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Preface

Tunneling is a genuine quantum effect, a direct consequence of the matter
wave structure of quantum mechanics. Recent progress in engineering and
manufacturing aggregates on the nanoscopic and mesoscopic scale have led
to fascinating developments in directly influencing and controlling quantum
properties in general, and tunneling in particular. In parallel, an exciting
exchange of experimental techniques and theoretical concepts from fields such
as atomic, molecular, and condensed matter physics has emerged. The aim of
this book is to provide a survey of one of the most powerful theoretical tools
to describe tunneling, namely, the semiclassical approximation, and to show
that tunneling phenomena are central issues in this fast rising interdisciplinary
field.

The literature about quantum tunneling is enormous, and that about semi-
classics as well. The intention here is to discuss tunneling from a semiclassical
perspective, which in turn means that this book does not address tunneling
in general nor the general methodology of the semiclassical approximation.
Tunneling probabilities for one dimensional anharmonic systems can be eval-
uated by means of semiclassical expansions whenever energy scales, on which
the barrier penetration occurs, are large compared to some intrinsic quantum
mechanical energy scales of the systems. This concept has been generalized to
tunneling events in presence of dissipative environments, where rate constants
characterize the time scale for transmission. For multi-dimensional systems,
particularly for those with non-regular phase space structures, or for time
dependent approaches to capture tunneling, however, general conditions are
hard to formulate and may depend on specific features of the problem un-
der consideration. In fact, in practical applications semiclassical calculations
are often more accurate than expected from general estimates, which may be
one reason for their widespread and successful use in physics and chemistry.
In situations such as dissipative tunneling through high barriers, numerically
exact treatments are either prohibitive or so demanding that semiclassical
methods are basically the only tools for a proper description. In other cases,
where exact results are available, semiclassical considerations often provide a
better understanding for our physical intuition and serve as starting points
for elegant approximate developments.



VIII Preface

Complex quantum systems which allow for manipulations are inevitably
embedded in some sort of surrounding. This can be either an external con-
trol field, static or time dependent, a small number of additional degrees of
freedom generating non-regular dynamics, or a dissipative background leading
to energy exchange and fluctuations. The tunneling degree of freedom itself
can be even a collective degree of freedom consisting of a macroscopically
large number of microscopic entities, which has led to fundamental questions
like e.g. if and if yes, to what extent quantum mechanical properties could
be realized on a macroscopic level. Phenomenologically, tunneling in these
complex systems displays a rich variety of facets depending on macroscopic
parameters such as temperature, spectral bath densities, driving amplitudes
and frequencies, magnetic and electric fields.

In this book theoretical results are applied to and illustrated by explicit
realizations ranging in length from the subatomic scale of a few fermi (fm)
to the mesoscopic scale of a few microns (µm), thus covering systems over
nine orders of magnitude and objects as diverse as nuclei, ensembles of atoms,
molecular structures, and superconducting circuits. Owing to my own scien-
tific background in condensed phase systems, these examples must reflect a
personal viewpoint and only in this sense can be understood as representative.
The same is true for the semiclassical approaches and formulations: I did not
attempt to give a comprehensive account so that some of them may deserve
a deeper presentation, others are addressed only briefly.

Science is a social event and so this book would not have been possible
without intensive collaborations and discussions with many colleagues from
different fields in physics and chemistry. Particularly, I benefited from and
enjoyed to work with H. Grabert, F. Grossmann, P. Hänggi, G.-L. Ingold,
P. Pechukas, E. Pollak, C. Rummel, D. Tannor, M. Thoss, and U. Weiss.
I am indebted to the Quantronics group at the CEA Saclay, particularly
D. Esteve, H. Pothier, C. Urbina, D. Vion, for wonderful collaborations and
thank G. Buntkowsky, D. Haviland, A. Lupascu, J. Pekola, and W. Wernsdor-
fer for their help in understanding experimental details and providing some of
the figures. I am grateful as well to my students M. Saltzer and M. Duckheim
for their important contributions, critical questions, and ideas.

Some results discussed in this book have been obtained during extended
stays and short time visits at other places: as a fellow of the Alexander von
Humboldt Foundation at the Columbia University, New York; as a Heisenberg
fellow of the German Science Foundation at the CEA Saclay, the Weizmann
Institute of Science, the Technical University of Helsinki, and the University
of Geneva. I have always enjoyed the warm hospitality of my host institutions.

Most importantly, I deeply thank my wife Evangelia and our children
Katerina and Elias for their never ending patience and embracing love.

Freiburg, Joachim Ankerhold
October 2006
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1

Introduction

A semiclassical description of tunneling in systems with complex dynamics
requires an arsenal of theoretical techniques adapted to the problem under
investigation. Conceptually, two types of processes are usually distinguished,
namely, coherent and incoherent tunneling. The former one appears in bi-
and multistable potentials and, more precisely, should be termed quantum
coherence. It originates from the coherent overlap of wave functions located
in individual domains, which are separated by energy or phase-space barriers.
The latter one describes the situation, where in the language of scattering the-
ory asymptotic states in the distant past do not overlap in the distant future
with those that have penetrated a barrier. Accordingly, incoherent tunnel-
ing is seen in scattering processes between two reservoirs and in the decay
of metastable states into a continuum. However, in presence of interaction
with environmental degrees of freedom coherent tunneling dynamics can be
destroyed leading to relaxation via incoherent decay as well.

1.1 Theoretical Concepts

The earliest approach to determine tunneling amplitudes is based on an ap-
proximate solution of the stationary Schrödinger equation in terms of an ex-
pansion in h̄ for the energy dependent wave function. Technically, this WKB
treatment necessitates a matching of semiclassical wave functions, which in
general is quite a cumbersome task. Hence, modern semiclassical expansions
are dominantly based on the path integral representation of quantum mechan-
ics, in particular, of the time evolution operator, of the statistical operator
for the thermal equilibrium, and, as a combination of both, of the nonequi-
librium density matrix. The path integral naturally operates with trajectories
which in a semiclassical approximation correspond to orbits minimizing the
action. A further advantage is that this formulation allows for the inclusion
of additional degrees of freedom, most importantly, of a thermal heat bath.
We will not explain details of the path integral formulation here, especially

Joachim Ankerhold: Quantum Tunneling in Complex Systems
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2 1 Introduction

their mathematical subtleties, and refer the reader to excellent books such
as [1, 2, 3, 4, 5, 6]. The same is true for the semiclassical expansion, which
has grown into a sub-field of theoretical physics, but is used in the sequel
only with respect to tunneling. More information is provided by the extensive
literature, e.g. in [7, 8, 9].

Tunneling, as quantum mechanics in general, has two perspectives: a time
independent one in the energy domain and a dynamical one in the time do-
main (cf. also Fig. 1.1). For all conservative systems a description in the
energy domain is feasible independent of whether they are pure or mixed
according to an energy dependent distribution. Hence, approaches to calcu-
late transmission probabilities (WKB) and energy averaged tunneling rates
(thermodynamic methods) have been developed starting from microcanoni-
cal or canonical formulations. However, in case of external time dependent
driving or dissipation a time dependent approach is necessary. Indeed, even
in cases of wave packets penetrating barriers at fixed energies reveals a dy-
namical semiclassical picture aspects of the tunneling event that cannot be
gained merely from transmission probabilities. In the last decade, intensive
research to develop proper semiclassical propagation schemes has provided
deeper insight into the failure of standard Gaussian semiclassics to capture
deep tunneling. Eventually, the time evolution for systems out of equilibrium

Fig. 1.1. Structure of this book.
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in terms of reduced density matrices, described in the context of dissipative
quantum systems, has turned out to be extremely challenging. A proper semi-
classical approximation is highly desired since the formally exact path integral
expressions can in general not be evaluated analytically and in the long time
domain, where tunneling happens to occur, not even numerically.

For systems coupled to a heat bath, quantum mechanical tunneling domi-
nates only at sufficiently low temperatures, while at high temperatures energy
barriers are surmounted via classical thermal activation. Theories for tunnel-
ing thus merge with rate theories developed originally for chemical systems
and indeed, many semiclassical concepts for tunneling have been derived in
the 1970s in the community of physical chemistry. Physics joined these efforts
essentially in the early 1980s, partially triggered by the experimental progress
to fabricate electrical devices on the mesoscopic scale. The latter ones allowed
for the first time to study tunneling processes under well controlled conditions
and gave rise to the most accurate verifications of theoretical rate expressions.
In this century experimentalists have been extending their technology to actu-
ally design, tailor and manipulate quantum matter on ever larger scales. En-
sembles of atoms reach the size of mesoscopic devices and mesoscopic devices
are used to implement artificial atoms. Theory is again the complementary
part in this exciting adventure.

However, the semiclassical methodology for tunneling processes is not com-
pletely developed yet, there still exist more or less “white patches”. Examples
include tunneling in systems with mixed phase space and tunneling through
multi-dimensional barriers, where substantial progress has not been achieved
so far. Some of the fundamental subtleties which one encounters are addressed
in this book. For a further reading on concepts for quantum tunneling we re-
fer to the literature, for instance: Tunneling in general is reviewed in [10];
dissipative quantum systems and applications to tunneling are presented in
[11, 12] and approaches for calculations of rate constants are outlined in [13].

1.2 Physical Systems

In this book we are primarily interested in complex systems, a notion which
certainly needs some clarification. Roughly speaking, we call a tunneling sys-
tem complex when its phenomenology exhibits qualitatively different aspects
of tunneling while sweeping through the space of external and/or internal pa-
rameters. Typically, there is some relation to the underlying physical realiza-
tion, which then is built up of more than one degree of freedom or influenced by
additional external and/or intrinsic forces. A prominent example is the tunnel-
ing of the superconducting phase difference in Josephson junctions, where this
phase is actually a collective coordinate of the superconducting condensates
and as such its dynamics affects a physical system with macroscopically many
degrees of freedom. Other examples of collective processes have been discov-
ered in fission events of nuclear matter, collapse of Bose-Einstein condensates,



4 1 Introduction

or tunneling of magnetization in molecular nanomagnets. As a direct conse-
quence, the interaction with residual degrees of freedom, e.g. electromagnetic
modes in a circuit, vibronic degrees of freedom in molecules, phonons in con-
densed phase, is inevitable. Barrier penetration in presence of dissipative en-
vironments includes changeovers from coherent to incoherent dynamics, from
thermal activation to deep tunneling, and even to localization. Another facet
of tunneling appears in two- or higher dimensional systems when the corre-
sponding classical dynamics is non-regular with chaotic phase space structures
leading to distributions of tunneling probabilities which may strongly oscil-
late as functions of energy. Complexity also arises due to the application of
external time dependent fields during the barrier penetration. The absorption
of photons typically influences transmission rates substantially leading e.g.
in case of decay from a metastable well to intrawell excitations and resonant
tunneling. A similar situation can be found for atoms in strong external laser
fields, which drives valence electrons out of the Coulomb-well and re-scatters
them when the phase of the field changes.

To illustrate this rich phenomenology, examples on length scales from nu-
clei to mesoscopic devices are discussed in this book. Specifically, we will
discuss fission of nuclear matter, collapse of cold atomic gases with attractive
interaction, nanomagnets in form of molecular complexes, rotational tunnel-
ing in dihydride-metal compounds, and macroscopic quantum phenomena in
Josephson junction devices including tunneling of quantum bits. To concen-
trate on the essential features and not to overload this presentation a deeper
analysis of the respective systems had to be excluded. More details are con-
tained in e.g. [14] for systems on the molecular level, in [15] for Macroscopic
Quantum Tunneling and in [16] for spin tunneling in nanomagnets; for the
semiclassical approximation of transport phenomena in mesoscopic physics
[17] provides a thorough overview.

1.3 Structure of the Book

The structure of the book closely follows the discussion of the theoretical
concepts above and is sketched in Fig. 1.1. In the next Chap. 2 some basic
results from the semiclassical theory are collected and the relevant notation
is introduced. The remaining Sections deal with tunneling of individual wave
packets on the one hand and with tunneling of ensembles described by density
matrices on the other hand. The wave packet aspect is discussed in Chap. 3 in
the energy domain, while in Chap. 4 dynamical approaches are outlined, par-
ticularly, for externally driven tunneling. In addition in Chap. 3 two powerful
thermodynamic approaches for rate calculations are introduced, the bounce
and the instanton method, however, without taking into account dissipation so
that they can be regarded as effective means to perform thermal averages over
tunneling rates of individual (quasi-)eigenstates. The basic structure of the
corresponding semiclassical procedures becomes thus very transparent. The
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generalization of these thermodynamic formulations to dissipative systems is
then given in Chap. 5. The nonequilibrium dynamics of density matrices is
the subject of Chaps. 6 and 7, where in the former one the temperature range
above the so-called crossover temperature is addressed, while in the latter one
a dynamical approach particularly for the low temperature range and covering
coherent as well as incoherent tunneling processes is presented. This in turn
allows to derive detailed conditions for the applicability of the thermodynamic
methods and reveals the intimate relation between dynamics, dissipation, and
tunneling. The book closes with some remarks about central issues, for which
the semiclassical theory of tunneling needs further developments in the future.
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2

Semiclassical Approximation

In the early days of quantum mechanics – before the concept of matter waves
had been introduced – the understanding of atomic spectra was based on
classical mechanics combined with conditions for discreteness. The latter ones
related the action of a classical orbit to multiples of h̄. This seed grew, shortly
after wave mechanics was cast into Schrödinger’s equation, into a semiclassical
scheme known today as WKB approximation [1, 2, 3], which allowed to obtain
the wave function in terms of classical trajectories. It was in the late 1960 only
that semiclassics turned into the focus of intensive scientific activities. Since
then semiclassical approximations, mathematically embedded in the context
of asymptotic series, have been derived for the time evolution operator, its
Fourier transform, the resolvent, and the statistical operator and successfully
applied in basically all fields of physics and physical chemistry. Semiclassics
offers a way to quantize also classically nonintegrable systems based on peri-
odic orbits and in the last years has provided powerful tools to capture the
quantum dynamics of even high dimensional systems. One appealing feature
of a semiclassical description is that it suggests an understanding of quantum
phenomena in terms of classical entities. However, one has to be cautious:
While such an interpretation may indeed be helpful in specific cases, in gen-
eral and particularly for tunneling processes, it makes no sense to speak about
the real existence of individual trajectories.

In this Chapter we collect some main results of semiclassical quantum
mechanics, which will then be used in the remainder of this book. For trans-
parency we restrict ourselves in many cases to one-dimensional systems, while
generalizations to higher dimensions are mostly straightforward and well-
described in the literature.

2.1 At the Very Beginning: The WKB Approach

Let us consider a quantum particle of mass M moving in one dimension under
the influence of a potential field V (q). The corresponding Hamiltonian reads
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Ĥ =
p̂2

2M
+ V (q̂) (2.1)

and its eigenbasis follows from the eigenstates of the time independent
Schrödinger equation Ĥ|ψ〉 = E|ψ〉. In position representation we try for
the solutions of

d2ψ(q)
dq2

+
2M

h̄2 [E − V (q)] ψ(q) = 0 (2.2)

an ansatz of the form

ψ(q) = exp
[

i
h̄

W (q)
]

(2.3)

with an exponent determined by

W ′(q)2 − ih̄W ′′(q) − p(q)2 = 0 . (2.4)

Here and in the sequel we use the abbreviation W ′ = dW/dq and further
introduced the classical momentum p(q) =

√
2M [E − V (q)]. The idea is to

solve (2.4) by assuming that the momentum p(q) shows only small variations
over length scales of the order of the de Broglie wave length λB(q) = 2πh̄/p(q).
One then expands in a power series of h̄ [4, 5, 6]

W = W0 − ih̄W1 − h̄2W2 − . . . (2.5)

and upon insertion into (2.4) and putting terms of equal powers in h̄ to
zero separately, one arrives at a set of iteratively coupled equations for the
Wk, k = 1, 2, 3, . . .. In lowest order (h̄0) one has W ′

0(q)
2 − p(q)2 = 0, which is

immediately solved by the classical short action

W0(q, q0) =
∫ q

q0

dq′ p(q′) , (2.6)

where q0 defines an arbitrary, but fixed reference point. Now, for W0 to
be the leading contribution of a perturbative expansion one has to impose
h̄|W ′′

0 (q)| � |W ′
0(q)

2| or equivalently

h̄

∣∣∣∣ p
′(q)

p(q)2

∣∣∣∣� 1 . (2.7)

This is the so-called WKB condition (Wentzel-Kramers-Brillouin) for matter
waves and the analog to the eikonal condition in geometrical optics [7]. Ap-
parently, the condition is violated at all points in the vicinity of p(q) = 0,
i.e. near all turning points of the corresponding classical orbit. These give
rise to caustics, a coalescence of classical orbits starting from the same initial
position but with different momenta. Before we address this phenomenon in
detail, we first proceed with the next order term in the expansion (2.5). From
W ′

1 = −W ′′
0 /(2W ′

0) one has W1(q) = − ln[p(q)]/2 so that by neglecting higher
order contributions the WKB wave function takes the form
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( )

Fig. 2.1. Barrier potential with ranges I, II, and III for different semiclassical
approximations, which must be matched according to the connection rules (2.9) and
(2.10) at the turning points ql and qr defined by E = V (q).

ψWKB(q) =
C+√
p(q)

eiW0(q,q0)/h̄ +
C−√
p(q)

e−iW0(q,q0)/h̄ (2.8)

with appropriate integration constants C±. Of course, this result can be sys-
tematically improved by taking into account even higher order terms in the
h̄-expansion (2.5).

The regions around caustics require special care. There is no reason why
the above expansion should not also hold in the range E < V (q), i.e. in a
range not accessible by a classical orbit, but sufficiently away from a turning
point E = V (q) (see e.g. Fig. 2.1). Accordingly, one puts p(q) → i|p(q)| so
that the oscillating wave function (2.8) develops exponentially decreasing and
increasing contributions, thus reflecting the appearance of quantum tunneling.
The matching between the WKB solutions in the classically allowed and the
classically forbidden ranges is done e.g. by circumventing the turning point in
the complex coordinate plane along a contour which ensures the validity of the
WKB condition [4]. The result are connection rules which read for a transition
from a classically accessible to a forbidden domain at a (left) turning point ql

C+√
p(q)

eiW0(q,ql)/h̄−iπ/4 +
C−√
p(q)

e−iW0(q,ql)/h̄+iπ/4 −→

C+√
|p(q)|

e−|W0(q,ql)|/h̄ , (2.9)

where in the first line q < ql and in the second one q > ql. In case of an
outgoing matter wave to the right of a (right) turning point qr, the transition
from the range under the barrier is determined by
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C+√
|p(q)|

e|W0(q,qr)|/h̄ → C+√
p(q)

eiW0(q,qr)/h̄+iπ/4 (2.10)

with q < qr on the right and q > qr one the left hand side.
These rules allow for the evaluation of energy dependent transmission

probabilities T (E) through one-dimensional barrier potentials. As a first ex-
ample, we consider a scattering barrier with asymptotically free states [4] as
depicted in Fig. 2.1. Then, one has an incoming and a reflected WKB-wave
on one side of the barrier (range I) and an outgoing WKB-wave on the other
side (range III). The amplitude t(E) of the latter is determined by connecting
these partial waves via a proper WKB solution in the classical forbidden range
(range II). This way one finds

T (E) ≡ |t(E)|2 = exp

[
− 2

h̄

∣∣∣∣∣
∫ qr(E)

ql(E)

dqp(q)

∣∣∣∣∣
]

, (2.11)

where the exponent contains twice the absolute of the short action W (ql, qr)
between the turning points. It is thus identical to the short action of a periodic
orbit at energy E in the inverted barrier potential.

In case of bounded one dimensional potentials with a single minimum, the
above connection rules give rise to a quantization scheme known as the WKB
or Bohr-Sommerfeld quantization, i.e.,

1
2πh̄

∮
dqp = n +

1
2

. (2.12)

Here the integral covers a full period of a classical orbit and n is a positive
integer. The additional term 1/2 on the right hand side accounts for the
zero point fluctuations. This term, a direct consequence of the breakdown
of the semiclassical approximation close to a turning point and associated
with the appearance of additional phases in (2.9) and (2.10), was absent in
the older version of this scheme. A multi-dimensional generalization of the
WKB rule was first found by Einstein, later discovered independently again
by Keller, and named EBK quantization (Einstein–Brillouin–Keller) [8, 9] in
the literature [10]. It reads for a d-dimensional system

1
2πh̄

∮
Ci

dqp = ni +
νi

4
, i = 1, . . . , d , (2.13)

where the Ci are d independent closed loops on a torus in d dimensions and νi

are the corresponding Maslov indices counting the number of conjugate points
along Ci.

From the above rules one derives quantized energy levels separated by
a gap of order h̄. However, in systems with classically degenerate ground
states, e.g. double well potentials, an exact diagonalization of the correspond-
ing Hamilton operator reveals that each such level consists actually of sub-
levels, the energies of which differ by terms exponentially small in h̄. This fine
structure due to quantum coherence between wells linked by barriers cannot
be gained within the WKB/EBK schemes.
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Uniform Approximation

There is an alternative way to glue together respective asymptotic WKB wave
functions in the vicinity of a turning point. The idea is to linearize the barrier
potential in a range around the turning point and to solve the corresponding
Schrödinger equation exactly [4, 5]. Suppose the turning point is located at
q = q0, one then writes V (q) ≈ V (q0) − F (q − q0). The corresponding energy
eigenfunctions are Airy-functions and by matching their asymptotics onto
semiclassical solutions (2.8) one determines the free coefficients and obtains a
uniform solution.

A similar strategy, namely to solve the Schrödinger equation for a reference
potential exactly, is also used to remove the failure of the WKB-transmission
probability (2.11) for energies close to the top of a smooth barrier potential [4,
5]. In this situation, left and right turning points, ql and qr, are not sufficiently
separated from each other (of order λB or less) so that the above procedure
based on the connection rules (2.9) and (2.10) does not apply. However, a
smooth barrier potential can be approximated around its top by an inverted
harmonic oscillator. The corresponding Schrödinger equation is again exactly
solvable in terms of Weber functions. The asymptotic form of these functions
is matched onto the asymptotic WKB wave functions, which eventually leads
to the uniform semiclassical transmission probability

Tuni(E) =
1

1 + exp[2W (E)/h̄]
(2.14)

with E = E(ql, qr). For energies sufficiently below the barrier top this ex-
pression reduces to (2.11), while it reproduces the exact result for a purely
parabolic barrier Vpb(q) = −Mω2q2/2 for energies near the top, where
Wpb(E) = πE/ω.

2.2 Real-time Propagator

The time dependent Schrödinger equation

ih̄
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 (2.15)

can be formally integrated over a time period t − t′ to yield |ψ(t)〉 = Ĝ(t −
t′) |ψ(t′)〉, where

Ĝ(t) = exp
(
− i

h̄
Ĥt

)
(2.16)

denotes the quantum mechanical real-time propagator. Its knowledge is com-
pletely equivalent to solving the Schrödinger equation itself and leads to an
alternative formulation of quantum mechanics in terms of path integrals. First
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pioneered by Feynman [11], the position representation of the real time prop-
agator can be written as

G(qf , t; qi, 0) ≡ 〈qf |Ĝ(t)|qi〉 =
∫ q(t)=qf

q(0)=qi

D[q] eiS[q]/h̄ . (2.17)

Roughly speaking, the above integral sums over all paths running in time t
from qi to qf , where each paths is weighted by its action

S[q] =
∫ t

0

dsL[q̇(s), q(s)] (2.18)

with the classical Langrange-function L corresponding to the Hamiltonian H.
We do not discuss here the mathematical subtleties of path integrals – there
is a vast body of literature, see e.g. [6, 12, 13, 14, 15, 16] – but rather consider
it as a very powerful and elegant approach for a consistent semiclassical ap-
proximation. Before we do so, we mention an important property of the above
propagator, namely,

G(qf , t; qi, 0) =
∫

dx G(qf , t − s;x, s)G(x, s; qi, 0) , (2.19)

which resembles the Chapman-Kolmogorov equation known from statistical
mechanics [17] and reflects the half-group property of the propagator.

Now, a simple expectation is that the sum over paths is dominated by
those orbits which extremalize the action, i.e. by those which obey the classical
equation of motion δS[qcl] = 0. In fact, the path integral (2.17) allows for a
systematic asymptotic expansion in h̄, which, to be more precise, is actually
an expansion in a small parameter being the ratio of a quantum scale and a
classical scale of the problem under consideration. By putting for an arbitrary
path q(s) = qcl + y(s) with y(0) = y(t) = 0 one expands

S[q] = S[qcl] +
∑
n≥2

δnS[qcl, y] (2.20)

with the functional derivatives

δnS[qcl, y] =
1
n!

∫ t

0

ds1 · · · dsn
δnS[q]

δq(s1) · · · δq(sn)

∣∣∣∣
q=qcl

y(s1) · · · y(σ2) . (2.21)

This expansion is basically a series in the small parameter so that to leading
order quantum corrections are captured by the second order term and higher
order contributions are negligible. The corresponding approximation is called
Gaussian approximation and contains the second order variational operator

L2(s1, s2) =
δ2S[q]

δq(s1)δq(s2)

∣∣∣∣
q=qcl

= δ(s1 − s2)

(
M

d2

ds2
1

+
d2V (q)

dq2

∣∣∣∣
q=qcl(s1)

)
. (2.22)
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Gaussian fluctuations around the classical path thus live in a harmonic valley
with a curvature given by the instantaneous position of the classical orbit. In
case that there are several classical paths obeying the boundary conditions one
has to perform such a local expansion around each of them. The underlying
requirement is here that the classical paths are sufficiently separated from each
other in function space. When this is not the case, large fluctuations may lead
from one path to another one and the Gaussian approximation breaks down, a
situations that typically appears around bifurcations when new classical paths
pop up and one (or several) eigenvalues of L2 pass through zero and become
negative. Away from the bifurcation a Gaussian approximation is again valid
with the negative eigenvalue giving rise to an additional phase (Maslov phase).

By solving the Gaussian path integral over the fluctuations one arrives at
the well-known Van Vleck Gutzwiller propagator (VVG) [18, 19]

GVVG(qf , t; qi, 0) =
1√
2πih̄

∑
α

√
|Dα| exp

[
i
h̄

S
(α)
cl (qf , qi, t) − iνα

π

2

]
. (2.23)

Here, S
(α)
cl ≡ S[q(α)

cl ] and the contributions of the harmonic fluctuations around
the classical paths q

(α)
cl are encoded in the prefactors Dα, which carry the

stability informations about the respective paths [20, 21]. There are various
ways to calculate them based on the eigenvalues of the operators L

(α)
2 , with

the most compact expression being

Dα = −∂2S
(α)
cl (qi, qf , t)
∂qf∂qi

. (2.24)

The additional phase factors in (2.23) include the Maslov indices, which count
the number of conjugate points (bifurcation points) along a certain path ac-
cording to Morse theorem [22] and are physically related to caustics. Higher
order corrections to the VVG have also been determined in [23, 24, 25].

In particular, for a harmonic potential the Gaussian semiclassical approx-
imation gives the exact result

Gharm(qf , t; qi, 0) =

√
Mω

2πih̄| sin(ωt)| e−iνπ/2

× exp
{

iMω

2h̄ sin(ωt)
[
(q2

i + q2
f ) cos(ωt) − 2qiqf

]}
, (2.25)

where ω is the frequency and M the mass of the oscillator. The Maslov phases
for t ≥ tν guarantee that at the caustics ωtν = νπ, ν = 1, 2, . . ., where all
classical paths starting at qi with different momenta coalesce at qf = (−1)νqi,
the propagator reduces to

lim
t→νπ/ω

Gharm(qf , t; qi, 0) = e−iνπ/2 δ [qf − (−1)νqi] . (2.26)
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From the expression (2.25) one derives the propagator of a parabolic barrier
by replacing ω by iω with ν = 0 and that of a free particle for ν = 0 by taking
the limit ω → 0.

Even though the VVG propagator has been explicitly applied to the dy-
namics e.g. in a stadium billiard [26, 27], in a Coulomb potential [28], and for
Rydberg atoms [29], in practical calculations it has one crucial deficiency: It
requires to solve a boundary value problem for the classical paths which is
notoriously very demanding, especially in higher dimensions. Hence, presently
the most powerful semiclassical real-time propagators are based on a so-called
initial value representation (IVR) (for recent reviews see [30, 31, 32]), where
classical paths evolve in time starting with initial conditions, i.e. at a certain
point in phase space. The best known IVR propagator is the Hermann-Kluk
(HK) propagator [33, 34, 35]

ĜHK(t) =
∫

d2Ω

2πh̄
|Ω(t), γ〉〈Ω, γ | R(Ω, t) eiS(Ω,t)h̄ , (2.27)

which includes paths starting at s = 0 at phase space points Ω = (p, q) and
arriving at s = t at Ω(t) = (p(t), q(t)). The phase-space states are Gaussian
wave-packets with width parameter γ reading in position representation

gγ(p, q;Q) ≡ 〈Q|Ω, γ〉 =
(γ

π

)1/4

exp
[
−γ

2
(Q − q)2 +

i
h̄

p(Q − q)
]

(2.28)

and the prefactor is

R(p, q, t) = det
[
1
2

(
m11 + m22 − iγm21 −

1
iγ

m12

)]1/2

(2.29)

containing the elements mij of the monodromy matrix

M(t) =

(
∂p(t)
∂p

∂p(t)
∂q

∂q(t)
∂p

∂q(t)
∂q

)
. (2.30)

This matrix is conveniently calculated by solving for a system with classical
Hamiltonian H the differential equation

dM

dt
=

(
0 −∂2H

∂q2

∂2H
∂p2 0

)
M(t) (2.31)

with initial condition M(0) = 1. Note that the HK propagator becomes exact
as well for harmonic potentials and a free particle and reduces to the VVG
expression when the phase space integration is carried out in stationary phase.

While the VVG-propagator is directly derived from the exact expres-
sion (2.17) as the leading term of an asymptotic series in h̄, the situation
for the HK-propagator is different. It has been used more as a practical
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tool rather than a well defined result of a bona fide semiclassical expan-
sion, even though some attempts in this directions have been pushed forward
[36, 37, 38, 39, 40, 41, 42, 43], some of them [44, 45, 46] based on coherent
states [47]. Accordingly, it originated merely from the constraint to reduce
to the VVG-propagator in the stationary phase limit, which defines only a
necessary but not a unique condition and thus gives rise to a whole class of
equivalent initial value representations. Indeed, a variety of alternative IVR
propagation schemes have been proposed [48, 49, 50, 51, 52, 53, 54], where
some of them can be directly derived from the HK propagator by means of ad-
ditional approximations [30]. After the practical utility of the HK propagator
was demonstrated [36, 55], an increasing number of fascinating applications
have been performed, see e.g. [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67]
and for more details also the recent reviews [68, 69]. The mathematical basis
for the HK-propagator has been formulated only very recently (see Sect. 4.3)
and now allows also for systematic improvements beyond its standard form.

2.3 Energy-dependent Propagator

Complementary to the quantum propagator in the time domain (2.16) is its
representation in the energy regime. In the spectral decomposition in terms
of eigenfunctions |Φn〉 of the Hamilton operator with eigenvalues En one has

G(qf , t; qi, 0) =
∑

n

Φn(qf)Φn(qi)∗ e−iEnt/h̄ . (2.32)

This can formally be Fourier transformed to read

K(qf , qi, E) = 1
ih̄

∫ ∞

0

dt G(qf , t; qi, 0)eiEt/h̄

=
∑

n

Φn(qf)Φn(qi)∗

E − En + iε
(2.33)

and is known as the energy dependent (retarded) propagator. Here, a small
imaginary part ε > 0 ensures causality. By further taking the trace in position
space one arrives at the resolvent

K(E) =
∑

n

1
E − En + iε

, (2.34)

which plays the key role in generalizing the WKB quantization rule to systems
with classically nonintegrable dynamics [70, 10]. Namely, it is related to the
density of states

d(E) =
∑

n

δ(E − En) (2.35)

via
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d(E) = − 1
π

Im {K(E)} . (2.36)

A semiclassical expansion of the propagator thus leads to a decomposition

d(E) = d̄(E) + dosc(E) (2.37)

in a smooth (classical) part and an oscillating part capturing quantum me-
chanical features. The corresponding semiclassical expression for classically
chaotic systems, known as the Gutzwiller trace-formula [10, 70],

dosc(E) =
1

πh̄

∑
p.o.

∞∑
j=1

Tpo∣∣∣det(Mj
po − 1)

∣∣∣1/2
cos

[
j

(
Spo

h̄
− µpo

π

2

)]
(2.38)

relates the quantum mechanical spectrum to purely classical information in
terms of primitive periodic orbits (po) with period Tpo, action Spo, and mul-
tiple traversals j. The monodromy matrix Mpo contains the stability infor-
mation of a specific po and µpo denotes the Maslov index on the energy shell.
Seminal applications of the trace formula include the quantization of the hy-
drogen atom in a uniform magnetic field [71], where the sum was performed
by uniquely coding the periodic orbits, and the calculation of Rydberg series
for the two electron system (Helium) [72].

2.4 Equilibrium Statistical Operator

An ensemble of quantum mechanical systems in thermal equilibrium is de-
scribed by the statistical operator

ρ̂β =
1
Z

e−βĤ (2.39)

with the partition function Z = Tr{e−βĤ}. Formally it is related to the real-
time propagator (2.16) via a Wick rotation t → −ih̄β. Thus, its path integral
representation in position space is easily gained from (2.17) as [6, 17]

ρβ(qf , qi) =
1
Z

∫ q(h̄β)=qf

q(0)=qi

D[q] e−SE[q]/h̄ . (2.40)

Here, due to the Wick rotation one sums over paths connecting in Euclidian
(imaginary) time h̄β the endpoints qi and qf , where the contribution of each
paths is weighted with its Euclidian action

SE[q] =
∫ h̄β

0

dσH[p(σ), q(σ)] (2.41)

containing the classical Hamiltonian H[p, q]. Hence, for a particle of mass M
moving in a potential field V (q), i.e. H[p, q] = p2/2M + V (q), the imaginary
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time motion can be seen as a real-time dynamics in the inverted potential
−V (q). Further, in the partition function

Z =
∮

D[q] e−SE[q]/h̄ (2.42)

all closed paths q(0) = q(h̄β) are summed up.
Despite these similarities there is a fundamental difference between the

imaginary and the real-time propagators. Namely, the former one is always
positive and real according to its physical role as a probability density. The
immediate consequence is that ρβ has, at least for all systems with well defined
ground state, a well defined “long-time” limit being equivalent to the zero
temperature limit: In position representation it projects onto the ground state
with energy E0, i.e.,

lim
h̄β→∞

ρβ(q, q) = |Φ0(q)|2 (2.43)

and gives thus direct access to the corresponding wave function. The above
relation is also known as the Feynman-Kac formula [17, 6].

Another consequence is that the analog of the VVG-propagator (2.23), i.e.
the Gaussian semiclassical expression for the statistical operator

ρsc
β (qf , qi) =

1
Zsc

√
2π

∑
α

√
DE

α exp
[
−S

(α)
E,min(qf , qi)

]
(2.44)

with S
(α)
E,min denoting the Euclidian action of the minimal action path q

(α)
min,

does not contain Maslov phases. Namely, a simple analytic continuation of
the expression

DE
α = −

∂2S
(α)
E,min(qi, qf)
∂qf∂qi

(2.45)

beyond the first conjugate point (one eigenvalue negative) is not possible
as then the root in (2.44) would turn imaginary and the whole expression
unphysical. In other words, unstable directions in function space cannot simply
be accounted for by Maslov indices. Typically, conjugate points appear in
presence of potential barriers [73] so that their appearance when lowering the
temperature is directly related to tunneling through the classically forbidden
range of the potential.

To illustrate this point let us consider a sufficiently smooth barrier poten-
tial that can be approximated around its top by a parabolic barrier of curva-
ture ωb. For high temperatures the density matrix for coordinates around the
top is determined by local properties only and basically coincides with that of
a pure parabolic barrier. At a critical temperature βc, for ρβ(q, q) it is given
by ωbh̄βc = π according to a half an oscillation in −V (q), a bifurcation occurs,
new stable paths appear, and the Gaussian semiclassics breaks down [73]. For
temperatures around βc higher order terms in the expansion of the full action
must be taken into account. Sufficiently above βc the Gaussian approxima-
tion works again, however, now performed around the new stable orbits. The
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latter ones fulfill excursions with large amplitudes in the inverted barrier so
that even for coordinates near the parabolic barrier top the density matrix
is determined by global properties of the potential. Physically, this describes
the setting in of tunneling which causes the barrier to become transparent.

For systems without any barrier, the combination of the Feynman-Kac
formula and the semiclassical expression (2.44) allows to successively extract
energy eigenvalues and wave functions from purely classical information [74].
The idea is to successively apply the Feynman-Kac formula (2.43) to the
semiclassical unnormalized density matrix Z ρβ(q, q). This way, one starts at a
sufficiently low temperature β0 to gain the ground state |Φ0|2 together with its
energy E0; then, this ground state contribution is subtracted from Z ρβ(q, q)
at a somewhat higher temperature β1 < β0 to extract the first excited state
|Φ1|2 with energy E1 and so on state by state. Such a procedure leads to a
sequence of density matrices ρk+1, k ≥ 0 with the contributions of the first k
states stripped off:

ρk+1(q, q) = Zρβ(q, q) −
k∑

l=0

|Φl(q)|2e−βlEl , k ≥ 0 . (2.46)

It was shown [74] that this procedure offers an alternative way of quantizing
classically chaotic systems with the merit that due the positivity of the equi-
librium density a substantially smaller number of classical orbits is required
compared to the real-time scheme (2.38).
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3

Tunneling in the Energy Domain

Tunneling processes which are not subject to time dependent forces can be
described in the energy domain. In many cases though, individual energy
dependent transmission probabilities are experimentally not accessible, but
only their average over a distribution of energies. One then speaks of tunneling
rates rather than probabilities. A general expression for the total rate is given
by [1, 2]

Γ =
1
Z

∫ ∞

0

dE Γ (E) ρ(E)P (E) (3.1)

with a proper normalization Z, the density of states ρ(E), the (unnormalized)
energy distribution P (E), and where energy is measured from the base of the
barrier. The microcanonical rate Γ (E) is related to the transmission T (E)
via Γ (E) = T (E)/[2πh̄ρ(E)] and describes the flux through the barrier at
energy E. Physically, its dimension is frequency so that the inverse of Γ is the
typical time scale on which an initial population on one side of the barrier
decays by barrier penetration. For systems where this population is given by a
thermal ensemble, P (E) is identical to a Boltzmann distribution. In principle,
averaged rates can be calculated from (3.1) by means of the WKB technique
introduced in Sect. 2.1. A much more convenient way, however, is based on
the path integral representation of the partition function of the system and
the fact that the imaginary part of the corresponding free energy (ImF ) is
related to the temperature dependent decay rate [3]. At low temperatures the
tunneling rate is determined by the so-called bounce orbit so that the ImF
method is also referred to as the bounce method. The formulation is suited to
treat tunneling through scattering barriers and from a metastable well into a
continuum (incoherent tunneling).

Particularly in the latter case the situation is a bit more involved though.
Namely, in principle the existence of a thermodynamic equilibrium in a
metastable well requires at any finite temperatures the coupling to a heat
bath which tends to restore this distribution after a particle has escaped.
There are then three ways to proceed. One is to ignore the existence of the
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heat bath in an explicit calculation and to assume that a thermal distribu-
tion is always maintained. It turns out that this approximation, also termed
quantum transition state theory (QTST) [1], provides rates which are upper
bounds for the true ones. In this Chapter we will work with the ImF ap-
proach in this sense and especially demonstrate that it is then completely
equivalent to WKB. A second way is to include environmental degrees of free-
dom (dissipation) in terms of a reduced description, where the heat bath is
integrated out and one deals with an effective partition function. Since in this
case the expression (3.1) is no longer meaningful, we discuss further details in
Chap. 5. A full dynamical formulation of the nonequilibrium reduced density
matrix will be outlined in Chap. 6 and gives detailed conditions for the valid-
ity of thermodynamic rate calculations. In a third way, one treats tunneling
in presence of a heat bath as a process in a higher dimensional landscape
with the total energy distributed between the tunneling degree of freedom
and a collection of harmonic oscillators, thus generalizing the QTST to the
multi-dimensional quantum transition state theory (MQTST). This will be
presented in this Chapter in Sect. 3.3.1. Such an explicit multi-dimensional
calculation has the merit of not only providing a deeper insight into tunnel-
ing in higher-dimensional topologies, but also confirming independently the
results gained within the more elegant dissipative ImF approach.

Tunneling between classically degenerate energy minima occurs due to
quantum coherence so that the energy ladder of a bistable potential with suf-
ficiently high barrier consists for low lying states of energy doublets separated
by an exponentially small tunnel splitting. When a wave packet is initially
prepared in only one of the wells, it will coherently oscillate between the clas-
sical minima with a frequency given by this tunnel splitting. The method
to calculate these splittings is similar to the ImF approach: It is also based
on path integrals, but has to take care of the special types of minimal action
paths, the so-called instantons, which provide the dominant contribution. The
instanton approach was actually invented in high-energy physics [4]. For the
sake of transparency, we discuss it here for vanishing dissipation and zero
temperature and present generalized results in Chap. 5.

A calculation of tunneling rates for nonseparable multi-dimensional barrier
degrees of freedom becomes very demanding. First, phase space allows for an
increasing number of tunneling paths, a proliferation of orbits that in some
cases is soothed by the exponential dependence of the tunneling probability
on the lengths of the paths. Second, tunneling may be strongly influenced by
more complex structures of classical phase space comprising regions of chaotic
and those of regular motion. In the latter cases, a semiclassical description has
been only partially developed so far, even though substantial progress has been
achieved in the last years.
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3.1 Quantum Decay Rate out of a Metastable Well

Tunneling from a metastable state into a continuum can be found almost
everywhere in nature [2]. Historically, the radioactive decay of nuclei associ-
ated with the emission of α-particles was first explained by Gamow [5] and
Gurney and Condon [6] by this type of potential barrier model (see Fig. 3.1).
In the 1980s the tunneling of collective degrees of freedom consisting of macro-
scopically many degrees of freedom, then coined macroscopic quantum tun-
neling (MQT), has triggered a substantial amount of research [2]. The best
known real systems in this respect are Josephson junction devices [7, 8], which
allow for the most accurate measurements of tunneling probabilities. Mean-
while, MQT has been seen in a variety of other condensed phase systems such
as for vortices, in nanomagnets and for Bose-Einstein-Condensates to name
but a few.

Metastability is associated with a separation of time scales between the
local dynamics in the well region and the escape process through the barrier.
In a real system residing in thermal equilibrium in the well, this requires a suf-
ficiently fast relaxation processes in the well compared to the escape which is
fulfilled, when the barrier height Vb by far exceeds all other energy sales as e.g.
coupling strength to a heat bath, temperature kBT and ground state energy
h̄ω0. Since in this Chapter we restrict ourselves to the non-dissipative situa-
tion, let us briefly address some aspects in which way this picture is related
to the full nonequilibrium dynamics and anticipate some results obtained in
Chap. 6.

Imagine that a local thermal equilibrium is initially prepared in the well.
Then, apart from a domain of very weak coupling to the bath, after an ini-
tial transient period of time a quasi-stationary state describing a constant flux
across the barrier is approached, where nonequilibrium effects are restricted to
a range around the barrier top. Accordingly, this flux state reduces inside the
well (far from the barrier) indeed to a Boltzmann distribution and is related to
a time independent escape rate. It turns out that under these circumstances a
calculation of the tunneling rate based on a purely thermodynamic treatment
like the ImF method is justified (for more details see Sect. 5.2.5). Correspond-
ing rates are bounded from above by the non-dissipative rates gained in the
sequel. Since an exact calculation of the partition function for an anharmonic
system is prohibitive, in a semiclassical approximation to the path integral
expression the dimensionless ratio max(kBT, h̄ω0)/Vb serves as a small para-
meter. Note that for zero temperature the corresponding rate reduces to the
ground state tunneling probability derived within the WKB approach from
the time-independent Schrödinger equation.

We will start with the calculation of the total rate based on the transmis-
sions T (E) via the WKB approach and proceed with the presentation of the
more powerful path integral methods.
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0
0

( )

Fig. 3.1. Metastable well potential V (q) with ranges I, II, and III, where for fixed
energy E different semiclassical solutions apply. These solutions must be matched
at qII and qIII . See text for details.

3.1.1 WKB Treatment

To be specific, we consider a metastable well potential V (q) as shown in
Fig. 3.1 with a well located at q = 0 with V (0) = 0 and frequency ω0 =√

V ′′(0)/M and a barrier top located at q = qb with Vb = V (qb) and ωb =√
|V ′′(qb)|/M . The standard WKB method based on the connection rules

specified in Sect. 2.1 now works as follows. In the well region I, one has

ψI(q) =
1√
p(q)

(
e
i
∫ q

qI
dq′p(q′)/h̄−iπ/4

+ e
−i
∫ q

qI
dq′p(q′)/h̄+iπ/4

)
. (3.2)

In the classically forbidden range II, the wave function decays as

ψII(q) =
1√
p(q)

e
−
∫ q

qII
dq′|p(q′)|/h̄

, (3.3)

where E = p2/2M + V (q). The outgoing wave function ψIII in domain III is
obtained from taking the right going component of ψI and continuing it via
the connection rules and ψII to

ψIII(q) = e−2W (E)/h̄ 1√
p(q)

e
i
∫ q

qIII
dq′p(q′)/h̄+iπ/4

. (3.4)

Here, 2W (E) denotes the short action of the periodic orbit at energy E in the
inverted barrier. The escape rate is then the outgoing current divided by the
normalization of ψI in the well, i.e.,

Γ (E) =
h̄

M
Im

{
ψ∗

III

∂ψIII(q)
∂q

} (∫ qII

qI

dq′|ψI(q′)|2
)−1

=
1

τ0(E)
e−2W (E)/h̄ (3.5)

with τ0(E) =
∮

dq/q̇ being the period of a classical oscillation in the well.
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The above result must be modified for low lying states with energies of
order h̄ω0 since then (3.2) no longer applies [9]. An improved result is gained
by using the known eigenfunctions and energies En = h̄ω0(n + 1/2) of the
harmonic oscillator near the well bottom in region I. This procedure yields

Γn ≡ Γ (En) =
ω0√
π

2n

n!

(√
Mω0

h̄
Cq0

)2n+1

e−SB/h̄ (3.6)

with a numerical factor C depending on the shape of the barrier potential, q0

its classical exit point V (q0) = V (0), and SB = 2W (0) the so-called bounce
action. For instance, for the generic harmonic+cubic potential

V (q) =
1
2
Mω2

0q2

(
1 − 2q

3qb

)
(3.7)

with a barrier at q = qb and q0 = 3qb/2, one finds C =
√

60 so that the
ground state rate follows as [10, 11]

Γ0 =
ω0

2π

√
Vb

h̄ω0
12
√

6π e−
36
5

Vb
h̄ω0 , (3.8)

where Vb = 2Mω2
0q2

0/27 is the barrier height. We note that these results
require a sufficiently broad harmonic range around the well bottom, which is
fulfilled when Vb/h̄ω0 	 1 meaning that tunneling is exponentially suppressed
in accordance with the assumption of metastability.

Now, we assume a thermal distribution in the well of a metastable potential
and treat the energy levels as a continuum with the density of states ρ(E) =
[1/h̄ω(E)]θ(Vb − E), where ω(E) = 2π/τ0(E) denotes the frequency for a
classical oscillation in the well at energy E. Then, the result (3.5) is plugged
into the expression (3.1) to yield

Γβ =
1
Z

∫ Vb

0

dE

2πh̄
e−2W (E)/h̄−βE . (3.9)

A steepest descent evaluation [12] leads to the condition 2dW (E)/dE = h̄β
meaning that the integral is dominated by the energy Eβ of that periodic
orbit in −V (q) which has a period h̄β. Accordingly, one arrives at

Γβ =
1
Z

1√
2πh̄|τ ′(Eβ)|

e−2W (Eβ)−βEβ (3.10)

with τ ′ = dτ/dE. Further, the normalization is taken as the partition function
of the harmonic well Z0 = 1/[2sinh(ω0h̄β/2)]. In principle, one must be careful
in using the expression (3.5) also for energies where the level quantization must
be accounted for according to (3.6). However, it turns out that in the relevant
low temperature range ω0h̄β 	 1 a corresponding calculation leads to the
same result as in (3.10) [13].
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For high temperatures h̄β < 2π/ωb, the steepest descent condition in
(3.9) cannot be fulfilled by an oscillating periodic orbit [12]. In this case the
energy integral is dominated by energies around the barrier top, where the
WKB result for the transmission, i.e. the exponential exp[−2W (E)], must be
replaced by the exact expression for a parabolic barrier [see (2.14)]

Tpb(E) =
1

1 + exp[2π(Vb − E)/h̄ωb]
(3.11)

so that one obtains

Γ =
ωb

2π

sinh(ω0h̄β/2)
sin(ωbh̄β/2)

e−βVb . (3.12)

At very high temperatures ω0h̄β � 1, this rate reduces to

ΓclTST =
ω0

2π
e−βVb , (3.13)

which coincides with the classical simple transition state theory result [2].
Apparently, when lowering the temperature the rate expression (3.12) diverges
at the so-called crossover temperature

T0 =
h̄ωb

2πkB
, (3.14)

thus defining a lower bound in temperature for its validity. Physically, for
T > T0 escape is dominated by thermal activation over the barrier supple-
mented by quantum fluctuations, while for T < T0 where (3.10) holds quan-
tum tunneling prevails. In the classical regime the rate depends exponentially
on temperature, whereas below the crossover it quickly saturates at a value
corresponding to ground state tunneling (3.8). Experimentally, this crossover
is a clear signature for the onset of deep quantum tunneling. There is a nar-
row layer around T0 where the crossover between (3.10) and (3.12) happens
to take place; the smaller the ratio h̄ω0/Vb the sharper this transition. In
this layer the integral (3.9) has to be evaluated beyond a Gaussian steepest
descent approximation [12].

3.1.2 The ImF Method

The underlying idea of the ImF method is this: The finite lifetime of a
metastable state can be understood as an imaginary part to the energy of
that level. Equivalently, in a scattering experiment such states appear as res-
onances with finite widths, where their inverse is interpreted as a decay rate.
Hence, putting εn = En + ih̄Γn/2 with En 	 h̄Γn, the partition function of
the system is calculated as
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Z =
∞∑

n=0

e−βεn ≈
∞∑

n=0

e−βEn − i
h̄β

2

∑
n=0

Γne−βEn . (3.15)

Here, for energies near and above the barrier, the sum is taken as an integral.
Obviously, the imaginary part in Z is proportional to the discrete version of
the formula (3.1) and thus related to the total decay rate. Accordingly, one
finds [12]

Γ =
2
h̄

ImF (3.16)

with the free energy F = − ln Z/β. The rate is determined by an exponen-
tially small imaginary part of the partition function which in a semiclassical
treatment can thus not be neglected against its dominating real part.

