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Quantum Physics

Quantum physics allows us to understand the nature of the physical phenomena which
govern the behavior of solids, semiconductors, lasers, atoms, nuclei, subnuclear particles,
and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this
fundamental theory.
Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an

original approach which relies primarily on an algebraic treatment and on the systematic
use of symmetry principles. In addition to the standard topics such as one-dimensional
potentials, angular momentum and scattering theory, the reader is introduced to more
recent developments at an early stage. These include a detailed account of entangled
states and their applications, the optical Bloch equations, the theory of laser cooling and
of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum
systems. This is a textbook for a modern course on quantum physics, written for advanced
undergraduate and graduate students.

Michel Le Bellac is Emeritus Professor at the University of Nice, and a well-known
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Foreword

Quantum physics is now one hundred years old, and this description of physical phe-
nomena, which has transformed our vision of the world, has never been found at fault,
which is exceptional for a scientific theory. Its predictions have always been verified
by experiment with impressive accuracy. The basic concepts of quantum physics such
as probability amplitudes and linear superpositions of states, which seem so strange to
our intuition when encountered for the first time, remain fundamental. However, during
the last few decades an important evolution has occurred. The spectacular progress made
in observational techniques and methods of manipulating atoms now makes it possible
to perform experiments so delicate that they were once considered as only “thought
experiments” by the founders of quantum mechanics. The existence of “nonseparable”
quantum correlations, which forms the basis of the Einstein–Podolsky–Rosen “paradox”
and which violates the famous Bell inequalities, has been confirmed experimentally with
high precision. “Entangled” states of two systems which manifest such quantum correla-
tions are now better understood and even used in practical applications such as quantum
cryptography. The entanglement of a measuring device with its environment reveals an
interesting new pathway to better understanding of the measurement process.
In parallel with these conceptual advances, our everyday world is being invaded by

devices which function on the basis of quantum phenomena. The laser sources used
to read compact disks, in ophthalmology, and in optical telecommunications are based
on light amplification by atomic systems with population inversion. Nuclear magnetic
resonance is widely used in hospitals to obtain ever more detailed images of the organs
of the human body. Millions of transistors are incorporated in the chips which allow our
computers to perform operations at phenomenal speeds.
It is therefore clear that any modern course in quantum physics must cover these

recent developments in order to give the student or researcher a more accurate idea of
the progress that has been made and to motivate the better understanding of physical
phenomena whose conceptual and practical importance is increasingly obvious. This is
the goal that Michel Le Bellac has successfully accomplished in the present work.
Each of the fifteen chapters of this book contains not only a clear and concise description

of the basic ideas, but also numerous discussions of the most recent conceptual and
experimental developments which give the reader an accurate idea of the advances in
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xiv Foreword

the field and the general trends in its evolution. Chapter 6 on entangled states is typical
of this method of presentation. Instead of stressing the mathematical properties of the
tensor product of two spaces of states, which is rather austere and forbidding, this
chapter is oriented on discussion of the idea of entanglement, and introduces several
examples of theoretical and experimental developments (some of them very new) such
as the Bell inequalities, tests of these inequalities and in particular the most recent ones
based on parametric conversion, GHZ (Greenberger, Horne, Zeilinger) states, the idea
of decoherence illustrated by modern experiments in cavity quantum electrodynamics
(discussed in more detail in an appendix), and teleportation. It is difficult to imagine a
more complete immersion in one of the most active current areas of quantum physics.
Numerous examples of this modern presentation can be found in other chapters, too:
interference of de Broglie waves realized using slow neutrons or laser-cooled atoms;
tunnel-effect microscopy; quantum field fluctuations and the Casimir effect; non-Abelian
gauge transformations; the optical Bloch equations; radiative forces exerted by laser
beams on atoms; magneto-optical traps; Rabi oscillations in a cavity vacuum, and so on.
I greatly admire the effort made by the author to give the reader such a modern and

compelling view of quantum physics. Of course, not all subjects can be treated in great
detail, and the reader must make some effort to obtain a deeper comprehension of the
subject. This is aided by the detailed bibliography given in the form of both footnotes
to the text and a list of suggested reading at the end of each chapter. I am sure that
this text will lead to better comprehension of quantum physics and will stimulate greater
interest in this absolutely central discipline. I would like to thank Michel Le Bellac for
this important contribution which will certainly give physics a more exciting image.

Claude Cohen-Tannoudji



Preface

This book has grown out of a course given at the University of Nice over many years
for advanced undergraduates and graduate students in physics. The first ten chapters
correspond to a basic course in quantum mechanics for advanced undergraduates, and the
last four could serve to complement a graduate course in, for example, atomic physics.
The book contains about 130 exercises of varying length and difficulty, most of which
have actually been used in homework or exams.
This book should be interesting not only to students in physics and engineering,

but also to a wider group of physicists: graduate students, researchers, and secondary-
school teachers who wish to update their knowledge of quantum physics. It discusses
recent developments not covered in the classic texts such as entangled states, quantum
cryptography and quantum computing, decoherence, interactions of a laser with a two-
level atom, quantum fluctuations of the electromagnetic field, laser manipulation of atoms,
and so on, and it also includes a concise discussion of the current ideas about measurement
in quantum mechanics as an appendix.
The organization of this book differs greatly from that of the classic texts, which

typically begin with the Schrödinger equation and then proceed to study its solution in
various situations. That approach makes it necessary to introduce the basic principles of
quantum mechanics in a relatively complicated situation, and they end up being obscured
by calculations which are often rather complex. Instead, I have striven to present the
fundamentals of quantum mechanics using the simplest examples, and the Schrödinger
equation appears only in Chapter 9. I follow the approach of pushing the logic adopted
by Feynman (Feynman et al. [1965]) to its limit: developing the algebraic approach
as far as possible and exploiting the symmetries, so as to present quantum mechanics
within an autonomous framework without reference to classical physics. There are several
advantages to this logic.

• The algebraic approach allows the solution of simple problems in finite-dimensional (for example,
two-dimensional) spaces, such as photon polarization, spin 1/2, two-level atoms, and so on.

• This approach leads to the clearest statement of the postulates of quantum mechanics, as the fun-
damental issues are separated from the less fundamental ones (for example, the correspondence
principle is not a fundamental postulate).

xv



xvi Preface

• The use of the symmetry properties leads to the most general introduction to fundamental physical
properties such as momentum, angular momentum, and so on as the infinitesimal generators of
these symmetries, without resorting to the correspondence principle or classical analogies.

Another advantage of this approach is that the reader wishing to learn about the recent
developments in quantum information theory need consult only the first six chapters.
These are sufficient for comprehension of the basics of quantum information, without
passing through the stages of expansion of the wave function in spherical harmonics and
solving the Schrödinger equation in a central potential!
I have given special attention to the pedagogical aspects. The order of chapters was

carefully chosen: the early ones use only finite-dimensional spaces, and only after the
basic principles have been covered do I go on to the general case in Chapter 7. Chapters 11
to 14 and the appendices involve more advanced techniques which may be of interest to
professional physicists. An effort has been made regarding the vocabulary, in order to
avoid certain historically dated expressions which can obstruct the understanding of quan-
tum mechanics. Following the modernization proposed by J.-M. Lévy-Leblond (Quantum
words for a quantum world, in Epistemological and Experimental Perspectives on Quan-
tum Physics, D. Greenberger, W. L. Reiter and A. Zeilinger (eds.) Dordrecht: Kluwer
(1999)), I use “physical property” instead of “observable” and “Heisenberg inequality”
instead of “uncertainty principle,” and I avoid expressions such as “complementarity”
and “wave–particle duality.”
The key chapters of this book, that is, those which diverge most obviously from the

traditional treatment, are Chapters 3, 4, 5, 6, and 8. Chapter 3 introduces the space of
states for the example of photon polarization and shows how to go from a wave amplitude
to a probability amplitude. Spin 1/2 takes the reader directly to a problem without a
classical analog. The essential properties of spin 1/2, namely the algebra of the Pauli
matrices, the rotation matrices, and so on, are obtained using only two hypotheses: (1) two-
dimensionality of the space of states and (2) rotational invariance. The Larmor precession
of the quantum spin allows us to introduce the evolution equation. This chapter prepares
the reader for the statement of the postulates of quantum mechanics in the following
chapter, and it is possible to illustrate each postulate in a concrete fashion by returning
to the examples of Chapter 3. The distinction between the general conceptual framework
of quantum mechanics and the modeling of a particular problem is carefully explained.
In Chapter 5 quantum mechanics is applied to some simple and physically important
systems with a finite number of levels, a particular case being the diagonalization of the
Hamiltonian in the presence of a periodic symmetry. This chapter also uses the example
of the ammonia molecule to introduce the interaction of a two-level atomic or molecular
system with an electromagnetic field, and the fundamental concepts of emission and
absorption.
Chapter 6 is devoted to entangled states. The practical importance of these states dates

from the early 1980s, but they are often ignored by textbooks. This chapter also deals
with fundamental applications such as the Bell inequalities, two-photon interference,
and measurement theory, as well as potential applications such as quantum computing.
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Chapter 8 is devoted to the study of symmetries using the Wigner theorem, which is
generally ignored in textbooks despite its crucial importance. Rotational symmetry allows
the angular momentum to be defined as an infinitesimal generator, and the commutation
relations of �J can be demonstrated immediately with emphasis on their geometrical origin.
The canonical commutation relations of X and P are derived from the identification of
the momentum as the infinitesimal generator of translations. Finally, I obtain the most
general form of the Hamiltonian compatible with Galilean invariance using a hypothesis
about the velocity transformation law. This Hamiltonian will be reinterpreted later on
within the framework of local gauge invariance.
The other chapters can be summarized as follows. Chapter 1 has the triple goal of

(1) introducing the basic notions of microscopic physics which will be used later on in
the text; (2) introducing the behavior of quantum particles, conventionally called “wave–
particle duality”; and (3) presenting a simple explanation, with the aid of the Bohr atom,
of the notion of energy level and of level spectrum. Chapter 2 presents the essential ideas
about Hilbert space in the case of finite dimension. Chapter 7 gives some information
about Hilbert spaces of infinite dimension; the goal here is of course not to present a
mathematically rigorous treatment, but rather to warn the reader of certain pitfalls in
infinite dimension.
The final chapters are devoted to more classic applications. Chapter 9 presents wave

mechanics and its usual applications (the tunnel effect, bound states in the square well,
periodic potentials, and so on). The angular momentum commutation relations already
presented in Chapter 8 reappear in Chapter 10 in the construction of eigenstates of �J 2 and
Jz, and lead to the Wigner–Eckart theorem for vector operators. Chapter 11 develops the
theory of the harmonic oscillator and motion in a constant magnetic field, which provides
the occasion for explaining local gauge invariance. An important section in this chapter
deals with quantized fields: the vibrational field and phonons, and the electromagnetic field
and its quantum fluctuations. Chapters 12 and 13 are devoted to scattering and identical
particles. In Chapter 14 I present a brief introduction to the physics of one-electron atoms,
the main objective being to calculate the forces on a two-level atom placed in the field
of a laser and to discuss applications such as Doppler cooling and magneto-optical traps.
The appendices deal with subjects which are a bit more technically demanding. The

proof of the Wigner theorem and the time-reversal operation are explained in detail in
Appendix A. Some complementary information about the theory and experiments on
decoherence can be found in Appendix B along with a discussion of some current ideas
about measurement. Finally, Appendix C contains a discussion of the method of Wigner
and Weisskopf for unstable states.
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1

Introduction

The first objective of this chapter is to briefly review some of the basic ideas about the
structure of matter, in particular the concepts of microscopic physics, in order to recall the
knowledge gained in previous physics (and chemistry) courses and make it more precise.
Our review will be very concise, and most statements will be made without any proof
or detailed discussion. A second objective is to give a brief description of some of the
crucial stages in the early development of quantum physics. We shall not follow the strict
historical order of this development or present the arguments used at the beginning of
the last century by the founding fathers of quantum mechanics; rather, we shall stress the
concepts which we shall find useful later on. Our last objective is to give an elementary
introduction to some of the basic ideas, like those of a quantum particle or energy level,
that will reappear throughout this text. We shall base our review on the Bohr theory,
which provides a simple, though far from convincing, explanation of how energy levels
are quantized and how the spectrum of the hydrogen atom arises. This chapter should be
reread later on, once the basic ideas of quantum mechanics have been made explicit and
illustrated by examples. From the practical point of view, it is possible to skip the general
considerations of Sections 1.1 and 1.2 at the first reading and begin with Section 1.3,
returning to those two sections later on as needed.

1.1 The structure of matter

1.1.1 Length scales from cosmology to elementary particles

Table 1.1 gives the length scales in meters of some typical objects, ranging from the size
of the known Universe to the subatomic scale. A unit of length convenient for measuring
astrophysical distances is the light-year (l.y.): 1 l.y. = 0�95× 1016 m. The submeter scales
commonly used in physics are the micrometer 1�m = 10−6 m, the nanometer 1 nm =
10−9 m, and the femtometer (or fermi, F) 1 fm= 10−15 m.Objects at themicroscopic scale are
often studied using electromagnetic radiation ofwavelength of the order of the characteristic
size of the object under study (bymeans of amicroscope, X-rays, etc.).1 It is well known that

1 Other techniques are neutron scattering (Exercise 1.6.4), electron microscopy, tunneling microscopy (Section 9.4.2), and so on.
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2 Introduction

Table 1.1 Some typical distance scales

Size (m)

Known Universe 1�3×1026

Radius of the Milky Way ∼5×1020

Sun–Earth separation 1�5×1011

Radius of the Earth 6�4×106

Man ∼1�7
Insect 0.01 to 0.001
E. coli (bacterium) ∼2×10−6

HIV (virus) 1�1×10−7

Fullerene C60 0�7×10−9

Atom ∼10−10

Lead nucleus 7×10−15

Proton 0�8×10−15

the limiting resolution is determined by the wavelength used: it is fractions of a micrometer
for a microscope using visible light, or fractions of a nanometer when X-rays are used. The
wavelength spectrum of electromagnetic radiation (infrared, visible, etc.) is summarized in
Fig. 1.1.

1.1.2 States of matter

We shall be particularly interested in phenomena occurring at the microscopic scale, and
so it is useful to recall some of the elementary ideas about the microscopic description
of matter. Matter can exist in two different forms: an ordered form, namely a crystalline
solid, and a disordered form, namely a liquid, a gas, or an amorphous solid.
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Fig. 1.1. Wavelengths of electromagnetic radiation and the corresponding photon energies. The
boundaries between different types of radiation (for example, between 	-rays and X-rays) are
not strictly defined. A photon of energy E = 1 eV has wavelength 
 = 1�24× 10−6 m, frequency
� = 2�42×1014 Hz, and angular frequency �= 1�52×1015 rad s−1.
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Fig. 1.2. Arrangement of atoms in a crystal of sodium chloride. The chlorine ions Cl− are larger
than the sodium ions Na+.

