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The Theory of Complex Angular Momenta

This book provides a unique and rigorous introduction to the theory of complex angu-
lar momenta, based on the methods of field theory. It comprises an English translation
of the series of lectures given by V.N. Gribov in 1969, when the physics of high en-
ergy hadron interactions was being created. Besides their historical significance, these
lectures contain material which is highly relevant to research today. The basic physi-
cal results and the approaches Gribov developed are now being rediscovered in a new
context: in the microscopic theory of hadrons provided by quantum chromodynamics.
The ideas and calculation techniques presented in this book are useful for analysing
high energy hadron scattering phenomena, deep inelastic lepton–hadron scattering, the
physics of heavy ion collisions, and kinetic phenomena in phase transitions, and will
be instrumental in the analysis of electroweak processes at the next generation particle
accelerators, such as LHC and TESLA.

vlad im i r naumov i ch gr i bov received his PhD in theoretical physics in 1957
from the Physico-Technical Institute in Leningrad where he had worked since 1954.
From 1962 to 1980 he was the head of the Theory Division of the Particle Physics
Department of that institute, which in 1971 became the Leningrad Institute for Nu-
clear Physics. In 1980 he moved to Moscow where he became head of the particle
physics section of the Landau Institute for Theoretical Physics. From 1981 he regu-
larly visited the Research Institute for Particle and Nuclear Physics in Budapest where
he was a scientific adviser until his death in 1997. Vladimir Gribov was one of the
leading theoretical physicists of his time, who made seminal contributions to many
fields, including quantum electrodynamics, neutrino physics, non-Abelian field theory,
and, in particular, the physics of hadron interactions at high energies.
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Foreword

This book presents the lecture course given in 1969 at the Ioffe Physico-
technical Institute in Leningrad (now St Petersburg, Russia) by one of the
key figures of twentieth century theoretical physics, Vladimir N. Gribov.

The original motivation, brought up by A. Aronov, was for Gribov to
present a course on the theory of complex angular momenta that would
be understandable for condensed matter physicists. (Those were the days
when condensed matter and particle physicists worked hand in hand,
shared thoughts, methods and seminars.) The audience consisted of young
bright theorists (though some had little or no experience in this specific
field). So, to appreciate the book fully and learn from it, the reader should
be familiar with the basics of quantum field theory (relativistic invariance,
quantum theory of scattering, Feynman diagrams).

The lecture notes were taken down by A. Anselm, Ya. Azimov, A. Bukh-
vostov, I. Dyatlov, G. Danilov, E. Levin, G. Frolov, V. Gorshkov, L. Li-
patov, E. Malkov, V. Shekhter and I.M. Shmushkevich (then in charge of
the Ioffe PTI theory department), and edited by L. Frankfurt. E. Kuraev
initiated their publication in the form of two voluminous preprints (in
Russian) issued by the Kharkov PTI. This informal publication, known
as the ‘Kharkov preprint’, immediately became a rarity.

More than 25 years later the effort of preparing an English version of
the course was undertaken by E. Kuraev, B. Shaikhatdenov and V. Bytev.
The lectures were then edited by G. Korchemsky and L. Lipatov. The
final English translation was carried out by V. von Schlippe; the authors
of the following Introduction share responsibility for the final scientific
editing.

The lectures were delivered in 1969 when modern high energy particle
physics was being created. In spite of the fact that the lectures, obviously,
cover only the first decade of the development of the field – the 1960s –
Gribov’s view of the problematics of high energy interactions presented
in this book has not lost its relevance to this day. On the contrary, the
basic physical results and the approaches he developed are being redis-
covered nowadays in a new context: in the microscopic theory of hadrons

xi



xii Foreword

provided by quantum chromodynamics (QCD). Gribov’s ideas and cal-
culation techniques presented in this book are instrumental in analysing
high energy hadron scattering phenomena, electroweak processes at the
next generation particle accelerators (LHC, TESLA), the small-x regime
of deep inelastic lepton–hadron scattering (HERA), physics of heavy ion
collisions (RHIC, LHC), kinetic phenomena in phase transitions, etc.

V. Gribov encouraged his audience to participate actively in creation
of this course. So technical derivations of some results presented in the
book were actually performed and written down by his ‘pupils’.
There is another feature that makes this book unusual and should be

mentioned. It has to do with the Gribov style, in what concerns his per-
sonal relation with mathematical symbols commonly used for separating
left- and right-hand sides of equations. The = sign in a Gribov chalk
equation (which, by the way, never looked like one) might mean ‘equal’,
as well as ‘approximately equal’, ‘asymptotically equal’, ‘proportional’,
‘of the order of’, all the way down to ‘similar to’ and even ‘reminiscent
of’. It is important to stress that this style did not derive from sloppi-
ness. When it came to deriving new physical results, according to Alexei
Anselm, for many years Gribov’s collaborator,

Working with BH [Gribov’s nickname] you had a strange feeling that
numbers were his personal friends: all those factors of 2 and π simply
knew their place in Gribov’s formulae.

However, Gribov-the-lecturer would skip, without regret, a numerical co-
efficient or even a functional factor if that were irrelevant for the discussion
of the physical issue under focus.
This would have never constituted a problem in a live lecture: from the

context of the discussion it was always easy to gauge the actual meaning
of that specific wiggle in a given relation. Not so in a written text, where
the magic of a printed symbol can deceive a reader. So the editors have
attempted a certain diversification of the ‘Gribov wiggle’, by introducing
�, ∝, etc. where they saw it appropriate. However, this does not guar-
antee that, having met an = sign, a reader won’t discover, now and then,
that it actually stands for ‘approximately equal’ or . . . (see above).

Having said that, we proudly invite the reader into the laboratory of
one of the creators of high energy particle physics.

Yuri Dokshitzer



Introduction

Yuri Dokshitzer and Leonid Frankfurt

In the late 1950s, when Gribov, then a young researcher at the Ioffe
Physico-technical Institute, became interested in the physics of strong
hadron interactions, there was no consistent picture of high energy scat-
tering processes, not to mention a theory. Apart from the Pomeranchuk
theorem – an asymptotic equality of particle and antiparticle cross sec-
tions [1] – not much was theoretically understood about processes at high
energies.

Gribov’s 1961 paper ‘Asymptotic behaviour of the scattering amplitude
at high energies’ (submitted to Nucl. Phys. on June 28, 1960) in which
he proved an inconsistency of the black disk model of diffractive hadron–
hadron scattering may be considered a first building block of the modern
theory of high energy particle interactions [2].

Gribov’s use of the so-called double dispersion representation for the
scattering amplitude, suggested by S. Mandelstam back in 1958 [3], demon-
strated the combined power of the general principles of relativistic quan-
tum theory – unitarity (conservation of probability), analyticity (caus-
ality) and the relativistic nature (crossing symmetry) – as applied to high
energy interactions.

The then-standard black disk model viewed a hadron as an object with
a finite interaction radius that did not depend on collision energy, and
employed for the imaginary part of the scattering amplitude the factorized
expression

A1(s, t) = s f(t). (0.1)
By studying the analytic properties in the cross-channels, Gribov showed
that the model (0.1) for diffraction in the physical region of s-channel
scattering contradicts the unitarity relation for partial waves in the cross-
ing t-channel. To solve the puzzle, he suggested the behaviour of the
amplitude (for large s and finite t) in the general form

A1(s, t) = sq(t)Bt(ln s) , (0.2)

where Bt is a slow (non-exponential) function of ln s (decreasing fast with
t), and q(0) = 1 ensures the approximate constancy of the total cross
section, σtot(s) � const.

1



2 Introduction

In this first paper Gribov analysed the constant exponent, q(t) = 1,
and proved that the cross section in this case has to decrease at high
energies, Bt(ln s) < 1/ ln s, to be consistent with the t-channel unitarity.
He remarked on the possibility q(t) �= const as ‘extremely unlikely’ since,
considering the t-dependence of the scattering amplitude, this would cor-
respond to a strange picture of the radius of a hadron infinitely increasing
with energy. He decided to ‘postpone the treatment of such rapidly chan
ging functions until a more detailed investigation is carried out’.
He published the results of such an investigation the next year in the

letter to ZhETF ‘Possible asymptotic behaviour of elastic scattering’.
In his letter Gribov discussed the asymptotic behaviour ‘which in spite
of having a few unusual features is theoretically feasible and does not
contradict the experimental data’ [4]. Gribov was already aware of the
finding by T. Regge [5] that in non-relativistic quantum mechanics

A(s, t) ∝ t�(s) , (0.3)

in the unphysical region |t| � s (corresponding to large imaginary scat-
tering angles cosΘ → ∞), where �(s) is the position of the pole of the
partial wave f� in the complex plane of the orbital momentum �.
T. Regge found that the poles of the amplitude in the complex �-plane

were intimately related with bound states/resonances. It is this aspect of
the Regge behaviour that initially attracted the most attention:

S. Mandelstam has suggested and emphasized repeatedly since 1960
that the Regge behavior would permit a simple description of dynam-
ical states (private discussions). Similar remarks have been made by
R. Blankenbecker and M.L. Goldberger and by K. Wilson (quoted
from [6]).

Gribov learned about the Regge results from a paper by G. Chew and
S. Frautschi [7] which still advocated the wrong black disk diffraction
model (0.1) but contained a footnote describing the main Regge findings.
The structure of the Regge amplitude (0.3) motivated Gribov to return

to the consideration of the case of the t-dependent exponent in his general
high energy ansatz (0.2) that was dictated by t-channel unitarity.
By then M. Froissart had already proved his famous theorem that limits

the asymptotic behaviour of the total cross sections [8],

σtot ∝ s−1 |A1(s, 0)| < const · ln2 s . (0.4)

Thus, having accepted �(0) = 1 for the rightmost pole in the �-plane as the
condition ‘that the strongest possible interaction is realized’, Gribov for-
mulated ‘the main properties of such an asymptotic scattering behaviour’:

• the total interaction cross section is constant at high energies,
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• the elastic cross section tends to zero as 1/ ln s,

• the scattering amplitude is essentially imaginary,

• the significant region of momentum transfer in elastic scattering
shrinks with increasing energy,

√−t ∝ (ln s)−1/2.

He also analysed the s-channel partial waves to show that for small impact
parameters ρ < R their amplitudes fall as 1/ ln s, while the interaction
radius R increases with energy as ρ ∝ √

ln s. He concluded:

this behaviour means that the particles become grey with respect to
high energy interaction, but increase in size, so that the total cross
section remains constant.

These were the key features of what has become known as the ‘Regge
theory’ of strong interactions at high energies. On the opposite side of
the Iron Curtain, the basic properties of the Regge pole picture of for-
ward/backward scattering were formulated half a year later by G. Chew
and S. Frautschi in [9]. In particular, they suggested ‘the possibility that
the recently discovered ρ meson is associated with a Regge pole whose
internal quantum numbers are those of an I = 1 two-pion configura-
tion’, and conjectured the universal high energy behaviour of backward
π+π0, K+K0 and pn scattering due to ρ–reggeon exchange. G. Chew and
S. Frautschi also stressed that the hypothetical Regge pole with α(0) = 1
responsible for forward scattering possesses quantum numbers of the vac-
uum.

Dominance of the vacuum pole automatically satisfies the Pomeranchuk
theorem. The name ‘pomeron’ for this vacuum pole was coined by Murray
Gell-Mann, who referred to Geoffrey Chew as an inventor.
Shrinkage of the diffractive peak was predicted, and was experimentally

verified at particle accelerator experiments in Russia (IHEP, Serpukhov),
Switzerland (CERN) and the US (FNAL, Chicago), as were the general
relations between the cross sections of different processes that followed
from the Gribov factorization theorem [10].

In non-relativistic quantum mechanics the interaction Hamiltonian al-
lows for scattering partial waves to be considered as analytic functions
of complex angular momentum � (provided the interaction potential is
analytic in r).

Gribov’s paper ‘Partial waves with complex orbital angular momenta
and the asymptotic behaviour of the scattering amplitude’ showed that
the partial waves with complex angular momenta can be introduced in a
relativistic theory as well, on the basis of the Mandelstam double disper-
sion representation. Here it is the unitarity in the crossing channel that
replaces Hamiltonian dynamics and leads to analyticity of the partial
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waves in �. The corresponding construction is known as the ‘Gribov–
Froissart projection’ [11].
A few months later Gribov demonstrated that the simplest (two-particle)

t-channel unitarity condition indeed generates the moving pole singulari-
ties in the complex �-plane. This was the proof of the Regge hypothesis
in relativistic theory [12].
The ‘Regge trajectories’ α(t) combine hadrons into families: sh =

α(m2h), where sh and mh are the spin and the mass of a hadron (hadronic
resonance) with given quantum numbers (baryon number, isotopic spin,
strangeness, etc.) [9]. Moreover, at negative values of t, that is in the
physical region of the s-channel, the very same function α(t) determines
the scattering amplitude, according to (0.2). It looks as if high energy
scattering were due to t-channel exchange of a ‘particle’ with spin α(t)
that varies with momentum transfer t – the ‘reggeon’.
Thus, the high energy behaviour of the scattering process a + b →

c+ d is linked with the spectrum of excitations (resonances) of low-energy
scattering in the dual channel, a + c̄ → b̄ + d. This intriguing relation
triggered many new ideas (bootstrap, the concept of duality). Backed by
the mysterious linearity of Regge trajectories relating spins and squared
masses of observed hadrons, the duality ideas, via the famous Veneziano
amplitude, gave rise to the concept of hadronic strings and to development
of string theories in general.

A number of theoretical efforts were devoted to understanding the ap-
proximately constant behaviour of the total cross sections at high energies.
To construct a full theory that would include the pomeron trajectory

with the maximal ‘intercept’ that respects the Froissart bound, αP (0)=
1, and would be consistent with unitarity and analyticity proved to be
very difficult. This is because multi-pomeron exchanges become essential,
which generate branch points in the complex plane of angular momentum
�. The simplest branch point of this kind (the two-pomeron cut) was first
discovered by Mandelstam in his seminal paper of 1963 [13]. The result
was generalized, very elegantly, by V.N. Gribov, I.Ya. Pomeranchuk and
K.A. Ter-Martirosian [14]. They showed that Mandelstam’s t-channel
unitarity analysis could be recast as demonstrating the presence of an �-
plane contribution from the four-particle state whose generalization would
be the contribution of the N -pomeron cut from the 2N -particle state.
The t-channel unitarity analysis assumed extensive multi-particle com-

plex angular momentum theory, however. When attempts to develop the
needed formalism floundered, Gribov decided that a diagrammatic ap-
proach might be more straightforward.
He then developed the general diagram technique known as the Gribov

reggeon calculus by considering ‘hybrid diagrams’ with Regge pole ampli-
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tudes connected by the non-planar couplings of Mandelstam. By the end
of the 1960s, he had thus formulated the rules for constructing the field
theory of interacting pomerons – the Gribov reggeon field theory (RFT).
In doing so, he had reduced the problem of high energy scattering to a
non-relativistic quantum field theory of interacting particles in 2+1 di-
mensions. For a long time the Gribov RFT was regarded as ‘t-channel’
in origin. Later, as the structure of the ‘s-channel’ imaginary parts was
understood it was realized that the pomeron interaction diagrams directly
reflected particle production processes with large rapidity gaps.

With the advent of non-Abelian QFTs, and QCD in particular, Gri-
bov’s approaches and calculation techniques were applied in 1976 by his
pupils who demonstrated that vector mesons (gluons; intermediate bosons
W , Z) reggeize in perturbation theory (L. Lipatov; L. Frankfurt and
V. Sherman), and so do fermions (quarks; V. Fadin and V. Sherman). The
vacuum singularity has also been analysed in perturbative QCD, which
analysis resulted in the scattering cross section of two small transverse-
size objects increasing with energy in a power-like fashion in the restricted
energy range (the so-called ‘hard’ or ‘BFKL’ pomeron [15]).

A lot of theoretical effort is being invested these days in the programme,
formulated by Lipatov, of constructing and solving a (2+1)-dimensional
effective QCD pomeron dynamics – a direct offspring of the Gribov RFT.

The last lectures are devoted to the discussion of the problems of the
so-called weak and strong reggeon coupling scenarios.

The problem of high energy behaviour of soft interactions remained
unsolved, although some viable options were suggested. In particular, in
‘Properties of Pomeranchuk poles, diffraction scattering and asymptotic
equality of total cross sections’ [16] Gribov showed that a possible consis-
tent solution of the RFT in the weak coupling regime calls for the formal
asymptotic equality of all total cross sections of strongly interacting par-
ticles.

In 1968 V.N. Gribov and A.A. Migdal demonstrated, in a general field
theory framework, that in the strong coupling regime the scaling be-
haviour of the Green functions emerged [17]. Their technique helped
to build the quantitative theory of second order phase transitions and to
analyse critical indices characterizing the long range fluctuations near the
critical point.

In the context of interacting reggeons, the study of the strong coupling
regime (pioneered by A.B. Kaidalov and K.A. Ter-Martirosian) led to
the introduction of the ‘bare’ pomeron with αP (0)> 1. The RFT based
on t-channel unitarity should enforce the s-channel unitarity as well. The
combination of increasing interaction radius and the amplitudes in the im-
pact parameter space which did not fall as 1/ ln s (as in the one-pomeron
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picture) led to logarithmically increasing asymptotic cross sections, re-
sembling the Froissart regime (and respecting the Froissart bound (0.4)).
Nowadays, the popularity of the notion of the ‘supercritical’ bare pomeron

with αP (0)>1 is based on experiment (increasing total hadron cross sec-
tions). Psychologically, it is also supported by the BFKL finding.

Gribov diffusion in the impact parameter space giving rise to energy
increase of the interaction radius and to the reggeon exchange ampli-
tude, coexisting fluctuations as a source of branch cuts, duality between
hadrons and partons, a common basis for hard and soft elastic, diffractive
and inelastic process – these are some of the key features of high energy
phenomena in quantum field theories, which are still too hard a nut for
QCD to crack.

Added to the main text of the lectures are Gribov’s three seminal works
produced in the 1970s. They are as follows.

A. The translation of the Gribov lecture at the Leningrad Nuclear
Physics Institute Winter School in 1973, in which the understand-
ing of the space–time evolution of high energy hadron–hadron and
lepton–hadron processes, in particular the nature of the reggeon ex-
change from the s-channel point of view, has been achieved. This
lecture gives a perfect insight into Gribov’s extraordinary way of
approaching complicated physical problems of a general nature. He
outlined here the general phenomena and typical features that were
characteristic for high energy processes in any quantum field the-
ory. The power of Gribov’s approach lies in applying the universal
picture of fluctuating hadrons to both soft and hard interactions.

B. The paper written in collaboration with V. Abramovsky and
O. Kancheli in which the general quantitative relation between the
shadowing phenomenon in hadron–hadron scattering, the cross sec-
tion of diffractive processes and inelastic multi-particle production
had been discovered. This is one of the best-known applications of
the Gribov RFT known as the ‘AGK cutting rules’.

C. Gribov’s last work in the subject which was devoted to the interme-
diate energy range and dealt with interacting hadron fluctuations
(‘heavy pomeron’).
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1
High energy hadron scattering

In these lectures the theory of complex angular momenta is presented. It
is assumed that readers are familiar with the methods of modern quantum
field theory (QFT). Nevertheless we shall briefly recall its basic principles.

1.1 Basic principles

The main experimental fact underlying the theory is the existence of
strong interactions between particles of non-zero masses. The theory is
constructed for quantities which have a direct physical meaning.

1.1.1 Invariant scattering amplitude and cross section

Such quantities are the scattering amplitudes,

✣✢
✤✜

�

✘✘✘
✘✘✘✿

✲
✲

✲

p1

p2

p′1

p′2

p′3

which are supposed to be functions of the kinematical invariants only:
A(p1, . . . , pn) = A(p2i , pipk). For simplicity, let us begin by considering
the scattering of neutral, spinless particles as shown in Fig. 1.1. We use
a normalization of the scattering amplitudes such that the kinematical
factors arising from the wave functions of the external particles are fac-
torized out. The cross section of any process can be defined in terms of

8
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Fig. 1.1. Two-particle scattering

the invariant amplitude A as follows:

dσn = (2π)4δ

(
p1 + p2 −

∑
i

p′i

)
|A|2

n∏
i=1

d3p′i
2p′i0(2π)3

1
I
,

I = 4p10p20J = 4
√
(p1p2)2 −m21m22 . (1.1)

Here the factor (2π)4δ() originates from energy–momentum conservation,
d3p′i/2p

′
i0(2π)

3 from the phase space volume; I is the Møller factor which
combines the flux density J of the initial particles and (2p10 2p20)−1 com-
ing from their wave functions.

1.1.2 Analyticity and causality

It is assumed that the scattering amplitude A is an analytic function of
its arguments (for instance it cannot contain terms like Θ(pi0)). This
assumption is a manifestation of the causality principle. Without ana-
lyticity, the scattered waves could appear at their source before being
emitted. Additionally, it is natural to conjecture at this point that the
growth of the scattering amplitude, as one of the invariants tends to infin-
ity for fixed values of the remaining invariants, is polynomially bounded,

|A(p1, . . . , pn)| < (pipj)N .

This assumption is closely related to causality and the locality of the
interaction. One needs it in order to write the dispersion representation
for the amplitudes (to be able to close the integration contour over an
infinitely large circle).

1.1.3 Singularities

It is also assumed that all singularities of the amplitude on the physical
sheet have the meaning of reaction thresholds, i.e. they are determined by
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physical masses of the intermediate state particles. In terms of Feynman
diagrams they are the Landau singularities.

1.1.4 Crossing symmetry

We will clarify the meaning of crossing, taking as an example a four-
particle amplitude. Since this amplitude depends on the kinematical in-
variants (and not on the sign of pi0), the same analytic function describes
the reaction

a(p1) + b(p2) → c(p3) + d(p4) for p10, p20, p30, p40 > 0

as well as

a(p1) + c̄(−p3) → b̄(−p2) + d(p4) for p10, p40 > 0, p20, p30 < 0

and

a(p1) + d̄(−p4) → b̄(−p2) + c(p3) for p10, p30 > 0, p20, p40 < 0 .

For an unstable particle, there is the additional reaction a → b̄ + c + d
(p10, p30, p40 > 0, p20 < 0).
In fact, the crossing symmetry implies the CPT -theorem – invariance

of the amplitude A with respect to the combination of charge conjugation
C, space reflection P and time reversal T .

Crossing symmetry follows from the first three assumptions. It can be
shown that the same assumptions allow us to prove the spin-statistics
relation theorem (the Pauli theorem).

1.1.5 The unitarity condition for the scattering matrix

Unitarity has a simple physical meaning: the sum of probabilities of all
processes which are possible at a given energy is equal to unity, SS+ = 1.
If S = 1 + iA, then

i (A−A+) = −AA+.
Representing the amplitude A as the sum of its real and imaginary parts,
A = ReA+ i ImA, the unitarity condition takes the form

2 ImA = AA+. (1.2)

1.2 Mandelstam variables for two-particle scattering

Let us show how all the above principles work in the case of the four-
particle amplitude.
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Although the amplitude of the 2 → 2 process depends evidently on two
independent variables, that is the energy of the incoming particles and
the scattering angle, it is more convenient to consider A as a function of
three Mandelstam variables

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2 .
They are related to each other by

s+ t+ u =
4∑
i=1

m2i

where the sum runs over the masses of all particles participating in the
collision.

For the sake of simplicity, in what follows we restrict ourselves to the
case of equal particle masses, mi = µ.

The Mandelstam variables have a simple physical meaning. For in-
stance, in the centre-of-mass system (cms) of the reaction a+ b → c + d
(the so-called s-channel), s is the square of the total energy of the collid-
ing particles and t = −(p1−p3)2 is the square of the momentum transfer
from a to c. In the cms of the reaction a+ c̄→ b̄+ d (t-channel), t plays
the role of the total energy squared, and s is the square of momentum
transfer. The variables u and t, respectively, play similar rôles in the
u-channel reaction a+ d̄→ b̄+ c.

1.2.1 The Mandelstam plane

It is convenient, following Landau, to represent the kinematics of the
three reactions graphically on the Mandelstam plane. We use here the
well known geometrical fact that the sum of the distances from a point
on the plane to the sides of an equilateral triangle does not depend on
the position of the point. Therefore, taking into account the condition
s+ t+ u = 4µ2, let us measure s, t and u as the distances to the sides of
the triangle.

It is easy then to represent the physical region of any reaction on such
a plane. For instance, the physical region of the reaction a + c̄ → b̄ + d
corresponds to t ≥ 4µ2, s ≤ 0, u ≤ 0 and it is shown on Fig. 1.2 as the
upper shaded area. The physical regions of the other reactions can be
identified in a similar manner.

In the case of the scattering of identical neutral particles the amplitude
in each physical region is the same and it satisfies the unitarity condition
separately in each region.

Examining the Mandelstam plane Fig. 1.2 we notice an interesting fea-
ture: as we move from positive to negative values of s (from the physical
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a + c̄ → b̄ + d

s = 0 s = 4µ2

C1(s, t)

t = 4µ2

t = 0

a + b → c + d

C3(s, u)

C2(u, t)

u = 0u = 4µ2

Fig. 1.2. Crossing reactions on the Mandelstam plane

region of the s-channel to the u-channel), the energy dependence of the
scattering amplitude turns into the angular dependence.

1.2.2 Threshold singularities on the Mandelstam plane

Let us discuss now singularities of the amplitude. As an illustration, we
consider elastic scattering of neutral pions: π0 + π0 → π0 + π0. We
will assume that (in accordance with experiment) pions are the lightest
stable hadrons and that there is no bound state of two neutral pions.
Then, the amplitude has no singularities at s < 4µ2. The first threshold
lies at s = (2µ)2. It corresponds to the two-particle intermediate state.
The next, three-particle threshold could have appeared at s = (3µ)2. In
reality, the second threshold in the pion scattering amplitude is situated
at s = (4µ)2 – the four-particle state, since the transition of two pions
into three is forbidden by G-parity conservation.
Similar singularities in energy are known to appear in quantum me-

chanics, for instance the threshold singularity at s→ 4µ2.
There is however a principal difference between relativistic and non-

relativistic theories in the interpretation of the singularities in momentum
transfer.
In quantum mechanics such singularities are determined by the poten-
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tial. For instance, the Yukawa potential

V (r) ∝ exp (−αr)
r

corresponds to a pole of the scattering amplitude in the plane of the
squared momentum transfer k:

A(k2) ∝ 1
k2 + α2

.

In the relativistic theory the rôle of the potential is played by energy
singularities in the t-channel, thresholds at t = 4µ2, 16µ2 and so on.

Let us illustrate this statement by considering the box diagram

t

s

p1

p2

p3

p4

whose contribution we may interpret as defining the potential in the next-
to-Born approximation. It is easy to see that the radius of this potential
is r = 1/2µ.

Thus, the assumption that all the singularities of the scattering am-
plitude are determined by the masses of real particles implies that there
are no potentials with an infinite radius (since all hadrons have non-zero
masses).

1.3 Partial wave expansion and unitarity

In order to obtain more concrete results, we must exploit analyticity and
unitarity of the S-matrix.

Due to conservation of angular momentum, the unitarity condition for
scattering amplitudes with given angular momentum � becomes diagonal.
It is convenient, therefore, to expand the s-channel amplitude into partial
waves:

A(s, t) =
∞∑
�=0

f�(s)(2�+ 1)P�(z), (1.3a)
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where P�(z) is the Legendre polynomial and z is the cosine of the scat-
tering angle:

z = cosΘs = 1 +
2t

s− 4µ2
=
u− t
u+ t

. (1.3b)

From (1.3b) it becomes obvious that in the physical region of s-channel
(t, u ≤ 0) we have −1 ≤ z ≤ 1, as expected.

Substituting the expansion (1.3a) into (1.2) and using well known or-
thogonality properties of Legendre polynomials, it is straightforward to
derive the unitarity condition for partial amplitudes f�(s). It acquires a
particularly simple form∗

Im f�(s) =
ks

16πωs
f�(s)f∗� (s) + ∆, (1.4a)

where p and ω stand for cms particle momentum and energy, respectively,

ks =

√
s− 4µ2

2
, ωs =

√
s

2
. (1.4b)

In (1.4a) ∆ represents the contribution of the inelastic channels, ∆ > 0.
The elastic case, ∆ = 0, can be solved explicitly:

f�(s) = i
8π
v

[
1− e2i δ�(s)

]
, v =

ks
ωs
, (1.5a)

with δl the scattering phase.
The solution of the elastic unitarity condition has the same form as in

non-relativistic quantum mechanics except for the velocity factor v = k/ω
which arises due to relativistic normalization of the amplitude A.
In the general case the solution of (1.4a) can be parametrized with the

help of the ‘elasticity parameter’ η�(s) ≤ 1:

f�(s) = i
8π
v

[
1− η� · e2i δ�

]
, η2� = 1− v

4π
∆. (1.5b)

From (1.5) it follows that partial wave amplitudes are bounded from
above:

Im f� ≤ |f�| ≤ 16π v−1 (η� = 1). (1.6a)

Maximal inelasticity of the scattering in a given partial wave corresponds
to η� = 0. In the high energy limit this leads to the restriction

Im f� ≤ |f�| ≤ 8π (η� = 0). (1.6b)

∗ Actual derivation of the unitarity condition for partial wave amplitudes uses the
relation between the angles of initial, intermediate and final state particles and the
known orthogonality properties of Legendre polynomials.
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In this case the amplitude (1.5b) is purely imaginary, so that the elastic
scattering is but a ‘shadow’ of inelastic channels. The model

f� =

 i
8π
v
, η� = 0, for � < �0 = ksR,

0 , η� = 1, δ� = 0, for � > �0,

is known as the ‘black disk’ model for diffractive scattering. At high
energies s � 4k2s � µ2 (v � 1) when �0 � 1, it leads to the forward
scattering amplitude (see (1.3a))

A(s, 0) =
∑
�

(2�+ 1)f� � �20 · 8πi � i s · 2πR2,

which, according to the optical theorem, results in

σtot =
Im A(s, 0)
v s

� 2πR2 = πR2
∣∣
inelastic

+πR2
∣∣
diffraction

.

This is the pattern of diffraction off an absorbing disk of radius R.

1.3.1 Threshold behaviour of partial wave amplitudes

It is well known from quantum mechanics that for potentials of finite
range, r0, the partial waves behave like (kr0)� as k → 0. It can be easily
seen that a similar result holds in the theory of the S matrix.

Indeed, the singularity in t of the amplitude A(s, t), the closest to the
physical region in the s-channel, is located at t = 4µ2. Therefore the
series (1.3a) should be convergent for z up to z0 = 1 + 4µ2/2k2s .

For t > 0 and s→ 4µ2, one gets z → ∞ and P�(z) grows as P�(z) ∼ z�.
For the series (1.3a) to converge, one has to require that f� should fall
with � like

(
2k2s/4µ

2
)� but not faster since at t = 4µ2 the series has to be

divergent.

1.3.2 Singularities of ImA on the Mandelstam plane (Karplus curve)

Repeating the same arguments for the imaginary part of the s-channel
amplitude ImA we would get

Im f�(s) ∝ k2�s , ks → 0.

This cannot be true, however, since it contradicts the unitarity condition:
Im f� ∝ k4�+1s follows from (1.4a). Substituting this behaviour into (1.3a),
we observe that the series for Im sA(s, t) remains convergent at t = µ2.
We conclude that singularities in t of the imaginary part of the amplitude
are located above t = 4µ2, and their position depends on s.
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Actually, using the unitarity condition one can find the exact form of
the line of singularities of Im sA(s, t) on the Mandelstam plane, known as
Karplus (or Landau) curve.
Let us sketch its derivation in the region 4µ2 ≤ s ≤ 16µ2, t > 4µ2

where the two-particle unitarity condition is valid (∆ = 0 in (1.4a)).
For t > 0 we have z > 1 and the Legendre polynomials increase expo-

nentially with �:

P�(coshα)
�→∞� e(�+

1
2
)α

√
2π� sinhα

, coshα ≡ z = 1 +
t

2k2s
> 1 . (1.7)

To ensure convergence of (1.3a) for t < 4µ2, partial waves have to fall as

f� ∼ e−�α0 , coshα0 = 1 +
4µ2

2k2s
. (1.8)

Due to the unitarity condition (1.4a) the imaginary part falls even faster:
Im f� ∼ exp (−2�α0).
Consider now the series (1.3a) for Im sA(s, t). With t increasing, the

growing factor exp (�α), originating from the Legendre polynomials, ev-
entually overtakes the falling factor exp (−2�α0) due to Im f�. At this
point the series becomes divergent, and Im sA(s, t) develops a singularity.
Thus, the line of singularities of Im sA(s, t) for 4µ2 ≤ s ≤ 16µ2 is given

by the equation α = 2α0. In terms of the variables s and t this equation
takes the form

t

16µ2
=

s

s− 4µ2
, 4µ2 ≤ s ≤ 16µ2.

In the complementary region 4µ2 ≤ t ≤ 16µ2, s ≥ 4µ2, the Karplus curve
can be found using the symmetry of A(s, t) under the permutation s↔ t:

s

16µ2
=

t

t− 4µ2
, 4µ2 ≤ t ≤ 16µ2.

This example illustrates how the unitarity condition determines the ana-
lyticity domain of the scattering amplitude.
The lines of singularities Ci of the amplitude A(s, t) are drawn on the

Mandelstam plane in Fig. 1.2.
The fact that the Karplus curve C1(s, t) has finite asymptotes (in our

example, the lines s = 4µ2, t→ ∞, and t = 4µ2, s→ ∞) is obvious, since
otherwise the partial wave amplitudes would decrease with increasing �
faster than any exponential, which is in contradiction with the standard
behaviour f� ∼ exp(−α�) for �→ ∞.

In reality, the Karplus curves for ππ scattering are not symmetric with
respect to s and t, which is a consequence of the pions being pseudoscalars
(see the following lectures and the footnote on page 27).
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1.4 The Froissart theorem

In 1958 Froissart showed that the analytic properties of the scattering
amplitude together with the unitarity condition put certain restrictions
on the asymptotic behaviour of A(s, t) in the physical region. Let us show
that asymptotically

ImA(s, t)|t=0 ≤ const · s ln2 s
s0
, s→ ∞.

First let us estimate f� at large s using the fact that the singularity of
Im sA(s, t) closest to the physical region of the s-channel is situated at
t = 4µ2. As was shown above, at large � the partial wave amplitude falls
exponentially. Since for k2s ∝ s� t (1.8) gives α � √

t/ks, we have

f�(s) � c(s, �) exp
(
− �
ks

√
4µ2
)
, �, s→ ∞, (1.9)

where c(s, �) is slowly (non-exponentially) varying with �.
Let us now assume that for t arbitrarily close to 4µ2 the amplitude

grows with s not faster than some power. Then the same is valid for
Im c(s, �). Indeed, Im fl is positive due to the unitarity condition, and so
is P�(1 + t/2k2s) for t ≥ 0. Therefore for each partial wave we have an
estimate†(

s

s0

)N
> ImA(s, t) =

∞∑
�=0

Im f�(s)(2�+ 1)P�

(
1 +

t

2k2s

)

> Im c(s, �)
(
2π�

√
t

ks

)−1/2
exp

{
�

ks

(√
t−
√
4µ2
)}
. (1.10)

Since (1.10) holds for arbitrary positive t < 4µ2, we conclude that

Im c(s, �) < (s/s0)
N ,

and finally, modulo an irrelevant pre-exponential factor,

Im f�(s) <∼
(
s

s0

)N
exp

(
−2µ
ks
�

)
. (1.11)

(Using the unitarity condition one can derive a similar estimate for Re f�.)

† the series converges inside the so-called Lehman ellipse in the z plane
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We are now in a position to estimate the imaginary part of the forward
scattering amplitude:

ImA(s, t = 0) =
∞∑
�=0

Im f�(s) (2�+ 1)

≤ 8π
L∑
�=0

(2�+ 1) +
∞∑

�=L+1

Im f�(s)(2�+ 1). (1.12)

Here we have extracted the finite sum � < L in which partial waves are
large, Im f� � |f�| = O(1), and estimated its contribution from above by
substituting for Im f� its maximal value allowed by unitarity, see (1.6b):

L∑
�=0

(2�+ 1) � L2 .

The border value of the angular momentum L above which partial wave
amplitudes become small, Im f�>L � 1, and fall exponentially with �
according to (1.11) can be found by setting(

s

s0

)N
exp

(
−2µ
ks
L

)
� 1 =⇒ L � ks

2µ
ln
s

s0
.

The contribution of the infinite tail of the series in (1.12) can be estimated
using fL+n ∼ fL exp(−2µn/ks) and turns out to be subdominant:

∞∑
n=0

2(L+ n) exp
{
−2µ
ks
n

}
� ks
µ
L+

k2s
2µ2

s→∞� L2.

Thus,
ImA(s, t = 0) ∝ L2 ∝ s ln2

s

s0
.

This is the Froissart theorem.
The magnitude of the partial wave as a function of � is sketched here:

|f�|

L
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Since according to the optical theorem ImA(s, t = 0) = sσtot(s), it
follows from the Froissart theorem that the total cross section cannot
grow with the centre of mass energy

√
s faster than the squared logarithm

of s, σtot(s) ≤ σ0 ln2(s/s0), and the interaction radius cannot grow faster
than the logarithm of s.

An analogous consideration, together with the unitarity condition, leads
to the similar inequality for the real part of the forward scattering ampli-
tude, |ReA(s, t = 0)| < const · s ln2(s/s0).

In order for the cross section not to decrease with increasing energy,
the amplitude A(s, t = 0) has to grow and, as a consequence, the number
of partial waves contributing to the sum in (1.3a) has to be large. This
allows us to replace the sum in (1.3a) by the integral over �, using the
well known approximate expression for the Legendre polynomials,

P�(cosΘ) � J0
[
(2�+ 1)

Θ
2

]
, �� 1, θ � 1. (1.13)

We obtain

A(s, t) �
∫
f�(s)J0

[
(2�+ 1)

Θ
2

]
(2�+ 1)d�.

It is convenient to replace � by the impact parameter ρ, � + 1/2 = ksρ.
Then, using t � −(ksΘ)2, we obtain

A(s, t) � k2s
∫
f(ρ, s)J0

(
ρ
√−t) 2ρ dρ. (1.14)

If the values of ρ giving the dominant contribution to this integral do
not depend on s (which is the case for the usual picture of diffractive
scattering off a finite size object), then it is natural to expect that the
amplitude takes the factorized form A(s, t) � a(s)F (t). If we additionally
assume that the partial wave amplitudes f(ρ, s) that are dominant in
(1.11) approach constant values as s → ∞, then A(s, t) ∼ sF (t) and the
total cross section tends to a constant.

1.5 The Pomeranchuk theorem

In 1958 I.Ya. Pomeranchuk showed that if the total cross sections are
constant at high energies, then the total cross sections of the scattering of
a particle and its antiparticle off the same target should be asymptotically
equal. The derivation of this result is based on the properties of the
scattering amplitude in the s- and u-channels.

Let us identify the singularities of A(s, t = 0) in the complex s plane.
They are the right-hand cut s ≥ 4µ2 and the left-hand cut s ≤ 0. The
latter cut corresponds to the right-hand cut u ≥ 4µ2 in the complex u
plane due to the relation s+ t+ u = 4µ2.
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s

✻

❄

4µ2

a+ b→ c+ d

a+ d̄→ c+ b̄

✻ ❥
✲

Fig. 1.3. Amplitudes of two crossing reactions in the complex s plane

It is natural to assume that the amplitude of the reaction a+ b→ c+d
is equal to the value A(s, t) on the upper edge of the right cut in s, which
corresponds to the usual definition of Feynman integrals in perturbation
theory:

A(a+ b→ c+ d) → lim
ε→0
A(s+ i ε, t).

Similarly, the physical amplitude of the reaction a+ d̄→ c+ b̄ is given by
the value of A on the upper edge of the right-hand cut in u, i.e.

A(a+ d̄→ c+ b̄) = lim
ε→0
A(u+ i ε, t) = lim

ε→0
A(−(s− i ε)− t+ 4µ2, t),

where the latter equality follows from the identity s+t+u = 4µ2 together
with crossing symmetry. Thus the physical amplitude of the cross-channel
reaction in the s plane is obtained by approaching the cut s ≤ 0 from
below, as shown in Fig. 1.3. Furthermore, since A(s, t ≤ 0) is real on the
interval 0 < s < 4µ2 which is free from singularities, the values of the
amplitude on the two edges of the cut are complex conjugate. Therefore
we may use the relation A(s − i ε, t < 0) = A∗(s + i ε, t < 0) to finally
arrive at

Aa+d̄→c+b̄(s) � [Aa+b→c+d(−s) ]∗ , s � −u . (1.15)

Pomeranchuk proved the theorem under the assumption that the elastic
scattering amplitude at large s has the form

Aa+b→a+b = sF (t) , (1.16a)

so that the total cross section tends to a constant at s → ∞. Using the
relation (1.15) we then obtain

Aa+b̄→a+b̄ = −sF ∗(t) , (1.16b)

yielding that the imaginary parts of the two amplitudes are equal whereas
their real parts have opposite signs. (This implies that in such a model the
part of the amplitude that is symmetric in s, u must be purely imaginary
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while the antisymmetric part must be real.) Since the total cross section is
defined by the imaginary part ofA, the Pomeranchuk theorem follows suit:

σtot(a+ b) = σtot(a+ b̄).

If the total cross sections increase with energy, the asymptotic equality
of σab and σab̄ cannot, in general, be proved. The Pomeranchuk theo-
rem, however, can be proved, assuming asymptotic factorization of the
amplitude, A(s, t) � a(s)F (t), for a special class of the energy behaviour,
namely, a(s) = s(ln s)β . To carry out the proof one must use the hypoth-
esis that asymptotically the real part of the amplitude does not exceed
its imaginary part

lim
s→∞

ReA(s, t)
ImA(s, t)

< const. (1.17)

It is supported by the observation that in general Re f� is a sign alternating
function so that destructive interference in the series (1.3a) for ReA(s, t)
is possible. (Here it is important, once again, that at high energies the
large values of � are essential.)

We may illustrate the nature and significance of this hypothesis on a
simple example. Consider an amplitude of the form

A(s, t) = s ln
−s
s0

· c(t)
with c(t) a real function. For s > 0 this amplitude is complex, and the
cross section in the s-channel is constant, whereas at negative s (positive
u) we have ImA = 0 and the u-channel cross section vanishes.

Did we manage to construct a counterexample to the Pomeranchuk
theorem? Obviously not, since our model amplitude is not realistic. It
gives rise to the elastic cross section exceeding the total cross section,

σel ∼
∫

dt
s2

|A(s, t)|2 ∝ ln2 s � σtot ∼ const,

which is a consequence of ReA/ ImA ∼ ln s → ∞, in contradiction
with (1.17).

In this lecture we have demonstrated simple consequences of the ana-
lyticity and crossing symmetry of the scattering amplitude.

In the forthcoming lectures we will show how the t-channel unitarity can
be used to study the asymptotics of the scattering amplitudes for s→ ∞.
It is singularities of the amplitude in t (rather than those in u) that are
located close to the physical region in the s-channel on the Mandelstam
plane. This explains why the physics of the t-channel is important for
large s.



2
Physics of the t-channel and complex

angular momenta

In the previous lecture we have discussed analytic properties of the in-
variant amplitude A(s, t, u) describing the scattering of neutral spinless
particles (π0 mesons).

As was already stressed, it is convenient to depict the kinematics of the
reactions and the location of the singularities of A(s, t) on the Mandelstam
plane; see Fig. 2.1.

u = 0 s = 0
s = 4µ2

t = 0

t = 4µ2

s

u

t

s-channelu-channel

t-channel

u = 4µ2

Fig. 2.1. Mandelstam plane

The same amplitude A(s, t, u) describes the following three reactions

22
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(see Fig. 1.1 for notation):

a+ b→ c+ d (s > 4µ2, t, u < 0), s-channel;

a+ c̄→ b̄+ d (t > 4µ2, s, u < 0), t-channel;

a+ d̄→ b̄+ c (u > 4µ2, t, s < 0), u-channel.

 (2.1)

As was shown in Lecture 1, the invariant amplitude has singularities at
the thresholds of the corresponding reactions:

s = 4µ2, 16µ2, . . . ; t = 4µ2, 16µ2, . . . ; u = 4µ2, 16µ2, . . . .

In the physical region of the s-channel the singularities of the amplitude
A(s, t) in s are related to the possibility of the transition of the initial state
in the process of scattering into the intermediate states with two, four,
etc. particles. Its imaginary part A1(s, t) is determined by the unitarity
condition in the s channel, which is equivalent to the physical requirement
that the sum of the probabilities of transitions into all possible states n
should be equal to unity:

Im sA ≡ A1 =
1
2

∑
n

AnA
∗
n. (2.2a)

The unitarity condition (2.2a) can be represented graphically as

2i Ims =

p4

p3p2

p1 A(s + i ε) A(s− i ε)

(2.2b)

To find the discontinuity (imaginary part) of the scattering amplitude
corresponding to a given Feynman diagram, it suffices to cut the dia-
gram in all possible ways into two connected parts, having incoming and
outgoing particles on opposite sides of the cut. The cut lines must be
identified as real particles in the intermediate state and we associate with
each of them the factor 2πθ(pi0)δ(p2i −m2). These lines will be marked by
crosses. Furthermore, one has to replace i ε by −i ε in all propagators of
the block lying to the right of the cut, which corresponds to the conjugate
amplitude A∗(s + i ε) = A(s − i ε). Apart from these modifications, the
Feynman rules remain unchanged.

2.1 Analytical continuation of the t-channel unitarity condition

Let us consider now the singularities with respect to momentum transfer.
The first singularity is located at t = 4µ2. It is related to the possibility
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of exchanging two particles in the t-channel.
From the point view of the s-channel one might expect the existence

of some relation expressing the physical requirement that the probability
of the exchange of two particles in the cross-channel is restricted. To
obtain such a relation it is necessary to continue the unitarity condition
analytically from the physical region of the t-channel (t > 4µ2, s < 0) to
the region of large positive s.
For 4µ2 < t < 16µ2 it is sufficient to restrict ourselves to the two-

particle unitarity condition:

✣✢
✤✜❍❍❍❍❥ ✟✟

✟✟✯
p1 p3

✣✢
✤✜

✑
✑
✑✑✸ ◗

◗
◗◗�

✻ ✻s

p2 p4

k1 k2

t

× ×

A3 ≡ Im tA(s, t)

=
1
2

∫
d4k1
(2π)3

d4k2
(2π)3

A(p2, p4, k1, k2)A∗(k1, k2, p1, p3)θ(k10)θ(k20)

×δ(k21 −m2)δ(k22 −m2)(2π)4δ(k1 + k2 − p2 − p4). (2.3)

The imaginary part of the amplitude A3(s, t) differs from zero only for
t > 4µ2; therefore it is not analytic in t. Let us show, however, that for
fixed t > 4µ2 it is an analytic function of s and thus can be analytically
continued to the region of large positive s.
Since at large s the relative distance between t > 4µ2 and t < 0 is small,

4µ2/s� 1, one may hope that the existence of a relation representing the
analytical continuation of (2.3) (t > 4µ2) will impose a strong restriction
on the amplitude A(s, t) in the physical region of the s-channel (t < 0).
This important step – the continuation of the unitarity condition (2.3)

to s > 0 – was done by Mandelstam. Let us briefly recall the main steps.
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In the cms of the t-channel we have

A3(z, t) =
kt
ωt

∫
dΩ
64π2

A(z1, t)A∗(z2, t) , (2.4)

with

kt =

√
t− 4µ2

2
, ωt =

√
t

2
the cms momentum and energy, respectively (cf. (1.4b)). In (2.4) we have
traded the momentum transfer variable s for the cosine of the scattering
angle, z:

s = −2k2t (1− z) . (2.5a)

Analogously, s1(2) is the squared 4-momentum transfer between the in-
termediate and the initial (final) state; z1, z2 are the cosines of the cor-
responding scattering angles:

s1 = −2k2t (1− z1), s2 = −2k2t (1− z2). (2.5b)

It is convenient to replace integration over the azimuthal angle φ in dΩ =
dz1dφ by that over z2 using the trigonometric relation

z2 = zz1 +
√
(1− z21)(1− z2) cosφ . (2.6)

Calculating the Jacobian of the transformation, | sinφ|, we obtain∫
dΩ ≡

∫
2 dz1dz2√−K(z, z1, z2)

, (2.7a)

where

K ≡ (z − z1z2)2 − (1− z21)(1− z22). (2.7b)

Finally,

A3(z, t) =
kt

32π2ωt

∫ ∫
dz1 dz2√−K(z, z1, z2)

A(z1, t)A∗(z2, t), (2.8)

with the integration domain determined by the condition K(z, z1, z2) < 0.
After the z-dependence has been explicitly extracted, it is clear that

A3(z) is an analytic function of z that can be continued to s > 0 (z > 1,
see (2.5a)). In the course of continuation we will have to deform inte-
gration contours in (2.8) appropriately, so as to avoid singularities. The
singularity of the integral will appear at some z = z0(t) > 1 when such
contour deformation becomes no longer possible (singularities of the in-
tegrand ‘pinch’ the contour and immobilize it).
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-1 1 a

b

z

Fig. 2.2. Analytical continuation of A3(z, t) to z > 1

For z > z0(t) the amplitude is complex and double valued, i.e. two
analytical continuations of (2.8), one along the path a and another along
b, as shown in Fig. 2.2, will lead to two different expressions for A3(z).
One can calculate the discontinuity of A3(z) across the singularity at

z = z0(t). This calculation yields

ρ(s, t) ≡ Im sA3(z, t)

=
kt

16π2ωt

∫
dz1dz2√
K(z, z1, z2)

[A1(z1)A∗
1(z2) +A2(z1)A

∗
2(z2)], (2.9)

where the integration is performed over the region

z1 > 1, z2 > 1, z > z1z2 +
√
(z21 − 1)(z22 − 1). (2.10)

Here A1(z) is the imaginary part (absorptive part) of the amplitude in
the s-channel:

s

a

b

c

d

The region of negative z1, z2 is also taken into account in (2.9). Hence
the contribution of the absorptive part of the amplitude in the u-channel:

u

a

d

c

b
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The real function ρ(s, t) is ‘the imaginary part of the imaginary part’ –
the double discontinuity of the amplitude A(s, t) both in s and in t. In the
Mandelstam plane, it differs from zero inside the region bounded by the
Karplus curve z = z0(t). Inside this region ρ(s, t) acquires contributions
from each particle threshold, having a simple graphical meaning. For
example, a four-particle s-channel state in A1,

a

b

c

d

s

contributes to ρ(s, t) inside the region determined by its own Karplus
curve with the asymptotes∗ t = (2µ)2, s = (4µ)2:

s = 0 s = 4µ2 s = 16µ2

u = 4µ2 u = 0

t = 4µ2

t = 0

z = z0(t)

t

s
u

2.1.1 The Mandelstam representation

We have calculated ρ(s, t) in two steps: we have found the imaginary part
first with respect to t and then with respect to s. We could have done it
differently: first find the imaginary part of the amplitude in the s-channel,
A1(s, t), analytically continue it to the region t > 4µ2 and then calculate
the imaginary part with respect to t.

In this way we would have got the same expression (2.9) for ρ(s, t).
This statement has been proved rigorously for Feynman graphs in a few

∗ This curve and also the complementary one with the asymptotes t = (4µ)2, s = (2µ)2

are the true first Karplus curves for ππ scattering, since the ππ → π transition is
forbidden by conservation of G-parity.
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orders of perturbation theory. Although a general proof does not exist,
one can give a simple argument for its validity.
Singularity described by the Karplus curve z = z0(t) is the singularity

of the whole amplitude A(s, t), and ρ(s, t) is the discontinuity across this
singularity. Its value cannot depend on the way in which it was calculated.
For instance, suppose that the amplitude A(s, t) admits the Mandelstam
representation:

A(s, t) =
1
π2

∫
ρst(s′, t′)ds′dt′

(s′ − s)(t′ − t) + [s→ u] + [t→ u], (2.11)

where the integration region is restricted by the Karplus curve in the s′-t′
plane. One can check that the curve z = z0(t) is indeed a singularity
curve of A(s, t). Then, using the Hadamard principle one can verify that
the two ways of calculating ρ(s, t), mentioned above, lead to the same
result:

ρst(s, t) = Im sA3(s, t) = Im tA1(s, t).

Since 1958, when the representation (2.11) for the invariant amplitude
A(s, t) was suggested by Mandelstam, up to the present time no Feynman
graph has been found for which it is not valid, provided all participating
particles are stable (e.g., ma < mb +mc +md).
Thus using the t-channel unitarity condition (2.8) we have obtained the

expression for the imaginary part of the absorptive part A1(s, t) in the
s-channel, analytically continued into the unphysical region t > 4µ2, in
terms of the s- and u-channel absorptive parts A1, A2:

ρ(s, t) = Im tA1(s, t)

=
kt

16π2ωt

∫
dz1dz2√
K(z, z1, z2)

[A1(s1, t)A∗
1(s2, t) +A2(s1, t)A

∗
2(s2, t)].

(2.12)

2.1.2 Inconsistency of the ‘black disk’ model of diffraction

Using the relation (2.12) we can now show that the absorptive part of the
s-channel amplitude A1 at large s and fixed t cannot have the form

A1(s, t) = s f(t) , s→ ∞ . (2.13)

Such a form arises within a simple model which corresponds to diffractive
scattering off a black disk in quantum mechanics.
On the one hand, assuming (2.13) we can continue A1(s, t) into the

unphysical region t > 4µ2 and determine ρ(s, t) directly:

ρ(s, t) = s Im f(t). (2.14)
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On the other hand, we can calculate ρ(s, t) by substituting the ansatz
(2.13) into the r.h.s. of (2.12). To this end we first remark that A2(u, t)
coincides (modulo sign) with A1(s, t) (see the proof of the Pomeranchuk
theorem in Lecture 1). Therefore it suffices to consider only one term
A1(s1)A∗

1(s2) in the integrand in (2.12).
For large z ∝ s the dominant contribution to the integral over z1 and

z2 arises from z1 ∼ z2 ∼
√
z � 1, since according to our assumption the

integrand grows linearly with z1 and z2 (A1(zi) � zif(t)). Therefore we
may simplify the expression (2.7b) for K(z1, z2, z):

K(z1, z2, z) � z(z − 2z1z2).

Substituting approximate asymptotic expressions into (2.12) and omitting
irrelevant s-independent factors we obtain an estimate

ρ(s, t) ∝
∫

z1dz1 z2dz2√
z(z − 2z1z2)

, z1 > 1, z2 > 1, z > 2z1z2. (2.15)

Introducing a convenient variable x = 2z1z2 we arrive at

ρ(s, t) ∝ 1√
z

∫ z

1

dz1
z1

∫ z

z1/2

xdx√
z − x � z ln z

∫ 1

0

y dy√
1− y . (2.16)

Comparing with (2.14) we observe that the r.h.s. of the relation (2.12)
asymptotically exceeds its l.h.s. This disproves the black disk model
(2.13): A1(s, t) �= sf(t) for s→ ∞.

2.2 Complex angular momenta

We start now to consider the theory of complex angular momenta. This
theory has a number of aspects. The first aspect can be already revealed
within the framework of non-relativistic quantum mechanics. It is ex-
pressed by the fact that the bound states and resonances are grouped
into families. In each family the binding energy is a continuous function
of the orbital angular momentum �.

Indeed, consider the Schrödinger equation with Hamiltonian

H = − 1
2m

1
r2

d
dr
r2

d
dr

+ U(r) +
�(�+ 1)
2mr2

. (2.17)

Then, if the potential U(r) is attractive and has the form of a sufficiently
deep and wide well, there will be in general several bound states with
energies En

� at every value of �. With increasing � the centrifugal barrier
grows, so the energy of every level with definite n grows monotonically.
(For example, for the Coulomb potential E|nr=0 = −e2/2(�+ 1)2.)

At some sufficiently large � one may encounter quasi-stationary states
– resonances:
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V (r)

E ′
�

E ′
1

r

E ′
2

In the relativistic problem the potential depends on both the velocities
and �, and existence of a relationship between the states with different
angular momenta seems unlikely. It is therefore even more surprising
that elementary particles are grouped into families with the same internal
quantum numbers (isospin, strangeness, spatial and charge parity) but
different spins. In relativistic QFT the spins of particles play a rôle similar
to that of the orbital angular momenta in the non-relativistic theory.
The second aspect is related to the asymptotics of the scattering am-

plitude f(E, cosΘ) at large values of cosΘ. Within the framework of
non-relativistic quantum mechanics this problem is only of academic in-
terest.
In the relativistic theory, on the other hand, large zt = cosΘt at fixed

Et (in the t-channel) correspond to the transition to the physical region
of another channel (s-channel), where cosΘt is linearly related to the
energy s (see (2.5a)).
Originally the idea that the asymptotics in the s-channel is related to

the partial wave expansion in the t-channel was proposed by Mandelstam.
Let us briefly recall his reasoning.

2.3 Partial wave expansion and Sommerfeld–Watson
representation

Consider the partial wave expansion of the amplitude A(s, t) in the phys-
ical region of the t-channel, i.e. for t > 4µ2, s < 0 (see Fig. 2.1),

A(s, t) =
∞∑
n=0

(2n+ 1) fn(t)Pn(z), z = 1 +
2s

t− 4µ2
. (2.18)

This series is convergent up to the first s plane singularity of A(s, t), i.e.
for s < 4µ2. It is natural to expect that the partial wave amplitudes fn(t)
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are large up to n = kr0, where r0 is the interaction radius (see Lecture 1).†
A question arises: what is the asymptotics of this series at large z?

Although the series diverges at large z, one might expect that under an
appropriate analytical continuation only partial wave amplitudes with
n ∼ kr0 provide the dominant contributions to the series. Therefore we
may truncate the series at n ≤ n0 = kr0. Then at large s we would have
A(s, t) ∼ zn0 . This implies that the asymptotics of A(s, t) is related to
the effective orbital angular momentum that is possible at given energy t.

To support this idea mathematically we use the method developed by
Sommerfeld, Fock and Schwinger in solving the problem of the diffraction
of radio waves around the Earth’s surface and similar results obtained by
Regge within the framework of quantum mechanics.

Our immediate goal is to perform the analytical continuation of (2.18)
to large z.

Suppose that we can find an analytic function f�(t) that does not in-
crease exponentially in any direction in the right half of the complex �
plane, and whose values coincide with the partial wave amplitudes at all
integer �:

f�|�=n = fn. (2.19)

Then the expansion (2.18) can be written in the form of a contour integral:

A =
i
2

∫
L

d�
sinπ�

f�(t)P�(−z)(2�+ 1), (2.20)

where the integration contour L is shown in Fig. 2.3. (In the derivation
of (2.19) the property Pn(−z) = (−1)nPn(z) has been used.)

✻

✲

��
•
0

•
1

•
2

•
3

•
4

✤
✣

✲

✛

L

Fig. 2.3. Integration contour in the Sommerfeld–Watson representation

In (2.20), P�(z) is the Legendre function of the first kind, the solution
of the differential Legendre equation that is regular at z = 1. Let us now

† We use here the letter n instead of � to emphasize that the partial waves in this sum
are defined only for integer values of the angular momentum.
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deform the contour along the imaginary axis. For this to be possible the
integrand in (2.20) should decrease at large |�| in the right half-plane.
Recall the large-� asymptotics of the Legendre function (z > 0):

P�(z)|�→∞ ∼ exp(i �Θ) + exp(−i �Θ), (2.21a)
P�(−z)|�→∞ ∼ exp(i �(π −Θ)) + exp(−i �(π −Θ)), (2.21b)

where z = cosΘ. From (2.21) we conclude that the ratio P�(−z)/ sinπ�
falls exponentially with Im � → ∞ in the physical region 0 < Θ < π.
Therefore, the contour in the � plane may be deformed, passing on the
right all singularities of f�(t) that may appear at finite distances in the �
plane as shown in Fig. 2.4.



Fig. 2.4. Contour deformation in the Sommerfeld–Watson integral

After the contour has been so deformed, the function (2.20) is defined
in the entire complex z plane.
Indeed, consider first the region z < −1 in (2.20). Then, by virtue of

(2.21a), the asymptotics of P�(z) will be of the form cosh(�χ), where χ is
a positive number related to z in a simple way. So, with � moving along
the imaginary axis, P�(−z) oscillates. This means that the integral (2.20)
converges and defines an analytic function A(t, z), free of singularities in
the left half of the z plane.
If we consider the region of positive z, z > 1, then (2.21b) applies and

as we move along the line Im � → +∞, P�(−z) ∼ exp(−i �π) exp(�χ).
Taking into account the cancellation of the growing factor exp(−i �π) by
sin �π, the convergence of the contour integral (2.20) will depend on the
behaviour of f� as Im � → ∞. Thus, generally speaking, the amplitude
A(t, z) may have singularities on the right half of the z plane:
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✻

||

�z

1−1

These singularities may occur only at real positive z > 1 since, as is easy
to check, there are no singularities at complex values of z: taking Im z �= 0
immediately leads to a convergent integral.

Once the amplitude (2.20) is defined for all z, its asymptotics can be
easily calculated using the property of the Legendre functions:

P�(−z) ∼ z� exp(−i �π), z → ∞. (2.22)

From this equation one can see that the asymptotics of (2.20) is governed
by the rightmost singularity of the partial wave amplitude in the � plane.
For instance if the rightmost singularity of f�(t) is a simple pole at � =
α(t), then

A(s, t) → π
2α+ 1
sinπα

Pα(−z)Res fα(t) +
∫
Re �<Re α(t)

d� . . . , (2.23)

where Res fα(t) is the residue of the partial wave amplitude at this pole.
From (2.22) one can see that the ‘background integral’ (the second term
on the r.h.s. of (2.23)) is asymptotically subdominant with respect to the
first term.

Thus the � plane singularities of f�(t) define the asymptotics of the am-
plitude A(s, t), i.e. the asymptotics is defined by some �eff , in accordance
with the intuitive picture of Mandelstam.

This is the second aspect of the theory of complex angular momenta.

2.4 Continuation of partial wave amplitudes to complex �

Consider now the problem of analytical continuation of the partial wave
amplitudes fn(t) into the complex � plane.

2.4.1 Non-relativistic quantum mechanics

In non-relativistic quantum mechanics this problem is easily solved since
for the analytical continuation of the radial wave function Ψ�(r) it is
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sufficient to consider in the Schrödinger equation the quantity �(�+1) to
be complex valued and look for the solution which at small r satisfies the
condition

Ψ�(r) → c r�, for r → 0. (2.24)

Condition (2.24) determines unambiguously the analytic function at all
complex � in the region Re � > −1/2, where the second solution to the
Schrödinger equation behaves like r−�−1 as r → 0 and hence does not
satisfy the condition (2.24).
The partial wave amplitudes

f�(E) =
1
k
sin δ�(E) exp(i δ�(E)) (2.25)

can be found by studying the asymptotics of the radial wave function
Ψ�(r) at large r:

Ψ�(r) ∼ 1
r
sin
(
kr − �π

2
+ δ�(E)

)
, r → ∞, (2.26)

where δ�(E) is the scattering phase shift. The partial wave amplitudes
f�(E) defined this way will decrease at large �: from the general physical
picture it is clear that the scattering at large impact parameters should be
small, as long as we restrict ourselves to potentials with finite interaction
radii.
Therefore, for the function f� analytically continued in this way, the

representation (2.20), with the contour of integration deformed into the
path going along the imaginary axis as shown in Fig. 2.4, will be valid.

