar to
the introduction of the Faddeev–Popov determinant into path integrals (Sec-
tion 2.2); cf. Woodard (1993) in this context. This is related to the fact that the
product (5.20) is defined on the full space F , not the solution space F0 ⊂ F . It
could be possible to turn these problems into a virtue by imposing as a ‘bound-
ary condition’ that physical states solve the constraints and lead to a finite inner
product (5.20). Such a proposal can at least be implemented within simple mod-
els (cf. Chapter 8), but one would face the danger that in the full theory no such
solutions would exist at all. An open problem is also the implementation of a
probability interpretation in this context (recall that this is the major motivation
for using this inner product in quantum mechanics). What does the probability
to find a certain three-metric mean? The answer is unclear. It is possible that the
Schrödinger inner product only makes sense in the semiclassical approximation
(Section 5.4).

We have seen in Section 4.2 that the kinetic term of the Hamiltonian con-
straint is indefinite, due to the indefinite structure of the DeWitt metric Gabcd;
see the discussion following (4.92). Consequently, the Wheeler–DeWitt equation
(5.18), too, possesses an indefinite kinetic term. From this point of view (5.18)
resembles a Klein–Gordon equation; strictly speaking, infinitely many Klein–
Gordon equations with a non-trivial potential term. This can be made more
explicit. Using instead of hab and

√
h the variables h̃ab = h−1/3hab (cf. (4.96))

and the local volume element
√

h, the Wheeler–DeWitt equation can explicitly
be written as

(
6πG�2

√
h

δ2

δ(
√

h)2
− 16πG�2

√
h

h̃ach̃bd
δ2

δh̃abδh̃cd

−
√

h

16πG
( (3)R − 2Λ)

)
Ψ[

√
h, h̃ab] = 0 . (5.21)

It might therefore be more appropriate to use a Klein–Gordon-type inner product.
If Ψ1 and Ψ2 are solutions of (5.18), the functional version of this inner product
would read (DeWitt 1967a)
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〈Ψ1|Ψ2〉 = i
∫ ∏

x

dΣab(x)Ψ∗
1[hab] ·(

Gabcd

−→
δ

δhcd
−

←−
δ

δhcd
Gabcd

)
Ψ2[hab] = 〈Ψ2|Ψ1〉∗ . (5.22)

Here, the integration is over a 5 × ∞3-dimensional surface in the 6 × ∞3-
dimensional space Riem Σ, and dΣab denotes the corresponding surface element.
In view of (5.21), the integration can be taken over the variables h̃ab, referring
to ‘constant time

√
h=constant’. Of course, the lack of mathematical rigour is

the same as with (5.20).
The inner product (5.22) has the advantage that it is invariant under de-

formations of the 5 × ∞3-dimensional surface. This expresses its ‘time inde-
pendence’. However, this inner product is—like the usual inner product for the
Klein–Gordon equation—not positive definite. In particular, one has 〈Ψ|Ψ〉 = 0
for real solutions of (5.18). Since the Wheeler–DeWitt equation is a real equation
(unlike the Schrödinger equation), real solutions should possess some significance.

For the standard Klein–Gordon equation in Minkowski space, one can make
a separation between ‘positive’ frequencies and ‘negative’ frequencies. As long as
one can stay within the one-particle picture, it is consistent to make a restriction
to the positive-frequency sector. For such solutions, the inner product is positive.
On curved backgrounds, a separation into positive and negative frequencies can
be made if both the space–time metric and the potential are stationary, that is,
if there is a time-like Killing field and if the potential is constant along its orbits.
The Killing field can also be a conformal Killing field, but then the potential
must obey certain scaling properties. Moreover, the potential must be positive. If
these conditions are violated, particles are produced and the one-particle picture
breaks down.

Can such a separation into positive and negative frequencies be made for
the Wheeler–DeWitt equation? The clear answer is no (Kuchař 1992). There
exists a conformal Killing field for the DeWitt metric, namely the three-metric
hab. The potential is, however, neither positive definite nor scales in the correct
way. Therefore, no Klein–Gordon inner product can be constructed which is
positive definite for the generic case (although this might be achievable for special
models). For the standard Klein–Gordon equation, the failure of the one-particle
picture leads to ‘second quantization’ and quantum field theory. The Wheeler–
DeWitt equation, however, corresponds already to a field-theoretic situation.
It has, therefore, been suggested to proceed with a ‘third quantization’ and to
turn the wave function Ψ[h] into an operator (see Kuchař 1992 for review and
references). No final progress, however, has been achieved with such attempts.

One might wonder whether the failure of the above attempts is an indication
of the absence of time at the most fundamental level. As will be discussed in
Section 5.4, the usual concept of time emerges as an approximate notion on a
semiclassical level. This is, in fact, all that is needed to have accordance with ex-
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perience. Also, the notion of a Hilbert space may be a semiclassical artefact only.
It is, however, not yet clear what kind of mathematical structure could replace it
at the fundamental level, in order to select physically reasonable solutions from
F0. We shall, therefore, proceed pragmatically and treat in the following the
Wheeler–DeWitt equation (5.18) just as a (functional) differential equation.

5.3 The geometrodynamical wave function

5.3.1 The diffeomorphism constraints

The general equations (5.18) and (5.19) are very complicated and need a math-
ematical elaboration. Even more, the operator appearing in (5.18) needs first to
be defined properly. Still, some general features can be studied directly. For the
diffeomorphism constraints (5.19), this is much easier to achieve and the present
subsection is therefore devoted to them. Since we have seen in Section 4.2 that
the classical constraints Hg

a generate three-dimensional coordinate transforma-
tions, the presence of the quantum constraints (5.19) expresses the invariance
of the wave functional Ψ under such transformations, more precisely: under in-
finitesimal coordinate transformations.

This can be seen as follows (Higgs 1958). Under the infinitesimal transforma-
tion,

xa �→ x̄a = xa + δNa(x) ,

the three-metric transforms as

hab(x) �→ h̄ab(x) = hab(x) − DaδNb(x) − DbδNa(x) .

The wave functional then transforms according to

Ψ[hab] �→ Ψ[hab] − 2
∫

d3x
δΨ

δhab(x)
DaδNb(x) .

Assuming that δNb(x) vanishes at infinity, one can make a partial integration
and conclude from the arbitrariness of δNb(x) that

Da
δΨ
δhab

= 0 ,

that is, (5.19) is fulfilled. Therefore, Ψ depends only on the three-dimensional
geometry, not on the particular form of the metric, that is, it is implicitly defined
on superspace (Section 4.2). This is sometimes expressed by the notation Ψ[ 3G]
(Wheeler 1968). Such a representation is, however, at best pictorial, since one
cannot construct a derivative operator of the form δ/δ( 3G) on superspace; one
must work with the equations (5.18) and (5.19) for Ψ[hab]. This is similar to
gauge theories (Section 4.1) where one has to work with the connection and
where an explicit transition to gauge-invariant variables is in general impossible.
Note that the above demonstration of coordinate invariance for Ψ is completely
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analogous to (3.86)—for parametrized field theories—and (3.49)—for the bosonic
string.

A simple analogy to (5.19) is Gauss’ law in QED (or its generalizations to
the non-Abelian case; see Section 4.1). The quantized version of the constraint
∇E ≈ 0 reads

�

i
∇δΨ[A]

δA
= 0 , (5.23)

from which invariance of Ψ with respect to gauge transformations A → A +∇λ
follows.

We have seen that the wave functional Ψ[hab] is invariant under infinitesimal
coordinate transformations (‘small diffeomorphisms’). There may, however, exist
‘large diffeomorphisms’, that is, diffeomorphisms which are not connected with
the identity, under which Ψ might not be invariant.

This situation is familiar from Yang–Mills theories (see e.g. Huang 1992).
The quantized form of the Gauss law (4.30) demands that Ψ[Ai

a] be invariant
under infinitesimal (‘small’) gauge transformations; cf. the QED-example (5.23).
We take the Yang–Mills gauge group G as the map

S3 −→ SU(N) ≡ G , (5.24)

where R3 has been compactified to the three-sphere S3; this is possible since it
is assumed that gauge transformations approach a constant at spatial infinity.
The key role in the study of ‘large gauge transformations’ is played by

π0(G) ≡ G/G0 , (5.25)

where G0 denotes the component of G connected with the identity. Thus, π0
counts the number of components of the gauge group. One can also write

π0(G) = [S3, G] ≡ π3(G) = Z , (5.26)

where [S3, G] denotes the set of homotopy classes of continuous maps from S3 to
G.7 The ‘winding numbers’ n ∈ Z denote the number of times that the spatial S3

is covered by the SU(2)-manifold S3.8 This, then, leads to a vacuum state for each
connected component of G, called ‘K-vacuum’ |k〉, k ∈ Z. A state |k〉 is invariant
under small gauge transformations, but transforms as |k〉 → |k + n〉 under large
gauge transformations. If one defines the central concept of a ‘θ-vacuum’ by

|θ〉 =
∞∑

k=−∞
e−ikθ|k〉 , (5.27)

with a real parameter θ, the transformation of this state under a large gauge
transformation reads

7Two maps are called homotopic if they can be continuously deformed into each other. All
homotopic maps yield a homotopy class.

8The SU(N)-case can be reduced to the SU(2)-case.
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∞∑
k=−∞

e−ikθ|k + n〉 = einθ|θ〉 .

The θ-states are thus labelled by Hom (Z, U(1)), the homomorphisms from Z

to U(1). Different values of θ characterize different ‘worlds’ (compare the am-
biguity related with the Barbero–Immirzi parameter in Section 4.3); θ is in
principle a measurable quantity and one has, for example, from the limit on
the neutron dipole element, the constraint |θ| < 10−9 on the θ-parameter of
QCD. Instead of the gauge-dependent wave functions (5.27), one can work with
gauge-independent wave functions, but with an additional term in the action,
the ‘θ-action’ (Ashtekar 1991; Huang 1992). A state of the form (5.27) is also
well known from solid state physics (‘Bloch wave function’).

One can envisage the states |k〉 as being ‘peaked’ around a particular mini-
mum in a periodic potential. Therefore, tunnelling is possible between different
minima. In fact, tunnelling is described by ‘instantons’, that is, solutions of the
classical Euclidean field equations for which the initial and final value of the
gauge potential differ by a large gauge transformation (Huang 1992).

One does not have to restrict oneself to S3, but can generalize this notion to
an arbitrary compact orientable three-space Σ (Isham 1981),

|θ〉 =
∑
(k,g)

θ(k, g)|k, g〉 , (5.28)

where θ(k, g) ∈ Hom([Σ, G], U(1)) appears instead of the e−ikθ of (5.27). As it
turns out, g ∈ Hom(π1(Σ), π1(G)).

Instead of taking the gauge group as the starting point, one can alternatively
focus on the physical configuration space of the theory. This is more suitable
for the comparison with gravity. For Yang–Mills fields, one has the configuration
space Q = A/G, where A denotes the set of connections. In gravity, Q = S(Σ) =
Riem Σ/Diff Σ, see Section 4.2. If the group acts freely on A (or Riem Σ), that
is, if it has no fixed points, then

π1(Q) = π0(G) ,

and the θ-structure as obtained from π0(G) can be connected directly with the
topological structure of the configuration space, that is, with π1(Q). As we have
seen in Section 4.2.5, Diff Σ does not act freely on Riem Σ, so S(Σ) had to be
transformed into the ‘resolution space’ SR(Σ). Everything is fine if we restrict
Diff Σ to DF(Σ̄) (this is relevant in the open case) and take into account that
SR(Σ̄) ∼= S(Σ). Then,

π1(S(Σ)) = π0(DF(Σ̄)) ,

and one can classify θ-states by elements of Hom (π0(DF(Σ̄)), U(1)). Isham
(1981) has investigated the question as to which three-manifolds Σ can yield
a non-trivial θ-structure. He has found that
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π0(DF(S3)) = 0 ,

so no θ-structure is available in the cosmologically interesting case S3. A θ-
structure is present, for example, in the case of ‘Wheeler’s wormhole’, that is,
for Σ = S1 × S2. In that case,

π0(DF(S1 × S2)) = Z2 ⊕ Z2 ,

where Z2 = {−1, 1}. Also for the three-torus S1×S1×S1, one has a non-vanishing
π0, but the expression is more complicated. Therefore, θ-sectors in quantum grav-
ity are associated with the disconnectedness of Diff Σ. In the asymptotically flat
case, something interesting may occur in addition (Friedman and Sorkin 1980).
If one allows for rotations at infinity, one can get half-integer spin states in case
that a 2π-rotation acts non-trivially, that is, if one cannot communicate a rota-
tion by 2π at ∞ to the whole interior of space. An example of a manifold that
allows such states is Σ = R3#T 3.

5.3.2 WKB approximation

An important approximation in quantum mechanics is the WKB approximation.
On a formal level, this can also be performed for equations (5.18) and (5.19).
For this purpose, one makes the ansatz

Ψ[hab] = C[hab] exp
(

i
�
S[hab]

)
, (5.29)

where C[hab] is a ‘slowly varying amplitude’ and S[hab] is a ‘rapidly varying
phase’ (an ‘eikonal’ like in geometrical optics). This corresponds to

pab −→ δS

δhab
,

which is the classical relation for the canonical momentum, and from (5.18) and
(5.19) one finds the approximate equations

16πGGabcd
δS

δhab

δS

δhcd
−

√
h

16πG
( (3)R − 2Λ) = 0 , (5.30)

Da
δS

δhab
= 0 . (5.31)

In the presence of matter one has additional terms. Equation (5.30) is the
Hamilton–Jacobi equation for the gravitational field (Peres 1962). Equation
(5.31) expresses again the fact that S[hab] is invariant under coordinate transfor-
mations. One can show that (5.30) and (5.31) are fully equivalent to the classical
Einstein field equations (Gerlach 1969)—this is one of the ‘six routes to geometro-
dynamics’ (Misner et al. 1973). This route again shows how the dynamical laws
follow from the laws of the instant (Kuchař 1993).
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The ‘interconnection theorems’ mentioned in Section 4.2 have their counter-
parts on the level of the eikonal S[hab]. For example, if S satisfies (5.30), it must
automatically satisfy (5.31). These relations have their counterpart in the full
quantum theory, provided there are no anomalies (Section 5.3.5).

More useful than a WKB approximation for all degrees of freedom is a ‘mixed’
approximation scheme in which gravity is treated differently from other fields.
It is then possible to recover the limit of quantum field theory in an external
space–time. This method will be presented in Section 5.4.

5.3.3 Remarks on the functional Schrödinger picture
The central kinematical object in quantum geometrodynamics is the wave func-
tional. It obeys the quantum constraint equations (5.18) and (5.19), which are
functional differential equations. In non-gravitational quantum field theory, this
‘Schrödinger picture’ is used only infrequently, mainly because the focus there is
on perturbative approaches for which other formulations are more appropriate,
for example, the Fock-space picture. Still, even there a Schrödinger picture is
sometimes used in the form of ‘Tomonaga–Schwinger equation (TS)’ (although
first formulated in Stueckelberg 1938),

i�
δΨ

δτ(x)
= HΨ , (5.32)

where τ(x) is the local ‘bubble time’ parameter, and H is the Hamiltonian den-
sity; for instance, in the case of a scalar field, one has

H = −�2

2
δ2

δφ2 +
1
2
(∇φ)2 + V (φ) . (5.33)

In the approach ‘choice of time before quantization’, the gravitational constraints
are directly cast into TS form, see (5.14). Equation (5.32) is at best only of for-
mal significance. First, the bubble time cannot be a scalar; see Giulini and Kiefer
(1995). Second, although the TS equation describes in principle the evolution
along all possible foliations of space–time into space-like hypersurfaces, this evo-
lution cannot be unitarily implemented on Fock space (Giulini and Kiefer 1995;
Helfer 1996; Torre and Varadarajan 1999). The only sensible approach is the use
of a genuine Schrödinger equation, that is, an integrated version of (5.32) along
a privileged foliation of space–time.

The Schrödinger equation can be applied successfully to some non-perturbative
aspects of quantum field theory; see Jackiw (1995), section IV.4, for a detailed
discussion and references. Among the applications are the θ-structure of QCD
(cf. Section 5.3.1), chiral anomalies, and confinement. From a more principal
point of view one can show that, at least for the φ4-theory in Minkowski space,
the Schrödinger picture exists at each order of perturbation theory, that is, in
each order one has an integrated version of (5.32) with renormalized quantities,

i�
∂Ψren

∂t
=

∫
d3x HrenΨren , (5.34)
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where one additional renormalization constant is needed in comparison to the
Fock-space formulation; see Symanzik (1981).9

The simplest example for the Schrödinger picture is the free bosonic field.
The implementation of the commutation relations

[φ̂(x), p̂φ(y)] = i�δ(x − y) (5.35)

leads to

φ̂(x)Ψ[φ(x)] = φ(x)Ψ[φ(x)] , (5.36)

p̂φΨ[φ(x)] =
�

i
δ

δφ(x)
Ψ[φ(x)] , (5.37)

where Ψ[φ(x)] is a wave functional on the space of all fields φ(x), which includes
not only smooth classical configurations, but also distributional ones. The Hamil-
ton operator for a free massive scalar field reads (from now on again � = 1)

Ĥ = 1/2
∫

d3x
(
p̂2

φ(x) + φ̂(x)(−∇2 + m2)φ̂(x)
)

≡ 1/2
∫

d3x p̂2
φ(x) +

1
2

∫
d3xd3x′ φ̂(x)ω2(x,x′)φ̂(x′) , (5.38)

where
ω2(x,x′) ≡ (−∇2 + m2)δ(x − x′) (5.39)

is not diagonal in three-dimensional space, but is diagonal in momentum space
(due to translation invariance),

ω2(p,p′) ≡
∫

d3p′′ ω(p,p′′)ω(p′′,p′)

=
1

(2π)3

∫
d3xd3x′ eipxω2(x,x′)e−ip′x′

= (p2 + m2)δ(p − p′) , (5.40)

with p ≡ |p|. Therefore,

ω(p,p′) =
√

p2 + m2δ(p − p′) ≡ ω(p)δ(p − p′) . (5.41)

The stationary Schrödinger equation then reads (we set � = 1)

ĤΨn[φ] ≡
(
−1

2

∫
d3x

δ2

δφ2 +
1
2

∫
d3xd3x′ φω2φ

)
Ψn[φ] = EnΨn[φ] . (5.42)

9This analysis was generalized by McAvity and Osborn (1993) to quantum field theory
on manifolds with arbitrarily smoothly curved boundaries. Non-Abelian fields are treated, for
example, in Lüscher et al. (1992).
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In analogy to the ground-state wave function of the quantum-mechanical har-
monic oscillator, the ground-state solution for (5.42) reads

Ψ0[φ] = det1/4
(ω

π

)
exp

(
−1

2

∫
d3xd3x′ φ(x)ω(x,x′)φ(x′)

)
, (5.43)

with the ground-state energy given by

E0 =
1
2
trω =

1
2

∫
d3xd3x′ ω(x,x′)δ(x − x′) =

1
2

V

(2π)3

∫
d3p ω(p) . (5.44)

This is just the sum of the ground-state energies for infinitely many harmonic
oscillators. Not surprisingly, it contains divergences: the infrared (IR) divergence
connected with the spatial volume V (due to translational invariance) and the
ultraviolet (UV) divergence connected with the sum over all oscillators. This is
the usual field-theoretic divergence of the ground-state energy and can be dealt
with by standard methods (e.g. normal ordering). Note that the normalization
factor in (5.43) is also divergent:

det1/4
(ω

π

)
= exp

(
1
4
tr ln

ω

π

)
= exp

(
V

32π3

∫
d3p ln

√
p2 + m2

π

)
. (5.45)

One can define the many-particle states (the Fock space) in the usual manner
through the application of creation operators on (5.43). The divergence (5.45)
cancels in matrix elements between states in Fock space. However, the space of
wave functionals is much bigger than Fock space. In fact, because there is no
unique ground state in the case of time-dependent external fields, any Gaussian
functional is called a ‘vacuum state’, independent of whether it is the ground
state of some Hamiltonian or not. A general Gaussian is of the form

ΨΩ[φ] = det1/4
(

ΩR

π

)
exp

(
−1

2

∫
d3xd3x′ φ(x)Ω(x,x′)φ(x′)

)
, (5.46)

where Ω ≡ ΩR + iΩI is in general complex and time-dependent. One can define
in the usual manner an annihilation operator (skipping the integration variables
for simplicity)

A =
1√
2

∫
Ω−1/2

R

(
Ωφ +

δ

δφ

)
(5.47)

and a creation operator

A† =
1√
2

∫
Ω−1/2

R

(
Ω∗φ − δ

δφ

)
. (5.48)

One has the usual commutation relation [A(x), A†(y)] = δ(x − y), and the vac-
uum state (5.46) is annihilated by A, AΨΩ = 0.
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Gaussian functionals are used frequently in quantum field theory with ex-
ternal fields. Examples are an external electric field in QED or an external
De Sitter-space background in a gravitational context (Jackiw 1995). The func-
tional Schrödinger picture can also be formulated for fermions (see e.g. Kiefer
and Wipf 1994; Jackiw 1995; Barvinsky et al. 1999b). In the context of lin-
earized gravity, we have already encountered the Gaussian functional describing
the graviton ground state; see the end of Section 2.1. Many discussions of the ge-
ometrodynamical wave functional take their inspiration from the above discussed
properties of the Schrödinger picture.

5.3.4 Connection with path integrals

We have discussed in Section 2.2 the formulation of a quantum-gravitational
path integral. In quantum mechanics, the path integral can be shown to sat-
isfy the Schrödinger equation (Feynman and Hibbs 1965). It is, therefore, of
interest to see if a similar property holds in quantum gravity, that is, if the
quantum-gravitational path integral (2.71) obeys the quantum constraints (5.18)
and (5.19). This is not straightforward since there are two major differences to or-
dinary quantum theory: first, one has constraints instead of the usual Schrödinger
equation. Second, the path integral (2.71) contains an integration over the whole
four-metric, that is, including ‘time’ (in the form of the lapse function). Since
the ordinary path integral in quantum mechanics is a propagator, denoted by
〈q′′, T |q′, 0〉, the quantum-gravitational path integral corresponds to an expres-
sion of the form ∫

dT 〈q′′, T |q′, 0〉 ≡ G(q′′, q′; E)|E=0 ,

where the ‘energy Green function’

G(q′′, q′; E) =
∫

dT eiET 〈q′′, T |q′, 0〉 (5.49)

has been introduced. The quantum-gravitational path integral thus resembles an
energy Green function instead of a propagator, and due to the T -integration no
composition law holds in the ordinary sense (Kiefer 1991, 2001a). All this is, of
course, true already for the models with reparametrization invariance discussed
in Section 3.1. In general, an integration over T yields a divergence. One therefore
has to choose appropriate contours in a complex T -plane in order to get a sensible
result.

A formal derivation of the constraints from (2.71) is straightforward (Hartle
and Hawking 1983). Taking a matter field φ into account, the path integral reads

Z =
∫

DgDφ eiS[g,φ] , (5.50)

where the integration over Dg includes an integration over the three-metric as
well as lapse function N and shift vector Na. From the demand that Z be
independent of N and Na at the three-dimensional boundaries, one gets
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δZ

δN
= 0 =

∫
DgDφ

δS

δN

∣∣∣Σ eiS[g,φ] ,

where Σ stands for the three-dimensional boundaries, and an analogous ex-
pression for Na. The conditions that the path integrals containing δS/δN and
δS/δNa vanish, respectively, immediately yield the constraints (5.18) and (5.19).

A more careful derivation has to take care for the definition of the measure in
the path integral. This was first attempted by Leutwyler (1964) without yet tak-
ing into account ghost terms. Regarding the correct gauge-fixing procedure, this
was achieved by Barvinsky and collaborators; see Barvinsky (1993a) for a review
and references. Halliwell and Hartle (1991) address general reparametrization-
invariant systems and demand that the ‘sum over histories’ in the path integral
respect the invariance generated by the constraints.10 They assume a set of con-
straints Hα ≈ 0 obeying the Poisson-bracket relations

{Hα, Hβ} = Uγ
αβHγ , (5.51)

where the Uγ
αβ may depend on the canonical variables pi and qi (as happens

in GR, where a dependence on the three-metric is present; see (3.90)). The
corresponding action is written in the form

S[pi, q
i, Nα] =

∫ t2

t1

dt (piq̇
i − NαHα) , (5.52)

where Nα are Lagrange parameters. As in Section 3.1, one considers

δpi = {pi, ε
αHα} , δqi = {qi, εαHα} .

If
δNα = ε̇α − Uα

βγNβεγ ,

the action transforms as

δS =
[
εαFα(pi, q

i)
]t2

t1
, Fα = pi

∂Hα

∂ṗi
− Hα .

Except for constraints linear in the momenta, the action is only invariant if
εα(t2) = 0 = εα(t1); cf. (3.34). Halliwell and Hartle (1991) have shown that for
such systems—together with five natural assumptions for the path integral—the
quantum constraints

Ĥαψ(qi) = 0

follow from the path integral. At least on the formal level (neglecting anomalies
etc.) GR is included as a special case and the derivation applies. The constraints
follow only if the integration range −∞ < N < ∞ holds for the lapse function. A

10Restriction is made to quantum-mechanical systems, so issues such as field-theoretic
anomalies are not discussed.
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direct check that the path integral solves the quantum constraints was achieved
in Barvinsky (1998) for generic (first class) constrained systems on the one-loop
level of the semiclassical approximation; see also Barvinsky (1993a) and the
references therein.

Quantum-gravitational path integrals play also a crucial role for the formu-
lation of boundary conditions in quantum cosmology; cf. Section 8.3.

5.3.5 Anomalies and factor ordering
If classical constraints Ga ≈ 0 are quantized à la Dirac, one gets restriction on
wave functions according to Ĝaψ = 0. Also, it is evident that the commutator
between two constraints must vanish if applied on wave functions, that is,

[Ĝa, Ĝb]ψ = 0 . (5.53)

This requirement is known as ‘Dirac consistency’. It only holds if the commutator
has the form

[Ĝa, Ĝb]ψ = Cc
ab(p̂, q̂)Ĝcψ , (5.54)

with the coefficients Cc
ab(p̂, q̂) standing to the left of the constraints. If this is not

the case, additional terms proportional to a power of � appear. They are called
‘central terms’ (if they are c-numbers), ‘Schwinger terms’, or simply anomalies.
We have encountered anomalies already in our discussion of the bosonic string;
cf. (3.62). If there are anomalies, it is not possible to implement all constraints
in the quantum theory via the equations Ĝaψ = 0.

The question whether there are anomalies in quantum gravity has not yet
been answered. One may hope that the demand for an absence of anomalies may
fix the factor ordering of the theory and perhaps other issues such as the allowed
number of space–time dimensions or the value of fundamental parameters. The
question is: can the structure of the Poisson algebra (3.90)–(3.92) be preserved
for the corresponding commutators? Or are there necessarily anomalous terms?
In spite of much literature, no definite result has arisen. A warning has been
pronounced by Tsamis and Woodard (1987): in order to establish Dirac consis-
tency, one must first properly regularize singular operator products. Otherwise,
one can get any result. This is because identities such as

f(y)g(x)δ(x − y) = f(x)g(x)δ(x − y)

are justified for test functions f and g, but not for distributions (and field oper-
ators are distributions!).

It might be possible to get some insight by looking at anomalies in ordinary
quantum field theories (see e.g. Jackiw 1995; Bertlmann 1996). In Yang–Mills
theories, one has the generalized Gauss law (see (4.30) and (4.122))

Gi ≡ DaEa
i − ρi ≈ 0 , (5.55)

where ρi denotes the (non-Abelian) charge density for the sources. Quantization
yields ĜiΨ = 0, where Ψ depends on the gauge fields Ai

a(x) and the charged
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fields. One also uses instead of Ai
a the variable Aa = Ai

aTi, where Ti denote the
generators of the gauge group,

[Ti, Tj] = Ck
ijTk .

Classically,
{Gi(x),Gj(y)} = Ck

ijGk(x)δ(x, y) . (5.56)

Dirac consistency would then be implemented in the quantum theory if one had

[Ĝi(x), Ĝj(y)] = i�Ck
ij Ĝk(x)δ(x, y) . (5.57)

It is, however, known that anomalies may occur in the presence of fermions with
definite chirality (cf. Bertlmann (1996) and the references therein):

[Ĝi(x), Ĝj(y)] = i�Ck
ij Ĝk(x)δ(x, y) ± i�

24π2 εabctr{Ti, Tj}∂aAb∂cδ(x, y) , (5.58)

where the sign in front of the second term on the right-hand side depends on
the chirality. In perturbation theory, the occurrence of such anomalies arises
through triangle graphs. An anomaly is harmless as long as it describes only the
breakdown of an external symmetry in the presence of gauge fields. It can then
even be responsible for particle decays: the decay π0 → γγ, for instance, is fully
generated by the axial anomaly (the non-conservation of the axial current). An
analogous anomaly, which is of relevance for gravity, is the ‘Weyl anomaly’ or
‘trace anomaly’ (see e.g. DeWitt 1979, 2003; Birrell and Davies 1982); cf. also Sec-
tion 2.2.4: the invariance of a classical action under Weyl transformations (mul-
tiplication of the metric with a function) leads to a traceless energy–momentum
tensor. Upon quantization, however, the trace can pick up a non-vanishing term
proportional to �.

An anomaly becomes problematic if the gauge fields are treated as quantized
internal fields because this would lead to a violation of gauge invariance with all
its consequences such as the destruction of renormalizability. This is the situation
described by (5.58). In the standard model of strong and electroweak interactions,
such harmful anomalies could in principle emerge from the electroweak (SU(2)×
U(1)) sector. However, the respective anomalies of quarks and leptons cancel
each other to render the standard model anomaly-free. This is only possible
because there is an equal number of quarks and leptons and because quarks have
three possible colours. In superstring theory (Chapter 9), anomaly cancellation
occurs (for the heterotic string) only if the possible gauge groups are strongly
constrained (either SO(32) or E8×E8). Chiral fermions in external gravitational
fields lead to (Lorentz) anomalies only in space–time dimensions 2, 6, 10, . . .; see
for example, Leutwyler (1986).

It is possible to quantize an anomalous theory, but not through the equations
ĜiΨ = 0 (Bertlmann 1996). The chiral Schwinger model (chiral QED in 1+1
dimensions), for example, allows a consistent quantum theory with a massive
boson.
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Another instructive example for the discussion of anomalies is dilaton gravity
in 1+1 dimensions. It is well known that GR in 1+1 dimensions possesses no
dynamics (see e.g. Brown (1988) for a review), since∫

d2x
√
−g (2)R = 4πχ , (5.59)

where (2)R is the two-dimensional Ricci scalar, and χ is the Euler characteristic
of the two-dimensional manifold; if the manifold were a closed compact Riemann
surface with genus g, one would have χ = 2(1−g). Although (5.59) plays a role in
string perturbation theory (see Chapter 9), it is of no use in a direct quantization
of GR. One can, however, construct non-trivial models in two dimensions if there
are degrees of freedom in the gravitational sector in addition to the metric. A
particular example is the presence of a dilaton field. Such a field occurs, for
example, in the ‘CGHS model’ presented in Callan et al. (1992). This model is
defined by the action

4πGSCGHS =
∫

d2x
√
−g e−2φ

(
(2)R + 4gµν∂µφ∂νφ − λ

)
+ Sm , (5.60)

where φ is the dilaton field, and λ is a parameter (‘cosmological constant’) with
dimension L−2.11 Note that the gravitational constant G is dimensionless in
two dimensions. The name ‘dilaton’ comes from the fact that φ occurs in the
combination d2x

√−g e−2φ and can thus be interpreted as describing an effective
change of integration measure (‘change of volume’). It is commonly found in
string perturbation theory (Chapter 9), and its value there determines the string
coupling constant.

The simplest choice for the matter action Sm is an ordinary scalar-field action,

Sm = 1
2

∫
d2x

√
−ggµν∂µϕ∂νϕ . (5.61)

Cangemi et al. (1996) make a series of redefinitions and canonical transformations
(partly non-local) to simplify this action. The result is then defined as providing
the starting point for quantization (independent of whether equivalence to the old
variables holds or not). In the Hamiltonian version, one finds again constraints:
one Hamiltonian constraint and one momentum constraint. They read (after a
rescaling λ → λ/8πG)

H⊥ =
(π1)2 − (π0)2

2λ
− λ

2
([r0]′)2 +

λ

2
([r1]′)2 +

1
2
(π2

ϕ + [ϕ′]2) , (5.62)

H1 = −[r0]′π0 − [r1]′π1 − ϕ′πϕ , (5.63)

where r0 and r1 denote the new gravitational variables (found from the metric—
the only dynamical part being its conformal part—and the dilaton), and π0

11One can exhaust all dilaton models by choosing instead of λ any potential V (φ); cf. Louis-
Martinez and Kunstatter (1994). A particular example is the dimensional reduction of spheri-
cally symmetric gravity to two dimensions; see Grumiller et al. (2002) for a general review of
dilaton gravity in two dimensions.
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and π1 are their respective momenta. The form of H1 is similar to the case
of parametrized field theory and string theory; cf. (3.80) and (3.49). One recog-
nizes explicitly that the kinetic term in H⊥ is indefinite. In fact, the Hamiltonian
constraint describes an ‘indefinite harmonic oscillator’ (Zeh 1988)—the sum of
two ordinary oscillators where one comes with the opposite sign (see also Sec-
tion 8.1.2).

According to our general prescription one has in the quantum theory

Ĥ⊥Ψ(r0, r1, ϕ) = 0 , Ĥ1Ψ(r0, r1, ϕ) = 0 . (5.64)

Although both H⊥ and H1 are a sum of independent terms, one cannot expect
to find a product state as a common solution (‘correlation interaction’). All
physical states are probably entangled among all degrees of freedom. The algebra
of constraints (3.90)–(3.92) then reads in the quantum theory,12

i[Ĥ⊥(x), Ĥ⊥(y)] = �(Ĥ1(x) + Ĥ1(y))δ′(x − y) , (5.65)

i[Ĥ⊥(x), Ĥ1(y)] = �(Ĥ⊥(x) + Ĥ⊥(y))δ′(x − y) − c�2

12π
δ′′′(x − y) , (5.66)

i[Ĥ1(x), Ĥ1(y)] = �(Ĥ1(x) + Ĥ1(y))δ′(x − y) . (5.67)

Note the absence of the metric on the right-hand side of these equations. This
is different from the (3+1)-dimensional case. The reason is that hhab = 1 in one
spatial dimension and that the constraint generators have been rescaled by a
factor

√
h.

In (5.66) an additional ‘Schwinger term’ with central charge c has been added.
The reason is a theorem by Boulware and Deser (1967) stating that there must
necessarily be a Schwinger term in the commutator

[Ĥ⊥(x), Ĥ1(y)] .

This theorem was proven, however, within standard Poincaré-invariant local field
theory, with the additional assumption that there be a ground state of the Hamil-
tonian. This is certainly not a framework that is applicable in a gravitational
context. But since the equations (5.62) and (5.63) have the form of equations
in flat space–time, one can tentatively apply this theorem. The central charge is
then a sum of three contributions (Cangemi et al. 1996),

c = cg + cm ≡ cg
0 + cg

1 + cm , (5.68)

where cg
0 and cg

1 are the central charges connected with the gravitational variables
r0 and r1, respectively, and cm is the central charge connected with the field ϕ.
The result for c depends on the notion of vacuum (if there is one). Standard
methods (decomposition into creation and annihilation operators) yield cg

1 = 1.
What about cg

0? If the sign in front of the (π0)2-term in (5.62) were positive,

12The Virasoro form (3.62) of the algebra follows for the combinations θ± = (H⊥ ∓H1).
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one would have cg
0 = 1, too. But with the minus sign one cannot simultaneously

demand positive energy and positive norm. Demanding positive norm one must
combine positive frequency with the creation operator (instead, as usual, the
annihilation operator). This would yield cg

0 = −1. Then, c = 0 in the absence of
the ϕ-field and one would have no anomaly. The constraints (5.64) can then be
consistently imposed, and one can find the following two solutions in the pure
gravitational case,

Ψg(r0, r1) = exp
(
± iλ

2�

∫
dx (r0[r1]′ − r1[r0]′)

)
. (5.69)

Exact states describing black holes in generic dilaton models were discussed in
Barvinsky and Kunstatter (1996).

The presence of the ϕ-field would, however, yield cm = 1 and the anomaly
would not vanish, c = 1. Cangemi et al. (1996) have shown that the anomaly
can be cancelled by adding an appropriate counterterm, but this leads to a
complicated form of the quantum constraints for which no solution is in sight.13

Albeit obtained within an unrealistically simple model, the above discussion
demonstrates what kind of problems can be expected to occur. The presence of
anomalies might prevent one to impose all constraints in GR à la Dirac, but one
could also imagine that in the full theory a cancellation of the various central
charges might occur. The latter is suggested by the indefinite kinetic term in
quantum gravity, but an explicit demonstration is far from reach.

The above discussion of anomalies refers to a field-theoretic context. How-
ever, even for finite-dimensional models with constraints H⊥ ≈ 0, Ha ≈ 0 the
demand for closure of the quantum algebra leads to restrictions on the possible
factor ordering. This was studied by Barvinsky and Krykhtin (1993) for gen-
eral constrained systems and applied by Barvinsky (1993b) to the gravitational
case. The classical constraints are again collectively written as Hα ≈ 0. Their
Poisson-bracket algebra—the analogue to (3.90)–(3.92)—is given by the short-
hand notation (5.51). Demanding equivalence of ‘Dirac quantization’ and ‘BRST
quantization’, Barvinsky and Krykhtin (1993) find the relation

Ĥα − Ĥ†
α = i�

(
Ûλ

αλ

)†
+ O(�2) , (5.70)

where the adjoint is defined with respect to the standard Schrödinger inner prod-
uct. If one demands that the constraints be covariant with respect to redefinitions
in configuration space, their quantum form is fixed to read (with 32πG = 1)

Ĥ⊥ = −�2

2
GabcdDabDcd + V , (5.71)

Ĥa = −2�

i
DbhacDbc +

i�
2

Uλ
aλ , (5.72)

13These authors also present a proposal for BRST-quantization, QBRSTΨ = 0, where QBRST

is the BRST-charge; cf. Section 9.1. They find many solutions which, however, cannot be
properly interpreted.
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where Dab is the covariant derivative with respect to the DeWitt metric,

Dab ≡ DΨ
Dhab

.

The big open problem is of course to see whether this result survives the transi-
tion to the field-theoretic case, that is, whether no anomalies are present after a
consistent regularization has been performed.

5.3.6 Canonical quantum supergravity

We have seen in Section 2.3 that the quantization of supergravity instead of GR
exhibits interesting features. Thus, it seems worthwhile to discuss the canonical
quantization of supergravity (SUGRA). This will be briefly reviewed here; more
details can be found in D’Eath (1984, 1996) and Moniz (1996). The situation in
three space–time dimensions is addressed in Nicolai and Matschull (1993). Here,
we will only consider the case of N = 1 SUGRA given by the action (2.142).

The classical canonical formalism was developed by Fradkin and Vasiliev
(1977), Pilati (1977), and Teitelboim (1977). Working again with tetrads (cf.
Section 1.1), one has

gµν = ηnmen
µem

ν . (5.73)

For the quantization it is more convenient to use two-component spinors accord-
ing to

eAA′
µ = en

µσAA′
n , (5.74)

where A runs from 1 to 2, A′ from 1′ to 2′, and the van der Waerden symbols
σAA′

n denote the components of the matrices

σ0 = − 1√
2

I , σa =
1√
2
× Pauli matrix , (5.75)

with raising and lowering of indices by εAB, εAB, εA′B′
, εA′B′ , which are all given

in matrix form by (
0 1
−1 0

)
,

see for example, Wess and Bagger (1992), Sexl and Urbantke (2001) for more
details on this formalism. The inverse of (5.74) is given by

en
µ = −σn

AA′eAA′
µ , (5.76)

where σn
AA′ is obtained from σAA′

n by raising and lowering indices. One can go
from tensors to spinors via eAA′

µ and from spinors to tensors via eµ
AA′ .

One can now rewrite the action (2.142) in two-component language. Instead
of en

µ (vierbein) and ψα
µ (gravitino), one works with the spinor-valued one-form

eAA′
µ and the spinor-valued one-form ψA

µ plus its Hermitian conjugate ψ̄A′
µ . The



THE GEOMETRODYNAMICAL WAVE FUNCTION 159

latter two are odd Grassmann variables, that is, they are anticommuting among
themselves. The action then reads (for Λ = 0)

S =
1

16πG

∫
d4x (deten

µ)R +
1
2

∫
d4x εµνρσ

(
ψ̄A′

µ eAA′νDρψ
A
σ + h.c.

)
. (5.77)

The derivative Dρ acts on spinor-valued forms (i.e. acts on their spinor indices
only),

DµψA
ν = ∂µψA

ν + ωA
BµψB

ν , (5.78)

where ωA
Bµ denotes the spinorial version of ωnm

µ (see D’Eath 1984). We remark
that the presence of gravitinos leads to torsion,

D[µeAA′
ν] = SAA′

µν = −4πiGψ̄A′
[µ ψA

ν] , (5.79)

where SAA′
µν denotes the torsion, and the last step follows from variation of the

action with respect to the connection forms; see van Nieuwenhuizen (1981). The
action (5.77) is invariant under the following infinitesimal local symmetry trans-
formations:

1. Supersymmetry (SUSY) transformations:

δeAA′
µ = −i

√
8πG(εAψ̄A′

µ + ε̄A′
ψA

µ ) , (5.80)

δψA
µ =

DµεA

√
2πG

, δψ̄A′
µ =

Dµε̄A′

√
2πG

, (5.81)

where εA and ε̄A′
denote anticommuting fields.

2. Local Lorentz transformations:

δeAA′
µ = NA

B eBA′
µ + N̄A′

B′ eAB′µ , (5.82)

δψA
µ = NA

B ψB
µ , δψ̄A′

µ = N̄A′
B′ ψ̄B′

µ , (5.83)

with NAB = N (AB).
3. Local coordinate transformations:

δeAA′
µ = ξν∂νeAA′

µ + eAA′
ν ∂µξν , (5.84)

δψA
µ = ξν∂νψA

µ + ψA
ν ∂µξν , (5.85)

where ξν are the parameters defining the (infinitesimal) coordinate transforma-
tion. The right-hand sides are just the Lie derivatives of these fields.

In analogy to Chapter 4 for GR, one can develop a Hamiltonian formalism for
SUGRA. For this purpose, one splits eAA′

µ into eAA′
0 and eAA′

a to get the spatial
metric

hab = −eAA′aeAA′
b = gab , (5.86)

where eAA′
a = en

aσAA′
n in analogy to (5.74). The spinorial version of the normal

vector nµ reads
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nAA′
= eAA′

µ nµ , (5.87)

obeying
nAA′eAA′

a = 0 , nAA′nAA′
= 1 . (5.88)

Analogous to (4.40) one can expand the remaining components of the spinorial
tetrad as

eAA′
0 = NnAA′

+ NaeAA′
a , (5.89)

with lapse function N and shift vector Na. The canonical formalism starts with
the definition of the momenta. The momenta conjugate to N , Na, ψA

0 , and
ψ̄A′

0 are all zero, since these variables are Lagrange multipliers. The momenta
conjugate to the gravitino fields are14

πa
A =

δS

δψ̇A
a

= −1
2
εabcψ̄A′

b eAA′c , (5.90)

π̃a
A′ =

δS

δ ˙̄ψA′
a

=
1
2
εabcψA

b eAA′c . (5.91)

Since the action is linear in Dψ and Dψ̄, the time derivatives ψ̇ and ˙̄ψ do not
occur on the right-hand sides. Therefore, these equations are in fact constraints.
It turns out that these constraints are of second class, that is, the Poisson brack-
ets of the constraints do not close on the constraints again; cf. Section 3.1.2.
As a consequence, one can eliminate the momenta πa

A and π̃a
A′ from the canon-

ical action by using these constraints. Finally, the momentum conjugate to the
spinorial tetrad can be found from

pa
AA′ =

δS

δėAA′
a

, (5.92)

from which the ordinary spatial components follow via pab = −eAA′apb
AA′ . The

symmetric part of pab can be expressed exactly as in (4.63) in terms of the second
fundamental form Kab on t = constant,

p(ab) =

√
h

16πG

(
K(ab) − Khab

)
. (5.93)

However, due to the presence of torsion, Kab now possesses also an antisymmetric
part,

K[ab] = S0ab = nµSµab . (5.94)

If second-class constraints are present, one has to use Dirac brackets instead
of Poisson brackets for the canonically conjugate variables (Dirac 1964; Sun-
dermeyer 1982; Henneaux and Teitelboim 1992). Dirac brackets coincide with

14The Grassmann-odd variables must be brought to the left before the functional differenti-
ation is carried out. The momentum π̃a

A′ is minus the Hermitian conjugate of πa
A.
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Poisson brackets on the constraint hypersurface but have the advantage that the
variables of the original phase space can be used. They are denoted by {...}∗. In
the present case, one has

{eAA′
a (x), eBB′

b (y)}∗ = 0 ,

{eAA′
a (x), pb

BB′(y)}∗ = εA
BεA′

B′δb
aδ(x, y) ,

{pa
AA′(x), pb

BB′(y)}∗ = 1
4 εbcdψBdDAB′ecε

aef ψ̄A′fδ(x, y) + h.c. ,

{ψA
a (x), ψB

b (y)}∗ = 0 , (5.95)

{ψA
a (x), ψ̄A′

b (y)}∗ = −DAA′
ab δ(x, y) ,

{eAA′
a (x), ψB

b (y)}∗ = 0 ,

{pa
AA′(x), ψB

b (y)}∗ = 1
2 εacdψAdD

B
A′bcδ(x, y) ,

where
DAA′

ab = − 2i√
h

eAB′
b eBB′anBA′

. (5.96)

In addition, one has the conjugate relations.
The invariance of the action under local Lorentz transformations yields the

primary constraints
JAB ≈ 0 , J̄A′B′ ≈ 0 , (5.97)

where
JAB = eA′a

(A pB)A′a + ψa
(AπB)a . (5.98)

In addition one finds the secondary constraints

H⊥ ≈ 0 , Ha ≈ 0 , SA ≈ 0 , S̄A′ ≈ 0 , (5.99)

where SA and S̄A′ denote the generators of SUSY transformations. One also likes
to use the combination

HAA′ = −nAA′H⊥ + ea
AA′Ha . (5.100)

With the definition πab = −p(ab)/2, one finds for the Hamiltonian constraint

H⊥ = 16πG Gabcdπ
abπcd −

√
h (3)R

16πG

+πG
√

hnAA′ψ̄A′
[a ψA

b]n
BB′

ψ̄
[a
B′ψ

b]
B

+
1
2
εabcψ̄A′

a nAA′Dbψ
A
c + h.c. (5.101)

plus terms proportional to the Lorentz constraints. Db denotes the three-dimen-
sional version of (5.78),

Dbψ
A
a = ∂bψ

A
a + (3)ωA

Bbψ
B
a , (5.102)

where (3)ωA
Bb are the spatial connection forms. For the explicit expressions of the

other constraints, we refer to D’Eath (1984, 1996) and Moniz (1996); see below
for the quantum versions of the Lorentz and the SUSY constraints.
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The time evolution of a dynamical variable is given by

dA

dt
= {A, H}∗ , (5.103)

where the Hamiltonian is given by the expression

H =
∫

d3x
(
NH⊥ + NaHa + ψA

0 SA + S̄A′ ψ̄A′
0 − ωAB0J

AB − ω̄A′B′0J̄
A′B′)

,

(5.104)
from which the constraints follow after variation with respect to the Lagrange
multipliers. This expression holds for the spatially compact case. In the asymp-
totically flat case one has again terms at spatial infinity—the original ones (Sec-
tion 4.2.4) plus supercharges at infinity arising from the global SUSY algebra
(Section 2.3).

Of particular interest are the Dirac brackets among the SUSY generators, for
which one finds

{SA(x), SB(y)}∗ = 0 , {S̄A′(x), S̄B′(y)}∗ = 0 , (5.105)

and
{SA(x), S̄A′ (y)}∗ = 4πiGHAA′(x)δ(x, y) (5.106)

plus terms proportional to the constraints (5.97). One recognizes from (5.106)
that the constraints HAA′ ≈ 0 already follow from the validity of the remaining
constraints. Since the SUSY constraints appear quadratically on the left and the
Hamiltonian constraint linearly on the right, one can refer to N = 1 SUGRA as
the ‘square root of gravity’ (Teitelboim 1977).

Quantization proceeds by turning Dirac brackets into commutators or anti-
commutators. Grassmann-even variables are quantized using commutators (omit-
ting hats on operators),

{E1, E2}∗ −→ − i
�
[E1, E2] , (5.107)

while Grassmann-odd variables are quantized using anticommutators,

{O1, O2}∗ −→ − i
�
[O1, O2]+ . (5.108)

Mixed variables are quantized via commutators,

{O, E}∗ −→ − i
�
[O, E] . (5.109)

Proceeding as in Section 5.2.2, one can implement the Dirac brackets (5.95) via
wave functionals

Ψ[eAA′
a (x), ψA

a (x)] , (5.110)
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which can depend either on ψA
a (x) (as written here) or on ψ̄A′

a , but not both.
This is because of the non-trivial anticommutator

[ψA
a (x), ψ̄A′

b (y)]+ = −i�DAA′
ab δ(x, y) , (5.111)

which can be represented on the wave functional as15

ψ̄A′
a (x) = −i�DAA′

ba

δ

δψA
b (x)

. (5.112)

The momenta pa
AA′(x) are represented as

pa
AA′(x) = −i�

δ

δeAA′
a (x)

+
1
2
εabcψAb(x)ψ̄A′c(x)

= −i�
δ

δeAA′
a (x)

− i�
2

εabcψAb(x)DB
A′dc

δ

δψB
d (x)

. (5.113)

The factor ordering has been chosen such that all derivatives stand on the right.
One can choose a formal Schrödinger-type inner product with respect to which
pa

AA′ is Hermitian and ψ̄A′
a , ψA

a are Hermitian adjoints (D’Eath 1996).16

The quantum constraints then read

JABΨ = 0 , J̄A′B′Ψ = 0 , HAA′Ψ = 0 , SAΨ = 0 , S̄A′Ψ = 0 . (5.114)

The first two constraints express the invariance of the wave functional under
Lorentz transformations, while the last two constraints express its invariance
under SUSY transformations. From the quantum version of (5.106), it becomes
clear that a solution of the Lorentz and the SUSY constraints is also a solution
to HAA′Ψ = 0, provided, of course, that there are no anomalies and the quantum
algebra closes. The issue of anomalies is here as unsolved as it is in the case of
quantum GR.

The explicit form of the quantum Lorentz constraint operators reads

JAB = − i�
2

(
eA′

Ba

δ

δeAA′
a

+ eA′
Aa

δ

δeBA′
a

+ ψBa
δ

δψA
a

+ ψAa
δ

δψB
a

)
, (5.115)

J̄A′B′ = − i�
2

(
eA

B′a
δ

δeAA′
a

+ eA
A′a

δ

δeAB′
a

)
, (5.116)

while the quantum SUSY constraint operators read

S̄A′ = εabceAA′a
sDbψ

A
c + 4πG�ψA

a

δ

δeAA′
a

, (5.117)

SA = i� sDa

(
δ

δψA
a

)
+ 4πiG�

δ

δeAA′
a

(
DBA′

ba

δ

δψB
b

)
, (5.118)

where sDa is the ‘torsion-free derivative’. In the anomaly-free case, one has only
to solve the constraints JABΨ = 0, SAΨ = 0 (and their conjugates), since

15One can also employ other representations; cf. the remarks in Moniz (2003).
16One can go via a functional Fourier transformation from Ψ to Ψ̃[eAA′

a (x), ψ̄A′
a (x)].
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HAA′Ψ = 0 must hold automatically. This could lead to considerable simplifica-
tion because (5.115)–(5.118) involve at most first-order derivatives.

Canonical quantum SUGRA can be applied, for example, in the context of
quantum cosmology (Section 8.1). One can also study some general properties.
One of them is the fact that pure bosonic states cannot exist (see e.g. Moniz 1996
for discussion and references). This can easily be shown. Considering a bosonic
state Ψ[eAA′

a ], one has δΨ/δψA
a = 0 and recognizes immediately that (5.118) is

solved, that is, SAΨ = 0. Assuming that Ψ[eAA′
a ] is Lorentz invariant, that is,

that the Lorentz constraints are already fulfilled, it is clear that a state with
S̄A′

Ψ = 0 satisfies all constraints. However, such a state cannot exist. This can
be seen as follows (Carroll et al. 1994). One multiplies S̄A′

Ψ = 0 by [Ψ]−1 and
integrates over space with an arbitrary spinorial test function ε̄A′

(x) to get

I ≡
∫

d3x ε̄A′
(x)

(
εabceAA′a

sDbψ
A
c + 4πG�ψA

a

δ(ln Ψ)
δeAA′

a

)
= 0 . (5.119)

This must hold for all fields and all ε̄A′
(x). If one now replaces ε̄A′

(x) by
ε̄A′

(x) exp(−φ(x)) and ψA
a (x) by ψA

a (x) exp(φ(x)), where φ(x) is some arbitrary
function, the second term in (5.119) cancels out in the difference ∆I between
the old and the new integral, and one is left with

∆I = −
∫

d3x εabceAA′aε̄A′
ψA

c ∂bφ = 0 , (5.120)

which is independent of the state Ψ. It is obvious that one can choose the fields as
well as ε̄A′

(x) and φ(x) in such a way that the integral is non-vanishing, leading
to a contradiction. Therefore, no physical bosonic states can exist, and a solution
of the quantum constraints can be represented in the form

Ψ[eAA′
a (x), ψA

a (x)] =
∞∑

n=1

Ψ(n)[eAA′
a (x), ψA

a (x)] , (5.121)

where the expansion is into states with fermion number n. In fact, one can
show with similar arguments that any solution of the quantum constraints must
have infinite fermion number. An explicit solution of a peculiar type was found
(without any regularization) by Csordás and Graham (1995).