A crystalline solid possesses long-range order. As an example, in Fig. 1.2 we show
the microscopic structure of sodium chloride. The basic crystal pattern is repeated with
periodicity l = 0�56 nm, forming the crystal lattice. Starting from a chlorine ion or
a sodium ion and moving along one of the links of the cubic structure, we again reach a
chlorine ion or a sodium ion after a distance n×0�56 nm, where n is an integer. This is
what we mean by long-range order.
Liquids, gases, and amorphous solids do not possess long-range order. Let us take

as an example a monatomic liquid, namely liquid argon. To a first approximation the
argon atoms can be represented as impenetrable spheres of diameter  � 0�36 nm. In
Fig. 1.3 we schematically show an atomic configuration for a liquid in which the spheres
practically touch each other, but are arranged in a disordered fashion. Taking the center
of one atom as the origin, the probability p�r� of finding the center of another atom
at a distance r from the former is practically zero for r <∼  . However, this probability
reaches a maximum at r = �2� � � � and then oscillates before becoming stable at a
constant value, whereas in the case of a crystalline solid the function p�r� possesses peaks
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Fig. 1.3. (a) Arrangement of atoms in liquid argon. (b) Probability p�r� for a liquid (dashed line)
and for a gas (solid line). (c) Probability p�r� for a simple crystal.
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no matter what the distance from the origin is. Argon gas has the same type of atomic
configuration as liquid argon, the only difference being that the atoms are much farther
apart. The difference between the liquid and the gas vanishes at the critical point, and it
is possible to move continuously from the gas to the liquid and back while going around
the critical point, whereas such a continuous passage to a solid is impossible because the
type of order is qualitatively different.
We have chosen a monatomic gas as an example, but in general the basic object

is a combination of atoms in a molecule such as N2, O2, H2O, etc. Certain molecules
like proteins may contain thousands of atoms. For example, the molecular weight of
hemoglobin is something like 64 000. A chemical reaction is a rearrangement of atoms –
the atoms of the initial molecules are redistributed to form the final molecules:

H2+Cl2 → 2HCl�

An atom is composed of a positively charged atomic nucleus (or simply nucleus) and
negatively charged electrons. More than 99.9% of the mass of the atom is in the nucleus,
because the ratio of the electron mass me to the proton mass mp is me/mp � 1/1836. The
atom is ten thousand to a hundred thousand times larger than the nucleus: the typical size
of an atom is 1 Å (where 1 Å= 10−10 m = 0�1 nm), while that of a nucleus is several
fermis (or femtometers).2

An atomic nucleus is composed of protons and neutrons. The former are electrically
charged and the latter are neutral. The proton and neutron masses are identical to within
0.1%, and this mass difference can often be neglected in practice. The atomic number
Z is the number of protons in the nucleus, and also the number of electrons in the
corresponding atom, so that the atom is electrically neutral. The mass number A is the
number of protons plus the number of neutrons N : A= Z+N . The protons and neutrons
are referred to collectively as nucleons. Nuclear reactions involving protons and neutrons
are analogous to chemical reactions involving atoms: a nuclear reaction is a redistribution
of protons and neutrons to form nuclei different from the initial ones, while a chemical
reaction is a redistribution of atoms to form molecules different from the initial ones.
An example of a nuclear reaction is the fusion of a deuterium nucleus (2H, a proton and
a neutron) and a tritium nucleus (3H, a proton and two neutrons) to form a helium-4
nucleus (4He, two protons and two neutrons) plus a free neutron:

2H+3H→4He+n+17�6 MeV�

The reaction releases 17.6 MeV of energy and in the (probably distant) future may be
used for large-scale energy production (fusion energy).
An important concept pertaining to an atom formed from a nucleus and electrons, as

well as to a nucleus formed from protons and neutrons, is that of the binding energy. Let
us consider a stable object C formed of two objects A and B. The object C is termed a
bound state of A and B. The breakup C → A+B will not be allowed if the mass mC

2 We shall often use the Ångström (Å), which is the characteristic atomic scale, rather than nm.



1.1 The structure of matter 5

of C is less than the sum of the masses mA and mB of A and B, that is, if the binding
energy Eb

Eb = �mA+mB−mC�c
2 (1.1)

is positive.3 Here c is the speed of light and Eb is the energy needed to dissociate C

into A+B. In atomic physics this energy is called the ionization energy, and it is the
energy necessary to break up an atom into a positive ion and an electron, or, stated
differently, to remove an electron from the atom. In the case of molecules Eb is the
dissociation energy, or the energy needed to break up the molecule into atoms. A particle
or a nucleus that is unstable in a particular configuration may be perfectly stable in
a different configuration. For example, a free neutron (n) is unstable: in about fifteen
minutes on average it disintegrates into a proton (p), an electron (e), and an electron
antineutrino (�e); this is the basic decay of �-radioactivity:

n0 → p++ e−+�0e� (1.2)

where we have explicitly indicated the charge of each particle. This decay is possible
because the masses4 of the particles in (1.2) satisfy

mnc
2 > �mp+me+m��c

2�

where

mn � 939�5MeV c−2� mp � 938�3MeV c−2� me � 0�51MeV c−2� m�e
� 0�

On the other hand, a neutron in a stable atomic nucleus does not decay; taking as an
example the deuterium nucleus (the deuteron, 2H), we have

m2Hc
2 � 1875�6 MeV< �2mp+me+m�e

�c2 � 1878�3 MeV�

and so the decay
2H→ 2p+ e+�e

is impossible: the deuteron is a proton–neutron bound state.

1.1.3 Elementary constituents

So far, we have broken up molecules into atoms, atoms into electrons and nuclei, and
nuclei into protons and neutrons. Can we go even farther? For example, can we break

3 According to the celebrated Einstein relation E = mc2; by simple dimensional analysis we can relate mass and energy to
each other, so that, for example, masses can be expressed in J c−2 or in eV c−2.

4 Three recent experiments, those of S. Fukuda et al. (SuperKamiokande Collaboration), Solar B8 and hep neutrino measure-
ments from 1258 days of SuperKamiokande data, Phys. Rev. Lett. 86, 5651 (2001), Q. Ahmad et al. (SNO Collaboration),
Interactions produced by B8 solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett., 87, 071301 (2001), and
K. Eguchi et al. (Kamland Collaboration), First results from Kamland: evidence from reactor antineutrino disappearance,
Phys. Rev. Lett. 90, 021802 (2003), demonstrate convincingly that the neutrino mass is not zero, but is probably of order
10−2 eV c−2; cf. Exercise 4.4.6 on neutrino oscillations. For a review, see D. Wark, Neutrinos: ghosts of matter, Physics
World 18(6), 29 (June 2005).
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up a proton or an electron into more elementary constituents? Is it possible, for example,
that a neutron is composed of a proton, an electron, and an antineutrino, as Eq. (1.2)
suggests? A simple argument based on the Heisenberg inequalities shows that the electron
cannot pre-exist inside the neutron (Exercise 9.7.4), but instead is created at the moment
the decay occurs. Therefore, we cannot say that a neutron is composed of a proton,
an electron, and a neutrino. One could also imagine “breaking” a proton or a neutron
into more elementary constituents by bombarding it with energetic particles, just as, for
example, happens when a deuteron is bombarded by electrons of several MeV in energy:

e+ 2H→ e+p+n�

The deuteron 2H is broken up into its constituents, a proton and a neutron. However,
the situation is not repeated when a proton is bombarded by electrons. When low-energy
electrons are used, the collisions are elastic:

e+p→ e+p�

and when the electron energy is high enough (several hundred MeV), the proton does not
break up; instead, other particles are created, for example in reactions like

e+p → e+p+�0�

e+p → e+n+�++�0�

e+p → e+K++�0�

where the � and K mesons and the �0 hyperon are new particles whose nature is not
important for the present discussion. The crucial point is that these particles do not exist
ab initio inside the proton, but are created at the instant the reaction occurs.
It therefore appears that at some point it is not possible to decompose matter into

constituents which are more and more elementary. We can then ask the following question:
what is the criterion for a particle to be elementary? The current idea is that a particle
is elementary if it behaves as a point particle in its interactions with other particles.
According to this idea, the electron, neutrino, and photon are elementary, while the proton
and neutron are not: they are “composed” of quarks. These quotation marks are important,
because quarks do not exist as free states,5 and the quark “composition” of the proton
is very different from the proton and neutron composition of the deuteron. Only indirect
(but convincing) evidence of this quark composition exists.
As far as is known at present,6 there exist three families of elementary particles or

“particles of matter” of spin 1/2.7 They are listed in Table 1.2, where the electric charge q
is expressed in units of the proton charge. Each family is composed of leptons and quarks,

5 What exactly is meant by the quark “mass” is quite complicated, at least for the so-called “light” quarks – the up, down, and
strange quarks. Something close to the mass defined in the usual way is obtained for the heavy b and t quarks.

6 There is a very strong argument for limiting the number of families to three. In 1992 experiments at CERN showed that
the number of families is limited to three on the condition that the neutrino masses are less than 45 GeV c−2. The actual
experimental value of the number of families is 2�984±0�008.

7 Spin 1/2 is defined in Chapter 3 and spin in general in Chapter 10.
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Table 1.2 Matter particles. The electric charges are measured in units of the proton
charge.

Lepton q =−1 Neutrino q = 0 Quark q = 2/3 Quark q =−1/3

Family 1 electron neutrinoe up quark down quark
Family 2 muon neutrino� charmed quark strange quark
Family 3 tau neutrino� top quark bottom quark

and each particle has a corresponding antiparticle of the opposite charge. The leptons of
the first family are the electron and its antiparticle the positron e+, as well as the electron
neutrino �e and its antiparticle the electron antineutrino �e. The quarks of this family are
the up quark u of charge 2/3 and the down quark d of charge −1/3 plus, of course, the
corresponding antiquarks u and d, with charges −2/3 and 1/3, respectively. The proton is
the combination uud and the neutron is the combination udd. This first family is sufficient
for our everyday life, as all ordinary matter is composed of these particles. The neutrino
is essential for the cycle of nuclear reactions occurring in the normally functioning Sun.
While the existence of this first family is justified by an anthropocentric argument (if the
family did not exist, we would not be here to talk about it), the reason for the existence
of the other two families remains obscure.8

To these particles we need to add those that “carry” the interactions: the photon for
electromagnetic interactions, the W and Z bosons for weak interactions, the gluons for
strong interactions, and the graviton for gravitational interactions.9 Now let us discuss
these interactions.

1.1.4 The fundamental interactions

There are four types of fundamental interaction (forces): strong, electromagnetic, weak,
and gravitational.10 The electromagnetic interaction will play a leading role in this book,
as it governs the behavior of atoms, molecules, solids, etc. The electrical forces obeying
Coulomb’s law dominate. We recall that a charge q fixed at the coordinate origin exerts
a force on a charge q′ at rest located at a point �r

�F = qq′

4��0

r̂

r2
� (1.3)

8 As I. I. Rabi reputedly said of the muon: “Who ordered that?” Nevertheless, we know that each family must be complete:
this is how the existence of the top quark and the value of its mass were predicted several years before its experimental
discovery in 1994. Owing to its high mass, about 175 times that of the proton, the top quark was not discovered until the
proton–antiproton collider known as the Tevatron was in operation in the USA.

9 More rigorously, the electromagnetic and weak interactions have by now been unified as the electroweak interaction. The
gluon, just like the quark, does not exist as a free state. Finally, the existence of the graviton is still hypothetical.

10 Every once in a while a “fifth force” is “discovered,” but it soon disappears again!
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where r̂ is a unit vector �r/r, r = ��r�, and �0 is the vacuum permittivity.11 If the charges
move with speed v, we must also take into account the magnetic forces. However, they
are weaker than the Coulomb force by a factor ∼ �v/c�2 (we are using ∼ in the sense “of
the order of”). For the electrons of the outer shells of an atom �v/c�2 ≈ �1/137�2 	 1,
but, owing to the extremely high precision of atomic physics experiments, the effects of
magnetic forces are easily seen in phenomena such as the fine structure or the Zeeman
effect (Section 14.2.3). The Coulomb force (1.3) is characterized by

• the 1/r2 force law. This is called a long-range force law;
• the strength of the force as measured by the coupling constant qq′/4��0.

The modern, field-theoretic, point of view is that electromagnetic forces are generated by
the exchange of “virtual” photons between charged particles.12 Quantum field theory is the
result of the (conflicting!13) marriage between quantum mechanics and special relativity.
The interactions between atoms or between molecules are represented as effective forces,
for example van der Waals forces (Exercise 14.6.1). These forces are not fundamental
because they are derived from the Coulomb force – they are actually the Coulomb force
in disguise in the case of complex, electrically neutral systems.
The strong interaction is responsible for the cohesion of the atomic nucleus. In contrast

to the Coulomb force, it falls off exponentially with distance according to the law �
�1/r2� exp�r/r0� with r0 � 1F, and therefore is termed a short-range force. For r <∼ r0
this force is very strong, such that the typical energies inside the nucleus are of the
order of MeV, while for the outer-shell electrons of an atom they are of the order of eV.
In reality, the forces between nucleons are not fundamental, because, as we have seen,
nucleons are composite particles. The forces between nucleons are analogous to the van
der Waals forces between atoms, and the fundamental forces are actually those between
the quarks. However, the quantitative relation between the nucleon–nucleon force and the
quark–quark force is far from understood. The gluon, a particle of zero mass and spin 1
like the photon, plays the same role in the strong interaction as the photon plays in the
electromagnetic one. The charge is replaced by a property conventionally referred to as
color, and the theory of strong interactions is therefore called (quantum) chromodynamics.
The weak interaction is responsible for radioactive �-decay:

�Z�N�→ �Z+1�N −1�+ e−+�e� (1.4)

A special case is that of (1.2), which is written in the notation of (1.4) as

�0�1�→ �1�0�+ e−+�e�

Like the strong interaction, the weak interaction is short-range; however, as suggested
by its name, it is much weaker than the former. The carriers of the weak interaction are

11 We shall systematically use the notation r̂ , n̂, p̂ etc. for unit vectors in ordinary space.
12 The term “virtual photons” will be explained in Section 4.2.4.
13 The combination of quantum mechanics and special relativity leads to infinities, which must be controlled by a procedure

called renormalization. The latter was not fully understood and justified until the 1970s.
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spin-1 bosons: the charged W± and the neutral Z0 with masses 82 MeV c−2 and
91 MeV c−2, respectively (about 100 times the proton mass). The leptons, quarks,
spin-1 bosons (also referred to as gauge bosons: the photon, gluons, W±, and Z0; see
Exercise 11.5.11 for some elementary explanations), as well as a hypothetical spin-0
particle called the Higgs boson which gives masses to all the particles, are the particles
of the Standard Model of particle physics. This model has been tested experimentally
with a precision of better than 0.1% over the past ten years.
Last of all, we have the gravitational interaction between two masses m and m′, which,

in contrast to the Coulomb interaction, is always attractive:

�F =−Gmm′ r̂
r2
� (1.5)

Here the notation is the same as in (1.2) and G is the gravitational constant. The force
law (1.5) is, like the Coulomb law, a long-range law, and since the two forces have the
same form we can form the ratio of these forces between an electron and a proton:

FC

Fgr

=
(

q2
e

4��0

) (
1

Gmemp

)
∼ 1039�

In the hydrogen atom the gravitational force is negligible; in general, this force is com-
pletely negligible for all the phenomena of atomic, molecular, and solid-state physics.
General relativity, the relativistic theory of gravity, predicts the existence of gravitational
waves.14 These are the gravitational analog of electromagnetic waves, and the spin-2,
massless graviton is the analog of the photon. Nevertheless, at present there is no quantum
theory of gravity. The unification of quantum mechanics and general relativity and the
explanation of the origin of mass and the three particle families are major challenges of
theoretical physics in the twenty-first century.
Let us summarize our presentation of the elementary constituents and the fundamental

forces. There exist three families of matter particles, the leptons and quarks, plus the
carriers of the fundamental forces: the photon for the electromagnetic interaction, the
gluon for the strong interaction, the W and Z bosons for the weak interaction, and, finally,
the hypothetical graviton for the gravitational interaction.

1.2 Classical and quantum physics

Before introducing quantum physics, let us briefly review the fundamentals of classical
physics. There are three main branches of classical physics, and each has different
ramifications.