2.4.2 Relativistic theory

Let us consider now the analytical continuation of the partial wave am-
plitudes in the relativistic theory.
It is worthwhile to mention that, generally speaking, there exists no

method of constructing an analytic function f� that coincides with an
arbitrary set of numbers fn at integer values of � = n. In the mathemat-
ical literature this problem is solved using an infinite series which is not
convergent however for all sets of fn.
Let us consider the question of uniqueness of constructing an analytic

function f� out of its values fn at integer points. There exists a mathe-
matical theorem (Carlson’s theorem) which states that if one has found
a function which is analytic at Re � > �0, and which grows in any direc-
tion in the right half-plane slower than exp(±i �π), then this function is
unique. Indeed if there were two such functions f1,2(�), then the function
φ = (f1(�) − f2(�))/ sinπ� would be analytic and exponentially falling
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along any beam in the right half-plane. It is next to obvious that such a
function is identically equal to zero.

In the relativistic theory, a function f�(E) that satisfies all the above
mentioned properties cannot exist. Indeed, otherwise A(s, t) defined by
(2.20) would have no singularities for z < −1, but this would contradict
the fact that A(s, t) does have a singularity at u = −2p2(1 + z) > 4µ2

(see the previous lecture).

2.5 Gribov–Froissart projection

We can show, however, that in the relativistic case there exist two func-
tions f+� and f−� , analytic in the � plane, that are the analytical continu-
ations of the partial wave amplitudes fn(t) with even and odd integer n,
respectively.

Let us write down the formula which defines fn(t) in terms of A(s, t):

fn(t) =
1
2

∫ 1

−1
Pn(z)A(t, z) dz. (2.27)

Consider also the Legendre function of the second kind for integer n:

Qn(z) =
1
2

∫ 1

−1
Pn(z′)dz′

z − z′ . (2.28)

At large z this function decreases,

Qn(z) ∼ c

zn+1
, |z| → ∞, (2.29)

whereas for −1 < z < 1 it is complex valued and obeys the relation

Qn(z + i ε)−Qn(z − i ε) = −iπPn(z). (2.30)

Using this property we may rewrite (2.27) as

fn(t) =
1

2πi

∮
(a)
Qn(z)A(t, z) dz, (2.31)

where the integration contour (a), enclosing the interval [−1, 1] on the
real axis in the z plane, is displayed in Fig. 2.5.

Away from the contour, the integrand has two branch cuts on the real
axis which start at the points z1 and −z2 that correspond to the threshold
s- and u-channel singularities of the amplitude A(s, t); in our symmetric
case, the thresholds are at s = 4µ2 and u = 4µ2, so that z1 = z2 =
1 + 4µ2/2k2t > 1. The discontinuities across these cuts are, respectively,
2iA1(z, t) and 2iA2(z, t).



36 2 Physics of the t-channel and complex angular momenta

b ba

z

Fig. 2.5. Original (a) and deformed contours (b) in the representation (2.31)

The integration contour (a) in (2.31) can be deformed for sufficiently
large n by virtue of (2.29) and replaced by the contour (b) as shown in
Fig. 2.5. Omitting the contribution of the circle at infinity we find

fn =
1
π

∫ ∞

z1

Qn(z)A1(z, t) dz +
1
π

∫ −∞

−z2
Qn(z)A2(z, t) dz. (2.32)

Using the relation
Qn(−z) = (−1)n+1Qn(z), (2.33)

we may rewrite (2.32) in the following form (zu = −z):

fn =
1
π

∫ ∞

z1

Qn(z)A1(z, t) dz+
(−1)n

π

∫ ∞

z2

Qn(zu)A2(−zu, t) dzu. (2.34)

This representation is better suited for performing analytical continuation
to complex � than the expression (2.27) we started from.
The advantage of (2.34) becomes evident from the comparison of asymp-

totic behaviour of Pn(z) (cf. (1.13)) and Qn(z) at large n:

Pn(z) � J0(nΘ) ∼ cosh(nχ); (2.35a)
Qn(z) ∼ exp(−nχ); (2.35b)

cosΘ = coshχ = z ≥ z1,2 > 1 (χ > 0).

From (2.35a) we see that if we had defined fn(z) by formula (2.27), par-
tial waves would have grown exponentially with n, thus invalidating the
Sommerfeld–Watson representation.
On the other hand, Qn(z) according to (2.35b) do not grow in the

right half of the n plane. Therefore, had we omitted the factor (−1)n ∼
exp(π|Im n|) in the second term of (2.34), the function fn(t) would have
fallen off exponentially at positive n and would not have grown along the
imaginary n axis.
To get rid of the oscillating factor (−1)n, let us define two analytic

functions f+� and f−� which satisfy the condition

f+� |�=n=2k = fn, f−� |�=n=2k+1 = fn. (2.36)
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For these functions we obtain from (2.34)

f±� =
1
π

∫ ∞

z1

Q�(z)A1(z, t) dz ± 1
π

∫ ∞

z2

Q�(zu)A2(−zu, t) dzu. (2.37)

We have shown that in relativistic theory no analytic function exists which
extrapolates all partial wave amplitudes. At the same time, one can
introduce two analytic functions f±� (t), defined by (2.37), which are the
continuations of the partial waves with even and odd n, respectively.

It is easy to show that the continuation (2.37) is unique. Indeed, if the
function in the right half-plane grows slower than exp(±i �π/2) and takes
the given values fn at even integer points then it is unique by virtue of
the Carlson theorem. Note that our functions (2.37) do not grow at all for
Re � > �0 (with �0 such that |A1(z, t)| < z�0 for z → ∞, so as to ensure
convergence of (2.37)).

One can represent the scattering amplitude A given in (2.18) as a sum
of odd and even parts in z: A = A+ +A−,

A+ =
∑
n=2r

Pn(z)(2n+ 1)f+n , A− =
∑

n=2r+1

Pn(z)(2n+ 1)f−n . (2.38)

For each of the amplitudes A+ and A− one may introduce analytic
functions f±� which are, generally speaking, different. In non-relativistic
quantum mechanics a similar situation occurs in the presence of an ex-
change potential.

In conclusion we note that the transition from (2.31) to (2.37) is possible
only for n > n0 ≥ �0, when one can neglect the integral over the circle of
infinite radius in the z plane. Therefore in the general case we must add
to the contour integral a few of the first terms of the sum (2.38):‡

A+ =
n0∑

n=2r

Pn(z)(2n+1)f+n +
i
4

�0+i∞∫
�0−i∞

(2�+ 1) d�
sinπ�

f+� [P�(−z) + P�(z)] ,

A− =
n0∑

n=2r+1

Pn(z)(2n+1)f−n +
i
4

�0+i∞∫
�0−i∞

(2�+ 1) d�
sinπ�

f−� [P�(−z)− P�(z)] .


(2.39)

We can now find the expression for the absorptive part of the s-channel
amplitude using

P�(−(z + i ε))− P�(z + i ε) =
[
e−iπ� − eiπ�

]
P�(z)

= −2i sinπ�P�(z). (2.40)

‡ Recall that by virtue of the Froissart theorem n0 < 2, so that each of the finite sums
in (2.39) contains at most one term.
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Applying (2.40) to (2.39) we derive

A±
1 (s, t) =

1
4i

∫
d� (2�+ 1) f±� (t)P�(zs),

zs = 1 +
2s

t− 4µ2
.

 (2.41)

2.6 t-Channel partial waves and the black disk model

Let us show now that the t-channel unitarity condition (2.3) for the partial
wave amplitudes with integer numbers n can be analytically continued
onto the complex � plane. To this end we rewrite (2.3) in the form

1
2i

[ fn(t+ i ε)− fn(t− i ε) ] =
kt

16πωt
fn(t+ i ε)fn(t− i ε). (2.42)

This equation is valid for even as well as for odd n. Substituting n → �
and moving the r.h.s. of (2.42) to the l.h.s., we note that the function
that we have thus formed in the l.h.s. of the equation is defined for arbi-
trary complex �, equals zero at all even (odd) points and does not grow
exponentially in the right half-plane. Therefore it is identically equal to
zero:

1
2i
[
f±� (t+ i ε)− f±� (t− i ε)

]
=

kt
16πωt

f±� (t+ i ε)f±� (t− i ε). (2.43)

It is clear that the unitarity condition (2.43) and the Sommerfeld-Watson
representation (2.39) are together equivalent to the Mandelstam analyti-
cal continuation of the t-channel unitarity condition towards large z.
Let us demonstrate that (2.43) forbids the asymptotics of the absorp-

tive part sf(t) that is prescribed by the black disk model. Indeed, hav-
ing assumed such an asymptotic behaviour of A1 and A2 we would get
from (2.37)

f+�
∣∣
�→1 � r(t)

�− 1
. (2.44)

The contradiction with unitarity is apparent, since the r.h.s. of (2.43)
acquires a double pole, while its l.h.s. has only a simple pole at � = 1.
From this example it is clear that the t-channel unitarity condition

forbids partial wave amplitudes to have any fixed (independent of t) sin-
gularities at real �, such that f� = ∞ at the singular point. ‘Soft’ fixed
singularities (for example, f� ∝

√
�− 1, or f� ∝ ln(� − 1)) which corre-

spond to σtot falling with energy are, generally speaking, possible.
We conclude that a seemingly natural picture of a hadron as an ob-

ject with fixed, independent of the collision energy, interaction radius is
inconsistent with unitarity in the cross-channel.



3
Singularities of partial waves and

unitarity

In the previous lecture we have found a simple connection between �
plane singularities of f±� (t) and the asymptotics of the scattering ampli-
tude at fixed t > 4µ2 and s→ ∞, along the dashed line 1 in Fig. 3.1. It is
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t = 4µ2

t = 0

u = 4µ2
z = −1 z = 1
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a b2

3 a b

1

t0

dc

ρsu

Fig. 3.1. On continuation of the t-channel partial wave to t < 0
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necessary to continue the formulæ (2.39) to the physical region of the
s-channel, that is to t < 0.

3.1 Continuation of partial waves with complex � to t < 0

Let us discuss analytic properties of the partial wave f±� (t):

f±� (t) =
1
π

∫
Q�(z)A±

1 (z, t),

or

f±� (t) =
1
π

∫ ∞

4µ2

Q�

(
1 +

2s
t− 4µ2

)
A±
1 (s, t)

2 ds
t− 4µ2

. (3.1)

As we have learned from the Mandelstam representation, A1(s, t) as a
function of t has singularities both at t > 4µ2 where the first spectral
function ρst �= 0 and at negative t, due to the third spectral function ρsu.
A1(s, t) is real, for arbitrary s, in the interval from t = 4µ2 down to

t = t0 (the line t = t0 is tangential to the third Mandelstam curve, see
Fig. 3.1).
If Q�(z) had no t-dependence, then f�(t) would have simple analytic

properties, mirroring analytic properties of the function A1(s, t) as shown
in Fig. 3.2.

✻

✲

�t
t = t0 t = 4µ2

Fig. 3.2. Analytic properties of A1(s, t)

Let us examine t-dependence induced by the factor Q�(z).
As is well known, Q�(z) with integer � is an analytic function of z in

the entire z plane with a cut [−1,+1]. For non-integer �, Q�(z) has three
singular points z = ±1 and z = −∞, and the cut goes from z = +1 all
the way down to z = −∞.
For t > 4µ2, the integral in (3.1) runs over z > 1 where Q�(z) does

not have any singularities. In this region the imaginary part of f� is
determined by that of A1.
Now we take t < 4µ2. Here A1 is real and we could expect partial waves

to be real too. However, an additional complexity arises due to the fact
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that for 0 < t < 4µ2 we have z < −1 and Q�(z) (with non-integer real
�) becomes complex valued. Let us show that this complexity of f� has a
simple kinematical origin and can be eliminated.

3.1.1 Threshold singularity and partial waves φ�
Consider values of t close to the t-channel threshold. Here |z| → ∞ and

Q�(z) ∝ 1
z�+1

�
(
t− 4µ2

2s

)�+1
, t− 4µ2 → 0.

Hence
f±l (t) ∝ (t− 4µ2)�

∫
A±
1 (s, t)

d(2s)
(2s)�+1

, (3.2)

which is nothing but the correct threshold behaviour of a partial wave
with integer � (recall that (t− 4µ2)� = (2kt)2�).

Thus, the new complexity at t − 4µ2 < 0 is connected with the gener-
alization of the standard threshold behaviour of partial wave amplitudes
to non-integer �.

Let us extract this singularity by introducing a new function

φ�(t) ≡ f�(t)
(t− 4µ2)�

(3.3)

and verifying that the redefined partial wave φ�(t) has no singularity at
t = 4µ2 and therefore is real in the interval 0 < t < 4µ2.

To this end we invoke a representation of Q� in terms of the hypergeo-
metric function,

Q�(z) =
√
πΓ(�+ 1)

Γ(�+ 3/2)(2z)�+1
F

(
�

2
+ 1,

�+ 1
2
, �+

3
2
,
1
z2

)
, (3.4)

to observe that for z < −1 there is no singularity but the cut due to the
factor 1/z�+1.

Using (3.4) it is easy to check that

φ±� (t) =
1

(t− 4µ2)�
1
π

∫
Q�

(
1 +

2s
t− 4µ2

)
A±
1 (s, t)

2 ds
t− 4µ2

=
2

π(4µ2 − t)�+1
∫ ∞

4µ2

Q�

(
2s

4µ2 − t − 1
)
A±
1 (s, t) ds. (3.5)

This expression remains real when t decreases from 4µ2 down to the point
where the argument of Q� in (3.5) becomes equal to +1:

2s
4µ2 − t − 1 = 1 =⇒ s = 4µ2 − t. (3.6)
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Since an integration over s is performed from s0 = 4µ2, the greatest value
of t for which the condition (3.6) is still satisfied is equal to zero.
Thus, the partial wave φ�(t) defined in (3.3) is real in the interval

0 < t < 4µ2.

3.1.2 φ�(t) At t < 0 and its discontinuity

For t < 0 the function Q� in (3.5) is in general complex valued when s is
varied within some finite interval (see the shaded area in Fig. 3.1). For
example, along the line 2 in Fig. 3.1 it is the interval ab.
For t < t0 the singularities of the function φ� are not only those related

to the complexity of the Legendre function Q�, but also those coming
from the discontinuity of A1(s, t) (where ρsu �= 0).
Finally, φ�(t) has the singularities as shown below:

✻

✲
t = t0 t = 4µ2

�t

The discontinuity across the left-hand cut for t > t0 can be easily found
as it is related only with the complexity of Q�(z):

Q�(z + i ε)−Q�(z − i ε) =
π

i
P�(z), −1 < z < 1.

For arbitrary t < 0 we have zt < 1 satisfied automatically, while the
condition zt > −1 yields s < sb ≡ 4µ2 − t. That is for t0 < t < 0 we have

Imφ±� (t) = −1
2

∫ sb

4µ2

P�

(
2s

4µ2 − t − 1
)
A±
1 (s, t)

2 ds
(4µ2 − t)�+1 . (3.7)

The integration is performed at t =const along the interval ab on the
line 2 inside the shaded area in Fig. 3.1.
For t < t0, φ�(t) develops an additional discontinuity which is related

to the complexity of A1(s, t). Therefore for t < t0 the expression (3.7)
has a more complicated form:

Imφ±� (t) =−1
2

∫ sb

4µ2

P�

(
2s

4µ2 − t−1
)
A±
1 (s, t+ i ε)

2 ds
(4µ2 − t)�+1

+
∫ sd

sc

Q�

(
2s

4µ2 − t+ i ε
−1
)
Im tA

±
1 (s, t)

2 ds
(4µ2 − t)�+1 . (3.8)
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The integration in the first term in (3.8) is performed along the interval
ab of line 3 in Fig. 3.1, and that in the second term along the interval cd
on the same line, inside the Karplus curve.

Note that the second integral vanishes for integer �. Indeed, the integra-
tion region here is symmetric with respect to z → −z which is equivalent
to interchanging s↔ u. Let � = 2n. Remembering that Q2n(z) is an odd
function of z and that the spectral function ρ+su(s, t) ≡ ρ(s, t) + ρ(u, t)
is an even function, we find that the second term is zero as the integral
of an odd function over a symmetric interval. The same is valid for the
function φ−(t) at � = 2n+ 1.

Thus we have shown that the discontinuity of the partial wave ∆φ±� (t)
across the left-hand cut in integer points of its proper signature,

� = 2n for φ+� (t),

� = 2n+ 1 for φ−� (t),

is not related to A±
1 (s, u) being complex.

Considering the scattering amplitude of non-identical particles the state-
ment remains valid although in general the integration interval (sc, sd) in
(3.8) loses its symmetry with respect to reflection z → −z.

3.2 The unitarity condition for partial waves with complex �

The discontinuity of φ±� (t) across the right-hand cut for t running from
4µ2 to 16µ2 can be determined by the two-particle unitarity condition,
which was discussed in the second lecture:

Im fn(t) =
kt

16πωt
fn(t)f∗n(t). (3.9)

For t > 16µ2 the unitarity condition has a much more involved form.
In order to generalize (3.9) to complex � let us write down this unitarity

condition in a more convenient form:

1
2i

[fn(t+ i ε)− fn(t− i ε)] =
kt

16πωt
fn(t+ i ε)fn(t− i ε).

Recall the integral representation

f±� (t± i ε) =
∫ ∞

4µ2

Q�

(
1 +

2s
t− 4µ2

)
A±
1 (s, t± i ε)

2 ds
t− 4µ2

that we invented to define partial waves with arbitrary non-integer � > �0
(to ensure convergence of the integral over s). Note that Q� is real for
t > 4µ2, so we don’t need to assign a complex value to its argument t.
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In terms of partial wave amplitudes φ� we have

1
2i

[φ�(t+ i ε)− φ�(t− i ε)] = C� φ�(t+ i ε)φ�(t− i ε), (3.10a)

where

C�(t) =
kt

16πωt
(t− 4µ2)�. (3.10b)

This formula is more convenient since, as has been explained at the be-
ginning of this lecture, for 0 < t < 4µ2 the function φ�(t) is real for
any real �, whereas f�(t) is a complex valued function for non-integer
�. As a result, the functions φ�(t ± i ε) for any � are the values of the
same analytic function on the upper (lower) edge of the right-hand cut at
4µ2 < t < 16µ2.

The expression (3.10a) can be rewritten as

1
2i

[φ� − φ∗�∗ ] = C�(t)φ�φ∗�∗ . (3.11)

The proof goes through a trivial calculation:

φ±� (t− i ε) =
∫
Q�

(
1 +

2s
t− 4µ2

)
A±(t− i ε, s)

2 ds
(t− 4µ2)�+1

=
∫
Q∗
�∗

(
1 +

2s
t− 4µ2

)
A∗±(t+ i ε, s)

2 ds
(t− 4µ2)�+1

= φ∗�∗ ,

A±(t− i ε) = (A±(t+ i ε))∗, 0 < t < 4µ2.

3.3 Singularities of the partial wave amplitude

Let us address the central question: what do we know about the singu-
larities of the partial wave amplitudes? But first, a few words about the
physical meaning of the formulæ obtained.
We have introduced the notion of partial wave amplitude f�(t). Singu-

larities of f�(t) at t > 4µ2 (right cut) have a clear physical origin and are
related to the masses of real particles in the intermediate states that can
be created at given t.
What is, however, the meaning of the appearance of the left cut (t < 0)

in the partial wave amplitude?

3.3.1 Left cut in non-relativistic theory

The left cut appears already in non-relativistic theory (though the dis-
continuity across it is given in this case only by the first term in (3.8)).
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Where does the left cut come from in non-relativistic theory which, from
the point of view of QFT, is equivalent to the ladder approximation to
the scattering amplitude?

To answer this question, we have to consider singularities of the ampli-
tudes with respect to momentum transfer. Let us show that it is these
singularities, determined by the form of the potential, that build up the
left cut.

Indeed, consider the Born amplitude for scattering with momentum
transfer q, corresponding to the Yukawa potential r−1 exp(−αr):

✏✏✏✏
����

✏✏
✏✏

��
��

t →

↓ q2

=
1

q2 + α2

It is straightforward to calculate the partial wave amplitude corre-
sponding to this graph. Constructing the cosine of the scattering angle,
|q| = kt sin Θ

2 , 1− z = 2q2/(t− 4µ2), we obtain

f�(t) =
1
2

∫ 1

−1
dz

q2 + α2
P�(z) =

1
t− 4µ2

∫ 1

−1
P�(z)dz

1− z + 2α2/(t− 4µ2)

=
1

t− 4µ2
Q�

(
1 +

2α2

t− 4µ2

)
. (3.12)

Let’s take integer �. Then the function Q�(z) has a cut only at −1 < z <
1, and so f�(t) develops a cut in t varying from −∞ up to t0 = 4µ2 − α2
(defined by the equation 1 + 2α2/(t0 − 4µ2) = −1).

In each successive order (n) in the scattering potential the amplitude
will develop a new singularity t(n)0 < t0 on the negative t axis. Thus, the
left cut plays in the theory a rôle akin to a potential. If the potential were
defined, then one could calculate the discontinuity of f�(t) across the left
cut, and using the unitarity condition find f�(t).
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The difference between relativistic and non-relativistic theories is that
while the form of the potential can be arbitrary in the latter, the re-
strictions arising from the unitarity conditions in the different channels
have to be imposed in the former. There were numerous attempts to
identify the discontinuity on the left cut with potential, i.e. to define the
discontinuity rather than the potential. However, no interesting results
have been obtained in this way, since the left cut discontinuity has some
specific features that follow directly from expression (3.7).
What kind of singularities in � can the partial wave amplitudes have?

It is convenient to divide them into the two classes: fixed and moving
singularities.

3.3.2 Fixed singularities

Location of ‘fixed singularities’ (� = �0) does not depend on t. Actually,
very little can be said about their properties. Fixed singularities such
that φ� → ∞ for � → �0 cannot be located on the real axis, Im � = 0,
since from the unitarity condition (3.9) it follows that |φ�| ∝ |f�| < const.
(The same statement holds for pairs of complex conjugate branch points.)
However, the singularities of the form

√
�− �0 are not forbidden.∗

Such singularities appear in the non-relativistic theory in the scattering
problem with the attractive singular potential −γ/r2. The partial wave
amplitude corresponding to this potential has a fixed branch point associ-
ated with the cut running along the real axis from �1 = −1/2+

√
γ2 + 1/4

down to �2 = −1/2−√γ2 + 1/4.
From the point of view of high energy asymptotics such a weak singu-

larity would lead to the cross section falling with increasing energy (even
for �0 = 1), since as we have discussed above, an asymptotically constant
total cross section (which is translated according to the optical theorem
into the asymptotics of the scattering amplitude at t = 0) corresponds to
a stronger singularity, namely the simple pole f�(t) ∝ 1/(�− 1).

3.3.3 Moving singularities

We will suppose that in relativistic theory there exist only moving singu-
larities or, to be more precise, that only these are important for finding
the asymptotics of the scattering amplitude. The argument in support of
this hypothesis is twofold:

• in such a theory a beautiful self-consistent picture emerges, and

∗ Singularities whose character depends on t, for example (�−�0)
χ(t) with χ(t ≥ 4µ2) ≥

0, are not forbidden by unitarity either.
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• such singularities have to be present.

What can be said about them? It turns out, quite a lot.
Let us assume that the amplitude at large s is polynomially bounded

uniformly in t, that is A±
1 (s, t) < s

�0 , �0 = const for any t.
Then for � > �0 the integral in (3.1) is convergent and f�(t) has no

singularities for any t.
Notice that up to this point we did not discuss the convergence prop-

erties of the integrals but rather only local properties of the Mandelstam
representation (the location of the singularities).

Since a moving singularity in �, � = �(t) leads in turn to a singularity in
t = t(�), then for � > �0, f�(t) has no moving singularities in t. The fact
that φ�(t) for � > �0 has no singularities means that they are located on
other sheets. When � decreases, the singularities move from these sheets
to the first sheet. So to learn what kind of singularities can appear on
the physical sheet for � < �0 it is necessary to know the content of other
sheets.

First statement: a moving singularity cannot appear from beneath the
left cut. To prove this one needs to show that for any � there are no
singularities on the unphysical sheets connected with the left cut:

✻

✲
φ+l

φ−l

�❤

φ+� (t) = φ
−
� (t) + ∆φ�(t), φ±� (t) = φ�(t± i ε).

Let us take here t < 0 and give it a negative imaginary part. Then
φ−� (t) will stay on the physical sheet, while φ+� (t) will be moving to the
unphysical sheet under the left cut, exploring its content. Since φ−� (t) is
a regular function for complex t (physical sheet), we could encounter a
moving singularity of φ�(t) on the unphysical sheet (φ+� (t)) only if ∆φ�(t)
had such a singularity at some t = t′(�).

But actually ∆φ�(t) has no moving singularity. This follows from the
structure of the expression for the discontinuity:

∆φ�(t) =−1
2

∫ sb

4µ2

P�

(
2s

4µ2−t−i ε
− 1
)
A±
1 (t+ i ε, s)

2 ds
(4µ2 − t)�+1

+
∫ sd

sc

Q�

(
2s

4µ2 − t+ i ε
− 1
)
ρsu(s, t)

2 ds
(4µ2 − t)�+1 , (3.13)
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The integration in (3.13) is performed over a finite region, so the in-
tegral converges and cannot generate singularities. As for an explicit
�-dependence, P� is an entire function of � whereas the only singularities
of Q� are poles at negative integer � ≤ −1. Therefore all singularities
of ∆φ�(t) in the � plane are fixed poles. This completes the proof that
moving singularities cannot emerge from under the left cut of the partial
wave.

3.4 Moving poles and resonances

Hence all moving singularities of f�(t) come onto the physical sheet from
the right cut which, as was argued above, is related to the physics of the
t-channel.
Let us show now that for 16µ2 > t > 4µ2 (where the elastic unitarity

condition is applicable) only poles can appear.
Indeed, solving the equation

φ+� − φ−� = 2iC�φ+� φ
−
� , φ±� = φ�(t± i ε),

we obtain

φ+� (t) =
φ−�

1− 2iC�φ−�
. (3.14)

Now we repeat the same procedure: move t in the lower half-plane, so
that φ−� (for � > �0) stays regular (amplitude on the physical sheet) and
φ+� (t) represents the amplitude on the first unphysical sheet related to the
first, two-particle, threshold.
Hence the singularities of φ� on the first unphysical sheet appear when

φ�(t) on the physical sheet becomes equal to 1/(2iC�) at some point t =
t(�). These singularities are poles.
If such a pole on the unphysical sheet is close to the cut it can be

identified as a resonance. Moreover, the trajectory of the pole t = t(�)
for all � = 2n (if φ�(t) was chosen with positive signature) describes a
chain of resonances (provided they do not move too far away from the
real axis).
Let us decrease � below �0. The pole t(�) may then move onto the

physical sheet through the tip of the cut at t = 4µ2. If then � should
approach an integer � (for instance � = 2), then in the real physical
amplitude f�(t) the pole would appear, which corresponds to a pole in
the scattering amplitude, i.e. to a bound state (with spin �). If such
bound states exist, then a single curve t = t(�) can describe a whole set
of physical particles – bound states and resonances.
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To give an example, consider the partial wave of the electron scattering
in the Coulomb field:†

f�(t) =
Γ(�+ 1 + i /k)
Γ(�+ 1− i /k)

. (3.15)

Its poles correspond to the poles of Γ(�+1+i /k), which appear at integer
negative values of its argument: �+1+(i /k) = −nr, or k = i /(�+nr+1).
This equation gives the energy levels of the hydrogen atom. Thus, in
complete agreement with the statements given above, the location of the
pole of the partial wave amplitude defines the set of energy levels of the
hydrogen atom with a given principal quantum number nr.

If we tried to get onto unphysical sheets related to multi-particle thresh-
olds using inelastic unitarity conditions with more than two particles in
the intermediate state, we would encounter a lot of different things. Up
to now this problem is not completely solved. Nevertheless the question
what is the content of the other sheets can be answered for integer �. It
turns out that we encounter nothing unexpected there.

The cut from 4µ2 to 16µ2 is related to the Feynman graphs describing
elastic scattering, with only two on-mass-shell particles in the intermedi-
ate state:

For t > 16µ2 apart from these diagrams there exist processes with four
real particles in the intermediate state:

Among them there are Feynman graphs describing rescattering of two
particles shown in Fig. 3.3.

† Note that the normalization of the non-relativistic amplitude f in (3.15) differs from
the relativistic normalization that is being used elsewhere in the text.
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Fig. 3.3. Two-particle rescattering in the four-particle intermediate state

Since the 2 → 2 block for t1 > 4µ2 may contain a pole at some complex
t (resonance), among the Feynman diagrams of Fig. 3.3 there will be the
graphs of the type shown in Fig. 3.4.

Fig. 3.4. Two-resonance exchange generating complex threshold singularities on
the unphysical sheet related with four-particle intermediate states (t > 16µ2).

These graphs have singularities related with the thresholds of two in-
termediate state particles (in this case – with complex masses). Therefore
the other unphysical sheets must contain threshold-type singularities.
For integer � one can write down the unitarity condition which accounts

for the four-particle intermediate state, and see that the new singularities
are in fact branch points, generated by the poles. The word generated
means that if poles were absent, then these branch points would disappear
as well.
In contrast, for non-integer � such a programme has not yet been accom-

plished. During 1961–1963 the hypothesis prevailed that φ�(t) in general
does not have moving singularities other than poles. At that time people
believed that the singularities of the type mentioned above are due to
the singularities in the orbital angular momentum of two intermediate
particles, which in general are not related to the total angular momen-
tum of the initial particles. When varying �, the thresholds jump from
one integer � to another (together with masses of resonances) whereas at
non-integer � they turned out to be moving continuously.
The hypothesis is that for non-integer � the structure of singularities

is the same as for the integer case, namely moving poles and related
branchings.
Up to 1969 no other singularities were found.



4
Properties of Regge poles

In the previous lecture we have shown that on the second sheet of the
complex plane there could be only poles. One can show that on the
third sheet there are only poles and branch points, corresponding to an
exchange of two resonances.

4.1 Resonances

Let us discuss the properties of poles. Near the singularity a partial
wave amplitude can be represented as a sum of a pole and a regular
(‘background’) term:

f� =
r(t)

�− α(t) + f̃�.

The total amplitude reads

A±(t, z) =
i
4

∫
d�

sinπ�
(2�+ 1)f±� [P�(−z)± P�(z)]. (4.1)

For t < 4µ2 the amplitude f� is real and therefore r(t) and α(t) are also
real.

Let us consider now t > 4µ2. Let us first show that there are no poles
on the real axis. To do this we shall use the unitarity condition for the
function

φ�(t) =
ρ(t)

�− α(t) + φ̃�, ρ(t) =
r(t)

(t− 4µ2)α(t)
. (4.2)

This condition has the form

1
2i
[
φ+� (t)− φ−� (t)

]
= C�(t)φ+� (t)φ

−
� (t). (4.3)

51
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The superscripts ± in (4.3) denote that t has positive or negative ima-
ginary parts, respectively; φ−� (t) is the complex conjugate of φ+� (t). Then
we have

φ+� (t)− φ−� (t) � ρ+

�− α+ − ρ−

�− α− =
ρ+(�− α−)− ρ−(�− α+)

(�− α+)(�− α−)
= 2iCα

ρ+ρ−

(�− α+)(�− α−) . (4.4)

We have kept in φ+� (t) and φ−� (t) only the pole terms, and did not take
into account finite corrections. This is legitimate only if � is close to both
α+ and α− simultaneously, i.e. if the imaginary part Imα is small. The
denominators on the l.h.s. and r.h.s. of the last equality in (4.4) are the
same. The numerator on the r.h.s. does not depend on �. Hence, the
numerator on the l.h.s. should not depend on � either. That means

ρ+ = ρ− = ρ,

and (4.4) takes the form

ρ(α+ − α−) � 2i ρ2Cα, Imα = ρCα. (4.5)

We see that Imα �= 0. So we have proved that there are no poles on the
real axis in the � plane for t > 4µ2.
Substituting ρ from (4.5) into the expression for the partial wave am-

plitude (4.2), we obtain

φ� =
Imα

�− Reα− i Imα
· 1
C�
. (4.6)

Let us assume that for some t = t1 ≡ M2 > 4µ2, Reα(t1) = n; then,
expanding Reα in a series in (t− t1), we obtain

φn(t) � Imα
n− Reα(t1)− Reα′(t1)(t− t1)− i Imα(t1)

· 1
Cn

=
Imα/Reα′(t1)

t1 − t− i Imα/Reα′(t1)
· 1
Cn
.

In spite of the fact that we are close to the pole, we do not get an infinity,
because of the presence of Imα in the denominator of φn(t).
In the vicinity of the pole we can approximate t1 − t ≡ M2 − E2 �

2M(M − E) and write

φn(E) � Γ/2
M − i Γ/2− E · 1

2MCn
.
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This is the Breit–Wigner formula.
So we see that a Regge pole n = α(t) at an integer angular momentum

n corresponds to a resonance (unstable particle) with the massM =
√
t1,

α(t1) = n, and the width

Γ =
Imα(M2)
M Reα′(M2)

.

4.2 Bound states

Partial wave φ�(t) at t < 4µ2 is real. So if for some integer n it has a pole
at t = M2 < 4µ2 then ρ and α in the expression φ� = ρ/(� − α(t)) are
real. The partial wave amplitude then has the form

φn =
ρ

α′(M2) (M2 − t) , M2 < 4µ2 .

The partial wave amplitude φn having a pole at some energy below the
threshold corresponds to a bound state (stable particle) with angular
momentum n. That leads to the graph

π
π′

π π

π

and on the Mandelstam plane there will be a pole at t = t2 = M2
π′ and

thresholds in t corresponding to the possibility of creating two, three, etc.
π′ particles. If Mπ′ > mπ, then the new thresholds will be above the
elastic one. (In reality, this bound state particle cannot be the π meson,
because it has the quantum numbers of a system of two pions, which are
different from the quantum numbers of a single pion.)

One more remark is needed: in the non-relativistic theory α′(t) should
be positive, α′(t) > 0, because there is the Schrödinger equation with a
centrifugal barrier, and with increasing � the barrier also increases and so
does the mass of the bound state.

4.3 Elementary particle or bound state?

In the non-relativistic theory a pole in the scattering amplitude of scat-
tering of elementary particles has a clear meaning of a bound state or
a resonance. In the relativistic theory it is difficult to claim that some
particle is a bound state of other elementary particles, because any real
state contributes a pole to the scattering amplitude.

One may ask if it is possible to verify experimentally whether a given
particle is an elementary one or a bound state.
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4.3.1 Regge trajectories

Let us consider a set of particles (some of them may be unstable) with
squared masses t0, t1, t2, . . . and spins n0, n0 + 2, n0 + 4, . . . (n0 = 0, 1),
respectively (we suppose that all other quantum numbers are the same).
Then it is natural to assume that these particles are described by a single
Regge pole trajectory � = α(t) that at t = tk passes (close to) the integer
points n0 + 2k (the imaginary part of α(t) is supposed to be small).

t1 t2
t



 + 2

 + 4



t3

We have taken the spin values with step 2 because, as we have seen
above, an analytic partial wave amplitude exists separately for even and
odd spins (positive and negative signatures).

We saw that a Regge trajectory may contain stable particles – bound
states – together with resonances. It is natural to assume conversely that
any stable particle lying on a Regge trajectory is a bound state. In fact
this is an operational definition of non-elementary (bound state) particles
in relativistic theory.

4.3.2 Regge pole exchange and particle exchange (t > 0)

Where else does the Regge trajectory show itself? Let us consider a s-
channel amplitude which is governed by some Regge pole. Substituting
the pole term into expression (4.1) for the amplitude, we obtain

A± = −π
2
(2α(t) + 1)r(t)

sin(πα(t))
[
Pα(t)(−z)± Pα(t)(z)

]
.

What properties of the amplitude can we see in this formula?
We consider first the case of positive signature assuming that α passes

through 2n. At this point P�(−z) and P�(z) coincide, P2n(−z) = P2n(z),
and sinπ� is zero. If we represent α(t) as α(t1) + (t− t1)α′, then

A+ � (2α+ 1)r(t)
α′ (t1 − t) Pα(z) (α = 2n).
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The amplitude A+ has a pole at t = t1. If we assume that α(t1) = 0, then
Pα = 1, and A+ = C/(t1 − t). The Feynman graph corresponding to the
exchange of a scalar particle in the t-channel (see Fig. 4.1) gives exactly

✑
✑
✑✑

❜
❜
❜
❜❜

❜
❜
❜
❜❜

✑
✑
✑✑

t

s

p1 p2

p3 p4

� ✑✑✸

✸
❥

Fig. 4.1. t-Channel particle exchange graph

the same expression. If, for example, α = 2, then A+ = C2P2(z)/(t2− t).
It is easy to check that in the Feynman graph describing the exchange of
a spin-2 particle, the tensor Green function of the particle, upon multi-
plication by the vertex functions, gives precisely P2(z).

If α = 2n+1 and the signature is positive, then the sum P�(−z)+P�(z)
vanishes together with sinπα). In order to resolve this indeterminacy, we
take into account that Pα(−(z + i ε)) = e−iπαPα(z). As a result we get

A+ ∼ −Pα(z)e
−iπα + 1
sinπα

= Pα(z)
[
i − cot

πα

2

]
.

We see that when α is an odd number, the positive signature amplitude
A+(s, t) does not have any poles and is purely imaginary. Let us remark
that for α = 1 we would have A+ ∝ is at high energies.

We consider now a negative signature amplitude. Then it has the pole
A− ∼ Pα(z)/(t1 − t) near α(t1) = 2n + 1. For example, if α(t) passes
through 1 at t = t1, then the amplitude takes the form

A− ∝ P1(z)
t1 − t =

z

t1 − t , z ≡ zt = 1 +
2s

t− 4µ2
=
s− u
t− 4µ2

, (4.7a)

so that for large energies A− ∝ s/(t1 − t).
Let us verify that this amplitude corresponds to vector particle ex-

change. A vector particle (with massM) in the Feynman graph of Fig. 4.1
is described by the Green function proportional to gµν , and there are con-
served currents (p1 + p2)µ and (p3 + p4)ν at the vertices. In this case we
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obtain

A ∝ (p1 + p2)µ(p3 + p4)µ
M2 − t =

s− u
M2 − t ∝ z ∝ A−[(4.7a)]. (4.7b)

4.3.3 Regge exchange and elementary particles (t < 0)

Let us now pass to the region of negative t. If our pole α(t) is the rightmost
singularity of f�(t) in the � plane, then it will govern the asymptotics of
the scattering amplitude.
As we have discussed above (see Lecture 2), analytic partial wave am-

plitudes f±� (t) can be constructed using (the Gribov–Froissart projection)
(2.37) only for Re � > �0, so that a few partial waves with n ≤ �0 are not
included in the Sommerfeld–Watson integral and may not lie on Regge
trajectories; see (2.39).
This is an important point, because it is related to the notion of ele-

mentarity of particles.
Let us assume that the amplitude of one of these excluded partial waves,

f0 for instance, has a pole f0 = C/(m2 − t). This is a typical Born
amplitude for particle exchange in the QFT framework. Therefore, in
such a situation we would say that there is an elementary scalar particle
in the spectrum of the theory.
The Born amplitude for the exchange of an elementary scalar particle

reads

A =
g2

m2 − t .

The corresponding partial wave amplitude is

fn =
1
2

∫ 1

−1
APn(z) dz =

g2

m2 − t δn0.

As we already know, the same amplitude can be obtained from the Regge
pole, but only in the region close to t = m2, whereas for other values
of t the Regge amplitude would be different. Most importantly, its de-
pendence on s will be different for different t while the elementary scalar
gives the amplitude that is constant in s for all values of t.
The question arises: are there in nature truly elementary particles in

the sense that in the partial wave amplitude they are represented by a
term of the type f�δ�n0?
We are ready to show that there are no elementary particles with spin

greater than 1. One can also almost always establish the fact that a given
particle is not elementary. The converse statement is wrong.
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4.3.4 There is no elementary particle with J > 1

Let us show that any partial wave amplitude with n > 1 lies on the
Regge trajectory, that is all particles with spins J > 1 are necessarily
non-elementary – bound states or resonances. To this end we shall use
the fact that A < Cs ln2 s for t < 0 by virtue of the Froissart theorem.

We have assumed that the amplitude is polynomially bounded, A < sN ,
for t > 4µ2 and s→ ∞, and combined partial waves with sufficiently large
angular momenta into an analytic function:

f±� (t) =
1
π

∫ ∞

z0

Q�(z)A±
1 dz , � > N . (4.8a)

For small angular momenta (non-reggeized partial waves) we have to use
the standard definition

f̄n =
1
2

∫ 1

−1
AP�(z) dz , � ≤ N . (4.8b)

We continue now f�(t) given in (4.8a) to the physical region of the s-
channel, t < 0, where A < Cs ln2 s. Then for any n > 1 we may deform
the contour and close it around the cut [−1, 1] of Qn:

f�|�=n =
1
π

∫ ∞

z0

Qn(z)A1(s, t) dz =
1
2

∫ 1

−1
P�(z)A(s, t) dz ≡ f̄n.

Since f�|�=n coincides with the actual partial wave amplitude f̄n, (4.8b),
for t < 0 then, by virtue of analyticity in t, these functions are equal
everywhere.

Non-elementarity of particles with spin J > 1 is in correspondence with
the fact that one can construct a renormalizable QFT only containing par-
ticles with spins 0, 1/2 and 1; for fields with higher spins a renormalizable
theory has not been constructed.

4.3.5 Asymptotics of s-channel amplitudes and reggeization

Let us take some 2 → 2 process and assume that experiment would give
A(s, t) → 0 with s→ ∞, at least for some (sufficiently) negative t. Then
we would be able to perform the above calculation and identify f� with
f̄n for all values of � and show that among the hadrons with correspond-
ing quantum numbers that could have been exchanged in the t-channel
there are no elementary particles at all. This is an experimental way to
determine whether a particle is elementary or not.

For example, in the meson–proton scattering amplitude there is a graph
corresponding to neutron exchange:



58 4 Properties of Regge poles
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If the π−p scattering amplitude falls off with s for fixed u, then we can
conclude that the neutron lies on a Regge trajectory.
Experiment shows indeed that there is no elementary particle among

hadrons: spin-0 mesons (like π), spin-12 particles (nucleon) and vector
mesons (like ρ) all lie on proper Regge trajectories.

4.4 Factorization

If there exist several states with the same quantum numbers, for instance
ππ and KK̄, then we have several reactions, corresponding to transitions
between these states:

✖✕
✗✔✟✟✟

❍❍❍✟✟
✟

❍❍❍

✖✕
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✟

❍❍❍

✖✕
✗✔✟✟✟

❍❍❍✟✟
✟

❍❍❍
s

π π

ππ

π πK K̄

K̄K K K̄t

If there is a real particle with the same quantum numbers, then all three
amplitudes will contain the pole corresponding to the exchange of this
particle:

t

f

t
K

Kπ π π

K̄K
f

t

g f g

g
π π

π

K̄

K̄
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In the QFT framework, the following amplitudes correspond to these
three graphs:

r11
t− t1 =

gg

t− t1 ,
r22
t− t1 =

ff

t− t1 ,
r12
t− t1 =

gf

t− t1 .

It is obvious from the above that r11r22 = r212. This property reflects
the fact that the initial state knows nothing about the final one: the
initial particles first transform into an intermediate state, which then
gets converted into the final particles, with the amplitude independent of
the properties of the initial state.

Let us show that Regge poles have the same property. If we write down
the contribution of the Regge poles to our three amplitudes in the form

f11� =
r11(t)
�− α(t) , f12� =

r12(t)
�− α(t) , f22� =

r22(t)
�− α(t) ,

then, by virtue of the unitarity condition for the residues of the poles,
there exist the same relations, and it is natural to write

f11� =
g21(t)
�− α(t) , f12� =

g1(t)g2(t)
�− α(t) , f22� =

g22(t)
�− α(t) .

In order to show that, we will consider these three amplitudes in the
region 4µ2 < t < 16µ2. Then all amplitudes have a system of two pions
as a real intermediate state. A real intermediate state gives rise to an
imaginary part of the amplitudes, which can be derived from the unitarity
condition. Note that the fact that the region of values of t is unphysical
for the external state KK̄ is not essential.

One can show, either by continuation from the region of higher t, which
are physical for a KK̄ system, or by straightforward evaluation of Feyn-
man graphs, that the existence of imaginary parts in these reactions is
related only to the properties of the intermediate states. Such a contin-
uation of the unitarity condition yields the following expressions for the
imaginary parts:
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Imφn = Cnφnφ
∗
n

K

π

K̄

π π

π

Im γn = Cnφnγ
∗
n

K̄

K

π

π

π

π

π

π

K

K̄

π

π

φ : ππ → ππ

γ : ππ → KK̄

Imχn = Cnγnγ
∗
n

χ : KK̄ → KK̄

By continuation of the unitarity conditions from integer values n to com-
plex � we obtain

φ+� − φ−�
2i

= C�φ+� φ
−
� ,

γ+� − γ−�
2i

= C�φ+� γ
−
� ,

χ+� − χ−�
2i

= C�γ+� γ
−
� ,

from where it follows that

φ+� =
φ−�

1− 2iφ−� C�
, γ+� =

γ−�
1− 2iφ−� C�

, χ+� = χ−� + 2iC�
(γ−� )

2

1− 2iφ−� C�
.

Every one of the three amplitudes acquires a pole at the same point, where
1− 2iφ−� C� becomes zero. In the vicinity of this point we have

φ−� � 1
2iC�

,
1

1− 2iφ−� C�
� 1
β(t− t1) ,

and

φ+� =
1

β(t− t1)
1

2iC�
, γ+� =

γ−�
β(t− t1) , χ+� = 2iC�

(γ−� )
2

β(t− t1) ,

i.e. r11r22 = r212, which was required to be proved.
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Regge poles in high energy scattering

The contribution of a Regge pole to the scattering amplitude at large s
may be written in the following form:

A(s, t) = −r(t)(−s)
α(t) ± sα(t)

sinπα(t)
= r(t)sα(t)ξα, (5.1a)

where

ξα = −(e−iπα ± 1)/ sinπα. (5.1b)

In the previous lecture we have proved that the residue r(t) may be written
as a product of two functions each of which is related only to one vertex:

r(t) = gab(t) gcd(t).

This factorization property means that one may associate the amplitude
to the diagram

t ba

c d

gab

gcd

5.1 t-Channel dominance

Consider now the important property of Regge pole amplitudes, known
as ‘t-channel dominance’.
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Consider for instance the reaction involving π mesons,

πa πbt

πc πd

The π-meson exists in three charge states, so we could consider different
amplitudes corresponding to various possible charge states of the initial
and final pions. However, the charge independence of strong interactions
means that some of the amplitudes may be expressed in terms of others.
Writing π in the form of a vector (π1, π2, π3), we must demand in-

variance of the amplitude A under rotations in isospin space. From two
pions one can construct three covariants: scalar, vector and second rank
tensor. The amplitude A is the superposition of scalars built from these
covariants:

A = (πcπd)(πaπb) a(s, t) + (πc × πd)(πa × πb) b(s, t)

+
[
πaαπbβ + πaβπbα − 2

3
δαβ(πaπb)

]
×
[
πcαπdβ + πcβπdα − 2

3
δαβ(πcπd)

]
c(s, t). (5.2)

Here the first, second and third terms correspond to initial and final states
in the t-channel with isospin T = 0, 1 and 2, respectively.
For each of the amplitudes a, b and c we can perform all the manipu-

lations considered in the previous lectures: expansion into partial waves,
continuation of fT� to complex � and so on.

The unitarity condition for the partial wave amplitudes takes the form

Im fT� =
k

16πω
fT� f

∗T
� .

The absence of transitions between different values of isospin in the uni-
tarity condition is the consequence of isospin conservation.
In terms of φT� one can obtain the familiar expression for φ+T� on the

unphysical sheet:

φ+T� =
φ−T�

1− 2i c�φ−T�
.
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As before, we see that φ+T� has a pole at φ−T� = 1/(2iC�). The scattering
amplitude, and thus the partial wave, depend on the value of isospin. So
for different values of T the poles will be located at different points of
the � plane even at the same t. In other words the poles are described by
different functions, the form of which depends on isospin.

In particular, as a result of Bose statistics of pions, the amplitude must
be invariant under the replacement πa ↔ πb. Under such transposition
z is changed to −z (s ↔ u). Since the invariant coefficients of a, c (b)
are even (odd) under this replacement, the partial wave expansion will
involve only even values of � for T = 0, 2 and only odd values of � for
T = 1.

The difference between partial wave amplitudes with T = 0 or T = 2 on
one side, and T = 1 on the other side, is therefore related to the difference
in their signatures.

States with T = 0 and T = 2 have the same signature; the partial wave
amplitudes will be nevertheless different.

Thus if there is some conservation law, then the Regge pole must be
characterized by the corresponding conserved quantum number. Note
that signature is a new quantum number which arises from the concept
of complex angular momenta.

We can always classify the amplitude by the quantum numbers in the
s channel. At large s, provided the amplitude is determined by a single
rightmost Regge pole, it can also be characterized by definite quantum
numbers in the t-channel. This is the essence of ‘t-channel dominance’.

In our example the asymptotics of the scattering amplitude has the
following form:

A = asα0(t) + bsα1(t) + csα2(t).

If all the αi, i = 0, 1, 2, are different, then at large s only one of the
amplitudes with definite isospin in the t-channel survives.

Proceeding from empirical data on the existing particles, one can in
some cases predict which of the amplitudes will survive asymptotically.

For example suppose that a vector (spin-1) resonance with isospin T = 1
and mass t = m2ρ is discovered. Then one may expect that a reggeon exists
with the trajectory ασT = α−1 (t) (σ and T are its signature and isospin,
respectively). So asymptotically the amplitude must contain a term of
the form b(t)sα

−
1 (t).

If there is no resonance with T = 2, then presumably the corresponding
reggeon �σT = α+2 (t) does not exist either.

Let us recapitulate our results:

1. If reggeons exist, then their trajectories are in general different for
different quantum numbers of the t-channel (cross-channel);
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2. The power of the asymptotic behaviour of the amplitude is con-
nected with the quantum numbers of hadron resonances;

3. If the amplitude has no resonance in the t-channel (t > 4µ2), then
it falls rapidly at large s in the physical region of the s channel.

5.2 Elastic scattering and the pomeron

Consider now elastic scattering of two arbitrary particles. If the collision
were purely diffractive, then the amplitude would be of the form A =
i sf(t), with σtot = f(0). We saw that such an amplitude corresponds to
a fixed pole at � = 1 whose existence contradicts the unitarity condition.
Nevertheless one can obtain a constant cross section. It suffices to pos-

tulate the existence of a single Regge pole α+P (t) satisfying the condition

α+P (0) = 1. (5.3)

Indeed, in this case the amplitude is purely imaginary at small t:

A = −r(t)sα(t) e
−iπα + 1
sinπα

= i r(t)sα(t),

σtot =
ImA(0)
s

= r(0) = const.

Such a pole has become known as a ‘Pomeranchuk pole’ (pomeron) be-
cause it automatically satisfies his theorem about the asymptotic equality
of the total cross sections of particle and antiparticle scattering on the
same target.

5.2.1 Quantum numbers of the pomeron

The Pomeranchuk pole is also sometimes called a vacuum pole since all
its quantum numbers coincide with those of the vacuum. This in fact
follows from the condition σtot = (1/s)ImA(0) > 0.
For instance, the isospin T of the Pomeranchuk pole cannot be equal

to 2 since the imaginary part of an amplitude with T = 2 in the t-channel
is in general a non-positive function (see (5.2)). By similar reasoning one
can show that it is impossible to exchange a state with negative charge
parity and so on. It is also obvious that the particle associated with the
Pomeranchuk pole cannot carry electric charge.
Gell-Mann has noted that, if a vacuum pole exists, then it is natu-

ral to expect the existence of a particle with vacuum quantum numbers
(charge, isospin, parity, etc.) and spin equal to 2. At present we know two
such particles – tensor mesons. They have different masses. Analysing
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the energy dependence of the total cross sections one finds indeed two
trajectories with vacuum quantum numbers: one of the trajectories has
αP (0) = 1 and the other has αP ′(0) = 1/2.

Furthermore, since αP (0) = 1 and α′P (0) > 0 (and the signature is
positive), we could have a particle with the imaginary mass t1 = −m2p at
αP (t1) = 0. Gell-Mann has shown that a requirement of vanishing of the
residue at this point is natural, which leads to the absence of a particle
with J = 0 and imaginary mass (tachyon).

5.2.2 Slope of the pomeron trajectory

Let us prove now that the trajectory of the vacuum pole has a positive
derivative, α′P (t) > 0, in the interval 0 < t < 4µ2. In the non-relativistic
theory the proof of the similar statement is based on the existence of a
Hamiltonian.

In relativistic theory we will use analytic properties of the scattering
amplitude in momentum transfer. We will assume that

A1(s, t) = ImA(s, t) = r(t)sαP (t), A1(s, 0) = sσtot. (5.4)

The condition r(0) > 0 follows from σtot > 0.
Let us expand A into s-channel partial wave amplitudes:

A1(s, t) =
∞∑
n=0

Im fn(s)(2n+ 1)Pn (zs) , zs = 1 +
2t

s− 4µ2
.

We know from the unitarity condition that Im fn(s) > 0. Furthermore
at t > 0 we have Pn(zs) > 1 since the argument zs exceeds 1. It can be
shown that the derivatives of the Legendre polynomials are also positive:

d
dt
Pn(zs) ≡ P ′

n (zs) > 0,

from which it follows that A′
1(s, t) > 0. Calculating the derivative of

A1(s, t) in the Regge pole form (5.4) we obtain

A′
1(t) = r(t) · α′P (t) ln s · sαP (t) + r′(t) sαP (t) > 0.

The second term is asymptotically smaller than the first one, so taking
into account the positiveness of r(0) we obtain α′P (t) > 0.

For inelastic reactions, which can be dominated by non-vacuum poles,
the partial wave amplitudes Im fn(s) have, in general, alternating signs.
Therefore the condition α′ > 0 for non-vacuum poles cannot be proved.
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5.3 Shrinkage of the diffractive cone

Let us elucidate now the properties of the scattering in the presence of a
single vacuum pole. In the region of small t one can expand the trajectory
to obtain

dσel
dt

∝ r2(t) e2α′ξ t,

α(t) � 1 + α′t, ξ ≡ ln
s

µ2
.

(5.5)

dσ

dt

−t

s1

s2

s3

s3 > s2 > s1

Fig. 5.1. Shrinkage of the diffractive cone

From (5.5) and Fig. 5.1 we see that with increasing s the diffractive cone
becomes narrower (in contrast with the ordinary diffraction picture) and
the elastic cross section integrated over scattering angle, −t � k2sΘ2,

σel =
∫

dσel
dt

dt ∼ 1
ξ
,

falls with energy as an inverse power of ln s.

5.3.1 s-Channel partial waves in the impact parameter space

Let us estimate characteristic impact parameters that are essential for
high energy scattering. Usually it is believed that scattering is due to
exchange of virtual particles, and the essential impact parameters are
limited by some finite value 1/µ of the order of the Compton wavelength
of the lightest hadron (π meson). For the vacuum pole we find, however,
an essentially different result.



5.3 Shrinkage of the diffractive cone 67

Indeed, the Pomeranchuk pole gives

A1 = r(t)sα(t) � r(0) s exp(α′ξ t). (5.6a)

On the other hand, from the s-channel partial wave expansion for the
absorptive part of the amplitude we have (see Lecture 1):

A1 =
∑
�

(2�+ 1)Im f�(s)P�(cos θ)

� 2k2s

∫
ρ Im f(ρ, s)J0(ρ

√−t) dρ = s
2

∫
Im f(ρ, s) eiq·ρ

d2ρ
2π
, (5.2)

where ρ = �/ks, t = −q2. Performing the inverse Fourier transform and
substituting (5.6a) for A1 we obtain

Im f(ρ, s) � r(0)
π

∫
e−α

′ξq2−iq·ρ d2q =
r(0)
α′ξ

exp
(
− ρ2

4α′ξ

)
. (5.7)

One can easily show that under the approximations made, the region of
validity of (5.7) is ρ <∼ ξα′(0)µ. The dependence of this function on ρ is
shown in Fig. 5.2.

✻

✲

ρ

Im f(ρ, s)
8π

✏
❉
❉❉✖

✏
❊
❊
❊
❊
❊❊✒

diffraction

vacuum pole

✟✟✟✙

✁
✁✁☛

1

c/ξ

| |

1/µ
√
α′ξ

Fig. 5.2. Impact parameter dependence of Im f(ρ, s)

Thus one can say that the particle swells and becomes grey. Let us dis-
cuss now how this may be reconciled with the old picture. The interaction
potential may be obtained as the Fourier transform of the amplitude with
a t-channel pole. So for the exchange of a spinless particle (pion) we have

1
µ2 − t =⇒ V (r) ∼

∫
d3q

µ2 + q2
exp (iq · r) ∼ exp (−µr)

r
.
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When the exchanged particle has spin 1, the singular amplitude has the
form of s/(µ2− t), and the corresponding potential linearly increases with
energy:

V (r) ∼ s exp (−µr)
r

∝ E
exp (−µr)

r
,

with E the energy of one of the initial particles (projectile) in the rest
frame of the other (target), s = 2µE. Similarly if the exchanged par-
ticle has spin �, we obtain V ∼ s�exp (−µr)/r. Given that the potential
increases with energy, the range of distances in which the interaction
remains strong, rV (r) ∼ 1, grows with energy too: r <∼ r0 ∼ (�/µ) ln s =
(�/µ)ξ.
Consider now the behaviour of the partial wave amplitude f(ρ, s) in

the region of very large impact parameters, ρ → ∞, where the Gaussian
expression (5.7) is no longer valid. Let us use the following expression for
the s-channel partial wave amplitude:

f�(s) =
1
π

∫ ∞

4µ2

Q�

(
1 +

2t
s− 4µ2

)
A3(s, t)

2 dt
s− 4µ2

. (5.8)

This representation is analogous to (3.1) for the t-channel partial waves.
A3 in (5.8) is the discontinuity with respect to t:

A3(s, t) ≡ 1
2i

[A(s, t+ i ε)−A(s, t− i ε) ] .

At large �, Q� is asymptotically given by

Q� �
√
π√

2� sinh θ
exp

{
−α
(
�+

1
2

)}
,

where
cosh θ = 1 +

2t
s− 4µ2

≡ 1 +
t

2k2s
.

If s is large then

θ �
√
t

ks
, e−θ� � e−ρ

√
t.

Inserting this asymptotic form of Q� into (5.8) we find that for ρ → ∞
the main contribution to the integral comes from the region near the
lower limit of integration. Therefore taking A3(s, t) outside the integral
at t = 4µ2 we get

f(ρ, s) � 2
√
µ√
π

A3(s, 4µ2)
s

e−2µρ

ρ3/2
.

Evidently the imaginary part A3(s, 4µ2) is defined by the two-particle
cut of the diagram
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s

t = 4µ2

s2

s1

At large s the lower and upper blobs in this diagram must be taken in the
asymptotic regime. Supposing that these blobs have Regge asymptotics
of the form sα(t) and taking into account that the energy invariants of the
blobs, s1 and s2, obey the relation∗

s1 s2 � s µ2,

we finally obtain

f(ρ, s) ∼ exp (−2µρ)√
ρ3

sα(4µ
2)−1 = ρ−

3
2 exp

[
−2µ

(
ρ− α(4µ

2)−1
2µ

ξ

)]
.

(5.9)

The region of validity of (5.9) is ρ� ξα′(4µ2)µ. Thus, the fall-off of the
partial wave with ρ changes from Gaussian, (5.7), to exponential, (5.9),
at ρµ � α′µ2 · ln s.

5.4 Relation between total cross sections

By virtue of the factorization property, the vacuum pole leads to certain
relations between the total cross sections. Consider for instance NN , πN
and ππ scattering:

∗ This relation follows from the observation that in a renormalizable quantum field
theory components of the exchanged particle momenta transversal to the direction
of colliding particles are finite, k⊥ = O(µ).
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N

π

gN gπ

N

NN

gN

gN

gπ gπ

N N

π π π

π π

Factorization and the optical theorem give rise to the following rela-
tions:

σtotNN = g2N , σtotπN = gNgπ, σtotππ = g2π
=⇒ σtotππσ

tot
NN =

(
σtotπN

)2
.

The cross sections σπN and σNN can be measured experimentally, whereas
σππ cannot be measured directly because there are no unstable targets.
Nevertheless one can try to extract σππ investigating the reaction π +
N → 2π + N in the region of small angles, |t| <∼ µ2, where the main
contribution is expected to arise from the one-pion exchange diagram
(Chew–Low process):

✧✦
�✥

✦✦✦✦✦

❛❛❛❛❛
↑ t

N N

s π

π
✟✟

✟✟✯

✘✘✘
✘✘✿

�❍❍❍❍❥



Then one can obtain σππ from the factorization relation using the known
values of σπN and σNN .



6
Scattering of particles with spin

As was shown above, the definite quantum numbers of a reggeon in the
t-channel lead to certain relations among amplitudes in the asymptotic
region of the s-channel (s� 4µ2).

The most serious consequences arise from the assumption that there is
a reggeon with vacuum quantum numbers whose trajectory α(t) passes
through 1 at t = 0 (α(0) = 1), so for this pole

η = P = +1, T = 0, C = +1

(η, P , T and C are the signature, parity, isospin and charge parity re-
spectively).

The amplitude, corresponding to the exchange of a vacuum reggeon in
the t-channel, has the form

A = r(t)ξ+α s
α = −r(t)s

α(t) + (−s)α(t)
sinπα(t)

. (6.1)

Here r(t) is the residue of the pole and ξ+α is the signature factor:

t

s P

We saw that at small t the amplitude is purely imaginary and the an-
gular distribution of the final particles becomes narrower with increasing
energy: the diffractive cone shrinks; see Fig. 5.1.
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Amplitude (6.1) can be written in terms of impact parameters in the
following form:

A =
s

4π

∫
f(ρ, s) exp(iq · ρ) d2ρ, (6.2)

f(ρ, s) ∼ i
α′ξ

exp
(
− ρ2

4α′ξ

)
, (6.3)

where ξ = ln(s/µ2), α(t) = 1+α′t. This dependence of f(ρ, s) on s leads
both to the growth of the essential impact parameters with energy, ρ ∼√
α′ξ, and to an increase of the transparency as the absorption coefficient

falls with increasing energy as 1/α′ξ.
Let us continue the discussion of consequences caused by the assump-

tion of the dominance of a single Regge pole in the amplitude at s→ ∞.
First we show how one can write down the contribution of a Regge pole

in the simplest way if the external particles have spin.