5.4 The semiclassical approximation

5.4.1 Analogies from quantum mechanics

The semiclassical approximation to quantum geometrodynamics discussed here
uses, in fact, a mixture of two different approximation schemes. The full sys-
tem is divided into two parts with very different scales. One part is called the
‘heavy part’—for it the standard semiclassical (WKB) approximation is used.
The other part is called the ‘light part’—it is treated fully quantum and follows
adiabatically the dynamics of the heavy part. A mixed scheme of this kind is
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called a ‘Born–Oppenheimer’ type of approximation scheme. It is successfully
applied in molecular physics, where the division is into the heavy nuclei (moving
slowly) and the light electrons (following adiabatically the motion of the nuclei).
Many molecular spectra can be explained in this way. In quantum gravity, the
‘heavy’ part is often taken to be the full gravitational field (motivated by the
large value of the Planck mass), while the ‘light’ part are all non-gravitational
degrees of freedom (see e.g. Kiefer 1994). This has the formal advantage that
an expansion with respect to the Planck mass can be performed. It is, however,
fully consistent to consider part of the gravitational degrees of freedom as fully
quantum and therefore include them in the ‘light’ part (see e.g. Halliwell and
Hawking 1985; Vilenkin 1989). Physically, these degrees of freedom are gravi-
tons and quantum density fluctuations. It depends on the actual situation one is
interested in whether this ‘light’ gravitational part has to be taken into account
or not.

For full quantum geometrodynamics, this semiclassical expansion exists only
on a formal level. Therefore, it will be appropriate to discuss quantum-mechanical
analogies in this subsection. Albeit formal, the expansion scheme is of the utmost
conceptual importance. As we shall see, it enables one to recover the usual time
as an approximate concept from ‘timeless’ quantum gravity (Section 5.4.2). This
is the relevant approach for observers within the Universe (‘intrinsic viewpont’).
Moreover, the scheme allows to go to higher orders and calculate quantum-
gravitational correction terms to the functional Schrödinger equation, which
could have observational significance (Section 5.4.3).

Let us now consider in some detail a simple quantum-mechanical model (see
e.g. Kiefer 1994; Bertoni et al. 1996; Briggs and Rost 2001). The total system
consists of the ‘heavy part’ described by the variable Q, while the ‘light-part’
variable is called q.17 It is assumed that the full system is described by a sta-
tionary Schrödinger equation,

HΨ(q, Q) = EΨ(q, Q) , (5.122)

with the Hamilton operator to be of the form

H = − �2

2M

∂2

∂Q2 + V (Q) + h(q, Q) , (5.123)

where h(q, Q) contains the pure q-part and the interaction between q and Q. In
the case of the Wheeler–DeWitt equation, the total energy is zero, E = 0. One
now makes an expansion of the form

Ψ(q, Q) =
∑

n

χn(Q)ψn(q, Q) (5.124)

and assumes that 〈ψn|ψm〉 = δnm for each value of Q. The inner product here
is the ordinary scalar product with respect to q only (only this part will be

17For simplicity, the total system is considered to be two dimensional. The extension to more
dimensions is straightforward.
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naturally available in quantum gravity). Inserting the ansatz (5.124) into the
Schrödinger equation and projecting on ψm(q, Q) yields

∑
n

〈
ψm

∣∣∣∣− �2

2M

∂2

∂Q2

∣∣∣∣ψn

〉
χn + V (Q)χm +

∑
n

〈ψm|h|ψn〉χn = Eχm , (5.125)

where the Q-derivative acts on everything to the right. We now introduce the
‘Born–Oppenheimer potentials’

εmn(Q) ≡ 〈ψm|h|ψn〉 , (5.126)

which for eigenstates of the ‘light’ variable, h|ψn〉 = εn|ψn〉, just read: εmn(Q) =
εn(Q)δmn. In molecular physics, this is often the case of interest. We shall, how-
ever, keep the formalism more general. We also introduce the ‘connection’

Amn(Q) ≡ i�
〈

ψm

∣∣∣∣∂ψn

∂Q

〉
(5.127)

and a corresponding momentum

Pmn ≡ �

i

(
δmn

∂

∂Q
− i

�
Amn

)
. (5.128)

Making use of (5.126) and (5.128), one can write (5.125) in the form18

∑
n

(P2
mn

2M
+ εmn(Q)

)
χn(Q) + V (Q)χm(Q) = Eχm(Q) . (5.129)

The modification in the momentum Pmn and the ‘Born–Oppenheimer potential’
εmn express the ‘back reaction’ from the ‘light’ part onto the ‘heavy part’. In-
serting the ansatz (5.124) into the Schrödinger equation without projection on
ψm, one gets

∑
n

χn(Q)
[
h(q, Q) −

(
E − V (Q) +

�2

2Mχn

∂2χn

∂Q2

)

− �2

2M

∂2

∂Q2 − �2

Mχn

∂χn

∂Q

∂

∂Q

]
ψn(q, Q) = 0 . (5.130)

We emphasize that (5.129) and (5.130) are still exact equations, describing the
coupling between the ‘heavy’ and the ‘light’ part.

18Here, P2
mn ≡ P

k PmkPkn.
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Various approximations can now be performed. In a first step, one can assume
that the ‘heavy’ part is approximately insensitive to changes in the ‘light’ part.
This enables one to neglect the off-diagonal parts in (5.129), leading to[

1
2M

(
�

i
∂

∂Q
− Ann(Q)

)2

+ V (Q) + En(Q)

]
χn(Q) = Eχn(Q) , (5.131)

where En(Q) ≡ εnn(Q). For real ψn, the connection vanishes, Ann = 0. Other-
wise, it leads to a geometric phase (‘Berry phase’); cf. Berry (1984). We shall
neglect the connection in the following.19

In a second step, one can perform a standard semiclassical (WKB) approxi-
mation for the heavy part through the ansatz

χn(Q) = Cn(Q)eiMSn(Q)/� . (5.132)

This is inserted into (5.131). For the Q-derivative, one gets

∂2χn

∂Q2 =
∂2Cn

∂Q2

χn

Cn
+

2iM
�

∂Cn

∂Q

∂Sn

∂Q

χn

Cn

−
(

M

�

)2 (
∂Sn

∂Q

)2

χn +
iM
�

∂2Sn

∂Q2 χn . (5.133)

Assuming M to be large corresponds to neglecting derivatives of Cn and second
derivatives of Sn (the usual assumptions for WKB). One then has

∂2χn

∂Q2 ≈ −
(

M

�

)2 (
∂Sn

∂Q

)2

χn . (5.134)

The classical momentum is then given by

Pn = M
∂Sn

∂Q
≈ �

iχn

∂χn

∂Q
, (5.135)

and (5.131) becomes the Hamilton–Jacobi equation,

Hcl ≡
P 2

n

2M
+ V (Q) + En(Q) = E . (5.136)

Since En(Q) = 〈ψn|h|ψn〉, this corresponds, in the gravitational context, to the
semiclassical Einstein equations discussed in Section 1.2, where the expectation
value of the energy–momentum tensor appears.

19An intriguing idea would be to derive the connection in gauge theories along these lines.
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One can now introduce a time coordinate t via the Hamilton equations of
motion,

d
dt

Pn = − ∂

∂Q
Hcl = − ∂

∂Q
(V (Q) + En(Q)) ,

d
dt

Q =
∂

∂Pn
Hcl =

Pn

M
. (5.137)

In fact, the very definition of t depends on n, and we call it therefore tn in the
following. Since it arises from the WKB approximation (5.132), it is called WKB
time (Zeh 1988). The last term in (5.130) can then be written as

− �2

Mχn

∂χn

∂Q

∂ψn

∂Q
≈ −i�

∂Sn

∂Q

∂ψn

∂Q
≡ −i�

∂ψn

∂tn
. (5.138)

This means that ψn is evaluated along a particular classical trajectory of the
‘heavy’ variable, ψn(Q(tn), q) ≡ ψn(tn, q). Assuming slow variation of ψn with
respect to Q, one can neglect the term proportional to ∂2ψn/∂Q2 in (5.130).
Also using (5.136), one is then left with

∑
n

χn

[
h(q, tn) − En(tn) − i�

∂

∂tn

]
ψn(tn, q) = 0 . (5.139)

This equation still describes a coupling between ‘heavy’ and ‘light’ part.
In a third and last step one can assume that instead of the whole sum (5.124)

only one component is available, that is, one has—up to an (adiabatic) depen-
dence of ψ on Q—a factorizing state,

χ(Q)ψ(q, Q) .

This lack of entanglement can of course only arise in certain situations and must
be dynamically justified (through decoherence; cf. Chapter 10). If it happens,
and after absorbing En(t) into a redefinition of ψ (yielding only a phase), one
gets from (5.139):

i�
∂ψ

∂t
= hψ , (5.140)

that is, just the Schrödinger equation. The ‘heavy’ system acts as a ‘clock’ and
defines the time with respect to which the ‘light’ system evolves. Therefore,
a time-dependent Schrödinger equation has arisen for one of the subsystems,
although the full Schrödinger equation is of a stationary form; cf. Mott (1931).

Considering the terms with order M in (5.133), one finds an equation for the
Cn,

2
∂Cn

∂Q

∂Sn

∂Q
+

∂2Sn

∂Q2 Cn = 0 , (5.141)

or in the case of one component only,
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2
∂S

∂Q

∂C

∂Q
+

∂2S

∂Q2 C ≡ 2
∂C

∂t
+

∂2S

∂Q2 C = 0 . (5.142)

This can be written in the form of a continuity equation,

∂

∂Q

(
C2 ∂S

∂Q

)
= 0 . (5.143)

A systematic derivation makes use of an M -expansion,

Ψ ≡ exp (iS/�) , S = MS0 + S1 + M−1S2 + · · · . (5.144)

The Hamilton–Jacobi equation (5.136) then appears at order M , and both the
Schrödinger equation (5.140) and the prefactor equation (5.143) appear at order
M0. The next order, M−1, then yields corrections to the Schrödinger equation
(discussed in Section 5.4.3 for the quantum-gravitational case).

Another example, which is closer to the situation with the Wheeler–DeWitt
equation (because of the indefinite kinetic term), is the non-relativistic expansion
of the Klein–Gordon equation; cf. Kiefer and Singh (1991). In the absence of an
external potential, the latter reads(

�2

c2

∂2

∂t2
− �2∆ + m2c2

)
ϕ(x, t) = 0 . (5.145)

One writes
ϕ(x, t) ≡ exp (iS(x, t)/�) (5.146)

and expands the exponent in powers of c,

S = c2S0 + S1 + c−2S2 + · · · (5.147)

This ansatz is inserted into (5.145), which is then solved at consecutive orders
of c2. The highest order, c2, yields solutions S0 = ±mt, from which we choose
S0 = −mt. This choice corresponds to

ϕ = exp
(
−imc2t/�

)
,

which is the ‘positive-energy solution’. The approximation works as long as
‘negative-energy solutions’ can be consistently neglected, that is, as long as
field-theoretic effects such as particle creation do not play any role. Writing
ψ ≡ exp(iS1/�) one gets at order c0, the Schrödinger equation,

i�ψ̇ = − �2

2m
∆ψ . (5.148)

The Schrödinger equation has thus been derived as a non-relativistic approxima-
tion to the Klein–Gordon equation. Writing Ψ ≡ ψ exp(iS2/�c2) one arrives at
order c−2 at the equation

i�Ψ̇ = − �2

2m
∆Ψ − �4

8m3c2 ∆∆Ψ . (5.149)

The last term is the first relativistic correction term and can be used to derive
testable predictions, for example, for spectra of pionic atoms (for ordinary atoms
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an expansion of the Dirac equation must be employed). A more general case is
the Klein–Gordon equation coupled to gravity and the electromagnetic field. This
leads to additional relativistic correction terms (Lämmerzahl 1995).

A major difference of the Klein–Gordon example to the first example is the
indefinite structure of the kinetic term (d’Alembertian instead of Laplacian).
Therefore, on the full level, the conserved inner product is the Klein–Gordon
one (cf. Section 5.2.2). In order c0 of the approximation, one obtains from this
inner product the standard Schrödinger inner product as an approximation. The
next order yields corrections to the Schrödinger inner product proportional to
c−2. Does this mean that unitarity is violated at this order? Not necessarily. In
the case of the Klein–Gordon equation in external gravitational and electromag-
netic fields, one can make a (t-dependent!) redefinition of wave functions and
Hamiltonian to arrive at a conserved Schrödinger inner product with respect to
which the Hamiltonian is Hermitian (Lämmerzahl 1995).

5.4.2 Derivation of the Schrödinger equation

Similar to the discussion of the examples in the last subsection one can perform
a semiclassical (‘Born–Oppenheimer’) approximation for the Wheeler–DeWitt
equation and the momentum constraints. In this way one can recover approxi-
mately the limit of ordinary quantum field theory in an external gravitational
background. This is done in the Schrödinger picture, so this limit emerges through
the functional Schrödinger equation, not the quantum-mechanical Schrödinger
equation as in the last subsection. In the following, we shall mainly follow, with
elaborations, the presentation in Barvinsky and Kiefer (1998); see also Kiefer
(1994) and references therein.

The starting point is the Wheeler–DeWitt equation (5.18) and the momentum
constraint (5.19). Taking into account non-gravitational degrees of freedom, these
equations can be written in the following form:{

− 1
2m2

P
Gabcd

δ2

δhabδhcd
− 2m2

P

√
h (3)R + Ĥm

⊥

}
|Ψ[hab]〉 = 0 , (5.150){

−2
i
habDc

δ

δhbc
+ Ĥm

a

}
|Ψ[hab]〉 = 0 . (5.151)

Here, m2
P = (32πG)−1, � = 1, Λ = 0, and Ĥm

⊥ and Ĥm
a denote the contributions

from non-gravitational fields. To be concrete, we think about the presence of a
scalar field. The notation |Ψ[hab]〉 means: Ψ is a wave functional with respect to
the three-metric hab and a state in the standard Hilbert space referring to the
scalar field (bra- and ket-notation).

The situation is now formally similar to the example discussed in the previous
subsection. One of the main differences is the presence of the momentum con-
straints (5.151), which have no analogue in the quantum-mechanical example.
Comparing (5.150) with (5.123), one notes the following formal correspondence
between the terms:



THE SEMICLASSICAL APPROXIMATION 171

− 1
2M

∂2

∂Q2 ↔ − 1
2m2

P
Gabcd

δ2

δhabδhcd
,

V (Q) ↔ −2m2
P

√
h (3)R ,

h(q, Q) ↔ Ĥm
⊥ ,

Ψ(q, Q) ↔ |Ψ[hab]〉 . (5.152)

The same steps as in the quantum-mechanical example can now be performed.
We already assume at this stage that we have one component instead of a sum
like (5.124) and that this component is written in the form

|Ψ[hab]〉 = C[hab]eim2
PS[hab]|ψ[hab]〉 . (5.153)

In the highest order of a WKB approximation for the gravitational part, S[hab]
obeys a Hamilton–Jacobi equation similar to (5.136). In addition, it obeys a
Hamilton–Jacobi version of the momentum constraints. Therefore,

m2
P

2
Gabcd

δS

δhab

δS

δhcd
− 2m2

P

√
h (3)R + 〈ψ|Ĥm

⊥ |ψ〉 = 0 , (5.154)

−2m2
PhabDc

δS

δhbc
+ 〈ψ|Ĥm

a |ψ〉 = 0 . (5.155)

These equations correspond—in the usual four-dimensional notation—to the
semiclassical Einstein equations (1.35). Note that the ‘back reaction’ terms in
these equations are formally suppressed by a factor m−2

P compared to the remain-
ing terms. For this reason they are often neglected in this order of approximation
and only considered in the next order (Kiefer 1994).

Instead of the single-component version of (5.139), one here gets(
Ĥm

⊥ − 〈ψ|Ĥm
⊥ |ψ〉 − iGabcd

δS

δhab

δ

δhcd

)
|ψ[hab]〉 = 0 , (5.156)(

Ĥm
a − 〈ψ|Ĥm

a |ψ〉 − 2
i
habDc

δ

δhbc

)
|ψ[hab]〉 = 0 . (5.157)

One now evaluates |ψ[hab]〉 along a solution of the classical Einstein equations,
hab(x, t), corresponding to a solution, S[hab], of the Hamilton–Jacobi equations
(5.154) and (5.155),

|ψ(t)〉 = |ψ[hab(x, t)]〉 . (5.158)

After a certain choice of lapse and shift functions, N and Na, has been made,
this solution is obtained from

ḣab = NGabcd
δS

δhcd
+ 2D(aNb) . (5.159)

To get an evolutionary equation for the quantum state (5.158), one defines
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∂

∂t
|ψ(t)〉 =

∫
d3x ḣab(x, t)

δ

δhab(x)
|ψ[hab]〉 . (5.160)

This, then, leads to the functional Schrödinger equation for quantized matter
fields in the chosen external classical gravitational field,

i
∂

∂t
|ψ(t)〉 = Ĥm|ψ(t)〉 ,

Ĥm ≡
∫

d3x
{

N(x)Ĥm
⊥(x) + Na(x)Ĥm

a (x)
}

. (5.161)

Here, Ĥm is the matter-field Hamiltonian in the Schrödinger picture, para-
metrically depending on (generally non-static) metric coefficients of the curved
space–time background. This equation is the analogue of (5.140) in the quantum-
mechanical example. (The back-reaction terms have again been absorbed into the
phase of |ψ(t)〉.) The standard concept of time in quantum theory thus emerges
only in a semiclassical approximation—the Wheeler–DeWitt equation itself is
‘timeless’.20

Such a derivation of quantum field theory from the Wheeler–DeWitt equa-
tions dates back, on the level of cosmological models, to DeWitt (1967a). It was
later performed by Lapchinsky and Rubakov (1979) for generic gravitational
systems and discussed in various contexts in Banks (1985), Halliwell and Hawk-
ing (1985), Hartle (1987), Kiefer (1987), Barvinsky (1989), Brout and Venturi
(1989), Singh and Padmanabhan (1989), Parentani (2000), and others; see also
Anderson (2006a, b) for a general discussion. Although performed on a formal
level only, this derivation yields an important bridge connecting the full the-
ory of quantum gravity with the limit of quantum field theory in an external
space–time; it lies behind many cosmological applications.

This ‘Born–Oppenheimer type of approach’ is also well suited for the cal-
culation of quantum-gravitational correction terms to the Schrödinger equation
(5.161). This will be discussed in the next subsection. As a preparation it is,
however, most appropriate to introduce again a condensed, so-called ‘DeWitt’,
notation; cf. Section 2.2. We introduce the notation

qi = hab(x) , pi = pab(x) , (5.162)

in which the condensed index i = (ab,x) includes both discrete tensor indices
and three-dimensional spatial coordinates x. In this way, the situation is formally
the same as for a finite-dimensional model. A similar notation can be introduced
for the constraints,

Hg
µ(q, p) = (Hg

⊥(x),Hg
a(x)) , Hm

µ (q, ϕ, pϕ) = (Hm
⊥(x),Hm

a (x)) . (5.163)

The index µ enumerates the superhamiltonian and supermomenta of the theory
as well as their spatial coordinates, µ → (µ,x). In this notation, the functional

20An attempt to extrapolate the standard interpretational framework of quantum theory
into the ‘timeless realm’ is the use of ‘evolving constants’ in the Heisenberg picture by Rovelli
(1991b).
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dependence on phase-space variables is represented in the form of functions of
(qi, pi), and the contraction of condensed indices includes integration over x along
with discrete summation. In the condensed notation, the gravitational part of
the canonical action (4.68) acquires the simple form

Sg[q, p, N ] =
∫

dt
(
piq̇

i − NµHg
µ(q, p)

)
≡

∫
dt Lg , (5.164)

with the superhamiltonian and supermomenta given by expressions which are
quadratic and linear in the momenta, respectively,

Hg
⊥ =

1
2m2

P
G ik

⊥ pipk + V⊥ , Hg
a = Di

api , (5.165)

with V⊥ = −2m2
P

√
h (3)R. Here the indices ⊥→ (⊥,x) and a → (a,x) are also

condensed, Gik
⊥ is the ultralocal three-point object containing the matrix of the

DeWitt metric, and Di
a is the generator of the spatial diffeomorphisms (see

below). The objects Gik
⊥ and Di

a have the form of the following delta-function
type kernels (Barvinsky 1993b):

G ik
⊥ = Gabcd δ(xi,xk)δ(x⊥,xk) ,

i = (ab,xi), k = (cd,xk), ⊥= (⊥,x⊥) , (5.166)
Di

a = −2ha(bDc)δ(xa,xi) , i = (bc,xi), a = (a,xa) . (5.167)

Note that the object G ik
⊥ itself is not yet the DeWitt metric because it contains

two delta-functions. Only the functional contraction of G ik
⊥ with the constant

lapse function N = 1 converts this object into the distinguished ultralocal metric
on the functional space of three-metric coefficients,

G ik = G ik
⊥ N

∣∣
N=1 ≡

∫
d3x⊥ G ik

⊥ = Gabcd δ(xi,xk) . (5.168)

The Poisson-bracket algebra for the gravitational constraints in condensed no-
tation then reads as in (5.51).

Note that the transformations of the qi-part of phase space (cf. Section 5.3.4)

δqi = Di
µεµ , Di

µ ≡
∂Hg

µ

∂pi
(5.169)

have as generators the vectors Di
µ which are momentum-independent for space-

like diffeomorphisms µ = a (and, therefore, coincide with the coefficients of the
momenta in the supermomentum constraints (5.167)), but involve momenta for
normal deformations, Di

⊥ = G ik
⊥ pk/m2

P.
With these condensed notations, one can formulate the operator realization

of the gravitational constraints Hg
µ(q, p) → Ĥg

µ, closing the commutator version
of the Poisson-bracket algebra (5.51),
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[
Ĥg

µ, Ĥg
ν

]
= iÛλ

µνĤg
λ . (5.170)

As shown in Barvinsky (1993b), the fact that (5.170) holds follows from the
classical gravitational constraints (5.165) by replacing the momenta pk with the
functional covariant derivatives Dk/i—covariant with respect to the Riemann
connection based on the DeWitt metric (5.168)—and by adding a purely imagi-
nary part (anti-Hermitian with respect to the L2 inner product): the functional
trace of structure functions, iUν

µν/2. With this definition of covariant derivatives,
it is understood that the space of three-metrics q is regarded as a functional dif-
ferentiable manifold, and that the quantum states |Ψ(q)〉 are scalar densities of
weight 1/2. Thus, the operator realization for the full constraints including the
matter parts has the form

Ĥ⊥ = − 1
2m2

P
G ik

⊥ DiDk + V⊥ +
i
2
Uν

⊥ν + Ĥm
⊥ , (5.171)

Ĥa =
1
i
∇i

aDi +
i
2
Uν

aν + Ĥm
a . (5.172)

The imaginary parts of these operators are either formally divergent (being the
coincidence limits of delta-function type kernels) or formally zero (as in (5.171)
because of vanishing structure-function components). We shall, however, keep
them in a general form, expecting that a rigorous operator regularization will
exist that can consistently handle these infinities as well as the corresponding
quantum anomalies (see Section 5.3.5).

The highest order of the semiclassical approximation leads to a wave func-
tional of the form (5.153). It is sometimes convenient to consider a two-point
object (‘propagator’) instead of a wave functional—one can, for example, easily
translate the results into a language using Feynman diagrams. This will be done
in the next subsection. We shall, therefore, consider a two-point solution K(q, q′)
of the Wheeler–DeWitt equation. One can construct a closed expression for the
one-loop pre-exponential factor of a solution which is of the semiclassical form
corresponding to (5.153) (see Barvinsky and Krykhtin (1993))

K(q, q′) = P (q, q′)e
im2

PS(q, q′)
. (5.173)

Here, S(q, q′) is a particular solution of the Hamilton–Jacobi equations with
respect to both arguments—the classical action calculated at the extremal of
equations of motion joining the points q and q′,

Hg
µ(q, ∂S/∂q) = 0 . (5.174)

The one-loop (O(m0
P) part of the 1/m2

P-expansion) order of the pre-exponential
factor P (q, q′) here satisfies a set of quasi-continuity equations which follow from
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the Wheeler–DeWitt equations at one loop and which are analogous to (5.143)
in the quantum-mechanical example,

Di(Di
µP 2) = Uλ

µλP 2, (5.175)

Di
µ ≡

∂Hg
µ

∂pi

∣∣∣∣
p = ∂S/∂q

, (5.176)

with the generators Di
µ here evaluated at the Hamilton–Jacobi values of the

canonical momenta. The solution of this equation turns out to be a particular
generalization of the Pauli–van Vleck–Morette formula—the determinant calcu-
lated on the subspace of non-degeneracy for the matrix

Sik′ =
∂2S(q, q′)
∂qi ∂qk′ . (5.177)

This matrix has the generators Di
µ as zero-eigenvalue eigenvectors (Barvinsky

and Krykhtin 1993). An invariant algorithm of calculating this determinant is
equivalent to the Faddeev–Popov gauge-fixing procedure; cf. Section 2.2.3. It
consists in introducing a ‘gauge-breaking’ term to the matrix (5.177),

F ik′ = Sik′ + φµ
i cµνφν

k′ , (5.178)

formed with the aid of the gauge-fixing matrix cµν and two sets of arbitrary
covectors (of ‘gauge conditions’) φµ

i and φν
k′ at the points q and q′, respectively.

They satisfy invertibility conditions for ‘Faddeev–Popov operators’ at these two
points,

Jµ
ν = φµ

i Di
ν , J ≡ detJµ

ν 
= 0 , J ′µ
ν = φµ

i′D
i′
ν , J ′ ≡ detJ ′µ

ν 
= 0 . (5.179)

In terms of these objects, the pre-exponential factor solving the continuity equa-
tions (5.175) is given by

P =
[

detF ik′

JJ ′ det cµν

]1/2

, (5.180)

which is independent of the gauge fixing. This finishes the discussion of the
Born–Oppenheimer scheme at the highest level of approximation.

5.4.3 Quantum-gravitational correction terms

We shall now proceed to perform the semiclassical expansion for solutions to the
Wheeler–DeWitt equations. Since we are interested in giving an interpretation in
terms of Feynman diagrams, we shall not consider wave functionals but—as in the
last part of the last subsection— two-point solutions (‘propagators’). Due to the
absence of an external time parameter in the full theory, such two-point functions
play more the role of energy Green functions than ordinary propagators; see
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Section 5.3.4. In the semiclassical limit, however, a background time parameter
is available, with respect to which Feynman ‘propagators’ can be formulated.

Let us, therefore, look for a two-point solution of the Wheeler–DeWitt equa-
tions (i.e. Wheeler–DeWitt equation and momentum constraints) in the form of
the ansatz

K̂(q+, q−) = P (q+, q−)e
im2

PS(q+, q−)
Û(q+, q−) , (5.181)

where we denote as above by a hat, the operators acting in the Hilbert space
of matter fields. Here, S(q+, q−) satisfies (5.174), and P (q+, q−) is the pre-
exponential factor (5.180). Substituting this ansatz into the system of the Whee-
ler–DeWitt equations and taking into account the Hamilton–Jacobi equations
and the continuity equations for P (q+, q−), we get for the ‘evolution’ operator
Û(q+, q−) the equations

iDk
⊥DkÛ = Ĥm

⊥ Û − 1
2m2

P
P −1Gmn

⊥ DmDn(P Û) , (5.182)

iDk
aDkÛ = Ĥm

a Û , (5.183)

where all the derivatives are understood as acting on the argument q+. Evaluating
this operator at the classical extremal q+ → q(t),

Û(t) = Û(q(t), q−) , (5.184)

where q(t) satisfies the canonical equations of motion corresponding to S(q+, q−),

q̇i = Nµ∇i
µ , (5.185)

one easily obtains the quasi-evolutionary equation

i
∂

∂t
Û(t) = ĤeffÛ(t) (5.186)

with the effective matter Hamiltonian

Ĥeff = Ĥm − 1
2m2

P
NGmn

⊥ DmDn[ P Û ]P −1Û−1 . (5.187)

(Recall that we use a condensed notation and that this equation is, in fact, an
integral equation.) The first term on the right-hand side is the Hamiltonian of
matter fields at the gravitational background of (q, N)-variables,

Ĥm = NµĤm
µ . (5.188)

The second term involves the operator Û itself in a non-linear way and con-
tributes only at order m−2

P of the expansion. Thus, (5.186) is not a true linear
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Schrödinger equation, but semiclassically it can be solved by iterations starting
from the lowest-order approximation

Û0 = T exp

[
−i

∫ t+

t−
dtĤm

]
, (5.189)

Ĥeff
0 = Ĥm . (5.190)

Here, T denotes the Dyson chronological ordering of the usual unitary evolution
operator acting in the Hilbert space of matter fields (ϕ̂, p̂ϕ). The Hamiltonian
Ĥm = Hm(ϕ̂, p̂ϕ, q(t), N(t)) is an operator in the Schrödinger picture of these
fields (ϕ̂, p̂ϕ), parametrically depending on the gravitational background vari-
ables (q(t), N(t)), that is, evaluated along a particular trajectory (‘space–time’)
in configuration space.

The Dyson T -exponent obviously explains the origin of the standard Feynman
diagrammatic technique in the matter field sector of the theory which arises in
the course of the semiclassical expansion of (5.189). We shall now show that
the gravitational part of this diagrammatic technique involving graviton loops
naturally arises as a result of iterationally solving (5.186)–(5.187) in powers of
1/m2

P.
The effective Hamiltonian in the first-order approximation of such an itera-

tional technique can be obtained by substituting (5.189) into (5.187) to yield

Ĥeff
1 (t+) = Ĥm − 1

2m2
P
Gmn(DmDnÛ0)Û0

−1

− 1
2m2

P
Gmn(DmDnP )P −1

− 1
m2

P
Gmn(DmP )P −1 (DnÛ0)Û−1

0 . (5.191)

Here we have used the new notation

Gmn = NGmn
⊥ (5.192)

for another metric on the configuration space (compare with (5.168)) which uses
the actual value of the lapse function corresponding to the classical extremal
(5.185). This lapse function generally differs from unity. We have also decom-
posed the first-order corrections in the effective Hamiltonian into three terms cor-
responding to the contribution of quantum matter (generated by Û0), a purely
quantum gravitational contribution generated by P , and their cross-term.

Further evaluation of these terms demands the knowledge of derivatives act-
ing on the configuration space argument q+ of Û0 and P . Obtaining these deriva-
tives leads to the necessity of considering the special boundary value problem for
classical equations of motion, the graviton propagator and vertices—elements of
the gravitational Feynman diagrammatic technique. The discussion is long and
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technical and can be found in Barvinsky and Kiefer (1998). Here we shall only
quote the main steps and include a brief discussion of the results.

The following quantities play a role in the discussion. First, we introduce a
collective notation for the full set of Lagrangian gravitational variables, which
includes both the spatial metric as well as lapse and shift functions,

ga ≡ (qi(t), Nµ(t)) . (5.193)

This comprises the space–time metric. (Recall that qi(t) stands for the three-
metric hab(x, t).) Next, the second functional derivatives of the gravitational
action with respect to the space–time metric is denoted by

Sab ≡
δ2S[g]

δga(t)δgb(t′)
. (5.194)

Since Sab is not invertible, one must add gauge-fixing terms similar to (5.178).
This leads to an operator Fab. The ‘graviton propagator’ Dbc is then defined as
its inverse via

FabD
bc = δc

a . (5.195)

We also need the components of the Wronskian operator obtained from the
gravitational Lagrangian Lg,

→
W ib (d/dt) δgb(t) = −δ

∂Lg(q, q̇, N)
∂q̇i

. (5.196)

With the help of the ‘graviton propagator’, one can define

t̂a(t) = − 1
m2

P

∫ t+

t−
dt′ Dab(t, t′)T̂b(t′) ≡ − 1

m2
P

DabT̂b , (5.197)

where T̂b is the condensed notation for the energy–momentum tensor of the
matter field. The quantity t̂a(t) obeys the linearized Einstein equations with
source T̂b and can thus be interpreted as the gravitational potential generated
by the back reaction of quantum matter on the gravitational background.

The first correction term in (5.191)—the contribution of quantum matter—is
found to read

− 1
2m2

P
Gmn(DmDnÛ0)Û0

−1

=
1
2
m2

P Gmn T
( →
Wma t̂a

→
Wnb t̂b

)
+

i
2
Dabwabc(t+) t̂c

− i
2
Gmn (

→
W ma Dac) (

→
Wnb Dbd)

(
Scde t̂e +

1
m2

P
Ŝmat

cd

)
. (5.198)

The resulting three terms can be given a Feynman diagrammatic representation
with different structure. Note that because of (5.197) all terms are of the same
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order m−2
P , despite their appearance. The first term begins with the tree-level

structure quadratic in gravitational potential operators t̂a. Note that despite the
fact that these operators are taken at one moment of time t+, their chronological
product is non-trivial because it should read as

T
(
t̂a t̂b

)
=

1
m4

P
DacDbd T

(
T̂c T̂d

)
(5.199)

and, thus, includes all higher order chronological couplings between composite
operators of matter stress tensors. The second and third term on the right-hand
side of (5.198) are essentially quantum, because their semiclassical expansions
start with the one-loop diagrams consisting of one and two ‘graviton propaga-
tors’ Dab, respectively. The quasi-local vertices of these diagrams are built from
the Wronskian operators, gravitational three-vertices denoted by wabc(t+) and
Scde (third functional derivatives of the gravitational action) and second-order
variation of matter action with respect to gravitational variables, Ŝm

cd. The cor-
responding diagrams are shown in Fig. 5.1.

The second and third correction term in (5.191) can be written in a similar
way. The second term—the purely quantum gravitational contribution—contains
instead of t̂a a gravitational potential that is generated by the one-loop stress
tensor of gravitons which enters as a matter source in the linearized Einstein
equations.

Depending on the physical situation, not all of the correction terms are of
equal importance. It often happens that the effects of quantum matter dominate
over the graviton effects and that from its contribution only the first term on
the right-hand side of (5.198) is significant. This means that one has

Ĥeff
1 = Ĥm + 1

2 m2
P Gmn T

( →
Wma t̂a

→
Wnb t̂b

)
+ O(1/m2

P) . (5.200)

It turns out that this remaining correction term can be interpreted as the ki-
netic energy of the gravitational radiation produced by the back reaction of
quantum matter sources. This term can be decomposed into a component along
the semiclassical gravitational trajectory (‘longitudinal part’) and an orthogonal
component. The longitudinal part is ultralocal and basically given by the square
of the matter Hamiltonian,

∝ 1
m2

P

(
Ĥm

⊥
)2

. (5.201)

This is fully analogous to the relativistic correction term to the ordinary Schröd-
inger equation, as being found from expanding the Klein–Gordon equation; see
(5.149).

Can such quantum-gravitational correction terms be observed? If the mat-
ter Hamiltonian is dominated by the rest mass of a particle with mass m, the
correction term (5.201) is of the order of

∝
(

m

mP

)2

. (5.202)
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Fig. 5.1. Feynman diagrams illustrating the quantum-gravitational correction
terms in (5.198). The time parameter t+ labels the vertices at the space—
time point at which Ĥeff

1 is evaluated. Dashed lines labelled by T denote the
chronological ordering of matter stress tensors in the bilinear combinations
of gravitational potentials t̂a. (From Barvinsky and Kiefer 1998.)

For scalar fields causing an inflationary expansion of the early universe (infla-
tons), a typical value would be m ≈ 10−5mP. The corrections would thus be of
the order 10−10. This is a very small number, but it is nevertheless conceivable
that such effects could be seen in future observations of the cosmic microwave
anisotropy spectrum.

The semiclassical approximation scheme has also been discussed for the con-
straint equations of supersymmetric canonical quantum gravity (Kiefer et al. 2005).
It turns out that the formalism is only consistent if the states at each order de-
pend on the gravitino field. That is, already the Hamilton–Jacobi equation and
therefore the background space–time must involve the gravitino.
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QUANTUM GRAVITY WITH CONNECTIONS AND LOOPS

6.1 Connection and loop variables
In Section 4.3, we encountered a Hamiltonian formulation of GR alternative to
geometrodynamics, using the concepts of connections and loops. In the present
chapter, we shall review approaches to formulate a consistent quantum theory
with such variables, leading to ‘quantum connection dynamics’ or ‘quantum loop
dynamics’. More details and references can be found in Rovelli (2004) and Thie-
mann (2001, 2003), Ashtekar and Lewandowski (2004), and Nicolai et al. (2005).
The popular name ‘loop quantum gravity’ stems from the use of the loop vari-
ables to be defined in Section 6.1.2.

In the present section, we shall introduce the quantum versions of the con-
nection and loop variables and discuss the Gauss constraints (4.122) and the
diffeomorphism constraints (4.127). These constraints already give a picture of
the way space might look like on the smallest scales. At least on a kinemat-
ical level (using the Gauss constraints only), a major result can be obtained:
the spectrum of geometric operators representing area or volume in the clas-
sical limit turns out to be discrete (Section 6.2). This has a direct bearing on
the interpretation of black-hole entropy (see Section 7.1). The more complicated
implementation of the Hamiltonian constraint is relegated to Section 6.3. We
treat here only pure gravity, but various results can be extended to the case of
standard-model matter (Thiemann 2001).

6.1.1 Connection representation
The connection representation is characterized classically by the Poisson bracket
(4.120) between the densitized tetrad Eb

j (y) and the SU(2)-connection Ai
a(x).

These variables are then formally turned into operators obeying the commutation
relation [

Âi
a(x), Êb

j (y)
]

= 8πβi�δi
jδ

b
aδ(x,y) . (6.1)

In the functional Schrödinger representation, one can implement this relation
formally through

Âi
a(x)Ψ[A] = Ai

a(x)Ψ[A] , (6.2)

Êb
j (y)Ψ[A] = 8πβ

�

i
δ

δAj
b(y)

Ψ[A] , (6.3)

where the A in the argument of the wave functional is a shorthand for Ai
a(x).

As in Chapter 5, the constraints are implemented as conditions on allowed wave
functionals. The Gauss constraints (4.122) then becomes
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ĜiΨ = 0 −→ Da
δΨ
δAi

a

= 0 . (6.4)

It expresses the invariance of the wave functional with respect to infinitesimal
gauge transformations of the connection. The diffeomorphism constraints (4.127)
become

ˆ̃HaΨ = 0 −→ F i
ab

δΨ
δAi

b

= 0 . (6.5)

Similar to the classical case, it expresses the invariance of the wave functional
under a combination of infinitesimal diffeomorphism and gauge transformations;
cf. Section 4.3.2.

The Hamiltonian constraint (4.126) cannot be treated directly in this way
because the Γi

a-terms contain the tetrad in a complicated non-linear fashion.
This would lead to similar problems as with the Wheeler–DeWitt equation dis-
cussed in Chapter 5, preventing to find any solutions. In Section 6.3, we shall see
how a direct treatment of the quantum Hamiltonian constraint can at least be
attempted. Here, we remark only that (4.126) is easy to handle only for the value
β = i in the Lorentzian case or for the value β = 1 in the Euclidean case. In the
first case, the problem arises that the resulting formalism uses complex variables
and that one has to impose ‘reality conditions’ at an appropriate stage (which
nobody has succeeded in implementing). In the second case, the variables are
real but one deals with the unphysical Euclidean case. Nevertheless, for these
particular values of β, the second term in (4.126) vanishes, and the quantum
Hamiltonian constraint for Λ = 0 would simply read

εijkFkab
δ2Ψ

δAi
aδAj

b

= 0 . (6.6)

Note that in (6.4)–(6.6), a ‘naive’ factor ordering has been chosen: all derivatives
are put to the right. Formal solutions to these equations have been found; see
for example, Brügmann (1994). Some solutions have been expressed in terms
of knot invariants.1 Many of these solutions are annihilated by the operator
corresponding to

√
h and may therefore be devoid of physical meaning, since

matter fields and the cosmological term couple to
√

h.
In the case of vacuum gravity with Λ 
= 0, an exact formal solution in the

connection representation was found by Kodama (1990). Using a factor ordering
different from (6.6), the Hamiltonian constraint reads for β = 1

εijk δ

δAi
a

δ

δAj
b

(
Fkab −

i�Λ
6

εabc
δ

δAk
c

)
Ψ[A] = 0 . (6.7)

We note that the second term in parentheses comes from the determinant of the
three-metric,

1A knot invariant is a functional on the space of loops which assigns to loops in the same
knot class the same number.
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h = detEa
i =

i�3

6
εijkεabc

δ

δAi
a

δ

δAj
b

δ

δAk
c

.

The solution for Ψ is given by

ΨΛ = exp
(

i
6

GΛ�
SCS[A]

)
, (6.8)

where SCS[A] denotes the ‘Chern–Simons action’

SCS[A] =
∫

Σ
d3x εabctr

(
G2Aa∂bAc −

2
3
G3AaAbAc

)
. (6.9)

This follows after one notes that

εabc
δΨΛ

δAk
c

= − 6i
Λ�

Fkab ,

that is, the term in parentheses in (6.7) by itself annihilates the state ΨΛ. Due
to the topological nature of the Chern–Simons action, the state (6.8) is both
gauge- and diffeomorphism-invariant. In contrast to the states mentioned above
(for vanishing cosmological constant), (6.8) is not annihilated by the operator
corresponding to

√
h and may thus have physical content. The Chern–Simons

action is also important for GR in 2+1 dimensions; cf. Section 8.1.3.
A state of the form (6.8) is also known from Yang–Mills theory. The state

Ψg = exp
(
− 1

2�g2 SCS[A]
)

is an eigenstate of the Yang–Mills Hamiltonian

HYM =
1
2

∫
d3x tr

(
−g2�2 δ2

δA2
a

+
B2

a

g2

)
,

where Ba = (1/2)εabcF
bc, with eigenvalue zero (Loos 1969, Witten 2003). How-

ever, this state has unpleasant properties (e.g. it is not normalizable), which
renders its physical significance dubious. It is definitely not the ground state of
Yang–Mills theory. The same reservation may apply to (6.8).

Since the ‘real’ quantum Hamiltonian constraint is not given by (6.6), see
Section 6.3, we shall not discuss further this type of solutions. What can gen-
erally be said about the connection representation? Since (6.4) guarantees that
Ψ[A] = Ψ[Ag], where g ∈ SU(2), the configuration space after the implemen-
tation of the Gauss constraints is actually given by A/G, where A denotes the
space of connections and G the local SU(2) gauge group. Because the remaining
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constraints have not been considered at this stage, this level corresponds to hav-
ing in Chapter 5 states Ψ[hab] before imposing the constraints HaΨ = 0 = H⊥Ψ.
A candidate for an inner product on A/G would be

〈Ψ1|Ψ2〉 =
∫

A/G
Dµ[A] Ψ∗

1[A]Ψ2[A] ; (6.10)

cf. (5.20). The main problem is: can one construct a suitable measure Dµ[A]
in a rigorous way? The obstacles are that the configuration space A/G is both
non-linear and infinite-dimensional. Such a measure has been constructed; see
Ashtekar et al. (1994). In the construction process, it was necessary to extend
the configuration space to its closure A/G. This space is much bigger than the
classical configuration space of smooth field configurations, since it contains dis-
tributional analogues of gauge-equivalent connections.

The occurrence of distributional configurations can also be understood from
a path-integral point of view where one sums over (mostly) non-differentiable
configurations. In field theory, an imprint of this is left on the boundary configu-
ration which shows up as the argument of the wave functional. Although classical
configurations form a set of measure zero in the space of all configurations, they
nevertheless possess physical significance, since one can construct semiclassical
states that are concentrated on them. Moreover, for the measurement of field
variables, one would not expect much difference to the case of having smooth
field configurations only, since only measurable functions count, and these are in-
tegrals of field configurations; see Bohr and Rosenfeld (1933). In a sense, the loop
representation to be discussed in the following implements ‘smeared versions’ of
the variables A and E.

6.1.2 Loop representation

Instead of considering wave functionals defined on the space of connections, Ψ[A],
one can use states defined on the space of loops αa(s), Ψ[α]; cf. Section 4.3.3.
This is possible due to the availability of the measure on A/G, and the states
are obtained by the transformation (‘loop transform’)

Ψ[α] =
∫

A/G
Dµ[A] T [α]Ψ[A] , (6.11)

where T [α] was defined in (4.144). This corresponds to the usual Fourier trans-
form in quantum mechanics,

ψ̃(p) =
1

(2π�)3/2

∫
R3

d3x e−ipx/�ψ(x) . (6.12)

The plane wave corresponds to T [α] ≡ Ψα[A]. We shall refer to the latter as
‘loop states’. In the loop approach to quantum gravity they can be taken to be
the basis states (Rovelli and Smolin 1990). The prevalent opinion nowadays is
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Fig. 6.1. An example of a graph with three curves.

that one should start directly with the loop variables, without reference to the
connection representation and the loop transform.

The problem with the above loop states is that they form an overcomplete
basis. A complete basis can be constructed by a linear combination of this basis.
It is called spin-network basis and goes back to Penrose (1971); see also, for
example, Major (1999) for an introduction. To quote from Penrose (1971):

My basic idea is to try and build up both space-time and quantum mechanics simul-
taneously—from combinatorial principles . . . The idea here, then, is to start with the
concept of angular momentum—where one has a discrete spectrum—and use the rules
for combining angular momenta together and see if in some sense one can construct
the concept of space from this.

How is the spin-network basis defined? Consider first a graph, Γn = {α1, . . . , αn},
where the αi denote curves (also called ‘edges’ or ‘links’), which are oriented
and piecewise analytic. If they meet they meet at their endpoints (‘vertices’
or ‘nodes’). An example with three curves is depicted in Fig. 6.1. One then
associates a holonomy U [A, α], see (4.143), to each link. This leads to the concept
of ‘cylindrical functions’: consider a function

fn : [SU(2)]n −→ C ,

one can define the cylindrical function2

ΨΓn,fn [A] = fn(U1, . . . , Un) , (6.13)

which depends on the connection through a finite but arbitrary number of
holonomies. An SU(2)-holonomy has thus been put on each of the n links of
the graph.3 Cylindrical functions are dense in the space of smooth functions on

2The name ‘cylindrical function’ stems from the fact that these functions probe the con-
nection A only along one-dimensional structures, that is, on a set of measure zero.

3It has also been suggested using the group SO(3) instead of SU(2); cf. the discussion in
Section 7.3 on black-hole entropy.
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A. One can define a scalar product between two cylindrical functions f and g,
which is invariant under gauge transformations and diffeomorphisms,

〈ΨΓ,f |ΨΓ,g〉 =
∫

[SU(2)]n
dU1 · · ·dUn f∗(U1, . . . , Un)g(U1, . . . , Un) , (6.14)

where dU1 · · ·dUn denotes the Haar measure. For different graphs, Γ 
= Γ′, one
has 〈ΨΓ,f |ΨΓ′,g〉 = 0. With some assumptions, this scalar product is unique. It
is basically the choice of this scalar product that brings in the discrete structure
of loop quantum gravity. Because the fundamental concepts here are graphs
and spin networks instead of loops, the term ‘quantum geometry’ is sometimes
used instead of loop quantum gravity; in order to avoid confusion with quantum
geometrodymanics, we shall however avoid this term.

At the beginning of Section 5.1, we have distinguished between three spaces
satisfying Fphys ⊂ F0 ⊂ F , which do not necessarily have to be Hilbert spaces.
Here, the intention is on using the Hilbert-space machinery of ordinary quantum
theory as much as possible, and one would like to employ a chain of the form

Hkin ⊃ Hg ⊃ Hdiff ⊃ Hphys (6.15)

of Hilbert spaces in which the three sets of constraints (Gauss, diffeomorphism,
and Hamiltonian constraints) are implemented consecutively. However, this would
be possible only if the solutions to the constraints were normalizable. Since this is
not the case, one has to employ the formalism of Gel’fand tripels (rigged Hilbert
spaces), which here will not be elaborated on; cf. Thiemann (2001).

The ‘biggest’ space Hkin is obtained by considering all linear combinations
of cylindrical functions,

Ψ =
∞∑

n=1

cnΨΓn,fn ,

such that their norm is finite,

‖ Ψ ‖2=
∞∑

n=1

|cn|2 ‖ ΨΓn,fn ‖2< ∞ ,

where
‖ ΨΓ,f ‖= 〈ΨΓ,f |ΨΓ,f〉1/2 .

The Hilbert space Hkin itself is of course infinite-dimensional and carries unitary
representations of local SU(2)-transformations and diffeomorphisms. It is not
separable, that is, it does not admit a countable basis.

With these preparations, a spin network is defined as follows. One associates
with each link αi a non-trivial irreducible representation of SU(2), that is, at-
taches a ‘spin’ ji to it (‘colouring of the link’), where ji ∈ {1/2, 1, 3/2, . . .}. The
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Fig. 6.2. The graph of Fig. 6.1 with spins attached to the links.

representation acts on a Hilbert space Hji . An example is shown in Fig. 6.2.
Consider now a ‘node’ p where k links meet and associate to it the Hilbert space

Hp = Hj1 ⊗ . . . ⊗Hjk
. (6.16)

One fixes an orthonormal basis in Hp and calls an element of this basis a ‘colour-
ing’ of the node p. A spin network is then a triple S(Γ,�j, �N), where �j denotes
the collection of spins and �N the collection of basis elements at the nodes, that
is, �N = (Np1 , Np2 , . . .), where Np1 is a basis element at p1, Np2 a basis element
at p2, and so on. Note that S is not yet gauge-invariant. A spin-network state
ΨS [A] is then defined as a cylindrical function fS associated with S. How is
it constructed? One takes a holonomy at each link in the representation corre-
sponding to ji (described by ‘matrices’ Rji(Ui)) and contracts all these matrices
with the chosen basis element ∈ Hp at each node where these links meet. This
gives a complex number. Thus,

ΨS [A] = fS(U1, . . . , Un) =
∏

links i

Rji(Ui) ⊗
∏

nodes p

Np , (6.17)

where ⊗ refers here to the contraction of all indices: there is always one index
of the matrix R (not indicated) that matches one index of a node basis element.
One can prove that any two states ΨS are orthonormal,

〈ΨS |ΨS′〉 = δΓΓ′δ�j�j′δ �N, �N ′ ≡ δSS′ . (6.18)

The states ΨS form a complete basis in the unconstrained (‘kinematical’) Hilbert
space Hkin.

A gauge-invariant spin network can be constructed by imposing the Gauss
constraints (6.4), leading to the Hilbert space Hg. For this purpose, one first
decomposes Hp into its irreducible parts (‘Clebsch–Gordan decomposition’),

Hp = Hj1 ⊗ · · · ⊗ Hjk
=

⊕
J

(HJ )kJ , (6.19)

where kJ is the multiplicity of the spin-J irreducible representation. One then se-
lects the singlet (J = 0) subspace, (H0)k0 , which is gauge-invariant. One chooses
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Fig. 6.3. Spins at meeting links have to obey Clebsch–Gordan conditions.

at each node p an arbitrary basis and assigns one basis element to the node. The
corresponding colouring �N belongs to a gauge-invariant spin network.4 At each
node p, the spin of the meeting links have to obey the Clebsch–Gordan condition
for any two pairs, for example, |j1−j2| ≤ j3 ≤ j1+j2, etc. for the situation of a 3-
valent vertex shown in Fig. 6.3. In this example there exists a unique intertwiner
given by the Wigner 3j-coefficient (there exists only one possibility to combine
these three representations into a singlet). To give one example: addressing the
spin network of Fig. 6.2 with j1 = 1, j2 = 1/2, j3 = 1/2, the gauge-invariant
spin-network state is given by the expression (Rovelli 2004, p. 236)

ΨS[A] =
1
3
σi,ABR1(U [A, α1])i

jU [A, α2]ACU [A, α3]BDσj,CD ,

where σi are the Pauli matrices.
For nodes of valence four and higher, different choices are possible; cf. Nicolai

et al. (2005). Several quantum states can thus be attributed to each spin net-
work. We note that for a gauge-invariant spin network, angular momentum is
conserved at each vertex. We also note that spin-network states can be decom-
posed into loop states; see Rovelli and Gaul (2000) for an illustrative example.
In the literature the kinematical Hilbert space is sometimes directly identified
with Hg. For more details on the machinery of spin networks, we refer to Rovelli
(2004).

The next step is the implementation of the diffeomorphism constraints (6.5).
We shall denote the gauge-invariant spin-network states by

ΨS [A] ≡ 〈A|S〉 . (6.20)

Diffeomorphisms move points on Σ around, so that the spin network will be
‘smeared’ over Σ. This leads to the concept of an ‘s-knot’: two spin networks

4The colouring �N is a collection of invariant tensors Np, which are also called ‘intertwiners’
because they couple different representations of SU(2). They thus possess indices referring to
different SU(2)-representations.
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S and S′ lie in the same s-knot if there exists a diffeomorphism φ ∈ Diff Σ
such that S′ = φ ◦ S. One thus invokes a process of ‘group averaging’ instead of
a direct application of the diffeomorphism constraint operator. This procedure
throws the state out of the kinematical Hilbert space; therefore, the ideal relation
Hdiff ⊂ Hkin does not hold and one must apply a more complicated construction
involving rigged Hilbert spaces (Nicolai et al. 2005). In contrast with the situation
for Hkin, it is expected that Hdiff is separable (Hdiff is the Hilbert space for the
averaged states). One defines

〈s|S〉 =
{

0, S 
∈ s ,
1, S ∈ s ,

(6.21)

and

〈s|s′〉 =
{

0, s 
= s′ ,
c(s), s = s′ ,

(6.22)

where c(s) denotes the number of discrete symmetries of the s-knots under diffeo-
morphisms (change of orientation and ordering). The diffeomorphism-invariant
quantum states of the gravitational field are then denoted by |s〉. The important
property is the non-local, ‘smeared’, character of these states, avoiding problems
that such constructions would have, for example, in QCD. For details and refer-
ences to the original literature, we refer to Thiemann (2001) and Rovelli (2004).
The Hilbert space Hdiff is also used as the starting point for the action of the
Hamiltonian constraint; see Section 6.3.

6.2 Quantization of area

Up to now we have not considered operators acting on spin-network states. In
the following, we shall construct one particular operator of central interest—the
‘area operator’. It corresponds in the classical limit to the area of two-dimensional
surfaces. Surprisingly, this area operator will turn out to have a discrete spectrum
in Hkin. The discussion can be made both within the connection representation
and the loop representation. We shall restrict ourselves to the latter.