As we have seen in the previous Sect. 3.1.1, for sufficiently high tempera-
tures tunneling no longer dominates and the continuum of energies around and
above the barrier plays the crucial role. As a proper treatment shows (see [12]),
the result (3.16) must then be replaced by the expression Γ = (ωbβ/π)ImF .
Both relations match at the crossover temperature T0 (3.14) so that the final
ImF formula reads

Γ =




(ωbβ/π) ImF for T ≥ T0

(2/h̄) ImF for T ≤ T0

. (3.17)

The most convenient way to apply the ImF method and to calculate the
partition function of an unstable system, is to make use of its representation as
a sum over paths in imaginary time (2.42) [14, 15, 11]. Since for these systems
a true thermodynamic equilibrium does not exist, the calculation of Z must
be performed by means of an analytic continuation pioneered by Langer [16].
In the semiclassical limit, i.e. for Vb 	 h̄ω0, the corresponding path integral
(2.42) is dominated by all periodic minimal action paths q

(α)
ma and Gaussian

fluctuations around them so that one writes for an arbitrary paths q(σ) =
q
(α)
ma (σ) + y(σ) with y(0) = y(h̄β). In a metastable barrier potential of the

type sketched in Fig. 3.1 there are always two trivial periodic orbits, namely,
one at the well bottom q0(σ) = 0 and one at the barrier top qb(σ) = qb.
For temperatures T > T0 when no oscillating orbit in −V (q) exists (since
h̄β < 2π/ω0), these provide the dominating contributions to Z denoted by Z0

and Zb, respectively. It turns out that while around q0 fluctuations y(σ) are
stable, around qb there exists one unstable mode which induces translations
in position around the barrier top. Due to an analytic continuation of the
corresponding Gaussian integral [16, 12] these unstable fluctuations give rise
to the imaginary contribution of the partition function, i.e. Z = Z0 + i|Zb|.
Then, by writing F = −(1/β) ln(Z) ≈ −(1/β)[ln(Z0) + i|Zb|/Z0] and using
(3.17) one ends up with the expression (3.12).

For sufficiently low temperatures T < T0 (h̄β > 2π/ω0), a new type of
periodic orbits appears which run in the time interval h̄β through the inverted
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barrier potential −V (q) with an arbitrary initial phase. These orbits, the
so-called bounces, reflect the on-set of quantum tunneling. Langer’s method
has been put forward into this regime in [4, 17, 18, 19]. The bounce orbits
qB(σ) are determined explicitly by δSE[qB] = 0 and carry a corresponding
minimal action SB. Again one puts q(σ) = qB(σ) + y(σ) and expands the
action functional up to second order SE[q] ≈ SB + δ2SE[qB, y] with

δ2SE[qb, y] =
1
2

∫ h̄β/2

−h̄β/2

dσ1dσ2
δ2S[q]

δq(σ1)δq(σ2)

∣∣∣∣
q=qB

y(σ1)y(σ2) . (3.18)

Note that here for convenience the range of integration has been shifted due
to the time translation invariance to lie symmetrically around σ = 0. The
path integral over q(σ) is thus transformed into a Gaussian path integral
over the fluctuations y(σ). This is most conveniently calculated by using the
eigenfunctions to the second order variational operator contained in δ2SE, i.e.
LBφl = Λ

(B)
l φl, with φl(−h̄β/2) = φl(h̄β/2) and

LB(σ1, σ2) =
δ2SE[q]

δq(σ1)δq(σ2)

∣∣∣∣
q=qB

= δ(σ1 − σ2)

(
−M

d2

dσ2
1

+
d2V (q)

dq2

∣∣∣∣
q=qB(σ1)

)
. (3.19)

A straightforward evaluation along these lines encounters two subtleties
though, which require special care. First, from the equation of motion one
deduces that q̇B(σ) is proportional to the eigenfunction φ1 with a vanishing
eigenvalue. One further shows that q̇B generates infinitesimal changes in the
phase of the bounce, while the total action is invariant even with respect to
finite time translations. Hence, fluctuations in the direction of q̇B in function
space cannot be treated in Gaussian or any higher approximation, but must
be taken into account exactly. The procedure is to pick a representative out of
the set of equivalent bounces and exploit that the integration over the phase is
proportional to an integration over the total time interval. Second, since the
bounce has one turning point, q̇B(σ) has one node, and consequently there
must be one nodeless eigenfunction φ0 with a smaller, i.e. negative, eigen-
value Λ

(B)
0 < 0. This unstable mode gives rise to an additional imaginary

contribution to the partition function related to the bounce orbit ZB, which
for temperatures sufficiently below T0 dominates against the contribution Zb,
so that Z ≈ Z0 + i|ZB|. Eventually, the tunneling rate turns out to be

Γ =

√
SB

2πh̄

√
det[L0]
det′[LB]

e−SB/h̄ (3.20)

where L0 is the second order variational operator around q0 and in det′ the
zero eigenvalue is omitted. To calculate explicitly the prefactor, one uses an
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approach developed by Coleman [19, 4] to evaluate ratios of functional deter-
minants. For instance, in case of the metastable potential (3.7) the bounce at
zero temperature h̄β → ∞ is explicitly obtained as

qB(σ) =
3qb

2
1

cosh(ω0σ/2)2
, σ ∈

[
− h̄β

2
,
h̄β

2

]
(3.21)

and the corresponding rate coincides with (3.8).
Hence, for high as well as for low temperatures one gains the same rate

expressions as within the WKB approach, which proves the equivalence of
both methods [12]. However, the ImF -method enables us to calculate the
decay rate of a metastable system by neither performing explicitly a thermal
average (3.1), nor an explicit construction of wave functions. Further, it can
be very conveniently also applied in presence of dissipation, see Chap. 5. We
emphasize again that, as a purely thermodynamic approach, a prerequisite for
its applicability is the existence of a local Boltzmann distribution inside the
well region. In the non-dissipative case this is in a strict sense only guaranteed
for sufficiently low temperatures, where tunneling occurs from the ground
state.

While the ImF method is a non-dynamical method, it has nevertheless
been used to derive in certain limits decay rates for barrier systems driven
by external time dependent forces. One limit where it applies is the adiabatic
limit of low frequency driving [20]. Then, an equilibrium distribution for each
instantaneous phase of the external driving is approached and the total rate
is an average over escape events in instantaneous barrier potentials. In the
opposite case of very fast driving one may assume that the decay happens to
occur in an averaged potential (averaged over one period of driving) so that
again the problem reduces to a static rate calculation. For driving frequencies
of the order of the well frequencies and/or for sufficiently strong driving a
thermodynamic method must fail though.

3.1.3 Macroscopic Quantum Tunneling in Josephson Junctions

Josephson junctions (JJs) are one of the central building blocks for complex
mesoscopic devices [7, 8]: two superconducting domains are separated by a
thin insulating oxide barrier (Fig. 3.2). The tunneling of Cooper pairs through
the device is, according to the Josephson relations, completely determined by
the phase difference between the superconducting phases of left and right
lead. JJs are easily fabricated and controllable and exhibit strongly nonlinear
transport characteristics. Since the 1980s corresponding circuits have been
designed to thoroughly test theoretical predictions for classical and quantum
decay in various situations [21]. In the last years JJs have received consider-
able interest as elements to implement superconducting quantum bits [22, 23]
and as extremely sensitive on-chip detectors [24, 25, 26, 27]. In the former
case one exploits that the Josephson phase realizes an one-dimensional an-
harmonic potential well, in the latter one the exponential sensitivity of the
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L R

EJ, CJ

Fig. 3.2. Sketch of a cross section through a Josephson junction consisting of two
overlapping superconducting domains with phases ϕL and ϕR, respectively, sepa-
rated by a thin (typically a few Å) oxide layer (shaded area). The JJ is determined
by the coupling energy EJ, the capacitance CJ, and the relative phase ϕ = ϕL −ϕR.
For a picture of a real JJ see Fig. 3.5.

switching process out of the zero-voltage state with respect to the topology
of the potential barrier and the surrounding noise is highly advantageous.

Dynamics of Josephson Junctions

In the basis of the charge eigenstates {|n〉, n ∈ Z} associated to the number
of Cooper pairs having crossed the junction, the Hamiltonian of a JJ can be
written as

HJ = −1
2
EJ

∞∑
n=−∞

(|n〉〈n + 1| + |n + 1〉〈n|) . (3.22)

Here, EJ denotes the Josephson coupling energy between left and right
domain and is related to their superconducting gaps, cf. Fig. 3.2. The operator
conjugate to the number operator N̂ , N̂ |n〉 = n|n〉, is the phase operator ϕ̂, i.e.
[N̂ , ϕ̂] = i, related to the phase difference between the phases of the individual
superconducting condensates. In the phase representation (3.22) reads

ĤJ = −EJ cos(ϕ̂) . (3.23)

For a complete description of a JJ also its capacitance CJ must be taken into
account. The corresponding charging energy is ĤC = Q̂2/(2CJ), where the
charge Q̂ is associated with N̂ via Q̂ = 2eN̂ . Accordingly, when additionally
an external bias current Ib is applied, the total Hamiltonian is

Ĥ =
Q̂2

2CJ
− EJ cos(ϕ̂) − φ0Ibϕ̂ (3.24)

with the reduced flux quantum

φ0 =
h̄

2e
. (3.25)

The supercurrent flowing through the JJ is obtained from ÎS = 2e
˙̂
N =

[N̂ ,HJ]/iφ0 as
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〈ÎS〉 = Ic〈sin(ϕ̂)〉 (3.26)

with the critical current Ic = EJ/φ0. Moreover, one gains from ˙̂ϕ = (h̄/i)[ϕ̂,H]
that

φ0
d〈ϕ̂〉
dt

=
〈Q̂〉
CJ

= V (3.27)

with the voltage V across the junction. In the classical limit these relations
reduce to the known Josephson relations [7, 8]. When one formally identifies
momentum p̂ = φ0Q̂ and mass M = CJφ

2
0, the Hamiltonian (3.24) is equiv-

alent to that of a fictitious particle moving in a tilted washboard potential

VJ(ϕ) = −EJ cos(ϕ) − φ0Ibϕ . (3.28)

Note though that due to the discreteness of the eigenvalues of the charge oper-
ator, eigenstates to Ĥ must be periodic, i.e. |ψ(ϕ)〉 = |ψ(ϕ+2π)〉, when these
states are physically indistinguishable [8] in contrast to those of a quantum
particle in a spatially periodic potential, where this relation holds only up to
a phase.

A realistic junction is embedded in an electrical circuit and also its re-
sistance associated with quasi-particle transport must be taken into account.
Classically, in the so-called RCSJ model (Resistively and Capacitively Shunted
Junction) a real JJ is seen as an ideal JJ placed in parallel to a capacitor (CJ)
and an ohmic resistor (R) [7], see Fig. 3.3. According to Kirchoff’s law the
total current through the junction is then given by

Ib = Ic sin(ϕ) +
V

R
+ CJ

dV

dt
, (3.29)

which due to (3.27) can be written in terms of ϕ. For a complete description
also the current noise (Johnson-Nyquist noise) δI with 〈δI〉 = 0 is included so

CIb R EJ

Fig. 3.3. Resistively and Capacitively Shunted Junction (RCSJ) model describing
a JJ embedded in a circuit with total resistance R and total capacitance C biased
by an external current Ib.



32 3 Tunneling in the Energy Domain

that the classical dynamics of a JJ obeys a Langevin equation of a fictitious
particle, namely,

Mϕ̈ + Mγϕ̇ +
dVJ(ϕ)

dϕ
= φ0δI . (3.30)

The friction coefficient γ = 1/RC (total capacitance C includes CJ and ad-
ditional capacitances in the circuit) is related to the current noise via the
dissipation fluctuation theorem

〈δI(t)δI〉 = 2kBT (Mγ/φ2
0) δ(t) . (3.31)

The corresponding dissipative quantum system is obtained in the framework
of a system+reservoir description, a subject treated in Chap. 5.

Tunneling Rates and Measurement

For a JJ biased by a current Ib sufficiently below the critical current Ic, the
phase ϕ resides in one of the minima of the tilted washboard potential. When
Ib tends towards Ic, the phase may escape from the metastable well and accu-
mulates an average velocity related to a finite voltage across the junction, see
(3.27). This switching out of the zero voltage state occurs in the high temper-
ature domain by thermal activation, while below a certain crossover temper-
ature quantum tunneling of the superconducting phase difference dominates,
coined Macroscopic Quantum Tunneling (MQT). Experimental evidence for
this latter process has been first obtained in [28, 29, 30, 31]. Since all parame-
ters of such a circuit can be determined independently in the classical regime,
a JJ allows for the most accurate comparison between experimental data and
theoretical rate predictions in the tunneling domain [21, 32, 33, 34, 35, 36, 37].

The junction itself is completely characterized by its critical current Ic and
its capacitance or equivalently its plasma frequency

ω0 = ω00(1 − s2)1/4 (3.32)

for small oscillations around the well bottoms of the tilted washboard po-
tential. Here, the plasma frequency at zero bias s = Ib/Ic = 0 reads
ω00 =

√
2ECEJ/h̄ with the charging energy EC = 2e2/CJ. These quanti-

ties are extracted by performing experiments at high temperatures, where the
junction switches to its non zero-voltage state by thermal activation.

To determine the switching rate typically 104 to 105 switching events are
collected. A bias current ramp Ib(t) is applied and the number of switching
events at a certain bias current counted. From the switching probability

P (t) = 1 − e−
∫ t

0
dt′Γ (t′)

, (3.33)

one derives with t = t(Ib) that W (Ib) ≡ dP (Ib)/dIb = Γ (Ib)[1 − P (Ib)]/vI

with vI = dIb(t)/dt being the current ramp rate. This way, the histogram of
switching events W (Ib) is directly related to the rate (see e.g. [35])
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Γ (Ib) = vI
W (Ib)∫ Ic

Ib
W (Ib)

. (3.34)

Now, first the plasma frequency is determined by shining microwaves onto
the JJ, which then acts as a classical anharmonic oscillator. By tuning the
microwave frequency one observes a characteristic rate enhancement near the
plasma frequency, a phenomenon called resonant activation [32, 35]. The width
of the resonance corresponds to the Q-factor of the junction associated with
its coupling strength to the electromagnetic environment. Next, the critical
current Ic is extracted by exploiting the s dependence of the barrier height
Vb, which separates a well from the continuum and determines the thermal
activation factor in (3.13). Namely, for (Ic − Ib)/Ic � 1 one has

Vb ≈ 4EJ

√
2

3
(1 − s)3/2 (3.35)

so that at fixed temperature the function B(s) = ln(ω0/2πΓ (s))2/3 is basically
a straight line proportional to (1−s). Accordingly, lines taken at different tem-
peratures are extrapolated to intersect at the same value s = 1, see Fig. 3.4.

When comparing decay rates for high and low temperatures, it is conve-
nient to introduce an effective escape temperature by

Γ =
ω0

2π
e−Vb/kBTesc . (3.36)

Above the crossover temperature T > T0 one has Tesc ∝ T [see (3.13)], while
for T � T0 it approaches Tesc ∝ 5h̄ω0/36kB [see (3.8)]. Away from the purely

Fig. 3.4. B(s) = ln(ω0/2πΓ )2/3 as a function of the applied bias current Ib = sIc

for various temperatures in the classical regime of thermal activation. Dots depict
experimental data and straight lines are corresponding extrapolations intersecting
at the critical current Ic (arrow). Courtesy of the Quantronics Group (SPEC), CEA
Saclay.
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classical limit, but still at T > T0, quantum fluctuations lead to a rate en-
hancement [see (3.12)]. These theoretical predictions have been completely
verified by the experimental data (see [21] for an overview). To obtain even
a quantitative agreement one needs to take into account the influence of the
dissipative environment on the rate expression, which will be done in Chap. 5.

3.1.4 Tunneling of Quantum Bits

The prospect to exploit features of quantum mechanics for information
processing has triggered an enormous amount of research in the last years
[38]. While first implementations of quantum mechanical two-state systems,
called quantum bits or briefly qubits, have been realized in quantum optical
systems and ensembles of molecules, in the last years the solid-state commu-
nity has joined these efforts. So far the most successful solid state devices
are based on superconducting qubits since superconductivity comes with a
natural energy gap between the condensate and quasi-particles excitations so
that decoherence due to these latter ”perturbations” is strongly suppressed
[22, 39].

The Quantronium [see Fig. 3.5] is a solid state based qubit setup consisting
of a Cooper pair box (CPB) whose Josephson junction is split in two small
junctions with Josephson energy EJ, delimiting an island with capacitance C
and charging energy EC = (2e)2/2C [24, 40]. The two lowest lying states of the
box with energies E0 and E1 encode a qubit and in the circuit give rise to loop
currents of opposite direction. In parallel to the box is a third big Josephson
junction (with E′

J 	 EJ and E′
C � EC) which serves as a detector. For the

readout this big junction is biased by an external current pulse so that the
total bias current it sees depends on the state of the qubit. The measurement
consists of adiabatically driving the big junction into the regime where MQT
sets in. Due to the exponential sensitivity of the tunneling rate on the total
bias current, the two qubits states can efficiently be discriminated.

The analysis of the device becomes particularly transparent in the charging
regime (EC 	 EJ) where the two qubit states are determined by superposi-
tions of zero or one excess Cooper pair on the island. Further, we consider
the case of two symmetric JJs for the CPB, d = 0. To quantitatively describe
the experimental data one has to take into account a finite d though [41].
Then, the Hamiltonian of the box-subsystem can be written in terms of Pauli
matrices and by measuring all energies in units of E′

J the total dimensionless
Hamiltonian of the circuit reads

HQJ = eC σz − eJ cos
(

θ + φ

2

)
σx +

p2
θ

2M
− cos(θ) − ibθ (3.37)

with the dimensionless parameters eC = (EC/E′
J)(Ng − 1/2) (reduced gate

charge Ng), eJ = EJ/(2E′
J), and ib = h̄Ib/2eE′

J. Here, the first two terms
describe the qubit and the remaining ones the read-out junction with M =
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Fig. 3.5. Top: Quantronium circuit based on a split Cooper pair box (CPB) with
charging energy EC, Josephson energy EJ, and asymmetry d, which can be manip-
ulated by a gate voltage U and a magnetic flux Φ. For the readout a larger JJ with
phase θ is biased by a current pulse Ib to induce the switching to a finite voltage
state. Bottom left: Scanning electron micrograph of the CPB with the two JJs. Bot-
tom right: Measured energy splitting E01 of the two lowest energy eigenstates of the
CPB (dots) at Ng = CgU/2e = 1/2 as a function of γ = θ +2eΦ/h. The dashed and
solid lines are fits using EJ = 0.87kBK and EC = 0.655kBK with d = 0 and d = 0.1,
respectively. At γ = π (arrow) a level crossing or small gap occurs depending on d.
Courtesy of the Quantronics group (SPEC), CEA Saclay.

C ′E′
J/4e2 being the scaled mass of a fictitious particle with corresponding

momentum pθ and conjugate phase θ. For further details we refer to [24, 42,
43]. Due to the coupling between the two subsystems, the qubit and the big
junction, the dynamics of θ can be seen as that of a particle with two internal
states.

Now, we consider the situation when the qubit is initially (ib = 0) prepared
in its ground state. By rising the bias current ib > 0 adiabatically the phase
θ can be seen as a classical variable with negligible kinetic energy due to the
large mass (large capacitance C ′). Depending on the spin state, the fictitious
particle then evolves on adiabatic potential surfaces λ±(θ) obtained by simply
diagonalizing HQJ in spin space for M → ∞ [43]. When ib is close to 1,
however, the particle may tunnel out of the potential well and its kinetic
energy cannot be neglected anymore. At finite bias the Hamiltonian HQJ is
most conveniently represented via a unitary transformation in the spin basis
at the minimum θmin of the lower adiabatic surface λ−(θ), i.e.,

H̃QJ =

(
p2

θ

2M + V+(θ) ∆(θ)
∆(θ) p2

θ

2M + V−(θ)

)
. (3.38)
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Here, we introduced diabatic potential surfaces

V± = − cos(θ) − ibθ ±
(√

e2
C + V 2

0 +
V0[V (θ) − V0]√

e2
C + V 2

0

)
(3.39)

and off-diagonal elements

∆(θ) =
eC[V0 − V (θ)]√

e2
C + V 2

0

, (3.40)

where V (θ) = eJ cos( θ+φ
2 ) and V0 = V (θmin). By construction, at θ = θmin the

off-diagonal elements vanish so that V−(θ−) = λ−(θ−). Now, for the tunneling
process one may approximate the diabatic surfaces in one well-barrier segment
by a cubic expansion around θmin with q = θ − θmin so that

V±(q) =
MΩ2

±
2

(q − q±)2[1 − (q − q±)/q0,±] + δ±,+ + ∆Vmin , (3.41)

where δµ,ν denotes the Kronecker symbol, and ∆Vmin = V+(θmin)−V−(θmin).
As long as V± are sufficiently separated from each other everywhere in

the barrier range, i.e. |V− − V+| 	 ∆, the spin degree of freedom is essen-
tially frozen and the particle escapes through V± via standard MQT. The
corresponding escape rates Γ± can be directly inferred from (3.8).

There is an additional domain, however, which gives rise to an interesting
new MQT phenomenon [43, 41]. Namely, when the two diabatic surfaces cross
each other in the barrier range (see Fig. 3.6), the particle’s spin, initially
prepared in the gound state, may flip during the tunneling since this may
enhance the probability for escape substantially (see Fig. 3.7 right). This
process has some similarities to Landau-Zener transitions [44, 45] with the
crucial difference though that while in this latter case real-time orbits pass a
crossing region ballistically, here the transition occurs under the barrier while
tunneling, i.e. for orbits in imaginary time including fluctuations around them.
It was thus coined Zener-flip tunneling [41] and discussed also for other set-ups
[46]. From another point of view, one may interpret the above phenomenon as
tunneling of a particle with spin 1/2, the instantaneous position of which acts
as a magnetic field. The crossing of the diabatic surfaces is then equivalent to
a crossing of the Zeeman levels (see Fig. 3.7 left).

Hence, the standard ImF approach has to be extended to include spin flips
so that the tunneling rate follows, in case of vanishing dissipation, from the
imaginary part of the partition function

Z =
∞∑

n=0

z2n (3.42)

with contributions z2n consisting of 2n flips
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V+

V-

- *
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0

Fig. 3.6. Diabatic potential surfaces V+ and V− in the Zener flip range.

Fig. 3.7. Tunneling of a qubit out of a metastable well can be seen as tunneling of a
fictitious particle with spin 1/2 such that its instantaneous position acts a magnetic
field. When the corresponding Zeeman levels cross under the barrier, the escape rate
is enhanced by spin flips (Zener-flip tunneling).

z2n =
∫

Dq e−S−[q]/h̄

h̄β/2∫
−h̄β/2

dτ2n∆(q(τ2n)) · · ·
τ2∫

−h̄β/2

dτ1∆(q(τ1))

× exp




n∑
k=1

τ2k∫
τ2k−1

dτ(V−(q) − V+(q))/h̄


 , (3.43)

where S− denotes the bare action on the surface V−. Semiclassically, the
dominant contributions are provided by the corresponding minimal action
paths. While for n = 0 these coincide with ordinary bounce paths on V−, for
n > 1 the flip-bounces switch to the V+ surface on the way forth and again
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onto V− on the way back. One shows that these events happen most probably
in a close vicinity of the intersection point. Eventually, the corresponding
MQT rate can be cast into

ΓTot = ΓB + fflip(∆2
c) exp(−Sflip/h̄) , (3.44)

where ΓB denotes the standard MQT rate without spin flip, while the sec-
ond term captures contributions due to flips. The prefactor fflip of the flip
contribution contains the coupling ∆c at the crossing point of V±. For small
couplings (non-adiabatic limit) one has fflip ∝ ∆2

c/Ω1 with the frequency Ω1

being proportional to the second derivative of the flip-bounce action Sflip at
the crossing [43]. The influence of low frequency environmental noise as a
prevailing source of dephasing in the Quantronium [47] has been studied in
[48].

The rate enhancement due to the Zener-flip phenomenon has been veri-
fied experimentally very recently [41], see Fig. 3.8. In these experiments the
rate is not measured directly, but instead the bias current needed to detect a
constant switching rate (feedback mode). Since effectively a rate enhancement
corresponds to a weaker barrier, a spin flip while tunneling shows up in a sharp
decrease of the switching current in the expected range of the magnetic flux.
Note that in Fig. 3.8 a crossing of the diabatic surfaces at the readout only
occurs in region B. In region A the switching happens to be by standard MQT
from the lower surface, while in region C a crossing of the surfaces occurs in
the well region while ramping adiabatically the bias current, which leads to a
thermal population on the upper surface. Hence, at the readout one has tun-
neling from a thermal mixture of upper and lower surface, reminiscent of the
Zener-flip tunneling at lower values of the magnetic flux. Zener-flip tunneling
should also be observable in other superconducting qubit circuits, particularly,
in the flux qubit based on SQUIDS [49]. A quite different realization could be
spin dependent optical lattices as implemented e.g. in [50].

3.1.5 Collapse of Bose-Einstein Condensates
with Attractive Interaction

In an ensemble of bosons an arbitrary number of particles can occupy the
same microscopic state. At very low temperatures this leads to the phenom-
enon of Bose-Einstein condensation (BEC), where all bosons of the ensem-
ble condensate in a zero momentum state and due to the overlaps of their
wave functions form a collective quantum object. Predicted already during
the heyday of quantum mechanics [51, 52, 53], BEC was actually realized
and observed for dilute ultra-cold atomic clouds confined in magnetic traps a
decade ago [54, 55]. Since then it has led to one of the most fascinating areas
in contemporary physics with applications ranging from atomic and molecular
to condensed matter systems [56, 57].

In a mean field description and at vanishing temperature the condensate
wave function, which can also be interpreted as a classical order parameter
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Fig. 3.8. Top panel: Experimental (dots) and calculated (lines) values of s60 =
I60/Ic (I60 bias current with a switching probability of 60%) vs. the reduced mag-
netic flux φ = Φ/(2πφ0) in the Zener region B, where the diabatic surfaces intersect.
The curves are calculated with (solid) and without (dashed) Zener flips. The right
vertical scale results from the conversion of s60 into a rate ΓR according to the inset
(see text). Arrows indicate the reference point R. Inset: Escape rate Γ (smax) mea-
sured (dots) and calculated (line) at Ng = 1/2 at the reference point R. Bottom
panel: Escape rate enhancement calculated at constant rate ΓTot(φ, s60) = Γ60 by
dividing Γ60 by the rate ΓB that would be observed at the same s60 in absence of
Zener flips. See [41] for details.

field, is determined by the Gross-Pitaevskii (GP) equation

ih̄
∂Ψ(r, t)

∂t
=
[
− h̄2∇2

2M
+ Vext(r) + 2g|Ψ(r, t)|2

]
Ψ(r, t) . (3.45)

This nonlinear Schrödinger equation contains the atomic mass M , the external
trapping potential Vext and a self-interaction of strength g originating from
two-body collisions assumed to be s-wave scattering processes. Hence, g is
related to the corresponding s-wave scattering length a by g = 2πh̄2a/M . The
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confining potential Vext is to a very good accuracy harmonic, not necessarily
isotropic though.

BEC sets in below a so-called crossover temperature Tc which in the sim-
plest case of an isotropic harmonic well with frequency ω0 depends on the
number of bosons N as Tc ∝ h̄ω0N

1/3/kB [56]. Experimentally, ensembles of
alkali atoms are used to approach the BEC regime as e.g. rubidium, sodium,
and lithium. It turns out that a stable condensate only exists for a positive
scattering length a > 0, i.e. repulsive atom-atom interaction. In the attractive
case, realized for instance with 7Li and 85Rb, the condensate is metastable
for a number of atoms N < Ncr, where for typical parameters Ncr is of the
order of one thousand. Experiments on 7Li with a fixed scattering length have
been reported in [58, 59, 60, 61, 62]. In more recent results on 85Rb [63, 64]
a Feshbach resonance has been used to tune the scattering length from pos-
itive (stable) to negative (unstable), which allows for a direct control of the
collapse. The corresponding metastable state may decay by macroscopic quan-
tum tunneling as analyzed in a number of studies [65, 66, 67]. Here we closely
follow a description developed in [68, 69, 70].

A straightforward way to study an attractive condensate is to start with
the energy functional corresponding to (3.45)

E[Ψ ] =
∫

drΨ∗(r, t)
[
− h̄2∇2

2M
+ Vext(r) + g|Ψ(r, t)|2

]
Ψ(r, t) . (3.46)

For the simplest case of an isotropic trap (frequency ω0), one assumes a
Gaussian trial function

ΨG(r) =

√
N

π3/2d3
e−r2/2d2

(3.47)

with variational parameter d. Upon inserting this ansatz into the energy func-
tional, one finds

v(r) ≡ 4E[ΨG(r)]
Nh̄ω0

= 3
(

1
r2

+ r2

)
− γ

r3
(3.48)

with r = d/a0, a0 =
√

h̄/Mω0, and the dimensionless interaction strength

γ = |g| 4N

h̄ω0

√
8π3a3

0

. (3.49)

Now, depending on the value of γ the function v(r) may exhibit a local min-
imum at r > 0 separated from the global minimum at r → 0 by a barrier
(for γ < γc = 1.07) or no minimum at all (for γ > γc) [cf. Fig. 3.9]. In the
latter case, the energy functional can only be minimized for r → 0 and the
condensate collapses by evaporating atoms, a complicated process which has
been recently analyzed experimentally [64]. Of course, for r → 0 the mean
field approach breaks down and a true many-body description is required.
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Fig. 3.9. Effective potential v(r) of a condensate with attractive interaction de-
scribed by the Gaussian trial wave function (3.47) for various values of the parameter
γ [see (3.49)]: γ = 0.5, 0.67, 1.2 (top to bottom).

In the former situation, the condensate is trapped in a metastable well.
When the number of bosons N is slightly below Ncr (γ slightly below γc),
the energy barrier will be so low that macroscopic quantum tunneling may
occur towards a collapsing state. By taking into account the kinetic energy of
the cloud due to zero-point fluctuations around the bottom of the trapping
potential (breathing modes), the Euclidian action functional for the partition
function is obtained as

SE[r]/h̄ =
N

4

∫
dσ
[
3ṙ(σ)2 + v[r(σ)] − v(rmin)

]
(3.50)

with rmin the value of r at the bottom of the metastable well v(r). The tun-
neling rate is then determined by the bounce rB following the formula (3.20).
Near the critical point the difference v(rB) − v(rmin) can be expanded in a
harmonic+cubic potential so that the explicit result (3.8) applies. This way,
one obtains

SB/h̄ =
2
15

N
√

6v′′(rmin)(rmin − r0)2 (3.51)

with r0 the exit point v(rmin) = v(r0), which can be cast into the transparent
form

SB/h̄ ≈ 4.58N

(
1 − N

Ncr

)5/4

. (3.52)

Eventually, together with the prefactor the tunneling rate is given as

Γ = 11.8ω0

√
N

(
1 − N

Ncr

)7/8

e−SB/h̄ (3.53)

which vanishes for N → Ncr as expected. For instance, for typical experimen-
tal values and (1 − N/Nc) = 5 × 10−3, the rate is Γ ≈ 1.9/s. We mention



42 3 Tunneling in the Energy Domain

that near the critical point two- and three-body collisions may also play a
decisive role and compete with macroscopic quantum tunneling. For further
discussions on that point and also on the time evolution of the condensate
during the collapse we refer to [71, 72, 73, 74, 75, 76].

3.2 Tunnel Splittings in Bistable Potentials

A bistable potential with a sufficiently high barrier separating two classical
ground states has a characteristic energy spectrum, which consists for energies
below the barrier of a sequence of doublets. The energy gap of two levels in
each doublet is much smaller than the gap between subsequent doublets. In a
rough approximation the ground state doublet can be seen as the symmetric
and antisymmetric superposition of the harmonic ground states localized in
the individual wells, where their overlap in the barrier region determines the
splitting between their energies [77]. The splitting is thus a consequence of the
quantum coherence between the two stable wells, but is nevertheless usually
called tunnel splitting.

This simple model is realized in a variety of systems in physics and chem-
istry, see e.g. [11]. In fact, the first example was given by Hund already in
1927 [78] to explain spectroscopic data for NH3. Here, we present a powerful
semiclassical technique to extract tunnel splittings in bi- and multistable sys-
tems, pioneered in quantum field theory [4, 79] and later on worked out for
non-dissipative [80] and dissipative systems [81, 82, 11]. A very recent real-
ization has been achieved by properly tailoring laser beams to form bistable
optical potentials, in which the coherent dynamics could be analysed in detail
[83].

In the limit of very low temperatures an extended bistable potential can be
reduced to a two level system (TLS) with tunnel coupling determined from this
semiclassical approach. The thermodynamics and real-time dynamics of the
TLS interacting with a heat bath environment, called spin-boson model, has
been studied in the last two decades with tremendous efforts, for reviews see
[84, 11, 85], and still attracts a substantial amount of research. This is due to
the fact that the spin-boson model together with its generalizations to multi-
site geometry describes a variety of physical systems comprising e.g. quantum
Brownian motion, Kondo physics, Luttinger liquids, electron transfer, and
decoherence of quantum bits [11, 39]. Despite its simplicity the associated
phenomenology is extremely rich, showing different sorts of quantum phase
transitions.

In the sequel we describe a path integral technique to extract tunnel split-
tings in these systems. This method is closely related to the bounce technique
introduced in Sect. 3.1.2 the main difference being that here we have to deal
with quantum coherence in contrast to tunneling into a continuum. As a conse-
quence, instanton orbits connect alternately one minimum with the other one
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and a sum must be performed over all arrangements of instanton chains. The
formulation has been extended to the dissipative case as shown in Sect. 5.6.1.

3.2.1 Instanton Technique

In the sequel we consider a symmetric bistable potential V (q) with minima
at q = ±a and a barrier located at q = 0 as depicted in Fig. 3.10. Our goal is
to calculate the diagonal element

ρβ(a, a) = 〈a| exp(−βĤ)|a〉 (3.54)

of the unnormalized statistical operator introduced in Sect. 2.4 in the limit
of very low temperatures. For this purpose we evaluate the path integral
expression (2.41) by means of semiclassical techniques. Accordingly, we start
with an analysis of the minimal action paths in the interval [−h̄β/2, h̄β/2]
and proceed with the treatment of the fluctuations around them.

q

V(q)

-a a0

Fig. 3.10. Bistable potential with minima at q = ±a and a barrier at q = 0.

The Euclidian equation of motion following from δSE[q] = 0 reads

Mq̈(σ) − V ′(q) = 0 , (3.55)

which for the matrix element in question is supplemented by the boundary
conditions q(∓h̄β/2) = a. Obviously, there is one trivial solution qa(σ) = a
with the action SE[qa] = 0. In addition, there is a class of dynamical orbits
that consists of paths, called instantons, connecting in the inverted potential
−V (q) the two maxima at q = ±a. Since h̄β → ∞, the instantons creep most
of the time close to these maxima and run through the well at q = 0 within
a much shorter period of time of the order of 1/ω0, where ω0 =

√
V ′′(a)/M .

Hence, strings of instanton-antiinstanton pairs are also proper minimal action
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a

-a

( )

Fig. 3.11. Multi-instanton orbit qn(σ) consisting of n = 6 individual instantons
connecting the minima ±a of a bistable potential for h̄β → ∞.

paths obeying the boundary conditions [see Fig. 3.11]. Let us denote such a
path by

qn;σ1,...,σn
(σ) , (3.56)

where n is the number of traversals and σ1, . . . , σn are the consecutive posi-
tions of the centers of the individual instantons/antiinstantons with the con-
straint −h̄β/2 < σ1 < · · · < σn < h̄β/2. Due to the boundary conditions for
paths contributing to ρβ(a, a) the number n must be even. Moreover, we put
qn=0 ≡ qa.

The crucial assumption is now that the individual instantons in such a
string are widely separated meaning that the distances between their centers
by far exceed their width of order 1/ω0. This situation resembles that of
a dilute gas of independent particles and was thus coined DIGA (Dilute
Instanton Gas Approximation) [4]. The validity of the DIGA will be discussed
below.

Given the minimal action of an individual instanton SI = SE[q1;σ1 ], the
action of an n-instanton path is now simply

SE[qn;σ1,...,σn
(σ)] = nSI . (3.57)

We continue by expanding the full action around each minimal action path

q(σ) = qn;σ1,...,σn
(σ) + y(σ) , y(−h̄β/2) = y(h̄β/2) = 0 , (3.58)

such that SE[q] ≈ nSI + δ2
nSE[y] with the fluctuating part specified in (3.18).

The latter one contains the second order variational operator (3.19) which is
determined by

Vn[y] =
1
2
V ′′[qn;σ1,...,σn

] y2 . (3.59)

The corresponding fluctuation path integrals
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Gn

(
0,

h̄β

2
; 0,− h̄β

2

)
=

∫
D[y] exp


− 1

h̄

h̄β
2∫

− h̄β
2

dσ

(
Mẏ(σ)2

2
+ Vn[y]

) (3.60)

are thus imaginary time propagators of a particle moving in a harmonic po-
tential with time dependent curvature. Outside the instanton centers the cur-
vature is constant and equal to ω0, the curvature of the harmonic oscillators
at the well bottoms of the bistable potential.

However, we have to be a bit careful in treating the Gn. So far we have
not fixed the centers of the instantons and, in fact, in the limit ω0h̄β 	 1
the total action is independent of their exact locations inside the interval
[−h̄β/2, h̄β/2]. This reflects again the time translation symmetry of the action
that we have already discussed for the bounce orbit. To deal with this exact
invariance, we follow a similar procedure: Select a representative out of the
class of equivalent n-instanton paths and sum over the full set by integrating
in a time-ordered manner over the locations of the centers. Most conveniently,
for the representative one chooses the σi, i = 1, . . . , n to lie equidistantly with
distances h̄β/2n, which are large due to the DIGA. Now, in the Gn for each
instanton there must be one direction in function space, i.e. one eigenfunction
of the second order variational operator, which generates fluctuations of the
instanton centers and has therefore a vanishing eigenvalue. The contributions
of these fluctuation modes must be omitted since they are accounted for by
the center integrations. In other words, the Gn must be calculated for the
representative instanton paths with fixed centers. We denote these restricted
path integrals by Ǵn.

The element of the density matrix now takes the following form

ρβ(a, a) ≈
∑

n≥0,even

e−nSI/h̄

×

h̄β
2∫

− h̄β
2

dσ1

σ1∫

− h̄β
2

dσ2 · · ·
σn−1∫

− h̄β
2

dσn Ǵn

(
0,

h̄β

2
; 0,− h̄β

2

)
, (3.61)

where only paths with an even number of instantons contributes due to the
boundary condition. The n = 0 term is just the contribution of the trivial
path.

Starting with a single instanton one recalls that V1[y] reduces to a simple
harmonic oscillator potential outside the narrow region of width 1/ω0 around
the instanton center. It is thus reasonable to introduce the ratio

∆̃ =
Ǵ1(0, h̄β/2; 0,−h̄β/2)
G0(0, h̄β/2;−h̄β/2, 0)

(3.62)
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where

G0(0, h̄β/2;−h̄β/2, 0) =

√
Mω0

2πh̄sinh(ω0h̄β)
≈
√

Mω0

πh̄
e−ω0h̄β/2 (3.63)

is the harmonic propagator in the well. Since ω0h̄β 	 1 one shows that ∆̃ is
independent of temperature so that

Ǵ1(0, h̄β/2; 0,−h̄β/2) ≈ ∆̃

√
Mω0

πh̄
e−ω0h̄β/2 . (3.64)

For multi-instantons basically the same line of reasoning applies due to
the DIGA assumption. Cutting the multi-instanton path far away from the
instanton centers in segments containing just a single instanton, one finds

Ǵn(0, h̄β/2; 0,−h̄β/2) ≈ ∆̃n

√
Mω0

πh̄
e−ω0h̄β/2 . (3.65)

To obtain this result also the group property (2.19) for the harmonic propaga-
tor was used since in each of the segments −h̄β/2 < s1 < s2 < · · · < sn−1 <
h̄β/2 one may put

Ǵ1(yl, sl; yl−1, sl−1) ≈ ∆̃ G0(yl, sl; yl−1, sl−1) . (3.66)

The integrals in (3.61) can now explicitly be performed and one arrives at

ρβ(a, a) ≈
√

Mω0

πh̄
e−ω0h̄β/2

∑
n≥0,even

1
n!

(
∆h̄β

2

)n

=

√
Mω0

πh̄
e−ω0h̄β/2cosh(∆h̄β/2) . (3.67)

Here, we introduced
∆ = 2∆̃ e−SI/h̄ , (3.68)

which is the frequency corresponding to the energy gap between the lowest
lying energies E1 and E0 with eigenstates φ1 and φ0. Namely, according to
(2.43) at very low temperatures ω0h̄β → ∞ the unnormalized statistical op-
erator can be written in form of a spectral decomposition as

ρβ(a, a) ≈ 1
2

√
Mω0

πh̄
e−β(h̄ω0/2−h̄∆/2) +

1
2

√
Mω0

πh̄
e−β(h̄ω0/2+h̄∆/2) . (3.69)

Hence, E1 − E0 = h̄∆ and φ1(a)2 = φ0(a)2 =
√

Mω0/4πh̄. What remains to
do is first to derive an explicit expression for the single instanton ratio ∆̃ and
second to prove the consistency of the DIGA.

In principle, the calculation of ∆̃ follows the strategy discussed above
around (3.20). The integration over the zero mode amplitude y0 must be
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omitted in Ǵ1 and is carried out according to dy0 = g0dσ1. The factor g0 is
obtained by exploiting that according to (3.55) q̇1;σ1 must be proportional to
the zero-mode eigenfunction ϕ0. The calculation yields

g0 =

√
MSI

2πh̄
. (3.70)

Note, that in contrast to the bounce orbit the instanton has no turning point so
that the zero mode is indeed associated with the lowest eigenvalue of the sec-
ond order variational operator and no imaginary contribution appears. Then,
following again [4] in calculating functional determinants with one direction
in function space omitted, one gets

∆̃ = 2A

√
Mω3

0a
2

πh̄
, (3.71)

where A is a constant depending on the specific form of the bistable potential
and extracted from the asymptotic form of the instanton.

The second point can be discussed by analyzing the sum in (3.67). Its
main contributions come from terms where n ≈ ∆h̄β/2 so that the density of
instantons n/h̄β ≈ ∆/2 is exponentially small in accordance with the DIGA.
The two underlying ingredients of the DIGA can thus be summarized as (i)
the potential barrier separating the two wells by far exceeds h̄ω0 and (ii) the
temperature is sufficiently low ω0h̄β 	 1.

We close this discussion of the instanton technique by presenting some
explicit results for a quartic potential

V (q) =
Mω2

0

8a

(
q2 − a2

)2
, (3.72)

which can be approximated around the well bottoms located at q = ±a by
V±(q) = (Mω2

0/2)(q ± a)2 and around the barrier top located at q = 0 by
V0(q) = (Mω2

0a2/8) − (Mω2
0/4)q2. The constant A in (3.71) is gained from

the asymptotic behavior of the instanton orbit, which reads

q1;σ1(σ) = a tanh[ω0(σ − σ1)/2) . (3.73)

Hence, for ω0|σ| → ∞ one has q1,σ1 → ±a (1 − 2 exp(−ω0|σ − σ1|) so that
A = 2. The corresponding minimal action reads

SI =
2
3
Mω2

0a2 (3.74)

and the tunnel splitting is
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∆ = 8ω0

√
2Vb

πh̄ω0
e−

16
3

Vb
h̄ω0 (3.75)

with the barrier height Vb = Mω2
0a2/8.

We mention that the above semiclassical approach allows to extract expo-
nentially small energy gaps, i.e. gaps which cannot be obtained in any order
of perturbation theory in h̄. An extension has been given in [13] to calculate
splittings also for higher lying doublets.

3.2.2 SQUIDs

A superconducting ring interrupted by one or more Josephson junctions
(JJ) is called a Superconducting Quantum Interference Device (SQUID), see
Fig. 3.12. There is a whole variety of SQUID devices, the best known are the rf
SQUID and the dc SQUID [7]. The former one contains just a single JJ so that
the superconducting loop acts as a shortcut and the voltage drop across the JJ
must be read out by a radio frequency (rf) biased tank circuit. The latter one
consists of two JJs and effectively represents a JJ with a Josephson coupling
tunable by an external magnetic flux threading the loop. Presently, SQUIDS
are used as elements for the implementation of superconducting quantum bits
[39].

Fig. 3.12. Electron micrograph of a dc-SQUID ring with two JJs (outer ring)
surrounding a SQUID ring containing three JJs (inner, darker ring). The outer
SQUID is connected with two leads (top and bottom) carrying a bias current and the
total circuit is threaded by a magnetic flux. The white bar at the bottom represents
a length scale of 5µm. Courtesy of A. Lupascu, ENS Paris.
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For the rf SQUID the phase difference δ across the JJ is related to the
total magnetic flux Φ through the loop via

δ = −2π

(
Φ

φ0
− n

)
, n integer (3.76)

with the reduced flux quantum φ0 (3.25). The total flux consists of the self-
induced flux LI (self-inductance L) and an external flux Φx according to
Φ = Φx + LI. Due to the above relation the relevant degree of freedom is now
Φ so that the total Hamilton operator of the device including charging energy
reads

Ĥ =
Q̂2

2CJ
− EJ cos

(
2π

Φ̂

φ0

)
+

(Φ̂ − Φx)2

2L
(3.77)

with the charge operator Q̂ conjugate to Φ̂. For a large self-inductance βL =
EJ/(φ2

0/4π2L) 	 1 and an external flux Φx close to φ0/2, the potential terms
form a double-well with a barrier located near Φ = φ0/2 so that with q =
2πΦ/φ0 one has

U(q) =
φ2

0

4π2l

[
βL − βL − 1

2
(q − π)2 +

βL

24
(q − π)4

]
, (3.78)

where the barrier height is

Vb =
φ2

0

4π2L

3
2

(βL − 1)2

βL
. (3.79)

At sufficiently low temperatures only the lowest lying energy doublet is rele-
vant and has an energy splitting given by (3.75).

Macroscopic quantum phenomena have been observed in rf SQUIDS al-
ready in the mid 1980s such as macroscopic quantum tunneling, resonant
tunneling, and level quantization [30, 36, 86, 87, 88]. While the level splitting
near a degeneracy point has been seen only recently [89, 90] based on a slightly
different set-up, quantum coherent oscillations of a superposition of the two
lowest lying eigenstates have not been observed yet. This is presumably due to
the fact that a large value of βL is associated with large loops making the sys-
tem very sensitive to external electromagnetic noise. To overcome this obstacle
smaller loops containing three junctions have been successfully manipulated
to show e.g. Rabi oscillations [49]. In [91] the changeover from thermal acti-
vation to macroscopic quantum tunneling has been observed similar to what
has been seen in single JJ circuits, which was theoretically discussed already
in the 1980s [92].

The dc SQUID set-up has two JJs in a ring, see Fig. 3.12. The total
Hamiltonian is the sum of the Hamiltonians of the individual JJs with phases
δ1 and δ2, respectively, and the additional constraint δ1+δ2 = −2π(Φ/φ0−n).
It is thus convenient to switch to the combinations δ± = δ1 ± δ2 of phases so
that for a low self-inductance loop δ+ is fixed by the external magnetic flux
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Φx/φ0 = δ+. Then, by using the properties of trigonometric functions one
obtains

Ĥ =
p̂2

2M
− EJ(Φx) cos(δ̂−/2) − Ibδ̂− , (3.80)

where p̂ is the conjugate to δ̂−, Ib is an applied bias current, and

EJ(Φx) = 2EJ(0) cos
(

πΦx

φ0

)
(3.81)

is the effective Josephson energy. In other words, a low self-inductance dc
SQUID is equivalent to a JJ with a tunable critical current. This allows for a
much better external control so that dc SQUIDS have been implemented in a
variety of circuits, e.g. as measurement devices or artificial atoms [24, 49].

3.3 Tunneling in Higher-dimensional Systems

In the previous Sections we have considered tunneling of a one-dimensional
degree of freedom. In principle, an extension of the semiclassical approaches to
higher dimensional systems should be possible, practically, however, it is often
prohibitive. In general, two types of systems must be distinguished, namely,
separable and non-separable ones. For the former one the total Hamiltonian
can be cast, possibly after a proper coordinate transformation, into a sum
of individual Hamiltonians so that the high-dimensional tunneling problem
effectively reduces to independent one-dimensional processes. The challenging
situation is the latter one, when such a reduction is not possible.

In the sequel, we first consider a metastable barrier degree of freedom cou-
pled to a large number of harmonic degrees of freedom mimicking a complex
environment. Since a collection of harmonic oscillators is always separable,
for such a system explicit results for the tunneling rate can be obtained. This
is not the case for higher-dimensional anharmonic degrees of freedom, where
tunneling may be affected by chaotic phase space structures.

3.3.1 Multi-dimensional Quantum TST

A metastable degree of freedom coupled to N harmonic oscillators is described
by

H =
p2

2M
+ V (q,x) +

N∑
j=1

p2
j

2Mj
, (3.82)

where

V (q,x) = V0(q) +
1
2

N∑
j=1

Mjω
2
j

(
xj −

cj

Mjω2
j

q

)2

(3.83)
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is an N+1-dimensional manifold consisting of the metastable barrier potential
V0(q) and the set of transverse harmonic degrees of freedom. Intuitively, it
is clear that the tunneling process is now described in a multi-dimensional
landscape with a metastable barrier potential that is deformed due to the
presence of the harmonic modes. The idea is to transform to a new curvilinear
coordinate system [93, 1, 94]

{q,x} −→ y = {y0, y1, . . . , yN} (3.84)

with a generalized coordinate y0 along which the escape happens to occur,
the so-called reaction coordinate, and orthogonal degrees of freedom {yj}j≥1.
Along the reaction coordinate tunneling takes place as described above in
Sect. 3.1.1 with the crucial difference that the total energy is distributed
between the reaction coordinate and the transverse oscillators.