6.1 Vector particle exchange

Let us consider the amplitude, which corresponds to the exchange of a
vector particle in the t-channel, see Fig. 6.1.

p2 p4

p1 p3

s

t

Fig. 6.1. Exchange of an elementary particle with spin

A = Γµ(p2, q)
Dµν

m2 − q2Γν(p1, q), (6.4)

Dµν = gµν − qµqν
m2
, q = p3 − p1. (6.5)

We show now that at large energies only one contribution survives in
(6.4), which corresponds to a definite spin state of the vector meson. To
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do this let us write down gµν in (6.5) in the form

gµν = e1µe
1
ν + e

2
µe
2
ν + e

λ⊥
µ e

λ⊥
ν , (6.6)

where e1µ and e2ν are unit vectors in the plane determined by the vectors
p1, p2, and eλ⊥µ,ν are the unit vectors lying in the transverse plane. Let
us verify that at high energies one can neglect the contributions coming
from e⊥µ,ν and qµqν/m2.

It is convenient to decompose the 4-vector q into two components: one
in the plane p1, p2 and the other in the transverse subspace to the latter
(Sudakov decomposition):

q = αp′2 + βp
′
1 + q⊥. (6.7)

Following Sudakov, one chooses the vectors p′1, p′2 to be light-like, p′21 =
p′22 = 0:

p1 = p′1 +
m21
s
p′2, p2 = p

′
2 +

m22
s
p′1; s = 2p′1p

′
2 � 2p1p2. (6.8)

According to (6.7) we have

α =
2p′1q
s

� m23 −m21 − q2
s

,

β =
2p′2q
s

� m22 −m24 + q2
s

,

q2 = αβs+ q2⊥ � q2⊥.

 (6.9)

One can see, inserting (6.5) and (6.6) into (6.4), that the quantities Γµeλ⊥µ ,
Γνeλ⊥ν and Γµqµ do not depend on energy. Therefore eλ⊥µ,ν and qµqν/m2

in (6.5) can be neglected as compared with e1µ and e2ν , whose contributions
increase linearly with energy.

Indeed, let us introduce two normalized light-like vectors

n1 =
p′1√
s/2
, n2 =

p′2√
s/2
, (6.10)

which satisfy
(nµ1 )

2 = (nµ2 )
2 = 0, nµ1n

µ
2 = 1. (6.11)

The first (in-the-scattering-plane) part of the unit tensor can be repre-
sented equivalently as

e1µe
1
ν + e

2
µe
2
ν = n1µn2ν + n2µn1ν . (6.12)
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Then the second term on the r.h.s. of (6.12) will give a small contribution
to (6.4), and we obtain

A � Λ2
s

m2 − q2Λ1, Λ2 = Γµ(p2, q)

√
2p′1µ
s
, Λ1 = Γµ(p1, q)

√
2p′2µ
s
.

So defined, the vertex factors Λ1,2 asymptotically do not depend on s.
The vectors n1,2 have a simple physical meaning in the t-channel: they

are the vectors describing circular polarizations of the vector meson:

e± ≡ ex ± i ey√
2

,

which obey the above relations (6.11). Solution of these equations (to-
gether with the condition (eq) = 0) leads to complex vectors for positive
t, and to real vectors for negative t (s channel).
In the case when the spin of the exchanged particle equals 2,

A ∝ Γµν(p2, q)×D{µν; ρσ}(q)× Γρσ(p1, q),

we can similarly derive that the dominant exchanged state is n1µn1ν ×
n2ρn2σ, and hence the amplitude takes the form

A =
s2

m2 − t (Γ
µνn1µn1ν) (Γρσn2ρn2σ) . (6.13)

This result can be easily generalized to the case of arbitrary spin of the
exchanged particle in Fig. 6.1.
The values Λ1,2 depend on n1,2. This fact can be expressed differently,

by stating that Λ1,2 depend on the longitudinal,

qµ‖ = (qn1)n
µ
2 + (qn2)n

µ
1 ,

and transverse, qµ⊥, components of the momentum transfer, separately.
Then the general expression for the exchange of a particle of arbitrary

spin n can be written at large s � 2p1p2 as follows:

A =
sn

m2 − t Λ2(p2, q⊥, q‖) Λ1(p1, q⊥, q‖). (6.14)

Now we are in a position to write down the amplitude which corresponds
to the t-channel exchange of a reggeon:

sn

t−m2 =⇒ ξ±α s
α(t) = −s

α(t) + (−s)α(t)
sinπα(t)

,

A =⇒ ξ±α s
α(t)Γ1(p1, q⊥, q‖)Γ2(p2, q⊥, q‖). (6.15)
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If external particles are spinless, the vertices may only contain Lorentz
products of momenta. Then, since 2p1q = q2 − m23 + m21, the vertex
Γi(pi, q⊥, q‖) depends only on q2 and the masses of the external particles
in this vertex.

It is clear that the non-zero spins of external particles do not change
the fact that the vertices are independent of the collision energy.

Let us discuss scattering of particles with non-zero spin.

6.2 Scattering of nucleons

Let particles 1 and 3 be nucleons. Then in the general case the vertex Γ1
may be represented by the following sum of invariants:

Γ1(p1, q⊥, q‖) = ū(p3)[g1+g2q̂‖+g3γ5+g4γ5q̂‖]u(p1), gi = gi(q2). (6.16)

Let us now take into account the quantum numbers of the t-channel states
such as the parity and charge parity of the reggeon.

6.2.1 Reggeon quantum numbers and NN̄ → reggeon vertices

The parity of the t-channel state 1 + 3̄ coincides with the parity of the
reggeon. Replacing the 1 + 3̄ system by its mirror state (i.e. the state
obtained by spatial reflection of the initial state) affects both the vertex Γ1
and the reggeon propagator. The latter acquires the multiplier Pj = ±1
equal to the signature of the reggeon, since under spatial reflection in the
cms of the t-channel the vectors p1 and −p3 get permuted, zt → −zt,
which means the replacement s↔ u or, asymptotically, s→ −s.

Therefore the behaviour under spatial reflection of the vertex alone will
be determined by the product of two factors, Pr = PPj .

Now we turn to charge conjugation.
The charge parity operation on the system 1+3̄ leads (in addition to the

matrix transformation of the spinor wave functions) to the permutation
of p1 with −p3 in the initial amplitude, which, once again, implies the
asymptotic replacement s → −s. Repeating the arguments given above
for the spatial reflection operation, we see that the behaviour of the vertex
Γ1 under charge conjugation is defined by the quantity Cr = CPj (with
C the charge parity of the reggeon).

Each Regge pole can be characterized, apart from its signature Pj , by
the quantum numbers Pr and Cr, instead of P , C. The former set of
quantum numbers is more convenient, because the structure of the vertex
coupled to a reggeon with given Pr, Cr does not depend on the signature
of the reggeon.
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1. The vacuum reggeon is classified by the following set of quantum
numbers: Pr = +1, Cr = +1, Pj = +1. The corresponding vertex
function Γ1 has the form

Γ1 = ū
(
f1 + f2q̂‖

)
u, Pr = +1, Cr = +1, Pj = ±1. (6.17a)

As we have already said, the vertex for the reggeons with Pr = Cr =
+1 and the opposite signature, Pj = −1, has the same form.

2. For P -odd, C-even reggeons the vertex is

Γ1 = f3 (ū γ5 u) , Pr = −1, Cr = +1, Pj = ±1. (6.17b)

3. For reggeons that are both spatial- and charge-parity-odd, one ob-
tains

Γ1 = f3
(
ūγ5q̂‖u

)
, Pr = −1, Cr = −1, Pj = ±1. (6.17c)

4. The state with quantum numbers Pr = +1, Cr = −1 cannot be
realized in the NN̄ system. It is interesting to note that experi-
mentally meson resonances with such quantum numbers have not
been observed.

6.2.2 Vacuum pole in πN and NN scattering

The contribution of the vacuum pole to the πN scattering amplitude has
the form
❍❍❍❍✟✟

✟✟✄✂�✁✄✂�✁✄✂�✁✄✂�✁
✟✟

✟✟❍❍❍❍

s →

π π

N̄N

↓ t

✯ ❥

= gπ ·
(
ū(p1)(f1 + f2q̂‖)u(p̄3)

)
ξ+α(t)s

α(t) ;

(6.18a)

its contribution to the NN scattering amplitude is
❍❍❍❍✟✟

✟✟✄✂�✁✄✂�✁✄✂�✁✄✂�✁
✟✟

✟✟❍❍❍❍

N N

NN

s→

❥ ✯

❥✯

=
(
ū(p4)

[
f1 + f2q̂‖

]
u(p2)

) · (ū(p3)[f1 + f2q̂‖]u(p1)) ξ+α sα.

(6.18b)
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The form of the amplitudes (6.18) of πN and NN scattering completely
determines the polarization properties of the scattered nucleons. As a
consequence of factorization of residues in (6.18b), the polarization den-
sity matrix of the scattered nucleons 3 and 4 is also factorized. Reality
of f1 and f2 at q2 < 0 causes nucleons 3 and 4 to be unpolarized when a
single Regge pole dominates the amplitude. In view of the fact that, in
general, f1 ∼ f2 there exists a large spin flip.

6.3 Conspiracy

We discuss now the situation which has recently been called conspiracy of
Regge poles. We shall investigate the behaviour of the scattering ampli-
tude at q2 → 0. In two-component form, the contribution of the vacuum
pole to the NN scattering amplitude is

AV ∼
(
f ′1 + f

′
2[σ

(1) × q⊥]z
)(
f ′1 + f

′
2[σ

(2) × q⊥]z
)
ξαs

α(t), (6.19)

where z marks the collision axis in the direction of p1. Correspondingly
the contributions of the other poles become

APr=−1,Cr=+1 ∼ f23

(
σ(1) · q⊥

)(
σ(2) · q⊥

)
ξαs

α(t), (6.20)

APr=−1,Cr=−1 ∼ f24σ
(1)
z σ

(2)
z . (6.21)

In the general case due to angular momentum conservation the ampli-
tude can have the following form at q2 = 0:

C1 + C2 σ
(1)
⊥ · σ(2)⊥ + C3 σ

(1)
3 σ

(2)
3 . (6.22)

However, the second term does not correspond to the contribution of
a Regge pole with definite parity, provided the form factors f ′2, f3 are
regular at q2 = 0. The structure (σ(1)⊥ · σ(2)⊥ ) does not appear from the
contribution of Regge poles (the so-called evasive solution).

Nevertheless one can try to keep the contribution of such a form to
the scattering amplitude. If we were to assume that f ′2 ∼ q−2⊥ , then we
would get an expression of the following form from the contribution of
vacuum-type Regge poles in (6.19):

[σ(1) × q⊥]z[σ(2) × q⊥]z
q2⊥

. (6.23a)

This expression has no meaning as q⊥ → 0 since the result depends on
the direction along which q⊥ tends to zero. For a short range potential
such a behaviour is impossible because the amplitude has no singularity
at q2 = 0.
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The same could be said about the expression

(σ(1) · q⊥)(σ(2) · q⊥)
q2⊥

(6.23b)

which arises from the contribution (6.20) of the pole with Pr = −1, Cr =
+1 if the form factor f3 is also singular: f23 ∼ q−2

⊥ .
However, if the positions of the vacuum poles Pr = Cr = +1 and the

pole with Pr = −1, Cr = 1 coincide at q2 = 0,

αPr=1,Cr=1(0) = αPr=−1,Cr=1(0), (6.24)

the so-called conspiracy condition, then the sum of contributions from
(6.19) and (6.20) can be equal to σ

(1)
⊥ ·σ(2)⊥ , which remains meaningful in

the q⊥ → 0 limit.
From the point of view of the t-channel, which plays the rôle of a

potential for the s-channel, the appearance of additional relations in the
amplitude at t = 0 means that the potential has an additional symmetry
at this point.



7
Fermion Regge poles

The purpose of this lecture is to discuss the properties of fermion Regge
poles. Let us consider the two graphs shown in Fig. 7.1.

✄✂�✁✄✂
�✁✄✂�✁
✄✂�✁✄✂
�✁

s→

1, p1 3, p3

4, p42, p2 (a)

✲ ✲

✲✲ ✄✂�✁✄✂
�✁✄✂�✁
✄✂�✁✄✂
�✁

s→

1, p1 4, p4

3, p32, p2 (b)

✲ ✲

✲✲

Fig. 7.1. s- And u-channel reggeon exchange graphs

Recall that the corresponding Mandelstam variables are defined as

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2, (7.1)

and we suppose, as always, that s is much larger than the squared masses
of the external particles. The cosine of the angle between the directions
p1 and p3 in the cms of the s-channel is

z1,3 =
t− u
s− 4µ2

= 1 +
2t

s− 4µ2
,

s+ t+ u = 4µ2

 (7.2)

(for simplicity, we assume that all masses are equal).
The wavy lines in Fig. 7.1 represent reggeons. One can expect that

at s → ∞ the first graph dominates for small t, whereas the second one
dominates at small u.

From (7.2) it is seen that small angles between p1 and p3 correspond to
small −t, −t� s, and hence the first graph describes forward scattering

79
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in the cms of the s channel (for identical particles 1 and 3). The case
of small u, where the second graph dominates, corresponds to backward
scattering.
The order of magnitude of the contribution of the first graph is sα1(t)

and that of the second one is sα2(u). The difference in quantum num-
bers of the systems 1–3 and 1–4, in general, leads to essentially different
trajectories α1 and α2 of the t-channel and of the u-channel reggeons,
respectively.
The fact that the asymptotic expression for the scattering amplitude

contains two terms is important. Note that even a detailed knowledge of
the t-channel trajectory α1(t) at all t does not make it possible to calculate
the asymptotics of the scattering amplitude at all t, and at small u in
particular. This is so because the theory of complex angular momenta is
valid when |t|/s� 1, or |u|/s� 1. To go to the region of small −u from
the region of small −t through the physical region of the s-channel, it is
necessary to move along the path shown in Fig. 7.2 by a dashed line, i.e.
to cross the region where the quantity zt = 1+(2s)/(t−4µ2) (the cosine of
the t-channel scattering angle) is not large. Here the arguments relying
on the dominance of the rightmost singularity in the � plane cease to
work. The dependence of the form of sα2(u) for the scattering amplitude

u
t

s = 4µ2

s

u = 4µ2

t = 4µ2

Fig. 7.2. Continuation path from u-channel to high energy large angle s-channel
scattering – solid arrow – as opposed to going from small to large scattering
angles – dashed

at small −u (large angles in the s-channel) arises when one makes the
partial wave expansion in the u-channel (the shaded area in Fig. 7.2) and
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subsequently continues the series in the form of an integral over � (see
previous lectures) along the path shown by the solid arrow, along which
zu ∼ s/u stays large.

7.1 Backward scattering as a relativistic effect

From the assumption of dominance of the amplitude of Fig. 7.1(a) in
the region of small angles, Θ � 1, and of Fig. 7.1(b) for large angles,
π − Θ � 1, we obtain the angular dependence of the differential cross
section, sketched in Fig. 7.3.

-1 1

cos θ

dσ

dΩ

Fig. 7.3. Forward and backward peaks in the differential scattering cross section

This prediction does not contradict experimental data. The following
simple but rather general arguments can be given in favour of the natu-
ralness of this peculiar angular dependence.

We present the amplitude in the form of a sum over partial wave am-
plitudes:

A(s, z) =
∑
n

(2n+ 1)an(s)Pn(z), z = cosΘ1̂3. (7.3)

From the single dispersion relation for the amplitude at fixed large s we
have

an(s) =
1
π

∫
right cut

2dt
s− 4µ2

A3(s, t)Qn

(
1 +

2t
s− 4µ2

)
+

(−1)n

π

∫
left cut

2dt
s− 4µ2

A2(u, t)Qn

(
1 +

2t
s− 4µ2

)
, (7.4)
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where A3 is the discontinuity of the amplitude across the right cut in the
t plane and its value is determined by the t-channel singularities; A2 is the
discontinuity across the left cut, whose value is restricted by the u-channel
unitarity condition and is determined by the u-channel singularities.
Thus an(s) can be represented as the sum of two contributions arising

from the right and left cuts, respectively:

an(s) = arightn (s) + (−1)naleftn (s). (7.5)

Consider the case θ = 0. Then Pn(1) = 1 and we have

A =
∑
n

(2n+ 1)arightn +
∑
n

(−1)n(2n+ 1)aleftn . (7.6)

Since arightn and aleftn are smooth functions of n, the value of the forward
amplitude is determined by the first term, i.e. by the contribution of the
t-channel singularities, whereas the second term is small since the series
is alternating.
At Θ = π we have Pn(−1) = (−1)n, and the rôles of the right and left

cuts are exchanged.
When z moves away from the points z = ±1, Pn(z) starts to oscillate

as a function of n and the whole sum decreases naturally. For instance at
Θ = π/2,

P2m+1 = 0, P2m =
(−1)m√
π

Γ(m+ 1
2)

Γ(m+ 1)
.

We obtain

A =
∑
m

(4m+ 1)(aright2m + aleft2m)
Γ(m+ 1

2)√
πΓ(m+ 1)

· (−1)m. (7.7)

Since the series is alternating, and an is smooth in n, the amplitude turns
out to be very small.
It should be stressed that the enhancement of the amplitude near

z = −1 is a purely relativistic effect since in this phenomenon the ex-
istence of the left cut, generated by the u-channel singularities, is crucial.
Physically, large backward scattering is due to the fact that in a field
theory a relativistic particle tries to keep the direction of its motion, so
it is preferable to change the particle’s identity after collision rather than
to have a large momentum transfer O(s).

7.2 Pion–nucleon scattering

Consider now the πN → πN scattering process. The notions of forward
and backward scattering are clearly defined here, and these two kinemat-
ical regions have their special features. Already in perturbation theory
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there is a Feynman graph, shown in Fig. 7.4, whose magnitude is given
by the expression

ū(p4)
q̂ +m
m2 − q2 u(p1) , q = p1 − p3 = p4 − p2 , (7.8)

with m the nucleon mass.

p2 p4

p1 p3

Fig. 7.4. πN scattering. Nucleon shown with the solid line, pion wavy

This diagram has the physical meaning of nucleon exchange and gives
a big contribution at low q2 = u (backward scattering). Within the
framework of quantum mechanics it is unusual for colliding particles to
exchange a fermion.

Let us see how to generalize this diagram to the exchange of a reggeon.

What is the order of magnitude of the graph in Fig. 7.4 at large s?
Choosing the normalization which will be convenient in the following,

ūu = 2m, (7.9)

we have

u(p) =
( √

p0 +m
σp
√
p0 −m

)
φ =

1√
p0 +m

(
p0 +m
σ · p

)
φ. (7.10)

Here φ is the usual two-component spinor, normalized to unity, φ†φ = 1,
σp = (σ ·p)/|p| is the helicity matrix and p0 is the energy of the particle.
In the laboratory frame we have p1 = (m, 0, 0, 0), p4 � (s/2m, s/2m, 0, 0)
and hence the magnitude of the amplitude corresponding to this graph,
A ∼ O(u(p4)), is of the order of s1/2, for the chosen normalization of the
spinors. This should have been expected for the exchanged particle with
spin J = 1/2.

However, the expression (7.8) cannot correspond to the exchange of a
reggeon since its spin structure q̂+m does not have definite spatial parity.
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7.2.1 Parity in the u-channel

To extract from (7.8) the reggeon contribution we shall advance the fol-
lowing argument. We recall that for the exchange of a vector particle (see
Fig. 6.1) the following expression has been attributed to the internal line:

gµν − qµqν
m2
. (7.11)

On the mass shell, at q2 = m2, (7.11) is equal to the sum over three
physical polarizations eλµ(q)e

λ
ν (q) of a vector particle, but off mass shell

the equality is violated:∑
λ

eλµ(q)e
λ
ν (q) = gµν −

qµqν
q2

�= gµν − qµqν
m2

; q2 �= m2. (7.12)

Thus the graph in Fig. 6.1 corresponds to the exchange not only of a
vector particle, but also of a particle of spin 0.
Something like this occurs also when a fermion is exchanged. Turning

now to half-integer spin, at q2 = m2 we can represent the fermion wave
function (7.10) as

uλα =
q̂ +

√
q2√

q0 +
√
q2
φλ,

uλα(q)ū
λ
β(q) = (q̂ +

√
q2)αβ .

 (7.13)

A similar construction can be used to describe the exchange of a particle
with an arbitrary half-integer spin. For example, for spin 3/2 one may
write the propagator as follows:

eνµu
σ
α ⊗ eλν ūσβ ∼ uσαūσβ

q
‖
µq

‖
ν

q‖2
∼ s · (q‖µuσα)⊗ (q‖ν ū

σ
β). (7.14)

Thus we see that an additional power of s appears due to the presence of
the vector representation in the wave function of a particle with spin 3/2
(cf. (6.7)–(6.14)).
What is the difference between q̂ +

√
q2 in (??) and (q̂ +m) of (7.8)?

Recall that the Dirac equation

(q̂ −m)ψ = 0 (7.15)

can be recast into another form, namely

(q̂ +m)ψ′ = 0, (7.16)

if we replace the Dirac spinor ψ by

ψ → ψ′ = γ5ψ.
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The matrix γ5 interchanges the upper and lower components of a spinor
which differ from each other by a factor of σp (helicity) that changes sign
under parity transformation. It makes it clear that when q2 �= m2, the
operator q̂+m corresponds to the exchange of a state of indefinite parity.

At the same time, the operator q̂ +
√
q2 in the cms of the u-channel,

where q = (q0, 0, 0, 0), is equal to√
q2 (γ0 + 1),

i.e. is proportional to the projection operator that extracts the upper
spinor components, which do not change sign under the parity transfor-
mation. It is this state that couples to an even fermionic reggeon.

7.2.2 Fermion poles with definite parity and singularity at u = 0

The contribution to the amplitude of the P -even reggeon exchange can
be written therefore in the following form:

A+ = ξα+− 1
2
sα+− 1

2 ū(p4)Γ̂+1
(
q̂ +

√
q2
)
Γ̂+2 u(p1). (7.17a)

The fact that α+− 1
2 appears in the exponent of s and in the signature is

related to the requirement of the existence of a pole of positive signature
and angular momentum 1

2 (nucleon). At α+(q) → 1
2 the signature factor

in (7.17a) develops a pole; taking account of the factor s
1
2 originating

from the spinors, we get A+ ∝ s 1
2 , as one should expect in the case of the

exchange of a spin-12 particle.
Analogously, the contribution of a P -odd reggeon to the scattering am-

plitude has the form

A− = ξα−− 1
2
sα−− 1

2 ū(p4)Γ̂−
1

(
q̂ −

√
q2
)
Γ̂−
2 u(p1). (7.17b)

The vertices Γ̂±
i in (7.17) describe the couplings of the reggeons to the

external particles and are built from Dirac γ-matrices, q⊥ and q‖. Each of
the expressions (7.17) separately has a branch point at u = q2 = 0, which
contradicts the requirement that the amplitude be analytic at u = 0.
To remove this fake singularity, the following relation between the two
trajectories and corresponding vertices is needed:

α+(
√
q2) = α−(

√
q2),

Γ+(
√
q2) = Γ−(

√
q2).

}
(7.18)

It is easy to see that (7.18) ensures regularity of the full amplitude at
u = q2 = 0.
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Relation (7.18) follows from the fact that any Feynman graph becomes
a function of

√
q2 when one extracts an amplitude with definite parity.

If we were to introduce corresponding partial wave amplitudes of definite
parity, f j±λλ′(

√
q2), then the relation between them similar to (7.18), i.e.

f j+λλ′(
√
q2) = f j−λλ′(−

√
q2), (7.19)

would become vague. This happens because of an additional left cut of
partial wave amplitudes, related to Q�(z). In the case of equal masses
this cut started at u = 0 (see previous lectures). In the case of unequal
masses there is an additional cut in the form of a circle:

�������������������� ������
(m + µ)2

u

Given this structure of the u plane, the point u = 0 cannot be reached
and this makes the assertion (7.18) indefinite.
For the residues and trajectories, however, the relations (7.17), (7.18)

are entirely reasonable. This is due to the fact that, as we know from
Lecture 3 (see (3.13)), the discontinuity across the left cut of the partial
wave amplitude has no moving singularities. Therefore, conversely, the
contribution of the Regge pole to this amplitude cannot have a left cut.
In the spinless case, from this consideration it immediately follows that

the residue and trajectory have no left cuts. Indeed, if ∆r and ∆α were
not equal to zero on the left cut,

f� =
r(t)

�− α(t) =⇒ ∆f left� =
∆r

�− α(+)
+

r(−)∆α
[�− α(+)][�− α(−)]

, (7.20)

then ∆f� would tend to infinity at some �, which is impossible (see pre-
vious lectures).
In the J = 1

2 case we see that the residues and trajectories of each of
the two Regge poles with opposite parity may have root singularities at
u = 0, though the full amplitude remains regular at u ≤ 0.

The structure of singularities of the amplitude f�(u) in the � plane
is shown in Fig. 7.5. For 0 < u < (m + µ)2 (unphysical region) there
are two poles on the real axis, situated, generally speaking, arbitrarily
with respect to each other. With u decreasing they come closer and they
collide at u = 0. When we pass to the region u < 0 they become mutually
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✻

✲

✻

✲

×

×

u < 0

→
×

←
×

0<u<(m+ µ)2

Fig. 7.5. Fermion poles in the � plane

complex conjugate: α+ = α∗−. Thus in the physical region of the s-channel
both poles are equally important, Reα+ = Reα−.

At sufficiently small u the trajectory of the pole can be approximately
written as

α±(u) � α0 ± γ
√
u+ α′u. (7.21)

The coincidence of α+ and α− (γ ≡ 0) would correspond to parity de-
generacy and demand the existence of fermion resonances of equal masses
and spins but opposite parities (if at the physical points, where α(u) is
half-integer, the residues do not vanish). The value γ <∼ 0.2 does not
contradict experiment.

7.2.3 Oscillations in the fermion pole amplitude

The presence of γ �= 0 in the trajectory leads to the amplitude oscillating
with energy, which is characteristic for fermion poles. In the cross section,
however, these oscillations cancel out. Let us see how it happens.

First we note that in the region of large s, the operator q̂, which is
present in both the reggeon propagator and the vertices Γ̂, can be replaced
by q̂⊥. Indeed, one can decompose q in terms of the Sudakov parameters
into a part that lies in the scattering plane of the u-channel cms ((p1,p4)
plane), and a part perpendicular to it:

q = αqp1 + βqp4 + q⊥, |αq| ∼ |βq| ∼
∣∣∣∣q2 −m2 + µ2s

∣∣∣∣� 1.

Recalling that p̂u = mu by virtue of the Dirac equation, we see that

ū(p4) q̂ u(p1) = ū(p4)q̂⊥u(p1)
[
1 +O

(
m2

s

)]
� ū(p4) q̂⊥ u(p1).
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Now we introduce two projection operators

Λ̂η =
q + ηq̂⊥

2q
, η = ±1, Λ+ + Λ− = 1,

where q ≡
√
q2 is purely imaginary in the physical region. It is easy to

see that

Λ+η = Λη, Λη1Λη2 = δη1η2Λη. (7.22)

Λη with η = ±1 corresponds to the propagator of a reggeon of positive
(negative) parity. Now the total amplitude can be expressed in the form

A = A+ū(p4)Λ+u(p1) + A−ū(p4)Λ−u(p1).

Since A± ∝ sα±− 1
2 , oscillations in the cross section might occur in terms

of the type Re A∗
+A− or Im A∗

+A− (provided Im α+ = −Im α− �= 0).
The differential cross section dσ/dt is proportional to

|M2| =
∑
η1η2

∑
λσ

[ūλ(p4)Aη1Λη1u
σ(p1)]+[ūλ(p4)Aη2Λη2u

σ(p1)]

=
∑
η1η2

ū(p1)Λ−η1u(p4)ū(p4)Λη2u(p1)A
∗
η1Aη2

�
∑
η1η2

Tr ((p̂1 +m)Λ−η1 p̂4Λη2)A
∗
η1Aη2 . (7.23)

The sum over λ, σ means summing and averaging correspondingly over
the final and initial polarizations of the nucleon. The operator Λ−η1
appeared as a result of the anticommutation between γ0 (recall, ū = u†γ0)
and q̂⊥ in Λη1 . Here it was also used that∑

λ

uλ(p4)ūλ(p4) = p̂4 +m � p̂4 at s� m2.

p̂4 Also anticommutes with q̂⊥, hence after shifting p̂4 to the left, one
translates Λ−η back into Λη. Thus in the middle there appears the product
in (7.22),

Λη1Λη2 = δη1η2Λη1 ,

and this leads the differential cross section to be proportional to

dσ
dt

∼ a|A+|2 + b|A−|2. (7.24)

Neither term in (7.24) does oscillate. Analogous cancellations of the os-
cillating terms happen in the polarization vector. These oscillations can
manifest themselves only in more intricate correlation effects.
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7.3 Reggeization of a neutron

The second question I would like to discuss in this lecture is whether a
neutron is a reggeon? How can this be established experimentally? The
easiest and most exact way is to study the differential cross section of back-
ward scattering, say for reactions of the type π+ + p→ p+ π+, in which
the neutronic reggeon gives a contribution corresponding to Fig. 7.6.

p

p π+

π+

n

Fig. 7.6. t-Channel neutron exchange in π+ + p→ p+ π+ scattering

The normal energy dependence of the cross section, arising as a result
of the Regge pole exchange, is

dσ
du

∝ s2[j(u)−1].

We have j(u = m2n) =
1
2 , since the neutron belongs to this Regge trajec-

tory. By analogy with quantum mechanics, it is natural to expect that
j(u) decreases with decreasing u, i.e. j(u = 0) < 1

2 in the physical region
of the s-channel. Thus the differential cross section, caused by neutronic
reggeon exchange, must fall faster than 1/s. That is indeed observed
experimentally for the reaction π+p→ pπ+.

The inverse statement is also true, as we have proved in Lecture 4: if a
backward peak falls faster than 1/s, then a neutron must be a reggeon.

Moreover, since the neutron is reggeized, a very fine prediction arises:
the neutron is expected to have partners, belonging to the same trajectory
j(u) and having identical quantum numbers, except for their spins which
differ by 2. At present two particles are known which lie on the neutron
trajectory, whereas on the ∆ trajectory there are three particles. If we
assume that the trajectories are approximately linear in u (for which
there are experimental indications), then one can predict the positions of
other partners and, using the same parameters, the energy dependence
of the backward cross sections for a number of reactions, in reasonable
agreement with experiment.
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Let us now consider how the Regge poles arise in perturbation theory.
There are many field theories within the framework of which one can
trace the origin and behaviour of moving singularities in the � plane. We
shall investigate some of them.

8.1 Scattering of a particle in an external field

The process of non-relativistic particle scattering in an external field is
described by a set of graphs

+ +× × × ×× × + · · ·

where × denotes the vertex of interaction with an external field. We
will not consider this theory, because it is completely equivalent to the
quantum-mechanical problem of potential scattering and, therefore, leads
to the appearance of Regge poles.

8.2 Scalar field theory gφ3

Relativistic theories seem to be more interesting. Let us investigate the
easiest of them – the gφ3 model with φ the field of scalar neutral particles.
Its Lagrangian has the form

L =
1
2

(
∂φ

∂xµ

)2
− 1

2
m2φ2 − gφ3, (8.1)

where the term gφ3 describes an interaction of these particles. In the
Feynman graph language it leads to a vertex which looks as follows:

90
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◗
◗
◗
◗◗

✧
✧
✧
✧✧

•
g

This theory is obviously unsatisfactory from a physical point of view,
because the energy density derived from it is not a positive definite quan-
tity. Indeed, the energy–momentum tensor of the field φ is

Tµν =
∂φ

∂xµ

∂L
∂
(

∂φ
∂xν

) − Lgµν . (8.2)

From this formula we get the energy density

T00 =
(
∂φ

∂x0

)2
− L =

1
2

3∑
i=0

(
∂φ

∂xi

)2
+

1
2
m2φ2 + gφ3. (8.3)

Due to the term gφ3 the energy density is not positive definite, indepen-
dently of the sign of the coupling constant g.

8.2.1 gφ3 Theory in the Duffin–Kemmer formalism

This trouble can be avoided using the Duffin–Kemmer formalism, within
which a wave function of a scalar particle satisfies the first order differen-
tial equation p̂u = mu, where u is a column of five rows:

u =
(
mφ
pµφ

)
. (8.4)

The 5× 5 matrix p̂ has the form

p̂ =
(

0 p̃µ
pµ 0

)
= pµβµ, (8.5)

where

pµ =


p0
p1
p2
p3

 , p̃µ = (p0,−p1,−p2,−p3).

In the Duffin–Kemmer formalism one can introduce an interaction be-
tween particles of type gφ3, if one writes down the full Lagrangian in the
following form:

L =
1
2i

{ūβµ∂µu− (∂µū)βµu} −mūu+ λu3, (8.6)
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where λu3 is a symbolic notation of the cubic combination of field u.
If we write down the Lagrangian in this form, then the term λu3, which

describes the interaction, can be considered as a supplement to the mass
(and not to the square of the mass, as it is in the conventional gφ3 theory).
Therefore the energy density in the Duffin–Kemmer formalism turns out
to be positive definite.
Let us explain this by the example of a particle in a constant external

field ψ. The wave function of the particle satisfies the equation

(p̂−m− λψ)u = 0. (8.7)

It follows from this equation that the energy of the particle,

p0 =
√

p2 + (m+ λψ)2, (8.8)

has a quite reasonable form, independent of the sign of λψ.
Note that the linear equation (8.7) leads to a second order equation for

the function φ:

p2φ = (m+ λψ)2φ = (m2 + 2mλψ + λ2ψ2)φ. (8.9)

In the conventional formalism this means that apart from the vertex in
Fig. 8.1a there is the four-particle vertex shown in Fig. 8.1b. Thus a simple

φ 2mλ

ψ

λ2φ φ φ

ψ ψ

(a) (b)

Fig. 8.1. Interaction of a scalar particle with an external field

interaction in the Duffin–Kemmer formalism is reduced to a complicated
one in the conventional formalism, and this provides a positive definite
energy.
This peculiarity of the Duffin–Kemmer theory happens to have its con-

sequence in the fact that the propagator of the u field does not decrease
at large momenta p̂ but behaves like a constant. Because of this, the
properties of the usual pole graph in Fig. 8.2a of the Duffin–Kemmer the-
ory are reminiscent of those of the point-like four-particle interaction of
Fig. 8.2b.
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Fig. 8.2. Particle exchange and point interaction graphs

8.2.2 Analytic properties of the amplitudes

The drawback of the gφ3 theory remarked above does not prevent us,
however, from studying the analytic properties of the amplitude in the
� plane. Therefore, we consider the usual formalism of the gφ3 theory,
where the constant g is assumed to be small, and make use of perturbation
theory. In the lowest order the scattering amplitude is described by three
pole graphs:

✑
✑
✑
✑✑

❜
❜
❜
❜❜

❜
❜
❜
❜❜

✑
✑
✑
✑✑

(b)

p1 p3

p2 p4

� ✑✑✸
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❥

1
m2 − t

✧✦
�✥❜

❜
❜❜
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✧✧
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✑✑

◗
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= ❧
❧❧

✱
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t

s

p1 p3

p4p2

❥ ✸

�
✸

✒
❘

❘

✒

p1

p2

p3

p4

1
m2 − s

(a)

✑
✑
✑
✑✑

❜
❜
❜
❜❜

❜
❜
❜
❜❜

✑
✑
✑
✑✑

(c)

p4

p3

� ✑✑✸

✸
❥

1
m2 − u+

p1

p2

+

Fig. 8.3. Born diagrams for 2 → 2 scattering in gφ3 theory

As the particles are identical, there is only a positive signature. The
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t-channel partial wave amplitude f�(t) is fixed by the expression

f�(t) =
1
π

∫
Q�(zs)A1dzs +

1
π

∫
Q�(zu)A2dzu,

zs = −zu = 1 +
2s

t− 4m2
=
s− u
t− 4m2

.

 (8.10)

In the lowest order in g we have

A1 = πg2δ(s−m2) from Fig. 8.3a, (8.11a)
A2 = πg2δ(u−m2) from Fig. 8.3c. (8.11b)

Therefore the total contribution of Figs. 8.3a and 8.3c to the amplitude
f�(t) has the form

f
(1)
� (t) = Q�(z0)

4g2

t− 4m2
, (8.12)

where

z0 = 1 +
2m2

t− 4m2
.

As to Fig. 8.3b, it gives a contribution to the partial wave amplitude
which is non-analytic with respect to �:

f
(1)
� (t) ∝ δl0

1
m2 − t . (8.13)

Such graphs, generally speaking, have no relation to Regge poles and we
will not consider them for the time being.
Before passing to the higher order graphs let us clarify how the moving

poles arise. We recall analytic properties of

φ�(t) = f�(t) · (t− 4m2)−�.

This partial wave amplitude has a left cut over t running from −∞ to 0
and a right cut starting from 4m2:

�t

4m2
| / / / / / / / // / / / / / / / / / / / / / / / / /
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φ�(t) =
1
π

0∫
−∞

dt′

t′ − t∆φ�(t
′) +

1
π

∞∫
4m2

dt′

t′ − tδφ�(t
′). (8.14)

The discontinuity across the left cut is given by the expression (3.13):

∆φ�(t) = −1
2

∫
z<1

A1(z, t)
(4m2−t)� P�(−z)dz +

∫
ρsu(z, t)
(4m2−t)� Q�(−z)dz, (8.15)

where the integration intervals in both terms are finite (see Lecture 3).
On the right cut, from t = 4m2 to t = 16m2, the discontinuity is derived

from the elastic unitarity condition, see (3.10):

δφ� =
22�−4

π

k2�+1

ω
φ+� φ

−
� ; k =

√
t− 4m2

2
, ω =

√
t

2
. (8.16)

From the unitarity condition it follows that the discontinuity on the right
cut is δφ� = O(g4), therefore in the lowest order in g2 the amplitude φ�
cannot develop a singularity in � due to the right cut.

For a singularity to appear it is necessary to have a divergence in the
integral of the left cut discontinuity ∆φ� in (8.14), starting from some �.

To see that this indeed happens, we substitute the lowest order A1 from
(8.11a) into (8.15) to obtain

∆φ(1)� = −πP�(−z̃0) g2

(4m2 − t)�+1 , z̃0 = 1− 2m2

4m2 − t . (8.17)

Near � = −1 this expression tends to a constant at t→ ∞, therefore the
first integral in (8.14) diverges at � = −1. Substituting (8.17) into (8.14)
we find that near � = −1

φ
(1)
� ∝ g2

�+ 1
. (8.18)

This result can be obtained directly from (8.12), if one takes into account
that the function Q�(z0) has poles at negative integer �.

Thus the leading singularity is situated at � = −1. This is related to the
fact that the s-channel pole term 1/(m2 − s) decreases as 1/s at large s.

Let us show that this pole reggeizes in higher orders of perturbation
theory. To this end we consider the unitarity condition (8.16), rewriting
it as follows:

δ

(
− 1
φ�

)
=

1
2i

(
− 1
φ+�

+
1
φ−�

)
=
δφ�

φ+� φ
−
�

=
22�−4

π

k2�+1

ω
. (8.19)
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It follows from this relation that

− 1
φ�(t)

= c(�) +
22�−4

π2

∞∫
4m2

dt′

t′ − t
k2�+1(t′)
ω(t′)

. (8.20)

At small g2 and � near −1 we had for φ� the expression (8.18), which
permits us to find the constant c(�) = −(� + 1)/4g2. Therefore, the
amplitude φ�(t), satisfying two-particle unitarity, should have at � near
−1 the form

φ�(t) = g2
[
�+ 1− g2

16π2

∫ ∞

4m2

dt′

t′ − t
1

ω(t′)k(t′)

]−1
, (8.21)

where we have put � = −1 in the integral term (k2�+1 = k−1).
From (8.21) we see that the amplitude φ�(t) has a moving pole � = α(t)

with the trajectory

α(t) = −1 +
g2

16π2

∫ ∞

4m2

dt′

t′ − t
1

ω(t′)k(t′)

= −1 +
g2

4π2

∫ ∞

4m2

dt′

(t′ − t)√t′(t′ − 4m2)
. (8.22)

Thus, if in the lowest order in g2 there was a fixed pole at � = −1, then
in higher orders of perturbation theory it starts to move.
Our derivation of (8.22) was not rigorous for a number of reasons:

1. Only two-particle unitarity was considered;

2. The discontinuity on the left cut was calculated in the lowest order
in g2 (this is not too bad an approximation, since accounting for
higher order contributions to ∆φ� leads to relatively small correc-
tions O(g4/(�+ 1)

)
, and does not contain contributions of the type

of g4/(�+ 1)2);

3. We have chosen the simplest expression for c(�) independent of t,
while the condition (8.19) does not forbid us to add an arbitrary
polynomial in t to c(�). With the chosen c(�) the expression (8.21)
for φ�(t) coincides with the one that emerges from the iteration of
the two-particle unitarity condition.

The positive lesson obtained from the derivation of (8.21) carried out is
a clear demonstration that the movement of a pole arises due to the two-
particle unitarity condition, that is due to the graphs having two-particle
intermediate states.
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8.2.3 Order g4 ln s

Let us demonstrate that the direct consideration of Feynman graphs in
perturbation theory leads to the same result. The graphs of order g4 are
shown in Fig. 8.4.

p1

p2

p3

p4

p1 p1

p2 p2

p3

p4 p4

p3

f(s, u)f(u, t)

(c)(b)

f(s, t)

(a)

Fig. 8.4. Feynman graphs of order g4

The asymptotics of the amplitude at large s and small t related to the
Regge pole has the form

sα(t) =
1
s
sg

2f(t) =
1
s
eg

2f(t) ln s =
1
s

∑ 1
n!
[g2f(t) ln s]n. (8.23)

Therefore to study the Regge poles in perturbation theory it suffices to
consider only graphs behaving at large s as g2/s, g4 ln s/s and so forth, i.e.
to investigate the asymptotics of graphs under conditions g2 � 1, g2 ln s ∼
1. In this approximation – the leading logarithmic approximation – the
problem can be solved exactly.

First let us calculate the asymptotics of the box diagram of Fig. 8.5.

❍❍
❍❍

✑
✑✑

✑
✑✑

✑✑✸

◗◗�◗◗◗

❍❍❥

✸

t
p1 p3

p4p2

✲

❄❄

✲

k

p1 − k

q − k

p2 + k

s→

Fig. 8.5. The box diagram in gφ3 theory
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The amplitude corresponding to this graph is given by

f(s, t) = g4
∫

d4k
(2π)4i

1
(m2−k2)[m2−(q−k)2][m2−(p1−k)2][m2−(p2+k)2]

,

(8.24)

where s = (p1 + p2)2, t = q2, q = p1 − p3 = p4 − p2. To compute
the asymptotes of this graph for s → ∞, |q2| = O(m2) we will use
the Sudakov method. We introduce instead of p1 and p2 their linear
combinations,

p1 = p′1 + γp
′
2, p2 = p′2 + γp

′
1, (8.25)

where (p′1)2 = (p′2)2 = 0. For s→ ∞ we have 2p′1p′2 � 2p1p2 � s, so that
γ � m2/s. Further, we replace in (8.24) the integration over 4-momentum
k with that over α, β and k⊥, where

k = αp′2 + βp
′
1 + k⊥, k2⊥ < 0, d4k =

s

2
dα dβ d2k⊥. (8.26)

Similarly the vector q is represented as

q = αqp′2 + βqp
′
1 + q⊥, αq ∼ −βq ∼ q

2

s
, q2 � q2⊥ < 0. (8.27)

The denominator in (8.24) is expressed through the new variables α, β, k⊥
according to the formulæ

m2 − k2 � m2 − sαβ − k2⊥ − i ε,

m2 − (q − k)2 � m2 − (α− αq)(β − βq)s− (q⊥ − k⊥)2 − i ε,

m2 − (p1 − k)2 � m2 − (γ − α)(1− β)s− k2⊥ − i ε,

m2 − (p2 + k)2 � m2 − (1 + α)(γ + β)s− k2⊥ − i ε.

 (8.28)

By introducing i ε we have indicated the rules of how to pass by the
singularities of the integrand.
First of all let us perform in (8.24) the integration over α. The denom-

inator in (8.24) has only simple poles in α, therefore the integral over α
is easily calculated by residues. The positions of the poles in the α plane
can be found by equating the expressions (8.28) to zero. They depend on
the value of β.
If γ + β < 0, then all poles lie in the upper half-plane of the complex

variable α. Therefore, closing the integration contour in the lower half-
plane, we find that the integral is equal to zero. In the same way, at β > 1
all poles in α lie in the lower half-plane of the variable s, therefore the
integral is equal to zero as well.
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Thus, it suffices to integrate over β within the limits −γ < β < 1. We
divide this region of integration into two parts:

βq < β < 1, (8.29a)
−γ < β < βq

(
γ ∼ βq = O(s−1)� 1

)
. (8.29b)

(Note that βq > 0 when q2 < 0.) These regions give essentially different
contributions to the asymptotics of the amplitude. It is easy to show that
large contributions proportional to ln s/s arise only when we integrate
over the broad region (8.29a) whereas the integral over the small region
(8.29b) gives a subleading correction O(1/s).

Because of that, let us consider the region βq < β < 1. At these values
of β the pole in α, corresponding to m2− (p1− k)2 = 0, is situated in the
upper half-plane, and three remaining poles lie in the lower half-plane. We
close the integration contour in the upper half-plane and take a residue
in α at

α = γ − m
2 − k2⊥

(1− β)s � k2⊥
s
.

The integral over k⊥ converges at |k2⊥| ∼ m2, and the integral over β is
dominated by the region m2/s � β � 1. Bearing this in mind we can
simplify the remaining propagators in (8.28) as

m2 − k2 =⇒ m2 − k2⊥,
m2 − (q − k)2 =⇒ m2 − (q⊥ − k⊥)2,
m2 − (p2 + k)2 =⇒ −βs.

 (8.30)

As a result we get

f(s, t) � g4
∫

d2k⊥
(2π)3

∫ 1

m2/s

dβ s/2
(m2 − k2⊥)[m2 − (q⊥ − k⊥)2] s (−βs)

� − g
4

4πs
ln(−s)

()
, (8.31)

where the symbol

()
denotes the Feynman loop in the two-dimensional

space resulting from the graph in Fig. 8.5 when one contracts the two
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lines whith large momenta O(p1) and O(p2) into a point:

k⊥ q⊥ − k⊥ ≡
∫

d2k⊥
(2π)2

1
(m2 − k2⊥)[m2 − (q⊥ − k⊥)2]

. (8.32)

In (8.31) we have replaced the lower limit of integration over β roughly
by 1/s, taking no care of the precise value of the numerator of the ratio
(of the order of m2). This is legitimate in our logarithmic approximation.
Indeed, rescaling 1/s → c/s produces a finite correction to the large
logarithm, ln s → ln s − ln c, which gives rise to a negligible correction
O(g4) /s to the amplitude.
Nevertheless, we have kept the factor −1 in the argument of the loga-

rithm, ln(−s), since the graph under consideration has an imaginary part
for s > 0, corresponding to a two-particle intermediate state in the s-
channel. This is the largest contribution to the imaginary term of order
g4 for s→ ∞, so we do not exceed our accuracy by taking it into account.
The asymptotics of the graph in Fig. 8.4b is calculated similarly. This

graph differs from that of Fig. 8.4a by the replacement s → u, hence its
asymptotics is of the following form:

f(u, t) � − g4

4πu
ln(−u)

()
. (8.33)

Consider now the graph in Fig. 8.4c. It differs from the previous ones in
that large momenta p1 and p2 enter not in two but in three internal lines:

❅
❅
❅
❅❅
❅❅
❅
❅
❅
❅❅❘

❘

✒

✒

✒

#
#
#
#
#

❘ ✞
#
#
#
## ❄❄

p1 p3

p4p2

p2 + k

p1 − k

q − p1 + p2 + kk

Therefore, at s → ∞ this graph falls as 1/s2 (and not as 1/s) and does
not have any relation to Regge poles.
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8.2.4 Order g6 ln2 s

We pass now to the next order of perturbation theory and consider the
sixth order diagram of Fig. 8.6.

p1

k1

p1 − k1

p3

k1 − k2

p2 + k2
k2

p4p2

q − k1

q − k2

Fig. 8.6. Ladder diagram contributing g6 ln2 s

The terms of interest to us in the asymptotics of this graph have the
form ln2 s/s. To analyse the asymptotics of this graph we will again apply
the Sudakov method.

We extract from the momenta k1 and k2 the longitudinal parts (along
p1 and p2) and the transverse parts, and integrate first over α1 and α2 and
then over β1 and β2. Let us find out what regions of αi and βi contribute
mainly to the asymptotics.

We recall that in the previous example such a region was α = O(m2/s),
m2/s� β � 1, so that

βs� m2 , αβs� m2.

These strong inequalities allowed us to simplify the propagators according
to (8.30). In particular, in the propagator of the horizontal line with
momentum p2 + k we have kept the only large term,

1
m2 − (p2 + k)2

� 1
−βs,

which gave rise to ln s upon integration over β. The integral over α was
calculated by closing the contour around the pole of the propagator of
the other horizontal line:

1
m2 − (p1 − k)2 − i ε

� 1
αs− k2⊥ − i ε

.



102 8 Regge poles in perturbation theory

Applying similar considerations to the diagram of Fig. 8.6, we find that
we get a large contribution to the asymptotics if we approximate the
propagators of the upper and lower lines as

1
m2 − (p1 − k1)2 − i ε

� 1
α1s− k21⊥ − i ε

(β1 � 1),

1
m2 − (p2 + k2)2

� 1
−β2s (|α2| � 1).

Then the integration over α1 is taken by the residue, and the integration
over β2 gives ln s.
One can get one more power of ln s by integrating the propagator of

the middle line,

m2 − (k1 − k2)2 = m2 − (k1 − k2)2⊥ − (α1 − α2)(β1 − β2)s.
Let us impose the conditions

β1 � β2, |α2| � |α1| ∼ 1
s
.

Then the propagator of the middle line becomes

1
m2 − (k1 − k2)2 − i ε

� 1
m2 − (k1 − k2)2⊥ + α2β1s− i ε

.

If the conditions |α2| � |α1| and β1 � β2 are fulfilled, then the original
integral over αi and βi reduces to the following symbolic expression:∫

s2 dα1 dα2 dβ1 dβ2
(α1s+ 1− i ε)(α2β1s+ 1− i ε)(β2s+ 1)

. (8.34)

The integrals over α1 and α2 are calculated by residues, and the remaining
expression ∫ 1

1/s

dβ1
β1

∫ β1

1/s

dβ2
β2

gives 1
2 ln

2 s, that is the power of ln s we have been looking for.
So for the diagram of the sixth order the region that gives the main

contribution to the asymptotics is defined by the conditions

1 � |α2| � |α1| � 1/s, 1 � β1 � β2 � 1/s,
|α1|β1s� 1, |α2|β2s� 1, |α2|β1s ∼ 1.

}
(8.35)

Under these conditions only the transverse components k1⊥, k2⊥ and q⊥
should be kept in the propagators of the vertical lines, containing k1,
k2 and q, so that the remaining transverse momentum integral has the
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q⊥ − k1⊥

q⊥ − k2⊥

k1⊥

k2⊥

Fig. 8.7. Reduced two-dimensional graph corresponding to the Feynman dia-
gram of Fig. 8.6

structure of the two-dimensional Feynman integral for the reduced graph
of the type of Fig. 8.7. The integrations over k1⊥ and k2⊥ are performed
independently in each loop, therefore the integral is equal to the product
of the two single loops (8.32).

The conditions (8.35) which we have derived have a clear physical mean-
ing. They correspond to the fact that the particles in the intermediate
states of the s-channel are almost real. In addition, in the laboratory
frame, where the second particle is at rest, and the first one has a large
momentum p1 ∼ s, the first emitted particle k1 ∼ βp1 carries away a
small momentum fraction, and the second one carries still smaller mo-
mentum, 1 � β1 � β2, in order for the virtualities k21, k

2
2 of the momenta

transferred at each stage of the process to be small.

❍❍
❍❍

✧
✧
✧✧

✧
✧
✧✧

p1 p3

p4p2

❥ ✑✑✸

q − k1
q − k2

k1

k2

❍❍❍❍
❥

✸

...

q − knkn ❄❄

❄

❄

❄

❄

Fig. 8.8. Ladder diagrams in gφ3 theory contributing to the leading logarithmic
approximation
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8.2.5 Ladder diagrams in all orders

These conditions can be easily generalized to the case of the ladder dia-
gram in Fig. 8.8 of an arbitrary order:

1
s
� α1 � α2 � · · · � αn � 1;

1 � β1 � β2 � · · · � βn � 1
s
.

 (8.36)

Under these conditions the propagators of the longitudinal lines give, from
top to bottom,

1
α1s+ 1

,
1

α2β1s+ 1
,

1
α3β2s+ 1

, . . . ,
1

−βns.

In the propagators of the vertical lines there remain only the transverse
components ki⊥ and q⊥, and the integrals over ki⊥ factorize.

Therefore, the asymptotic expression for the diagram of Fig. 8.8 ac-
quires the form

−g
2

s

(
g2

4π

)n ∫ 1

1/s

dβ1
β1

∫ β1

1/s

dβ2
β2
. . .

∫ βn−1

1/s

dβn
βn

×
[()]n

. (8.37)

The ordered n-fold integral over β1, β2, . . . , βn can be transformed ac-
cording to the formula∫ 1

1/s

dβ1
β1

∫ β1

1/s

dβ2
β2
. . .

∫ βn−1

1/s

dβn
βn

=
1
n!

∫ 1

1/s

dβ1
β1

∫ 1

1/s

dβ2
β2
. . .

∫ 1

1/s

dβn
βn

=
1
n!
[ln(−s)]n. (8.38)

As a result the sum of all ladder diagrams in the s-channel equals

−g
2

s

∑ 1
n!

[
g2

4π
ln(−s)

()]n
= −g

2

s
(−s) g2

4π

()
. (8.39)

Taking into account u-channel ladder graphs in all orders, we finally arrive
at the asymptotic expression for the amplitude in the leading logarithmic
(ladder) approximation:

A(s, q2) = g2
[
(−s)α(t) + (−u)α(t)

]
, (8.40)
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with the Regge pole tragectory

α(t) = −1 +
g2

4π

()

= −1 +
g2

4π

∫
d2k⊥
(2π)2

1
(m2 − k2⊥)[m2 − (q − k)2⊥]

. (8.41)

One can verify that the expression (8.41) for α(t) coincides with the one
previously derived, (8.22). The formula (8.41) describes a motion of the
rightmost Regge pole, which at q2 = −∞ resides at the point � = −1.

As is seen from (8.12), when the coupling constant g2 is small, there
are fixed poles not only at � = −1, but also at all negative integer points
– the poles of the Legendre function Q�. In higher orders in g2 these poles
become reggeized as well. Trajectories of these poles are similar to the
trajectory of the rightmost pole:

−3 −2 −1

8.2.6 Non-ladder diagrams

Thus, taking account of the ladder diagrams in the t-channel leads to
Regge pole singularities of partial wave amplitudes. The remaining non-
ladder graphs can be divided into two groups.

In the first group there enter those diagrams which fall for s→ ∞ faster
than a ladder graph of the same order in g2. For instance, the diagram of
Fig. 8.9a gives a contribution which is ln2 s times less than the one shown
in Fig. 8.9b. Therefore, these diagrams can be neglected compared with
the ladder graphs.

In the second group there enter diagrams of the type of Fig. 8.3b. This
diagram does not depend on s at all and is, therefore, much larger than the
ladder graphs which fall as 1/s, modulo logarithms. There is an infinite
number of such diagrams, all of them having singularities in the � plane
of a non-Regge-type (e.g. δl0) corresponding to non-reggeized particles.
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When the coupling constant g is small, the motion of the Regge poles
happens near the points � = −1,−2, . . ., therefore it is non-Regge singu-
larities that govern the asymptotics of the whole amplitude, as they are
situated to the right of all Regge poles. However, it is possible that, if
one takes a larger coupling constant g, the pole α(t) will pass through
the point α(m2) = 0, i.e. in the gφ3 theory reggeization of the scalar
particle could take place. The latter possibility cannot be checked within
the framework of perturbation theory. This makes the gφ3 theory less
interesting from a pedagogical point of view.

8.3 Interaction with vector mesons

There is one more relativistic model in which one can succeed in studying
the behaviour of Regge poles with the help of perturbation theory. It is
the model of the interaction of spinor particles (let us call them nucleons)
with vector mesons. The Lagrangian of this interaction has the form

Lint = Aµ(x)jµ(x), (8.42)

where the nucleon current is jµ(x) = ψ̄(x)γµψ(x). This Lagrangian cor-
responds to the vertex

◗
◗◗

✧
✧✧

✧
✧✧

◗
◗◗

✧
✧✧

◗
◗◗

◗
◗◗

✧
✧✧

��������

✏✏✏✏✏✏✏✏

✯

�
✸

◗◗� t

s

(a)

s

t◗◗� ✑✑✸

�✯ (b)

Fig. 8.9. On comparison of ladder and non-ladder diagrams
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In order to avoid infrared divergences we shall assume a non-zero mass
λ of the vector meson (in the case of a vanishing mass this theory coincides
with conventional electrodynamics).

Let us consider the diagrams of Fig. 8.10 describing Compton scatter-
ing. We introduce, as usual, the Mandelstam variables: s = (p1 + k1)2,

k1 p2u

(b)

p1 k2

s

k1 k2
t

=

k1 k2

p1p1
p2

(a)

p2

+

Fig. 8.10. Lowest order Compton scattering diagrams

t = (p1 − p2)2 and u = (p1 − k2)2 ≡ q2, and study the asymptotics of
the process for s → ∞, u = const (rather than t = const). The region
s → ∞, t = const is not interesting for us since here there are only di-
agrams without single nucleon intermediate states, for instance those of
Fig. 8.11, which contribute to the asymptotics of the amplitude at fixed t.
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Fig. 8.11. Diagrams contributing to Compton scattering at fixed t and s→ ∞

Therefore, the asymptotics of the amplitude at s→ ∞, t = const has no
relation to the issue of nucleon reggeization.

At the same time, our investigation of the asymptotics of Compton
backward scattering s → ∞, u = const will show that at higher orders
of perturbation theory the fixed pole that corresponds to a nucleon is
reggeized. This proves the fallacy of the opinion popular in the past that
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if one introduces into the theory an elementary particle (fixed pole), then
it remains elementary to all orders of perturbation theory.
Let us consider the lowest order of perturbation theory, i.e. the two

diagrams of Fig. 8.10a,b. These diagrams give an analytic expression of
the type ū(p2)ê2(1)Aa(b)ê1(2)u(p1). For the first diagram Aa ∼ 1/(m− p̂1−
k̂1) tends to zero in the high energy limit, while for the second diagram
Ab ∼ 1/(m− p̂2+ k̂1) = 1/(m− q̂) stays constant. Therefore in the lowest
order it suffices to keep only the graph (b) in Fig. 8.10.
Let us consider the next order in g, by inserting into Fig. 8.10b one

virtual meson. Then we get four diagrams

The latter three diagrams do not depend on s at all, whereas the first one
is of the order of ln s, as will be shown below. Therefore, to the relevant
order it is sufficient to calculate only the first diagram. Redraw that in
the form

k1 p2 − k

q − k

k2 p1 − k

k

p2

p1

The first graph corresponds to the Feynman integral

g4
∫

d4k
(2π)4

ū(p2)γα(m+ p̂2 − k̂)ê1(m+ q̂ − k̂)ê2(m+ p̂1 − k̂)γαu(p1)
[m2 − (p2−k)2][m2 − (q−k)2][m2 − (p1−k)2][λ2 − k2] .

(8.43)

This expression differs from the one previously considered, (8.24), mainly
in the numerator. In the numerator of (8.43) we should keep only the
largest terms, which give the main contribution to the asymptotics. For
example, accounting for the fact that in (8.43), as in (8.24), the main
contribution comes from relatively small k, one can neglect the quantities
m and k̂ compared with the large external momenta, p̂1 and p̂2.
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Indeed, consider the expression in the right part of the numerator,

p̂1γαu(p1) = (−γαp̂1 + 2p1α)u(p1)
= (−γαm+ 2p1α)u(p1) � 2p1αu(p1) , (8.44)

then contract p1α with the second γα factor. Then the left part of (8.43)
gets transformed as follows:

ū(p2)p̂1p̂2 = ū(p2){−p̂2p̂1 + 2p1p2} = ū(p2){−mp̂1 + s} � ū(p2)s. (8.45)

Thus the terms kept lead to the appearance in the numerator of the large
quantity s. Now one can compute the asymptotics of the integral (8.43)
quite in the same way as in the case of the gφ3 theory. As a result we
obtain

ū(p2)ê1

{
g2

4π
ln(−s)

()}
ê2u(p1), (8.46)

where

()
denotes the two-dimensional Feynman integral of the nucleon

self-energy type:()
≡
∫

d2k⊥
(2π)2

1

m− q̂⊥ + k̂⊥

1
λ2 − k2⊥

. (8.47)

Taking this expression together with that of the lowest order in g2, we
get the amplitude in the form of ū(p2)ê1Aê2u(p1), where

A =
g2

m− q̂

{
1 +

g2

4π
(m− q̂)

()
ln(−s)

}
. (8.48)

So the coefficient of ln(−s) appears to depend on q, which corresponds
to a moving pole in the j plane. However, in order to assert that this
moving pole is the reggeized nucleon, we must convince ourselves that on
the mass shell this pole comes to the point j = 1

2 , i.e. that the coefficient
of ln(−s) tends to zero at q̂ = m.

In our case such a vanishing does really take place. However, the reason
for this is trivial, namely just the fact that we have taken out 1/(m− q̂)
in (8.48) as an overall factor. Therefore the answer to the question about
the reggeization of the nucleon pole can come only from the next order
of perturbation theory, i.e. from the diagram
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k1 p2 − k′1 p2

q − k′1

p1 p1 − k′2 k2

q − k′2

k′1

k′2

q−k′1−k′2

Consider the numerator of this diagram:

ū(p2)γµ[m+ p̂2 − k̂′1]ê1[m+ q̂ − k̂′1]γν [m+ q̂ − k̂′1 − k̂′2]
×γµ[m+ q̂ − k̂′2]ê2[m+ p̂1 − k̂′2]γνu(p1). (8.49)

In order to obtain s in the numerator we will proceed as in the previous
case, i.e. move p̂1 to the right from γν , and p̂2 to the left from γµ, and
keep only the terms p1ν and p1µ. Then the numerator is transformed to
the form

ū(p2)ê1[m+ q̂ − k̂′1]p̂1[m+ q̂ − k̂′1 − k̂′2]p̂2[m+ q̂ − k̂′2]ê2u(p1). (8.50)

Now our task is to commute p̂1 and p̂2, as a result of which the large
factor 2p1p2 � s will appear in the numerator. To do so we first neglect
the longitudinal components proportional to p̂1 (p̂2) in the expression
m + q̂ − k̂′1 − k̂′2, because these would give only small terms of order m2

when sandwiched between p̂1 and p̂2. Thus, keeping only the transverse
components we get

p̂1[m+ q̂⊥ − k̂′2⊥ − k̂′1⊥]p̂2 � s[m− q̂⊥ + k̂′2⊥ + k̂′1⊥]

and the numerator reduces to

s · ū(p2)ê1[m+ q̂ − k̂′1][m− q̂ + k̂′1 + k̂′2][m+ q̂ − k̂′2]ê2u(p1).
Let us represent m − q̂ + k̂′1 + k̂′2 as the sum of three inverse fermion
propagators:

m− q̂ + k̂′1 + k̂′2 = −(m− q̂) + (m− q̂ + k̂′1) + (m− q̂ + k̂′2). (8.51)

Then, keeping in the numerator only the first term m− q̂ and calculating
the asymptotics of the expression obtained, we find it to be equal to

ū(p2)ê1

{(
g2

4π

)()
(m− q̂)1

2
ln2(−s)

}
ê2u(p1). (8.52)
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Taking into account terms of the lower orders, we find that

A =
g2

m− q̂
{
1 +

g2

4π

()
(m− q̂) ln(−s)

+
1
2!