Instead of (6.2) one can consider the operator corresponding to the holonomy
U [A, α] (see Section 4.3.3) acting on spin-network states,

Û [A, α]ΨS [A] = U [A, α]ΨS [A] . (6.23)

Instead of the operator acting in (6.3), which is an operator-valued distribution,
it turns out to be more appropriate to consider a ‘smeared-out’ version in which
(6.3) is integrated over a two-dimensional manifold S embedded in Σ,

Êi[S] ≡ −8πβ�i
∫

S
dσ1dσ2 na(�σ)

δ

δAi
a[x(�σ)]

, (6.24)

where the embedding is given by (σ1, σ2) ≡ �σ �→ xa(σ1, σ2), and
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Fig. 6.4. Example of an intersection of a link α with a surface S.

na(�σ) = εabc
∂xb(�σ)
∂σ1

∂xc(�σ)
∂σ2 (6.25)

is the usual vectorial hypersurface element. The operator defined in (6.24) cor-
responds to the flux of Ea

i through a two-dimensional surface. The canonical
variables of loop quantum gravity are thus the holonomy and this flux. They
obey the commutator relation[

Û [A, α], Êi[S]
]

= il2Pβι(α,S)U [α1, A]τiU [α2, A] ,

where ι(α,S) = ±1, 0 is the ‘intersection number’ that depends on the orientation
of α and S. We assume here the presence of only one intersection of α with S;
cf. Fig. 6.4 where α1 refers to the part of α below S and α2 to its part above
S. The intersection number vanishes if no intersection takes place. We want to
emphasize that in the following procedure, the diffeomorphism constraint is not
yet implemented.

We now want to calculate the action of Êi(S) on spin-network states ΨS[A].
For this one needs its action on holonomies U [A, α]. This was calculated in detail
in Lewandowski et al. (1993) by using the differential equation (4.142) for the
holonomy. In the simplest case of one intersection of α with S (cf. Fig. 6.4), one
obtains

δU [A, α]
δAi

a[x(�σ)]
=

δ

δAi
a[x(�σ)]

(
P exp

[
G

∫
α

ds α̇aAi
a(α(s))τi

])

= G

∫
α

ds α̇aδ(3)(x(�σ), α(s))U [A, α1]τiU [A, α2] . (6.26)

One can now act with the operator Êi[S], (6.24), on U [A, α]. This yields
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Êi[S]U [A, α] = −8πβ�i
∫

S
dσ1dσ2 εabc

∂xa(�σ)
∂σ1

∂xb(�σ)
∂σ2

δU [A, α]
δAi

c[x(�σ)]

= −8πβ�Gi
∫

S
dσ1dσ2

∫
α

ds εabc
∂xa(�σ)

∂σ1

∂xb(�σ)
∂σ2

∂αc

∂s

×δ(3)(x(�σ), α(s))U [A, α1]τiU [A, α2] .

The coordinate transformation (σ1, σ2, s) �→ (x1, x2, x3) with α ≡ (0, 0, x3) leads
to the Jacobian

J ≡ ∂(σ1, σ2, s)
∂(x1, x2, x3)

= εabc
∂xa

∂σ1

∂xb

∂σ2

∂αc

∂s

(note that the right-hand side is zero for curves lying within S). Therefore,∫
S

∫
α

dσ1dσ2ds εabc
∂xa(�σ)

∂σ1

∂xb(�σ)
∂σ2

∂xc(s)
∂s

δ(3)(x(�σ),x(s))

=
∫

dx1dx2dx3 δ(3)(x(�σ),x(s)) = ±1 , (6.27)

where the sign depends on the relative orientation of curve and surface. The
holonomy (defined on a one-dimensional edge) and the flux (defined on a two-
dimensional surface) together yield the prerequisites for an integral over the
three-dimensional delta function. One thus gets

Êi[S]U [A, α] = ±8πβ�GiU [A, α1]τiU [A, α2] . (6.28)

If there is no intersection, the action of this operator will be zero. For more than
one point of intersection, one has to sum over all of them.

What, then, is the action of Êi[S] on a spin network? Consider a gauge-
invariant spin network S intersecting S at a single point P . Then, decompose
ΨS [A] (cf. (6.17)) as

ΨS [A] = Ψmn
S−α[A]Rj

mn (U [A, α]) , (6.29)

where Rj
mn (U [A, α]) is the holonomy along α in the irreducible representation

corresponding to spin j, and Ψmn
S−α[A] is the remaining part of (6.17). The action

of Êi[S] on Rj is similar to (6.28), with τi → τ
(j)
i according to the representation

associated with j. Then,

Êi[S]ΨS [A] = ±8πβl2Pi
[
Rj (U [A, α1]) τ

(j)
i Rj (U [A, α2])

]
mn

×Ψmn
S−α[A] . (6.30)

This action is not yet gauge-invariant. One can obtain a gauge-invariant operator
by ‘squaring’, that is, by considering

Ê2[S] ≡ Êi[S]Êi[S] . (6.31)
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In order to calculate the action of this operator, consider again a spin network
with a single point of intersection, P . We assume that P belongs to the α1-part
of the curve. Therefore, in the action

Ê2[S]ΨS [A] = ±8πβl2PiÊi[S]
[
Rj (U [A, α1]) τ

(j)
i Rj (U [A, α2])

]
mn

×Ψmn
S−α[A] ,

the operator Êi[S] on the right-hand side acts only on Rj (U [A, α1]) to give
Rj (U [A, α1]) τ

(j)
i I. Since one has for the ‘Casimir operator’

τ
(j)
i τ

(j)
i = −j(j + 1)I

(recall that we have defined τi = (i/2)σi for j = 1/2 and similarly for higher j),
we get

Ê2[S]ΨS [A] = (8πβl2P)2j(j + 1)ΨS [A] , (6.32)

where (6.17) has been used. If there is more than one intersection of S with S,
one will have to consider a partition ρ of S into n(ρ) smaller surfaces Sn such that
the points of intersection lie in different Sn (for a given S). Otherwise, the action
of Ê2[S] would not be gauge-invariant (due to ‘crossterms’ in Ê2[S]ΨS [A]).

We now define the ‘area operator’ (see below for its interpretation)

Â[S] ≡ lim
ρ→∞

∑
n(ρ)

√
Êi[Sn]Êi[Sn] , (6.33)

which is independent of ρ. If there are no nodes on S and only a finite number of
intersections (‘punctures’ P ), one obtains from (6.32) (Rovelli and Smolin 1995;
Ashtekar and Lewandowski 1997)

Â[S]ΨS [A] = 8πβl2P
∑

P∈S∩S

√
jP (jP + 1)ΨS [A] ≡ A[S]ΨS [A] . (6.34)

The operator Â(S) is self-adjoint in Hkin, that is, it is diagonal on spin-
network states and is real on them. Spin-network states are thus eigenstates of
the area operator. Its spectrum is discrete because the spin network has a discrete
structure. This feature can be traced back to the compactness of the group SU(2)
used in the formalism. The three-manifold Σ is, however, still present.

If a node lies on S, a more complicated expression is obtained (Frittelli
et al. 1996; Ashtekar and Lewandowski 1997): denoting the nodes by �ji =
(ju

i , jd
i , jt

i ), i = 1, . . . , n, where ju
i denotes the colouring of the upper link, jd

i

the colouring of the lower link, and jt
i the colouring of a link tangential to S,

one obtains

Â[S]ΨS [A] = 4πβl2P

n∑
i=1

√
2ju

i (ju
i + 1) + 2jd

i (jd
i + 1) − jt

i (j
t
i + 1)ΨS[A] . (6.35)

For the special case jt
i = 0 and ju

i = jd
i , we obtain again the earlier result

(6.34). It must, however, be emphasized that spin-network states for 4-valent
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(and higher) vertices are not always eigenstates of Â if the node is on the surface,
cf. Nicolai et al. (2005).

We now show that Â[S] is indeed an ‘area operator’, that is, the classical
version of (6.33) is just the classical area of S. This classical version is

Ei[Sn] =
∫

Sn

dσ1dσ2 na(�σ)Ea
i (x(�σ)) ≈ ∆σ1∆σ2na(�σ)Ea

i (xn(�σ)) ,

where Sn refers to a partition of S, and xn(�σ) is an arbitrary point in Sn (it is
assumed that the partition is sufficiently fine-grained). For the area, that is, the
classical version of (6.33), one then obtains

A[S] = lim
ρ→∞

∑
n(ρ)

∆σ1∆σ2
√

na(�σ)Ea
i (xn(�σ))nb(�σ)Eb

i (xn(�σ))

=
∫

S
d2σ

√
na(�σ)Ea

i (xn(�σ))nb(�σ)Eb
i (xn(�σ)) .

Adapting coordinates on S as x3(�σ) = 0, x1(�σ) = σ1, x2(�σ) = σ2, one gets from
(6.25) that n1 = n2 = 0, and n3 = 1. Using in addition (4.102) and (4.104), one
obtains for the area

A[S] =
∫

S
d2σ

√
h(x)h33(x) =

∫
S

d2σ
√

h11h22 − h12h21

=
∫

S
d2σ

√
(2)h , (6.36)

where (2)h denotes the determinant of the two-dimensional metric on S. There-
fore, the results (6.34) and (6.35) demonstrate that area is quantized in units
proportional to the Planck area l2P. A similar result holds for volume and length,
although the discussion there is much more involved (cf. Thiemann 2001). It
seems that the area operator is somehow distinguished; this could point to a
formulation in terms of an ‘area metric’ that is usually discussed in another con-
text; cf. Schuller and Wohlfarth (2006). We should also mention that a discrete
spectrum does not necessarily follow in all dimensions: Freidel et al. (2003) find
that a space-like length operator in 2+1 dimensions has a continuous spectrum.

The occurrence of discrete spectra for geometric operators could be an in-
dication of the discreteness of space at the Planck scale already mentioned in
Chapter 1. Since these geometric quantities refer to three-dimensional space,
they only indicate the discrete nature of space, not space–time. In fact, as we
have seen in Section 5.4, space–time itself emerges only in a semiclassical limit.
The manifold Σ still plays the role of an ‘absolute’ structure; cf. Section 1.3.

The discrete spectrum (6.34) and (6.35) is considered as one of the central
results of quantum loop (quantum connection) kinematics. Whether all eigen-
values of (6.35) are indeed realized depends on the topology of S (Ashtekar and
Lewandowski 1997). In the case of an open S whose closure is contained in Σ,
they are all realized. This is not the case for a closed surface.
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The smallest eigenvalue of the area operator is zero. Its smallest non-zero
eigenvalue is (in the case of open S)

A0 = 2π
√

3βl2P ≈ β · 2.86 × 10−65 cm2 , (6.37)

which is obtained from (6.35) for jd = 0 and ju = jt = j = 1/2. The area gap
(6.37) is referred to as one ‘quantum of area’. Ashtekar and Lewandowski (1997)
also showed that for A[S] → ∞, the difference ∆A between an eigenvalue A and
its closest eigenvalue obeys

∆A ≤ 4πβl2P

√
8πβ√
A

+ O
(

l2P
A

)
l2P . (6.38)

Therefore, ∆A → 0 for large A.
Although the area operator Â(S) is gauge-invariant (invariant under SU(2)-

or SO(3)-transformations), it is not invariant under three-dimensional diffeo-
morphisms. The reason is that it is defined for an abstract surface in terms of
coordinates. It is thus not defined on Hdiff . For the same reason it is not an ob-
servable in the sense of Section 3.1.2. The general opinion is that it will become
diffeomorphism-invariant (and an observable) if the surface is defined intrinsi-
cally through curvature invariants of the gravitational field or concrete matter
fields; see, for example, Rovelli (2004). Whether the discrete spectrum is of oper-
ational significance in the sense of a measurement analysis with rods and clocks
remains unclear. We also note that the usual quantum field theoretic divergences
are absent here because of this discreteness of the formalism.

It is somewhat surprising that an important issue such as the fundamen-
tal discreteness of space emerges already at the kinematical level. One would
have instead expected that it is a result that emerges from the treatment of the
Hamiltonian constraint (Section 6.3), which encodes the ‘dynamical’ features of
Einstein’s theory. The discreteness thus seems to hold for more general theories
than quantum general relativity.

The discrete spectrum of the area operator is also at the heart of the statistical
foundation of black-hole entropy, that is, the recovery of the black-hole entropy
through a quantitative counting of microscopic states for the gravitational field.
This will be discussed in Section 7.3.

6.3 Quantum Hamiltonian constraint

The next task in the quantization process is the treatment of the Hamiltonian
constraint. We recall that the Hilbert space Hdiff has not been obtained by the
action of an operator, but instead with the help of a group averaging procedure.
On the other hand, the Hamiltonian constraint is still being imposed as an
operator constraint. The exact treatment of this constraint is the central (as yet
open) problem in loop quantum gravity.

A main problem is that the Hamiltonian constraint operator does not preserve
the Hilbert space Hdiff . In order to guarantee diffeomorphism invariance, a more
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involved procedure must be invoked; cf. Nicolai et al. (2005). One can address
the action of the constraint operator Ĥ⊥ on a space Υ∗ ⊂ S∗, where S∗ is the
space dual to the spin-network space S. One can choose Υ∗ = Hdiff which, to
emphasize it again, is not a subset of Hkin. The central object then is a ‘dual
operator’ Ĥ∗

⊥ that acts on Υ∗. The operator must first be regularized, see below.
The limit of the corresponding regularization parameter going to zero can then
only be implemented as a weak limit in the sense of matrix elements.

How is the Hamiltonian constraint dealt with concretely? In Section 4.3, we
considered the rescaled constraint

H̃⊥ = −8πGβ2Hg
⊥ ;

see (4.126) and (4.129). It can be written as

H̃⊥ =
1√
h

tr
((

Fab +
β2σ − 1

β2 Rab

)
[Ea, Eb]

)

≡ HE +
β2σ − 1
β2

√
h

tr
(
Rab[Ea, Eb]

)
. (6.39)

The central idea in the quantization of this constraint is to use the fact that area
and volume operators can be rigorously defined. (For the area operator this was
discussed in the last section. The volume operator can be treated analogously;
cf. Ashtekar and Lewandowski 1998) A direct substitution of Ea by a derivative
operator as in (6.3) would not lead very far, since Rab depends on Ea in a
complicated way. In this respect the situation has not improved compared to the
geometrodynamic approach discussed in Chapter 5.

In a first step one addresses the ‘Euclidean’ part HE of (6.39).5 One recognizes
from (4.136) that this part depends solely on the volume, V , and on Fab and
Ac. The volume operator—the quantum equivalent to (4.134)—is well defined
and yields a self-adjoint operator on the Hilbert space Hkin with a finite action
on cylindrical functions. There are therefore no problems with factor ordering at
this stage. The operators corresponding to Fab and Ac can be treated by using
holonomies. In a second step one makes use of (4.140), which in the Lorentzian
case σ = −1 reads

H̃⊥ +
HE

β2 = − β2 + 1
2(4πβ)3

εabctr ({Aa, T }{Ab, T }{Ac, V }) . (6.40)

Using (4.138) one can quantize T and then obtain a quantization of the full
operator H̃⊥.

In order to get a well-defined operator HE, Thiemann (1996) considered the
integral of (4.136) with respect to a lapse function N(x),

HE[N ] = − 1
4πβ

∫
Σ

d3x N(x)εabctr (Fab{Ac, V }) . (6.41)

5In fact, the remaining part is rarely discussed because its discussion is much more involved.
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Fig. 6.5. An elementary tetrahedron ∆.

One can make a triangulation (called ‘Tri’) of Σ into elementary tetrahedra ∆
and choose one vertex, v(∆), for each ∆; see Fig. 6.5. Calling ei(∆), i = 1, 2, 3,
the three edges of ∆ meeting at v(∆), one can consider the loop

αij(∆) ≡ e−1
j (∆) ◦ aij(∆) ◦ ei(∆) ,

where aij(∆) connects the other vertices different from v(∆). Thiemann (1996)
could then show that one can get the correct Euclidean Hamiltonian (6.41) in
the limit where all tetrahedra ∆ shrink to their base points v(∆): consider

HTri
E [N ] =

∑
∆∈Tri

H∆
E [N ] , (6.42)

with

H∆
E [N ] ≡ 1

12πβ
N (v(∆)) εijktr

(
Uαij(∆)Uek(∆){U−1

ek(∆), V }
)

, (6.43)

where U... denotes the holonomies along the corresponding loops and edges. Using

lim
∆→v(∆)

Uαij(∆) = 1 + 1
2 Fabe

a
i (∆)eb

j(∆) ,

lim
∆→v(∆)

Uek(∆) = 1 + Aaea
k(∆) ,

the expression (6.42) tends to (6.41) in this limit.
The quantum operator corresponding to (6.42) is then defined by replacing

V → V̂ and by substituting Poisson brackets with commutators,

ĤTri
E [N ] ≡

∑
∆∈Tri

Ĥ∆
E [N ] , (6.44)

with

Ĥ∆
E [N ] ≡ − i

12πβ�
N (v(∆)) εijktr

(
Ûαij(∆)Ûek(∆){Û−1

ek(∆), V }
)

. (6.45)
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Furthermore, one can show that

ĤTri
E [N ]fα =

∑
∆∈Tri;∆∩α
=∅

Ĥ∆
E [N ]fα , (6.46)

where fα denotes a cylindrical function associated with a graph α. From inspec-
tion of the right-hand side, one recognizes that there is a contribution only if ∆
intersects α (in fact, as one can show, only if it intersects it at a vertex). This
gives only a finite number of such terms, yielding an ‘automatic regularization’
that survives in the ‘continuum limit’ ∆ → v(∆). Thiemann (1996) also showed
that no anomalies arise in the constraint algebra ‘on-shell’: Since the Hamiltonian
constraint operator acts only on diffeomorphism invariant states, the right-hand
side of the quantum analogue to (3.90) vanishes, so nothing can be said about
the full ‘off-shell’ algebra. He also showed that a Hermitian factor ordering can
be chosen. All this being done, it is expected from (6.40) that a regularization
can also be achieved for the full Hamiltonian constraint operator.

We also want to remark that it is unclear whether the operator ĤE has
anything to do with the left-hand side of (6.6); the solutions mentioned there
will most likely not be annihilated by ĤE.

Various interesting open questions remain which are at the focus of current
research. Among these are:

1. The definition of the Hamiltonian constraint is plagued with various am-
biguities (operator ordering, choice of representation for the evaluation of
the traces, . . . ); see Nicolai et al. (2005). There thus exists a whole class
of different quantizations. Are there physical criteria which single out a
unique operator?

2. Can physically interesting solutions to all constraints be obtained? This
was at least achieved for (2+1)-dimensional gravity and for cosmological
models (see Thiemann 2001).

3. The action of the Hamiltonian constraint operator is different from the
action of the Hamiltonian in lattice gauge theories; analogies from there
could therefore be misleading; see Nicolai et al. (2005).

4. Is the quantum constraint algebra anomaly-free ‘off-shell’, that is, before
the constraints are implemented? As a comparison with the situation for
the bosonic string (Section 3.2) demonstrates, insisting only on on-shell
closure spoils the standard results of string quantization; see Nicolai et
al. (2005).

5. Does one obtain the correct classical limit of the constraint algebra?
6. How does the semiclassical approximation scheme work?

The latter question has not yet been addressed in the same way as it was done
with the geometrodynamical constraints in Section 5.4, since the constraints do
not have the simple form in which a ‘Born–Oppenheimer-type’ of method can be
straightforwardly employed. Instead, one has tried to use the methods of coherent
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states; cf. Thiemann (2001, 2003). In order to avoid some of these problems, the
‘master constraint programme’ has been suggested (Thiemann 2006). There one
combines the smeared Hamiltonian constraints for all smearing functions into
one single constraint. It is, however, premature to make any judgement about
the success of this programme.

Alternative approaches to the quantum Hamiltonian constraint are the ‘spin-
foam models’, which use a path-integral type of approach employing the evolution
of spin networks in ‘time’. We shall not discuss this here, but refer the reader to
the literature; cf. Rovelli (2004), Perez (2006), and Nicolai et al. (2006).

To summarize, the main results in the loop or connection representation have
been found on the kinematical level. This holds in particular for the discrete spec-
tra of geometric operators. The main open problem is the correct implementation
(and solution) of the Hamiltonian constraint.



7

QUANTIZATION OF BLACK HOLES

7.1 Black-hole thermodynamics and Hawking radiation

In this section, we shall briefly review the thermodynamical behaviour of black
holes and the Hawking effect. These issues arise at a semiclassical level—the
gravitational field is treated as an external classical background—but they are
supposed to play a key role in the search for quantum gravity. More details can
be found, for example, in Jacobson (2003), Kiefer (1998, 1999) and the references
therein, see also the brief review Kiefer (2003a) which we shall partially follow.

7.1.1 The laws of black-hole mechanics

It is a most amazing fact that black holes obey uniqueness theorems (see Heusler
1996 for a detailed exposition). If an object collapses to form a black hole, a sta-
tionary state will be reached asymptotically. One can prove within the Einstein–
Maxwell theory that stationary black holes are uniquely characterized by only
three parameters: mass M , angular momentum J ≡ Ma, and electric charge q.1

In this sense, black holes are much simpler objects than ordinary stars—given
these parameters, they all look the same. All other degrees of freedom that might
have been initially present have thus been radiated away, for example, in the form
of electromagnetic or gravitational radiation during the collapse, or just disap-
peared (such as baryon number). Since these other degrees of freedom constitute
some form of ‘hair’ (structure), one calls this theorem the no-hair theorem. The
three parameters are associated with conservation laws at spatial infinity. In
principle, one can thus decide about the nature of a black hole far away from the
hole itself, without having to approach it. In astrophysical situations, electrically
charged black holes do not play an important role, so the two parameters M and
J suffice. The corresponding solution of Einstein’s equations is called the Kerr
solution (Kerr–Newman in the presence of charge). Stationary black holes are
axially symmetric with spherical symmetry being obtained as a special case for
J = 0. Charged black holes are of interest for theoretical reasons. It should be
emphasized that the uniqueness theorems do not generalize to higher dimensions
in a straightforward way.

In the presence of other fields, the uniqueness theorems do not always hold;
see, for example, Núñez et al. (1998). This is, in particular, the case for non-
Abelian gauge fields. In addition to charges at spatial infinity, such ‘coloured
black holes’ have to be characterized by additional variables, and it is necessary

1Black holes could also have a magnetic-monopole charge, but this possibility will not be
considered here.
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to approach the hole to determine them. The physical reason for the occurrence
of such solutions is the non-linear character of these gauge fields. Fields in regions
closer to the black hole (that would otherwise be swallowed by the hole) are tied
to fields far away from the hole (that would otherwise be radiated away) to reach
an equilibrium situation. In most examples this equilibrium is, however, unstable
and the corresponding black-hole solution does not represent a physical solution.
Since classical non-Abelian fields have never been observed (the description of
objects such as quarks necessarily requires quantized gauge fields which, due to
confinement, have no macroscopic limit), they will not be taken into account in
the subsequent discussion.

In 1971, Stephen Hawking proved an important theorem about stationary
black holes: their area can never decrease with time. More precisely, he showed
that for a predictable black hole satisfying Rabk

akb ≥ 0 for all null ka, the surface
area of the future event horizon never decreases with time. A ‘predictable’ black
hole is one for which the cosmic censorship hypothesis holds—this is thus a
major assumption for the area law. Cosmic censorship assumes that all black
holes occurring in nature have an event horizon, so that the singularity cannot be
seen by far-away observers (the singularity is not ‘naked’). The time asymmetry
in this theorem comes into play because a statement is made about the future
horizon, not the past horizon; the analogous statement for white holes would then
be that the past event horizon never increases. It is a feature of our universe that
white holes seem to be absent, in contrast to black holes; cf. Section 10.2. It must
be emphasized that the area law only holds in the classical theory, not in the
quantum theory.

The area law seems to exhibit a close formal analogy to the Second Law of
Thermodynamics—there the entropy can never decrease with time (for a closed
system). However, the conceptual difference could not be more pronounced: while
the Second Law is related to statistical behaviour, the area law is just a theorem
in differential geometry.

Further support for this analogy is given by the existence of analogues to
the other laws of thermodynamics. The Zeroth Law states that there exists a
quantity, the temperature, that is constant on a body in thermal equilibrium.
Does there exist an analogous quantity for a black hole? One can in fact prove
that the surface gravity κ is constant over the event horizon (Wald 1984). For a
Kerr black hole, κ is given by

κ =

√
(GM)2 − a2

2GMr+

a→0−→ 1
4GM

=
GM

R2
S

, (7.1)

where
r+ = GM +

√
(GM)2 − a2

denotes the location of the event horizon. In the Schwarzschild limit, one rec-
ognizes the well-known expression for the Newtonian gravitational acceleration.
(RS ≡ 2GM there denotes the Schwarzschild radius.) One can show for a static
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black hole that κ is the limiting force that must be exerted at infinity to hold
a unit test mass in place when approaching the horizon. This justifies the name
surface gravity.

With a tentative formal relation between surface gravity and temperature,
and between area and entropy, the question arises whether a First Law of Ther-
modynamics can be proved. This can in fact be achieved and the result for a
Kerr–Newman black hole is

dM =
κ

8πG
dA + ΩHdJ + Φdq , (7.2)

where A, ΩH, Φ denote the area of the event horizon, the angular velocity of
the black hole, and the electrostatic potential, respectively. This relation can
be obtained by two conceptually different methods: a physical process version
in which a stationary black hole is altered by infinitesimal physical processes,
and an equilibrium state version in which the areas of two stationary black-hole
solutions of Einstein’s equations are compared. Both methods lead to the same
result (7.2).

Since M is the energy of the black hole, (7.2) is the analogue of the First
Law of Thermodynamics given by

dE = TdS − pdV + µdN . (7.3)

‘Modern’ derivations of (7.2) make use of both Hamiltonian and Lagrangian
methods of GR. For example, the First Law follows from an arbitrary diffeomor-
phism invariant theory of gravity whose field equations can be derived from a
Lagrangian; see Wald (2001) and the references therein.

What about the Third Law of Thermodynamics? A ‘physical process version’
was proved by Israel (1986)—it is impossible to reach κ = 0 in a finite number of
steps, although it is unclear whether this is true under all circumstances (Farrugia
and Hajicek 1979). This corresponds to the ‘Nernst version’ of the Third Law.
The stronger ‘Planck version’, which states that the entropy goes to zero (or a
material-dependent constant) if the temperature approaches zero, does not seem
to hold. The above analogies are summarized in Table 7.1.

7.1.2 Hawking and Unruh radiation

What is the meaning of black-hole temperature and entropy? According to clas-
sical GR, a black hole cannot radiate and, therefore, the temperature can only
have a formal meaning. Important steps towards the interpretation of black-hole
entropy were made by Bekenstein (1973); cf. also Bekenstein (2001). He argued
that the Second Law of Thermodynamics would only be valid if a black hole pos-
sessed an entropy SBH; otherwise, one could lower the entropy in the universe by
just throwing matter possessing a certain amount of entropy into a black hole.
Comparing (7.2) with (7.3) one recognizes that black-hole entropy must be a
function of the area, SBH = f(A). Since the temperature must be positive, one
must demand that f ′(A) > 0. The simplest case f(A) ∝

√
A, that is, SBH ∝ M
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Table 7.1 Analogies between the laws of thermodynamics and the laws of black-
hole mechanics

Law Thermodynamics Stationary black holes

Zeroth T constant on a body
in thermal equilibrium

κ constant on the
horizon of a black hole

First dE = TdS − pdV + µdN dM =
κ

8πG
dA + ΩHdJ + Φdq

Second dS ≥ 0 dA ≥ 0

Third T = 0 cannot be reached κ = 0 cannot be reached

would violate the Second Law because if two black holes merged, the mass of
the resulting hole would be smaller than the sum of the masses of the original
holes (due to energy emission through gravitational waves). With some natural
assumptions, one can conclude that SBH ∝ A/l2P (Bekenstein 1973, 2001). Note
that Planck’s constant � has entered the scene through the Planck length. This
has happened since no fundamental length scale can be constructed from G and
c alone. A sensible interpretation of black-hole temperature and entropy thus
cannot be obtained in pure GR—quantum theory has to be taken into account.

Thus, one can write

TBH ∝ �κ

kB
, SBH ∝ kBA

G�
, (7.4)

and the important question is how the proportionality factor can be determined.
This was achieved in the important paper by Hawking (1975). The key ingredient
in Hawking’s discussion is the behaviour of quantum fields on the background of
an object collapsing to form a black hole. Similar to the situation of an external
electric field (Schwinger effect), there is no uniquely defined notion of a vacuum.
This leads to the occurrence of particle creation. The peculiarity of the black-
hole case is the thermal distribution of the particles created, which is due to the
presence of an event horizon.

It is helpful to understand the ‘Hawking effect’ by first considering an anal-
ogous effect in flat space–time: a uniformly accelerated observer experiences
the Minkowski vacuum as being filled with thermal particles; cf. Unruh (1976).
Whereas all inertial observers in Minkowski space agree on the notion of vacuum
(and therefore on particles), this is no longer true for non-inertial observers.

Consider an observer who is uniformly accelerating along the X-direction in
(1+1)-dimensional Minkowski space–time (Fig. 7.1). The Minkowski cartesian
coordinates are labelled here by uppercase letters. The orbit of this observer
is the hyperbola shown in Fig. 7.1. One recognizes that, as in the Kruskal dia-
gram for the Schwarzschild metric, the observer encounters a horizon (here called
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    =
 constant

    = constantτ ρ

Fig. 7.1. Uniformly accelerated observer in Minkowski space.

‘acceleration horizon’). There is, however, no singularity behind this horizon. Re-
gion I is a globally hyperbolic space–time on its own—called Rindler space–time.
This space–time can be described by coordinates (τ, ρ) which are connected to
the cartesian coordinates via the transformation(

T
X

)
= ρ

(
sinh aτ
coshaτ

)
, (7.5)

where a is a constant (the orbit in Fig. 7.1 describes an observer with acceleration
a, who has ρ = 1/a). Since

ds2 = dT 2 − dX2 = a2ρ2dτ2 − dρ2 , (7.6)

the orbits ρ = constant are also orbits of a time-like Killing field ∂/∂τ . It is
clear that τ corresponds to the external Schwarzschild coordinate t and that ρ
corresponds to r. As in the Kruskal case, ∂/∂τ becomes space-like in regions II
and IV.

The analogy with Kruskal becomes even more transparent if the Schwarz-
schild metric is expanded around the horizon at r = 2GM . Introducing there a
new coordinate ρ via ρ2/(8GM) = r − 2GM and recalling (7.1), one has

ds2 ≈ κ2ρ2dt2 − dρ2 − 1
4κ2 dΩ2 . (7.7)

Comparison with (7.6) shows that the first two terms on the right-hand side of
(7.7) correspond exactly to the Rindler space–time (7.6) with the acceleration a
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replaced by the surface gravity κ. The last term2 in (7.7) describes a two-sphere
with radius (2κ)−1.

How does the accelerating observer experience the standard Minkowski vac-
uum |0〉M? The key point is that the vacuum is a global state correlating regions
I and III in Fig. 7.1 (similar to Einstein–Podolsky–Rosen correlations), but that
the accelerated observer is restricted to region I. Considering for simplicity the
case of a massless scalar field, the global vacuum state comprising regions I and
III can be written in the form

|0〉M =
∏
ω

√
1 − e−2πωa−1

∑
n

e−nπωa−1 |nI
ω〉 ⊗ |nIII

ω 〉 , (7.8)

where |nI
ω〉 and |nIII

ω 〉 are n-particle states with frequency ω = |k| in regions
I and III, respectively. These n-particle states are defined with respect to the
‘Rindler vacuum’, which is the vacuum defined by an accelerating observer. The
expression (7.8) is an example of the Schmidt expansion of two entangled quan-
tum systems; see, for example, Joos et al. (2003). Note also the analogy of (7.8)
with a BCS-state in the theory of superconductivity.

For an observer restricted to region I, the state (7.8) cannot be distinguished,
by operators with support in I only, from a density matrix that is found from
(7.8) by tracing out all degrees of freedom in region III,

ρI ≡ trIII|0〉M〈0|M
=

∏
ω

(
1 − e−2πωa−1

)∑
n

e−2πnωa−1 |nI
ω〉〈nI

ω| . (7.9)

Note that the density matrix ρI has exactly the form corresponding to a thermal
canonical ensemble with the Davies–Unruh temperature

TDU =
�a

2πkB
≈ 4.05 × 10−23 a

[cm
s2

]
K ; (7.10)

cf. (1.34). An observer who is accelerating uniformly through Minkowski space
thus sees a thermal distribution of particles. This is an important manifestation
of the non-uniqueness of the vacuum state in quantum field theory, even for
flat space–time. A more detailed discussion invoking models of particle detectors
confirms this result (‘Unruh effect’).

We shall now turn to black holes. From the form of the line element near
the horizon (7.7) one can already anticipate that—according to the equivalence
principle—a black hole radiates with a temperature as specified in (7.10) with a
being replaced by κ. This is, in fact, what Hawking (1975) found. In his approach
he considered the situation depicted in Fig. 7.2: the vacuum modes of a quantum
field are calculated on the background of a star collapsing to form a black hole.

2It is this term that is responsible for the non-vanishing curvature of (7.7) compared to the
flat-space metric (7.6) whose extension into the (neglected) other dimensions would be just
−dY 2 − dZ2.
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Fig. 7.2. Penrose diagram showing the collapse of a spherically symmetric star
to form a black hole; γ denotes a light ray propagating from J− through the
collapsing star to J +. The limiting case is the ray γH which stays on the
horizon.

Due to the dynamical background, an initial vacuum does not stay a vacuum
but becomes a thermal state with respect to late-time observers. The temperature
of this state is called the ‘Hawking temperature’. It reads

TBH =
�κ

2πkB
; (7.11)

cf. (1.32). In the Heisenberg picture, this non-invariance of the vacuum is called
‘particle creation’ (more properly, ‘field excitation’). In the Schrödinger picture,
it corresponds to the process of squeezing of quantum states; cf. Grishchuk and
Sidorov (1990) and Kiefer (2001b). More precisely, it is a two-mode squeezed
state, which in this context is also called the ‘Unruh vacuum’. It is a quantum
state that exhibits entanglement between the inside and the outside of the black
hole. Similar to (7.9), tracing out the interior part leads to a thermal spectrum
with the temperature (7.11). It is true in general that tracing out one mode from
a two-mode squeezed state yields a thermal density matrix; see, for example,
Section 5.2.5 in Walls and Milburn (1994). The fact that the excited field modes
are here thermally distributed follows from the presence of a horizon.
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The temperature (7.11) refers to an observer at infinite distance from the hole.
For finite distance one has to modify this expression by a redshift factor. If the
observer is static, he is in a state of acceleration, and therefore the temperature
contains both the Hawking and the Unruh effect. Close to the horizon, only
the Unruh effect remains, and a freely falling observer does not experience any
temperature at all.

For the total luminosity of the black hole, one finds in the Schwarzschild case,

L = −dM

dt
=

1
2π

∞∑
l=0

(2l + 1)

∞∫
0

dω ω
Γωl

e2πκ−1ω − 1
. (7.12)

To obtain the expression for the Kerr–Newman black hole, one has to replace
2πκ−1ω with 2πκ−1(ω−mΩH−qΦ), where m is the azimuthal quantum number
of the spherical harmonics. The spectrum thus involves a chemical potential. The
term Γωl—called ‘greybody factor’ because it encodes a deviation from the black-
body spectrum—takes into account the fact that some of the particle modes are
back-scattered into the black hole by means of space–time curvature.

For the special case of the Schwarzschild metric, where κ = (4GM)−1, (7.11)
becomes the expression (1.33). One can estimate the life-time of such a black
hole by making the plausible assumption that the decrease in mass is equal to
the energy radiated to infinity. This corresponds to a heuristic implementation
of the back reaction of Hawking radiation on the black hole. (Without this back
reaction, energy would not be conserved.) Using Stefan–Boltzmann’s law, one
gets

dM

dt
∝ −AT 4

BH ∝ −M2 ×
(

1
M

)4

= − 1
M2 ,

which when integrated yields

t(M) ∝ (M3
0 − M3) ≈ M3

0 . (7.13)

Here M0 is the initial mass. It has been assumed that after the evaporation
M � M0. Very roughly, the life-time of a black hole is thus given by

τBH ≈
(

M0

mP

)3

tP ≈ 1065
(

M0

M�

)3

years . (7.14)

Hawking used the semiclassical approximation in which the non-gravitational
fields are quantum but the gravitational field is treated as an external classical
field; cf. Section 5.4. This approximation is expected to break down when the
black-hole mass approaches the Planck mass, that is, after a time given by (7.14).
Only a full theory of quantum gravity can describe the final stage of black-hole
evaporation. This would then necessarily include the full back-reaction effect of
the Hawking radiation on the black hole.

The original derivation of the Hawking effect deals with non-local ‘particle’
modes (Hawking 1975). Alternatively, one can base the analysis solely on the
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local behaviour of correlation functions by inspecting their time development
from the past into the future (Fredenhagen and Haag 1990).

As an intermediate step towards full quantum gravity, one might consider the
heuristic ‘semiclassical’ Einstein equations discussed in Section 1.2; see (1.35).
This enables one to take into account back-reaction effects on the semiclassical
level. The evaluation of 〈Tab〉—which requires regularization and renormaliza-
tion—is a difficult subject on its own (Frolov and Novikov 1998). The renor-
malized value for 〈Tab〉 is essentially unique (its ambiguities can be absorbed in
coupling constants) if certain sensible requirements are imposed; cf. Section 2.2.4.
Evaluating the components of the renormalized 〈Tab〉 near the horizon, one finds
that there is a flux of negative energy into the hole. This follows from the Unruh
vacuum described above. Clearly this leads to a decrease of the mass. These
negative energies represent a typical quantum effect and are well known from
the—accurately measured—Casimir effect. This occurrence of negative energies
is also responsible for the breakdown of the classical area law in quantum theory.

The negative flux near the horizon lies also at the heart of the ‘pictorial’
representation of Hawking radiation that is often used; see, for example, Parikh
and Wilczek (2000). In vacuum, virtual pairs of ‘particles’ are created and de-
stroyed. However, close to the horizon one partner of this virtual pair might fall
into the black hole, thereby liberating the other partner to become a real particle
and escaping to infinity as Hawking radiation. The global quantum field exhibits
quantum entanglement between the inside and outside of the black hole, similar
to the case of the accelerated observer discussed above.

In the case of an eternal Schwarzschild black hole, where both past and future
horizons exist, there exists a distinguished quantum state which describes the
equilibrium of the black hole with thermal radiation at Hawking temperature.
This state is also called the ‘Hartle–Hawking vacuum’. It is directly analogous
to the Minkowski vacuum in (7.8).

One can also give explicit expressions for the Hawking temperature (7.11) in
the case of rotating and charged black holes. For the Kerr solution, one has

kBTBH =
�κ

2π
= 2

(
1 +

GM√
G2M2 − a2

)−1
�

8πGM
<

�

8πGM
. (7.15)

Rotation thus reduces the Hawking temperature. For the Reissner–Nordström
solution (describing a charged spherically symmetric black hole), one has

kBTBH =
�

8πGM

(
1 − G2q4

r4
+

)
<

�

8πGM
. (7.16)

Electric charge thus also reduces the Hawking temperature. For an extremal
black hole, r+ = GM =

√
G|q|, and therefore TBH = 0.

A conceptual problem in the traditional derivation of the Hawking effect
should be mentioned. The propagation of the modes through the collapse phase
invokes modes with very high frequency; in fact, the corresponding wavelengths
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can be much smaller than the Planck length and one might wonder whether one
would not need the full quantum theory of gravity for the calculation of the
Hawking effect. This is called the ‘trans-Planckian problem’; cf. Jacobson (2003)
and the references therein. An analogous version of this problem also occurs in
inflationary cosmology. There is no general consensus on the relevance of this
problem in the literature; however, since the Hawking effect can be derived in
various different ways, not necessarily invoking the propagation of the modes
through the collapse phase,3 it seems that the trans-Planckian problem does not
pose a threat to the Hawking effect.

To discuss problems like these, it may be helpful to recall that there exist
interesting analogues to black-hole quantum effects in condensed-matter physics;
see Barceló et al. (2005) for a detailed review. This was motivated partly by the
trans-Planckian problem, because an understanding of a similar feature within
analogous models could shed some light on this problem. As far as the Hawking
effect is concerned, an important property that the analogous models should
have is the presence of an apparent horizon. Such analogous models could be
superfluid helium or Bose–Einstein condensates (which seems to be the most
promising model). Typically these horizons are acoustic horizons: a horizon is
there defined to be a two-dimensional surface for which the normal component
of the fluid velocity is everywhere equal to the local speed of sound.

7.1.3 Bekenstein–Hawking entropy

After the Hawking temperature has been calculated, the entropy is also given.
From the First Law (7.2) one finds the ‘Bekenstein–Hawking entropy’

SBH =
kBA

4G�
, (7.17)

in which the unknown factor in (7.4) has now been fixed. For the special case of
a Schwarzschild black hole, this yields

SBH =
kBπR2

S

G�
≈ 1.07 × 1077kB

(
M

M�

)2

. (7.18)

It can be easily estimated that SBH is much bigger than the entropy of the star
that collapsed to form the black hole. The entropy of the sun, for example, is
S� ≈ 1057kB, whereas the entropy of a solar-mass black hole is about 1077kB,
which is 20 orders of magnitude larger (recall that the number of states is given
by exp(S/kB)).

Can a physical interpretation of this huge discrepancy be given? In the above
discussion, the laws of black-hole mechanics have been treated as phenomeno-
logical thermodynamical laws. The central open question therefore is: can SBH

3One example being the work by Fredenhagen and Haag (1990) mentioned above.
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be derived from quantum-statistical considerations? This would mean that SBH
could be calculated from a Gibbs-type formula according to

SBH
?= −kBtr(ρ ln ρ) ≡ SSM , (7.19)

where ρ denotes an appropriate density matrix; SBH would then somehow cor-
respond to the number of quantum microstates that are consistent with the
macrostate of the black hole. According to the no-hair theorem, the macrostate
is uniquely characterized by mass, angular momentum, and charge. Some impor-
tant questions are:

• Does SBH correspond to states hidden behind the horizon?
• Or does SBH correspond to the number of possible initial states from which

the black hole might have formed?
• What are the microscopic degrees of freedom?
• Where are they located (if at all)?
• Can one understand the universality of the result?
• What happens with SBH after the black hole has evaporated?
• Is the entropy a ‘one-loop’ or a ‘tree-level’ effect?

The attempts to calculate SBH by state counting are often done in the ‘one-
loop limit’ of quantum field theory in curved space–time—this is the limit where
gravity is classical but non-gravitational fields are fully quantum; cf. Sections 2.2
and 5.4. Equation (7.11) has been derived in this limit. Expression (7.17) can
already be calculated from the so-called ‘tree level’ approximation of the theory,
where only the gravitational degrees of freedom are taken into account. Usually
a saddle-point approximation for a Euclidean path integral is being performed.
Such derivations are, however, equivalent to derivations within classical thermo-
dynamics; cf. Wald (2001).

The emergence of the thermal nature of black-hole radiation has led to the
discussion of the information-loss problem; cf. Section 7.6. If the black hole evap-
orates completely and leaves only thermal radiation behind, one would have a
conflict with established principles in quantum theory: any initial state (in par-
ticular, a pure state) would evolve into a mixed state. In ordinary quantum
theory this is forbidden by the unitary evolution of the total system. A theory of
quantum gravity should give a definite answer to the question whether unitarity
(with respect to an outside observer) is preserved or not.

In the following subsections as well as in Chapter 9, we shall discuss attempts
to describe black holes and their evolution within quantum gravity.

7.2 Canonical quantization of the Schwarzschild black hole

What can the methods of Chapters 5 and 6 say about the quantum behaviour
of Schwarzschild black holes? In the following, we shall present an outline of
the canonical quantization procedure for spherically symmetric systems. This
was developed in the connection representation (using the complex version of



210 QUANTIZATION OF BLACK HOLES

Ashtekar’s variables) by Thiemann and Kastrup (1993) in the spirit of the Dirac
approach discussed in Section 5.2.2. In the reduced version of Section 5.2.1 it was
developed by Kastrup and Thiemann (1994) using the connection variables and
by Kuchař (1994) using the geometrodynamical representation. An extension
of the latter work to charged black holes (Reissner–Nordström solutions) can
be found in Louko and Winters-Hilt (1996). In this subsection, we discuss the
geometrodynamical approach and follow, with elaborations, the presentation in
Kiefer (1998).

7.2.1 Classical formalism

The starting point is the ansatz for a general spherically symmetric metric on
R × R × S2,

ds2 = −N2(r, t)dt2 + L2(r, t)(dr + N r(r, t)dt)2 + R2(r, t)dΩ2 . (7.20)

The lapse function N encodes the possibility to perform arbitrary reparametriza-
tions of the time parameter, while the shift function N r is responsible for repa-
rametrizations of the radial coordinate (this is the only freedom in performing
spatial coordinate transformations that is left after spherical symmetry is im-
posed). The parameter r is only a label for the spatial hypersurfaces; if the
hypersurface extends from the left to the right wedge in the Kruskal diagram,
one takes r ∈ (−∞,∞). If the hypersurface originates at the bifurcation point
where path and future horizon meet, one has r ∈ (0,∞). If one has in addition a
spherically symmetric electromagnetic field, one makes the following ansatz for
the one-form potential:

A = φ(r, t)dt + Γ(r, t)dr . (7.21)

In the Hamiltonian formulation, φ as well as N and N r are Lagrange multipliers
whose variations yield the constraints of the theory. Variation of the Einstein–
Hilbert action with respect to N yields the Hamiltonian constraint which for the
spherically symmetric model is given by

H⊥ =
G

2
LP 2

L

R2 − G
PLPR

R
+

LP 2
Γ

2R2 + G−1V g ≈ 0 , (7.22)

where the gravitational potential term reads

V g =
RR′′

L
− RR′L′

L2 +
R′2

2L
− L

2
. (7.23)

(A prime denotes differentiation with respect to r.) Variation with respect to N r

yields one (radial) diffeomorphism constraint,

Hr = PRR′ − LP ′
L ≈ 0 . (7.24)

One recognizes from this constraint that R transforms as a scalar, while L trans-
forms as a scalar density.



CANONICAL QUANTIZATION OF THE SCHWARZSCHILD BLACK HOLE 211

Variation of the action with respect to φ yields as usual the Gauss constraint

G = P ′
Γ ≈ 0 . (7.25)

The constraint (7.24) generates radial diffeomorphisms for the fields R, L, and
their canonical momenta. It does not generate diffeomorphisms for the electro-
magnetic variables. This can be taken into account if one uses the multiplier
φ̃ = φ − N rΓ instead of φ and varies with respect to φ̃ (Louko and Winters-
Hilt 1996), but for the present purpose it is sufficient to stick to the above form
(7.24).

The model of spherical symmetric gravity can be embedded into a whole class
of models usually referred to as ‘two-dimensional dilaton gravity theories’. This
terminology comes from effective two-dimensional theories (usually motivated
by string theory), which contain in the gravitational sector a scalar field (the
‘dilaton’) in addition to the two-dimensional metric (of which only the conformal
factor is relevant). An example is the ‘CGHS model’ defined in (5.60) within
which one can address the issues of Hawking radiation and back reaction. This
model is classically soluble even if another, conformally coupled, scalar field is
included. The canonical formulation of this model can be found, for example,
in Louis-Martinez et al. (1994) and Demers and Kiefer (1996). The dilaton field
is analogous to the field R from above, while the conformal factor of the two-
dimensional metric is analogous to L.

Consider now the boundary conditions for r → ∞. One has in particular

L(r, t) → 1 +
GM(t)

r
, R(r, t) → r, N → N(t) , (7.26)

as well as
PΓ(r, t) → q(t), φ(r, t) → φ(t) . (7.27)

From the variation with respect to L, one then finds the boundary term
∫

dt
NδM . In order to avoid the unwanted conclusion N = 0 (no evolution at infinity),
one has to compensate this term in advance by adding the boundary term

−
∫

dt NM

to the classical action. Note that M is just the ADM mass. The need to in-
clude such a boundary term was recognized by Regge and Teitelboim (1974); cf.
Section 4.2.4. Similarly, one has to add for charged black holes the term

−
∫

dt φq

to compensate for
∫

dt φδq, which arises from varying PΓ. If one wished instead to
consider q as a given, external parameter, this boundary term would be obsolete.



212 QUANTIZATION OF BLACK HOLES

As long as restriction is made to the eternal hole, appropriate canonical trans-
formations allow one to simplify the classical constraint equations considerably
(Kuchař 1994; Louko and Winters-Hilt 1996). One gets

(L, PL; R, PR; Γ, PΓ) −→ (M, PM;R, PR; Q, PQ) .

In particular,

M(r, t) =
P 2

Γ + P 2
L

2R
+

R

2

(
1 − R′2

L2

)
r→∞−→ M(t) , (7.28)

Q(r, t) = PΓ
r→∞−→ q(t) . (7.29)

(We only mention that R = R and that the expression for PR is somewhat
lengthy and will not be given here.)

The new constraints, which are equivalent to the old ones, read

M′ = 0 ⇒ M(r, t) = M(t), (7.30)
Q′ = 0 ⇒ Q(r, t) = q(t) , (7.31)
PR = 0 . (7.32)

Note that N(t) and φ(t) are prescribed functions that must not be varied; other-
wise one would be led to the unwanted restriction that M = 0 = q. A variation is
allowed if the action is being parametrized, bringing in new dynamical variables,

N(t) ≡ τ̇ (t) ,

φ(t) ≡ λ̇(t) . (7.33)

Here, τ is the proper time that is measured with standard clocks at infinity,
and λ is the variable conjugate to charge; λ is therefore connected with the
electromagnetic gauge parameter at the boundaries. In the canonical formalism
one has to introduce momenta conjugate to these variables, which will be denoted
by πτ and πλ, respectively. This, in turn, requires the introduction of additional
constraints linear in momenta,

Cτ = πτ + M ≈ 0 , (7.34)
Cλ = πλ + q ≈ 0 , (7.35)

which have to be added to the action:

−
∫

dt Mτ̇ →
∫

dt (πτ τ̇ − NCτ ) , (7.36)

−
∫

dt qλ̇ →
∫

dt (πλλ̇ − φCλ) . (7.37)

The remaining constraints in this model are thus (7.32), and (7.34) and (7.35).



CANONICAL QUANTIZATION OF THE SCHWARZSCHILD BLACK HOLE 213

7.2.2 Quantization

Quantization then proceeds in the way discussed in Chapter 5 by acting with an
operator version of the constraints on wave functionals Ψ[R(r); τ, λ). Since (7.32)
leads to δΨ/δR = 0, one is left with a purely quantum mechanical wave function
ψ(τ, λ). One could call this a ‘quantum Birkhoff theorem’. The implementation
of the constraints (7.34) and (7.35) then yields

�

i
∂ψ

∂τ
+ Mψ = 0 , (7.38)

�

i
∂ψ

∂λ
+ qψ = 0 , (7.39)

which can be readily solved to give

ψ(τ, λ) = χ(M, q)e−i(Mτ+qλ)/� (7.40)

with an arbitrary function χ(M, q). Note that M and q are considered here as
being fixed. The reason for this is that up to now we have restricted attention to
one semiclassical component of the wave function only (eigenstates of mass and
charge).

If the hypersurface goes through the whole Kruskal diagram of the eternal
hole, only the boundary term at r → ∞ (and an analogous one for r → −∞)
contributes. Of particular interest in the black-hole case, however, is the case
where the surface originates at the ‘bifurcation surface’ (r → 0) of past and
future horizons. This makes sense since data on such a surface suffice to construct
the whole right Kruskal wedge, which is all that is accessible to an observer in
this region. Moreover, this mimicks the situation where a black hole is formed
by collapse, in which the regions III and IV of the Kruskal diagram are absent.

What are the boundary conditions to be adopted at r → 0? They are chosen
in such a way that the classical solutions have a non-degenerate horizon and
that the hypersurfaces start at r = 0 asymptotically to hypersurfaces of constant
Killing time (Louko and Whiting 1995). In particular,

N(r, t) = N1(t)r + O(r3) , (7.41)
L(r, t) = L0(t) + O(r2) , (7.42)
R(r, t) = R0(t) + R2(t)r2 + O(r4) . (7.43)

Variation leads, similarly to the situation at r → ∞, to a boundary term at
r = 0,

−N1R0(GL0)−1δR0 .

If N1 
= 0, this term must be subtracted (N1 = 0 corresponds to the case of
extremal holes, |q| =

√
GM , which is characterized by ∂N/∂r(r = 0) = 0).
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Introducing the notation N0 ≡ N1/L0, the boundary term to be added to the
classical action reads

(2G)−1
∫

dt N0R
2
0 .

The quantity

α ≡
∫ t

t1

dt N0(t) (7.44)

can be interpreted as a ‘rapidity’ because it boosts the normal vector to the
hypersurfaces t=constant, na, in the way described by

na(t1)na(t) = − coshα , (7.45)

see Hayward (1993). To avoid fixing N0, one introduces an additional parametriza-
tion (Brotz and Kiefer 1997)

N0(t) = α̇(t) . (7.46)

Similarly to (7.36) and (7.37) above, one must perform in the action the following
replacement:

(2G)−1
∫

dt R2
0α̇ →

∫
dt (παα̇ − N0Cα) , (7.47)

with the new constraint
Cα = πα − A

8πG
≈ 0 , (7.48)

where A = 4πR2
0 is the surface of the bifurcation sphere. One finds that α and

A are canonically conjugate variables; see Carlip and Teitelboim (1995).
The quantum constraints can then be solved, and a plane-wave-like solution

reads

Ψ(α, τ, λ) = χ(M, q) exp
[

i
�

(
A(M, q)α

8πG
− Mτ − qλ

)]
, (7.49)

where χ(M, q) is an arbitrary function of M and q; one can construct superpo-
sitions of the solutions (7.49) in the standard way by integrating over M and
q.

Varying the phase in (7.49) with respect to M and q yields the classical
equations

α = 8πG

(
∂A

∂M

)−1

τ = κτ , (7.50)

λ =
κ

8πG

∂A

∂q
τ = Φτ . (7.51)

The solution (7.49) holds for non-extremal holes. If one made a similar quanti-
zation for extremal holes on their own, the first term in the exponent of (7.49)
would be absent.
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An interesting analogy with (7.49) is the plane-wave solution for a free non-
relativistic particle,

exp(ikx − ω(k)t) . (7.52)

As in (7.49), the number of parameters is one less than the number of arguments,
since ω(k) = k2/2m. A quantization for extremal holes on their own would cor-
respond to choosing a particular value for the momentum at the classical level,
say p0, and demanding that no dynamical variables (x, p) exist for p = p0. This
is, however, not the usual way to find classical correspondence—such a corre-
spondence is not obtained from the plane-wave solution (7.52) but from wave
packets which are constructed by superposing different wave numbers k. This
then yields quantum states which are sufficiently concentrated around classical
trajectories such as x = p0t/m.