To avoid a cumbersome matching of WKB-wave functions in this high-
dimensional space, an explicit expression for the microcanonical rate in (3.1)
is required. It is obtained from a formally exact expression for the thermal rate
constant derived in [95, 96] and also discussed below in Sect. 6.4.1, namely,

Γ = Re
{
〈F̂ P̂ 〉β

}
. (3.85)

Here the average is taken with respect to the thermal equilibrium 〈·〉β =
Tr{exp(−βĤ)·}/Z. Further, F̂ is the flux through dividing surface operator
for the metastable system

F̂ =
1

2M
[δ(ŷ − yb)p̂y + p̂yδ(ŷ − yb)] (3.86)

with the location yb of the dividing surface being a N -dimensional surface
separating the well from the continuum. The projection operator

P̂ = lim
t→∞

eiĤt/h̄ θ(p̂y) e−iĤt/h̄ (3.87)

projects onto outgoing states in the far future.
By choosing the dividing surface at that point yb = y‡

0 where for maximal
V (q,x) it crosses the reaction coordinate perpendicularly, one puts in the
semiclassical limit

F̂ P̂ −→ δ(y0 − y‡
0)

p̂0

M
θ(p̂0) (3.88)

with the momentum p̂0 conjugate to y0. The underlying approximation here
is that any recrossing of the dividing surface is neglected once it has been
passed. In this sense, (3.88) generalizes the classical result (3.13) to a multi-
dimensional quantum transition state theory (MQTST) [1, 97, 98]. One now
shows that the thermal rate follows from (3.1) with the Boltzmann distribution
P (E) = exp(−βE) (energy measured from the well bottom) and the multi-
dimensional escape probability T (E) = 2πh̄ρ(E)Γ (E) given by
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T (E) = lim
ε→0

Im
{∫ ∞

0

dσeσ(E+iε)/h̄

∫
dyδ(y0 − y‡

0)
∣∣∣ẏ‡

0

∣∣∣ 〈y|e−Ĥσ/h̄|y〉
}

.

(3.89)
In the next step the thermal propagator is approximated by its semiclassical
approximation (2.44) and Gutzwiller’s periodic orbit theory is applied [93, 99],
which yields

T (E) =
∞∑

n=1

(−1)n−1e−n2W (E)/h̄
N∏

j=1

1
2sinh[nσ̃(E)µj(E)/2]

. (3.90)

This results has some similarities to the trace formula (2.38), but is an expres-
sion in imaginary time though. The sum collects all multiples of the periodic
orbit running with total energy E in the time interval σ̃(E) through the in-
verted barrier landscape with short action

2W (E) =
∫ σ̃(E)

0

dσ


Mq̇2(σ) +

N∑
j=1

mj ẋ
2
j (σ)


 . (3.91)

The product in (3.90) originates from Gaussian fluctuations perpendicular
to the reaction coordinate with the {µj}j≥1 being the dynamical stability
frequencies. It turns out that the periodic orbit is indeed unstable in one
direction in functions space, but stable in the orthogonal ones. By expanding
the sinh-functions, the above expression can be cast into the more appealing
form [see also (2.14)] [97]

T (E) =
∞∑

n1,...,nN=0

1
1 + exp[2W (Eesc)/h̄]

, (3.92)

where we introduced the energy stored in the escape coordinate

Eesc = E −
N∑

j=1

(nj + 1/2)h̄µj(E) . (3.93)

Note that the escape probability at energy E includes a sum over all orthog-
onal states in the barrier region. Its value may thus exceed 1, in contrast to
the uniform transmission probability (2.14), which has a similar form. Now,
using this result for T (E), the thermal rate can be evaluated according to
(3.1). In performing the integral one has to distinguish between three regions:
(i) the high temperature domain above a crossover temperature T0,R, (ii) the
low temperature domain T < T0,R, and (iii) the crossover layer around T0,R.

Due to the harmonic reservoir the actual crossover temperature deviates
from the bare one (3.14) and is given by

T0,R =
h̄ωR

2πkB
(3.94)
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with the effective barrier frequency determined as the largest positive root of

ω2
R + ωRγ̂(ωR) = ω2

b . (3.95)

We will see in Chap. 5 that the function

γ̂(z) =
1
M

N∑
j=1

c2
j

Mjω2
j

z

ω2
j + z2

(3.96)

coincides in the limit N → ∞ with the Laplace transform of the classical
damping kernel.

For high temperatures T > T0,R we obtain

Γ =
ωR

2π

ω0

ωb

∞∏
j=1

ν2
j + ω2

0 + νj γ̂(νn)
ν2

j − ω2
b + νj γ̂(νn)

e−βVb . (3.97)

This expression is the multi-dimensional generalization of (3.12) to which
it reduces for vanishing system-reservoir coupling. The product contains the
Matsubara frequencies νj = 2πj/h̄β and thus accounts for quantum fluctua-
tions above the crossover.

Below the crossover T < T0,R one derives the multi-dimensional general-
ization of the expression (3.10)

Γ =
1
Z

1√
2πh̄|τ ′(Eβ)|

∞∏
j=1

1
2sinh[nh̄βµj(E)/2]

e−2W (Eβ)−βEβ (3.98)

with Eβ that total energy for which the period of the periodic orbit equals h̄β.
The crossover region gives rise to a more involved expression which matches
onto the respective formulae specified above. Since in the true dissipative limit
all these results coincide with the ImF findings we refer the reader to Chap. 5
for further details.

The above analysis reveals, how transparent expressions for the tunneling
rate can be obtained also for multi-dimensional systems by invoking semiclas-
sical periodic orbit theory. This problem was tractable since with the exception
of the one-dimensional metastable coordinate, all residual degrees of freedom
were harmonic.

3.3.2 Tunneling in Presence of Chaos

When even for a lower dimensional system all degrees of freedom are anhar-
monic and not separable, the tunneling problem gains new aspects which are
related to irregular classical dynamics. In general, there are two types of sit-
uations, one in which the classical phase space is basically completely chaotic
and another one, where it is mixed consisting of islands supporting regular
motion separated by chaotic layers. The first case leads to tunneling between
chaotic states, the second one to what is called dynamical tunneling or chaos
assisted tunneling between regular tori.



54 3 Tunneling in the Energy Domain

Tunneling in Chaotic Potentials

The fundamental problem in describing tunneling between chaotic states is
that up to now, there is no semiclassical theory for individual chaotic eigen-
states. Thus, studies have focused on spectral properties of those systems in
terms of periodic orbits based on e.g. Gutzwiller’s trace formula (2.38) [100].

As we have seen above an archetypical system to probe tunneling spec-
tra is a symmetric double well potential. However, a standard periodic orbit
calculation based exclusively on real orbits leads to a set of doubly degener-
ate levels Esc,n approximating the mean levels. The degeneracy arises since
each periodic orbit in one well has a symmetric partner in the other one.
The conclusion is that the simple periodic orbit theory fails to predict tunnel
splittings. It is thus suggestive to modify this approach to include complex
trajectories [101, 102, 103, 104]. As demonstrated in Sect. 3.2, for regular
classical motion in one-dimensional bistable systems energy splittings can be
calculated based on purely imaginary time instantons. For chaotic maps com-
plex periodic orbits were used to calculate band gaps [105]. In the sequel, we
report on an extension of Gutzwiller’s trace formula which has been studied
in [106, 107, 108].

For this purpose, one considers the splitting-weighted density of states

f(E) =
∑

n

∆En δ(E − En) (3.99)

with splitting ∆En of the nth-energy level. Due to the symmetry assumed
here, the eigenstates have either even or odd parity so that f(E) ≈ N+(E)−
N−(E), where N±(E) denote the number of states up to energy E. This
approximation is valid on scales which are sufficiently larger than the energy
splittings. Then, by exploiting that N±(E) are related to the imaginary parts
of the symmetry-projected Greens functions [102] [see also (2.36)], one finds
that only complex periodic orbits are contained in N+−N−. Eventually, upon
inserting these findings into Gutzwiller’s trace formula (2.38) one arrives at
the semiclassical expression

f(E) ≈ 2
π

Im
∑

γ

βγ
eiSγ/h̄√

−det(Mγ − 1)
. (3.100)

Here, Sγ and Mγ are the complex action and the corresponding stability ma-
trix, respectively. βγ is a dimensionless factor taking into account a possibly
anomalous reflection coefficient; for most orbits it is βγ = 1 though.

By way of example, we analyze a symmetric two-dimensional barrier po-
tential of the form

V (x, y) = (x2 − 1)4 + x2y2 , (3.101)

in which the classical dynamics is restricted to the well regions for E < 1
and basically chaotic for E > Ec = 0.236 [106]. Tunneling is dominated
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by a particular set of complex orbits that are confined to the x-axis. The
two-dimensional structure of the barrier potential comes into play when cal-
culating the monodromy matrix by embedding them in the other dimension.
Accordingly, the simplest complex orbit starts on the x-axis with imaginary
momentum and evolves in imaginary time to the symmetry related point on
the other side. The corresponding action of this orbit is S = iK with real
K > 0. By carefully calculating the corresponding monodromy matrix W one
finds

f0(E) =
1
π

e−K/h̄√
−det(W − 1)

. (3.102)

This function describes the average behavior of the tunnel splittings for all
energies, i.e. also in the mixed case E < Ec. The basic condition is that
tunneling is determined by isolated instanton-like orbits.

Upon closer inspection it turns out that there is an oscillatory structure
in the splittings not captured by f0. One thus extends the above analysis to
attach to the tunneling orbit real periodic orbits in the wells on either side of
the barrier (also with y = 0). While one restricts the sum over orbits to those
tunneling only once, all multiples of oscillations are taken into account for the

Fig. 3.13. Energy splittings in the potential (3.101) for eigenstates with even (top)
and odd (bottom) parity and with the mean f0(E) scaled out. The dots are the
quantum data with dashed lines connecting them. The lower solid curve is 1 +
fosc(E)/f0(E). The upper dashed and solid curves are the corresponding results
averaged with a Gaussian with variance 0.15; their scale should be read from the
right axis. Reprinted with permission from [106]; c©(1996) by the American Physical
Society.
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real orbits in the wells. The action of a primitive real orbit is denoted by S0 so
that an orbit with r repetitions gains the action S = rS0+iK. The monodromy
matrix [cf. (2.30)] follows as Mr = WMr

0 and the total contributions of these
orbits give

fosc(E) =
2
π

∞∑
r=1

ei(rS0−K)/h̄√
−det(WMr

0 − 1)
. (3.103)

Hence, this expression is similar to that derived in (2.37), where the smooth
classical background is given by the Thomas-Fermi density of states. Although
in the above problem use was made of the symmetry of the barrier potential,
the formulae (3.99) and (3.103) provide a first semiclassical approach to ex-
tract information about the relation between tunneling and classical irregular
motion.

Dynamical and Chaos Assisted Tunneling

The notion of dynamical tunneling was first introduced to describe tunnel-
ing between two disjunct regions in phase space separated not by an energy
barrier but by the system’s dynamics [109, 110]. Typical examples include
two-dimensional bound potentials. Later on it was discovered that the same
process should occur in driven one-dimensional systems [111, 112, 113], which
may exhibit also chaotic domains in phase space. Roughly speaking the situa-
tion is then this: Classically, two symmetry related islands with regular motion
are separated by a chaotic layer; quantum mechanically the two regular do-
mains can communicate with each other via tunneling through a chaotic sea,
thus leading in the energy spectrum to doublets with characteristic tunnel
splittings. Accordingly, coherent quantum tunneling as known from a sim-
ple double well potential was predicted [113]. Recent experiments with Bose-
Einstein condensates in driven optical lattices verified these theories [114].

The presence of chaos can also substantially enhance the tunneling rate
between regular islands [115]. Namely, it turns out that the tunneling rate of
a wave packet initially localized on one regular island is determined not by
the wave packet’s overlap with the other island, but by its overlap with the
chaotic sea [116]. By increasing the level of chaos in this layer, one finds a
strong increase of the splittings, a fact that led to the notion of chaos assisted
tunneling [117, 118, 119, 120]. It was suggested that the enhancement of the
tunneling is actually a resonance phenomenon due to the occurrence of avoided
crossings of the tunneling doublet’s eigenenergies with the eigenenergy of a
state residing on the chaotic phase space layer. This interpretation led to a
description in terms of a three-level model (in contrast to standard dynamical
tunneling which may be described within a two-level picture) in accordance
with the fact that the splittings are rapidly fluctuating quantities with respect
to parameters such as e.g. energy and h̄ [117].

Semiclassical approaches for tunneling matrix elements have been put for-
ward for special systems. For instance, for the case of an annular billiard it
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was shown [120, 116] by a semiclassical treatment that the distribution of
tunneling rates has a power law decay in contrast to the exponential behavior
derived in the Sect. 3.3.2. Experimentally, chaos assisted tunneling has been
observed first in microwave billiards [121, 122], after it has been studied the-
oretically. Recently cold atoms in amplitude-modulated optical lattices [123]
allowed for a direct observation of this phenomenon.

For both types of phase space tunneling, dynamical and chaos assisted,
general semiclassical descriptions are still under development. In contrast to
the case of a fully irregular phase space, where the trace formula provides a
powerful tool for asymptotic treatments, much less is known about the quan-
tization of mixed systems in terms of classical orbits. The quest for such theo-
ries is highly desirable since these systems comprise the majority of dynamical
systems found in nature.
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114. W.K. Hensinger, H. Häffner, A. Browaeys, N.R. Heckenberg, K. Helmerson,

C. McKenzie, G.J. Milburn, W.D. Phillips, S.L. Rolston, H. Rubinsztein-
Dunlop, and B. Upcroft. Nature, 412:52, 2001.

115. W.A. Lin and L.E. Ballantine. Phys. Rev. Lett., 65:2927, 1990.
116. S.D. Frischat and E. Doron. Phys. Rev. E, 57:1421, 1997.
117. O. Bohigas, S. Tomsovic, and D. Ullmo. Phys. Rep., 223:43, 1993.
118. R. Utermann, T. Dittrich, and P. Hänggi. Phys. Rev. E, 49:273, 1994.
119. S. Tomsovic and D. Ullmo. Phys. Rev. E, 50:145, 1994.
120. E. Doron and S.D. Frischat. Phys. Rev. Lett., 75:3661, 1995.
121. C. Dembowski et al. Phys. Rev. Lett., 84:867, 2000.
122. T. Neicu, K. Schaadt, and A. Kudrolli. Phys. Rev. E, 63:026206, 2001.
123. D.A. Steck, H.O. Windell, and M.G. Raizen. Scince, 293:274, 2001.



4

Wave-packet Tunneling in Real-time

A dynamical perspective of tunneling is obtained in the time domain. In par-
ticular, the time evolution of individual wave packets reveals details of the
tunneling process that cannot be gained from energy dependent transmission
probabilities alone. Moreover, in situations where barrier penetration is driven
by external time dependent forces a description in energy space must fail. The
practical reason for applying external driving is the ability to control the time
evolution of quantum systems, a field which has seen an enormous amount of
research in the last decade [1, 2, 3, 4, 5]. The advent of new laser technologies
including optical traps and tailored laser pulses as short as a few femtosec-
onds and the manipulation of solid state based artificial atoms and molecules
on the nanoscale via microwaves have led to the expectation that we have
reached a new level of exploring quantum mechanical systems.

In this context the crucial question arises to what extent semiclassical tech-
niques are able to capture tunneling events in the time domain. While within
an exact description in terms of the Schrödinger equation a switching from
the energy to the time domain does not cause, at least for low-dimensional
systems, conceptual difficulties, this is not true for semiclassical approaches
[6]. The general reason for that will be discussed at the beginning of this
Chapter. The main focus then lies on the analysis of the evolution of pure
systems and thus the investigation of wave packet tunneling in real-time. The
generalization to density matrices will be the subject of Chap. 7.

While the methods to describe tunneling in the energy domain are well
established, see Chap. 3, approaches for time dependent systems are currently
still under development. In the sequel we discuss some approaches in more
detail. All of them are based on the Hermann-Kluk propagator introduced in
Sect. 2.2.
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4.1 Tunneling with Real Classical Trajectories?

Despite the success of semiclassical time-dependent methods in a variety
of systems, they encounter fundamental difficulties in describing one of the
most striking quantum phenomena, namely, tunneling through potential barri-
ers [7]. The problem was attacked systematically in the 1990s [8, 9, 10, 11, 12],
however, corresponding results on the one hand failed for the regime of “deep”
tunneling and on the other hand were extremely sensitive to wave packet para-
meters [7, 12] from which physical observables are supposed to be independent.
Common to these treatments is their exclusive use of real-valued trajectories,
i.e. orbits running over the barrier, confirming the naive expectation that any
simple description of tunneling is hampered by the fact that classical trajec-
tories with energies smaller than the barrier height are reflected completely
[13].

Let us take a somewhat closer look upon the problem we encounter here.
By way of example imagine a symmetric scattering potential vanishing asymp-
totically, e.g. an Eckart barrier [14] (cf. Fig. 2.1)

VEck(q) =
V0

cosh2(q/l)
. (4.1)

This barrier potential will be studied in detail below; for the present dis-
cussion, the only relevant point is that the underlying scenario is a generic
scattering process with asymptotic free states and that the barrier is parabolic
around its top. Now, a wave packet ψ(qi, 0) localized to the far left (qi < 0) is
propagated towards the barrier according to

ψ(qf , t) =
∫

dqi Gscl,IVR(qf , t; , qi, 0)ψ(qi, 0) , (4.2)

where Gscl,IVR denotes a semiclassical propagator in the initial value rep-
resentation, e.g. the Hermann-Kluk (HK) propagator (2.27). We are inter-
ested in that portion of the packet that after time t arrives on the far right
(qf = qi > 0). All real orbits connecting the two asymptotic regions have
E > V0, run over the barrier, and for fixed end-points spend most of their
time in the range around q = 0 when t becomes large. The marginal stability
of trajectories in the parabolic range of the potential around its top causes the
semiclassical propagator [cf. (2.25)] to die out exponentially ∝ exp(−ωbt/2)
(barrier frequency ωb) in contrast to the exact dynamics [6, 13].

To discuss semiclassical tunneling in real-time, a relevant observable, which
displays typical quantum mechanical features like interferences, is the time
dependent auto correlation function of two Gaussian wave packets, namely,

cfi(t) = 〈ψf(0)|ψi(t)〉 =
∫ ∫

dqfqi Ψ∗
f (qf)Gscl,IVR(qf , t; qi, 0)Ψi(qi) . (4.3)

Here, the initial wave packet is centered around qi and the final one around
qf . From this real-time quantity various observables can be derived as e.g.
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transmission probabilities, return probabilities etc. One advantage of using
cfi(t) is that by inserting the expression (2.27) for GHK into (4.3), the in-
tegration over the end-points qi, qf can be done analytically and one is left
with one phase space integration only (see e.g. see [15]). By way of example,
we anticipate here results for the correlation function in the Eckart barrier
potential depicted below in Fig. 4.3a. According to the above reasoning, the
ordinary HK dynamics dies out exponentially on an intermediate time scale in
contrast to the exact quantum mechanical behavior. For ωbt → ∞ the density
in phase space of real classical paths connecting the asymptotic regions of the
scattering barrier tends to zero. In other words, these paths do not allow to
explore regions in phase space which due to energy fluctuations according to
the uncertainty relation ∆p∆q ≥ h̄ can be visited quantum mechanically. The
consequence is that the standard semiclassical HK propagator captures tun-
neling only in parabolic potentials, but fails for anharmonic ones for longer
times when low energy, deep tunneling processes become relevant.

A procedure to effectively account for deep tunneling has been outlined in
the previous Chapter based on imaginary time orbits. In fact, it is well-known
that complex trajectories do account for tunneling in the energy domain when
one exploits the correspondence between real-time propagator and energy de-
pendent Greens function (2.33) [16]. Namely, tunneling at fixed energy can
be obtained by performing the time integration in a complex plane meaning
that one considers outside the barrier trajectories in real-time and switches
to imaginary time trajectories, i.e. paths with imaginary momentum, in the
barrier range. However, this type of time contour integration can only be per-
formed by formally using an analytic continuation of the VVG propagator
[see (2.23)], since an explicit expression for a semiclassical real-time propa-
gator including tunneling is not known. The latter one is clearly required to
learn about dynamical properties, particularly in systems with explicitly time
dependent Hamiltonians.

In general, there have been two strategies to extend the Hermann Kluk
formulation for semiclassical real-time tunneling: One searches for an effective
HK propagator still based on one phase space integration but with a modified
action contribution, the other one includes a larger number of phase-space
integrations when propagating. However, nothing is for free. While the former
approaches miss, despite their success, still the mathematical rigor, the latter
ones become numerically so expensive that they are practically restricted to
low-dimensional undriven systems. In the sequel, the progress that has been
achieved in recent years will be addressed in more detail by discussing one
formulation in either of the two directions. The first starts from the naive
expectation that similar to minimal action paths for fixed energy, but in com-
plex time, there may also exist “tunneling paths” for fixed real time, but with
complex energy. Unfortunately, this is not the case [6]. Going back to the real-
time path integral (2.17) the conclusion is that there are no minimal action
paths even in complex configuration space and tunneling must be ascribed to
large fluctuations. The consequences of this finding leads to the construction
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of an effective HK propagator that captures deep tunneling and also applies
to driven systems, still with one phase space integration only [6, 17, 18]. The
second approach determines the correction operator that appears when the
standard HK expression is inserted into the time-dependent Schrödinger equa-
tion [6]. With this operator at hand one derives an exact asymptotic series
with the first term being the standard HK propagator [19, 20, 21]. On the
one hand this shows that the HK expression is not just an intelligent guess,
but can be put onto a firm mathematical basis [22], and on the other hand it
allows for a systematic improvement by systematically extending the number
of phase space integrations.

4.2 Semiclassics in Complex Phase Space

Complex trajectories have been used in semiclassical approaches in a variety of
scenarios [23, 24, 25, 26, 27], see also Sect. 3.3.2, and particularly for tunneling
problems through one-dimensional energy barriers within the HK formulation
[7]. It has been conjectured [12] that real-time orbits with complex initial
conditions may account for deep tunneling, which was then shown not to be
the case [6].

4.2.1 Complex Orbits and the “Tunneling Path”

To explore to what extent also deep tunneling can be incorporated into the
HK propagator we turn back to the exact path integral representation (2.17)
and restrict ourselves to the case of a particle of mass M in a general one-
dimensional barrier potential V (q). The barrier top is located at q = 0 with
V (0) = V0. According to the previous Section real time orbits cannot capture
the long time behavior, where deep tunneling sets in. Classical orbits with
E < V0 incident from the far left (right) reach the left (right) flank of the
barrier at turning points (TPs) −q0 (q0). The long time properties of the
path integral (2.17) are therefore governed by the dynamics in the “forbidden”
range between the TPs. Semiclassically, for E < V0 no real stationary phase
point to (2.17) obeying the proper boundary conditions exists in function
space. In this situation one invokes an analytic continuation, meaning here
to extend classical mechanics to the complex coordinate plane. This program
has been carried out in [6] for general scattering potentials. In the sequel we
review the main results. The formulation is then applicable to all incoherent
tunneling processes. Further extensions to describe also coherent tunneling,
e.g. in a double well potential, may be developed along the lines described
below in Sect. 7.3.

Before we focus on specific forms of barrier potentials, we consider some
general aspects of the classical dynamics in the complex plane. Newton’s equa-
tion of motion, Mq̈ + V ′(q) = 0, where q̇ = dq/dt and V ′ = dV/dq, translates
for complex q = x + iy into
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Mẍ +
∂r

∂x
= 0 , Mÿ +

∂j

∂x
= 0. (4.4)

Here, we have written V (q) = r(x, y) + ij(x, y) and further exploited that for
analytic functions V (q) Cauchy’s relations, i.e.,

∂r(x, y)
∂x

=
∂j(x, y)

∂y
,

∂r(x, y)
∂y

= −∂j(x, y)
∂x

(4.5)

apply. From (4.4) one simply finds that the total energy E = εre + iεim and
its real and imaginary parts

εre =
M(ẋ2 − ẏ2)

2
+ r(x, y),

εim = Mẋẏ + j(x, y) , (4.6)

respectively, are constants of motion. With these preliminaries at hand we
study the semiclassical complex plane dynamics for two specific barrier po-
tentials, namely, reactive scattering and a metastable well.

4.2.2 Semiclassical Orbits for Reactive Scattering

We examine a generic scattering potential V (q) with the following properties:
It is a smooth and analytic function of q, symmetric around q = 0, with a
barrier of height V (0) = V0, and can be approximated around its top by an
inverted harmonic oscillator. For large |q| it falls off as

V (q) → V0/[q/l]2k, (4.7)

with k ≥ 2 integer, and a characteristic barrier length scale l. Typical examples
include algebraic potentials of the form

Vk(q) =
V0

[1 + (q/l)2]k
, (4.8)

the Eckart barrier (4.1), well-known as a simple model for biochemical reac-
tions, and the Gaussian barrier

V (q) = V0 exp(−q2/l2) (4.9)

used in a variety of context, e.g. recently in tunneling of Bose-Einstein con-
densates through optical mirrors [28].

Since we are mainly interested in deep tunneling, i.e. in the low energy
behavior, we restrict ourselves to trajectories the TPs of which lie in the
asymptotic region of the potential. Hence, we consider paths starting from
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large qi = xi < 0 along the real axis with complex momentum pi ≡ q̇i = ẋi+iẏi.
Further, it is convenient to write V (q) = r(q) + ij(q) as specified in (4.7) in
polar coordinates

r(R,φ) = V0
cos(2kφ)
(R/l)2k

,

j(R,φ) = −V0
sin(2kφ)
(R/l)2k

. (4.10)

Accordingly, trajectories in the complex configuration space are represented
as q(t) = R(t)eiφ(t). By solving the respective equations of motion one can ba-
sically distinguish three kinds of orbits, see Fig. 4.1. Since the barrier vanishes
asymptotically, the classical motion for large distances from the top tends to
be a free motion for all of them. As a consequence, for large R orbits run close
to straight lines with constant φ(qi, pi) = φ∞ depending merely on the initial
phase space variables.

Re{q}

Im
{q

}

(b)

(a)

(c)

Re{q}

Fig. 4.1. Orbits in the complex plane for V2(q)/V0 = 1/(1+q2)2 [class (a) and (b):
solid; class (c) for various xi: solid for εre = 0, dotted (thin) for εre �= 0]. Burning
lines are shown for V2(q) (dashed) and its asymptote 1/q4 (dotted, thick); open dots
are TPs of the classical motion, solid dots indicate the intersections of the burning
lines with the dividing surface.

First, let us have a closer look to class (a) as it is the only one where orbits
cross the line x = 0 (φ = π/2) to reach the other side of the barrier (dividing
surface). The imaginary part j(R,φ) of the potential vanishes along φ = π/2
so that due to energy conservation εim = M(ẋẏ)(φ = π/2) = Mẋiẏi > 0 [cf.
(4.6)]. It follows that starting on the left side (q < 0) a successful crossing
of the dividing surface at q = 0 must happen with positive real momentum
ẋ(π/2) > 0 and thus positive imaginary momentum ẏ(π/2) > 0. For the
energy required to reach the dividing surface one derives |εim| > r(xi, 0) =
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V (xi). Starting, however, from the imaginary axis with ẋ > 0 and ẏ > 0, i.e.
in the direction of decreasing |V (q)|, always generates an orbit reaching the
asymptotic right side of the barrier far from the real axis (φ > 0). Therefore
class (a) orbits are not capable to provide a connection between the asymptotic
segments along the positive and negative real axis. Opposite to the naive
expectation a simple “tunneling path” running through the barrier range via
a tour through the complex plane does not exist.

This finding is in sharp contrast to tunneling for fixed energy. There, as
mentioned above, the energy dependent Greens function G(qf , qi, E) exhibits
stationary phase points in imaginary time corresponding to classical paths
running with energy E in the inverted potential through the barrier range from
−q0 to q0. Here, for real-time tunneling a stationary phase under-barrier-path
to the quantum propagator G(qf , t; , qi, 0) even with complex energy cannot
be found.

For our analysis the consequences are two-fold: on the one hand complex
trajectories in class (a) do not play any role for a semiclassical approximation
to G(qf , t; qi, 0) and on the other hand in the low energy sector, dominated by
tunneling, the path integral in (2.17) is completely governed by fluctuations.
To find its dominant contributions thus means to detect the dominant fluctu-
ations as points in function space which lie close to orbits with δS[q] = 0 and
also obey the proper boundary conditions.

Hence we turn to the remaining two classes of orbits. The second class
(b) contains paths with small but non-vanishing energies 0 < |εim| < r(xi, 0).
Since they may exhibit TPs in the complex plane and always live on the same
side of the barrier, they do not provide a connection either.

In class (c) trajectories have small real total energy E = εre and conse-
quently start with purely imaginary momenta ẋi = 0, cf. (4.6). These orbits
display crucial features as we will explain in the following. For that purpose
we first focus on the limit εre = 0 and follow paths with xi < 0, ẏi > 0. Writing
asymptotically q(t) = R(t)eiφ, one obtains

φ∞(xi, ẏi) ≡ φ−
c = π − π

2(k + 1)
. (4.11)

Accordingly, after a transient period of time all those orbits run along the
same line in the complex plane independent of their starting points xi. Due to
symmetry mirror images of this line exist for corresponding orbits along −φ−

c

and π ± φ−
c , respectively. Since trajectories merging along these lines carry

the same energy, they are also focused in phase space and thus define caustics
(burning lines).

Typically, a caustic is associated with unstable orbits and large fluctuations
connecting them which renders a simple Gaussian semiclassics insufficient [29].
To verify this scenario here, we consider small deviations δq = δx+iδy around
a certain orbit q̄(xi; t) with initial point xi and E = 0. By linearizing the
equations of motion (4.4) one gains
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(
δẍ
δÿ

)
= K̂

(
δx
δy

)
, (4.12)

where K̂ evaluated along q̄(xi; t) is a matrix containing the stability informa-
tion. Along the line φ = φ−

c it takes the form

K̂ =

(
− ∂2r

∂x∂x − ∂2r
∂y∂x

− ∂2j
∂x∂x − ∂2j

∂y∂x

)∣∣∣∣∣
φ=φ−

c

=
(
−r̄xx 0

0 −r̄xx

)
(4.13)

with diagonal elements −r̄xx > 0 so that all trajectories merging along the
burning lines are unstable. As a consequence small deviations in phase space
can lead from an orbit q̄(xi; t) to another one q̄(x′

i; t) and even allow for a
turn from positive to negative momentum to run along the q̄(x′

i; t)-orbit back
towards x′

i on the real axis. As asymptotically paths creep along φ−
c , those

jumps from very small positive to negative momenta require only tiny fluc-
tuations. The “reflected” orbit crosses the real axis at x′

i and approaches the
complementary burning line −φ−

c in the lower half-plane. There, a similar
kind of deviation drives it to still another q̄(x′′

i ; t) to reach again φ−
c and so

forth and back. By subsequently running through these cycles between the
caustics at ±φ−

c a net-motion into the direction of the barrier top may be
generated. On the right side of the barrier (xi > 0) the same kind of scenario
exists and at the top x = 0 the burning lines intersect (depending in detail
on V (q) within |q/l| < 1, see Fig 4.1.) so that small deviations in the vicin-
ity of the bottleneck x = 0 may lead from the set of left-barrier cycles to
that of right-barrier cycles and vice versa. This allows for a motion starting
in xi < 0 to eventually reach the range on the opposite side of the barrier.
So far the above discussion is restricted to class (c)-orbits with εre = 0. For
finite but small εre the orbits do not merge asymptotically along a single line,
cf. Fig. 4.1, but still approach each other closely in the barrier region and are
then unstable so that they may be connected by small fluctuations, too.

The conclusion is that the incoming and outgoing real axis segments of a
scattering path with TPs at q0 and −q0 and energy E = V (q0), respectively,
are linked by a sequence of real-time complex plane orbits with the same
energy E(q0) = εre that are tied together by small fluctuations near caustic
lines. Since this under-barrier-motion is not a purely stationary one obeying
(4.4), but rather can be seen as nearly stationary as it follows classical orbits
most of the time, it describes quasi-stationary fluctuations (QSF). The QSF
allow to move from qi < 0 through the barrier range towards qf > 0 and this
way dominate in absence of true stationary points, δS[q] = 0 with q(0) =
qi, q(t) = qf , the path integration in G(qf , t; qi, 0) between the TPs. In the
sequel we will refer to these dominant fluctuations also as fluctuation paths.

4.2.3 Complex Orbits for Metastable Potentials

While for scattering barriers QSF on both sides of the barrier show the same
features, the situation is different for quasi-bound states tunneling through a
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barrier into a continuum. As an example we discuss here a metastable potential
of the form

V (q) =
Mω2

0

2
q2
[
1 − q

l

]
, (4.14)

where the well is located at q = 0, the barrier at qb = 2l/3, and the barrier
height is Vb = V (qb) = 2Mω2

0l2/27. The exit point of the potential, i.e. its
zero on the continuum side of the barrier, is given by q = l.

We are interested in the escape from the well through the barrier and
thus proceed in searching for QSF as orbits with small E = εre starting near
q = 0 along the real axis with purely imaginary momentum. Based on the
equations of motion (4.4) and energy conservation (4.6) the following scenario
for the relevant classical mechanics is gained (see Fig. 4.2). For each fixed
energy 0 ≤ E ≤ Vb there is a starting point x0

i with E = V (x0
i ) being the

TP of a real periodic orbit in the well (i.e. oscillating along the real axis).
For xi > x0

i and same energy E this real periodic orbit is “unfolded” to a
loop in the complex plane; particularly for E = 0 one has x0

i = 0. A certain
set of periodic orbits can thus be characterized by its energy E = V (x0

i )
with 0 ≤ x0

i ≤ qb where the various paths within this set differ only by their
individual starting points xi > x0

i with 0 ≤ xi ≤ l. All paths in such a set not
only share the same energy but also have the same period and action for one
round trip.

In the barrier range 0 ≤ xi ≤ l orbits lie arbitrarily close to each other.
Along the real axis we then find for the elements of the stability matrix K̂
that non-diagonal elements jxx(xi) vanish, while the diagonal elements read
rxx(xi) = Mω2

0(1 − 3xi/l). Hence, in the well for xi < l/3 one recovers the
elliptic stability of a harmonic oscillator (rxx > 0), while for xi > l/3 all orbits

Fig. 4.2. Quasi stationary orbits in the complex plane for the cubic potential (4.14)
and various xi and ẏi > 0, ẏi < 0. Zero energy (solid) and finite, but small energy
(dotted-dashed) orbits are shown. Open circles denote the entrance and exit points,
respectively, and the filled circle indicates the location of the barrier top.
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become unstable. This way, each time a loop crosses the real axis in the bar-
rier range at a certain xi small fluctuations may drive it to another one with a
different x′

i within the same set of paths. Such “phase fluctuations” generate
effectively a spiraling motion towards the exit point qc where orbits accumu-
late. The continuum along the real axis to the right of qc is again reached by
small fluctuations. It is this spiraling quasi-stationary motion around the well
that defines the QSF.

While for scattering potentials under-barrier reflection paths are tied
together by fluctuations, here, tunneling results from fluctuations between
under-barrier periodic orbits. In both cases barrier penetration cannot be de-
scribed by a single tunneling path, but only by a sort of “diffusion” on certain
sets of classical complex plane orbits. Since this under-barrier dynamics fol-
lows most of the time Newton’s equation of motion it dominates the path
integral of the propagator in the semiclassical limit and allows to explicitly
calculate its corresponding action. For other barrier potentials the QSF show
qualitatively features either from one or even both of the archetypical situ-
ations discussed here, namely, tunneling into asymptotically free and out of
quasi bound states, respectively.

4.2.4 Extension of the Hermann Kluk Propagator

Based on the above analysis we are now in a position to include also deep
tunneling in the HK propagator scheme. Before we do so, one comment is
in order: The ordinary HK propagator has not been directly derived from
the exact path integral expression (2.17) as a leading term of a consistent h̄
expansion. Nevertheless it has been proven in numerous applications that for
practical purposes the HK approach is extremely powerful and very convenient
to be implemented into numerical algorithms. Accordingly, we do not derive
in a strict mathematical sense an extended HK formalism, but rather follow
a semiclassical guideline by incorporating contributions of the QSF into the
HK phase-space integrand as additional action and phase factors.

Since the ordinary HK propagator captures tunneling for parabolic barri-
ers, we start by formally splitting the propagator in total phase space as

GHK(qf , t; qi, 0) = G>(qf , t; qi, 0) + G<(qf , t; qi, 0). (4.15)

Here, G> and G< comprise integrations over phase-space volumes E ≥ V0 and
E < V0 − δpb, respectively, with δpb defining the lower bound in energy where
a parabolic approximation around the barrier top is valid. G> is taken to
coincide with the ordinary GHK as specified in (2.27), thus describing the time
evolution up to moderate times. The part G<(t) gives the long time behavior
and is the crucial extension we are looking for. In order to construct the latter,
one first observes that for E < V0 the ordinary semiclassical propagation,
(2.27), works outside the barrier range. The missing link are the QSF discussed
in Sect. 4.2.3. To determine their contribution explicitly, it is more instructive
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to consider a specific example, generalizations are then straightforward. For
that purpose we stick to the scattering situation of Sect. 4.2.2.

The action contributions for motions from qi to the left TP −q0 and from
the right TP q0 to qf are simply evaluated. The same is true for the Gaussian
fluctuations around these segments. The contribution of the QSF is composed
of simple cycles, each of them connecting a real axis point xi with another
one x′

i > xi by an orbit running from xi along q̄(xi, t) towards a caustic line
and then backwards along q̄(x′

i, t) to x′
i (see Fig. 4.1). The action of a simple

cycle in the time interval δt then reads

S(x′
i, xi, δt) =

∫
q̄(xi)

dqp(q) −
∫

q̄(x′
i)

dqp(q) + δF − Eδt . (4.16)

The first two parts are just the short actions along the contours of q̄(xi) and
q̄(x′

i), respectively, and the portion δF takes into account the phase-space
jump along the caustic line. The short actions are evaluated by closing the
integration contour with a segment of the real axis connecting xi with x′

i.
Since all singularities of the potential lie beyond the caustic and orbits creep
with almost vanishing momentum along the caustic, we find

∫
q̄(xi)

dqp(q) −
∫

q̄(x′
i)

dqp(q) =
∫ x′

i

xi

dqp(q) ≡ W (x′
i, xi). (4.17)

Apparently, the short action W (x′
i, xi) is imaginary. For the jump contribu-

tion we write δF = ∆p ∆q. The momentum jump is estimated from typical
momentum fluctuations on the barrier length scale l, i.e. ∆p = h̄/l, while the
position space jump is asymptotically much smaller ∆q � l (in fact, e.g. for
an Eckart barrier it is exponentially small). Hence, δF/h̄ � 1 so that (4.16)
provides up to negligible corrections S(x′

i, xi, δt) ≈ W (x′
i, xi) − Eδt. The sum

of cycles linking −q0 with q0 immediately follows and we obtain

S(q0,−q0,∆t) ≈ i|W (q0,−q0)| − E∆t , (4.18)

where ∆t is the time spent between the TPs. This way, the QSF effectively
provide an imaginary part to the real-time action which coincides with the
Euclidian instanton action from −q0 to q0 in the inverted potential.

Apart from the action of the QSF there is also a pure phase factor which
must be taken into account. This is due to the fact that the segments of the
real time motion outside the barrier have to match at the TPs onto the QSF
under the barrier. At the TPs small fluctuations drive the motion into/out
of the complex plane starting/arriving with purely imaginary momenta. The
corresponding rotation in phase space ∆p → i∆p leads to a phase factor
eiπ/2 at each TP. Thus, we recover the connection rules (2.9) known from the
ordinary WKB approximation. Moreover, it turns out that these phase factors
also ensure the continuity of the monodromy matrix (2.29).
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In principle, we could now combine the respective contributions outside
and under the barrier to arrive at an integrand for the phase space integration
in the low energy sector. However, so far the “tunneling time” ∆t is not yet
determined. In fact, as discussed above, there is no unique ∆t as the QSF do
not correspond to a ballistic classical motion, but rather contain “diffusive”
segments along the caustics. The notion of a definite tunneling time is thus
obsolete and we could only attempt to estimate the most likely time for the
QSF to run through the barrier. According to the semiclassical limit, however,
we proceed by assuming that the time spent outside the barrier is much larger
than the time spent under the barrier. In other words, we assume that the
semiclassical tunneling process occurs instantaneously on the time scale on
which the outside barrier motion takes place. We mention in passing that
empirically one finds that in the exact wave packet dynamics a transmitted
portion of the wave packet can be observed immediately after the tail of the
packet has entered the barrier range.

Eventually, on this coarse grained time scale we arrive for the low energy
part of the propagator and for qi and qf on opposite sides of the barrier at

GHK
< (qf , t; qi, 0) =

∫
E<V0−δpb

dp′dq′

2πh̄
gγ(q′t, p

′
t, qf)R<(p′, q′, t)T (q′, p′)

× e
i
h̄ S<(p′,q′,t) g∗γ(q′, p′, qi) . (4.19)

Above, an orbit runs in time t from {p′, q′} along the real axis to its TP
{0,−q0(q′, p′)}, jumps to {0, q0(q′, p′)} to finally reach {p(t), q(t)}. This clas-
sical real axis motion leads to a fluctuation prefactor

R<(p′, q′, t) = det
[
1
2

eiπ

(
m11 + m22 − iγm21 −

1
iγ

m12

)]1/2

(4.20)

with the monodromy matrix elements mij [see (2.30)] and action S<(p′, q′, t).
The position space jump costs the action contribution of the QSF,

T (q, p) = e−
1
h̄ |W [−q0(q,p),q0(q,p)]| , (4.21)

and G< results from phase space averaging. In (4.19) the phase factor eiπ has
been incorporated into R< ensuring its continuity when jumping from −q0 to
q0. Importantly, G< follows not just from switching in the integrand of the
ordinary HK propagator (2.17) to imaginary times in regions where E < V (q).

The semiclassical dynamics based on the extended HK propagator G<+G>

turns out to be in excellent agreement with exact results for end points qi, qf

which are sufficiently away from the barrier range. Its only drawback is the
changeover from short and moderate times, where G> dominates, to large
times, where G< prevails. Namely, for energies approaching the transition
layer (V0 − h̄ωb, V0) around the barrier top from below, the exponential fac-
tor T (q, p) in G< does not give the correct semiclassical transmission ampli-
tude since it neglects multiple traversals of the barrier range by the QSF.
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Practically, one can partially compensate for this deficiency by adjusting the
parameter δpb properly, but this ad hoc method is, of course, not very satis-
fying. Matching procedures are common to semiclassical approximations and
the usual way to circumvent them is to resort to uniform approximations.
Uniform transmission probabilities have been derived by carefully analyzing
analytic properties of the action [30] as seen in (2.14). Here, we summarize
these results by following an intuitive argument based on the complex mechan-
ics. From (4.21) the transition probability in lowest order reads p0 = |T |2. The
process where QSF traverse the barrier range once, but then return to the left
side of the barrier, occurs with a probability p2 = |T |4 and effectively reduces
the total transmission probability. Hence, an odd number 2k+1, k = 1, 2, 3, . . .
of traversals through the barrier range (coming from the left) gives a contribu-
tion |T |2k+2 and enhances the transmission probability, while an even number
2k, k = 1, 2, 3, . . . of traversals leads to |T |2k+2 and diminishes the trans-
mission probability. After summing up both contributions, one obtains the
known result ptot = |Tuni,<(q, p)|2 with the absolute transmission amplitude
[cf. (2.14)]

Tuni,<(q, p) =
T (q, p)√

1 + T (q, p)2
. (4.22)

This expression is valid from low energies up to energies close to the transition
layer. In the layer it reduces up to negligible corrections to the absolute of the
transmission amplitude through a parabolic barrier

Tpb(q, p) =
1√

1 + exp{2π[V0 − E(q, p)]/h̄ωb}
. (4.23)

However, tunneling through the parabolic range is already accounted for in
the ordinary HK (G>) by summing exclusively over orbits with E > V0. When
we define

α =
|Tuni,< − Tpb|

Tuni,<
, (4.24)

we find for all trajectories with V0 − h̄ωb < E < V0 that α � 1, while outside
the layer α > 1. To exclude orbits in the layer from the phase-space integration
in G< one may use an appropriate function f(α) with f(α � 1) → 0 and
f(α > 1) → 1. We found the simplest choice to be f(α) = θ(α − δ′) with
θ(·) the step function and δ′ a parameter the precise value of which does not
sensitively affect the dynamics as long as 0 < δ′ � 1. This way, we obtain

Tuni(q, p) =
{

Tuni,<(q, p) θ(α − δ′) for E(q, p) < V0 with δ′ � 1
1 for E(q, p) ≥ V0

. (4.25)

The uniform extended HK propagator then reads

Guni,eHK(qf , t; qi, 0) =
∫

dp′dq′

2πh̄
gγ(q′t, p

′
t, qf)R<(p′, q′, t)Tuni(q′, p′)

× e
i
h̄ S<(p′,q′,t) g∗γ(q′, p′, qi) . (4.26)
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For a purely parabolic barrier Tuni = 1 ensures that Guni,eHK coincides with
the ordinary HK. For anharmonic barrier potentials the ordinary HK is re-
covered for all energies down to E = V0 describing also tunneling through the
vicinity of the top, while for low energy orbits Tuni → T and G< (4.19) is
regained. The above expression (4.26) allows to describe incoherent tunneling
dynamics in terms of classical real time motion. We will illustrate its power
in the next Sect. 4.2.5 by applying it to various barrier penetration processes.
In particular, it gives astonishingly accurate results even for externally driven
systems where so far no other semiclassical approach was available.

For end points on the same side of the barrier the propagator for reflection
is needed. To gain its semiclassical expression one exploits quantum mechan-
ical current conservation: Tuni(q, p)2 + Runi(q, p)2 = 1 where Runi(q, p) is the
absolute of the reflection amplitude. Hence, we have

Runi(q, p) =
√

1 − Tuni(q, p) . (4.27)

The semiclassical HK propagator for reflection follows from (4.26) by replac-
ing Tuni with Runi(q, p). Of course, the expression (4.26) also applies to asym-
metric scattering situations where |qleft

0 (q, p)| �= qright
0 (q, p) and other barrier

potentials. The only restriction is that the quantum mechanical barrier pen-
etration has to be an incoherent process.

4.2.5 Driven Tunneling for Reactive Scattering

The Eckart barrier already specified in (4.1) has been of wide use as a simple
model for bimolecular reaction dynamics, e.g. for the H+H2 exchange reac-
tion. It further serves as a nontrivial test case for the accuracy of semiclassical
approximations since the stationary Schrödinger equation can be solved an-
alytically. Asymptotically VEck(q) drops faster than any power of q so that
one has φ−

c → 0 and burning lines stretch parallel to the real axis. In the
sequel, we assume an initial wave packet ψi(0) located to the far left that
runs towards the barrier with a mean kinetic energy p2

i /2M � V0. This en-
sures that the main portion of the packet experiences deep tunneling, while
the above-barrier part–though always present in the high energy tail of the
packet’s energy distribution–is much smaller. The final wave packet ψf sits to
the far right and has the same width as ψi(0).

Let us first consider the static situation. The standard semiclassical result
for the correlation function (4.3) has been discussed already in Sect. 4.1). As
expected (see Fig. 4.3a) the ordinary HK dynamics dies out exponentially
on an intermediate time scale. In contrast the extended HK time evolution
keeps close to the exact dynamics also for very large times when the low en-
ergy components of the wave packet dominate. By using Guni,eHK a matching
procedure between short/moderate and long time propagation according to
(4.19) is avoided. It has been shown that a very sensitive observable for the
accuracy of a real-time treatment is the transmission probability P (E) calcu-
lated by numerically Fourier transforming cfi(t). The ordinary HK approach
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Fig. 4.3. Real part of the correlation function cfi vs. time for scattering in a static (a)
and driven (b) Eckart barrier (4.1). Parameters are γl2 = 6, V0/(p2

i /2M) = 8, and

(a) qi/l = −qf/l = 40, (b) qi/l = −qf/l = 15 with qiA/V0 = −0.75, Ω/
√

V0/2Ml2 =
0.02.

gives satisfactory results only for energies sufficiently close to the barrier top.
Its fundamental deficiency, however, is that its P (E) strongly depends on qi, qf

such that with increasing end-points the semiclassical transmission probabil-
ity tends towards the classical result. Here, we get accurate data also for very
low energies (Fig. 4.4) apart from small oscillations typical for real-time cal-
culations [9]. In the moderate energy range E/V0 > 0.5 the real-time P (E)
even improves the uniform WKB result. Further, it saturates for end-points
qi, qf sufficiently away from the barrier range.

The performance of the Guni,eHK is very promising. The typical num-
ber of trajectories for the set of parameters is 1 · 105. In order to speed
up the convergence process a tuned equidistant integration grid can be used
which for one-dimensional systems is superior to a Monte Carlo procedure.
Newton’s equation of motion and the phase space integration are efficiently
evaluated with the Verlet-Algorithm and an symplectic integrator of 6th or-
der [31], respectively. In contrast to previous approaches [32] convergence of
Guni,eHK is achieved for roughly the same number of trajectories as for the
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Fig. 4.4. Transmission probability vs. E/V0 for an Eckart barrier. Exact (solid),
conventional HK (dotted), eHK (dashed), and uniform WKB (dotted-dashed) results
are shown.

one-dimensional GHK in non-tunneling situations so that also an extension
to two or three dimensional barriers systems seems feasible. The main obsta-
cle then will be the proliferation of orbits at the left TP. However, since the
transmission amplitude depends very sensitively on the length of the under-
barrier paths, we expect only a sufficiently small subset of orbits to be actually
relevant in the phase-space integration.

A dynamical semiclassical approach is clearly required for Hamilton op-
erators that are explicitly time dependent. It is worthwhile to note that e.g.
for periodic driving the naive procedure to switch under the barrier from real
to imaginary times leads to unrealistic transmission probabilities due to an
exponentially increasing driving force. As an example, we turn to an Eckart
barrier driven by a periodic signal

V (q) = VEck(q) + qA sin(Ωt) (4.28)

and focus on the range of non-resonant driving and weak to moderate driving
amplitudes. In this case already the exact numerics is non-trivial since it is
the long time tunneling behavior which is most sensitively affected by the
driving and leads to a strong spreading of the wave packet. Further, ab-
sorption and emission of field quanta under the barrier are excluded from
the Guni,eHK scheme according to the time coarse graining on which it is
based. Typical results for the correlation function cfi(t) are shown in Fig. 4.3b.
Compared to the static case one sees phase shifted oscillations and a revival
type of phenomenon. Semiclassically, both effects originate from an intimate
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Fig. 4.5. Real part of the correlation cfi vs. time for the static metastable well
(4.14). Results for eHK (top), HK (middle), and exact (bottom) dynamics are shown.
Parameters are Vb/h̄ω0 = 0.93, and qi/l = qf/l = 0.

interference of (fast) above-barrier-paths (E > V0), which cross the barrier
and are then back-scattered, and (slow) driven tunneling orbits (E < V0).
Even in this time-dependent case the accuracy of the eHK in amplitude as
well as in phase is remarkable.