(
g2

4π

)2
(m− q̂)

()
(m− q̂)

()
ln2(−s)

}
. (8.53)

Such an asymptotics of the amplitude, in which for each power of ln s
there is a factor of m− q̂, shows that the nucleon is indeed reggeized.

As for the remaining terms (m − q̂ + k̂′1) and (m − q̂ + k̂′2) in (8.51),
they cancel the propagators of the adjoining propagator lines, leading to
the graphs

The asymptotics of these graphs for s→ ∞ is actually large: it contains
not only ln2 s, but even ln3 s. However, their contributions are cancelled
completely by those of other graphs not considered by us, such as

The reason for this cancellation is the conservation of the vector cur-
rent jµ(x).



9
Reggeization of an electron

In this lecture we shall continue to consider the perturbation theory of
quantum electrodynamics with a photon with a non-zero mass λ. The
conventional QED with λ = 0 has its own specific features, which will be
addressed later.
The reason for considering this theory and for accounting for all com-

plications related to spin, is that in the field theory with vector mesons
one may expect the appearance of Regge particles at small values of the
coupling constant g.∗ We note that although in the gφ3 theory there is a
Regge pole, it is situated not near j = 0, which is required for reggeization
of a scalar particle, but near j = −1. From the point of view of Feyn-
man diagrams this is related to the fact that in the t-channel with a fixed
momentum transfer we had two particles instead of one in the Born pole
diagram. Each additional line in the t-channel reduces the asymptotics
of a diagram by one power of the large variable s. A compensation of
this suppression is possible owing to the Azimov spin shifting, which is
made manifest by the appearance of the factor sσ in the numerator of the
Feynman amplitude, with σ the spin of the added particle. One can see
from this that to make reggeization of a ‘nucleon’ possible in perturbation
theory we should have a particle with σ = 1. Such a situation is realized
in QED (see Fig. 9.1).
The solid lines here correspond to electrons, and the dashed ones denote

photons. The regions interesting from the point of view of reggeization
are

1. s→ ∞ with fixed t,

2. s→ ∞ with fixed u.

∗ as was observed by Gell-Mann, Goldberger and Low [ed]
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s

t

s s

t t

Fig. 9.1. Two-particle scattering processes in QED

In the first region one can study the reggeization of a photon, in the
second one we look for electron reggeization. Besides this, in the first
region apart from the photon, which has a negative signature Pj = −1,
the exchange of a ‘particle’ with a positive signature Pj = +1 and the
quantum numbers of vacuum is possible.

9.1 Electron exchange in O(g6) Compton scattering amplitude

Let us return now to the question of the electron reggeization in pertur-
bation theory. In the previous lecture we have calculated the asymptotics
of the Compton scattering amplitude for s→ ∞ and u fixed in g4 and g6

orders of perturbation theory. We have obtained

F = F0(1 + α(q̂) ln s), (9.1)

where F0 is the Born term, and

α(q̂) = (m− q̂) g
2

4π

∫
d2k⊥

(λ2 − k2⊥)(m− q̂ + k̂⊥)
. (9.2)

For q̂ = m we have α = 0, so j ≡ α+ 1
2 = 1

2 , and the electron lies on the
Regge trajectory.

It was also shown that the contribution of the diagram of Fig. 9.2a can
be split into three pieces: the one giving F0 · 12α2(q̂) ln2 s, and two more
terms that correspond to cancelling the line ab or cd. These two terms
have the numerators

−4sê1(m− q̂ − k̂1)ê2, −4sê1(m− q̂ − k̂2)ê2, (9.3)

and the propagators of the line ab or cd, correspondingly, are absent.
Let us show now that the first term is cancelled by the contribution of

the diagram shown in Fig. 9.2c.
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q2

a

bc

d

k2

q1

p1

k1

(a) (b) (c)

p1 q2

a

k1

c

d

q1

k2

b

p2 p2

Fig. 9.2. Compton scattering diagrams O(g6)
Using the Dirac equation for the wave functions of external spinors and

keeping only the leading terms in s we get

γν p̂2ê1(m− q̂ − k̂2)γµ(m− q̂ − k̂1 − k̂2)ê2(m− p̂1 − k̂1 − k̂2)γν p̂1γµ
� 4ê1(m− q̂ − k̂2)p̂1(m− q̂ − k̂1 − k̂2)ê2(m− p̂1 − k̂1 − k̂2)p̂2
� −4sê1(m− q̂ − k̂2)p̂1(m− q̂ − k̂1 − k̂2)ê2
� (α1 + α2)s · 4sê1(m− q̂ − k̂2)ê2.

The propagator corresponding to the line ab has the form

m2 − (p1 − k1 − k2)2 � (α1 + α2)s.

After the cancellation we get in the numerator

4sê1(m− q̂ − k̂2)ê2. (9.4)

Thus we see that the contribution (9.4) differs from that of (9.3) only by
a sign. Similarly one can show that the second extra term from Fig. 9.2a
cancels the contribution of the diagram in Fig. 9.2b. The reason for these
cancellations is the gauge invariance of the theory.
Note now that t and s alternate in the ladder graphs of different orders:

the graphs with an even power of g2 have imaginary parts with respect to
t, and the graphs with an odd power have imaginary parts with respect
to s. Since we consider the region s → ∞, and u is fixed, t � −s. So
in the perturbative expansion there are contributions proportional to ln s
or ln(−s). In the leading approximation that we have been following, the
difference between s and −s is not seen. Taking into account the above
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remark, however, we may write down the sum of the first three orders of
perturbation theory in the following form:

F = F0

(
1 + α(q̂) ln s+

1
2!
α(q̂) ln2(−s)

)
. (9.5)

To the chosen accuracy the factor of F0 in (9.5) is just an expansion of
the exponent.

9.2 Electron Regge poles

It seems likely that higher orders of perturbation theory give further terms
of the exponent expansion, and we shall assume this in the following.
An additional argument in favour of this assumption is provided by the
investigation of the reggeization problem from the point of view of the
t-channel partial waves, which will be performed later on.

By summing up separately even and odd terms in g2, we get

F = F0

[
1
2

(
(−s)α(q̂) + (−s)−α(q̂)

)
+

1
2

(
sα(q̂) − s−α(q̂)

)]
= F0

[
1
2

(
(−s)α(q̂) + sα(q̂)

)
+

1
2

(
(−s)−α(q̂) − s−α(q̂)

)]
= F+(s) + F−(s). (9.6)

This expression corresponds to the contribution of two Regge poles with
Pj = ±1 which differ from each other by the substitution α(q̂) ↔ −α(q̂).
Besides the fact that the powers of ln s have ‘exponentiated’, another
remarkable feature that emerged is the degeneracy in signature.

In the Born approximation there is no symmetry between s and t, that
is there is no symmetry in signature. On the other hand, the signature
is a characteristic feature of a Regge pole, which follows from the general
theory. The only way to reconcile the contradictory requirements within
perturbation theory is the degeneracy in signature near α = 0.

For large s, only one contribution with the largest Re α survives, and a
new asymptotic symmetry arises, which is absent in the exact amplitude.

9.2.1 Conspiracy in perturbation theory

There is one more important consequence of the general theory, which
was discussed in the seventh lecture: for negative u and a given signature
there should be two fermion poles of opposite parity, which differ from one
another by a Hermitian conjugation. Let us show that this requirement
is also fulfilled in perturbation theory.
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The most general expression for α(q̂) reads

α(q̂) = a(q2) + q̂b(q2), u = q2, (9.7)

as there are no other vectors besides qµ at our disposal. We collect sepa-
rately even and odd terms from the exponent and get

sα(q̂) = saebq̂ξ, ξ = ln s,

ebq̂ξ =
[
cosh(bξ

√
u) +

q̂√
u
sinh(bξ

√
u)
]

= sb
√
u · 1

2

(
1 +

q̂√
u

)
+ s−b

√
u · 1

2

(
1− q̂√

u

)
.


(9.8)

Multiplying by the Born term and taking into account that

1
m− q̂ ·

(√
u± q̂) = 1

m∓√
u
· (√u± q̂) , (9.9)

we get for the positive signature amplitude

F+ = [(−s)α+ + sα+ ]
g2

m−√
u

√
u+ q̂
2
√
u

+
{√
u→ (−√u)} , (9.10a)

α± ≡ a(u)± b(u)√u. (9.10b)

We see that, indeed, two Regge poles (9.10b) arise that conspire at u = 0
and in the physical region of the s-channel (u < 0) become complex
conjugate.
These two poles have opposite parity because in the cms of the u-

channel, where q = 0, we have
√
u± q̂ = q0(1± γ0), (9.11)

and (1 ± γ0), as we already know, are the projection operators onto the
state with parity P = ±1.

It is possible to transform (9.10) in such a way as to extract the signa-
ture factor. Indeed, for small g2 we have

α+ = (m−√
u)
g2

π
f(q2) , f = O(1) ,

sinπα+ � π(m−√
u)
g2

π
f ,

g2

m−√
u
� g4f

sinπα+
,


(9.12)

i.e. the residue in the pole turns out to be O(g4).
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Note that from the expression (9.2) for the trajectory we have Re α > 0,
so the asymptotics of the scattering amplitude in (9.6) is determined by
the pole with Pj = 1, i.e. by the physical electron.

Up to this point we have considered charged particles with spin 1/2.
If we took a scalar particle instead, then the corresponding trajectory
would not cross the point α = 0 at q2 = m2, i.e. a scalar particle would
not reggeize.

9.2.2 Reggeization in QED (with massless photon)

A few words about the situation in conventional electrodynamics.
If the photon mass λ is equal to zero, then the region of small k⊥ in the

integral (9.2) is significant. Therefore it seems that one can omit k⊥ in the
denominator of the fermion propagator in (9.2). Then the factor (m− q̂)
cancels out, and the trajectory does not pass through α = 0 at q̂ = m.
This approximation is, however, not correct since the integral (9.2) is
logarithmically divergent for λ = 0.

Physically this divergence is related to the fact that in electrodynamics
any process is accompanied by emission of infinitely many bremsstrahlung
photons, and the probability of a purely elastic process is equal to zero.
In order for the amplitude of the elastic scattering, and the trajectory
α(q̂), to be meaningful one has to cut off the integral in (9.2) at small k⊥.

We could do that by treating the electron not as a real particle but as
a virtual one: p2 −m2 = ∆m2. Then the asymptotics of the amplitude,
first of all, depends on the introduced quantity ∆m2 and, secondly, there
appear large double logarithmic terms of the order of g2 ln2 s ∝ αe.m. ln2 s
(αe.m. � 1/137). In such circumstances it is not sufficient to calculate only
the leading terms in asymptotics in order to determine the trajectory.

Another way around is to calculate the probabilities of the elastic and
inelastic processes and sum them up. In the resulting differential cross
section the double logarithmic terms cancel out, and formally it has the
form of a Regge pole contribution:

dσ = dσ0 exp(2β ln s). (9.13)

The expression for β tends to zero at q̂ = m. But this expression depends
on experimental conditions, i.e. on the value of the experimental resolution
in k⊥ for registered bremsstrahlung photons.

To conclude, one could say that the electron in QED is reggeized, but its
trajectory is not universal, rather it depends on experimental conditions.
The situation for scalar particles in conventional electrodynamics is the
same as for spinor particles, contrary to the case when λ �= 0.
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9.3 Electron reggeization from the cross-channel point of view:
nonsense states

Let us consider now the reggeization of particles from the point of view
of the cross-channel partial waves.
There are several ways of defining partial waves for particles with spin.

It is convenient to characterize them by the quantity which is called hel-
icity. The helicity of a particle is the projection of its spin on the direction
of its motion: µ = σ · p/|p|. Because the projection of the orbital mo-
mentum on the direction of motion is zero, the helicity coincides with the
projection of the full momentum j. One can define a partial wave ampli-
tude by three numbers: j, m, and m′, where m (m′) is the full helicity
of the initial (final) state, which is equal to the difference between the
helicities of the incident (produced) particles. To simplify our qualitative
discourse we have dropped the dependence of the partial wave amplitudes
on the helicities of the individual particles.
The u-channel unitarity condition for particles with spin reads, sym-

bolically,

∆φjmm′ � k2j+1

ω

∑
m′′
φjmm′′φ

∗j
m′′m′ + · · · . (9.14)

In our case m takes on values from −3
2 to +3

2 , since we have a spinor and
a vector particle in the u-channel. For the value of the full momentum
j = 1

2 under interest, the states withm = ±3/2 cannot really occur. They
can, however, contribute away from the physical point j = 1

2 .
Such states are called nonsense states.
For large j in the sum (9.14) there can be states with any |m| ≤ j. Let

us now take j tending to 1
2 . Then, because in the unitarity condition for

physical amplitudes there are only real intermediate states, the contribu-
tion of nonsense states should disappear. In the expression for a partial
wave amplitude of the transition sense–nonsense there enter not simply
Legendre polynomials but more complicated functions. In our case these
functions contain explicitly the multiplier (j − 1

2)
1/2. Thus, the natural

quantity for the transition sense–nonsense is not the conventional partial
wave amplitude φjsn, but rather

f jsn =
φjsn√
j − 1

2

.

Here subscripts s and n denote sense and nonsense.
The unitarity condition (9.14), being rewritten via f jsn, contains the

factor j − 1
2 , which ensures the disappearance at j = 1

2 of contributions
from nonsense states to Imφss.
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Let a Regge pole be at j = α + 1
2 . Then the partial wave amplitudes

should have the form

φjss =
rss

j− 1
2−α(u)

,
φjsn√
j− 1

2

=
rsn

j− 1
2−α(u)

, φjnn =
rnn

j− 1
2−α(u)

. (9.15)

The requirement of the residue factorization imposess an extra restriction,
which in the region close to the pole reads

r2snα(u) = rssrnn. (9.16)

Let us return now to the perturbation theory. We consider first the Born
approximation:

k1 k2

p1 p2

q1 p2

p1 q2

The direct calculation of partial wave amplitudes results in

φjss = −η2s δj, 1
2
, φjsn =

ηsηn√
j− 1

2

, φjnn =
η2n
j− 1

2

, (9.17)

where

ηn =
(
g2(E +m)(

√
u−m)

8π
√
u k2

) 1
2

,

ηs0 =
(

g2(E +m)λ2

8π
√
u k2(

√
u−m)

) 1
2

,

ηs1 =
(
g2(E +m)(E −m− ω)
16π

√
u k2(

√
u−m)

) 1
2

.


(9.18)

Here the indices 0 and 1 mark helicities of the vector meson (massive
photon). The helicity of the electron is equal to 1

2 . The energies of the
electron and photon in the cms of the u-channel are denoted by E and ω
respectively; k is the momentum.

From (9.17) one can envisage the fundamental rôle of nonsense states
for reggeization.
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Iteration of the sense–sense amplitude φss ∝ δj, 1
2
using the two-particle

unitarity condition reproduces again δj,1/2. At the same time, iteration
of the nonsense–nonsense partial wave amplitude φnn can yield a series of
the type

1
j − 1

2

+
α

(j − 1
2)
2
+

α2

(j − 1
2)
3
+ · · · = 1

j − 1
2 − α

, (9.19)

Note also that in (9.17) the coefficients in front of (−δj, 1
2
), 1/

√
j − 1

2

and 1/(j − 1
2) are factorized. Only due to this factorization in the Born

approximation does the complete perturbation theory amplitude turn out
to be factorized as well.
After iteration (9.17) transforms into the following expression:

φjss =
η2sα

j − 1
2 − α

,
φjsn√
j − 1

2

=
ηsηn

j − 1
2 − α

, φjnn =
η2n

j − 1
2 − α

. (9.20)

We see that the obtained result (9.20) has the required form (9.15), and
that the factorization condition (9.16) is also fulfilled.
Of the two Born graphs it is only the second, the s-channel diagram,

that gives a contribution to the nonsense amplitude. In other words, it
becomes a kernel that produces the reggeized electron upon the u-channel
iteration. That is, of course, seen directly from the ladder structure of
the relevant Feynman graphs in high orders in perturbation theory.
The first diagram, which contains the factor s as compared with the

second one, does not contribute to the nonsense amplitude and therefore
does not participate in reggeization, since for this amplitude u(p1)ê2 = 0.
This reflects the fact that a particle with spin j = 1

2 cannot have the
projection of the spin m = 3

2 .
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Vector field theory

In the previous lecture we have demonstrated how the reggeization of a
fermion (nucleon) occurs within the framework of QED with a massive
photon. In the Born approximation the asymptotics of backward Comp-
ton scattering is determined by the Feynman graph shown in Fig. 10.1a,
which describes the u-channel exchange of a fermion. The matrix element
corresponding to the graph Fig. 10.1b falls with energy as

√
s/(s−m2).

u

k2p1

k1 p2

s

p1

k1 p2

k2

(a) (b)

Fig. 10.1. u- And s-channel Born graphs for Compton scattering

Considering the diagrams of higher orders which are responsible for
the reggeization of the nucleon, we have convinced ourselves that the
main asymptotic contribution arises from the ladder-type graphs shown
in Fig. 10.2.

They appear as an iteration of the simplest s-channel diagram of Fig.
10.1b in spite of the fact that its contribution is small. Thus, curiously,
the reggeization of the u-channel nucleon pole of Fig. 10.1a occurs due to
the presence of the s-channel Born graph (b) whose own contribution to
the asymptotics is negligible.

121



122 10 Vector field theory

p1 k2

p2k1

Fig. 10.2. Ladder graphs responsible for reggeization of a fermion

It is interesting to compare the situation in QED with that in the gφ3

model, which was considered in one of the previous lectures. In this
model the lowest order graphs are also pole-like of the type of Fig. 10.1.
However, an iteration of Fig. 10.1b leads to the effect that the fixed pole
at the unphysical point � = −1 becomes the Regge pole with trajectory
� = −1+g2f(t). At the same time, the pole in the partial wave amplitude
with j = 0 at u = m2, corresponding to the physical scalar particle
(Fig. 10.1a), is not reggeized at least within the framework of perturbation
theory.

In vector theories with a conserved current the presence of spin of the
vector meson leads to a contribution of the same order as that of dia-
gram Fig. 10.1a for any cross-channel iteration. This corresponds to the
appearance of singularities in partial wave amplitudes near the physical
point j = 1

2 , i.e. there arises the possibility of reggeizing the nucleon with
spin 1

2 .

10.1 Rôle of spin effects in reggeization

In this lecture we consider in more detail the essential rôle of spin effects,
which in particular cause the reggeization of spinor particles.

It is convenient to specify every particle by its momentum pj and he-
licity mj which is the projection of its spin on the direction of motion.
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The amplitude can be expanded into t-channel partial wave amplitudes:

Am1m2m3m4 =
∞∑
j=0

(2j + 1)f jm1m2m3m4
(t)djm1−m2,m3−m4

(Θ). (10.1)

Here the function djm,m′(v) is a natural generalization of the Legendre
polynomial, which takes into account the spin of the participating par-
ticles. The continuation of the helicity amplitudes f j{m}(t) to complex j
permits one to write (10.1) in the form of a Sommerfeld–Watson integral.

The unitarity condition for the amplitudes f jm(t) has a form similar to
the spinless case:

Im f jm1m2m3m4
(t) =

k

16πω

∑
m′

1m
′
2

f j
m1m2m′

1m
′
2
(t)
(
f j
m′

1m
′
2m3m4

(t)
)∗
. (10.2)

10.1.1 Nonsense states in the unitarity condition

In the previous lecture in the perturbation theory framework we have dis-
covered the fundamental rôle for high energy scattering of the ‘nonsense’
state with the maximal spin projection onto the direction of motion in
the cms and a sufficiently small total angular momentum j.

Let σ1, σ2 denote the spins of colliding particles. The maximal spin
projection σ1 + σ2 is realized when the helicities of colliding particles are
maximal and differ in sign. It is clear that the projection of the total
angular momentum j onto the direction of motion is equal to the differ-
ence of the particle helicities, since the projection of the orbital angular
momentum is zero. So the states with spin projection equal to σ1+σ2 and
total angular momentum j ≤ σ1 + σ2 − 1 cannot be realized physically.
They are the nonsense states discussed above. For example, the state
formed by two particles with σ1 = σ2 = 1 having total angular momen-
tum j = 1 and spin projection onto the direction of motion m1 −m2 = 2
is a nonsense state.

At fixed j there is a set of sense states |i〉, |k〉, . . . . The two-particle uni-
tarity condition can be separated into three groups of relations for sense–
sense, sense–nonsense and nonsense–nonsense transition amplitudes:
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Im fik =
k

16πω

∑
k′
fik′f

∗
k′k +

k

16πω

∑
n′
fin′f∗n′k, (10.3a)

Im fin =
k

16πω

∑
k′
fik′f

∗
k′n +

k

16πω

∑
n′
fin′f∗n′n, (10.3b)

Im fnm =
k

16πω

∑
k′
fnk′f

∗
k′m +

k

16πω

∑
n′
fnn′f∗n′m, (10.3c)

where n,m, n′ mark nonsense states. It is clear that any transitions to
the unphysical states in (10.3a) are absent for integer j. So the condition
f jin → 0 at j → σ1 + σ2 − 1 has to be satisfied.
It is interesting to see how the perturbative partial wave amplitudes f j

of Compton scattering, considered in the previous lecture, behave in this
respect. If one calculates the helicity amplitudes Am1m2m3m4 for the two
lowest order graphs of Fig. 10.1a,b then, using the orthogonality condi-
tion for djm,m′(Θ), one can find from (10.1) all partial wave amplitudes

f jm1m2m3m4 . Near the point j = σ1 + σ2 − 1 (in our case σ1 = 1 and
σ2 = 1

2) we can obtain expressions of the form (see the previous lecture)

f jik ∼ g2δj, 1
2
, (10.4a)

f jin ∼ g2

j + 1− σ1 − σ2 ·
√
j + 1− σ1 − σ2, (10.4b)

f jnm ∼ g2

j + 1− σ1 − σ2 . (10.4c)

As was mentioned above, the vanishing of the sense–nonsense transition
amplitude at j = −1 + σ1 + σ2 follows from physical reasons. From the
formal point of view, the appearance of the multiplier

√
j + 1− σ1 − σ2

in (10.4b) has a general reason, related to the properties of the spherical
functions djm,m′(Θ).
As for the pole factors in (10.4b) and (10.4c), they originate from the

use of the perturbation theory.∗ For instance, the amplitude, correspond-
ing to a nonsense–nonsense transition, calculated from the Born graph
Fig. 10.1b, has the form

f jnn ∼
g2

j + 1− σ1 − σ2 , (10.5)

since the absorptive part A1,nn of this perturbative graph is proportional
to δ(s−m2). Note that in the gφ3 theory, where σ1 = σ2 = 0, the state

∗ cf. (8.14)–(8.18) [ed]
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with � = −1 is in some respects a nonsense state for the projection of spin
σ1 + σ2 = 0, so in the lowest order of perturbation theory the amplitude
f � has a pole at the point � = −1 + σ1 + σ2 = −1.

10.1.2 Iteration of the unitarity condition

Let us investigate now higher order corrections to f j , using for the unitar-
ity condition an iteration procedure, applied to the Born expressions (10.4).
It is evident that in the relation (10.3c) the maximal contribution g4/(j+
1−σ1−σ2)2 comes from the second term, as compared with the first term
∼ g4/(j+1−σ1−σ2). So at j � σ1+σ2−1 the unitarity condition (10.3c)
relates to only nonsense–nonsense transitions:

Im fnm =
k

16πω

∑
n′
fnn′f∗n′m. (10.6)

This equation together with the dispersion relation for fnm allows us to
find the trajectory of the Regge pole, following the procedure that we have
developed in Lecture 8 considering the gφ3 theory. Perturbation theory,
used in the previous lectures, is only required to prove both an applica-
bility of a subtraction-free dispersion relation for f jnm and the possibility
of using only the two-particle unitarity condition (10.6).

After finding the nonsense–nonsense amplitudes we easily calculate the
sense–nonsense amplitudes from the linear relation (10.3b), and by insert-
ing them into (10.3a), we derive the sense–sense amplitudes. So in fact
only the nonsense states work in all intermediate states, at least in the
leading logarithmic approximation.

10.1.3 Nonsense states from the s- and t-channel points of view

What are the physical arguments supporting the dominance of the non-
sense state from the standpoint of the s-channel?

Let us consider, for example, the case when two particles with spins 1
are present in the intermediate state of the t-channel (they are represented
by the dashed lines in Fig. 10.3a). We choose the z axis along the 3-vector
k1 in the cms of the t-channel, and the x axis is chosen in the reaction
plane (see Fig. 10.3b).

Then the state of a photon with momentum k1, polarized along the x-
or y-axis, will be described by vectors (ex)µ or (ey)µ, respectively. The
states of the photon with helicities ±1 are described by the polarization
vectors

e± =
ex ± i ey√

2
. (10.7)
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(a) (b)

t

θ

p1

y

x

k1

s

z

p1

k1

p2

k2

p2k2

Fig. 10.3. Kinematics of Compton scattering

The vectors e+, e− have the following properties:

e+ = (e−)∗; (e+e−) = −1; (10.8a)
(e+e+) = (e−e−) = (e±k1) = (e±k2) = 0. (10.8b)

In the same way the state of the photon with momentum k2 and helicity
+1 (−1) is described by the vector e− (e+) since the direction of its
momentum is opposite to that of the momentum k1 in the cms of t-
channel. Therefore, the two-photon state with spin projection 2 onto the
z axis will be described by the tensor e+µ1

e+µ2
.

The fact that the nonsense state does not exist at j = 1, σ1 + σ2 = 2
readily follows from the observation that, due to (10.8b), it is impossible
to construct a 4-vector from the tensor e+µ e

+
ν and momenta k1σ, k2ρ.

The most important feature of t-channel nonsense states is that it is
these intermediate states that give the main asymptotic contribution to
the s-channel scattering amplitudes.

Nonsense states in two-photon exchange. Let us demonstrate this on a
particular example. Consider the diagrams with two vector mesons (mas-
sive photons) in the t-channel intermediate state (see Fig. 10.4).
Then the spin structure for propagators of each vector meson can be

written in the following form:

−gµν + kµkν
k2

= e+µ e
−
ν + e−µ e

+
ν + e0µe

0
ν , (10.9)
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k1 k2

µ2µ1

ν1 ν2

p1

p2

t

Fig. 10.4. Two-photon t-channel exchange

where e0 is the longitudinal polarization vector (for kµ = (kx, ky, kz, k0) =
(0, 0, |k|, k0), e0µ = (0, 0, k0, |k|)/

√
k2). Its contribution depends on the

gauge choice but, as we shall see below, it is inessential for the description
of high energy processes.

To build up explicit expressions for e± we find first two vectors p̃1,2
orthogonal to k1,2. We shall search for them in the form

p̃1,2 = p1,2 + a1,2k1 + b1,2k2, (10.10a)

where the coefficients ai, bi can easily be found from the four conditions

(p̃1k1) = (p̃1k2) = (p̃2k1) = (p̃2k2) = 0. (10.10b)

Given the two vectors p̃1, p̃2 it is straightforward to construct their linear
combinations e±,

e± = γ±1 p̃1 + γ
±
2 p̃2, (10.11)

that satisfy the orthonormality conditions

(e+e+) = (e−e−) = 0, (e+e−) = −1 .

The explicit expressions are

e± =
1√
2

{
± p̃2√

p̃22
+

p̃1p̃
2
2 − p̃2(p̃1p̃2)√

[(p̃1p̃2)2 − p̃21p̃22] p̃22

}
. (10.12)
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From (10.10) we observe that in the cms of the t-channel (where k1 and
k2 are time-like) the vectors p̃1,2 are purely spatial and obey the relations

p̃21,2 = −p̃21,2 < 0, p̃21p̃
2
2 > (p̃1p̃2)2, (p̃1,2 · k) = 0, (10.13)

where k = k1 = −k2. In this case e± are complex, and it is easy to
check that they satisfy the equations (10.8). Vectors e± so constructed
will have the standard form (10.7) if one chooses the z axis along k, the
y axis along p̃2 and the x axis along [p̃2 × k].
Conversely, in the s-channel, in the essential integration region for the

diagram of Fig. 10.4 at high energies (see the calculation of the box di-
agram in Lecture 8), the vectors k1,2 are space-like, so that p̃1,2 become
time-like. (Indeed, in this case there exists a reference frame in which k1,2
are purely spatial vectors and hence projection of the time-like vectors
p1,2 onto the subspace orthogonal to k1,2 will give the time-like vectors
p̃1,2.) So in the s-channel we have

p̃21,2 > 0, p̃21p̃
2
2 < (p̃1p̃2)2, (10.14)

and the vectors e± in (10.12) are real.
In particular, at large energies s� m2, where we can approximate

p̃1,2 � p1,2, (10.15)

the following simple expressions for e± follow from (10.12):

e+µ � p1µ
√
2p̃22
s
, e−µ � −p2µ

√
2
p̃22

; s = 2p1p2. (10.16)

It follows from (10.9) and (10.16) that the main contribution to the
asymptotics in the s-channel really arises from a nonsense intermediate
state of two photons in the t-channel which is described by the tensor
e+µ1
e+µ2

:[
gµ1ν1 −

k1µ1k1ν1
k21

] [
gµ2ν2 −

k2µ2k2ν2
k22

]
� e+µ1

e+µ2
e−ν1e

−
ν2 + · · · . (10.17)

This follows from the observation that the lower (upper) blob in Fig. 10.4
contains a single vector with large components p2µ (p1ν) so that its main
contribution should be proportional to p2µ1p2µ2 (p1ν1p1ν2). The convolu-
tion of these tensors with the propagators of intermediate photons then
singles out the nonsense–nonsense component (10.17).
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10.1.4 The j = 1
2 pole in the perturbative nonsense–nonsense amplitude

Let us explain now why in the case of Compton backward scattering in the
amplitude corresponding to the t-channel nonsense–nonsense transition
there appears a pole at j = 1

2 .
To this end we have to build up an expression corresponding to the total

projection 3
2 from the spinor u(p1) and the polarization vector eµ(k2) (see

Fig. 10.1). Since for the total momentum j = 1
2 it is a nonsense state, the

relation

ê2u(p1) = 0 (10.18a)

should be satisfied. Here e2µ and u(p1) describe a vector meson and a
nucleon, both polarized in the direction of the nucleon momentum p1 in
cms of the u-channel. If the u-channel final state is also nonsense, then
we have a similar condition for the wave functions of the final particles:

ū(p2)ê1 = 0, (10.18b)

where e1µ and ū(p2) describe the particles polarized both in the direc-
tion p2.

The conditions (10.18) show that the diagram of Fig. 10.1a does not
contribute to the nonsense–nonsense transition amplitude in u-channel.

For the diagram of Fig. 10.1b we have

Ann = ū(p2) ê2
m+ p̂1 + k̂1
m2 − s ê1 u(p1).

The conditions (10.18) allow us to simplify this expression significantly:

Ann = 2(e1e2) ū(p2)
−k̂1
m2 − su(p1) = 2(e1e2) ū(p2)

q̂ −m
m2 − su(p1). (10.19)

The last relation follows from the Dirac equation ū(p2)(p̂2−m) = 0. From
(10.18b) we observe that the nonsense–nonsense amplitude vanishes at
q2 = m2, as expected.

Now we are in a position to find an order of magnitude of this amplitude
at high energies. The first step is to use (10.7) for the polarization vectors
of the incident photon e1 = e±. To obtain then the polarization vector
e2 of the second photon, we have to rotate e± by the scattering angle Θu

around the axis y:
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k1

p1

ey

e1x

e2x

p2
k2

θ

θ

It is easy to verify that

(e1e2) =
±1 + z

2
∝ z,

ū(p2) (q̂ −m)u(p1) ∝ sin
Θu

2
∝ √

z,

with z the cosine of the scattering angle in the u-channel, z ∝ s. As
a result, the magnitude of the nonsense–nonsense transition amplitude
(10.19) at large energies is

Ann ∼ s · s1/2
/
s ∼ s1/2.

This implies that the corresponding u-channel nonsense–nonsense partial
wave amplitude has a pole at j = 1

2 .
In the spinless case of λφ3 theory we had a pole at � = −1. In the

presence of spin this pole is shifted, as we have shown in this lecture, to
the point j = σ1 + σ2 − 1. Thus for nonsense states there is a trivial
additive relation between j, σ and �. Another important lesson is that the
spin and coordinate parts of the wave function have a factorized form.
For instance if we have two external particles of spin 1, then in order

to construct a tensor of rank j we can use (due to the orthogonality
conditions (10.8)) only functions of the scalar product (k1k2), multiplied
by arbitrary tensors built from the vectors k1, k2 and e±1,2. The number of
vectors e±1,2 used in this procedure will give the spin of the state while the
number of vectors k1µ, k2ν used will give the orbital angular momentum
of this state in cms of the cross-channel.
With this remark we conclude the discussion of nonsense states.



10.2 QED processes with photons in the t-channel 131

10.2 QED processes with photons in the t-channel

We have considered the QED process of backward Compton scattering
whose physical region on the Mandelstam plane is marked as a in Fig. 10.5.
The region b corresponds to the related process of two-photon annihilation
of a e+e− pair.

c

bb

c

t = 0

u = m2 s = m2

s = 0 u = 0

aa

Fig. 10.5. Physical regions of two-photon annihilation (b) and of Compton scat-
tering (a,c) on the Mandelstam plane

Let us consider now the high energy processes with finite t and photons
in the t-channel. It could be forward Compton scattering (the region c in
Fig. 10.5) or small angle electron–electron scattering; see Fig. 10.6.

It is natural to separate these processes into two types having essentially
different asymptotic behaviour, namely those with an odd (Fig. 10.6a) and
even number of photons (see Fig. 10.6b,c) in any t-channel section. Such
a separation is possible due to the charge conjugation invariance of the
theory.

Processes of the type of Fig. 10.6a correspond to the t-channel transition
between states with negative charge parity. In the case of spinless charged
particles, processes (a) and (b,c) differ by signature Pj = (−1)j . That
is, the processes with an odd number of t-channel photons have Pj = −1
and those with an even number of photons have Pj = +1. In the presence
of spin in both cases a small admixture of states with another signature
will be present.

The processes with Pj = −1 are related to the reggeization problem of
the vector meson in QED, whereas the processes with Pj = +1 allow us
to investigate an interesting possibility of existence of a vacuum Regge
pole in a simple QFT model.
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(c)(b)(a)

ttt

ks

Fig. 10.6. Separation of processes with an odd (a) and even (b,c) number of
exchange photons

10.2.1 The vacuum channel in QED

Let us consider first the t-channel state with Pj = +1. In the lowest
order of perturbation theory only two Feynman graphs of Fig. 10.6b,c are
relevant. Introducing the Sudakov parametrization k = αp2 + βp1 + k⊥,
for the sum of contributions of these two diagrams one obtains

M
(0)
b,c = e4(2p12p2)2

s

2

∫
dα dβ d2k⊥

(2π)4i
1

−αs+ i ε

[
1

βs+ i ε
+

1
−βs+ i ε

]
× 1

[k2⊥+ sαβ−λ2+ iε][(q− k)2⊥+ sαβ−λ2+ i ε]

= 2s e2 · iαe.m.

∫
d2k⊥
π

1
[k2⊥ − λ2][(q − k)2⊥ − λ2] , αe.m. =

e2

4π
.

So in this approximation the amplitude is purely imaginary, M (0) ∼ i s.
This corresponds to constant total cross section of e−e− scattering which
in the same approximation is equal to the total cross section of e−e+
scattering. The situation is reminiscent of that for the vacuum pole in
strong interactions.
From (10.19) we see, however, that the position of this pole in the j

plane does not depend on t. The fixed pole in the t-channel partial wave
amplitude fj ∼ 1/(j − 1), which corresponds to the asymptotics (10.19),
has the general form of (10.4c): e4/(j − σ1 − σ2 + 1). It is related, as
we have shown above, to the dynamical rôle of nonsense states of two
photons in the t-channel.
One can ask the question: can the higher order approximations lead to

the reggeization of this pole?
In the next order of perturbative expansion the main contribution to the

asymptotics with Pj = +1 will arise from the three diagrams of Fig. 10.7:

M (1) ∼ i se4f1(t) · e4 ln s. (10.20)
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(c)(b)(a)

Fig. 10.7. Higher order contributions to Pj = +1 t-channel exchange

In the general case when e4 ln s ∼ 1 one can restrict oneself to summing
the sequence of ladder-type diagrams shown in Fig. 10.8, where the blob
of the light–light scattering includes a sum of six diagrams† of the lowest
order (Fig. 10.7).
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p′2p2

p1 p′1

s

Fig. 10.8. Iteration of light–light scattering blobs

Thus, in the approximation e4 ln sO(1), e2 � 1, the expansion of the
scattering amplitude looks as follows:

M = i e2s
∞∑
n=0

fn(t)(e4 ln s)n. (10.21)

The appearance of an additional factor ln s in each successive order of
perturbative series is related to the fact that the light–light scattering
amplitude corresponding to the nonsense–nonsense transitions has a pole
with its residue depending both on t and on the virtual masses of external
photons.

In the gφ3 theory the pole 1/(� + 1) appeared from the divergence of
the integral on the left cut

∫ 0
−∞(dt′∆φ�(t′)/(t′ − t)) at � → 1. Therefore

† three topologies; two directions of the electron arrow
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its residue was t-independent. Recall the expression for the discontinuity
∆φ� of the partial wave amplitude on the left cut (see Lecture 3):

∆φ� ∼
∫
P�(−z)A1ds+

∫
Q�

(
2s

4m2 − t+ i ε
− 1
)
ρsu(s, t) ds. (10.22)

In the lowest order in g in the gφ3 theory only the first term in the
expression (10.21) is different from zero. This is the reason why the
residue in this case has no t-dependence.
On the contrary, for photon–photon scattering the third spectral func-

tion ρsu(s, t) is non-zero (see Fig. 10.7c). This means that the disconti-
nuity on the left cut, as follows from the generalization of (10.22) to the
case of particles with spin, acquires a pole at j = 1 with a t-dependent
residue.
In the next lecture it will be shown that in such a situation the iteration

of this pole produces, in general, an infinite series of poles condensing
near j = 1. It turns out however that in our particular QED problem the
coefficient before (j − 1)−1 does not decrease at large t. As a result there
appears instead a fixed branch point at

j = j0 � 1 + ce4 > 1.

This branch point is analogous to that that appears in the non-relativistic
theory with the 1/r2 potential.
The fact that the position of the rightmost singularity exceeds unity

follows directly from the positiveness of the coefficients fn in (10.21) at
t = 0. The latter property reflects the positiveness of the production cross
section of several e+e− pairs.
As a result the total cross section, which by the optical theorem is

proportional to the imaginary part of the forward scattering amplitude,
grows at large s as

σtot ∼ sj0−1 = sce
4
. (10.23)

As we know, such a behaviour of the total cross section contradicts the
Froissart theorem. This contradiction is explained by the fact that our
leading approximation violates s-channel unitarity. Using the methods
which will be developed in Lectures 12 and 13 one can show that the
correction terms to (10.20), of the order of se8f(e4 ln s), will exceed the
main terms for e4 ln s� 1.

10.2.2 The problem of the photon reggeization

Let us consider now the diagrams of type Fig. 10.6a with an odd number
of photons in the t-channel. They have negative signature, Pj = −1, and
are interesting in view of the problem of reggeization of vector mesons
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(massive photons) within a perturbative QFT framework. The contribu-
tion of diagram Fig. 10.6a has the form

F � e2 2s
λ2 − t . (10.24)

In the next order of perturbation theory we have to consider the six
diagrams shown in Fig. 10.9. We proceed by a close analogy with (10.19)
and expand particle momenta in term of the Sudakov variables αi, βi
and ki⊥. Performing the αi integrations by taking residues in the upper
virtual electron lines, we arrive at the following integral over β1,2:∫ 1

m2/s
dβ1dβ2

[
1

(β1 + i ε)(β1 + β2 + i ε)
+

1
(β2 + i ε)(β1 + β2 + i ε)

+
1

(β2 + i ε)(−β1 + i ε)
+

1
(β1 + i ε)(−β2 + i ε)

+
1

(−β1 + i ε)(−β1 − β2 + i ε)
+

1
(−β2 + i ε)(−β1 − β2 + i ε)

]
,

(10.25)
where we kept in the denominators only potentially large terms βis �
m2 ∼ |t|.

Fig. 10.9. Three-photon exchange graphs generating (10.25)

Large contributions containing ln s are indeed present in separate graphs
but, as can be seen from (10.25), they cancel out in the full sum. The re-
maining integral over the transverse momenta k1⊥ and k2⊥ does not give
logarithmic contributions either. This exercise shows that if the reggeiza-
tion of vector mesons takes place in this theory, it may occur only due to
diagrams containing electron loops.

The simplest diagram in which the logarithmic terms do appear is
shown in Fig. 10.10.

It behaves asymptotically as e10s ln s. One can easily find the diagrams
of higher orders in powers of e4 ln s if the blob in this diagram is replaced
by a set of ladder-type diagrams of Fig. 10.8. Summing up the contribu-
tions of all such diagrams results in a quantity of the order of e6sf(e4 ln s).
Therefore in the approximation e4 ln s = O(1), e2 � 1 the contribution
(10.22) from diagram Fig. 10.6a is much larger, which means that the
vector meson in this approximation is not reggeized.



136 10 Vector field theory
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Fig. 10.10. Structure of diagrams that may contribute to photon reggeization

Will the reggeization of vector mesons take place at e4 ln s� 1?
From s-channel unitarity (positivity of multiple e+e− pair production

cross sections) it follows that the asymptotics of the amplitude with Pj =
+1 calculated above (see (10.23)) is

APj=+1(s, t) ∼ i s e2 se
4β(t), β(t) > 0.

So there exists a region in energy where the total contribution of dia-
grams of type Fig. 10.10, O(e6sf(e4 ln s)), becomes comparable with the
contribution of the diagram Fig. 10.6a, O(e2s). This means that at high
enough energies the set of diagrams Fig. 10.10, where instead of the pho-
ton line with momentum k the whole blob of Fig. 10.10 is inserted, will
become dominant. The resulting equation can lead to the situation where
the scattering amplitude with Pj = −1 will grow with energy slower than
s which would correspond to the reggeization of the vector meson.
If such a possibility is realized, then in the diagrams of type Fig. 10.8

we have to substitute scattering amplitudes with Pj = −1 instead of
photon lines. This will suppress the contribution of these diagrams at
high energies. Hence the scattering amplitude with Pj = +1 will not
grow faster than s like a power of s and the discrepancy with the Froissart
theorem would disappear.
We conclude by remarking that the problem of vector meson reggeiza-

tion, as well as the problem of the existence of a vacuum pole in a the-
ory with conserved vector current, ‡ inevitably leads to the necessity of
considering the strong interaction regime even in the case of the small
coupling, e2 � 1.

‡ With the advent of non-Abelian gauge field theories (Glashow–Weinberg–Salam
SU(2) theory of weak interactions; QCD) Gribov’s approaches and calculation tech-
niques were applied in 1976 to demonstrate that vector mesons (gluons; intermediate
bosons W , Z) reggeize in perturbation theory (L. Lipatov; L. Frankfurt and V. Sher-
man), and so do fermions (quarks; V. Fadin and V. Sherman). These fields reggeize
in a similar manner, and in the same sense, as an electron reggeizes in QED [ed].
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Inconsistency of the Regge pole picture

So far we have assumed that the only singularities of partial wave ampli-
tudes are the poles. But a theory having only poles in the � plane appears
to be not self-consistent. To understand the problem we consider first a
simple phenomenon.

Let us recall the way complex angular momenta were introduced. To
begin with, for integer positive � we had

f� =
1
2

∫ 1

−1
P�(z)A(z) dz

=
1
π

∫ ∞

z0

Q�(zs)A1(s) dzs +
(−1)�

π

∫ ∞

z0

Q�(zu)A2(u) dzu. (11.1)

Both integrals can be easily continued to complex �. They give f (1)� and
f
(2)
� , respectively. However, the multiplier (−1)� cannot be continued
unambiguously. Therefore we have introduced separately

f+� = f (1)� + f (2)� , f−� = f (1)� − f (2)� , (11.2)

that is we have been forced to present the amplitude as a sum of separate
contributions of left and right cuts. Now we are going to pay for that.

11.1 The pole � = −1 and restriction on the amplitude fall-off

When t > 0, nothing unusual happens. But we are interested in the region
t < 0. There the third spectral function ρ3 is present (see Fig. 11.1). What
is its effect? Consider the dispersion relation at fixed t:

A(s, t) =
1
π

∫ ∞

4µ2

A1(s′, t)
ds′

s′ − s +
1
π

∫ ∞

4µ2

A2(u′, t)
du′

u′ − u. (11.3)

137
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u = 4µ2 s = 4µ2

t = 0

t0

t
u1(t)u2(t)

s1(t) s2(t)

ρ3(s, u)

Fig. 11.1. The third spectral function on the Mandelstam plane

It turns out that due to the third spectral function each term behaves at
large energies differently as compared with their sum.
Let us take for instance the imaginary part of the amplitude at s >

4µ2 and u < 0, t < t0 (this is in the physical region of the s-channel).
From (11.3) we obtain

Im sA(s, t) = A1(s, t) +
1
π

∫ s2(t)

s1(t)
ρ3(s′, t)

ds′

s′ − s

+
1
π

∫ u2(t)

u1(t)
ρ3(u′, t)

du′

u′ − u. (11.4)

Here the first term appeared due to the denominator in (11.3) being com-
plex valued and the remaining ones are the contributions from the nu-
merators A1, A2 being complex valued as well.
At first sight (11.4) contradicts the statement that the imaginary part

of the amplitude in the physical region is equal by definition to A1. There
is no contradiction, however, since the sum of the two integral terms is
zero. Indeed, we have s + t + u = 4µ2 and s′ + t + u′ = 4µ2 so that
u′ − u = −(s′ − s) and we obtain∫

ρ3

[
1

s′ − s −
1

s′ − s
]
ds′ = 0.

If we were to examine separately the contribution of one of these cuts,
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say the right one,

Aright =
1
π

∫ ∞

4µ2

A1(s′, t)
ds′

s′ − s, (11.5)

then its imaginary part would be a sum of two terms:

Im sA
right(s, t) = A1 +

1
π

∫ s2(t)

s1(t)
ρ3(s′, t)

ds′

s′ − s. (11.6)

Suppose now that A and A1 decrease rapidly with s→ ∞:

|A1| < s−n, |A| < s−n, n > 1. (11.7)

And how does Aright in (11.5) behave? In (11.6), A1 falls rapidly, whereas
the second term is of the order of

∼ 1
s
·
∫ s2

s1

ρ3(s′, t)
ds′

π
.

That is,

ImAright ∼ 1
s
, if

∫ s2(t)

s1(t)
ρ3(s′, t) ds′ �= 0.

For arbitrary t < t0 one cannot prove that this integral is non-zero. But
there exists an interval of t where ρ3 can be calculated explicitly and
where ρ3 > 0.

This is related to the explicit form of the two-particle unitarity con-
dition in the s-channel. Indeed in the region below the first inelastic
threshold we have

A1(s, zs) =
∫
A(s, z1)A∗(s, z2)dΩ (11.8)

(we drop the coefficients that are not essential for us). To obtain ρ3 ≡ ρsu
it is necessary to continue (11.8) analytically to the region u > 4µ2, i.e. to
large enough negative t. Then the singularity of the integral arises when
A(s, t1) and A∗(s, t2) in the integrand simultaneously hit their proper
singularities in t1, t2 (see Fig. 11.2a). Therefore in some region in t
(corresponding to u1, u2 below the next singularities) the third spectral
function is given by a single Feynman diagram Fig. 11.2b and is positive
definite. The same result can be obtained starting from the u-channel.

So ImAright ∼ 1/s. The same conclusion is valid for ImAleft.
As f (1)� and f (2)� are the partial wave amplitudes of Aright and Aleft,

respectively, close to � = −1 we have

Im f (1)� � �1(t)
�+ 1

, Im f (2)� � �2(t)
�+ 1

, �1 = �2 ∝
∫ s2

s1

ρ3(s′, t)ds′. (11.9)
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(a) (b)

t1 t2

A A∗

Fig. 11.2. Diagrams giving rise to the third spectral function ρsu

Constructing partial wave amplitudes with definite signature we observe
that the pole in f+� remains whereas in f−� it is cancelled. This corresponds
to the fact that an odd � is a ‘proper’ point for the negative signature
amplitude f−� whereas for f+� it is ‘foreign’ – unphysical.
We have assumed from the start that the amplitude is fast falling with

energy. For the assumption (11.7) to be valid, the pole at � = −1 must
not give any contribution to the asymptotics of the full amplitude. And
this is what actually happens. Indeed, f+� contributes to the amplitude
according to the Sommerfeld–Watson formula

A+(s, t) =
i
4

∫
(2�+ 1)f+� (t)

[P�(z) + P�(−z)]
sinπ�

d�. (11.10)

At z ≡ zs → ∞ we have

P�(z) �
2�Γ(�+ 1

2)√
π Γ(�+ 1)

z�,

so that

A+z→∞ � i
2π

∫
d�Γ(−�) 2

� Γ(�+ 3
2)√

π
f+� (t)

[
z� + (−z)�

]
. (11.11)

Note that the zeros of sinπ� at � ≤ −1 have been compensated in the
denominator by the poles of Γ(�+ 1).
Now we see that the pole of f+� at � = −1 is compensated by the

vanishing of the square bracket [z�+(−z)�]. Due to this fact the contour of
integration in (11.11) may be shifted to the left, Re � < −1, in agreement
with the assumption (11.7).
So the pole f+� seems to be inessential. But f+� enters the unitarity

condition and this imposes definite restrictions. What do they lead to?
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11.2 Contradiction with unitarity

Let us consider the partial wave φ� = k−2�f+� as a function of t. On the
right cut in the t plane (4µ2 ≤ t ≤ 16µ2) we have

∆rightφ�(t) =
k2�+1t

16πωt
φ�(t+ i ε)φ�(t− i ε). (11.12)

As we have stressed repeatedly in previous lectures, a pole φ� � c/(�+1)
contradicts the unitarity condition (11.12) (a simple pole on the l.h.s.,
but a second order pole on the r.h.s.). Note however that we have seen
the pole of φ� at � = −1 only at negative t < t0, so the continuation to
positive t is needed.

To this end we will use analytic properties of φ� as a function of t. In
the t plane, φ� has right and left cuts. The discontinuity on the right cut
is given by (11.12). On the left cut at t < t0 the discontinuity is given by
(see (3.8))

∆leftφ�(t) ∼ −1
2

∫
P�(−zt)(A1 +A2) ds

(−k2t )�+1

+
1
π

∫
Q�(−zt)ρ3(s, t) ds

(−k2t )�+1
. (11.13)

(For t0 < t < 0 the second term is absent.) It is essential that the
integration in (11.13) is performed over finite intervals. Q� has a pole at
� = −1 with unit residue. So ∆leftφ�(t) when t < t0 has a pole at � = −1
with a residue depending on t and proportional to

∫
ρ3(s, t)ds.

Write down now the dispersion relation for φ�:

φ� =
1
π

∫ ∞

4µ2

∆rightφ�(t′)
dt′

t′ − t +
1
π

∫ 0

−∞
∆leftφ�(t′)

dt′

t′ − t . (11.14)

The contribution of the left cut contains a term proportional to 1/(�+1).
On the right cut the amplitude φ� itself and also its discontinuity are
restricted by the unitarity condition,

φ� =
16πω
k2�+1

sin δ� ei δ� .

Therefore the contribution of the right cut cannot compensate the un-
bounded contribution of the left cut. (Even if at some t these contri-
butions accidentally compensate each other this cannot be true for other
values of t: these contributions have different analytic properties and can-
not compensate each other identically, i.e. at any t.) Thus at t > 4µ2 a
contradiction with unitarity inevitably arises. Where is the way out?
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11.3 Poles condensing at � = −1

Let us assume for the sake of argument that a contribution to the pole at
� = −1 comes from a single point t = t̃ < t0, i.e. the residue of the pole
in ∆leftφ(t) is equal to aπδ(t − t̃). Then the pole term in φ� is equal to
a/(�+ 1)(t− t̃).

Now we recall that the dispersion relation (11.14) is written for large
positive �. When one decreases �, other moving poles can appear at t <
4µ2 from the right cut whose contributions should be included explicitly
in (11.14). The contribution of one such pole has the form r(�)/(t(�)− t).
If this moving pole were such that t(� = −1) = t̃ and r(�) � (−a)/(�+1),
then φ� would not have a pole at � = −1.

Thus the problem with unitarity would disappear if a moving pole in
φ�(t) existed whose position depended on �, and which at � = −1 came to
the negative point t = t̃ that yielded a pole ∼ 1/(�+1) in the discontinuity
of the amplitude.

In our toy model there was one such point. In reality, the pole at
� = −1 of the left-cut discontinuity of φ� arises from the whole interval of
negative t-values. Therefore, to compensate for it an infinite sequence of
moving poles is needed. With � decreasing down to � = −1, these poles
will come onto the physical sheet and move to the left cut. At � = −1
they should completely fill the interval of the left cut that provides a pole
at � = −1.

How does this phenomenon look in the � plane?

Imagine that the poles in the t plane emerge through the tip of the two-
particle threshold at t = 4µ2 and move along the real axis to the left cut.
Let us fix some value of t and push �→ −1. Then in the t plane we will
have an infinite number of poles passing through our point. Hence in the �
plane we shall see an infinite number of Regge poles, accumulating towards
the point � = −1. (If the poles in the t plane appear on the physical sheet
through infinity, then it is convenient to choose a large negative t to detect
their accumulation in the � plane.) In general not only the position of
separate poles but also the pattern of their accumulation (in particular,
from which side the poles approach the point � = −1) depends on t.

The picture given here is the only possibility of rescuing a theory which
contains in the � plane nothing but poles. This statement can be proved
rigorously by solving the dispersion relation for the amplitude whose dis-
continuity on the left cut contains a pole in � and that on the right cut is
determined by a two-particle unitarity condition.
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11.3.1 Amplitude cannot fall faster than 1/s

The poles accumulating in the � plane give a non-zero contribution to the
asymptotics of the total amplitude, since the signature factor in (11.11)
vanishes only at the point � = −1. Therefore the amplitude at arbitrary t
and s→ ∞ cannot decrease faster than 1/s. Together with the Froissart
bound we obtain for the amplitudes in the physical region of the s-channel

1
s1+ε

< A(s, t) < s ln2 s, s→ ∞. (11.15)

Here the infinitesimal positive quantity ε takes account of the possibility
of the poles accumulating on the left of � = −1.

Thus the scattering amplitude in a theory containing only Regge poles
must obey the rather rigid constraint (11.15).

11.4 Particles with spin: failure of the Regge pole picture

In reality the situation is worse, since we have assumed the particles to be
spinless. For the interaction of particles with spins σ1 and σ2, the point
� = −1 is equivalent to the point j = σ1+σ2− 1 as we have shown in the
previous lecture.

Let us consider as an example the case of two vector particles, σ1 =
σ2 = 1:

s

t
σ1 σ2

k1 k2

p1 p2

Let us write P = p1 + p2. Then the matrix element of t-channel annihi-
lation of particles with polarizations λ1 and λ2 is eλ1

µ Aµνe
λ2
ν , where the

tensor amplitude Aµν is

Aµν = PµPνA1 + Pµk1νA2 + Pνk2µA3 + k1µk2νA4 + gµνA5. (11.16)

To avoid kinematical singularities we must write the Mandelstam repre-
sentation for Ai. By separating the contributions of the cuts we find, as
above, Arighti ∼ 1/s.

The invariant amplitude contains in addition the kinematical factors.
The largest one at s→ ∞ is the factor (Pµe+µ )(Pνe

+
ν ), which corresponds
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to vector particle helicities λ1 = −λ2 = 1. Indeed in the case of identical
particles we have in the t-channel cms Pµ = (0, 2pt), and we get (p·e+)2 �
p2t sin

2Θt � P 2t cos2 θt ∼ s2, so the total amplitude is Aright ∼ s. This
means that there is a singularity at j = 1, which by virtue of unitarity
will be passed over to all channels that are connected to the pair of vector
particles.
In the last example we have considered hypothetical particles. And

what can one say about real particles? In principle it could be possible
that for real hadrons the integral of ρ3 is zero. But generally this is not so.
For nucleons, in particular, there certainly exists a singularity at j = 0,

since in this case there is a region where ρ3 is determined by the single
Feynman diagram

N

π π

N N

NN N

The Ω− hyperon (a stable hadron with j = 3
2) gives a singularity already

at j = 2, which violently contradicts the Froissart theorem, derived from
the s-channel unitarity condition.
It is this very contradiction that we have mentioned at the beginning of

this lecture. It becomes sharper if one takes into account the higher spin
resonances. Although we cannot succeed in proving it, nevertheless it is
natural to expect the resonances as well as the stable particles to produce
singularities at integer points in the j plane.
How can one resolve this contradiction? The answer lies in the reggeiza-

tion of all particles. This automatically removes the difficulties but ne-
cessarily introduces singularities of another type – branchings – in the j
plane. The accumulation of the poles at the point j = σ1 + σ2 − 1 does
not arise; there appears only a simple pole which does not show up in the
asymptotics. In the presence of branchings such a pole does not contra-
dict the unitarity condition, since it is located not on the real axis but on
a side of the cut in the j plane.

If there exists at least one non-reggeized particle then the corresponding
accumulation of the Regge poles is inevitable.
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Two-reggeon exchange and branch point

singularities in the  plane

12.1 Normalization of partial waves and the unitarity
condition

Let us now discuss the question of normalization. We are about to redefine
partial wave amplitudes in order to simplify, and generalize, the unitarity
condition.

Earlier we have used the representation of the amplitude in the form of
the Sommerfeld–Watson integral:

A± =
i
4

∫ a+i∞

a−i∞
d�(2�+ 1)

P�(−zt)± P�(zt)
sinπ�

f±� (t).

At large z the Legendre function can be approximated as

P�(zt) �
Γ(�+ 1

2)√
πΓ(�+ 1)

· (2zt)� �
Γ(�+ 1

2)√
πk2�t Γ(�+ 1)

· s�, zt � s

2k2t
.

12.1.1 Redefinition of partial wave amplitudes

Inserting this expression we shall write the Sommerfeld–Watson represen-
tation in the form

A+(s, t) =
i
4

∫
d�(2�+ 1)

s� + (−s)�
sinπ�

ϕ+� (t), (12.1a)

in terms of the redefined partial wave amplitudes

ϕ+� ≡ Γ(�+ 1
2)√

πk2�t Γ(�+ 1)
f+� =

Γ(�+ 1
2)√

π Γ(�+ 1)
φ+� . (12.1b)

The unitarity condition for ϕ� now takes the form

δrightϕ� =
k2�+1t

8π
√
t

√
πΓ(�+ 1)
Γ(�+ 1

2)
ϕ� ϕ

∗
� = C�

Γ(�+ 1)
Γ(�+ 1

2)
ϕ� ϕ

∗
� , (12.2a)
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where

C� =
1

8
√
π

k2�+1t√
t
. (12.2b)

In the previous lecture it was shown that if the third spectral function
ρsu exists, then f+� ∼ φ+� ∼ C/(�+ 1) near � = −1. From (12.1b) we see
that ϕ+� is finite at this point. The singularity at � = −1 manifests itself
in the fact that the l.h.s. in (12.2) is finite near � = −1 whereas the r.h.s.
tends to infinity due to the factor Γ(�+1), which may be looked upon as
being a part of the phase volume continued to non-integer �.

12.1.2 Particles with spin in the unitarity condition

An analogous redefinition of partial wave amplitudes and the unitarity
condition one can carry out for particles with non-zero spin. Consider the
amplitude with two spinless particles in the initial state and two particles
with spins σ1 and σ2 and helicities m1 and m2 in the final state:

✚✙
✛✘✦✦✦✦✦

❛❛❛❛❛

❛❛
❛❛❛

✦✦✦✦✦ σ2m2

σ1m1

m = m1 +m2

Am1,m2 ≡ Am =
∑

(2j + 1)fjm(t)Yjm(z); (12.3a)

Yjm(z) =

√
Γ(j −m+ 1)
Γ(j +m+ 1)

Pjm(z) (φ = 0); (12.3b)

fjm =
1
2

√
Γ(j −m+ 1)
Γ(j +m+ 1)

∫ 1

−1
PjmAmdzs. (12.3c)

The formula (12.3c) for fjm is valid only for integer (or half-integer) j.
The analytical continuation to arbitrary j can be performed in the

usual way, using the dispersion relation for A and the transition from the
function Pjm to Qjm.

Substituting the expression for Am from (12.3a,b),

Am =
∑

(2j + 1)fjm(t)

√
Γ(j −m+ 1)
Γ(j +m+ 1)

Pjm(z),

into the Sommerfeld–Watson integral, we obtain

A±
m =

i
4

∫ a+i∞

a−i∞
dj (2j + 1)

sinπj

√
Γ(j −m+ 1)
Γ(j +m+ 1)

[Pjm(−zt)± Pjm(zt)] f±jm(t).
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Now, using the asymptotic expression for Pjm(z) at large z,

Pjm(zt) �
Γ(j + 1

2)
Γ(j −m+ 1)

(2zt)j√
π
, z � s

2k2t
,

we arrive at

A±
m =

i
4

∫ a+i∞

a−i∞
dj(2j + 1)

[(−s)j ± sj ]
sinπj

ϕ±jm,

where

ϕjm =
Γ(j + 1

2)√
πΓ(j −m+ 1)Γ(j +m+ 1)

k−2j f±jm.

The unitarity condition in the case when only internal particles possess
non-zero spins,

��������
����

����

����
����
����

����
����
����

���
���
���
���

���
���
���
���0

0

0

0m1

m2

takes the following form:

δrightϕj = Cj
σ1+σ2∑

m=−(σ1+σ2)

ϕjm
Γ(j −m+ 1)Γ(j +m+ 1)

Γ(j + 1
2)Γ(j + 1)

ϕ∗jm,

Cj =
1

8
√
π

k2j+1t√
t
.

 (12.4)

Once again, the factor Γ(j −m+ 1)Γ(j +m+ 1)/Γ(j+ 1
2)Γ(j+1) on the

r.h.s. of (12.4) can be considered as a phase volume which contains poles,
the rightmost being at j = σ1 + σ2 − 1. It is the familiar j = −1 pole
shifted to the right due to the presence of spin. If the third spectral
function were zero then ϕjm would vanish at j = σ1 + σ2 − 1.

We note that in the spinless case, m ≡ 0, the unitarity condition (12.4)
coincides with (12.2) previously derived.