It seems, therefore, appropriate to proceed similarly for black holes: construct
wave packets for non-extremal holes that are concentrated around the classical
values (7.50) and (7.51) and then extend them by hand to the extremal limit.
This would correspond to ‘extremization after quantization’, in contrast to the
‘quantization after extremization’ made above. Expressing in (7.49) M as a func-
tion of A and q and using Gaussian weight functions, one has

Ψ(α, τ, λ) =
∫

A>4πq2

dAdq exp
[
− (A − A0)2

2(∆A)2
− (q − q0)2

2(∆q)2

]

× exp
[

i
�

(
Aα

8πG
− M(A, q)τ − qλ

)]
. (7.53)

The result of this calculation is given and discussed in Kiefer and Louko (1999).
As expected, one finds Gaussian packets that are concentrated around the clas-
sical values (7.50) and (7.51). Like for the free particle, the wave packets ex-
hibit dispersion with respect to Killing time τ . Using for ∆A the Planck-length
squared, ∆A ∝ G� ≈ 2.6 × 10−66cm2, one finds for the typical dispersion time
in the Schwarzschild case

τ∗ =
128π2R3

S

G�
≈ 1065

(
M

M�

)3

years . (7.54)

Note that this is just of the order of the black-hole evaporation time (7.14). The
dispersion of the wave packet gives the time scale after which the semiclassical
approximation breaks down.

Coming back to the charged case, and approaching the extremal limit
√

GM =
|q|, one finds that the widths of the wave packet (7.53) are independent of τ for
large τ . This is due to the fact that for the extremal black hole, κ = 0 and
therefore no evaporation takes place. If one takes, for example, ∆A ∝ G� and
∆q ∝

√
G�, one finds for the α-dependence of (7.53) for τ → ∞, the factor

exp
(
− α2

128π2

)
, (7.55)
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which is independent of both τ and �. It is clear that this packet, although
concentrated at the value α = 0 for extremal holes, has support also for α 
= 0
and is qualitatively not different from a wave packet that is concentrated at a
value α 
= 0 close to extremality.

An interesting question is the possible occurrence of a naked singularity for
which

√
GM < |q|. Certainly, the above boundary conditions do not comprise

the case of a singular three-geometry. However, the wave packets discussed above
also contain parameter values that would correspond to the ‘naked’ case. Such
geometries could be avoided if one imposed the boundary condition that the
wave function vanishes for such values. But then continuity would enforce the
wave function also to vanish on the boundary, that is, at

√
GM = |q|. This would

mean that extremal black holes could not exist at all in quantum gravity—an
interesting speculation.

A possible thermodynamical interpretation of (7.49) can only be obtained if
an appropriate transition into the Euclidean regime is performed. This transition
is achieved by the ‘Wick rotations’ τ → −iβ�, α → −iαE (from (7.46) it is clear
that α is connected to the lapse function and must be treated similar to τ), and
λ → −iβ�Φ. Demanding regularity of the Euclidean line element, one arrives
at the conclusion that αE = 2π. But this means that the Euclidean version of
(7.50) just reads 2π = κβ�, which with β = (kBTBH)−1 is just the expression for
the Hawking temperature (1.32). Alternatively, one could use (1.32) to derive
αE = 2π.

The Euclidean version of the state (7.49) then reads

ΨE(α, τ, λ) = χ(M, q) exp
(

A

4G�
− βM − βΦq

)
. (7.56)

One recognizes in the exponent of (7.56) the occurrence of the Bekenstein–Haw-
king entropy. Of course, (7.56) is still a pure state and should not be confused
with a partition sum. But the factor exp[A/(4G�)] in (7.56) directly gives the
enhancement factor for the rate of black-hole pair creation relative to ordinary
pair creation (Hawking and Penrose 1996). It must be emphasized that SBH fully
arises from a boundary term at the horizon (r → 0).

It is now clear that a quantization scheme that treats extremal black holes as
a limiting case gives SBH = A/(4G�) also for the extremal case.4 This coincides
with the result found from string theory; see Section 9.2.5. On the other hand,
quantizing extremal holes on their own would yield SBH = 0. From this point of
view, it is also clear why the extremal (Kerr) black hole that occurs in the tran-
sition from the disk-of-dust solution to the Kerr-solution has entropy A/(4G�);
see Neugebauer (1998). If SBH 
= 0 for the extremal hole (which has temperature
zero), the stronger version of the Third Law of Thermodynamics (that would
require S → 0 for T → 0) apparently does not hold. This is not particularly
disturbing, since many systems in ordinary thermodynamics (such as glasses)

4We set kB = 1 here and in the following.
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violate the strong form of the Third Law; it just means that the system does not
approach a unique state for T → 0.

The above discussion has been performed for a pure black hole without in-
clusion of matter degrees of freedom. In the presence of other variables, it is
no longer possible to find simple solutions such as (7.49). One possible treat-
ment is to perform a semiclassical approximation as presented in Section 5.4.
In this way, one can recover a functional Schrödinger equation for matter fields
on a black-hole background. For simple situations this equation can be solved
(Demers and Kiefer 1996). Although the resulting solution is, of course, a pure
state, the expectation value of the particle number operator exhibits a Planck-
ian distribution with respect to the Hawking temperature—this is how Hawking
radiation is being recovered in this approach. For this reason, one might even
speculate that the information-loss problem for black holes is not a real problem,
since only pure states appear for the full system. In fact, the mixed nature of
Hawking radiation can be understood by the process of decoherence (Kiefer 2001,
2004a). It is even possible that the Bekenstein–Hawking entropy (7.17) could be
calculated from the decohering influence of additional degrees of freedom such
as the quasi-normal modes of the black hole; cf. the remarks in the next section.

We finally mention that also loop quantum gravity was applied to spherically
symmetric systems at the kinematical level (Bojowald 2004). One advantage
compared to the full theory is that the flux variables commute with each other;
thus there exists a flux representation. It turns out that loop quantizing the
reduced model and reducing the states of the full theory to spherical symmetry
lead to the same result. It seems that singularities are avoided (Modesto 2004).
This also follows if one uses geometrodynamical variables while using methods
from loop quantum gravity (Husain and Winkler 2005).

7.3 Black-hole spectroscopy and entropy

The results of the last subsection indicate that black holes are truly quantum
objects. In fact, as especially Bekenstein (1999) has emphasized, they might play
the same role for the development for quantum gravity that atoms had played
for quantum mechanics. In the light of this possible analogy, one may wonder
whether black holes possess a discrete spectrum of states similar to atoms. Ar-
guments in favour of this idea were given in Bekenstein (1974, 1999); cf. also
Mukhanov (1986). Bekenstein (1974) noticed that the horizon area of a (non-
extremal) black hole can be treated in the classical theory as a mechanical adia-
batic invariant. This is borne out from gedanken experiments in which one shoots
into the hole charged particles (in the Reissner–Nordström case) or scalar waves
(in the Kerr case) with appropriate energies. From experience with quantum
mechanics, one would expect that the corresponding quantum entity possesses a
discrete spectrum. The simplest possibility is certainly to have constant spacing
between the eigenvalues, that is, An ∝ n for n ∈ N. (In the Schwarzschild case,
this would entail for the mass values Mn ∝ √

n.) This can be tentatively con-
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cluded, for example, from the ‘Euclidean’ wave function (7.56): if one imposed
an ad hoc Bohr–Sommerfeld quantization rule, one would find, recalling (7.48),

2πn� =
∮

παEdαE =
∫ 2π

0

AdαE

8πG
=

A

4G
. (7.57)

(Recall from above that αE ranges from 0 to 2π.) A similar result follows if
the range of the time parameter τ in the Lorentzian version is assumed to be
compact, similar to momentum quantization on finite spaces (Kastrup 1996).

A different argument to fix the factor in the area spectrum goes as follows
(Mukhanov 1986; Bekenstein and Mukhanov 1995). One assumes the quantiza-
tion condition

An = αl2Pn , n ∈ N , (7.58)

with some undetermined constant α. The energy level n will be degenerate with
multiplicity g(n), so one would expect the identification

S ≡ A

4l2P
+ constant = ln g(n) . (7.59)

Demanding g(1) = 1 (i.e. assuming that the entropy of the ground state van-
ishes), this leads with (7.58) to

g(n) = eα(n−1)/4 .

Since this must be an integer, one has the options

α = 4 ln k , k = 2, 3, . . . (7.60)

and thus g(n) = kn−1. Note that the spectrum would then slightly differ from
(7.57). From information-theoretic reasons (‘it from bit’; cf. e.g. Wheeler (1990))
one would prefer the value k = 2, leading to An = (4 ln 2)l2Pn.

In the Schwarzschild case, the energy spacing between consecutive levels is
obtained from

∆A = 32πG2M∆M = (4 ln k)l2P
to read

∆M = ∆E ≡ �ω̃k =
� lnk

8πGM
, (7.61)

with the fundamental frequency

ω̃k =
ln k

8πGM
= (ln k)

TBH

�
. (7.62)

The black-hole emission spectrum would then be concentrated at multiples of
this fundamental frequency—unlike the continuous thermal spectrum of Hawk-
ing radiation. In fact, one would have a deviation from the Hawking spectrum
even for large black holes, that is, black holes with masses M � mP. Another
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consequence would be that quanta with ω < ω̃k could not be absorbed by the
black hole. Note that ω̃k is of the same order as the frequency corresponding to
the maximum of the Planck spectrum.

A discrete spectrum for the black-hole horizon is found in the context of loop
quantum gravity (Chapter 6). This is, of course, a consequence of the area quan-
tization discussed in Section 6.2. However, this spectrum is not equidistant, and
thus may not be in conflict with the Hawking radiation. Consider the intersec-
tion of a spin network with the surface of a black hole. In the case of ‘punctures’
only (cf. (6.34)) the state is characterized by a set of spins {ji}. The dimension
of the corresponding boundary (horizon) Hilbert space is thus

n∏
i=1

(2ji + 1) .

The spectrum is in this case given by (6.34). Denoting the minimal spin by jmin,
the corresponding area value is

A0 ≡ 8πβl2P
√

jmin(jmin + 1) . (7.63)

It has been suggested that the dominating contribution to the entropy comes
from the jmin-contributions (but see below). Following Dreyer (2003), we consider
the number of links with spin jmin,

N =
A

A0
=

A

8πβl2P
√

jmin(jmin + 1)
.

The number of microstates is then

Nms = (2jmin + 1)N .

This is only equal to the desired result from the Bekenstein–Hawking entropy,
that is, equal to exp(A/4l2P), if the Barbero–Immirzi parameter has the special
value

β =
ln(2jmin + 1)

2π
√

jmin(jmin + 1)
. (7.64)

What is the value of jmin? If the underlying group is SU(2), as is usually assumed
to be the case, one has jmin = 1/2 and thus β = ln 2/π

√
3. This result has also

been found in a calculation by Ashtekar et al. (1998) where it has been assumed
that the degrees of freedom are given by a Chern–Simons theory on the horizon.5

5An important concept in this context is played by the ‘isolated horizon’ of a black hole;
cf. Ashtekar et al. (2000). An isolated horizon is a generalization of an event horizon to non-
stationary black holes. It is a local concept and does not need to admit a Killing field.
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Taking instead SO(3) as the underlying group, one has jmin = 1 and thus
β = ln 3/π

√
2. If a link with spin jmin is absorbed or created at the black-hole

horizon, the area changes by

∆A = A0 = 8πβl2P
√

jmin(jmin + 1) , (7.65)

which is equal to 4(ln 2)l2P in the SU(2)-case and to 4(ln 3)l2P in the SO(3)-case. In
the SU(2)-case, the result for ∆A corresponds to the one advocated by Bekenstein
and Mukhanov (1995), although the spectrum here is not equidistant (which is
why here there is no conflict with the spectrum of the Hawking radiation for
large mass).

The situation is, however, not so simple. As was demonstrated by Domagala
and Lewandowski (2004), spins bigger than the minimal spin are not negligi-
ble and therefore have to be taken into account when calculating the entropy.
Therefore the entropy has been underestimated in the earlier papers leading to
the result (7.64). If one again demands that the result be in the highest order
equal to the Bekenstein–Hawking entropy, the equation which fixes the Barbero–
Immirzi parameter reads

2
∞∑

n=1

exp

(
−2πβ

√
n(n + 2)

4

)
= 1 ,

which can only be solved numerically, with the result (Meissner 2004),

β = 0.23753295796592 . . . .

Taking also into account the next order in the calculation, one arrives at the
following value for the entropy:

S =
A

4l2P
− 1

2
ln

(
A

l2P

)
+ O(1) . (7.66)

The logarithmic correction term is in fact independent of β. Correction terms of
this form (mostly with coefficients −1/2 or −3/2) have also been found in other
approaches; see Page (2005) for a review.

If one nevertheless took the value k = 3 in (7.61), one would find a change
in the mass given by

∆M =
ln 3 m2

P

8πM
, (7.67)

corresponding to the fundamental frequency

ω̃3 =
ln 3

8πGM
≡ ln 3 TBH

�
≈ 8.85

M�
M

kHz . (7.68)

It was emphasized by Dreyer (2003) that ω̃3 coincides with the real part of
the asymptotic frequency for the quasi-normal modes of the black hole. These
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modes are characteristic oscillations of the black hole before it settles to its
stationary state; see for example, Kokkotas and Schmidt (1999) for a review. As
was conjectured by Hod (1998) on the basis of numerical evidence and shown by
Motl (2003), the frequency of the quasi-normal modes is for n → ∞ given by

ωn = − i(n + 1
2 )

4GM
+

ln 3
8πGM

+ O
(
n−1/2

)
= −iκ

(
n +

1
2

)
+

κ

2π
ln 3 + O

(
n−1/2

)
; (7.69)

see also Neitzke (2003). The imaginary part indicates that one is dealing with
damped oscillations. It might be that the black-hole entropy arises from the
quantum entanglement between the black hole and the quasi-normal modes
(Kiefer 2004a). The quasi-normal modes would then serve as an environment
leading to decoherence (Section 10.1). This, however, would still have to be
shown. Interestingly, at least for the Schwarzschild black hole, a quantum mea-
surement of the quasi-normal modes would introduce a minimal noise tempera-
ture that is exactly equal to the Hawking temperature (Kiefer 2004b). If one had
performed this analysis before the advent of Hawking’s work, one would have
concluded that there is a temperature associated with the real part in (7.69),
which is proportional to � and which is equal to (1.33).

The imaginary part of the frequency (7.69) in this limit is equidistant in
n. This could indicate an intricate relation with Euclidean quantum gravity and
provide an explanation of why the Euclidean version readily provides expressions
for the black-hole temperature and entropy: if one considered in the Euclidean
theory a wave function of the form

ψE ∼ einκtE ,

one would have to demand that the Euclidean time tE be periodic with period
8πGM . This, however, is just the inverse of the Hawking temperature, in accor-
dance with the result that Euclidean time must have this periodicity if the line
element is to be regular (see e.g. Hawking and Penrose 1996).

7.4 Quantum theory of collapsing dust shells

In this section, a particular model will be described in some detail, but without
too many technicalities. This concerns the collapse of a null dust shell. In the
classical theory, the collapse leads to the formation of a black hole. We shall see
that it is possible to construct an exact quantum theory of this model in which
the dynamical evolution is unitary with respect to asymptotic observers (since
one has an asymptotically flat space, a semiclassical time exists, which is just the
Killing time at asymptotic infinity). As a consequence of the unitary evolution,
the classical singularity is fully avoided in the quantum theory: if the collapsing
shell is described by a wave packet, the evolution leads to a superposition of
black-hole and white-hole horizon yielding a vanishing wave function for zero
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radial coordinate. At late times only an expanding wave packet (expanding shell)
is present. A detailed exposition of this model can be found in Háj́ıček (2003).

7.4.1 Covariant gauge fixing

A problem of principle that arises is the need to represent the expanding and
collapsing shell on the same background manifold. What does this mean? Follow-
ing section 2 of Háj́ıček and Kiefer (2001a), let (M, g) be a globally hyperbolic
space–time,

M = Σ × R .

The manifold M is called ‘background manifold’ and is uniquely determined
for a given three-manifold Σ (the ‘initial-data manifold’). The four-dimensional
diffeomorphism group Diff M is often considered as the ‘gauge group’ of GR; it
pushes the points of M around, so points are not a gauge-invariant concept. In
fact, usually only a subgroup of Diff M plays the role of a gauge group (describ-
ing ‘redundancies’ in the language of Section 4.2.5). Everything else describes
physically relevant symmetries, for example, asymptotic rotations in an asymp-
totically flat space.

The group Diff M acts on RiemM, the space of all Lorentzian metrics on
M. A particular representative metric for each geometry on M (in some open
set) is chosen by ‘covariant gauge fixing’, that is, the choice of a section σ,

σ : RiemM/DiffM �→ RiemM .

Thereby points are defined by coordinates on a fixed manifold. A transformation
between two covariant gauge fixings σ and σ′ is not a single diffeomorphism,
but forms a much larger group (Bergmann and Komar 1972); it corresponds to
one coordinate transformation for each solution of the field equations, which is
different from a single coordinate transformation on the background manifold.
Háj́ıček and Kijowski (2000) have shown that, given a section σ, one can construct
a map from RiemM/DiffM× Emb(Σ,M), where Emb(Σ,M) is the space of
embeddings of the initial data surface Σ into M, to the ADM phase space Γ
of GR. (This works only if the evolved space–times do not admit an isometry.)
It was shown that this map is invertible and extensible to neighbourhoods of
Γ and RiemM/DiffM× Emb(Σ,M). In this way, a transformation from ADM
variables to embedding variables (see Section 5.2.1) has been performed. The use
of embedding variables is called ‘Kuchař decomposition’ by Háj́ıček and Kijowski
(2000).

The Schwarzschild case may serve as a simple illustration. The transformation
between Kruskal coordinates and Eddington–Finkelstein coordinates is not a co-
ordinate transformation on a background manifold because this transformation
is solution dependent (it depends on the mass M of the chosen Schwarzschild
solution). It thus represents a set of coordinate transformations, one for each
M , and is thus a transformation between different gauge fixings σ and σ′. A
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background manifold is obtained if one identifies all points with the same val-
ues of the Kruskal coordinates, and another background manifold results if one
identifies all points with the same Eddington–Finkelstein coordinates.

7.4.2 Embedding variables for the classical theory
Here we consider the dynamics of a (spherically symmetric) null dust shell in GR.
In this subsection, we shall first identify appropriate coordinates on a background
manifold and then perform the explicit transformation to embedding variables.
This will then serve as the natural starting point for the quantization in the next
subsection.

Any classical solution describing this system has a simple structure: inside
the shell the space–time is flat, whereas outside it is isometric to a part of the
Schwarzschild metric with mass M . Both geometries must match along a spher-
ically symmetric null hypersurface describing the shell. All physically distinct
solutions can be labelled by three parameters: η ∈ {−1, +1}, distinguishing be-
tween the outgoing (η = +1) and ingoing (η = −1) null surfaces; the asymptotic
time of the surface, that is, the retarded time u = T −R ∈ (−∞,∞) for η = +1,
and the advanced time v = T + R ∈ (−∞,∞) for η = −1; and the mass
M ∈ (0,∞). An ingoing shell creates a black-hole (event) horizon at R = 2M
and ends up in the singularity at R = 0. The outgoing shell starts from the sin-
gularity at R = 0 and emerges from a white-hole (particle) horizon at R = 2M .
We shall follow Háj́ıček and Kiefer (2001a,b); see also Háj́ıček (2003).

The Eddington–Finkelstein coordinates do not define a covariant gauge fixing,
since it turns out that there are identifications of points in various solutions
which do not keep fixed an asymptotic family of observers. Instead, double-null
coordinates U and V are chosen on the background manifold M = R+×R (being
effectively two-dimensional due to spherical symmetry). In these coordinates
(which will play the role of the embedding variables), the metric has the form

ds2 = −A(U, V )dUdV + R2(U, V )(dθ2 + sin2 θdφ2) . (7.70)

From the demand that the metric be regular at the centre and continuous at the
shell, the coefficients A and R are uniquely defined for any physical situation
defined by the variables M (the energy of the shell), η, and w (the location of
the shell, where w = u for the outgoing and w = v for the ingoing case).

Consider first the case η = 1. In the Minkowski part, U > u of the solution,
one finds

A = 1 , R =
V − U

2
. (7.71)

In the Schwarzschild part, U < u, one finds

R = 2Mκ

((
V − u

4M
− 1

)
exp

(
V − U

4M

))
≡ 2Mκ(f+) , (7.72)

where κ is the ‘Kruskal function’ (not to be confused with the surface gravity κ)
defined by its inverse as
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Fig. 7.3. Penrose diagram for the outgoing shell in the classical theory. The
shell is at U = u.

κ−1(y) = (y − 1)ey , (7.73)

and

A =
1

κ(f+)eκ(f+)

V − u

4M
exp

(
V − U

4M

)
. (7.74)

With these expressions one can verify that A and R are continuous at the shell,
as required. We note that these expressions contain u as well as M , which will
become conjugate variables in the canonical formalism.

The Penrose diagram for the outgoing shell is shown in Fig. 7.3. It is impor-
tant to note that the background manifold possesses a unique asymptotic region
with J− defined by U → −∞ and J+ by V → +∞.

In the case of ingoing shells (η = −1), one finds for V < v again (7.71) and
for V > v,

R = 2Mκ(f−), A =
1

κ(f−)eκ(f−)

v − U

4M
exp

(
V − U

4M

)
, (7.75)

where

f− ≡
(

v − U

4M
− 1

)
exp

(
V − U

4M

)
.

These expressions result from (7.74) by the substitution V − u → v − U .
As the result of the gauge fixing, the set of solutions (η, M, w) can be written

as a set of (η, M, w)-dependent metric fields (7.70) and a set of shell trajectories
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on a fixed background manifold M. Here, the corresponding functions A and R
have the form

A(η, M, w; U, V ) , R(η, M, w; U, V ) , (7.76)
and the trajectory of the shell on the background manifold is simply U = u for
η = +1 and V = v for η = −1.

The next step is the explicit transformation to embedding variables (the
Kuchař decomposition). The standard (ADM) formulation of the shell was stud-
ied in Louko et al. (1998); see also Kraus and Wilczek (1995). The spherically
symmetric metric is written in the form

ds2 = −N2dτ2 + L2(dρ + Nρdτ)2 + R2dΩ2 , (7.77)

and the shell is described by its radial coordinate ρ = r. The action reads

S0 =
∫

dτ

[
pṙ +

∫
dρ(PLL̇ + PRṘ − H0)

]
, (7.78)

and the Hamiltonian is

H0 = NH⊥ + NρHρ + N∞E∞ ,

where N∞ := limρ→∞ N(ρ), E∞ is the ADM mass, and N and Nρ are the lapse
and shift functions. The constraints read

H⊥ =
LP 2

L

2R2 − PLPR

R
+

RR′′

L
− RR′L′

L2 +
R′2

2L
− L

2
+

ηp
L

δ(ρ − r) ≈ 0 (7.79)

Hρ = PRR′ − P ′
LL − pδ(ρ − r) ≈ 0 , (7.80)

where the prime (dot) denotes the derivative with respect to ρ (τ). These are
the same constraints as in (7.22) and (7.24), except for the contribution of the
shell.

The task is to transform the variables in the action S0. This transformation
will be split into two steps. The first step is a transformation of the canonical
coordinates r, p, L, PL, R, and PR at the constraint surface Γ defined by the
constraints (7.79) and (7.80). The new coordinates are u and pu = −M for
η = +1, v and pv = −M for η = −1, and the embedding variables U(ρ) and
V (ρ).

The second step is an extension of the functions u, v, pu, pv, U(ρ), PU (ρ),
V (ρ), and PV (ρ) out of the constraint surface, where the functions u, v, pu,
pv, U(ρ), and V (ρ) are defined by the above transformation, and PU (ρ), PV (ρ)
by PU (ρ)|Γ = PV (ρ)|Γ = 0. The extension must satisfy the condition that the
functions form a canonical chart in a neighbourhood of Γ. That such an extension
exists was shown in Háj́ıček and Kijowski (2000). The details of the calculation
can be found in Háj́ıček and Kiefer (2001a). The result is the action

S =
∫

dτ (puu̇ + pvv̇ − npupv) +
∫

dτ

∫ ∞

0
dρ(PU U̇ + PV V̇ − H) , (7.81)

where H = NUPU +NV PV , and n, NU (ρ), and NV (ρ) are Lagrange multipliers.
The first term in (7.81) contains the physical variables (observables), while the



226 QUANTIZATION OF BLACK HOLES

second term contains the gauge variables. Both classical solutions are contained
in the single constraint

pupv = 0 , (7.82)

that is, one has pv = 0 for η = 1 and pu = 0 for η = −1. Observe that the
Poisson algebra of the chosen set of observables pu and u for η = +1 as well
as pv and v for η = −1 is gauge-invariant in spite of the fact that it has been
obtained by a calculation based on a gauge choice (the double-null coordinates
U and V ). Therefore, the quantum theory will also be gauge-invariant. A crucial
point is that the new phase space has non-trivial boundaries,

pu ≤ 0 , pv ≤ 0 ,
−u + v

2
> 0 . (7.83)

The boundary defined by the last inequality is due to the classical singularity.
The system has now been brought into a form that can be taken as the starting
point for quantization.

7.4.3 Quantization

The task is to quantize the physical degrees of freedom defined by the action

Sphys =
∫

dτ (puu̇ + pv v̇ − npupv) ; (7.84)

cf. (7.81). The appropriate method is group quantization; see e.g. Isham (1984).
This method is suited in particular to implement conditions such as (7.83). It
is based on the choice of a set of Dirac observables forming a Lie algebra. This
algebra generates a group of transformations respecting all boundaries which in-
sures that information about such boundaries are implemented in the quantum
theory. The method automatically leads to self-adjoint operators for the observ-
ables. One obtains in particular a self-adjoint Hamiltonian and, consequently, a
unitary dynamics.

The application of this method to the null-dust shell was presented in detail
in Háj́ıček (2001, 2003). A complete system of Dirac observables is given by pu,
pv, as well as Du ≡ upu and Dv ≡ vpv. Thus, they commute with the constraint
pupv. The only non-vanishing Poisson brackets are

{Du, pu} = pu , {Dv, pv} = pv . (7.85)

The Hilbert space is constructed from complex functions ψu(p) and ψv(p), where
p ∈ [0,∞). The scalar product is defined by

(ψu, φu) :=
∫ ∞

0

dp

p
ψ∗

u(p)φu(p) (7.86)

(similarly for ψv(p)). To handle the inequalities (7.83), it is useful to perform the
following canonical transformation,
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t = (u + v)/2, r = (−u + v)/2, (7.87)
pt = pu + pv, pr = −pu + pv . (7.88)

The constraint function then assumes the form pupv = (p2
t − p2

r)/4. Upon quan-
tization, one obtains the operator −p̂t which is self-adjoint and has a positive
spectrum, −p̂tϕ(p) = pϕ(p), p ≥ 0. It is the generator of time evolution and
corresponds to the energy operator E ≡ M . Since r is not a Dirac observable, it
cannot directly be transformed into a quantum observable. It turns out that the
following construction is useful,

r̂2 := −√
p

d2

dp2

1
√

p
. (7.89)

This is essentially a Laplacian and corresponds to a concrete choice of factor
ordering. It is a symmetric operator which can be extended to a self-adjoint
operator. In this process, one is naturally led to the following eigenfunctions of
r̂2:

ψ(r, p) :=

√
2p

π
sin rp , r ≥ 0 . (7.90)

One can also construct an operator η̂ that classically would correspond to the
direction of motion of the shell.

The formalism has now reached a stage in which one can start to study
concrete physical applications. Of particular interest is the representation of the
shell by a narrow wave packet. One takes at t = 0 the following family of wave
packets:

ψκλ(p) ≡ (2λ)κ+1/2√
(2κ)!

pκ+1/2e−λp , (7.91)

where κ is a positive integer, and λ is a positive number with dimension of length.
By an appropriate choice of these constants, one can prescribe the expectation
value of the energy and its variation. A sufficiently narrow wave packet can thus
be constructed.

One can show that the wave packets are normalized and that they obey
ψκλ(p) = ψκ1(λp) (‘scale invariance’). The expectation value of the energy is
calculated as

〈E〉κλ ≡
∫ ∞

0

dp

p
pψ2

κλ(p) , (7.92)

with the result

〈E〉κλ =
κ + 1/2

λ
. (7.93)

In a similar way, one finds for the variation

∆Eκλ =
√

2κ + 1
2λ

. (7.94)

Since the time evolution of the packet is generated by −p̂t, one has
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ψκλ(t, p) = ψκλ(p)e−ipt . (7.95)

More interesting is the evolution of the wave packet in the r-representation.
This is obtained by the integral transform (7.86) of ψκλ(t, p) with respect to the
eigenfunctions (7.90). It leads to the exact result

Ψκλ(t, r) =
1√
2π

κ!(2λ)κ+1/2√
(2κ)!

[
i

(λ + it + ir)κ+1 − i
(λ + it − ir)κ+1

]
. (7.96)

One interesting consequence can be immediately drawn:

lim
r→0

Ψκλ(t, r) = 0 . (7.97)

This means that the probability of finding the shell at vanishing radius is zero!
In this sense, the singularity is avoided in the quantum theory. It must be em-
phasized that this is not a consequence of a certain boundary condition—it is
a consequence of the unitary evolution. If the wave function vanishes at r = 0
for t → −∞ (asymptotic condition of ingoing shell), it will continue to vanish at
r = 0 for all times. It follows from (7.96) that the quantum shell bounces and
re-expands. Hence, no absolute event horizon can form, in contrast to the clas-
sical theory. The resulting object might still be indistinguishable from a black
hole due to the huge time delay from the gravitational redshift—the re-expansion
would be visible from afar only in the far future. Similar features follow from
a model by Frolov and Vilkovisky (1981) who consider a null shell for the case
where ‘loop effects’ in the form of Weyl curvature terms are taken into account.

Of interest also is the expectation value of the shell radius; see Háj́ıček (2001,
2003) for details. Again one recognizes that the quantum shell always bounces
and re-expands. An intriguing feature is that an essential part of the wave packet
can even be squeezed below the expectation value of its Schwarzschild radius.
The latter is found from (7.92) to read (re-inserting G),

〈R0〉κλ ≡ 2G〈E〉κλ = (2κ + 1)
l2P
λ

, (7.98)

while its variation follows from (7.94),

∆(R0)κλ = 2G∆Eκλ =
√

2κ + 1
l2P
λ

. (7.99)

The main part of the wave packet is squeezed below the Schwarzschild radius if

〈r〉κλ + (∆r)κλ < 〈R0〉κλ − ∆(R0)κλ .

It turns out that this can be achieved if either λ ≈ lP (and κ > 2) or, for bigger
λ, if κ is larger by a factor of (λ/lP)4/3. The wave packet can thus be squeezed
below its Schwarzschild radius if its energy is bigger than the Planck energy—a
genuine quantum effect.
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How can this behaviour be understood? The unitary dynamics ensures that
the ingoing quantum shell develops into a superposition of ingoing and outgo-
ing shell if the region where in the classical theory a singularity would form is
reached. In other words, the singularity is avoided by destructive interference
in the quantum theory. This is similar to the quantum-cosmological example
of Kiefer and Zeh (1995), where a superposition of a black hole with a white
hole leads to a singularity-free quantum universe; cf. Section 10.2. Also here,
the horizon becomes a superposition of ‘black hole’ and ‘white hole’—its ‘grey’
nature can be characterized by the expectation value of the operator η̂ (a black-
hole horizon would correspond to the value −1 and a white-hole horizon to the
value +1). In this scenario, no information-loss paradox would ever arise if such
a behaviour occurred for all collapsing matter (which sounds reasonable). In the
same way, the principle of cosmic censorship would be implemented, since no
naked singularities (in fact, no singularities at all) would form.

7.5 The Lemâıtre–Tolman–Bondi model

In the last section we studied the dynamics of a collapsing (null) dust shell. The
next level of complexity is to consider a whole (time-like) dust cloud, while keep-
ing spherical symmetry. This is what we shall discuss in this section. The model
goes back to Lemâıtre (1933), who used it to study cosmology, and was later elab-
orated on by Richard Tolman, Hermann Bondi, and others; see Krasiński (1997)
for details and references. For this reason we shall call it the Lemâıtre–Tolman–
Bondi (LTB) model. Its canonical formulation and quantization in the spirit of
Section 7.2 was performed in Vaz et al. (2001) for a special case (the ‘marginal
case’) and in Kiefer et al. (2006a) for the generic (including the ‘non-marginal’)
case. In the following we shall mainly follow the second paper.

7.5.1 The classical LTB model

The LTB model describes a self-gravitating dust cloud. Its energy–momentum
tensor reads Tµν = ε(τ, ρ)uµuν, where uµ = uµ(τ, ρ) is the four-velocity vector
of a dust particle with proper time τ and labeled by ρ (ρ thus labels the various
shells that together form the dust cloud). The line element for the LTB spacetime
is given by

ds2 = −dτ2 +
(∂ρR)2

1 + 2E(ρ)
dρ2 + R2(ρ)(dθ2 + sin2 θdφ2) . (7.100)

Inserting this expression into the Einstein equations leads to

ε(τ, ρ) =
∂ρF

R2∂ρR
and (∂τR)2 =

GF

R
+ 2E , (7.101)

where F (ρ) is some non-negative function. The case of collapse is described by
∂τR(τ, ρ) < 0.
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There still exists the freedom to rescale the shell index ρ. This can be fixed
by demanding

R(0, ρ) = ρ , (7.102)

so that for τ = 0 the label coordinate ρ is equal to the curvature radius R. Now
we can express the functions F (ρ) and E(ρ) in terms of the energy density ε at
τ = 0. From (7.101) one gets

F (ρ) =
∫ ρ

0
ε(0, ρ̃) ρ̃2 dρ̃ , (7.103)

E(ρ) = [∂τR(τ = 0, ρ)]2 − 1
ρ

∫ ρ

0
ε(0, ρ̃)ρ̃2 dρ̃ . (7.104)

The interpretation of these quantities is that F (ρ)/2 is the active gravitating
mass inside of R(τ, ρ), while E(ρ) is the total energy of the shell labeled by ρ.
The marginally bound models are defined by E(ρ) = 0. Here we consider the
general case, which includes the non-marginal case defined by E(ρ) 
= 0.

The equations (7.101) can be solved exactly; see Kiefer et al. (2006a) for
the exact expressions. The solutions show that at the dust proper time τ =
τ0(ρ) the shell labeled by ρ has reached a curvature radius R = 0, that is,
the physical singularity—the model thus exhibits a non-simultaneous big-bang
(or big-crunch) surface. The parameter τ can only take values between −∞ and
τ0(ρ). Apart from the freedom in the radial coordinate, the three functions F (ρ),
E(ρ), and τ0(ρ) determine the model completely.

As in Sections 7.2 and 7.4, we start with the general ansatz (7.20) for a
spherically symmetric line element. The gravitational part of the action reads

Sg =
∫

dt

∫ ∞

0
dr

(
PLL̇ + PRṘ − NHg − N rHg

r

)
+ S∂Σ , (7.105)

where the Hamiltonian and the diffeomorphism (momentum) constraint are given
by (7.22) and (7.24), respectively, and the boundary action S∂Σ is discussed
below.

The total action is the sum of (7.105) and an action Sd describing the dust.
The canonical formalism for the latter can be found in Brown and Kuchař (1995).
It reads

Sd =
∫

dt

∫ ∞

0
dr

(
Pτ τ̇ − NHd − N rHd

r

)
, (7.106)

where the contributions to the Hamiltonian and momentum constraints are

Hd = Pτ

√
1 +

τ ′2

L2 and Hd
r = τ ′Pτ . (7.107)

In order to derive the falloff conditions analogously to the vacuum case discussed
in Section 7.2, one formulates F (ρ), introduced in (7.103), as a function of the
canonical variables. The result is
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F = R

[
1 + G2 P 2

L

R2 − R′2

L2

]
. (7.108)

As in the Schwarzschild case, one can perform a canonical transformation to
elevate the mass function F to a canonical coordinate. The canonical transfor-
mation reads

(L, PL; R, PR; τ, Pτ ) −→ (F, PF ; R, P̄R; τ, Pτ ) , (7.109)

where
P̄R = PR − LPL

2R
− LPL

2RF − ∆
RL2F , (7.110)

with
∆ = (RR′)(LPL)′ − (RR′)′(LPL) , (7.111)

and F ≡ 1 − F/R. The action in the new canonical variables then reads

SEH =
∫

dt

∫ ∞

0
dr

(
Pτ τ̇ + P̄RṘ + PF Ḟ − NH− N rHr

)
+ S∂Σ , (7.112)

where the new constraints are

H = − 1
2L

(
F ′R′

GF + 4GFPF P̄R

)
+ Pτ

√
1 +

τ ′

L2 , (7.113)

Hr = τ ′Pτ + R′P̄R + F ′PF . (7.114)

What about the boundary action S∂Σ? As was shown in detail in Kiefer et al.
(2006a), it can be absorbed in the course of a canonical transformation that
employs the mass density Γ ≡ F ′ as a new canonical variable. One then arrives
at a new action

S =
∫

dt

∫ ∞

0
dr

(
Pτ τ̇ + P̄RṘ + PΓΓ̇ − NH− N rHr

)
, (7.115)

where the constraints in the new variables read

H = − 1
2L

(
ΓR′

GF − 4GFP ′
ΓP̄R

)
+ Pτ

√
1 +

τ ′

L2 , (7.116)

Hr = τ ′Pτ + R′P̄R − ΓP ′
Γ . (7.117)

The Hamiltonian constraint can be greatly simplified if the momentum constraint
is used to eliminate PF . The constraints (7.116) and (7.117) can then be replaced
by the following equivalent set:

H = G
(
Pτ

2 + F P̄ 2
R

)
− Γ2

4GF ≈ 0 , (7.118)

Hr = τ ′Pτ + R′P̄R − ΓPΓ
′ ≈ 0 . (7.119)

These equations will be used as the starting point for the quantization discussed
below.
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We mention that also the functions τ0 and E can be expressed through the
canonical variables, in addition to the variable F which was expressed in this
manner above; see (7.108). This facilitates the interpretation of the canonical
variables.

7.5.2 Quantization
We shall now apply the Dirac quantization procedure and turn the classical con-
straints (7.118) and (7.119) into quantum operators. The translation of Poisson
brackets into commutators is achieved in the Schrödinger representation by the
formal substitution

Pτ (r) → �

i
δ

δτ(r)
, P̄R(r) → �

i
δ

δR(r)
, PΓ(r) → �

i
δ

δΓ(r)
(7.120)

and acting with them on wave functionals. The Hamiltonian constraint (7.118)
then leads to the Wheeler–DeWitt equation,[

− G�2

(
δ2

δτ(r)2
+ F δ2

δR(r)2
+ A(R, F ) δ(0)

δ

δR(r)

+ B(R, F ) δ(0)2
)

− Γ2

4GF

]
Ψ [τ(r′), R(r′), Γ(r′)] = 0 ,

(7.121)

where A and B are smooth functions of R and F that encapsulate the factor-
ordering ambiguities. We have introduced divergent quantities such as δ(0) in
order to indicate that the factor-ordering problem is unsolved at this stage and
can be dealt with only after some suitable regularization has been performed.
That is, one would like to choose the terms proportional to δ(0) in such a way
that the constraint algebra closes; cf. Section 5.3.5.

Quantizing the momentum constraint (7.119) by using (7.120) gives[
τ ′ δ

δτ(r)
+ R′ δ

δR(r)
− Γ

(
δ

δΓ(r)

)′]
Ψ [τ(r′), R(r′), Γ(r′)] = 0 . (7.122)

Up to now, the quantum constraint equations have been given only in a formal
way. We shall now attempt to define them by a lattice regularization.

We consider a one-dimensional lattice given by a discrete set of points ri

separated by a distance σ. In order that the momentum constraint is fulfilled in
the continuum limit, it is important to start with a corresponding ansatz for the
wave functional before putting it on the lattice. We therefore make the ansatz

Ψ [τ(r), R(r), Γ(r)] = U

(∫
dr Γ(r)W(τ(r), R(r), Γ(r))

)
, (7.123)

where U : R → C is at this stage some arbitrary (differentiable) function. Using
Γ in the exponent instead of R′ or τ ′ is suggested by the form of the Wheeler–
DeWitt equation (absence of derivatives with respect to Γ) and the fact that
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F ′ = Γ is related to the energy density. The ansatz has to be compatible with
the lattice, which means that it has to factorize into different functions for each
lattice point. So we have to make the choice U = exp, which gives

Ψ [τ(r), R(r), Γ(r)] (7.124)

= exp
(∫

dr Γ(r)W(τ(r), R(r), F (r))
)

(7.125)

= exp

(
lim
σ→0

∑
i

σΓiWi (τ(ri), R(ri), F (ri))

)
(7.126)

= lim
σ→0

∏
i

exp (σ Γi Wi (τ(ri), R(ri), F (ri))) (7.127)

= lim
σ→0

∏
i

Ψi (τ(ri), R(ri), Γ(ri), F (ri)) , (7.128)

where

F (ri) =
i∑

j=0

σ Γj . (7.129)

We implement the formal expression δ(0) onto the lattice as

δ(0) → lim
σ→0

1
σ

. (7.130)

The lattice version of the Wheeler–DeWitt equation (7.121) then reads[
G�2

(
∂2

∂τ2
j

+ Fj
∂2

∂R2
j

+ A(Rj , Fj)
∂

∂Rj

)
+B(R, F )+

σ2 Γ
4GFj

]
Ψj = 0 . (7.131)

We now insert ansatz (7.127) and make for convenience the redefinition W =
iW/2. This leads to

σ2Γ2
i

4

[
G�2

(
∂W (τ, R, F )

∂τ

)2

+ G�2F
(

∂W (τ, R, F )
∂R

)2

− 1
GF

]

+
σΓi

2

[
G�2

(
∂2

∂τ2 + F ∂

∂R2 + A(R, F )
∂

∂R

)
W (τ, R, F )

]
+ B(R, F ) = 0 . (7.132)

In order for this to be fulfilled independent of the choice of σ (and thus also in
the limit σ → 0) one is led to the following three equations:(

G�
∂W (τ, R, Γ)

∂τ

)2

+ F
(

G�
∂W (τ, R, Γ)

∂R

)2

− 1
F = 0 , (7.133)(

∂2

∂τ2 + F ∂2

∂R2 + A(R, Γ)
∂

∂R

)
W (τ, R, Γ) = 0 , (7.134)
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and

B(R, Γ) = 0 . (7.135)

The first equation (7.133) is the Hamilton–Jacobi equation. The second equa-
tion presents an additional restriction on solutions of (7.133). The last equation
(7.135) tells us that working on the lattice is only possible if the factor ordering
does not contribute to the potential term. If we find solutions to all three equa-
tions, we can do all other calculations on the lattice, since these solutions have
a well-defined continuum limit and satisfy the momentum constraint.

At this point we have to make a few comments on the regularization proce-
dure we are using. It was already noted that the lattice regularization does not
solve the factor-ordering problem. The lattice regularization just represents an
ad hoc regularization in which the divergent terms have to cancel each other.
Put differently, it is equivalent to a type of regularization that was employed in
DeWitt (1967a) (which means setting δ(0) = 0) with an additional constraint
on the solutions.

The signature in the kinetic part of the Hamiltonian constraint (7.118) can
change from elliptic (outside the horizon) to hyperbolic (inside the horizon).
This thus occurs for the kinetic term of the Wheeler–DeWitt equation (7.121),
too. As discussed in Brotz and Kiefer (1997), we can say that the part inside
the horizon is always classically allowed, whereas this is not necessarily the case
for the outside part. The usual initial-value problem appropriate for hyperbolic
equations can thus only be applied for the region corresponding to the black-hole
interior.

The two equations (7.133) and (7.134) have to be satisfied in order to get
a diffeomorphism-invariant solution to the Wheeler–DeWitt equation. (We now
set G = 1 = �.) Looking for particular solutions of the separating form W =
α(τ)+β(R), we recognize immediately that this system of equations is consistent
only for special factor orderings. Tackling the problem from the opposite point
of view, one can ask for which factor orderings we do get a separating solution.
We find

A(R, F ) = − F

2R2

(
1 +

1
1 − a2F

)
. (7.136)

This leads to

W (τ, Γ, R, a) = const. ± aτ ±
∫

dR

√
1 − a2F
F . (7.137)

It turns out that these functions are also solutions to the Hamilton–Jacobi equa-
tion. From there one gets the identification 2E = 1/a2 − 1. Since classically
E ≥ −1/2, it follows that a should be real. The integral appearing in (7.137)
can be evaluated exactly. One gets
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∫
dR

√
1 − a2F
F = F

[√
1 − a2F
1 −F − 2 tanh−1

√
1 − a2F

+
2 − a2
√

1 − a2
tanh−1

√
1 − a2

√
1 − a2F

]
. (7.138)

Here we have assumed that 0 < a ≤ 1 (corresponding to E ≥ 0). For a > 1 but
R < Fa2/(a2 − 1), the result can be found by analytic continuation to read

F

[√
1 − a2F
1 −F + ln

∣∣∣∣∣1 −
√

1 − a2F
1 −

√
1 − a2F

∣∣∣∣∣ +
2 − a2
√

a2 − 1
tan−1

√
a2 − 1√

1 − a2F

]
. (7.139)

Another analytic continuation gives the result in the region R > Fa2/(a2 − 1),

iF

[√
a2F − 1
1 −F − 2 tan−1

√
a2F − 1

+
(1 − a2/2)√

a2 − 1
ln

∣∣∣∣∣
√

a2F − 1 −
√

a2 − 1√
a2F − 1 +

√
a2 − 1

∣∣∣∣∣
]

. (7.140)

We recognize from (7.140) that the wave function becomes a real exponential in
the region R < Fa2/(a2 − 1). This can be interpreted by rewriting the classical
Einstein equations in the form

(∂τR)2 = 2E + 1 −F . (7.141)

Therefore, the wave function is real in the region that is classically forbidden.
Surprisingly, (7.137) in fact gives the complete class of solutions (Kiefer et

al. 2006a). There thus exist no non-separating solutions, given the ansatz made
where the full wave functional factorizes into functions on the respective lattice
points. But we emphasize that we have succeeded in finding exact solutions to
all quantum constraints. Other solutions to the full Wheeler–DeWitt equation
and momentum constraints would necessarily couple the infinitely many shells
comprising the dust cloud; to find them would demand a regularization scheme
that is much more involved. In a sense, the factor ordering chosen here leads to
quantum states for which the WKB form is ‘exact’; cf. the analogous situation
with the models discussed in Brotz and Kiefer (1997) and Louis-Martinez et al.
(1994).

The solutions (7.137) are thus all solutions that can occur on the lattice
for the factor ordering (7.136). We now want to extend these solutions to the
continuum. The solutions on the lattice contain two free parameters, ai and bi ,

Ψi = exp
(

biσΓiFi +
i
2
σΓ(aiτi +

∫
dR

√
1 − aiFi

Fi
)
)

. (7.142)

(We have for simplicity considered only one sign in the exponent.) We know that
ai is connected with the local energy E via 2Ei + 1 = 1/a2

i . In general we have
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E = E(r), and thus it would be natural to demand that a = a(r). But with this
explict dependence on r the momentum constraint would not be satisfied. The
only possible way out of this is to use an implicit dependence a(F (r)) in order
to get solutions fulfilling the momentum constraint. The expression

Ψ[τ, R, Γ] = exp
(∫

dr b(F (r))Γ
)

× exp

{
i
2

∫
dr Γ

[
a(F (r))τ +

∫
dR

√
1 − a(F (r))F

F

]}
(7.143)

is still a solution, since the Hamiltonian constraint does not contain a derivative
with respect to Γ or F . Hence we arrive at a family of solutions containing two
arbitrary functions a(x) and b(x). It is clear that a(x) is connected with E via
2E(r) + 1 = 1/a2(F (r)). One might in principle wish to construct wave packets
by superposing wave functions with different a, that is, with different energies.
However, since the factor ordering depends on E, this does not seem feasible.

What has been achieved? It was possible to solve the coupled Wheeler–
DeWitt equation and momentum constraint at least for a special factor ordering.
This is already a non-trivial issue. However, one can also see the limits. An inter-
esting application would be the fate of the classical singularities (both black-hole
and naked singularities) in the quantum theory. Such a discussion was possible
for the thin shell of Section 7.4. But in the present case one would have to go
beyond the special set of solutions (7.143), which has not yet been achieved.
Another issue is Hawking radiation. In Vaz et al. (2003) this radiation was re-
covered from WKB solutions of the marginal LTB model. A similar approach
may be applied to the solutions presented here. This shows that the discussion
of non-trivial models such as the LTB model is far from being complete.

7.6 The information-loss problem

What happens during the final evaporation phase of a black hole? This is, of
course, one of the major questions which a quantum theory of gravity should an-
swer. As long as this is not possible, various gedanken experiments and heuristic
expectations are being discussed. One is the so-called information-loss problem;
see Page (1994) and the references therein for a detailed exposition. According
to the semiclassical calculations that lead to (7.11), black-hole radiation has a
thermal spectrum. As a consequence, the black hole loses mass and shrinks. In
the case that the hole completely evaporated and left only thermal radiation
behind, any initial state for the black hole plus the quantum field would end up
with the same final state, which would be a thermal, that is, mixed, state. This
would correspond to a maximal loss of information about the initial state. In
other words: unitarity would be violated for a closed system, in contrast to stan-
dard quantum theory. Formally, trρ2 remains constant under the von Neumann
equation; the same is true for the entropy SSM = −kBtr(ρ ln ρ): for a unitarily
evolving system, there is no increase in entropy. If these laws were violated during
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black-hole evaporation, information would be destroyed. The attitudes towards
this information-loss problem can be roughly divided into the following classes:

1. The information is indeed lost during black-hole evaporation, and the
quantum-mechanical Liouville equation is replaced by an equation of the
form

ρ −→ $ρ 
= SρS† , (7.144)

where $ is Hawking’s ‘dollar matrix’ which generalizes the ordinary S-
matrix S. Hawking originally assumed that the exact evolution is non-
unitary and that information is lost (Hawking 1976), but later he changed
his mind (Hawking 2005).

2. The full evolution is in fact unitary; the black-hole radiation contains subtle
quantum correlations that cannot be seen in the semiclassical approxima-
tion.

3. The black hole does not evaporate completely, but leaves a ‘remnant’ with
mass on the order of the Planck mass, which carries the whole information.

We shall not address the last option; a concrete realization of this possibility
is the asympotic-safety approach discussed in Section 2.2.5; cf. Bonanno and
Reuter (2006).

As we have discussed at length in Chapter 5, in full quantum gravity there is
no notion of external time. However, for an isolated system such as a black hole,
one can refer to the semiclassical time of external observers far away from the
hole. The notion of unitarity then refers to this concept of time. Consequently, if
the fundamental theory of quantum gravity is unitary in this sense, there will be
no information loss. Conversely, if the fundamental theory breaks unitarity in this
sense, information loss is possible. As long as the situation with the full theory
remains open, discussions of the information loss centre around assumptions and
expectations.

For a black hole whose mass is much bigger than the Planck mass, the details
of quantum gravity should be less relevant. It is of importance to emphasize
that a (large) black hole is a macroscopic object. It is therefore strongly entan-
gled with the quantum degrees of freedom with which it interacts. Information
thereby becomes essentially non-local. Because of this entanglement the black
hole assumes classical properties analogously to other macroscopic objects. This
emergence of classical properties through interaction with other degrees of free-
dom is called decoherence; cf. Section 10.1. A particular consequence is that
the black hole itself cannot evolve unitarily, only the total system consisting of
black hole plus interacting fields (Zeh 2005). As was shown in Demers and Kiefer
(1996), the interaction of the black hole with its Hawking radiation is sufficient
to provide the black hole with classical behaviour; strictly speaking, the very no-
tion of a black hole emerges through decoherence. The cases of a superposition
of a black-hole state with its time-reversed version (a ‘white hole’) and with a
no-hole state were also considered and shown to decohere by Hawking radiation.
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This does not hold for virtual black holes, which are time symmetric and do not
exhibit classical behaviour.

In the original derivation of Hawking radiation, one starts with a quantum
field that is in its vacuum state; cf. Hawking (1975) and Section 7.1.2. The ther-
mal appearance of the resulting Hawking radiation is then recognized from the
Planckian form of the expectation value of the particle-number operator at late
times. If the state of the quantum field (which is a two-mode squeezed state) is
evaluated on a spatial hypersurface that enters the horizon, tracing out the de-
grees of freedom of the hole interior yields a thermal density matrix with temper-
ature (7.11) in the outside region; cf. Section 7.1.2. One is not, however, obliged
to take a hypersurface that enters the horizon. One can consider a hypersurface
that is locked at the bifurcation point (where the surface of the collapsing star
crosses the horizon). Then, apart from its entanglement with the black hole it-
self, the field state remains pure. The observations far away from the hole should,
however, not depend on the choice of the hypersurface (Zeh 2005). This is, in
fact, what results (Kiefer 2001b, 2004a): the entanglement of the squeezed state
representing the Hawking radiation with other (irrelevant) degrees of freedom
leads to the thermal appearance of the field state. It therefore seems that there is
no information-loss problem at the semiclassical level and that one can assume,
at the present level of understanding, that the full evolution is unitary and that
‘information loss’ can be understood in terms of the standard delocalization of
information due to decoherence. There are indications that a similar scenario
can emerge from the string-theory approach discussed in Chapter 9.

7.7 Primordial black holes

A major test of many of the issues discussed in this chapter would of course be
an experimental test of the Hawking effect. As is clear from (1.33), the Hawking
temperature is large enough only for small black-hole masses—much smaller
than the masses of black holes that result by stellar collapse. To form such black
holes one needs densities that can only occur under the extreme conditions of
the early universe. These objects are therefore called primordial black holes.6

They can originate in the radiation-dominated phase, during which no stars or
other objects can be formed. We shall here give a brief summary of this topic
(Kiefer 2003a). For more details see Carr (2003) and the references therein.