4.2.6 Resonant Decay out of Metastable Wells

Tunneling out of a metastable well through a high barrier into a continuum can
be found in many areas of physics and chemistry. One of the most prominent
examples is the decay of the zero voltage state of a current biased Josephson
junction as described in Sect. 3.1.3. In particular, microwave driven junctions
have recently gained much interest as solid-state based devices to realize and
control quantum bits in the context of quantum computing [33]. There, de-
coherence and dephasing play a crucial role and it is thus desirable to have
a semiclassical real-time approach at hand which may also allow to take into
account environmental degrees of freedom.

To be specific, we consider the quadratic+cubic potential in (4.14). The
escape dynamics from this well can simply be understood in terms of quasi-
stationary energy levels En = εn − ih̄Γn/2 with a well energy ladder ε0 <
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ε1 < . . . and decay rates Γ0 � Γ1 � . . .. Preparing the system initially in a
normalized linear combination of well states ψ(q, 0), the dynamical quantity
of interest is the survival probability in the well

P0(t) = |cfi(t)|2 = |〈ψ(q, t)|ψ(q, 0)〉|2. (4.29)

For very long times this probability is expected to decay mono-exponentially
as the decay is then dominated by tunneling from the ground state, i.e.
P0(t) → e−Γ0t. WKB results for tunneling rates have been obtained in
Sect. 3.1.1, in particular, the tunneling rate for the ground state is specified
in (3.8).

Now, let us first study a potential with Vb/h̄ω0 = 0.93 corresponding to
only one quasi-eigenstate in the well. While for the ordinary HK all orbits
with E < Vb remain trapped in the well and no decay is seen for longer
times (Fig. 4.5), the eHK describes the quantum escape quite well. Only for
small times where the eHK basically coincides with the ordinary HK there
is a slight unphysical increase of the oscillation amplitudes which in case of
the eHK lives on a short transient period of time while in case of the HK it
drives the amplitudes even beyond ±1. This effect is well-known and reflects
the violation of the norm conservation in the HK approach. The performance
of the eHK becomes even more pronounced when comparing escape rates
(Fig. 4.6): The exact and eHK rate differ by ≈ 5%, while the ordinary WKB
result (3.8) completely fails in this low barrier regime. For higher barriers
the accuracy of the WKB rate improves, of course, the dynamics of P0(t),
however, can only be captured by the eHK scheme.
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Fig. 4.6. Real part of cfi vs. time for the static metastable well (4.14). Results for
the eHK, the HK, and the exact dynamics are shown. Parameters are Vb/h̄ω0 = 0.93,
and qi/l = qf/l = 0. Solid and dashed lines are fits to extract decay rates k = Γ0/ω0;
the dotted line depicts the WKB result.
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Fig. 4.7. Real part of cfi vs. time for a driven metastable well with weaker driving.
Results for eHK (top), HK (middle), and exact (bottom) dynamics are shown. The
external driving is characterized by Ω/ω0 = 0.05 and Al = 0.4Vb. Other parameters
are as in Fig. 4.5.

Is it possible to describe also driven decay within the eHK? To study this
question we consider again a periodic driving force of the from qA sin(Ωt) and
start with a well supporting in the static case only one well state. The driving
amplitude is adjusted in such a way that the well state lies either slightly
below (Fig. 4.7) or slightly above (Fig. 4.8) the barrier top when the barrier
reaches its minimal height. With Ω = 0.05 the driving frequency is far below
any resonance frequency. Apparently, the HK again fails, even in the case
of the larger amplitude when escape is essentially governed by above-barrier
paths, while the eHK follows closely the exact dynamics for many periods of
the driving force.

More ambitious is the case of resonant driving (photon assisted tunneling)
which is the most difficult process to describe within a semiclassical formalism.
Although the driving amplitude is taken to be very small compared to the
barrier height, a driving frequency in resonance with the spacing of a pair
of quasi-energy levels in the well leads to strongly enhanced tunneling from
excited well states. Here, parameters are chosen such that the well supports
two states with ∆ω10 = (ε1 − ε0)/h̄. Indeed, the influence of the external
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Fig. 4.8. Real part of cfi vs. time for a driven metastable well with stronger
driving. Results for eHK (top), HK (middle), and exact (bottom) dynamics are
shown. Parameters are Ω/ω0 = 0.05, Al = 1.0Vb. Other parameters are as in Fig. 4.5.

driving remains very small away from the resonance and a decay is basically
absent for this set of parameters and ranges of time.

This changes abruptly in the vicinity of the resonance. Typical results are
shown in Fig. 4.9 where a clear decay due to tunneling from the excited state is
observable. The difference between the exact and the semiclassical resonance
frequency is about 5% and the eHK shows a fine agreement with the exact
dynamics that is completely absent in the HK propagation. For longer times
an increase of the amplitudes in the eHK data can be seen which again can be
traced back to a break-down of the norm conservation and becomes a severe
problem in the very long time domain. Moreover, in all these cases we found
that the eHK exhibits much better convergence properties than the usual
HK. The transmission/reflection factor acts like a filter and damps out the
impact of chaotic trajectories and corresponding diverging prefactors which
are a serious problem of the ordinary HK.

4.2.7 Tunneling Ionization in Laser Fields

Ionization in strong laser fields takes place in two channels. Either the bound
electron absorbs photons from the external field (photoionization) or it may
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Fig. 4.9. Real part of cfi vs. time for the driven metastable well for resonant
driving. Results for eHK (top), HK (middle), and exact (bottom) dynamics are
shown. Parameters are Vb/h̄ω0 = 2, qi/l = qf/l = 0, and Al = 0.04Vb. Frequencies
are Ω/ω0 = 2.135 (exact resonance) and Ω/ω0 = 2.335 (semiclassical resonance).

tunnel through the Coulomb potential tilted by the field (tunnel ionization)
[34]. The parameter which controls the two ranges is the so-called Keldysh
parameter [35]

γK =
√

IP

2UP
=
√

2IP
ωex

A
, (4.30)

where IP is the ionization potential and UP = A2/(4ω2
ex) the mean kinetic

energy that a free electron gains in a laser field of amplitude A and frequency
ωex. For γK 	 1 multi-photonionization prevails and may lead e.g. to Above
Threshold Ionization (ATI). In the opposite range γK < 1 the electron may
tunnel through the tilted Coulomb-barrier. Subsequently, it is accelerated in
the electromagnetic field, returns in the next cycle of the field, which tilts the
Coulomb potential to the other direction, back to the atom, where it may re-
combine and emit photons. Typically, this phenomenon is described in a three
step process, where the first and third step are quantum mechanical events,
while the intermediate one is assumed to be classical [36, 37, 38]. Eventually,
this may generate higher harmonics [39, 40]. The extended HK formalism
provides a possible basis to describe the whole process within one consistent



82 4 Wave-packet Tunneling in Real-time

approach and may thus also be able to capture interferences between the
emitted and back-scattered electronic wave packet.

In a first step towards this goal we report on some results for a driven
Morse oscillator [18]

VMorse = V0

(
1 − e−q/l

)2

, (4.31)

common in molecular physics. By applying an external field of the form

Vex(q, t) = q A sin2(ωext)Θ(n2π/ωex − t) (4.32)

and choosing n = 1, we aim to simulate two laser pulses acting on the potential
(Θ(·) is the unit step function). The sin2 term ensures, that the deviation of
the original shape of the potential is only in one direction. This allows us to
study only the incoherent tunneling process. As the observable of interest we
study the ionisation probability

PIon(t) = 1 −
∑

n

|〈φn|ψ(t)〉|2 = 1 −
∑

n

Pn(t) , (4.33)

where Pn is the probability of being in the nth eigenstate 〈φn|. For the po-
tential parameters we have V0/(h̄ω0) = 1.58 for the depth of the well and
l/
√

h̄/(Mω0) = 1.78 for its width. Further, the external field has amplitude√
h̄/(Mω0)A/V0 = −0.146 and frequency ωex/ω0 = 0.0785. This corresponds

to a Keldysh parameter γK ≈ 0.16 ensuring a typical situation for ionization
via tunneling [35]. Fig. 4.10 shows the time dependent probability of being
in the ground and first excited state, respectively. One first observes that the
eHK result follows the exact one quite accurately. However, for short times
both HK based results overestimate the exact calculation. This effect is due to
the violation of the norm conservation of the HK mechanism. While the eHK
procedure recovers from this violation up to a certain extent, the result of the
conventional HK formalism does not, leading to a probability amplitude for
the ground state much larger than one. Calculating the ionization probability
after the two external pulses, i.e. n = 1 in (4.32), using (4.33) gives ≈ 60%
for the exact result, ≈ 53% for the result obtained with the eHK formalism,
and a negative ionization probability ≈ −8% predicted by the original HK
formalism. Assuming that the ground state probability obtained by the eHK
formalism is overestimated in the same way as the one obtained by the conven-
tional HK result, leads to a naive correction to P0(t) simply by subtraction.
Therefore one may correct the eHK result to PIon(t) ≈ 61%, which is in very
good agreement with the exact result.

4.3 Systematic Expansion of the HK Propagator

As already mentioned in Sect. 2.2, the HK propagator was originally not
derived as a systematic stationary phase solution to the exact expression [41,
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Fig. 4.10. Survival probability for ground (P0) and first excited state (P1) of a
Morse potential driven by an external sinusodial field (4.32). Exact (solid), eHK
(long-dashed), and HK (dotted) results are shown. For comparison the light grey
line depicts results calculated with the conventional HK, but with renormalized wave
packets at each time step. Tex denotes the period of the external driving.

42, 43]. In contrast to the Van Vleck propagator, which due to its derivation as
an asymptotic expansion to the exact path integral representation of the time
evolution operator can be systematically improved, at least in principle, the
semiclassical IVR was constructed to agree with the Van Vleck propagator in
the sense of a stationary phase approximation but is useful only, if its phase
space integration is evaluated numerically exactly. Thus, one computes the
quantity of interest, using the IVR, but there is no real control as to the
accuracy of the resulting approximation. Studies in this direction and also
attempts to develop a firm basis of the HK propagator have been performed
though, see e.g. [44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. Only very recently
has this seed led to a consistent mathematical foundation [6, 22, 55].

The HK propagator has to fulfill the Schrödinger equation up to a correc-
tion which must be in some sense small. Based on this observation a deeper
analysis leads to an exact representation of the quantum propagator in terms
of an asymptotic IVR series with the HK propagator being the leading order
contribution [19, 20, 22, 55]. Hence, a systematic improvement of the HK ex-
pression is available, which in particular allows to capture deep tunneling by
higher order phase space integrations [21, 56].
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4.3.1 Correction Operator

The exact quantum mechanical propagator Ĝ = e−iĤt/h̄ obeys

ih̄
d
dt

Ĝ = ĤĜ . (4.34)

Now, upon inserting the expression (2.27) for the semiclassical IVR propagator
ĜHK into this equation, one finds that it obeys

ih̄
d
dt

ĜHK = ĤĜHK + Ĉ(t) , (4.35)

where the correction operator Ĉ(t) is found to be

Ĉ(t) =
∫ ∞

−∞

dpdq

2πh̄

(
h̄2γ2

2
[q̂ − q(t)]2 − h̄2

2
γ + ih̄

dR(p,q,t)
dt

R(p, q, t)
+ V [q(t)] − V (q̂)

+V ′[q(t)][q̂ − q(t)]

)
R(p, q, t) eiS(p,q,t)/h̄|gγ(p, q, t) >< gγ(p, q, 0)|

(4.36)

and the prime denotes differentiation with respect to the argument.
It is straightforward to derive an explicit expression for the correction

operator at time t = 0. Using Hamilton’s equations of motion and (2.29) we
have

Ṙ(p, q, t) =
1

4R(p, q, t)

(
−∂V ′[q(t)]

∂p
+

∂p(t)
∂q

− ih̄γ
∂p(t)
∂p

+
1

ih̄γ

∂V ′[q(t)]
∂q

)
.

(4.37)

Therefore, at time t = 0,

Ṙ(p, q, 0) = − ih̄γ

4

(
1 +

V ′′(q)
h̄2γ2

)
. (4.38)

This means that at the initial time the correction operator Ĉ(0) is Hermitian
and depends only on the coordinate operator. Defining the average

< f(q) >≡
√

γ

π

∫ ∞

−∞
dq e−γ(q̂−q)2f(q) (4.39)

and integrating by parts the terms with V ′ and V ′′, one readily finds that at
t = 0

Ĉ(0) =<
3
2
V (q) − γV (q)(q̂ − q)2 > −V (q̂) . (4.40)

Hence, as to be expected, for a harmonic potential the correction operator
vanishes.
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4.3.2 Asymptotic Series

After having derived an explicit expression for the correction operator, one
can view (4.35) as an inhomogeneous differential equation for ĜHK(t) supple-
mented with the boundary condition ĜHK(0) = Î. Then, according to (4.34)
the exact propagator is the solution of its homogeneous part so that the for-
mally exact solution to (4.35) is given by

ĜHK(t) = Ĝ(t) − i
h̄

∫ t

0

ds Ĝ(t − s) Ĉ(s) . (4.41)

This can be written in form of a recursive equation for the exact propagator
similar to a Born or Dyson series

Ĝ(t) = ĜHK(t) +
i
h̄

∫ t

0

ds Ĝ(t − s) Ĉ(s) . (4.42)

By using ĜHK(t) as the 0th order term one may now represent the exact
propagator as a series in which the nth element is of order Ĉ(t)n, i.e.,

Ĝ(t) =
∞∑

n=0

Ĝn(t) (4.43)

with Ĝ0(t) = ĜHK(t) and the recursion relation

Ĝn+1(t) =
i
h̄

∫ t

0

ds Ĝn(t − s) Ĉ(s) . (4.44)

Provided that the above series converges, it allows to actually compute the
propagator, where a semiclassical IVR approximation beyond the HK expres-
sion is obtained when only a finite number terms is taken into account.

As an example, one considers [19] increasing orders of time dependent
autocorrelation functions of a Gaussian wave packet |ψ〉 , see (4.3),

ck(t) =
k∑

n=0

〈ψ|Gn(t)|ψ〉 . (4.45)

Already the second order approximation almost coincides with the exact quan-
tum mechanical result. It turns out that the convergence towards the latter
one is non-monotone and strongly depends on the time domain. For instance,
the first order approximation c1 gives for longer times a result much worse
than c0. This deterioration is cured by the next order term c2. However, go-
ing to even longer times also this approximant fails and even higher order
terms are required. While numerically the above integrals are very effectively
evaluated by means of Monte Carlo techniques, in the long time range the in-
creasing number of phase space integrations [2(n+1) integrations in order cn]
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is plagued by another problem: The sign problem which is due to the oscilla-
tory integrands and can be traced back to quantum mechanical interferences.
Hence, practically depending on the problem in question the systematically
improved semiclassics becomes no longer feasible though. The same is true
for higher dimensional systems, where the number of phase space integrations
increases with the dimension d as 2d(n + 1). For instance, while for d = 1 the
c2 requires to perform 6 integration, for d = 3 already the c1 needs 12. In addi-
tion, the calculation of the determinant in the prefactor of the HK propagator
becomes increasingly expensive and turns out to be a crucial bottleneck. We
will address this issue briefly in the next Sect. 4.3.3. On the other hand, one
has to recall that also an exact solution of the time dependent Schrödinger
equation becomes increasingly demanding for very long times and/or in higher
dimensions.

4.3.3 Deep Tunneling with Real-valued Trajectories

To demonstrate the ability of the approach outlined in the previous Section
to deal with deep tunneling, penetration through an Eckart barrier has been
studied in [21]. According to the series (4.43) there is no longer one real-valued
trajectory, but rather a total path connecting a fixed point on the left with
another one on the right side of the barrier is composed of segments with
discontinuous jumps in phase space between end- and starting points of ad-
jacent segments. It turns out that compared to the exact data very accurate
results for transmission probabilities and real-time correlation functions are
already obtained for n = 2 [(4.43)], see Fig. 4.11. In particular, note the con-
vergence to the numerically exact values in the low energy regime, where deep
tunneling prevails. We remark that in this study a prefactor-free semiclassical
initial value representation was used. Accordingly, the action factor needs to
be modified in order to obey Heisenberg’s equation of motion. Even though
the corresponding propagator is slightly less accurate than the HK represen-
tation, its advantage is a substantial speed-up of the numerics, especially,
for the higher order corrections. Namely, the computational bottleneck of the
HK-scheme is the calculation of the prefactor, which as a determinant requires
to perform ∝ N3 numerical operations for an N × N -matrix. Hence, since in
order n one has 2(n + 1) phase space integrations, the number of operations
grows like 8(n+1)3 that have to be performed at each time step and for each
trajectory. Together with the above mentioned sign problem which requires
an increasing number of orbits with growing n, the HK scheme soon becomes
numerically no longer tractable. A prefactor-free formulation has the merit
of being much more efficient and thus allows to over-compensate its slightly
smaller accuracy.

Based on a variational method, tunneling splittings in a double well po-
tential have been obtained in [56] from a semiclassical time evolution of wave
packets in the short time domain. Again the number of iterations in (4.44)
to reach sufficiently accurate data is small (n = 3). Further, the time interval
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Fig. 4.11. Energy dependent transmission probability for a symmetric Eckart bar-
rier potential. Panel (a) depicts results on a linear scale, panel (b) on a logarithmic
scale for various orders of iteration of the IVR series. Courtesy of E. Pollak, Weiz-
mann Institute of Science.

over which the semiclassical dynamics has to be determined is short, i.e. much
shorter than the Fourier time 2πh̄/∆E for a tunnel splitting ∆E.

From a conceptual point of view, the interesting aspect here is that semi-
classical dynamics is known to work quite well precisely for shorter times as
we have discussed above. Of course, in order to retrieve information about
tunneling in this time domain, necessitates an extremely accurate calculation
of details of the dynamics. This idea has also been exploited in an alternative
semiclassical real-time approach to be addressed in the following Sect. 4.4.

4.4 Alternative Approaches

One of the first attempts to attack the real-time tunneling problem beyond
the standard HK propagator has been developed in [32] on the basis of a
splitting of that propagator. The underlying idea is to combine segments of
real-valued classical trajectories such that the end-point of the first and the
initial point of the next one do not coincide in phase space so that a larger
area in phase space can be explored. Namely, due to the half-group property
of the quantum operator (2.19), the splitting into n segments accounts for n
additional intermediate integrations. In principle, for n → ∞ this leads to the
exact path integral representation (2.17). However, when only a finite number
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Fig. 4.12. The iterative variational method for computing the ground state tunnel-
ing energy in a quartic double well potential. Panel (A) shows the zero-th and first
iteration. The small circles denote the respective time dependent minima (t1 = 0.435
for the zero-th order functional and t2 = 0.69 for the first iterated functional). Panel
(B) depicts the same for the next two iterations (t3 = 0.315, t4 = 0.225) and panel
(C) shows the final two iterations (t5 = 4.92, t6 = 2.235). The horizontal dotted
lines denote the ground and first excited state eigenvalues as determined by an ex-
act diagonalization. The line with crosses in (C) depicts the energy after the sixth
iteration. Courtesy of E. Pollak, Weizmann Institute of Science.

of splittings is considered and for each time segment the exact quantum prop-
agator is approximated by the HK propagator, one may expect an improved
semiclassical approximation.

By way of example, let us consider the case n = 1. Then, one has

GHK(qf , t; qi, 0) =
∫

d xGHK(qf , t;x, t/2)GHK(x, t/2; qi, 0) , (4.46)

which upon inserting the expression for the HK propagator (2.27) and per-
forming the x integrations leads to
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GHK(qf , t; qi, 0) =∫
dpdq

2πh̄

∫
dp′dq′

2πh̄
gγ [p′(t/2), q′(t/2); qf ]R

(
p′, q′,

t

2

)
eiS(p′,q′, t

2 )/h̄

× 〈g′γ |gγ(t/2)〉R

(
p, q,

t

2

)
eiS(p,q, t

2 )/h̄ gγ(p, q; qi) . (4.47)

Here, the expressions in (2.28) and (2.29) for the Gaussian wave packets and
the prefactors have been used. Further, the intermediate x-integration gives
rise to the overlap of the two Gaussians

〈g′γ |gγ(t/2)〉 = exp

{
− γ

4
[q′ − q(t/2)]2 +

i
2h̄

[q′ − q(t/2)][p′ + p(t/2)]

− 1
4γh̄2 [p′ − p(t/2)]2

}
. (4.48)

Note that the expression for the HK propagator is regained when the addi-
tional integral in (4.46) is performed in stationary phase. The crucial point
is that this is not done here, in order to obtain a more accurate semiclassi-
cal approximation. In the light of our discussion in Sect. 4.1, any additional
splitting allows for a spawning of classical orbits in the barrier range to cover
a larger domain in phase space.

This concept has been shown to substantially improve the performance of
the HK in case of tunneling through an Eckart barrier [32]. The number of
additional splittings did not exceed three, but could reach the accuracy of the
uniform WKB result from moderate energies to energies around the barrier
top. The only bottleneck of the approach is again the increasing number of
phase space integrations in time and in higher dimensions. In fact, the numer-
ical effort did not allow to treat driven systems explicitly, when the method
was introduced. One may assume that this may change with a still ongoing
increase in computer power.

Another approach has been laid out on the basic insight that according
to the spectral representation (2.32) of the quantum propagator, in principle,
information about the tunneling process is already contained in the short
time domain. The only problem is that the corresponding exponentially small
contributions are hidden behind a dominating background. Hence, to avoid a
semiclassical time evolution for longer times, one needs a very sensitive method
to retrieve the “needles in a haystack” by accumulating enough information in
the short time range. Such a method is provided by a high resolution spectral
analysis based on the filter diagonalization method (FDM) [57, 58, 59, 60, 61].
For a time signal originating from a quantum mechanical time evolution, e.g.
an auto-correlation function (4.3), it is suggestive to assume a form

C(t) =
∑

l

ble−iElt/h̄ . (4.49)
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The goal is then to determine the amplitudes bl and energies El by fitting
C(t) to the semiclassical data. This type of problem is known as a harmonic
inversion problem and an efficient way to solve it is given by the FDM. Very
successful applications of this procedure comprise the extraction of eigenen-
ergies [62] and periodic orbit quantization [63, 64].

However, by considering a tunneling situation just a single correlation
function for shorter times is not sufficient to extract tunneling amplitudes –
the information content is too small. Thus, one takes into account a whole
family of correlation functions [65]

Cµν(t) = 〈ψµ| exp(−iHt/h̄)|ψν〉 , µ, ν = 1, 2, . . . ,K , (4.50)

where the {ψµ} are Gaussian wave packets that for K → ∞ define a complete
basis set. In this limit, the calculation of the set of correlation functions is
identical to an exact diagonalization of the propagator. The idea is now, to
use only a certain subset of states such that the FDM delivers tunneling
amplitudes being independent of time in the short time range after some
transient time scale. The harmonic inversion problem then reads

Cµν(t) =
∑

l

bµl bνl e−iElt/h̄ . (4.51)

This program has been successfully applied to determine tunnel splittings in a
one-dimensional double well potential, where K = 7. Even a two-dimensional
problem could been attacked again with a still feasible number of states K = 7.
For explicit time dependent problems (external driving) this methodology has
not been applied so far.
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5

Tunneling in Open Systems: Thermodynamical
Approaches

A complete description of tunneling processes in real systems has to take into
account the presence of environmental degrees of freedom. In fact, this has led
at the beginning of the 1980s to fundamental questions such as [1]: To what
extent is quantum coherence observable on a macroscopic level? Is quantum
mechanics valid to describe, at least in principle, macroscopic objects? How
does a complex surrounding destroy quantum non-locality and the superposi-
tions of eigenstates? Since quantum tunneling is one of the most striking con-
sequences of quantum mechanics, the study of those questions in the context
of barrier penetration in complex systems has triggered a substantial amount
of research on tunneling of macroscopic variables – to be more precise, of
collective degrees of freedom consisting of a macroscopically large number of
individual degrees of freedom [2, 3, 4, 5, 6, 7]. Particular emphasis has been
put on superconducting mesoscopic systems, as e.g. Josephson junctions and
liquid Helium, and on the role of dissipation due to their contact with the
macroscopic world [8, 9]. For a detailed discussion of the experimental results
we refer to [10, 11]. In parallel to these efforts the theoretical foundations for
the description of quantum dissipative systems in general [12, 13, 14] and for
decay processes in particular have been developed [14, 15].

The foundations for a classical rate theory were laid in 1940 with a seminal
work by Kramers [29]. He derived a rate expression in presence of a heat bath
within a dynamical description based on a Fokker-Planck equation. This work
has further been extended in the 1980s and since then has grown into a broad
field along the borderline between statistical and chemical physics [14, 15].
We will give a brief survey of the main results in the next Sect. 5.1.

Quantum mechanically the situation is much more complicated. First, a
simple modification of the Schrödinger equation to include dissipation [16, 17]
does not work since it leads to contradictions with fundamental laws as e.g.
the uncertainty relation [18]. Indeed, dissipation cannot be understood as an
intrinsic process, but rather as the consequence of reducing our interest to a
small subsystem embedded into a much larger surrounding. Thus, one starts
from a Hamiltonian of the whole compound comprising system, interaction,
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and bath and eliminates the latter degrees of freedom. Second, quantum me-
chanical non-locality renders any Markovian (time-local) approximation for
the reduced dynamics to break down at sufficiently low temperatures mean-
ing that a “simple” equation of motion for the reduced density matrix does
in general not exist [14], a subject that will be discussed in more detail in
Chap. 6.

A breakthrough was achieved by Caldeira and Leggett who exploited
path integral techniques to adapt a thermodynamical approach pioneered by
Langer to calculate the tunneling rate in presence of a dissipative environ-
ment [19, 20, 21]. In Sect. 3.1.2 we already discussed this method, known as
ImF approach, for non-dissipative systems and showed that in this limit it is
indeed completely equivalent to the WKB approximation. As also mentioned,
the real power of the formulation lies in the fact that the path integrals allow
for a straightforward generalization to dissipative systems. The corresponding
rate expressions derived over the whole temperature range [22, 23, 24, 25, 26]
have been tested with remarkable accuracy against experimental data [10] so
that transparency and elegance of the approach have turned it into the stan-
dard tool for quantum rate calculations at least in physics and in fields as
diverse as cosmology, condensed matter, and nuclear physics. A more detailed
discussion will be presented in the main body of this Chapter.

However, the ImF method has one drawback, namely, it has not been
rigorously derived from first principles for dissipative systems in the domain
of finite temperatures. And it is well known that it certainly fails for certain
ranges in parameters space, e.g. in the weak damping regime, where classi-
cally the escape process is limited by energy diffusion. Further, as a thermo-
dynamical approach it does not allow to describe tunneling processes driven
by external time dependent sources. Hence, a description based on a real-time
evolution of the reduced density matrix is strongly desired. Foundations for
such an approach will be presented in Chaps. 6 and 7.

5.1 Classical Kramers’ Rate Theory: A Brief Survey

The dynamics of a classical particle of mass M moving in a metastable well
V (q) and subject to thermal noise follows from

Mq̈ + Mγq̇ + V ′(q) = ξ(t) . (5.1)

Here, the stochastic force with zero mean 〈ξ(t)〉 = 0 is related to the damping
constant γ via the dissipation fluctuation theorem

〈ξ(t)ξ(t′)〉 = 2MγkBT δ(t − t′) . (5.2)

Further, the barrier top is located at q = qb and to the right of a well region
around q = 0 with V (0) = 0 so that Vb = V (qb) is the barrier height. Equiva-
lently, the above dynamics is described by the Fokker-Planck equation (FPE)
[27]
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Ṗ (p, q, t) =
{ p

M
∂q − ∂p [V ′(q) + γp] + MγkBT∂2

p

}
P (p, q, t) . (5.3)

The basic assumption in Kramers’ theory [15, 29] is a time scale separation
between relaxation in the well and escape over the barrier. It turns out that
this imposes

Vb 	 kBT (5.4)

meaning that the thermal activation driven by the noise is a rare event. In
fact, the time scale separation is a prerequisite for a sensible definition of a
rate constant. The strategy to calculate it is then this: (i) Look for a stationary
solution of the above FPE corresponding to a stationary flux across the barrier
when initially a local thermal equilibrium is restricted to the well region, (ii)
calculate the stationary flux Jst and the population in the well Nwell, and (iii)
determine the escape rate from the flux over population

Γ =
Jst

Nwell
. (5.5)

The crucial point is thus the calculation of the stationary flux solution
Pflux. Of course, the above FPE has always one trivial stationary solution,
namely, the thermal equilibrium related to a vanishing flux

Pβ(p, q) =
1
Z

e−βp2/2M−βV (q) , (5.6)

with a constant Z that must be chosen properly since this distribution is not
normalizable in the usual sense. However, there is another stationary solution
Pflux which obeys the boundary conditions

Pflux(p, q) → 0 for q 	 qb and Pflux(p, q) → Pβ(p, q) for q � qb (5.7)

and describes a nonequilibrium situation. For sufficiently strong damping, the
deviation of Pflux from the thermal equilibrium is restricted to a small range
around the barrier top, where the barrier potential can be approximated by
an inverted harmonic oscillator potential. Hence, one writes

Pflux(p, q) = Pβ(p, q) gfl,cl(p, q) , (5.8)

where gfl,cl captures the nonequilibrium features and drops from 1 to 0 within
the vicinity of qb. Accordingly, the above FPE turns into an equation for
gfl,cl(p, q), which becomes an ordinary differential equation, if one introduces
the combination

u = q − qb − acl p with acl =
λ+

Mω2
b

. (5.9)

Here ω2
b = |V ′′(qb)/M | and

λ± = −γ

2
±
√

ω2
b +

γ2

4
(5.10)
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Fig. 5.1. Phase-space structure of the nonequilibrium flux distribution (5.8) with
(5.11) around a barrier top located at q = qb and for finite friction. A well is located
to the left and sufficiently away from the barrier top. In the simple shaded area the
distribution coincides with the thermal equilibrium and the double shaded domain
shows the layer, where this equilibrium tends to a vanishing distribution to the right
of the barrier. The relevant coordinate u (5.9) is shown as a thin straight line, while
the thick line refers to u = 0, where gfl,cl = 1/2. The inset displays the situation
for vanishing friction: a thermal distribution initially localized to the left of q = qb

will for long times only survive in the shaded area, where E < Vb. Orbits with
E > Vb will asymptotically evolve along the unstable direction (thick line) so that
the domains E > Vb are completely depleted.

denote the characteristic roots for the dynamics in an inverted harmonic po-
tential. This new coordinate u has an interesting physical meaning: In phase-
space and for zero friction two branches of the separatrix deviding regions
with E < Vb from those with E > Vb cross at qb. Hence, at qb one finds two
stable directions along v = q − qb + p/Mωb = 0 (corresponding to λ−) and
two unstable ones along u = q−qb−p/Mωb = 0 (corresponding to λ+). From
the latter ones only that with p > 0 is associated with a successful escape
event. Now, suppose that initially a thermal equilibrium to the left of the line
q = qb is prepared. For vanishing friction, in the far future all states in the
domain E > Vb of phase space will then evolve along the unstable v-direction
(see Fig. 5.1, inset) and the domains E > Vb will be depleted completely. In
case of non-zero friction the slopes of the stable and unstable branches must
change to account for the energy loss when passing the barrier top [28]. Ad-
ditional noise (due to re-scattering back into the well) maintains the thermal
equilibrium in a much broader region and restricts the domain of depletion to
a boundary layer near the barrier top as depicted in Fig. 5.1. The coordinate
u measures the distance from this boundary layer.
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Within the new coordinate system the flux solution is easily found to read
[15]

gfl,cl(p, q) =
1√
π

∫ ∞

ξ(p,q)

dx e−x2
(5.11)

with

ξ(p, q) =

√
Mβω2

b

2γλ+

[
ωb(q − qb) − p

M

λ+

ωb

]
. (5.12)

This function is constant outside the boundary layer around ξ(p, q) = 0 and
approaches 0 for q − qb 	 λ+p/(Mω2

b) and 1 for q − qb � λ+p/(Mω2
b), see

also Fig. 5.1. The stationary flux now follows with (5.8) from

Jst =
1
M

∫ ∞

−∞
dp

p

M
Pflux(p, qb) (5.13)

and the well population is given by

Nwell =
∫

well

dqdpPβ(p, q) , (5.14)

with the integral restricted to the well region where the barrier potential can
be approximated by a harmonic oscillator with frequency ω2

0 = V ′′(0)/M .
Eventually, the rate expression is gained according to (5.5) as

Γ =
ω0

2π

λ+

ωb
e−βVb . (5.15)

This result differs from the simple transition state theory formula (3.13) by
the additional factor λ+/ωb which for finite friction is always smaller than 1
and captures re-crossing processes after a particle has been kicked over the
barrier. As long as this effect associated with a flux back towards the well
is sufficiently strong, the nonequilibrium state is indeed restricted in position
space around the barrier top. This leads to a condition for the validity of the
above flux solution from the requirement that gflux,cl must approach 1 within
a range in position space where the harmonic approximation is still valid, i.e.
on a length scale much smaller than qb. While this condition is always fulfilled
for stronger friction, it defines a lower bound on friction in the underdamped
case, namely,

γ

ωb
>

1
βW (Vb)

, (5.16)

where W (E) =
∮

pdq is the action for one round trip in the well. For instance,
in case of a harmonic+cubic potential one has W (Vb) = 36Vb/(5ωb). When
this condition is violated, the nonequilibrium state covers the entire well re-
gion in position space and the diffusion process across the barrier is not limited
by friction in position space, but by energy diffusion [15, 29]. Kramers’ found
a solution also in this domain by transforming the FPE from (p, q) to (E, φ)
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space, where E denotes the energy, an almost conserved quantity for weak
friction, and φ = ω(E)t the phase along an oscillating orbit in the well, a fast
moving variable compared to E. The phase can thus be eliminated adiabati-
cally and one arrives at an effective FPE in energy space. Then, the same line
of reasoning as above applies, now, however, in energy space meaning that
gflux,cl(E) approaches 1 for energies slightly below E = Vb. As a result one
finds

Γ =
ω0

2π

γW (Vb)
kBT

e−βVb . (5.17)

The rate expression (5.15) yields a decreasing rate for large friction γ/ωb 	
1 according to Γ ∝ 1/γ, while the above result provides a vanishing rate for
small friction γ/ωb � 1 according to Γ ∝ γ. Hence, for intermediate values
of γ there is a turnover between these two regimes, which necessitates a more
involved description. The underlying idea is to analyze the well dynamics along
the unstable coordinate introduced above. This way, one obtains a framework
which provides a common description for all friction strengths [30, 31] with
the rate being of the form Γ = (ω0/2π)κ exp(−βVb), where the transmission
coefficient reads

κ =
λ+

ωb
exp

{
1
π

∫ ∞

−∞

dx

1 + x2
ln{1 − exp[−δ(1 + x2)/4]}

}
. (5.18)

Here, δ = β∆E is the dimensionless energy loss of the unstable normal mode
during one round trip in the well. For δ � 1 one regains (5.17), while for
δ 	 1 the result (5.15) is recovered.

So far our discussion has focused on memory-less friction, but it has been
shown that these findings can also be generalized to friction with finite memory
time [32, 33]. Essentially, this amounts to the fact to substitute in the rate
expressions specified above the friction constant γ by γ̂(ω), where γ̂(ω) is the
Laplace transform of the time dependent damping kernel γ(t) [see (5.23)].
Accordingly, the characteristic frequency λ+ is given by the so-called Grote-
Hynes frequency already introduced in (3.95).

5.2 ImF for Open Systems

The general concept of the Imaginary part of the Free energy method (ImF -
method) has already been discussed in Sect. 3.1.2 for the case of vanishing
friction, where it is equivalent to the WKB approximation. The advantage of
the underlying path integral formulation is that it allows to include additional
degrees of freedom to introduce dissipation. According to the introductary
discussion, the goal is to calculate a reduced partition function, where the
bath degrees of freedom are traced out and where the dominant contributions
are provided by minimal action paths.
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5.2.1 System+Reservoir Model

The standard model to describe dissipation is based on a separation of the
total system under investigation in a small relevant part, the actual system
we are interested in, and in a much larger part containing macroscopically
many degrees of freedom [14]. This latter part constitutes a heat bath in
thermal equilibrium specified by a temperature T . Hence, one writes for the
total Hamiltonian

H = HS + HB + HI , (5.19)

where HS denotes the system part, HB the heat bath part, and HI the cou-
pling between them. Note that the underlying idea of this separation is that
dissipation is not something intrinsic, but something that is born out of our
ignorance to focus on a small subsystem only. In this way, we observe energy
transfer from the system to the outside world, i.e. relaxation, while in the
total system energy is of course conserved. The simplest assumption one can
make about the nature of the heat bath is that it obeys Gaussian statistics.
In fact, due to the large number of degrees of freedom the central limit the-
orem guarantees this to be true for most types of environments and even for
those, which are explicitly non-Gaussian, the Gaussian part is always prevail-
ing. As a consequence, the heat bath can be modeled by a large collection of
independent harmonic oscillators bilinearly coupled to the system, i.e.,

HB + HI =
N∑

i=1

[
p2

i

2Mi
+

Miω
2
i

2

(
xi −

ci

Miω2
i

q

)2
]

(5.20)

with q being the system degree of freedom interacting with the surrounding.
The coupling term contains the so-called counter term which removes the
non-dynamical influence of the heat bath and corresponding instabilities in
the system’s dynamics. An other way to rationalize it, is to require that on
average the system Hamiltonian is supposed to be identical with HS meaning
that

HS = 〈H〉B = − 1
β

lnTrB
{
e−βH

}
, (5.21)

where the trace is performed over the bath degrees of freedom only.
In the sequel let us consider a Hamiltonian of the standard form

HS =
p2

2M
+ V (q) . (5.22)

Classically, dissipation and noise in these systems has been studied already
since the late 1950s [34, 35] and was shown to reproduce a generalized
Langevin equation [14, 36] in the system’s subspace: One solves the equa-
tions of motion for the bath oscillators and inserts these solutions into the
system equation, which leads in a first step to

Mq̈ + M

∫ ∞

0

γ(t − s)q̇(s) + V ′(q) = ξ(t) . (5.23)
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Here, the friction kernel is defined as

γ(t) =
N∑

i=1

c2
i

MMiω2
i

cos(ωt) (5.24)

and the stochastic force by

ξ(t) = −
N∑

i=1

ci

{[
xi(0) − ci

Miω2
i

q(0)
]

cos(ωit) +
ẋi(0)
ωi

sin(ωit)
}

. (5.25)

When averaging over the bath degrees of freedom according to the distribu-
tion exp[−β(HB + HI)], the stochastic force obeys 〈ξ(t)〉β = 0 and is related
to the friction kernel via the dissipation fluctuation theorem 〈ξ(t)ξ(s)〉 =
2MkBTγ(t − s).

In a second step one performs the limit N → ∞ with a quasi-continuum
of bath frequencies so that Poincare’s recurrence time tends to infinity. Ac-
cordingly, one introduces a bath spectral density

I(ω) =
π

2

N∑
i=1

c2
i

Miωi
δ(ω − ωi) (5.26)

so that the kernel takes the form

γ(t) =
2
M

∫ ∞

0

dω

π

I(ω)
ω

cos(ωt) . (5.27)

The impact of the heat bath onto the system’s dynamics is thus completely
defined by temperature T and spectral density I(ω). The latter one can either
be calculated numerically e.g. by means of molecular dynamics simulations
or extracted experimentally by exploiting the fluctuation dissipation theorem
and measuring the force-force correlation function of the bath.

Based on the Hamiltonian (5.19) the total system can now be quantized.
As we have already mentioned above, this is most conveniently done in the
path integral formulation, an approach pioneered by Caldeira and Leggett [20]
and with numerous extensions since then [14, 37].

5.2.2 Partition Function for Quantum Dissipative Systems

Within the path integral representation (2.42) of the partition function we
have for the model described in the previous Sect. 5.2.1

Z =
∮

D[q]
∮

D[x] e−[S̄S[q]+(S̄B+S̄I)[q,x]]/h̄ , (5.28)

where S̄µ, µ =S, I, B denote the Euclidian actions according to the three
parts of the Hamiltonian (5.19) and x is the collection of oscillator degrees of
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freedom in the environment. The Gaussian integrals over these latter paths
can be done exactly which generates the effective action

S̄eff [q] =
∫ h̄β

0

dτ

[
M

2
q̇2 + V (q)

]
+

1
2

∫ h̄β

0

dτ

∫ h̄β

0

dσk(τ −σ) q(τ)q(σ) (5.29)

with the kernel

k(τ) =
M

h̄β

∞∑
n=−∞

|νn|γ̂(|νn|) eiνnτ , (5.30)

which contains the Matsubara frequencies νn = 2πn/h̄β and the Laplace
transform γ̂ of the classical damping (5.27). This last part in (5.29) due to
the bath is also called influence functional. Thus, the quantum dissipative
system is determined by the same information about the bath as the classical
one, namely, temperature and spectral density. The above kernel describes a
self-interaction of the system, which is non-local in (Euclidian) time and has
the property ∫ h̄β

0

dτ k(τ) = 0 . (5.31)

To be specific, in the sequel we consider an archetypical barrier potential
V (q) of the form (3.7) with a well located at q = 0 and a barrier at q = qb. In
the spirit of a semiclassical evaluation of the partition function sketched for
the undamped case in Sect. 3.1.2, the dominant contributions are provided
by the minimal action paths and fluctuations in their vicinity. We recall the
conditions for the validity of this approximation: Vb 	 kBT, h̄ω0, where Vb is
the barrier height and ω0 describes the frequency for small oscillations around
the well bottom. For the minimal action paths one finds from δSeff [q] = 0 that

Mq̈(τ) − V ′(q) −
∫ h̄β

0

dσ k(τ − σ) q(σ) = 0 (5.32)

and one seeks for periodic solutions with q(0) = q(h̄β) and q̇(0) = q̇(h̄β).
In absence of dissipation these correspond to real time orbits in the inverted
potential −V (q), while for the dissipative case this analogy is only true qual-
itatively due to the periodicity of k(τ) with period h̄β. The most convenient
way to solve (5.32) is to switch to the Fourier representation

q(τ) =
1

h̄β

∞∑
n=−∞

qneiνnτ , (5.33)

which leads to

(Mν2
n + |νn|γ̂(|νn|) + Mω2

0)qn − 3Mω2
0

2q0

∞∑
m=−∞

qm qm−n = 0 . (5.34)

The full effective action is then expanded around the minimal action paths
{q(α)

min(τ)}α, where in Gaussian approximation only the second order term is
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taken into account, see (3.18). This fluctuation contribution is determined by
the corresponding second order variational operator which reads in general-
ization of (3.19)

Lα[y] =

(
−M

d2

dτ2
+

d2V (q)
dq2

∣∣∣∣
q=q

(α)
min(τ)

)
y(τ)+

∫ h̄β

0

dσ k(τ −σ)y(σ) . (5.35)

5.2.3 From Thermal Activation to Quantum Tunneling

For sufficiently short time intervals h̄β, i.e. for sufficiently high temperatures,
the minimal action paths coincide with the trivial paths residing at the well
bottom and at the barrier top, respectively. The corresponding actions read
S[q(τ) = 0] = 0 and S[q(τ) = qb] = Vb. A periodic path around q(τ) = 0 may
be written as x(τ) =

∑
n Xn exp(iνnτ) so that one has for the full action up

to second order

S[x] =
Mh̄β

2

∞∑
n=−∞

Λ0
n XnX−n (5.36)

with the eigenvalues
Λ0

n = ν2
n + ω2

0 + |νn|γ̂(|νn|) (5.37)

of the second order variational operator (5.35). Likewise, for paths around
q(τ) = qb one writes y(τ) = qb +

∑
n Yn exp(iνnτ) which gives for the full

action

S[y] = h̄βVb +
Mh̄β

2

∞∑
n=−∞

Λb
n YnY−n (5.38)

with
Λb

n = ν2
n − ω2

b + |νn|γ̂(|νn|) . (5.39)

Here we used that V ′′(qb) = −Mω2
b. As we already know from the undamped

case in Sect. 3.1.2, there is one negative eigenvalue Λb
0 = −ω2

b which reflects the
fact that the barrier top is a marginal point. As described there, the integral
over the corresponding unstable fluctuation mode is performed by analytic
continuation giving rise to an imaginary part to the partition function Z =
Z0+i|Zb|, where Z0 is the well contribution and i|Zb| the barrier part. Accord-
ingly, one has F = (−1/β)ln(Z0+i|Zb|) ≈ (−1/β)ln(Z0)−(i/β)|Zb|/Z0. Even-
tually, based on the relation (3.17) for temperatures above the crossover tem-
perature and in generalization of the result (3.12), we find [38, 39, 40, 41, 42]

Γ =
ω0

2π

ωR

ωb
fq e−βVb , (5.40)

where ωR is the Grote-Hynes frequency specified in (3.95) and fq collects the
contributions of the stable fluctuation modes

fq =
∞∏

n=1

Λ0
n

Λb
n

=
∞∏

n=1

ν2
n + ω2

0 + νnγ̂(νn)
ν2

n − ω2
b + νnγ̂(νn)

. (5.41)
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This result coincides with the one derived within a multi-dimensional formu-
lation in Sect. 3.3.1, which also proves that the ImF relations (3.17) apply
to the damped case. The crossover temperature T0,R defined in (3.94) follows
here as the temperature, where the second least eigenvalues Λb

1 = Λb
−1 vanish.

Then, fluctuations in the corresponding direction in function space can no
longer be treated in Gaussian approximation, but rather higher order terms
must be taken into account. We will continue this discussion below and first
analyse the impact of the quantum prefactor fq in more detail (cf. Fig. 5.2
and also Fig. 5.3).

0 4 8 12

b h

0

5

10

f q

Fig. 5.2. Prefactor fq (5.41) of the decay rate for T > T0,R collecting the contri-
butions from quantum fluctuations. Shown are data for a metastable potential with
ωb = ω0 and various damping strengths γ/ω0 = 0.1 (solid), 1 (long-dashed), and 5
(short-dashed). The thin horizontal line depicts the classical result fq = 1.

For higher temperatures, where ω0h̄β � 1 one has in leading order

fq ≈ exp
[
h̄2β2

24
(ω2

0 + ω2
b)
]

(5.42)

with corrections of order (ω0h̄β)4 independent of the dissipation mechanism.
Further, for ohmic friction with γ̂(z) = γ the explicit expression reads [26]

fq =
Γ (1 − λ+

b /ν1)Γ (1 − λ−
b /ν1)

Γ (1 − λ+
0 /ν1)Γ (1 − λ−

0 /ν1)
, (5.43)

where Γ (·) denotes the Gamma-function and

λ±
b = −γ

2
±
√

ω2
b +

γ2

4
, λ±

0 = −γ

2
±
√

γ2

4
− ω2

0 . (5.44)
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Fig. 5.3. Crossover temperature T0,R (3.95), solid, and critical temperature Tc

(6.72), dashed, for a barrier potential with frequency ωb and ohmic friction of
strength γ in units of the crossover temperature T0 (3.14) for vanishing dissipa-
tion.

In case of very strong friction γ 	 ω0, ωb this expression simplifies to

fq = exp
{

T0,R

T

[
1 +

ω2
0

ω2
b

] [
Ψ

(
1 +

γ2

ω2
b

T0,R

T

)
− Ψ(1)

]}
(5.45)

with the digamma function Ψ(x). For strong ohmic friction the crossover tem-
perature is obtained as [see (3.95)] T0,R ≈ (h̄/2πkB)ω2

b/γ so that (γ2/ω2
b)T0,R/

T = h̄βγ/2π. Then, we can look either for the high temperature limit
(h̄βγ � 1), which corresponds to the classical Smoluchowski limit, or to the
range where h̄βγ 	 1, recently coined the quantum Smoluchowski range and
discussed in more detail in Sect. 6.5. In the first case, (5.45) reduces to (5.42),
while in the latter case one obtains

fq = exp
[
β(MΛ/2)(ω2

0 + ω2
b)
]

(5.46)

with the quantum Smoluchowski coefficient Λ = (h̄/πγM)ln(h̄βγ/2π). This
result is remarkable since it shows that even far above the crossover temper-
ature the rate can be enhanced quite substantially, e.g. for T = 4T0,R and
ω0 = ωb, one has fq ≈ γ/2ωb.

Let us now turn to the question about the approach of the crossover tem-
perature [23, 24, 25, 26]. As pointed out above, when lowering the temperature
from above the two eigenvalues Λb

±1 tend to zero and higher order terms in
the expansion of the full action around the minimal action path q(τ) = qb are
relevant. The actual calculation shows that this eventually leads in (5.41) to
the replacement of 1/Λb

1 by

1
λb

1

=
iMβ

2π

∫ ∞

−∞
dY1

∫ ∞

−∞
dY−1e−sb

1 (Y−1,Y1)/h̄ . (5.47)
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The action contribution from the marginal modes is

sb
1(Y−1, Y1) = Mh̄β

(
Λb

1Y1Y−1 + B Y 2
1 Y 2

−1

)
(5.48)

with the constant B depending on the anharmonicities of the barrier potential.
This action has an interesting physical meaning, which reveals the change
of stability that happens to occur in the region around T0,R. Namely, upon
introducing polar coordinates Y±1 = ρ exp(±iφ) the action sb

1 depends on
the amplitude ρ only and, when sweeping through the crossover, changes its
topology: while for T > T0,R the fluctuation potential sb

1(ρ) exhibits only
one minimum, it develops a bistable form for T < T0,R; at the crossover
T = T0,R the quadratic term vanishes and the potential becomes very flat
around its minimum. This behavior reminds on properties known from the
Landau theory of second order phase transitions, where ρ plays the role of
an order parameter. Note though that this is a purely formal analogy, which
was first suggested in [24, 25] and later analysed in detail in [43, 44, 45]. The
described behavior of sb

1 displays the appearance of new minimal action paths
below the crossover, the bounce paths. In the direction of the Y±1 modes
these latter paths are stable for T < T0,R, while the trivial path q(τ) = qb

which is stable for T > T0,R becomes unstable also in the Y1, Y−1-directions
in function space. We recall that both types of paths are always unstable with
respect to one direction in function space orthogonal to the Y1, Y−1 modes.
Physically, this changeover marks the setting in of deep quantum tunneling.
In the crossover region the rate obeys an interesting scaling behavior of the
form y/y0 = F (x/x0), where F (z) = erfc(z) exp(z2) is a universal function
independent of the form of the barrier potential and the dissipative mechanism
and y = Γ exp(βVb), x = T − T0,R, and with a temperature scale x0 and a
frequency scale y0 (see [26]).