14 At present, there is only indirect, but convincing, evidence for gravitational waves from observations of binary pulsars
(neutron stars). Such waves may some day be detected on Earth in the VIRGO, LIGO, and LISA experiments. The graviton
will probably be observed only in the very distant future.
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1. The first branch is mechanics, where the fundamental law is Newton’s law. Newton’s law is the
fundamental law of dynamics; it states that in an inertial frame the force �F on a point particle
of mass m is equal to the derivative of its momentum �p with respect to time:

�F = d�p
dt

� (1.6)

This form of the fundamental equation of dynamics remains unchanged when the modifications
due to special relativity, introduced by Einstein in 1905, are taken into account. In the general
form of (1.6) we must use the relativistic expression for the momentum as a function of the
particle velocity �v and mass m:

�p= m�v√
1−v2/c2

� (1.7)

2. The second branch is electromagnetism, summarized in the four Maxwell equations which give
the electric field �E and magnetic field �B as functions of the charge density �em and the current
density �jem, which are referred to as the sources of the electromagnetic field:

�� · �B = 0� ��× �E =−��B
�t

� (1.8)

�� · �E = �em

�0
� c2 ��× �B = � �E

�t
+ 1

�0
�jem� (1.9)

These equations lead to a description of the propagation of electromagnetic waves in a vacuum
at the speed of light:

(
1
c2

�2

�t2
−�2

){ �E
�B = 0� (1.10)

Maxwell’s equations allow us to make the connection to optics, which becomes a special case
of electromagnetism. The connection between mechanics and electromagnetism is supplied by
the Lorentz law giving the force on a particle of charge q and velocity �v:

�F = q��E+�v× �B�� (1.11)

3. The third branch is thermodynamics, in which the main consequences are derived from the
second law:15 there exists no transformation whose sole effect is to extract a quantity of heat
from a reservoir and convert it entirely to work. This second law leads to the concept of entropy
which lies at the base of all of classical thermodynamics. The microscopic origin of the second
law was understood at the end of the nineteenth century by Boltzmann and Gibbs, who were
able to relate this law to the fact that a macroscopic sample of matter is made up of an enormous
(∼1023) number of atoms; this allows us to use probability arguments, on which statistical
mechanics is founded. The principal result of statistical mechanics is the Boltzmann law: the

15 The first law is just energy conservation, while the third is fundamentally of quantum origin.
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probability p�E� for a physical system in equilibrium at absolute temperature T to have energy
E includes a factor called the Boltzmann weight pB�E�:

16

pB�E�= exp
(
− E

kBT

)
= exp�−�E�� (1.12)

where kB is the Boltzmann constant (the gas constant R divided by Avogadro’s number), and
we have introduced the usual notation � = 1/kBT . However, classical statistical mechanics is
not in fact a consistent theory, and it is sometimes necessary to resort to questionable arguments
to obtain a sensible result, for example in computing the entropy of a perfect gas. Quantum
physics removes all these difficulties.

4. To be completely rigorous, we should mention a fourth branch of classical physics: the relativistic
theory of gravity, which in effect is not included in the three branches listed above. This theory
is called general relativity, and is a geometrical description in which gravitational forces arise
from the curvature of spacetime.

Equations (1.6)–(1.11) represent the fundamental laws of classical physics, which can
be summarized in only seven equations! The reader may wonder what happened to all
the other familiar laws of physics such as Ohm’s law, Hooke’s law, the laws of fluid
dynamics, etc. Some of these laws are derived directly from the fundamental ones; for
example, Coulomb’s law is a consequence of the Maxwell equations and the Lorentz
force (1.11) for static charges, and the Euler equation for a perfect fluid is a consequence
of the fundamental law of dynamics. Many other laws are phenomenological.17 They are
not universally valid, in contrast to the fundamental laws. For example, some media do
not obey Ohm’s law; the relation between the induction �D and the electric field �D= ��E
(for an isotropic medium) does not hold when the electric field becomes strong, giving
rise to the phenomena of nonlinear optics. Hooke’s law does not apply if the tension
becomes too large, and so on. The mechanics of solids, elasticity and fluid mechanics
follow from (1.6) and various phenomenological laws like the law that relates the force,
velocity gradient, and viscosity in fluid mechanics. It is important to clearly distinguish
between the small number of fundamental laws and the large number of phenomenological
laws which, for lack of anything better, are used in classical physics to describe matter.
Although there is no doubt that classical physics is useful, it does possess a serious

shortcoming: although physics claims to be a theory of matter, classical physics is com-
pletely incapable of explaining the behavior of matter given its constituents and the forces
between them.18 It cannot predict the existence of atoms, because it is not possible to
construct a length scale using the constants of classical physics: the masses and charges

16 The probability p�E� is the product of pB�E� (1.12) and the factor ��E�, the “energy-level density,” which in classical
physics is obtained by integrating over phase space; see Footnote 21. The quantum calculation of the level density is
described in Section 9.6.2.

17 Quite often a phenomenological law is nothing but the first term of a Taylor series.
18 This statement should be qualified slightly. There do exist good microscopic models in classical physics: for example, the

kinetic theory of gases permits reliable calculation of the transport coefficients (viscosity, thermal conductivity) of a gas.
However, neither the existence of the molecules making up the gas nor the value of the effective cross section needed in the
calculation can be explained by classical physics.
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of the nucleus and electrons.19 It cannot explain why the Sun shines or why sodium
vapor emits yellow light, and it has nothing to say about the chemical properties of the
alkalines, about the fact that copper conducts electricity while sulfur is an insulator, and
so on. When the classical physicist needs a property of a material such as an electrical
resistance or a specific heat, he or she has no choice but to measure it experimentally.
In contrast, quantum mechanics attempts to explain the behavior of matter starting from
the constituents and forces. Naturally, it is not possible to make precise predictions based
on first principles except for the simplest systems, like the hydrogen or helium atoms.
The complexity of the calculations does not allow, for example, prediction of the crystal
structure of silver based on the data for this atom, but given the crystal structure it can
explain why silver is a conductor, which classical physics is incapable of doing.
It should not be concluded from this discussion that classical physics can no longer

be interesting and innovative. On the contrary, during the past twenty years classical
physics has taken on new life with the development of new ideas about chaotic dynamical
systems, instabilities, nonequilibrium phenomena, and so on. Moreover, such familiar
problems as turbulence and friction remain poorly understood and extremely interesting.
There simply exist problems that by their nature are not suitable for study using classical
physics.
Quantum physics aspires to explain the behavior of matter on the basis of its constituents

and forces, but there is a price to pay: quantum objects display radically new behavior
which defies our intuition developed from the behavior of classical objects. That said,
quantum mechanics proves to be a remarkable tool which so far has always given correct
results and is capable of coping with problems ranging from quark physics to cosmology
and all scales in between. Without quantum mechanics, most of modern technology would
never have seen the light of day. All of information technology is based on our quantum
understanding of solids and, in particular, semiconductors. Theminiaturization of electronic
devices will make quantummechanics more and more omnipresent in modern technology.
The vast majority of physicists do not worry about the puzzling aspects of quantum

mechanics, but simply use it as a tool without asking questions of principle. Nevertheless,
the theoretical and, especially, experimental progress made over the past twenty years
have led to a better grasp of certain aspects of the behavior of quantum objects. Although
things are still far from clear, we shall see in Chapter 6 and Appendix B that we are
certainly on the path to a more satisfactory understanding of quantum mechanics. Perhaps
in a few years Feynman’s statement, “I think it can be stated today that no one understands
quantum mechanics,” will become obsolete. Before discussing the recent developments,
let us go back a few years to the beginning of quantum physics.

19 If we include the speed of light, we can construct a length scale, the classical electron radius

re =
q2e

4��0

1
mec

2
� 2�8×10−15 m�

but it is four orders of magnitude too small to be related to atomic dimensions. Another way of saying all this is to invoke
the scale invariance of the classical equations; cf. Wichman [1967], Chapter 1.
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1.3 A bit of history

1.3.1 Black-body radiation

A hot object such as a red-hot iron or the Sun emits electromagnetic radiation with a
frequency spectrum that depends on temperature. The power emitted u���T� per unit
frequency � and unit area depends on the absolute temperature T of the object. Purely
thermodynamical arguments can be made to show that if the object is perfectly absorbing,
that is, if it is a black body, then u���T� is a universal function independent of the object
at a given temperature. An excellent realization of a black body for visible light is a
small opening in a cavity whose interior is painted black. A light ray which enters the
cavity has practically no chance of getting out, because at each reflection there is a high
probability of being absorbed by the inner wall of the cavity (Fig. 1.4).
Let us suppose that the cavity is heated to a temperature T . The atoms of the inner

wall emit and absorb electromagnetic radiation, and a system of standing waves in
thermodynamical equilibrium is established in the cavity. If the cavity is a parallelepiped
of sides Lx, Ly, and Lz and we use periodic boundary conditions, the electric field will

have the form �E0 exp�i��k · �r−�t��, with the wave vector �k perpendicular to �E0 and of
the form

�k=
(
2�
Lx

nx�
2�
Ly

ny�
2�
Lz

nz

)
� (1.13)

where �nx� ny� nz� are positive or negative integers and � = c��k� = ck. It can be
shown that each standing wave behaves like a harmonic oscillator20 of frequency �

with energy proportional to the squared amplitude �E2
0 . According to the Boltzmann

law (1.12), the probability that this oscillator has energy E involves the factor

Fig. 1.4. Cavity for black-body radiation.

20 This will be explained in Section 11.3.3.
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exp�−E/kBT�= exp�−�E�. In fact, in this case the level density ��E� (cf. Footnote 16)
is a constant,21 and the average energy of this oscillator is simply


E� =
∫
dEE exp�−�E�∫
dE exp�−�E�

=− �

��
ln
(∫

dE exp�−�E�
)

= − �

��
ln

1
�
= 1

�
= kBT� (1.14)

The average energy of each standing wave is kBT . Since there are an infinite number of
possible standing waves, the energy inside the cavity is infinite!
The emitted power u���T� has a simple relation to the energy density ����T� per unit

frequency in the cavity (Exercise 1.6.2):

u���T�= c

4
����T�� (1.15)

so that we need to compute ����T �, from which we obtain the energy density:

��T�=
∫ �

0
d�����T�� (1.16)

Thermodynamics gives the scaling law

����T�= �3�
(�
T

)
� (1.17)

but tells us nothing about the explicit form of the function � except that it is independent
of the shape of the cavity. Let us try to find it up to a multiplicative factor by means of
dimensional analysis. A priori, ����T� can only depend on �, c, the energy kBT , and
a dimensionless constant A which cannot be fixed by dimensional analysis. The only
possible solution is (Exercise 1.6.2)

����T�= Ac−3�kBT��
2 = �3

[
Ac−3

(
kBT

�

)]
� (1.18)

which has the form (1.17). We rediscover the fact that the energy density in the cavity is
infinite:

��T�=
∫ �

0
d�����T�= Ac−3�kBT�

∫ �

0
�2d�=+��

The constant A can be calculated in statistical mechanics (Exercise 1.6.2), but this does
not resolve the problem of the infinite energy, and the dimensional analysis strongly
suggests that black-body radiation cannot be explained unless a new physical constant is
introduced.

21 The integration over phase space for a one-dimensional harmonic oscillator gives, for an arbitrary function f�E� (Exer-
cise 1.6.2), ∫

dxdp�
(
E− p2

2m
− 1

2
m�2x2

)
f�E�= 2�

�
f�E��

where x and p are the position and momentum, and � is a Dirac delta function.
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Out of all the hypotheses that could lead to the unacceptable result of infinite energy,
Planck chose the one on which the calculation (1.14) of the average oscillator energy
is based.22 Instead of allowing E to take all possible values between zero and infinity,
he assumed that it can take only discrete values En which are integer multiples of the
oscillator frequency � with proportionality coefficient �:

En = n����� n= 0�1�2� � � � (1.19)

The constant � is called Planck’s constant; more precisely, it is Planck’s constant h
divided by 2� � �= h/2�.23 Planck’s constant is measured in joule seconds (J s), and it
has dimensions ��2� −1 and numerical value

�≈ 1�054×10−34 J s or h≈ 6�63×10−34 J s�

According to the Boltzmann law, the normalized probability of observing an energy En is

p�En�= e−�n��

( �∑
n=0

e−�n��

)−1

= exp�−�n����1− exp�−������ (1.20)

In obtaining (1.20) we have used the fact that the summation over n is that of a geometrical
series. Setting x = exp�−����, we easily find the average oscillator energy 
E�:


E� = �1−x�
�∑
n=0

�n���xn = �1−x���x
d
dx

�∑
n=0

xn

= �1−x���x
d
dx

1
1−x

= ��x

1−x
= ��

exp�����−1
� (1.21)

This expression can be used to calculate the energy density (Exercise 1.6.2)

����T�= �

�2c3
�3

exp�����−1
(1.22)

and then u���T�, in perfect agreement with experiment for a suitably chosen value of
� and with the result (1.17) of thermodynamics. We note that the classical approxima-
tion (1.18) is valid if kBT � ��, that is, for low frequencies.
The best-known example of black-body radiation is the relic 3 K background radia-

tion filling the Universe, also called the cosmic microwave background (CMB).24 The
frequency distribution of this radiation is in remarkable agreement with the Planck

22 In reality, Planck applied his arguments to a “resonator,” the nature of which remains obscure, and the present argument
follows that of Einstein (1905). Dealing with electromagnetic field oscillations is simpler and more direct, but it does distort
the historical truth. Our “historical” presentation, like that of many textbooks, is more reminiscent of a fairy tale (H. Kragh,
Max Planck: the reluctant revolutionary, Physics World 13 (12), 31 (December 2000)) than actual history. Likewise, it
does not appear that the physicists of the late nineteenth century were troubled by the infinite energy or the absence of a
fundamental constant.

23 We shall systematically use � rather than h, and somewhat carelessly refer to � as Planck’s constant; the relation E = ��
is of course the same as E = h�, where � is the ordinary frequency measured in hertz and � is the angular or rotational
frequency measured in rad s−1: � = 2��. Since we nearly always use � rather than �, we shall just refer to � as the
frequency.

24 A particularly good account of the Big Bang is given by S. Weinberg in, The First Three Minutes: A Modern View of the
Origin of the Universe, New York: Basic Books (1977).
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Fig. 1.5. The 3K black-body radiation. On the vertical axis is the radiation intensity in
W m−2 sr−1 Hz−1. The remarkable agreement with Planck’s law for T = 2�73K is clearly seen.
Taken from J. Rich, Fundamentals of Cosmology, New York: Springer (2001).

law (1.22) for the temperature 2�73K ≈ 3K (Fig. 1.5), but this radiation is no longer in
thermodynamical equilibrium. It was decoupled from matter about 380 000 years after
the Big Bang, that is, after the birth of the Universe. At the instant of decoupling the
temperature was about 104 K. The subsequent expansion of the Universe has reduced
this value to the present one of 3 K. Deviations from a fully isotropic black-body radi-
ation, of the order of 10−3, arise from the motion of the Solar System with respect to
the cosmic microwave background, owing to the Doppler effect. There are also angular
dependent temperature fluctuations, ∼10−5, which are much more interesting as they give
us important information on the early history of the Universe.

1.3.2 The photoelectric effect

The integer n in (1.19) has a particularly important physical interpretation: the reason
that the energy of a standing wave of frequency � is an integer multiple n�� of ��

is that it corresponds to precisely n photons (or “particles of light”) of energy ��. It is
this interpretation that led Einstein to introduce the concept of photon in order to explain
the photoelectric effect. When a metal is illuminated by electromagnetic radiation, some
electrons escape from it and there is a threshold effect that depends on the frequency
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Fig. 1.6. TheMillikan experiment. (a) Schematic view of the experiment. (b) �V0� as a function of�.

and not the intensity of the radiation. The Millikan experiment (Fig. 1.6) confirms the
Einstein interpretation: the electrons emitted from the metal have kinetic energy Ek

Ek = ��−W� (1.23)

where W is the work function. An electron of charge qe does not reach the cathode if
�qeV �> Ek. If V0 is the potential at which the current vanishes, then

�V0� =
�

�qe�
�− W

�qe�
� (1.24)

The potential �V0� as a function of � has a constant slope �/�qe�, and the value of �

coincides with that for black-body radiation, thus confirming the Einstein hypothesis25

that electromagnetic radiation is composed of photons.26 The fact that the value of � is
the same as in the case of black-body radiation strongly suggests that one must introduce
a new fundamental constant.

1.4 Waves and particles: interference

1.4.1 The de Broglie hypothesis

From Eq. (1.19) for n = 1 we find E = ��, the Planck–Einstein relation between the
energy and frequency of a photon. The photon possesses momentum

p= E

c
= ��

c
�

25 Another rewriting of history! Some qualitative results on the photoelectric effect were obtained by Lenard in the early 1900s,
but the precise measurements of Millikan were made 10 years after the Einstein hypothesis. Einstein seems to have been
motivated not by the photoelectric effect, but by thermodynamic considerations. See G. Margaritondo, Physics World 14(4),
17 (April 2001).