In order to study their formation, consider for simplicity a spherically sym-
metric region with radius R and density ρ = ρc + δρ embedded in a flat universe
with critical density ρc. For spherical symmetry the inner region is not affected
by matter in the surrounding part of the universe, so it will behave like a closed
Friedmann universe (since its density is overcritical), that is, the expansion of
this region will come to a halt at some stage, followed by a collapse. In order to
reach a complete collapse, the (absolute value of the) potential energy, V , at the

6We do not consider here the possibility of generating small black holes in future accelera-
tors, which is imaginable in various scenarios motivated by string theory; cf. Section 9.2.
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time of maximal expansion has to exceed the intrinsic energy, U , given by the
pressure p, that is,

V ∼ GM2

R
∼ Gρ2R5 � U ∼ pR3 . (7.145)

If the equation of state reads p = wρ (w = 1/3 for radiation dominance), this
gives

R �
√

w
1√
Gρ

. (7.146)

The lower bound for R is thus just given by the Jeans length. There exists
also an upper bound. The reason is that R must be smaller than the curvature
radius (given by 1/

√
Gρ) of the overdense region at the moment of collapse.

Otherwise the region would contain a compact three-sphere which is topologically
disconnected from the rest of the universe. This case would then not lead to
a black hole within our universe. Using ρ ∼ ρc ∼ H2/G, where H denotes
the Hubble parameter of the background flat universe, one therefore has the
condition

H−1 � R �
√

wH−1 , (7.147)

evaluated at the time of collapse, for the formation of a black hole. This relation
can be rewritten also as a condition referring to any initial time of interest. In
particular, one is often interested in the time where the fluctuation enters the
Hubble scale (also called Hubble horizon) in the radiation-dominated universe.
This is illustrated in Fig. 7.4, where the presence of a possible inflationary phase
at earlier times is also shown.

At horizon entry one gets, denoting δ ≡ δρ/ρc,

1 � δenter � 0.3 . (7.148)

This is, however, only a rough estimate. Numerical calculations give instead the
bigger value of δmin ≈ 0.7 (Niemeyer and Jedamzik 1999).

Taking from (7.147) R ≈ √
wH−1, one gets for the initial mass of a primordial

black hole (PBH)

MPBH =
4π

3
ρR3 ≈ 4π

3
ρc(1 + δ)w3/2H−3 ≈ w3/2MH , (7.149)

where MH ≡ (4π/3)ρcH
−3 denotes the mass inside the horizon. Since MPBH is

of the order of this horizon mass, a collapsing region will form a black hole prac-
tically immediately after horizon entry. Using the relation MH = t/G, valid for
a radiation-dominated universe, one gets from (7.149) the quantitative estimate

MPBH [g] ≈ 1038 t [s] . (7.150)

This means that one can create Planck-mass black holes at the Planck time, and
PBHs with MPBH ≈ 5× 1014 g at t ≈ 5× 10−24 s. The latter value is important
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Fig. 7.4. Time development of a physical scale λ(t) ≡ a(t)/k, where a(t) is the
scale factor of a Friedmann universe, and the Hubble scale H−1(t). During
an inflationary phase, H−1(t) remains approximately constant. After the end
of inflation (af) the Hubble scale H−1(t) increases faster than any scale.
Therefore the scale described by λk, which has left the Hubble scale at time
tk,exit, enters the Hubble scale again at tk,enter in the radiation- (or matter-)
dominated phase.

since, according to (7.14), black holes with masses smaller than MPBH ≈ 5×1014g
have by now evaporated due to Hawking radiation. PBHs with bigger mass are
still present today. At t ≈ 10−5 s, one can create a solar-mass black hole and at
t ≈ 10 s (the time of nucleosynthesis) one could form a PBH with the mass of
the galactic black hole. The initial mass can increase by means of accretion, but
it turns out that this is negligible under most circumstances.

In the presence of an inflationary phase in the early universe, all PBHs pro-
duced before the end of inflation are diluted away. This gives the bound

MPBH > MH(TRH) ≈ m3
P

10.88T 2
RH

∼ 1 g , (7.151)

if for the reheating temperature TRH a value of 1016 GeV is chosen.
According to the numerical calculations by Niemeyer and Jedamzik (1999),

there exists a whole spectrum of initial masses,
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Table 7.2 Constraints on the mass fraction α(M) ≡ ρPBH,M

ρr
≈ ΩPBH,M of

primordial black holes at their time of formation (Green and Liddle 1997)

Constraint Range Reason
1. α < 0.1(M/1015g)

3
2 M< 1015 g radiation relics

2. α < 10−17(109g/M)
1
2 109 g<M< 1011 g nn/np-ratio

3. α < 10−22(M/1010g)
1
2 1010 g<M< 1011 g deuterium dissociation

4. α < 10−21(M/1011g)
5
2 1011 g<M< 1013 g helium fission

5. α < 10−16(109g/M) 109 g<M< 1013 g entropy per baryon
6. α < 10−26 M ≈ 5 × 1014 g γ background
7. α < 10−18(M/1015g)

1
2 M> 1015 g present PBH density

MPBH = KMH(δ − δmin)γ , (7.152)

a relation that is reminiscent of the theory of critical phenomena. This may
change some of the quantitative conclusions.

To calculate the production rate of PBHs, one needs an initial spectrum of
fluctuations. This is usually taken to be of a Gaussian form, as predicted by
most inflationary models (cf. Liddle and Lyth 2000). Therefore, there always
exists a non-vanishing probability that the density contrast is high enough to
form a black hole, even if the maximum of the Gaussian corresponds to a small
value. One can then calculate the mass ratio (compared to the total mass) of
regions which will develop into PBHs with mass MPBH � M ; see, for example,
Bringmann et al. (2002) for details. This mass ratio, given by

α(M) ≡ ρPBH,M

ρr
≈ ΩPBH,M ≡ ρPBH,M

ρc
, (7.153)

where ρr is the radiation density, is then compared with observation. This, in
turn, gives a constraint on the theoretically calculated initial spectrum. Table 7.2
presents various observational constraints on α (from Green and Liddle 1997).
The corresponding maximal value for each α is shown for the various constraints
in Fig. 7.5.

Constraints arise either from Hawking radiation or from the gravitational
contribution of PBHs to the present universe (last entry). PBHs with initial mass
of about 5×1014 g evaporate at the current phase of the universe. (They release
about 1030 erg in the last second.) From observations of the γ-ray background
one can find the constraint given in the table. It corresponds to an upper limit of
about 104 PBHs per cubic parsec or ΩPBH,0 < 10−8. One can also try to observe
directly the final evaporation event of a single PBH. This gives only an upper
limit of about 106 events per cubic parsec per year.

Given these observational constraints, one can then calculate the ensuing con-
straints on the primordial spectrum. The gravitational constraint ΩPBH,0 < 1
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Fig. 7.5. Strongest constraints on the initial PBH mass fraction. The numbers
correspond to the various entries in Table 7.2.

gives surprisingly strong restrictions (cf. Bringmann et al. 2002). For a scale-
free power spectrum of the form ∝ kn, as it is usually discussed for inflationary
models, one finds restrictions on n that are comparable to the limits obtained
by large-scale observations (anisotropy spectrum of the cosmic microwave back-
ground radiation). Since these restrictions come from observational constraints
referring to much smaller scales, they could constitute an important complemen-
tary test. However, according to present observations of the microwave back-
ground, the actual value for n is too small to give a high-enough rate for PBH
formation to be observable. The only possibility, it seems, is inflationary mod-
els with a distinguished scale (Blais et al. 2003). The ensuing amount of PBHs
could then in principle contribute significantly to the cold dark matter present
in galaxies.

The question whether PBHs really exist in nature has thus not yet been
settled. Their presence would be of an importance that could hardly be overesti-
mated. They would give the unique opportunity to study the quantum effects of
black holes and could yield the crucial key for the construction of a final theory
of quantum gravity.
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QUANTUM COSMOLOGY

8.1 Minisuperspace models

8.1.1 General introduction

As we have discussed at length in Chapters 5 and 6, all information about canon-
ical quantum gravity lies in the constraints (apart from possible surface terms).
These constraints assume in the Dirac approach the form of conditions for phys-
ically allowed wave functionals. In quantum geometrodynamics (Chapter 5), the
wave functional depends on the three-metric, while in quantum connection or
quantum loop dynamics (Chapter 6), it depends on a non-Abelian connection or
a Wilson-loop-type variable.

A common feature for all variables is that the quantum constraints are diffi-
cult if not impossible to solve. In classical GR, the field equations often become
tractable if symmetry reductions are performed; one can, for example, impose
spherical symmetry, axial symmetry, or homogeneity. This often corresponds to
interesting physical situations: stationary black holes are spherically or axially
symmetric (Section 7.1), while the Universe as a whole can be approximated by
homogeneous and isotropic models. The idea is to apply a similar procedure in
the quantum theory. One may wish to make a symmetry reduction at the clas-
sical level and to quantize only a restricted set of variables. The quantization of
black holes discussed in Chapter 7 is a prominent example. The problem is that
such a reduction violates the uncertainty principle, since degrees of freedom are
neglected together with the corresponding momenta. Still, the reduction may be
an adequate approximation in many circumstances. In quantum mechanics, for
example, the model of a ‘rigid top’ is a good approximation as long as other
degrees of freedom remain unexcited due to energy gaps. Such a situation can
also hold for quantum gravity; cf. Kuchař and Ryan (1989) for a discussion of
this situation in a quantum-cosmological context. In the dynamical-triangulation
approach discussed in Section 2.2.6, for example, one can derive an effective cos-
mological action from the full path integral (Ambjørn et al. 2005).

Independent of this question whether the resulting models are realistic or not,
additional reasons further support the study of dimensionally reduced models.
First, they can play the role of toy models to study conceptual issues which are
independent of the number of variables. Examples are the problem of time, the
role of observers, and the emergence of a classical world; cf. Chapter 10. Second,
they can give the means to study mathematical questions such as the structure
of the wave equation and the implementation of boundary conditions. Third, one
can compare various quantization schemes in the context of simple models. This

243
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concerns in particular a comparison between reduced and Dirac quantization.
In quantum geometrodynamics, the wave functional Ψ is defined—apart from

non-gravitational degrees of freedom—on RiemΣ, the space of all three-metrics.
The presence of the diffeomorphism constraints guarantees that the true config-
uration space is ‘superspace’, that is, the space Riem Σ/Diff Σ. Restricting the
infinitely many degrees of freedom of superspace to only a finite number, one
arrives at a finite-dimensional configuration space called minisuperspace. If the
number of the restricted variables is still infinite, the term ‘midisuperspace’ has
been coined. The example of spherical symmetry discussed in the last chapter is
an example of midisuperspace. Since the most important example in the case of
finitely many degrees of freedom is cosmology, the minisuperspace examples are
usually applied to quantum cosmology, that is, the application of quantum theory
to the Universe as a whole. The present chapter deals with quantum cosmology.
For simplicity, we shall restrict our attention mostly to quantum geometrody-
namics; the application of loop quantum gravity (cf. Chapter 6) to cosmology is
called loop quantum cosmology and is discussed in Section 8.4 below.

The importance of quantum theory for an understanding of the origin of the
universe was already emphasized by Georges Lemâıtre in the context of his atome
primitif; see Lemâıtre (1958). However, he did not consider the quantization of
space–time itself. The idea that the Universe as a whole is the result of a ‘vacuum
fluctuation’ in quantum field theory can be traced back at least to Tryon (1973).

Independent of any quantum theory of gravity, one can give general argu-
ments that demand for reasons of consistency the application of quantum theory
to the Universe as a whole. Namely, macroscopic quantum systems are strongly
coupled to their natural environment; cf. the discussion in Chapter 10. Since the
environment is again coupled to its environment, and so on, the only strictly
closed system in the quantum theoretical sense is the Universe as a whole. This
leads to quantum cosmology, independent of any particular interaction. However,
since gravity is the dominating interaction on cosmic scales, a quantum theory
of gravity is needed as the formal framework for quantum cosmology.

The first quantum-cosmological model based on quantum gravity was pre-
sented, together with its semiclassical approximation, in DeWitt (1967a). It dealt
with the homogeneous and isotropic case. The extension to anisotropic models
(in particular, Bianchi models) was performed by Misner; cf. Misner (1972) and
Ryan (1972). Kuchař (1971) made the extension to the midisuperspace case and
discussed the quantization of cylindrical gravitational waves; see also Ashtekar
and Pierri (1996). Classically, in the general case of inhomogeneous models, dif-
ferent spatial points seem to decouple near a big-bang singularity for general
solutions of the Einstein equations (Belinskii et al. 1982). Such solutions consist
of a collection of homogeneous spaces described, for example, by a ‘mixmaster
universe’ (in which the universe behaves like a particle in a time-dependent po-
tential wall, with an infinite sequence of bounces). For this reason the use of
minisuperspace models may even provide a realistic description of the universe
near its classical singularity.
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The usual symmetry reduction proceeds as follows; see, for example, Torre
(1999). One starts from a classical field theory and specifies the action of a
group with respect to which the fields are supposed to be invariant. A prominent
example is the rotation group. One then constructs the invariant (‘reduced’) fields
and evaluates the field equations for them. An important question is whether
there is a shortcut in the following way. Instead of reducing the field equations
one might wish to reduce first the Lagrangian and then derive from it directly the
reduced field equations. (Alternatively, this can be attempted at the Hamiltonian
level.) This would greatly simplify the procedure, but in general it is not possible:
reduction of the Lagrangian is equivalent to reduction of the field equations only
in special situations. When do such situations occur? In other words, when do
critical points of the reduced action define critical points of the full action?
Criteria for this symmetric criticality principle were developed by Palais (1979).
If restriction is made to local Lagrangian theories, one can specify such criteria
more explicitly (Torre 1999; Fels and Torre 2002).

Instead of spelling out the general conditions, we focus on three cases that
are relevant for us:

1. The conditions are always satisfied for a compact symmetry group, that is,
the important case of spherical symmetry obeys the symmetric criticality
principle.

2. In the case of homogeneous cosmological models, the conditions are satis-
fied if the structure constants c c

ab of the isometry group satisfy c b
ab = 0.

Therefore, Bianchi-type-A cosmological models and the Kantowski–Sachs
universe can be treated via a reduced Lagrangian. For Bianchi-type-B mod-
els, the situation is more subtle (cf. MacCallum (1979) and Ryan and
Waller (1997)).

3. The symmetric criticality principle also applies to cylindrical or toroidal
symmetry reductions (which are characterized by two commuting Killing
vector fields). The reduced theories can be identified with parametrized
field theories on a flat background. With such a formal identification it is
easy to find solutions. Quantization can then be understood as quantization
on a fixed background with arbitrary foliation into Cauchy surfaces. In two
space–time dimensions, where these reduced models are effectively defined,
time evolution is unitarily implementable along arbitrary foliations. This
ceases to hold in higher dimensions; cf. Giulini and Kiefer (1995), Helfer
(1996), and Torre and Varadarajan (1999).

In the case of homogeneous models, the wave function is of the form ψ(qi),
i = 1, . . . , n, that is, it is of a ‘quantum-mechanical’ type. In this section, we
follow a pragmatic approach and discuss the differential equations for the wave
functions, together with appropriate boundary conditions. A general discussion
of boundary conditions will be presented in Section 8.3 below. Extensive reviews
of quantum cosmology include Halliwell (1991), Wiltshire (1996), and Coule
(2005).
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8.1.2 Quantization of a Friedmann universe

As an example, we shall treat in some detail the case of a closed Friedmann
universe with a massive scalar field; cf. Kiefer (1988) and Halliwell (1991). Clas-
sically, the model is thus characterized by the scale factor a(t) and the homoge-
neous field φ(t) with mass m. In the quantum theory, the classical time parameter
t is absent, and the system is fully characterized by a wave function ψ(a, φ). The
ansatz for the classical line element is

ds2 = −N2(t)dt2 + a2(t)dΩ2
3 , (8.1)

where dΩ2
3 = dχ2 +sin2 χ(dθ2 +sin2 θdϕ2) is the standard line element on S3. A

special foliation has thus been chosen in order to capture the symmetries of this
model. For this reason no shift vector appears, only the lapse function N . The
latter naturally occurs in combination with dt, expressing the classical invariance
under reparametrizations of the time parameter; see Chapter 3.

The three-metric hab is fully specified by the scale factor a. The second fun-
damental form, cf. (4.48), reads here

Kab =
1

2N

∂hab

∂t
=

ȧ

aN
hab . (8.2)

Its trace is

K ≡ Kabh
ab =

3ȧ

Na
, (8.3)

which is thus proportional to the Hubble parameter ȧ/a. Its inverse, K−1, is for
this reason called ‘extrinsic time’; cf. Section 5.2.

Since the model fulfils the symmetric criticality principle, we can insert the
ansatz (8.1) directly into the Einstein–Hilbert action (1.1) and derive the Euler–
Lagrange equations from the reduced action. For the surface term in (1.1), one
obtains

1
8πG

∫
d3x

√
hK =

3
8πG

∫
d3x

√
h

ȧ

Na
.

Inserting √
h d3x = a3 sin2 χ sin θ dχdθdϕ ,

one finds that this surface term is cancelled by a term that appears after partial
integration from the first term in (1.1). This is how the general surface term is
constructed. More explicitly, one has for the curvature scalar:

R =
6

N2

(
− Ṅ ȧ

Na
+

ä

a
+

[
ȧ

a

]2
)

+
6
a2 .

Partial integration of the second term in the parentheses cancels both the surface
term and the first term and changes the sign of the third term.
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Integrating over d3x and choosing units such that 2G/3π = 1, one obtains
from (1.1), the gravitational part of the ‘minisuperspace action’,

Sg =
1
2

∫
dt N

(
−aȧ2

N2 + a − Λa3

3

)
. (8.4)

The matter action reads, after a rescaling φ → φ/
√

2π and m2/�2 → m2,

Sm =
1
2

∫
dt Na3

(
φ̇2

N2 − m2φ2

)
. (8.5)

The full minisuperspace action can then be written in the form

S = Sg + Sm ≡
∫

dt L(q, q̇) ≡
∫

dt N

(
1
2
GAB

q̇Aq̇B

N2 − V (q)
)

, (8.6)

where q is a shorthand for q1 ≡ a and q2 ≡ φ. The minisuperspace DeWitt
metric reads explicitly

GAB =
(
−a 0
0 a3

)
,

with
√
−G = a2, where G denotes its determinant here. The indefinite nature of

the kinetic term is evident.
Following the general procedure of Section 4.2, one starts with the definition

of the canonical momenta. This includes the primary constraint

pN =
∂L

∂Ṅ
≈ 0

and the dynamical momenta

pa =
∂L

∂ȧ
= −aȧ

N
, pφ =

∂L

∂φ̇
=

a3φ̇

N
. (8.7)

The Hamiltonian is then given by

H = pN Ṅ + paȧ + pφφ̇ − L

=
N

2

(
−p2

a

a
+

p2
φ

a3 − a +
Λa3

3
+ m2a3φ2

)

≡ N
( 1

2 GABpApB + V (q)
)

, (8.8)

where GAB is the inverse DeWitt metric. The explicit form of the potential is

V (q) ≡ V (a, φ) =
1
2

(
−a +

Λa3

3
+ m2a3φ2

)
≡ 1

2
(
−a + a3V(φ)

)
.

For a general (minimally coupled) field one has to insert the corresponding poten-
tial term into V(φ). One recognizes that the Λ-term appears on the same footing,
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so one might also have an effective Λ-term coming from a matter potential. This
is the typical case for inflationary scenarios of the early universe.

For convenience we give here the expressions for pa and H for general spatial
volume V0 and value for G. In the above case we have V0 = 2π2 (volume of S3),
but one can also have a flat model with finite volume. This is why one may also
allow the curvature parameter k for the Friedmann universe (which above and
below assumes the value k = +1) to assume the value zero. The expressions read

pa = − 3V0

4πG

aȧ

N
(8.9)

and

H =
N

2

(
−2πG

3
p2

a

V0a
+

p2
φ

a3 − 3
8πG

V0ka +
V0Λa3

8πG
+ m2a3φ2

)
. (8.10)

(The field φ was here rescaled according to φ → φ/
√

V0.) In the following we
shall return to the original choice for G, V0, and k, but we shall make use of the
general expressions in Section 8.4.

As in the general canonical formalism, the preservation of the primary con-
straint, {pN , H} ≈ 0, leads to the Hamiltonian constraint H ≈ 0. Due to
ansatz (8.1), no diffeomorphism constraints appear. On the Lagrangian level,
{pN , H} ≈ 0 corresponds to the Friedmann equation, which for N = 1 reads,

ȧ2 = −1 + a2
(

φ̇2 +
Λ
3

+ m2φ2
)

. (8.11)

Variation of (8.6) with respect to φ yields

φ̈ +
3ȧ

a
φ̇ + m2φ = 0 . (8.12)

The classical equations can only be solved analytically for m = 0. In that case
one has pφ = a3φ̇ = constant ≡ K, leading for Λ = 0 to

φ(a) = ±1
2
arcosh

K
a2 . (8.13)

In the case of m 
= 0, a typical solution in configuration space behaves as follows:
starting away from φ = 0, the trajectory approaches the a-axis and starts to os-
cillate around it. This model is often used in the context of ‘chaotic inflation’, cf.
Linde (1990), because the part of the trajectory approaching φ = 0 corresponds
to an inflationary expansion with respect to the coordinate time t. For a closed
Friedmann universe, the trajectory reaches a maximum and recollapses.

Quantization proceeds through implementation of H ≈ 0 as a condition on
the wave function. As in the general theory there is the freedom to choose the
factor ordering. The suggestion put forward here is a choice that leads to a kinetic
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term which is invariant under transformations in configuration space. In fact, this
is already the situation in the ordinary Schrödinger equation. It corresponds to
the substitution

GABpApB −→ −�2∇2
LB ≡ − �2

√
−G

∂A(
√
−GGAB∂B)

=
�2

a2

∂

∂a

(
a
∂

a

)
− �2

a3

∂2

∂φ2 , (8.14)

where the ‘Lapace–Beltrami operator’ ∇LB is the covariant generalization of
the Lapace operator. With this factor ordering, the Wheeler–DeWitt equation,
Ĥψ(a, φ) = 0, reads

1
2

(
�2

a2

∂

∂a

(
a

∂

∂a

)
− �2

a3

∂2

∂φ2 − a +
Λa3

3
+ m2a3φ2

)
ψ(a, φ) = 0 . (8.15)

This equation assumes a particular simple form if the variable α ≡ ln a is used
instead of a,1

e−3α

2

(
�2 ∂2

∂α2 − �2 ∂2

∂φ2 − e4α + e6α

[
m2φ2 +

Λ
3

])
ψ(α, φ) = 0 . (8.16)

The variable α ranges from −∞ to ∞, and there are thus no problems in con-
nection with a restricted range of the configuration variable.

Equation (8.16) has the form of a Klein–Gordon equation with ‘time-and
space-dependent’ mass term, that is, with a non-trivial potential term given by

V (α, φ) = −e4α + e6α

[
m2φ2 +

Λ
3

]
. (8.17)

Since this potential can also become negative, the system can develop ‘tachyonic’
behaviour with respect to the minisuperspace lightcone defined by the kinetic
term in (8.16). This does not lead to any inconsistency since one is dealing with
a configuration space here, not with space–time.

The minisuperspace configuration space of this model is conformally flat. This
is an artefact of two dimensions. In general, the configuration space is curved.
Therefore, the presence of an additional factor-ordering term of the form η�R is
possible, where η is a number and R is the Ricci scalar of configuration space.
It has been argued (Misner 1972; Halliwell 1988) that the choice

η =
d − 2

4(d − 1)

is preferred, where d 
= 1 is the dimension of minisuperspace. This follows from
the demand for the invariance of the Wheeler–DeWitt equation under conformal
transformations of the DeWitt metric.

1More precisely, one should define α ≡ lna/a0 with some reference scale a0, e.g. a0 = lP.
For simplicity we set here a0 = 1.



250 QUANTUM COSMOLOGY

One recognizes from (8.16) that α plays the role of an ‘intrinsic time’—
the variable that comes with the opposite sign in the kinetic term.2 Since the
potential (8.17) obeys V (α, φ) 
= V (−α, φ), there is no invariance with respect to
reversal of intrinsic time. This is of crucial importance to understand the origin
of irreversibility; cf. Section 10.2. Moreover, writing (8.16) in the form

−�2 ∂2

∂α2 ψ ≡ h2
αψ , (8.18)

the ‘reduced Hamiltonian’ hα is not self-adjoint, so there is no unitary evolution
with respect to α. This is, however, not a problem since α is no external time.
Unitarity with respect to an intrinsic time is not expected to hold.

Models such as the one above can thus serve to illustrate the difficulties
which arise in the approaches of ‘reduced quantization’ discussed in Section 5.2.
Choosing classically a = t and solving H ≈ 0 with respect to pa leads to pa+ha ≈
0 and, therefore, to a reduced Hamiltonian ha equivalent to the one in (8.18),

ha = ±

√
p2

φ

t2
− t2 +

Λt4

3
+ m2φ2t4 . (8.19)

One can recognize all the problems that are connected with such a formulation—
explicit t-dependence of the Hamiltonian, no self-adjointness, complicated ex-
pression. One can make alternative choices for t—either pa = t (‘extrinsic time’),
φ = t (‘matter time’), or a mixture of all these. This non-uniqueness is an ex-
pression of the ‘multiple-choice problem’ mentioned in Section 5.2. Due to these
problems, we shall restrict our attention to the discussion of the Wheeler–DeWitt
equation and do not follow the reduced approach any further.

A simple special case of (8.16) is obtained if we set Λ = 0 and m = 0. Again
also setting � = 1, one gets(

∂2

∂α2 − ∂2

∂φ2 − e4α

)
ψ(α, φ) = 0 . (8.20)

A separation ansatz leads immediately to the special solution

ψk(α, φ) = e−ikφKik/2

(
e2α

2

)
, (8.21)

where Kik/2 denotes a Bessel function. This solution has been chosen in order to
fulfil the boundary condition that ψ → 0 for α → ∞. A general solution with this

2In two-dimensional configuration spaces, only the relative sign seems to play a role. How-
ever, in higher-dimensional minisuperspaces, it becomes clear that the variable connected with
the volume of the universe is the time-like variable; see Section 5.2.2.
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boundary condition can be found by performing a superposition with a suitable
amplitude A(k),

ψ(α, φ) =
∫ ∞

−∞
dk A(k)ψk(α, φ) . (8.22)

Taking, for example, a Gaussian centred at k = k̄ with width b,

A(k) =
1√√
πb

e− 1
2b2

(k−k̄)2 , (8.23)

one obtains the following wave-packet solution for the real part of the wave
function (cf. Kiefer 1988):

Re ψ(α, φ) ≈ ck̄ cos fk̄(α, φ)e−(b2/2)(φ+1/2 arcosh(k̄/e2α))2

+ ck̄ cos gk̄(α, φ)e−(b2/2)(φ−1/2 arcosh(k̄/e2α))2

. (8.24)

The functions f and g are explicitly given in Kiefer (1988) but are not needed
here. The wave function (8.24) is a sum of two (modulated) Gaussians of width
b−1, which are symmetric with respect to φ = 0 and which follow the classical
path given by (8.13) with K = k̄.

This example demonstrates an important feature of the quantum theory (see
Fig. 8.1). In the classical theory, the ‘recollapsing’ part of the trajectory in config-
uration space can be considered as the deterministic successor of the ‘expanding’
part. In the quantum theory, on the other side, the ‘returning’ part of the wave
packet has to be present ‘initially’ with respect to intrinsic time (the scale factor
a of the universe) in order to yield a wave tube following the classical trajectory.
This ensures destructive interference near the classical turning point in order to
avoid exponentially growing pieces of the wave function for large a.

Classical theory

�

�

���� ���� ����
���	�
� �
���	�
��

FIG. 8.1. (a) Recollapsing part is
deterministic successor

of expanding part.

Quantum theory
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���	��
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(b) ‘Recollapsing’ wave packet must be
present ‘initially’.
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Whereas in the above example it is possible to construct wave packets fol-
lowing the classical trajectory without dispersion, this is actually not possible
in the general case. Already for m 
= 0, one finds that the demand for ψ → 0
as a → ∞ is in conflict with the existence of narrow wave packets all along the
classical trajectory (Kiefer 1988). Consider the Wheeler–DeWitt equation (8.16)
for Λ = 0, (

∂2

∂α2 − ∂2

∂φ2 − e4α + e6αm2φ2
)

ψ(α, φ) = 0 . (8.25)

Within a Born–Oppenheimer type of approximation, one can make the following
ansatz for the wave packet,

ψ(a, φ) =
∑

n

cn(α)ϕn

(√
me3αφ

)
, (8.26)

where the ϕn denote the usual eigenfunctions of the harmonic oscillator. From
(8.25), one gets the following effective potentials for the cn(α),

Vn(α) = 1
2

(
−e4α + (2n + 1)me3α

)
. (8.27)

These potentials become negative for large enough α. In the classical theory, this
means that trajectories are drawn into the region with negative Vn and are re-
flected. In the quantum theory, it means that the wave function is a combination
of exponentially increasing or decreasing solutions. In order to fulfil the ‘final
condition’ ψ → 0 for a → ∞, the exponentially decreasing solution has to be
chosen. The n-dependent reflection expressed by (8.27) leads to an unavoidable
spreading of the wave packet (Kiefer 1988). This means that the semiclassical
approximation does not hold all along the expanding and recollapsing part of
the classical trajectory. How, then, does classical behaviour emerge? The answer
is provided by adding other degrees of freedom (Section 8.2). They can act as
a kind of environment for the minisuperspace variables a and φ and force them
to behave classically. This process of decoherence is discussed in Section 10.1.
It has also to be emphasized that wave packets are here always understood as
corresponding to branches of the full wave function (representing quasiclassical
histories), but not to the full wave function itself.

Another example is a closed Friedmann universe with a non-minimally cou-
pled scalar field. In the general case, the Wheeler–DeWitt equation can become
elliptic instead of hyperbolic for a certain range of field values; see Kiefer (1989).
This would modify the ‘initial-value problem’ in quantum cosmology. No ellip-
tic region occurs, for example, in the simplest case—the case of a conformally
coupled field φ. Choosing units such that 8πG = 1 and performing a field redef-
inition

φ → χ =
√

2πaφ

6
,

one obtains the following Wheeler–DeWitt equation (Zeh 1988; Kiefer 1990):
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Ĥψ(a, χ) ≡ (−Ha + Hχ)ψ ≡
(

∂2

∂a2 − ∂2

∂χ2 − a2 + χ2
)

ψ = 0 . (8.28)

This has the form of an ‘indefinite oscillator’—two harmonic oscillators distin-
guished by a relative sign in the Hamiltonian. The model defined by (8.28) is
the simplest non-trivial model in quantum cosmology. (It also arises from scalar–
tensor theories of gravity; cf. Lidsey 1995.) Its classical solutions are represented
by Lissajou ellipses confined to a rectangle in configuration space. The corre-
sponding wave packets are obtained if a normalization condition is imposed with
respect to a and χ. In this way, one obtains an ordinary quantum-mechanical
Hilbert space. The wave packets follow here the classical Lissajous ellipses with-
out dispersion (Kiefer 1990; Gousheh and Sepangi 2000). From (8.28), one finds

Haϕn(a)ϕn(χ) = Hχϕn(a)ϕn(χ) ,

where ϕn denote again the usual harmonic-oscillator eigenfunctions. A wave-
packet solution can then be constructed according to

ψ(a, χ) =
∑

n

Anϕn(a)ϕn(χ) =
∑

n

An
Hn(a)Hn(χ)

2nn!
e−a2/2−χ2/2 , (8.29)

with suitable coefficients An. From the properties of the Hermite polynomials,
it is evident that the wave packet has to satisfy the ‘initial condition’ ψ(0, χ) =
ψ(0,−χ). The requirement of normalizability thus gives a restriction on possible
initial conditions. A particular example of such a wave-packet solution is depicted
in Fig. 8.2. One recognizes a superposition of (half of) two Lissajous ellipses.

In a more general oscillator model one would expect to find two different
frequencies for a and χ, that is, instead of the potential −a2 + χ2, one would
have −ω2

aa2 +ω2
χχ2. The demand for normalizability would then entail the com-

mensurability condition
ωχ

ωa
=

2na + 1
2nχ + 1

, (8.30)

where na and nχ are integer numbers. Thus, one gets from normalizability a
restriction on the ‘coupling constants’ of this model. It is imaginable that such
conditions may also hold in the full theory, for example, for the cosmological
constant.3

As Page (1991) has demonstrated, one can map various minisuperspace mod-
els into each other. He also presents a plenty of classical and quantum solutions
for these models. For example, one can find a map between the cases of mini-
mally and non-minimally coupled scalar fields. The fields have to be rescaled and,
what is most important, they differ in the range of allowed values. As mentioned
above, this has consequences for the initial value problem in quantum gravity

3Quantization conditions for the cosmological constant may also arise in string theory; cf.
Bousso and Polchinski (2000) and Feng et al. (2001).



254 QUANTUM COSMOLOGY

Fig. 8.2. Wave packet corresponding to a classical Lissajous figure (only the
region a ≥ 0 is shown). From Kiefer (1990).

(Kiefer 1989). A particular example is the map between the models defined by
(8.28) and (8.15) for m = 0 and Λ = 0, respectively. The respective wave func-
tions have, however, different domains for their argument. Another map relates
(8.28) to a massive Klein–Gordon equation in the (1+1)-dimensional ‘Rindler
wedge’.

Up to now we have addressed quantum cosmology in the framework of ge-
ometrodynamic variables with (mostly) minimally coupled fields and without
supersymmetry (SUSY). It is possible to extend the above discussion to the pres-
ence of SUSY, to effective actions coming from string theory (‘quantum string
cosmology’), and to quantum connection and loop dynamics. We shall add in
the following some remarks on each of these frameworks.

Canonical supergravity (SUGRA) was discussed in Section 5.3.6. Again, one
can restrict the corresponding action to spatially homogeneous models, in the
simplest case to a Friedmann universe. After this specialization, only the spinor
indices remain. In this way one can say that full SUGRA with N = 1 leads
to an effective minisuperspace model with N = 4 SUSY—one just has four
quantum mechanical generators of SUSY, SA (A = 1, 2) and S̄A′ (A′ = 1′, 2′);
cf. (5.99). As has been discussed in Section 5.3.6, it is fully sufficient to solve
the Lorentz and the SUSY constraints; the Hamiltonian and diffeomorphism
constraints follow through the Dirac-bracket relations. This holds, of course,
also in minisuperspace. The Lorentz constraints can be implemented by making
the following decomposition of the wave function Ψ into the fermionic variables,
allowing the coefficients to be functions of the bosonic variables:
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Ψ = A(a, φ, φ̄) + B(a, φ, φ̄)ψAψA + iC(a, φ, φ̄)χAψA

+D(a, φ, φ̄)χAχA + E(a, φ, φ̄)ψAψAχAχA . (8.31)

Here, a is the scale factor of the Friedmann universe, φ is a complex scalar field,
χA its fermionic superpartner, and ψA is the homogeneous degree of freedom
coming from the gravitino field. The configuration space of Ψ is thus given by
(χA, ψA, a, φ, φ̄). The SUSY constraints then yield a system of coupled first-
order differential equations for the coefficient functions A–E . They may be solved
in various situations, and particular boundary conditions (Section 8.3) may be
imposed. For a detailed discussion, we refer to Moniz (2003) and the references
therein.

The method of canonical quantization can also be applied to actions differ-
ent from the Einstein–Hilbert action for gravity. Popular examples are given by
effective actions from string theory; cf. Section 9.2. They contain besides the
metric additional fields in the gravitational sector, notably the dilaton field and
axion fields. They can act as the starting point for both classical and quantum
cosmology; see Gasperini and Veneziano (2003) for an extensive review. String
theory possesses an invariance with respect to ‘duality transformations’ (Chap-
ter 9). This is reflected in the context of Friedmann cosmology by the duality
transformation a → a−1 and t → −t. Thereby one can relate different solutions
to each other. Classical solutions of particular interest are the ‘pre-big-bang so-
lutions’ for t < 0 being duality-related to ‘post-big-bang solutions’ for t > 0. The
former can describe an accelerated (superinflationary) phase being driven by the
kinetic energy of the dilaton. The latter can describe an expanding decelerated
phase which is interpreted as the standard evolution of the radiation-dominated
universe. The hope is that one can connect both phases and thereby avoid the
usual fine-tuning problems of inflationary cosmology. In addition, one can hope
to generate primordial gravitational waves with higher amplitude, which could
possibly be detected by the space interferometer LISA. However, the transition
between the pre- and post-big-bang solution proceeds through a regime of a
classical singularity (strong coupling and high curvature). This is known as the
‘graceful exit problem’ (exit from inflation into radiation dominance), which is
still an open issue.

The quantum version of string cosmology was first investigated by Bento and
Bertolami (1995). The role of boundary conditions with respect to the grace-
ful exit problem was discussed by Da̧browski and Kiefer (1997). Starting from
the tree-level effective action with only metric and dilaton, one first makes the
following redefinition in minisuperspace:

β ≡
√

3 ln a ,

φ̄ ≡ φ − 3 lna − ln
∫

d3x

λ3
s

,

where φ is the original dilaton and λs ≡
√

α′ the string length (cf. Section 3.2).
One then finds the following Wheeler–DeWitt equation:
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(
− ∂2

∂φ̄2
+

∂2

∂β2 − λ2
sV (β, φ̄)e−2φ̄

)
ψ(β, φ̄) = 0 , (8.32)

where V (β, φ̄) denotes here the dilaton potential. Since no external time t exists
in quantum cosmology, it does not make sense to talk of a transition between
the pre- and post-big-bang regime. Boundary conditions have to be imposed
intrinsically, that is, with respect to the configuration-space variables β and
φ̄. Constructing wave packet-solutions to (8.32), one recognizes that the pre-
and post-big-bang branches just correspond to different solutions (Da̧browski
and Kiefer 1997). An intrinsic distinction between ‘expanding’ and ‘contracting’
solution is not possible since the reference phase e−iωt is lacking (Zeh 1988).
This can only be achieved if additional degrees of freedom are introduced and a
boundary condition of low entropy is imposed; see Section 10.2.

Quantum-cosmological models can, and have been, discussed in more gen-
eral situations. Cavaglià and Moniz (2001), for example, have investigated the
Wheeler–DeWitt equation for effective actions inspired by ‘M-theory’ (Section
9.1). Lidsey (1995) has discussed general scalar-tensor theories in which it turns
out that the duality symmetry of the classical action corresponds to hidden
N = 2 SUSY. Quantum cosmology for relativity in more than three space di-
mensions also possesses some interesting features (see e.g. Zhuk 1992).

Instead of modifying the gravitational sector one can also introduce exotic
matter degrees of freedom. One example are phantom fields. They have been
invoked as a possible explanation for the observed Dark Energy in the Universe,
and are characterized by a negative kinetic term. Such phantom models exhibit,
in the classical theory, some new types of singularities. Among them is the big rip
where the matter density diverges at finite times for large a instead of small a.
The corresponding quantum scenario is discussed in Da̧browski et al. (2006). It
turns out that wave-packet solutions of the Wheeler–DeWitt equation disperse
near the region that corresponds to the big-rip singularity. One thus arrives at
a genuine quantum region at large scales.

Quantum cosmology can also be discussed using methods of connection or
loop dynamics (Chapter 6). Paternoga and Graham (1998), for example, inves-
tigated Bianchi IX models with Λ 
= 0 in the connection representation. They
started from the Chern–Simons state (6.8), which is a solution of the Euclidean
quantum constraints for Barbero–Immirzi parameter β = 1. Through a gen-
eralized Fourier transform to the metric transformation, they were able—using
inequivalent contours in the transformation formula—to find various solutions to
the Wheeler–DeWitt equation. One can also address quantum cosmology directly
in the loop representation. The ensuing scenario of loop quantum cosmology is
discussed in Section 8.4.

8.1.3 (2+1)-dimensional quantum gravity
General relativity in 2+1 dimensions is ‘trivial’ in the sense that there are no
local dynamical degrees of freedom. The Riemann tensor depends linearly on
the Ricci tensor and thus the vacuum solutions of Einstein’s equations are either
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flat (for Λ = 0) or have constant curvature (for Λ 
= 0). A typical feature is the
appearance of conical structures which gives rise to a non-trivial global geometry.
There may be a finite number of degrees of freedom connected with the topology
of space. The theory is therefore of a quantum-mechanical nature, and it is
for this reason that we have included 2+1 quantum gravity into the chapter
on quantum cosmology, although this framework is not necessarily restricted
to cosmological applications. General references on (2+1)-dimensional gravity
include Carlip (1998), Brown (1988), and Matschull (1995).

The Planck mass in 2+1 dimensions is given by

m
(3)
P =

c2

G
(8.33)

and is, therefore, independent of �. Classical GR in 2+1 dimensions thus contains
a distinguished mass scale. Planck’s constant enters, however, the Planck length,

l
(3)
P =

�G

c3 . (8.34)

The classical canonical formalism here employs a foliation of three-dimensional
space–time into two-dimensional spaces Σ. An important theorem states that any
metric on a compact two-space Σ is conformal to a metric of constant curvature.4

The curvature is positive for the two-sphere S2 (having genus g = 0), zero for
the two-torus T 2 (g = 1), and negative for g > 1. The two-metric can thus be
written as

hab(x) = e2ξ(x)h̃ab(x) , (8.35)

with h̃ab(x) denoting a metric of constant curvature. The role of the configuration
space is here played by the moduli space of Σ—for g 
= 1 the space of metrics
with constant curvature modulo diffeomorphisms, and for g = 1 the space of
flat metrics of constant prescribed volume modulo diffeomorphisms. The moduli
space has a finite dimension: zero for S2, 2 for T 2, and 6g − 6 for g > 1. The
theory, therefore, describes a finite-dimensional system described by the moduli
parameters. It is interesting that a reduced phase space description is possible if
‘York’s time’ (cf. (5.16)) is being used (see Carlip 1998). A Schrödinger equation
can be formulated in the reduced space, which is similar to the equation occurring
in spherically symmetric systems (Section 7.2).

What can be said about the Wheeler–DeWitt quantization (Carlip 1998)?
The situation is simplest in a first-order formulation, where the connection ωa

i

and the zweibein ea
i are treated as independent variables. From the Wheeler–

DeWitt equation, one finds that the wave functional must be a functional of
flat connections. This is related to the fact that (2+1)-dimensional GR can be
formulated as a Chern–Simons theory for a vector potential with gauge group
ISO(2, 1) (Achúcarro and Townsend 1986; Witten 1988). In fact, the first-order
action of GR is the Chern–Simons action (6.9).

4For open Σ, one has to impose appropriate boundary conditions.
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The second-order formalism is much more complicated. There appear func-
tional derivatives with respect to the scale factor ξ and non-local terms from
the solution of the diffeomorphism constraints. Most likely, this approach is in-
equivalent to reduced quantization, and the Wheeler–DeWitt equation cannot
be solved, except perhaps in perturbation theory.

Quantum gravity in 2+1 dimensions provides an example for a theory of
the first kind in the sense of Section 1.3: it is a consistent quantum theory of
the gravitational field itself. This holds irrespective of the fact that it is non-
renormalizable by formal power counting arguments.

Of special interest both classically and quantum mechanically is the existence
of a black-hole solution for Λ < 0, that is, for asymptotic anti-de Sitter space.
The solution is called ‘BTZ black hole’ after the work by Bañados et al. (1992)
and is characterized by mass and angular momentum. The BTZ hole provides a
toy model in which one can study the issues of Hawking radiation and entropy; cf.
Chapter 7. One can, in particular, give a microscopic interpretation of black-hole
entropy by counting the degrees of freedom on the horizon in a Chern–Simons
approach (Carlip 1998).

Interesting features appear if point-like particles (whose existence is allowed
in 2+1 gravity) are coupled to gravity; cf. Louko and Matschull (2001), who
consider the presence of two such particles. For one massive particle, space–
time is a product of a conical space with R, the deficit angle of the cone being
given by 8πGm, where m is the mass. For two particles this essentially doubles,
but care has to be taken to implement the condition of asymptotic flatness. The
particles do not interact directly (there is no Newtonian force in 2+1 gravity) but
indirectly through the cone-like structure of space–time. From Wheeler–DeWitt
quantization, one finds features that are expected from a quantum theory of
gravity: the two particles cannot get closer than a certain minimal distance
given by a multiple of the Planck length. This exhibits a discrete structure of
space–time. Even if the particles are far apart, it is impossible to localize any
single particle below a certain length. All these effects vanish both for � → 0 and
for G → 0. A generalization to many particles has been performed by Matschull
(2001). He finds, in particular, hints for a non-commutative structure of space–
time.

8.2 Introduction of inhomogeneities

The minisuperspace models discussed in the last section are easy to deal with,
but are not sufficient for a realistic description of the universe. This can only
be achieved if inhomogeneous degrees of freedom are introduced. Otherwise, one
would not have the chance to understand the emergence of structure in quantum
cosmology. In the following, we consider a multipole expansion of the three-
metric and a scalar field. We take the universe to be closed, so the expansion is
with respect to spherical harmonics on the three-sphere S3. In order to render
the formal treatment manageable, the expansion for the ‘higher multipoles’ is
only performed up to quadratic order in the action. They are thus considered
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to be small perturbations of the homogeneous background described by a and
the homogeneous field φ. Since one knows from measurements of the microwave
background radiation that the fluctuations were small in the early universe, this
approximation may be appropriate for that phase. The multipole expansion is
also needed for the description of decoherence (Section 10.1.2). Cosmological
perturbations were first studied by Lifshits (1946).

Following Halliwell and Hawking (1985), we make for the three-metric the
ansatz

hab = a2(Ωab + εab) , (8.36)

where Ωab denotes the metric on S3, and the ‘perturbation’ εab(x, t) is expanded
into spherical harmonics,

εab(x, t) =
∑
{n}

(√
2
3
an(t)ΩabQ

n +
√

6bn(t)Pn
ab +

√
2cn(t)Sn

ab + 2dn(t)Gn
ab

)
.

(8.37)
Here {n} stands for the three quantum numbers {n, l, m}, where n = 1, 2, 3, . . .,
l = 0, . . . , n − 1, and m = −l, . . . , l. The scalar field is expanded as

Φ(x, t) =
1√
2π

φ(t) + ε(x, t) ,

ε(x, t) =
∑
{n}

fn(t)Qn . (8.38)

The scalar harmonic functions Qn ≡ Qn
lm on S3 are the eigenfunctions of the

Laplace operator on S3,

Q
n |k
lm|k = −(n2 − 1)Qn

lm , (8.39)

where |k denotes the covariant derivative with respect to Ωab. The harmonics
can be expressed as

Qn
lm(χ, θ, φ) = Πn

l (χ)Ylm(θ, φ) , (8.40)

where Πn
l (χ) are the ‘Fock harmonics’, and Ylm(θ, φ) are the standard spherical

harmonics on S2. They are orthonormalized according to∫
S3

dµ Qn
lmQn′

l′m′ = δnn′
δll′δmm′ , (8.41)

where dµ = sin2 χ sin θdχdθdϕ. The scalar harmonics are thus a complete or-
thonormal basis with respect to which each scalar field on S3 can be expanded.
The remaining harmonics appearing in (8.37) are called tensorial harmonics of
scalar type (Pn

ab), vector type (Sn
ab), and tensor type (Gn

ab); see Halliwell and
Hawking (1985) and the references therein. At the present order of approxima-
tion for the higher multipoles (up to quadratic order in the action), the vec-
tor harmonics are pure gauge. The tensor harmonics Gn

ab describe gravitational
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waves and are gauge independent. It is possible to work exclusively with gauge-
independent variables (Bardeen 1980), but this is not needed for the following
discussion.

Introducing the shorthand notation {xn} for the collection of multipoles
an, bb, cn, dn, the wave function is defined on an infinite-dimensional configu-
ration space spanned by a (or α) and φ (the ‘minisuperspace background’) and
the variables {xn}. The Wheeler–DeWitt equation can be decomposed into two
parts referring to first and second derivatives in the {xn}, respectively. The part
with the second derivatives reads (Halliwell and Hawking 1985)(

H0 + 2e3α
∑

n

Hn(a, φ, xn)

)
Ψ(α, φ, {xn}) = 0 , (8.42)

where H0 denotes the minisuperspace part,

H0 ≡
(

∂2

∂α2 − ∂2

∂φ2 + e6αm2φ2 − e4α

)
≡

(
∂2

∂α2 − ∂2

∂φ2 + V (α, φ)
)

, (8.43)

and Hn is a sum of Hamiltonians referring to the scalar, vector, and tensor part
of the modes, respectively,

Hn = H(S)
n + H(V )

n + H(T )
n .

We now make the ansatz

Ψ(α, φ, {xn}) = ψ0(α, φ)
∏
n>0

ψn(α, φ; xn) (8.44)

and insert this into (8.42). Following Kiefer (1987), we get

−∇2ψ0

ψ0
− 2

∇ψ0

ψ0

∑
n

∇ψn

ψn
−

∑
n

∇2ψn

ψn

−
∑
n
=m

∇ψn∇ψm

ψnψm
+ V (α, φ) + 2e3α

∑
n

HnΨ
Ψ

= 0 ,

where

∇ ≡
(

∂

∂α
,

∂

∂φ

)
denotes the ‘minisuperspace gradient’. One then gets by separation of variables
the two equations

−∇2ψ0

ψ0
+ V (α, φ) = −2f(α, φ) , (8.45)

−2
∇ψ0

ψ0

∑
n

∇ψn

ψn
−

∑
n

∇2ψn

ψn
−

∑
n
=m

∇ψn∇ψm

ψnψm

+2e3α
∑

n

HnΨ
Ψ

= 2f(α, φ) , (8.46)
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where f(α, φ) is an arbitrary function. The second equation can be separated
further if one imposes additional assumptions. First, we assume that the depen-
dence of the ψn on the minisuperspace variables is weak in the sense that∣∣∣∣∇ψ0

ψ0

∣∣∣∣ �
∣∣∣∣∇ψn

ψn

∣∣∣∣ , n � 1 .

Second, we assume that the terms ∇ψn/ψn add up incoherently (‘random-phase
approximation’) so that the third term on the left-hand side of (8.46) can be
neglected compared to the first term. One then gets from (8.46)

−∇ψ0

ψ0
∇ψn − 1

2
∇2ψn + e3α

(
HnΨ

Ψ

)
ψn = ϕn(α, φ)ψ ,

where ∑
n

ϕn(α, φ) = f(α, φ) .

Since the ψn are assumed to vary much less with α and φ than ψ0 does, one
would expect the term ∇2ψn to be negligible. Finally, assuming that in Hn the
xn-derivatives dominate over the ∇-derivatives, one can substitute

HnΨ
Ψ

ψn ≈ Hnψn .

One then arrives at

−∇ψ0

ψ0
∇ψn + e3αHnψn = ϕnψn . (8.47)

The choice f = 0 in (8.46) would entail that ψ0 is a solution of the minisuperspace
Wheeler–DeWitt equation. If one chooses in addition ϕn = 0, (8.47) reads

e−3α∇ψ0

ψ0
∇ψn = Hnψn . (8.48)

If ψ0 were of WKB form, ψ0 ≈ C exp(iS0) (with a slowly varying prefactor C),
one would get

i
∂ψn

∂t
= Hnψn , (8.49)

with
∂

∂t
≡ e−3α∇S0 · ∇ . (8.50)

Equation (8.49) is a Schrödinger equation for the multipoles, its time parameter
t being defined by the minisuperspace variables α and φ. This ‘WKB time’
controls the dynamics in this approximation. The above derivation reflects the
recovery of the Schrödinger equation from the Wheeler–DeWitt equation as has
been discussed in Section 5.4.
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One could also choose the ϕn in such a way as to minimize the variation of
the ψn along WKB time,

ϕn = e3α〈Hn〉 , (8.51)

where

〈Hn〉 ≡
∫

dxn ψ∗
nHnψn∫

dxn ψ∗
nψn

.

Instead of (8.49) one then obtains

i
∂ψn

∂t
= (Hn − 〈Hn〉)ψn . (8.52)

The expectation value can be absorbed into the ψn if they are redefined by an
appropriate phase factor. The minisuperspace equation (8.45) then reads

−∇2ψ0

ψ0
+ V (α, φ) = −2e3α

∑
n

〈Hn〉 . (8.53)

The term on the right-hand side corresponds to the back reaction discussed in
Section 5.4. From the point of view of the full wave function Ψ, it is just a matter
of the splitting between ψ0 and the ψn.

Consider as a particular example the case of the tensor multipoles {dn}, which
describe gravitational waves. After an appropriate redefinition, the wave func-
tions ψn(α, φ, dn) obey the Schrödinger equations (Halliwell and Hawking 1985)

i
∂ψn

∂t
=

1
2
e−3α

(
− ∂2

∂d2
n

+ (n2 − 1)e4αd2
n

)
ψn . (8.54)

This has the form of a Schrödinger equation with ‘time-dependent’ frequency
given by

ν ≡
√

n2 − 1
eα

n�1≈ ne−α . (8.55)

The (adiabatic) ground-state solution, for example, of this equation would read

ψn ∝ exp
(
−n3d2

n

2ν2

)
exp

(
− i

2

∫ t

ds ν(s)
)

, (8.56)

see Halliwell and Hawking (1985) and Kiefer (1987). It plays a role in the dis-
cussion of primordial fluctuations in inflationary cosmology.

8.3 Boundary conditions

In this section, we shall address the following question which has been neglected
so far: what are the appropriate boundary conditions for the Wheeler–DeWitt
equation in quantum cosmology?

Since Newton it has become customary to separate the description of Nature
into dynamical laws and initial conditions. The latter are usually considered
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as artificial and can be fixed by the experimentalist, at least in principle. The
situation in cosmology is different. The Universe is unique and its boundary
conditions are certainly not at our disposal. It has, therefore, been argued that
boundary conditions play a key role in the more fundamental framework of quan-
tum cosmology. It has even been claimed that quantum cosmology is the theory
of initial conditions (see e.g. Hartle 1997; Barvinsky 2001). In the following, we
shall briefly review various proposals for boundary conditions.

8.3.1 DeWitt’s boundary condition

DeWitt (1967a) suggested to impose the boundary condition

Ψ
[
(3)G

]
= 0 (8.57)

for all three-geometries (3)G related with ‘barriers’, for example, singular three-
geometries. This could automatically alleviate or avoid the singularities of the
classical theory. Ideally, one would expect that a unique solution to the Wheeler–
DeWitt equation is obtained after this boundary condition is imposed. Whether
this is true remains unsettled. In a sense, the demand for the wave function
to go to zero for large scale factors—as has been discussed in Section 8.1 in
connection with wave packets—can be interpreted as an implementation of (8.57)
in minisuperspace. In the example of the collapsing dust shell in Section 7.4,
the wave function is also zero for r → 0, that is, at the region of the classical
singularity. In that case this is, however, not the consequence of a boundary
condition, but of the dynamics—it is a consequence of unitary time evolution.