The unitarity condition

δrightfj = C
∑
m

fjmf
∗
jm

contains the wave function normalization factors of the initial and of the
final state only once, on both the left- and the right-hand side of the
equation. Therefore if the spins of the initial and final particles are non-
zero, then the corresponding factors related to these spins cancel out on
both sides and (12.4) remains valid.
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12.2 Particle scattering via a two-particle intermediate state

We consider now a specific diagram for two-particle collision shown in
Fig. 12.1.∗ Let us assume that the amplitude A(si, t) is a rapidly falling

s2s1
k

q − k

p1 p2

t = B

Fig. 12.1. Scattering via a two-particle intermediate state

function of energy (faster than 1/si at si → ∞). But, as we already know,
the contributions of its left and right cuts separately decrease with energy
only as 1/si. How will such a behaviour of the block amplitude A affect
the asymptotics of the full amplitude B?
To calculate the contribution of the diagram in Fig. 12.1 we use the

Sudakov variables:

k = αp′2 + βp
′
1 + k⊥;

t = q2 = q2⊥ + sαqβq � q2⊥, αq ∼ βq ∼
µ2

s
; (12.5a)

s1 = (p1 + k)2 � αs, s2 = (p2 − k)2 � −sβ. (12.5b)

Since A(si) falls rapidly with increasing si, the essential values of s1,2
in the integral are of order µ2, so that α ∼ |β| ∼ µ2/s. Therefore the
propagators of the intermediate lines in Fig. 12.1 can be approximated as

1
(µ2 − k2⊥ − sαβ) ·

1
µ2 − (q − k⊥)2 − s(α− αq)(β − βq)

� 1
µ2 − k2⊥

1
µ2 − (q⊥ − k⊥)2 .

Inserting these propagators, for B we obtain

B =
s

2

∫
d2k⊥dα dβ
2! (2π)4i

A(s1, k⊥, q⊥)A(s2, k⊥, q⊥)
[µ2 − k2⊥][µ2 − (q − k)2⊥]

,

with 1
2! the combinatorial symmetry factor. Using (12.5b) we represent

B in terms of the integrals of the subamplitudes A over their proper
energies si:

B =
i
4s

∫
d2k⊥
(2π)2

1
[µ2 − k2⊥][µ2 − (q − k)2⊥]

∫
Γ

ds1
2πi
A(s1)

∫
Γ

ds2
2πi
A(s2).

∗ It is implied that the block A does not contain a two-particle cut in the t-channel.
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The contour of integration in the s1 (s2) plane has the form

−t

s1

4µ2

in accordance with the Feynman rules for bypassing singularities of the
amplitude. Note that the contour runs along those edges of the s- and
u-cuts where A(s1, t) coincides with the physical amplitude in the s- and
u-channel, correspondingly.

Since A(s1) rapidly falls as s1 → ∞, the integration contour can be
deformed to go around the right cut:∫

Γ

ds1
2πi
A =

∫ ∞

4µ2

A1
ds1
π

≡ N1(q⊥, k⊥).

One important remark is needed. This integral would actually be zero if
the amplitude A had only the right cut. Indeed in this case the integration
contour can be shifted to the left and one immediately gets zero. Recall
that the absence of the left cut in the s1 plane of the function A(s1, t)
means that the third spectral function ρ(s, u) is equal to zero.

Let us consider the contribution of the right cut alone:

Aright(s) =
1
π

∫ ∞

4µ2

A1(s′)
s′ − s ds

′.

Then it is evident that N1 can be written as

N1 =
∫ ∞

4µ2

A1(s′)
ds′

π
=
∫ ∞

C
Aright(s)

ds
2πi
.

•
�
✒

✲ C

The function Aright does not have the left cut by definition, so why then
is the integral non-zero? In the previous lecture we have shown that the
amplitude Aright cannot fall faster than 1/s:

ImAright = A1 +
1
π

∫
ρsu(s′, t)
s′ − s ds′ ∼ −1

s
· 1
π

∫
ρsu(s′, t) ds′.
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In these circumstances the contour cannot be closed on the left due to
the contribution of the large circle, and N1 does not vanish, in spite of
the absence of the left cut, provided ρsu �= 0.
Thus we have

B(s, q2) =
i
4s

∫
d2k⊥
(2π)2

N1(q, k⊥) N2(q, k⊥)
[µ2 − k2⊥][µ2 − (q − k)2⊥]

,

Ni(q⊥, k⊥) =
∫
A1,i(s′, q⊥, k⊥)

ds′

π
.

 (12.6)

Hence despite the fact that A decreases faster than 1/s, the full amplitude
B ∼ 1/s.
This is the same result that we have obtained using the t-channel uni-

tarity condition for partial waves. The structure of B is consistent with
the unitarity condition, and 1/s here is in one-to-one correspondence with
Γ(�+ 1) in the previous analysis.

12.3 Two-reggeon exchange and production vertices

So we learned that the amplitude A describing the t-channel scattering
blocks in Fig. 12.1 must have a non-zero third spectral function ρsu. Let
us examine the structure of the process described by the amplitude B
in more detail. To this end we invoke the field-theoretical gφ3 model to
replace A by the first perturbative graph with ρsu �= 0. It is the crossed
box diagram, as shown in Fig. 12.2.

k1 k2
k

A A

t

s2s1

p2p1

s

Fig. 12.2. The simplest double exchange diagram having ρsu �= 0

It is easy to verify that at large s1 the box diagram behaves as A(s1) ∼
1/s21, so that the si-integrals that define N1 and N2 in (12.6) converge.
Moreover, the transverse momentum loop integral over k21⊥ converges as
well. This means that the essential values of s1, k21⊥ are of the order of
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µ2, and for the left block we have

(p1 − k1)2 � −α1s ∼ µ2, k21 = k
2
1⊥ + sα1β1 ∼ µ2,

β1 ∼ 1, |α1| ∼ µ
2

s
, k21⊥ ∼ µ2.

 (12.7a)

In the same way we have for the right block in Fig. 12.2 we obtain the
estimates

α2 ∼ 1, |β2| ∼ µ
2

s
, k22⊥ ∼ µ2. (12.7b)

Have a look now at the scattering subprocess k1, k2 → (k1 − k), (k2 + k)
shown by a dashed blob in Fig. 12.2. Under the conditions (12.7) the
energy invariant in this four-point function is large, of the order of total s:

s12 = (k1 + k2)2 = s(α1 + α2)(β1 + β2) + (k1 + k2)2⊥ � sα2β1 = O(s) .

(The regions β1, α2 ∼ µ2/s give negligible contributions due to small
phase volume.) Meanwhile the square of the momentum transfer is of
the order of µ2 due to the convergence of the integral for B with respect
to k⊥. Consequently the four-point function enters into the the diagram

❅❅
❅
❅❘

#
##

#
##
#
#✠

❅
❅❅

k1 � β1p1 k2 � α2p2

k � k⊥

Fig. 12.3. One-particle approximation for the blob in Fig. 12.2

Fig. 12.2 for B in the asymptotic regime. Hence there is no reason to
believe that one can restrict oneself to a pole graph only, as we know that
at high energies the behaviour of the amplitude is quite different from
that of a pole graph.

We assume now that the amplitude of Fig. 12.3 behaves like a reggeon
and write for it the Regge pole expression:

−g1(k1, k)g2(k2, k)(−s12)
γ(k2

⊥) ± sγ(k2
⊥)

12

sinπγ(k2⊥)
, s12 � β1α2s. (12.8)

As we have shown above, a reggeon in QFT emerges due to the diagrams
of the type (a),
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(a) (b) (c)

and can be represented by a single Regge pole line (b) (‘particle with vary-
ing spin’). Near the mass shell, k2 = m2 where γ(m2) = 0, the reggeon
propagator turns into the propagator of an ordinary scalar particle (c).
Pulling out the factors† of α2, β1,

(−s12)γ ± sγ12
sinπγ

= (β1)γ(α2)γ · (−s)
γ ± sγ

sinπγ
.

and substituting for the particle propagator in the expression for B we
obtain

B =
1
4s

∫
d2k⊥
(2π)4i

(−s)γ ± sγ
sinπγ

(−s)γ′ ± sγ′
sinπγ′

×
∫

ds1
d4k1 g1g′1(β1)γ(β′1)γ

′

(2π)4i ( ) ( ) ( ) ( )

∫
ds2

d4k2 g2g′2(α2)γ(α′2)γ
′

(2π)4i ( ) ( ) ( ) ( )
. (12.9)

Here
γ = γ(k2⊥), γ′ = γ((q − k)2⊥) ,
s1 = sα, s2 = −sβ ,
β′1 = 1− β1, α′2 = 1− α2 .

As well as in the case of pole graphs there appears a factorization in the
integrand of the k⊥ integration. As a result (12.9) can be written in the
following form:

B =
i
4

∫
d2k⊥
(2π)2

N2γγ′(k⊥, q⊥) ξγξγ′s
γ+γ′−1,

ξγ = −e−iπγ ± 1
sinπγ

,

 (12.10a)

Nγγ′ =
∫

ds1
2πi

∫
d4k1 g1g′1 β

γ
1 (1− β1)γ

′

(2π)4i ( ) · ( ) · ( ) · ( )
. (12.10b)

One can present (12.10) in the form of the graph where the wavy lines cor-
respond to the reggeons and the blobs describe the amplitudes of reggeon
production N given in (12.10b); see Fig. 12.4.
So we have met two types of reggeon production graphs shown in

Fig. 12.5.

† The integration in (12.9) is actually performed over the region 0 < β1, α2 < 1.
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Fig. 12.4. Two-reggeon exchange diagram

(a) (b)

Fig. 12.5. Two-particle–two-reggeon (a) and two-particle–one-reggeon (b) pro-
duction amplitudes

The factors of the type βγ1 � (2k1p2/s)γ in (12.10b) have a simple
meaning. They are the asymptotics of the vertex for the transition of
two scalar particles into a particle with complex spin γ in Fig. 12.5b.
The vertex of the transition to a spin-1 particle, considered in one of the
previous lectures, can be invoked as an example.

12.4 Asymptotics of two-reggeon exchange amplitude

The s→ ∞ asymptotics of the integral in (12.10a) can be evaluated by the
saddle point method. To this end we change the transverse momentum
integration from k⊥ to the two-dimensional variable x,

k⊥ =
q⊥
2

+ x, (q − k)⊥ =
q⊥
2

− x,

k2 � q
2

4
+ x2 + (q⊥x), (q − k)2 � q

2

4
+ x2 − (q⊥x),

and expand the sum of the trajectories (t = q2 � q2⊥ < 0),

γ(k2) � γ(q2/4) + γ′(x2 + (qx)) + γ′′
(qx)2

2
,

γ(k2) + γ((q − k)2) � 2γ(q2/4) + 2
(
γ′ +

γ′′

2
q2
)
y2 + 2γ′z2,
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where we have introduced y and z to represent the components of x
parallel and transverse to q, respectively.
The extremum at y = z = 0 is a maximum since the coefficients in front

of y2 and z2 are positive and x2, y2 < 0 (k2⊥ = −k2⊥ ≤ 0). The exponent
of s in the asymptotics of B is determined by the value in the maximum;
the Gaussian integral provides a pre-exponential factor depending on ln s.
Evaluating the y- and z-integrals we arrive at

B � i
16π ln s

s2γ(q
2/4)−1√

2γ′(2γ′ + γ′′q2)
N2γ0γ0

ξ2γ0
, γ0 = γ(q2/4). (12.11)

In the factors N and ξγ we have replaced the momentum k⊥ by its saddle
point value, q/2. The vertex function N was not taken into account in the
saddle point calculation since it has been assumed to be independent of
s, which is the case for our particular example, Fig. 12.2. A more general
situation will be considered later.
By examining the expression (12.11) we conclude that

1. The presence of 1/ ln s means that the singularity of the t-channel
partial wave amplitude in the j plane is a branch point, not a pole,

2. This branch point is located at j = 2γ(t/4)−1, because its position
is determined by the exponent of s.

12.5 Two-reggeon branching and � = −1

It is important that the position of the singularity we have obtained does
not coincide with the initial one.
First, we had a particle (1/s, j = −1). Then we have introduced a

reggeon γ(t) (γ(µ2) = 0 at t = µ2 > 0). Finally we have found that
the asymptotics of B corresponds to the singularity of ϕj at a new point
j = 2γ(t/4)− 1.
In terms of partial wave amplitudes, the asymptotics of the amplitude,

as we already know, is determined by the equations

B± = − 1
4i

∫
ϕ±j (t)

(−s)j ± sj
sinπj

dj, B1 =
1
4i

∫
ϕjs

jdj.

Let ϕj have its rightmost singularity at some j = j0. If this is a pole,
then its residue gives a power asymptotics sj0 . If it is a branch point,
then, closing the contour around the cut,
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✻ j�
�✆

j0

✲

we obtain

B1(s) = −1
2

∫ j0

−∞
∆ϕjsjdj = −1

2
sj0
∫ j0

−∞
∆ϕje(j−j0)ξdj

= −1
2
sj0
∫ 0

−∞
exξ∆ϕ(x) dx.

The latter integral falls obviously like 1/ξn at large ξ = ln s. Indeed, if it
fell faster, like s−k, then

ϕj ∝
∫
s−j−1B1(s)ds

would have no singularities at j > j0 − k, while the integral converges.
As is known from quantum mechanics, the trajectory γ(t) grows with t:

γ(t)

t
m2

For t < 0 the amplitude B is small, in fact it falls faster than 1/s. This
means that a compensation has occurred of the contribution of the initial
pole at j = −1 (a) by other graphs (b):

(a) (b)

+
∑
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12.6 Movement of the branching in the t and j planes

In the j plane we have the following situation. The branch point j = j0(t)
for t < 4µ2 is situated to the left of j = −1:

j0

j0 −1

dj0
dt

> 0

The singularity j0(t) comes to the point j = −1 at t = 4µ2.
In the t plane the corresponding picture looks as in Fig. 12.6, where

the position of the branch point is shown as a function of j0.

left cut

t(j0)

4µ2 16µ2

t

Fig. 12.6.

When we increase j0 starting from a large negative value, the branch
point moves to the right and at j0 = −1 coincides with the tip of the
right cut of the amplitude, t = 4µ2. With j0 increasing, at some point
j0 = j∗ it hits the four-particle threshold at t = 16µ2 (see the dashed
line in Fig. 12.6 showing the movement of the branch point). For j0 > j∗
the position of the branching t(j0) becomes complex, since the trajectory
γ(t/4) is complex valued when t > 16µ2. Since no singularity at complex
t is allowed on the physical sheet by virtue of causality (and crossing), this
complexity means that at large enough j > j∗ the branch point disappears
from the physical sheet: it dives onto the (second) unphysical sheet related
to the four-particle cut in the t plane as shown by the dot–dashed line in
Fig. 12.6.
We know that for large enough Re j the partial wave ϕj(t) is a reg-

ular function in the entire complex t plane. We also know that with j
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decreasing moving Regge poles emerge from beneath the two-particle cut
at t = 4µ2. Now we see that also the moving branch point singularity
appears on the physical sheet with decrease of j; it comes through the tip
of the cut related to the four-particle intermediate state, t = 16µ2. This
is due to the fact that instead of the usual state of two particles,

we have now a system of two reggeons. As we have seen before, each regge-
on can be represented by a two-particle ladder. Therefore the reggeon–
reggeon branching corresponds (at least) to the four-particle threshold
(see Fig. 12.7).

✚✙
✛✘

✚✙
✛✘✦✦✦✦✦

❛❛❛❛❛

❛❛
❛❛

❛

✦✦✦✦✦

Fig. 12.7. Branching of reggeons as two-particle ladders.

In the previous lecture we showed, in great detail, that the unitarity
condition for ϕj in the form of (12.2) leads to the presence of an essential
singularity of the partial wave amplitude ϕj at j = −1.

Now we have been convinced that at j = −1 a new singularity – the
reggeon–reggeon branching t(j) – arrives at the point t = 4µ2. In such
circumstances the r.h.s. of the unitarity condition (12.2) accounts only
for a part of the discontinuity of ϕj(t) (curve d in Fig. 12.8). The total
discontinuity (curve c in Fig. 12.8) on the sum of the two cuts does not
contain in general a pole at j = −1 and the singularity in ϕj at that point
does not appear.

12.7 Signature of the two-reggeon branching

Let us find now the signature of the two-reggeon branching (12.10) in
the case when the signatures of the reggeons entering B in Fig. 12.7 are
different.

The signature factor ξγ can be rewritten as

ξγ = −e−i
π
2
γ ± ei

π
2
γ

sinπγ
e−i

π
2
γ = − 1

ζγ
e−i

π
2
(γ+P−1

2
),
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c

d

4m2

t(j0)

Fig. 12.8. Overlapping cuts in the t plane due to the two-particle threshold and
the moving two-reggeon branching

with

ζγ = sin
π

2

(
γ +

P − 1
2

)
.

Adopting this notation we have

ξγ1ξγ2 =
−i
ζγ1ζγ2

e−i
π
2
(γ1+γ2−1+P1−1

2
+

P2−1
2
). (12.12)

Thus the expression for B can be reduced to the form‡

B = (±)
∫
N2d2k
(2π)2

ζγ1+γ2−1
ζγ1ζγ2

(−s)γ1+γ2−1 + P · sγ1+γ2−1

sin π
2 (γ1 + γ2 − 1)

, (12.13a)

where

P = Pj1Pj2 . (12.13b)

Thus the signature of the branching P is equal to the product of the
signatures of the poles.

‡ The overall phase factor (±) equals (−1) only for P1 = P2 = −1.



13
Properties of Mandelstam branch

singularities

In the previous lecture we have calculated the contribution of the graph
of Fig. 13.1 to the asymptotics of the total amplitude. Here we shall find

Fig. 13.1. Rescattering graph generating Mandelstam branching

its contribution to the singular part of the partial wave amplitude.

13.1 Branchings as a generalization of the � = −1 singularity

13.1.1 Branchings in the j plane

To do this we use the inverse Mellin transform

φj =
2
π

∫
s−j−1A1(s, t) ds. (13.1)

Taking into account results of Lecture 12, we cast this equation in the
following form (changing the order of integration):

φj =
∫

d2k⊥
(2π)2

N2(k⊥, q⊥)Re (ξ1ξ2) · 2
π

∞∫
1

s−j−1sγ1+γ2−1ds

=
2
π

∫
N2(k⊥, q⊥)

d2k⊥
(2π)2

Re (ξ1ξ2)
1

j + 1− γ1 − γ2 . (13.2)

159
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The expression for the product of the signature factors ξ1ξ2 has been
calculated in the previous lecture (see (13.12)):

Re (ξ1ξ2) =
sin π

2 (γ1 + γ2 − 1 + P1+P2
2 − 1)

sin π
2 (γ1 +

P1−1
2 ) sin π

2 (γ2 +
P2−1
2 )
, (13.3)

where P1 and P2 are the signatures of the poles (Pi = +1 for positive and
Pi = −1 for negative signature). We have shown there that the signature
of the two-reggeon contribution to the amplitude is equal to the product
of the signatures of the poles.
The expression (13.3) may be rewritten as

Re (ξ1ξ2) = (±)
ζcutγ1+γ2−1
ζγ1ζγ2

, ζcutγ = sin
π

2

(
γ +

P1P2 − 1
2

)
. (13.4)

One can see from (13.2) some important features of the amplitude.
First, the j plane singularity of the partial wave is determined by the

denominator (j+1−γ1−γ2). Therefore, within the accuracy of the leading
singular terms, under which we have carried out all previous calculations,
we are able to recast the expression for the partial wave amplitude into
the form

φj = sin
π

2
j

∫
d2k⊥
(2π)2

N2

sin π
2γ1 sin

π
2γ2

1
j + 1− γ1 − γ2 , (13.5)

where we have restricted ourselves to poles with positive signature (and
thus the positive signature amplitude). This expression vanishes at phys-
ical points j = 2k.

13.1.2 Branch singularity in the unitarity condition

How are these formulæ related to the unitarity condition?
Let us consider two particles with spins σ1 and σ2. As we know, the

most dangerous intermediate state in the unitarity condition is the one
that possesses the maximal spin projections m1 = σ1 and m2 = σ2. As
we have shown in the previous lecture, the unitarity condition for partial
wave amplitudes (12.4) looks as follows:

δφj = cφj
1

j + 1− σ1 − σ2φ
+
j . (13.6)

In (13.5) the denominator is the same as in (13.6), but we have to integrate
over the ‘masses’ of particles and, besides, the spin of these particles is
varied as a function of mass: σ1 → γ1(k2⊥), σ2 → γ2((q − k)2⊥).
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We can rewrite the expression for partial wave amplitude (13.5) in the
form of an integral over the reggeon masses t1 = k2⊥ and t2 = (q − k)2⊥
(t1, t2 < 0):

φj(t) = −sin πj
2

(8π)2

∫
dt1 dt2√L(t, t1, t2)

N2

sin π
2γ1(t1) sin

π
2γ2(t2)

1
j + 1− γ1 − γ2 ,

L = [t− (
√
t1 +

√
t2)2][t− (

√
t1 −

√
t2)2].


(13.7)

Where do the threshold singularities in t arise from?
The integral becomes singular when the singularities of the integrand

do not allow the deformation of the integration contours necessary to
avoid the root singularity of the Jacobian factor. Such singularities in t1,
t2 are connected to zeros of sin π

2γ(tj). In particular, at t1 = t2 = m2 the
singularity in t emerges when

√
t =

√
t1 +

√
t2, i.e. t = 4m2.

So we have established that the Mandelstam branch point is a general-
ization of the singularity at � = −1, which appears for spinless particles,
to the case of a non-integer spin.

13.2 Branchings in the vacuum channel

We have conjectured that the four-point function is determined asymptot-
ically by the Regge pole. Then we have investigated the self-consistency of
this assumption by considering the more complicate diagram of Fig. 13.1
and substituting the Regge poles j = α(t) into the internal four-point
functions. As a result we have found that the high energy behaviour of
such amplitude is described by a branching at j2 = 2α(t/4)− 1.

Next if we suppose further that the internal four-point functions are
determined by the pole α(t) as well as by the branching j2 = 2α(t/4)− 1,
then we will get new branchings at the points

j3 = 3α
(
t

9

)
− 2, j4 = 4α

(
t

16

)
− 3.

Iterating this procedure we will arrive at a set of branchings:

j = nα
(
t

n2

)
− n+ 1.

Thus the conjecture of the existence of a pole will lead to an infinite
sequence of branchings.

Fixed poles located at σ1 and σ2 in the j plane generated a sequence
of poles accumulating to the point j = σ1+ σ2− 1. That picture was not
satisfactory because for large σi the poles would have moved arbitrarily
far to the right, thus violating the Froissart theorem.
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13.2.1 The pattern of branch points in the j plane

In the case of a moving pole α(t), an infinite sequence of branchings
appears,

jn = n
[
α(0) + α′

t

n2

]
− n+ 1 = n(α(0)− 1) + α′

t

n
+ 1,

the structure of which at large n depends crucially on the value of α(0).
Indeed, if α(0) < 1, then the branch points move to the left,

×××× ✑
✑
✑
✑
✑
✑
✑
✑
✑

α

and at small t stay to the left of the pole,

jn = α(0) + (n− 1)(α(0)− 1) +
α′t
n
< α(0).

If α(0) > 1 (which is forbidden, by the way, by the Froissart theorem),
then the branchings are located arbitrarily far to the right and the am-
plitude A increases faster than any power. Such a scenario contradicts all
our initial assumptions.
The case α(0) = 1 is of special interest. Then jn = 1 + α′t/n, and for

positive t the branchings are situated to the right of unity whereas for
negative t they are shifted to the left:

✻

✲

j�

t > 0

×
1
× × ×

✻

✲

j�

t < 0

×
1

× × ××

Thus, if the Pomeranchuk pole (which corresponds to a constant cross
section) exists, then one has an interesting physical picture.

13.2.2 The Mandelstam representation in the presence of branchings

Let us discuss the question of existence of the Mandelstam representation
in the presence of branch points. This question includes two aspects
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to be mentioned here, namely the analytic properties of the scattering
amplitudes and the explicit form of the representation in terms of the
double integral ∫

ρst(s′, t′)
ds′dt′

(s′ − s)(t′ − t)
with a finite number of subtractions. It turns out that generally the
analytic properties are preserved whereas the explicit form does not exist.

Indeed, if we consider very large s, s � −t, then the contribution of
the nth reggeon branching to the asymptotics has the form snα(t/n

2)−n+1.
Provided that the trajectory α(t) at large t continues to grow, it is

evident that an infinite number of subtractions is required.

α

Suppose α(t) does turn over and the rightmost point is α(t1) with
Re α(t1) > 1. We can choose n such that t/n2 = t1, i.e. n =

√
t/t1.

At given t the rightmost branching corresponds to n =
√
t/t1 and its

asymptotic contribution is

s1+[α(t1)−1]
√
t/t1 .

This shows that the growh of the exponent of s with increasing t is un-
bounded, so the single dispersion relations exist whereas the double dis-
persion representation is not valid.

13.3 Vacuum–non-vacuum pole branchings

Next we consider also other reactions, for instance the pion–nucleon charge
exchange process shown in Fig. 13.2.

Here a pole with the quantum numbers of the ρ meson and trajectory
β(t) is exchanged. How will branchings contribute to such processes?

The contribution of the graph of Fig. 13.3 can be expressed, as before,
in terms of an integral over the loop momentum k, and the integrand will
contain the factor

1
j + 1− α(k2)− β((q − k)2) .
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p

π− π0

n

Fig. 13.2. π−p→ π0n Scattering with t-channel exchange of ρ-trajectory

α

β
t

Fig. 13.3. Reggeon–pomeron branching in the π−p→ π0n scattering amplitude

The position of the branch point will be determined by the extremum of
α+β. To find this extremum is a slightly more complicated exercise than
in the case of identical poles.
At small q and k we have

α(k2) + β((q − k)2) = α(0) + β(0) + α′k2 + β′(q − k)2.

The position of the branching turns out to be

α(0) + β(0) +
α′β′

α′ + β′
t− 1.

When t = 0, the branching is situated at j = β(0) + α(0) − 1. If we
consider the branch points, corresponding to the exchange of a single ρ
meson along with many vacuum poles (pomerons P ) with αP (0) = 1,
then at small t they are situated at the points

jn(t) = β(0) +
α′β′

α′ + nβ′
t.

So the pole j0 = β(t) is transformed to the series of cuts accumulating at
the point β(0):
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✻

✲

j❦

t > 0

×××

✻

✲

j❦

t < 0

×××× ×
β(0) β(t)❡ ❡β(0)β(t)

If previously the asymptotics of the scattering amplitude in the physical
region had the form sβ(t), then now we have sβ(0)f(ξ, t) with f logarith-
mically depending on s. We conclude that the shape of the t-distribution
is no longer determined by the pole.

In some sense we have a sort of a phase transition here. Indeed, in
the t-channel we had a stable pole and thresholds at large positive t.
When we approach the physical region of the s-channel (t ≤ 0) the pole
becomes unstable. It would be strange if the pole remained stable after
it had collided with the branchings: we would acquire a bound state in
the continuous spectrum. All this means that the Regge pole must move
to another sheet.

Thus, if both the vacuum pole and the related branchings exist, then we
actually do not know the angular dependence of the scattering amplitude.

Nevertheless there exist specific features which permit one to establish
experimentally the existence of branch points without knowing the details
(such as the angular distributions and so on).

13.4 Experimental verification of branching singularities

A Regge pole has definite quantum numbers: Pj , P , G, T , S, etc.
For instance a ρ meson pole (G = +1) can be exchanged in the reaction

π−p→ π0n . Other reactions, such as π−p→ η0n (G = −1) cannot have
the ρ pole, but can be controlled by some other pole, β∗.

There also exist reactions without definite G-parity in the t-channel,
for instance the process K− + p → K0 + n, in which case different non-
vacuum poles contribute and the asymptotics of the amplitude has the
form

sβ(0) + csβ
∗(0).

It is important that the poles have definite spatial parity. On the other
hand an exchange by two vacuum poles has all quantum numbers of the
vacuum except parity (due to the presence of orbital angular momentum).
Therefore the state in the t-channel becomes parity degenerate when we
take into account vacuum branchings.
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If parity degeneracy is discovered experimentally in processes where
the Pomeranchuk pole cannot contribute, then this will be a signal of the
presence of branchings. For instance the reaction

0
+

π0

cannot occur by vacuum pole exchange, only by the exchange of other
poles. Therefore the cross section, in the pole approximation, has to fall
rapidly with energy. But an exchange of two vacuum poles is possible and
therefore the amplitude should be proportional to s, modulo logarithm.
That is, the cross sections of some reactions should decrease more slowly
with energy, as compared with the expectation of the Regge pole picture,
due to the contribution of branchings.

13.4.1 Branchings and conspiracy

We address now the question of branchings and conspiracy.
Let us recall that in nucleon–nucleon scattering, exchange of a pole

with pion quantum numbers leads to the appearance of a term of the
type (σ1 · q)(σ2 · q) in the amplitude, which vanishes for q → 0:

N
σ1

σ2
N N

N

The contribution of this term can be made non-zero, provided it is
divided by q2, but then we get a singular, rotationally non-invariant ex-
pression in the q → 0 limit,

(σ1 · q)(σ2 · q)
q2

→ σ1xσ2x.

On the other hand, the exchange of a pole of the same quantum numbers
but with positive internal parity (Pr = +1) will contribute

[σ1 × q][σ2 × q]
q2

→ σ1yσ2y.
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Their sum is an invariant expression

σ1xσ2x + σ1yσ2yx = (σ1⊥ · σ2⊥).
If there is a branching, however, the contribution of the graph correspond-
ing to the two-reggeon branching, which appears when we add the vacuum
pole,

may also give a contribution proportional to (σ1⊥ · σ2⊥), which will be
suppressed only by ln s compared with the contribution of the leading
pole. This makes it difficult to establish the fact of conspiracy, to distin-
guish the contribution of two conspiring poles from that of branchings.



14
Reggeon diagrams

I have already said how the branch points arise. Now I shall show how
the scattering process is described in terms of these branchings.
There are two ways to do that:

1. by considering the multi-particle t-channel unitarity conditions, gen-
eralized to the case of complex j;

2. by analysing the structure of Feynman diagrams.

The more convenient approach turns out to be the one based on diagrams.
We adopt as a basic hypothesis the following postulates:

• there exist Regge poles;

• they generate branch points;

• these singularities together determine the structure of the j plane;

• there are no other singularities.

So let us assume that the elastic scattering amplitude has a Regge pole:

s

t

Following the path we have chosen let us study the diagram shown
in Fig. 14.1, where the solid lines correspond to exchanges by ordinary
particles, whereas the wavy lines describe reggeons. I will justify the

168
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(a) (b)

q

p
1 −

k
1

k

q − k

p2 − k2 + q − k

k2k1

p 2
− k

k
2 +

k

p1 − k1 − q + k

k 1
− k

f2

f1 p2p1

Fig. 14.1. Kinematics of double scattering (a) and the corresponding two-
reggeon exchange graph (b)

possibility of this replacement which corresponds to inserting Regge poles
into the blobs f1 and f2.

The graph of Fig. 14.1a contains two four-point functions whose am-
plitudes are denoted by f1 and f2. They are functions of momenta k1,
k2 and k and should be integrated according to the Feynman rules. We
consider now the various regions of integration over k.

In the region where fi(k1, k2, k) enter a non-asymptotic regime, this dia-
gram does not give any essential contribution and cannot be distinguished
from many other arbitrary diagrams (this region gives an additive contri-
bution to a Regge pole in the full amplitude, if there is such a pole).

It is clear that this diagram can give something special only if we have
Regge kinematics for f1,2. If, inserting the poles into f1 and f2, I obtain
an amplitude that is not power-suppressed at large s and is expressed in
terms of exact trajectories, then this scattering topology is worth study-
ing.

The amplitude f1 is a function of virtual masses k21, k
2
2, (k1 − k)2 and

(k2+k)2, of the momentum transfer k2 and the squared energy (k1+k2)2.
We will be able to calculate the asymptotic contribution of the graph of
Fig. 14.1 easily if in the asymptotic regime the regions of large momentum
transfers and large masses are suppressed. This is what we shall assume
henceforth.

We express all internal momenta in Fig. 14.1 in terms of Sudakov pa-
rameters:

k = αp′2 + βp
′
1 + k⊥,

k1 = α1p′2 + β1p
′
1 + k1⊥,

k2 = α2p′2 + β2p
′
1 + k2⊥,

 (14.1)
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where

p′1 = p1 − κp2, κ � p
2
1

s
, p′2 = p2 − κ′p1, κ′ � p

2
2

s
,

are by now familiar light-like vectors,

p′1
2 = p2′2 = 0, 2p′1p

′
2 � s, s = (p1 + p2)2.

For any internal momentum I require the condition |k2i | ∼< m2 to be
satisfied, i.e. ∣∣αiβis+ k2i⊥∣∣ ∼< m2.
Consider the virtuality of the particle in the left-hand loop:∣∣k21∣∣ = ∣∣α1β1s+ k21⊥∣∣ ∼< m2. (14.2a)

The condition |(p1− k1)2| ∼< m2, taken together with (14.2a), imposes an
additional constraint on α1 and β1:

|α1s+ β1m2| ∼< m2. (14.2b)

This shows clearly that there cannot be any compensation between α1β1s
and k21⊥, i.e. the following relations hold:

|α1β1|s ∼< m2, |k21⊥| ∼< m2; |α1|s ∼< m2, |β1|m2 ∼< m2. (14.3)

Similarly we have for the right-hand loop

|α2β2|s ∼< m2, |k22⊥| ∼< m2, |β2|s ∼< m2, |α2|m2 ∼< m2. (14.4)

For the Sudakov parameters of k, it follows from the conditions

k2 = sαβ + k2⊥ ∼< m2,
(k − k1)2 = (α1 − α)(β1 − β)s+ (k1 − k)2⊥ ∼< m2,
(k + k2)2 = (α2 + α)(β2 + β)s+ (k2 + k)2⊥ ∼< m2,

 (14.5)

that

|k2⊥| ∼< m2, |α| ∼ |β| ∼< m
2

s
. (14.6)

Thus our region of integration is defined by the following inequalities:

|α1| ∼< m
2

s
, β1 ∼ 1; −k21⊥ ∼< m2;

α2 ∼ 1, |β2| ∼< m
2

s
; −k22⊥ ∼< m2;

|α| ∼ |β| ∼ m
2

s
; −k2⊥ ∼< m2.


(14.7)

The physical meaning of these conditions is clear:
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s1
k1 k2

in order to have here a large energy invariant s1 � α2β1s ∼ s, while
keeping the virtual masses of all internal lines small, it suffices to produce
two particles k1 and p1 − k1 which carry finite fractions β1, (1 − β1) of
the incident particle momentum p1. Each of these offspring then scatters
with a small momentum transfer k � k⊥ (q − k � q⊥ − k⊥) on its coun-
terpart with momentum α2p2 ((1 − α2)p2) from the splitting of p2, and
the scattered particles finally merge into outgoing momenta p3 = p1 − q
and p4 = p2 + q.

In such kinematical conditions the invariant energies of the scattering
blobs f1 and f2 are of the order of the total s:

s1 = (k1 + k2)2 = (α1+α2)(β1+β2)s+ (k1⊥+k2⊥)2 � β1α2s, (14.8a)
s2 = (p1 − k1 + p2 − k2)2 � (1− β1)(1− α2)s, (14.8b)
s1 ∼ s2 = O(s) .

Let us now write down the amplitude f1 as if in the form of a Sommer-
feld–Watson integral:

f1(k1, k2, k) = −
∫
C

d�
4i
ξ�s

�
1 J�(k

2)

×g1(k21, (k − k1)2, k2) g2(k22, (k + k2)2, k2). (14.9a)

This amplitude corresponds to the Regge pole graph

k1 k2

� g1 ξ1 s
α
1 g2 .

I slightly generalized the latter expression by writing (14.9a) in the form
of an integral over d� of the simple pole J� = 1/(�−α(t)) with the contour
of integration located to the right of �0 = α(t). This generalization has
been made for future convenience in taking account of any number of
reggeons.
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Similarly for the second blob we have

f2(p1−k1, p2 − k2, q − k) = −
∫

d�′

4i
ξ�′s

�′
1 J�′((q − k)2)

× g′1((p1 − k1)2, (k − q)2, (p− k1 + k − q)2)
× g′2((p2 − k2)2, (q − k)2, (p1 − k2 + q − k)2). (14.2)

If I substitute (14.9) into the corresponding Feynman integral and take
account of the restrictions (14.7), then the integration variables in the
left-hand and right-hand loops get separated and a factorization occurs.
The amplitude of the graph of Fig. 14.1 will then acquire the following

form:

F (s, t) =
i

2·2!
∫∫

d�
4i

d�′

4i
ξ�ξ�′

∫
d2k⊥
(2π)2

J�(k2⊥)J�′((q⊥−k⊥)2)s�+�
′−1

×
∫
sdα
2πi

∫
d4k1
(2π)4i

g1g
′
1 β

�
1(1−β1)�

′

[ 1 ][ 2 ][ 3 ][ 4 ]

×
∫
sdβ
2πi

∫
d4k2
(2π)4i

g2g
′
2 α

�
2(1−α2)�

′

[ 1 ][ 2 ][ 3 ][ 4 ]
. (14.10)

Here we have taken the functions J� and J�′ out of the integrals over
α, β since, as was mentioned above, in the region of interest they may
be treated as functions of two-dimentional space-like vectors: we have
α ∼ β ∼ m2/s so that k2 � k2⊥ and (q − k)2 ∼ (q − k)2⊥.
Counting powers of s we should remember the factor s arising from the

Jacobian due to Sudakov variables:

d4k =
s

2
dα dβ d2k⊥.

14.1 Two-particle–two-reggeon transition amplitude

14.1.1 Structure of the vertex

The functions g1 and g′1 in the l.h.s. of the diagram depend, respectively,
on k2⊥ and (q − k)2⊥. They also depend on
g1 –

k21 = α1β1s+ k
2
1⊥,

(k − k1)2 � (α1 − α)β1s+ (k − k1)2⊥

}
(14.11a)

– g′1 –

(p1 − k1)2 � −α1(1− β1)s+ k21⊥,
(p1 − k1 + k − q)2 � (α− α1 − αq)(1− β1)s+ (k1 − k + q)2⊥.

}
(14.11b)
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We see that the integral over k1 is a function only of α and k⊥. Similarly
the integral over k2 is a function of β and k⊥ only.

The expressions [1], [2], [3], [4] on the second line of (14.10) are the
usual Feynman denominators which contain the squared particle mo-
menta (14.11).

The analysis of the location of singularities in the complex plane α1
(zeros of −m2 + i ε; see (14.11)) shows that the integral over k1 is non-
zero only in the interval 0 < β1 < 1. Similar analysis of the integral over
k2 yields 0 < α2 < 1. These conditions ensure that the non-integer powers
β�1 and (1 − β1)�′ are properly defined and do not introduce redundant
complexity into these integrals.

Now we can see already that F contains the integral A��′ , i.e. the am-
plitude of two-reggeon creation, which differs from the usual amplitude
2 → 2 only in that the two external lines are reggeons rather than ordinary
particles.

The factors β1α2 and (1− β1)(1−α2) play the rôle of the cosine of the
scattering angle which would appear at the vertices if ordinary particles
with spin had been created. In our case the spins are � and �′ and there
appear the corresponding powers β�1 and (1− β1)�′ .

14.1.2 Analytic properties of the vertex

The energy invariant this amplitude depends on is s̃ � sα. Thus the

(a) (b)

s̃

C

s̃

Fig. 14.2. (a) Two-reggeon production and (b) the integration paths in s̃

integration over α of the Feynman diagram of Fig. 14.2a is equivalent
to the integration of the two-reggeon creation amplitude over its energy
invariant s̃: ∫

dα→ 1
s

∫
ds̃A��′(s̃, p22, k

2
⊥). (14.12)

As this amplitude emerges from a Feynman diagram, for instance a
crossed box of Fig. 14.2a, it has the usual analytic properties (β�1 and
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(1 − β1)�′ are real): the right- and left-hand cuts lie in the complex s̃
plane and the integration is performed along the contour shown by a
solid line in Fig. 14.2b. The integral of A��′ does not vanish since this
diagram has both cuts.
If we consider instead the diagram of Fig. 14.3 without a cross, then

it is clear that its contribution is equal to zero since this planar diagram
has a right cut only.

= 0 .

Fig. 14.3. Planar diagram for the two-particle–two-reggeon transition

The same is true for the pole diagrams with single particle exchange:

1

2

Here there is no left-hand cut either, and the form factors at the vertices 1
and 2 allow us to close the contour on the left, yielding zero. (The integral
of A��′ over s̃ does not contain anything asymptotic since α = O(1/s),
s̃ = O(1).)

14.1.3 Factorization

It is clear that such a separation of variables in the integral of F does not
depend on details of the structure of the internal particle lines that link
together the four-point functions of Fig. 14.1.
This result is a consequence of pure kinematics. The momenta in the

left-hand loop integral over k1 have Sudakov variables βi of the order of
unity (along p′1) and αi ∼ m2/s � 1 (along p′2). Therefore the scalar
products kki, on which the functions entering this diagram depend, con-
tain only the dependence on βi and α:

2kki ∼ 2(αip′2 + βip
′
1)(αp

′
2 + βp

′
1) ∼ s(αiβ + βiα) ∼ sαβi,

βi ∼ 1, α ∼ β ∼ αi ∼ m
2

s
.
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Now the entire result can be written in the form of

F (s, t) =
iπ
2

∫
d�
2iπ

d�′

2iπ
ξ�ξ�′

∫
d2k
(2π)2

J�(k⊥)J�′((q − k)⊥)

× s�+�′−1N2��′(k⊥, (q − k)⊥), (14.13)

where N is the integral of the imaginary part of A��′ along the right cut
(contour C in Fig. 14.2b):

N��′ =
∫
C

ds̃
2πi

A��′(s̃, k⊥, q⊥).

Hence, the vertex function N��′ is real.

14.2 Partial wave amplitude of the Mandelstam branching

Now let us write down the partial wave corresponding to the amplitude F :

F = − 1
4i

∫
djξjφjsj , φj =

2
π

∫ ∞

s0

s−j−1F1(s, t)ds, (14.14)

where F1 is the imaginary part of F .
Since N��′ is real, all complexity arises from the product of the signature

factors, i.e. F1 is proportional to the integral of γ��′ :

γ��′ = Im i ξ�ξ�′ .

If one writes the signature factor in the form of

ξ� =
1
ζ�

exp
{
−i
π

2

(
�+

1− P
2

)}
,

ζ� =
{

sin(π�/2), P = +1,
cos(π�/2), P = −1,

}
(14.15)

where P = +1 (P = −1) corresponds to positive (negative) signature,
then

γ��′ =
1
ζ�ζ�′

cos
[
π

2
(�+ �′ + 1)− P� + P�′

2

]
. (14.16)

Thus we get for F1

F1 =
π

2

∫
d�
2πi

∫
d�′

2πi

∫
d2k
(2π)2

J�(k)J�′(q−k)N��′N�′�s
�+�′−1γ��′ , (14.17)

and for φj this gives

φj =
∫

d�
2πi

∫
d�′

2πi

∫
d2k
(2π)2

J�(k)J�′(q − k)γ��′ N��′N�′�

j + 1− �− �′ , (14.18)
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and one should remember that j lies to the right of the singularities:

Re j ≥ Re �+Re �′ − 1, Re � > α(k2), Re �′ > α′((q − k)2),
that is the pole � = j + 1− �′ lies to the right of the integration contour
over � (similarly the pole �′ = j + 1− l lies to the right of the integration
contour over �′). After integration over � and �′ the expression for φj
takes on a simpler form:

φj =
∫

d2k
(2π)2

γαα′Nαα′Nα′α

j + 1− α(k2)− α′((q − k)2) . (14.19)

In getting this expression the functions J� and J�′ have been taken in the
pole approximation:

J� =
1

�− α(k2) , J�′ =
1

�′ − α′((q − k)2) .

The formula (14.19) can be represented in the form of

φj =
∫

d2k
(2π)2

d�
2πi

d�′

2πi
(2πi )δ(�+ �′ − j − 1)J�(k)J�′(q − k)γ��′N��′N�′�,

(14.20)
which resembles the Feynman integral for a non-relativistic particle with
the two-dimensional momentum k⊥ and energy ω = � − 1. The factor
δ(�+ �′ − j − 1) ensures energy conservation:

ω = ω1 + ω2; ω = j − 1; ω1 = �− 1; ω′ = �′ − 1.

In terms of ω one can write the expression

fω,q =
∫

dω1
2πi

∫
d2k
(2π)2

Gω1(k)Gω−ω1(q − k)N2γ (14.21)

which corresponds to the graph

q, ω

k, ω1

q − k, ω − ω1

In order to reach full analogy with the Feynman integration, the contour
of integration over ω along the imaginary axis can be deformed in general
to run along the dashed line:
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All that has been done so far is valid assuming that there are no sin-
gularities of N��′ with respect to � and �′ near j ∼ α1 + α2 − 1. The
amplitude of the graph

s̃

does not have these singularities, due to the rapid drop in s̃.
I do not want to say that I have calculated the whole amplitude. What

I have really calculated is only its singular part, the contribution of the
branching due to a two-reggeon state. Cases in which reggeon creation
contains an exchange of many particles (s̃ is large) are also possible, and
they will be considered in the next lecture. We will see that in the region
of large s̃ the function N has singularities near j close to unity. So for
the time being we assume N��′ to be smooth functions of � and �′.

Now I want to show how to write the contributions of states containing
a larger number of reggeons. The next singularity will be obtained if we
insert a branching into f (which, as we already know, is present already
in the elastic amplitude). In other words, I will consider the graph of
Fig. 14.4.

k′

k
′′

q

Fig. 14.4. Triple scattering graph generating three-reggeon branching



178 14 Reggeon diagrams

When I was considering the graph Fig. 14.1, only a separation of inte-
grations on the left and right loops was actually important for me. And
that separation was a consequence of the following requirements:

• smallness of the Feynman denominators;

• asymptotic behaviour of the internal blobs.

It is clear that similar arguments will also apply to the new graph Fig. 14.4
(since for the whole upper block f all these requirements remain valid),
and we obtain the new branching

F =
π

2

∫
d�1
2πi

d�2
2πi

d�3
2πi

∫
d2k′′

(2π)2
d2k′

(2π)2
J�1(k

′)J�2(k
′′)J�3(q − k′ − k′′)

×N�1�2�3 N�3�2�1 s
�1+�2+�3−2. (14.22)

In terms of partial waves this formula will correspond to the graph

ω3, q − k′ − k
′′

ω′, k′

ω, q ω2, k
′′

φω,q =
1
3!

∫
dω1dω2dω3
((2π)3i )2

d2k1d2k2d2k3δ(ω1 + ω2 + ω3 − ω)δ
(
q −
∑
i

ki

)
×Jω1(k1)Jω2(k2)Jω3(k3)γω1ω2ω3Nω1ω2ω3Nω3ω2ω1 . (14.23)

The factor 1/3! accounts for the identical reggeons. The contribution
of all possible branchings can be written in this way.
The only non-triviality is related to the sign alternation of γ:

γω1ω2...ωn = (−1)n−1 sin
π

2

(
j −

∑ Pi − 1
2

)∏
i

1
ξi
. (14.24)

The factor (−1)n−1 sin π
2 (j −

∑ Pi−1
2 ), which determines the sign of the

partial wave discontinuity of the Regge singularity (reggeon threshold),
arises as a result of the appearance of an additional integration over ki
when the number of branchings is increased by unity,

d4ki
(2π)4i

� i
dαi
2iπ

dβi
2iπ

d2ki⊥
(2π)2

|s|
2
,
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and one integration over � with a negative sign,

(−1)
d�
4i
.

The integration over αi/(2iπ) and βi/(2iπ) consists of the integration of
the imaginary parts of reggeon creation amplitudes and therefore gives
real values. This means that the phase of the nth branching is contained
only in the expression

(−1)ni n−1ξ�1ξ�2 . . . ξ�n .

Since the partial wave is expressed in terms of an integral of the imaginary
part of F (see formula (14.2)), it is proportional to

γ�1...�n = (−1)nIm i n−1
∏
j

1
ξj

exp

− iπ
2

∑
j

�j −
∑
j

Pj − 1
2


= (−1)nIm

∏
j

1
ξj

exp

− iπ
2

 n∑
j

�j − n+ 1−
∑
j

Pj − 1
2


= (−1)n

∏
j

1
ξj

sin
π

2

 n∑
j

�j − n+ 1−
∑
j

Pj − 1
2

.
But because energy is conserved, i.e.

ω = j − 1 =
n∑
i

ωi, ωi = �i − 1,

we have
n∑
i

�i − n+ 1 = j.

Therefore

sin
π

2

 n∑
j

�j − n+ 1−
n∑
j

Pj − 1
2

 = sin
π

2

(
j −

n∑
i

Pi − 1
2

)
.

This leads to the expression for γω1...ωn given in equation (14.24).
The factor

sin
π

2

(
j −

n∑
i

Pi − 1
2

)
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reflects the fact that the contribution of moving branch points for physical
values of j is zero.
The sign alternation is in fact essential only for the case of the vacuum

pole, when �i = 1, Pi = 1 and j = 1 (the amplitude corresponding to the
exchange of a vacuum reggeon is purely imaginary).
How could one calculate the singularities of the two-dimensional Feyn-

man integral for a partial wave amplitude?

φω(q) =
1
n!

∫ n∏
i

dωi
2iπ

d2ki
(2π)2

1
ωi − ε(k2i )

N2ω1...ωn
γω1...ωn

×(2iπ)δ

(
ω −

∑
i

ωi

)
(2π)2δ

(
q −

∑
i

ki

)
.

We shall calculate these integrals assuming (as was mentioned above)
that all singularities in ωi are in the reggeon propagators (ωi − ε(k2i ))−1,
whereas all the remaining functions are smooth, so in what follows we
will replace them by constants and in γω1...ωn take into account the factor
(−1)n−1. Then this integral will be

(−1)n−1

n!
N2
∫ ∏n−1

i d2ki
(2π)2(n−1)

sin π
2 (j −

∑
i
Pi−1
2 )

ω −∑i ε(k
2
i )

. (14.25)

Since I am working in the physical region where all εi(k2i⊥) < 0, this
expression for ω > 0 does not have any singularity. The singularity arises
when ω ≤ 0 under the condition that

∑
i ki = q, i.e. to determine the

position of the reggeon singularity it is necessary to find an extremum of
the denominator in (14.25):

∇ki

∑
j

ε(k2j ) + λ

∑
j

kj − q

 = 0,

which gives kj,extr. = q/n. (Here I am studying the more interesting case
of identical reggeons.)
Writing ki in the form of

ki =
q

n
+ xi,

∑
i

xi = 0,

we obtain for
∑

i ε(k
2
i ) the following quadratic form:

n∑
i=1

ε(k2i ) = nε
(

q2

n2

)
+
(
ε′ + 2

q2

n2
ε′′
)∑

i

x21i + ε
′∑

i

x22i.
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Here x1i are components along q and x2i are transverse to q.
To find the singularities of such an integral, it is sufficient to calculate

its discontinuity which is much easier than to compute the whole integral:

δφω = π
(−1)n−1

n!
N2
∫ ∏n

i dx1i
(2π)n−1

∏n
i dx2n

(2π)n−1
cos
πω

2

× δ(ω − ωn − c1I1 − c2I2) δ
(∑

xi

)
. (14.26)

Here we used the following notation:

ωn = nε
(

q2

n2

)
, I1 =

n∑
i

x21i, I2 =
n∑
i

x22i,

c1 = ε′
(

q2

n2

)
, c2 = c1 +

2q2

n2
ε′′
(

q2

n2

)
.

 (14.27)

Due to the positiveness of I1,2 the integral (14.26) differs from zero only
when ω ≤ ωn, i.e. the singularities of φω in the ω plane are situated on
the real axis at ω < nε(q2/n2):

ωn

ω✍✌✎#

The value of the discontinuity can be easily calculated and has a simple
geometrical meaning: it is the surface of the (2n−2)-dimensional ellipsoid

(−ω + ωn)n−2(n− 1)πn−1

n! (c1c2)
n−1

2

.

Thus we obtain for δϕj

δϕj = π(−1)n−1(c1c2)−
n−1

2
n− 1

(n!)2(4π)n−1
(ωn − ω)n−2N2 cos πω2 . (14.28)

This discontinuity corresponds to the logarithmic singularity at any n:

ϕj ∼ (ωn − ω)n−2 ln(ωn − ω).
An interesting picture appears in the ω plane if we have vacuum poles

with α(0) = 1. In this case

ε(q2) = −α′q2, q2 = −t
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and the nth branching is situated at

ωn = −α′q
2

n
. (14.29)

From (14.29) we see that for t = 0 all the singularities are positioned at
ω = 0. For t �= 0, ω = 0 is a point of accumulation of the branchings.
The pattern of singularities for t < 0 is displayed in Fig. 14.5a. The

✻

✲

ω�
××××
✁
✁✁

✁
✁✁

✁
✁✁

✻ ω�
××××

✁
✁✁

✁
✁✁

✁
✁✁

✲

t > 0t < 0

(a) (b)

Fig. 14.5. For α(0) = 0 higher branchings accumulate at ω = 0

pole is the leftmost singularity, and the branching points accumulate to
ω = 0 with n → ∞. This means that in the physical region of s-channel
scattering it is necessary to take into account the higher branchings. This
results in specific oscillations of the cross section in momentum transfer
– a manifestation of the sign-alternating character of the discontinuity of
the multi-reggeon singularity (the factor (−1)n−1).
At t > 0 the picture in the ω plane is reversed, as shown in Fig. 14.5b.

Now the pole is the rightmost singularity.
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Interacting reggeons

In the previous lectures we have found the rules of how to calculate multi-
reggeon contributions to the scattering amplitude:

The Green functions G(ω, k) of reggeons entering the diagram depend on
ω = j − 1 and on the two-dimensional momentum k. Furthermore, ω
can be interpreted as an energy; the cuts in the ω plane run along the
left-hand real axis.

We have investigated the singularities of ϕω(q) in the ω plane for each
of these diagrams. We have assumed that the vertex Nω1ω2(k1,k2) of the
transition of two particles into two reggeons with momenta k1 and k2
has no singularities with respect to ωi. Nω1ω2(k1,k2) itself represents the
integral of the absorptive part of the particle–reggeon collision amplitude:

N ∼
∫
A(1)ω1ω2

(s1,k1,k2)ds1. (15.1)

The simplest contribution to this amplitude,

s1

at large s1 behaves as 1/s21 and therefore the corresponding integral (15.1)
for Nω1ω2 is well convergent.

183
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For small energies s1 one can restrict oneself to considering the contribu-
tions to the absorptive part of the particle–reggeon scattering amplitude
that contain a small number of particles in the intermediate s-channel
state (for instance two particles as in the above crossed box diagram).
Recall that taking into account only one-particle s-channel states in the
creation amplitudes of two, three, etc. reggeons

would yield zero. As we have discussed, the contribution of the two-
reggeon state corresponding to the diagram

is zero, due to the absence of a left-hand cut in A(1)ω1ω2 , and also due to
the presence in the reggeon–particle–particle vertices of the form factors
which decrease at large particle virtualities ∼ s1. Note that if we were to
consider the particle–reggeon graph

without such form factors, its contribution would not vanish, but it has
merely a formal meaning.

If we now consider large s1, then in the absorptive part of A(1)ω1ω2 we
have to take into account the states with large numbers of particles:
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s1

Then, the ladder-type diagrams make a large contribution of the order
of sβ1 to the particle–reggeon scattering amplitude. Therefore, restricting
ourselves to the region s′ ∼ s � s1 ∼ m2 for extracting the asymptotics
cannot be justified (for the notation see Fig. 15.1).

s1 s′

Fig. 15.1. Reggeon (s′) and particle–reggeon transition blocks (s1)

Considering the integration region s1 ∼ s′ ∼ s, it is natural to introduce
the reggeon graphs shown in Fig. 15.2. These graphs can be looked upon

Fig. 15.2. One-reggeon–two-reggeon transition diagrams

as describing decays of the reggeon, its instability. At large s the branch
points as well as the Regge pole can give a contribution to the vertex
Nω1,ω2 , and this leads to the reggeon diagrams
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These graphs mean that the exchanged reggeons interact with each other.
These arguments show that the simple formulæ which we have written
previously for the contribution of reggeon branchings, where Nω1,ω2 has
been supposed to be regular in ωi, are in actual fact not valid.

In the real, more complicated situation it is necessary to study a whole
series of reggeon graphs.
To begin with, let us consider the graph in Fig. 15.3, where each one

of the blobs can be in the asymptotic regime.

✧✦
�✥
A(1) ✧✦

�✥
A(2)

❍❍
❍❍

✧
✧
✧✧

✧
✧
✧✧

❍❍
❍❍

✑✑✰

❥

p2

p2 + q

p1

p1 − q

❥

✙

s1 s2k

k − q

✲

✛

s1 = (p1 − k)2, s2 = (p2 + k)2; s = (p1 + p2)2.

Fig. 15.3. Kinematics of double scattering with s1 ∼ s2 � m2

We are going to find the asymptotic contribution which comes from the
regions s1 � m2 and s2 � m2. The contribution we are looking for is
analogous, in the case of the usual particles, to the photon–vector-meson
transition:

γ ω

As before, we expand the momentum k in the Sudakov variables:

k = αp′2 + βp
′
1 + k⊥. (15.2)

The amplitude corresponding to the graph of Fig. 15.3 is given by the
following expression:∫ |s/2|dα dβ

(2π)4i
A(1)(s1, k2, (q − k)2)A(2)(s2, k2, (q − k)2)

(m2 − k2)(m2 − (q − k)2) , (15.3)

where

k2 = αβs+ k2⊥, s1 � −αs, s2 � βs, αβs ∼ m2, k2⊥ ∼ m2. (15.4)
We see from (15.4) that it is impossible to make both s1 and s2 of the order
of s, since this would mean that α ∼ 1 and β ∼ 1 and hence k2 � m2.
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From condition (15.4) one finds that

s1s2 ∼ sm2 . (15.5)

Let us assume that A(1)(s1) behaves as s�11 for s1 � m2 and A(2)(s1) is
proportional to s�22 for s2 � m2. If �2 > �1, then the leading contribution
∼ s�2 to the integral will come from the region α ∼ m2/s, β ∼ 1, which
corresponds to taking into account only the second pole:

2

The situation when �1 is close to �2 is especially interesting. Under this
condition another region of the variables α and β dominates in (15.3):

m2

s
� |α| � 1,

m2

s
� β � 1,

s1 = −αs� m2, s2 = βs� m2 .

 (15.6)

This region gives to (15.3) more than each of the two contributions of
separate Regge poles. It is not difficult to verify that both poles, 1/(m2−
k2 − i ε) and 1/(m2 − (q − k)2 − i ε), lie in the α plane on the same side
of the integration contour (below when β > 0 and above when β < 0):

α

β > 0

β < 0

Therefore one can enclose the contour of integration around one of the
cuts of A(i), situated in the half-plane where those poles are absent.

As a result the absorptive part of the amplitude A(s1) enters in the
integral (15.3) along the left-hand or right-hand cut and we arrive at the
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following expression:

F =2i
∫

β>0

d2k d(αs/2)dβ
(2π)4i

A
(1)
1 (s1, k2, (q − k)2)A(2)(s2, k2, (q − k)2)
(m2 − k2 − i ε)(m2 − (q − k)2 − i ε)

+ 2i
∫

β<0

d2k d(αs/2)dβ
(2π)4i

A
(1)
2 (s1, k2, (q − k)2)A(2)(s2, k2, (q − k)2)
(m2 − k2 − i ε)(m2 − (q − k)2 − i ε)

.

(15.7)
Let us consider the first integral. We substitute A(1)1 ∼ (Im ξ�1)s

�1
1 g1g

′
1

and A(2) ∼ ξ�2s�22 g2g′2 and make a substitution of variables, that is instead
of α we introduce R = −sαβ. Then one obtains

−2i
∫
β>0

d2k dR dβ
2(2π)4iβ

Im ξ�1

(
R

β

)�
× ξ�2(βs)

�2g1g
′
1g2g

′
2

(m2+R−k2⊥−i ε)(m2+R−(q−k)2⊥−i ε)
. (15.8)

And now we integrate over β in the essential region (15.6). This gives

∫
β>0

d2k dR
2(2π)4i

−2i Im ξ�1 · ξ�2R�1s�2 g1 g′1 g2 g′2
(m2+R−k2⊥−i ε)(m2+R−(q − k)2⊥−i ε)

1∫
m2/s

dβ
β
β�2−�1

=−2i
∫

β>0

d2k dR
2(2π)4i

Im ξ�1
s�2 − s�1
�2 − �1

× ξ�2R
�1 g1 g

′
1g2 g

′
2

(m2+R−k2⊥−i ε)(m2+R−(q−k)2⊥−i ε)
.

This formula can be represented in a more convenient form:

F = ξ�2
s�2 − s�1
�2 − �1 g1(q

2) r(q, �) g2(q2), (15.9a)

r(q, l) = −2i
∫

d2k d
(
R
2

)
(2π)4i

g′1 (Im ξ�1)R
�1 g′2

(m2+R+k2−i ε)(m2+R+(q−k)2−i ε)
. (15.9b)

Note that for �2 → �1 ∫ 1

m2/s

dβ
β
β�2−�1 −→ ln s,

that is for �2 = �1 = � the contribution of the region under consideration
is not s� but s� ln s, which is ln s times larger.
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We find now the partial wave amplitude φj which corresponds to the
amplitude F calculated above (cf. (15.9)):

φj ∼ 2
π

∫
s−j−1F (1)ds, (15.10)

where F (1) is the absorptive part of F , hence

φj = g1
1

j − �1 r�1�2(q
2)

1
j − �2 g2 . (15.11)

The expression (15.11) can be set in correspondence with the diagram

g1
r

g2

Note that a reggeon with one signature cannot make a transition to a
reggeon of the opposite signature.

Indeed, since the amplitude A(2)(s2) and the absorptive part of the
amplitude A(1)2 (s1) enter the second term in (15.7) with energies s2 < 0
and s1 < 0, respectively, whereas they enter the first term with s2 >
0, s1 > 0, then, in the case of Regge poles having opposite signatures,
they cancel each other.

It is evident that a modification of the intermediate state in the t-
channel shown in Fig. 15.3, for instance

q2
s

while retaining the conditions s � m2, s1 � m2, s2 � m2 (|q2| <∼ m2),
would change only the explicit form of r�1�2(q

2).
This discussion can be easily generalized to the case when one inserts

a reggeon branching instead of a Regge pole for the asymptotics of the
amplitude. To this end, one has to keep the integration over k⊥ in the
amplitude, corresponding to the two-reggeon exchange, as the external
one, and substitute s�2+�1−1 for s�2 :
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Expression (15.11) will then be replaced by the formula

φj =
g1

j − �1(q2)
∫

d2k
(2π)2

r�1�2�3
1

j − �1(k2)− �2((q−k)2) + 1
N�1�2 ,

(15.12)
which corresponds to the graph

Using in turn the asymptotics for A(1) which corresponds to the partial
wave amplitude (15.12), we shall arrive at the amplitude whose diagram
is

Such reasoning leads to more and more complicated diagrams, which
take into account contributions of branchings whose singularities are close
to each other:
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From this discussion it is still not clear whether, for example, the dia-
grams of Fig. 15.4 correspond to some actual high energy processes. But
if one turns to the Feynman diagram then it is possible to find two re-

(a)

1
2

(b)

1

2

3
4 3

4

Fig. 15.4. Two topologies of reggeon exchange between two reggeons
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gions in the Feynman integral where all the blobs appear to be in our
asymptotical regime.