26 The argument is not completely convincing, because the photoelectric effect can be explained within the framework of
a semiclassical theory, where the electromagnetic field is not quantized and where there is no concept of photon; cf.
Section 14.3.3. However, it is not possible to explain the photoelectric effect without introducing �. The fact that a
photomultiplier whose operation is based on the photoelectric effect registers isolated counts can be attributed to the quantum
nature of the device rather than the arrival of isolated photons.



18 Introduction

but using � = ck and the fact that the momentum and wave vector point in the same
direction we obtain the following vector relation between the latter:

�p= ��k � (1.25)

This equation can also be written as a relation (this time, scalar) between the momentum
and wavelength 
:

p= h



� (1.26)

The de Broglie hypothesis is that the relations (1.25) and (1.26) are valid for all parti-
cles. According to this hypothesis, a particle of momentum �p possesses wave properties
characterized by the de Broglie wavelength 
= h/p. If v	 c we can use �p=m�v, while
otherwise we use the general expression (1.7), except for m = 0, when p = E/c. If this
hypothesis is correct, particles must have observable wave properties; in particular, they
must undergo interference and diffraction.

1.4.2 Diffraction and interference of cold neutrons

Since the 1980s, modern experimental techniques have allowed interference and diffrac-
tion of particles to be verified in experiments based on simple principles and admitting
direct interpretation. Such experiments have been performed using photons, electrons,
atoms, molecules, and neutrons. Here we have chosen, a bit arbitrarily, to discuss neutron
experiments, as they are particularly elegant and clear. Neutron diffraction by crystals has
been around for fifty years now and is a classic experiment (Exercise 1.6.4), but modern
experiments are carried out using macroscopic devices with slits that can be viewed by
the naked eye, rather than a crystal lattice with a spacing of a few angstroms.
The experiments were performed in the 1980s by a group in Innsbruck using the

research nuclear reactor of the Laue-Langevin Institute in Grenoble. Neutrons of mass
mn are produced in the fission of uranium-235 in the reactor core, and then channeled to
the experiments. The order of magnitude of their kinetic energy is kBT , where T ≈ 300K
is the ambient temperature. Such neutrons are termed thermal and have kinetic energy
∼kBT ≈ 1/40 eV for T = 300K. The momentum p=√2mnkBT corresponds to a speed
v = p/mn of about 1000 m s−1, and according to (1.26) the associated wavelength

th is h/

√
2mnkBT ≈ 1�8Å. The wavelength is increased when the neutrons are made

to pass through a low-temperature material. For example, if the temperature of the
material is 1 K, the wavelength will increase to 
= 
th

√
300≈ 31Å. Such neutrons are

termed “cold.” In the experiments of the Innsbruck group, the neutrons were cooled to
25 K using liquid deuterium.27 This produced neutrons with an average wavelength of
about 20 Å.

27 Deuterium was chosen over hydrogen, as the latter inconveniently absorbs neutrons in the reaction n+p→ 2H+� (see
Exercise 14.6.8). This is why in a nuclear reactor heavy water is a better moderator than ordinary water.
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Fig. 1.7. Experimental setup for neutron diffraction and interference: S1 and S2 are collimating
slits, S3 is the entrance slit, S4 is the object slit, and S5 is the slit at the location of the counter C.
From A. Zeilinger et al., Rev. Mod. Phys. 60, 1067 (1988).

The experimental setup is shown schematically in Fig. 1.7. The neutrons are detected by
means of BF3 counters, in which the boron absorbs neutrons in the reaction

10B+n→ 7Li+ 4He

with an efficiency of nearly 100%. The counter is placed behind the screen at S5, and
counts the number of neutrons arriving in the neighborhood of S5.
In the diffraction experiment the slit S4 has a width of a = 93�m, which leads to a

diffraction maximum of angular size

 = 


a
≈ 2×10−5 rad�

On the screen located D = 5m from the slit the linear size of the diffraction peak is
of order 100�m. It is possible to calculate the diffraction pattern precisely, taking into
account, for example, the spread of wavelengths about the average value of 20 Å. The
theoretical result is in excellent agreement with experiment (Fig. 1.8).
In the interference experiment, two 21-�m slits have their centers separated by a

distance d = 125�m. The separation between fringes on the screen is

i= 
D

d
= 80�m�

The slits are visible with the naked eye, and the interference pattern is macroscopic. Again,
the theoretical calculation taking into account the various parameters of the experiment
is in excellent agreement with the experimental interference pattern (Fig. 1.9).
However, there is a crucial difference from an experiment on optical interference: the

interference pattern is made up of impacts of isolated neutrons and it is reconstructed
afterwards, when the experiment is completed. Actually, the counter is moved along the
screen (or an array of identical counters covers the screen), and the neutrons arriving
in the neighborhood of each point of the screen are recorded during identical time
intervals. Let N�x�!x be the number of neutrons detected per second in the interval
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Fig. 1.8. Neutron diffraction by a slit. The full line is the theoretical prediction. From A. Zeilinger
et al., Rev. Mod. Phys. 60, 1067 (1988).

100 µm

Position of the slit S5

Fig. 1.9. Young’s slit experiment using neutrons. The full line is the theoretical prediction. From
A. Zeilinger et al., Rev. Mod. Phys. 60, 1067 (1988).

�x−!x/2� x+!x/2�, where x is the abscissa of a point on the screen. The intensity
� �x� can be defined as being equal to N�x�, and the number of neutrons arriving in
the neighborhood of a point of the screen is proportional to the intensity � �x� of the
interference pattern, with statistical fluctuations of order

√
N about the average value.

The isolated impacts are illustrated in Fig. 1.10 for an experiment performed using not
neutrons, but cold atoms (see Section 14.4) which were allowed to fall through Young
slits. The impacts of the atoms that hit the screen were recorded, giving the pattern in
Fig. 1.10.
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Fig. 1.10. Interference using cold atoms. From Basdevant and Dalibard [2002].

1.4.3 Interpretation of the experiments

In addition to cold neutrons and atoms, other types of particle have been used in diffraction
and interference experiments:

• photons, with the light intensity reduced such that the photons arrive at the screen one by one.
Nevertheless, an experiment performed under these conditions is not entirely convincing, because
it can be explained semiclassically taking into account the quantum nature of the detector; see
Footnote 26. However, it is now known how to construct sources that provide truly isolated
photons, and experiments using such photons unarguably demonstrate interference produced by
one photon at a time28

• electrons
• light molecules (Na2)
• fullerenes C60 (Exercise 1.6.1).

There is every reason to assume that the results are universal, independent of the type
of particle – atoms, molecules, virus particles, etc.29 However, a difficulty of principle
seems to arise in interpreting these experimental results. In a classical Young’s slit
interference experiment realized using waves, the incident wave is split into two waves
which recombine and interfere, a phenomenon which is visible to the naked eye in, for
example, the case of waves on the surface of water. In the case of neutrons, each neutron
arrives separately, and the interval between the arrivals of two successive neutrons is
such that when a neutron is detected on the screen, the next one is still in the reactor
confined inside a uranium atom. Can we imagine that a neutron is split in two, with
each half passing through a slit? It is easy to convince ourselves that this hypothesis is
absurd: a counter always detects an entire neutron, never a fraction of one. The same
situation occurs if a semi-transparent mirror is used to split a light wave of intensity

28 A. Aspect, P. Grangier, and G. Roger, Dualité onde–corpuscule pour un photon unique, J. Optics (Paris) 20, 119 (1989).
29 However, wave effects become more and more difficult to observe for larger particles, in practice because the wavelength

becomes shorter and shorter, and more fundamentally because decoherence effects (Section 15.4.5) become more and more
important as an object becomes larger. See M. Arndt, K. Hornberger, and A. Zeilinger, Probing the limits of quantum worlds,
Physics World 18 (3), 35 (2005).
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D1

D2

Fig. 1.11. Beam-splitting plate and photon counting by photodetectors D1 and D2.

reduced enough to permit the detection of individual photons. The photodetectors D1 and
D2 always detect an entire photon, never a fraction of one (Fig. 1.11). The photon, like
the neutron, is indivisible, at least in a vacuum (though by interaction with a nonlinear
medium a photon can be split into two of lower energy; see Section 6.3.2).
We therefore must assume that a quantum particle possesses wave and particle proper-

ties simultaneously. It is an entirely new and strange object, at least to our intuition based
on experience with macroscopic objects. As Lévy-Leblond and Balibar, paraphrasing
Feynman, have written, “quantum objects are completely crazy.” However, they add “at
least they are all crazy in the same way.” Photons, electrons, neutrons, atoms, molecules –
all behave the same way, like waves and particles at the same time. In order to emphasize
this unity of quantum behavior, some authors have proposed the term “quanton” to refer
to such an object. Here we shall continue to use “quantum particle” or simply “particle,”
because the particles we shall consider in this book generally display quantum behavior.
We will specify “classical particle” when we need to refer to particles that behave like
little billiard balls.
If the neutron is indivisible, is it possible to know which slit it has passed through? If

one slit is closed, we observe on the screen the diffraction pattern corresponding to the
other slit and vice versa. If the experimental situation is such that it is possible to tell
which slit the neutron has passed through, then we observe on the screen the superposition
of the intensities of the diffraction patterns of each slit: the neutrons can effectively be
divided into two groups, those that passed through the upper slit and for which the lower
slit could have been closed without changing the result, and those that passed through
the lower slit. We observe an interference pattern only if the experimental apparatus is
such that we cannot know, even in principle, which slit a neutron has passed through.
Summarizing:

(i) If the experimental apparatus does not permit knowledge of which slit a neutron passed through,
an interference pattern is observed.

(ii) If the apparatus permits us in principle to determine which of the two slits a neutron passed
through, the interference will be destroyed independently of whether we actually bother to
determine which slit it was.
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A fundamental point to note is that we cannot know a priori at which point of the screen
a given neutron will arrive. We can only state that the probability of arriving at the screen
is large at a point of an interference maximum and small at a point of an interference
minimum. More precisely, the probability of arriving at an abscissa x is proportional to
the intensity � �x� of the interference pattern at this point. Likewise, in the experiment
of Fig. 1.11 each photomultiplier has a probability of 1/2 of being triggered by a given
photon, but it is impossible to know in advance which of the two detectors will be
triggered.
Let us try to make the preceding discussion quantitative. First of all, by analogy with

waves, we shall introduce a complex function of x, a1�x� [a2�x�], associated with the
passage through the upper slit [lower slit] of a neutron that reaches a point x on the
screen. For reasons to be explained below, this function will be called the probability
amplitude. The squared modulus of the probability amplitude gives the intensity: if slit
2 is closed �1�x�= �a1�x��2, and, conversely, if slit 1 is closed �2�x�= �a2�x��2. In case
(i) above we add the amplitudes before calculating the intensity:

� �x�∝ �a1�x�+a2�x��2� (1.27)

while in case (ii) we add the intensities

� �x�∝ �a1�x��2+�a2�x��2 = �1�x�+�2�x�� (1.28)

As above, the intensity can be defined as the number of neutrons arriving per second
per unit length of the screen. To take into account the probabilistic nature of the neutron
point of impact, the amplitudes a1 and a2 will not be wave amplitudes measuring the
amplitude of a vibration, but probability amplitudes, with the squared modulus being the
probability of arriving at a point x on the screen. The concept of probability amplitude
in quantum physics will be developed and given mathematical status in Chapter 3.
A more general statement of (1.27) and (1.28) is the following. Let us suppose that

starting from an initial state i we arrive at a final state f . To find the probability pi→f

of observing the final state f , we must add all the amplitudes that lead to the result f
starting from i:

ai→f = a
�1�
i→f +a

�2�
i→f +· · ·+a

�n�
i→f �

and then pi→f = �ai→f �2. It should be understood that the states i and f are specified
uniquely by the parameters that define the initial and final states of the full ensemble of
the experimental apparatus. If, for example, we desire information about the passage of
a neutron through a given slit, we can obtain it by integrating the Young’s slits into a
larger apparatus. Then the final state of this larger apparatus, which will be a function of
other parameters in addition to the neutron point of impact, is capable of informing us
whether the neutron has passed through the given slit. Just what is the final state of this
larger apparatus will depend on which slit the neutron passed through.
In summary, we must sum the amplitudes for identical final states and the probabilities

for different final states, even if these final states differ only by physical parameters other
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than those of interest. It is sufficient that these other parameters be accessible in principle,
even if they are not actually observed, for us to consider the final states as being different.
We shall illustrate this point by a concrete example in the following paragraph. Another
way of saying this which is easier to visualize is the following: identical final states
are associated with indistinguishable paths, and it is necessary to sum the amplitudes
corresponding to all indistinguishable paths.

1.4.4 Heisenberg inequalities I

Let us return to the neutron diffraction experiment in order to extract from it a fundamental
relation called the Heisenberg inequality, or, more commonly but ambiguously, the
Heisenberg uncertainty principle. If the slit width is a and if we orient the x axis along
the slit, perpendicular to the direction through the slit, the neutron position relative to
this axis immediately on leaving the slit is known to within !x= a. Because the angular
width of the diffraction maximum is ∼
/!x, the x component of the neutron momentum
is !px ≈ �
/!x�p= h!px, where p is the neutron momentum (we assume that p�!px).
We then obtain the relation

!px !x ∼ h� (1.29)

In Chapter 9 we shall discuss a more accurate version of Eq. (1.29) involving the standard
deviations, which we shall call simply the dispersions, of momentum and position !pi

and !xi for identical values of i= x� y� z:

!pi !xi ≥
1
2

�� (1.30)

There are no inequalities relating different components of momentum and position, for
example !px and !y. When interpreting a diffraction experiment it is often said that
the passage of a neutron through a slit of width !x allows the neutron’s x coordinate
to be measured with a precision !x, and that this measurement perturbs the neutron’s
momentum by an amount !px ≈ h/!x. We shall see in Section 4.2.4 that the inequali-
ties (1.30) in fact have nothing to do with the experimental measurement of position or
momentum, but instead arise from the mathematical description of a quantum particle as
a wave packet, and we shall also elaborate on the precise meaning of these relations.
We are now going to use (1.29) to discuss the question of observing trajectories in a

neutron interference experiment. Einstein proposed the apparatus of Fig. 1.12 for deter-
mining the neutron trajectory, i.e., for determining whether the neutron passes through
the upper or the lower slit. When the neutron passes through the first slit S0, owing to
momentum conservation it transfers a downward momentum to the screen E0 if it passes
through the upper slit S1 and an upward momentum to the screen if it passes through the
lower slit S2. It is then possible to determine which slit the neutron has passed through.
Bohr’s response was the following. If the screen E0 receives a momentum "px which
can be measured, this means that the initial momentum !px of the screen was much
less than "px, and the initial position is determined with an uncertainty at least of order
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Fig. 1.12. The Bohr–Einstein controversy. Slits S1 and S2 are Young’s slits. Slit S0 is located in a
screen which can move vertically.

h/!px. Such an inaccuracy in the position of the source is sufficient to make the inter-
ference pattern disappear (Exercise 1.6.3). All the various types of apparatus that can be
imagined for determining the neutron trajectory are either efficient, in which case there is
no interference pattern, or inefficient, in which case there is an interference pattern, but
the slit through which the neutron has passed cannot be known. The interference pattern
becomes more and more fuzzy as the apparatus becomes more and more efficient.
The above discussion is completely correct, but one should not conclude that it is the

perturbation of the neutron trajectory on hitting the first screen that spoils the interference
pattern.30 The crucial point is the possibility of tagging the trajectory. It is possible to
imagine and even experimentally construct an apparatus that tags trajectories without dis-
turbing the observed degrees of freedom at all, and yet this tagging is sufficient to destroy
the interference pattern. Let us briefly describe an apparatus which has not yet been
realized experimentally, but may become feasible when technology has evolved further.
Other types of apparatus that tag trajectories without perturbing them have been effectively
realized and are discussed in Exercise 3.3.9, Section 6.3.2, and Appendix B. However,
the principle governing such devices is based on ideas which we have not yet introduced,
and so for now we shall return to the familiar example of Young’s slits. The proposed

30 The same remark applies to the apparatus imagined by Feynman for a Young’s slit experiment using electrons (Feynman
et al. [1965], Vol. III, Chapter 1). A photon source placed behind the slits makes it possible in theory to observe the electron
passage. When short-wavelength photons are used the electron–photon collisions permit the two slits to be distinguished,
but the collisions perturb the trajectories enough to spoil the interference pattern. If the photon wavelength is increased,
the impacts are less violent, but the resolving power of the photons decreases. The interference fringes reappear when the
resolution becomes such that it is no longer possible to distinguish between the slits.