8.3.2 No-boundary condition

This proposal goes back to Hawking (1982) and Hartle and Hawking (1983).
It is, therefore, also called the ‘Hartle–Hawking proposal’. A central role in its
formulation is played by Euclidean path integrals. In fact, the description of
black-hole thermodynamics by such path integrals was one of Hawking’s original
motivations for introducing this proposal; cf. Hawking (1979). The ‘no-boundary
condition’ states that the wave function Ψ is for a compact three-dimensional
space Σ given by the sum over all compact Euclidean four-geometries of all
topologies that have Σ as their only boundary. This means that there does not
exist a second, ‘initial’, boundary on which one would have to specify boundary
data. Formally one would write

Ψ[hab, Φ, Σ] =
∑
M

ν(M)
∫

M
DgDΦ e−SE[gµν ,Φ] . (8.58)

The sum over M expresses the sum over all four-manifolds with measure ν(M).
Since it is known that four-manifolds are not classifiable, this cannnot be put
into a precise mathematical form. The integral is the quantum-gravitational path
integral discussed in Section 2.2.1, where SE denotes the Euclidean Einstein–
Hilbert action (2.72).
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Except in simple minisuperspace models, the path integral in (8.58) cannot
be evaluated exactly. It is therefore usually being calculated in a semiclassical
(‘saddle point’) approximation. Since there exist in general several saddle points,
one must address the issue of which contour of integration has to be chosen.
Depending on the contour only part of the saddle points may contribute to the
path integral.

The integral over the four-metric in (8.58) splits into integrals over three-
metric, lapse function, and shift vector; cf. Section 5.3.4. In a Friedmann model,
only the integral over the lapse function remains and turns out to be an ordinary
integral (cf. Halliwell (1988)),

ψ(a, φ) =
∫

dN

∫
Dφ e−I[a(τ),φ(τ),N ] , (8.59)

where we have denoted the Euclidean minisuperspace action by I instead of SE.
For notational simplicity, we have denoted the arguments of the wave function
by the same letters than the corresponding functions which are integrated over
in the path integral. For the Friedmann model containing a scalar field, the
Euclidean action reads

I =
1
2

∫ τ2

τ1

dτ N

[
− a

N2

(
da

dτ

)2

+
a3

N2

(
dφ

dτ

)2

− a + a3V (φ)

]
, (8.60)

where V (φ) may denote just a mass term, V (φ) ∝ m2φ2, or include a self-
interaction such as V ∝ φ4.

How is the no-boundary proposal being implemented in minisuperspace? The
imprint of the restriction in the class of contours in (8.58) is to integrate over
Euclidean paths a(τ) with the boundary condition a(0) = 0; cf. the discussion
in Halliwell (1991). This is supposed to implement the idea of integration over
regular four-geometries with no ‘boundary’ at a = 0. (The point a = 0 has
to be viewed like the pole of a sphere, which is completely regular.) One is
often interested in discussing quantum-cosmological models in the context of
inflationary cosmology. Therefore, in evaluating (8.59), one might restrict oneself
to the region where the scalar field φ is slowly varying (‘slow-roll approximation’
of inflation). One can then neglect the kinetic term of φ and integrate over
Euclidean paths with φ(τ) ≈ constant. For a2V < 1, one gets the following two
saddle point actions (Hawking 1984; Halliwell 1991):

I± = − 1
3V (φ)

[
1 ± (1 − a2V (φ))3/2

]
. (8.61)

The action I− is obtained for a three-sphere being closed off by less than half the
four-sphere, while in evaluating I+, the three-sphere is closed off by more than
half the four-sphere.

There exist various arguments in favour of which of the two extremal actions
are distinguished by the no-boundary proposal. This can in general only be
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decided by a careful discussion of integration contours in the complex N -plane;
see, for example, Halliwell and Louko (1991) or Kiefer (1991). For the present
purpose, it is sufficient to assume that I− gives the dominant contribution (Hartle
and Hawking 1983). The wave functions ψ ∝ exp(−I±) are WKB solutions to
the minisuperspace Wheeler–DeWitt equation (8.25) in the classically forbidden
(‘Euclidean’) region. Taking into account the standard WKB prefactor, one thus
has for the no-boundary wave function (choosing I−) for a2V < 1 the expression

ψNB ∝
(
1 − a2V (φ)

)−1/4
exp

(
1

3V (φ)

[
1 − (1 − a2V (φ))3/2

])
. (8.62)

Note that the sign in the exponent has been fixed by the proposal—the WKB
approximation would also allow a solution of the form ∝ exp(− . . .). The con-
tinuation into the classically allowed region a2V > 1 is obtained through the
standard WKB connection formulae to read

ψNB ∝
(
a2V (φ) − 1

)−1/4
exp

(
1

3V (φ)

)
cos

(
(a2V (φ) − 1)3/2

3V (φ)
− π

4

)
. (8.63)

The no-boundary proposal thus picks out a particular WKB solution in the
classically allowed region. It is a real solution and can, therefore, be interpreted as
a superposition of two complex WKB solutions of the form exp(iS) and exp(−iS).

The above wave functions have been obtained for regions of slowly varying
φ. This is the context of inflationary cosmology in which one has an effective
(φ-dependent) Hubble parameter of the form

H2(φ) ≈ 4πV (φ)
3m2

P
, (8.64)

where in the simplest case one has V (φ) = m2φ2. In the units used here (3m2
P =

4π), this reads H2(φ) = V (φ). The radius of the four-sphere is a = H−1 = V −1/2.
The geometric picture underlying the no-boundary proposal is here to imagine
the dominant geometry to the path integral as consisting of two parts: half of a
four-sphere to which half of de Sitter space is attached. The matching must be
made at exactly half the four-sphere because only there is the extrinsic curvature
equal to zero. Only for vanishing extrinsic curvature, Kab = 0, is continuity
guaranteed; cf. Gibbons and Hartle (1990). The resulting geometry is called
‘Hartle–Hawking instanton’ or ‘real tunnelling geometry’; see Fig. 8.3. From
(8.61) it is clear that the action corresponding to half of the four-sphere is I =
−1/3V (φ). The solutions of the classical field equations are a(τ) = H−1 sin(Hτ)
in the Euclidean regime (0 ≤ τ ≤ π/2H) and a(t) = H−1 cosh(Ht) in the
Lorentzian regime (t > 0).

The picture of de Sitter space attached to half a four-sphere (also called
‘de Sitter instanton’) is often referred to as ‘quantum creation from nothing’
or ‘nucleation’ from the Euclidean regime into de Sitter space. However, this is
somewhat misleading since it is not a process in time, but corresponds to the
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t

Time

Time

τ = 0τ
Imaginary

Fig. 8.3. Hartle–Hawking instanton: the dominating contribution to the Eu-
clidean path integral is assumed to be half of a four-sphere attached to a
part of de Sitter space.

emergence of time (cf. Butterfield and Isham 1999). Moreover, it is far from clear
that this is really the dominant contribution from the path integral: discussions
in 2+1 dimensions, where more explicit calculations can be made, indicate that
the path integral is dominated by an infinite number of complicated topologies
(Carlip 1998). This would cast some doubt on the validity of the above saddle-
point approximation in the first place.

It is not clear that a real tunnelling geometry as described above exists in
all models. In a general situation one has to look for integration contours in
the space of complex metrics that render the path integral convergent. Consider
the quantum-cosmological example defined by the Wheeler–DeWitt equation
(8.28). As was mentioned above, the classical solutions are confined to a rectangle
centred around the origin in the (a, χ)-plane. One can explicitly construct wave
packets that follow these classical trajectories; cf. Fig. 8.2. The corresponding
quantum states are normalizable in both the a and the χ direction. A general
quantum-gravitational (cosmological) path integral depends on two values for a
and χ, called a′, a′′ and χ′, χ′′. respectively. Figure 8.4 shows the corresponding
(a′′, χ′′) space; the values for a′ and χ′ define the origin of the ‘light cones’
depicted in the Figure by bullets.

The Hartle–Hawking wave function is obtained for a′ = 0 = χ′, that is, for
the case when the light cones in Fig. 8.4 shrink to one cone centred at the origin.
For this model, the path integral can be evaluated exactly (Kiefer 1991). The
result shows that there is no contour for the path integration in the complex-
metric plane that leads to a wave function which can be used in the construction
of wave packets following the classical trajectories: the resulting wave functions
either diverge along the ‘light cones’ or they diverge for large values of a and
χ. The states are thus not normalizable, and it is not clear how they should be
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Fig. 8.4. The wave functions obtained from the path integral for the model
defined by (8.28) either diverge along the light cones in minisuperspace or
for large values of a and χ. They exhibit oscillatory behaviour in the shaded
regions.

interpreted. This gives an idea of the problems that result if one goes beyond
the semiclassical approximation.

An interesting consequence of the no-boundary proposal occurs if the inho-
mogeneous modes of Section 8.2 are taken into account. In fact, this proposal
selects a distinguished vacuum for de Sitter space—the so-called ‘Euclidean’ or
‘Bunch–Davies’ vacuum (Laflamme 1987). What is the Euclidean vacuum? In
Minkowski space, there exists a distinguished class of equivalent vacua (simply
called the ‘Minkowski vacuum’), which is invariant under the Poincaré group and
therefore the same for all inertial observers. De Sitter space is, like Minkowski
space, maximally symmetric: instead of the Poincaré group it possesses SO(4, 1)
(the ‘de Sitter group’) as its isometry group, which also has 10 parameters. It
turns out that there exists, contrary to Minkowski space, for massive quantum
fields a one-parameter family of inequivalent vacua which are invariant under
the de Sitter group; see, for example, Birrell and Davies (1982). One of these
vacua is distinguished in many respects: it corresponds to the Minkowski vac-
uum for constant a, and its mode functions are regular on the Euclidean section
t �→ τ = it + π/2H . This second property gives it the name ‘Euclidean vacuum’.
One expands as in (8.38) the scalar field into its harmonics,

Φ(x, τ) − 1√
2π

φ(τ) =
∑
{n}

fn(τ)Qn ,

but now with respect to Euclidean time τ . One then calculates the Euclidean
action for the modes {fn(τ)} and imposes the following regularity conditions
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from the no-boundary proposal:

fn(0) = 0 , n = 2, 3, . . . ,
dfn

dτ
(0) = 0 , n = 1 .

This then yields for the wave functions ψn satisfying the Schrödinger equations
(8.49) a solution that just corresponds to the Euclidean vacuum. The reason is
that essentially the same regularity conditions are required for the no-boundary
proposal and the Euclidean vacuum. In the Lorentzian section, the Euclidean
vacuum for modes with small wavelength (satisfying λ � H−1) is just given by
the state (8.56); see also Section 10.1. According to the no-boundary proposal,
the multipoles thus enter the Lorentzian regime in their ground state. Because
of its high symmetry, the de Sitter-invariant vacuum was assumed to be a nat-
ural initial quantum state even before the advent of the no-boundary condition
(Starobinsky 1979).

Hawking (1984) has put forward the point of view that the Euclidean path
integral is the true fundamental concept. The fact that a Euclidean metric usually
does not have a Lorentzian section, therefore, does not matter. Only the result—
the wave function—counts. If the wave function turns out to be exponentially
increasing or decreasing, it describes a classically forbidden region. If it is of
oscillatory form, it describes a classically allowed region—this corresponds to the
world we live in. Since one has to use in general complex integration contours
anyway, it is clear that only the result can have interpretational value, with the
formal manipulations playing only the role of a heuristic device.

8.3.3 Tunnelling condition

The no-boundary wave function calculated in the last subsection turned out to be
real. This is a consequence of the Euclidean path integral; even if complex metrics
contribute they should do so in complex-conjugate pairs. The wave function
(8.63) can be written as a sum of semiclassical components of the form exp(iS),
each of which gives rise to a semiclassical world in the sense of Section 5.4
(recovery of the Schrödinger equation). These components become independent
of each other only after decoherence is taken into account; see Section 10.1.
Alternative boundary conditions may directly give a complex wave function,
being of the form exp(iS) in the semiclassical approximation. This is achieved
by the ‘tunnelling proposal’ put forward by Vilenkin; see, for example, Vilenkin
(1988, 2003).5

The tunnelling proposal is most easily being formulated in minisuperspace.
In analogy with, for example, the process of α-decay in quantum mechanics, it is
proposed that the wave function consists solely of outgoing modes. More gener-
ally, it states that it consists solely of outgoing modes at singular boundaries of
superspace (except the boundaries corresponding to vanishing three-geometry).
In the minisuperspace example above, this is the region of infinite a or φ. What

5Like the no-boundary proposal, this usually refers to closed three-space Σ. A treatment of
‘tunnelling’ into a universe with open Σ is presented in Zel’dovich and Starobinsky (1984).
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does ‘outgoing’ mean? The answer is clear in quantum mechanics, since there
one has a reference phase ∝ exp(−iωt). An outgoing plane wave would then have
a wave function ∝ exp(ikx). But since there is no external time t in quantum
cosmology, one can call a wave function ‘outgoing’ only by definition (Zeh 1988).
In fact, the whole concept of tunnelling loses its meaning if an external time is
lacking (Conradi 1998).

We have seen in (5.22) that the Wheeler–DeWitt equation possesses a con-
served ‘Klein–Gordon current’, which here reads

j =
i
2
(ψ∗∇ψ − ψ∇ψ∗) , ∇j = 0 (8.65)

(∇ denotes again the derivatives in minisuperspace). A WKB solution of the
form ψ ≈ C exp(iS) leads to

j ≈ −|C|2∇S . (8.66)

The tunnelling proposal states that this current should point outwards at large
a and φ (provided, of course, that ψ is of WKB form there). If ψ were real (as
is the case in the no-boundary proposal), the current would vanish.

In the above minisuperspace model, we have seen that the eikonal S(a, φ),
which is a solution of the Hamilton–Jacobi equation, is given by the expression
(cf. (8.63))

S(a, φ) =
(a2V (φ) − 1)3/2

3V (φ)
. (8.67)

We would thus have to take the solution ∝ exp(−iS) since then j would, ac-
cording to (8.66), become positive and point outwards for large a and φ. For
a2V > 1, the tunnelling wave function then reads

ψT ∝ (a2V (φ) − 1)−1/4 exp
(
− 1

3V (φ)

)
exp

(
− i

3V (φ)
(a2V (φ) − 1)3/2

)
,

(8.68)
while for a2V < 1 (the classically forbidden region), one has

ψT ∝ (1 − a2V (φ))−1/4 exp
(
− 1

3V (φ)

(
1 − (1 − a2V (φ))3/2

))
. (8.69)

As for the inhomogeneous modes, the tunnelling proposal also picks out the
Euclidean vacuum.

8.3.4 Comparison of no-boundary and tunnelling wave function

An important difference between the no-boundary and the tunnelling condition
is the following: whereas the tunnelling condition is imposed in the oscillatory
regime of the wave function, the no-boundary condition is implemented in the
Euclidean regime; the oscillatory part of the wave function is then found by a
matching procedure. This leads in the above example to the crucial difference
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between ψT and ψNB that, except for the real versus complex wave function, ψT
contains a factor exp(−1/3V ), whereas ψNB has a factor exp(1/3V ). Assuming
that our branch of the wave function is in some sense dominant, these results for
the wave function have been used to calculate the probability for the occurrence
of an inflationary phase. More precisely, one has investigated whether the wave
function favours large values of φ (as would be needed for inflation) or small
values. It is clear from the above results that ψT seems to favour large φ over
small φ and therefore seems to predict inflation, whereas ψNB seems to prefer
small φ and therefore seems to predict no inflation. However, the assumption
of the slow-roll approximation (needed for inflation) is in contradiction to sharp
probability peaks; see Barvinsky (2001) and the references therein. The reason
is that this approximation demands the φ-derivatives to be small. A possible
way out of this dilemma is to take into account inhomogeneities (the higher
multipoles of Section 8.2) and to proceed to the one-loop approximation of the
wave function. This ensures the normalizability of the wave function provided
that certain restrictions on the particle content of the theory are fulfilled.

The wave function in the Euclidean one-loop approximation is given by
(Barvinsky and Kamenshchik 1990)

ΨT,NB = exp(±I − W ), (8.70)

where the T and NB refer to ‘tunnelling’ and ‘no-boundary’, respectively, I is
the classical Euclidean action,6 and W is the one-loop correction to the effective
action,

W =
1
2
tr ln

F

µ2 . (8.71)

Here, F represents the second-order differential operator which is obtained by
taking the second variation of the action with respect to the fields, while µ is a
renormalization mass parameter. It can be shown that the wave function assumes
after the analytic extension into the Lorentz regime the form

ΨT,NB =
(

1
|detu|1/2

)R

× exp
(
±I + iS +

1
2
ifT (Dv)v−1f

)
. (8.72)

Here, S is the minisuperspace part of the Lorentzian classical action, f denotes
the amplitudes of the inhomogeneities geometry and matter (Section 8.2), u de-
notes the solutions of the linearized equations for all the modes, v those solutions
referring to the inhomogeneous modes, D is a first-order differential operator
(the Wronskian related to the operator F ), and the superscript R denotes the
renormalization of the infinite product of basis functions.

6In the above example, I = −(3V )−1[1 − (1 − a2V )3/2], and exp(+I) results from the
tunnelling condition, while exp(−I) results from the no-boundary condition.
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Information concerning the normalizability of the wave function of the uni-
verse (8.72) can be obtained from the diagonal elements of the density matrix

ρ̂ = trf |Ψ〉〈Ψ|. (8.73)

It was shown in Barvinsky and Kamenshchik (1990) that the diagonal elements
(denoted by ρ(φ)) can be expressed as

ρ(φ) ∼ exp(±I − Γ1−loop) , (8.74)

where Γ1−loop is the one-loop correction to the effective action calculated on the
closed compact ‘Hartle–Hawking instanton’ (Fig. 8.3). This quantity is conve-
niently calculated by the zeta-regularization technique (Birrell and Davies 1982),
which allows Γ1−loop to be represented as

Γ1−loop = 1
2 ζ′(0) − 1

2 ζ(0) ln(µ2a2) , (8.75)

where ζ(s) is the generalized Riemann zeta function, and a is the radius of the
instanton. In the limit φ → ∞ or, equivalently, a → 0, the expression (8.74)
reduces to

ρ(φ) ∼ exp(±I)φ−Z−2 , (8.76)

where Z is the anomalous scaling of the theory, expressed in terms of ζ(0) for
all the fields included in the model. The requirement of normalizability imposes
the following restriction on Z:

Z > −1 , (8.77)

which is obtained from the requirement that the integral∫ ∞
dφ ρ(φ)

converge at φ → ∞. In view of this condition, it turns out that SUSY models
seem to be preferred (Kamenshchik 1990).

Having obtained the one-loop order, one can investigate whether the wave
function is peaked at values for the scalar field preferrable for inflation (Barvinsky
and Kamenshchik 1998; Barvinsky 2001). It turns out that this works only if the
field φ is coupled non-minimally: one must have a coupling −ξRφ2/2 in the
action with ξ < 0 and |ξ| � 1. One can then get a probability peak at a value
of φ corresponding to an energy scale needed for inflation (essentially the GUT
scale). It seems that, again, only the tunnelling wave function can fulfil this
condition, although the last word on this has not been spoken. One obtains
from this consideration also a restriction on the particle content of the theory in
order to obtain ∆φ/φ ∼ ∆T/T in accordance with the observational constraint
∆T/T ∼ 10−5 (temperature anisotropy in the cosmic microwave background).

We finally mention a difference of both conditions in view of the chosen factor
ordering (Kontoleon and Wiltshire 1996). It seems that the tunnelling condition
can only be consistently defined for particular factor orderings, in contrast to
the no-boundary condition.
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8.3.5 Symmetric initial condition

This condition has been proposed by Conradi and Zeh (1991); see also Conradi
(1992). For the wave-packet solutions of Section 8.1, we had to demand that ψ
goes to zero for α → ∞. Otherwise, the packet would not reflect the behaviour
of a classically recollapsing universe. But what about the behaviour at α → −∞
(a → 0)? Consider again the model of a massive scalar field in a Friedmann uni-
verse given by the Wheeler–DeWitt equation (8.25). The potential term vanishes
in the limit α → −∞, so the solutions which are exponentially decreasing for
large α become constant in this limit. With regard to finding normalizable solu-
tions, it would be ideal if there were a reflecting potential also at α → −∞. One
can add for this purpose in an ad hoc manner a repulsive (negative) potential
that would be of relevance only in the Planck regime. The application of loop
quantum gravity to cosmology as discussed in the next section can lead to the
occurrence of such a respulsive potential. It is also imaginable that it results from
a unification of interactions. One can, for example, choose the ‘Planck potential’

VP(α) = −C2e−2α , (8.78)

where C is a real constant. Neglecting as in the previous subsections the φ-
derivatives (corresponding to the slow-roll approximation), one can thereby se-
lect a solution to the Wheeler–DeWitt equation ((8.25) supplemented by VP)
that decreases exponentially towards α → −∞. This implements also DeWitt’s
boundary condition that ψ → 0 for α → −∞ (Section 8.3.1).

The ‘symmetric initial condition’ (SIC) now states that the full wave function
depends for α → −∞ only on α; cf. Conradi and Zeh (1991). In other words,
it is a particular superposition (not an ensemble) of all excited states of Φ and
the three-metric, that is, these degrees of freedom are completely absent in the
wave function. This is analogous to the symmetric vacuum state in field theory
before the symmetry breaking into the ‘false’ vacuum (Zeh 2001). In both cases,
the actual symmetry breaking will occur through decoherence (Section 10.1).
The resulting wave function coincides approximately with the no-boundary wave
function. Like there, the higher multipoles enter the semiclassical Friedmann
regime in their ground state. The SIC is also well suited for a discussion of the
arrow of time and the dynamical origin of irreversibility; cf. Section 10.2.

8.4 Loop quantum cosmology

8.4.1 Classical variables

The cosmological applications of quantum gravity discussed above mainly make
use of the geometrodynamical variables. However, quantum cosmology can also
be treated using the loop variables discussed in Chapter 6. The ensuing frame-
work of loop quantum cosmology was introduced by Martin Bojowald; see Bo-
jowald (2005) for a detailed review and references. The mathematical structure
of loop quantum cosmology is presented in Ashtekar et al. (2003). Similarly
to the minisuperspace approach discussed above, loop quantum cosmology is
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constructed via a truncation of the classical phase space of GR to spatially
homogeneous situations, which is then quantized by using the methods and re-
sults of loop quantum gravity (Chapter 6). Features such as the quantization
of geometric operators are thereby transferred to the truncated models. In the
present section we restrict ourselves to the simplest case of Friedmann universes;
anisotropic models as well as inhomogeneous situations can also be addressed
(Bojowald 2005).

We consider the model of a Friedmann universe containing a scalar field;
cf. Section 8.1.2. Instead of the original variables a and pa we shall use new
canonical variables which result from the truncation of the general canonical
variables holonomy and triad to the homogeneous and isotropic model. How
this truncation is performed in a mathematically clean way is shown in detail
in Bojowald (2005) and the references therein. From the triad one obtains the
single variable p̃, while the holonomy leads to the single variable c̃. How are
they defined? We shall in the following assume a Friedmann universe with finite
spatial volume V0 and allow it to be either positively curved (k = 1) or flat
(k = 0). The new variables are then obtained from the ones in Section 8.1.2 by

|p̃| = a2 , c̃ = k + βȧ , (8.79)

where from (8.9) we have

ȧ = −4πG

3V0

Npa

a
,

and β is the Barbero–Immirzi parameter introduced in Section 4.3.1. The Poisson
bracket between the new variables reads

{c̃, p̃} =
8πGβ

3V0
.

It is convenient to absorb the volume V0 into the canonical variables by the
substitution

p̃ = V
−2/3
0 p , c̃ = V

−1/3
0 c ,

leading to

{c, p} =
8πGβ

3
. (8.80)

We note that p has the physical dimension of a length squared, while c is di-
mensionless. The sign of p reflects the orientation of the triad. Both orientations
are thus present in the formalism, a feature that will play a central role in the
quantum theory.

The Hamiltonian constraint (8.10) can easily be rewritten in terms of the new
variables. If the lapse function is chosen as N = 1, it reads (using the identity
k2 = k)

H = − 3
8πG

(
(c − k)2

β2 + k2
)√

|p| + Hm ≈ 0 , (8.81)
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where in the case of the scalar field,

Hm =
1
2

(
|p|−3/2p2

φ + |p|3/2V(φ)
)

. (8.82)

The starting point is now set for the quantization.

8.4.2 Quantization

In accordance with the spirit of full loop quantum gravity we shall not quantize
c directly, but the related holonomy. For this purpose one has to consider special
holonomies constructed from isotropic connections. This introduces a parame-
ter length µ (chosen to be dimensionless) into the formalism, which captures
information about the edges and the spin labels of the spin network (µ is not
a physical length). That such a parameter appears is connected with the fact
that the reduced model still possesses a background structure, in spite of the
background independence of the full theory. This is because the spatial metric
is unique up to the scale factor, which thus introduces a conformal space as a
background.

Instead of turning the classical Poisson-bracket relation (8.80) into a com-
mutator acting on the standard Hilbert space, one makes use here of the Bohr
compactification of R.7 One starts with the algebra of almost-periodic functions
of the form

f(c) =
∑

µ

fµeiµc/2 , (8.83)

where the sum runs over a countable subset of R. The reduction procedure from
the holonomies of the full theory just leads to the factor eiµc/2. This algebra is
isomorphic to the Bohr compactification of R, R̄Bohr, which is a compact group
and contains R densely. It can be obtained as the dual group of the real line
endowed with the discrete topology. Representations of R̄Bohr are labelled by
real numbers µ and are given by

ρµ : R̄Bohr → C , c �→ eiµc .

If we had decided to quantize c directly, we would have chosen the space of square
integrable functions, L2(Rdc), as the Hilbert space. Here, instead, we choose the
space L2(R̄Bohr, dµ(c)), where dµ(c) is the Haar measure, defined by∫

R̄Bohr

dµ(c) f(c) = lim
T→∞

1
2T

∫ T

−T

dc f(c) .

The basis states are chosen to be

〈c|µ〉 = eiµc/2 , (8.84)

7This concept is named after Harald August Bohr (1887–1951), the younger brother of Niels
Bohr, who contributed much to the theory of almost-periodic functions.
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obeying
〈µ1|µ2〉 = δµ1,µ2 . (8.85)

In the standard Schrödinger representation one would here have the delta func-
tion δ(µ1 − µ2) on the right-hand side. The occurrence of the Kronecker symbol
expresses the fact that the Hilbert space is non-separable.

How is p being quantized? Since according to (8.80) it is conjugated to c, we
represent it by a derivative operator,

p̂ = −i
8πβl2P

3
d
dc

, (8.86)

leading to8

p̂|µ〉 =
4πβl2P

3
µ|µ〉 ≡ pµ|µ〉 . (8.87)

The basis states are thus eigenstates of the ‘flux operator’ p̂. This is possible
because of the orientation freedom for the triads, allowing µ ∈ R. Still, the
spectrum of p̂ is ‘discrete’ in the sense that its eigenstates |µ〉 are normalizable
(this is possible because the Hilbert space is non-separable). The discreteness of
the full theory thus survives in the truncated version. We note also the relation

êiµ′c/2|µ〉 = |µ + µ′〉 , (8.88)

from which one gets
〈µ|êiµ′c/2|µ〉 = δ0,µ′ .

From here one recognizes that the operator êiµ′c/2 is not continuous in µ, which
is why the Stone–von Neumann theorem of quantum mechanics does not apply
and one indeed obtains a representation which is inequivalent to the standard
Schrödinger representation.

We shall now turn to a discussion of the quantum Hamiltonian constraint for
the Friedmann universe with a scalar field. Consider first the matter Hamilto-
nian (8.82). The major problem is to construct a well-defined operator for the
classically diverging (in the limit a → 0) expression |p|−3/2 ∝ a−3. As can be
seen from (8.87), the operator p̂ possesses a discrete spectrum containing zero
and is thus not invertible. In order to deal with this situation one makes us of a
‘Poisson-bracket trick’ similarly to the full theory in which one uses the identity
(4.135) and transforms the Poisson bracket occurring therein into a commutator.
Here instead of |p|−3/2 one directly uses the function

d(p) =
1

3πβG

3∑
i=1

tr(τiUi{U−1
i ,

√
V })6 , (8.89)

where Ui denotes the holonomies of the isotropic connections, and V = |p|3/2

is the volume. For large p one has d(p) ∼ |p|−3/2 as required. Turning the

8The difference to the numerical factors appearing in some of the cited references is due to
the fact that in much of the literature on loop quantum cosmology 8πl2P is used instead of l2P.
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holonomies into multiplication operators and the Poisson bracket into a com-
mutator, one indeed finds a densely defined bounded operator. Its spectrum is
given by

d̂(p)|µ〉 =
(

1
2πβl2P

(
√

Vµ+1 −
√

Vµ−1)
)6

|µ〉 , (8.90)

where

Vµ ≡ |pµ|3/2 =
(

4πβl2P
3

|µ|
)3/2

; (8.91)

cf. (8.87). There are, of course, ambiguities in defining such an operator. A more
general class of functions, d(p)j,l, is obtained by introducing the parameters
j ∈ 1

2N and l, 0 < l < 1, where j arises from the freedom to use different
representations of SU(2), and l from the classical freedom in writing V −1 =
(V l−1)1/(1−l). This, then, leads to an effective matter Hamiltonian

H(eff)
m =

1
2

(
d(p)j,lp

2
φ + |p|3/2V(φ)

)
. (8.92)

The new term d(p)j,l appearing here has various consequences. It gives rise to
modified densities in the effective cosmological equations (Friedmann equation,
Raychaudhuri equation) and to a modified ‘damping term’ in the effective Klein–
Gordon equation for the scalar field. This leads to qualitative changes at small
a, since d does not go to infinity as a approaches zero. One finds an effective
repulsion which can potentially prevent the big bang. Effectively, this corresponds
to the presence of a Planck potential as has been introduced by Conradi and Zeh
(1991); cf. Section 8.3.5. The new term can also enhance the expansion of the
universe at small scales, providing a possible mechanism for inflation from pure
quantum-gravitational effects. If one takes into account inhomogeneities, it is also
imaginable to find observable effects in the anisotropy spectrum of the cosmic
microwave background.

What about the gravitational part of the Hamiltonian constraint operator?
It contains the term c2 and thus is not an almost-periodic function. One may
use instead, for example, a function proportional to δ−2 sin2 δc, where δ labels a
quantization ambiguity (there are many more such ambiguities). This reproduces
c2 in the limit for small c, which is why the classical limit follows only for small c.
The situation here is thus much more involved than for the matter Hamiltonian
where one just has to address modified densities. Expanding the general solution
of the full constraint in terms of volume eigenstates,

|ψ〉 =
∑

µ

ψµ|µ〉 , (8.93)

one arrives at the following difference equation for the coefficients of this expan-
sion,9

9Restriction is being made to a flat Friedmann universe.
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(Vµ+5δ − Vµ+3δ)ψµ+4δ(φ) − 2(Vµ+δ − Vµ−δ)ψµ(φ)

+(Vµ−3δ − Vµ−5δ)ψµ−4δ(φ) = −128π2Gβ2δ3l2P
3

Ĥm(φ)ψµ(φ) , (8.94)

where Vµ is defined in (8.91). This is an evolution equation with respect to a
discrete intrinsic time µ (Bojowald 2001a). Note, however, that the state |ψ〉
is not a volume eigenstate. Assuming that |ψ〉 is sufficiently smooth one can
recover for large scales the minisuperspace Wheeler–DeWitt equation with a
particular factor ordering (Bojowald 2001b). This provides the bridge to the
standard formalism of quantum cosmology discussed in Section 8.1.

The major result here is that the Wheeler–DeWitt equation is being replaced
near the Planck scale by a difference equation. This presents the role of the
classical singularity from a new angle. As emphasized above, there exist two
regions in the formalism differing by the sign of pµ (which is equal to the sign
of µ). These two regions are separated by degenerate geometries at µ = 0. It
now turns out that can evolve, at least for certain factor orderings, the wave
functions ψµ through µ = 0 from one region into the other. In this sense one
can claim that the classical singularity is being avoided in the quantum theory.
However, the general criteria for singularity avoidance are not yet fully clear
(Bojowald 2006). Does one have to demand that the wave function be zero at
µ = 0? As one knows from the solution of the Dirac equation for the ground state
of the hydrogen atom, the wave function there even diverges at r = 0. But what
counts is that the norm of the state is finite. So a crucial role is played by the
construction of an appropriate inner product, which beyond the kinematical level
is still a matter of debate. It is therefore important that at least all solutions of
the difference equation (8.94) can be continued through the classical singularity
(Bojowald 2006).

We conclude with some brief remarks. The discussion of loop quantum cos-
mology can be extended to anisotropic models. A non-singular quantum evolu-
tion is still possible, although matter densities are not necessarily bounded. The
behaviour of the difference equation is considered a primary feature (encoding
the dynamical properties), while the boundedness is considered secondary (en-
coding the kinematical properties); cf. Bojowald (2006). Ashtekar et al. (2006)
have investigated in detail the flat Friedmann universe with a massless scalar field
serving as an intrinsic time variable. Using an ‘improved version’ of the Hamil-
tonian constraint operator, they calculate numerically the behaviour of wave
packets. They find that the quantum evolution across the classical singularity is
possible and deterministic.

Some difficulties may result in the case of classically recollapsing universes.
Green and Unruh (2004) find that it seems impossible to avoid the divergence of
solutions (that is, non-normalizable states) in such models. This, of course, raises
questions about the interpretation of the corresponding wave function and the
possibility of recovering the classical limit. The situation seems similar, although
not identical, to the behaviour of wave packets in standard quantum cosmology
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for recollapsing universes (Kiefer 1988); cf. Section 8.1.
Results similar to those from loop quantum cosmology can also be obtained

using geometrodynamical variables if one employs the Bohr compactification
scheme, at least for the isotropic case discussed here (Husain and Winkler 2004).
Whether this also holds for anisotropic models is not clear.



9

STRING THEORY

9.1 General introduction

The approaches discussed so far start from the assumption that the gravitational
field can be quantized separately. That this can really be done is, however, not
clear. One could imagine that the problem of quantum gravity can only be solved
within a unified quantum framework of all interactions. The only serious candi-
date up to now to achieve this goal is superstring theory. Our interest here is
mainly to exhibit the role of quantum gravitational aspects. It is not our aim to
give an introduction into the many physical and mathematical aspects of string
theory. This is done in a series of excellent textbooks; see in particular Green
et al. (1987), Lüst and Theisen (1989), Polchinski (1998a,b), Kaku (1999), and
Zwiebach (2004). Mohaupt (2003) gives a concise overview with particular em-
phasis on gravitational aspects. For more details we refer the reader to these
references.

String theory started as an attempt to explain the spectrum of hadrons. After
the discovery of quantum chromodynamics and its successful predictions, it was
abandoned as such. It was, however, realized that string theory could in principle
implement a theory of quantum gravity (Scherk and Schwarz 1974; Yoneya 1974).
The main reason is the appearance of a massless spin-2 particle in the spectrum
of the string. As we have learned in Chapter 2, such a particle necessarily leads
to GR in the low-energy limit.

String theory transcends the level of local field theory because its fundamental
objects are one-dimensional entities (‘strings’) instead of fields defined at space–
time points. More recently it has turned out that higher-dimensional objects
(‘branes’) appear within string theory in a natural way and on an equal footing
with strings (see below). We shall nevertheless continue to talk about ‘string
theory’.

What are the main features of string theory?

1. String theory necessarily contains gravity. The graviton appears as an ex-
citation of closed strings. Open strings do not contain the graviton by
themselves, but since they contain closed strings as virtual contributions,
the appearance of the graviton is unavoidable there, too.

2. String theory necessarily leads to gauge theories since the corresponding
gauge bosons are found in the string spectrum.

3. String theory seems to need supersymmetry (SUSY) for a consistent for-
mulation. Fermions are therefore an essential ingredient.

279



280 STRING THEORY

4. All ‘particles’ arise from string excitations. Therefore, they are no longer
fundamental and their masses should in principle be fixed with respect to
the string mass scale.

5. Higher space–time dimensions appear in a natural way, thus implementing
the old idea by Kaluza and Klein (or some modern variant).

6. As emphasized above, string theory entails a unified quantum description
of all interactions.

7. Since one can get chiral gauge couplings from string theory, the hope is
raised that one can derive the Standard Model of elementary particles
from it (although one is still very far from having achieved this goal).

The free bosonic string has already been introduced in Section 3.2. Its fun-
damental dimensionful parameter is α′ or the string length ls =

√
2α′� derived

from it. In view of the unification idea, one would expect that ls is roughly of
the order of the Planck length lP. The starting point is the Polyakov action SP
(3.51). Making use of the three local symmetries (two diffeomorphisms and one
Weyl transformation), we have put it into the ‘gauge-fixed form’ (3.58). In this
form, the action still possesses an invariance with respect to conformal transfor-
mation, which form an infinite-dimensional group in two dimensions. It therefore
gives rise to an infinite number of generators—the generators Ln of the Virasoro
algebra (3.61).

Consider an open string with ends at σ = 0 and σ = π. Variation of the
action (3.58) yields after a partial integration the expression

δSP =
1

2πα′

∫
M

d2σ
(
ηαβ∂α∂βXµ

)
δXµ

+
∫

∂M
dτ

(
X ′

µδXµ
]
σ=π

− X ′
µδXµ

]
σ=0

)
. (9.1)

The classical theory demands that δSP = 0. For the surface term to vanish, one
has the following options. One is to demand that X ′

µ = 0 for σ = 0 and σ = π
(Neumann condition). This would guarantee that no momentum exits from the
ends of the string. Alternatively one can demand the Dirichlet condition: Xµ =
constant for σ = 0 and σ = π. This condition comes automatically into play
if the duality properties of the string are taken into account; see Section 9.2.3.
The vanishing of the worldsheet integral in the variation of SP leads to the wave
equation (

∂2

∂τ2 − ∂2

∂σ2

)
Xµ(σ, τ) = 0 . (9.2)

The solution of this equation for Neumann boundary conditions reads

Xµ(σ, τ) = xµ + 2α′pµτ + i
√

2α′
∑
n
=0

αµ
n

n
e−inτ cosnσ . (9.3)

Here, xµ and pµ denote position and momentum of the centre of mass, re-
spectively. These would be the only degrees of freedom for a point particle.
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The quantities αµ
n are the Fourier components (oscillator coordinates) and obey

αµ
−n = (αµ

n)† due to the reality of the Xµ. The solution (9.3) describes a standing
wave.

In view of the path-integral formulation, it is often convenient to continue the
worldsheet formally into the Euclidean regime, that is, to introduce worldsheet
coordinates σ1 ≡ σ and σ2 ≡ iτ . One can then use the complex coordinate

z = eσ2−iσ1
, (9.4)

with respect to which the solution (9.3) reads

Xµ(z, z̄) = xµ − iα′pµ ln(zz̄) + i

√
α′

2

∑
n
=0

αµ
n

n

(
z−n + z̄−n

)
. (9.5)

For a closed string the boundary condition Xµ(σ) = Xµ(σ +2π) is sufficient.
The solution of (9.2) can then be written as

Xµ(σ, τ) = Xµ
R(σ−) + Xµ

L (σ+) , (9.6)

where we have introduced the lightcone coordinates σ+ ≡ τ + σ and σ− ≡
τ − σ. The index R (L) corresponds to modes which would appear ‘rightmoving’
(‘leftmoving’) in a two-dimensional space–time diagram. Explicitly one has

Xµ
R(σ−) =

xµ

2
+

α′

2
pµσ− + i

√
α′

2

∑
n
=0

αµ
n

n
e−inσ−

(9.7)

and

Xµ
L (σ+) =

xµ

2
+

α′

2
pµσ+ + i

√
α′

2

∑
n
=0

α̃µ
n

n
e−inσ+

, (9.8)

where α̃µ
n denotes the Fourier components of the leftmoving modes. One can also

give a formulation with respect to z and z̄, but this will be omitted here. It is
convenient to define

α̃µ
0 = αµ

0 =

√
α′

2
pµ

for the closed string, and
αµ

0 =
√

2α′pµ

for the open string.
In Section 3.2, we introduced the string Hamiltonian; see (3.59). Inserting

into this expression the classical solution for Xµ, one obtains

H =
1
2

∞∑
n=−∞

α−nαn (9.9)

for the open string, and
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H =
1
2

∞∑
n=−∞

(α−nαn + α̃−nα̃n) (9.10)

for the closed string, and α−nαn is a shorthand for ηµναµ
−nαν

n, etc. In (3.60), we
introduced the quantities Lm for the open string; one has in particular L0 = H .
One can analogously define for the closed string

Lm =
1

πα′

∫ 2π

0
dσ e−imσT−− =

1
2

∞∑
n=−∞

αm−nαn , (9.11)

L̃m =
1

πα′

∫ 2π

0
dσ eimσT++ =

1
2

∞∑
n=−∞

α̃m−nα̃n , (9.12)

from which one obtains H = L0 + L̃0. As we have seen in Section 3.2, the Lm

(and L̃m) vanish as constraints.
Recalling that αµ

0 =
√

2α′pµ for the open string and, therefore,

α2
0 ≡ αµ

0αν
0ηµν = 2α′pµpµ ≡ −2α′M2 ,

one obtains from 0 = L0 = H for the mass M of the open string in dependence
of the oscillatory string modes, the expression

M2 =
1
α′

∞∑
n=1

α−nαn , (9.13)

and from H = L0 + L̃0 for the mass of the closed string,

M2 =
2
α′

∞∑
n=1

(α−nαn + α̃−nα̃n) . (9.14)

The variables xµ, pµ, αµ
n, and α̃µ

n obey Poisson-bracket relations which follow
from the fundamental Poisson brackets between the Xµ and their canonical
momenta Pµ (Section 3.2). Upon quantization, one obtains (setting � = 1)

[xµ, pν ] = iηµν , (9.15)
[αµ

m, αν
n] = mδm,−nηµν , (9.16)

[α̃µ
m, α̃ν

n] = mδm,−nηµν , (9.17)
[αµ

m, α̃ν
n] = 0 . (9.18)

The Minkowski metric ηµν appears because of Lorentz invariance. It can cause
negative probabilities which must be carefully avoided in the quantum theory.

The task is then to construct a Fock space out of the vacuum state |0, pµ〉,
which is the ground state of a single string with momentum pµ, not the no-string
state. The above algebra of the oscillatory modes can be written after rescaling
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as the usual oscillator algebra of annihilation and creation operators, aµ
m and

aµ†
m ,

αµ
m =

√
m aµ

m , αµ
−m =

√
m aµ†

m , m > 0 .

One therefore has

αµ
m|0, pµ〉 = α̃µ

m|0, pµ〉 = 0 , m > 0 , (9.19)

and

αµ
0 |0, pµ〉 = α̃µ

0 |0, pµ〉 =

√
α′

2
pµ|0, pµ〉 . (9.20)

The rest of the spectrum is generated by the creation operators αµ
m and α̃µ

m

for m < 0. In order to implement the conformal generators Ln in the quantum
theory, one must address the issue of operator ordering. It was already men-
tioned in Section 3.2 that this leads to the presence of a central term in the
quantum algebra; see (3.62). Consequently, one cannot impose equations of the
form Ln|ψ〉 = 0 for all n. This is different from the spirit of the Wheeler–DeWitt
equation where all constraints are implemented in this form. Instead, one can
achieve this here only for n > 0. The demand for the absence of a Weyl anomaly
on the worldsheet (see the next section) fixes the number D of the embedding
space–time to D = 26. This is also called the ‘critical dimension’. For the mass
spectrum, one then gets in the critical dimension the following expressions, which
differ from their classical counterparts (9.13) and (9.14) by constants (see e.g.
Polchinski 1998a): for the open string one has

M2 =
1
α′

( ∞∑
n=1

α−nαn − 1

)
≡ 1

α′ (N − 1) , (9.21)

where N denotes the level of excitation, while for the closed string one has

M2 =
4
α′

( ∞∑
n=1

α−nαn − 1

)
=

4
α′

( ∞∑
n=1

α̃−nα̃n − 1

)
. (9.22)

The ground state (N = 0) for the open string thus has

M2 = − 1
α′ < 0 . (9.23)

(In D dimensions, one would have M2 = (2−D)/24α′.) The corresponding par-
ticle describes a tachyon—a particle with negative mass-squared—which signals
the presence of an unstable vacuum. There may be a different vacuum which is
stable, and there is indeed some evidence that this is the case for the bosonic
string; cf. Berkovits et al. (2000). What is clear is that the presence of SUSY
eliminates the tachyon. This is one of the main motivations for introducing the
superstring (Section 9.2.4). For the first excited state, one finds

|e, pν〉 = eµαµ
−1|0, pν〉 (9.24)

with a polarization vector eµ that turns out to be transverse to the string
propagation, eµpµ = 0, and therefore corresponds in the critical dimension to
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D − 2 = 24 degrees of freedom. Since for N = 1 one has M2 = 0, this state
describes a massless vector boson (a ‘photon’). In fact, it turns out that had
we chosen D 
= 26, we would have encountered a breakdown of Lorentz invari-
ance. Excited states for N > 1 correspond to massive particles. They are usually
neglected because their masses are assumed to be of the order of the Planck
mass—this is the mass scale of unification where string theory is of relevance
(since we expect a priori that ls ∼ lP).

We emphasize that here we are dealing with higher-dimensional representa-
tions of the Poincaré group, which do not necessarily have analogues in D = 4.
Therefore, the usual terminology of speaking about photons, etc., should not be
taken literally.

For the closed string one has the additional restriction L0 = L̃0, leading to
∞∑

n=1

α−nαn =
∞∑

n=1

α̃−nα̃n .

The ground state is again a tachyon, with mass squared M2 = −4/α′. The first
excited state is massless, M2 = 0, and described by

|e, pν〉 = eµναµ
−1α̃

ν
−1|0, pν〉 , (9.25)

where eµν is a transverse polarization tensor, pµeµν = 0. The state (9.25) can be
decomposed into its irreducible parts. One thereby obtains a symmetric traceless
tensor, a scalar, and an antisymmetric tensor. The symmetric tensor describes
a spin-2 particle in D = 4 and can therefore—in view of the uniqueness features
discussed in Chapter 2—be identified with the graviton. It is at this stage that
string theory makes its first contact with quantum gravity. The perturbation
theory discussed in Chapter 2 will thus be implemented in string theory. But as
we shall see in the next section, string theory can go beyond it.

The scalar is usually referred to as the dilaton, Φ. In D = 4, the antisymmetric
tensor has also spin zero and is in this case called the axion. The fact that massless
fields appear in the open- and the closed-string spectrum is very interesting. Both
the massless vector boson as well as the graviton couple to conserved currents
and thereby introduce the principle of gauge invariance into string theory. Higher
excited states also lead for closed strings to massive (‘heavy’) particles.

Up to now we have discussed oriented strings, that is, strings whose quan-
tum states have no invariance under σ → −σ. We note that one can also have
non-oriented strings by demanding this invariance to hold. For closed strings
this invariance would correspond to an exchange between right- and left-moving
modes. It turns out that the graviton and the dilaton are also present for non-
oriented strings, but not the axion.

9.2 Quantum-gravitational aspects
9.2.1 The Polyakov path integral
We have seen in the last section that the graviton appears in a natural way in
the spectrum of closed strings. Linearized quantum gravity is, therefore, auto-
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matically contained in string theory. Here we discuss other aspects which are
relevant in the context of quantum gravity.

One can generalize the Polyakov action (3.51) to the situation of a string
moving in a general D-dimensional curved space–time. It makes sense to take
into account besides gravity other massless fields that arise in string excitations—
the dilaton and the ‘axion’. One therefore formulates the generalized Polyakov
action as

SP ≡ Sσ + Sφ + SB

= − 1
4πα′

∫
d2σ

(√
hhαβ∂αXµ∂βXνgµν(X)

−α′√h (2)RΦ(X) + εαβ∂αXµ∂βXνBµν(X)
)

. (9.26)

The fields gµν (D-dimensional metric of the embedding space), Φ (dilaton), and
Bµν (antisymmetric tensor field) are background fields, that is, they will not be
integrated over in the path integral. The fields Xµ define again the embedding of
the worldsheet into the D-dimensional space which is also called ‘target space’.
An action in which the coefficients of the kinetic term depend on the fields them-
selves (here, gµν depends on X) is for historic reasons called a non-linear sigma
model. This is why the first part on the right-hand side of (9.26) is abbreviated
as Sσ. The second part Sφ is, in fact, independent of the string parameter α′,
since in natural units (where � = 1), the dilaton is dimensionless. We emphasize
that (9.26) describes a quantum field theory on the worldsheet, not the target
space. For the latter, one uses an effective action (see below).

In string theory, it has been proven fruitful to employ a path-integral ap-
proach in which the worldsheet is taken to be Euclidean instead of Minkowskian;
cf. Section 2.2. This has the advantage that the integral over the metric is better
defined. Polchinski (1998a, p. 82) presents a formal argument why the resulting
theory is equivalent to the original Minkowskian version.

In the Euclidean formulation, where σ1 = σ and σ2 = iτ , the starting point
would thus be

Z =
∫

DXDh e−SP , (9.27)

where X and h are a shorthand for the embedding variables and the worldsheet
metric, respectively. Only these variables are to be integrated over. In order to
get a sensible expression, one must employ the gauge-fixing procedure outlined
in Section 2.2.3. The invariances on the worldsheet involve two local diffeomor-
phisms and one Weyl transformation. Since hab(σ1, σ2) has three independent
parameters, one can fix it to a given ‘fiducial’ form h̃ab, for example, h̃ab = δab

(‘flat gauge’) or h̃ab = exp[2ω(σ1, σ2)]δab (‘conformal gauge’). As discussed in
Section 2.2.3, the Faddeev–Popov determinant can be written as a path integral
over (anticommuting) ghost fields. The action in (9.27) has then to be replaced
by the full action SP +Sghost +Sgf , that is, augmented by ghost and gauge-fixing
action.



286 STRING THEORY

The full action is invariant under BRST transformations, which were already
briefly mentioned in Section 2.2.3. This is an important concept, since it encodes
the information about gauge invariance at the gauge-fixed level. For this reason,
we shall give a brief introduction here (see e.g. Weinberg 1996 for more details).
BRST transformations mix commuting and anticommuting fields (ghosts) and
are generated by the ‘BRST charge’ QB. Let φa be a general set of first-class
constraints (see Section 3.1.2),

{φa, φb} = f c
abφc . (9.28)

The BRST charge then reads

QB = ηaφa − 1
2 Pcf

c
abη

bηa , (9.29)

where ηa denotes the Faddeev–Popov ghosts and Pa their canonically conjugate
momenta (‘anti-ghosts’) obeying [ηa, Pb]+ = δa

b . We have assumed here that the
physical fields are bosonic; for a fermion there would be a plus sign in (9.29).
One can show that QB is nilpotent,

Q2
B = 0 . (9.30)

This follows from (9.28) and the Jacobi identities for the structure constants.
BRST invariance of the path integral leads in the quantum theory to the

demand that physical states should be BRST-invariant, that is,

Q̂B|Ψ〉 = 0 . (9.31)

This condition is less stringent than the Dirac condition, which states that phys-
ical states be annihilated by all constraints. Equation (9.31) can be fulfilled for
the quantized bosonic string, which is not the case for the Dirac conditions. The
quantum version of (9.30) reads[

Q̂B, Q̂B

]
+

= 0 . (9.32)

For this to be fulfilled, the total central charge of the Xµ-fields and the Faddeev–
Popov ghosts must vanish,

ctot = c + cghost = D − 26 = 0 , (9.33)

since it turns out that the ghosts have central charge −26. The string must there-
fore move in 26 dimensions. In the case of the superstring (see Section 9.2.4),
the corresponding condition leads to D = 10. The condition (9.32) thus car-
ries information about quantum anomalies (here, the Weyl anomaly) and their
possible cancellation by ghosts.1 One can prove the ‘no-ghost theorem’ (see e.g.
Polchinski 1998a): the Hilbert space arising from BRST quantization has a pos-
itive inner product and is isomorphic to the Hilbert space of transverse string
excitations.

1One can also discuss non-critical strings living in D �= 26 dimensions. They have a Weyl
anomaly, which means that different gauge choices are inequivalent.
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Fig. 9.1. The first two contributions to the scattering of two closed strings.

How can the path integral (9.27) be evaluated? The sum over all ‘paths’
contains, in particular, a sum over all worldsheets, that is, a sum over all Riemann
surfaces. In this sum, all topologies have to be taken into account. Figure 9.1
shows as an example the first two topologies which arise in the scattering of
two closed strings. It is in this way that string interactions arise—as amplitudes
in the path integral. Unlike the situation in four dimensions, the classification
of these surfaces in two dimensions is well known. Consider as an example the
dilaton part of the action (9.26),

Sφ =
1
4π

∫
d2σ

√
h (2)R Φ(X) . (9.34)

If Φ were constant, Φ(X) = λ, this would yield

Sφ = χλ = λ(2 − 2g) , (9.35)

where χ is the Euler number and g the genus of the surface. (We assume for
simplicity here that only handles are present and no holes or cross-caps.) This
then gives the contribution

e−2λ(1−g) ≡ αg−1

to the path integral, and we have introduced

α = e2λ ≡ g2
c , (9.36)

which plays the role of the ‘fine-structure constant’ for the loop expansion; gc
denotes the string-coupling constant for closed strings. Adding a handle cor-
responds to emission and re-absorption of a closed string.2 The parameter g
(meaning gc or go, depending on the situation) is the expansion parameter for
string loops. It must be emphasized that one has only one diagram at each order
of the perturbation theory, in contrast to Feynman diagrams in quantum field
theory. The reason is that point-like interactions are avoided. Such a ‘smearing’
can be done consistently in string theory, and it somehow resembles the ‘smear-
ing’ of the spin-network states discussed in Section 6.1. In this way the usual

2For the open string one finds g2
o ∝ eλ.
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divergences of quantum field theory seem to be avoided, although no proof is
yet known demonstrating finiteness at all loop orders. The sum as a whole does
not converge and is not even Borel summable (i.e. the terms in the sum increase
with n!, where n is the number of handles); see Gross and Periwal (1988). One
therefore expects that this is an asymptotic series as in QED and thus must be
an approximation to some non-perturbative theory.