5.2.4 The Regime of Very Low Temperatures

For temperatures sufficiently below the crossover Gaussian approximations
around each of the separated minima of sb

1 dominate against the contribution
of the local maximum. Hence, one arrives at the situation where the bounce
paths provide the leading contributions to the imaginary part of the partition
function. These latter paths cover the entire barrier range so that for their
explicit form one has to rely on numerical solutions of (5.33). As discussed
in detail in Sect. 3.1.2, the bounce comes with one negative eigenvalue and
one zero mode for the operator (5.35). The former one is treated according to
Langer’s analytic continuation, the latter one, which reflects time translation
invariance, must be taken into account exactly. This is done by integrating
the phase of the bounce over the time interval h̄β providing just a prefactor
since the full action is independent of the phase. Accordingly, one arrives for
the rate at the formal expression (3.20), where the determinants included in
the prefactor must be calculated numerically as well.
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Some analytical results are available at temperatures around T = 0, for
ohmic friction, and a harmonic+cubic potential (3.7) with barrier height Vb.
For the bounce action one finds for weak damping and small temperatures
[26]

SB =
36
5

Vb

ω0

[
1 +

45ζ(3)
2π3

γ

ω0
− 5

2π

(
ν1

ω0

)2

− π

12
γ

ω0

(
ν1

ω0

)4
]

(5.49)

with ζ(3) = 1.202 . . . being a Riemann number. Here, corrections are of order
(γ/ω0)2, (γ/ω0)ν6

1/ω6
0 . In the opposite limit of strong friction the result reads

[25, 26]

SB = 3π
γ

ω0

Vb

ω0

[
1 − 4π

3

(
γ

ω2
0h̄β

)2
]

(5.50)

with corrections of order ω0/γ. For the prefactor of the quantum rate ap-
pearing in the form Γ = Ωq exp(−SB/h̄) the calculation at zero temperature
yields for weak friction

Ωq = 6ω0

√
6Vb

πh̄ω0

(
1 + c

γ

2ω0

)
(5.51)

with a constant c ≈ 2.8 [25, 46]. In the opposite limit of strong friction one
has in leading order [26]

Ωq = 8ω0

√
6Vb

h̄ω0

(
γ

2ω0

)7/2

. (5.52)

Hence, due to the dynamics of the bounce orbit, friction now appears not only
in the prefactor, but also in the action. The rate becomes thus very sensitive
to the strength of dissipation (cf. Fig. 5.4) with the overall tendency that
increasing friction suppresses the tunneling.

The enhancement of quantum tunneling by finite temperature fluctuations
is according to the above results of the form Γ (T ) = Γ (T = 0) exp(A2 T 2).
The quadratic temperature dependence originates from low frequency fluctu-
ation modes in the bath and is specific for an ohmic environment [47]. More
generally, it has been shown that for spectral densities of the form I(ω) ∝ ωs

the temperature enhancement is given by exp(As T s+1) [14].

5.2.5 Validity of the ImF Approach

According to Sect. 3.1.2, for vanishing friction the ImF approach can for all
temperatures directly be derived from a WKB type of calculation and tends for
very high temperatures towards the classical TST expression (3.13). The only
requirement here are sufficiently high barriers Vb 	 h̄ω0, kBT to justify the
semiclassical approximation and the corresponding rates must be understood
in the sense of a quantum transition state theory.
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Fig. 5.4. Decay rate vs. inverse temperature for a cubic potential (3.7) and various
ohmic friction strengths γ/ω0 = 0 (top), 1 (middle), 2 (bottom). Barrier height is
Vb/h̄ω0 = 5 and the thick straight line depicts the classical result.

In the dissipative case one knows that for high temperatures the ImF rate
reproduces (5.40) with fq = 1, which is the Kramers rate in the spatial dif-
fusion limit, i.e. for sufficiently strong friction. This indicates that there must
be an additional condition on friction for the applicability of the method. In
fact, as a thermodynamical approach the ImF technique assumes that locally
thermal equilibrium is maintained inside the well region. For temperatures
above the crossover this means that friction must be strong enough to restrict
the nonequilibrium state to the vicinity of the barrier top. On the other hand,
for very low temperatures only the ground state of the quasi-stationary en-
ergy states in the well is basically populated so that deviations from thermal
equilibrium are absent. Hence, the range of validity of the ImF method with
respect to friction grows towards lower temperatures to apply for sufficiently
low temperatures for basically all damping strengths [15]. Explicit conditions,
however, can only be obtained within a real-time formulation addressed in
Chap. 6.

5.3 Decay of the Zero Voltage State
in Josephson Junctions

The Josephson junction has been introduced in Sect. 3.1.3 as a mesoscopic
device to experimentally study the tunneling out of a metastable well. While
a qualitative understanding of the experimental data is provided by the rate
theory for vanishing friction, a quantitative comparison necessitates the inclu-
sion of dissipation [10, 26]. At temperatures above the crossover temperature
friction appears in the prefactor of the rate only [cf. (5.40)], while at very low
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temperatures the bounce action depends very strongly on the damping mech-
anism due to the fact that the bounce is a dynamical orbit [cf. (5.49), (5.50)].
For the analysis of the experimental data and the verification of theoretical
predictions, it is convenient to work with the escape temperature Tesc, see
(3.36). Then, one has in the classical regime [48]

Tesc =
T

1 − pcl
, (5.53)

where pcl = ln(ωR/ω0)/(βVb) with the plasma frequency ω0 specified in (3.32).
In the moderate friction range, where most experiments are performed, pcl

is much smaller than 1. At very low temperatures, the escape temperature
saturates to reach at T = 0 for weaker friction [see (5.49)]

Tesc =
h̄ω0

7.2kB

1
(1 + 0.87/Q)(1 − pq)

(5.54)

with pq = ln(2πΩq/ω0)/[(7.2Vb/h̄ω0)(1+0.87/Q)], where Q denotes the qual-
ity factor of the junction Q = ω0/γ. The quantum correction pq is large enough
to contribute substantially. Experimental data have been shown to be in re-
markable agreement with these predictions of the ImF theory [10, 48]. In
particular, the crossover from thermal activation to quantum tunneling has
been observed (see Fig. 5.5) and quantitatively followed the theoretical predic-
tions. At very low temperatures the strong suppression of the tunneling rate
with increasing friction, i.e. with a decreasing Q-factor, has been verified. The

Fig. 5.5. Escape temperature (3.36) vs. temperature for a shunted JJ with Q = 1.8.
The solid curve depicts the full theoretical and the dashed line the classical predic-
tion. The crossover temperature and the predicted Q = ∞ (no dissipation) escape
temperature are indicated (arrows). Courtesy of the Quantronics Group (SPEC),
CEA Saclay.
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Fig. 5.6. Rate enhancement Tesc/T (solid) above the classical value (dashed) for
temperatures above the crossover temperature T0,R (cf. Fig. 5.2). Parameters are
the same as in Fig. 5.5. Courtesy of the Quantronics Group (SPEC), CEA Saclay.

Fig. 5.7. Escape rate as a function of the square of the temperature. Theory (solid
line) predicts a T 2 dependence in the low temperature regime. Parameters are the
same as in Fig. 5.5. Courtesy of the Quantronics Group (SPEC), CEA Saclay.

same is true for the influence of quantum fluctuations above the crossover.
Deviations of Tesc/T from unity clearly reveal the role of the enhancement
factor fq (5.41) and are in good agreement with the theoretical expressions
(see Fig. 5.6). As mentioned in the previous Section, a striking prediction of
the theory is a rate enhancement Γ (T )/Γ (T = 0) ∝ T 2 due to low frequency
environmental modes. This has been tested as well (see Fig. 5.7) and gives
direct information about the nature of the electrical environment since this
quadratic dependence is a characteristic signature of an ohmic bath. For spec-
tral densities of the form I(ω) ∝ ωα−1 one expects an enhancement according
to Γ (T )/Γ (T = 0) ∝ Tα [14].
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Fig. 5.8. Schematic view of the magnetic core of a Fe8 cluster. The oxygen atoms
are black, the nitrogen atoms are gray, and carbon atoms are white. The arrows
represent the spin structure of the ground state S = 10 as experimentally determined
through polarized neutron diffraction experiments [61]. Courtesy of W. Wernsdorfer,
University Grenoble.

5.4 Tunneling of Magnetization

In crystals of Mn12 and Fe8 clusters interatomic correlations lead to an align-
ment of the atomic spins such that effectively each cluster constitutes a nano-
magnet with net spin S = 10 and longitudinal and transverse anisotropy [49].
While early research has focused on these types of molecular structures, mean-
while a variety of other materials has been shown to reveal a similar type of
behavior. Comprehensive reviews are given in [49, 50]. Due to the anisotropy
the spin states along the easy axis (say, the z-axis) are not eigenstates, but
rather may tunnel. In contrast to tunneling of a continuous coordinate, here,
the tunneling process occurs between discrete spin states. When an external
magnetic field is applied along the easy axis the relative position of these
states can be tuned and resonant tunneling may appear. The presence of en-
vironmental degrees of freedom such as phonons, nuclear spins, and dipolar
fields, introduce dissipation in the process of spin tunneling [51, 52, 53]. In
fact, not only thermally activated escape and quantum tunneling between
ground states have been observed [54, 55, 56, 57], but also phonon assisted
tunneling [58, 59, 60], termed thermally activated tunneling (TAT).

The simplest model describing the spin system of Fe8 molecular clusters
has the Hamiltonian

H = −DS2
z + E(S2

x − S2
y) − gµBSH , (5.55)
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where Sx, Sy, Sz are the three components of the spin, D > 0 and E > 0 are
anisotropy constants, and the last term describes the coupling to an external
field with Bohr magneton µB and gyromagnetic moment g > 0. Note that
here and in the following h̄ has been absorbed in the coefficients such that the
spin operators are dimensionless and Sz has eigenstates Sz|S,M〉 = M |S,M〉
with eigenvalues M , −10 ≤ M ≤ 10. Since D 	 E, for vanishing external
field H = 0 the energy levels are approximately given by EM = −DM2 so
that there is an energy barrier between the two ground states M = ±10 (see
Fig. 5.9). Experimentally, this barrier was determined to be about 70 K for
Mn12 and 25 K for Fe8 [62, 63]. The anisotropy in the transverse directions
induces tunneling between these levels, which without an external field is,
at least for transitions between lower lying states, extremely small though.
When an external field −Hz along the easy axis is applied, energy levels with
M < 0 increase, while those with M > 0 decrease. Hence, for fields for which
EM + gµBMHz = EM ′ + gµBM ′Hz resonant tunneling occurs. When the
field is applied along the x-axis, tunneling can also be enhanced and even
Landau-Zener transitions can be induced [64, 65].

=-10 = 10

=-9 = 9
=-10

= 10

=-9

= 9

Fig. 5.9. Energy levels of a nanomagnet with S = 10 unbiased (left) and biased by
an external magnetic field (right). See text for details.

Theories to calculate tunneling rates for these systems have exploited the
ImF method as well, where 1/S serves as the semiclassical expansion para-
meter [66, 67]. The first step is to write a path integral expression for the
partition function. This is conveniently done in a coherent spin basis [68]

|n〉 = eiθ(n×n0)S |S, S〉 (5.56)

with n = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)) and n0 = (0, 0, cos(θ)). In or-
der to calculate tunneling rates one considers transition matrix elements
R = 〈n1| exp(−TH)|n2〉 for very large T . Here, n1 = n2 is the metastable di-
rection in case of tunneling out of a metastable state, while n1 and n2 denote
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energetically degenerate ground states in case of macroscopic quantum coher-
ence. Since for large T one has R → exp(−E0T ), where due to the instability
the ground state energy E0 carries a small imaginary part, the rate follows
according to ImF theory as Γ = (−2/T )Im{ln(R)}. The spin-coherent-state
path integral representation of the matrix element R is then given by [68]

R = N

∫
Dn e−SE[n]/h̄ (5.57)

with a normalization N and the Euclidian action

SE[n] =
∫ T/2

−T/2

dτ
[
−ih̄S cos(θ)φ̇ + E(θ, φ)

]
, (5.58)

where E(θ, φ) = 〈n|H|n〉. All paths run from n(−T/2) = n1 to n(T/2) = n2.
The first term in (5.58) is the so-called Wess-Zumino term and a result of the
topology of the Bloch sphere on which the spin coherent states live. Now, in
the second step the minimal action paths need to be determined, which in
turn causes a problem. Namely, the two equations of motion for the minimal
action paths θ̄(τ) and φ̄(τ) are only first order in time due to the fact that
the above action does not contain a kinetic energy contribution. Since one
has four boundary conditions to obey, the problem is overdetermined and a
solution does in general not exist. This problem can be resolved by adding
a regularization term η S [θ̇2 + sin2(θ)φ̇2] to the integrand (5.58) with the
prescription to take the limit η → 0 at the very end [69]. As a consequence,
the classical paths develop a boundary layer at τ = ±T with width of order
η, where they jump from the original boundary values to new ones n′

1,n
′
2.

One can then work with the original equations of motion supplemented with
these new boundary conditions outside the boundary layer. Eventually, the
tunneling rate takes the usual form

Γ = A e−Sma/h̄ (5.59)

with the minimal action Sma and the fluctuation prefactor A.
To be specific, we consider a model Hamiltonian similar to (5.55), namely,

H = −DS2
z + ES2

y + γSzHz [67] . In the coherent spin state representation
one has up to a constant

E(θ, φ) =
[
D + E sin2(φ)

]
sin2(θ) + γSHz cos(θ) . (5.60)

In the limit of small ε = 1−Hz/Hc with Hc = 2D/(Sγ) this reduces for small
θ up to a constant to

E(θ, φ) ≈ Dεθ2 + Eθ2 sin2(φ) − D

4
θ4 , (5.61)

thus describing a metastable well. The corresponding minimal action paths
read θ̄(τ) = 2

√
ε/sinh(ωτ) and φ̄(τ) = −i

√
Dε/E tanh(ωτ) + nπ, where ω =

(2/h̄S)
√

DEε and n = 0 or n = 1. Hence, the minimal action is gained as
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Sma =

√
64D

9E
ε3/2h̄S , (5.62)

while the fluctuation prefactor is obtained as A = 2ω
√

12Sma/2π.
Another example is a Hamiltonian of the form H = −DS2

z − γHxSx +
γ2H2

xS2/4D (see [67] for details), which describes an isolated Mn12 cluster in
a transverse magnetic field and neglecting the fourth order anisotropy. Then,
one has

E(θ, φ) = D[sin(θ) − sin(θ0)] + 2D sin(θ0) sin(θ)[1 − cos(φ)] (5.63)

with sin(θ0) = HxγS/2D. In this case one has two degenerate ground states
at angles θ = θ0, φ = 0 and θ = π − θ0, φ = 0, respectively, connected by
macroscopic spin coherence. The calculation gives for the tunnel splitting

∆ =
8D√
πh̄2S

cos5/2(θ0)
sin(θ0)

[
1 − cos(θ0)
1 + cos(θ0)

]cos(θ0)/2

e−Sma/h̄ (5.64)

with

Sma = 2Sh̄

{
− cos(θ0) +

1
2
ln
[
1 + cos(θ0)
1 − cos(θ0)

]}
. (5.65)

In the limit of H → 2D/γS, i.e. θ0 → π/2, one regains the known result for
the tunnel splitting of the ground state doublet in a double well potential
(3.75).

The type of calculation sketched above, allows also to include dissipative
effects, which turned out to be crucial for understanding the experimental data
[51, 52, 53]. Experiments [54, 57] revealed that the relaxation of an initially
prepared magnetization displays a clear signature for the crossover from ther-
mal activation to temperature independent quantum tunneling. Figure 5.10
displays a nice example for Fe8 clusters, where for lower temperatures the
relaxation rate becomes temperature independent compared to the classical
regime of thermal activation. However, not only the expected relatively sharp
crossover between these two regime has been seen, but also a rather smooth
one, which has been interpreted as TAT [58, 59, 60], see Fig. 5.11 for results on
Mn12 nanomagnets. Apparently, at temperatures far below the energy barrier
(below 2K), the location of the peaks corresponding to resonant tunneling
move gradually to higher external fields with descreasing temperature and
saturate only in the low temperature regime (below 1K). In this intermedi-
ate temperature range not only resonant tunneling transitions occur, but also
phonon induced transitions to nearest and next nearest energy levels from
which tunneling is greatly enhanced, which leads also to a specific broadening
of the resonances. This phenomenon has been described in terms of master
equations with a Caldeira-Leggett type of phonon bath [70, 71].

The nanomagnets discussed above have all an even net spin. One may
wonder whether there is a deeper reason for this and indeed that is the case.
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Fig. 5.10. Relaxation of the magnetization in Fe8 clusters measured at B = 0T after
first saturating in a field of 3.5 T. For T < 4mK curves superimpose showing that
the relaxation is independent of temperature T . Inset shows subtle field dependence
near resonance. Reprinted with permission from [58]; c©(1997) by the American
Physical Society.

Fig. 5.11. Field derivative of normalized magnetization vs Hz at different temper-
atures for Mn12 clusters and for two orientations of the applied field and magnetic
easy axis: (a) θ = 20◦, showing an abrupt crossover, and (b) θ = 35◦, showing a
smooth crossover to quantum tunneling. The curves are offset for clarity. The dashed
lines mark the position of the maximum dM/dH. Note that the data on graphs (a)
and (b) are plotted on different scales. Reprinted with permission from [59]; c©(2000)
by the American Physical Society.



5.5 MQT in Presence of Non-Gaussian Noise 115

Namely, it has been shown theoetically within semiclassical type of argu-
ments that due to the topological Wess-Zumino term quantum tunneling is
completely suppressed for half integer spin systems according to a destructive
interference of tunneling paths on the Bloch sphere [72, 73]. This result can
also be seen as a direct consequence of the so-called Kramers’ theorem [74].

5.5 MQT in Presence of Non-Gaussian Noise

So far we have assumed that the environmental fluctuations obey Gaussian
statistics. However, this is sometimes only a very good approximation to re-
ality. An important example for this situation is the current noise produced
when charges flow through a mesoscopic conductor. The granularity of the
charges generates in the simplest case shot noise, already discussed by Schot-
tky in 1918 [75]. Within the last decade, electrical noise has moved into the
focus of research activities on electronic transport in nanostructures [76], since
it provides information on microscopic mechanisms of the transport not avail-
able from the voltage dependence of the average current. Presently, attention
has turned from the noise auto-correlation function (shot noise) to higher
order cumulants of the current fluctuations characterizing non-Gaussian sta-
tistics [77, 78].

While theoretical attempts to predict these cumulants for a variety of de-
vices are quite numerous [78], experimental observation is hard because of
small signals, large bandwidth detection, and strict filtering demands. As a
pioneering result the third moment of current noise produced in a tunnel junc-
tion has been extracted in [79] by analog amplifiers and filtering techniques
and later on also in [80]. Since then strong efforts have been made towards
on-chip detection schemes, first because they are faster and second because
they give access to finite frequency noise properties. Lately, in [81, 82] the
full distribution of charges flowing through a quantum dot has been detected
in the low frequency regime. The goal now is to push devices forward into
higher frequency ranges (GHz), where quantum effects, electron-electron in-
teractions, and plasmon dynamics are relevant. In this context several new
proposals for experimental set-ups have been put forward, some of which are
based on Josephson junctions (JJ) as noise detectors [83, 84, 85, 86]. In the
sequel we analyse how to exploit the exponential sensitivity of the tunneling
rate on noise to extract information about the current statistics [87].

In experimental set-ups to measure higher order cumulants, heating (due
to residual thermal noise and the Gaussian portion of the electrical noise)
is one of the major experimental obstacles [88, 86]. Thus, many experiments
have primarily attempted to establish just the unspecified non-Gaussian na-
ture of the noise or to measure the third cumulant (skewness). The latter one
is particularly accessible since it can be discriminated from purely Gaussian
noise due to its asymmetry, e.g. when inverting the current through the con-
ductor. This is in contrast to the fourth order cumulant (sharpness), which
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V
Ib G

CJ,EJ

Fig. 5.12. Electrical circuit containing a mesoscopic conductor G in parallel to a JJ
with capacitance CJ and coupling energy EJ biased by an external current Ib. The
switching out of the zero voltage state of the JJ by MQT is detected as a voltage
pulse V .

on the one hand due to heating effects may be completely hidden behind the
second and the third one, but on the other hand is required to gain an es-
sentially complete characterization of the distribution of current fluctuations.
In the set-up we consider in the sequel, see Fig. 5.12, a nanoscale conduc-
tor is placed in parallel to a current biased JJ in the zero voltage state, so
that no heating occurs prior to the decay of this state by MQT (Macroscopic
Quantum Tunneling). However, the MQT rate is modified in a specific way
by the even higher order cumulants characterizing the non-Gaussian current
fluctuations of the conductor.

The complete statistics of current noise generated by a mesoscopic con-
ductor can be gained from the generating functional

G[φ] = e−SG[φ] =
〈
T exp

[
i
e

∫
C

dtI(t)φ(t)
]〉

, (5.66)

where I(t) is the current operator and T the time ordering operator along the
Kadanoff-Baym contour C. Time correlation functions of arbitrary order of
the current are determined from functional derivatives of G[φ], in particular,
the average current

C1(t) = 〈I(t)〉 = ie ∂SG[φ]/∂φ(t)|φ=0 (5.67)

and the current auto-correlation function

C2(t, t′) = 〈I(t) I(t′)〉 = e2 ∂2SG[φ]/∂φ(t)∂φ(t′)
∣∣
φ=0

. (5.68)

Higher order functional derivatives give the cumulants related to non-Gaussian
current fluctuations

Cn(t1, . . . , tn) = −(−ie)n ∂nSG[φ]/∂φ(t1) · · · ∂φ(tn)|φ=0 . (5.69)
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We remark that the functional SG[φ] carries the full frequency dependence of
all current cumulants and not just their time averaged zero frequency values
usually studied in the field of full counting statistics [77].

To see the relation with the Gaussian heat baths discussed previously, let
us consider an Ohmic resistor of resistance R in thermal equilibrium at inverse
temperature β. Then, the functional SG[φ] ≡ SR[φ] takes the well-known form

SR[φ] =
1
2

h

e2R

∫
C

dt

∫
C

dt′ α(t − t′) φ(t)φ(t′) , (5.70)

where
α(t) =

π

2 (h̄β)2 sinh2(πt/h̄β)
. (5.71)

The quadratic action SR turns out to be identical to the influence functional in
(5.29), which adds to the bare action of the system to give the effective action.
Hence, the functional SG generalizes the concept of an influence functional
to non-Gaussian environments. For instance, for a tunnel junction with many
transmission channels, where each channel has a small transmission coefficient
Ti leading to the dimensionless conductance gT = h/(4π e2RT) = π

∑
i Ti,

with RT being the tunneling resistance, one has [89]

ST[φ] = −4gT

∫
C

dt

∫
C

dt′ α(t − t′) sin2

[
φ(t) − φ(t′)

2

]
. (5.72)

Here, the periodicity in φ reflects the discreteness of the transferred charges
associated with non-Gaussian current fluctuations.

The MQT rate Γ can now be calculated in the standard way from the
ImF method with the effective action Seff [θ] = SJJ[θ] + SG[θ/2]. Here

SJJ[θ] =
1
h̄

∫ h̄β

0

dτ

[
1
2
φ2

0CJθ̇(τ)2 + U(θ)
]

(5.73)

is the action of the bare JJ and SG is the generating functional of current
fluctuations of the conductor introduced above. In (5.73) φ0 = h̄/2e denotes
the reduced flux quantum, CJ is the capacitance of the JJ, and the tilted
washboard potential is U(θ) = −EJ[cos(θ) − s θ], where EJ is the Josephson
energy and s = Ib/Ic. The factor of 2 in the argument of SG arises from the
fact that the voltage across the conductor equals the voltage VJ = (h̄/e)(θ̇/2)
across the JJ.

In the MQT regime, where the contribution of the bounce paths dominate,
the partition function can now be calculated for arbitrary coupling between
detector and conductor based on a numerical scheme sketched above around
(5.34) and further elaborated in [26]. For this purpose, one approximates a
well-barrier segment of U(θ) around a well minimum θm by a harmonic+cubic
potential, V (δθ) = (MΩ2/2) δθ2(1 − δθ/δθ0) with δθ = θ − θm and Ω =
Ω(s) the frequency for small oscillations around the well bottom (plasma
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frequency). Analytical progress is made when the noise generating element
has a dimensionless conductance gT � EJ/h̄Ω so that the influence of the
noise on the MQT rate can be calculated by expanding about the unperturbed
bounce at vanishing temperature

θB(τ) =
δθ0

cosh2(Ωτ/2)
. (5.74)

This gives the approximate tunneling rate

Γ = Γ0 e−SG[θB/2] , (5.75)

where Γ0 is the tunneling rate in absence of the environment [see (3.8)]. The
correction SG[θB/2] is usually dominated by the second cumulant C2 and
the fourth cumulant C4. Note that this approximation still contains the full
dynamics of detector and noise source since any approximation relying on a
time scale separation, as e.g. the adiabatic limit considered in [90], is usually
not applicable.

Now, in case of a tunnel junction as noise element one finds for SG[θB/2] ≡
ST[θB/2] from (5.71) and (5.72)

ST[θB/2] =
gT

4π

∫ ∞

0

dω ω |ρ̃(ω)|2 (5.76)

with
ρ̃(ω) =

∫ ∞

−∞
dτ eiθB(τ)/2 eiωτ .

We note in passing that a finite capacitance CT of the tunnel junction can
easily be taken into account by replacing CJ by C = CJ + CT. By expanding
the first exponential and performing the Fourier transform for each power of
θB(τ) separately, the relevant part ρ(ω) = ρ̃(ω) − 2πδ(ω) reads

ρ(ω) =
π

4
ω

sinh(πω/Ω)

∞∑
k=1

(2iδθ0)k

k! (2k − 1)!

k−1∏
l=1

(
ω2

Ω2
+ l2

)
. (5.77)

This way, the result (5.76) can be cast into

ST[θB/2] =
gT

4π3

∞∑
k,k′=1

Ik,k′ δθk+k′

0 (5.78)

with the coefficients

Ik,k′ =
(−1)(3k+k′)/2 2k+k′

k!k′!(2k − 1)!(2k′ − 1)!
Akk′ . (5.79)

Here,
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Akk′ =
∫ ∞

0

dy
y3ey

(ey − 1)2

[
k−1∏
l=1

(
y2

4π2
+ l2

)] 
k′−1∏

l=1

(
y2

4π2
+ l2

)
 (5.80)

with Akk′ = Ak′k so that Ik,k′ �= 0 only for k + k′ even. This means that all
odd cumulants of the fluctuating current vanish according to a vanishing net
current 〈I(t)〉 = 0 through the conductor. Specifically, one finds

A11 = 6ζ(3)

A22 = 6ζ(3) +
5! ζ(5)
2π2

+
7! ζ(7)
16π4

A31 = 24ζ(3) + 5
5! ζ(5)
4π2

+
7! ζ(7)
16π4

. (5.81)

The terms in the sum (5.78) related to a contribution of order δθk+k′

0 de-
termine the impact of the (k + k′)th-moment of the current fluctuations of
the tunnel junction onto the MQT process. Since in (5.77) the term of order
δθk

0 contains contributions centered around ω ≈ 0, Ω . . . , kΩ, the influence of
the (k + k′)th-moment results from mode mixing between fluctuations with
frequencies l Ω and l′ Ω where l ≤ k, l′ ≤ k′.

In lowest order, k + k′ = 2, one gains from (5.78) the Gaussian noise
contribution providing a correction to the bare MQT rate [cf. (5.49)]

Γ
(2)
T = Γ0 exp

[
−6ζ(3) gT

π3
δθ0(s)2

]
. (5.82)

At order δθ4
0 the sum (5.78) gives three contributions, namely, k = 1, k′ = 3

and k = 3, k′ = 1 with A13 = A31 as well as k = 2, k′ = 2 with A22. This
leads to

Γ
(4)
T = Γ

(2)
T exp

[
4 gT

π3
(2A31 − A22) δθ0(s)4

]
(5.83)

so that the fourth order cumulant of the current noise contains both, fluctua-
tions that suppress tunneling (related to A22) and fluctuations that increase
MQT (related to A31). Since 2A31 − A22 > 0, the total impact of the fourth
moment leads to an enhancement of the MQT rate.

For the on-chip detection circuit proposed here, the impact of the fourth
order cumulant needs to be clearly distinguishable from effects of purely
Gaussian noise. This is provided by considering the function

B(x) = −ln[Γ (x)/Γ0(x)] (5.84)

with the variable x = (1 − s2)/s2. It allows to discriminate between weak
Gaussian and non-Gaussian noise due to a qualitatively different scaling be-
havior: as Fig. 5.13 illustrates, at low temperatures purely Gaussian noise
results essentially in a straight line for B(x), while non-Gaussian noise dis-
plays a nonlinear behavior. Even more pronounced are the differences in the
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Fig. 5.13. B(x) = −ln[Γ (x)/Γ0(x)] vs. x = (1− s2)/s2 (dimensionless bias current
s) for a tunnel junction (black) and an ohmic resistor (grey) with identical second
cumulant. Solid lines display the situation in absence, dashed lines in presence of
additional Gaussian noise in the wiring with R/RT = 0.05. The inset displays the

corresponding slopes dB(x)/dx. Parameters are
√

EJ/EC = 10, gT = 2, Ω(s =
0)=100 GHz.

slopes dB(x)/dx, which saturate in the former case away from the domain
of small x-values, but strongly decrease with increasing x in the latter one.
Hence, determining from B(x) the derivatives dB(x)/dx gives direct access
to the impact of higher than second order cumulants in the noise fluctuations
of the conductor. This scaling property is rather robust, since it holds for
any sort of Gaussian/non-Gaussian noise. In particular, additional Gaussian
noise present in the wiring and comprised in an additional resistor with resis-
tance R � RT [cf. Eq. (5.70)] merely shifts dB(x)/dx and thus does not spoil
the scaling behavior originating from C4 (see Fig. 5.13). Further, by fitting
dB(x)/dx with (5.82), the coefficient 2A31 − A22 related to C4 in (5.83) can
be extracted.

5.6 Dissipative Tunneling in Bistable Potentials

The calculation of tunnel splittings in bistable systems is based on the in-
stanton approach presented for the non-dissipative case in Sect. 3.2. In case
of interaction with a thermal environment the situation becomes much more
complex, because the system, initially confined in one the wells, may not
only coherently oscillate between the minima (quantum coherence), but also
irreversibly decay towards equilibrium (incoherent decay). In the sequel we
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first collect some main theoretical results and then turn to a specific system,
namely, rotational tunneling in molecular complexes.

5.6.1 Instantons and Dissipation

To be specific, let us consider a double well potential of the form shown in
Fig. 3.10 with potential minima located at ±a separated by a barrier of height
Vb and with a frequency ω0 around the well bottoms. We also allow for a small
aysmmetry h̄ε = V (−a) − V (a) between the well minima. Then, the parame-
ters which govern the different dynamical situations are the non-dissipative
tunnel splitting ∆, the typical frequency for the separation of adjacent en-
ergy doublets ω0 with ω0 	 ∆ , temperature kBT , and dimensionless friction
strength α = Mγa2/(2πh̄) [γ is the friction strength appearing in the classical
Langevin equation, see (5.1)]. In principle, also the nature of the spectral bath
density matters but for the moment we assume an ohmic bath with a very
large cut-off. Coherent tunneling then only exists in the parameter range (see
Fig. 5.14)

α <
1
2

,
kBT

h̄∆
� 1

α
, ε < ∆ . (5.85)

Apart from this domain, the situation is a follows. For Vb 	 kBT 	 h̄ω0

quantum effects are weak and the relaxation from one well to the other occurs
dominantly by incoherent thermal activation, at somewhat lower temperatures
influenced by quantum fluctuations. Accordingly, the results derived from the
ImF theory above the crossover apply so that one finds for the difference P (t)
between populations in left and right well

1/2 1

1
coherent incoherent

B

Fig. 5.14. Sketch of the phase diagram for a symmetric bistable potential. Shown
are the regions of coherent dynamics (tunneling oscillations) and of incoherent decay.
The thick solid line for T = 0 and α ≥ 1 indicates the domain of completely frozen
dynamics (localization).
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P (t) = P∞ + (1 − P∞) e−Γt , (5.86)

where P∞ = tanh(h̄βε)/2 is the thermal value of P (t) and Γ = Γ+ + Γ− is
the total rate as a sum of forward Γ+ and backward rate Γ−. The latter ones
are related by detailed balance via Γ− = Γ+ exp(−h̄βε), so that it suffices
to gain one of these rates from the ImF calculation. Note that the partition
function must be calculated here in a subspace of the total Hilbert space only,
because otherwise an imaginary part would not appear due to the stability of
the system.

For temperatures Vb 	 h̄ω0
>∼kBT 	 h̄∆ and apart from the range of very

small values of α [cf. 5.85)], incoherent tunneling dominates the relaxation and
the ImF approach adapted to the bistable situation can be applied as well. It
turns out that a treatment based on single instanton paths leads to infrared
divergencies in case of ohmic friction. These divergencies cancel when one
considers pairs of instantons and anti-instantons, so-called extended bounces,
which then leads to an approximate scheme generalizing the dilute instanton
gas approximation to the dilute bounce gas approximation (DBGA). Namely,
the intra-bounce interactions introduced by dissipation are much stronger
than those between different bounces. The dilute gas of instantons thus be-
comes a dilute gas of bounces or equivalently, the gas of charged particles
turns into a gas of strongly bound dipoles. The full action is invariant against
translations of the center of mass of an extended bounce and the correspond-
ing zero mode is treated as described above. The relative separation of the
instanton–anti-instanton pair is related to an unstable fluctuation mode, the
breathing mode, which gives rise to the imaginary part of the partition func-
tion. Eventually, the forward rate is obtained as

Γ+ =
∆2

∗
4

1
ω0

(
2π

ω0h̄β

)2α−1

eh̄βε/2 |Γ (α + ih̄βε/(2π))|2
Γ (2α)

, (5.87)

where the contribution with a dressed tunnel splitting ∆∗ reads

∆2
∗

4
=

1
2πh̄

( ∞∏
n=0

Λ(0)
n

/ ∞∏
n=2

Λ(B)
n

)1/2
√

ρ e−SB/h̄ . (5.88)

In this expression SB is the action of the bounce without the interaction
between instanton and anti-instanton and without a contribution due to the
asymmetry given by h̄ετ1 with τ1 being the length of the extended bounce.
Further, Λ

(0)
n are the eigenvalues of the second order variational operator in

the well, while Λ
(B)
n are those around the bounce, and

ρ =
∫ h̄β/2

−h̄β/2

dτ

[
∂qB(τ, τs)

∂τ

]2

×
∫ h̄β/2

−h̄β/2

dτ

[
∂qB(τ, τs)

∂τs

]2

(5.89)

with the bounce orbit qB(τ, τs) of length τs = (h̄β/π)arccot[h̄βε/(2πα)]. The
result (5.87) indicates that the tunneling process is dominated by the con-
tribution of a single bounce, i.e. two traversals of the barrier range. The di-
lute bounce gas approximation is valid as long as τsΓ+ � 1 meaning that
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τs � 1/∆2
∗, which is valid for ε = 0 down to T → 0 if α > 1; for finite ε the

range of validity down to T = 0 is even broader. Specifically, one finds from
(5.87) at T = 0 and for ε > 0 [i.e. V (−a) > V (a)] that

Γ+ =
∆2

2ω0

π

Γ (2α)

(
ε

ω0

)2α−1

, (5.90)

while for ε < 0 the forward rate vanishes, Γ+ = 0. At zero temperature and for
ε = 0 even a phase transition occurs at α = 1 such that for larger friction the
incoherent tunneling dynamics is completely frozen, i.e. Γ+ = Γ− = 0, and the
initially prepared wave packet remains trapped (localization), see Fig. 5.14.

At temperatures Vb 	 h̄ω0 	 kBT, h̄∆, h̄ε the continuous bistable po-
tential can be truncated to its lowest lying doublet, thus leading to a spin
boson (SB) description [14]. The two level system is parametrized by the
asymmetry ε and the dressed tunnel coupling ∆∗ so that its Hamiltonian
reads HTLS = −(h̄∆∗/2)σx + (h̄ε/2)σz with the Pauli-matrices σx, σz. The
SB model is an archetypical model on its own with various realizations in
physics. The literature about its thermodynamic and real-time properties is
huge and we refer to [14] for more details since its study is not directly re-
lated to semiclassical approximations for tunneling processes. Basically, the
tunneling in the coherent domain (5.85) occurs via damped oscillations and
the explicit calculation gives for ε = 0

P (t) =
cos(Ωt − φ)

cos(φ)
e−Γt (5.91)

with tan(φ) = Γ/Ω. The tunnel frequency is obtained as

Ω = ∆eff {1 + 2α [Re{ψ(ih̄β∆eff/2π) − ln(h̄β∆eff/2π)]} (5.92)

and the relaxation rate is given by

Γ =
πα

2
∆eff coth(h̄β∆eff/2) . (5.93)

Here, it has been convenient to introduce an effective tunnel splitting

∆eff = [Γ (1 − 2α) cos(πα)]1/2/(1−α)

(
∆∗
ω0

)α/(1−α)

∆∗ , (5.94)

which is apparently the actual frequency scale for oscillations between the two
states. The result for finite ε has also been gained, although by extending the
scheme of the dilute bounce gas approximation [for the spin boson system the
DBGA has been coined non-interacting blip approximation (NIBA)]. Namely,
for a biased system (ε �= 0) the NIBA predicts a wrong asymptotic population
difference P∞ due to the fact that inter-blip correlations are neglected. For the
explicit treatment beyond NIBA we refer to [14]. In case of vanishing friction
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the known coherent oscillations are regained from the expression (5.90) with
a frequency calculated in Sect. 3.2.

The dynamics in dissipative bistable systems has seen an intensive amount
of work in the past, cf. [14]. Here, we address some recent developments and
discuss an explicit example in the next Section. One has appeared in the con-
text of quantum information processing based on superconducting circuits.
There, two-level systems or qubits are implemented at low temperatures in
SQUID devices so that only the ground state doublet of the SQUID potential
for the magnetic flux matters [91] (see Sect. 3.2.2). Noise processes induce de-
phasing and, to a weaker extent, also relaxation in these systems causing e.g.
Rabi-oscillations to decay on time scales of a few hundred nanoseconds. A de-
tailed understanding of this decay is necessary to develop efficient schemes to
fight against noise sources. Another field of application is related to the relax-
ation dynamics in molecular nanomagnets described in the previous Sect. 5.4.
As seen there, noise from residual degrees of freedom gives rise to a complex
tunneling dynamics of the collective spin which includes photon assisted tun-
neling. Accordingly, the two level description must be extended to include
higher lying doublets [92].

5.6.2 Rotational Tunneling in Metal Hydride Complexes

Rotational tunneling has been found in a variety of compounds, where small
molecular groups are attached to larger structures [93]. Since tunneling fre-
quencies depend very sensitively on the shape of the rotational barrier, spec-
troscopy provides insight in the energy landscape of complex molecules.

As a particular example, we discuss here diatomic hydrogen molecules in
form of H2 or D2 that can bind to transition metal complexes to built strongly
bound dihydrides [94], for recent reviews see [95, 96]. In these compounds the
individual hydrogen atoms are not fixed in space, but can exchange their po-
sitions while keeping the distances between each other and between the metal
complex constant. Accordingly, their mutual exchange can be seen as a hin-
dered 180◦ rotation around the axis intersecting the metal–dihydrogen angle
[97]. The rotational barrier originates primarily from the chemical structure
of the binding to the metal and in some cases also from crystal effects of
neighboring molecules.

The simplest model to describe this situation is that of a one-dimensional
rigid rotator with angular position φ as the only degree of freedom. The cor-
responding Hamilton operator reads

Hrot = − h̄2

2Mr2

d2

dφ2
− V0 [1 − cos(2φ)] , (5.95)

where 2V0 is the height of the rotational barrier. Due to symmetry the spatial
eigenfunctions of this Hamiltonian decompose into classes with even and odd
parity, respectively, and tunnel splittings occur between adjacent states with
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opposite symmetry (doublets). These wave functions are connected to spin
states in such a way that the total wave functions are either antisymmetric
(in the fermionic case H2) or symmetric (in the bosonic case D2). Accord-
ingly, a spin tunnel Hamiltonian can be defined that describes the splitting
within each doublet which in turn, via the corresponding tunnel frequency,
is directly visible in measured spectra [98]. These frequencies vary from 1012

Hz for dihydrogen in gas phase, where fast coherent oscillations have been de-
tected by incoherent neutron scattering (INS), to a few Hz in the liquid phase,
where NMR spectroscopy has been applied (see e.g. [99]). In particular, NMR
techniques have been used to study solid state structures with di-deuterons
as metal ligands [96, 98].

In addition to coherent processes the interaction with residual vibronic
degrees of freedom leads to incoherent transitions (thermal activation), par-
ticularly, at sufficiently high temperatures. Usually, several pairs of eigenstates
are thermally populated so that the effective frequency of coherent oscillations
and the effective incoherent rate result, in a rough estimate, from a thermal
average over the individual tunnel frequencies and incoherent transition rates,
respectively. Experimentally, the spin-system in thermal equilibrium is pre-
pared via a π/2-pulse and the corresponding relaxation of the nonequilibrium
state is observed [95, 98]. To theoretically describe this process in different
temperature domains requires a density matrix approach, where here a weak
coupling Born-Markov type of master equation applies. Typical spectral data
are depicted in Fig. 5.15. While for temperatures above 20 K a broad cen-
tral line indicates purely incoherent decay, at lower temperatures the width
of the central line increases and additional satellites appear at frequencies of
about ±60 kHz. It turns out that these data can be understood by assuming
a superposition of coherent and incoherent transitions. The strong tempera-
ture dependence of the latter ones is clearly seen in the Arrhenius plot, see
Fig. 5.16, where in contrast the tunneling frequency is basically constant. Note
that the incoherent rate exhibits a bi-exponential behavior, which cannot be
reproduced in a one-dimensional tunneling model [Bell model, which is based
on a WKB-type evaluation of (3.1)], but necessitates the treatment of at least
a two-dimensional process. Anyway, the changeover from purely incoherent to
a mixed incoherent/coherent and eventually a prevailing coherent tunneling
process is clearly seen and illustrates the theoretical findings discussed in the
previous Section.

5.7 Centroid Theory

The idea of the centroid theory is to calculate the quantum rate from a thermo-
dynamic distribution that can be seen as the quantum analog to the classical
Boltzmann distribution exp[−βV (q)] [100, 101]. Accordingly, one introduces
the center of mass of a minimal action path q(τ) of the Euclidian path integral
of the partition function Z, the so-called centroid, as
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Fig. 5.15. Experimental and simulated (smooth curves) 2H NMR spectra of a Ru-
D2 complex, measured in the temperature range from 5.4. to 230 K. At temperatures
below 8.8 K a splitting in the line shape is clearly visible (arrows). This splitting
can be explained by a coherent tunneling of the deuterons in the Ru–D2 sample.
For the details of the simulations see [98]. Courtesy of G. Buntkowsky, University
of Jena.

Fig. 5.16. Arrhenius plot of the temperature dependence of the coherent (X12, black
dots, right scale) and incoherent (k12, open squares and dots, left scale) exchange
rates extracted from Fig. 5.15. The solid line is the result of a fit of the tempera-
ture dependence of the incoherent rates using a modified tunnel model (see [98] for
details). The dashed line is a simple linear fit to the coherent tunnel frequencies.
Courtesy of G. Buntkowsky, University of Jena.
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q0 =
1

h̄β

∫ h̄β

0

dτ q(τ) . (5.96)

The probability distribution or centroid density with q0 constrained to some
particular position R is then

ρ(R) =
1
Z

Tr
{
δ(q0 − R)e−βH

}

=
1
Z

∮
D[q] δ(q0 − R)e−SE [q]/h̄ (5.97)

with Z =
∫

dRρ(R). Indeed, for all temperatures above the crossover tem-
perature, where q(τ) collapses to either q(τ) = 0, the constant path at the
well bottom, or q(τ) = qb, the constant path at the barrier top, for the lat-
ter one we have ρ(qb) ∝ exp(−βVb). Below the crossover the bounce paths
dominate over the constant barrier path. Thus, fixing the center of mass of
the bounce is equivalent as to fixing its phase. In the spirit of our discussion
in Sect. 3.1.2 this means that one picks a certain representative out of the
set of equivalent bounces, the action of which then, as we have seen, provides
the exponential contribution to the tunneling rate. In this sense the centroid
theory is completely equivalent to the ImF approach [102, 103] and provides
a powerful tool to numerically evaluate, e.g. by means of equilibrium Monte
Carlo techniques, the partition function and the corresponding rate.

However, there are differences. Namely, from the formally exact expression
for the rate (3.85) one derives that the rate can be cast into the form

Γ =
1
Z

∫
dR ρ(R) ν(R) = ρ(q∗) v̄ (5.98)

where q∗ denotes the transition point, in the simplest case q∗ = qb, and
ν(R) collects the real-time contributions. Further, one defines the average
(dynamical factor)

v̄ =
∫

dR ν(R) [ρ(R)/ρ(q∗)] (5.99)

so that the thermodynamic part is factorized from the dynamical part [104,
105, 106, 107, 108]. The former one is, as we have seen, responsible for the
exponential in the rate and can be calculated also numerically. There, the
location of q∗ may even serve as a variational parameter to find the state where
ρ(R) is the smallest, i.e. the bottleneck of the transition. The more complicated
task though is the dynamical factor v̄. In general, an exact evaluation requires
a full real-time evolution of the problem even for long times which is out of
reach for complex systems. In this situation various approximations have been
invoked comprising analytical results for the parabolic barrier or semiclassical
approximations [104, 105].

Without going into further details, we note that the advantage of the
centroid method is that it allows for efficient numerical simulations of the
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decay since one needs to create only configuration near the transition point
q∗. On the other hand, one still relies on the factorization (5.98) with certain
assumptions about the dynamical factor. These are based on the observation
that in many cases the dynamical factor ν(R) is sharply peaked around R =
q∗, where ρ(R) is minimal. However, cases have been analysed [109] where
this is not true so that this empirical finding cannot be turned into a rigorous
statement.
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6

Tunneling in Open Systems: Dynamics

The dynamics of quantum dissipative systems displays a fascinating variety
of phenomena approaching for deep temperatures and weak friction the pure
quantum mechanical domain and for high temperatures the realm of classical
physics. Accordingly, a theoretical description has been a formidable task. In
the 1960s the real-time dynamics of open quantum systems has been treated
for the case of weak system-bath interaction, which allows for a perturbative
treatment in terms of Born-Markov approximations [1, 2]. This way, various
types of master equations have been derived and quite successfully applied to
a number of fields as e.g. nuclear magnetic resonance [3, 4], quantum optics [5]
and, most recently, quantum information processing [6]. Based on the work by
Feynman and Vernon [7], in the 1980s the path integral formulation was shown
to allow for an exact elimination of the bath degrees of freedom, thus leading
to a formally exact expression for the reduced density matrix [8, 9, 10], the
quantum version of the classical phase-space distribution. For a review of the
recent progress in the description of the real-time dynamics of open quantum
systems we refer to [11].

Unfortunately, in general “simple” equations of motion for the reduced dy-
namics do not exist due to long-time retardations in the influence functional at
lower temperatures [10, 12, 13, 14]. Techniques for an explicit numerical eval-
uation have been developed by means of e.g. quantum Monte Carlo methods,
but for long times and very low temperatures such simulations are basically
prohibitive. In this situation semiclassical approaches offer promising tools to
attack the problem. For processes including quantum tunneling a bunch of
complications arises though: (i) quantum mechanical non-locality renders the
notion of a transition point in position space meaningless [52]; (ii) a semiclas-
sical approximation to the path integral of the reduced density matrix cannot
follow the prescriptions specified in Chap. 2 since the fluctuation prefactor
cannot be calculated according to the Gelfand-Yaglom formula [15] due to
time irreversibility; (iii) according to Chap. 4 the inclusion of deep tunnel-
ing into a semiclassical approximation of the real-time propagators is rather
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non-trivial and cannot be done on the level of the standard van Vleck-
Gutzwiller or Hermann-Kluk approximations.

Progress can be achieved in two directions. First, one may look for a gener-
alization of the classical Kramers’ theory to the quantum regime and focus on
a moderate temperature range, where quantum fluctuations become relevant,
but where the nonequilibrium state is still sufficiently localized around the
barrier top. This theory will be discussed in the first part of this Section. Sec-
ond, one may look for a regime, where friction is so strong that the system’s
dynamics follows closely a classical one. For sufficiently high temperatures one
then approaches the classical overdamped regime, called Smoluchowski limit.
Interestingly though, it turns out that the same also applies for substantially
lower temperatures, where the non-dissipative system would be completely
governed by quantum mechanics. In this regime quantum fluctuations gen-
erated by the strong interaction with the surrounding appear as corrections
so that a type of semiclassical approximation is again feasible. Due to the
large friction, the dynamics in the position degree of freedom is decelerated
so strongly that on the time scale of its relaxation, the time evolution is ef-
fectively Markovian, thus allowing for an effective equation of motion. Within
this framework quantum rate calculations resemble classical rate calculations,
while the explicit rate expressions show a sensitive dependence on quantum
fluctuations. We will present this Quantum Smoluchowski Theory in the sec-
ond part of the Chapter.

6.1 Real-time Dynamics of Quantum Dissipative Systems

We consider a dissipative system as described in Sect. 5.2.1 with a sys-
tem+bath Hamiltonian of the form (5.19) and an environment consisting of a
large collection of harmonic oscillators. Since our focus lies on the dynamics of
a small relevant subsystem, we are only interested in the quantum dynamics
of the reduced system, i.e.,

ρ(t) = TrB {exp(−iHt/h̄) W (0) exp(iHt/h̄)} , (6.1)

where W (0) describes the initial state of the total compound. In the ordi-
nary Feynman-Vernon theory [7, 16] this state is assumed to be a factorizing
state, W (0) = ρS(0) exp(−βHB)/ZB (ZB is the bath partition function), so
that each one, system and equilibrated bath, lives in splendid isolation at
t = 0. While this assumption may be justified in the weak damping/high tem-
perature limit, it certainly fails for moderate to strong friction and/or lower
temperatures. It can be shown explicitly that in the classical limit even the
Langevin equation is not regained, but differs by initial boundary terms that
may persist up to long times [17]. A more realistic description thus starts with
a correlated initial state [9] of the form

W (0) =
∑

j

Oj exp(−βH)O′
j/Z (6.2)
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with preparation operators Oj and O′
j acting onto the system degree of free-

dom only and the total partition function Z. For transparency, in the sequel
we assume these operators to be diagonal in position (for generalizations see
[9]) so that the initial density for an one-dimensional system reads in position
representation

ρ(qi, q
′
i , t = 0) = ρβ(qi, q

′
i)λ(qi, q

′
i) (6.3)

with the reduced thermal equilibrium density matrix

ρβ(q, q′) = TrB〈q| exp(−βH)|q′〉 (6.4)

and the coordinate representation of the preparation operators

λ(q, q′) =
∑

j

〈q|Oj |q〉〈q′|O′
j |q′〉 . (6.5)

For a specific initial state, one does not need to know the specific form of
these operators (which may be very complicated), but rather chooses the
preparation function properly.