26 Introduction

apparatus uses atoms,31 so that it is possible to play with their internal degrees of freedom
without affecting the trajectory of their center of mass. Before passing through the slits, the
atoms are raised to an excited state by a laser beam (Fig. 1.13). Behind each slit is a super-
conducting microwave cavity, described in more detail in Section 6.4.1 and Appendix B.
In passing through the cavity the atom returns to its ground state and with nearly 100%
probability emits a photon which remains confined in the cavity. The presence of a photon
in one or the other cavity allows the atom’s trajectory to be tagged, which destroys the
interference pattern. The perturbation to the trajectory of the atom’s center of mass is
completely negligible: there is practically no momentum transfer between the photon and
the atom. However, the two final states – the atom arriving at abscissa x on the screen
and a photon in cavity 1, and the atom arriving at x on the screen and a photon in cavity
2 – are different. It is therefore necessary to take the squared modulus of each of the cor-
responding amplitudes and add the probabilities. We note that it is not necessary to detect
the photon, a requirement which moreover would introduce an additional experimental
complication. It is sufficient to know that the atom has emitted a photon in a quasi-certain
way in its passage through the cavity. As we have already emphasized, it is not at all
necessary that the final state is effectively observed, it is only necessary that it can be
observed in principle, even if the present or future state of technology does not permit such
observation. In the terminology to be defined in Chapters 6 and 15, we can say that inter-
ference is destroyed if “which path” information is encoded in the environment. We shall
return to this subject in Appendix B.1, where we will discuss it in a mathematical context.

plane
atomic
wave

laser
beam

with fringes
without fringes

cavity 1
ϕ 1

ϕ 2
cavity 2

Fig. 1.13. Tagging of trajectories in Young’s slit experiments. Taken from B. Englert, M. Scully, and
H. Walther, Origin of quantum mechanical complementarity probed by a “which way” experiment
in an atom interferometer. Nature 351, 111 (1991).

31 This has been imagined by B. Englert, M. Scully, and H. Walther, Quantum optical tests of complementarity, Nature 351,
111 (1991), and they present a popularized description of it in Scientific American 271, 86 (December 1994). The atoms
are assumed to be in Rydberg states (cf. Exercise 14.5.4). A related experiment based on the same principle but with a
more complicated realization has been performed by S. Dürr, T. Nonn, and G. Rempe, Origin of quantum mechanical
complementarity probed by a “which way” experiment in an atom interferometer, Nature 395, 33 (1998). See also P. Bertet
et al., A complementarity experiment with an interferometer at the quantum–classical boundary, Nature 411, 166–170 (2001).
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1.5 Energy levels

The goal of this section is to define the concept of energy level, first on the basis of the
classical notion. Taking as an example the Bohr atom, we can then proceed in a simple way
to the quantum notion, after which we shall examine radiative transitions between levels.

1.5.1 Energy levels in classical mechanics and classical models of the atom

Let us imagine a classical particle which we take, for the sake of simplicity, to be moving
along the x axis and which has potential energy U�x�. In quantum mechanics, U�x� is
referred to in general as the potential. It is well known that the mechanical energy E,
the sum of the kinetic energy K and the potential energy U , is constant: E = K+U =
const. Let us assume that the potential energy has the form shown in Fig. 1.14, that
of a “potential well” which tends to the same constant value for x→±�. It will be
convenient to fix the zero of the energy such that E = 0 for a particle of kinetic energy
that vanishes at infinity.
There are two possible situations.

(i) The particle has energy E> 0. Then if, for example, it leaves from x=−�, it is first accelerated
and then decelerated in passing through the potential well, and at x = +� it reaches a final
velocity equal to the initial one. Such a particle is said to be in a scattering state.

(ii) The particle has negative energy U0 < E < 0. Then the particle cannot escape from the well,
but travels back and forth inside it between the points x1 and x2 satisfying E = U�x1�2�. It is
confined inside a finite region of the x axis, x1 ≤ x ≤ x2, and is said to be in a bound state.

When the potential energy is positive (Fig. 1.15) we have the case of a “potential
barrier.”32 In this case E> 0 and only scattering states are observed. If E<U0, a particle
leaving from x=−� is at first decelerated, and when it arrives at the point x1 satisfying
U�x1� = E it is reflected by the potential barrier. If E > U0 the particle passes over the
potential barrier and reaches x =+� with its initial velocity.

x

U(x)

x1 x2

E

U0

Fig. 1.14. A potential well.

32 Naturally, situations more complex than the ones in these figures can be imagined, for example a double well. Here we shall
discuss only the simplest cases.
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x

U(x)

E

x1

U0

Fig. 1.15. A potential barrier.

In classical mechanics the energy of a bound state can take all possible values between
U0 and 0. In quantum mechanics, we shall see in Chapter 9 that it can take only discrete
values. On the other hand, as in classical mechanics, the energy of a scattering state is
arbitrary. However, there are still notable differences (Sections 9.3 and 9.4) from the
case of classical mechanics. For example, the particle can pass over a potential barrier
even if E < U0. This is called “tunneling.” Moreover, the particle can be reflected even
if E > U0.
Let us apply these ideas from classical mechanics to atoms. The first atomic model was

proposed by Thomson (Fig. 1.16a). Here the atom is represented as a sphere of uniform
positive charge, with electrons moving around inside this charge distribution. It is a result
of elementary electrostatics that the electrons here experience a harmonic potential, and
their ground (stable) energy level is the state in which they are at rest at the bottom of
the potential well. Excited states correspond to vibrations about the equilibrium position.
This model was ruled out by the experiments of Geiger and Marsden, who showed that
#-particle (4He nucleus) scattering by atoms is incompatible with it.33 Rutherford deduced
from his experiments the existence of an atomic nucleus of size less than 10 F, and
proposed a planetary model of the atom (Fig. 1.16b): the electrons orbit the nucleus like
the planets orbit the Sun, with the Coulomb interaction playing the role of gravitational
attraction. This model possesses two major, related shortcomings: there is no scale which
fixes the atomic size, and the atom is unstable, because the orbiting electrons radiate
and end up falling onto the nucleus. In this process a continuous frequency spectrum
is emitted, whereas experiments performed in the late nineteenth century showed that
(Fig. 1.17)

• the frequencies of radiation emitted or absorbed by an atom are discrete. They are expressed as
a function of two integers n and m and can be written as differences, �nm = An−Am;

• there exists a ground-state configuration of the atom in which it does not radiate.

33 Though atomic physicists still often make use of it � � �
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(b)

––

∼ 10 –14 m

∼ 10–10 m∼ 10–10 m

(a)

–
–

–
–
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–

–

–

Fig. 1.16. Models of the atom. (a) Thomson: the electrons are located inside a uniform distribution
of positive charge. (b) Rutherford: the electrons orbit a nucleus.

(b) emission
E0

Em

En

(a) absorption

Fig. 1.17. Emission and absorption of radiation between two levels En and Em.

These results suggest that the atom emits or absorbs a photon in passing from one level
to another, with the photon frequency �nm given by (En > Em�

��nm = En−Em� (1.31)

The frequencies �nm are called the Bohr frequencies. According to these arguments, only
certain levels labeled by a discrete index can exist. This is referred to as the quantization
of energy levels.

1.5.2 The Bohr atom

In order to explain this quantization, Bohr imposed an ad hoc quantization rule on classical
mechanics and the Rutherford atom. We shall follow an argument slightly different from
his original one. Taking for simplicity the hydrogen atom with an electron of mass me
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and charge qe in a circular orbit of radius a, we postulate that the circumference 2�a of
the orbit must be an integer multiple of the de Broglie wavelength 
:

2�a= n
� n= 1�2� � � � (1.32)

This postulate is intuitive; it means that the phase of the de Broglie wave of the electron
returns to its initial value after one complete orbit and a standing wave is formed. From
(1.32) and (1.26) we deduce

2�a= n
h

p
= nh

mev
�

According to Newton’s law,

mev
2

a
= q2

e

4��0a
2
= e2

a2
� fromwhich v2 = e2

mea
�

where we have defined the quantity e2 = q2
e/4��0. Eliminating the speed v between the

two equations, we obtain the orbital radius:

a= n2�2

mee
2
� (1.33)

The case n= 1 corresponds to the orbit of smallest radius, and this radius, denoted a0, is
called the Bohr radius:

a0 =
�2

mee
2
� 0�53 Å � (1.34)

The energy level labeled by n is

En =
1
2
mev

2− e2

a
=− e2

2a
=− mee

4

2n2�2
=−R�

n2
�

The energy levels En are expressed as a function of the Rydberg constant R�,34

R� =
mee

4

2�2
� 13�6 eV (1.35)

as

En =−R�
n2

� (1.36)

This formula gives the level spectrum of the hydrogen atom. The ground state corresponds
to n= 1 and the ionization energy of the hydrogen atom is R�. The photons emitted by
the hydrogen atom have frequencies

��nm =−R�

(
1
n2
− 1

m2

)
� n > m� (1.37)

34 The subscript � is used because the theory described here assumes that the proton is infinitely heavy. When the finite
mass mp of the proton is taken into account, R� is changed to R��1/�1+me/mp��; cf. Exercise 1.6.5.
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in perfect agreement with the spectroscopic data for hydrogen. However, the simplicity
with which the spectrum of the hydrogen atom can be calculated using the Bohr theory
should not be allowed to mask the artificial nature of this theory.
Sommerfeld’s generalization of the Bohr theory consists of the postulate∫

pi dqi = nh� (1.38)

where qi and pi are coordinates and momenta conjugate in the sense of classical mechanics
and n is an integer ≥1. However, we now know that the conditions (1.38) are valid
only for certain very special systems and for large n, with some exceptions. The Bohr–
Sommerfeld theory cannot describe atoms with many electrons, or scattering states.
The success of the Bohr theory in the case of the hydrogen atom is only a happy
accident.

1.5.3 Orders of magnitude in atomic physics

Metre/Kilogram/Second units, which are adapted to measuring things at the human
scale, are not convenient in atomic physics. A priori, a convenient system of units
should feature the fundamental constants � and c, as well as the electron mass me.
The proton can be considered infinitely heavy, or, more precisely, the electron mass
can be replaced by the reduced mass (cf. Footnote 34). Let us recall the values of
these constants with an accuracy of ∼10−3 sufficient for the numerical applications in
this book:

� = 1�054×10−34 J s �

c = 3×108 m s−1 �

me = 0�911×10−30 kg �

From these constants we can form the following natural units:

• The unit of length:35
�

mec
= 3�86×10−13 m;

• The unit of time:
�

mec
2
= 1�29×10−21 s;

• The unit of energy: mec
2 = 5�11×105 eV.

These units are much closer than MKS units to the orders of magnitude characteristic
of atomic physics, though a few orders of magnitude are still lacking. This is fixed by
introducing a quantity which measures the strength of the electromagnetic force, the

35 Called the Compton wavelength of the electron.
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coupling constant e2 = q2
e/4��0. From �, c, and e2 we can form a dimensionless quantity

called the fine-structure constant �:36

�= e2

�c
= q2

e

4��0�c
� 1

137
� (1.39)

The relations between atomic units and natural units are now easy to find. For the Bohr
radius, the natural unit of length in atomic physics, we obtain

a0 =
�2

mee
2
= �c

e2
�

mec
= 1

�

�

mec
≈ 0�53 Å� (1.40)

The Rydberg, the natural unit of energy in atomic physics, is related to mec
2 as

R� =
1
2
mee

4

�2
= 1

2

(
e2

�c

)2

mec
2 = 1

2
�2mec

2 ≈ 13�6 eV� (1.41)

The speed of the electron in the ground state is v = �c = e2/�, and the period of this
orbit, which is the atomic unit of time, is

T = 2�a0

v
= 2�

1
�

�

mec

1
�c

= 2�
�2

�

mec
2
≈ 1�5×10−16 s� (1.42)

Equations (1.40)–(1.42) show that the natural units and atomic units are related by
powers of �.
As a final example, let us estimate the average lifetime of an electron in an excited

state. We shall use a classical picture, viewing the electron as traveling in an orbit of
radius a.37 We shall push this picture until it breaks down, and then we shall attempt
to correct it by taking into account quantum considerations; this is called semiclassical
reasoning. A calculation in classical electromagnetism shows that an electron in a circular
orbit which moves with speed v= �a	 c radiates a power

P = 2
3c3

e2a2�4 = 2
3

(
e2

�c

)
a2��4

c2
∼ ��2�

(a�
c

)2
� (1.43)

In a purely classical picture, the electron will lose energy in a continuous fashion by
emitting electromagnetic radiation. This is where an admittedly ad hoc quantum argument

36 This terminology arose for historical reasons and is somewhat confusing; it would be better to say “atomic constant” �. This
is the coupling constant of electrodynamics, although it is not really constant owing to subtleties of quantum field theory.
The quantum fluctuations of the electron–positron field have the effect of screening electric charges: owing to (virtual)
electron–positron pair production, the charge of a particle measured far from the particle is smaller than the charge measured
close to it. Owing to the Heisenberg inequality (1.30), short distance implies large momentum and therefore high energy, i.e.,
particles of high energy must be used to explore short distances. It can therefore be concluded that the fine-structure constant
is an increasing function of energy, and in fact at energies of the order of the Z0 boson rest energy, mZc

2 ≈ 90GeV, we
have �≈ 1/129 instead of the low-energy value �≈ 1/137. The renormalization procedure of eliminating infinities allows
us to choose an arbitrary energy (or distance) scale for defining �. In sum, � depends on the energy scale characteristic of
the process under study, and also on details of the renormalization procedure (cf. Footnote 13). This energy dependence of
� has been observed for several years now in precision experiments in high-energy physics. See also Exercise 14.6.3.

37 One can also view an atom as a dipole oscillating with frequency �, as in the Thomson model. The only difference is that
the factor of 2/3 in (1.43) becomes 1/3, which has no effect on the orders of magnitude.
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enters: the atom emits a photon when it has accumulated an energy ∼��, which takes a
time $ corresponding to the lifetime of the excited state:

1
�
∼ P

��
∼ ��

(a�
c

)2
� (1.44)

However, we have seen that a�/c= v/c∼ �, and the relation between the period T and
the average lifetime � is

T

�
∼ 1

��
∼ �3 ∼ 10−6� (1.45)

The electron orbits about a million times before emitting a photon, and so an excited state
is well defined. For the ground state of the hydrogen atom where the energy is ∼10 eV
we have seen that T ∼ 10−16 s, while for an outer-shell electron of an alkaline atom with
energy ∼1eV we have instead T ∼ 10−15 s and the order of magnitude of the lifetime
of an excited state is ∼10−7−10−9 s. For example, the first excited state of rubidium (D2

line) has an average lifetime of 2�7×10−8 s.
The reasoning we have followed in this section has the merit of simplicity, but it is

not satisfying. We had to impose a somewhat ad hoc quantum constraint on the classical
arguments when they became untenable, and the reader can justly fail to be convinced by
this sort of reasoning. It is therefore necessary to develop an entirely new theory which
is no longer guided by classical physics, but instead develops in an autonomous fashion,
without reference to classical physics.