In discussing scattering amplitudes, one has also to specify the ingoing and
outgoing string states, which have to be given at infinity in the spirit of an
‘S-matrix’. This is done with the help of ‘vertex operators’: in the example of
Fig. 9.1, such an operator would correspond to four point-like insertions in the
worldsheet. Vertex operators do not describe interactions, but instead the cre-
ation or annihilation of a string state at a position on the worldsheet. Vertex
operators have to be included into the expression for the path integral.

It must also be emphasized that the gauge choice fixes the worldsheet metric
only locally (e.g. to h̃ab = δab). There may, however, be additional global degrees
of freedom described by a finite number of parameters. These parameters are
called moduli. In the case of the torus (g = 1), for example, this is the Teichmüller
parameter or modulus τ ∈ C. These parameters have to be summed over in the
path integral.

For a string propagating in flat space–time, the demand for the absence of the
Weyl anomaly leads to the restriction D = 26. What about the string in a curved
space–time as described by (9.26)? The requirement that no Weyl anomaly be
present on the worldsheet leads at the tree level to an additional set of consis-
tency equations, which follow from the vanishing of renormalization-group beta
functions,

0 = Rµν − 1
4
H λρ

µ Hνλρ + 2∇µ∇νΦ + O(α′) , (9.37)

0 = ∇λHλ
µν − 2∇λΦHλµν + O(α′) , (9.38)

0 =
D − 26

6α′ + ∇µ∇µΦ − 1
2
∇µΦ∇µΦ − 1

24
HµνρH

µνρ + O(α′) . (9.39)

Here we have introduced the field strength Hµνρ connected with the antisym-
metric tensor field,

Hµνρ = 3! ∂[µBνρ] .

The above set of equations (which in the highest order correspond to the Einstein
equations in the presence of dilaton and antisymmetric tensor field) builds the
bridge to the concept of effective action in string theory. As in Section 2.2.3,
effective actions are useful to connect the full theory with phenomenology.

9.2.2 Effective actions

The consistency equations (9.37)–(9.39) follow as field equations from the fol-
lowing effective action in D space–time dimensions:
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Seff =
1

2κ2
0

∫
dDx

√
−g e−2Φ

(
R − 2(D − 26)

3α′ − 1
12

HµνρHµνρ

+4∇µΦ∇µΦ + O(α′)
)

. (9.40)

Higher orders exhibit powers of α′ and are thus genuine string corrections. They
contain, for example, higher curvature terms, which means that one has to replace
in (9.37)

Rµν → Rµν +
α′

2
RµκλτR κλτ

ν + . . . .

The approximation of a classical space–time metric is well defined only if the
curvature scale rc associated with it obeys

rc � ls .

It has been speculated that a ‘non-metric phase’ will appear if this condition is
violated (see e.g. Horowitz (1990), Greene (1997), and the references therein).
The expansion of the effective action into powers of α′ is thus a low-energy
expansion.

One can make a comparison of the effective action with a ‘Jordan–Brans–
Dicke’ type of action, which contains an additional scalar field in the gravitational
sector. There one would have a kinetic term of the form −4ω∇µΦ∇µΦ, where ω
denotes the Brans–Dicke parameter (GR is recovered for ω → ∞). Comparison
with (9.40) exhibits that string theory would correspond to ω = −1. If the field
Φ were really massless—as suggested by (9.40)—this would be in conflict with
observations because the additional interaction of matter fields with Φ in addition
to the metric would violate the equivalence principle (cf. Lämmerzahl 2003). The
latter has been tested with great accuracy. One would, however, expect that the
dilaton gets a mass term from the higher-order terms in α′ so that no conflict
with observation would arise. Because of the natural occurrence of the dilaton
from string theory, theories with a scalar field in addition to the metric (‘scalar-
tensor theories’) are widely studied; cf. Fuji and Maeda (2003).

We emphasize that (9.37) are the Einstein equations describing the coupling
of the dilaton and the axion to the metric. It is interesting that these space–time
equations follow from the Weyl invariance on the worldsheet. This gives one of
the most important connections between the string and gravity.

One can also perform a Weyl transformation in space–time in order to put Seff
into a form in which the first term is just the space–time Ricci scalar without
the dilaton. This is sometimes called the ‘Einstein frame’ in contrast to the
‘string’ or ‘Jordan frame’ of (9.40). While this new form is convenient for various
situations, the physical form is given by (9.40), as can be seen from the behaviour
of test particles—the physical metric is gµν , not the Weyl-transformed metric.
The Jordan frame is also distinguished by the fact that the standard fields are
coupled minimally to the metric.
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We have already emphasized above that the space–time metric, dilaton, and
axion play only the role of background fields. The simplest solution for them is

gµν = ηµν , Bµν = 0 , Φ = const. = λ .

It is usually claimed that quite generally the stationary points of Seff correspond
to possible ground states (‘vacua’) of the theory. String theory may, in fact,
predict a huge number of such vacua; cf. Douglas (2003). The space of all string-
theory vacua is also called the ‘landscape’ (Susskind 2003). A selection criterion
for the most probable wave function propagating on such a landscape background
is discussed in Mersini-Houghton (2005).

It is clear from (9.39) that D = 26 is a necessary condition for the solution
with constant background fields. Thus, we have recovered the old consistency
condition for the string in flat space–time. There are now, however, solutions of
(9.39) with D 
= 26 and Φ 
= constant, which would correspond to a solution
with a large cosmological constant ∝ (D − 26)/6α′, in conflict with observation.

The parameter κ0 in (9.40) does not have a physical significance by itself since
it can be changed by a shift in the dilaton. The physical gravitational constant
(in D dimensions) reads

16πGD = 2κ2
0e

2λ . (9.41)

Apart from α′-corrections, one can also consider loop corrections to (9.40). Since
gc is determined by the value of the dilaton, see (9.36), the tree-level action
(9.40) is of order g−2

c . The one-loop approximation is obtained at order g0
c , the

two-loop approximation at order g2
c , and so on.3

In Section 9.1, we saw that the graviton appears as an excitation mode for
closed strings. What is the connection to the appearance of gravity in the effective
action (9.40)? Such a connection is established through the ansatz

gµν = ḡµν +
√

32πGfµν

(cf. (2.76)) and making a perturbation expansion in the effective action with
respect to fµν . It then turns out that the term of order fµν just yields the vertex
operator for the string graviton state (see e.g. Mohaupt 2003). Moreover, it is
claimed that exponentiating this graviton vertex operator leads to a ‘coherent
state’ of gravitons. The connection between the graviton as a string mode and
gravity in the effective action thus proceeds via a comparison of scattering am-
plitudes. For example, the amplitude for graviton–graviton scattering from the
scattering of strings at tree level coincides with the field-theoretic amplitude of
the corresponding process at tree level as being derived from Seff . The reason
for this coincidence is the vanishing of the Weyl anomaly for the worldsheet.
The coincidence continues to hold at higher loop order and at higher orders in
α′ ∼ l2s . Since the string amplitude contains the parameter α′ and the effective

3For open strings, odd orders of the coupling (go) also appear.
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action contains the gravitational constant GD, the comparison of the amplitudes
yields a connection between both; see, for example, Veneziano (1993),

GD ∼ g2lD−2
s , (9.42)

where g is again the string-coupling constant (here we do not distinguish between
open and closed strings and write for simplicity just g for the string coupling).
An analogous relation holds between gauge couplings for grand unified theories
and the string length.

Since we do not live in 26 dimensions, a connection must be made to the
four-dimensional world. This is usually done through compactification of the ad-
ditional dimensions which have the form of ‘Calabi–Yau manifolds’; cf. Candelas
et al. (1985). In this way, one obtains a relation between the four-dimensional
gravitational constant and the string length,

G ∼ g2l2s , (9.43)

in which the details of the compactification enter into geometric factors. Ideally,
one would like to recover in this way other parameters such as particle masses
or the number of families from the details of compactification. One is, however,
still far away from this goal.

The finiteness of the string length ls leads to an automatic cutoff at high
momenta. It thus seems impossible to resolve arbitrarily small distances in an
operational sense. In fact, one can derive from gedanken experiments of scattering
situations, a generalized uncertainty relation of the form

∆x >
�

∆p
+

l2s
�

∆p ; (9.44)

cf. Veneziano (1993) and the references therein. This seems to match the idea
of a minimal length which we have also encountered in the canonical approach
(Section 6.2), although, for example, D-branes (Section 9.2.3) can probe smaller
scales.

How many fundamental constants appear in string theory? This has been
a matter of some debate; see Duff et al. (2002). We adopt here the standpoint
already taken in Chapter 1 that three dimensionful constants are needed, which
can be taken to be c, �, and ls.

9.2.3 T-duality and branes

In this subsection, we shall introduce the concept of T-duality, from which one
is led in a natural way to the concept of D-branes. The ‘T’ arises from the fact
that one assumes here that the higher dimensions are compactified on tori.

The classical solutions for the closed string are given in Section 9.1. In order
to introduce the concept of duality, we take the left- and rightmoving modes of
the closed string as independent, that is, we write
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Xµ
R(σ−) =

xµ

2
+

√
α′

2
αµ

0 (τ − σ) + · · · , (9.45)

Xµ
L (σ−) =

x̃µ

2
+

√
α′

2
α̃µ

0 (τ + σ) + · · · , (9.46)

where · · · stands for ‘oscillators’ (this part does not play a role in the following
discussion). The sum of both thus yields

Xµ =
1
2

(xµ + x̃µ) +

√
α′

2
(αµ

0 + α̃µ
0 ) τ +

√
α′

2
(α̃µ

0 − αµ
0 )σ + · · · . (9.47)

The oscillators are invariant under σ → σ + 2π, but the Xµ transform as

Xµ → Xµ + 2π

√
α′

2
(α̃µ

0 − αµ
0 ) . (9.48)

We now distinguish between a non-compact direction of space and a compact
direction; see in particular Polchinski (1998a) for the following discussion. In the
non-compact directions, the Xµ must be unique. One then obtains for them from
(9.48)

α̃µ
0 = αµ

0 =

√
α′

2
pµ . (9.49)

This is the situation encountered before and one is back at Eqns (9.7) and (9.8).
For a compact direction the situation is different. Assume that there is one com-
pact direction with radius R in the direction µ = 25. The coordinate X25 ≡ X
thus has period 2πR. Under σ → σ + 2π, X can now change by 2πwR, w ∈ Z,
where w is called the ‘winding number’. These modes are called ‘winding modes’
because they can wind around the compact dimension. Since exp(2πiRp25) gen-
erates a translation around the compact dimension which must lead to the same
state, the momentum p25 ≡ p must be discretized,

p =
n

R
, n ∈ Z . (9.50)

From
p =

1√
2α′ (α̃0 + α0)

(α0 is a shorthand for α25
0 , etc.) one gets for these ‘momentum modes’ the relation

α̃0 + α0 =
2n

R

√
α′

2
. (9.51)

For the winding modes, one has from (9.48)

2π

√
α′

2
(α̃0 − α0) = 2πwR
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and therefore

α̃0 − α0 = wR

√
2
α′ . (9.52)

This then yields

α0 =
(

n

R
− wR

α′

)√
α′

2
≡ pR

√
α′

2
, (9.53)

α̃0 =
(

n

R
+

wR

α′

)√
α′

2
≡ pL

√
α′

2
. (9.54)

For the mass spectrum, one obtains

M2 = −
∑
µ
=25

pµpµ + p2 =
4
α′

( ∞∑
n=1

α−nαn − 1

)
+

2(α0)2

α′

=
4
α′

( ∞∑
n=1

α̃−nα̃n − 1

)
+

2(α0)2

α′ . (9.55)

The expressions in parentheses correspond to the excitation level of the right-
and left-moving modes, respectively, in the non-compact dimensions (the sum
there runs over µ 
= 25).

Of particular interest are the limiting cases R → ∞ and R → 0. For R → ∞
one gets

α0 → − wR√
2α′ , α̃0 → wR√

2α′ . (9.56)

Since M2 → ∞ for w 
= 0, all states become infinitely massive in this case. For
w = 0, on the other hand, one gets a continuum of states for all n. For R → 0,
one gets

α0 → n

R

√
α′

2
, α̃0 → n

R

√
α′

2
. (9.57)

For n 
= 0, all states get infinitely massive, while for n = 0, one has a continuum
for all w. These are the winding states that can wind around the extra dimension
without cost of energy (note that H0 = (α2

0+α̃2
0) → 0 for n = 0). This is a typical

feature of string theory related to the presence of one-dimensional objects and
has no counterpart in field theory. We recognize from (9.53) and (9.54) that there
is a symmetry between R and the ‘dual radius’ RD,

R ↔ RD ≡ α′

R
=

l2s
2R

, (9.58)

which corresponds to

n ↔ w , α0 ↔ −α0 , α̃0 ↔ α̃0 . (9.59)

The mass spectrum in both cases is identical. The above duality between R
and RD is called ‘T-duality’. It is an exact symmetry of perturbation theory
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(and beyond) for closed strings. The critical value is, of course, obtained for
R ∼ RD ∼ ls, which is just the length of the string, as expected.

It is useful for the discussion below to go again to Euclidean space,

z = eσ2−iσ1
, σ1 = σ , σ2 = iτ .

Equation (9.47) then reads

Xµ(z, z̄) = Xµ
R(z) + Xµ

L (z̄)

=
xµ + x̃µ

2
− i

√
α′

2
(α̃µ

0 + αµ
0 )σ2 +

√
α′

2
(α̃µ

0 − αµ
0 )σ1 + . . .

T−→ −Xµ
R(z) + Xµ

L (z̄) . (9.60)

What happens for the open string? In the limit R → 0, it has no possibility
of winding around the compactified dimension and therefore seems to live only
in D − 1 dimensions. There are, however, closed strings present in the theory
of open strings, and the open string can in particular have vibrations into the
25th dimension. Only the endpoints of the open string are constrained to lie on a
(D−1)-dimensional hypersurface. For the vibrational part in the 25th dimension,
one can use the expression (9.60) for the closed string. Choosing X25 ≡ X in
this equation yields

X =
x + x̃

2
+

√
α′

2
(α̃0 − α0)σ1 − i

√
α′

2
(α̃0 + α0)σ2 + . . . , (9.61)

so that one gets for its dual

XD =
x + x̃

2
+

√
α′

2
(α̃0 + α0)σ1 − i

√
α′

2
(α̃0 − α0)σ2 + . . . , (9.62)

that is, X ↔ XD corresponds to −iσ2 ↔ σ1, leading in particular to

X ′
D ≡ ∂XD

∂σ1 ↔ i
∂X

∂σ2 ≡ iẊ .

Integration yields

XD(π) − XD(0) =
∫ π

0
dσ1 X ′

D = i
∫ π

0
dσ1 Ẋ .

Inserting Ẋ following from (9.3) yields

XD(π) − XD(0) = 2πα′p =
2πα′n

R
= 2πnRD , n ∈ Z ,

where only vibrational modes were considered. The dual coordinates thus obey
a Dirichlet-type condition (an exact Dirichlet condition would arise for n = 0;
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cf. the remarks before (9.2)). Since, therefore, XD(π) and XD(0) differ by a
multiple of the internal circumference 2πRD of the dual space, the endpoints
must lie on a (D − 1)-dimensional hypersurface. Consideration of several open
strings reveals that it is actually the same hypersurface. This hypersurface is
called a D-brane where ‘D’ refers to the Dirichlet condition holding normal to
the brane. Sometimes one refers to it more precisely as the ‘Dp-brane’, where p
is the number of space dimensions.

A D-brane is a dynamical object since momentum can leak out of the string
and is absorbed by the brane (this cannot happen with a Neumann boundary
condition which still holds in the directions tangential to the plane). A D-brane is
a soliton of string theory and can be described by an action that resembles an ac-
tion proposed long ago by Born and Infeld to describe non-linear electrodynamics
(it was then meant as a candidate for a modification of linear electrodynamics at
short distances). A D-brane can carry generalized electric and magnetic charges.

The above discussion can be extended to the presence of gauge fields. The
reason behind this is that open strings allow additional degrees of freedom called
‘Chan–Paton factors’. These are ‘charges’ i and j (i, j = 1, . . . , n) which reside at
the endpoints of the string (historically one was thinking about quark–antiquark
pairs). One can introduce a U(n) symmetry acting on (and only on) these charges.
One can get from this the concept of U(n) gauge bosons living on the branes
(one can have n branes at different positions).

Interestingly, n coinciding D-branes give rise to ‘n × n’-matrices for the em-
bedding variables Xµ and the gauge fields Aa. One thus arrives at space–time
coordinates that do not commute, giving rise to the notion of non-commutative
space–time. It has been argued that the D-brane action corresponds to a Yang–
Mills action on a non-commutative worldvolume. Details are reviewed, for ex-
ample, in Douglas and Nekrasov (2002).

The concept of D-branes is especially interesting concerning gravitational
aspects. First, it plays a crucial role for the derivation of the black-hole entropy
from counting microscopic degrees of freedom (Section 9.2.5). The second point
has to do with the fact that these branes allow one to localize gauge and matter
fields on the branes, whereas the gravitational field can propagate through the
full space–time. This gives rise to a number of interesting features discussed in
the context of ‘brane worlds’; cf. Section 9.2.6.

9.2.4 Superstrings

So far, we have not yet included fermions, which are necessary for a realistic
description of the world. Fermions are implemented by the introduction of SUSY,
which we have already discussed in Sections 2.3 and 5.3.6. In contrast to the
discussion there, we shall here introduce SUSY on the worldsheet, not on space–
time. This will help us to get rid of problems of the bosonic string, such as the
presence of tachyons. A string with SUSY is called ‘superstring’. Worldsheet
SUSY will be only indirectly related to space–time SUSY. We shall be brief in
our discussion and refer the reader to, for example, Polchinski (1998b) for more
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details.
We start by introducing on the worldsheet the superpartners for the Xµ—

they are called ψµ
A, where µ is a space–time vector index and A is a worldsheet

spinor index (A = 1, 2). The ψµ
A are taken to be Majorana spinors and have,

thus, two real components,

ψµ =
(

ψ−
ψ+

)
. (9.63)

They are not to be confused with the gravitinos, which are trivial in two dimen-
sions.

The ‘superversion’ of the (flat) Polyakov action (3.58) is the ‘RNS action’
(named after Ramond, Neveu, and Schwarz). It reads

SRNS = − 1
4πα′

∫
M

d2σ
(
∂αXµ∂αXµ + iψ̄µρα∂αψµ

)
, (9.64)

where the ρα denote two-dimensional Dirac matrices (suppressing worldsheet
spinor indices). Thus, they obey[

ρα, ρβ
]
+ = 2ηαβ . (9.65)

The RNS action is invariant under global SUSY transformations on the world-
sheet. The classical equations of motion are (9.2) and

ρα∂αψµ = 0 . (9.66)

To make SUSY on the worldsheet explicit, one can formulate the theory in a
two-dimensional ‘superspace’ described by worldsheet coordinates (σ, τ) and two
additional Grassmann coordinates θA. This must not be confused with the super-
space of canonical gravity discussed in Chapters 4 and 5! We shall not elaborate
on this formalism here.

Compared to the bosonic string, new features arise in the formulation of
the boundary conditions. Considering first the open string, the demand for a
vanishing surface term in the variation of the action allows two possible boundary
conditions for the fermions:

1. Ramond (R) boundary conditions: ψ is periodic (on a formally doubled
worldsheet), and the sum in the mode expansion is over n ∈ Z.

2. Neveu–Schwarz (NS) boundary conditions: ψ is antiperiodic, and the sum
is over n ∈ Z + 1/2 (this is possible because a relative sign is allowed for
spinors).

It turns out that for consistency one must really have both types of boundary
conditions in the theory, the R-sector and the NS-sector of Hilbert space.

For the closed string one can demand that ψ+ and ψ− are either periodic (R)
or antiperiodic (NS). Since they are independent, one gets four types of boundary
conditions: R–R, NS–R, R–NS, and NS–NS. Again, they must all be taken into
account for consistency.
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What about quantization? From the Xµ-part, one gets as before the com-
mutation relations (9.16)–(9.18) for the αµ

n and the α̃µ
n. For the superstring, one

has in addition anticommutators for the fermionic modes. They are of the type

[bµ
m, bν

n]+ = ηµνδm,−n , (9.67)

etc. One finds a SUSY extension of the Virasoro algebra, which again has a
central charge. The demand for the vanishing of the Weyl anomaly leads this
time to D = 10 dimensions for the superstring.

Consider first the case of closed strings.4 The NS–NS sector yields, as in the
bosonic case, a tachyonic ground state. At M = 0, one finds again a graviton,
a dilaton, and an antisymmetric tensor field (‘axion’ in four dimensions). The
R–R sector yields antisymmetric tensor gauge fields, while the NS–R sector gives
space–time fermions. The R–NS sector contains an exchange of left- and right-
moving fermions compared to the NS–R sector. Among these fermions are the
massless gravitinos. In this sense, string theory contains space–time supergrav-
ity (SUGRA); see Section 2.3. An important notion (for both open and closed
strings) is the ‘GSO projection’ (named after Gliozzi, Scherk, and Olive). It re-
moves the tachyon and makes the spectrum supersymmetric. Moreover, it must
necessarily be implemented in the quantum theory. In the R–R sector, the GSO
projection applied on ground states can yield states of the opposite or of the
same chirality. In the first case, one talks about type IIA superstring (which is
non-chiral), in the latter case, about type IIB superstring (which is chiral). Types
IIA and IIB are oriented closed superstrings with N = 2 SUSY. After the GSO
projection, there is no longer a tachyon in the NS–NS sector, but one still has
the graviton, the dilaton, and the axion as massless states (for both types IIA
and IIB). In the NS–R and the R–NS sectors, one is left with two gravitinos and
two dilatinos (the SUSY partners of the dilaton), which have opposite chiralities
for type IIA and the same chirality for type IIB.

In the case of open strings, one gets in the NS sector a tachyonic ground state
and a massless gauge boson. In the R-sector, all states are space–time spinors.
Again, one gets rid of the tachyon by applying the GSO projection. This leads to
the type I superstring—the only consistent theory with open (and closed) strings
(the strings here are non-oriented). It must have the gauge group SO(32) and
has N = 1 SUSY. In the closed-string sector of type I theory, one must project
type IIB onto states which are invariant under worldsheet parity in order to get
non-oriented strings. There remain the graviton, the dilaton, a two-form field,
one gravitino, and one dilatino. From the open-string sector, one gets massless
vector and spinor fields.

In addition to types I, IIA, and IIB, there exists a consistent hybrid construc-
tion for closed strings combining the bosonic string with type II superstrings.
This is referred to as ‘heterotic string’; the right-moving part is taken from type
II and the left-moving part is from the bosonic string. It possesses N = 1 SUSY.

4We neglect all massive states in our discussion.
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There exist two different versions referring to gauge groups SO(32) and E8×E8,
respectively. Anomaly-free chiral models for particle physics can, thus, be con-
structed from string theory for these gauge groups. This has raised the hope that
the Standard Model of strong and electroweak interactions can be derived from
string theory—a hope, however, which up to now has not been realized.

To summarize, one has found (the weak-field limit of) five consistent string
theories in D = 10 dimensions. To find the theory in four dimensions, one has
to invoke a compactification procedure. Since no principle has yet been found to
fix this, there are a plenty of consistent string theories in four dimensions and it
is not clear which one to choose.

This is, however, not yet the end of the story. Type IIA theory also contains
D0-branes (‘particles’); cf. Witten (1995). If one has n such D0-branes, their
mass M is given by

M =
n

g
√

α′ . (9.68)

In the perturbative regime g � 1, this state is very heavy, while in the strong-
coupling regime g → ∞, it becomes lighter than any perturbative excitation.
The mass spectrum (9.68) resembles a Kaluza–Klein spectrum; cf. the beginning
of Section 9.2.6. It thus signals the presence of an 11th dimension with radius

R11 = g
√

α′ . (9.69)

The 11th dimension cannot be seen in string perturbation theory, which is a
perturbation theory for small g. Since D = 11 is the maximal dimension in which
SUSY can exist, this suggests a connection with 11-dimensional SUGRA. It is
generally believed that the five string theories are the perturbative limits of one
fundamental theory of which 11-dimensional SUGRA is a low-energy limit. This
fundamental theory, about which little is known, is called M-theory. A particular
proposal of this theory is ‘matrix theory’ which employs only a finite number of
degrees of freedom connected with a system of D0-branes (Banks et al. 1997).
Its fundamental scale is the 11-dimensional Planck length. The understanding
of M-theory is indeed very limited. It is, for example, not yet possible to give
a full non-perturbative calculation of graviton–graviton scattering, one of the
important processes in quantum gravity (see Chapter 2).

In Section 9.2.3, we have discussed the notion of T-duality, which connects
descriptions of small and large radii. There is a second important notion of
duality called ‘S-duality’, which relates the five consistent superstring theories
to each other. Thereby the weak-coupling sector (g � 1) of one theory can be
connected to the strong-coupling sector (g � 1) of another (or the same) theory.

9.2.5 Black-hole entropy
In Section 7.3, we have reviewed attempts to calculate the Bekenstein–Hawking
entropy (7.17) by counting microscopic degrees of freedom in canonical quan-
tum gravity; see also the remarks in Section 8.1.3 on the situation in (2+1)-
dimensional gravity. What can string theory say about this issue? It turns out
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that one can give a microscopic foundation for extremal black holes and black
holes that are close to extremality. ‘Extremal’ is here meant with respect to the
generalized electric and magnetic charges that can be present in the spectrum of
string theory. It is analogous to the situation for an extremal Reissner–Nordström
black hole (Section 7.1). We shall be brief in the following and refer the reader
to, for example, Horowitz (1998) and Peet (1998) for reviews.

The key idea to the string calculation of (7.17) is the notion of S-duality
discussed at the end of the last subsection. A central role is played by so-called
‘BPS states’ (named after Bogomolnyi, Prasad, and Sommerfield), which have
the important property that they are invariant under a non-trivial subalgebra
of the full SUSY algebra. As a consequence, their mass is fixed in terms of their
charges and their spectrum is preserved while going from a weak-coupling limit
of string theory to a strong-coupling limit. In the weak-coupling limit, a BPS
state can describe a bound state of D-branes whose entropy Ss can be easily
calculated. In the strong-coupling limit, the state can describe an extremal black
hole whose entropy can be calculated by (7.17). Interestingly, both calculations
lead to the same result. This was first shown by Strominger and Vafa (1996)
for an extremal hole in five dimensions. It has to be emphasized that all these
calculations are being done in the semiclassical regime in which the black hole
is not too small. Its final evaporation has therefore not yet been addressed.

We give here only some heuristic arguments why this result can hold and
refer to the above references for details. The level density dN of a highly excited
string state with level of excitation N is (for open strings) in the limit N → ∞
given by

dN ∼ e4π
√

N ≈ eM/M0 , (9.70)

where (9.21) has been used, and

M0 ≡ 1
4π

√
α′ . (9.71)

The temperature T0 ≡ M0/kB connected with M0 is called ‘Hagedorn temper-
ature’ or ‘temperature of the hell’ because the free energy diverges when T0 is
approached (signalling a phase transition). The expression for dN can be under-
stood as follows. Dividing a string with energy M into two parts with energies
M1 and M2, respectively, one would expect that M = M1 + M2. The number of
states would then obey

dN (M) = dN (M1)dN (M2) = dN (M1 + M2) ,

from which a relation of the form (9.70) follows. Using from statistical physics
the formula dN = exp(Ss), one finds for the ‘string entropy’

Ss ∝ M ∝
√

N . (9.72)

Since the gravitational constant depends on the string coupling (see (9.43)), the
effective Schwarzschild radius RS = 2GM increases if g is increased and a black
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hole can form if g becomes large enough. On the other hand, starting from a black
hole and decreasing g, one finds that once RS is smaller than ls, a highly excited
string state is formed; cf. Horowitz and Polchinski (1997). It seems, however,
that (9.72) is in contradiction with the Bekenstein–Hawking entropy, which is
(for the Schwarzschild case) proportional to M2, not M . That this is not a
problem follows from the g-dependence of the gravitational constant. Following
Horowitz (1998), we compare the mass M ∼

√
N/ls of a string with the mass

MBH ∼ RS/G of the black hole when RS ≈ ls,

MBH ∼ RS

G
≈ ls

G
∼ M ∼

√
N

ls
,

leading to l2s /G ∼
√

N . The entropy of the black hole is then given by

SBH ∼ R2
S

G
≈ l2s

G
∼

√
N

and thus comparable to the string entropy (9.72). Strings thus possess enough
states to yields the Bekenstein–Hawking entropy. It is most remarkable that
the exact calculation yields (for BPS states) an exact coincidence between both
entropies. The fact that RS ≈ ls in the above estimate does not mean that the
black hole is small: eliminating in the above expressions ls in favour of the Planck
length lP ∼

√
G, one finds

RS ∼ N1/4lP .

Since N � 1, the Schwarzschild radius RS is much bigger than the Planck
length—again a consequence of the fact that G varies with g, while ls is fixed.

The exact calculations mentioned above refer to extremal black holes, for
which the Hawking temperature is zero (see Section 7.1). It was, however, pos-
sible to generalize the result to near-BPS states. Hawking radiation is then non-
vanishing and corresponds to the emission of a closed string from a D-brane. If
the D-brane state is traced out, the radiation is described by a thermal state.
This is in accordance with Section 7.2 where it has been argued that unitarity
is preserved for the full system and the mixed appearance of Hawking radiation
arises from quantum entanglement with an ‘environment’, leading to decoherence
(cf. Section 10.1). In the present case, the environment would be a system of D-
branes. One would thus not expect any information-loss paradox to be present.
In fact, the calculations in string theory preserve—in their range of validity—
unitarity.

It is interesting that the calculations can recover the exact cross-sections for
the black hole, including the grey-body factor Γωl in (7.12). Unfortunately, it was
not yet possible to extend these exact results to generic black holes. An exact
treatment of the Schwarzschild black hole, for example, remains elusive.

Sub-leading corrections to both SBH and Ss have been calculated and shown
to be connected with higher curvature terms; cf. Mohaupt (2001) and the refer-
ences therein.
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The Bekenstein–Hawking entropy is calculated from the surface of the hori-
zon, not from the volume inside. The idea that for a gravitating system the
information is located on the boundary of some spatial region is called the ‘holo-
graphic principle’ (see Bousso (2002) for a review). More generally, the principle
states that the number of degrees of freedom in a volume of a spatial region is
equal to that of a system residing on the boundary of that region. Apparently
this gives rise to non-local features.

A realization of the holographic principle in string theory seems to be the
‘AdS/CFT-correspondence’; see Aharony et al. (2000) for a review. This is the
second approach besides matrix theory to learn something about M-theory. The
AdS/CFT-correspondence states that non-perturbative string theory in a back-
ground space–time which is asymptotically anti-de Sitter (AdS) is dual to a
conformal field theory (CFT) defined in a flat space–time of one less dimension.
Type IIB string theory on an asymptotically AdS5 × S5 space–time (called the
‘bulk’) may serve as a concrete example. This is supposed to be dual to a CFT
which is (3+1)-dimensional SUSY Yang–Mills theory with gauge group U(n).
Since the conformal boundary of AdS5 is R × S3, whose dimension agrees with
that of the CFT, one claims that the CFT is defined on the boundary of AdS
space. This cannot be meant literally, since a boundary cannot in general be
separated from the enclosed volume because of quantum entanglement between
both. It should also be mentioned that in a more recent version of AdS/CFT,
one can compare genuine string calculations with calculations in gauge theories;
cf. Berenstein et al. (2002).

The AdS/CFT-correspondence (also called the ‘AdS/CFT conjecture’) asso-
ciates fields in string theory with operators in the CFT and compares expecta-
tion values and symmetries in both theories. An equivalence at the level of the
quantum states in both theories has not been shown. As long as no independent
non-perturbative definition of string theory exists, the AdS/CFT conjecture can-
not be proven. This correspondence is often interpreted as a non-perturbative
and mostly background-independent definition of string theory, since the CFT
is defined non-perturbatively and the background metric enters only through
boundary conditions at infinity; cf. Horowitz (2005). Full background indepen-
dence in the sense of canonical quantum gravity has, however, not yet been
implemented.

9.2.6 Brane worlds

String theory employs higher dimensions for its formulation. The idea of using
higher dimensions for unified theories goes back to the pioneering work of Kaluza
and Klein in the 1920s; see, for example, Lee (1984) for a collection of reviews
and an English translation of the original papers. In the simplest version, there
is one additional space dimension, which is compactified to a circle with circum-
ference 2πR. We label the usual four dimensions by coordinates xµ and the fifth
dimension by y. One can get easily in such a scenario particle masses in four
dimensions from a massless five-dimensional field. Assuming for simplicity that
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the metric is flat, the dynamical equation for a massless scalar field Φ in five
dimensions is given by the wave equation

�5Φ(xµ, y) = 0 , (9.73)

where �5 is the five-dimensional d’Alembert operator. Making a Fourier expan-
sion with respect to the fifth dimension,

Φ(xµ, y) =
∑

n

ϕn(xµ)einy/R , n ∈ Z , (9.74)

one obtains for the ϕn(xµ) an effective equation of the form(
�4 −

n2

R2

)
ϕn(xµ) = 0 , (9.75)

where �4 is the four-dimensional d’Alembert operator. Equation (9.75) is nothing
but the four-dimensional Klein–Gordon equation for a massive scalar field ϕn(xµ)
with mass

mn =
|n|
R

. (9.76)

From the four-dimensional point of view one thus has a whole ‘Kaluza–Klein
tower’ of particles with increasing masses. For low energies E � 1/R, the massive
Kaluza–Klein modes remain unexcited and only the massless mode for n = 0
remains. The higher dimensions only show up for energies beyond 1/R. Since no
evidence has been seen yet at accelerators for the massive modes, the size of the
fifth dimension must be very small, definitely smaller than about 10−17 cm.

The Kaluza–Klein scenario has been generalized in various directions. In Sec-
tion 9.2.3, we have seen that the notion of T-duality in string theory gives rise
to the concept of D-branes. Gauge and matter fields are localized on the brane,
whereas gravity can propagate freely through the higher dimensions (the bulk).
One can, therefore, assume that our observed four-dimensional world is, in fact,
such a brane being embedded in higher dimensions. This gives rise to various
‘brane-world scenarios’ which often are very loosely related to string theory itself,
taking from there only the idea of a brane without giving necessarily a dynamical
justification from string theory. A general review is Rubakov (2001).

In one scenario, the so-called ‘ADD’ approach, the brane tension (energy per
unit three-volume of the brane) and therefore its gravitational field is neglected;
see Arkani-Hamed et al. (1998) and Antoniadis et al. (1998). A key ingredient
in this approach is to take the extra dimensions compact (as in the standard
Kaluza–Klein approach) but not microscopically small. The reason for this pos-
sibility is the fact that only gravity can probe the extra dimensions, and the
gravitational attraction has only been tested down to distances of about 0.2
mm. Any value for R with R � 0.1 mm would thus be allowed. This could
give a clue for understanding the ‘hierarchy problem’ in particles physics—the
problem why the electroweak scale (at about 1 TeV) is so much smaller than
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the Planck scale mP ≈ 1019 GeV. This works as follows.5 One starts with the
Einstein–Hilbert action in D = 4 + d dimensions,

SEH =
1

16πGD

∫
d4xddy

√
−gD

(D)R , (9.77)

where the index D refers to the corresponding quantities in D dimensions. We
denote by m∗ the D-dimensional Planck mass, that is,

GD =
1

mD−2∗
=

1
md+2∗

,

where d = D − 4 is the number of extra dimensions. Assuming that the D-
dimensional metric is (approximately) independent of the extra dimensions la-
belled by y, one gets from (9.77) an effectively four-dimensional action,

SEH =
Vd

16πGD

∫
d4x

√
−g4

(4)R , (9.78)

where Vd ∼ Rd denotes the volume of the extra dimensions. Comparison with
the four-dimensional Einstein–Hilbert action (1.1) gives the connection between
m∗ and the four-dimensional Planck mass,

mP ∼ m∗(m∗R)d/2 . (9.79)

The four-dimensional Planck mass is thus big (compared to the weak scale) be-
cause the size of the extra dimensions is big. Thereby the hierarchy problem
is transferred to a different problem: why is R so big? This reformulation has
two advantages. First, a unified theory such as string theory might give an ex-
planation for the size of R. Second, it opens the possibility of observing the
extra dimensions, either through scattering experiments at colliders or through
sub-mm tests of Newton’s law; see Rubakov (2001) and the references therein.
Higher-dimensional theories generically predict a violation of the Newtonian 1/r-
potential at some scale. No sign of the extra dimensions, however, has been seen
up to now.

Both in the traditional Kaluza–Klein and the ADD scenario, the full metric
factorizes6 into the four-dimensional part describing our macroscopic dimensions
and the (compact) part referring to the extra dimensions. Such an assumption is,
however, not obligatory. If factorization does not hold, one talks about a ‘warped
metric’. The extra dimensions can be compact or infinite in size. A warped metric
occurs, for example, if the gravitational field produced by the brane is taken into

5It was also suggested that this huge discrepancy in scales may have a cosmological origin;
cf. Hogan (2000).

6Factorization here means that the D-dimensional metric can be put into block-diagonal
form, in which one block is the four-dimensional metric, and where the various blocks do not
depend on the coordinates referring to the other blocks.
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account. We shall briefly describe one particular model with two branes put
forward by Randall and Sundrum (1999). There is one extra dimension, and the
bulk has an AdS geometry. All four-dimensional slices have the same geometry
(they are flat), but the higher-dimensional space–time is curved.

The action of this model is given by the following expression in which the
index I = ± enumerates the two branes with tensions σ±:

S[ G, g, φ ] = S5[ G ] +
∑

I

∫
ΣI

d4x

(
Lm(φ, ∂φ, g) − g1/2σI +

1
8πG5

[K]
)

,

S5[ G ] =
1

16πG5

∫
M5

d5xG1/2
(

(5)R(G) − 2Λ5

)
. (9.80)

Here, S[ G, g, φ ] is the action of the five-dimensional gravitational field with
the metric G = GAB(x, y), A = (µ, 5), µ = 0, 1, 2, 3 propagating in the bulk
space–time (xA = (x, y), x = xµ, x5 = y), and matter fields φ are confined
to the branes ΣI , which are four-dimensional time-like surfaces embedded in
the bulk. The branes carry the induced metrics g = gµν(x) and the matter
field Lagrangians Lm(φ, ∂φ, g). The bulk part of the action contains the five-
dimensional gravitational and cosmological constants, G5 and Λ5, while the brane
parts have four-dimensional cosmological constants σI . The bulk cosmological
constant Λ5 is negative and is thus capable of generating an AdS geometry,
while the brane cosmological constants play the role of brane tensions σI and,
depending on the model, can be of either sign. The Einstein–Hilbert bulk action
in (9.80) is accompanied by the brane surface terms (cf. (1.1)) containing the
jump of the extrinsic curvature trace [K] associated with both sides of each
brane.

The fifth dimension has the topology of a circle labelled by the coordinate y,
−d < y ≤ d, with an orbifold Z2-identification of points y and −y.7 The branes
Σ+ and Σ− are located at antipodal fixed points of the orbifold, y = y±, y+ =
0, |y−| = d, respectively; see Fig. 9.2. When they are empty, Lm(φ, ∂φ, gµν) = 0,
and their tensions are opposite in sign and fine-tuned to the values of Λ5 and
G5,

Λ5 = − 6
l2

, σ+ = −σ− =
3

4πG5l
, (9.81)

this model admits a solution with an AdS metric in the bulk (l is its curvature
radius),

ds2 = dy2 + e−2|y|/lηµνdxµdxν , (9.82)

0 = y+ ≤ |y| ≤ y− = d, and with a flat induced metric ηµν on both branes. The
metric on the negative tension brane is rescaled by the ‘warp factor’ exp(−2d/l).

7An orbifold is a coset space M/G, where G is a group of discrete symmetries of the manifold
M . Here we deal with the special case of an S1/Z2-orbifold.
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Fig. 9.2. The situation in the Randall–Sundrum model with two branes. The
warp factor is a(y) = exp(−|y|/l).

This could provide a solution to the hierarchy problem in this model; see Randall
and Sundrum (1999). With the fine tuning (9.81) this solution exists for an
arbitrary brane separation d—the two flat branes stay in equilibrium. Their
flatness is the result of a compensation between the bulk cosmological constant
and the brane tensions. We note that the distance between the branes need not
be big, unlike the ADD scenario. This is because of the exponential decrease of
the gravitational ‘force’ between the branes.

More generally one considers the Randall–Sundrum model with small matter
sources for metric perturbations hAB(x, y) on the background of this solution,

ds2 = dy2 + e−2|y|/lηµνdxµdxν + hAB(x, y) dxAdxB , (9.83)

such that this five-dimensional metric induces on the branes two four-dimensional
metrics of the form

g±
µν(x) = a2

± ηµν + h±
µν(x) . (9.84)

Here the scale factors a± = a(y±) can be expressed in terms of the interbrane
distance,

a+ = 1, a− = e−2d/l ≡ a , (9.85)

and h±
µν(x) are the perturbations by which the brane metrics g±

µν(x) differ from
the (conformally) flat metric in the Randall–Sundrum solution (9.82).

Instead of using the Kaluza–Klein formalism with its infinite tower of modes,
one can employ an alternative formalism which captures more the spirit of the
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holographic principle and the AdS/CFT correspondence. This results in the cal-
culation of a non-local effective action for the branes; see Barvinsky et al. (2003a)
for details. This action is a functional of the induced metrics on both branes.
One can also derive a reduced action which depends only on one brane (the vis-
ible brane, which is taken here to be σ+). These effective actions contain all the
physical information that is available on the brane(s). Interesting applications are
inflationary cosmology and gravitational-wave interferometry. The latter arises
because this model has light massive graviton modes in addition to the massless
graviton. The mixing of these modes can lead to gravitational-wave oscillations
analogous to neutrino oscillations. The parameters of these oscillations depend
crucially on the size of the extra dimension. Such an effect can in principle be
observed with current gravitational-wave interferometers. This mechanism and
its phenomenology are discussed in Barvinsky et al. (2003b) to which we refer
the reader for more details.
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QUANTUM GRAVITY AND THE INTERPRETATION OF
QUANTUM THEORY

10.1 Decoherence and the quantum universe

The central concept in quantum theory is the superposition principle. It consists
of a kinematical and a dynamical part; cf. Joos et al. (2003). The kinematical
part declares that for any two physical states Ψ1 and Ψ2, the sum c1Ψ1 + c2Ψ2
(with c1, c2 ∈ C) is again a physical state. This expresses the linear structure of
Hilbert space and gives rise to the important notion of quantum entanglement
between systems. The dynamical part refers to the linearity of the Schrödinger
equation. If Ψ1(t) and Ψ2(t) are solutions, then the sum c1Ψ1(t) + c2Ψ2(t) is
again a solution. The superposition principle has so far passed all experimental
tests; cf. Schlosshauer (2006).

The superposition principle remains untouched in most approaches to quan-
tum gravity. This holds in particular for quantum GR and string theory, which
are both discussed in this book. There exist suggestions about a gravity-induced
breakdown of the superposition principle; see for example, Penrose (1996) and
the discussion in Chapter 8 of Joos et al. (2003). However, no such mechanism
was developed to a technical level comparable with the approaches discussed
here.

If the superposition principle is universally valid, quantum gravity allows the
superposition of macroscopically different metrics. This has drastic consequences
in particular for quantum cosmology (Chapter 8) where it would be difficult to
understand why we observe a classical universe at all. In some interpretations
of quantum mechanics, notably the Copenhagen interpretation(s), an external
observer is invoked who ‘reduces’ the wave function from the superposition to
the observed component. In quantum cosmology, on the other hand, no such
external measuring agency is available, since the universe contains by definition
everything. A reduction (or collapse) of the wave function by external observers
would then be impossible. How, then, does the classical appearance of our uni-
verse emerge? In the last decades, one has reached an understanding of how
classical properties can emerge within quantum mechanics. It is an amazing fact
that the key role in this process is played by the superposition principle itself,
through the process of decoherence. Following Kiefer (2003b), we shall give a
brief introduction to decoherence in quantum mechanics and then extrapolate
decoherence into the realm of quantum cosmology (Section 10.1.2). An exhaus-
tive treatment can be found in Joos et al. (2003); see also Zurek (2003) and
Schlosshauer (2004).

307
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10.1.1 Decoherence in quantum mechanics

If quantum theory is universally valid, every system should be described in quan-
tum terms, and it would be inconsistent to draw an a priori border line between
a quantum system and a classical apparatus. John von Neumann was the first
who analysed in 1932 the measurement process within quantum mechanics; see
von Neumann (1932). He considers the coupling of a system (S) to an apparatus
(A), see Fig. 10.1.

S A�

Fig. 10.1. Original form of the von Neumann measurement model.

If the states of the measured system that are discriminated by the apparatus
are denoted by |n〉 (e.g. spin up and spin down), an appropriate interaction
Hamiltonian has the form

Hint =
∑

n

|n〉〈n| ⊗ Ân . (10.1)

The operators Ân act on the states of the apparatus and are rather arbitrary, but
must, of course, depend on the ‘quantum number’ n. Equation (10.1) describes
an ‘ideal’ interaction during which the apparatus becomes correlated with the
system state, without changing the latter. There is thus no disturbance of the
system by the apparatus—on the contrary, the apparatus is disturbed by the
system (in order to yield a measurement result).

If the measured system is initially in the state |n〉 and the device in some
initial state |Φ0〉, the evolution according to the Schrödinger equation with the
Hamiltonian (10.1) reads

|n〉|Φ0〉 t−→ exp (−iHintt) |n〉|Φ0〉 = |n〉 exp
(
−iÂnt

)
|Φ0〉

≡ |n〉|Φn(t)〉 . (10.2)

The resulting apparatus states |Φn(t)〉 are often called ‘pointer states’. A process
analogous to (10.2) can also be formulated in classical physics. The essential
new quantum features now come into play when one considers a superposition
of different eigenstates (of the measured ‘observable’) as the initial state. The
linearity of time evolution immediately leads to(∑

n

cn|n〉
)
|Φ0〉 t−→

∑
n

cn|n〉|Φn(t)〉 . (10.3)

But this state is a superposition of macroscopic measurement results (of which
Schrödinger’s cat is just one drastic example)! To avoid such a bizarre state,
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and to avoid the apparent conflict with experience, von Neumann introduced a
dynamical collapse of the wave function as a new law. The collapse should then
select one component with the probability |cn|2.

Can von Neumann’s conclusion and the introduction of a collapse be avoided?
The crucial observation that enforces an extension of von Neumann’s measure-
ment theory is the fact that macroscopic objects (such as measurement devices)
are so strongly coupled to their natural environment that a unitary treatment
as in (10.2) is by no means sufficient and has to be modified to include the
environment (Zeh 1970); cf. Fig. 10.2.

S A� E��
�

Fig. 10.2. Realistic extension of the von Neumann measurement model includ-
ing the environment. Classical properties emerge through the unavoidable,
irreversible interaction of the apparatus with the environment.

Fortunately, this can be easily done to a good approximation, since the inter-
action with the environment has in many situations the same form as given by
the Hamiltonian (10.1): the measurement device is itself ‘measured’ (passively
recognized) by the environment, according to(∑

n

cn|n〉|Φn〉
)
|E0〉 t−→

∑
n

cn|n〉|Φn〉|En〉. (10.4)

This is again a macroscopic superposition, now including the myriads of degrees
of freedom pertaining to the environment (gas molecules, photons, etc.). How-
ever, most of these environmental degrees of freedom are inaccessible. Therefore,
they have to be integrated out from the full state (10.4). This leads to the reduced
density matrix for system plus apparatus, which contains all the information that
is available there. It reads

ρSA ≈
∑

n

|cn|2|n〉〈n| ⊗ |Φn〉〈Φn| if 〈En|Em〉 ≈ δnm , (10.5)

since under realistic conditions, different environmental states are orthogonal to
each other. Equation (10.5) is identical to the density matrix of an ensemble of
measurement results |n〉|Φn〉. System and apparatus thus seem to be in one of
the states |n〉 and |Φn〉, given by the probability |cn|2.

Both system and apparatus thus assume classical properties through the un-
avoidable, irreversible interaction with the environment. This dynamical process,
which is fully described by quantum theory, is called decoherence. It is based on
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the quantum entanglement between apparatus and environment. Under ordi-
nary macroscopic situations, decoherence occurs on an extremely short time-
scale, giving the impression of an instantaneous collapse or a ‘quantum jump’.
Recent experiments were able to demonstrate the continuous emergence of clas-
sical properties in mesoscopic systems (Hornberger et al. 2003; Joos et al. 2003).
Therefore, one would never ever be able to observe a weird superposition such
as Schrödinger’s cat, because the information about this superposition would
almost instantaneously be delocalized into unobservable correlations with the
environment, resulting in an apparent collapse for the cat state.

The interaction with the environment distinguishes the local basis with re-
spect to which classical properties (unobservability of interferences) hold. This
‘pointer basis’ must obey the condition of robustness, that is, it must keep its
classical appearance over the relevant time-scales; cf. Zurek (2003). Classical
properties are thus not intrinsic to any object, but only defined by their inter-
action with other degrees of freedom. In simple (Markovian, i.e. local in time)
situations, the pointer states are given by localized Gaussian states (Diósi and
Kiefer 2000). They are, in particular, relevant for the localization of macroscopic
objects.

The ubiquitous occurrence of decoherence renders the interpretational prob-
lem of quantum theory at present largely a ‘matter of taste’ (Zeh 1994). Provided
one adopts a realistic interpretation without additional variables,1 the alterna-
tives would be to have either an Everett interpretation or the assumption of a
collapse for the total system (including the environment). The latter would have
to entail an explicit modification of quantum theory, since one would have to in-
troduce non-linear or stochastic terms into the Schrödinger equation in order to
achieve this goal. The Everett interpretation assumes that all components of the
full quantum state exist and are real. Decoherence produces robust macroscopic
branches, one of which corresponds to the observed world. Interferences with the
other branches are suppressed, so decoherence readily explains the observation
of an apparent collapse of the wave function, independent of whether there is a
real collapse for the total system or not. The question is thus whether one applies
Ockham’s razor2 to the equations or the intuition (Zeh 1994): either one has to
complicate the formalism in order to have just one macroscopic branch or one
retains the linear structure of quantum theory and has to accept the existence
of ‘many worlds’.

10.1.2 Decoherence in quantum cosmology
In this subsection, we investigate the question: how can one understand the clas-
sical appearance of global space–time variables such as the radius (scale factor)
of the universe? If decoherence is the fundamental process, we have to identify a
‘system’ and an ‘environment’. More precisely, we have to differentiate between
relevant and irrelevant variables. All degrees of freedom exist, of course, within

1The Bohm theory would be an example for a realistic approach with additional variables.
2‘Pluralitas non est ponenda sine necessitate’.
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the universe. It has been suggested by Zeh (1986) that the irrelevant degrees
of freedom are the variables describing density fluctuations and gravitational
waves. Their interaction with the scale factor and other homogeneous degrees
of freedom (such as an inflaton field) can render the latter classical. In a sense,
then, a classical space–time arises from a ‘self-measurement’ of the universe.

The following discussion will roughly follow Joos et al. (2003). Calculations
for decoherence in quantum cosmology can be performed in the framework of
quantum geometrodynamics (Kiefer 1987), using the formalism of the Wheeler–
DeWitt equation presented in Chapters 5 and 8. A prerequisite is the validity of
the semiclassical approximation (Section 5.4) for the global variables. This brings
an approximate time parameter t into play. The irrelevant degrees of freedom
(density fluctuations, gravitational waves) are described by the inhomogeneous
variables of Section 8.2. In Kiefer (1987), the relevant system was taken to be the
scale factor (‘radius’) a of the universe together with a homogeneous scalar field
φ (the ‘inflaton’); cf. the model discussed in Section 8.1.2. The inhomogeneous
modes of Section 8.2 can then be shown to decohere the global variables a and
ϕ.

An open problem in Kiefer (1987) was the issue of regularization; the number
of fluctuations is infinite and would cause divergences, so an ad hoc cut-off was
suggested to consider only modes with wavelength bigger than the Planck length.
The problem was again addressed in Barvinsky et al. (1999a) where a physically
motivated regularization scheme was introduced. In the following, we shall briefly
review this approach.

As a (semi)classical solution for a and φ, one may use

φ(t) ≈ φ, (10.6)

a(t) ≈ 1
H(φ)

cosh H(φ)t , (10.7)

where H2(φ) = 4πV (φ)/3m2
P is the Hubble parameter generated by the inflaton

potential V (φ), cf. Section 8.3.2. It is approximately constant during the infla-
tionary phase in which φ slowly ‘rolls down’ the potential. We take into account
fluctuations of a field f(t,x) which can be a field of any spin (not necessarily
a scalar field Φ). Space is assumed to be a closed three-sphere, so f(t,x) can
be expanded into a discrete series of spatial orthonormal harmonics Qn(x); cf.
Section 8.2,

f(t,x) =
∑
{n}

fn(t)Qn(x) . (10.8)

One can thus represent the fluctuations by the degrees of freedom fn (in Sec-
tion 8.2, fn were the modes of a scalar field Φ).

The aim is now to solve the Wheeler–DeWitt equation in the semiclassical
approximation. This leads to the following solution:

Ψ(t|φ, f) =
1√
v∗

φ(t)
e−I(φ)/2+iS0(t,φ)

∏
n

ψn(t, φ|fn) . (10.9)
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The time t that appears here is the semiclassical (‘WKB’) time and is defined
by the background-degrees of freedom a and φ through the ‘eikonal’ S0, which
is a solution of the Hamilton–Jacobi equation; cf. (8.50). Since φ is determined
by a within a semiclassical branch of the wave function, only one variable (a
or φ) occurs in the argument of Ψ. The wave functions ψn for the fluctua-
tions fn obey each an approximate Schrödinger equation (8.49) with respect to
t, and their Hamiltonians Hn have the form of a (‘time-dependent’) harmonic-
oscillator Hamiltonian. The first exponent in (10.9) contains the Euclidean action
I(φ) from the classically forbidden region (the ‘de Sitter instanton’) and is in-
dependent of t. Its form depends on the boundary conditions imposed, and we
shall here choose the no-boundary condition of Section 8.3.2., which amounts
to I(φ) ≈ −3m4

P/8V (φ). The detailed form is, however, not necessary for the
discussion below. The function vφ(t) in (10.9) is the so-called basis function for
φ and is a solution of the classical equation of motion.