The reduced quantum dynamics (6.1) starting with an initial state (6.3)
is now obtained within the position representation by employing the path
integral formalism. Since the bath contains harmonic degrees of freedom only,
it can be integrated out exactly, as shown for the imaginary time path integral
in Sect. 5.2.2, and one arrives at

ρ(qf , q
′
f , t) =

∫
dqidq′i J̃(qf , q

′
f , t, qi, q

′
i)λ(qi, q

′
i) , (6.6)

where the propagating function J̃(·) is a threefold path integral – two in real
time, one in imaginary time – over the system degree of freedom only

J̃(qf , q
′
f , t, qi, q

′
i) =

1
Z

∫
D[q]D[q′]D[q̄] eiΣ[q,q′,q̄]/h̄ (6.7)

with Z = Tr{exp(−βH)}/ZB. The two real time paths q(s) and q′(s) connect
in time t the initial points qi and q′i with fixed end points qf and q′f , while the
imaginary time path q̄(σ) runs from qi to q′i in the interval h̄β, see Fig. 6.1.
The contribution of each path is weighted with an effective action Σ[q, q′, q̄] =
SS[q] − SS[q′] + iS̄[q̄] + iφ[q, q,′ , q̄] which consists of the actions of the bare
system in real and imaginary time, respectively, and an additional interaction
contribution (influence functional) non-local in time. The latter one can be
written as

φ[q̃] =
∫

dz

∫
z>z′

dz′ q̃(z)K(z − z′) q̃(z′) +
i
2
µ

∫
dzq̃(z)2 (6.8)

where the ordered time integration is understood along the contour: z = s
from t → 0, z = −iτ from 0 → h̄β, z = −ih̄β + s from 0 → t with
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Fig. 6.1. Real and imaginary time paths in the complex time plane z = s − iτ
contributing to the propagating functional; see text for details.

q̃(z) =




q′(s) for z = s 0 ≤ s ≤ t
q̄(τ) for z = −iτ 0 ≤ τ ≤ h̄β
q(s) for z = −ih̄β + s 0 ≤ s ≤ t

. (6.9)

The effective impact of the bath is completely controlled by the damping
kernel

K(z) =
∫ ∞

0

dω

π
I(ω)

cosh[ω(h̄β − iz)]
sinh(ωh̄β/2)

, (6.10)

where I(ω) denotes the spectral density (5.26) of the environment. As ex-
pected h̄K(z) coincides with the autocorrelation function of the bath force∑

i cixi acting on the system. In particular, for real times the kernel K(s) =
K ′(s)+iK ′′(s) is related to the macroscopic damping kernel entering the clas-
sical generalized Langevin equation (5.24) via K ′′(s) = (M/2)dγ(s)/ds and
K ′(s) → Mγ(s)/h̄β in the classical limit (M is the mass of the Brownian
particle). The term with µ = limh̄β→0 h̄βK(0) in (6.8) cancels a time-local
contribution from the first integral so that the environment affects the system
only dynamically.

In the classical limit h̄β → 0 the imaginary time paths q̄(τ) reduce to
constants and one derives from the expression (6.6) the generalized Langevin
equation (5.23) [10, 18].

6.2 Quantum Kramers Theory

With a non-perturbative formalism for the time evolution of the reduced den-
sity matrix at hand, one can now develop the generalization of Kramers’
theory to the quantum domain. In the sequel, we consider the region of high
to intermediate temperatures, where local harmonic approximations for the
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barrier potential around the well region and the barrier top are still sufficient
but quantum effects become important [19, 20].

6.2.1 Reduced Dynamics at a Parabolic Barrier

In the spirit of Kramers’ theory in Sect. 5.1, the local dynamics around the
barrier of a metastable potential is assumed to determine the stationary non-
equilibrium flux state also for somewhat lower temperatures. This assump-
tion will be confirmed self-consistently by deriving precise conditions for such
a local treatment. Hence, we consider here an inverted harmonic potential
V (q) = −(Mω2

b/2)q2, for which the path integrals involved in the propagat-
ing function can be solved exactly [9]. The explicit calculation is performed
in [19] and the result takes the form

ρ(xf , rf , t) =
∫

dxi dri J̃(xf , rf , t, xi, ri) λ(xi, ri) , (6.11)

where we have introduced sum and difference coordinates

x = q − q′, r = (q + q′)/2 (6.12)

for qf , q′f and qi, q′i , respectively. For the propagating function one obtains

J̃(xf , rf , t, xi, ri) =
1
Z

1
4π|A(t)|

1√
ω2

0 h̄β|Λ|

√
M

2πh̄2β

( ∞∏
n=1

ν2
n un

)

× exp
[

i
h̄

Σβ(xi, ri) +
i
h̄

Σt(xf , rf , t, xi, ri)
]

. (6.13)

Here,

Σβ(x, r) = i
M

2Λb
r2 + i

MΩb

2
x2 (6.14)

is the minimal imaginary-time action of a damped inverted harmonic oscilla-
tor, where

Λb =
1

h̄β

∞∑
n=−∞

un (6.15)

and

Ωb =
1

h̄β

∞∑
n=−∞

(
|νn|γ̂(|νn|) − ω2

b

)
un. (6.16)

Furthermore, νn = 2πn/(h̄β) are Matsubara frequencies and

un =
(
ν2

n + |νn|γ̂(|νn|) − ω2
b

)−1
(6.17)

with γ̂(z) being the Laplace transform of the macroscopic damping kernel
γ(t). We note that for a harmonic oscillator the functions Λb and Ωb cor-
respond to the variance of the position and of the momentum, respectively
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[9]. However, for a barrier there is no obvious physical meaning since e.g. for
high temperatures one has Λb < 0. When the temperature is lowered, |Λb|
becomes smaller and vanishes for the first time at a critical temperature Tc

[19]. As seen from (6.13) and (6.14), this leads to a divergence of the propa-
gating function. Similar as for the Gaussian semiclassics of the non-dissipative
statistical operator [cf. the discussion below (2.44)], the harmonic approxima-
tion is thus limited to temperatures above the critical temperature Tc, which
in turn defines a lower bound in temperature for a quantum Kramers theory.
This point will be further discussed in Sect. 6.3.

Apart from the pre-exponential factor the time dependence of the propa-
gating function is contained in the second part of the exponent of (6.13). It
reads explicitly [19]

Σt(xf , rf , t, xi, ri) =

xfrfM
Ȧ(t)
A(t)

+ xirf
h̄

2A(t)
− rixi

MS(t)
2ΛbA(t)

+ rixf
M2

h̄

(
Ṡ(t)
Λb

− S(t)
Λb

Ȧ(t)
A(t)

)

+
i
2
x2

i M

[
−Ωb +

h̄2Λb

4M2A(t)2

(
1 − M2S(t)2

h̄2Λ2
b

)]

− ixixf
h̄Λb

2A(t)2

[
Ȧ(t)

(
M2S(t)2

h̄2Λ2
b

− 1

)
− A(t)

S(t)Ṡ(t)M2

Λ2
bh̄2

]

+
i
2
x2

f M


Ωb + Λb

Ȧ(t)2

A(t)2
− M2

h̄2Λb

(
Ṡ(t) − Ȧ(t)

A(t)
S(t)

)2

 . (6.18)

The dynamics at a parabolic barrier is essentially determined by the functions
A(t) and S(t), which are given by the Laplace transforms of [9]

Â(z) = − h̄

2M

(
z2 + zγ̂(z) − ω2

b

)−1
(6.19)

and

Ŝ(z) =
2

h̄β

∞∑
n=−∞

z

z2 − ν2
n

(
Â(z) − Â(|νn|)

)
. (6.20)

Within the harmonic approximation the above formulas (6.11)–(6.20) de-
termine the time evolution of the density matrix near the top of a potential
barrier starting from an initial state with a deviation from thermal equilib-
rium described by the preparation function λ(xi, ri). Here, this state is taken
as the thermal equilibrium state restricted to the well region q < 0 [19], i.e.,

λ(xi, ri) = Θ(−ri) (6.21)

so that according to (6.11) the dynamics is given by

ρ(xf , rf , t) =
∫

dxi dri J̃(xf , rf , t, xi, ri) Θ(−ri) . (6.22)
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Since the exponents (6.14) and (6.18) in the propagating function are
bilinear functions of the coordinates, the integrals in (6.22) are Gaussian and
can be evaluated exactly. After determining the extremum of the exponent in
the propagating function (6.22) with respect to xi and ri, one first evaluates
the xi–integral. Then, after simple manipulations of the remaining ri–integral,
the time dependent density matrix may be written in the form [20]

ρ(xf , rf , t) = ρβ(xf , rf) g(xf , rf , t). (6.23)

Here,

ρβ(x, r) =
1
Z

1√
ω2

bh̄β|Λb|

√
M

2πh̄2β

( ∞∏
n=1

ν2
n un

)
exp

(
i
h̄

Σβ(x, r)
)

(6.24)

is the equilibrium density matrix for an inverted harmonic oscillator and

g(x, r, t) =
1√
π

∫ u(x,r,t)

−∞
dz e−z2

=
1
2
erfc [−u(x, r, t)] (6.25)

is a form factor describing deviations from equilibrium with

u(x, r, t) =

√
M

2h̄|Λb|

(
1 − h̄2Λ2

b

M2S(t)2

)−1/2
(
−r + i|Λb|

Ṡ(t)
S(t)

x

)
. (6.26)

One comment is in order here: One observes that the reduced dynamics fac-
torizes in a thermodynamic part and a dynamical part, where, as we know
from the classical limit, the latter one reduces to unity away from the bar-
rier top towards the well region so that the former one yields the exponential
in the rate expression. Accordingly, the above result is already of the form
that Kramers exploited in the classical domain for the stationary flux state
(5.8). Indeed, for sufficiently long times the above expression becomes time
independent as well.

To see this in detail, we investigate the dynamics of the density matrix
(6.23) starting at t = 0 [20]. Note that the time dependence of the form factor
(6.23) is completely determined by the function S(t). Firstly, let us consider
small times ωbt � 1. There, one has [9]

S(t) =
h̄Λb

M
− h̄Ωb

2M
t2 + O(t4) , (6.27)

which leads to

1 − h̄2Λ2
b

M2S(t)2
=

Ωb

|Λb|
t2 + O(t3) . (6.28)

Then, the function u(x, r, t), which gives the upper bound of integration in
(6.25), reads
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u(x, r, t) = −r

√
M

2h̄Ωb

1
t

+ ix

√
MΩb

2h̄
+ O(t) . (6.29)

Hence, using the asymptotic formula∫ ∞

z

dx e−x2 � 1
2z

e−z2
for Re{z} → ∞ , (6.30)

where Re denotes the real part, the leading order expression for the form
factor (6.25) in the limit ωbt � 1 is found to read for finite r

g(x, r, t) = Θ(−r) +

√
h̄Ωb

2Mπ

t

r
exp

(
− Mr2

2h̄Ωbt2
+ i

Mxr

h̄t
+

MΩb

2h̄
x2

)
, (6.31)

while for r = 0

g(x, 0, t) =
1
2

+
1√
π

∫ ix
√

MΩb/2h̄

0

dz e−z2
+ O(t) . (6.32)

Clearly, for t → 0+ and r �= 0 the form factor reduces to the Θ function
contained in the initial preparation (6.21) as expected. On the other hand,
at r = 0 the t → 0+ limit differs from the t → 0− limit by an imaginary
part due to the discontinuity of the Θ function. Defining the width ∆(t) in
position space of the nonequilibrium state (6.23) as that value of |q|, q < 0
where u(0, q, t) = 1, one gets

∆(t) =

√
2h̄|Λb|

M

(
1 − h̄2Λ2

b

M2S(t)2

)1/2

. (6.33)

This reduces to ∆(t) =
√

2h̄Ωb/Mt for small times in accordance with (6.31).
For large times, i.e. times larger than 1/ωR, the functions A(t) and S(t)

are obtained in leading order as

A(t) = − h̄

2M

1
2ωR + γ̂(ωR) + ωRγ̂′(ωR)

eωRt (6.34)

and

S(t) = − h̄

2M
cot(

ωRh̄β

2
)

1
2ωR + γ̂(ωR) + ωRγ̂′(ωR)

eωRt . (6.35)

Here, γ̂′(z) denotes the derivative of γ̂(z), and ωR is the Grote-Hynes fre-
quency (3.95). Equations (6.34) and (6.35) describe the unbounded motion
at the parabolic barrier with corrections that are exponentially decaying in
time (see [19, 20] for details). Consequently, the function u(x, r, t) in (6.26)
approaches a stationary value

u∞(x, r) =

√
M

2h̄|Λb|
(−r + i|Λb|ωR x) , (6.36)
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and the density matrix (6.23) reduces to a stationary nonequilibrium state
ρflux(x, r) = ρβ(x, r) gfl(x, r) with

gfl(x, r) =
1√
π

∫ u∞(x,r)

−∞
dz e−z2

. (6.37)

This time independent state describes a constant flux across the potential
barrier and generalizes the Kramers flux state (5.8) to the temperature region
where quantum effects are important. The width ∆(t) from (6.33) saturates
for large times at the finite value

∆∞ =

√
2h̄|Λb|

M
, (6.38)

which coincides with the width of the diagonal part of the equilibrium dis-
tribution (6.24). The position dependent part of the corresponding function
gfl(0, q) is depicted in Fig. 6.2 for various values of temperature.

Range of Validity

Before we proceed, let us discuss the validity of the harmonic approximation
in more detail. It turns out that this analysis will impose certain conditions
on temperature and on friction.

As addressed above, the temperature dependent function Λb in (6.15) van-
ishes at a temperature Tc leading to a divergence of the harmonic propagating
function. While a further analysis will be given below in the Sect. 6.3, here, we
conclude that the above flux solution is only valid for temperatures sufficiently
above Tc.

Fig. 6.2. “Form factor” gfl(x, r) of the quantum stationary flux distribution (6.37)
describing deviations from thermal equilibrium around the barrier top. Shown is
the diagonal part gfl(0, q) for various temperatures ωbh̄β =0.1 (dashed), 1 (dotted-
dashed), and 2 (solid) for ohmic friction with γ/ωb = 1.
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In the time domain, a lower bound for the existence of the stationary flux
solution is derived from ωRt< 	 1. An upper bound follows from the fact that
for extremely long times the depletion of states deep inside the potential well
leads to a flux decreasing in time. Hence, for very long times anharmonicities
of the barrier potential influence the dynamics even for T > Tc. For a barrier
potential with a quartic term as leading order anharmonicity an upper bound
in time where the density matrix (6.23) is valid has been estimated by the
condition exp(ωRt>) � qa

√
2Mωb/h̄|Λb| where qa denotes a typical distance

from the barrier top for which the anharmonic part of the potential becomes
essential. This intermediate time range t< < t < t> defines the so-called
plateau region.

Now, within this window the flux state must also match onto the equilib-
rium state in the well. This means that the solution (6.23) must reduce to the
thermal equilibrium state for coordinates qf , q′f on the left side of the barrier
at distances small compared with qa. One obtains the condition [19]

|Λ| � Vb

h̄ω2
b

(
1 − ω2

R

|Λb|
Ωb

)
, (6.39)

where Vb is the barrier height with respect to the well bottom. From a phys-
ical point of view (6.39) specifies the range in parameter space (temperature,
friction strength, barrier height) where the influence of the heat bath on the
escape dynamics is strong enough to equilibrate particles on a length scale
smaller than the scale where anharmonicities become important. Only then
remain nonequilibrium effects localized around the barrier range within the
plateau region. In the classical limit where kBT 	 h̄ωb and for Ohmic damp-
ing γ̂(z) = γ the condition (6.39) reduces to the Kramers condition [see also
(5.16)] kBTωb/Vb � γ. Here, 1 − ω2

R ≈ γ for small damping has been used.
When the temperature is lowered, |Λb| decreases and the range of damping
where the stationary solution (6.23) is valid becomes larger. For an extended
discussion of this issue we refer to [19].

6.2.2 Phase Space Representation

The comparison between the classical and the quantum results can be revealed
even better by transforming the result (6.37) to phase space via a Wigner
transformation

Wflux(p, q) =
1

2πh̄

∫
dx ρflux(x, r) eixp/h̄ . (6.40)

Accordingly, the quantum generalization of the classical Kramers distribution
(5.8) with (5.10) reads

Wflux(p, q) =
1
Z

e−p2/2Ωb+q2/2|Λb| 1√
π

∞∫
ξqm(p,q)

dy e−y2
(6.41)
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with

ξqm(p, q) =
(

2M4ω4
b|Λb|

Ω2
bγλ+

)1/2 Ωb
M2ωb|Λb| q − λ+

Mωb
p√

1 + (Ωb − M2ω2
b |Λb|)/(Ωbγλ+)

(6.42)

and ωR ≡ λ+. For high temperatures one regains with |Λb| = 1/Mω2
bβ and

Ωb = M/β the classical expression (5.12). The quantum version of the para-
meter acl related to the unstable/stable directions in phase space (5.9) is thus
given by

aqm = acl
M2ω2

b|Λb|
Ωb

. (6.43)

Since |Λb| is smaller than its classical value, while Ωb is larger, one has
aqm ≤ acl and the boundary layer near the barrier top (see Fig. 5.1) tends
towards the p-axis. As a consequence, the nonequilibrium distribution in q
becomes narrower, while that in p broadens, which reflects the fact that quan-
tum mechanically the barrier becomes transparent near the top with a steeper
distribution in q accompanied by larger quantum fluctuation in p.

The flux solution (6.41) has also been derived from a quantum Fokker
Planck equation [21], where one introduces in the classical FPE (5.3) for a
parabolic barrier quantum diffusion by replacing γM/β → γΩb and by adding
a term (Mω2

b|Λb| −Ωb/M)∂2/∂q∂p. We remark that an analysis of the phase
space structure of barrier penetration in the non-dissipative case has been
given in [22] based on the real-time dynamics of wave packets.

6.2.3 Decay Rate

The solution (6.23) now allows to evaluate the total probability flux J(t) at
the barrier top q = 0. The expression

J(t) =
1

2M
〈p̂δ(q̂) + δ(q̂)p̂〉t , (6.44)

where the expectation value 〈·〉t is calculated with respect to the time depen-
dent nonequilibrium state, reads in coordinate representation

J(t) =
h̄

iM

∂

∂xf
ρ(xf , 0, t)

∣∣∣∣
xf=0

. (6.45)

Since the essential contribution to the population in the well comes from the
region near the well bottom, the normalization constant Z in (6.45) can be
approximated by the partition function of a damped harmonic oscillator with
frequency ω0 at the well bottom, i.e.

Z =
1

ω0h̄β

( ∞∏
n=1

ν2
n

ν2
n + |νn|γ̂(|νn|) + ω2

0

)
eβVb . (6.46)
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Note that the potential was set to 0 at the barrier top so that its energy at
the well minimum is −Vb. Upon inserting (6.23) for rf = 0 and (6.46) into
(6.45) one gains the time dependent flux [20]

J(t) = Γ η(t) , (6.47)

where
Γ = lim

t→∞
J(t) =

ω0

2π

ωR

ωb
fq e−βVb (6.48)

denotes the decay rate of the metastable system with the quantum mechanical
prefactor fq specified in (5.41) and the Grote-Hynes frequency ωR given in
(3.95). The above rate expression exactly coincides with the one derived in
(5.40) within the ImF approach for temperatures above the crossover temper-
ature. The real-time approach thus provides (i) a proof for the validity, at least
in the temperature range above Tc, and (ii) precise conditions in parameter
space for the applicability of this thermodynamic method.

For the time dependence of the flux we obtain

η(t) =
Ṡ(t)

ωR S(t)

(
1 − h̄2Λ2

b

M2S(t)2

)−1/2

. (6.49)

This way we have found an analytical result for the dynamical behavior of
the average flux which is usually studied numerically, see e.g. [23]. For long
times ωRt 	 1 the function η(t) approaches 1. For short times one derives
from (6.27) that

η(t) =
1

ωR

√
Ωb

|Λb|
+ O(t2) , (6.50)

which gives a finite flux for t → 0+ while, according to the initial preparation
(6.21), the limit t → 0− leads to a vanishing flux [see also (6.31) and (6.32)].
Specifically, for finite damping

η(0) =
1

ωR

√
Ωb

|Λb|
(6.51)

is always larger than 1. As a consequence, the probability flux for t → 0+ ex-
ceeds the rate (6.48). For very high temperatures where ωbh̄β � 1, (6.51) re-
duces to η(0) = ωb/ωR and the corresponding probability flux J(0) = Γωb/ωR

coincides with the result of the classical transition state theory (3.13)

Γcl,TST =
ω0

2π
e−βVb . (6.52)

For lower temperatures |Λb| decreases and η(0) becomes larger than 1/ωR

which means that the transition state result J(0) overestimates the true rate
Γ even stronger in the quantum domain.
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An Example: Drude Damping

To illustrate the above results we now study a Drude model with γ(t) =
γωD exp(−ωDt). Clearly, in the limit ωD 	 ωb, γ the Drude model behaves
like an Ohmic model except for very short times of order 1/ωD. With the
Laplace-transform of γ(t), i.e.

γ̂(z) = γ
ωD

ωD + z
, (6.53)

we get from (6.15) and (6.16)

Λb =
1

h̄β

∞∑
n=−∞

1
ν2

n + |νn|(γωD/ωD + |νn|) − ω2
b

(6.54)

and

Ωb =
1

h̄β

∞∑
n=−∞

|νn|(γωD/ωD + |νn|) − ω2
b

ν2
n + |νn|(γωD/ωD + |νn|) − ω2

0

. (6.55)

The time dependence of the nonequilibrium state results from the function
S(t) in (6.20). Explicitly, one obtains

S(t) =
h̄

M

3∑
i=1

[
ci

2
cot

(
λih̄β

2

)
exp(λit)

]
− ζ(t) , (6.56)

where λi, i = 1, 2, 3 denote the poles of Â(z) given by the three solutions of

z3 + ωDz2 + z(γωD − ω2
b) − ωD = 0 . (6.57)

For the coefficients ci we have

c1 = (λ2
2 − λ2

3)/ε , c2 = (λ2
3 − λ2

1)/ε , c3 = (λ2
1 − λ2

2)/ε , (6.58)

where
ε = (λ1 − λ2)λ1λ2 + (λ2 − λ3)λ2λ3 + (λ3 − λ1)λ1λ3 . (6.59)

Further, we have introduced the time dependent function

ζ(t) =
γω2

D

h̄β

∞∑
n=−∞

|νn| exp(−|νn|t)
(λ2

1 − ν2
n)(λ2

2 − ν2
n)(λ2

3 − ν2
n)

, (6.60)

which can also be written in terms of hypergeometric functions as

ζ(t) = − 1
h̄β

3∑
i=1

ci

λi

[
F (1,

λi

ν
; 1 +

λi

ν
; e−νt) − F (1,−λi

ν
; 1 − λi

ν
; e−νt)

]
.

(6.61)
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Fig. 6.3. Width ∆(t) in position space of the nonequilibrium state for h̄βω0 = 0.05
(thick lines) and h̄βω0 = 2.0 (thin lines) for a Drude damping with ωD/ω0 = 100.
Solid lines depict weak friction γ/ω0 = 0.1, dashed lines strong damping γ/ω0 = 3.

With these findings for Λb, Ωb, and S(t), the time evolution of the nonequi-
librium state has been evaluated explicitly for a Drude frequency ωD = 100ωb.
In Fig. 6.3 the width ∆(t) of the nonequilibrium state in position space, given
in (6.33), is depicted as a function of t for various temperatures. For high
temperatures damping effects are relevant for intermediate times only while
for lower temperatures they are essential for all times. For short times ∆(t)
grows faster for stronger damping and reaches a larger asymptotic value for
long times. This is due to the quantum mechanical effect that stronger damp-
ing suppresses the fluctuations of the coordinate and therefore enhances fluc-
tuations of the momentum.

The relaxation of the time dependent flux (6.47) across the potential bar-
rier towards the time independent decay rate (6.48) is determined by the
function η(t) in (6.49). In Fig. 6.4 the dynamics of η(t) is depicted for various
temperatures. One sees that in the region of moderate damping the simple
TST result J(0) = Γη(0) for the rate constant gives a satisfactory estimate of
the true rate only for high temperatures. When the temperature is decreased
η(0) grows and depends strongly on the damping strength. Furthermore, for
lower temperatures the average flux across the barrier becomes stationary
faster for stronger damping.

6.2.4 Correlation Functions

The propagating function can also be used to determine correlation functions
[20], which we will use in Sect. 6.4.1 to illustrate the relation between the above
quantum Kramers theory and alternative approaches. Of particular relevance
is the right–left spatial correlation function
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Fig. 6.4. Dynamics of the average flux across a barrier J(t) in units of the stationary
decay rate Γ : η(t) = J(t)/Γ for different temperatures and a Drude model with
ωD/ω0 = 100 and various damping strengths.

Cq(t) =
1
Z

Tr
{
Θ[q(t)]Θ[−q]e−βH

}
= 〈Θ[q(t)]Θ[−q]〉β , (6.62)

where Θ(·) denotes the step function being unity on the product side and zero
otherwise. Time derivatives of Cq(t) lead to further correlation functions, e.g.
the flux-flux correlation.

Now, let us evaluate Cq(t) explicitly. Within the presented real time ap-
proach this correlation function may formally be looked upon as the expec-
tation value of Θ(q) at time t of a system with an initial “density matrix”
Θ(−q)ρβ . The corresponding preparation function then takes the form

λ(xi, ri) = Θ (−ri − xi/2) . (6.63)

This way, using (6.11), the correlation function may be written as

Cq(t) =
∫

drfdxidri Θ(rf)Θ (−ri − xi/2) J̃(0, rf , t, xi, ri)

=
∫

drfdxidr′i Θ(rf)Θ(−r′i) J̃(0, rf , t, xi, r
′
i − xi/2) (6.64)

with the propagating function J̃(xf , rf , t, xi, ri) given in (6.13). We proceed as
before and first evaluate the xi and afterwards the r′i integration. Here, the
maximum of the exponent in the propagating function with respect to xi and
r′i lies at

x0
i = i

2Mωb

h̄
A(t)

rf

Λb

r′i
0 =

M

h̄
[S(t) + iA(t)]

rf

Λb
. (6.65)
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Introducing shifted coordinates x̂i = xi−x0
i and r̂′i = r′i−r′i

0 a straightforward
calculation shows that

Σβ(xi, r
′
i − xi/2) + Σt(0, rf , t, xi, r

′
i − xi/2) =

iM(r̂′i)
2

2Λb

− iMx̂2
i

8ΛbA(t)2

{
[S(t) + iA(t)]2 − h̄2Λ2

b

M2

}
− Mx̂ir̂

′
i

2ΛbA(t)
[S(t) + iA(t)] .(6.66)

The Gaussian integrals with respect to x̂i and r̂′i are now readily performed.
Eventually, after some further manipulations, we end up with

Cq(t) =
1
Z

1
πωbh̄β

( ∞∏
n=1

ν2
n un

)∫ ∞

0

dx exp(x2)
∫ ∞

x/z(t)

dy exp(−y2)

=
1
Z

1
4πωbh̄β

( ∞∏
n=1

ν2
n un

)
log

(
1 + z(t)
1 − z(t)

)
, (6.67)

where

z(t) =
{

1 − h̄2Λ2
b

M2[S(t) + iA(t)]2

}1/2

. (6.68)

For t → 0 one has from (6.19)

A(t) = − h̄

2M
t + O(t3) (6.69)

and z(t) tends to zero so that Cq(t) vanishes for t → 0 as expected. The time
derivative of (6.67) yields the flux-position correlation

Cfq(t) ≡ Ċq(t) = 〈F̂ (t)Θ(−q)〉β

=
1
Z

1
2πωbh̄β

( ∞∏
n=1

ν2
n un

)
|Ṡ(t)| + i|Ȧ(t)|{

[S(t) + iA(t)]2 − h̄2Λ2
b/M2

}1/2
, (6.70)

where
F̂ =

1
2M

[pδ(q) + δ(q)p] (6.71)

is the symmetrized flux operator at q = 0. Finally, a second time derivative
gives the flux-flux correlation Cf (t) ≡ C̈q(t) = 〈F̂ (t)F̂ 〉β .

6.2.5 Crossover Temperature

The semiclassical approximation presented above breaks down at a critical
temperature Tc defined by

Λ(Tc) =
1

h̄β

∞∑
n=−∞

1
ν2

n − ω2
b + |νn|γ̂(|νn|)

∣∣∣∣∣
T=Tc

= 0 . (6.72)
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For the undamped case one has Tc = ωbh̄/(πkB), thus being exactly twice the
crossover temperature T0, see (3.14) and Fig. 5.3. For finite friction Tc as well
as T0 are shifted to lower values so that for strong damping Tc follows from
the solution of ωbh̄βc ln(ωbh̄βc) = πγ/ωb and is then substantially higher
than T0,R. In case of purely ohmic friction, Tc is conveniently obtained from
the first zero of

Λb =
1

Mω2
bβ

+
1

2π(λ+ + γ/2)

[
Ψ

(
1 − h̄βλ+

2π

)
− Ψ

(
1 − h̄βλ−

2π

)]
(6.73)

with the digamma function Ψ and the frequencies λ± as in (5.10).
Around Tc the reduced density matrix diverges due to a divergent semi-

classical expression for the equilibrium density matrix contained in (6.13).
Namely, it turns out that at the temperature Tc new minimal action paths
in imaginary time appear [24, 25] associated with a change of stability. For
instance, while for T > Tc the only path obeying q(0) = q(h̄β) is q(τ) = 0,
for T < Tc orbits oscillating for half a period to the left or to the right are
possible. This also explains that for zero friction Tc = 2T0, because at T0

orbits oscillating for a full period arise.
A proper description of this bifurcation necessitates the inclusion of an-

harmonicities in the barrier potential and a semiclassical treatment for the
fluctuations which goes beyond the Gaussian approximation [24, 25]. This sit-
uation has some similarities with the semiclassical evaluation of the partition
function around T0,R [see Sect. 5.2.3], but differs in detail since here not only
periodic paths must be taken into account. Accordingly, there is a crucial
difference between semiclassical rate theories based onto the full dynamics
and those based onto thermodynamics. While both give the same results for
T > Tc, as we have seen above, and also sufficiently below T0,R, as we will
see in Sects. 7.3.4 and 7.4.3, it cannot be expected that they lead to identical
rate expressions in the intermediate temperature range Tc > T > T0,R.

Due to the large excursions of the newly emerging orbits, for temperatures
below Tc the parabolic approximation for the reduced dynamics is no longer
valid even for coordinates in the close vicinity of the barrier top. The new
oscillating minimal action paths then provide the dominant contributions to
the semiclassical equilibrium density matrix and describe the on-set of quan-
tum mechanical non-locality related to tunneling [26, 27]. In this situation
analytical progress can only be made for vanishing friction as we will discuss
in detail in Chap. 7.

6.3 Nuclear Fission

One of the first applications of the quantum theory of tunneling came actually
from nuclear physics to understand the emission of α-particles from heavy
nuclei [28, 29, 30]. Later it was discovered that two fundamental processes
of nuclear matter, namely fission and fusion, can be understood as decay
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and formation, respectively, of a many-body system in presence of potential
barriers [31]. The first expression for a microcanonical decay rate was provided
in 1939 by Bohr and Wheeler [32] in terms of level densities. In fact, it was
this dissipation-less expression that motivated Kramers in 1940 [33] to lay the
foundations for a dynamical rate theory including friction (see Sect. 5.1). The
main difference to the situations we have considered so far is though that here
the reaction coordinate describes actually a collective excitation of a strongly
interacting many-body system [34]. The problem one encounters when one
wants to adopt the methodology of dissipative systems is thus to identify
parameters such as mass, friction, and frequencies. In this sense nuclear fission
is also a nice example of the broad applicability of the Brownian motion model
for metastable decay. Fission and fusion processes have regained new interest
recently due to experimental efforts for the production of super-heavy nuclei
[35, 36, 37]

Transport Coefficients

A microscopic description of nuclear matter as a many-body system consisting
of protons and neutrons is based on a Hamiltonian with two-particle interac-
tion of the form

H =
∑
ij

Tija
†
iaj +

1
2

∑
ijkl

Vijkla
†
ia

†
jalak (6.74)

with fermionic creation and annihilation operators a†
i and ai, respectively, and

corresponding matrix elements Tij and Vijkl. This Hamiltonian can be cast
into a sum of separable interactions [38]

H =
∑
ij

Hija
†
iaj +

1
2

∑
µ

kµFµFµ (6.75)

with Fµ =
∑

ij Fµ;ija
†
iaj . Several methods have been developed to extract

from this microscopic Hamiltonian collective coordinates based on a type of
Born-Oppenheimer approximation: The time scale for the dynamics of the
nucleons is assumed to be much shorter than this of density variations [39].
Other methods to extract collective coordinates from the strongly correlated
many-problem are based on a random phase approximation [40, 41] and the
path integral representation [42, 43].

By way of example, let us illustrate how this allows to determine transport
coefficients entering Langevin and Fokker-Planck equations [34, 44, 45]. We
consider a simplified Hamiltonian with just one interaction term

H = H(Q0) +
k(Q0)

2
F (Q0)F (Q0) , (6.76)

where Q0 denotes the (unknown) equilibrium value of a collective coordinate
Q(t). Within the mean field ansatz
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Q(t) − Q0 = k〈F 〉t (6.77)

for deviations from Q0, one arrives at the renormalized mean field Hamiltonian

HRMF = H(Q0) + (Q − Q0)F − 1
2k

(Q − Q0)2 . (6.78)

The last term guarantees that the expectation value of HRMF coincides with
the total energy of H in (6.76). Now, one looks at the linear response limit to
derive response functions according to

δ〈F 〉t = −
∫ ∞

−∞
ds χ(t − s) [Q(s) − Q0] (6.79)

with
χ(t − s) =

i
h̄

Θ(t) 〈[F (t), F (s)]〉Q0 . (6.80)

This response function, which depends on temperature due to the Q0 aver-
age, can be expressed in terms of one-particle Greens-functions within the
so-called independent particle model, where one assumes uncorrelated parti-
cles and holes. Residual interactions are taken into account by introducing
phenomenologically parametrized self-energies. Accordingly, one obtains self-
consistently an equation for the frequencies of the collective coordinate Q
from 1 + χ̃(ω) = 0 with χ̃(ω) being the Fourier transform of χ(t). This local
response function of the intrinsic degrees of freedom is related to the response
function χcoll of the collective coordinate by

χ̃coll =
χ̃(ω)

1 + kχ̃(ω)
. (6.81)

Around a certain root ω0 of 1+χ̃(ω) = 0, where χ̃ is calculated microscopically
for a specific nuclei, one fits χ̃coll onto the response function of a damped
harmonic system

χ̃osc(ω) =
−1

Mω2 + iγ|ω| + C
(6.82)

with effective mass M , friction constant γ, and stiffness C. Note that these co-
efficients depend on ω0 and temperature, i.e. M = M(Q,T ), γ = γ(Q,T ), C =
C(Q,T ). The collective coordinate Q is now interpreted as that of a fictitious
particle that for a fission process moves in a metastable potential (cf. Fig. 6.5).
The dependence of the transport coefficients on temperature and collective co-
ordinate, however, cannot result from the standard Caldeira-Leggett Hamil-
tonian (5.20), so that application of the latter is always a reduction of the full
many-problem and is thus not able to capture specific phenomena of nuclear
matter.
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( )

sc

Fig. 6.5. Nuclear fission along a collective coordinate Q as decay from a metastable
state. The deformation of the nucleus along the reaction path is sketched below.

Dwell Time and Decay Rates

For the decay process the typical time the system spends in the barrier region
is of considerable interest (dwell time). Of course, access to this observable is
only provided by a real-time calculation [46] presented in Sects. 6.2.1, 6.2.3.
Using the same symbols as introduced there, the dwell time is defined as

tdw =
1

Jflux

∫ Qsc

0

dQ

∫ ∞

−∞
dPQ Pflux(PQ, Q) , (6.83)

where the integral gives the fraction of the flux population which is located to
the right of the barrier from the barrier top at Q = 0 to the scission point Qsc

being identical to the exit point of the metastable potential (3.7), see Fig. 6.5.
It turns out that the dwell time solely depends on local properties around
the barrier top so that the transport coefficients can be put to constants with
values determined by those at the saddle. Then, with the results specified in
Sects. (6.2.1) and (6.2.3) one obtains for temperatures above Tc [21]

tdw =
2λ+

ω2
b

R
(√

Mω2
bβQ2

sc/2 /
√

−Λbh̄ω2
bβ

)
(6.84)

with the Rosser function R =
∫ x

0
dy exp(y2)

∫∞
y

dz exp(−z2). The first factor
in the argument is the ratio of the energy difference between saddle and scis-
sion and temperature, while the second one carries the impact of quantum
fluctuations. As depicted in Fig. 6.6 the dwell time is enhanced compared to
its classical value for lower temperatures, which can be attributed to the fact
that the barrier tends to become transparent and the density of states under
the barrier larger.

To complete this discussion, we specify the fission rate for temperatures
above the crossover. A convenient way to derive it when starting with the mi-
croscopic Hamiltonian (6.76), is the path integral representation of the grand
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Fig. 6.6. Dwell time (6.84) of a nuclear fission process over a barrier with height
Mω2

bβQ2
sc/2 = 5 vs. inverse temperature and for various values of friction: γ/ωb =

0.25 (dotted), 0.5 (short-dashed), 1 (long-dashed), 2 (solid).

canonical partition function [47, 48, 49, 50]. The collective coordinate then
appears as a Hubbard Stratonovich field and the rate is gained via the ImF
method. Note though that one has to take into account that the transport
coefficient are only locally defined and may considerably vary between well
and barrier top. This leads to a more involved expression [47, 49, 50] than
that specified in (5.40), namely,

Γ =
ωR(β)

2π

√
C0(β)
Cb(β)

fqm e−βB(β) , (6.85)

where the indices “b” and “0” refer to the corresponding functions taken at the
barrier and the well, respectively. B(β) denotes the temperature dependent
barrier height and the quantum prefactor reads

fqm =

(∏
n

ν2
n + νn/τb

kin(β) + Ω2
b(β)

ν2
n + νn/τb

kin(β) − ω2
b(β)

)(∏
n

ν2
n + νn/τ0

kin(β) + Ω2
0(β)

ν2
n + νn/τ0

kin(β) + ω2
0(β)

)−1

(6.86)
with typical nucleonic frequencies Ω0,b gained from the nuclear shell model
and the momentum relaxation time τα

kin (α = b, 0) related to mass and friction
coefficient by τα

kin = (M/γ)|α. The frequencies of the collective motion are
always much smaller than those of the nucleonic one.

6.4 Alternative Dynamical Theories

Dynamical approaches for rate calculations have already been derived in the
1970s and later on extended to dissipative systems. These formulations do not
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start from the general expression for the time evolution of the reduced density
matrix, but rather from rate expressions derived within scattering theory.

6.4.1 Formally Exact Rate Expressions

A formally exact expression for the decay rate has been derived in [51] and [52],
from which we started already in Sect. 3.85 to develop a multi-dimensional
transition state theory. For the sake of convenience, let us recall this formula:

Γ =
1
Z

lim
t→∞

ReTr
{

F̂ P̂ (t)e−βH
}

. (6.87)

Here F̂ is the flux operator introduced in (6.71), which for a general location
q∗ of the dividing surface reads

F̂ =
1

2M
[δ(q − q∗)p + pδ(q − q∗)] . (6.88)

Note that q may be a generalized coordinate corresponding in a multi-
dimensional space to the reaction path. The real-time dynamics is contained
in the projection operator

P̂ (t) = lim
t→∞

eiHt/h̄Θ(p)e−iHt/h̄ (6.89)

projecting in the long time limit only onto outgoing states. In this limit the
step function in momentum can also be replaced by Θ(q−q∗), the step function
in position being unity on the product side and 0 otherwise. Note that in case
of a metastable potential here and in the sequel the large time limit must be
understood in the sense of a plateau time.

From this expression three different forms for the rate constant have been
obtained [53] based on the position autocorrelation Cq(t) defined in (6.62).
First, one has from (6.87)

Γ = lim
t→∞

d
dt

Cq(t) . (6.90)

As seen in Sect. 6.2.4, Cq(t) is related to the position-flux and the flux-flux
correlations simply by taking time derivatives: Cf,q(t) = Ċq(t) and Cf (t) =
C̈q(t), respectively. In these latter expressions it is advantageous to work with
the thermal flux operator F̂β = exp(−βH/2)F̂ exp(βH/2) so that

Cfq(t) =
1
Z

Tr
{

F̂βP̂ (t)
}

, Cf (t) =
1
Z

Tr
{

F̂βF̂ (t)
}

. (6.91)

This yields a second and a third expression

Γ = lim
t→∞

Cf,q(t), Γ =
∫ ∞

0

dt Cf (t) . (6.92)
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Apart from the conceptual point of view, the reason for deriving these alter-
native formulas is mainly practical so as to minimize the length of the time
interval over which a numerical simulation has to be performed or to reduce
the dimension of the basis set to represent the operators. For instance, the
thermal flux operator is a low rank object (for one-dimensional systems of
rank 2) [54], so that the time evolution needed for the rate calculation is
restricted to the relatively small basis set of this operator. A very efficient
numerical scheme for dissipative rate calculations, known as Quasi-adiabatic
Path Integral (QUAPI) approach, is based on a path integral representation
of the respective correlation functions combined with an exact diagonalization
of the free system propagator [55, 56, 57, 58].

According to the discussion in Sect. 3.85, the exact expressions specified
above lay also the basis for approximate treatments [59, 60, 61, 62, 63, 64, 65].
One option is, as done there, to approximate the dynamical operator P̂ (t) by
its form at t = 0. To go beyond this type of quantum transition state theory,
the real-time propagators contained in P̂ (t) can be represented by their semi-
classical expressions, most conveniently in Hermann-Kluk form [see (2.27)].
This program has been further elaborated in the works cited above, partic-
ularly, by modeling dissipation by explicitly taking into account a moderate
number of bath oscillators distributed according to a given spectral density.
The fundamental problem is though that the standard types of semiclassi-
cal propagation schemes do not include the domain of deep tunneling (see
Chap. 4) meaning that these studies are restricted to the range of moderate
to high temperatures. For many chemical system, especially in gas phase, this
is certainly sufficient; for more details we refer to the original literature.

We conclude this discussion by revealing the relation between the above
correlation functions and the dynamical approach based on the reduced den-
sity matrix, which we have outlined in Sect. 6.2.4. Interestingly, this also pro-
vides a link to a rate expression derived by Yamamoto [66] based on Kubo’s
linear response theory, i.e.,

Γ = lim
t→∞

1
h̄β

∫ h̄β

0

dλ〈Θ[−q(−iλ)]Θ̇[−q(t)]〉β . (6.93)

Namely, the right hand side can be transformed to read

1
h̄β

∫ h̄β

0

dλ〈Θ[−q(−iλ)]Θ̇[−q(t)]〉β =
i

h̄β
〈[Θ[−q(t)], Θ[−q]]〉β . (6.94)

On the other hand, taking into account that Θ(q) = 1 − Θ(−q) one has from
(6.62)

Im {Cq(t)} = −Im {C−q(t)} =
i
2
〈[Θ[−q(t)] , Θ[−q]]〉β (6.95)

so that we get from (6.94)

Γ =
2

h̄β
lim

t→∞
Im {Cq(t)} . (6.96)
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The result (6.67) can now be inserted into this rate formula. From (6.34) and
(6.35) one obtains for times ωRt 	 1

Im
{

log
(

1 + z(t)
1 − z(t)

)}
= 2arctan [A(t)/S(t)] . (6.97)

Thus, we gain from (6.67)

lim
t→∞

Im {Cq(t)} =
ωRh̄β

2ω0

1
Z

1
2πh̄β

( ∞∏
n=1

ν2
n un

)
, (6.98)

which combines with (6.96) and the normalization (6.46) to yield the escape
rate (6.48).

On the other hand, the time derivative Ċq(t) given in (6.70) determines
the rate according to (6.90). In the long time limit the imaginary part of Ċq(t)
becomes exponentially small and

lim
t→∞

Ċq(t) =
1
Z

1
2πω0h̄β

( ∞∏
n=1

ν2
n un

)
ωR (6.99)

yields again the rate (6.48).

6.4.2 Phase Space Approach

The Wigner representation of quantum mechanics often reveals interesting
aspects of the dynamics due to its close relation to the classical phase-space
picture [cf. Sect. 6.2.2)]. Moreover, it gives insight into appropriate semiclas-
sical approximations for the exact rate expression (6.87).

The Wigner representation [67] of an operator is defined as

A(p, q) =
1

2πh̄

∫ ∞

−∞
dx eipx/h̄ 〈q − x

2
|Â|q +

x

2
〉 , (6.100)

from which one derives the important property that the Wigner representation
of a product of two operators is identical to the product of the individual
Wigner respresentations. Accordingly, the quantum rate (6.87) may be cast
into the form [68]

Γ =
2πh̄

Z

∫
dpdq P (p, q)Fβ(p, q) (6.101)

with the Wigner representation P (p, q) and Fβ(p, q) of the operators P̂ and
F̂β , respectively.

For a one-dimensional barrier system with no dissipation, semiclassical
expressions for the Wigner representations of the flux operator have been
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found in [68]. For higher temperatures, where a local parabolic approximation
applies, one has

Fβ(p, q) =
1

2πh̄M

√
2Mωb

πh̄ sin(ωbh̄β)

× exp
[
− Mω2

bq2

h̄ tan(ωbh̄β/2)
− p2 tan(ωbh̄β/2)

Mωbh̄

]
(6.102)

with the barrier frequency ωb. This expression also diverges at the critical
temperature Tc introduced already in (6.72), where ωbh̄βc = π which is not
surprising since a semiclassical approximation of the thermal flux operator
includes the equilibrium density matrix and not the partition function. For
temperatures below Tc the corresponding result is rather involved and we refer
to the literature for more details [68].

The simplest choice of a semiclassical approximant for the dynamical factor
is

P (p, q)sc =
1

2πh̄
Θ
[
p ±

√
−2MV (q)

]
, (6.103)

where the plus [minus] sign is taken for positive [negative] q and the barrier
potential V (q) is taken such that q = 0 is the location of the barrier with
V (0) = 0. Apparently, the projector projects onto that range in phase-space,
where all trajectories reach in the infinite time limit the product side. Based on
an exact evaluation of the flux operator in combination with the above classical
approximation for the dynamical projection operator, rate calculations have
been successfully performed [69, 70, 71] as long as tunneling is not too strong.
In this context we note that the first three time derivatives of an operator
in the Wigner representation are identical to the classical ones, so that their
short time properties coincide [72, 73].

By replacing the exact Wigner representations in (6.101) by semiclassical
ones, semiclassical rate expressions are found. For temperatures above Tc the
rate coincides with the result specified in (3.12). For temperatures below Tc,
the rate consists of an exponential factor which contains only half of the
bounce action corresponding to the action of a closed path that connects its
end-points in half a period and not in a full one. The related rate enhancement
in Tc > T > T0 is partially compensated for by the fact that the flux exhibits
positive and negative contributions over which one has to sum. In comparison
with exact data for e.g. an Eckart barrier potential [74] very good agreement
is found above Tc, while deviations grow below; see also Table 7.1 at the end
of Sect. 7.4.3. How from this approximation the known tunneling rate with
the full bounce action arises for very low temperatures, is not known yet.
One problem may be again the semiclassical approximation of the dynamical
factor P (p, q), which for lower temperatures must include modifications of the
standard semiclassical real-time propagators to capture deep tunneling.
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6.5 Quantum Smoluchowski Limit

In Sect. 6.1 it was argued that the reduced quantum dynamics is subject to
time retarded self-interactions mediated by the surrounding. A full dynam-
ical rate calculation becomes thus very demanding since the evaluation of
the path integrals contained in (6.6) is much more involved than the solu-
tion of a time-local equation of motion. As addressed above, progress can
be made in the limits of weak and very strong friction. In the former range
so-called master equations have been derived. The opposite domain of strong
friction, classically known as the Smoluchowski limit [75], has been studied for
low temperatures only recently leading to a quantum version of the classical
Smoluchowski dynamics [76, 77, 78]. In this Section we will discuss the main
results of this analysis and illustrate its applicability as a very elegant tool to
gain quantum decay rates for strongly condensed phase systems.

6.5.1 Quantum Smoluchowski Equation

The classical Smoluchowski limit is related to a separation of time scales be-
tween fast equilibration of momentum and slow equilibration of position [75].
This way, the Fokker-Planck equation for the phase space distribution (5.3)
can be adiabatically reduced to a Smoluchowski equation for the marginal
distribution in position space [79]. For quantum dissipative systems the ex-
pectation is that friction makes the system to behave more classically so that
for strong friction the complicated path integral expression (6.6) simplifies
considerably. This is indeed the case as has been shown recently [76].

A typical damping strength in the long time limit is defined as

γ ≡ γ̂(0) = lim
ω→0

I(ω)
Mω

, (6.104)

where γ̂(ω) is the Laplace transform of the classical damping kernel γ(t). For
ohmic friction, I(ω) = Mγ̃ω, for instance, one finds γ = γ̃. The same is true
for the more realistic Drude damping I(ω) = Mγ̃ωω2

c/(ω2 + ω2
c ) with cut-off

frequency ωc. Now, given a typical frequency ω0 of the bare system (e.g. its
ground state frequency) by strong damping we then mean (cf. Fig. 6.7)

γ

ω2
0

	 h̄β

2π
,

1
ωc

,
1
γ

. (6.105)

Hence, one extends the time scale separation known from the classical Smolu-
chowski range to incorporate the time scale for quantum fluctuations h̄β.

The idea is now, to evaluate for strong friction γ/ω0 	 1 the path integral
expression (6.6) on the coarse-grained times scale t 	 h̄β, 1/ωc, 1/γ and τ 	
1/ωc, 1/γ, respectively. The consequences are the following: (i) Non-diagonal
elements of the reduced density matrix are strongly suppressed during the time
evolution, (ii) the real time part of the kernel K(s) [see (6.10)] becomes local
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Fig. 6.7. Quantum Smoluchowski range according to (6.105) (shaded). The classical
range γh̄β < 1 is simple shaded, the quantum range γh̄β > 1 double shaded.

on the coarse grained time scale, and (iii) initial correlations described by (6.3)
survive for times of order γ/ω2

0 verifying that factorizing initial states cannot
be used. Accordingly, the strong friction limit corresponds to a semiclassical
approximation where inverse friction plays the role of the small parameter.