Then one can relate the graph of Fig. 15.4a with the kinematical region
s1s5 ∼ m2s3 and that of Fig. 15.4b with s3s5 ∼ m2s1 by deriving the
corresponding partial wave amplitudes.

In reggeon graphs there are no closed loops such as appear for example
in QED: all the arrows in Fig. 15.4 point in one direction. This is because
in the reggeon case the Green function has only one cut in the plane
of the energy ω. The latter, in its turn, is explained by the absence of
singularities of the partial wave amplitude in the right half-plane of the
complex angular momentum.

Let us look now at the two-reggeon diagrams for the vertex Λ of 2 → 2
reggeon transition:

= +

λ

Λ

+ · · · .

The summing of these contributions under the condition that all the ver-
tices in the graphs are constants permits one to evaluate the leading
singular part of the vertex Λ:

Λ =
λ

1 + λ ln(ω − ω2) . (15.13)

Here λ is the renormalized vertex of 2 → 2 reggeon transition, which does
not contain two-reggeon intermediate states.

In a similar way we can find the leading singular part of the vertex N
of the transition of two particles to two reggeons:



192 15 Interacting reggeons

+ · · · ,= +

N ∗

N

N =
N∗

1 + λ ln(ω − ω2) , (15.14)

where N∗ is the renormalized vertex for the particle–reggeon transition
which does not contain two-reggeon singularities.
And finally we turn to the contribution of a two-reggeon singularity to

the two-particle scattering amplitude:

= + + · · · ,

φω =
N∗2 ln(ω − ω2)
1 + λ ln(ω − ω2) + C = − 1

λ
· N∗2

1 + λ ln(ω − ω2) + C
′. (15.15)

Here C and C ′ are the parts of the scattering amplitude having no two-
reggeon singularity. Now, using (15.13)–(15.15) we can write down the
unitarity condition for the non-two-reggeon singularity. Since according
to (15.13)

Λ−1 = λ−1 + ln(ω − ω2),
the discontinuity of 1/Λ is easily calculated:

δΛ−1 = π, (15.16a)
δΛ = −πΛΛ∗. (15.16b)

From the above formulæ, for δφ and δN we obtain

δφ = −πNN∗, (15.17)
δN = −πNΛ∗. (15.18)



16
Reggeon field theory

Now we shall continue our discussion of the situation arising when the
reggeon diagrams have several singularities located close to each other. In
this case it is necessary to take into account their mutual influence. We
shall consider the most interesting case of the vacuum pole and associated
vacuum reggeon branch points.

As was shown above, if one denotes the trajectory of the vacuum pole
by α(k2) (k2 = −t), then the position of the branch points is given by the
formula

jn = nα
(
k2

n2

)
− n+ 1. (16.1)

Let us measure k2 in units of (α′)−1. Then at small k2 we have

α(k2) = 1− k2, jn = 1− k
2

n
(16.2)

and hence at small k2 the vacuum pole and all branch points are located
near the point j = 1 (see Fig. 14.5).

Let us consider the contribution of various reggeon diagrams to the par-
tial wave amplitude fj(−k2). We shall be interested in small momentum
transfers, since this is the case when all singularities of reggeon diagrams
essential for the theoretical description of the high energy behaviour of
the total cross section are located near by. In addition we restrict our-
selves to the region j � 1, where ω = j − 1 is small. It is the point ω = 0
where singularities of fj(−k2) accumulate.

The simplest reggeon pole diagram is shown in Fig. 16.1. It gives a
contribution to the partial amplitude equal to

π

2
fj(−k2) = g1g2G0(ω, k), G0 =

1
ω + k2

, (16.3)

193
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g1

g2

Fig. 16.1. Regge pole diagram

where g1 and g2 are the couplings of the reggeon to particles 1 and 2,
respectively.
The contribution of this graph to the scattering amplitude A(s, t) can

be found using its representation in the form of the Sommerfeld–Watson
integral:

A(s, t) = s
∫ i∞

−i∞
dω
4i

eωξfj(−k2)
{
i + tan

(π
2
ω
)}
,

ξ = ln s, ω = j − 1, t = −k2. (16.4)

Using this expression we find that the pole graph contribution to the
amplitude at small k2 is equal to

Apole(s, t) = sg1g2
(
i − π

2
k2
)
e−ξk

2
. (16.5)

Let us consider now the reggeon graphs with two vacuum poles in the
intermediate state (see Fig. 16.2). The contribution of these graphs to

k

k − k1 k1

N

N

Fig. 16.2. Two-reggeon exchange
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the partial wave amplitude can be represented as

π

2
fj(−k2) = −

∫
d2k1
(2π)2

dω1
2iπ

N2(ω1, k1, ω−ω1, k−k1)
×G0(ω1, k1)G0(ω−ω1, k−k1), (16.6)

where N is the amplitude of the transition of two particles to two
reggeons. The negative sign is due to the product of the two pole ampli-
tudes (16.5), where we neglected small corrections coming from the real
part of the signature factor. In (16.6) the essential region of integration
is ω1 ∼ k21 ∼ ω ∼ k2.

We calculate first the contribution of the regular part of the amplitude
N which does not have singularities at small ωi, ki. It corresponds to the
diagram in Fig. 16.2, where N has been replaced by a constant:

π

2
fj(−k2) =

= −N2
∫
G0(ω1, k1)G0(ω − ω1, k − k1)dω1d

2k1
(2π)3i

. (16.7)

It follows from expression (16.7) for small ω, k2 that

fj(−k2) ∼ ln
(
ω +

k2

2

)
(16.8)

hence at small ω ∼ k2 → 0 the contribution to fj(−k2) from the two-
reggeon branching is less than that of the pole graph (lnω � (1/ω), ω →
0). The same relation is valid for the contribution of these graphs to the
asymptotics of the amplitude A(s, t). Indeed, using (16.4) one can verify
that the corresponding amplitude has the asymptotics (s/ξ)e−ξk2/2 (ξ �
1) which is much smaller than the pole contribution (16.5).

16.1 Enhanced reggeon diagrams

Let us find now what contribution arises from the singular parts of the
amplitude N . Taking into account only the pole terms in N , i.e. cal-
culating the diagram in Fig. 16.3a, we find that at ω ∼ k2 → 0 this
contribution is (g2r2/ω2) ln(1/ω), where r is the coupling of one reggeon
with two reggeons (see Fig. 16.3b).

The form of the ω-dependence of fj(−k2) can be easily understood if
one takes into account that each reggeon has a propagator 1/ω and the
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(a) (b)

g

r

r

ln
1

ω r

g

1

ω

1

ω

Fig. 16.3. Enhanced reggeon diagram (a) and the three-reggeon coupling (b)

reggeon loop contribution is ln(1/ω). Thus the enhanced graph contri-
bution of Fig. 16.3a exceeds that of the non-enhanced graph of Fig. 16.2
and is bigger than the pole graph (Fig. 16.1). It is easy to see that the
enhanced diagram

gives an even larger contribution of the order of (g2r4/ω3) ln2 ω. Conse-
quently all such enhanced diagrams turn out to be significant when one
calculates the partial wave amplitude near the point j = 1.
Let us consider now the reggeon diagrams which have three reggeons

in the intermediate state. The simplest one is shown in Fig. 16.4.
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N ′

N ′

Fig. 16.4. Non-enhanced reggeon diagram with exchange of three reggeons

The contribution of this diagram is given by the integral

f
(3)
j (−k2) ∼ N ′2

∫
dω1dω2d2k1d2k2

(2π)6
G0(ω1, k1)G0(ω2, k2)

×G0(ω − ω1 − ω2, k − k1 − k2). (16.9)

Instead of the direct calculation of this integral it is more convenient to
compute its absorptive part, which is given by the formula

Im f (3)j (−k2)∼N ′2
∫

dω1dω2d2k1d2k2
(2π)6

δ(ω1 + k21)δ(ω2 + k
2
2)

×δ[ω − ω1 − ω2 + (k − k1 − k2)2]
∼N ′2 ·

(
ω +

k2

3

)
ϑ

(
−ω − k

2

3

)
. (16.10)

Using this expression and dispersion relation over ω between real and
imaginary parts of fj one can find

f
(3)
j (−k2) ∼ eN ′2 ·

(
ω +

k2

3

)
ln
(
ω +

k2

3

)
, (16.11)

i.e. at small ω, k2 → 0 the non-enhanced diagram, corresponding to
a three-reggeon branching, gives a small contribution of the order of
ω ln(1/ω).

Let us consider now the enhanced diagrams of Fig. 16.5a,b.
In the diagram of Fig. 16.5a the number of integrations is the same

as in the non-enhanced diagram of Fig. 16.4, but there are two more
Green functions, together contributing a factor of 1/ω2. So the diagram
of Fig. 16.5a at ω ∼ k2 → 0 gives the contribution ∼ (N2r2/ω) ln(1/ω).
The diagram of Fig. 16.5b contains two additional Green functions as
compared with Fig. 16.5a and therefore it behaves at small ω as (g2r4/ω3)
ln(1/ω).
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(b)(a)

Fig. 16.5. Enhanced diagrams with three reggeons in the intermediate state

All examples considered above show that in order to obtain a large
contribution to the partial wave amplitude at ω → 0 it is necessary to
insert reggeon poles in any possible place. If the reggeon line is inserted
into the interior of a diagram, then there appear

1. two new vertices ‘r’ (see Fig. 16.3b), that is a factor of r2,

2. three reggeon propagators, i.e. a factor of 1/ω3,

3. an additional integration equivalent to including a factor of ω2 in
the numerator.

Therefore as a result of such insertion the reggeon diagram acquires an
additional factor of r2/ω (for example one can compare the diagrams in
Fig. 16.3a and Fig. 16.5b). If the reggeon diagram contains some vertex
different from r, for example the vertex λ in Fig. 16.6a, then inserting
inside it the vacuum pole (see Fig. 16.6b), we obtain a diagram which
contains r2/ω instead of λ, thus giving a large contribution at ω → 0.

Thus we conclude that the maximum contribution to the partial wave
amplitude at ω → 0 arises from the diagrams which contain only three-
reggeon vertices r (Fig. 16.3b). All such diagrams are of the order of
(g2/ω)(r2/ω)n, if one is interested only in powers of 1/ω and does not, for
the sake of simplicity, take account of less singular terms such as lnω. For
instance the diagram of Fig. 16.3a differs from the pole graph by a factor
of r2/ω, the diagram of Fig. 16.5b contains an extra factor of (r2/ω)2 and
so on. As a result of summing these diagrams we obtain a series in powers
of r2/ω.
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(a) (b)

λ

r
1
ωr

Fig. 16.6. Interactions between four reggeons

If the three-reggeon coupling is small (r2 � 1) and we are interested
in the region of small ω (but satisfying the condition ω � r2), then the
expansion parameter r2/ω � 1 is small. In this case perturbation theory
is applicable, and to calculate the partial wave amplitude it is sufficient
to take into account only a few of the first reggeon diagrams. But in the
region of smaller ω (when ω ∼ r2) perturbation theory cannot be applied
since all diagrams containing three-reggeon vertices r would be of the
same order.

If one supposes that not only is the three-reggeon vertex r small but
all many-reggeon vertices are small as well (for example, λ of Fig. 16.6a),
then all diagrams containing at least one such vertex with more than three
reggeons at one point will give relatively small contributions and can be
neglected.

For instance the contribution of the diagram in Fig. 16.7a is of the order
of (g2r2λ/ω2) ln2 ω, and that in Fig. 16.7b is of the order of (g2λ21/ω) lnω.
If one does not account for powers of lnω then these diagrams have an
order of (g2/ω)(r2/ω)λ and (g2/ω)λ21, respectively. So at r2/ω ∼ 1, λ �
1, λ1 � 1 these diagrams turn out to be small compared with those
which contain only three-reggeon vertices and have an order of g2/ω (see
Fig. 16.7).

Hence in this case, to calculate a partial wave amplitude in the region
ω ∼ r2, it is necessary to sum up all diagrams containing only three-
reggeon vertices r, and not to take account of other diagrams.

As a result of such a summation the exact three-reggeon vertex Γ2

Γ2

could become a small quantity of the order of ω.
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Fig. 16.7. Enhanced diagrams including point-like four-reggeon interactions

If this is the case then with decreasing ω, all diagrams containing only
Γ2 ∝ ω vertices would be small. For instance if in the diagram of Fig. 16.7a
one should replace r by the exact vertex Γ2 ∼ ω, then this diagram
would become a quantity of the order of (g2/ω)(Γ22/ω)λ ∼ g2λ, i.e. it
would be small compared with the pole diagram g2/ω. A more rigorous
consideration shows that one must take into account terms of the order
of lnω in addition to those of the order of 1/ω. Then one can formulate
the following rule:

in order to calculate the partial wave amplitude at ω → 0, it is ne-
cessary to sum up all diagrams containing three- and four-reggeon
vertices displayed in Fig. 16.8.

Diagrams with five or more reggeons turn out to be small at ω → 0 and
can be omitted.

16.2 Effective field theory of interacting reggeons

Thus the calculation of the partial wave amplitude results in the problem
of finding the exact Green function of a non-relativistic particle in the two-
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ir
λ λ1

Fig. 16.8. Basic three- and four-reggeon interaction vertices

dimensional space with the interaction described by the non-renormalized
vertices of Fig. 16.8. The Hamiltonian for the reggeon interactions has
the form

H =Ψ+∇2Ψ+ i r(Ψ+Ψ+Ψ+Ψ+ΨΨ) + λΨ+Ψ+ΨΨ
+λ1(Ψ+Ψ+Ψ+Ψ+Ψ+ΨΨΨ), (16.12)

where Ψ =
∑

k ak exp(i kx) is a non-relativistic field operator in the two-
dimensional space.

If the exact Green function is known, then the partial wave amplitude
of Fig. 16.1 at ω → 0, k2 → 0 is given by the formula

π

2
fj(−k2) = g1 g2G(ω, k2). (16.13)

Note that the constants r, λ and λ1 are real, so the three-reggeon vertex
of Fig. 16.8a is purely imaginary and the Hamiltonian (16.12) is non-
Hermitian.

That the triple vertex is imaginary is related to the signature factors
in the reggeon diagrams. As we have seen in the previous lectures, it is
necessary to associate the factor (−1) to the intermediate state with an
even number of vacuum poles and the factor (+1) to that with an odd
number of vacuum poles. For instance for the diagram in Fig. 16.3a one
associates the factor (−1) which appears from the internal loop. If we
want to consider this contribution as the usual Feynman one, not keeping
in mind the signature factors, then the factor (−1) should be shared
between the two vertices r, hence one should multiply each of them by an
imaginary unit. Similar reasons applied to the diagrams containing the
vertices λ and λ1 show that the latter remain real. The non-Hermitian
property of the Hamiltonian will be essential in the investigation of the
properties of the Green function G(ω, k).

16.3 Equation for the Green function G

For the exact Green function G(ω, k) one can write down the Dyson equa-
tion shown graphically in Fig. 16.9. The wavy lines represent the exact
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= + +
G(ω, k) G0(ω, k) ir iΓ2

+ · · · .
λ1 Γ3

Fig. 16.9. Equation for the reggeon Green function

Green functions G(ω, k), the dashed lines correspond to the Green func-
tion of a free reggeon, G0 = 1/(ω + k2).
The integral equations for the vertex parts Γ2 and Γ3 are as usual

represented by infinite series. The first terms of the series for Γ2 are
shown in Fig. 16.10.

+ · · · .++=

Fig. 16.10. Equation for the exact three-reggeon vertex Γ2

Unfortunately the equation for the reggeon Green function, Fig. 16.9, is
rather formal and cannot be used to determine G(ω, k) or Σ(ω, k), which
is the self-energy part entering G(ω, k). Actually, our aim is to account
properly for all singularities in Σ(ω, k) at small ω and k2. However in the
integrals of the equation of Fig. 16.9, the essential region of integration
corresponds to large internal ω′ and k′. This region of integration can lead
to the appearance of extra singularities in Σ(ω, k) at small ω and k2 which
are related to properties of the vertex Γ but not to the structure of the
equation itself. These singularities are indeed fictitious since, according
to the equation, the corresponding singular terms are proportional to Γ,
whereas from the unitarity condition for Σ(ω, k) it follows that ImΣ ∼ Γ2.
Hence in the equation for Σ(ω, k) a striking cancellation of singular terms
must occur and this fact cannot be seen from the equation itself.

16.4 Equation for the vertex function Γ2
The equation for the vertex function Γ2 (Fig. 16.10) does not suffer these
drawbacks. If on the r.h.s. of this equation we insert constants instead
of exact vertices, then the integrals remain convergent. Hence in these
integrals the region of large internal frequencies ω and momenta k2 is
inessential, the problem of calculating Γ2 becomes self-consistent and the
fictitious singularities do not appear. Nevertheless in this equation some
care is needed as well. For, apart from the singular part of Γ2, which
arises from the region of small internal frequencies, there appear singular
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terms coming from the regions where some variables are small (of the
order of external frequencies) whereas the others are large.

Let us consider for example the diagram

ω

ω
′′

ω′

In the region of integration ω′′ ∼ 1 � ω, ω′ ∼ ω, and hence in all
internal lines containing ω′′ one can neglect ω and ω′ as compared with
ω′′, i.e. shrink the corresponding lines to points (see Fig. 16.11a). In the
same way for ω′ � ω, ω′′ ∼ ω we arrive at the diagram of Fig. 16.11b.
Both these diagrams contain the singular factor lnω due to the reggeon

(b)(a)

ω
ω′

ω

ω
′′

Fig. 16.11. Reduced diagrams generating effective four-reggeon interactions

loop. But similar diagrams appear directly if one takes into account
the vertices λ and λ1 from the Hamiltonian (Fig. 16.8b,c). Therefore the
above mentioned regions of integration will show up in the renormalization
of the vertices λ and λ1.

Let us leave aside for a while the problem of taking account of the
vertices λ and λ1 and restrict ourselves to a theory with only three-reggeon
vertices (Fig. 16.8a). Consider in more detail the properties of Γ2 in such
a theory at ω → 0. As has been shown above, for a small three-reggeon
coupling constant r and sufficiently small frequencies ω (but satisfying the
condition ω � r2) we obtain the expression for the vertex part Γ2 ≡ r ·γ2
in the form of a convergent series in powers of r2/ω. For ω ∼ r2 all terms
of this series become of the same order. When ω is further decreased, the
series diverges as a result of an inadequate choice of the Green functions
of the zeroth approximation as G = G0 and γ2 = 1. We can rearrange
terms and represent Γ2 in the form of a series of diagrams built up of
exact Green functions and vertices as in Fig. 16.10. Comparing various
terms of this new series, for instance the first two diagrams on the r.h.s.
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of Fig. 16.10, one can convince oneself that there arises a new expansion
parameter η instead of r2/ω:

η = G3 · Γ22 · ωk̄2 =
r2

ω
· (ωG)3 γ22

k̄2

ω
. (16.14)

Here k̄2 means the order of magnitude of internal momenta that are sig-
nificant in the diagram: ω ∼ α(k̄2) − 1 � α′k2. The parameter η plays
the rôle of a renormalized charge.

16.5 Weak and strong coupling regimes

One must distinguish three possibilities depending on the magnitude of η
for ω → 0, as follows.

1. The case of weak coupling, when η � 1 for small ω. The smallness
of the parameter η can arise from the smallness of the interaction
described by the vertex Γ2 ∼ ω (if the finite terms in the ω → 0 limit
cancel in the equation for Γ2). It can also arise as a result of a con-
siderable modification of the reggeon Green function as compared
with the bare one with the linear vacuum pole trajectory α(k̄2). In
the case of weak coupling there arises perturbation theory in the
new parameter η.

2. The case of strong coupling, when η ∼ 1. In this case there is no
perturbation theory, and all terms of the series are of the same order
of magnitude.

3. The case of superstrong coupling, when η � 1, i.e. no rearrange-
ment of the terms can cause the series of reggeon diagrams to be
convergent. Recall that ω � r2 the series has been convergent. So
the divergence of the series when ω ≤ r2 indicates the presence of
a new singularity at small frequencies ω ∼ r2. This singularity is
of a different nature from that of the singularities which have been
assumed from the very beginning, i.e. a vacuum pole and multi-
reggeon states. So in the case of superstrong coupling the problem
becomes not self-consistent.

If one assumes that there are no singularities other than the vacuum
pole and associated multi-reggeon contributions, then the problem of su-
perstrong coupling need not be considered. The cases of weak and strong
couplings will be discussed in the following lecture.
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16.6 Pomeron Green function and reggeon unitarity condition

Let us return now to the question of definition of the reggeon Green
function. The exact Green functionG(ω, k) can be written in the following
form:

G(ω, k) =
1

ω + k2 +Σ(0, 0)− Σ(ω, k)
, (16.15)

where Σ(ω, k) is the self-energy of the reggeon. The constant term Σ(0, 0)
in the denominator of the Green function ensures the condition α(0) = 1,
i.e. the presence of the pole in the Green function at ω = 0, k2 = 0. The
appearance of this term can be explained from different points of view.
One can consider Σ(0, 0) as a modification of the initial vacuum pole
trajectory chosen so that after accounting for the mutual influence of the
pole and multi-reggeon states the trajectory of the renormalized vacuum
reggeon passes through the point ω = 0 at k2 = 0. Alternatively one can
consider Σ(0, 0) as the regular part extracted from Σ(ω, k) , which comes
from the integration over the region of large frequencies and momenta
ω′ ∼ 1, k′2 ∼ 1 and which is not determined by the reggeon diagram
technique.

Let us consider now how one can calculate the singular part of the
self-energy Σ(ω, k). As was noted above we cannot use the Dyson-type
equation (Fig. 16.9) for this purpose. Instead we may deduce the integral
equation for dΣ/dω. From the point of view of reggeon diagrams this
equation is analogous to the equation for the vertex part Γ2. The value
of the function at small external ω will be determined by the integration
over the region of small internal frequencies ω′. Therefore the difficulties
discussed above characteristic for the function Σ do not appear here.

To calculate Σ(ω, k) one can use the reggeon unitarity condition. The
function Σ(ω, k) satisfies it at t > 0, i.e. k2 < 0. (The problem for this
method is a possibility that the whole analyticity picture may drastically
change in the process of crossing into the region t < 0 (k2 > 0), due to
accumulation of singularities at t = 0.)

At t > 0 the quantity ImΣ(ω, k) can be represented as an infinite series
of diagrams of the type

In this diagram all reggeons in the intermediate state are real, i.e. lo-
cated on their mass shell (ω + k2 = 0). The Green function of a reggeon
near the pole ω = −k2 has the form Z(k2)/(ω + k2), where Z(k2) is an
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unknown renormalization function. Therefore a factor Zδ(ω + k2) enters
the unitarity condition from the propagator of each reggeon. As a re-
sult the contribution to ImΣ from the diagram with n reggeons in the
intermediate state takes the following form:

(ImΣ)n ∼ 1
ω
Γ2nZ

n(k̄2)n−1, (16.16)

where Γn is the vertex for the transition of one reggeon to n reggeons.
The contribution of n reggeons to the unitarity condition (16.16) can be
put in the equivalent form

(ImΣ)n ∼ Γ2nG
nωn−1(k̄2)n−1. (16.17)

Let us estimate the order of magnitude of these quantities as a function
of n. For the state n = 2, the contribution to the unitarity condition
differs from the parameter η considered above by the factor 1/G:

(ImΣ)2 ∼ Γ22G
2ω(k̄2) ∼ η

G
. (16.18)

We consider now the state with n = 3. If one assumes that there is only
one bare vertex with n = 2, then the vertex Γ3 can be represented as

= +

G Γ2

Γ2
Γ2

G

Γ2

Γ3

Hence, Γ3 ∼ (Γ2)2G and

(ImΣ)3 ∼ Γ23G
3ω2(k̄2)2 ∼ Γ42G

5ω2(k̄2)2 ∼ η
2

G
. (16.19)

In the same way we can convince ourselves that for the n-reggeon inter-
mediate state

Γn ∼ (Γ2)n−1Gn−2, (ImΣ)n ∼ η
n−1

G
.

Consequently with the help of the unitarity condition one obtains for ImΣ
and for the singular part of the self-energy Σ the expression in the form
of an expansion in powers of the parameter η introduced earlier:

Σ ∼ η

G
+
η2

G
+ · · ·+ η

n

G
+ · · · . (16.20)

This permits us to define the notions of weak and strong couplings, given
above, according to another principle, as follows.
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1. If η � 1 (weak coupling), then Σ � 1/G ∼ ω + k2. Therefore the
equivalent definition of the weak coupling is the condition

Σ(ω, k) � ω + k2, weak coupling.

2. If η ∼ 1, then Σ ∼ 1/G, that is G ∼ 1/Σ. But this is possible for
Σ ∼ ω + k2 or Σ � ω + k2. The first of these possibilities is not
interesting, as it means that Σ(ω, k) does not have singularities at
all, i.e. it is a polynomial. Therefore as a definition of the strong
coupling one can use the condition

Σ(ω, k) � ω + k2, strong coupling.



17
The structure of weak and strong

coupling solutions

In the previous lecture we have investigated the reggeon Green function

where the solid (wavy) lines represent particles (reggeons). We have con-
structed three types of interactions:

λλ1ir

We have seen that there are two essentially different cases:

1. weak coupling, when ω + k2 � Σ;

2. strong coupling, when ω + k2 � Σ.

17.1 Weak coupling regime

To begin with consider the weak coupling case.

17.1.1 The Green function

The reggeon Green function G satisfies the equation

= + +
G(ω, k) G0(ω, k) ir

G(ω′, k′)

iΓ2 λ1
Γ3

+ · · ·

G(ω − ω′, k − k′). (17.1)

208
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Here the dashed line denotes the free reggeon Green function

G0 =
1

ω + k2
.

The black points mark the exact vertices Γ2 and Γ3 that describe the
coupling of the reggeon to two and three reggeons, respectively, taking
into account the interaction. Obviously we need to know their properties
in order to study the equation.

Let us consider ImΣ at k2 < 0. Then the rightmost singularity in the
ω plane is a pole, followed by the two-, three-, etc.-reggeon cuts. The uni-
tarity condition permits us to express ImΣ in terms of the contributions
of these cuts:

Im Σ =
1
n!

∑
n

(
− 1
4π2

)n−1 ∫ ∏
i

d2ki dωi Γ2n

×δ
(
ω −

∑
i

ωi

)
δ

(
k −

∑
i

ki

)∏
i

δ(ωi + k2i ). (17.2)

For the two-reggeon contribution all δ-functions can be integrated out
and there remains an angular integration only. Therefore (ImΣ)2 ∼ Γ22.
The weak coupling regime implies Γ22 � ω, k2 (recall that k2 ∼ ω).

For the three-reggeon contribution we obtain an estimate (neglecting a
possible dependence of Γ3 on momenta) (ImΣ)3 ∼ (−ω− k2/3)Γ23 . Here
the weak coupling means that Γ3 � 1.

17.1.2 P → PP vertex

Consider now the equation for Γ2. Although a closed equation does not
exist, one can write it down in the form of an expansion in all types of
irreducible diagrams. First we will consider the 1 → 2 reggeon transitions
only. Then we obtain the graphic equation

+ + +=

(17.3)
Here the second and third graphs on the r.h.s. differ by exchange of the
external lines. For instance, if one denotes the external variables by ω, ω1
and ω2, then the integral corresponding to the graph

ω

ω′

ω1

ω2

(17.4a)
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has the form∫
dω′d2k′

(ω′ + k′2)(ω − ω′ + (k − k′)2)(ω′ − ω2 + (k′ − k2)2) . (17.4b)

In the integral for the third graph in (17.3) one has to substitute ω2 ↔ ω1
and k2 ↔ k1.
Assume that r2 � 1 and consider the different regions of values of the

internal variables ω′.
For ω′ � r2 one can set Γ2 = 1 in the diagrams, since in this case

perturbation theory can be applied (the pole and the branchings are far
away from each other). This region corresponds to the tail of convergence
of the integrals and its contribution can be omitted when the external
variables ωi are small.
There remain the regions ω′ ∼ r2 and ω′ → 0.
The region ω′i ∼ r2 for ωi → 0 gives a regular contribution, i.e. a

constant and polynomials. The former renormalizes the vertex. If we want
to have Γ2 → 0, this constant should cancel the initial (bare) coupling
constant r, thus leaving in the sum Γ2 � aω + bk2.
The region ω′ → 0 gives singular terms. Consider first the case when

all internal ω′ and external ωi have the same order of smallness. Then
the diagram

gives a contribution to the imaginary part of the order of∫
Γ32
ω′3

d2k′dω′ ∼ Γ32
ω

∼ Γ2
Γ22
ω
. (17.5a)

The contribution of the diagram

is of the order of

Γ32
ω

· Γ
2
2

ω3
· ω2 ∼ Γ52

ω2
= Γ2

(
Γ22
ω

)2
. (17.5b)

Due to the condition Γ22 � ω the correction terms (17.5) are smaller than
Γ2. Therefore, if other contributions are absent, then the r.h.s. and l.h.s.
of the equation (17.3) can match only if Γ2 = aω+ b(k21+k

2
2)+ ck

2. Then
the singular terms give ω2 lnω, ω3 lnω and so on.
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17.1.3 Induced multi-reggeon vertices

In reality the situation is more complicated, due to the possiblity of over-
lapping integration regions when some of the internal variables ω′i are
O(r2) and the others are smaller.

(a) (b)

ω

ω′
ω′′

Fig. 17.1. Induced multi-reggeon interactions

Consider for instance the diagram

ω ω′ ω
′′

Suppose that ω ∼ ω′ � ω′′ ∼ r2. Then one can skip ω′ and ω in the
denominators of the Green functions as compared with ω′′ and obtain the
effective vertex of Fig. 17.1a. If, on the contrary, ω′ ∼ r2 � ω′′ ∼ ω, then
the diagram of Fig. 17.1b appears. Thus the overlapping regions produce
higher types of interactions. These new types of interactions have not
been in the initial Hamiltonian. Nevertheless they should be taken into
account.

The diagram of Fig. 17.1a gives a contribution to the imaginary part of
the order of Γ2ω−2λω2 (here ω−2 comes from the Green functions and ω2

from phase space). Hence its contribution to the vertex function is of the
order of Γ2λ lnω, i.e. it exceeds Γ2. The diagrams with higher numbers
of loops give even larger contributions. Therefore it is necessary to sum
all ladder-type diagrams

Similarly for Γ3 and for Λ the diagrams of the following types have to
be resummed:
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Γ3 : Λ :

Let us begin with Λ. It is described by the sum of diagrams of (17.6a).

+ + · · ·+ (17.6a)

Collecting them we obtain

Λ =
λ

1 + λ lnω
∼ 1

lnω
, (17.6b)

where we have taken for simplicity k2 = 0. In the general case it is
necessary to substitute ω → ω + k2/2.
To find Γ2,3 it is convenient to write down the unitarity condition for

the ladder diagrams. For Γ2 we have

δΓ2 = = −πΓ2Λ∗. (17.7)

For Γ3 we obtain

δΓ3 =

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

= −3πΓ3Λ∗, (17.8)

where the factor of 3 takes account of the fact that there are three types of
diagrams, which differ from each other by permutations of external lines.
Similarly for Λ

δΛ = − π [ΛΛ∗ + 4Γ3Γ∗
3] , (17.9)
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where the two terms in square brackets arise, respectively, from the dia-
grams
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+and

The factor of 4 in (17.9) is related to the contributions with an exchange
of external lines.

Since we know that Γ3 → 0, the second term in (17.9) is a small correc-
tion. If it is omitted, then we obtain the already known result Λ ∼ 1/ lnω
of (17.6b).

Thus Γ3 ∼ 1/ ln3 ω, were the cubic power arises due to the factor of 3
in (17.8). For Γ2 we obtain Γ2 ∼ ω/ lnω. Here the factor ω appears due
to the cancellation of the bare term in the sum of the diagrams of (17.3).

It is interesting to note that when one does such a summation, polyno-
mial terms (not accompanied by lnω) cancel out, though they have been
present in Γ2 at the beginning.

Thus we have a set of solutions, in which everything has been taken
into account:

Λ ∼ 1
lnω

, Γ2 ∼ ω

lnω
, Γ3 ∼ 1

ln3 ω
.

This seems to be the final answer. However besides Λ, Γ2 and Γ3 we
would also need to know the quantity N which describes the coupling of
reggeons to particles. For N we obtain the sum of diagrams

��
��
��
��

+ + + · · ·= .

In this figure the first term on the r.h.s. is a constant N0, the contribution
of the second one is small due to the smallness of Γ2, whereas the third
diagram gives N0λ lnω which exceeds N0. Therefore it is again necessary
to sum up all such diagrams. After doing this we obtain

δN = −πNΛ∗, N � const
lnω

. (17.10)

17.1.4 Vanishing of multi-reggeon couplings

Everything seems to be fine with our weak coupling solution, but in fact
it is not. Unfortunately this answer contradicts the s-channel unitarity
(we will prove this elsewhere).
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Why has this happened? Because of our assumption that λ �= 0, which
results in Λ ∼ 1/ lnω and so on. And now we see that λ �= 0 contradicts
the s-channel unitarity. Hence it is more realistic to put λ ∝ ω. In
this case the ladder diagrams give small corrections, so that as previously
Γ2 ∝ aω + bk2, N � const. For Γ3 and Λ we then obtain Γ3 ∼ ω, Λ ∼ ω.
In reality more complicated diagrams as shown below are also possible:

If the couplings of two reggeons to three and one reggeon to four are
non-zero, then due to such diagrams Γ3 ∼ ω lnω, Λ ∼ ω lnω, that is the
corrections would violate the initial solution in the ω → 0 limit. Thus, for
the weak coupling regime to be consistent, all multi-reggeon interaction
vertices should be vanishing in the ω ∝ k2 → 0 limit.

To conclude our discussion of the weak coupling regime let us see now
why the constant term r in Γ2 can be, in principle, cancelled for arbitrary
r. The equation for Γ2 has, symbolically, the following structure:

Γ2
= +

Γ2
ir

ir

r
+ · · · .

(17.11)
Of course, for a cancellation of the constant the series should be alternat-
ing. This is the case.

Now consider the different regions of integration over internal variables
(for simplicity we restrict ourselves to a consideration of the second term
only). The region ω′ � r2 gives a small contribution due to the conver-
gence of the integrals. The region ω′ � r2 is inessential too, since here
Γ2 is small. The remaining region is ω′ ∼ r2, where Γ2 ∼ 1. But here

r2
1
ω′3
ω′2 =

r2

ω′
∼ 1. Therefore the contribution of this region is indeed

able to cancel the constant for any r. We see however that this cancel-
lation imposes certain restrictions on the behaviour of Γ2 in the overlap
region, i.e. at ω ∼ r2.
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17.2 Problems of the strong coupling regime

So far we have considered the weak coupling case. The strong coupling
regime with non-Hermitian Hamiltonian runs into difficulties. Here we
discuss only objections against the strong coupling.

As was described in Lecture 16, in this case G = −1/Σ, and the vertex
function Γ2 and Σ depend on the parameter r2Γ22G

3. Therefore due to its
invariance under the replacement r2 → −r2 and G → −G, the equation
for G′ = −G has the same form as in the case of the Hermitian Hamil-
tonian. Let us consider the dependence of G on ω, putting for simplicity
k2 = 0.

In the problem with the Hermitian Hamiltonian the Green function
obeys a dispersion relation in ω of the type of the Källen–Lehmann repre-
sentation. Therefore G−1 and its derivative with respect to ω are positive.

In the problem with an anti-Hermitian Hamiltonian, G−1 and its deriva-
tive with respect to ω must be negative in the region of small ω > 0, i.e.
in the region of strong coupling.

What is the meaning of this condition? In the Hermitian case, contri-
butions of all branchings to Σ = −G−1 have the same sign, whereas in
the anti-Hermitian case their signs alternate. This result means that the
contribution of the three-reggeon branching, in spite of the opposite sign,
cannot compensate the two-reggeon contribution. Such behaviour of G at
small ω evidently leads to a negative total cross section. Indeed, we have
found that G near ω = 0 and the two-reggeon branching have the same
sign. But the contribution of this branching to the total cross section is
negative.

In our discussion we have tacitly assumed that the problem of strong
coupling has an unambiguous solution. However, it is possible that the
solution is ambiguous and should be chosen according to the condition of
matching to the region ω >∼ r2, where G−1 = 0 at k2 = 0. Although this
possibility cannot be excluded in principle, the consideration of concrete
examples shows that either the cross section is still negative or there
exist several poles near ω = 0, contrary to the initial assumption of a
single pomeron. Thus the solution is not self-consistent. This has the
following meaning. One can remove the negative cross section by intro-
ducing strong coupling in the three-reggeon system, in order to make its
contribution dominant. But the strong interaction yields bound states,
i.e. additional poles. This reasoning shows that the difficulty, described
above, is presumably of a deeper character.



Appendix A

Space-time description of the hadron
interactions at high energies

V.N.Gribov

Here we consider the strong and electromagnetic interactions of had-
rons in a unified way. It is assumed that there exist point-like particles
(partons) in the sense of quantum field theory and that a hadron with
large momentum p consists of ∼ ln(p/µ) partons which have restricted
transverse momenta, and longitudinal momenta which range from p
to zero. The density of partons increases with the increase of the
coupling constant. Since the probability of their recombination also
increases, an equilibrium may be reached. In this lecture we will
consider consequences of the hypothesis that the equilibrium really
occurs. We demonstrate that it leads to constant total cross sections
at high energies, and to the Bjorken scaling in the deep inelastic
ep scattering. The asymptotic value of the total cross sections of
hadron–hadron scattering turns out to be universal, while the cross
sections of quasi-elastic scattering processes at zero angle tend to zero.

The multiplicity of the outgoing hadrons and their distributions
in longitudinal momenta (rapidities) are also discussed.

Introduction

In this lecture we will try to describe electromagnetic and strong inter-
actions of hadrons in the same framework which follows from general
quantum field theory considerations without the introduction of quarks
or other exotic objects.
We will assume that there exist point-like constituents in the sense of

quantum field theory which are, however, strongly interacting. It is conve-
nient to refer to these particles as partons. We will not be interested in the
quantum numbers of these partons, or the symmetry properties of their
interactions. We will assume that, contrary with the perturbation theory,

216
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the integrals over the transverse momenta of virtual particles converge as
in the λϕ3 theory. It turns out that within this picture a common cause
exists for two seemingly very different phenomena: the Bjorken scaling
in deep inelastic scattering, and the recent theoretical observation that
all hadronic cross sections should approach the same limit (provided that
the Pomeranchuk pole exists).

The material is organized as follows. In the first section we discuss
the propagation of the hadrons in the space as a process of creation and
absorption of the virtual particles (partons) and formulate the notion of
the parton wave function of the hadron. The second section describes
momentum and coordinate parton distributions in hadrons. In the third
section we consider the process of deep inelastic scattering. It is shown
that from the point of view of our approach the deep inelastic scattering
satisfies the Bjorken scaling, and, in contrast with the quark model, the
multiplicity of the produced hadrons is of the order of ln(ν/

√
q2). The

fourth section is devoted to the strong interactions of hadrons and it is
shown that in the same framework the total hadron cross sections have
to approach asymptotically the same limiting value. In the last section
we discuss the processes of elastic and quasi-elastic scattering at high
energies. It is demonstrated that the cross sections of the quasi-elastic
scattering processes at zero angle tend to zero at asymptotically high
energies.

Let us discuss how one can think of the space-time propagation of
a physical particle in terms of virtual particles which are involved in the
interaction with photons and other hadrons. It is well known that the
propagation of a real particle is described by its Green function, which
corresponds to a series of Feynman diagrams of the type shown in Fig.
A.1.

Fig. A.1

(for simplicity, we will consider identical scalar particles). The Feynman
diagrams, having many remarkable properties, have, nevertheless, a dis-
advantage compared to the old-fashioned perturbation theory. Indeed,
they do not show how a system evolves with time in a given coordinate
reference frame. For example, depending on the relations between the
time coordinates x10, y10, x20 and y20, the graph in Fig. A.1(b) corre-
sponds to different processes as shown in Fig. A.2.
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Fig. A.2

Similarly, the diagram Fig. A.1(c) corresponds to the processes shown
in Fig. A.3.

Fig. A.3

In quantum electrodynamics, where explicit calculations can be car-
ried out, this complicated correspondence is of little interest. However,
for strong interactions, where explicit calculations are impossible, distin-
guishing between different space developments will be useful.

Obviously, if the interaction is strong (the coupling constant λ is large),
many diagrams are relevant. The first question which arises is which
configurations dominate: the ones which correspond to the subsequent
decays of the particles – the diagrams Fig. A.2(a) and Fig. A.3(a) –
or those which correspond to the interaction of the initial particle with
virtual “pairs” created in the vacuum. It is clear that if the coupling
constant is large and the momentum of the incoming particle is small
(see below), configurations with “pairs” dominate (at least if the theory
does not contain infinities). Indeed, if x20 − x10 is small, then in the case
of configurations without “pairs” the integration regions corresponding
to each correction will tend to zero with an increase of the number of
corrections.
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Fig. A.4

At the same time, for the configurations con-
taining “pairs” the region of integration over
time will remain infinite. Hence, if the re-
tarded Green function Gr(y2 − y1) does not
have a strong singularity at x20 − x10 → 0,
the contribution of the configurations without
“pairs” will be relatively small if the coupling
constant is large. Even the graphs of the type
Fig. A.1(d) are determined mainly by configu-
rations like those in Fig. A.4.
This means that if we observe a low energy par-
ticle at any particular moment of time (the cut
in the diagram in Fig. A.4), we will see a few
partons which are decay products of the parti-
cle, and a large number of virtual “pairs” which
will interact with these partons in the future.

What happens if a particle has a large momentum in our coordinate
reference frame? To analyse the space-time evolution of a fast particle we
have to consider a space-time interval (x1 − x2)2 such that (x1 − x2)2 ∼
1/µ2, and t2− t1 ∼ E/µ2 � 1/µ. Here µ is the mass of the particle, E its
energy. In this case, Mx1−Mx2 = Mv(t2− t1), (x2−x1)2 = (µ2/E2)(t2− t1)2 ∼
1/µ2. For such intervals the relation between the configurations with and
without “pairs” changes. Configurations corresponding to a decay of one
parton into many others start to dominate, while the rôle of configurations
with “pairs” decreases.

The physical origin of this phenomenon is evident. A fast parton can
decay, for example, into two fast partons which, due to the energy–time
uncertainty relation, will exist for a long time (of the order of E/µ2), since

∆E =
√
µ2 + Mp 2 −

√
µ2 + Mp 21 −

√
µ2 + (Mp− Mp1)2

∼ µ2

2|Mp | −
µ2

2|Mp1| −
µ2

2|Mp− Mp1| .

Each of these two partons can again decay into two partons and this will
continue up to the point when slow particles, living for a time of the order
of 1/µ, are created. After that the fluctuations must evolve in the reverse
direction, i.e. the recombination of the particles begins.

On the other hand, due to the same uncertainty relation, creation of
virtual “pairs” with large momenta in vacuum is possible only for short
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Fig. A.5

time intervals of the order of 1/p.
Hence, it affects only the region of small
momentum partons. The way in which
this phenomenon manifests itself can
be seen using the simplest graph in
Fig. A.5 as an example. We will ob-
serve that it is possible to place here
many emissions in spite of the fact that
the interval x212 is of the order of unity
(1/µ2), and the Green function depends
only on the invariants.

For the sake of simplicity, let us verify this for one space dimension (yi =
(ti, zi)). Suppose that x1 = (−t,−z) and x2 = (t, z), x212 = (2t)2 − (2z)2.
Then t = z + x212/8z. Let us choose the variables yi, y′i in the same
way yi = (−ti,−zi), y′i = (t′i, z

′
i), and consider the following region of

integration in the integral, corresponding to the diagram in Fig. A.5:

1 < zn < zn−1 < . . . < z1 < t,
1 < z′n < z

′
n−1 < . . . < z

′
1 < t,

zi ∼ z′i, ti = zi +
y2i
2zi
, t′i = z

′
i +
y
′2
i

2z′i
.

The integrations over d2y1 . . .d2ynd2y′1 . . .d2y′n can be replaced by inte-
grations over y2i , y

′
i
2 and zi ≡ yiz, z′i ≡ y′iz:

d2yi =
1
2
dy2i

dzi
zi
, d2y′i =

1
2
dy

′2
i

dz′i
z′i
.

It is easy to see that in this region of integration the arguments of all Green
functions, (yi−y′i)2, (yi−y′i+1)2, (y′i−y′i+1)2, are of the order of unity, and
the integrals do not contain any small factors. All these conditions for yi
can be satisfied simultaneously for a large number of emissions: n ∼ ln t.
Indeed, if we write zn in the form zn = Cn, all conditions will be fulfilled
for n ∼ ln t/lnC, C ≥ 1. Obviously, one
can consider a more complicated diagram
than Fig. A.5 by including interactions of
the virtual particles. On the other hand,
configurations containing vacuum “pairs”
play a minor rôle. Moving backward in
time is possible only for short time inter-
vals (see Fig. A.6).

Fig. A.6

Hence, we come to the following picture. A real particle with a large
momentum p can be described as an ensemble of an indefinite number
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of partons of the order of ln(p/µ) with momenta in the range from p to
zero, and several vacuum pairs with small momenta which in the future
can interact with the target.

The observation of a slow particle during an interval of the order of
1/µ2 does not tell us anything about the structure of the particle since
we cannot distinguish it from the background of the vacuum fluctuations,
and we can speak only about the interaction of particles or about the
spectrum of states. On the contrary, in the case of a fast particle we can
speak about its structure, i.e. about the fast partons which do not mix
with the vacuum fluctuations.

As a result, in a certain sense a fast particle becomes an isolated system
which is only weakly coupled to the vacuum fluctuations. Hence, it can be
described using a quantum-mechanical wave function or an ensemble of
wave functions, which determine probabilities of finding certain numbers
of partons and their momentum distribution. Such a description is not
invariant, since the number of partons depends on the momentum of the
particle, but it can be considered as covariant. Moreover, it may be even
invariant, if the momentum distribution of the partons is homogeneous
in the region of momenta much smaller than the maximal one, and much
larger than µ.

Indeed, under the transformation from one reference frame to another
in which the particle has, for example, a larger momentum, a new region
emerges in the distribution of partons; in the old region, however, the
parton distribution remains unchanged. One usually describes hadrons
in terms of the quantum mechanics of partons in the reference frame
which moves with an infinite momentum, because in this case all partons
corresponding to vacuum fluctuations have zero momenta, and such a
description is exact.

Such a reference frame is convenient for the description of the deep
inelastic scattering. However, it is not as good for describing strong in-
teractions, where the slow partons are important. In any case, it appears
useful to preserve the freedom in choosing the reference frame and to use
the covariant description. This allows a more effective analysis of the
accuracy of the derivations.

A.1 Wave function of the hadron. Orthogonality and
normalization

The preceding considerations allow us to introduce the hadron wave func-
tion in the following way. Let us assume, as usual, that for t→ −∞ the
hadron can be represented as a bare particle (the parton). After a suf-
ficiently long time the parton will decay into other partons and form a
stationary state which we call a hadron. Diagrams corresponding to this
process are shown in Fig. A.7.
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Let us exclude from the Feyn-
man diagrams those configurations
(in the sense of integrations over
intermediate times) which corre-
spond to vacuum pair creation.

For the theory λϕ3 such a
separation of vacuum fluctuations
corresponds to decomposing ϕ into
positive and negative frequency
parts ϕ = ϕ+ + ϕ− and replacing Fig. A.7
ϕ3 = (ϕ+ + ϕ−)3 by 3(ϕ−2ϕ+ + ϕ−ϕ+2). The previous discussion shows
that the ignored term ϕ+3 + ϕ−3 would mix only partons with small
momenta.
It is natural to consider the set of all possible diagrams with a given

number of partons n at the given moment of time as a component of the
hadron wave function Ψn(t, My1, . . . , Myn, p). Similarly, we can determine
the wave functions of several hadrons with large momenta provided the
energy of their relative motion is small compared with their momenta.
The latter condition is necessary to ensure that slow partons are not im-
portant in the interaction. The Lagrangian of the interaction remains
Hermitian even after the terms corresponding to the vacuum fluctuations
are omitted. As a result, the wave functions will be orthogonal, and will
be normalized in the usual way:∑

n

∫
Ψb∗
n (My1 . . . , Myn, pb)i

↔
∂ Ψa

n(My1 . . . , Myn, pa)
d3y1 . . . d

3yn
n!

= (2π)3δ(Mpa − Mpb) δab, (A.1)

or similarly in the momentum space, after separating (2π)3δ(Mp−∑Mki)∑
n

1
n!

∫
Ψb∗
n (Mk1 . . . ,Mkn, Mp )Ψa

n(Mk1 . . . ,Mkn, Mp)
d3k1 . . .d3kn
2k10 . . . 2kn0

δ(p−∑ ki)
(2π)3n−1

= δab. (A.2)

For the momentum range ki � µ, the wave functions coincide with those
calculated in the infinite momentum frame. In this reference frame they
do not depend on the momentum of the system (except for a trivial fac-
tor). This can be easily proven by expanding the parton momenta

Mki = βiMp+ Mki⊥, (A.3)

and writing the parton energy in the form

εi =
√
Mk2i +m2 = βip+

m2 + k2i⊥
2pβi

. (A.4)
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Note now that the integrals which determine Ψn, corresponding to Fig.
A.7, can be represented in the form of the old-fashioned perturbation the-
ory where only the differences between the energies of the intermediate
states and the initial state Ek−E enter, and the momentum is conserved.
Hence, the terms linear in p cancel in these differences, and consequently

Ek − E =
1
2p

(∑
i

m2 + k2i⊥
βi

−m2
)
. (A.5)

Each consequent intermediate state in Fig. A.7 in the λϕ3 model differs
from the previous one by the appearance or disappearance of one particle.
The factor 1

2ki0
= 1

2p
1
βi
, which comes from the propagator of this particle,

cancels 2p in (A.5). Hence, there remain only integrals over d2ki⊥ dβi

βi
,

and the resulting expression does not depend on p:

∑
n

1
n!

∫
Ψb∗
n (ki⊥, βi)Ψa

n(ki⊥, βi)
∏ d2ki⊥

2(2π)3
dβi
βi

(2π)3δ
(
1−

∑
βi

)
= δab. (A.6)

For slow partons, where the expansion (A.4) is not correct, the depen-
dence on momentum p does not disappear, and contrary to the case of
the system moving with p = ∞, this dependence cuts off the sum over
the number of partons.

A.2 Distribution of the partons in space and momentum

The distribution of partons in longitudinal momenta can be characterized
by the rapidity:

ηi =
1
2
ln
εi + kiz
εi − kiz , (A.7)

where kiz is the component of the parton momentum along the hadron
momentum.

ηi � ln
2βip√
m2 + k2i⊥

. (A.8)

As is well known, this quantity is convenient since it simply transforms
under the Lorentz transformations along the z direction: η′i = ηi + η0,
where η0 is the rapidity of the coordinate system.

The determination of the parton distribution over η is based on the
observation that in each decay process k1 → k2 + k3 shown in Fig. A.7
the momenta Mk2 and Mk3 are, in the average, of the same order. This
means that in the process of subsequent parton emission and absorption
the rapidities of the partons change by a factor of the order of unity. At
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the same time the overall range of parton rapidities is large, of the order
of ln(2p/m). This implies that in the rapidity space we have short range
forces.
Let us consider the density of the distribution in rapidity

ϕ(η, k⊥, p) =
∑
n

1
n!

∫
|Ψn+1(k⊥, η, k⊥1, η1, . . . , k⊥n, ηn, )|2 (2π)3

×δ
(
Mp− Mk −

∑
Mki

)∏ dkidηi
2(2π)3

(A.9)

in the interval 1 � η � ηp (see Fig. A.8).
The independence of ϕ from p for these values of η means that Ψ

depends only on the differences ηi−ηp. If ϕ = ϕ(η−ηp, k⊥) decreases with
the increase of η− ηp, this corresponds to a weak coupling, i.e. to a small
probability of the decay of the ini-
tial parton. If the coupling con-
stant grows, the number of partons
increases and at a certain value of
the coupling constant an equilib-
rium is reached, since the probabili-
ty of recombination also increases.
The value of this critical coupling
constant has to be such that the re-
combination probability due to the
interaction should be larger than
the recombination probability re-
lated to the uncertainty principle. Fig. A.8

The basic hypothesis is that such an equilibrium does occur and that
due to the short range character of interaction it is local. This is equiv-
alent to the hypothesis of the constant total cross sections of interaction
at p → ∞. Hence we assume that the equilibrium is determined by the
neighbourhood of the point η of the order of unity and it does not de-
pend on ηp. Obviously, this can be satisfied only if ϕ(η, ηp, k⊥) = ϕ(k⊥)
does not depend on η and ηp at 1 � η � ηp. According to the idea
of Feynman, this situation resembles the case of a sufficiently long one-
dimensional matter in which, due to the homogeneity of the space, far
from the boundaries the density is either constant or oscillating (for a
crystal). In our case the analogue of the homogeneity of space is the
relativistic invariance (the shift in the space of rapidities). For the time
being we will not consider the case of the crystal. According to (A.9),
the integral of ϕ(η, ηp, k⊥) over η and k⊥ has the meaning of the average
parton density which is, obviously, of the order of ηp ∼ ln(2p/m).

Generally speaking, we cannot say anything about the parton distribu-
tion in the transverse momenta except for one statement: it is absolutely
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crucial for the whole concept that it must be restricted to the region of
the order of parton masses, as in the λϕ3 theory.

Consider now the spatial distribution of the partons. First, let
us discuss parton distribution in the plane perpendicular to the mo-
mentum Mp. For that purpose it is convenient to transform from
Ψn(k1⊥, η1, k2⊥, η2, . . . , kn⊥, ηn) to the impact parameter representation
Ψn(Mρ1, η1, Mρ2, η2, . . . , Mρn, η):

Ψn(Mρn, ηn) =
∫

ei
∑

ki⊥ρiΨ(ki⊥, ηi)δ
(∑

k⊥i
)
(2π)2

∏ d2ki
(2π)2

. (A.10)

Let us rank the partons in the order of decreasing rapidities. Consider
a parton with the rapidity η � ηp and let us follow its history from

Fig. A.9

the initial parton. Initially, we will assume that
it was produced solely via parton emissions (Fig.
A.9). In this case it is clear that if the transver-
sal momenta of all partons are of the order of µ,
then each parton emission leads to a change of the
impact parameter Mρ by ∼ 1/µ. If n emissions are
necessary to reduce the rapidity from ηp to η, and
they are independent and random, (∆ρ)2 ∼ n. If
every emission changes the rapidity of the parton
by about one unit, then

(∆ρ)2 = γ(ηp − η). (A.11)

Hence, the process of the subsequent parton emissions results in a kind
of diffusion in the impact parameter plane (see Fig. A.10). The parton
distribution in ρ for the rapidity η has the Gaussian form

ϕ(ρ, η) =
C(η)

πγ(ηp − η) exp
[
− ρ2

γ(ηp − η)
]
, (A.12)

if the impact parameter of the initial parton is considered as the origin.
Consequently, the partons with η � 0 have the broadest distribution, and,
hence, the fast hadron is of size

R =
√
γηp �

√
γ ln

2p
m
. (A.13)
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The account of the recombination and the scat-
tering of the partons affects only densities of
partons and fluctuations, but does not change
the radius of the distribution which can be
viewed as the front of the diffusion wave.
Let us discuss the parton distribution over the
longitudinal coordinate. A relativistic particle
with a momentum p is commonly considered as
a disk of thickness 1/p. In fact, this is true only
in the first approximation of the perturbation
theory.

Fig. A.10

In reality, a hadron is a
disk with radius

√
γ ln(2p/m)

and thickness of the order of
1/µ. Indeed, each parton with
a longitudinal momentum kiz
is distributed in the longitu-
dinal direction in an interval
∆zi ∼ 1/kiz. Since the parton
spectrum exists in the range
of momenta from p down to
ki ∼ µ, the longitudinal pro-
jection of the hadron wave
function has the structure de-
picted in Fig. A.11. Fig. A.11

Finally, let us consider what is the lifetime of a particular parton.

As we have discussed in the Introduction to this lecture, in a theory
which is not singular at short distances, the intervals y212 between two
events represented by a Feynman diagram are of the order of unity. For
a fast particle moving along the z axis, z21 = vt21 and y212 = t

2
21(m

2/p2).
Consequently, the lifetime of a fast parton with a momentum ki is of the
order of ki/µ2. The arguments presented were based on the λϕ3 theory
which is the only theory providing a cut-off in transverse momenta. Still,
the argument should hold for other theories and for particles with spins,
if one assumes that in these theories the cut-off of transverse momenta
occurs in some way. On the other hand, the λϕ3 theory cannot be consid-
ered as a self-consistent example. Indeed, due to the absence of a vacuum
state, the series of perturbation theory do not make sense (series with
positive coefficients are increasing as factorials). Hence, the picture we
have presented here does not correspond literally to any particular field
theory. At the same time, it corresponds fully to the main ideas of the
quantum field theory and to its basic space-time relations.
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A.3 Deep inelastic scattering

It is convenient to consider the deep inelastic scattering of electrons in
the frame where the time component of the virtual photon momentum
is q0 = 0. In this reference frame the momentum of the photon is equal
to −qz (q2 = −q2z), while the momentum of the hadron is pz = ωqz/2
(ω = −2pq/q2). Suppose that qz is large and ω ∼ 1. According to our
previous considerations, a fast hadron can be viewed as an ensemble of
partons. In this system a photon looks like a static field with wavelength∼
1/qz.

The main question is, which partons can the photon interact with? We
can consider the static field of a photon as a packet with a longitudinal
size of the order of 1/qz. The interaction time between a hadron with the
size 1/µ and such a packet is of the order of 1/µ. However, due to the big
difference between the parton and photon wavelengths, the interaction
with a slow parton is small. Hence, the photon interacts with partons
which have momenta of the order of qz. Partons with such momenta are
distributed in the longitudinal direction in the region 1/qz. Because of
this, the time of the hadron–photon interaction is in fact of the order of
1/qz, i.e. much shorter than the lifetime of a parton. This means that
the photon interacts with a parton as with a free particle, and so not
only the momentum but also the energy is conserved. As a result, the
energy–momentum conservation laws select the parton with momentum
qz/2, which can absorb a photon:

kiz − qz = k′iz, |kiz − qz| = kiz.

This gives

kiz =
qz
2
, k′iz = −qz

2
.

The cross section of such a process is, obviously, equal to the cross section
σ0 of the absorption of a photon by a free particle, multiplied by the
probability of finding a parton with a longitudinal momentum qz/2 inside
the hadron, i.e. by the value ϕ(ηq/2, ηp) in (A.9), integrated over k⊥.
(The necessary accuracy of fulfilment of the conservation laws allows any
k⊥ � qz ).

As was already discussed, ϕ(η, ηp) = ϕ(η − ηp) ≡ ϕ(ω). Hence, using
the known cross section for the interaction of the photon with a charged
spinless particle, we obtain for the cross section of the deep inelastic
scattering

d2σ
dq2dω

=
4πα2

q4

(
1− pq

ppe

)
ϕ(ω), (A.14)

where pe is the electron momentum. If the partons have spins, the situa-
tion becomes more complicated, since the cross sections of the interactions
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between photons and partons with different spins are different. The par-
ton distributions in rapidities for different spins may also be different,
leading to the form

d2σ
dq2dω

=
4πα2

q4

{(
1− pq

ppe

)
ϕ0(ω)

+

[
1− pq

ppe
+

1
2

(
pq

ppe

)2]
ϕ 1

2
(ω)

}
. (A.15)

Let us discuss now a very important question, namely, what physical pro-
cesses take place in deep inelastic scatterings? To clarify this, we go back
to Fig. A.7 determining the hadron wave function. We will neglect the
parton recombinations in the process of their creation from the initial
parton, i.e. we consider fluctuations of the type shown in Fig. A.9. Sup-
pose that the photon was absorbed by a parton with a large momentum
qz/2. As a result, this parton obtained a momentum −qz and moves in
the opposite direction with momentum −qz/2. The process is depicted in
Fig. A.12. What will now happen to this parton and to the remaining
partons?

Fig. A.12

Within the framework we are us-
ing it is highly unlikely that the
parton with momentum −qz/2 will
have time to interact with the other
partons. The probability of inter-
acting directly with residual par-
tons will be small, because the rel-
ative momentum of the parton with
−qz/2 and the rest of the partons is
large. It could interact with other
partons after many subsequent de-
cays which, in the end, could create

a slow parton. However, the time needed for these decays is large, and
during this time the parton and its decay products will move far away
from the remaining partons, thus the interaction will not take place.
Hence, we come to the conclusion that one free parton is moving in the

direction −qz. What will we observe experimentally, if we investigate par-
ticles moving in this direction? To answer this question, it is sufficient to
note that, on average, a hadron with momentum kz consists of n partons,
n = c ln(kz/µ) at kz � µ.
In a sense there should exist an uncertainty relation between the num-

ber of partons in a hadron (n) and the number of hadrons in a parton
(np):

np n >∼ c ln
kz
µ
, (A.16)
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where kz is the momentum of the state.
We came to the conclusion that the parton decays into a large num-

ber of hadrons, i.e. in fact the parton is very short-lived, highly virtual.
Hence, we have to discuss whether this conclusion is consistent with the
assumption that the photon–parton interaction satisfies energy conserva-
tion. To answer this question, let us calculate the mass of a virtual parton
with momentum kz, decaying into n hadrons with momenta ki and masses
mi.

M2 =
(∑√

m2i + k
2
i

)2
− k2z =

(
kz +

∑
i

m2i + k
2
i⊥

2kiz

)2
− k2z

� kz
∑
i

m2i + k
2
i⊥

kiz
.

If the hadrons are distributed almost homogeneously in rapidities, their
longitudinal momenta decrease exponentially with their number, and in
the sum only a few terms, corresponding to slow hadrons, are relevant.
As a result, M2 ∼ kzµ, i.e. the time of the existence of the parton is of
the order of 1/µ, much larger than the time of interaction with a photon
1/qz.

Let us discuss now what happens to the remaining partons. Little can
be determined using only the uncertainty relation (A.16). This is because
the number of partons before the photon absorption was n, after the
photon absorption it became n − 1 and, consequently, according to the
uncertainty relation, the number of hadrons corresponding to this state
can range from 1 to n. Hence, everything depends on the real perturbation
of the hadron wave function due to the photon absorption.

Consider now the fluctuation shown in Fig. A.12. The photon absorp-
tion will not have any influence on partons created after the parton b which
absorbed the photon was produced, and which have momenta smaller
than b. These fluctuations will continue, and the partons can, in par-
ticular, recombine back into the parton c. The situation is different for
partons which occurred earlier and have large momenta (c′, c′′). In this
case the fluctuation cannot evolve further the same way, since the parton
b has moved in the opposite direction. As a result, it is highly proba-
ble that partons c′ and c′′ will move apart and lose coherence. On the
other hand, slow partons which were emitted by c′ and c′′ earlier and
which are not connected with the parton b will be correlated, as before,
with each of them. Thus c′ and c′′ will move in space together with their
slow partons, i.e. in the form of hadrons. Hence, it appears that par-
tons flying in the initial direction lead to the production of of the order
of c ln(ωqz/2) − c ln(qz/2) = c lnω hadrons with rapidities ranging from
ln(ωqz/µ) to ln(qz/µ). This answer can be interpreted in the following
way. After the photon is absorbed, a hole is created in the distribution
of partons moving in the initial direction.
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Contrary to the case of rapidities of partons, we will count the rapidity
of the hole not from zero rapidity but from the rapidity ln(ωqz/µ). In
this case the rapidity of the hole is lnω. If we now represent the par-
ton hole with rapidity lnω as a superposition of the hadron states, this
superposition will contain lnω hadron states.
Let us represent the whole process by a diagram describing rapidity

distributions of partons and hadrons. Before the photon absorption the
partons in the hadrons are distributed at rapidities between zero and
ln(ωqz/µ), while after the photon absorption a parton distribution is pro-
duced which is shown in Fig. A.13.