1.6 Exercises

1.6.1 Orders of magnitude

1. We would like to explore distances at the atomic scale, that is, 1 Å, using photons, neutrons, or
electrons. What should the order of magnitude of the energy of these particles be in eV?

2. When the wavelength 
 of a sound wave is large compared with the lattice spacing of the
crystal in which the vibration propagates, the frequency � of the wave is linear in the wave
vector k = 2�/
: � = csk, where cs is the speed of sound (cf. Section 11.3.1). In the case of
steel cs � 5×103 m s−1. What is the energy �� of a sound wave for k= 1nm−1? The particle
analogous to the photon in the case of sound waves is called the phonon (see Section 11.3.1),
and �� is the phonon energy. Using the fact that a phonon can be created in an inelastic collision
with a crystal, should neutrons or photons be used to study phonons?

3. In an interference experiment using fullerenes C60, which are at present the largest objects for
which wave behavior has been verified experimentally,38 the average speed of the molecules is
about 220 m s−1. What is their de Broglie wavelength? How does it compare with the size of
the molecule?

4. A diatomic molecule is composed of two atoms of masses M1 and M2 and has the form of a
dumb-bell. The two nuclei are located a distance r0= ba0 apart, where a0 is the Bohr radius (1.34)

38 M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, Wave–particle duality of C60 molecules,
Nature 401, 680 (1999). For more recent results see M. Arndt, K. Hornberger, and A. Zeilinger, Physics World 18(3), 35
(2005).
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and b is a numerical coefficient ∼1. It is assumed that the molecule rotates about its center of
inertia, through which passes the axis perpendicular to the line joining the nuclei, referred to as
the nuclear axis. Show that the moment of inertia is I = �r20 , where � =M1M2/�M1+M2� is
the reduced mass. If we assume that the angular momentum is �, what is the angular speed of
rotation and the corresponding energy �rot? Show that this energy is proportional to �me/��R�,
where me is the electron mass and R� =mee

4/�2�2�= e2/�2a0�.
5. The molecule can also vibrate along the nuclear axis about the equilibrium position r = r0, where

the restoring force has the form −K�r− r0�, with Kr20 = dR� and d a numerical coefficient ∼1.
What are the vibrational frequency �v and the corresponding energy ��v? Show that this energy
is proportional to

√
me/�R�. An example is the H35Cl molecule, for which the experimental

values are r0 = 1�27Å, �rot = 1�3×10−3 eV, and ��v = 0�36eV. Calculate the numerical values
of b and d. What will the wavelengths of photons of energy �rot and ��v be? In which regions
do these wavelengths lie?

6. The absence of a quantum theory of gravity makes it necessary to restrict all theories to energies
lower than EP, the Planck energy. Use a dimensional argument to construct EP as a function
of the gravitational constant G (Eq. (1.5)), �, and c and find its numerical value. What is the
corresponding wavelength (or Planck length) lP?

1.6.2 The black body

1. Prove the following equation (Footnote 21):∫
dxdp�

(
E− p2

2m
− 1

2
m�2x2

)
f�E�= 2�

�
f�E��

2. We want to relate the energy density per unit frequency ����T� to the emitted power u���T�,
Eq. (1.15). We consider a cavity maintained at temperature T (Fig. 1.4). Let �̃�k�T�d3k be the
energy density in a volume d3k about �k, which depends only on k= ��k�. Show that

�̃�k�T�= c

4�k2
����T��

The Poynting vector of a wave with wave vector �k escaping from the cavity is c�̃�k�T�k̂. Show
that the flux of the Poynting vector through an opening of area � is

% = 1
4
c�
∫ �

0
����T�d�

and derive (1.15).
3. Show by dimensional analysis that in classical physics the energy density of a black body is

given by

��T�= A�kBT�c
−3
∫ �

0
�2 d��

where A is a numerical coefficient.
4. Each mode �k of the electromagnetic field inside the cavity is a harmonic oscillator. In classical

statistical mechanics the energy of such a mode is 2kBT (where does the factor of 2 come
from?). Show that the energy density inside the cavity is

��T�= 1
�2

�kBT�c
−3
∫ �

0
�2 d�

and compute A.
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5. Demonstrate (1.22) and show that the classical expression is recovered for ��	 kBT , that is,
for a sufficiently high temperature with � fixed. This is a very general result: the classical
approximation is valid at high temperature.

1.6.3 Heisenberg inequalities

In the thought experiment of Fig. 1.12, show that the momentum "px transferred to the
screen must be pa/�2D�, where a is the spacing between the slits S1 and S2 (Fig. 1.12)
and p is the neutron momentum. Determination of the trajectory implies that !px 	 "px,
where !px is the spread in the initial momentum of the screen. What is the dispersion
!x at the location of S0? Show that in this case the interference pattern is destroyed.39

1.6.4 Neutron diffraction by a crystal

Neutron diffraction is one of the principal techniques used to analyze crystal structure.
For simplicity, let us consider a two-dimensional crystal composed of identical atoms
with wave vectors lying in the plane of the crystal.40 The atoms of the crystal are located
at the lattice sites (Fig. 1.18)

�ri = nax̂+mbŷ� n= 0�1� � � � �N −1� m= 0�1� � � � �M−1�

The neutrons interact with the atomic nuclei via the nuclear interaction.41 We use f� �

to denote the probability amplitude that a neutron of momentum ��k is scattered in the
direction k̂′ by an atom located at the origin, where  is the angle between k̂ and k̂′. Since

b
a

x

y

O

k

θB

θ

→

k

k ′

→

→

Fig. 1.18. Neutron diffraction by a crystal. The incident neutron has momentum ��k and the scattered
neutron ��k′. The Bragg angle  B is defined in question 4.

39 See W. Wootters and W. Zurek, Complementarity in the double slit experiment: quantum nonseparability and a quantitative
statement of Bohr’s principle, Phys. Rev. D19, 473–484 (1979).

40 One can also imagine 3D scattering by a 2D crystal; cf. Wichman [1974], Chapter 5, where a model for diffraction by the
surface of a crystal is presented.

41 There is also an interaction between the neutron magnetic moment and the atomic magnetism. It plays a very important role
in studies of magnetism, but is not relevant to the present discussion.
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the neutron energy is very low, ∼ 0�01eV, f� � is independent of  (Section 12.2.4):
f� � = f . The collision between a neutron and an atomic nucleus is elastic and leaves
the state of the crystal unchanged: it is impossible to know which atom has scattered the
neutron.

1. Show that the amplitude for scattering by an atom located at a site �ri is
fi = f ei��k−�k

′���ri = f e−i�q��ri �

with �q = �k′ − �k.
2. Show that the amplitude ftot for scattering by a crystal has the form

ftot = fF�aqx� bqy��

with the function F�aqx� bqy� given by

F�aqx� bqy� = exp
(
−i

aqx�N −1�
2

)
exp
(
−i

bqy�M−1�

2

)

×
[
sin�aqxN/2�
sin�aqx/2�

][
sin�bqyM/2�

sin�bqy/2�

]
�

3. Show that for N�M � 1 the scattering probability is proportional to �NM�2 when �q has com-
ponents

qx =
2�nx

a
� qy =

2�ny

b

nx and ny being integers. When the components of �q are of this form, it is said that �q belongs to
the reciprocal lattice of the crystal lattice. Diffraction maxima are obtained if �q is a reciprocal
lattice vector. What is the width of a diffraction peak about the maximum? Show that the
intensity inside the peak is proportional to NM .

4. The elastic nature of the scattering must be taken into account. Show that the condition for
elastic scattering is

2�k��q+q2 = 0�

A reciprocal lattice vector does not give a diffraction maximum unless this condition is satisfied.
For fixed wavelength, this condition cannot be satisfied unless the angle of incidence takes
special values, called the Bragg angles  B. A simple analysis is possible if nx = 0. Show that in
this case an angle of incidence  B gives rise to diffraction when

sin  B =
�n

bk
� n= 1�2� � � �

In general, it is convenient to interpret the Bragg condition geometrically: the tip of the vector
�k is located at a point of the reciprocal lattice and traces a circle of radius k. If this circle passes
through another point of the reciprocal lattice a diffraction maximum is obtained. In general,
a beam of neutrons incident on a crystal will not give rise to a diffraction peak. The angle of
incidence and/or wavelength must be chosen appropriately. Why doesn’t this phenomenon occur
in diffraction by a one-dimensional lattice? What happens if only the first vertical column of
atoms on the line y = 0 is present?
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5. Now let us assume that the crystal is composed of atoms of two types. The basic crystal pattern,
or cell, is formed as follows. Two atoms of type 1 are respectively located at

�r1 = 0 and �r1 ′ = ax̂+bŷ�

and two atoms of type 2 at

�r2 = ax̂ and �r2 ′ = bŷ�

The pattern is repeated with periodicity 2a in the x direction and 2b in the y direction. Let
f1 [f2] be the amplitude for neutron scattering by an atom of type 1 [2] located at the origin;
these amplitudes can be taken to be real. If NM is the number of cells, show that the amplitude
for scattering by the crystal is proportional to F�2aqx�2bqy�. Find the proportionality factor
as a function of f1 and f2. Show that if qx and qy correspond to a diffraction maximum, this
proportionality factor must be

f1
[
1+ �−1�nx+ny

]+f2 ��−1�nx + �−1�ny � �

Discuss the result as a function of the parity of nx and ny.
6. The atoms 1 and 2 form an alloy.42 At low temperatures the atoms are in the configuration

described in question 5 above, but above a certain temperature each atom has a 50% probability
of occupying any site, and all sites are equivalent. How will the diffraction picture change?

1.6.5 Hydrogen-like atoms

Calculate, as a function of R�, the ground-state energy of the ordinary hydrogen atom,
the deuterium atom, and the singly ionized helium atom taking into account the fact that
nucleons have finite mass. Hint: what are the reduced masses?

1.6.6 The Mach–Zehnder interferometer

In a Mach–Zehnder interferometer (Fig. 1.19), a light beam arrives at the first beam
splitter BS1. The two resulting beams are then reflected by two mirrors and recombined

M1

M2

δ

D1

D2

a0

ta0

ra0

BS1

BS2

Fig. 1.19. The Mach–Zehnder interferometer.

42 An example of the phenomenon described in this exercise is brass with composition 50% copper and 50% zinc.
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by a second beam splitter BS2. The intensity of the incident light is reduced to the level at
which the photons arrive one by one. More precisely, the time between the arrival of two
successive photons is very large compared with the resolution times of the photodetectors
D1 and D2. If a photon arrives at a beam splitter with probability amplitude a0, it will be
transmitted with an amplitude ta0 and reflected with an amplitude ra0, where t and r are
complex numbers

t = �t�ei�� r = �r�ei�

and �t� = �r� = 1/
√
2. A phase shift � can be introduced into, for example, the upper path

of the interferometer by means of a plate with parallel faces of variable thickness. In the
absence of this plate � = �0 �= 0 because the two beam paths in the interferometer are
never exactly equal. Let p1 and p2 denote the probabilities of detecting a photon by D1

and D2.

1. Calculate p1 and p2 as functions of �, �, and �. What is observed when � is varied?
2. What is the relation between p1 and p2? Derive the expression

�−�= �

2
±n�� integer n�

1.6.7 Neutron interferometry and gravity

A neutron interferometer is realized in the following way (Fig. 1.20). A monochromatic
(i.e., fixed wavelength) incident beam arrives at the first crystal at point A, with the angle
of incidence and wavelength chosen such that a diffraction maximum is obtained (see
Exercise 1.6.4, question 4); this angle of incidence is the Bragg angle  B. Part of the beam
is transmitted as beam I with probability amplitude t and the rest is refracted as beam II
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II
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II
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θ
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x

χ
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Fig. 1.20. Neutron interferometry.
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with probability amplitude r. These amplitudes satisfy �t�2+ �r�2 = 1. Beams I and II
arrive at a second crystal at points B and D, respectively, and the refracted parts of I and
II are recombined by a third crystal at point C. The neutrons are detected by the two
counters D1 and D2. On trajectory II the neutrons undergo a phase shift & which can
have various origins (a difference between the lengths of the trajectories, gravity, passage
through a magnetic field, etc.), and the objective of neutron interferometry is to measure
this phase shift.

1. Show that the probability amplitude a1 for a neutron to arrive at D1 is

a1 = a0�e
i& trr+ rrt��

and that the probability of detection by D1 is

p1 = 2�a0�2�t�2�r�4�1+ cos&�= A�1+ cos&��

where a0 is the amplitude incident on the first crystal.
2. What is the amplitude a2 for a neutron to reach detector D2 as a function of r, t, and a0, and

the corresponding probability p2? Why must we have p1+p2 = constant? Show that

p2 = B−A cos&�

What is B as a function of t, r , and a0? Letting

t = �t�ei�� r = �r�ei��

show that

�−�= �

2
±n�� n= 0�1�2� � � �

3. We now take gravity into account. How does the wave vector k = 2�/
 of a neutron vary
with height z when the neutron is located in a gravitational field with gravitational accelera-
tion g? Compare the numerical values of the neutron kinetic energy and gravitational energy43

mngz (where mn is the neutron mass), and derive an approximation for k. Assuming that the
plane ABCD is initially horizontal, it can be rotated about the axis AB such that it becomes
vertical. Show that such a rotation induces the following phase difference between the two
trajectories:

!'= m2
ng�

�2k
= 2�m2

ng�


h2
�

where � is the area of the rhombus ABCD.

43 The energy is defined up to an additive constant, with the zero of energy fixed according to the following convention: a
neutron of zero velocity and height z= 0 has zero energy.
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4. If the plane ABDC lies at a variable angle  with respect to the vertical direction, give a
qualitative discussion of the variation of the neutron detection probability as a function of  .
Numerical data:44 
= 1�44Å�� = 10�1 cm2.

1.6.8 Coherent and incoherent neutron scattering by a crystal

We want to study neutron scattering by a crystal composed of two types of nucleus.
A given lattice site is occupied by a nucleus of type 1 with probability p1 or by a nucleus
of type 2 with probability p2 = 1−p1. The total number of nuclei is � , and so there are
p1� nuclei of type 1 and p2� nuclei of type 2 in the crystal. With a site i, i= 1� � � � �� ,
we associate a number �i which takes the value 1 if the site is occupied by a nucleus of
type 1 and 0 if it is occupied by a nucleus of type 2. The ensemble (�i) of the �i, with∑

i �i = p1� , defines a configuration of the crystal. The amplitude of neutron scattering
by the crystal in a configuration (�i) is (cf. Exercise 1.6.4)

ftot =
�∑
i=1

��if1+ �1−�i�f2� e
i�q·�ri �

where f1 (f2) is the amplitude for neutron scattering by a nucleus of type 1 (2).

1. We shall use brackets 
•� to denote the average over all possible configurations of the crystal,
assuming that the occupation numbers of the sites are not correlated (for example, the occupation
of a site by a nucleus of type 1 does not increase the probability that a nearest-neighbor site is
also occupied by a nucleus of type 1). Prove the identities


�i�j� = p2
1+p1p2�ij� 
�i�1−�j�� = p1p2�1−�ij��

2. Use these identities to derive the average of �ftot�2 over configurations:


�ftot�2� = �p1f1+p2f2�
2
∑
i�j

ei�q·��ri−�rj �+� p1p2�f1−f2�
2�

The first term describes coherent scattering and gives rise to diffraction peaks. The second
term is proportional to the number of sites and independent of angles; it corresponds to
incoherent scattering.