The classical Smoluchowski equation for the marginal distribution P (q, t)
reads Ṗ (q, t) = (1/γM)∂qLSP (q, t) with the flux operator

LS = V ′(q) + kBT∂q . (6.106)

We seek for a generalization of this equation to the quantum regime in a
form, where [1 + δh]LQS replaces LS so as to preserve the structure of a
continuity equation and thus probability conservation. In case of a harmonic
potential V (q) = Mω2

0q2/2, where the full nonequilibrium dynamics can be
solved analytically [9], one finds [76] that

LQS,harm = Mω2
0q + Mω2

0〈q2〉∂q , (6.107)

where for strong friction (6.105) the variance reads 〈q2〉 = 1/(Mω2
0β)+Λ [77]

with

Λ =
2

Mβ

∞∑
n=1

1
ν2

n + νnγ

=
h̄

Mγπ

[
Ψ
(γ

ν

)
− C +

ν

γ

]
(6.108)

with the Euler constant C = 0.577 . . . and the digamma function Ψ . In the high
temperature domain γh̄β � 1, we have Λ ≈ h̄2β/12M . The dependence on
friction appears for lower temperatures as a genuine quantum effect and in the
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quantum Smoluchowski range γh̄β 	 1 one obtains Λ ≈ (h̄/Mγπ)ln(γh̄β/2π).
Quantum fluctuations in position are thus suppressed by friction, not alge-
braically though, but much weaker. They also show a nonlinear dependence
on h̄ meaning that for γh̄β 	 1 we work in a deep quantum domain even
though 〈q2〉 is in leading order given by the classical result. The correction
function δh carries dynamical corrections which are at most of order 1/γ or
smaller [80].

Equilibrium Distribution

To extend this finding to anharmonic potentials, in a first step, the diagonal
part of the equilibrium density matrix Pβ(q) = ρβ(q, q) is calculated, which
in turn determines LQS from the condition of a vanishing flux in thermal
equilibrium. In the path integral representation of the position distribution

ρβ(q, q) =
1
Z ′

∫
D[q] e−S̄eff [q]/h̄ (6.109)

with a proper normalization Z ′ and the effective Euclidian action specified in
(5.29), one sums over all paths with q(0) = q(h̄β) = q, where the minimal
action paths q̄ are determined by (5.32). We now look for a solution of this
equation in the limit of very strong friction by Fourier transforming it via
(5.33). Since (5.33) periodically continues q̄(τ) outside [0, h̄β], we have to
supplement (5.32) on the right hand side by the boundary term Mb : δ(τ) :
with the periodically continued δ-function : δ(τ) := (1/h̄β)

∑
n exp(iνnτ) and

b = ˙̄q(h̄β) − ˙̄q(0) [9]. Accordingly, we have

− ν2
nqn − γ|νn|qn + vn/M = b (6.110)

with vn =
∫ h̄β

0
dτV ′[q̄(τ)] exp(−iνnτ). From this expression one observes that

for all n �= 0 friction dominates and qn, n �= 0, are formally of order 1/γ. Hence,
the n = 0 part provides the leading order contribution q̄(τ) ≈ q0/h̄β ≈ q ac-
cording to the boundary conditions and (6.110) is solved by b = (h̄β/M)V ′(q).
In next order, n �= 0, one has

qn = − b

ν2
n + γ|νn|

, n �= 0 , (6.111)

where we retained the kinetic term to include also the strong friction/high
temperature domain (γh̄β � 1), where ν2

n dominates. Note that corrections
due to V [q̄(τ)] ≈ V (q) + V ′(q)δq, where δq collects the n �= 0-terms in (5.33),
yield negligible contributions as long as |V ′′(q)|/M � γ/h̄β for low tempera-
tures and h̄2β2V ′′(q)/M � 1 for high temperatures. Both conditions are ful-
filled for sufficiently smooth potentials and under the restrictions (6.105). Now,
the next order correction to q0 is obtained from q̄(0) = q as q0 = q + bMΛ/h̄
with Λ in (6.108).
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The corresponding minimal action is gained from (5.29) after partial inte-
gration as

S̄min =
M

2
b q +

∫ h̄β

0

dτ
[
V (q̄) − q̄

2
V ′(q̄)

]
, (6.112)

which yields

S̄min(q) = h̄βV (q) − h̄β2Λ

2
V ′(q)2 . (6.113)

This gives the dominant contribution to the path integral (6.106) as Pβ(q) ∝
exp[−S̄min(q)/h̄]. In fact, for a harmonic potential, where the exact result is
S̄min = h̄q2/2〈q2〉, the expansion of 〈q2〉 according to (6.108) reproduces in
leading order the above expression.

What remains to do is to evaluate the fluctuation integral. Due to the
large friction this can be done by expanding the full action according to q(τ) =
q̄(τ)+y(τ), y(0) = y(h̄β) = 0, up to second order leading to Gaussian integrals.
This way, we write Pβ(q) = F (q) exp[−S̄min(q)/h̄]/Z ′ where

F (q) =
∫

D[y] exp

[
− 1

h̄

∫ h̄β

0

dτy(τ)L[y]

]
(6.114)

with the second order variational operator (5.35). This operator has eigenfunc-
tions ∝ exp(iνnτ) so that one works with the Fourier representation (5.33) for
the y(τ) as well. However, also the boundary conditions have to be imposed,
which is most conveniently done by introducing δ[y(0)] = δ[(1/h̄β)

∑
n yn]

in the path integral and representing the δ function by an integral over an
auxiliary variable µ. Thus,

F (q) = N

∫ ∞

−∞
dµ

∞∏
n=−∞

∫ ∞

−∞
dyn exp

[
i

h̄β
µyn − M

h̄2β
ζn y2

n

]
(6.115)

and the eigenvalues read in leading order ζn = ν2
n + |νn|γ + V ′′(q)/M . N is a

proper normalization to ensure the correct free particle limit. After performing
the corresponding integrations we arrive at

F (q) = N ′ [1 + βΛV ′′(q)]−1/2
∞∏

n=1

ν2
n + νnγ

ν2
n + νnγ + V ′′(q)/M

, (6.116)

where N ′ collects constant factors from the normalization of the path integral.
For strong friction the product can be further evaluated by writing

∏
fn =

exp(
∑

lnfn) and approximating fn ≈ 1 − [V ′′(q)/M ]/(ν2
n + νnγ). Hence, up

to a constant factor and including at most terms of order Λ one finds
∏

fn ∝
exp[−βV ′′(q)Λ/2] ≈ 1 − βV ′′(q)Λ/2. Eventually, the equilibrium probability
distribution reads in the strong friction regime

Pβ(q) =
1
Z

[1 − βV ′′(q)Λ] e−βV (q)+β2ΛV ′(q)2/2 , (6.117)
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where we absorbed normalization factors from F (q) in a new normalization Z
and expanded the prefactor (1 − βV ′′ Λ/2)(1 + βV ′′ Λ)−1/2 up to first order
in Λ. Note that in the first derivation of the equilibrium distribution [76] the
product in F (q) has been gained with a wrong factor Λ instead of Λ/2 so that
the contribution from the fluctuations was obtained as 1 − (3Λ/2)βV ′′.

The result (6.117) can also be generalized to the nondiagonal elements
of the density matrix ρβ(q, q′) following the procedure described above. The
result is

ρβ(x̄, r̄) =
1
Z

[1 − βV ′′(r̄)Λ] e−βV (r̄)−Ω x̄2/2h̄2+Λβ2V ′(r̄)2/2 , (6.118)

where r̄ = (q + q′)/2 and x̄ = q − q′. The function Ω has been specified for
arbitrary friction in (6.16). For strong friction and Drude damping (6.53) with
a high frequency cut-off ωc 	 γ, it can be expressed in terms of Ψ functions
as

Ω ≈ Mh̄γ

π

[
Ψ
(ωc

ν

)
− Ψ

(
γ

ν
+

γ2

νωc

)
− ν

2γ
+

2ν

ωc

]
. (6.119)

In the high temperature range γh̄β � 1, we regain Ω ≈ M/β so that the
Wigner transform of (6.118) reduces to the classical phase space distribution,
while for lower temperatures γh̄β 	 1 one has Ω ≈ (Mh̄γ/π)ln(ωc/γ). Since
according to (6.108) the position variance shrinks when lowering the temper-
ature, the momentum variance grows with friction to guarantee Heisenberg’s
uncertainty relation. In particular, for a harmonic potential the above distri-
bution reduces to the known result [81]. Accordingly, as assumed above, off-
diagonal elements of the distribution ρβ(q, q′) are strongly suppressed with |x̄|
being of order 1/

√
γln(ωc/γ) or smaller. We mention in passing that higher

order corrections in Λ are associated with higher than second order derivatives
of the potential V (q).

Current Operator and Quantum Smoluchowski Equation

We are now in a position to determine the quantum flux operator LQS from
the condition that LQSPβ(q) = 0. The expression (6.117) leads to

LQS = V ′(q) + kBT∂q
1

1 − βΛV ′′(q)
. (6.120)

We mention that in the spirit of our small Λ expansion, the diffusion term
could also be written as 1/[1 − βΛV ′′(q)] ≈ 1 + βΛV ′′(q) as it was done in
[76]. Then, however, a vanishing equilibrium current is guaranteed only up to
terms of order Λ2. While this is consistent with the perturbative treatment, in
direct numerical integrations it is more convenient to work with the expression
(6.120) to avoid any spurious violations of the second law of thermodynamics
[82].
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Following the lines above, now, a possible dynamical correction δh must be
analysed. Since it gives a negligible contribution in case of a harmonic oscilla-
tor, we deduce that if this term contributes in order Λ for anharmonic poten-
tials, it must carry higher than second order derivatives of the potential. While
in principle we could now proceed to study the reduced dynamics in real time
according to Sect. 6.1 for the total distribution ρ(qf , q

′
f , t) [83], it is sufficient to

concentrate on the relevant diagonal part P (qf , t) = ρ(qf , qf , t) [76]. Hence, the
preparation function in (6.6) is taken as λ(qi, q

′
i) = λ0(qi)δ(qi−q′i). In fact, one

can show that off-diagonal elements relax to thermal equilibrium with respect
to the instantaneous position of the Brownian particle on a time scale of order
1/γ [84]. For the semiclassical evaluation of the propagating function in (6.6)
one thus exploits that difference paths x(s) = q(s)−q′(s) remain small during
the dynamics, namely at most of order (h̄2β/Mγt)1/2. Further, since we are
looking for a time independent correction δh on the coarse grained time scale
(6.105), it suffices to work in the range h̄β, 1/γ � t � γ/ω2

0 . The explicit
evaluation is somewhat tedious, but reveals that δh is at most of order Λ/γ
or smaller and can thus safely be disregarded.

Finally, the dynamics of P (q, t) can be cast into an equation of motion,
the so-called Quantum Smoluchowski Equation (QSE),

∂P (q, t)
∂t

=
1

γM

∂

∂q

[
V ′(q) + kBT

∂

∂q
D(q)

]
P (q, t) . (6.121)

Here,

D(q) =
1

1 − ΛβV ′′(q)
(6.122)

is an effective position dependent diffusion coefficient. We mention that here
in contrast to the original derivation [76] no correction to the potential term
appears due to (6.117).

The quantum analog to the classical Langevin equation in the strong
damping limit can also be gained (in the Ito sense) from (6.121) as

Mγq̇ + V ′(q) = ξ(t)
√

D(q) (6.123)

with Gaussian white noise 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = 2MγkBTδ(t − t′). Equa-
tions (6.121) and (6.123) describe the reduced dynamics of an overdamped
quantum system from high down to very low temperatures and show that the
corresponding quantum stochastic process is equivalent to a classical process
with multiplicative noise [85, 86].

6.5.2 Quantum Decay Rate for Strong Friction

The QSE can be used to derive escape rates within a dynamical formulation in
the range γh̄β 	 1. We remark that the condition for a time scale separation
h̄β � γ/ω2

0 is only fulfilled above the crossover temperature, which for strong
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friction reads T0,R ≈ (h̄/2πkB)ω2
0/γ. The corresponding rate expression has

already been derived within the thermodynamic ImF theory in (5.40) together
with the quantum prefactor in (5.46). Here, we regain it in a much simpler
way.

The situation we consider is again this: a metastable potential V (q) with
a barrier of height Vb 	 kBT, h̄ω0 separates a well region (well frequency ω0)
from a continuum. Initially particles stay in local thermal equilibrium inside
the well. As time elapses, particles surmount the barrier and for intermedi-
ate times (plateau range) their position distribution becomes quasi-stationary
P (q, t) → Pflux(q) describing a constant flux across the barrier. From the QSE
one then has

Jst = − 1
γM

LQSPflux (6.124)

and the escape rate follows as

Γ =
Jst

Zwell
(6.125)

with the well population Zwell. For strong friction the changeover from quasi-
equilibrium in the well around q = 0 and nonequilibrium on the other side of
the barrier is restricted to the vicinity of the barrier top located at qb = 0.
The stationary distribution takes the known form Pflux(q) = Pβ(q) gfl(q) with
a form factor obeying gfl(q) → 1 in a close range to the left of qb and gfl(q) → 0
in a close range to the right of qb. A direct integration of (6.124) yields

Pflux(q) =
MγβJst

D(q)
e−βψ(q)

∫ ∞

q

dy eβψ(y) (6.126)

with ψ(q) = V (q) − βΛV ′(q)2/2. Upon inserting Zwell =
∫ qb

−∞ dqPst(q) into
(6.125) and by invoking a harmonic approximation around the well minimum
and the barrier top, we obtain the rate in the quantum Smoluchowski range

ΓQSR =

√
V ′′(0)|V ′′(qb)|

2πMγ
e−βVb eβ(Λ/2)(V ′′(0)+|V ′′(qb)|) . (6.127)

In this expression the second exponential accounts for quantum fluctua-
tions, while the first factors coincide with the overdamped Kramers rate. Note
that Λ dependent terms enter exponentially and thus substantially enhance
the quantum rate compared to the classical one (see Fig. 6.8). The above re-
sult is indeed identical to the one that has been obtained in (5.46) from the
ImF theory, however, after evaluating a complicated path integral expression.
As shown in Fig. 6.8 the QSE result agrees already for moderate friction well
with the full solution (5.40). Remarkably, the rate enhancement is observ-
able already at relatively high temperatures ω0h̄β < 1 provided damping is
sufficiently strong to guarantee γh̄β 	 1.
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Fig. 6.8. Ratio of the exact rate with the classical (dashed) and the QSE (solid)
rate vs. friction for |V ′′(qb)| = V ′′(0) = Mω2

0 .

6.6 Applications

In the sequel we discuss two applications of the quantum Smoluchowski theory,
one is related to the transfer of Cooper pairs through Josephson junctions in
low impedance environments, the other one reveals the strong impact of even
small quantum fluctuations on mean currents in adiabatically driven ratchet
potentials.

6.6.1 Quantum Phase Diffusion in Josephson Junctions

The Josephson junction (JJ) has been introduced in Sect. 3.1.3, to which we
refer for further details. Based on the Josephson relation its transport dynam-
ics can be understood as the diffusive motion of a fictitious particle in a tilted
washboard potential. The translation rules between the circuit parameters R
and C (resistance and capacitance) and mass and friction coefficients of the
mechanical analog are

M =
(

h̄

2e

)2

C , γ =
1

RC
. (6.128)

In the classical strong friction limit the phase diffusion of the JJ has been
analysed by Ivanchenko/Zil’berman [87] and Ambegaokar/Halperin [88]. Here
we present the low temperature generalization within the QSE theory [89].
Recently, also noise properties of variances of the current have been studied
for this system [90].

We start by translating the constraints for the QSE dynamics to the case
of JJs. Here, we also have to take into account that typically the junction
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is subject to an external voltage (or a corresponding current). Accordingly,
in order for the momentum Mφ̇ to relax within the RC = 1/γ-time to a
Boltzmann-like distribution around 〈φ̇〉, the external voltage V is restricted
by eV � h̄γ. By combining γ2/ω2

0 	 1, γh̄β, where ω0 =
√

2EcEJ/h̄ is the
plasma frequency of the unbiased JJ, with this latter condition and expressing
them in junction parameters we expect the QSE to capture quantum phase
diffusion in JJs, if

Ec

EJ2π2ρ2
	 1,

βEc

2π2ρ
,

V

RIc
(6.129)

with ρ = R/RQ and the resistance quantum RQ = h/4e2. Since typically
ρ � 1 the above condition allows for a broad range of values for Ec/EJ, βEJ,
and also large voltages V/RIc. Further, the relation also ensures that the
actual non-ohmic impedance seen by the junction can effectively be treated
as ohmic.

Now, the potential entering the QSE (6.121) reads

U(φ) = −EJ cos(φ) − EIφ , (6.130)

where EI = (h̄/2e)Ib is the energy corresponding to the bias current Ib and
the effective diffusion constant is found as

D(φ) = [1 − θ cos(φ)]−1 , θ = ΛβEJ . (6.131)

From the Λ-function specified in (6.119) and reading here

Λ = 2ρ

[
C +

2π2ρ

βEc
+ Ψ

(
βEc

2π2ρ

)]
(6.132)

one sees immediately that βEc/πρ = γh̄β controls the changeover from clas-
sical to quantum Smoluchowski dynamics.

An important observable is the response of the JJ to an external bias
current, namely, the average voltage 〈V 〉. It is related to the steady state
current via 〈V 〉 = (h̄/2π) limt→∞〈φ̇〉 = 2πJst. One then finds the current
voltage–characteristics of a current biased junction to read

〈V 〉 =
ρ π

βe

1 − e−2πβEI

Tqm
. (6.133)

Here, the nominator Tqm results from normalizing the steady state phase
distribution to 1 and can be written as

Tqm =
1
2π

∫ 2π

0

dφ

∫ 2π

0

dφ′ e−βEIφ e−2βEJ cos(φ′) sin(φ/2)

×[1 − θ sin(φ′ − φ/2)] e2βθξ(φ,φ′) (6.134)

with
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ξ(φ, φ′) = sin(φ′) sin(φ/2) [EI + EJ cos(φ′) cos(φ/2)] . (6.135)

The expression (6.133) together with (6.134) is the central result from
which various known findings can be derived as limiting cases (see Fig. 6.9).
(i) For βEc/ρ � 1 the function Tqm reduces to its classical form (θ → 0) and
the classical Ivanchenko-Zil’berman Theory (IZT) [87] is recovered. (ii) In the
low temperature domain βEc/ρ 	 1, but for smaller couplings βEJ < 1,
terms with βEJ can be expanded. Due to the φ′ integration only even powers
of βEJ survive and one finds that quantum diffusion can be accounted for by
a renormalized Josephson energy

E�
J = EJ(1 − Λ/2) . (6.136)

This important extension of IZT has first been derived in [91] based on a
direct evaluation of the real-time path integral expression. The corresponding
supercurrent across the junction coincides with results from Coulomb blockade
(CB) theory (cf. Fig. 6.9), thus describing an incoherent transfer of charges.
(iii) For βEc/ρ 	 1 and sufficiently larger couplings βEJ > 1, coherent Cooper
pair tunneling exists. Then, for s = I/Ic < 1 occasional phase slips occur and
lead to the voltage

〈V 〉
RIc

=
√

1 − s2

2π
e−2βEJ(1−s2)3/2/(3s2) eθ

√
1−s2

, (6.137)

which via θ is affected by diffusion related quantum fluctuations. As can be
observed in Fig. 6.9, the result (6.137) tends for θ → 0 to classical thermal

EJ

E
c

/(
2

2
)

MQTCB

1

1/

(b)

(a)

Fig. 6.9. Range of the QSE for a JJ with ρ � 1, V/RIc < 1. The classical
IZT range (shaded) and the domains of Coulomb blockade (CB) and macroscopic
quantum tunneling (MQT) are indicated. The QSE is applicable above the thick
line, see (6.129), and the arrows illustrate various changeovers discussed in the text.
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Fig. 6.10. Left: Current-voltage characteristics for βEJ = 2, ρ = 0.04. The quan-
tum results [βEc = 1 (dashed), βEc = 20 (solid)] are shown with the classical one
(βEc = 0, dotted). Right: Supercurrent vs. voltage for βEJ = 0.25, ρ = 0.04. The
classical result (dotted, from [87]) and the CB expression [dashed, from [91]] are de-
picted together with the QSE result [solid, from [89]] for βEc = 0.15 (top), βEc = 20
(middle), βEc = 1000 (bottom).

activation over the barriers of the washboard potential U(φ), where quan-
tum corrections are of the known damping independent form [92]. At lower
temperatures, i.e. for finite θ, they show a complicated dependence on ρ and
capture the precursors of macroscopic quantum tunneling (MQT) found at
very low temperatures [93].

Thus, the central result (6.133) fills the gap between established results in
different transport domains: On the one hand, for fixed βEc/ρ > 1 it leads
with increasing βEJ from Coulomb blockade to coherent Cooper pair tunnel-
ing [Fig. 6.9, arrow (a)]. On the other hand, for fixed βEJ > 1 it connects with
varying βEc/ρ classical thermal activation with MQT [Fig. 6.9, arrow (b)].
Apart from limiting cases, (6.133) is easily evaluated numerically; some results
are shown in Fig. 6.10. Hence, the QSE approach allows to give, in a seem-
ingly transparent manner, a complete description throughout a broad range
in parameter space and must be supplemented only for very low temperatures
(T → 0) by more sophisticated techniques [94, 95].

6.6.2 Transport in Quantum Ratchets

Directed transport is supported in spatially periodic structures with broken
reflection symmetry, so-called ratchet potentials, when they are driven far
from equilibrium due to the presence of non-thermal noise sources [96, 97].
Realizations include asymmetric quantum dots [98, 99] and arrays of Joseph-
son junctions [100]. Theoretically, this issue has been studied in the classical
realm for a variety of designs [101]. Much less is known in the quantum realm
though, where dissipation, quantum fluctuations, and driving may give rise to
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new features [102, 103, 104, 105, 106]. While as we have seen above, a com-
plete real-time description is extremely complicated, in the overdamped limit
the QSE offers the basis to access low temperature phenomena.

For this purpose, a dimensionless ratchet potential has been considered in
[82]

V (x) = V0 {sin(2πx) + a sin[4π(x − b)] + c sin[6π(x − b)]} (6.138)

with numerical shape parameters a, b, c and a parameter V0 chosen such that
the dimensionless barrier height is 1. The additional nonthermal noise source
is modeled by a Markovian two-state noise η = {η0,−η0} that switches with a
rate ε between the levels ±η0. In the adiabatic limit of a very small switching
rate ε, the stationary averaged current can be obtained from the stationary
solution of the QSE via J̄ = [J(−η0) + J(η0)]/2 where the stationary current
in level η0 reads

J(η0) =
1 − exp[−θη0]∫ 1

0
dyθD(y)−1 exp[−θψ(y, η0)]

∫ y+1

y
dx exp[θψ(x, η0)]

. (6.139)

Here, the dimensionless inverse temperature is denoted by θ and

ψ(y, η0) = V (y) − 1
2
λθ[V ′(y)]2 + η0λθV ′(y) − η0 y (6.140)

is the dimensionless form of the effective thermodynamic potential Pβ(y) ∝
exp[−θψ(y, η0)] with λ the dimensionless fluctuation function (6.119).

A numerical analysis of the average velocity J̄ ≡ 〈v〉 shows, see Fig. 6.11,
that the above ratchet potential with a = 0.4, b = 0.45, and c = 0.3 exhibits in

-2 0 2 4

ln( 0)

-0.02

0.0

0.02

<
v>

Fig. 6.11. Mean current in the ratchet potential (6.138) with V0 = 0.372, a =
0.4, b = 0.45, c = 0.3 vs. the driving level. Depicted are the quantum Smoluchowski
result (solid) with (λ = 0.0025, θ = 2) and the corresponding classical one (λ = 0,
dotted).
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the classical case (λ = 0) a current reversal when the noise level η0 is varied.
While for weak noise the current flows in the negative direction, for larger η0

it changes sign to approach a vanishing flux for very large η0. However, in the
quantum case (λ = 0.0025) fluctuations suppress this changeover completely.
This effect can be attributed to the position and temperature dependent dif-
fusion coefficient in (6.139) and illustrates that even small values of λ have
substantial impact on the transport.
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7

Unified Dynamical Theory –
From Thermal Activation to Coherent and Incoherent Tunneling

As has become clear in the previous Chapter, the most challenging domain for
a dynamical theory of escape processes, i.e. a description in real-time, is the
low temperature range. There, quantum mechanical non-locality renders any
standard semiclassical approach to fail. Consequently, the quantum Kramers
theory outlined in Sect. 6.2 applies only to temperatures slightly above the
critical temperature Tc. Below Tc tunneling tends to play a prevailing role
and for even lower temperatures qualitatively two different types of tunneling
events may occur: One is tunneling through a barrier into a continuum sup-
porting only outgoing states either coming from another continuum, typical
for barrier scattering, or from a metastable state, typical for decay; another
one is coherent tunneling typical for bi- and multistable potentials, where in-
terferences generate a flux periodically oscillating in time. In previous Sections
quantum decay rates and tunnel splittings have been calculated within ther-
modynamic methods based on imaginary time orbits. In this Chapter we gen-
eralize the findings for wave packet tunneling in real-time (Sect. 4) to the time
evolution of ensembles and outline a unified semiclassical approach for density
matrices [1, 2], which allows to calculate escape rates from high down to very
low temperatures and to capture coherent as well as incoherent processes.
In particular, the real-time description for barrier penetration developed in
Chap. 6 for temperatures above Tc (quantum Kramers) will see its extension
to the low temperature domain. While the theory will be formulated for the
non-dissipative case, in principle, it can also be extended to include friction.
However, analytical progress can be achieved only for vanishing friction, which
then reveals the underlying structure of the semiclassical approximation and
the changeover from classical escape to quantum tunneling. We remark that in
the sequel we recall some theoretical foundations already specified in previous
Chapters to allow for a certain degree of self-contained reading.
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STMP 224, 171–201 (2007)
DOI 10.1007/3-540-68076-4 7 c© Springer-Verlag Berlin Heidelberg 2007



172 7 Unified Dynamical Theory

7.1 Preliminaries

Let us consider a statistical ensemble of quantum mechanical particles of mass
M moving in a barrier potential V (q) separating two domains in coordinate
space. The barrier top is located at q = 0 and energies are measured relative
to the barrier energy by putting V (0) = 0. Initially this ensembles is prepared
in a nonequilibrium state which is assumed to be of the form of an equilibrium
state restricted to the left side of the barrier. We will invoke the semiclassical
approximation which is appropriate provided the barrier height Vb is by far
the largest energy scale in the system.

Then, the time evolution of the density matrix reads in coordinate repre-
sentation

ρ(qf , q
′
f , t) =

∫
dqidq′i G(qf , qi, t) ρ(qi, q

′
i , 0)G(q′f , q

′
i , t)

∗ , (7.1)

where the real-time propagator is given by

G(q, q′, t) = 〈q| exp(−iHt/h̄)|q′〉 (7.2)

and ρ(qi, q
′
i , 0) describes the initial state. In principle, for our purpose any

initial distribution that matches onto equilibrium on the left side and vanishes
on the right side of the barrier top is appropriate. As long as the restricted
equilibrium state gives vanishing probability to find the particle on the right
side of the barrier top, different initial preparations lead to the same long time
behavior of the density matrix. Here we put explicitly

ρ(q, q′, 0) = Z−1 ρβ(q, q′)Θ(−q)Θ(−q′) (7.3)

for convenience with the proper normalization factor Z and the equilibrium
density matrix

ρβ(q, q′) = 〈q| exp(−βH)|q′〉 . (7.4)

Now, employing the path integral representation for the propagators in real
and imaginary time, the above integrand in (7.1) can be written as a three-
fold path integral where two real time paths q(u) and q′(u) run in the interval
0 ≤ u ≤ t from qi and q′i to fixed endpoints qf and q′f , respectively, while
those former coordinates are connected by an imaginary time path q̄(σ) in
the interval 0 ≤ σ ≤ h̄β, see Fig. 7.1. The real time paths describe the
time evolution of the system and the imaginary time path the initial state.
Note that this formulation is the zero-friction limit of the general formulation
outlined in Sect. 6.1.

The density matrix ρ(q, q′, t) contains all information about the non-
equilibrium quantum process, in particular, the average of the operator
F̂ = [pδ(q) + δ(q)p]/2M gives the flux out of the metastable state, i.e., in
coordinate representation

J(t) = (h̄/2iM) [∂ρ(qf ,−qf , t)/∂qf ]qf=0. (7.5)
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Fig. 7.1. Loop of stationary imaginary and real time paths in the complex time
plane z = u + iσ.

When the flux becomes quasi-stationary, J(t) = Jst within a certain plateau
region of time, the escape rate follows from Γ = Jst.

In the semiclassical limit (high barrier), the above path integrals are dom-
inated by minimal action paths determined by Hamilton’s equation of motion
either in the potential V (q) (for the real time propagators) or −V (q) (for the
equilibrium density matrix). Each path contributes with an exponential fac-
tor containing its minimal action and a prefactor arising from the Gaussian
fluctuations about the minimal action paths. Specifically, the action in real
time reads

S(q, q′) =
∫ t

0

du [Mq̇2/2 − V (q)] , (7.6)

while its imaginary time version, the Euclidian action, is given by

S̄(q, q′) =
∫ h̄β

0

dσ [M ˙̄q2
/2 + V (q̄)] . (7.7)

Thus, as seen in Sect. 2.2, the propagator (7.2) is approximated as

Gt(q, q′) =
∑

cl.paths

√
A(q, q′) exp

[
i
h̄

S(q, q′) − i
π

2
ν

]
, (7.8)

where A(q, q′) = [−∂2S(q, q′)/∂q∂q′]/2πih̄ and ν is the Maslov index. An
equivalent representation of the prefactor is given by

A(q, q′) =
iM
2πh̄

[
q̇(0)q̇(t)

∂2W (q, q′)
∂E2

]−1

, (7.9)

where W (q, q′) =
∫ q′

q
dq′′ p = S(q, q′) + Et is the short action. The corre-

sponding approximation to the equilibrium density matrix (7.4) follows by
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replacing S(q, q′) by iS̄(q, q′) in (7.8) with ν = 0. As a result, the integrand in
(7.1) is completely determined by classical mechanics in real and imaginary
time, respectively, and dominated by an action factor exp[−Σ(qf , q

′
f |qi, q

′
i)/h̄−

iπ(ν − ν′)/2] with

Σ(qf , q
′
f |qi, q

′
i) = −iS(qf , qi) + S̄(qi, q

′
i) + iS(q′f , q

′
i) . (7.10)

With the approximate integrand at hand, it is consistent to evaluate the
ordinary integrations in (7.1) in stationary phase. The stationary phase points
are determined by minimizing Σ with respect to the initial coordinates qi, q

′
i ,

i.e.,
∂Σ

∂qi

∣∣∣∣
(qf ,q′

f)

= 0,
∂Σ

∂q′i

∣∣∣∣
(qf ,q′

f)

= 0 . (7.11)

Since the endpoints qf , q
′
f are fixed, the resulting stationary phase points qs(t)

and q′s(t) are functions of time with qs(0) = qf , q′s(0) = q′f . For finite t these
roots are in general complex. The dominant imaginary time path q̄s(σ) con-
nects q′s(t) with qs(t), and the two real time paths q(u) and q′(u) connect
qs(t) and q′s(t) with qf and q′f , respectively. Hence, the steepest–descent ap-
proximation naturally provides a mapping from the integration contour in the
complex time plane onto a loop in the complex coordinate space connecting
the endpoints (Fig. 7.1). We emphasize that the appearance of complex paths
has nothing to do with tunneling but rather is merely a consequence of the
stationary phase approximation and holds also for systems with no barrier
at all. In fact, it turns out that the complex semiclassical real-time trajecto-
ries used here never cross the barrier top, in contrast to paths emerging from
ad hoc complexification procedures occasionally adopted to describe barrier
penetration [3].

Starting from the steepest descent conditions (7.11) and exploiting Hamil-
ton Jacobi mechanics, one immediately derives

ps(0) = ip̄s(h̄β) , p′s(0) = ip̄s(0) , E = E′ = Ē . (7.12)

Here, ps(u) [p′s(u)] is the momentum of the real time path q(u) [q′(u)] with
energy E [E′] connecting qs [q′s] and qf [q′f ]; accordingly, p̄s(σ) denotes the mo-
mentum of the imaginary time path q̄s(σ) running from q′s to qs with Euclid-
ian energy Ē = −p̄2

s/2M + V (q̄), see Fig. 7.1. Equation (7.12) can also be
expressed as dΣ/dt = 0 with the solution

Σ(qf , q
′
f |qs, q

′
s) = S̄(qf , q

′
f) . (7.13)

Hence along the loop of steepest descent paths the full action is just given by
the equilibrium action and thus independent of time. Differentiating (7.13)
with respect to qf , q

′
f , one finds

ps(t) = ip̄0(h̄β), p′s(t) = ip̄0(0) , (7.14)
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where p̄0(σ) is now the momentum of the imaginary time path q̄0(σ) connect-
ing q′f with qf in imaginary time h̄β. This path has Euclidean energy Ēf which
depends on qf , q

′
f and h̄β but not on t. Hence, we first deduce that the energies

in (7.12) are given by Ēf , which implies energy and momentum conservation
throughout the loop in Fig. 7.1. Secondly, we arrive at the remarkable result
that the sequence of time-dependent stationary phase points qs(t) [q′s(t)] is
itself a minimal action path starting at qs(0) = qf [q′s(0) = q′f ] with energy Ēf .

To complete the ordinary integrations in (7.1) over the initial coordinates
qi, q

′
i , we transform to fluctuations y = qi − qs and y′ = q′i − q′s about the

stationary phase points. An expansion of the full action (7.10) for fixed end-
points qf , q

′
f around the stationary phase points up to second order leads to

Σ(qf , q
′
f |qi, q

′
i) = S̄(qf , q

′
f) + δΣ(2)(y, y′) with

δ(2)Σ(y, y′) =
1
2

(y, y′) Σ(2)

(
y
y′

)
, (7.15)

where

Σ(2) =
(

ΣssΣss′

Σss′Σs′s′

)
(7.16)

is the matrix of second order derivatives, Σss = ∂2Σ(qi, q
′
i)/∂q2

i etc., to be
taken at qi = qs, q

′
i = q′s.

Upon inserting (7.3) into (7.1) the integrand reduces to a product of
Gaussian weighting factors for deviations from the stationary phase points
and an initial state factor θ(−qs − y)θ(−q′s − y′) describing deviations from
thermal equilibrium at t = 0. Provided there is only one semiclassical path for
each of the propagators, we obtain from (7.1) by virtue of (7.13) and (7.15)
the semiclassical time dependent density matrix in the form

ρ(qf , q
′
f , t) =

1
Z

ρβ(qf , q
′
f) g(qf , q

′
f , t) . (7.17)

Here, deviations from equilibrium are described by a form factor

g(qf , q
′
f , t) =

1
π

∫ u(qs)

−∞
dz

∫ u′(z,q′
s)

−∞
dz′ e−(z2+z′2) , (7.18)

where

u(qs) = −qs

√
Det[Σ(2)]
2h̄Σs′s′

, u′(q′s, z) = −q′s

√
Σs′s′

2h̄
+ z

Σss′√
Det[Σ(2)]

(7.19)

with Det[Σ(2)] = ΣssΣs′s′ − (Σss′)2. In deriving (7.17) we invoked that Hamil-
ton Jacobi mechanics implies [4]

[
A(qf , qs)Ā(qs, q

′
s)A(q′f , q

′
s)

Det[Σ(2)]

]1/2

= Ā(qf , q
′
f) . (7.20)
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Note that for an initial equilibrium state, formally θ(·) → 1 in (7.3) so that
u, u′ → ∞ in (7.18), the form factor becomes 1 and the semiclassical den-
sity matrix is in fact stationary. When there is more than one classical path
one has to sum in (7.17) over the contributions of all of them. Certainly, the
above formulae (7.18) and (7.19) are only applicable as long as the Gaussian
semiclassical and stationary phase approximations are valid, i.e. as fluctua-
tions are sufficiently small. This will be seen to be no longer the case for low
temperatures and/or very long times. How the classical paths in the complex
plane can then be used as a skeleton for an extended semiclassical/stationary
phase calculation will be shown below.

Since in the sequel we are particularly interested in the flux across a barrier,
we restrict our analysis to non-diagonal end-coordinates qf and q′f = −qf of
the density matrix close to the barrier top.

7.2 Parabolic Barrier

The semiclassical and the stationary phase approximations are always exact
for quadratic potentials. In this Section we will thus first re-derive the findings
gained in Sect. 6.2 within the methodology developed above and for vanishing
dissipation. We consider a parabolic barrier

V (q) = −1
2
Mω2

b q2 (7.21)

so that the imaginary time dynamics runs in a harmonic oscillator potential.
For the minimal action path q̄0(σ) connecting −qf with qf in time h̄β one
obtains

q̄0(σ) =
qf

sin(ωbh̄β/2)
sin [ωb(σ − h̄β/2)] . (7.22)

This leads to the known equilibrium density matrix

ρβ(qf ,−qf) =
1√

4πδ2
b sin(ωbh̄β)

exp
[
− cot(ωbh̄β/2)

q2
f

2δ2
b

]
(7.23)

with the relevant length scale δb =
√

h̄/2Mωb.
The real-time dynamics simply follows. The classical real-time paths q(u)

and q′(u) lead to the endpoints qf and −qf , respectively, and hence obey q(t) =
qf , q′(t) = −qf . On the other hand, the stationary phase condition (7.12)
implies q̇(t) = i ˙̄q(h̄β), q̇′(t) = i ˙̄q(0) and we readily find q(u) = q̄(h̄β − it + iu),
i.e.,

q(u) =
qf

sin(ωbh̄β/2)
sin [ωb(h̄β/2 − it + iu)] ,

q′(u) = q(u + ih̄β), 0 ≤ u ≤ t. (7.24)
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Fig. 7.2. Semiclassical paths (dashed lines) in the complex plane near the parabolic
barrier top. Shaded area contains relevant intermediate coordinates qi, q

′
i reached by

fluctuations along arrows.

At time t the imaginary time path q̄0(σ) from −qf to qf is mapped onto
the path q̄s(σ) = q(ih̄β − iσ), 0 ≤ σ ≤ h̄β connecting q′s(t) = q′(0) with
qs(t) = q(0) (Fig. 7.2). The stationary phase points

qs(t) =
qf

sin(ωbh̄β/2)
sin [ωb(h̄β/2 − it)]

q′s(t) = −qs(t)∗ (7.25)

are as functions of t also classical paths moving away from the barrier top
as t increases – qs(t) to the right and q′s(t) to the left for qf > 0. For longer
times ωbt 	 1, the stationary phase points asymptotically tend towards the
limiting trajectories starting from qf = 0 referred to as asymptotes henceforth.
Similar to separatrices in classical phase space, these asymptotes divide the
complex plane in regions of negative and positive Euclidian energy: in the
sectors including the real axis classical real time motion has Ē < 0 (but
E ≤ 0 or E > 0) while in the remaining parts Ē > 0. However, in contrast to
simple classical separatrices the asymptotes are temperature dependent. The
angle α of the qs and q′s-asymptotes with the positive and negative real axis,
respectively, is found as

α =
π − ωbh̄β

2
. (7.26)

Now, for the nonequilibrium preparation (7.3) the initial coordinates qi, q
′
i

are constrained to Re{qi}, Re{q′i} ≤ 0. Since qs(t) and q′s(t) are on different
sides of the barrier, ρ(qf ,−qf , t) gains nonvanishing values only due to fluc-
tuations that effectively shift qi away from qs and across the barrier top [see
(7.19)]. For the parabolic barrier potential the matrix elements in (7.16) take
the simple form
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Σss = Mωb [cot(ωbh̄β) − i coth(ωbt)] , Σs′s′ = Σ∗
ss,

Σss′ = − Mωb

sin(ωbh̄β)
(7.27)

so that the matrix Σ(2) can easily be diagonalized. One finds for the eigenval-
ues

λ±
Mωb

= cot(ωbh̄β) ±
[
cot(ωbh̄β)2 − 1

sinh(ωbt)2

]1/2

. (7.28)

While, in principle, with (7.18) we can now evaluate the complete dynamics of
the density matrix, we will concentrate here on the long time asymptotics of
the nonequilibrium state. Then, in the asymptotic region ωbt 	 1 the eigen-
value λ− tends to zero as λ− ∝ Mωb exp(−ωbt), reflecting the instability of
the parabolic barrier. Hence, fluctuations around the stationary phase points
with the least action increase occur in the direction of the eigenvector with
eigenvalue λ−. These fluctuations are of the form yi = |yi| exp[i(α+ωbh̄β)] and
y′
i = |yi| exp(iα) so that qi and q′i move simultaneously along their asymptotes

meeting at the barrier top (see Fig. 7.2). Now, inserting the matrix elements
(7.27) and the stationary phase points (7.25) into (7.19) and considering the
limit ωbt 	 1, the relevant form factor turns out to be stationary

gfl(q,−q) =
1√
π

∫ i2qΩ

−∞
dx e−x2

(7.29)

with Ω =
√

cot(ωbh̄β/2)/(8δ2
b). The corresponding constant flux across the

barrier is obtained from (7.5) and (7.17) as

Jst =
h̄

2ZM
ρβ(0, 0)

∂gfl(qf ,−qf)
∂qf

∣∣∣∣
qf=0

, (7.30)

which leads to the known result

Γ = Jst =
ωb

4π

1
Z sin(ωbh̄β/2)

. (7.31)

Here, Z denotes an appropriate normalization constant, which may be taken
as the relative normalization with respect to the minimum of the full anhar-
monic potential. We mention that the parabolic barrier approximation makes
physically only sense for temperatures above the critical temperature Tc [see
Sect. 6.3] and the specific form of the barrier potential must be considered for
T < Tc.

7.3 Double Well Potential

A model well-behaved for the entire range of temperatures is the bistable
dynamics of a particle moving in a double well potential
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V (q) = −Mω2
b

2
q2

[
1 − q2

2q2
a

]
. (7.32)

Here, the barrier is located at q = 0, the wells at q = ±qa, and the barrier
height is Vb = −V (qa) = (Mω2

b/4)q2
a . This potential exhibits rich quantum

dynamics, namely, incoherent hopping between the wells over a broad range
of temperatures that changes to coherent oscillations for T → 0. Due to
the complexity of the dynamics this is a highly nontrivial problem for the
semiclassical approach where the ratio δb/qa serves as the small parameter.

7.3.1 Thermal Equilibrium

The Euclidian mechanics in the inverted potential −V (q) can be solved exactly
using Jacobian elliptic functions [5]. For the general solution one obtains

q̄0(qf , σ) = B sn [ω(B)σ − φf |m] , 0 ≤ σ ≤ h̄β , (7.33)

where the boundary conditions q̄0(qf , 0) = −qf and q̄0(qf , h̄β) = qf fix the
amplitude B and phase φf . Since the potential is no longer purely quadratic,
depending on temperature there may be several solutions each of them with
another amplitude. In (7.33) the frequency is given by

ω(B) = ωb

√
1 − η2, η2 =

B2

2q2
a

, (7.34)

and the phase can be represented as an incomplete elliptic integral

φf = F (qf/B|m) =
∫ qf/B

0

dx
1√

(1 − x2)(1 − mx2)
(7.35)

with the so-called modul m = η2/(1 − η2). From the boundary condi-
tion q̄0(h̄β) = −q̄0(0) and the periodicity of the Jacobian function, sn[z +
2rK(m)|m] = (−1)rsn[z|m], r = 1, 2, 3, . . . with K(m) = F (1,m), the ampli-
tude B is determined by

ω(B)h̄β = 2rK(m) + [1 + (−1)r]φf . (7.36)

Since K(m), φf > 0, for fixed ωbh̄β real solutions to this equation exist only
for a finite number of integers r ≥ 0.

Let us briefly discuss the trajectories q̄0(qf , σ) as the temperature is low-
ered. For high temperatures only solutions of (7.36) with r = 0 exist corre-
sponding to direct paths from −qf to qf ; particularly, q̄0(0, σ) = 0. As the
temperature drops below the critical temperature

Tc = h̄ωb/πkB, (7.37)

i.e. ωbh̄β > π, solutions of (7.36) with r = 1 arise. Then, for qf = 0 the
barrier top can be joined with itself also by two nonlocal paths denoted by
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q̄±(0, σ) oscillating in −V (q) to the right and to the left with amplitudes ±q1,
respectively, and energy Ē1 = V (q1). With further decreasing temperature q1

grows and eventually saturates at qa for T → 0. For finite qf the situation
is rather similar: oscillating paths q̄±(qf , σ) exist for all qf < q1. These paths
connect −qf with qf via a turning point at ±q1, thus, differing from q̄±(0, σ)
only by a phase shift. The described scenario repeats in an analog way at all
T = Tc/r, r = 2, 3, 4, . . . , where r counts the number of turning points. At
zero temperature all these oscillating paths reach ±qa with the same energy
Ēa = V (qa) and are then called instantons.

Now that all proper Euclidian trajectories are identified, the semiclassical
equilibrium state follows readily. For high temperatures T > Tc and end-
coordinates qf near the barrier top, ρβ(qf ,−qf) basically coincides with the
parabolic result (7.23) and anharmonic corrections are negligible. This situ-
ation changes drastically for temperatures near Tc. Then, the bifurcation of
new classical paths leads to large quantum fluctuations and one has to go be-
yond the Gaussian approximation of the fluctuation integral. Slightly below
Tc a caustic appears for qf = q1. It turns out that the paths newly emerging
near Tc are stable and dominate ρβ(q, q′) for all Tc > T > 0 while the unstable
high temperature paths and those popping up at even lower T give negligible
contributions. Since for qf < q1 all paths q̄±(qf , σ) differ only by a phase shift,
one has for the corresponding actions

S̄±(qf ,−qf) = S̄+(0, 0) = S̄−(0, 0) (7.38)

so that

ρβ(qf ,−qf) = 2[Ā(qf ,−qf)]1/2 exp[−S̄+(0, 0)/h̄], qf < q1 . (7.39)

Accordingly, the matrix element ρβ(qf ,−qf) changes to a non-Gaussian distri-
bution with a local minimum at qf = 0 and two maxima at qf = ±q1. Thereby
S̄+(0, 0) < 0, so that the probability ρβ(0, 0) to find the particle at q = 0 is
substantially enhanced compared to its classical value.

For T → 0 it is no longer sufficient to include only the trajectories with
r = 1 in the semiclassical analysis but rather all other paths with r > 1
must also be taken into account. This is due to the fact that the smaller
action factors of these latter paths are compensated for by zero mode phase
factors from the corresponding fluctuation path integrals. Hence, all instanton
contributions are summed up to yield e.g. for coordinates near the barrier top

ρβ(qf ,−qf) =
8

δa

√
2π

e−β[V (qa)+h̄ωa/2]−W̄a/h̄

×
[
cosh

(
h̄β∆

2

)
+ cosh

(
qfqa

2δ2
a

)
sinh

(
h̄β∆

2

)]
. (7.40)

Here, W̄a ≡ W̄ (−qa, qa) = −h̄βĒ + S̄(−qa, qa) is the short action for an
instanton from −qa to qa. Further,
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∆ = ωa
4qa√
2πδa

exp(−W̄a/h̄) (7.41)

denotes the WKB tunnel splitting with the well frequency ωa = ωb

√
2 and

δ2
a = h̄/2Mωa.

7.3.2 Dynamics of Stationary Phase Points

As in case of the parabolic barrier, the stationary real-time paths can be
directly inferred from the Euclidian dynamics at t = 0. From (7.33) and the
stationary phase condition we have

qs(t) = B sn[φf − iω(B)t|m], q′s(t) = −qs[(−1)r+1t] (7.42)

and q̄0(σ) is mapped at time t onto q̄s(σ) = q̄0[σ + i(−1)r+1t] where r fol-
lows from (7.36). In the sequel we always formulate the semiclassical theory
in terms of the real time paths qs, q

′
s that start at the endpoints qf ,−qf , re-

spectively, and reach the initial points qi, q
′
i after time t. Since the endpoints

qf ,−qf are fixed, while the most relevant initial coordinates depend on time,
this backward view of the dynamics is in fact more transparent. The real time
trajectories now start from the end coordinates we are interested in and lead
to the relevant initial coordinates that need to be integrated over with an
integrand weighted according to the initial deviations from equilibrium. The
path qs(t) runs in the complex coordinate plane as a periodic orbit with pe-
riod tp(qf) = 2K(1 − m)/ω(B) (Fig. 7.3). Within one period it connects qf

with qf via a loop crossing the real axis also after time tp(qf)/2 at the point
qc(qf) = qs[qf , tp(qf)/2] ≥ qa. Thus qs(t) stays always on the same side of the
barrier top and likewise q′s(t) on the other side so that the complex dynamics
of the stationary phase points starting from qf and −qf , respectively, reflects
a bounded motion in either of the potential wells.

Let us consider the stationary orbits as the temperature decreases. For
high temperatures T > Tc, i.e. r = 0, each qf -dependent loop carries its own
period tp(qf) and energy E(qf). If qf �= 0, tp is small for T 	 Tc and the real
time dynamics corresponds to a fast bouncing back and forth in the well. As
the temperature is lowered the period grows while simultaneously the width
of the loop qc(qf) shrinks. In the special case qf = 0 the real time path reduces
to a constant qs(0, t) = 0. For temperatures T < Tc the situation changes
according to the appearance of new oscillating Euclidian paths q̄±(qf , σ) for
qf < q1. In contrast to the high temperature case all stationary phase point
paths with qf < q1 have then the same period tp(qf) = tp(q1) and energy
E(qf) = Ē1, and differ only in their respective phases. Special cases are qf = 0
and qf = q1: The path qs(qf , t), qf → 0 runs along the imaginary axis, while
the orbit qs(q1, t) degenerates to a usual well oscillation along the real axis.
These properties have a direct effect on the corresponding actions. One finds
by employing Cauchy’s theorem that after each period
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Im{ }

Fig. 7.3. Real time paths in the double well potential with wells at ±qa (dots)
for various qf and T = 0 (thin lines). The thick line shows a typical fluctuation
connecting orbits with different qf .

S[qs(qf , ntp), qf ] = S[qs(q1, ntp), q1], qf ≤ q1. (7.43)

Hence, all qs(qf , t) for qf < q1 can be seen as phase shifted copies of the specific
real path qs(q1, t) having the same energy, period, and action increase during
one period. In particular, the period tp(q1) is large for T <∼Tc when q1 is still
small, tp(q1) ≈ ln(qa/q1)/ωb, and drops down to tp(qa) = 2π/ωa in the limit
T → 0.