Fig. A.13
Fig. A.14

This parton distribution leads to the hadron distribution shown in Fig.
A.14. The total multiplicity corresponding to this distribution is

n̄ = c ln
qz
µ

+ c lnω = c ln
ν

µ
√
−q2 .

This hadron distribution in rapidities in the deep inelastic scattering
differs qualitatively from those previously discussed in the literature. It
corresponds to c ln(

√
−q2/µ) hadrons moving in the photon momentum

direction, while lnω hadrons are moving in the nucleon momentum di-
rection, with a gap in rapidity between these distributions. The hadron
distribution which was obtained in the framework of perturbation theory
for superconverging theories like λϕ3 (Drell and Yan [3]) differs qualita-
tively from the distribution in Fig. A.14.
In conclusion of this section, it is necessary to point out that the prob-

lem of spin properties of the partons exists in this picture even if the
partons do not have quark quantum numbers. If, as experiment shows,
the cross section σt for the interaction of the transversal photons is larger
than the cross section for the interaction of the longitudinal photons, σl,
the charged partons have predominantly spin 1/2. This means that at
least one fermion, for example a nucleon, has to move in the direction of
the photon momentum. In other words, in deep inelastic scattering the
distribution of the created hadrons in quantum numbers as the function
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of their rapidities differs essentially from what we are used to in strong
interactions. Perhaps this is one of the key predictions of the non-quark
parton picture for σt � σl.

A.4 Strong interactions of hadrons

Let us discuss now the strong interactions of hadrons. First, we consider
a collision of two hadrons in the laboratory frame. Suppose that a hadron
1 with momentum Mp1 hits hadron 2 which is at rest. Obviously, the parton
wave function makes no sense for the hadron at rest, since for the latter
the vacuum fluctuations are absolutely essential. However, the hadron at
rest can also be understood as an ensemble of slow partons distributed in
a volume of the order of 1/µ, independent of the origin of the partons.
Indeed, it does not matter whether these partons are decay products
of the initial parton or the result of the vacuum fluctuations. How can
a fast hadron, consisting of partons with rapidities from ln(2p1/µ) to zero,
interact with the target which consists of slow partons? Obviously, the
cross section of the interaction of two point-like particles with a large
relative energy is not larger than πλ2 ∼ 1/s12 ∼ exp(−η12) (where λ
is the wave length in the cms, η12 is the relative rapidity). That is why
only slow partons of the incident hadron can interact with the target with
a cross section which is not too small.
This process is shown in Fig. A.15.

If the slow parton which initiated
the interaction was absorbed in this in-
teraction, the fluctuation which led to
its creation from a fast parton was inter-
rupted. Hence, all partons which were
emitted by the fast parton in the pro-
cess of fluctuation cannot recombine any
more. They disperse in space and ulti-
mately decay into hadrons leading to the
creation of hadrons with rapidities from
zero to ln(2p1/µ).

Fig. A.15

The interaction between the partons is short range in rapidities. Hence,
the hadron distribution in rapidities will reproduce the parton distribution
in rapidities. In particular, the inclusive spectrum of hadrons will have
the form shown in Fig. A.8, with an unknown distribution near the
boundaries. The total hadron multiplicity will be of the order of ηp =
ln(2p1/µ). If the probability of finding a slow parton in the hadron does
not depend on the hadron momentum (this would be quite natural, since
with the increase of the momentum the lifetime of the fluctuation is also
growing), the total cross section of the interaction will not depend on the
energy at high energies.
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Fig. A.16

Before continuing the analysis of inelastic
processes, let us discuss how to reconcile
the energy independence of the total inter-
action cross section at high energies with
the observation discussed above according
to which the transverse hadron sizes in-
crease with the increase of the energy as√
γ ln(2p/µ).
The answer is that slow partons

are distributed almost homogeneously over
the disk of radius

√
γ ln(2p/µ) (equation

(A.11)), while their overall multiplicity dur-
ing the time of 1/µ is of the order of unity.

Let us see now how the same process will look, for example, in the
cms. In this reference frame the interaction will have the form shown in
Fig. A.16. Each of the hadrons consists of partons with rapidities ranging
from − ln(2pc/µ) to zero and from zero to ln(2pc/µ), respectively. The
slow partons interact with cross sections which are not small. As a result,
the fluctuations will be interrupted in both hadrons, and the partons will

Fig. A.17

fly away in opposite directions, leading
to the creation of hadrons with rapidities
from − ln(2pc/µ) to ln(2pc/µ). From the
point of view of this reference frame the
inclusive spectrum must have the form
shown in Fig. A.17, with unknown dis-
tributions not only at the boundaries but
also in the centre, since the distribution
of the slow partons in the hadrons and
in vacuum fluctuations is unknown.

The hadron inclusive spectrum, however, should not depend on the
reference frame. Thus the inclusive spectrum in Fig. A.17 should coin-
cide with the inclusive spectrum in Fig. A.8, and they should differ only
by a trivial shift along the rapidity axis, i.e. due to relativistic invari-
ance we know something about the spectra of slow partons and vacuum
fluctuations. Let us demonstrate that this comparison of processes in
two reference frames leads to a very important statement, namely that at
ultra-high energies the total cross sections for the interactions of arbitrary
hadrons should be equal. Indeed, we have assumed that the distribution
of hadrons reproduces the parton distribution.
From the point of view of the laboratory frame the distribution of par-

tons and, consequently, the distribution of hadrons in the central region
of the spectrum is completely determined by the properties (quantum
numbers, mass, etc.) of particle 1, and does not depend on the prop-
erties of particle 2. On the other hand, from the point of view of the
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anti-laboratory frame (where the particle 1 is at rest) everything is de-
termined by the properties of particle 2. This is possible only if the dis-
tribution of partons in the hadrons with rapidities η much smaller than
the hadron rapidity ηp does not depend on the quantum numbers and the
mass of the hadron, that is the parton distribution with η � ηp should
be universal. From the point of view of the cms the same region is de-
termined by slow partons of both hadrons and by vacuum fluctuations
(which are universal), and, consequently, the distribution of slow partons
is also universal.

It is natural to assume that the probability of finding a hadron in
a sterile state without slow partons tends to zero with the increase of its
momentum, or, in other words, to assume that slow partons are always
present in a hadron (compare with the decrease of the cross section of
the elastic electron scattering at large q2). In this case, considering the
process in the c.m. system, we see that the total cross section of the
hadron interaction is determined by the cross section of the interaction
of slow partons and by their transverse distribution which is universal.
Consequently, the total hadron interaction cross section is also universal,
i.e. equal for any hadrons.

This statement looks rather strange if we regard it, for instance, from
the following point of view. Let us consider the scattering of a compli-
cated system with a large radius, for example, deuteron–nucleon scatter-
ing. As we know, the cross section of the deuteron–nucleon interaction
equals the sum of the nucleon–nucleon cross sections, thus it is twice as
large as the nucleon–nucleon cross section. How and at what energies can
the deuteron–nucleon cross section become equal to the nucleon–nucleon
cross section? How is it possible that the density of slow partons in the
deuteron turns out to be equal to the density of slow partons in the nu-
cleon? To answer this question, let us discuss the parton structure of two
hadrons which are separated in the plane transverse to their longitudinal
momenta by a distance much larger than their Compton wavelength 1/µ.
Suppose that at the initial moment they were point-like particles. Next,
independently of each other, they begin to emit partons with decreasing
longitudinal momenta. At the same time the diffusion takes place in the
transverse plane so that the partons will be distributed in a growing re-
gion. The basic observation which we shall prove and which answers our
question is that if the momenta of the initial partons are sufficiently large,
then during one fluctuation the partons coming from different initial par-
tons will inevitably meet in space (Fig. A.18) in a region of the order of
1/µ. They will have similar large rapidities and, hence, will be able to
interact with a probability of the order of unity. If such “meetings” take
place sufficiently frequently, the probability of the parton interaction will
be unity. Consequently, the further evolution and the density of the slow
partons which are created after the meeting may not depend on the fact
that initially the transverse distance between two partons was large.
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Fig. A.18

In terms of the diffusion in the impact pa-
rameter plane this statement corresponds
to the following picture. Suppose that the
initial partons were placed at points ρ1 and
ρ2 in Fig. A.19 and that their longitudinal
momenta are of the same order of magni-
tude, i.e. the difference of their rapidities
is of the order of unity, while each of the
rapidities is large. We will follow the par-
ton starting from point ρ1, which deceler-
ates via emission of other

Fig. A.19

partons. As we have seen, its propaga-
tion in the perpendicular plane corre-
sponds to diffusion.

The difference of rapidities ηp − η
at the initial and considered moments
plays the rôle of time in this diffusion
process.

The diffusion character of the pro-
cess means that the probability density
of finding a parton with rapidity η at
the point ρ if it started from the point
ρ1 with rapidity ηp is

ω(Mρ, Mρ1, ηp − η) = 1
πγ(ηp − η) exp

[
−(Mρ− Mρ1))2
γ(ηp − η)

]
. (A.17)

The situation is exactly the same for a decelerating parton which started
from the point ρ2. Thus, the probability of finding both partons at the
same point ρ with equal rapidities is proportional to

ω(ρ12, ηp − η) =
∫
ω(Mρ, Mρ1, ηp − η)ω(Mρ, Mρ2, ηp − η)d2ρ

=
1

2πγ(ηp − η) exp
[
−(Mρ1 − Mρ2))2
2γ(ηp − η)

]
. (A.18)

If we now integrate this expression over η, i.e. estimate the probability
for the partons to meet at some rapidities, we obtain∫ ηp

0
ω(ρ12, ηp − η)dη � 1

π
ln

2γηp
ρ212

∣∣∣∣
ηp→∞

−→ ∞. (A.19)

This means that if 2γηp � ρ212, the partons will inevitably meet. Accord-
ing to (A.19) we get a probability much larger than unity. The reason
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is that under these conditions the meetings of partons at different val-
ues of η are not independent events and therefore it does not make sense
to add the probabilities. It is easy to prove this statement directly, for
example with the help of the diffusion equation. We will not do this, how-
ever. According to a nice analogy suggested by A. Larkin, this theorem is
equivalent to the statement that if you are in an infinite forest in which
there is a house at a finite distance from you, then, randomly wandering
in the forest, you sooner or later arrive at this house. Essentially, the
reason is that in the two-dimensional space the region inside of which the
diffusion takes place and the length of the path travelled during the dif-
fusion increase with time in the same way. From the point of view of the
reference frame in which the deuteron is at rest and is hit by a nucleon
in the form of a disk, the radius of which is much larger than that of the
deuteron, the statement of the equality of cross sections means that the
parton states inside the disk are highly coherent.

It is clear from the above that the cross sections of two hadrons can
become equal only when the radius of parton distribution √

γηp which
is increasing with the energy becomes much larger than the size of both
hadrons. Substituting 4 ·0.25/m2 for the value of γ (m is the proton
mass)∗ we see that the deuteron–nucleon cross section will practically
never coincide with the nucleon–nucleon cross section, while the ten-
dency for convergence of cross sections for pion–nucleon, kaon–nucleon
and nucleon–nucleon scatterings may be manifested already starting at
incident energies ∼ 103 GeV.

A.5 Elastic and quasi-elastic processes

So far we focused on the implications of the picture considered for inelas-
tic processes with multiplicities, growing logarithmically with the energy.
However, with a certain probability it can happen that slow partons scat-
ter at very small angles and the fluctuations will not be interrupted in
either of the hadrons (for example, if we discuss the process in the cms).

Fig. A.20

In this case small angle elastic or
quasi-elastic scattering will take
place (Fig. A.20).

First, let us calculate the elas-
tic scattering amplitude. It is well
known that the imaginary part
of the elastic scattering amplitude
can be written in the form

∗ It will be demonstrated below that γ = 4α′, where α′ is the slope of the Pomeron
trajectory. The current data give α′ ∼ 0.25 GeV−2.
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A1(s12) = s12

∫
d2ρ12 ei 6q6ρ12σ(ρ12, s12), (A.20)

where s12 is the energy squared in the c.m. system, ρ12 is the relative
impact parameter, σ(ρ12, s12)d2ρ12 the total interaction cross section of
particles at the distance ρ12 and Mq is the momentum transferred. In order
to calculate σ(ρ12, s12) it is sufficient to notice that, according to (A.12),
the probability of finding a slow parton with rapidity η1 at the impact
parameter ρ′1 which originated from the first hadron with an impact pa-
rameter Mρ1 is

ϕ1

(
Mρ1, Mρ′1, η1, ηpc

) C(η1)
πγηpc

exp

[
−(Mρ1 − Mρ′1)2

γηpc

]
. (A.21)

The probability or finding a parton originating from the second hadron
at impact parameter ρ′2 is

ϕ2

(
Mρ2, Mρ′2, η2, ηpc

) C(η2)
πγηpc

exp

[
−(Mρ2 − Mρ′2)2

γηpc

]
. (A.22)

The total cross section of the hadron interaction which is due to the
interaction of slow partons is equal to

σ(ρ12, s12) =
∫

dη1dη2d2ρ′12σ(η1, η2, ρ
′
12)C(η1)C(η2)

×
∫

d2ρ
(πγηpc)2

exp
[
−(Mρ− Mρ1)2

γηpc
− (Mρ− Mρ2)2

γηpc

]
.

We have taken into account that ρ′1 = ρ+ρ′12/2, ρ′2 = ρ−ρ′12/2, and that
the dependence on ρ′12 can be neglected in the exponential factor.
After carrying out the integration over ρ, we obtain

σ(ρ12, s12) =
σ0

2πγηpc
exp

[
−(Mρ1 − Mρ2)2

2γηpc

]
. (A.23)

Inserting (A.22) into (A.20), we get

A1 = s12σ0e
− γ

4
q2ξ, ξ = 2ηpc = ln

s12
µ2
. (A.24)

We obtained the scattering amplitude correspond-
ing to the exchange by the Pomeranchuk pole with
slope α′ = γ/4, σ0 = g2, where g is the univer-
sal coupling constant of the Pomeron and hadron.
The amplitude (A.24) is usually represented by the
diagram in Fig. A.21, where a propagator of the
form exp(−α′q2ξ) corresponds to the Pomeron. In
the impact parameter space this propagator has the
form (A.22). Fig. A.21
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Let us discuss the physical meaning of σ0 in more detail. For this
purpose, let us calculate the zero angle scattering amplitude at Mq = 0,
without using the impact parameter representation. The probability of
finding a parton with rapidity η and a transverse momentum k⊥ is de-
scribed by (A.9). This expression at η � ηp corresponds to the diagram
in Fig. A.22. The wavy line represents integration over parton rapidities
from ηp to zero. This figure reflects the hypothesis that the calculation
of ϕ(η, k⊥, ηp) for sufficiently large ηp and η � ηp leads to an expression
for ϕ which is factorized in the same way as the Pomeron contribution to
the scattering amplitude. This is because the parton distribution in this
region is independent of the properties of the hadron as well as the values
of η, ηp. Compared with the diagram in Fig. A.7, Fig. A.22 indicates

Fig. A.22

that the calculation of ϕ(η, k⊥, ηp) is similar to the calculation of the
inclusive cross section due to the Pomeron exchange. The only difference
is that the coupling of the hadron with the Pomeron should be replaced by
unity, since a hadron always exists in a Pomeron state. If η ∼ 1, ϕ(η, k⊥)
corresponds to the diagram in Fig. A.22(a), which shows that ϕ(η, k⊥)
depends on η. Similarly, it is possible to determine the probability of
finding several slow partons (Fig. A.22(b)), and even the density matrix
of slow partons. In this case the amplitude of elastic hadron–hadron
scattering in the cms is determined by the diagram of Fig. A.23 and the

Fig. A.23 Fig. A.24 Fig. A.25
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value of σ0 is determined solely by the interaction of slow partons. Now
let us consider the quasi-elastic scattering, corresponding to the Pomeron
exchange (Figs. A.24, A.25) at zero transverse momentum. While the
probability of finding the parton in hadron a is determined in (A.8) by
the integral of the wave function squared, the analogous quantity for the
amplitude of the inelastic diffractive process (Fig. A.25) will lead to the
integral of the product of the parton functions of different hadrons. They
are orthogonal to each other and it is almost obvious that the amplitude
for the inelastic diffractive process at zero angle should vanish for this
reason. Indeed, the
orthogonality condition of (A.6) has the same
structure as the imaginary part of the amplitude.
Thus, if at high energies the amplitude factorizes
(as it should do for the Pomeron exchange), then
the orthonormality condition should also have
a factorized form in the sense that the integral
over parton rapidities with η � ηp factors out,
and only constants gab depend on the properties
of specific hadrons (see Fig. A.26).

Fig. A.26

The orthogonality of the wave functions of different hadrons implies
that gab = 0 at a �= b. In fact the reason why the amplitude of inelastic
diffractive process vanishes at zero angle is the same as the reason why
all cross sections should approach the same value at high energies. Both
phenomena are due to the fact that properties of slow partons do not de-
pend on the properties of hadrons to which they belong. We can illustrate
this again using the example of quasi-elastic dissociation of the composite
system – e.g. deuteron. Let us consider the interaction of a fast nucleon
with a deuteron. As we discussed in the previous section, at very large
energies partons from different nucleons will always interact with each
other independently of the distance between nucleons. This will lead to
the production of the spectrum of slow partons which does not depend on
the relative distance between nucleons in the deuteron. This means that
the amplitude of the nucleon–nucleon interaction will not depend on the
internucleon distance as well. Thus, if nucleons inside the deuteron remain
intact after the interaction, then the deuteron will not dissociate either,
since if the amplitude does not depend on the inter-nucleon distance, the
wave function of the deuteron will not change after the interaction.
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Appendix B

Character of inclusive spectra and
fluctuations produced in inelastic

processes by multi-pomeron exchange

V.A.Abramovski, V.N.Gribov, and O.V.Kancheli

We attempt to determine which absorptive parts of the reggeon graphs for σtot are
not small in the limit as s → ∞, and present on this basis a classification of the
asymptotically essential inelastic processes. The only absorptive parts that are not
small are those for which each reggeon is cut as a whole or is not cut at all. For the
physically interesting case of the n-reggeon exchange, these absorptive parts are
expressed explicitly via the n-reggeon contribution to σtot. The relations obtained
show that the main part of the j-plane branch points does not contribute to the
inclusive cross sections. The main corrections to the scaling form of the spectrum
arise from one-loop contributions to the vertex functions and to the pomeron prop-
agators. Their explicit form is determined by the three-reggeon vertex only. The
asymptotic form of the two-particle correlation function ρ2 in the central region
is also determined by the three-reggeon vertex only and decreases logarithmically
with the relative rapidity but preserves its positive sign. In the last section we
study the fluctuations in the distributions of the produced particles in individual
events. For this purpose it is convenient to introduce the concept of the inclusive
cross section f̂ for a given type of inhomogeneity in the spectrum. The quantities f̂
are expressed via the absorptive parts of the diagrams for the pomeron propagator.
It is shown that the final particle density distribution is quite inhomogeneous; the
distribution with respect to the number of fluctuations with ranges ≥ λ, in rapidity
units, has a Poisson form with a mean fluctuation number ∼ λ−2 ln s.

Introduction

The description of the asymptotic behaviour of strong interactions in
terms of the Pomeranchuk singularity (the pomeron P ) includes a repre-
sentation of both processes of the diffraction type and inelastic processes,
which give the main contribution to the total cross sections. As has been

240
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Fig. B.1

well known since the work of Amati, Fubini, and Stanghellini
[1], pomeron exchange can be described in the language of
Feynman diagrams by the set of ladder diagrams shown in
Fig. B.1.

A characteristic property of the inelastic processes at
asymptotic energies that are described by these diagrams is
that the particles produced have a uniform distribution in the
rapidity η – the logarithm of the longitudinal momentum of

these particles (in the sense of inclusive cross sections), with the exception
of the region of longitudinal momenta near the momenta of the colliding
particles; this leads to a logarithmic multiplicity of the particles produced,
n = aξ.

A second important property of these diagrams is the fact that a uni-
form density appears in each individual event only after a distribution
which is actually non-uniform is averaged over an interval of η greater
than the characteristic scale λ0 ∼ a−1 ∼ 1 determined by a rung of the
ladder. The probability of fluctuations of order λ much greater than λ0
then falls off exponentially.

It has been realized that these properties do not require that the in-
teraction be described literally in terms of ladder diagrams, but may be
a result of a more general phenomenon – the absence of large momentum
transfers at all stages of the interaction.

It is well known that, in addition to pomeron exchange, multi-pomeron
exchange processes, corresponding to branch points in the complex angu-
lar momentum plane, give appreciable contributions to the interaction at
high energy.

Fig. B.2

It would be of great interest to determine how allowance for multi-
pomeron exchanges modifies the properties of inelastic processes. In the
present work we attempt to analyse this problem. We shall make use of the
reggeon diagrammatic technique [2] for the description of multi-pomeron
exchanges. The contribution to the total interaction cross section cor-
responding to the exchange of pomerons can be represented as a series
of diagrams of the form shown in Fig. B.2, to which we must add the
diagrams that include the mutual interaction of the pomerons.



242Appendix B: Character of inclusive spectra and fluctuations produced

We shall show that, even if one allows for the exchange of many pomerons
and their interactions, it is possible to preserve the first of the above-
mentioned properties of inelastic processes – the uniformity of the spec-
trum (in the sense of inclusive cross sections) and n ∼ ξ.
However, the scale of the averaging for which a uniform density is

achieved and the probabilities of fluctuations (in each individual event)
turn out to be completely different. This difference from the ladder sit-
uation when ξ → ∞ is due entirely to the interaction of reggeons and
consists in the fact that a uniform density appears only on averaging
over an interval of rapidity >∼ γ

√
ξ, where γ is determined by the three-

pomeron interaction vertex. The probability of fluctuations of order (in
the rapidity) λ > γ

√
ξ falls off like γ2ξ/λ2.

The distribution of large fluctuations is characterized by the following
simple property: if we are interested in fluctuations of order ∼ λ, they
are separated on the average by a distance ∼ λ2/γ2 � λ in the rapidity.
It is of interest to note that, for these large fluctuations, the density of
particles is equal to either zero or twice the average density, the second
case being encountered twice as frequently as the first.
On the whole, this situation is reminiscent of the behaviour of matter

at a second order phase transition, where large fluctuations of the system
lead to a state in which separate regions of a substance are in different
phases.
The main contents of this work are as follows. Starting from the rep-

resentation of the total interaction cross section as a set of contributions
of reggeon diagrams and assuming that reggeon exchange corresponds to
a homogeneous density in the rapidity (in the sense of an inclusive cross
section) with an average number of particles n � aξ, we show that, if
no allowance is made for the interaction of pomerons, the contribution of
multi-pomeron exchanges results in the following phenomena: there are
corrections of order 1/ξ, 1/ξ2, . . . to the partial cross sections σn in the
main region n ∼ aξ; there occur
new processes in which the num-
ber of particles produced is a mul-
tiple of n. The distribution in the
number of particles then has the
form [3] shown in Fig. B.3, the
cross section being σkn ∼ 1/ξk−1.
We note that, from the point
of view of the analogy with gas Fig. B.3
models [4, 5], the appearance of oscillations is connected with the finite
dimensions of the system (edge effects). It turns out that the correc-
tions to the partial cross sections σn and the values of the cross sections
σkn (k �= 1) are interrelated in such a way that they cancel when the
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inclusive cross section is evaluated. Let us illustrate this for the case
of two-pomeron exchange. This exchange leads to the appearance of new
processes with cross sections σqe and σ2n and a negative correction σ

′
n due

to screening (Fig. B.4), where 4σqe = −σ′
n = 2σ2n. Then the correction

to the inclusive cross section in the central region is

δ

(
∂3σ

∂p3

)
∼ ∂3σ′

n + 2∂3σ2n = 0. (B.1)

Fig. B.4
Fig. B.5

Thus, if no allowance is made for the interaction of reggeons, the in-
variant inclusive cross section is

f1(p⊥, η1, ξ) = (2π)32p0
∂3σ

∂p3
, (B.2)

where η = ln p0, the rapidity of the observed particle, is independent of ξ
and η to within powers of 1/s in the central region.

Allowance for the interaction of reggeons leads to a smoother distribu-
tion of σn (Fig. B.5). The amplitude of oscillations in the distribution of
σn is determined by the reggeon interaction constants [3].

The inclusive cross section for the process pa + pb → p + {X} in the
central region contains the logarithmic corrections

f1 = σtot(∞)Ψ(p2⊥)
[
1 +

c1
η1

+
c2
η2

]
, (B.3)

where η1 = ln(pa + p)2, η2 = ln(pb + p)2, and the constants ci are related
to the value of the three-pomeron vertex. If all total cross sections are
asymptotically equal [6], f1 will be universal within the accuracy 1/ηi and
we will then have c1 = c2.

The correlation function of two particles produced in the central region
with rapidities η1 and η2 is of the form

ρ2 � Ψ(p12⊥)
3γ2

|η1 − η2|Ψ(p22⊥). (B.4)
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The last section is devoted to the study of the fluctuations in individual
events. In particular, it is shown that the distribution in the number of
fluctuations of order >∼ λ � a−1 is of the Poisson type, with an average
number of fluctuations

m(λ) ∼ γ2ξ/λ2. (B.5)

B.1 The absorptive parts of reggeon diagrams in the
s-channel. Classification of inelastic processes

Let us first consider the structure of the absorptive parts corresponding to
the vacuum pole. It is well known that the vacuum pole leads to a uniform
spectrum of secondary particles of the type Ψ(p2⊥)d

3p/p0, where the func-
tion Ψ(p2⊥) must be assumed to be rapidly decreasing in order to achieve
self-consistency of the entire scheme. Consequently, the absorptive part
of the pole can be represented as a generalized ladder

(abs)s[A(Pow)(s, t)]

= (abs)s =
∑
n

∫
dτn|A2−n|2 =

∑
n

∫
dτn (B.6)

without specifying the nature of the exchange in the amplitudes A2→n.
The simplest examples of such amplitudes are multi-peripheral ones [1],
but this is not essential: the actual amplitudes A2→n can also be deter-
mined by multi-particle exchange. It is important only that states with
large 4-momentum squared be suppressed on the virtual lines. In this
case, the intermediate states which appear in the operation (abs)sA

(Pol)
2→2

will be ordered approximately according to their longitudinal momenta.
It is just this fact which is reflected by our method of representing A2→n

as a “comb”.
Adopting such a picture of the absorptive parts for the pole, let us

consider the question as to which absorptive parts of the two-reggeon
branch cut will be appreciable as s → ∞. The simplest diagram with
non-zero third spectral functions has the form

A2 = � (B.7)

We see that the dashed line corresponding to the cut of the diagram can
be drawn in various ways in calculating (abs)sA2. Cuts of different types
(e. g., l1, l2 and l3 in Fig. B.6) correspond to topologically non-equivalent
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inelastic processes, where the absorptive parts for most of them (e. g., for
l3 in Fig. B.6) will not be expressed in terms of quantities which are
characteristic of the reggeon diagrams.

Fig. B.6 Fig. B.7

Let us determine what absorptive parts are appreciable for ξ = ln s→
∞. It can be seen that the only important cuts of the diagram are those
for which the line l which divides the diagram into two parts does not leave
the internal part of the reggeon (such as the line l3 in Fig. B.6). This can
be explained qualitatively as follows. The diagrams for the multi-particle
amplitudes in which a cut of the type l3 is made have the form of Fig.
B.7. It is clear that q2 ∼ m2eη1 � m2 in the “left-hand” amplitude, since
the internal part of the reggeon is significant only for η1 � 1. Since we
are assuming that large q2 must be suppressed on all the virtual lines,
these absorptive parts will be asymptotically small. As to the region of
small η1, it will contribute only to a renormalization of the vertex which
enters the absorptive part.∗

It can be seen that the foregoing property of the absorptive parts refers
to arbitrary reggeon diagrams. Cuts of the “sliding” type always lead to
a “suspended comb” with a large mass and consequently to large q2 on
the lines in the region where the comb is attached.

Fig. B.8

∗ Note that it is just the contributions of cuts with small ηi which are essential in the
cancellation of the leading asymptotic terms in the planar diagrams [7].
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Thus, the two-reggeon diagram has absorptive parts of only
three types (Fig. B.8), determined by the number of cut
reggeons.

Therefore the asymptotically complete absorptive part
of the contribution of the two-reggeon diagram (equal to
2 ImA2) is represented by the sum of all three absorptive
parts corresponding to the cuts in Fig. B.8:

Fig. B.9

2 ImA2 = F 20 + F 21 + F 22 . (B.8)

Similarly, for the diagram of Fig. B.9 with ν reggeons, there will be
ν + 1 types of asymptotically large absorptive parts:

2 ImAν =
ν∑

µ=0

F νµ , (B.9)

where

F νµ = (B.10)

corresponding to µ (µ = 0, 1, 2, . . . ) reggeons being simultaneously cut
(the cut reggeons are marked by crosses).
This property of the absorptive parts is readily generalized to arbitrary

diagrams with an interaction of the reggeons. We find that there are
only a few types of asymptotically large absorptive parts of each reggeon
diagram for A2→2. For example, in the case of the diagram of Fig. B.10,
these parts will be the diagrams of Fig. B.11.

Fig. B.10 Fig. B.11

Let us now consider the question as to what processes correspond to
the various absorptive parts of the reggeon diagrams. In the simplest case
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of the diagram Fig. B.8(a), the absorptive part corresponds to a process
in which a small number of particles are produced with momenta close
to the momenta of the incident particles – a quasi-elastic process. The
absorptive part of the diagram Fig. B.8(b) corresponds to processes that
give the main contribution to the cross section like that of the processes
described by the absorptive part of the pole term with average multiplicity
equal to aξ. It represents a correction to the amplitudes of these basic
processes due to screening. The absorptive part of the diagram Fig. B.8(c)
corresponds to processes with an average density of particles in a range
of rapidity twice as large as for the processes corresponding to the pole
term. These absorptive parts lead to processes with the cross sections
σqe, σ

′
n and σ2n (discussed in the Introduction to this Appendix).

Similarly, when more complex diagrams are cut, there occur absorptive
parts corresponding to corrections to either the basic processes or pro-
cesses in which there are no particles in certain ranges of rapidity, while
in other ranges the density of particles is a multiple of the density of
particles in processes of the basic type.

This result can be described graphically as follows. If we represent the
amplitude involving the production of a given number of particles n� 1
by the set of diagrams

{
+ + + · · ·

}
A

+

 + + · · ·

B

+
{

+ + · · ·
}
C

+ · · ·+
{

+ + · · ·
}
+ · · · . (B.11)

it is obvious that, as functions of the kinematic variables of the particles,
the amplitudes corresponding to the classes of diagrams A, B, . . . are non-
zero in non-overlapping regions of the values of these variables. Therefore
processes corresponding to different classes do not interfere when the cross
section is evaluated, and the result can be represented symbolically in the
form

FAF†
A + FBF†

B + · · · · (B.12)

B.2 Relations among the absorptive parts of reggeon diagrams

It turns out that in many cases the “large” absorptive parts of a reggeon
diagram can be expressed in terms of the value of the contribution of the
reggeon diagram itself, so that they differ only in certain combinatorial
coefficients (in particular, all the absorptive parts of the diagrams with
no interaction between the reggeons are of this type). In other cases, the
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expression for the absorptive part will also involve new “cut” vertices for
the interaction between reggeons.
Consider the diagrams of Fig. B.9. Their contribution to A2→2 can

be written in the form of an integral over the two-dimensional transverse
momenta of the reggeons [2]:

iAν(s,Q2) = s
∫
Nν [(iD1)(iD2) . . . (iDν)]Nν dΩν , (B.13)

where

dΩν =
1
ν!
δ(2)

(
Q−

ν∑
i

κi

)
ν∏
i=1

d2κi
2(2π)2

is the reggeon phase space, Nν(κ1, . . . ,κν) are real vertices for the emis-
sion of reggeons, and D(ξ,κ2) are complex reggeon Green functions; com-
paring a simple pole of positive signature with a reggeon, we have

D(ξ,κ2) = exp(−α′κ2ξ + α(0)− 1)
exp(−iπα(κ2)/2)

sinπα(κ2)/2
. (B.14)

The quantities Nν and dΩν entering (B.13) are real and, since we shall
be interested in the absorptive parts of Aν in s, it is convenient to write
(B.13) in the symbolic form

[−i (iD1)(iD2) . . . (iDν)]. (B.13a)

We have omitted the quantities Nν here, since they are not changed when
the absorptive parts of Aν are evaluated (see the Appendix to this Ap-
pendix).
The calculation of the absorptive parts of the amplitudes Aν is in

essence combinatorial in character. Let us illustrate this for the case
of the two-reggeon branch cut:

A2 = [−i (iD1)(iD2)]. (B.15)

The quantity F 20 is equal to the absorptive part in the case in which
the cut passes through the reggeons; we obviously have two possibilities:

(B.16)

Accordingly, we obtain from (B.15)

F 20 = [(iD1)(iD2)†] + [(iD2)(iD1)†] = 2[ReD1ReD2 + ImD1 ImD2].
(B.16a)
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The absorptive parts of F 21 correspond to a “cut” of one of the reggeons;
we have four possibilities:

(B.17)

From (B.15) we obtain

F 21 = [(−i δD1)(iD2)†] + [(iD2)(−iδD1)]

+ [(iD1)(−i δD2)] + [(−i δD2)(iD1)†] = −8[ImD1 ImD2],
(B.17a)

where δD = 2i ImD is the discontinuity of the amplitude D across its
right-hand cut. If the two reggeons are cut at the same time, we have
only a single possibility (Fig. B.12). From (B.15) we find

F 22 = [(−i δD1)(−i δD2)] = 4[ImD1 ImD2]. (B.18)

Combining (B.16a), (B.17a) and (B.18), we have

F 20 + F 21 + F 22 = 2[ReD1ReD2 − ImD1 ImD2]. (B.19)

This obviously coincides with the expression for 2 ImA2

which is found directly from (B.15). The relation (B.19)
shows that the sum F 20 + F 21 + F 22 actually “saturates”
the quantity 2 ImA2. This is not a trivially obvious re-
sult – the Feynman diagrams indicate (see the preceding
section) that A2 could also have absorptive parts of other
types. Our argument that such absorptive parts are asymp-
totically small was based on the fact that there would be
large q2i on the virtual lines in this case. But it is in fact

Fig. B.12

the cut-off of large q2i which led to a structure of the integrand in (B.13)
which is factorizable in D2i and for which (B.8) is satisfied exactly.

In an analogous way, one obtains the absorptive parts of F νµ , corre-
sponding to a cut of µ reggeons in the contribution (B.13). Let µ �= 0 at
first; then, from a cut of µ reggeons in (B.13), there appears a factor

µ∏
β=1

(−i δDβ) =
µ∏

β=1

(2 ImDβ),

while each reggeon which is not cut can appear to the right or left of the
cut; this gives a factor

ν∏
γ=µ+1

[(iDγ) + (iDγ)†] =
ν∏

γ=µ+1

[−2 ImDγ ].
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Hence

F νµ =
∑
(µ)

ν∏
β=1

(−1)ν−µ(2 ImDβ), (B.20)

where the summation is taken over all possible sets of cut reggeons.
Since

ImDβ = ± exp[ξ(αβ(0)− 1− α′χ2β)],
all the terms in (B.20) are identical. Since we can choose µ reggeons from
the set of ν reggeons in Cµ

ν = ν!/µ!(ν−µ)! ways, we finally obtain (µ �= 0)

F νµ = (−1)ν−µCµ
ν

ν∏
β=1

(2 ImDβ). (B.21)

The expression for F ν0 can be written in the form

F ν0 =
ν∏

β=1

[(iDβ) + (iDβ)†]−
ν∏

β=1

(iDβ)−
ν∏

β=1

(iDβ)†,

where the last two terms take into account the fact that all the reggeons
cannot appear on one side of the cut.
Finally, we have

F ν0 = (−1)ν
ν∏

β=1

(2 ImDβ) + 2 Im

−i
ν∏

β=1

(iDβ)

 . (B.22)

As above, we obtain from (B.21) and (B.22)

ν∑
µ=1

µF νµ (s, t) = 2 Im

(−i )
ν∏

β=1

(iDβ)

 , (B.23)

which coincides with 2 ImAν . We note that from (B.21) follow the rela-
tions

ν∑
µ=1

µF νµ (s, t) =

(−1)ν
ν∏

β=1

(2 ImDβ)

 ν∑
µ=1

(−1)µµCµ
ν = 0,

ν∑
µ=2

µ(µ− 1)F νµ (s, t) = 0,

..........................
ν∑

µ=m

µ(µ− 1) . . . (µ−m+ 1)F νµ (s, t) = 0,


(B.24)
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which are of great importance in calculating the corrections to the inclu-
sive cross sections.

The generalization to arbitrary reggeon diagrams is obvious. In fact,
the contribution of each diagram can be written in the form of an integral
of a product of the Di and the vertex functions, similar to (B.13). The
integration then goes over the energy variables for the individual reggeons.
Clearly, we can always isolate a “complex” part of the integrand of the
type (B.13a). Further, the absorptive parts can be determined by analogy
with our considerations for the case in which there is no interaction of the
reggeons. However, there is one essential difference. The cut generally
passes through a number of vertices for the interaction between reggeons,
and it is necessary to know what happens to these vertices when they are
“cut”.

The vertices Nν are not changed when they are cut, for arbitrary dia-
grams in perturbation theory. This means, firstly, that the exact vertices
Nν that take into account the interaction between the reggeons are also
not changed when cut and, secondly, that Γ1→ν , the vertices for the tran-
sition of a single reggeon into ν reggeons (see Fig. B.13), are not changed
when cut. All the remaining vertices, namely Γν1→ν2 with ν1, ν2 ≥ 2 (Fig.
B.14), are in general changed when cut.

Fig. B.13 Fig. B.14

This is shown by an analysis of the Feynman diagrams for Γν1→ν2 , as well
as by arguments of the following type. Let us consider the simplest dia-
grams for Γ2→2 in reggeon perturbation theory (the constant r is small):

(B.25)

We see that, if all the reggeons are cut (or at least 1 and 2, or 3 and 4), all
of the diagrams (a)–(f) contribute to the cut Γ2→2. But if, for example,
the cut passes between the reggeons, then of the diagrams that are drawn
only (a) and (b) contribute; the contributions of the remaining diagrams
will be asymptotically small. The relation between the values of the cut
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vertices Γ2→2 will therefore depend on the value of r.
Thus, in order to calculate the absorptive parts of arbitrary reggeon

diagrams in the general case, it is also necessary to know the values of
the cut vertices Γν1→ν2 for ν1, ν2 ≥ 2.

B.3 Inclusive cross sections

It is convenient to describe the inclusive processes pa + pb → p + {X},
pa + pb → p1 + p2 + {X} etc. in terms of the invariant inclusive cross
sections

f1(p) = (2π)32p10

(
∂3σ

∂p3

)
, f2(p1, p2) = (2π)62p10p20

(
∂6σ

∂p31∂p
3
2

)
, etc.

For the arguments of f1 we shall choose the quantities p2⊥, η1 = ln(pa+p)2,
η2 = ln(pb + p)2, η1 + η2 = ξ, and we shall confine our analysis to the
central region, where η1, η2 → ∞. Then the main contribution to f1 which
does not fall off with energy comes from the diagram of Fig. B.15 [8, 9]
and has the form

f(p2⊥,∞,∞) = ga(0)Ψ(p2⊥)gb(0). (B.26)

Fig. B.15 Fig. B.16

The meaning of the quantities appearing in (B.26) is clear from Fig.
B.15. The diagram of Fig. B.15 for f1 is obtained from the reggeon
diagram for forward elastic scattering after taking its absorptive part and
“extracting from the reggeon” a particle with momentum p, with the new
vertex Ψ(p2⊥) appearing in the diagram. An analogous procedure leads
to more complex reggeon diagrams: we choose one of the asymptotically
large absorptive parts of the diagram for A2→2 and join the vertex Ψ(p2⊥)
to one of the “cut” lines. Since the other lines in this reggeon diagram
can be either cut or not cut, we must also sum over all these possibilities.
Thus, we arrive at reggeon diagrams for f1 (Fig. B.16) in which, of

the ν extracted reggeon lines, µ are cut. Actually, we are considering
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the general case, since the vertices Nν may themselves contain arbitrary
reggeon diagrams. In order to obtain the contribution of the diagram of
Fig. B.16 to f1, we must perform the operation

(abs)s[−i (iD1)(iD2) . . . (iDν)] (B.27)

on the Green functions of the isolated reggeons and, for one of the cut
lines, make the substitution

ImD → (ImD)Ψ(p2⊥)(ImD). (B.28)

Since we can make this substitution for each cut line, an additional factor
µ appears in this contribution. Then, taking into account (B.21), we
obtain an expression for the contribution of the diagram of Fig. B.16
to f1:

(f1)ν,µ = (−1)ν−µµCµ
ν

×
∫
dΩνNν

[
(2 ImD1Ψ(p2⊥) ImD1)(2 ImD2)(2 ImD3) . . . (2 ImDν)

]
Nν .

(B.29)

It was assumed here that the vertices Nν do not change when they are
cut. We obtain from this the relation

ν∑
µ=1

(f1)ν,µ = 0, ν ≥ 2, (B.30)

analogous to (B.24), from which it follows that the diagrams of Fig. B.16
do not contribute to f1 at all. There remains only the contribution of the
diagram of Fig. B.15 with the exact Green functions and vertices† (we
shall consider this contribution in the following section). If we imagine
that the reggeons do not interact with each other, then f1 is given by
(B.26) and the corrections to f1 which fall off like powers of 1/ηi are
generally absent – the first non-vanishing corrections to (B.26) are due to
the non-vacuum trajectories in the diagram of Fig. B.15; but at the same

† It is interesting to note that this implies at once that it is not possible to have
eikonal models [10] with a bare trajectory α(0) > 1. By virtue of the above-mentioned
cancellation in f1, only the pole term would remain, i. e., f1(ξ, η, p

2
⊥) ∼ Ψ(p2

⊥)
α(0)−1 in

the central region. Let us now choose in the sum rule associated with the conservation
of energy,

σ−1
tot

∫
d2p⊥

∫ η2

η1

dη eη−ξf1(p
2
⊥, η, ξ) ≥ 1,

an upper limit η2 = cξ such that 1 > c > 2−α(0). Then, on the one hand, we remain
in the central region and, on the other hand, we find a violation of the sum rule if
α(0)− 1 > 0.
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time there are logarithmic corrections in the total cross sections, owing to
the diagrams of Fig. B.9. In fact, the interaction between the reggeons
is not equal to zero. This leads to additional contributions to f1 (apart
from those of Figs. B.15 and B.16), which correspond to the situation in
which the “observed” particle is “extracted” from the reggeon interaction
vertex. This mechanism of particle production leads, for example, to the
fact that the diagrams for f1 shown in Fig. B.18 are obtained from the
diagram of Fig. B.17 for A2→2. The contributions of these diagrams to
f1 are small (∼ 1/η21η2, 1/η1η

2
2).

Fig. B.17 Fig. B.18

Let us now consider the question as to which diagrams will be important
for the double inclusive cross sections f2(p1, p2). The arguments of f2 are

η1 = ln(pa + p1)2, η2 = ln(p1 + p2)2, η3 = ln(p2 + pb)2,
η1 + η2 + η3 = ξ, p1⊥ and p2⊥.

When all the ηi are large, the main contribution to f2 comes from the
diagrams of Fig. B.19 and is of the form

gaΨ(p12⊥)Ψ(p22⊥)gb =
1

σ
(ab)
tot

f1(p1)f2(p2). (B.31)

We shall now ascertain which diagrams will give corrections to (B.31).
Consider first the diagrams of Fig. B.20 for it, which are analogous to
those of Fig. B.16, in which we must sum over the number of cut reggeons,
just as in Fig. B.16.

Fig. B.19
Fig. B.20
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Using (B.24), it is easy to see that the contributions of all these dia-
grams (with the exact Nν) cancel, as in (B.30), apart from the pole term
of Fig. B.19 and the two-pomeron contribution of Fig. B.21.

Fig. B.21 Fig. B.22 Fig. B.23

For f2 there are also the diagrams of Fig. B.22, in which the reggeons
interact “between” particles 1 and 2.

Since the vertices Γν1→ν2 with ν1, ν2 ≥ 2 are in general changed when
they are cut, the diagrams of Fig. B.22 contribute to f2, except for the
cancelling diagrams of Fig. B.23.

Analogously with the case of f1, there also remain the contributions of
the diagrams in which the “observed” particles 1 and 2 are emitted at the
point of interaction of the reggeons (Fig. B.24).

Fig. B.24

B.4 Main corrections to the inclusive cross sections in the
central region

As we have seen in the preceding section, the contribution to f1 which does
not fall off as η1, η2 → ∞ and the main corrections to it are determined
by the diagram of Fig. B.15 with the exact vertices g and the exact
vacuum Green functions D. In setting ourselves the task of finding the
main corrections to f1(∞) of order 1/ηi, we may confine ourselves to
the terms of g that are linear and the terms of D that are quadratic in
the three-reggeon vertex r (we recall that r = 0 at ki⊥ = 0 [11]). It is
therefore sufficient for us to determine the total contribution to f1 from
the diagrams of Fig. B.25.
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Fig. B.25

The contributions of the diagrams Figs. B.25(b–e) to f1 are of the form

f (b) =
[∫ η1

1
dξ1Σ

′
a(ξ1)

]
Ψgb,

f (c) = gaΨ
[∫ η2

1
dξ2Σ′

b(ξ2)
]
,

f (d) = ga

[∫ η1

1
dξ1Σ(ξ1)

∫ η1−ξ1

1
dξ

′
1

]
Ψgb,

f (e) = gaΨ
[∫ η2

1
dξ2Σ(ξ2)

∫ η2−ξ2

1
dξ

′
2

]
gb,


(B.32)

where Σ
′
i(ξ) and Σ(ξ) are the contributions of the reggeon loops,

Σ
′
i(ξ) = −

∫
d2k⊥
4(2π)2

Ni(k2⊥) e
−2α′k2

⊥ξ r(k2⊥),

Σ(ξ) = −
∫

d2k⊥
4(2π)2

r(k2⊥) e
−2α′k2

⊥ξ r(k2⊥).
(B.33)

For small k2⊥,
r(k2⊥) � 2βα′k2⊥, Ni(k2⊥) � Ni.

Hence for large ξ we obtain from (B.26)

Σ
′
i(ξ) � − 1

ξ2
Niβ

32πα′
, Σ(ξ) � − 1

ξ3
β2

16πα′
. (B.33a)

The expressions (B.32) for f (b), . . . , f (e) must then be renormalized, which
corresponds to extracting the polynomial parts in ηi from them. This
renormalization is unambiguous, and by combining the extracted polyno-
mials with the contribution of the pole diagram we obtain the renormal-
ized pole term

f̃ (a) = gaΨgb.
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It is simplest to carry out the renormalization of the integrals in (B.32)
with the aid of the identities

η1∫
1

dξ1Σ′(ξ1)=
∞∫
1

dξ1Σ′(ξ1)−
∞∫
η1

dξ1Σ′(ξ1),

η1∫
1

dξ1Σ(ξ1)

η1−ξ1∫
1

dξ′1=
∞∫
1

(η1−ξ1)Σ(ξ1)dξ1 +
∞∫
η1

dξ1(ξ1−η1)Σ(ξ1).


(B.34a)

Considering the behaviour of Σ(ξ) and N(ξ) as ξ → ∞, we note that
the last integrals in (B.34a) no longer contain polynomial parts. The
renormalized expressions for f̃ (i) take the form

f̃ (a) = gaΨgb,

f̃ (b) = −
[∫ ∞

η1

dξ1Σ
′
a(ξ1)

]
Ψgb � Na

[
β

32πα′η1

]
Ψgb,

f̃ (c) = −gaΨ
[∫ ∞

η2

dξ2Σ
′
b(ξ2)

]
� gaΨ

[
β

32πα′η2

]
Nb,

f̃ (d) = ga

[∫ ∞

η1

dξ1(ξ1 − η1)Σ(ξ1)
]
Ψgb � ga

[ −β2
32πα′η1

]
Ψgb,

f̃ (e) = gaΨ
[∫ ∞

η2

dξ2(ξ2 − η2)Σ(ξ2)
]
gb � gaΨ

[ −β2
32πα′η2

]
gb.



(B.35a)

Combining these contributions, we obtain

f1 = gaΨ(p2⊥)gb
(
1 +

ca
η1

+
cb
η2

)
, (B.36)

ci =
β

32πα′gi
[Ni − giβ], i = a, b. (B.37)

To the same accuracy as above, i. e., neglecting all terms of higher order
in 1/ηi, (B.37) can be further simplified. This follows from the fact that
a number of additional conditions are imposed on the vertices for the
interaction of the vacuum reggeons with the particles when the total cross
sections are constant. First of all, all vertices for diffraction production
must reduce to zero when the pomeron momentum tends to zero. The Ni

therefore take the eikonal form Ni = g2i ; this implies that

ci =
β

32πα′
(gi − β).

Moreover, it has been shown [6] that, under the same assumptions, all
the gi(0) are equal: g2i = σtot(∞), which is independent of the type of
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colliding hadrons. In this case, all the ci are equal,

ci = c =
β

32πα′
[
√
σtot(∞)− β], (B.38)

and f1 takes a symmetric form in ηi:

f1(p⊥, η1, η2) = σΨ(p2⊥)
[
1 + c

(
1
η1

+
1
η2

)]
. (B.39)

It is obvious that f1 will have a maximum at η1 = η2 = ξ/2 if c < 0 and
a minimum if c > 0; in the variables ξ = η1+ η2, y = (η1− η2)/2, we have

f1(p⊥, y, ξ) = σtotΨ(p2⊥)
(
1 +

4cξ
ξ2 − 4y2

)
. (B.40)

We note only that the sign of c cannot be determined at present from
theoretical considerations.

Fig. B.26 Fig. B.27

Let us compare the main asymptotic corrections to f1 with the correc-
tions of order 1/ξ to σtot which are determined by the diagrams of Fig.
B.26. Renormalizing their contributions as in (B.35), we obtain

σtot(ξ) � σtot(∞)
[
1− 1

32πα′gagb
1
ξ
(Na − gaβ)(Nb − gbβ)

]
→ σtot(∞)

[
1− (g − β)2

32πα′ξ

]
≡ σtot(∞)

(
1− 32πα′c2

ξβ2

)
. (B.41)

Let us now consider the main corrections to the double inclusive cross
section f2, restricting ourselves here to the region η1, η3 � η2 � 1. Thus,
we are seeking the main corrections in 1/η2. It is readily seen that contri-
butions to f2 ∼ 1/η2 can come only from the diagrams of Fig. B.27. The
contribution of the diagram (a) of Fig. B.27a at large η2 is easily evaluated
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and has the form

fa2 = gaΨ(p12⊥)
[
β2

4πα′

∫ η1

1
dξ1
∫ η2

1

dξ2
(η2 + ξ1 + ξ2)3

]
Ψ(p22⊥)gb

= gaΨ(p12⊥)
[
β2

8πα′η2

]
Ψ(p22⊥)gb. (B.42)

The contribution of the diagram (b) of Fig. B.27 is determined by
analogous integrals, and we have the result

fb2 = −1
4
fa2 .

Then from (B.31) and (B.42) we obtain an expression for the two-particle
correlator

ρ2 ≡ f2(p1, p2)
σtot

− f1(p1)
σtot

f1(p2)
σtot

=
1
η2

3β2

32πα′
Ψ(p12⊥)Ψ(p22⊥). (B.43)

It is of interest to note that the sign of ρ2 for η2 � 1 is uniquely
determined (as positive).

B.5 Fluctuations in the distribution of the density of produced
particles

When ξ → ∞, the average number of particles produced in the interaction
is large, n � aξ. The final state which appears in an individual event can
therefore be described by the density of the number of particles ν(η) in
rapidity space. The total number of particles produced,

n(ξ) =
∫ ξ

1
dη ν(η), (B.44)

will then fluctuate from event to event. As we have already discussed
in the Introduction to this Appendix, the “incorporation” of branch cuts
leads to a rather non-trivial structure (of the form of Fig. B.5) in the
distribution for the quantity n(ξ). In what follows, we shall attempt to
ascertain how frequently the functions ν(η) of a given form appear‡ and
what physical mechanism is responsible for such fluctuations.

‡ With mathematical rigour, the probabilities that given ν(η) appear are given by the
variations of a certain functional W [ν(η)], which in turn can be expressed in terms
of the set of all higher inclusive cross sections. However, we shall not dwell on this
point here, but shall confine ourselves to the more “transparent” considerations in
the text.
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The quantity ν(η), averaged over many events, can obviously be ex-
pressed in terms of the inclusive cross section f1(p⊥, η, ξ):

ν(η) =
1
σtot

∫
f1(η, p⊥, ξ)d2p⊥. (B.45)

Each cut pomeron of “length ξi” contains aξi particles on the average.
The average distance between the particles is therefore ∼ a−1. Clearly,
the density ν(η) is meaningful only after averaging over a length which is
large in comparison with a−1. This averaging will be implied.
There are two mechanisms which produce a deviation of the function

ν(η) from its asymptotic average value ν(η). The first is the small dis-
tance correlation in the pomeron, which leads to fluctuations in ν(η) with
a period of the order of several units of a−1. This correlation is due to
the non-vacuum reggeons and, as we have already mentioned, we shall as-
sume that an average is carried out over these fluctuations.§ The second
mechanism is due to the pomeron cuts; it leads to long range fluctuations
in ν(η), with periods up to ξ. We shall consider these fluctuations.
What kind of function ν(η) can appear? We saw in Section B.1 that

all the inelastic processes associated with the absorptive parts of reggeon
diagrams can be divided into topologically non-equivalent classes. We can
see at once that to each of them there corresponds a function ν(η), which
has a step form and takes integral values at each point (if η is measured
in units of a−1) equal to the number of cut reggeons “for the given η”.¶

For example:

 + + + · · ·
 (B.46)

§ The fluctuations in ν(η) due to the non-vacuum reggeons have a Poisson-like character
(see, e. g., [11]) and fall off exponentially with increasing η.

¶ The system which we are considering has the properties of a one-dimensional gas
placed in a volume ξ. A number of properties of this “Feynman gas” were discussed
in the literature (see [4, 5]). The non-exponential fall-off with distance η2 of the cor-
relation function ρ2, shows that the case of constant total cross sections corresponds
to the situation in which the “Feynman gas” is at the critical point. From the point
of view of the gas analogy, the step function ν(η) corresponds to the fact that, at the
critical point, the fluctuations divide the system into regions which are in different
“phases”. In this sense, there exist “phases” for the “Feynman gas” with different
densities ν = 0, 1, 2, . . . However, if α(0) < 1 for the pomeron, the long range fluc-
tuations in ν(η) are cut off like (η1 − η2)

−1 exp[−(1 − α(0))|η1 − η2|]. The quantity
1− α(0) can then be interpreted as |Tcrit − T |1/2.
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 − + · · ·
 (B.46a)


− + · · ·


(B.46b)

The functions ν(η) which are represented correspond to the absorptive
parts of reggeon diagrams with bare pomerons. In fact, it is only when
a bare pomeron (with a finite range of correlation in the ladder) is cut
that we obtain an η-independent contribution to ν(η) in the interval ξ1 <
η < ξ2, where |ξ2 − ξ1| is the energy invariant of the cut pomeron.

However, for the bare pomeron we must have α(0) < 1 [12]. The prob-
ability of finding the homogeneous configuration (B.46) therefore appears
as a power of s. This also applies to any configuration of ν(η) with
fixed positions of all the steps. It is thus a more important problem to
determine the average number of different inhomogeneities in ν(η), cor-
responding to the dominant events.

We shall first illustrate the method which we employ for the case of
the simplest inhomogeneity in ν(η), namely the hole shown in (B.46a).
It is convenient to introduce f̂1(λ, η, ξ), the inclusive cross section for
producing a hole of extent λ and rapidity η, having in mind the following
considerations.

The contribution of the diagrams (B.46a) with fixed η1 and η2 and
with bare trajectories gives the cross section for producing a hole with
boundaries η1 and η2 on the background of a homogeneous distribution.
Let us also consider the other diagrams with bare pomerons which give
functions ν(η) having a hole in the interval (η1, η2) and taking arbitrary
values outside this range (an example of one of these diagrams is shown in
(B.46b)). The total contribution of all such diagrams with bare pomerons
and fixed η1 and η2 it is natural to identify with f̂1(λ, η, ξ). But the sum
of these diagrams can, on the other hand, be re-expressed in terms of
a sum of the reggeon diagrams with the exact renormalized vertices and
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pomeron Green functions, for which α(0) = 1. We will then have

f̂1(λ, η, ξ) =


+ + · · ·


. (B.47)

When λ� 1, this series is dominated by only the first diagram, so that

f̂1(λ, η, ξ) � g[−Σ(λ)]g � g2 β2

16πα′λ3
, (B.48)

where we have made use of (B.33a) for Σ(λ), and the extra factor (−1)
appeared because Σ(λ) is cut “between” the reggeons. The diagrams
(B.47) for f̂1 are naturally compared with the diagram of Fig. B.15 for
f1, and we see that (abs)Σ(λ) plays the rôle of the vertex Ψ in the diagram
of Fig. B.15. Because of this similarity in the structures of the diagrams
for f1 and f̂1, the conclusions of the preceding sections concerning f1 carry
over naturally to f̂1.
Moreover, the function f̂1, which is an inclusive cross section, must

satisfy the normalization relation∫
f̂1(λ, η, ξ)dη = σtot 〈m(λ)〉, (B.49)

where 〈m(λ)〉dλ is the average multiplicity of holes in ν(η) with the size
(λ, λ+ dλ). Substituting (B.48) into (B.49), we find

〈m(λ)〉 = ξ[(abs)Σ(λ)] � ξ β2

16πα′λ3
. (B.50)

This relationship is of interest, firstly because only known quantities ap-
pear on the right-hand side of (B.50), and secondly because it provides
a new s-channel meaning for the self-energy part of Σ(λ). The foregoing
considerations obviously carry over directly to other forms of inhomo-
geneities in the function ν(η).
The diagrams (B.47), but with both cut reggeons in Σ(λ) (Fig. B.28),

give the inclusive cross section for producing a column (in the interval
η1, η1 + λ, ν(η) = 2).
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Fig. B.28

Using (B.16a) and (B.18), we obtain at once

〈m(λ)〉c = 2〈m(λ)〉h. (B.51)

Similarly, the absorptive parts of more complex diagrams for Σ(λ) give the
inclusive cross sections for producing the corresponding inhomogeneities
of ν(η).

The inhomogeneities of the hole and column type with ν = 2 obvi-
ously dominate in ν(η) for large λ since f̂1 for more complex fluctuations
contains a higher power of λ in the denominator.‖ In what follows, we
shall therefore consider only these simplest inhomogeneities of ν(η). The
quantity

m(λ) =
∫ ∞

1
dλ

′〈m(λ
′
)〉 (B.52)

obviously gives the average multiplicity of holes (columns) with ranges
greater than λ. From (B.50) we have

m(λ) =
ξβ2

32πα′λ2
. (B.53)

We find from this that the average distances between holes with range
∼ λ will be

∼ 32πα′

β2
λ2 � λ for λ2 � 1. (B.54)

Thus, we see that the holes form a “rarefied gas” for which the aver-
age value of the correlator is ρ̂2 ∼ 1/λ2 � 1. It follows from this that
the probability wm of finding m holes (columns) with ranges λ � 1 in
the system has a Poisson distribution with the average number mh(λ)
(mc(λ)):

wm =
e−m(λ)

m!
|m(λ)|m. (B.55)

‖ We shall not consider here the question of “fine structure” in the columns. The ranges
of these inhomogeneities are ≤ β

√
λ/32πα′. On “observing” inhomogeneities of ν(η)

with ranges ≥ λ, we must therefore average ν(η) over the intervals 0 <∼ β
√

λ/32πα′.
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For λ ∼ λmax = β
√
ξ/32πα′, we have m(λmax) ∼ 1. This means that the

spectrum of holes (columns) is concentrated in the region

λmax >∼ λ >∼ λ0 ∼ 1. (B.56)

For λ� λmax the quantity m(λ) � 1 obviously has the significance of the
probability of finding a single hole (column) of range λ in an individual
event.
Our discussion shows that, on the average, ν(η) must have (with weight

∼ 1) the following structure: there is of the order of one hole (and two
columns) with ranges ∼ λmax ∼ β√ξ/4√πα′, of the order of four holes
(and double the number of columns) with ranges ∼ λmax/2, etc., up to
values of λ of the order of the correlation length.
Thus, it is clear that the structure of the real function ν(η) is highly

non-uniform and will be only slightly reminiscent of ν(η) � const, which
characterizes a simple multi-peripheral chain.∗∗

In conclusion, let us consider what phenomena may be expected in
individual multi-particle events at non-asymptotic ξ. When ξ is such that
λmax ∼ (β/4

√
πα′)

√
ξ <∼ λ0, where λ0 is the correlation length associated

with the non-vacuum reggeons (λ0 ∼ 2), there will be produced mainly
events with homogeneous ν(η). But when (β/4

√
πα′)

√
ξ becomes greater

than λ0, there will “appear” a hole or column with sizes larger than the
correlation length in the individual events (with weight ∼ 1). When ξ is
increased further, there may appear a second inhomogeneity, etc.
The foregoing behaviour of ν(η) is obviously reminiscent of the obser-

vation, which has been discussed for many years (mainly in the literature
on cosmic-ray physics), that there are appreciable inhomogeneities in in-
dividual multi-particle events; these inhomogeneities are explained (in the
same literature) mainly by invoking the hypothesis of fireballs. However,
the foregoing considerations show that it may be possible to explain the
large inhomogeneities of ν(η) without invoking any new physical ideas.

Appendix

We shall present simple arguments which show that Nν is not changed
for various cuts.
The vertex Nν arises in calculating the asymptotic form of the Feynman

diagrams of Fig. B.29 and can be written in the form [2]

Nν =
∫ ∞

−∞

ν∏
i=1

d(αis)d(α̃is)
ziz̃i

δ

[
ν∑
i=1

(αi + α̃i)

][
ν∏
i=1

dβid2pi⊥
2

giβ
Ji
i

]
R,

(B.57)

∗∗ Some of the conclusions of this section coincide with the results contained in a con-
tribution of K.A.Ter-Martirosian to the Batavia conference (September 1972).
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where

pi = αipb + βipa + pi⊥, ki = α̃ip
′
b + β̃ip

′
a + ki⊥, (p

′
a)
2 � (p

′
b)
2 � 0,

zi = p2i −m2 + iε, z̃i = k2i −m2 + iε,
Ji are the complex angular momenta of the reggeons, and R is the ampli-
tude for the process shown in Fig. B.30.