1.7 Further reading

The introductory Chapters 1–3 of Feynman et al. [1965], vol. III, and Chapters 1–5 of
Wichman [1967] are strongly recommended as an elementary introduction to quantum
physics. Another source is Chapters 1–3 of Lévy-Leblond and Balibar [1990]. For a
pedagogical discussion of elementary particle physics see D. Perkins, An Introduction to
High Energy Physics, 4th edn, Cambridge: Cambridge University Press (2000). A detailed

44 R. Colella, A. Overhauser, and S. Werner, Observation of gravitationally induced quantum interference, Phys. Rev. Lett. 34,
1472–1474 (1975).
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discussion of black-body radiation can be found in, for example, Le Bellac et al. [2004],
Chapter 4. Interference and diffraction experiments using cold neutrons have been per-
formed by A. Zeilinger, R. Gähler, C. Shull, W. Treimer, and W. Mampe, Single and
double-slit diffraction of neutrons, Rev. Mod. Phys. 60, 1067 (1988), and interference
experiments using cold atoms by F. Shimizu, K. Shimizu, and H. Takuma, Double-slit
interference with ultracold metastable neon atoms, Phys. Rev. A46, R17 (1992). Neutron
diffraction by a crystal is discussed by Kittel [1996], Chapter 2. A recent book on neu-
tron interferometry is that by H. Rauch and S. Werner, Neutron Interferometry, Oxford:
Clarendon Press (2000).
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The mathematics of quantum mechanics I:
finite dimension

The superposition principle is a founding principle of quantum mechanics; we have
already made use of it in interpreting the Young’s slit experiment. Quantum mechanics
is a linear theory, and so it is natural that vector spaces play an important role in it.
We shall see that a physical state is represented mathematically by a vector in a space
whose characteristics we shall define; this is called the space of states. A second founding
principle, which can also be deduced from the Young’s slit experiment, is the existence of
probability amplitudes. These probability amplitudes will be represented mathematically
by scalar products defined on the space of states. In the theory of waves, the use of complex
numbers is just a convenience, but in quantum mechanics the probability amplitudes are
fundamentally complex numbers – the scalar product will a priori be a complex number.
Physical properties like momentum, position, energy, and so on will be represented by
operators acting in the space of states. In this chapter we shall introduce the essential
properties of Hilbert spaces, that is, vector spaces on which a positive-definite scalar
product is defined, and we shall limit ourselves to the case of finite dimension. This
restriction will be lifted later on, because the space of states is in general of infinite
dimension. The mathematical theory of Hilbert spaces of infinite dimension is much more
complicated than that of spaces of finite dimension, and we shall put off studying them
until Chapter 7. The reader familiar with vector spaces of finite dimension and operators
in such spaces can proceed directly to Chapter 3 after reviewing the notation.

2.1 Hilbert spaces of finite dimension

Let� be a vector space of dimension N over complex numbers. We shall use ���� �&�� � � �
to denote the elements (vectors) of � . If 
� �� � � � are complex numbers and if ��� and
�&� ∈� , linearity implies that 
��� ≡ �
�� ∈� and that ����+
�&�� ∈� .

The space � is endowed with a positive-definite scalar product, which makes it a
Hilbert space. The scalar product1 of two vectors ��� and �&� will be denoted 
&���; it
is linear in ���,


&���1+
�2�� = 
&��1�+

&��2�� (2.1)

1 We could use the mathematicians’ notation �&��� ≡ 
&��� for the scalar product. However, it should be noted that for
mathematicians the scalar product �&��� is linear in &!

42
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and it possesses the property of complex conjugation


&��� = 
��&�∗� (2.2)

which implies that 
���� is a real number. From (2.1) and (2.2) we deduce the fact that
the scalar product 
&��� is antilinear in �&�:


�&1+
&2���� = 
&1���+
∗
&2���� (2.3)

Finally, the scalar product is positive-definite:


���� = 0⇐⇒ ��� = 0� (2.4)

It will be convenient to choose an orthonormal basis in � of N vectors (�n�) ≡
(�1�� �2�� � � � � �n�� � � � � �N�)


n�m� = �nm� (2.5)

Any vector ��� can be decomposed on this basis with coefficients cn which are the
components of ��� in this basis:

��� =
N∑

n=1

cn�n�� (2.6)

Taking the scalar product of (2.6) with the basis vector �m�, we find the following for
the cm:

cm = 
m���� (2.7)

If a vector �&� is decomposed on this basis as �&� =∑dn�n�, the scalar product 
&��� is
written as follows using (2.5):


&��� =
N∑

n�m=1

d∗m cn
m�n� =
N∑

n=1

d∗n cn� (2.8)

The norm of ���, denoted �����, is defined using the scalar product:

�����2 = 
���� =
N∑

n=1

�cn�2 ≥ 0� (2.9)

An important property of the scalar product is the Schwarz inequality:

�
&����2 ≤ 
&�&�
���� = ��&��2 �����2 � (2.10)



44 Mathematics of finite dimension

The equality holds if and only if ��� and �&� are proportional to each other: �&� = 
���.
Proof.2 The theorem is proved if 
&��� = 0. We can then assume that 
&��� �= 0 so that
��� �= 0 and �&� �= 0. From the positivity (2.9) of the norm we have


��−
&����−
&�� = �����2−
∗
&���−

��&�+ �
�2��&��2 ≥ 0�

Choosing


= �����2

��&� � 
∗ = �����2


&��� �

we obtain

�����2−2�����2+ �����4��&��2
�
&����2 ≥ 0�

from which (2.10) follows immediately. According to (2.4), the equality can hold only if
��� = 
�&� and vice versa.

2.2 Linear operators on 	

2.2.1 Linear, Hermitian, unitary operators

A linear operator A establishes a linear correspondence between a vector ��� and a
vector �A��:

�A��+
&�� = �A��+
�A&�� (2.11)

This operator is represented in a given basis (�n�) by a matrix with elements Amn.
3 Using

the property of linearity and the decomposition (2.6)

�A�� =
N∑

n=1

cn�An��

we obtain the components dm of �A�� =∑m dm�m�:

dm = 
m�A�� =
N∑

n=1

cn
m�An� =
N∑

n=1

Amncn� (2.12)

An element Amn of the matrix is then given by

Amn = 
m�An�� (2.13)

The Hermitian conjugate (or adjoint) of A, A†, is defined as


&�A†�� = 
A&��� = 
��A&�∗ (2.14)

2 This proof can be carried over directly to spaces of infinite dimension.
3 We note that physicists often casually use the terms operator and matrix interchangeably, the latter referring to the matrix
representing the operator in a given basis.
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for every pair of vectors ���� �&�. It can easily be shown that A† is also a linear operator.
Its matrix elements in the basis (�n�) are obtained by taking ��� and �&� to be the basis
vectors, and �A†�mn satisfies

�A†�mn = A∗
nm� (2.15)

The Hermitian conjugate of the product AB of two operators is B†A†:


&��AB�†�� = 
AB&��� = 
B&�A†�� = 
&�B†A†���

An operator satisfying A = A† is termed Hermitian or self-adjoint. The two terms are
equivalent for finite-dimensional spaces, but not for infinite-dimensional ones.
An operator that satisfies UU† = U†U = I or, equivalently, U−1 = U†, is called a

unitary operator. Throughout this book we shall use I to denote the identity operator of
the Hilbert space. In a finite-dimensional space the necessary and sufficient condition for
an operator U to be unitary is that it leave unchanged the norm

��U���2 = �����2 or 
U��U�� = 
���� ∀� ∈� � (2.16)

Proof. Let us calculate the squared norm of �U��+
&��, which by hypothesis is equal
to the squared norm of ��+
&�:


�+
&��+
&� = 
����+ �
�2
&�&�+2Re �

��&���

while


U��+
&��U��+
&�� = 
U��U��+ �
�2
U&�U&�+2Re �

U��U&���

Subtracting the second of these equations from the first gives

Re �

��&��= Re �

U��U&���

and choosing 
= 1 and then 
= i we find


U��U&� = 
��&� ⇒ U†U = I�

In a vector space of finite dimension the existence of a left inverse implies the existence
of a right inverse, and so we also have UU† = I . An operator that preserves the norm is
an isometry. In a space of finite dimension an isometry is a unitary operator.
Unitary operators perform changes of orthonormal basis in � . Let �n′� = �Un�. Then


m′�n′� = 
Um�Un� = 
m�n� = �mn = �m′n′
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and the ensemble of vectors (�n′�) forms an orthonormal basis. It should be noted that
the components cn of a vector are transformed using U† (or U−1)

c′n = 
n′��� = 
Un��� = 
n�U†�� =
N∑

m=1

U†
nmcm� (2.17)

We also note the transformation law of the matrix elements:

A′
mn = 
m′�An′� = 
Um�AUn� = 
m�U†AUn� =

N∑
k�l=1

U†
mk Akl Uln� (2.18)

2.2.2 Projection operators and Dirac notation

We shall frequently use projection operators (projectors). Let �1 be a subspace of �
and �2 be the orthogonal subspace. Any vector ��� can be decomposed uniquely into a
vector ��1� belonging to �1 and a vector ��2� belonging to �2:

��� = ��1�+ ��2�� ��1� ∈�1� ��2� ∈�2� 
�1��2� = 0�

The projector 
1 onto �1 is defined by its action on an arbitrary vector ���:
�
1�� = ��1�� (2.19)


1 is obviously a linear operator, and it is also a Hermitian operator because if the
decomposition of �&� into vectors belonging to �1 and �2 is �&� = �&1�+ �&2�, then


&�
1�� = 
&��1� = 
&1��1��

&�
†

1�� = 

1&��� = 
&1��� = 
&1��1��
It should also be noted that

�
2
1�� = �
1�1� = ��1� ⇒ 
2

1 = 
1�

Conversely, every linear operator satisfying 
†
1
1 = 
1 is a projector.

Proof. First we notice that 
†
1 = 
1, and then that vectors of the form �
1�� form a

vector subspace �1 of � . If we write

��� = �
1��+ ����− �
1���= �
1��+ ��2��
then ��2� is orthogonal to every vector �
1&�:


�−
1��
1&� = 

1�−
2
1��&� = 0�

We have in fact decomposed ��� into �
1�� and a vector of the subspace orthogonal to�1.
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The property 
2
1 = 
1 demonstrates that the eigenvalues of a projector are 0 or 1, and

Tr
1 (see 2.23) is the dimension of the projection space, as is easily seen by writing

1 in a basis in which it is diagonal: as we shall see in the next section, such a basis
always exists because 
1 is Hermitian. Furthermore, we can prove the following properties
(Exercise 2.4.6):

• If 
1 and 
 ′
1 are projectors onto �1 and � ′

1, respectively, 
1

′
1 is a projector if and only if


1

′
1 = 
 ′

1
1. Then 
1

′
1 projects onto the intersection �1∩� ′

1.
• 
1+
 ′

1 is a projector if and only if 
1

′
1 = 0. In this case �1 and � ′

1 are orthogonal and

1+
 ′

1 projects onto the direct sum �1⊕� ′
1.

• If 
1

′
1 = 
 ′

1
1, then 
1+
 ′
1−
1


′
1 projects onto the union �1∪� ′

1. The second property is
a special case of this one.

Dirac notation. Instead of writing �A��, from now on we shall use the notation A���
introduced by Dirac.4 The scalar product 
&�A�� is written as 
&�A��� in Dirac notation.
The vectors ��� of � are called “kets,” and the vectors 
&� of the dual space are called
“bras.” The bra associated with the ket �
�� is 
∗
��; indeed,



��&� = 
∗
��&��
In 
&�A���, A acts on ��� from the right: 
&�A��� = 
&��A���� and not 
A&���. Since
�A����† = 
��A†, there are no ambiguities if A is Hermitian. The main virtue of the
Dirac notation is that it allows us to write projectors in a very simple way. Let ��� be
a normalized vector: 
���� = 1. The decomposition of �&� into ��� and a vector �&⊥�
orthogonal to ��� is

�&� = ���
��&�+ ��&�− ���
��&��= ���
��&�+ �&⊥� = 
��&�+ �&⊥��
We can then write5


� = ���
�� � (2.20)

If the vectors (�1�� � � � � �M�), M ≤ N , form an orthonormal basis of the subspace �1,
then 
1 can be written as


1 =
M∑
n=1

�n�
n�� (2.21)

If M = N we obtain the decomposition of the identity operator:

I =
N∑

n=1

�n�
n� � (2.22)

4 This notation is convenient and very widely used, but it is not free of ambiguities. For example, it is not wise to use it when
dealing with time reversal: see Appendix A.

5 If �����2 �= 1, then P� = ���
��/�����2.
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This relation is called the completeness relation. It often proves very useful in calculations.
For example, it provides a simple proof of the matrix multiplication law:

�AB�nm = 
n�AB�m� = 
n�AIB�m� =
N∑
l=1


n�A�l�
l�B�m� =
N∑
l=1

AnlBlm�

Finally, let us give an important definition. The trace of an operator is the sum of its
diagonal elements:

TrA=
N∑

n=1

Ann � (2.23)

It is easily shown (Exercise 2.4.2) that the trace is invariant under a change of basis and
that

TrAB = TrBA� (2.24)

2.3 Spectral decomposition of Hermitian operators

2.3.1 Diagonalization of a Hermitian operator

Let A be a linear operator. If there exists a vector ��� and a complex number a such that

A��� = a���� (2.25)

then ��� is called an eigenvector and a an eigenvalue of A. The eigenvalues are found
by solving the equation for a:

det�A−aI�= 0� (2.26)

The eigenvectors and eigenvalues of Hermitian operators possess remarkable properties.

Theorem. The eigenvalues of a Hermitian operator are real and the eigenvectors corre-
sponding to two different eigenvalues are orthogonal.

The proof is simple. It is sufficient to consider the scalar product 
��A���, where ���
satisfies (2.25):


��A��� = 
��a�� = a�����2
= 
A���� = 
a���� = a∗�����2�

which gives a= a∗; on the other hand, if A��� = a��� and A�&� = b�&�, then

&�A�� = a
&��� = 
A&��� = b
&����

from which we find 
&��� = 0 if a �= b. An immediate consequence of this result is that
the eigenvectors of a Hermitian operator normalized to unity form an orthonormal basis
of � if the eigenvalues are all distinct, that is, if the roots of Eq. (2.26) are all different.
However, it may happen that one (or more) of the roots of (2.26) are the same, that is,
one finds multiple roots. Let an be a multiple root: the eigenvalue an is then said to be
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degenerate. Again in this case it is possible to use the eigenvectors of A to construct an
orthonormal basis of � . Indeed, we have at our disposal the following theorem, which
we state without proof.

Theorem. If an operator A is Hermitian, it is always possible to find a (nonunique)
unitary matrix U such that U−1AU is a diagonal matrix, where the diagonal elements are
the eigenvalues of A, each of which appears a number of times equal to its multiplicity:

U−1AU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 � � � 0

0 a2 0 � � �
���

0 0 a3 0
���

���
���

� � �
� � � 0

0 � � � � � � 0 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
� (2.27)

Let an be a degenerate eigenvalue and let G�n� be its multiplicity in (2.26); it is also
said that an is G�n� times degenerate. Then there exist G�n� independent eigenvectors
corresponding to this eigenvalue. These G�n� eigenvectors span a vector subspace of
dimension G�n� called the subspace of the eigenvalue an, in which we can find a
(nonunique) orthonormal basis �n� r�� r = 1� � � � �G�n�:

A�n� r� = an�n� r�� (2.28)

Using (2.21), we can write the projector 
n onto this vector subspace as


n =
G�n�∑
r=1

�n� r�
n� r�� (2.29)

The sum of the 
n gives the identity operator since the set of vectors �n� r� forms a basis
of � , and we obtain the completeness relation (2.22):

∑
n


n =
∑
n

G�n�∑
r=1

�n� r�
n� r� = I � (2.30)

Let ��� be some vector of � :

A��� =∑
n

A
n��� =
∑
n

an
n����

since 
n��� belongs to the subspace of the eigenvalue an. We can then cast A in the form

A=∑
n

an
n =
∑
n

G�n�∑
r=1

�n� r�an
n� r� � (2.31)
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This fundamental relation is called the spectral decomposition of A. Reciprocally,
an operator of the form

∑
n an
n is Hermitian with eigenvalues an if an = a∗n and if


n
m = �nm
n, namely, if the 
n are pairwise orthogonal.