For the ψn, we shall take the de Sitter-invariant vacuum state (the Euclidean
vacuum discussed in Section 8.3.2). It reads

ψn(t, φ|fn) =
1√

v∗
n(t)

exp
(
−1

2
Ωn(t)f2

n

)
, (10.10)

Ωn(t) = −ia3(t)
v̇∗

n(t)
v∗

n(t)
. (10.11)

The functions vn are the basis functions of the de Sitter-invariant vacuum state;
they satisfy the classical equation of motion

Fn

(
d
dt

)
vn ≡

(
d
dt

a3 d
dt

+ a3m2 + a(n2 − 1)
)

vn = 0 (10.12)

with the boundary condition that they should correspond to a standard Minkowski
positive-frequency function for constant a. In the simple special case of a spatially
flat section of de Sitter space, one would have

avn =
e−inη

√
2n

(
1 − i

nη

)
, (10.13)

where η is the conformal time defined by adη = dt. We note that it is the corre-
sponding negative-frequency function that enters the exponent of the Gaussian,
see (10.11).

An important property of these vacuum states is that their norm is conserved
along any semiclassical solution (10.6) and (10.7),

〈
ψn|ψn

〉
≡

∫
dfn|ψn(fn)|2 =

√
2π[∆n(φ)]−1/2, (10.14)

∆n(φ) ≡ ia3(v∗
nv̇n − v̇∗

nvn) = constant . (10.15)
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Note that ∆n(φ) is just the (constant) Wronskian corresponding to (10.12).3 We
must emphasize that ∆n is a non-trivial function of the background variable φ,
since it is defined on the full configuration space and not only along semiclassi-
cal trajectories. In a sense, it gives the weights in the ‘Everett branches’. It is
therefore not possible to normalize the ψn artificially to one, since this would be
inconsistent with respect to the full Wheeler–DeWheeler equation (Barvinsky et
al. 1999a).

The solution (10.9) forms the basis for our discussion of decoherence. Since
the {fn} are interpreted as the environmental degrees of freedom, they have to
be integrated out to get the reduced density matrix (cf. (10.5)) for φ or a (a
and φ can be used interchangeably, since they are connected by t). The reduced
density matrix thus reads here

ρ(t|φ, φ′) =
∫

df Ψ(t|φ, f)Ψ∗(t|φ′, f) , (10.16)

where Ψ is given by (10.9), and it is understood that df =
∏

n dfn. After the
integration, one finds

ρ(t|φ, φ′) = C
1√

v∗
φ(t)v′

φ(t)
exp

[
− 1

2
I − 1

2
I ′ + i(S0 − S′

0)
]

×
∏
n

[
v∗

nv′
n(Ωn + Ω′∗

n )
]−1/2

, (10.17)

where C is a numerical constant. The diagonal elements ρ(t|φ, φ) describe the
probabilities for certain values of the inflaton field to occur.

It is convenient to rewrite the expression for the density matrix (10.17) in
the form

ρ(t|φ, φ′) = C
∆1/4

φ ∆′1/4
φ√

v∗
φ(t)v′

φ(t)
exp

(
−1

2
Γ − 1

2
Γ′ + i(S0 − S′

0)
)

×D(t|φ, φ′) , (10.18)

where

Γ = I(φ) + Γ1−loop(φ) (10.19)

is the full Euclidean effective action including the classical part and the one-loop
part (cf. Section 2.2.4). The latter comes from the next-order WKB approxima-
tion and is important for the normalizability of the wave function with respect
to φ. The last factor in (10.18) is the decoherence factor

3The corresponding Wronskian for the homogeneous mode φ is ∆φ ≡ ia3(v∗φv̇φ − v̇∗φvφ).



314 INTERPRETATION

D(t|φ, φ′) =
∏
n

(
4ReΩn Re Ω′∗

n

(Ωn + Ω′∗
n )2

)1/4
(

vn

v∗
n

v
′∗
n

v′
n

)1/4

. (10.20)

It is equal to one for coinciding arguments. While the decoherence factor is time-
dependent, the one-loop contribution to (10.18) does not depend on time and
may play a role only at the onset of inflation. In a particular model with non-
minimal coupling (Barvinsky et al. 1997), the size of the non-diagonal elements
is at the onset of inflation approximately equal to those of the diagonal elements.
The universe would thus be essentially quantum at this stage, that is, in a non-
classical state.

The amplitude of the decoherence factor can be rewritten in the form

|D(t|φ, φ′)| = exp
1
4

∑
n

ln
4Re Ωn Re Ω′∗

n

|Ωn + Ω′∗
n |2 . (10.21)

The convergence of this series is far from being guaranteed. Moreover, the diver-
gences might not be renormalizable by local counterterms in the bare quantized
action. We shall now analyse this question in more detail.

We start with a minimally coupled massive scalar field. Equation (10.12) for
the basis functions reads

d
dt

(
a3 dvn

dt

)
+ a3

(
n2 − 1

a2 + m2
)

vn = 0 . (10.22)

The appropriate solution to this equation is

vn(t) = (coshHt)−1P−n

− 1
2 +i

√
m2/H2−9/4

(i sinhHt) , (10.23)

where P denotes an associated Legendre function of the first kind. The corre-
sponding expression for (10.11) is for large mass m given by

Ωn = a2
[√

n2 + m2a2 + i sinhHt

(
1 +

1
2

m2a2

n2 + m2a2

)]
+ O

(
1
m

)
.(10.24)

The leading contribution to the amplitude of the decoherence factor is therefore

ln |D(t|φ, φ′)| � 1
4

∞∑
n=0

n2 ln
4a2a′2√n2 + m2a2

√
n2 + m2a′2(

a2
√

n2 + m2a2 + a′2√n2 + m2a′2)2 . (10.25)

The first term, n2, in the sum comes from the degeneracy of the eigenfunctions.
This expression has divergences which cannot be represented as additive func-
tions of a and a′. This means that no one-argument counterterm to Γ and Γ′ in
(10.18) can cancel these divergences of the amplitude (Paz and Sinha 1992). One
might try to apply standard regularization schemes from quantum field theory,
such as dimensional regularization. The corresponding calculations have been
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performed in Barvinsky et al. (1999a) and will not be given here. The important
result is that, although they render the sum (10.25) convergent, they lead to a
positive value of this expression. This means that the decoherence factor would
diverge for (φ−φ′) → ∞ and thus spoil one of the crucial properties of a density
matrix—the boundedness of tr ρ̂2. The dominant term in the decoherence factor
would read

ln |D| =
π

24
(ma)3 + O(m2), a � a′ , (10.26)

and would thus be unacceptable for a density matrix. Reduced density matrices
are usually not considered in quantum field theory, so this problem has not been
encountered before. A behaviour such as in (10.26) is even obtained in the case of
massless conformally invariant fields, for which one would expect a decoherence
factor equal to one, since they decouple from the gravitational background. How,
then, does one have to proceed in order to obtain a sensible regularization?

The crucial point is to perform a redefinition of environmental fields and to
invoke a physical principle to fix this redefinition. The situation is somewhat
analogous to the treatment of the S-matrix in quantum field theory: off-shell
S-matrix and effective action depend on the parametrization of the quantum
fields, in analogy to the non-diagonal elements of the reduced density matrix.
In Laflamme and Louko (1991) and Kiefer (1992) it has been proposed within
special models to rescale the environmental fields by a power of the scale factor. It
was therefore suggested in Barvinsky et al. (1999a) to redefine the environmental
fields by a power of the scale factor that corresponds to the conformal weight of
the field (which is defined by the conformal invariance of the wave equation). For
a scalar field in four space–time dimensions, this amounts to a multiplication by
a,

vn(t) → ṽn(t) = a vn(t) , (10.27)

Ω̃n = −ia
d
dt

ln ṽ∗
n . (10.28)

An immediate test of this proposal is to see whether the decoherence factor is
equal to one for a massless conformally invariant field. In this case, the basis
functions and frequency functions read, respectively,

ṽ∗
n(t) =

(
1 + i sinhHt

1 − i sinhHt

)n/2

, (10.29)

Ω̃n = −ia
d
dt

ln ṽ∗
n(t) = n . (10.30)

Hence, D̃(t|φ, φ′) ≡ 1. The same holds for the electromagnetic field (which in
four space–time dimensions is conformally invariant). It is interesting to note that
the degree of decoherence caused by a certain field depends on the space–time
dimension, since its conformal properties are dimension-dependent.
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For a massive minimally coupled field, the new frequency function reads

Ω̃n =
[√

n2 + m2a2 + i sinhHt

(
1
2

m2a2

n2 + m2a2

)]
+ O(1/m) . (10.31)

Note that, in contrast to (10.24), there is no factor of a2 in front of this expression.
Since (10.31) is valid in the large-mass limit, it corresponds to modes that evolve
adiabatically on the gravitational background, the imaginary part in (10.31)
describing particle creation.

It turns out that the imaginary part of the decoherence factor has at most log-
arithmic divergences and, therefore, affects only the phase of the density matrix.
Moreover, these divergences decompose into an additive sum of one-argument
functions and can thus be cancelled by adding counterterms to the classical
action S0 (and S′

0) in (10.18) (Paz and Sinha 1992). The real part is simply con-
vergent and gives a finite decoherence amplitude. This result is formally similar
to the result for the decoherence factor in QED (Kiefer 1992).

For a � a′ (far off-diagonal terms), one gets the expression

|D̃(t|φ, φ′)| � exp
[
− (ma)3

24

(
π − 8

3

)
+ O(m2)

]
. (10.32)

Compared with the naively regularized (and inconsistent) expression (10.26), π
has effectively been replaced by 8/3 − π. In the vicinity of the diagonal, one
obtains

ln |D̃(t|φ, φ′)| = −m3πa(a − a′)2

64
, (10.33)

a behaviour similar to (10.32).
An interesting case is also provided by minimally coupled massless scalar

fields and by gravitons. They share the basis- and frequency functions in their
respective conformal parametrizations,

ṽ∗
n(t) =

(
1 + i sinhHt

1 − i sinhHt

)n/2 (
n − i sinhHt

n + 1

)
, (10.34)

Ω̃n =
n(n2 − 1)

n2 − 1 + H2a2 − i
H2a2

√
H2a2 − 1

n2 − 1 + H2a2 . (10.35)

They differ only by the range of the quantum number n (2 ≤ n for inhomoge-
neous scalar modes and 3 ≤ n for gravitons) and by the degeneracies of the nth
eigenvalue of the Laplacian,

dim(n)scal = n2 , (10.36)
dim(n)grav = 2(n2 − 4). (10.37)

For far off-diagonal elements one obtains the decoherence factor

|D̃(t|φ, φ′)| ∼ e−C(Ha)3 , a � a′, C > 0 , (10.38)
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while in the vicinity of the diagonal one finds

|D̃(t|φ, φ′)| ∼ exp
(
−π2

32
(H − H ′)2t2e4Ht

)
, (10.39)

∼ exp
(
−π2H4a2

8
(a − a′)2

)
, Ht � 1 . (10.40)

These expressions exhibit a rapid disappearance of non-diagonal elements during
the inflationary evolution. The universe thus assumes classical properties at the
onset of inflation. This justifies the use of classical cosmology since then.

The decohering influence of fermionic degrees of freedom has to be treated
separately (Barvinsky et al. 1999b). It turns out that they are less efficient in
producing decoherence. In the massless case, for example, their influence is fully
absent.

The above analysis of decoherence was based on the state (10.9). One might,
however, start with a quantum state which is a superposition of many semiclas-
sical components, that is, many components of the form exp(iSk

0 ), where each
Sk

0 is a solution of the Hamilton–Jacobi equation for a and φ. Decoherence be-
tween different such semiclassical branches has also been the subject of intense
investigation (Halliwell 1989; Kiefer 1992). The important point is that deco-
herence between different branches is usually weaker than the above discussed
decoherence within one branch. Moreover, it usually follows from the presence
of decoherence within one branch. In the special case of a superposition of (10.9)
with its complex conjugate, one can immediately recognize that decoherence be-
tween the semiclassical components is smaller than within one component: in the
expression (10.20) for the decoherence factor, the term Ωn + Ω′∗

n in the denom-
inator is replaced by Ωn + Ω′

n. Therefore, the imaginary parts of the frequency
functions add up instead of partially cancelling each other and (10.20) becomes
smaller. One also finds that the decoherence factor is equal to one for vanishing
expansion of the semiclassical universe (Kiefer 1992).

We note that the decoherence between the exp(iS0) and exp(−iS0) compo-
nents can be interpreted as a symmetry breaking in analogy to the case of sugar
molecules (Joos et al. 2003). There, the Hamiltonian is invariant under space re-
flections, but the state of the sugar molecules exhibits chirality. Here, the Hamil-
tonian in the Wheeler–DeWitt equation is invariant under complex conjugation,
while the ‘actual states’ (i.e. one decohering WKB component in the total su-
perposition) are of the form exp(iS0) and are thus intrinsically complex. It is
therefore not surprising that the recovery of the classical world follows only for
complex states, in spite of the real nature of the Wheeler–DeWitt equation (see
in this context Barbour 1993). Since this is a prerequisite for the derivation of the
Schrödinger equation, one might even say that time (the WKB time parameter
in the Schrödinger equation) arises from symmetry breaking.

The above considerations thus lead to the following picture. The universe
was essentially ‘quantum’ at the onset of inflation. Mainly due to bosonic fields,
decoherence set in and led to the emergence of many ‘quasi-classical branches’
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which are dynamically independent of each other. Strictly speaking, the very
concept of time makes sense only after decoherence has occurred. In addition
to the horizon problem etc., inflation thus also solves the ‘classicality problem’.
It remains, of course, unclear why inflation happened in the first place (if it
really did). Looking back from our universe (our semiclassical branch) to the
past, one would notice that at the time of the onset of inflation our component
would interfere with other components to form a timeless quantum-gravitational
state. The universe would thus cease to be transparent to earlier times (because
there was no time). This demonstrates in an impressive way that quantum-
gravitational effects are not a priori restricted to the Planck scale.

The lesson to be drawn is thus that the universe can appear classically only
if experienced from within. A hypothetical ‘outside view’ would only see a static
quantum world. The most natural interpretation of quantum cosmology is an
Everett-type interpretation, since the ‘wave function of the universe’ contains
by definition all possible branches.4 As macroscopic observers, however, we have
access only to a tiny part of the cosmological wave function—the robust macro-
scopic branch which we follow. Incidentally, the original motivation for Everett
to develop his interpretation was quantum gravity. To quote from Everett (1957):
The task of quantizing general relativity raises serious questions about the meaning of
the present formulation and interpretation of quantum mechanics when applied to so
fundamental a structure as the space-time geometry itself. This paper seeks to clarify
the foundations of quantum mechanics. It presents a reformulation of quantum theory
in a form believed suitable for application to general relativity.

This view is reflected by the words of Bryce DeWitt in DeWitt (1967a):
Everett’s view of the world is a very natural one to adopt in the quantum theory of
gravity, where one is accustomed to speak without embarassment of the ‘wave function
of the universe.’ It is possible that Everett’s view is not only natural but essential.

10.1.3 Decoherence of primordial fluctuations

We have seen in the last subsection how important global degrees of freedom
such as the scale factor of the universe can assume classical properties through
interaction with irrelevant degrees of freedom such as density perturbations or
gravitational waves. There are, however, situations when part of these ‘irrelevant’
variables become relevant themselves. According to the inflationary scenario of
the early universe, all structure in the universe arises from quantum fluctuations.
This was first discussed by Mukhanov and Chibisov (1981); see, for example,
Liddle and Lyth (2000) and Börner (2003) for a review. We would thus owe
our existence entirely to the uncertainty relations. In order to serve as the seeds
for structure (galaxies, structures of galaxies), these quantum fluctuations have
to become classical. Their imprint is seen in the anisotropy spectrum of the
cosmic microwave background. The quantum-to-classical transition again relies
heavily on the notion of decoherence; see Polarski and Starobinsky (1996), and

4There also exist attempts to extend the ‘Bohm interpretation’ of quantum theory to quan-
tum cosmology; cf. Pinto-Neto and Santini (2002), and B�laut and Kowalski-Glikman (1998).
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Kiefer et al. (1998), as well as section 4.2.4 of Joos et al. (2003) for a review. It
happens when the wavelength of the primordial quantum fluctuations becomes
much bigger than the Hubble scale H−1

I during the inflationary regime, where
HI denotes the Hubble parameter of inflation (which is approximately constant);
cf. Fig. 7.4. The quantum state becomes strongly squeezed during this phase:
The squeezing is in the field momentum, while the field amplitude becomes very
broad. Such a state is highly sensitive to any interaction, albeit small, with other
(‘environmental’ or ‘irrelevant’) fields. It thereby decoheres into an ensemble of
narrow wave packets that are approximately eigenstates of the field amplitude.
A prerequisite is the classical nature of the background variables discussed in the
last subsection, which is why one could talk about a ‘hierarchy of classicality’.

Density fluctuations arise from the scalar part of the metric perturbations
(plus the corresponding matter part). In addition one has of course the tensor
perturbations of the metric. They correspond to gravitons (Chapter 2). Like
for the scalar part the tensor part evolves into a highly squeezed state during
inflation, and decoherence happens for it, too. The primordial gravitons would
manifest themselves in a stochastic background of gravitational waves, which
could probably be observed with the space-borne interferometer LISA to be
launched in a couple of years. Its observation would constitute a direct test of
linearized quantum gravity.

The decoherence time turns out to be of the order

td ∼ HI

g
, (10.41)

where g is a dimensionless coupling constant of the interaction with other ‘irrel-
evant’ fields causing decoherence. The ensuing coarse-graining brought about by
the decohering fields causes an entropy increase for the primordial fluctuations
(Kiefer et al. 2000). The entropy production rate turns out to be given by Ṡ = H ,
where H is the Hubble parameter of a general expansion. During inflation, H
is approximately constant and the entropy increases linear with t. In the post-
inflationary phases (radiation- and matter-dominated universe), H ∝ t−1 and
the entropy increases only logarithmically in time. The main part of the entropy
for the fluctuations is thus created during inflation. Incidentally, this behaviour
resembles the behaviour for chaotic systems, although no chaos is involved here.
The role of the Lyapunov coefficient is played by the Hubble parameter, and the
Kolmogorov entropy corresponds to the entropy production mentioned here.

Decoherence also plays an important role for quantum black holes and in the
context of wormholes and string theory; see section 4.2.5 of Joos et al. (2003).

10.2 Arrow of time

One of the most intriguing open problems is the origin of irreversibility in our
universe, also called the problem of the arrow of time. Since quantum gravity
may provide the key for its solution, this topic will be briefly reviewed here. More
details and references can be found in Zeh (2001).
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Although most of the fundamental laws of nature do not distinguish between
past and future, there are many classes of phenomena which exhibit an arrow of
time. This means that their time-reversed version is, under ordinary conditions,
never observed. The most important ones are the following:

• Radiation arrow (advanced versus retarded radiation);
• Second Law of Thermodynamics (increase of entropy);
• Quantum theory (measurement process and emergence of classical proper-

ties);
• Gravitational phenomena (expansion of the universe and emergence of

structure by gravitational condensation).

The expansion of the universe is distinguished because it does not refer to a
class of phenomena; it is a single process. It has, therefore, been suggested that
it is the common root for all other arrows of time—the ‘master arrow’. We shall
see in the course of our discussion that this seems indeed to be the case. But
first we shall consider in more detail the various arrows of time.

The radiation arrow is distinguished by the fact that fields interacting with
local sources are usually described by retarded solutions, which in general lead to
a damping of the source. Advanced solutions are excluded. They would describe
the reversed process, during which the field propagates coherently towards its
source, leading to its excitation instead of damping. This holds, in fact, for all
wave phenomena. In electrodynamics, a solution of Maxwell’s equations can be
described by

Aµ = source term plus boundary term
= Aµ

ret + Aµ
in

= Aµ
adv + Aµ

out ,

where Aµ is the vector potential. The important question is then why the ob-
served phenomena obey Aµ ≈ Aµ

ret or, in other words, why

Aµ
in ≈ 0 (10.42)

holds instead of Aµ
out ≈ 0. Equation (10.42) is called a ‘Sommerfeld radiation

condition’. One believes that the radiation arrow can be traced back to ther-
modynamics: due to the absorption properties of the material which constitutes
the walls of the laboratory in which electrodynamic experiments are being per-
formed, ingoing fields will be absorbed within a very short time and (10.42) will
be fulfilled. For the thermal properties of absorbers, the Second Law of Thermo-
dynamics (see below) is responsible.

The condition (10.42) also seems to hold for the universe as a whole (‘darkness
of the night sky’). The so-called Olbers’ paradox can be solved by noting that
the universe is, in fact, not static, but has a finite age and is much too young
to have enough stars for a bright night sky. This is, of course, not yet sufficient
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to understand the validity of (10.42) for the universe as a whole. In an early
stage, the universe was a hot plasma in thermal equilibrium. Only the expansion
of the universe and the ensuing redshift of the radiation are responsible for the
fact that radiation has decoupled from matter and cooled to its present value
of about three Kelvin—the temperature of the approximately isotropic cosmic
background radiation with which the night sky ‘glows’. During the expansion, a
strong thermal non-equilibrium could develop, which enabled the formation of
structure.

The second arrow is described by the Second Law of Thermodynamics: for a
closed system entropy does not decrease. The total change of entropy is given by

dS

dt
=

(
dS

dt

)
ext︸ ︷︷ ︸

dSext=δQ/T

+
(

dS

dt

)
int︸ ︷︷ ︸

≥0

,

so that according to the Second Law, the second term is non-negative. As the
increase of entropy is also relevant for physiological processes, the Second Law
is responsible for the subjective experience of irreversibility, in particular for the
ageing process. If applied to the universe as a whole, it would predict the increase
of its total entropy, which would seem to lead to its ‘heat death’ (‘Wärmetod’).

The laws of thermodynamics are based on microscopic statistical laws which
are time-symmetric. How can the Second Law be derived from such laws? As
early as the nineteenth century objections were formulated against a statistical
foundation of the Second Law. These were, in particular,

• Loschmidt’s reversibility objection (‘Umkehreinwand’), and
• Zermelo’s recurrence objection (‘Wiederkehreinwand’).

Loschmidt’s objection states that a reversible dynamics must lead to an equal
amount of transitions from an improbable to a probable state and from a prob-
able to an improbable state. With overwhelming probability, the system should
be in its most probable state, that is, in thermal equilibrium. Zermelo’s objec-
tion is based on a theorem by Poincaré, according to which every system comes
arbitrarily close to its initial state (and therefore to its initial entropy) after
a finite amount of time. This objection is irrelevant, since the corresponding
‘Poincaré times’ are bigger than the age of the universe already for systems
with few particles. The reversibility objection can only be avoided if a special
boundary condition of low entropy holds for the early universe. Therefore, for
the derivation of the Second Law, one needs a special boundary condition.

Such a boundary condition must either be postulated or derived from a funda-
mental theory. The formal description of entropy increase from such a boundary
condition is done by master equations; cf. Joos et al. (2003). These are equations
for the ‘relevant’ (coarse-grained) part of the system. In an open system, the en-
tropy can of course decrease, provided the entropy capacity of the environment
is large enough to at least compensate this entropy decrease. This is crucial for
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the existence of life, and a particular efficient process in this respect is photo-
synthesis. The huge entropy capacity of the environment comes in this case from
the high temperature gradient between the hot Sun and the cold empty space:
few high-energy photons (with small entropy) arrive on Earth, while many low-
energy photons (with high entropy) leave it. Therefore, also the thermodynamic
arrow of time points towards cosmology: how can gravitationally condensed ob-
jects like the Sun come from in the first place?

Another important arrow of time is the quantum-mechanical arrow. The
Schrödinger equation is time-reversal invariant, but the measurement process,
either through

• a dynamical collapse of the wave function, or
• an Everett branching

distinguishes a direction; cf. Section 10.1. We have seen that growing entan-
glement with other degrees of freedom leads to decoherence. The local entropy
thereby increases. Again, decoherence only works if a special initial condition—a
condition of weak entanglement—holds. But where can this come from?

The last of the main arrows is the gravitational arrow of time. Although
the Einstein field equations are time-reversal invariant, gravitational systems in
Nature distinguish a certain direction: the universe as a whole expands, while
local systems such as stars form by contraction, for example, from gas clouds. It
is by this gravitational contraction that the high temperature gradients between
stars such as the Sun and the empty space arise. Because of the negative heat
capacity for gravitational systems, homogeneous states possess a low entropy,
whereas inhomogeneous states possess a high entropy—just the opposite than
for non-gravitational systems.

An extreme case of gravitational collapse is the formation of black holes.
We have seen in Section 7.1 that black holes possess an intrinsic entropy, the
‘Bekenstein–Hawking entropy’ (7.17). This entropy is much bigger than the en-
tropy of the object from which the black hole has formed. If all matter in the
observable universe were in a single gigantic black hole, its entropy would be
SBH ≈ 10123kB (Penrose 1981). Black holes thus seem to be the most efficient
objects for swallowing information. A ‘generic’ universe would thus basically
consist of black holes. Since this is not the case, our universe must have been
started with a very special initial condition. Can this be analysed further? Close
to the big bang, the classical theory of general relativity breaks down. A possible
answer can thus only come from quantum gravity.

In the following, we shall adopt the point of view that the origin of irre-
versibility can be traced to the structure of the Wheeler–DeWitt equation. As
can be seen, for example, from the minisuperspace case in (8.15), the potential
term is highly asymmetric with respect to the scale factor a ≡ exp(α): in partic-
ular, the potential term vanishes near the ‘big bang’ α → −∞. This property is
robust against the inclusion of (small) perturbations, that is, degrees of freedom
describing density fluctuations or gravitational waves (cf. Section 8.2). Denoting
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these variables (‘modes’) again by {fn}, one has for the total Hamiltonian in the
Wheeler–DeWitt equation, an expression of the form (cf. Zeh 2001)

Ĥ =
∂2

∂α2 +
∑

n

(
− ∂2

∂f2
n

+ Vn(α, fn)
)

+ Vint(α, {fn}) , (10.43)

where the last term describes the interaction between the modes (assumed to be
small), and the Vn describe the interaction of the mode fn with the scale factor
α. Both terms have, in fact, the property that they vanish for α → −∞. It is,
therefore, possible to impose in this limit a separating solution of ĤΨ = 0,

Ψ α→−∞−→ ψ(α)
∏
n

χn(fn) , (10.44)

that is, a solution of lacking entanglement. If this is taken as an ‘initial condi-
tion’, the Wheeler–DeWitt equation automatically—through the occurrence of
the potentials in (10.43)—leads to a wave function which for increasing α be-
comes entangled between α and all modes. This, then, leads to an increase of
local entropy, that is, an increase of the entropy which is connected with the
subset of ‘relevant’ degrees of freedom. Calling the latter {yi}, one has

S(α, {yi}) = −kBtr(ρ ln ρ) , (10.45)

where ρ is the reduced density matrix corresponding to α and {yi}. It is obtained
by tracing out all irrelevant degrees of freedom in the full wave function. Entropy
thus increases with increasing scale factor—this would be the gravitational arrow
of time. It is also the arrow of time that is connected with decoherence. It is,
therefore, the root for both the quantum mechanical and the thermodynamical
arrow of time. Quantum gravity could thus really yield the master arrow, the
formal reason being the asymmetric appearance of α in the Wheeler–DeWitt
equation: the potential goes to zero near the big bang, but becomes highly non-
trivial for increasing size of the universe. It is an interesting question whether
a boundary condition of the form (10.44) would automatically result from one
of the proposals discussed in Section 8.3. The symmetric initial condition (Sec-
tion 8.3.5) is an example where this can be achieved—in fact, this condition was
tailored for this purpose. It is expected that one can apply such an analysis also
to loop quantum gravity and to string theory.

In the case of a classically recollapsing universe, the boundary condition
(10.44) has interesting consequences: since it is formulated at α → ∞, increasing
entropy is always correlated with increasing α, that is, increasing size of the uni-
verse; cf. also Fig. 8.1. Consequently, the arrow of time formally reverses near the
classical turning point (Kiefer and Zeh 1995). It turns out that this region is fully
quantum, so no paradox arises; it just means that there are many quasi-classical
components of the wave function, each describing a universe that is experienced
from within as expanding. All these components interfere destructively near the
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classical turning point, which would then constitute the ‘end’ of evolution. This
would be analogous to the quantum region at the onset of inflation discussed
in Section 10.1.2. Quantum gravity would thus in principle be able to provide a
foundation for the origin of irreversibility—a remarkable achievement.

10.3 Outlook

Where do we stand? We have not yet achieved the final goal of having constructed
a consistent quantum theory of gravity checked by experiments. It seems, how-
ever, clear what the main problems are. They are both of a conceptual and a
mathematical nature. On the conceptual side, the most important task is to get
rid of an external background space–time. This is drastically different from or-
dinary quantum field theory which heavily relies on Minkowski space (and its
Poincaré symmetry) or a given curved space–time. An expression of this issue is
the ‘problem of time’ with its connected problems of Hilbert space and the role
of the probability interpretation. On the mathematical side, the main task is to
construct a non-perturbative, anomaly-free framework from which definite and
testable predictions can be made. An example would be the prediction for the
final evaporation stage of black holes.

In this book I have presented two main approaches—quantum GR (in both
covariant and canonical versions) and string theory. Both rely on the linear struc-
ture of quantum theory, that is, the general validity of the superposition principle.
In this sense also string theory is a rather conservative approach, in spite of its
‘exotic’ features such as higher dimensions. This has to be contrasted with the
belief of some of the founders of quantum mechanics (especially Heisenberg) that
quantum theory has already to be superseded by going from the level of atoms
to the level of nuclei.

What are the predictions of quantum gravity? Can it, for example, predict
low-energy coupling constants and masses? As is well known, only a fine-tuned
combination of the low-energy constants leads to a universe like ours in which
human beings can exist. It would thus appear strange if a fundamental theory
possessed just the right constants to achieve this. Hogan (2000) has argued that
grand unified theories constrain relations among parameters, but leave enough
freedom for a selection. In particular, he suggests that one coupling constant and
two light fermion masses are not fixed by the symmetries of the fundamental the-
ory.5 One could then determine this remaining free constants only by the (weak
form of the) anthropic principle: they have values such that a universe like ours
is possible. The cosmological constant, for example, must not be much bigger
than the presently observed value, because otherwise the universe would expand
much too fast to allow the formation of galaxies. The universe is, however, too
special to be explainable on purely anthropic grounds. In Section 10.2, we have
mentioned that the maximal entropy would be reached if all the matter in the

5String theory contains only one fundamental dimensionful parameter, the string length.
The connection to low energies may nonetheless be non-unique due to the existence of many
different possible ‘vacua’.
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observable universe were collected into a single gigantic black hole. This entropy
would be (in units of kB) about 10123, which is exceedingly more than the ob-
served entropy of about 1088. The ‘probability’ for our universe would then be
about exp(1088)/ exp(10123), which is about exp(−10123). From the anthropic
principle alone one would not need such a special universe. As for the cosmolog-
ical constant, for example, one could imagine its calculation from a fundamental
theory. Taking the presently observed value for Λ, one can construct a mass
according to (

�2Λ1/2

G

)1/3

≈ 15 MeV , (10.46)

which in elementary particle physics is not an unusally big or small value. The
observed value of Λ could thus emerge together with medium-size particle mass
scales.

Since fundamental theories are expected to contain only one dimensionful
parameter, low-energy constants emerge from fundamental quantum fields. An
important example in string theory (Chapter 9) is the dilaton field from which
one can calculate the gravitational constant. In order that these fields mimic
physical constants, two conditions have to be satisfied. First, decoherence must
be effective in order to guarantee a classical behaviour of the field. Second, this
‘classical’ field must then be approximately constant in large-enough space–time
regions, within the limits given by experimental data. The field may still vary
over large times or large spatial regions and thus mimic a ‘time- or space-varying
constant’; cf. Uzan (2003).

The last word on any physical theory has to be spoken by experiment (ob-
servation). Apart from the possible determination of low-energy constants and
their dependence on space and time, what could be the main tests of quantum
gravity?

1. Black-hole evaporation: A key test would be the final evaporation phase of
a black hole. For this one would need to observe primordial black holes; see
Section 7.7. As we have discussed there, these are black holes that are not
the end result of stellar collapse, but which can result from strong density
perturbations in the early universe. In the context of inflation, their initial
mass can be as small as 1 g. Primordial black holes with initial mass of
about 5×1014 g would evaporate at the present age of the universe. Unfor-
tunately, no such object has yet been observed. Especially promising may
be models of inflationary cosmology with a distinguished scale (Bringmann
et al. 2002).

2. Cosmology: Quantum aspects of the gravitational field may be observed
in the anisotropy spectrum of the cosmic microwave background. First,
future experiments may be able to see the contribution of the gravitons
generated in the early universe. This important effect was already em-
phasized by Starobinsky (1979). The production of gravitons by the cos-
mological evolution would be an effect of linear quantum gravity. Second,
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quantum-gravitational correction terms from the Wheeler–DeWitt equa-
tion or its generalization in loop quantum cosmology may leave their impact
on the anisotropy spectrum (see Sections 5.4 and 8.4). Third, a discrete-
ness in the inflationary perturbations could manifest itself in the spectrum
(Hogan 2002).

3. Discreteness of space and time: Both in string theory and quantum general
relativity there are hints of a discrete structure of space–time. This could
be seen through the observation of effects violating local Lorentz invari-
ance (Amelino-Camelia 2002), for example, in the dispersion relation of
the electromagnetic waves coming from gamma-ray bursts. It has even be
suggested that space–time fluctuations could be seen in atomic interferom-
etry (Percival and Strunz 1997). However, there exist severe observational
constraints (Peters et al. 2001).

4. Signatures of higher dimensions: An important feature of string theory is
the existence of additional space–time dimensions (Section 9.2.6). They
could manifest themselves in scattering experiments at the Large Hadron
Collider (LHC) at CERN, which will start to operate around 2007. It is
also imaginable that they cause observable deviations from the standard
cosmological scenario.

Some of these features are also discussed in detail in Kimberly and Magueijo
(2005). Of course, there may be other possibilities which are not yet known
and which could offer great surprises. It is, for example, imaginable that a fun-
damental theory of quantum gravity is intrinsically non-linear (Penrose 1996,
Singh 2005). This is in contrast to most currently studied theories of quantum
gravity, being discussed in this book, which are linear.

Quantum gravity has been studied since the end of the 1920s. No doubt,
much progress has been made since then. I hope that this book has given some
impressions from this progress. The final goal has not yet been reached. The
belief expressed here is that a consistent and experimentally successful theory
of quantum gravity will be available in the future. However, it may still take a
while before this time is reached.
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Bañados, M., Teitelboim, C., and Zanelli, J. (1992). The black hole in three-
dimensional space–time. Phys. Rev. Lett., 69, 1849–51.

Banks, T. (1985). TCP, quantum gravity, the cosmological constant and all
that. Nucl. Phys. B, 249, 332–60.

Banks, T., Fischler, W., Shenker, S. H., and Susskind, L. (1997). M theory as
a matrix model: a conjecture. Phys. Rev. D, 55, 5112–28.

Barbero, J. F. (1995). Real Ashtekar variables for Lorentzian space–times. Phys.
Rev. D, 51, 5507–10.

Barbour, J. B. (1986). Leibnizian time, Machian dynamics, and quantum grav-
ity. In Quantum concepts in space and time (ed. R. Penrose and C. J. Isham),
pp. 236–46. Oxford University Press, Oxford.

Barbour, J. B. (1989). Absolute or relative motion? Vol. 1: The discovery of
dynamics. Cambridge University Press, Cambridge.

Barbour, J. B. (1993). Time and complex numbers in canonical quantum grav-
ity. Phys. Rev. D, 47, 5422–9.

Barbour, J. B. (1994). The timelessness of quantum gravity: I. The evidence
from the classical theory. Class. Quantum Grav., 11, 2853–73.

Barbour, J. B. and Bertotti, B. (1982). Mach’s principle and the structure of
dynamical theories. Proc. R. Soc. Lond. A, 382, 295–306.
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Einstein, A. (1916a). Hamiltonsches Prinzip und allgemeine Relativitätstheorie.
Sitzber. kgl.-preuß. Akad. Wiss. Berlin, Sitzung der phys.-math. Klasse, XLII,
1111–6.
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U. Moschella), pp. 17–74. Institute of Physics Publishing, Bristol.

http://arxiv.org/abs/gr-qc/0308048


REFERENCES 343

Kiefer, C. (2001a). Path integrals in quantum cosmology. In Fluctuating paths
and fields (ed. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann),
pp. 729–40. World Scientific, Singapore.

Kiefer, C. (2001b). Hawking radiation from decoherence. Class. Quantum Grav.,
18, L151–4.

Kiefer, C. (2003a). Quantum aspects of black holes. In The galactic black hole
(ed. H. Falcke and F. W. Hehl), pp. 207–25. Institute of Physics Publishing,
Bristol.

Kiefer, C. (2003b). On the interpretation of quantum theory—from Copenhagen
to the present day. In Time, quantum and information (ed. L. Castell and
O. Ischebeck), pp. 291–9. Springer, Berlin.

Kiefer, C. (2004a). Is there an information-loss problem for black holes? In
Decoherence and entropy in complex systems (ed. H.-T. Elze). Lecture Notes
in Physics 633. Springer, Berlin.

Kiefer, C. (2004b). Hawking temperature from quasi-normal modes. Class. Quan-
tum Grav., 21, L123–7.

Kiefer, C. (2006). Quantum gravity: general introduction and recent develop-
ments. Ann. Phys. (Leipzig), 8th series, 129–48.

Kiefer, C. and Louko, J. (1999). Hamiltonian evolution and quantization for
extremal black holes. Ann. Phys. (Leipzig), 8th series, 8, 67–81.

Kiefer, C. and Singh, T. P. (1991). Quantum gravitational correction terms to
the functional Schrödinger equation. Phys. Rev. D, 44, 1067–76.

Kiefer, C. and Wipf, A. (1994). Functional Schrödinger equation for fermions
in external gauge fields. Ann. Phys. (NY), 236, 241–85.

Kiefer, C. and Weber, C. (2005). On the interaction of mesoscopic quantum
systems with gravity. Ann. Phys. (Leipzig), 8th series, 253–78.

Kiefer, C. and Zeh, H. D. (1995). Arrow of time in a recollapsing quantum
universe. Phys. Rev. D, 51, 4145–53.

Kiefer, C., Lück, T., and Moniz, P. (2005). Semiclassical approximation to su-
persymmetric quantum gravity. Phys. Rev. D, 72, 045006 [19 pages].

Kiefer, C., Müller-Hill, J., and Vaz, C. (2006a). Classical and quantum Lemâıtre–
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Janyška and D. Kupka), pp. 405–11. World Scientific, Singapore.

Schrödinger, E. (1939). The proper vibrations of the expanding universe. Phys-
ica, 6, 899–912.

Schuller, F. and Wohlfarth, M. N. R. (2006). Geometry of manifolds with area
metric. Nucl. Phys. B, 747, 398–422.

Schwinger, J. (1963). Quantized gravitational field. Phys. Rev., 130, 1253–8.
Sen, A. (1982). Gravity as a spin system. Phys. Lett. B, 119, 89–91.
Sexl, R. U. and Urbantke, H. K. (2001). Relativity, groups, particles. Springer,
Wien.

Shi, Y. (2000). Early Gedanken experiments of quantum mechanics revisited.
Ann. Phys. (Leipzig), 8th series, 9, 637–48.

http://arxiv.org/abs/gr-qc/9709012
http://arxiv.org/abs/gr-qc/0606120


REFERENCES 351

Singh, T. P. (2005). Quantum mechanics without spacetime: a case for non-
commutative geometry. http://arxiv.org/abs/gr-qc/0510042 [34 pages] (cited
on December 15, 2006).

Singh, T. P. and Padmanabhan, T. (1989). Notes on semiclassical gravity. Ann.
Phys. (NY), 196, 296–344.

Smith, G. J. and Bergmann, P. G. (1979). Measurability analysis of the magnetic-
type components of the linearized gravitational radiation field. Gen. Rel. Grav.,
11, 133–47.

Sorkin, R. (1997). Forks in the road, on the way to quantum gravity. Int. J.
Theor. Phys., 36, 2759–81.

Sorkin, R. (2005). Causal sets: discrete gravity. In Lectures on quantum gravity.
Proceedings of the Valdivia Summer School (ed. A. Gomberoff and D. Marolf),
pp. 305–27 . Plenum, New York.

Stachel, J. (1999). The early history of quantum gravity (1916–1940). In Black
holes, gravitational radiation and the universe (ed. B. R. Iyer and B. Bhawal),
pp. 525–34. Kluwer, Dordrecht.

Starobinsky, A. A. (1979). Spectrum of relict gravitational radiation and the
early state of the universe. JETP Lett., 30, 682–5.

Stelle, K. S. (1977). Renormalization of higher-derivative quantum gravity.
Phys. Rev. D, 16, 953–69.

Stelle, K. S. (1978). Classical gravity with higher derivatives. Gen. Rel. Grav.,
9, 353–71.

Straumann, N. (2004). General relativity with applications to astrophysics. Sprin-
ger, Berlin.

Straumann, N. (2000). Reflections on gravity. http://arxiv.org/abs/astro-ph/
0006423 [26 pages] (cited on December 15, 2006).

Strominger, A. and Vafa, C. (1996). Microscopic origin of the Bekenstein–
Hawking entropy. Phys. Lett. B, 379, 99–104.

Stueckelberg, E. C. G. (1938). Die Wechselwirkungskräfte in der Elektrody-
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zation of LeMâıtre–Tolman–Bondi collapse models. Phys. Rev. D, 63, 104020
[10 pages].

Vaz, C., Kiefer, C., Singh, T. P., and Witten, L. (2003). Quantum general
relativity and Hawking radiation. Phys. Rev. D, 67, 024014 [6 pages].

Veneziano, G. (1993). Classical and quantum gravity from string theory. In
Classical and quantum gravity (ed. M. C. Bento, O. Bertolami, J. M. Mourão,
and R. F. Picken), pp. 134–80. World Scientific, Singapore.

Vilenkin, A. (1988). Quantum cosmology and the initial state of the Universe.
Phys. Rev. D, 37, 888–97.

Vilenkin, A. (1989). Interpretation of the wave function of the Universe. Phys.
Rev. D, 39, 1116–22.

Vilenkin, A. (2003). Quantum cosmology and eternal inflation. In The future of
theoretical physics and cosmology (ed. G. W. Gibbons, E. P. S. Shellard, and
S. J. Rankin), pp. 649–66. Cambridge University Press, Cambridge.

Vilkovisky, G. (1984). The Gospel according to DeWitt. In Quantum theory of
gravity (ed. S. M. Christensen), pp. 169–209. Adam Hilger, Bristol.

Visser, M. (2003). The quantum physics of chronology protection. In The future
of theoretical physics and cosmology (ed. G. W. Gibbons, E. P. S. Shellard, and
S. J. Rankin), pp. 161–76. Cambridge University Press, Cambridge.

von Borzeszkowski, H.-H. and Treder, H.-J. (1988). The meaning of quantum
gravity. D. Reidel, Dordrecht.

von Neumann, J. (1932). Mathematische Grundlagen der Quantenmechanik.
Springer, Berlin. For an English translation of parts of this book, see Wheeler,
J. A. and Zurek, W. H. (ed.), Quantum theory and measurement. Princeton
University Press, Princeton (1983).

Wald, R. M. (1984). General relativity. The University of Chicago Press, Chicago.
Wald, R. M. (2001). The thermodynamics of black holes. Living Rev. Relativity,
4, 6. URL (cited on February 24, 2006).

Walls, D. F. and Milburn, G. J. (1994). Quantum optics. Springer, Berlin.
Weinberg, S. (1964). Photons and gravitons in S-matrix theory: derivation of
charge conservation and equality of gravitational and inertial mass. Phys. Rev.,
135, B1049–56.

Weinberg, S. (1972). Gravitation and cosmology. Principles and applications of
the general theory of relativity. Wiley, New York.

Weinberg, S. (1979). Ultraviolet divergences in quantum gravity. In General rel-
ativity (ed. S. W. Hawking and W. Israel), pp. 790–831. Cambridge University



354 REFERENCES

Press, Cambridge.
Weinberg, S. (1993). Dreams of a final theory. Hutchinson Radius, London.
Weinberg, S. (1995). The quantum theory of fields, Vol. I (Foundations). Cam-
bridge University Press, Cambridge.

Weinberg, S. (1996). The quantum theory of fields, Vol. II (Modern applica-
tions). Cambridge University Press, Cambridge.

Weinberg, S. (1997). What is quantum field theory, and what did we think it
is?. http://arxiv.org/abs/hep-th/9702027 [17 pages] (cited on December 15,
2006).

Weinberg, S. (2000). The quantum theory of fields, Vol. III (Supersymmetry).
Cambridge University Press, Cambridge.

Werner, S. A. and Kaiser, H. (1990). Neutron interferometry—macroscopic
manifestations of quantum mechanics. In Quantum mechanics in curved space–
time (ed. J. Audretsch and V. de Sabbata), pp. 1–21. Plenum Press, New York.

Wess, J. and Bagger, J. (1992). Supersymmetry and supergravity, 2nd edn.
Princeton University Press, Princeton.

Wheeler, J. A. (1968). Superspace and the nature of quantum geometrodynam-
ics. In Battelle rencontres (ed. C. M. DeWitt and J. A. Wheeler), pp. 242–307.
Benjamin, New York.

Wheeler, J. A. (1990). Information, physics, quantum: the search for links. In
Complexity, entropy, and the physics of information (ed. W. H. Zurek), pp. 3–
28. Addison-Wesley, Redwood City.

Williams, R. (1997). Recent progress in Regge calculus. Nucl. Phys. B (Proc.
Suppl.), 57, 73–81.

Wiltshire, D. L. (1996). An introduction to quantum cosmology. In Cosmology:
the physics of the Universe (ed. B. Robson, N. Visvanathan, and W.S. Wool-
cock), pp. 473–531. World Scientific, Singapore. See also http://arxiv.org/abs/
gr-qc/0101003 [60 pages] (cited on December 15, 2006) for a related version.

Witten, E. (1988). 2+1 dimensional gravity as an exactly soluble system. Nucl.
Phys. B, 311, 46–78.

Witten, E. (1995). String theory in various dimensions. Nucl. Phys. B, 443,
85–126.

Witten, E. (2003). A note on the Chern–Simons and Kodama wavefunctions.
http://arxiv.org/abs/gr-qc/0306083 [10 pages] (cited on December 15, 2006).

Woodard, R. P. (1993). Enforcing the Wheeler–DeWitt constraint the easy way.
Class. Quantum Grav., 10, 483–96.

Woodhouse, N. M. J. (1992). Geometric quantization, 2nd edn. Clarendon Press,
Oxford.

Yoneya, T. (1974). Connection of dual models to electrodynamics and gravidy-
namics. Progr. Theor. Phys., 51, 1907–20.

Zeh, H. D. (1970). On the interpretation of measurement in quantum the-
ory. Found. Phys., 1, 69–76. Reprinted in Wheeler, J. A. and Zurek, W. H.
(ed.), Quantum theory and measurement. Princeton University Press, Prince-
ton (1983).

http://arxiv.org/abs/hep-th/9702027
http://arxiv.org/abs/gr-qc/0101003
http://arxiv.org/abs/gr-qc/0101003
http://arxiv.org/abs/gr-qc/0306083


REFERENCES 355

Zeh, H. D. (1986). Emergence of classical time from a universal wave function.
Phys. Lett. A, 116, 9–12.

Zeh, H. D. (1988). Time in quantum gravity. Phys. Lett. A, 126, 311–7.
Zeh, H. D. (1994). Decoherence and measurements. In Stochastic evolution of
quantum states in open systems and measurement processes (ed. L. Diósi and
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diffeomorphism constraints, 88, 113

quantum, 141, 144
dilaton, 155, 284, 285
dimensional regularization, 51
Dirac brackets, 160
Dirac consistency, 153
Dirac equation, 10
Dirac quantization, 76
Dirichlet condition

in string theory, 280, 295
dust shell

collapse, 221
quantization, 226

dynamical triangulation, 66
dynamical triangulation, 42

effective action, 56, 288
effective average action, 64
effective theory, 23, 44
Einstein frame, 289
Einstein’s equations, 2

linearized, 25
semiclassical, 15, 171

Einstein–Cartan theory, 2
Einstein–Hilbert action, 1
embedding variables, 138

for dust shells, 223
energy–momentum tensor, 2
ephemeris time, 96
Euclidean vacuum, 267, 312
Euler–Heisenberg Lagrangian, 44
Everett interpretation, 310
extremal black holes

entropy, 216
quantization, 215

extrinsic curvature, 108
extrinsic time, 140, 246

factor ordering, 271
factor ordering, 90, 134, 141

in quantum cosmology, 248
Faddeev–Popov

determinant, 48
ghosts, 48
procedure, 47

Feynman diagrams
for quantum gravitational corrections,

179
for quantum gravity, 45

field theories
parametrized, 86

Fierz–Pauli Lagrangian, 28

Friedmann universe
quantization, 246

gauge fixing, 77
gauge theories

from constraint algebra, 103
gauge fixing, 49
gauge invariance

for linearized gravity, 33
of electrodynamics, 34

Gauss constraint, 125, 127, 181
for charged black holes, 211

Gauss equation, 109
Gauss’ law, 104
Gaussian wave functional, 38, 150
general covariance, 73
generating functional, 55
geometric quantization, 133
global-time problem, 139
globally hyperbolic, 106
graceful exit problem, 255
gravitational radiation

for quantum systems, 20
gravitational waves

weak, 25
gravitino, 71, 158
graviton, 25, 33

from string theory, 284
graviton propagator, 178
graviton–graviton scattering, 54, 290
graviton emission in atoms, 36
Green function

connected, 55
greybody factor, 206
Gribov ambiguities, 47
Gross–Neveu model, 62
ground state

of free QED, 38
of linear quantum gravity, 39

group averaging procedure, 136, 189
group quantization, 226
GSO projection, 297

Hagedorn temperature, 299
Hamilton–Jacobi equation, 147, 167
Hamiltonian constraint, 88, 113

in loop quantum gravity, 194
Hamiltonian formulation

of general relativity, 98
harmonic oscillator

indefinite, 156, 253
harmonic condition, 25, 50
Hartle–Hawking proposal, 263
Hartle–Hawking vacuum, 207
Hawking radiation

intuitive interpretation, 207



INDEX 359

Hawking temperature, 14, 205
helicity, 27, 32
heterotic string, 297
hierarchy problem, 302
higher-derivative quantum gravity, 46
Hilbert space

in connection dynamics, 184
Klein–Gordon type, 142
problem of, 136
Schrödinger type, 141

holographic principle, 301
holonomy, 130
homogeneous Lagrangians, 74
horizon, 202
horizontal stacking, 94, 116
Hubble parameter, 246

inflationary universe, 3, 318
information-loss problem, 209, 236
inhomogeneities

in quantum cosmology, 258
intrinsic time, 250
isolated horizon, 219
it from bit, 218

Jacobi’s action, 96
Jeans length, 239
Jordan frame, 289

Klein–Gordon equation, 79, 169

label time, 74
lapse function, 75, 79, 88, 107
large diffeomorphisms, 145
Leibniz group, 94
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Poincaré group, 31
pointer states, 308
polarization tensor, 26
Polyakov action, 83, 285
prefactor equation, 169, 175
primordial black holes, 238
problem of time, 4, 136

quantum connection dynamics, 181
quantum cosmology, 244

from string theory, 255
loop quantum cosmology, 272
supersymmetric, 254

quantum cryptography, 20
quantum geometrodynamics, 133
quantum geometry, 186
quantum gravity



360 INDEX

experimental tests, 325
in (2+1) dimensions, 256

quantum loop dynamics, 181
quasi-normal modes, 220

Ramond boundary conditions, 296
Randall–Sundrum scenario, 304
rapidity, 214
Rarita–Schwinger action, 71
reduced phase space, 77
reduced quantization, 138, 250
reference fluid, 140
Regge calculus, 66
Regge calculus, 42
relational systems, 93
relativistic particle, 78
renormalizability, 44
renormalization group equation, 64
reparametrization invariance, 75, 82
Rindler space–time, 203
Rindler vacuum, 204
RNS action, 296

S-duality, 298
s-knot, 188
Sagnac effect, 9
sandwich conjecture, 115
Schrödinger equation, 76, 139, 168

for multipoles on three-sphere, 261
from quantum gravity, 172
quantum gravitational correction

terms, 175
Schrödinger picture

functional, 135, 148
Schrödinger–Newton equation, 20
Schwarzschild black hole

canonical quantization, 209
Schwarzschild radius, 200
Schwinger term, 85, 156
Schwinger–DeWitt technique, 60
second fundamental form, 108
self-dual connection, 128
semiclassical approximation, 164
shift vector, 88, 107
singularity avoidance, 277
singularity avoidance

in shell collapse, 228
singularity theorems, 2
Sommerfeld radiation condition, 320
space–time problem, 140
spin connection, 125
spin network, 185, 186
spin-foam models, 198
squeezed states, 205
string field theory, 83
string interactions, 287

string theory, 23, 279
bosonic, 81, 280

string-coupling constant, 287
strong-coupling limit, 118
super-Hamiltonian, 74
supergravity (SUGRA), 70

canonical, 158
from constraint algebra, 105

superspace, 120, 144
in string theory, 296

superstrings, 295
supersymmetry (SUSY), 70
surface gravity, 201
symmetric criticality principle, 245
symmetric initial condition, 272, 323

T-duality, 291
tachyon, 283
tetrads, 10
theorema egregium, 109
theta vacuum, 145
third quantization, 143
time after quantization, 141
time before quantization, 138
time gauge, 125
time–energy uncertainty relations, 12
Tomonaga–Schwinger equation, 139, 148
torsion, 2, 159
trans-Planckian problem, 208
transverse-traceless gauge, 26
triads, 124
tunnelling proposal, 268, 269
two-loop divergences, 53

uncertainty relation
in string theory, 291

unification, 3
Unruh effect, 204
Unruh temperature, see Davies–Unruh

temperature
Unruh vacuum, 205

vacua
in string theory, 290

vertex operators, 288
Virasoro algebra, 85
volume operator, 195

wave packets
in minisuperspace, 251

weak equality, 74
Weyl anomaly, 61, 85, 154
Weyl invariance, 83
Wheeler–DeWitt equation, 141, 170

arrow of time from, 322
for multipoles on three-sphere, 260



INDEX 361

in minisuperspace, 249
Wick rotation, 40
Wilson loop, 131
winding modes, 292
WKB approximation, 147, 164
WKB time, 168, 261, 317

Yang–Mills theory, 105
York’s time, 140, 257

zeta regularization, 271