Fig. B.29

The integration in (B.57) is carried out over αi, α̃i with the Feynman
rule for avoiding singularities, and over βi between finite limits (βi > 0).
It is also important (see [12]) that the factors βJi

i do not lead to any new
singularities in the integrals over αi, α̃i.

It will be important for us to observe that the amplitude R is inte-
grated over the α variables of all the lines (pi and ki) in a completely
symmetric manner, independently of the reggeons to which these lines
are joined.

Fig. B.30
Fig. B.31

Let us consider the absorptive part of the diagram of Fig. B.29, when of
the ν reggeons µ are cut, µ1 being to the left of the cut and the remaining
number µ2 = ν − µ− µ1 to the right.

Then the cut vertex Nν takes the form

N (µ,µ1,µ2)
ν =

∫ ∞

0
dγ δ(γ − (α+ αL))

∫ ∞

−∞

ν∏
i=1

d(αis)d(α̃is)
ziz̃i

× δ
(∑

(αi + α̃i)
)[∏

i

dβid2pi⊥
2

giβ
Ji
i

]
[(abs)WR], (B.58)
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where (abs)WR is the absorptive part of R in the variable W = sγ,
corresponding to the re-grouping of the lines shown in Fig. B.31 (α and
α̃ are the sets of lines from the cut reggeons).
But the vertexNν can itself be written in the same form (B.58). Indeed,

we can always multiply the right-hand side of (B.57) by∫ ∞

−∞
dγ δ(γ − (α+ αL)),

and then close the contour of integration over γ on the right-hand cut of
the amplitude R. We then arrive at (B.58) for Nν .
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Appendix C

Theory of the heavy pomeron

V.N.Gribov

The small shrinkage of the diffraction peak is used for studying the
pomeron structure in the intermediate non-asymptotic energy region.
Even in this region the cross sections are shown to be factorized and
basically determined by a pole and by enhanced cuts. The total
cross sections rise as (ln lnE)2 and the interaction radius as ln lnE.
The general character of inelastic processes is the same as in the
asymptotic theory in the case of strong coupling.

C.1 Introduction

A somewhat conflicting situation has developed in describing the strong
interactions at high energies on the basis of the complex angular momen-
tum theory and the multi-peripheral model of inelastic processes.

On the one hand, there is a seemingly consistent scheme for describing
the total cross sections, elastic and inelastic processes, inclusive spectra
etc., which led to a good qualitative description of the experimental data
and predicted almost all qualitative phenomena that have been discovered
in the last few years, such as the shrinkage of the diffraction peak, scaling,
plateau, the nature of diffraction dissociation in the large mass region, a
rise in the total cross sections, and others. On the other hand, all attempts
to make a quantitative description are handicapped by the fact that the
theory contains too many parameters whose choice is mostly arbitrary.

The scheme for describing high energy processes [1, 2] is generally as
follows. The energy dependence of the total cross section and the elas-
tic scattering is described as the result of the exchange of one or several
pomerons. Each of such exchanges may be described by the reggeon
diagrams Fig. C.1. Cross sections of individual inelastic processes are

267
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Fig. C.1 Fig. C.2

described by cutting the diagrams (calculating the imaginary part) under
the assumption that processes with uniform particle distribution in rapid-
ity correspond to a pole (Fig. C.2). Then all other diagrams describe all
kinds of fluctuations in inelastic processes. For instance, the diagram in
Fig. C.3(a) describes the fact that both a hole in the density distribution
and doubled density are possible over a particular range of rapidity.
Fig. C.1(b) describes the possibility of elastic and quasi-elastic scat-

tering or doubled density throughout the whole range of rapidity. It is
obvious that to make a single pomeron exchange a decisive factor, i.e. for
the particles produced to have mainly uniform distribution in rapidity,
fluctuations should not be anomalously large.

Fig. C.3

Referring to the simple diagrams in Figs. C.1(b) and C.1(c), we see
that they comply with this condition because, due to shrinkage of the
diffraction peak (the pomeron motion) their contributions decrease with
an increase in energy as a power of ξ (ξ = ln s/m2), that is, the probabil-
ity of a large fluctuation is small. As to the diagrams of the type shown in
Fig. C.3, the situation is not so simple and the result depends upon the
assumptions made about the magnitude of the interaction vertices, the
problems involved being considered below. But in fact, with the elemen-
tary diagrams, too, all is not well. The probability of large fluctuations
decreases only due to shrinkage of the diffraction peak determined by the
parameter α′, the slope of the Pomeranchuk pole,

α(K2) = 1− α′K2

(K2 = −t is the square of the transferred transverse momentum), which
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denotes one fourth of the diffusion coefficient of particles on the impact
parameter plane.

If 4α′ were of the order of R2, where R is the hadron radius, the proba-
bilities of large fluctuations would drop rapidly with an increase in energy
and could be ignored in the total cross section calculations. Indeed, ex-
perimentally, 4α′ ∼ 1/m2, where m is the nucleon mass and R2 ∼ µ2/4
is the mass of the π meson; 4µ2/m2 ∼ 1/12, and hence contributions
even from the elementary diagrams practically do not increase with an
increase in energy. All of these diagrams have to be taken into account,
which leads to a large number of unknown parameters. The cause of the
existence of such a small parameter is not quite clear. The smallness of
the diffusion coefficient may be related to both large mass partons inside
a hadron and a fairly strong coupling between partons.

However, regardless of the nature of this phenomenon, it completely
changes the character of fluctuations in the inelastic process over the
attainable energy range compared with what might be expected, if there
were no such small parameter.

Considering that the asymptotic behaviour may occur only if 4α′ξ � R2,
we shall always be within the preasymptotic region 1 < ξ <∼ R2/4α′. On
the other hand, experiment suggests that even in this region there are
simple regularities corresponding to a neglect of the fluctuations as a first
approximation and restriction to one-pomeron exchange. This points to
an apparent cancellation of contributions from individual diagrams.

The description suggested in this paper takes into account the small-
ness of 4α′/R2 right from the start and makes it possible to see that such
a cancellation really occurs and that even in this region 1 < ξ <∼ R2/4α′
non-enhanced diagrams are small and the total cross sections are de-
scribed by the Pomeranchuk pole with a slightly corrected Green function.
At the same time, from the smallness of the parameters determining the
behaviour of the cross sections over the asymptotic region ξ > R2/4α′,
the idea comes that if there is a wide region of energies where the peak
shrinkage is inessential, there should be at least an approximate theory
with a fixed Pomeranchuk pole giving a sensible description both of the
total cross sections and of all kinds of inelastic processes. Therefore, to
a zero approximation, it should make sense to assume α′ = 0 and only
then consider corrections to this approximation.

C.2 Non-enhanced cuts at α′ = 0

We consider an elementary two-reggeon cut in Fig. C.4 but take into
account the possible interaction between two reggeons.

Let us see how to write it. It is best to do this using not momentum
space, but the impact parameter space ρ̄. The pomeron Green function
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Fig. C.4

G(K, ξ) = exp[−α′K2ξ] in the ρ̄ space is of the form

G(ρ̄− ρ̄′, ξ) = 1
4πα′ξ

e−(ρ̄−ρ̄
′)2/4α′ξ, (C.1)

which at α′ = 0 gives

G(ρ̄− ρ̄′, ξ) = δ(ρ̄− ρ̄′), (C.2)

that is, at α′ = 0 the pomeron has an infinitely large mass and does not
move along ρ̄. We consider first the pomeron interactions at equal ξ, i.e.
the interactions at low relative parton energies. This interaction may be
thought of as a particle exchange with the Green function

D(ρ̄1, ρ̄2, ξ1, ξ2) = δ(ξ1 − ξ2)V (ρ12).
Let us adopt this kind of interaction. Then the Green function for two

pomerons entering into the diagrams in Fig. C.4 may be presented as

G(ρ̄1, ρ̄′1; ρ̄2, ρ̄
′
2; ξ)

= δ(ρ̄1 − ρ̄′1)δ(ρ̄2 − ρ̄′2)−
ξ∫
0

V (ρ12)G(ρ̄1, ρ̄′1, ρ̄2, ρ̄
′
2, ξ

′)dξ′, (C.3)

and hence

G(ρ̄1, ρ̄′1; ρ̄2, ρ̄
′
2; ξ) = δ(ρ̄1 − ρ̄′1)δ(ρ̄2 − ρ̄′2)G(ρ12, ξ), (C.4)

G(ρ12, ξ) = e−V (ρ12)ξ, (C.5)

or in the complex momentum space

G(ρ12, ω) =
1

ω + V (ρ12)
. (C.6)

It is obvious from this fact that if we want the contribution from the cuts
to fall and not to rise with increasing ξ, we must assume that V (ρ12) > 0.
In this case the contribution of the two-reggeon cut is

f2(K̄, ξ) = −
∫
g1(K̄, ρ̄12)e−V (ρ12)ξg2(K̄, ρ̄12)d2ρ12. (C.7)
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If g1(K̄, ρ̄), g2(K̄, ρ̄) ∼ V (ρ) at large ρ, then

f2(K, ξ) ∼ 1
ξ2
ρ0(ξ), (C.8)

where ρ0(ξ) = R ln(v0ξ) if V (ρ) = v0 exp(−ρ/R), v0ξ > 1,
i.e. f2(K, ξ) falls with increasing energy despite the absence
of the shrinkage of the peak.

Similarly, when considering a contribution of the three-
reggeon cut (Fig. C.5) if the reggeon interaction is ac-
counted for, we obtain for the three-reggeon Green function
an expression of the form Fig. C.5

G(ρ̄1, ρ̄′1, ρ̄2, ρ̄
′
2, ρ̄3, ρ̄

′
3; ξ) = δ(ρ̄1 − ρ̄′1)δ(ρ̄2 − ρ̄′2)δ(ρ̄3 − ρ̄′3)

× exp{[V (ρ12) + V (ρ13) + V (ρ23)]ξ}, (C.9)

and accordingly the contribution of the three-reggeon cut

f3(K, ξ) =
∫
g1(K̄, ρ̄12, ρ̄13) exp{−[V12 + V13 + V23]ξ}
× g2(K̄, ρ̄12, ρ̄13) d2ρ12d2ρ13. (C.10)

If g ∼ V 2 at all large ρ12, ρ13, ρ23, then f3 ∼ 1
ξ4
ρ20(ξ), that is, it falls

even more rapidly.
We see that non-enhanced diagrams are inessential at large ξ and

α′ = 0. The fall in the contribution of the non-enhanced cuts with in-
creasing energy is due to the fact that at small energies the fluctuations
occurring at large ρ12 (within the tail area) have no time to interact but
an increasingly large region of ρ12 becomes correlated as ξ increases.

C.3 Estimation of enhanced cuts at α′ = 0

Let us now discuss the amplitude for the decay of one reggeon to two. It
would be natural to present it in the form of the diagrams shown in Fig.
C.6.

Fig. C.6 Fig. C.7
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It is obvious that

Γ(ρ̄, ρ̄1, ρ̄2; ξ) = γ(ρ̄, ρ̄1, ρ̄2)δ(ξ)−
ξ∫
0

V (ρ12)Γ(ρ̄, ρ̄1, ρ̄2; ξ′)dξ′, (C.11)

or in the ω space

Γ(ρ̄, ρ̄1, ρ̄2;ω) =
ωγ(ρ̄, ρ̄1, ρ̄2)
ω + V (ρ12)

, (C.12)

i.e. it tends to zero at ω = 0. It is clear from this that the contribution
of the half-enhanced cuts in Fig. C.7 is also not large. In the ω space it
has the form

−
∫
g1(K̄, ρ̄12)

1
ω
Γ(K̄, ρ̄12)d2ρ12

1
ω
g2(K̄)

= −
∫

d2ρ12
g1(K̄, ρ̄12)γ(K̄, ρ̄12)

ω + V (ρ12)
1
ω
g2(K). (C.13)

The coefficient for 1/ω converges at ω = 0 and yields a renormalization of
the constant, coupling the pomeron to a particle. After renormalization,
the contribution of a half-enhanced cut has the form∫

g1(K̄, ρ̄12)γ(K̄, ρ̄12)d2ρ12
V (ρ12)[ω + V (ρ12)]

g2(K) ∼ ln2
1
ω
, (C.14)

if γ ∼ g ∼ V , that is, it falls with increasing energy as (1/ξ) ln ξ.
We now turn to discussing corrections to the pomeron Green function.

The first correction to the self-energy Σ (Fig. C.8) has the form

Σ(K,ω) = −
∫
γ(K̄1, ρ̄12)γ(K̄, ρ̄12)

ω + V (ρ12)
d2ρ12. (C.15)

If based on our assumption, α′ = 0, i.e. the pole position is
independent of K, we should renormalize Σ(K,ω) so that
when taking into account the interaction, α′ remains equal
to 0, i.e. the renormalized self-energy Σc(K,ω) = Σ(K,ω)−
Σ(K, 0), as distinct from the conventional method of renor-
malization when we subtract Σ(0, 0). For this to be done
Σ(K, 0) should have no singularity at K = 0, Fig. C.8

Σ(K, 0) = −
∫
γ2(K̄, ρ̄12)
V (ρ12)

d2ρ12. (C.16)

One can see from this expression that if γ(K, ρ12) has the same exponents
as V , then the integral converges:

Σc(K,ω) = ω
∫

d2ρ12
γ2(K̄, ρ̄12)

V (ρ12)[ω + V (ρ12)]
. (C.17)
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If γ ∼ V ∼ exp(−ρ/R), then γ = βV and, at K = 0,

Σc(0, ω) = β2ω ln2
1
ω
, (C.18)

that is

G(K,ω) ∼ 1
ω
+
β2 ln2(1/ω)

ω
. (C.19)

Hence, the corrections to G are significant although they are at the
ln(1/ω) level. This means that there are higher approximations to Σc.
Prior to taking them into account let us discuss the possible structure of
γ(K̄, ρ̄12) and its relation with V (ρ12) in more detail.

C.4 Structure of the transition amplitude of one pomeron
to two

As noted above, taking account of the interaction V (ρ12) between two
pomerons caused the probability of a fluctuation within which, for in-
stance, two pomerons remain independent during the ‘time’ to decrease
with increase in ξ. In this case the pomerons convert to their normal
state, i.e. one pomeron.

The vertex γ(ρ̄, ρ̄1, ρ̄2) describes the same process explicitly, therefore
the two quantities γ(ρ, ρ1, ρ2) and V (ρ12) should be intimately connected.
The existence of a relationship between them is particularly clear from
the viewpoint of the t-channel.

From the point of view of the t-channel the pomeron can be described
by a set of Feynman diagrams containing in the intermediate state, for
instance, two, four, . . .π-mesons. The contribution of the cut is a special
selection of the diagrams in which mesons 1, 2 do not interact with mesons
3, 4. Taking account of the pomeron interaction corresponds to the in-
clusion of these interactions. As a result, the state of the four mesons
becomes correlated and is nothing but the contribution of the four-meson
state to the pomeron. This suggests that the transition amplitude of one

Fig. C.9

pomeron to two does not correspond to the blocks
A and B in Fig. C.9, but is determined by the
residue in the pomeron pole of the four-particle
interaction amplitude. The difference here is the
same as that between the point amplitude of the
transition of two particles to one in field theory
and the amplitude of the transition of two parti-
cles to the bound state determined by the interac-
tion potential. The situation is aggravated by the
fact that whereas a neutron and a proton, located
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at particular points ρ1 and ρ2, can either remain in the continuous spec-
trum or convert to a deuteron, in our case two pomerons necessarily con-
vert to one.
In the light of the above it seems quite natural that the quantity

γ(0, ρ12) =
∫
d2ρ γ(ρ̄, ρ̄1, ρ̄2) determining the total conversion probabil-

ity of two reggeons to one per unit interval ξ depends on ρ12 just like
V (ρ12), in any case at large ρ12, i.e.

γ(0, ρ12) = βV (ρ12). (C.20)

We now consider the structure of γ(ρ̄, ρ̄1, ρ̄2) in more detail using ele-
mentary examples so as to have an idea about the possible dependence
of γ(K̄, ρ̄12) upon K and hence G(K,ω). Let us write γ(ρ̄, ρ̄1, ρ̄2), for
instance, in the form

γ(ρ̄, ρ̄1, ρ̄2) = γ0(ρ̄, ρ̄1, ρ̄2) exp
[
− 1
R
|ρ̄− ρ̄1| − 1

R
|ρ̄− ρ̄2|

]
, (C.21)

where γ0 contains no exponential factors. At large ρ12,

γ(ρ̄, ρ̄1, ρ̄2) = γ0(ρ12)e−ρ12/R exp
[
−2(ρ̄− ρ̄c)2

Rρ12
sin2 ϕ

]
, (C.22)

where ρ̄c = 1
2(ρ̄1 + ρ̄2), ϕ is the angle between ρ̄12 and ρ̄− ρ̄c . From this

expression it will be obvious that over the angular range ϕ ∼ √
R/ρ12,

γ(ρ̄, ρ̄1, ρ̄2) contains no exponential smallness in |ρ̄−ρ̄c| up to |ρ̄−ρ̄c| ∼ ρ12.
This means that γ(K, ρ12) will significantly change at large ρ12 in the
region of small K ∼ 1/ρ12 and decrease at Kρ12 � 1. This in turn
indicates that Σc(K,ω) in (C.17) will fall rapidly with increasing K at
KR ln(1/ω) > 1 because essentially the ρ12 in (C.17) are of the order of
R ln(1/ω) assuming (C.20). As a result, if the pomeron Green function
G(ω,K) is written as (1/ω)Z(ω,K) then Z(ω,K) will vary essentially at
K ∼ 1/(R ln(1/ω)) ∼ 1/(R ln ξ), and the elastic scattering cross section
at K2 ∼ 1/(R2 ln2 ξ). In other words, despite the fact that we put α′ = 0,
we obtain a shrinkage of the diffraction peak, but much less significant,
K2 ∼ 1/(R2 ln2 ξ) instead of K2 ∼ 1/(α′ξ). We have obtained this ef-
fect under the assumption of a definite exponential form for γ(ρ, ρ1, ρ2).
Should we choose γ in the Gaussian form, this effect would not occur.
However, a more detailed analysis of the higher order diagrams in γ indi-
cates that it would nevertheless occur in these diagrams and just of this
order. Therefore, there is no reason to believe that even a first approxima-
tion does not have this feature. Moreover, if we assume the opposite, the
problems related to the unitarity condition would occur due to the sign
changing higher approximations. We shall assume below, unless otherwise
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specified, that

γ(K̄, ρ̄12) = V (ρ12)β(Kρ12, K̄ρ̄12), β(0, 0) ≡ β. (C.23)

C.5 The Green function and the vertex part at α′ = 0

We have shown above that the elementary ladder diagrams in Figs. C.6
and C.8 give a significant contribution to the vertex part and the pomeron
Green function.

Let us now consider higher orders. We start with the diagram in Fig.
C.10. On renormalizing the inner self-energy, the contribution from this
diagram may be written in the form

Σ(ω, ρ̄− ρ̄′)
=
∫ ∏

i

d2ρi γ(ρ̄, ρ̄1, ρ̄2)
1

ω + V12
γ(ρ̄1, ρ̄3, ρ̄4)

ω + V23 + V24
V34(ω + V34 + V23 + V24)

×γ(ρ̄3, ρ̄4, ρ̄5) 1
ω + V25

γ(ρ̄2, ρ̄5, ρ̄′). (C.24)

To find the singular contribution to Σc(ω, ρ̄− ρ̄′) = ωσ(ρ0, ρ̄− ρ̄′),

Fig. C.10

V (ρ0) = ω, we can differentiate Σ(ω, ρ̄−ρ̄′)
with respect to ω and then seek for the inte-
gration region yielding only the logarithmic de-
pendence on ω. Such a contribution in σ(ρ0(ω),
ρ̄ − ρ̄′) occurs in the region where all poten-
tials cancel and only integration with respect
to d2ρi, over the region of the order of ρ20, re-
mains. If potentials remain in the expression
for σ, then the corresponding regions give con-
tributions either to renormalizations or to the

terms of the order of ω. Differentiating ω in the numerator of (C.24) gives

σ2(ρ0, ρ̄− ρ̄1) = −
∫ ∏

i
d2ρi γ(ρ̄, ρ̄1, ρ̄2)

1
ω + V12

γ(ρ̄1, ρ̄3, ρ̄4)

× 1
V34(ω + V34)

γ(ρ̄3, ρ̄4, ρ̄5)
1

ω + V25
γ(ρ̄2, ρ̄5, ρ̄′)

(V34 � V23, V24). (C.25)

If we differentiate 1/(ω+V12) or 1/(ω+V25), then at ω → 0 we obtain an
expression different from the first approximation diagram in Fig. C.8 only
in the replacement of one of the interaction potentials with a non-local
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potential

V (ρ̄1ρ̄′1, ρ2) =
∫

d2ρ2d2ρ4γ(ρ̄1, ρ̄3, ρ̄4)
V23 + V24

V34(V23 + V24 + V34)
γ(ρ̄3, ρ̄4, ρ̄′1).

(C.26)
We shall see later what would change in our analysis if we considered

non-local potentials from the very beginning. Now we assume that this
change is insignificant, and then (C.26) merely renormalizes the interac-
tion potential and thus can be neglected.
Differentiating the denominator ω + V34 + V23 + V24 would give an

expression containing instead of 1/V 234 in (C.25) (ω → 0) the factor

1
V 234

V34(V23 + V23)
(V34 + V23 + V24)2

,

which incorporates additional smallness everywhere except in the region
V34 ∼ V23 + V24 which is small compared with the integration region in
(C.25). Thus, the main contribution to σ2(ρ0(ω), ρ̄−ρ̄′) is given by (C.25).
This contribution is easy to calculate:

σ2(ρ0, ρ̄− ρ̄′)
= −

∫ ∏
i

d2ρi
γ(ρ̄, ρ̄1, ρ̄2)
V12

γ(ρ̄1, ρ̄3, ρ̄4)
V34

γ(ρ̄3, ρ̄4, ρ̄5)
V34

γ(ρ̄5, ρ̄2, ρ̄′)
V25

� −
∫

d2ρ1d2ρ2d2ρ5
γ(ρ̄, ρ̄1ρ̄2)
V12

σ1(ρ12, ρ̄1 − ρ̄5)γ(ρ̄5ρ̄2ρ̄
′)

V25
(ρ12 < ρ0, ρ25 < ρ0, ρ34 < ρ12, ρ25) , (C.27)

σ(ρ0,K = 0) = −β2
ρ0∫
0

d2ρ12σ1(ρ12,K = 0) � −1
2
β4π2ρ40(ω)

(ρ12 < ρ0) . (C.28)

To understand what occurs in higher approximations, let us consider
the diagram in Fig. C.11.

Fig. C.11

An interesting feature of the theory under con-
sideration, distinguishing it from the conven-
tional logarithmic field theories, is that the di-
agrams of the type presented in Fig. C.11 are
inessential to the main logarithmic approxima-
tion. This will be obvious from what follows.
The diagram in Fig. C.11 contains two factors
of the form
ω + V23 + V24

V34(V34 + V23 + V24)
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as against one such factor in (C.24). This factor is of the order of ω/V 234
over the main region. In the case of (C.24) (ω+V23+V24) in the numerator
ensured the wanted smallness of Σc ∼ ωσ. As to the diagram in Fig.
C.11, two such factors will give a contribution of the order of ω2.

Should we neglect the reggeon interaction between points a and b,
the additional smallness would be compensated by 1/ω of the contri-
bution from the intermediate state between points a and b. If we take
into account the interaction 1/ω → 1/(ω + V ) we have the smallness
ω/(ω + V ) ∼ ω/V in logarithmic approximation. The situation changes
if we consider, for instance, the diagrams in Fig. C.12 corresponding to
simultaneously occurring fluctuations; hence there is no interaction be-
tween them. Diagrams renormalizing inner self-energies are given in Figs.
C.13(a), C.13(b). The diagram in Fig. C.13(c) renormalizes the diagram
similar to Fig. C.11, but with self-energy inserts in different lines.

Fig. C.12

Fig. C.13

Let us write out the energy denominators from the diagrams in Fig.
C.12, assuming from the very beginning for simplicity that

V12, V78 � V34, V56,

1
ω + V12

· 1
ω + V34

· 1
ω + V34 + V56

· 1
ω + V34

· 1
ω + V78

+ permutations

=
1

ω + V12
· 1
(ω + V34)2

· 1
(ω + V56)2

· (2ω + V34 + V56)2

ω + V34 + V56
· 1
ω + V78

.
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Similar energy denominators in renormalizing diagrams give

1
ω + V12

· 1
V56

· 1
(ω + V34)2

· 1
ω + V78

+
1

ω + V12
· 1
V34

· 1
(ω + V56)2

· 1
ω + V78

.

As a result, after renormalizing, instead of energy denominators we obtain
the following expression:

− 1
ω + V12

· 1
V34(ω + V34)

· 1
V56(ω + V56)

· ω(V34 + V56)
ω + V34 + V56

· 1
ω + V78

·

� −ω 1
V12

· 1
V 234

· 1
V 256

· 1
V78

(V56, V34 � V12, V78 � ω).

We would obtain the same result through calcu-
lating the derivative with respect to ω instead
of performing renormalizations explicitly. In so
doing it is readily seen that only differentiating
the denominator ω+V34+V56 leads to the loga-
rithmic range of integration in the sum of all di-
agrams. It may also be shown that the diagrams
of the type presented in Fig. C.14 do not give
a contribution to a logarithmic approximation.
Considering the above, one may readily become
aware of the total set of diagrams giving a con-
tribution to a logarithmic approximation. This
set comprises all diagrams of the type shown in
Fig. C.15. The dashed line drawn so as to in-
tersect a maximum number of lines found in the
diagram indicates that the energy denominator
corresponding to this crossing should be

Fig. C.14

Fig. C.15

squared for calculating σ(ρ0, ρ̄− ρ̄′). Writing down an equation for this
set of diagrams presents no difficulties. If we denote this set of diagrams
with n lines in the maximum crossing by fn(ρ0, ρ̄− ρ̄′), then

fn(ρ0, ρ̄− ρ̄′) =
n∑

n1,n2=1
n2+n2=n

∫
d2ρ1d2ρ2d2ρ′1d

2ρ′2
γ(ρ̄, ρ̄1, ρ̄2)
V12

fn1(ρ12, ρ̄1 − ρ̄′1)

× fn2(ρ12, ρ̄2 − ρ̄′2)
γ(ρ̄1, ρ̄2, ρ̄′1)
V1′2′

,

f1 = δ(ρ̄1 − ρ̄′1), ρ12 < ρ0, (C.29)

where ρ12 is substituted on the right as an argument into fn1(ρ12, ρ̄i− ρ̄′i)
instead of ρ0 so as to comply with the condition of the type ρ34, ρ56 < ρ12
determining the logarithmic range of integration in the internal integra-
tion.
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If the pomeron Green function is written as

G = Z/ω, (C.30)

then

Z−1 =
∞∑
n=1

fn,

and hence in momentum space

Z−1(ρ0,K) = 1−
∫

d2ρ12d2ρ′12
(
β(K̄, ρ̄′12)

×
∫

d2q
(2π)2

ei q̄(ρ̄12−ρ̄′12)

z(ρ12, 12K̄ + q̄)z(ρ12, 12K̄ − q̄)β(K̄, ρ̄
′
12) θ (ρ0 − ρ12)

)
. (C.31)

We have written (C.29) and (C.31) asymmetrically with respect to ρ̄12
and ρ̄′12 assuming that since in all integrations ρ34, . . . is less than ρ12,
|ρ̄1−ρ̄′1| < ρ12 and hence, the functions Z−1(ρ12, ρ̄1−ρ̄′1), Z−1(ρ12, ρ̄2−ρ̄′2)
automatically ensure ρ′12 ∼ ρ12. At K = 0, β(0, ρ12) equals, from the
assumption, a constant and

Z−1(ρ0, 0) = 1− πβ2
ρ0∫
0

dρ212 Z
−2(ρ12, 0), (C.32)

which gives

Z(ρ0, 0) = 1 + πβ2ρ20. (C.33)

Thus, the total cross sections increase as ρ20 ∼ ln2 ξ. At K �= 0, Z(ρ0,K)
determined by (C.31) exhibits the following significant property. Since
β(K̄, ρ̄12), as discussed above, decreases at Kρ12 > 1 (shrinkage of the
cone) in (C.31), θ(ρ0 − ρ12) may be omitted at Kρ0 � 1 and hence
Z(ρ0,K) is independent of ρ0. This means that if

Z(ρ0,K) = πβ2ρ20F (K, ρ0), ρ0 � R,

then
F (K, ρ0) = c/K2ρ20 at K2ρ20 � 1, but K2R2 � 1.

Consequently,

Z(ρ0,K) = c/K2 for 1/ρ0 � K � 1/R, (C.34)

i.e. the elastic scattering amplitudes cease to be dependent on energy at
Kρ0 � 1. The elastic scattering cross section is

σel ∼
∫
Z2(K, ρ0) d2K ∼ ρ20,
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i.e. the solution we obtained corresponds to scattering on a black disk of
radius ρ0 ln(v0ξ), v0ξ > 1.
We shall return later to discussing the properties of the solution ob-

tained and we now consider the behaviour of the vertex part.
Following the analysis made above, the calcu-
lation of Γ presents no special problems. For
calculating this quantity it suffices to note that
when computing Σc for the elementary diagram
only were we required to renormalize the ‘mass’;
for other diagrams it was sufficient to renormal-
ize the mass in the internal lines, that is to per-
form the same renormalization which is required
when calculating Γ.

Fig. C.16

This means that the total set of diagrams for Γ is the same as for Σ
(Fig. C.16). In this case,

ωσ(ρ0,K) =
∫

d2ρ12β(K̄1, ρ̄12)Γ(K̄, ρ̄12). (C.35)

Comparison between (C.35) and (C.31) gives

Γ(K̄, ρ̄12) = ω
∫

d2q
(2π)2

β(K̄, q̄)θ(ρ0 − ρ12)
Z(ρ12, 12K̄ + q̄)Z(ρ12, 12K̄ − q̄) . (C.36)

At K = 0,

β(K̄, q̄) = (2π)2δ(q̄)β,

Γ(0, ρ) =
ωβ

Z2(ρ, 0)
θ(ρ0 − ρ). (C.37)

Prior to considering the physical consequences of the solution obtained,
let us discuss the question as to whether the character of the solution will
change if we go beyond the scope of application of the logarithmic solution.
Formally the logarithmic approximation is valid at β2R2 � 1, β2ρ20 ∼ 1.
Essentially, the problem is the following. We have found the main con-
tribution to G and Γ due to the logarithmically large integration regions
ignoring the regions ρ0/R times less in each approximation. As a result
of taking into account these regions, the Green function turned out to be
rising, G ∼ ρ20/ω, and the vertex part Γ ∼ ω/ρ40 falling. Will the relative
contributions of large and small ranges change if we take into account the
new behaviour of G and Γ? Such situations are possible. For example, in
theories where the Green function in logarithmic approximation acquires
a pole, the region close to the pole, despite its smallness, begins to give
an essential contribution. We shall show that no such situation occurs in
our case.
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Let us ignore the dependence of Z(ρ0,K) on K, that is, we shall disre-
gard the pomeron motion arising from fluctuations in ρ̄ space for it only
reduces the difference between the Green functions and the initial ones,

G(ω, ρ̄− ρ̄′) = δ(ρ̄− ρ̄′)Z(ω)
ω
. (C.38)

We have started by calculating the Green function for two pomerons
G12(ω, ρ12) (Section C.2). In so doing, we obtained for G12(ω, ρ12) the
following expression:

G12(ω, ρ12) =
1

ω + V (ρ12)
.

If we substitute into the equation for G12(ω, ρ12) expression (C.38) in-
stead of G0 = 1/ω, it is easily shown that due only to the logarithmic
dependence of Z on ω, G12(ω, ρ12) will have the form

G12(ω, ρ12) =
1

ω/Z2(ω) + V (ρ12)
.

Similarly the three-particle Green function will take the form

G123(ω, ρik) =
1

ω/Z3 + V12 + V13 + V23
.

If we substitute these expressions instead of the old ones into the di-
agrams for σ(ρ0,K), obviously nothing will change, except the equation
for the boundary of the integration region V (ρ0) = ω. Now it will be
determined by the condition V (ρ0) = ω/Z2(ω). Besides, we have omitted
the diagrams of the type shown in Fig. C.14. This diagram was of the
order of β4ρ30 whereas the diagram in Fig. C.10 which was taken into
account was of the order of β4ρ40. If we calculate the contribution of the
diagram in Fig. C.14 to Σ with the new Green functions, a renormaliza-
tion needs to be performed which is equivalent to finding the derivative
∂Σ/∂ω. Then calculating ∂Σ/∂ω we shall have to differentiate the de-
nominators corresponding to various intermediate states. Differentiating
the denominators for two-particle intermediate states will give, as in the
case of the diagram in Fig. C.10, the renormalization of the interac-
tion potential. Differentiation of the denominator corresponding to the
three-particle intermediate state will yield the expression containing the
factor 1/Z3(ω). As a result, this diagram, besides the narrower integra-
tion range, will contain an additional small factor β2/Z which is small at
low ω ∼ β2/1 + π2β2ρ20 ∼ 1/ρ20 and independent of β. The arguments
adduced here show that the solution obtained is self-consistent and the
only condition for its application is ρ0/R� 1, i.e. ω/V0 � 1.
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So far it has been assumed that β(K̄, ρ̄)|K̄=0 = β = const, i.e. the
integral ∫

γ(ρ̄, ρ̄1, ρ̄2)
d2ρ
V (ρ12)

is independent of ρ12. Let us discuss what happens if we abandon this
hypothesis. If we assume that β = β(ρ12) rises with increasing ρ12,
β(ρ12) ∼ ρδ12, δ > 0, it will be found that Z(ρ0,K = 0) ∼ ρ2(1+δ)0 , i.e.
the cross section rises faster than ρ20, but the interaction radius remains
of the order of ρ0. This means that the elastic cross section is larger
than the total one. Assuming that β(ρ0) falls with the increase of ρ,
β(ρ0) ∼ ρ−δ0 ,

Z(ρ0,K = 0) ∼ ρ2(1−δ)0 at 0 < δ < 1.

It will be shown below, when calculating the inclusive cross section in
the three-pomeron limit, that this cross section is positively determined
only at δ < 2

3 . Consequently, in the theory with α′ = 0 the cross section
always rises slowly,

σt ∼ (ln ξ)ν ,
2
3
< ν < 2.

C.6 Properties of high energy processes in the theory
with α′ = 0

Let us formulate the principal results required for further discussion. The
pomeron Green function

G(ω,K) = Z(ρ0,K)/ω,

where ρ0 is determined by the condition V (ρ0) = ω. The vertex part

Γ(ω, K̄, ρ̄12) = ω
∫

d2q
(2π)2

β(K̄, q̄)Θ(ρ0 − ρ12)
Z(ρ̄12, 12K̄ + q̄)Z(ρ̄12, 12K̄ − q̄) , (C.39)

β(K̄, q̄) =
∫

d2ρ12
γ(K̄, ρ̄12)
V (ρ12)

eiq̄ρ̄12 , (C.40)

where V (ρ12) is the pomeron interaction potential, and γ(K, ρ12) is the
bare three-pomeron vertex.
Assuming that

β(0, q) = (2π)2δ(q̄)β, (C.41)

Γ(ω, 0, ρ12) =
ωβΘ(ρ0 − ρ12)
Z2(ρ12, 0))

. (C.42)
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C.6.1 Two-particle processes, total cross sections

We consider now the main diagrams making contributions to the two-
particle process amplitudes and hence to the total cross sections.

Calculating the diagrams in Figs. C.17(b,c,d) presents no special prob-
lems because it is coincident with the calculation of Σ(ω,K). The renor-
malization of the pole position is replaced by that of the particle coupling
constant. After renormalizing, we obtain, for instance, for the contribu-
tion of the diagram in Fig. C.17(b),

1
ω

∫
d2ρ12

g1(K̄, ρ̄12)
V (ρ12)

Γ(ω, K̄, ρ̄12)Z(ρ0K)g2(K)

≡ g1(ρ0,K)Z(ρ0,K)g2(K). (C.43)

Fig. C.17

The contribution from all diagrams in Fig. C.17 is

f(ω,K) =
1
ω
Z(ρ0,K)[g1(K) + ωg1(ρ0,K)][g2(K) + ωg2(ρ0,K)]

� 1
ω
Z(ρ0,K)g1g2 + Z(ρ0,K)[g1(K)g2(ρ0,K) + g2(K)g1(ρ0,K)].

(C.44)

The first ‘pole’ term results in a slowly changing amplitude

fp(ξ,K) = g1g2

(
i − 1

2
π
∂

∂ξ

)∫
dω
2πi

eωξ

ω
Z(ρ0,K)

= g1g2

(
i − 1

2
π
∂

∂ξ

)
Z̃(χ,K),

χ = ln(v0ξ), v0ξ > 1, Z̃(χ,K)�Z(ρ0(ξ),K), (C.45)

where ρ0(ξ) is determined by the condition V (ρ0)ξ = 1. The correction
term f̃(ξ,K) falls as a power of ξ. The extent to which it decreases
depends on the behaviour of the ‘coupling constant’ for two pomerons



284 Appendix C: Theory of the heavy pomeron

g1(K̄, ρ̄12) at large ρ12. If g1(K̄, ρ̄12) at large ρ12 coincides with V (ρ12),
then the correction falls as 1/ξ. If g1(K̄, ρ̄12) ∼ e−ρ12/R1 and V (ρ12) ∼
e−ρ12/R with R1 < R, f̃(ξ, 0) ∼ 1/ξ while for R1 > R, f̃(ξ, 0) ∼ ξ−R/R1 ,

f̃(ξ,K)

=
(
i− 1

2
π
∂

∂ξ

)
1
ξ

∂

∂χ
Z(ρ0,K)[g1(K)g2(ρ0,K) + g1(ρ0,K)g2(K)],

ρ0 = ρ0(χ), χ = ln v0ξ. (C.46)

The contribution of non-enhanced diagrams is less than (C.46). It is of
the order of 1/ξ2g1(K, ρ0)g2(K, ρ0). The elastic scattering cross section

σel =
∫
Z̃2(χ,K)

d2K
(4π)2

is of the order of
Z2(χ, 0)
ρ20(χ)

,

and, as discussed above, if Z ∼ ρ20, σel/σt ∼ const.

C.6.2 Inclusive spectra, multiplicity

We discuss now multi-particle processes.
An elementary characteristic of multi-particle processes is the inclu-

sive spectrum in the central region determined by the Kancheli–Muller
diagram (Fig. C.18). In the theory under consideration,

f(ξ, η) = Z̃(χη)Z̃(χξ−η)g1ϕ(K1)g2. (C.47)

Fig. C.18

This spectrum has a maximum at η = ξ/2 rising slowly
with increasing energy. The average multiplicity is

n̄ =
1

Z̃(χξ)

ξ∫
0

Z̃(χη)Z̃(χξ−η)dη ∼ ξZ(χξ). (C.48)

At Z(ρ0, 0) ∼ ρ20,
n̄ ∼ ξ ln2 ξ. (C.49)

C.6.3 Correlation, multiplicity distribution

Let us now consider the correlation function in a two-particle spectrum. It
is determined by the diagrams in Fig. C.19. There is no need to take into
account the interactions between points η1 and η2 in the second diagram,
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because the appropriate diagrams cancel when calculating the inclusive
spectrum. This statement was proved for three-reggeon interactions in [2].

Fig. C.19

Generally speaking, for four-reggeon
interactions this statement was consid-
ered to be wrong. It will be shown else-
where that this statement is right irre-
spective of the type of interaction.

The correlation corresponding to
the diagram in Fig. C.19(a) has a sim-
ple form

f1(ξ, η1, η2) = ϕ(K1)ϕ(K2)

×
[
Z(η1)Z(η2)Z(η3)

Z(ξ)
− Z(η1)Z(ξ − η1)Z(η2)Z(ξ − η2)

Z2(ξ)

]
,

Z(η) ≡ Z(χη), η3 = ξ − η1 − η2. (C.50)

It is easily seen that this correlation is always negative and if the sec-
ond diagram were not essential, the multiplicity distribution would be
narrower than the Poisson distribution n2 − n2 < n. In fact, the second
diagram in Fig. C.19 is more important and leads to the opposite result.
The correlation corresponding to the diagram in Fig. C.19 can be written
in the form

f2(ξ, η1, η2) =
Z(η1)Z(η2)
Z(ξ)

∫
d2q
(2π)2

β(η1, q)β(η2, q)Z2(η3, q)

− 1
Z2(ξ)

Z(η1)Z(ξ − η1)Z(η2)Z(ξ − η2),

β(η, q) = β
∫

d2ρ e2q̄ ρ̄θ(ρ0 − ρ), V (ρ0)η = 1. (C.51)

We have omitted ϕ(K1)ϕ(K2). The region of integration with respect to
q is determined by the largest of the quantities η1, η2, η3. At η1, η2 < η3,

f2(ξ, η1, η2) =
π2β2

Z(ξ)
Z(η1)ρ20(η1)Z(η2)ρ

2
0(η2)

∫
d2q
(2π)2

Z2(η3, q)

−Z(η1)Z(ξ − η1)Z(η2)Z(ξ − η2) 1
Z2(ξ)

, (C.52)

and the order of magnitude in this region is

f2(ξ, η1, η2) = Z(η1)Z(η2)[cZ(η1)Z(η2)− 1], (C.53)

i.e. there is a large positive correlation. In the region η1 > η2, η3,

f2(ξ, η1, η2) = cZ2(η2)Z2(η3)− Z(η2 + η3)Z(η1). (C.54)
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Again, the correlation is positive at large Z. We can estimate n(n− 1),
using expression (C.53):

n(n− 1) ∼ c
∫

dη1dη2Z2(η1)Z2(η2) = c′n2(ξ)Z2(ξ), (C.55)

i.e. the multiplicity distribution is much wider than the Poisson distribu-
tion.

C.6.4 Probability of fluctuations in individual events:
the inclusive spectrum in the three-pomeron limit

A characteristic property distinguishing fluctuations in the particle pro-
duction processes at high energies from those occurring in statistical sys-
tems even close to the phase transition points is diffraction and quasi-
diffraction processes which take place with a considerable probability and
comprise fluctuations in the distribution of particles covering the entire
rapidity range, i.e., the fluctuations of the order of the system volume.
In order to understand the relation between these fluctuations and nor-

mal fluctuations, let us consider the inclusive spectrum of the particles
produced in the so-called three-reggeon limit where a particle scattered
with an energy transfer which is small compared with the total energy
transfer is observed. If an incident particle has rapidity ξ, then the small-
ness of the energy transfer indicates that no particles can be produced over
the large rapidity range ξ − η and those produced have rapidities below
η. If ξ−η is large, we are concerned with a large fluctuation whose size is
ξ−η. The cross section of such a process is described by a diagram of the

Fig. C.20

type shown in Fig. C.20(a). It coin-
cides with that in Fig. C.20(b) for the
vertex part with one significant differ-
ence, namely, here the largest value of η
at which the interaction occurs is fixed.
In terms of field theory this quantity is
the amplitude of the process in which
not only the initial and final states, but
also the ‘time’ of the first interaction, is
fixed.

Let us try to calculate this quantity in our theory. We write f(ξ, η, q)
in the form

f(ξ, η, q) =
∫

eω1(ξ−η)+ω2(ξ−η)+ωηf(ω1, ω2, ω, q)
dω1dω2dω
(2πi )3

. (C.56)

Upon integrating f(ξ, η, q) with respect to η, we obtain the usual expres-
sion in the form of an integral of f(ω1, ω2, ω1+ω2, q) over ω1 and ω2. The
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elementary diagrams to a logarithmic approximation (Fig. C.21) give for
f(ω1, ω2, ω, q)

f1(ω1, ω2, ω, q) = g2(q)
Z(ω1)
ω1

Z(ω2)
ω2

∫
ei q̄ρ̄12

ω

Z2(ρ12)
β(ρ12)d2ρ12

Z(ω)
ω
.

(C.57)
The factor 1/Z2(ρ12) in (C.57) reflects the fact that of all the diagrams

(Fig. C.21(a)) with the exact pomeron Green functions, the pomeron
multiplication occurs only in a particular cutting in Fig. C.21(b). Should
we integrate with respect to η, then (C.57) would cover the main contri-
bution to f . However, if η is fixed, we must add the contribution of the
diagrams in Fig. C.21(c) in which multiplication occurs precisely in the
rapidity range of the order of η. We now consider a contribution from
the simplest diagram of those presented in Figs. C.21(c), C.22. Prior to
integrating with respect to ρ12 the contribution of this diagram is

Z(ω1)
ω1

Z(ω2)
ω2

∫
γ(ρ̄1, ρ̄3, ρ̄4)
ω1 + V34

V23 + V24
ω + V34 + V23 + V24

γ(ρ̄3, ρ̄4, ρ̄5)
ω + V25

× γ(ρ25,K = 0) d2ρ3d2ρ4d2ρ5
Z(ω)
ω
. (C.58)

Fig. C.21 Fig. C.22

The integral over ρ̄4, ρ̄5 in (C.58) at ω1, ω2 → 0 is non-singular and
represents a renormalization of the interaction potential. Subtracting
this renormalizing contribution from (C.58) gives the expression

Z(ω1)
ω1

Z(ω2)
ω2

ω1

∫
γ(ρ̄1, ρ̄3, ρ̄4)γ(ρ̄3, ρ̄4, ρ̄5)

V34(ω1 + V34)
d2ρ3d2ρ4d2ρ5

× 1
ω + V25

γ(ρ25, 0)
Z(ω)
ω
,

V34 � V23 + V24, (C.59)

where we used the fact that the integration region ρ34 > ρ23 or ρ34 > ρ24
gives the main contribution. On renormalizing, a logarithmically smaller
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contribution but proportional to ω (not to ω1) remains along with (C.59).
This term does not differ from (C.57) qualitatively and is less than the
latter. If we now sum all possible inserts into lines 3–4, then γ(ρ̄3, ρ̄4, ρ̄5) is
replaced by the exact vertex part and we obtain an additional contribution
to f(ω1, ω2, ω, q), of the form

f2(ω1, ω2, ω, q) = g2(q)
Z(ω1)
ω1

Z(ω2)
ω2

ω1

×
∫

ei q̄ ρ̄12σ(ρ̄1 − ρ̄′1, ω1, ρ12)
γ(ρ21′)

ω + V (ρ21′)
d2ρ12d2ρ1′

Z(ω)
ω
g, (C.60)

σ(ρ̄1 − ρ̄′1, ω1, ρ12) =
∫

d2q′

(2π)2
ei q̄

′(ρ̄1−ρ̄′1)
∫ ρ01

ρ12

d2ρ34 β(q̄′, ρ̄34)Γ(q̄′, ρ̄34),

V (ρ01) = ω1. (C.61)

In the simplest case γ(ρ21′)/V (ρ21′) = β(ρ21′) = const and ω � ω1; the
expression for f2(ω1, ω2, ω, q) is simplified and we have

f2(ω1, ω2, ω, q) = g2(q)Z(ω1)
Z(ω2)
ω2

∫ ρ00

0

d2ρ
Z2(ρ)

ρ2
J1(qρ)
qρ

πβ3
Z(ω)
ω
g,

(C.62)
where J1(qρ) is the Bessel function.
Obviously, a similar expression should be added to (C.60)–(C.62) re-

placing ω1 by ω2. More complicated diagrams in Fig. C.21(c) give a con-
tribution proportional to ω1ω2.

Let us return to the calculation of the inclusive cross section f(ξ, η, q);
in compliance with (C.56) note that either (C.57) or (C.60)–(C.62) deter-
mine f(ξ, η, q) according to the relation between quantities ξ − η and η.

If η � ξ − η (in the production of small masses), then ω1, ω2 � ω and
we may ignore f2(ω1, ω2, ω, q) compared with f1(ω1, ω2, ω, q). In this case
the inclusive cross section has the form

f1(ξ, η, q) = g2(q)Z̃2(ξ − η, q)ψ1(η1, q)g, (C.63)

ψ1(η, q) =
∫

dω
2πi

eωη
∫ ρ0

0
ei q̄ ρ̄

β(ρ)
Z2(ρ)

d2ρZ(ρ0),

V (ρ0) = ω. (C.64)

Considering that in the integral over ω every term except exp(ωη) de-
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pends solely on lnω,

ψ1(η, q) =
1
η

∂

∂ ln η
Z(ρ0)

ρ0∫
0

d2ρ ei q̄ ρ̄
β(ρ)
Z2(ρ)

,

ηV (ρ0) = 1, (C.65)

ψ1(η, q) =
c

η

Z ′(ρ0)

ρ0∫
0

ρdρJ0(qρ) β(ρ)
Z2(ρ)

+ J0(qρ0)β(ρ0)ρ0
Z(ρ0)

 ,
Z ′ =

∂Z

∂ρ0
, c = 2π

∂ρ0
∂ lnZ

, (C.66)

that is, the cross section falls with η and increases slowly with ξ − η. In
the opposite limiting case η � ξ− η (production of large masses) we may
ignore f1(ω1, ω2, ω, q) and the inclusive cross section has the following
form (for instance, at β = const):

f2(ξ, η, q) = 2g2(q)Z̃(η)Z̃(ξ − η)ψ2(ξ − η, q)g, (C.67)

ψ2(ξ − η, q) =
cβ3

ξ − η
∂

∂ρ01

∫ ρ01

0

ρ2d2ρ
Z2(ρ)

J1(qρ)
qρ

,

V (ρ01)(ξ − η) = 1, (C.68)

i.e. the inclusive cross section decreases with increasing ξ − η. Thus, we
are facing an interesting situation. If a fluctuation is not large, ξ− η < η,
its probability falls with increase in its size ξ− η, i.e. the events free from
this fluctuation are most probable. If the fluctuation is sufficiently large,
its probability rises with the increase in its size, that is the fluctuation
tends to take up the whole rapidity range and convert a quasi-diffraction
process into a diffraction process.

At relatively small produced masses the inclusive cross section falls with
increasing mass and is slightly dependent on the total energy. However,
it ceases to be dependent on mass and begins to fall as a function of the
total energy with increasing mass. Hence, in the approximation α′ = 0,
no three-pomeron limit exists.

In conclusion of this section it should be noted that generally speaking,
expressions (C.63), (C.66) and (C.67), (C.68) oscillate with changing q.
Therefore, the danger of the inclusive cross section becoming negative
arises. Let us now see under what conditions this occurs for (C.66). Note
that according to (C.32) (at β(ρ) = β = const)

Z ′(ρ0) = 2πβ2ρ0,

ψ1(η, q) =
c

η
2πβ3ρ0

 ρ0∫
0

ρdρ
J0(qη)
Z2(ρ)

+
J0(qη)

2πβ2Z(ρ0)

 . (C.69)



290 Appendix C: Theory of the heavy pomeron

Indeed, if β is so small that even at πβ2ρ20 � 1 ρ0 = R ln(v0η) � R,
we may use even for this range a logarithmic approximation, i.e. formula
(C.69). Considering that over this range Z � 1, it follows from (C.69)
that

ψ1(η, q) =
cβρ0
η

J0(qρ0)

is apparently sign-changing. This shows that within the range of applica-
tion of the theory the first term in (C.69) should always be larger than the
second one, i.e. Z(ρ0) � 1 at ρ0/R � 1. This is possible only provided
βR >∼ 1. Hence, the dimensionless three-pomeron vertex cannot be small:

γ(K = 0, ρ12) >∼
1
R
V (ρ12). (C.70)

If this condition is fulfilled, then (C.69) is the case only at βρ0 � 1 and

ψ1(η, q) � 2πβ3ρ0c
η

∫ ρ0

0
ρdρ

J0(qρ)
Z2(ρ)

does not change its sign for a wide class of Z(ρ).
It is interesting to note that the relationship is not determined by the

bare three-pomeron vertex or the form of the potential V (ρ). Both of
these quantities have dropped out from the expression for ψ1(η, q). The
behaviour of ψ1(η, q) as a function of q is determined by that of Z(ρ12)
at ρ12 ∼ R.
We now turn to the question as to whether β(ρ), which is not a small

quantity, can fall with increasing ρ. If β(ρ) decreases with increasing ρ
rather slowly (β ∼ ρ−δ, 0 < δ < 2), then, in order of magnitude it follows
from (C.31) that

∂Z(ρ)
∂ρ

= 2πβ2(ρ)ρ, Z(ρ0) � 2π
∫ ρ0

0
β2(ρ) ρdρ. (C.71)

If (C.66) and (C.71) are taken into account, the requirement of positive
ψ1(η, q) gives

2πβ(ρ0)
∫ ρ0

0

J0(qρ)
Z2(ρ)

β(ρ)ρdρ >
J0(qρ0)

2π
∫ ρ0
0 β

2(ρ)ρdρ
,

ρ−3δ+20 > c
J0(qρ0)∫ ρ0

0
J0(qρ)
Z2(ρ)

β(ρ)ρdρ
. (C.72)

From this it follows that δ < 2/3, Z(ρ0) > ρ
2/3
0 .
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C.6.5 Multi-reggeon processes
Another process in which fluctuations
show up in the distribution of the part-
icles produced is the multi-reggeon
process (Fig. C.23(a)). The cross
section of this process is determined
by the diagram in Fig. C.23(b)
where the pomeron interaction ampli-
tude appears. In our theory λ(ωi, ki)
contains ωi as do all pomeron ampli-
tudes, and thus the probability of such
a fluctuation falls with increasing en-
ergy.

Fig. C.23

C.7 The case α′ �= 0

So far we have discussed a theory with α′ = 0 in which the pomeron
Green function G(ω,R) in (C.38) has a singularity at ω = 0 (j = 1)
with any K. It is well known [3] that, if there are no specially selected
compensating cuts, such a singularity is inconsistent with the t-channel
unitarity condition. In our theory this (ω = 0) singularity showed up
not due to the introduction of special cuts but because we renormalized
the pole position identically with respect to K. In fact, we have written
G−1(ω,K) in the form

G−1(ω,K) = ω +∆(K) + ωσ(ω,K), (C.73)

and then set ∆(K) = 0 referring to the smallness of the shrinkage of
the diffraction peak. Obviously for the diagrams that we really summed,
∆(K) cannot identically be equal to zero merely because these diagrams
meet the two-particle t-channel unitarity condition. They have a positive
imaginary part at t > 4µ2 and hence −∆(K) has a positive imaginary
part over this range. However, ∆(K) can be numerically small in the
essential region K2 ∼ 1/R2. A minimum possible ∆(K) can be estimated
as was done in [4] assuming that the theory is not singular with respect
to the mass of a π meson and estimating a two-meson contribution to
∆(K). In this case for K2 > µ2,

∆min(K) � σππ
32π3

K2 ln
m2

K2
, (C.74)

where σππ is the cross section of the ππ interaction, m2 is the character-
istic mass in strong interactions, m is of the order of the nucleon mass.
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Hence, if σππ ∼ 1/µ2, then the effective α′min � 4× 10−3/µ2. The experi-
mental α′ exceeds this value.

Thus, a theory with α′ = 0 can be valid only for the intermediate region
of not too high energies. Therefore, we should obtain it as a limiting
case of a theory with α′ �= 0, but small, and thus establish its field of
application. In the next section we shall make this clear and at the same
time establish the order of magnitude of various interaction constants
which govern the character of the interaction at asymptotic energies.

C.8 The contribution of cuts at small α′

We begin, as before, with the two-pomeron Green function. It can be
written as

G(ω, K̄, ρ̄12, ρ̄′12) =
∫

d2q
(2π)2

ψq̄(ρ̄12)ψ∗̄
q (ρ̄

′
12)

ω + 1
2α

′K2 + 2α′q2
, (C.75)

where K is the total momentum of two pomerons, and ψq̄(ρ̄12) is the wave
function of relative motion.
The contribution of an elementary diagram to the self-energy Σ has the

form

Σ1(ω,K) =
∫
γ(K̄, ρ̄12)G(ω, K̄, ρ̄12, ρ̄′12)γ(K̄, ρ̄

′
12)d

2ρ12d2ρ′12

=
∫

d2q
(2π)2

Γ2(K̄, q̄)
ω + 1

2α
′K2 + 2α′q2

, (C.76)

Γ(K̄, q̄) =
∫

d2ρ γ(K̄, ρ̄)ψq̄(ρ̄). (C.77)

It is easy to determine the order of magnitude of Γ(K̄, q̄) and Σ1(ω,K)
over the asymptotic region ω and K → 0. To this end, it suffices to write
a quasi-classical expression for ψq̄(ρ̄12) at q = 0:

ψq̄(ρ̄) ∼ 1√
ρ
exp

− ∞∫
ρ12

√
V (ρ′)
2α′

dρ′

 . (C.78)

This expression is valid at small α′ in the region ρ2/2α′ > 1.
From (C.78) it is obvious that ψ0(ρ) is exponentially small in this quasi-

classical region and thus in (C.77) only the region of sufficiently large ρ,
ρ > ρ0, where V ρ20/2α

′ = 1, is essential.
Considering that for K̄, q̄ → 0, ρ > ρ0,

γ(K̄, ρ̄)|K=0 ∼ V (ρ), Γ(K̄, q̄) ∼
∫

d2ρV (ρ)ψ0(ρ) ∼ α′, (C.79)
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i.e. after taking into account the interaction, the effective vertex with re-
spect to the three-pomeron processes at ω,K, q → 0 contains a smallness
of the order of α′ because the quasi-classical region gives a zero con-
tribution. We may check the validity of (C.79) even without using the
quasi-classical expression for ψ0(ρ), if it is remembered that in conven-
tional quantum mechanics the scattering length determined by the inte-
gral 2m

∫
V ψd2ρ does not approach infinity at m→ ∞ but is governed

by the interaction radius. This means that
∫
V ψ0d2ρ ∼ 1/m ∼ α′. If ω

does not tend to 0, but is larger than or of the order of 4α′/R2, then the
quasi-classical region yields a non-zero contribution, because the effective
q2 is larger than or of the order of 1/R2. In the quasi-classical region it
is easier to calculate the two-pomeron Green function not in the ω but in
the ξ space

G(ξ, K̄, ρ̄12, ρ̄′12) =
e−(α′/2)K2ξ

2π

88888∂2S̃(ρ̄12, ρ̄′12, ξ)∂2ρ̄12∂2ρ̄′12

88888 eS̃(ρ̄12,ρ̄
′
12,ξ),

S̃(ρ̄12, ρ̄′12, ξ) = −iS(ρ̄12, ρ̄′12,−i ξ), (C.80)

where S(ρ̄12, ρ̄′12, t), is the classical action function for a particle whose
mass is m = 1/4α′ in the repulsion field V (ρ). It is easily shown through
solving classical equations of motion that at large ξ and ρ2 > ρ1

S̃(ρ̄1, ρ̄′2, ξ) = −|ρ̄1 − ρ̄′2|2
4α′ξ

− ξ
∫ ρ2

ρ1

V (ρ)dρ√
|ρ̄1 − ρ̄′2|2 − 1

ρ2
[ρ1 × ρ2]2

. (C.81)

From (C.81) it is clear that S̃(ρ̄2, ρ̄1, ξ) is different from zero only within
the region V (ρ1)ξ <∼ 1 (ρ1 being the lesser of ρ1 and ρ2), i.e. in the region
where the potential is less than or of the order of 1/ξ. This means that

Σ(ξ,K) =
∑
γ(K̄, ρ̄12)G(ξ, ρ̄2, ρ̄′1)γ(K̄, ρ̄

′
1)d

2ρ1d2ρ2 <∼
1
ξ2
, (C.82)

i.e. the same as with α′ = 0.
Thus, essential over the preasymptotic (quasi-classical) region are dis-

tances running over the range from ρ0, where V (ρ0) ∼ 1/ξ, to ρ̃, where
V (ρ̃) ∼ 4α′/ρ̃2, and over the asymptotic range ρ ∼ ρ̃. In respect of the
exact pomeron Green function the following can be said:

G−1(ω,R) = ω + α′K2 + ωσ(ω,K, α′/R2), (C.83)

with ωσ(ω,K, α′/R2) calculated for the region ω � α′/R2. In the region
ω ∼ α′/R2 this value is of the order of α′/R2. The calculations of ωσ in
the region ω � α′/R2 are treated in the asymptotic theory. This may be
both a strong coupling theory involving a slowly rising cross section which
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has been discussed recently in [5, 6] and a weak coupling theory [7]. The
present considerations define only the order of magnitude of unrenormal-
ized constants in asymptotic theories and show that these constants have
a smallness α′/R2. The coupling constants have a similar smallness (a
certain power of α′/R2) for particles with two or more pomerons.

C.9 Conclusion

The solution to the problem of the pomeron interaction in the preasymp-
totic region considered in this paper explains a number of qualitatively
significant properties of high energy experiments such as an approximate
factorization of the elastic and inelastic cross sections, a rise in the cross
section and interaction radius, a relatively wide (as compared to the Pois-
son distribution) multiplicity distribution, smallness of the cross section in
the three-pomeron limit. From the viewpoint of describing the pomeron
using sets of Feynman diagrams, taking into account the pomeron in-
teraction leads to the fact that the pomeron is basically determined by
diagrams containing a fairly large number of connected ladder diagrams.
It is precisely this fact that leads to a wider multiplicity distribution. In
general properties this solution is rather similar to the asymptotic solution
for the case of strong coupling [5, 6] and thus its conversion with increas-
ing energy to such an asymptotic solution looks quite natural. Conver-
sion from this solution to the one corresponding to weak coupling and an
asymptotically constant total cross section involves a substantial change
of the behaviour over the energy region.

Appendix

We have described in this paper the pomeron interaction using the lo-
cal potential V (ρ). At the same time we have seen that the potential
renormalization develops and the effective interaction becomes non-local
through the three-pomeron interaction. Therefore, it is natural to put
the question whether the main statements will change if we include the
non-local interaction right from the start.
The main statement of this study is that the interaction vertices for

particles with two and more pomerons and the three-pomeron vertex be-
come small (of the order ω) after taking the pomeron interaction into
account. In particular, the three-pomeron vertex γ(K̄, ρ̄) changes to
ωγ(K̄, ρ̄)/(ω + V (ρ)). Let us see whether this statement changes, if the
pomeron interaction is described by the non-local potential V (K̄, ρ̄12, ρ̄′12).
In this case the equation for the vertex part takes the form

Γ(K̄, ρ̄, ω) = γ(K̄, ρ̄)− 1
ω

∫
V (K̄, ρ̄, ρ̄′)Γ(K̄, ρ̄, ω)d2ρ′.
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Hence, at ω → ∞
Γ(K̄, ρ̄, ω) → ωβ(K̄, ρ̄),

where β(K̄, ρ̄) is determined by the equation

γ(K̄, ρ̄) =
∫
V (K̄, ρ̄, ρ̄′)β(K̄, ρ̄′)d2ρ,

which is independent of ω. This means that Γ(K̄, ρ̄, ω) has the same
smallness. If instead of the condition γ(0, ρ) = cV (ρ) we require that

γ(0, ρ) = c
∫
V (0, ρ̄, ρ̄′)d2ρ′,

then
β(0, ρ) = c,

and we have exactly the same result as for the local potential.
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