7.3.3 Dynamics for High and Moderate Low Temperatures

For t = 0 the density matrix is given by the initial state (7.3). The semiclassical
time evolution of this state follows by inserting the proper classical paths into
(7.17). In the sequel, we mainly focus on the long time dynamics and are
especially interested in a plateau region where the time evolution becomes
quasi-stationary.

We start by addressing the question when a plateau region does exist at
all. Inserting the classical paths into g(qf ,−qf , t) in (7.19), the detailed analy-
sis reveals that this function becomes stationary when the ratio qs(t)/ps(t)
reduces to a constant. Since this will only occur within the parabolic barrier
region, a least upper bound for a plateau region follows from the time interval
within which a particle starting at a typical point qb near the barrier top
continues to experience a nearly parabolic potential. This leads to t � tp(qb).
The lower bound is obvious: it is given by the transient time near the top, i.e.
by 1/ωb. Hence, a plateau region can be estimated to occur as long as there
is clear separation of time scales between local barrier motion and global well
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oscillations, i.e., 1 � ωbt � ωbtp(qb). Particularly, in the temperature domain
where a plateau region exists, the Gaussian/stationary phase approximations
are valid and we can actually calculate a rate. These approximations break
down when the stationary phase points move far from the barrier top and
times of order tp(qb) become relevant for the barrier crossing.

For high temperatures T > Tc the typical length scale qb can be identified
with δb =

√
h̄/2Mωb. Then, the separation of time scales fails for very high

temperatures where kBT >∼8Vb meaning that the thermal energy is of the
same order or larger than the barrier height. With decreasing temperature tp
grows so that for ωbh̄β of order 1 a wide plateau range appears with tp ≈
ln(qa/δb)/ωb. In the corresponding density matrix anharmonic corrections
are small, and we obtain approximately the parabolic result (7.29). To get
the rate, here, the proper normalization constant Z is taken as the partition
function of the harmonic well oscillator

Z =
1

2 sinh(ωah̄β/2)
eβVb . (7.44)

Hence, from (7.30) one regains the known result

Γ =
ωb

2π

sinh(ωah̄β/2)
sin(ωbh̄β/2)

e−βVb (7.45)

with the exponential Arrhenius factor and a characteristic h̄-dependent pref-
actor that formally tends to ωa/ωb in the classical limit and describes the
quantum enhancement of the rate as Tc is approached.

At this point we have to be very careful: the detailed analysis [6, 7] of
the full density matrix ρ(qf , q

′
f , t) in Sect. 6.2.1, not only of its nondiagonal

part, reveals that the nonequilibrium effects described by the flux state are
restricted to the barrier region only in the presence of damping, consistent
with the fact that finite temperature decay rates require coupling to a heat
bath. In the absence of damping the full density matrix does not become
quasi-stationary and the real time trajectories explore the strongly anhar-
monic range of the potential. Hence, an evaluation of the rate based upon
a supposedly quasi-stationary flux state ρfl(qf ,−qf) for the undamped case
corresponds to the transition state theory result.

As the temperature reaches Tc large quantum fluctuations occur and the
impact of anharmonicities becomes substantial. A detailed study of the bifur-
cation range around Tc is quite tedious and was already presented in [8, 9].
Thus, we omit explicit results here and proceed with temperatures T <∼Tc

where for coordinates close to the barrier top a Gaussian approximation –
then around the newly emerging paths with amplitudes ±q1 – is again ap-
propriate. As discussed above all real time paths with qf < q1 have now the
same oscillation period tp(q1) ≈ ln(qa/q1)/ωb. One observes that even though
they are influenced by the anharmonicity of the potential via the Euclidian
amplitude q1, their time evolution for T <∼Tc is still dominated by parabolic
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properties. A somewhat lengthy algebra leads to the quasi-stationary density
matrix

ρfl(qf ,−qf) =
1
2
ρβ(qf ,−qf)

[
g
(+)
fl (qf ,−qf) + g

(−)
fl (qf ,−qf)

]
, (7.46)

where g
(±)
fl describe the contributions from each of the two oscillating Euclid-

ian paths. Note that due to symmetry in ρβ(qf ,−qf), these contributions are
identical and just lead to a factor of 2. In the temperature domain studied
here, q1 can be gained analytically from (7.36) as

q1 =
2qa√

3

(
1 − π2

ω2
bh̄2β2

)1/2

. (7.47)

Accordingly, one finds with some algebra for the thermal distribution

ρβ(0, 0) =
1√

2πδ2
b| sin(ωbh̄β)|

exp


ωbh̄βq2

a

12δ2
b

(
1 − π2

ω2
bh̄2β2

)2

 . (7.48)

The form factor now has two contributions of the form (7.18) and for κ1 =
∂ ln(q1)/∂(ωbh̄β) 	 1 the corresponding integration boundaries read

u(±)(qf) =
±q1 + iqf

4δb
√

κ1
, u′ (±)(qf , z) = κ1

[
u(±)(qf) − z

]
. (7.49)

Here, we employed that near Tc the derivative Σss is dominated by ∂2S̄/∂q2
i

which is proportional to ∂E1/∂(ωbh̄β) ∝ κ1. This way, using the normaliza-
tion (7.44), the result for the rate is

Γ =
ωb

2π

sinh(ωah̄β/2)√
2| sin(ωbh̄β)|

√
ωbh̄β − π2

ωbh̄β
e−βVb . (7.50)

This expression is valid for temperatures T < Tc where still κ1 	 1, a region
which can be estimated as T somewhat larger than Tc/2. There are two in-
teresting observations to mention: first, the exponentially large term in the
thermal distribution (7.48) – a consequence of the new Euclidian paths – is ex-
actly canceled by a corresponding term which arises from the derivative of the
form factor. This way, the rate is still dominated by the characteristic Arrhe-
nius factor. Second, in the limit T → Tc the above-Tc formula (7.45) and the
below-Tc result (7.50) both approach Γc = (ωb/2π) sinh(ωah̄β/2) exp(−βVb),
however, the derivatives ∂Γ/∂T are different. This discontinuity in the slope
of the temperature dependent rate is removed by a full semiclassical theory
[9] which takes the non-Gaussian fluctuations near Tc into account and leads
to a smooth changeover between the rate formulas (7.45) and (7.50).

With further decreasing temperature the amplitude q1 tends to saturate
at qa so that κ1 → 0 and the above rate expression is no longer applicable.
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Furthermore, the plateau region shrinks and eventually vanishes so that the
assumption of a quasi-stationary flux state becomes inadequate even in the
sense of a transition state theory limit of a weak damping theory. We note
that in case of finite damping a meaningful rate can be found for much lower
temperatures, then describing incoherent quantum tunneling (see Sect. 5.6).
To investigate the time dependence of ρ(qf ,−qf , t) with no damping in the
limit of deep tunneling, we consider the case T = 0 in the next Section.

7.3.4 Nonequilibrium Dynamics for Zero Temperature

In Chap. 4 we discussed tunneling processes for wave packet propagations.
It turned out that any Gaussian semiclassics to the real time propagator is
expected to break down, when deep tunneling prevails. Here, we extend these
studies to the case of the time evolution of the density matrix describing the
nonequilibrium dynamics of an ensemble.

The analysis is based upon the complex plane mechanics discussed above.
Since this dynamics behaves as the usual classical real time mechanics, paths
with E < 0 never cross the barrier. However, a full semiclassical treatment
needs to account for the dominant fluctuations about the semiclassical paths.
Now, for T < Tc there is a whole family of loop-like orbits in the complex
plane; all with the same energy, period, and action increase after one period
differing from each other only by their respective phases, i.e. by their crossing
points qf ≤ q1 with the real axis. It turns out that each time these orbits pass
their end-coordinate qf there are other trajectories of this family arbitrarily
close in phase space (see Fig. 7.4). The role of quantum mechanics then is to
induce transitions between these orbits via small fluctuations. For sufficiently
long times a path starting at a certain qf near the barrier top may successively

Re{q}

R
e{

p}

Im{q}

Im
{p

}

Fig. 7.4. Phase spaces orbits of complex real time paths in the double well potential
at T = 0. In the left picture the real part of the orbits is shown for trajectories
starting with qf > 0 near the barrier top; the dot indicates the well at qa. In the
right picture the corresponding imaginary parts are depicted.
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slip down to an orbit with another phase q′f , eventually reach the stable re-
gions around ±qa, and fluctuate in the long time limit between these regions.
That this scenario actually captures the low temperature coherent tunneling
dynamics will be described in some detail in the sequel.

Fluctuation Paths

For T = 0 the amplitude of the Euclidian time paths is q1 = qa. Thus,
all stationary paths qs(qf , t), q′s(qf , t) have energy E = V (qa) and period
ta ≡ tp(qa) = 2π/ωa. Then, the Euclidian action S̄(qi, q

′
i) suppresses en-

ergy fluctuations around E = V (qa) exponentially, so that classical paths
running in time t from qi �= qs and q′i �= q′s to qf and −qf , respectively,
i.e. with E �= V (qa), are negligible. Further, studying the short action,
W (q, q′) =

∫ q′

q
dq p ≡ S(q, q′) + Et, one finds according to (7.43) that after

each period W (qf , qf) = W (qa, qa) = 0. This result combined with the fluc-
tuation prefactor [see (7.9)] gives for the Gaussian propagator after multiple
round trips and for coordinates qf < qa

|G(qf , qf , nta)|2 ∝ 1
nta(q2

a − q2
f )

, n = 1, 2, 3, . . . . (7.51)

Hence, the probability to return to the starting point decreases as the number
of periods increases. In contrast, in the vicinity of the wells the Gaussian prop-
agator coincides with the harmonic propagator. To be more precise, due to
caustics in the semiclassics of this simple propagator at all nta/2, an extended
semiclassical analysis must be invoked leading to an Airy function; details of
the procedure are well-known [10] and of no interest here. The important
point is that in the barrier region the simple semiclassical return probability
decays to zero for large times while in the well regions it remains constant.
Thus, we conclude that the dominant quantum fluctuations neglected in the
Gaussian approximation to the real time propagators are those that connect
stationary paths with the same energy but different phases, i.e. initial coordi-
nates qf . Effectively, these relevant fluctuations shift q slightly away from the
classical path qs(qf , t) to reach another stationary path qs(q′f , t) (cf. Fig 7.3).
The corresponding change in action after a period and for small deviations is
simply

W (q′f , qf) ≈ ps(qf , 0)(q′f − qf). (7.52)

This repeats at subsequent oscillations. Hence, a fluctuation path can be char-
acterized by its sequence of crossing points with the real axis after each round
trip, e.g. by q(k), k = 1, . . . , n for t = nta where q(1) = qf . Accordingly, a fluc-
tuation path is not a classical path, i.e. it does not fulfill Newton’s equation
of motion, but can be seen as almost classical since it stays always in the close
vicinity of a classical path. In the sequel we first explain the general structure
of the extended semiclassical approximation and later on turn to details of the
calculation. As an example let us consider a fluctuation path starting at qf
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(a)

(c) (d)

(b)

Fig. 7.5. Diffusion of the crossing point q(n) of a fluctuation path along the real
axis (thick lines) for various cases discussed in the text. Dots indicate the wells at
±qa that are branch points for the momenta, thin vertical lines the end-coordinates
at ±qf . Solid lines refer to the forward, dotted ones to the backward propagator, a
crossing of a dot a TP.

that spirals around qa while the crossing point q(n) with the real axis diffuses
close to qa and returns to qf in t 	 ta (see Fig. 7.5a). According to (7.52) on
the way to qa a particular path gathers an additional action W+(qa, qf) which
is imaginary due to imaginary ps(q, 0) [see (7.12)] where

|W+(qa, qf)| =
∫ qa

qf

dq {2M [V (q) − V (qa)]}1/2 (7.53)

and the + [−] sign stands for clockwise [anti-clockwise] rotation of the path
in the complex plane. As long as the crossing point qf does not diffuse the
imaginary time path connecting the endpoints of the two real time paths
coincides at t = nta with the imaginary time orbit connecting −qf with qf

at t = 0. Taking into account the phase fluctuations, however, forces the
endpoint of the imaginary time path to move with the endpoint q(n) of the
real time path also towards qa. The mapped imaginary time path after t 	 ta
therefore runs from −qf to qa. According to (7.12) the additional amount of
Euclidian action required for this deformation of the imaginary time path
exactly counterbalances W (qa, qf) so that the total action Σ remains constant
which reflects the stationarity of Σ along stationary paths. From close to
qa the fluctuation path spirals back to qf . However, since qa is a branching
point of the momentum there are two channels: the real time fluctuation path
can maintain the direction of rotation or pass the turning point (TP) qa,
thus changing the sense of rotation (cf. Fig. 7.5a). In the former case on the
way back from qa to qf the fluctuation path crosses the real axis with the
same direction of momentum as on the way to qa, so that due to W+(q, q′) =
−W+(q′, q) the path looses the action W+(qa, qf) again and returns to qf with
W (qf , qf) = 0. In the latter case, momenta on the way back have opposite
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direction to those on the way forth so that the path arrives at qf with action
W (qf , qf) = W+(qa, qf)+W−(qf , qa) = 2W+(qa, qf) and momentum −ps(qf , 0).

Moreover, a fluctuation path starting at qf > 0 can either move along
the real axis to the right to reach qa or move to the left to arrive at −qa.
In the latter case, the crossing point q(n) diffuses across the barrier top so
that the path initially spiraling around qa finally orbits around −qa with op-
posite sense of rotation. Accordingly, due to W+(qa, 0) = −W−(−qa, 0) the
real time action factor exp[iW (±qa, 0)/h̄] grows or decreases exponentially
for diffusion to the right or to the left, respectively. In any case, near ±qa

the semiclassical propagator has to match onto the propagators in the har-
monic wells. For the two lowest lying eigenstates which are relevant here, the
matching procedure was discussed in detail by Coleman [11]. Correspondingly,
these two states determine the relevant propagator in its spectral represen-
tation. Then, it turns out that a TP may only occur if iW (qf ,±qa) < 0.
This has profound consequences on the extended semiclassical approxima-
tion: (i) A relevant fluctuation path from qf to qf must reach ±qa rotating
clockwise to have a TP. Then W+(qa, qf) + W−(qf , qa) = 2i|W (qa, qf)| and
the corresponding contribution to the propagator has an exponentially small
factor exp[−2|W (qa, qf)|]. (ii) A fluctuation path with more than one TP has
to alternately visit TPs at ±qa thereby changing its sense of rotation re-
peatedly. In passing from one TP to the next the path gathers the action
W−(0,−qa) + W+(qa, 0) = W−(0, qa) + W+(−qa, 0) = i|W (qa,−qa)| ≡ iW̄a

which coincides with the instanton action in ∆ introduced in (7.41). Hence,
according to (i) contributions from fluctuation paths with TPs do not play any
role for short times. For longer times, however, they become increasingly im-
portant, particularly, since a fluctuation path may spend an arbitrary period
of time at the TPs ±qa where V ′(qa) = 0 before leaving them. The detailed
analysis shows (see below) that for t 	 ta the phase space of equivalent fluctu-
ations with one TP is therefore ∝ t which compensates for the exponentially
small action factor. Moreover, at each TP a path gathers an additional Maslov
index ν → ν + 1. Then, according to (ii) the full density matrix is given by a
sum over ν, ν′ taking into account the proper order of TPs, i.e.

ρ(qf ,−qf , t) =
∑

ν,ν′≥0

ρν,ν′(qf ,−qf , t) , (7.54)

where ρν,ν′ denotes the contribution from relevant fluctuation paths with ν
TPs in the forward and ν′ TPs in the backward propagator. Note that ν, ν′

only label the TPs of the two real time paths. For each ν, ν′ one has also to
sum over all imaginary time paths connecting the endpoints of the real time
orbits.

Nonequilibrium Density Matrix

To evaluate the sum in (7.54) we start by analysing the term with ν = ν′ = 0.
As discussed above the diffusion of the real time orbits is then irrelevant and
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the imaginary time path has to run form −qf to qf . To lowest order in ∆ [see
(7.40)] we have the two imaginary time paths q̄±(qf , σ) emerging at Tc that
connect −qf with qf via TPs at ±qa, respectively. At T = 0 other solutions of
the imaginary time dynamics with r > 1 [cf. (7.36)] just contain additional
intermediate instantons, i.e. imaginary time trajectories connecting qa with
−qa or vice versa. For an equilibrium initial preparation (small) fluctuations
about the stationary paths towards ±qa, respectively, give identical contribu-
tions and we thus recover ρβ(qf ,−qf)/Z (7.40) in the limit T → 0 with the
partition function

Z = 2 exp[−βV (qa) − βh̄ωa/2] cosh(h̄β∆/2) . (7.55)

For the nonequilibrium preparation, however, only fluctuations towards −qa

contribute (Fig. 7.5b). This way, one obtains for coordinates qf near the barrier
top

ρ0,0(qf ,−qf , t) =
1
2

lim
β→∞

1
Z

ρβ(qf ,−qf)

=
4√

2πδa

exp[−W̄a/h̄] cosh
(
qfqa/4δ2

a

)2

≡ 1
2

ψ0(qf)2 , (7.56)

where we used the short action of an instanton W̄a = W̄ (qa,−qa) with W̄a =
|W (qa,−qa)| and ψ0(qf) denotes the semiclassical ground state wave function
in the double well.

The next order real time paths are those with one TP, i.e. ν = 1, ν′ = 0 and
ν = 0, ν′ = 1 in (7.54). Thereby, the real time path qs(t) makes an excursion
from qf via a TP at qa to −qa in case where at t = 0 the endpoints −qf

and qf are connected by an imaginary time path q̄−, while it diffuses from qf

via a TP at −qa to qa in case of q̄+. Accordingly, one observes that for an
equilibrium initial preparation all contributions cancel, e.g. the contribution
corresponding to q̄− with ν = 1, ν′ = 0 cancels that corresponding to q̄+ with
ν = 0, ν′ = 1. In fact, it can be shown in the same way that for an equilibrium
initial state all terms in the sum (7.54) with ν, ν′ > 0 vanish. However, for
the initial preparation (7.3) a finite result follows due to the projection onto
the left side of the complex plane. Hence, both real time orbits have to end
near −qa whereby one trajectory has a TP at qa. According to the above
discussion we gain the following action factors: for ν = 1, ν′ = 0 one has
exp[−3|W (qa, 0)|/h̄ + qaqf/(4δ2

a)] from the forward and exp[−|W (qa, 0)|/h̄ +
qaqf/(4δ2

a)] from the backward propagator (cf. Fig. 7.5c) while ν = 0, ν′ = 1
gives exp[−|W (qa, 0)|/h̄ − qaqf/(4δ2

a)] and exp[−3|W (qa, 0)|/h̄ − qaqf/(4δ2
a)]

(cf. Fig. 7.5d), respectively. After expanding the integrand in (7.1) around −qa

up to second order, the ordinary integrations over the initial coordinates are
seen to be restricted to the harmonic range around −qa so that the θ functions
can be put to 1. Then, the integrals effectively describe the stationary real
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time motion of the equilibrium well distribution ρβ(−qa,−qa). Combining
these findings yields

ρ1(qf ,−qf , t) ≡ ρ1,0(qf ,−qf , t) + ρ0,1(qf ,−qf , t)

= i8 Φ(t) exp[− 2
h̄
|W (qa,−qa)|]

× sinh
(

qfqa

2δ2
a

)
1
Z

ρβ(−qa,−qa) . (7.57)

Here ρβ(−qa,−qa) includes a sum over multi-instanton contributions of the
imaginary time paths, resulting for T → 0 in ρβ(−qa,−qa)/Z =

√
Mωa/4πh̄.

Further, Φ(t) ∝ t takes into account the phase space contribution from equiv-
alent fluctuation paths connecting qf via a TP at qa with −qa. These paths
differ only in their sojourn times at the TP qa. To evaluate Φ we adopt the
method outlined in [12] to which we also refer for further details and write

G(qa,−qa, t) =
∫ t

0

du G(qa, t − u) q̇s(0, u)G(0,−qa, u) . (7.58)

Since for t 	 ta the sojourn time is exponentially large, one can actually
sum the intermediate time step u over the entire time interval up to negli-
gible corrections. To calculate the semiclassical propagators in the integrand
of (7.58) one exploits that a fluctuation path moving from q = 0 to qa in
time t 	 ta spends almost all time by orbiting in the vicinity of qa thereby
diffusing along the classical stationary paths (7.42) with qf

<∼qa towards the
TP. Hence, the time dependence of the propagators is determined only by
the asymptotic behavior of the fluctuation paths. Then, as already derived
in the previous paragraph, the actions turn out to be independent of time
up to exponentially small corrections and their sum gives rise to the action
factor exp[−|W (qa,−qa)|/h̄] in G(qa,−qa, t). For the prefactors one uses the
representation (7.9), and exploits the fact that q̇s(0, u)

√
At−u(qa, 0)Au(0,−qa)

depends for t 	 ta on time and temperature only through exp[−(h̄β+it)ωa/2]
while its dependence on the intermediate time step u is exponentially small.
This way, since both exponential factors are already accounted for in (7.57),
we arrive at

Φ(t) = G(qa,−qa, t) exp[|W (qa,−qa)|/h̄ + (h̄β + it)ωa/2] , (7.59)

which leads to
Φ(t) = t

4ωaqa√
2πδa

. (7.60)

Combining this result with (7.57) we derive the one-TP contribution to (7.54)
as

ρ1(qf ,−qf , t) = it∆2 sinh(qaqf/2δ2
a)

ωaqa
, (7.61)
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where the tunnel splitting is specified in (7.41). Likewise, contributions from
real time paths with more than one TP can be calculated where the proper
order of TPs must be taken into account. Eventually, only contributions with
i2k−1∆2k, k = 1, 2, . . . survive and the time dependent density matrix (7.54)
for coordinates near barrier top reads

ρ(qf ,−qf , t) =
1
2
ψ0(qf ,−qf)2 + i∆ sin(∆t) sinh(qaqf/2δ2

a)/(ωaqa) . (7.62)

Hence, the initial state (7.3) develops an imaginary, time dependent part from
which the tunneling current (7.5) is gained as

J(t) = ∆ sin(∆t) (7.63)

describing coherent tunneling between the wells. This shows that a systematic
semiclassical analysis of the real time dynamics of the system covers also low
temperature tunneling. We note that the tunnel splitting coincides exactly
with the result of the instanton approach [see (7.41)] where ∆ is related to
the action of an imaginary time path. Within the real time description the
instanton dynamics is replaced by the above-mentioned diffusion along the
real axis in the complex coordinate plane.

Before we conclude this Section let us briefly sketch how the changeover
from coherent decay to incoherent tunneling occurs within the present formal-
ism as the temperature is raised. For finite temperatures T > 0 the energy
of the stationary paths is |Ē1| = |V (q1)| < |V (qa)| so that the TPs of the
fluctuation paths q1 < qa are shifted towards the barrier top. Accordingly,
V ′(q1) �= 0 and the corresponding actions in (7.58) are no longer independent
of time. Thus, the time interval t 	 ta may eventually exceed the region where
the integrand gives a contribution so that Φ(t) → Φfl saturates. We note that
for a system with dissipation basically the same mechanism, namely, an effec-
tive action depending on time via damping induced correlations, may cause
incoherent tunneling even at T = 0.

7.4 Eckart Barrier

As another instructive example we analyse the transport across a genuine
scattering potential, namely, the Eckart barrier [13] addressed in previous
Sections

V (q) =
V0

cosh(q/L0)2
. (7.64)

Here, V0 is the barrier height and L0 the typical interaction range. We drop
the condition V (q = 0) = 0 in this Section so that energies are shifted by
V0. In fact, the real time dynamics in this potential is much simpler as in the
double well: particles steadily injected from a thermal reservoir to the left of
the barrier built up a flux across the barrier that is stationary for all times
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after a certain transient time has elapsed. Thus, the corresponding quantum
dynamics is described by a barrier transmission rate for all temperatures (in-
coherent tunneling). In a semiclassical expansion we use h̄/

√
2ML2

0V0 as the
small parameter which demands high and broad barriers.

7.4.1 Thermal Equilibrium and Stationary Phase Points

The solution of Newton’s equation of motion for the Eckart barrier in imagi-
nary time reads [14]

q̄0(qf , σ) = L0 arsinh

{√
V0 − Ē

Ē
sin

[
ω(Ē)σ − φf

]}
, (7.65)

where we introduced the energy dependent frequency

ω(Ē) = ωb

√
Ē

V0
(7.66)

with the barrier frequency ωb =
√

2V0/ML2
0. Energy Ē and phase φf are

determined by the boundary conditions q̄0(qf , 0) = −qf and q̄0(qf , h̄β) = qf .
Accordingly, employing one of these conditions to fix φf , the energy can be
evaluated from

ω(Ē)h̄β = rπ + [1 + (−1)r]φf , (7.67)

where for given temperature real solutions exist only for a finite number of
integers r ≥ 0. Accordingly, this nonlinear equation gives the amplitude of
the semiclassical path. As a function of temperature the solutions (7.65) and
(7.67) resemble those in the inverted double well potential (cf. Sect. 7.3.2).
Particularly, for T < Tc again all paths with r = 1 have the same energy
independent of qf

Ē1 ≡ V (q1) =
π2V0

ω2
bh̄2β2

(7.68)

with amplitudes ±q1 and the same frequency ω1 = ω(Ē1). An important dif-
ference to the double well case, however, is that the amplitude q1 of the paths
here grows without any limit as T → 0, i.e. Ē1 → 0. Hence, the equilibrium
density matrices ρβ(qf ,−qf) differ qualitatively in the deep tunneling regime.
While for the double well potential near T = 0 contributions from all multi-
instanton paths must be summed up [see (7.40)], here, the density matrix is
dominated by the oscillating paths newly emerging around Tc = ωbh̄/kBπ for
all T < Tc. For further details of the Euclidian semiclassics we refer to [14].

Now, for the stationary phase points one has

qs(t) = L0 arsinh

{√
V0 − Ē

Ē
sin

[
φf − iω(Ē)t

]}

q′s(t) = −qs[(−1)r+1t] , (7.69)
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Fig. 7.6. Real time paths in the complex plane for the Eckart barrier. Solid lines
show orbits for T < Tc, dotted lines orbits for T > Tc.

which are connected by the Euclidian path q̄s(σ) = q̄0[σ + i(−1)r+1t]. Start-
ing at qf [−qf ] the path qs(t) [q′s(t)] describes for large times an almost free
motion parallel to the real axis in accordance with the asymptotically van-
ishing interaction V (q) → 0 as q → ±∞. The energy of qs(t) is controlled
by temperature where qualitatively the two ranges T > Tc and T ≤ Tc must
be distinguished. In the first case, Ē depends on qf and for qf > 0 we find
asymptotically, i.e. for ω(Ē)t 	 1,

qs(qf , t) ≈ L0 arsinh
[

sinh(qf/L0)
2 sin(ωbh̄β/2)

eω(Ē)t

]
− iL0

(
π

2
− ωbh̄β

2

)
(7.70)

so that for T > Tc all stationary paths are restricted to the strip i(L0/2)[−(π−
ωbh̄β), (π−ωbh̄β)] (cf. Fig. 7.6). In the range T < Tc and for end-coordinates
qf < q1 the oscillating Euclidian paths determine the energy independent of
qf as E = Ē1 [see (7.68)] with the frequency ω1 = ω(Ē1). Hence, in T � Tc

all path starting in the barrier range (qf
<∼L0) nearly coincide asymptotically

(see also Fig. 7.6) for ωbt 	 1

qs(qf , t) ≈ q1 + L0 ln [sinh(ω1t)] + iL0π/2 . (7.71)

Orbits with qf > L0 come also close to iL0π/2 but on a larger time scale,
e.g. for qf close to q1 	 L0 on the scale 1/ω1. Since Im{q′s} → −iL0π/2 for
large t we conclude that the real time stationary phase dynamics for T < Tc

is restricted to the strip [−iL0π/2, iL0π/2] in the complex plane (Fig. 7.6).
To complete this discussion we address the special cases qf = q1 and qf = 0,
respectively. In the former case the motion starts with zero momentum and
takes place along the real axis, asymptotically (ω1t 	 1) as
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qs(t, q1) ≈ q1 + L0ω1t . (7.72)

In the latter case the orbit can only be defined as the limiting trajectory of
qs(t, qf) for qf → 0, thus, running along the imaginary axis from q = 0 to
q = iL0π/2 and afterwards parallel to the real axis.

The described complex plane dynamics depends essentially on the analytic
properties of the potential V (q). Interestingly, in case of the Eckart barrier
one has for complex q the periodicity

V (q) = V (q + iL0nπ), n integer. (7.73)

Hence, the complex plane falls into strips [(2n − 1)iL0π/2, (2n + 1)iL0π/2], n
integer, parallel to the real axis each of which with identical classical mechanics
and corresponding stationary phase paths qs(qf + iL0nπ, t). As shown above,
for T < Tc the real time dynamics starting from the real axis at t = 0 reaches
asymptotically the boundaries of the strip n = 0, while in the range T > Tc

it does not. This has crucial impact on the semiclassical analysis for lower
temperatures as we will see below.

7.4.2 Flux for High and Moderate Low Temperatures

The systems starts from an initial state where the thermal equilibrium is
restricted to the left of the barrier, thus extending to q → −∞. Accordingly,
after a certain transient time has elapsed the flux across the barrier remains
stationary forever. Since with increasing time the stationary phase points
move away from the barrier top, for large times fluctuations of the order of L0

or larger are needed to shift qi into the region Re{qi} ≤ 0, then rendering the
Gaussian stationary phase approximation insufficient. Yet, we can use (7.17)
to gain Jst as long as the flux becomes stationary on a time scale within which
qs remains smaller than L0.

In the range T > Tc and for qf near the barrier top one has Ē ≈ V0 so that
ω(Ē) ≈ ωb. Then, the density matrix ρ(qf ,−qf , t) tends to stationarity on the
scale 1/ωb while qs(t) reaches L0 on the much longer time scale ln[V0/(Ē−V0)]
only. We thus regain within this time window approximately the parabolic re-
sult (7.29) in the semiclassical limit – large V0 and L0 – where anharmonicities
are negligibly small. Correspondingly, the rate reads as specified in (7.31) with
ωb =

√
2V0/ML2

0.
For temperatures T < Tc the transient time range grows according to

1/ω1 = h̄β/π, while the upper bound for the validity of the Gaussian approx-
imation eventually shrinks to 1/ωb. Hence, while one can no longer use the
local barrier dynamics for temperatures T � Tc, in a region sufficiently close
to Tc a rate calculation along the lines described in Sect. 7.3.3 still makes
sense. Accordingly, for T <∼Tc the density matrix is obtained as in (7.46) with
the amplitude q1 derived from (7.67) for r = 1 as

q1 = L0 arsinh

[√
(ωbh̄β)2 − π2

π

]
. (7.74)
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This way, one gets the rate

Γ =
ωb

4π2Z

√
(ωbh̄β)2 − π2

arsinh
[√

(ωbh̄β/π)2 − 1
] exp (−βV0) (7.75)

for temperatures below Tc but still above Tc/2. For even lower temperatures
higher order terms in the expansion around the stationary phase points qs, q

′
s

must be taken into account. In the following Section we show that for T below
Tc/2 the rate is dominated by quantum tunneling which requires an extended
semiclassical analysis. Thus, a higher order expansion is needed only in the
close vicinity of Tc/2 where the changeover from the thermal to the quantum
rate occurs.

7.4.3 Transmission for Low Temperatures

As in case of the double well potential, at very low temperatures a semiclas-
sical approximation needs to based upon a careful analysis of the quantum
fluctuations around the classical paths. This program will be now carried out
for the Eckart barrier.

We begin by recalling that in the range T � Tc and for coordinates qf <
q1 the classical mechanics in the complex plane takes place in strips [(2n −
1)iL0π/2, (2n + 1)iL0π/2], n integer, parallel to the real axis. One thus has
families of classical paths (cf. Fig. 7.6) all with the same energy Ē1 that start
at t → −∞ to the far right on the lines (2n − 1)iL0π/2, run close together
with almost vanishing momentum −ML0ω1 towards the barrier top, pass
at t = 0 the coordinates qf + inL0π and then leave again to the far right
moving close together with momentum ML0ω1 asymptotically along the lines
(2n + 1)iL0π/2. Accordingly, for T → 0 in classical phase space, see Fig. 7.7,
orbits with different phases φf , i.e. different qf , but from the same or from
adjacent strips lie arbitrarily close to each other in the asymptotic range
where |V (q)| → 0. The effort of quantum fluctuations then is to link these
paths which reflects the asymptotically free particle diffusion in the Eckart
potential. In simple semiclassical approximation one has asymptotically the
propagator

G(q, q′, t) =
(

M

2πih̄t

)1/2

exp
[
iM

(q − q′)2

2h̄t

]
(7.76)

so that for fixed q − q′ and large times the transition probability decreases as
|G(q, q′, t)|2 ∝ 1/t [cf. (7.51)]. Correspondingly, two different types of fluctua-
tions can be identified: one type of fluctuations connects paths qs(qf +iL0nπ, t)
and qs(q′f + iL0nπ, t) within the same strip, while the other type of fluctua-
tions switches between paths qs(qf + iL0nπ, t) and qs(q′f + iL0(n + 1)π, t) in
adjacent strips. The first type is already accounted for in the simple semiclas-
sical approximation to the real time propagator since these fluctuations never
leave strip n = 0 and stay in the close vicinity to the asymptotic qs(qf , t). In
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Fig. 7.7. Phase space orbits of complex real time paths in the Eckart barrier
potential at T � Tc. In the left picture the real part of the orbits is shown for
trajectories starting with qf > 0 near the barrier top. In the right picture the
corresponding imaginary parts are depicted; the dotted line separates the strips
n = 0 and n = 1 .

contrast, the second type is relevant beyond the Gaussian semiclassics since
it causes large deviations and allows a path qs(qf , t) by subsequently diffusing
to another strip to reach a path qs(q′f + iL0nπ, t) with q′f far from qf and n
large. Interestingly, this second kind of fluctuations does not exist for T > Tc

where asymptotically there is always a gap iωbh̄β between paths in adjacent
strips (see Fig. 7.6).

As an example let us consider a trajectory qs(qf , t) with qf close to the
barrier top for T � Tc and times t 	 1/ω1 	 1/ωb. In this limit the orbit runs
for ωbt 	 1 along the boundary iL0π/2 of the strip n = 0 where fluctuations
of the second class bridge the tiny gap to an orbit qs(q′f + iL0π, t) with a
different q′f in the strip n = 1. This trajectory passes q′f + iL0π, and exploiting
the periodicity of V (q) the corresponding change in action W (qf , q

′
f) is shown

to read as in (7.52). Obviously, the described fluctuations always lead from
an outgoing to an in-going orbit thereby increasing the strip number which in
turn requires a momentum fluctuation of order 2|q̇s(t)| = 2ML0ω1. Estimating
typical momentum fluctuations by h̄/L0 one re-derives from h̄/L0 	 ML0ω1

the condition T � Tc so that at low temperatures these fluctuations will
indeed occur. By the same procedure the path qs(q′f + iL0π, t) can be linked
to a path qs(q′′f + iL02π, t) and so forth. Similar as in case of the double
well potential a fluctuation path is characterized by its sequence of crossing
points q(k) + iL0kπ, k = 0, 1, 2, . . . , n [q(0) = qf ], with the lines iL0kπ, i.e.
the copies of the real axis in the strips k. Accordingly, for very large times
t 	 1/ω1 the point q(n) + iL0nπ moves with increasing n along the positive
imaginary axis while simultaneously q(n) can slide down the real axis and
away from the barrier top to reach the proximity of q1. From close to q1

relevant fluctuation paths traverse q1 as a turning point (TP) – q1 is a branch
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point for the momentum – and return via the described scenario to qf in
the strip k = 0, however, crossing the lines iL0kπ with opposite direction of
momentum as on the way forth. The total change in action is imaginary and
given by W (qf , qf) = W (q1, qf)−W (qf , q1) = 2W (q1, qf), n arbitrary but large,
where for qf close to the top

|W (q1, qf)| =
∫ q1

qf

dq [2M(V (q) − V (q1))]
1/2

=
πV0

ωb

(
1 − π

ωbh̄β

)
− ωbML0qf . (7.77)

In a similar way, the sequence of q(n) of a fluctuation path starting at qf can
move directly towards the barrier top, diffuse across the barrier to enter the left
half-plane of the complex plane, and end up in the asymptotic region Re{q} →
−∞. Since in leading order the semiclassical propagator has asymptotically to
match onto the free propagator (7.76), a TP may only occur if iW (qf ,±q1) <
0. Hence, what we discussed in Sect. 7.3.4 [see paragraph above (7.54)] can
directly be transferred to the situation here and the density matrix can be
cast into the same form as in (7.54). In a notable difference to the double well
potential, however, the TP q1 here is not an isolated extremum of the potential
meaning that each TP – for Euclidian and real time fluctuation paths as well
– is not related to an additional phase factor for equivalent paths.

After having elucidated the general structure of the semiclassical density
matrix we now turn to the explicit calculation of the sum (7.54) and begin with
the term ρ0,0(qf ,−qf , t). This matrix element follows by the same arguments
as given in Sect. 7.3.4. Since the equilibrium density matrix for the Eckart
barrier is dominated by the oscillating paths newly emerging around Tc for all
lower temperatures, all further contributions from Euclidian trajectories with
r �= 1 in (7.67) are negligible. Accordingly, we find for coordinates around the
barrier top

ρ0,0(qf ,−qf) =
1
2

lim
T	Tc

1
Z

ρβ(qf ,−qf)

=
1

ZL0

{
πV0

ω2
bh̄2β[(ωbh̄β)2(1 − q2

f /L2
0) − π2]

}1/2

× exp
[
−πV0

ωbh̄

(
2 − π

ωbh̄β

)]
. (7.78)

Note that in contrast to bounded systems the above density matrix remains
temperature dependent even for T � Tc.

To next order real time paths with ν = 1, ν′ = 0 and ν = 0, ν′ = 1,
respectively, contribute (cf. Figs. 7.5c,d). For t 	 1/ω1 a relevant real time
fluctuation path with ν = 1 starting at qf moves via a TP at q1 + iL0n

′π,
n′ large, to the left half-plane where it eventually crosses −q1 + iL0nπ, n
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large, to run along the line iL0nπ and reach qi + iL0nπ in the far left. For
the segment of the fluctuation path from qf via a TP to −q1 + iL0nπ the
corresponding action factor is exp[−3|W (q1, 0)|/h̄ + ωbML0qf/h̄]. Due to the
periodicity (7.73) of the potential the segment from −q1+iL0nπ to qi+iL0nπ,
qi < −q1, can just be treated as the corresponding one along the real axis; for
very large times ω1t 	 1, i.e. |qi| 	 q1 according to (7.72), we then get the
action factor exp[−iMq2/2h̄t]. Hence, the corresponding relevant real time
propagator reads

Gt(qf , qi) = −i
√

A(qf , qi) exp
[
−3|W (q1, 0)|

h̄
+

ωbML0qf

h̄
+ iM

q2
i

2h̄t

]
. (7.79)

Likewise, the propagator from −qf directly to q′i +iL0nπ is gained. The crucial
point is now that for the integral in (7.1) there are no longer isolated stationary
phase points but rather all qi, q

′
i on the line iL0nπ and to the far left of the

barrier top make the integrand for very large times stationary. The ordinary
integrals in (7.1) can thus be seen as sums over stationary phase points qi, q

′
i

whereby their distance is weighted by the asymptotic thermal distribution,
i.e. in leading order the free particle equilibrium density matrix

ρβ(q, q′) =
(

M

2πh̄2β

)1/2

exp
[
−M(q − q′)2

2h̄2β

]
. (7.80)

Accordingly, for T → 0 one has ρβ(qi, q
′
i) → δ(qi − q′i) so that contributions

from qi �= q′i are caused by thermal fluctuations at elevated temperatures.
Further, for large qi, q

′
i and large times the prefactors A(qf , qi) and A′(−qf , q

′
i),

respectively, are independent of qi, q
′
i , thus allowing us to carry out the qi, q

′
i

integrals over the exponentials only. Then, using −q1 as an upper bound for
the asymptotic coordinate range it turns out that for ω1t 	 1 the result for
the integrals in leading order is πh̄t/M . Now, combining all factors we finally
obtain the time independent density

ρ1(qf ,−qf) = lim
ω1t
1

[ρ1,0(qf ,−qf , t) + ρ0,1(qf ,−qf , t)]

=
i

ZL0

[
4πV0

h̄ωb(ωbh̄β)3

]1/2

sinh
(

2ωbML0qf

h̄

)
e−4|W (q1,0)|/h̄ , (7.81)

where |W (q1, 0)| follows from (7.77). Employing the same procedure, contri-
butions in the sum (7.54) from real time paths with more than one TP can
be derived, however, they contain additional action factors and are thus ex-
ponentially small compared to ρ1. Hence, the stationary semiclassical density
matrix for low temperatures and very large times is found as

ρfl(qf ,−qf) =
1

2Z
ρβ(qf ,−qf) + ρ1(qf ,−qf) (7.82)

with ρβ as specified in (7.78). Finally, from (7.5) we gain the thermal tunneling
rate
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Γ =
1
Z

[
4πV0ωb

h̄(ωbh̄β)3

]1/2

e−4|W (q1,0)|/h̄ . (7.83)

This simple formula is applicable as long as q1 > L0, a temperature range
which can be estimated by T below Tc/2, or equivalently ωbh̄β > 2π. To be
precise, there is also a lower bound for the temperature. Namely, for T → 0
any semiclassics in the Eckart barrier breaks down due to the fact that then
tunneling takes place in the low energy range near the base of the barrier where
the wave length of a wave function tends to exceed the width of the barrier.
From the known exact transition probability (see e.g. [14]) one derives that
this scenario becomes relevant for ωbh̄β 	 2π4(V0/h̄ωb) corresponding in the
semiclassical limit V0/h̄ωb 	 1 to extremely low temperatures. In the broad
temperature range between these bounds, i.e. 2π < ωbh̄β <∼2π4(V0/h̄ωb), the
above rate expression describes the decay rate with remarkable accuracy when
compared to the exact result even for moderate barrier heights (see Fig. 7.8).
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Fig. 7.8. Transmission factor P as a function of inverse temperature for an Eckart
barrier with α = 12, α = 2πV0/h̄ωb. P is defined by P = Γ/Γcl with Γcl the classical
rate, i.e. the high temperature limit to (7.31). The solid line is the exact result. In
the left picture the dotted-dashed line shows the parabolic result (7.31), the dashed
line represents (7.75), and the arrow indicates the inverse temperature corresponding
to Tc. In the right picture the dashed line depicts the result (7.83) and the arrow
refers to the crossover temperature T0 = Tc/2. The ImF result beyond the Gaussian
approximation around T0 is represented by the dotted lines.

Table I presents a numerical comparison with the exact transmission fac-
tor. For temperatures above Tc/2 the real-time semiclassical rate is slightly
too small and coincides for T > Tc with the well-known unified semi-
classical rate formula gained by the thermal average over the transmission



200 7 Unified Dynamical Theory

Table 7.1. Transmission factor P = Γ/Γcl for the symmetric Eckart barrier. Γcl is
the classical rate and parameters are the same as in Fig. 7.8.

ωbh̄β P a
rsemi P b

uni P c
QTST P d

SQTST P e
ex

1.5 1.10 1.10 1.13 1.13 1.13
3 1.50 1.50 1.54 1.52 1.52
5 2.98 3.84 3.18 – 3.11
6 3.86 8.92 5.74 2.2 5.2
8 21.99 17.97 29.3 11.9 21.8
10 136.2 132.2 248 149 162
12 1613 1606 3058 3006 1970
16 6.03 · 105 6.03 · 105 – 2.56 · 106 7.41 · 105

18 1.54 · 107 1.54 · 107 – 9.1 · 107 1.88 · 107

aPrsemi is the transmission factor as derived by the real-time semiclassical approach
presented here
bPuni is the transmission factor of the semiclassical approach based on the uniform
WKB expression
cPQTST is the transmission factor according to the simplest version of Pollak’s
QTST, from [15]
dPSQTST is the transmission factor according to the full semiclassical version of
Pollak’s QTST, from [15]
ePex is the exact transmission factor

T (E) = 1/{1+exp[SB(E)/h̄]}, where SB(E) is the bounce action for T < Tc/2
[see Sect. 2.1]. The small deviations from the exact rate are due to the fact
that in the simple version of the theory presented here anharmonicities of the
potential are neglected for T > Tc and taken into account only in leading
order in Tc > T > Tc/2. A perturbative expansion in an anharmonicity para-
meter allows for a systematic improvement. For the same reason, the temper-
ature region around Tc/2 is not well described. In the deep tunneling region
T < Tc/2, which is notoriously problematic for real-time rate theories, the
theory performs quite accurately. In fact, the low temperature formula (7.83)
turns out to be identical to the result derived within the instanton/bounce ap-
proach [see Sect. 5.2.4]. The bounce is an oscillating Euclidian orbit, periodic
in phase space, which connects qf = 0 with itself, thus emerging as a solution
of (7.67) at T = Tc/2 (r = 2). While in imaginary time methods the bounce
trajectory describes barrier penetration, here, effectively the same tunneling
rate arises from fluctuations around real time paths the energy of which is
fixed by oscillating Euclidian orbits, closed in phase space, emerging at Tc

(r = 1). These latter minimal action paths solely determine the semiclassical
thermal equilibrium for lower temperatures T < Tc, thus establishing within
a semiclassical real time approach the relation between the thermal density
matrix and the thermal tunneling rate.
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Let us also compare with results obtained within other approaches, also
partially described in previous Sections. The phase space formulation pre-
sented in Sect. 6.4.2 suffers from a standard semiclassical approximation to
the real time propagators so that only half of the bounce action appears in the
for temperatures below Tc/2; the corresponding tunneling rates are too large
(see Table I). The centroid method, see Sect. 5.7, [16, 17] gives the correct ac-
tion factor, however, its semi-empirical factorization of thermal and dynamical
contributions leads to a prefactor which is too small for lower temperatures.
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8

Final Remarks and Outlook

This book presents an overview over semiclassical methods to describe
processes of quantum tunneling. The picture that emerges is that few the-
oretical concepts are able to capture an astonishingly variety of systems with
completely different physical realizations. Semiclassical approximations are
well-developed for undriven one-dimensional tunneling degrees of freedom;
when the corresponding anharmonic barriers are high, they are often, partic-
ularly for dissipative tunneling, the only efficient means to determine exponen-
tially small transmission probabilities or rates. Direct numerical evaluations
based on the Schrödinger equation or path integrals may complement these
results, but usually require an (exponentially) increasing amount of simulation
time at lower temperatures, stronger friction, or higher barriers, especially in
dynamical treatments. In this direction approaches based e.g. on basis set
methods and Monte Carlo techniques have been pushed forward in the last
years. In contrast, for driven tunneling and/or tunneling in higher dimensions
much less progress has been achieved and a deeper understanding how semi-
classical methods can be applied efficiently is still needed. We will close this
presentation by briefly touching some of these questions: Where do we go?
Which problems wait for a solution?

• Tunneling in higher dimensions: Even for systems with regular classical
dynamics has been a semiclassical calculation of transmission rates through
higher dimensional anharmonic barrier potentials elusive so far. Attempts
have been made, with restricted success though. The problem can be traced
back to the WKB approximation in higher dimensions, particularly, to the
WKB wave function. In principle, dynamical formulations in terms of ex-
tended HK propagators or IVR series provide a tool to attack these situ-
ations, but the proliferation of orbits certainly requires a better efficiency
in numerical calculations (see below).

• Tunneling in systems with classically chaotic dynamics: In conservative
systems with classically mixed dynamics (regular and chaotic) semiclas-
sical approaches for tunneling encounter a similar problem as above: the
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lack of a consistent theory for a WKB type of wave function, from which
tunneling rates could be gained. These systems belong certainly to one
of the most exciting ones, because of their complexity on the one hand
and their ubiquitous appearance in nature on the other hand. Specific sys-
tems have been studied, a general semiclassical scheme still needs to be
formulated.

• Tunneling in presence of external driving: In presence of external driving
forces real-time approaches for tunneling are required. While the limit of
slow driving can be treated by means of adiabatic approximations, the
regime of fast frequencies/strong driving is the most challenging. Here,
we have reported on a semiclassical formulation (extended HK), which
even described the intimate relation between resonant excitations in a
well of a metastable potential and tunneling through its barrier. Processes
including photon absorption during tunneling, i.e. under the barrier, have
not been addressed so far. For time periodic forces the Floquet theory
may provide a framework for further developments (semiclassical Floquet
theory). Apart from that, stochastic driving forces are of relevance as well,
e.g. for tunneling through fluctuating barriers.

• Extended HK propagator and the IVR series: The extended HK propa-
gator has already led to promising results; the same holds for the more
rigorous IVR series expansion. While the former approach works efficiently
at least in one-dimensional systems, its extension to higher dimensions is
not straightforward. On the other hand, the latter formulation is concep-
tually well founded, but an increasing number of phase space integrations
combined with an increasing dimension of the fluctuation matrix renders a
treatment of higher dimensional tunneling presently prohibitive. One way
to soothe these problems could be to work with prefactor free representa-
tions. From a more fundamental point of view it would be interesting to
explore the relation between the extended HK scheme and the IVR series
representation.

• Dynamical rate theory for very weak friction: In the classical domain the
escape over the barrier occurs for weak friction via energy diffusion. In the
quantum regime this limit has been studied on the basis of the general ex-
pression (3.1), where the steady state energy distribution must be gained
from an integral equation to account for deviations from the thermal dis-
tributions for energies near the barrier top [1, 2, 3]. Even a turnover theory
has been put forward along the lines discussed for the classical regime [4].
How the regime of weak damping can be captured within a dynamical the-
ory has not been explored yet. In particular, such an investigation should
provide detailed insight in how the energy diffusion regime shrinks towards
lower temperatures such that sufficiently below the crossover it basically
ceases to exist.

• Real-time theory for dissipative tunneling below the crossover: This is cer-
tainly one the most demanding problems. In Sect. 7 we have laid out the
foundations for a full real-time theory of the density matrix from high to



References 205

low temperatures and for coherent and incoherent tunneling. In the do-
main above the crossover temperature, a dynamical description including
dissipation has been obtained by the quantum Kramers theory in Sect. 6.
What remains to do is to extend the frictionless theory below the crossover
accordingly. A major problem then is the fluctuations prefactor, which
cannot be determined from the minimal effective action since irreversibil-
ity does not allow to exploit the Gelfand-Yaglom prescription. Moreover,
explicit results certainly necessitate the development of proper numeri-
cal techniques. In particular, the diffusion of minimal action paths in the
complex configuration space may then be described by a Langevin-type of
dynamics.
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