2.3.2 Diagonalization of a 2×2 Hermitian matrix

We shall often need to diagonalize 2×2 Hermitian matrices. The most general form of
such a matrix in a (�1�� �2�) basis,

�1� =
(
1
0

)
� �2� =

(
0
1

)
�

is

A=
(

A11 A12

A21 A22

)
=
(

a b

b∗ a′

)
�

where a and a′ are real numbers and b is a priori complex. However, we shall see that in
quantum mechanics it is always possible to redefine the phase of the basis vectors:

�1�→ �1′� = ei��1�� �2�→ �2′� = ei��2��
In this new basis the matrix element A′

12 of the operator A is

A′
12 = 
1′�A�2′� = ei��−�� 
1�A�2� = ei��−�� A12 = ei��−�� b�

If b = �b� exp�i��, it is sufficient to take ��−��= � to eliminate the phase of b, which
can then be chosen to be real. The simplest case is that where a= a′:

A=
(

a b

b a

)
� (2.32)

In this case we immediately verify that the two vectors �&+� and �&−�

�&+� =
1√
2

(
1
1

)
� �&−� =

1√
2

(−1
1

)
� (2.33)

are eigenvectors of A with eigenvalues �a+b� and �a−b�, respectively. This very simple
result has an interesting origin. Let UP be a unitary operator which performs a permutation
of the basis vectors �1� and �2�:

UP =
(

0 1
1 0

)
�

The operator UP has unit square: U 2
P = I , and its eigenvalues then are ±1. The cor-

responding eigenvectors are �&+� and &−�. We observe that A can be written in the
form

A= aI+bUP�

which shows that A and UP commute: AUP =UPA. Then, as we shall see in the following
subsection, we can find a basis constructed from eigenvectors common to A and UP. It is
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easy to diagonalize A because A commutes with a symmetry operation, a property which
we shall often use in this book.
In the general case a �= a′, the symmetry property does not hold and the diagonalization

is not so simple. It is convenient to write A in the form

A=
(

a+ c b

b a− c

)
= aI+

√
b2+ c2

(
cos sin  
sin  − cos 

)
� (2.34)

where the angle  is defined by

c =
√
b2+ c2 cos �

b =
√
b2+ c2 sin  �

We note that tan  = b/c, and that care must be taken to choose a correct definition of  
in �0�2��. We then verify that the eigenvectors are

�&+� =
(
cos /2
sin  /2

)
� �&−� =

(− sin  /2
cos /2

)
� (2.35)

corresponding to the eigenvalues a+√b2+ c2 and a−√b2+ c2, respectively. We recover
the preceding case for c = 0, which corresponds to  =±�/2.

2.3.3 Complete sets of compatible operators

By definition, two operators A and B commute if AB = BA, and in this case their
commutator �A�B� defined as

�A�B�= AB−BA (2.36)

vanishes. Let A and B be two Hermitian operators that commute. We can then prove the
following theorem.

Theorem. Let A and B be two Hermitian operators such that �A�B� = 0. We can then
find a basis of � constructed from eigenvectors common to A and B.

Proof. Let an be the eigenvalues of A and �n� r� be a basis of � constructed using
the corresponding eigenvectors. We multiply the two sides of (2.28) by B and use the
commutation relation

BA�n� r� = A�B�n� r��= an�B�n� r���
which implies that the vector B�n� r� belongs to the subspace of the eigenvalue an. If an is
nondegenerate, this subspace has dimension one, and B�n� r� is necessarily proportional
to �n� r� which then is also an eigenvector of B. If an is degenerate, we can only deduce
that B�n� r� is necessarily orthogonal to every eigenvector �m�s� of A with m �= n:


m�s�B�n� r� = �nmB
�n�
sr �
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which implies that in the basis �n� r� the matrix representation of B is block-diagonal:

B =
⎛
⎝ B�1� 0 0

0 B�2� 0
0 0 B�3�

⎞
⎠ �

Each block B�k� can be diagonalized separately by a change of basis which acts only in
each subspace without affecting the diagonalization of A as a whole, since inside each
subspace A is represented by a diagonal matrix.
Reciprocally, let us suppose that we have found a basis ��n�p�r� of � constructed

from eigenvectors common to A and B:

A��n�p�r� = an��n�p�r�� B��n�p�r� = bp��n�p�r��
It is then obvious that

�A�B���n�p�r� = 0�

and since the vectors ��n�p�r� form a basis, �A�B�= 0. If �A�B�= 0, it may happen that
given only the eigenvalues an and bp, the basis vectors can be specified uniquely up to
a multiplicative constant of modulus unity; there exists one and only one vector ��n�p��
such that

A��n�p�� = an��n�p��� B��n�p�� = bp��n�p��� (2.37)

It is then said that A and B form a complete set of compatible operators. If there is still
some indeterminacy, that is, if there exists more than one linearly independent vector
satisfying (2.37), it can happen that knowing the eigenvalues of a third operator C

commuting with A and B lifts the indeterminacy. An ensemble of Hermitian operators
A1� � � � �AM that commute pairwise and whose eigenvalues unambiguously define the
vectors of a basis of � is called a complete set of compatible operators (or a complete
set of commuting operators).

2.3.4 Unitary operators and Hermitian operators

The properties of unitary operators U† = U−1 are intimately related to those of Hermitian
operators. In particular, such operators can always be diagonalized. The basic theorem
for unitary operators is stated as follows.

Theorem. (a) The eigenvalues an of a unitary operator have modulus unity: an= exp�i�n�,
�n real. (b) The eigenvectors corresponding to two different eigenvalues are orthogonal.
(c) The spectral decomposition of a unitary operator is written as a function of pairwise
orthogonal projectors 
n as

U =∑
n

an
n =
∑
n

ei�n
n with
∑
n


n = I� (2.38)
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The proof of (a) and (b) is trivial. To obtain (c) we write

U = 1
2
�U +U†�+ i

1
2i

�U −U†�= A+ iB� (2.39)

The operators A and B are Hermitian and �A�B� = 0, so that the operators A and B

can be diagonalized simultaneously, and the eigenvectors common to A and B are also
eigenvectors of U . The eigenvalues of A and B are cos�n and sin�n, respectively.
Equation (2.39) generalizes to unitary operators the decomposition of a complex number
into real and imaginary parts, with Hermitian operators playing the role of real numbers.
The operator C

C =∑
n

�n
n

is a Hermitian operator and U = exp�iC�. Inversely, let A =∑n an
n be a Hermitian
operator. The operator

U =∑
n

ei�an
n = ei�A (2.40)

is manifestly a unitary operator. This notation generalizes the representation exp�i�� of a
complex number of unit modulus to unitary operators.

2.3.5 Operator-valued functions

In writing down (2.40) we have introduced the exponential of an operator. More generally,
it is useful to know how to construct a function f�A� of an operator. The construction
is obvious if the operator A can be diagonalized: A = XDX−1, where D is a diagonal
matrix whose elements are dn. Let us assume that a function f is defined by a Taylor
series which converges in a certain region of the complex plane �z�< R:

f�z�=
�∑
p=0

cpz
p�

The operator-valued function f�A� will be given by

f�A�=
�∑
p=0

cpA
p =

�∑
p=0

cpXD
pX−1 = X

[ �∑
p=0

cpD
p

]
X−1� (2.41)

The expression inside the square brackets is just a diagonal matrix with elements f�dn�

well defined if �dn�<R for any n. In general, it is possible to find an analytic continuation
for f�A� even if some eigenvalues dn lie outside the region of convergence of the Taylor
series, just as it is possible to analytically continue

�∑
p=0

zp = 1
1− z
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outside the region of convergence �z� < 1 for any value of z different from unity. A
particularly important case is that of the exponential of an operator:

expA=
�∑
p=0

Ap

p! � (2.42)

Since the radius of convergence of an exponential is infinite, the above argument implies
that expA is well defined by the series (2.42) if A is diagonalizable (in fact, it is easy to
show directly that the series (2.42) is convergent in any case). Care must be taken of the
fact that, in general,

expA expB �= expB expA*

a sufficient (but not necessary!) condition for the equality to hold is that A and B commute
(Exercise 3.3.6).
In summary, given a Hermitian operator A whose spectral decomposition is given by

(2.31), it is straightforward to define any function of A by

f�A�=∑
n

f�an�
n� (2.43)

for example, the exponential expA, the logarithm lnA, or the resolvent R�z�A�:

e i�A =∑
n

ei�an 
n� (2.44)

lnA =∑
n

�lnan�
n� (2.45)

R�z�A� = �zI−A�−1 =∑
n

1
z−an


n� (2.46)

The resolvent R�z�A� is of course defined only for z �= an for any n, and the logarithm
is defined only if none of the eigenvalues an is zero.

2.4 Exercises

2.4.1 The scalar product and the norm

Let us take a norm ����� derived from a scalar product: �����2 = �����.

1. Show that this norm satisfies the triangle inequality

��&+��� ≤ ��&��+ ������

as well as ∣∣��&��− �����∣∣≤ ��&+����
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2. Show also that

��&+���2+��&−���2 = 2���&��2+�����2��

What is the interpretation of this equality in the real plane �2? Conversely, if a norm
possesses this property in a real vector space, show that

���&�= �&���= 1
4

(��&+���2−��&−���2)
defines a scalar product. This scalar product must satisfy

�&��1+�2�= �&��1�+ �&��2�� �&�
��= 
�&����

In the case of a complex vector space, show that

�&���= 1
4

[(��&+���2−��&−���2)− i
(��&+ i���2−��&− i���2)] �

2.4.2 Commutators and traces

1. Show that

�A�BC�= B�A�C�+ �A�B�C� (2.47)

2. The trace of an operator is the sum of the diagonal elements of its representation matrix in a
given basis:

TrA=∑
n

Ann� (2.48)

Show that

TrAB = TrBA� (2.49)

and deduce that the trace is invariant under a change of basis A→ A′ = SAS−1. The trace of an
operator is (fortunately) independent of the basis.

3. Show that the trace is invariant under cyclic permutations:

TrABC = TrBCA= TrCAB� (2.50)

2.4.3 The determinant and the trace

1. Let a matrix A�t� depending on a parameter t satisfy

dA�t�
dt

= A�t�B�

Show that A�t�= A�0� exp�Bt�. What is the solution of

dA�t�
dt

= BA�t� ?
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2. Show that

det eAt1 ×det eAt2 = det eA�t1+t2��

Then derive the relation

det eA = eTrA�

or, equivalently,

detB = eTr lnB� (2.51)

Hint: Find a differential equation for the function g�t�= det�exp�At��. The results are obvious
if A is diagonalizable.

2.4.4 A projector in �3

1. Let us take two vectors �u1 and �u2 in real three-dimensional space �3 which are linearly
independent but not necessarily orthogonal and which have any norm. Let 
 be the projector
onto the plane defined by these two vectors. Show that the action of 
 on a vector �V can be
written as


 �V =
2∑

i�j=1

C−1
ij � �V · �ui��uj� (2.52)

where the 2×2 matrix Cij = �ui · �uj .
2. Generalization: assume that we have p linearly independent vectors �u1� � � � � �up in �N , p < N .

Write down the projector onto the vector space generated by these p vectors.

2.4.5 The projection theorem

Let �1 be a vector subspace of � and ��� ∈� . Show that then there exists a unique
element ��1� of �1 such that the norm ���1−��� is a minimum: ���1−��� is the distance
from ��� to �1. Find ��1�.

2.4.6 Properties of projectors

Show the following properties of projectors.

Property 1. If 
1 and 
 ′
1 are projectors onto �1 and � ′

1, respectively, then 
1

′
1 is a projector if

and only if 
1

′
1 = 
 ′

1
1. Then 
1

′
1 projects onto the intersection �1∩� ′

1.
Property 2. 
1+
 ′

1 is a projector if and only if 
1

′
1 = 0. In this case �1 and � ′

1 are orthogonal
and 
1+
 ′

1 projects onto the direct sum �1⊕� ′
1.

Property 3. If 
1

′
1 = 
 ′

1
1, then 
1+
 ′
1−
1


′
1 projects onto the union �1∪� ′

1. The property
2 is a special case of this result.
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Property 4. Assume that we have an operator + such that +†+ is a projector:

+†+= 
�

Show that ++† is also a projector. Hint: show that

+��� = 0⇐⇒ 
��� = 0�

2.4.7 The Gaussian integral

Let A be a real N×N matrix which is symmetric and strictly positive (cf. Exercise 2.4.10).
Show that the multiple integral

I�b�=
∫ N∏

i=1

dxi exp
(
− 1

2

∑
jk

xjAjkxk+bjxj

)

becomes

I�b�= �2��N/2√
detA

exp
(1
2

∑
jk

bjA
−1
jk bk

)
� (2.53)

Hint: write ∑
jk

xjAjkxk = xTAx = 
x�A�x��

where x is a column vector and xT is a row vector, and make the change of variable

x′ = x−A−1b�

These Gaussian integrals are fundamental in probability theory and arise in many physics
problems.

2.4.8 Commutators and a degenerate eigenvalue

Let us take three N ×N matrices A, B, and C satisfying

�A�B�= 0� �A�C�= 0� �B�C� �= 0�

Show that at least one eigenvalue of A is degenerate.

2.4.9 Normal matrices

A matrix C is termed normal if it commutes with its Hermitian conjugate:

C†C = CC†�

Writing

C = 1
2
�C+C†�+ i

1
2i

�C−C†�= A+ iB�

show that C is diagonalizable.
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2.4.10 Positive matrices

A matrix A is termed positive (or non-negative by some authors) if for any vector ��� �= 0
the average value is real and positive: 
��A��� ≥ 0. It is termed strictly positive if

��A���> 0.

1. Show that any positive matrix is Hermitian and that a necessary and sufficient condition for a
matrix to be positive is that its eigenvalues are all ≥ 0.

2. Show that in a real Hilbert space, where a Hermitian matrix is symmetric �A= AT�, a positive
matrix is not in general symmetric.

2.4.11 Operator identities

1. Let an operator f�t� be a function of a parameter t such that

f�t�= etABe−tA�

where the operators A and B are represented by N ×N matrices. Show that

df
dt

= �A� f�t���
d2f
dt2

= �A� �A� f�t���� etc�

Derive the expression

etABe−tA = B+ t

1! �A�B�+
t2

2! �A� �A�B��+· · · (2.54)

Application: let three operators A, B, and C obey

�A�B�= iC� �B�C�= iA�

Show that

e iBt A e−iBt = A cos t+C sin t�

An example is provided by the angular momentum operators Jx� Jy� Jz (see Chapter 10).
2. Let us assume thatA and B both commute with their commutator �A�B�. Write down a differential

equation for the operator

g�t�= eAt eBt

and derive the expression

eA+B = eA eB e−
1
2 �A�B�� (2.55)

Careful! This identity is not valid in general. It is guaranteed to hold only when �A� �A�B�� =
�B� �A�B��= 0. Using the same assumptions, show also that

eA eB = eB eA e�A�B�� (2.56)
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2.4.12 A beam splitter

Let us consider a beam splitter (a mirror which is semi-transparent to a light wave, a
crystal aligned at a Bragg angle for a neutron, etc.) which we assume to be nonabsorbing.
Waves arrive at the same angle of incidence on the left and right sides of the beam splitter
with amplitudes AL and AR, respectively (see Fig. 2.1). The amplitudes BL and BR of the
outgoing waves, which are made up of both reflected and transmitted waves, are linearly
related to the amplitudes of the incoming waves as6(

BR

BL

)
=M ′

(
AR

AL

)
� M ′ =

(
a b

c d

)
�

1. Show that M ′ is unitary and that detM ′ = exp�i �.
2. Since we are interested in experiments where the outgoing waves interfere, a global phase factor

has no physical consequences and M ′ can be replaced by M = exp�−i /2�M ′ with detM =−1.
Derive the general form of M:

M =
(

r t∗

t −r∗

)
� �r�2+�t�2 = 1�

3. Show that M can be written as

M =
( �r�ei& �t�e−i'

�t�ei' −�r�e−i&

)
�

Let �R be the difference of the phases of the reflected and transmitted waves for the wave
incident from the right �AR = 1�AL = 0�, and let �L be the same phase difference for the
wave incident from the left (AR = 0� AL = 1). Show that

�R+�L = �±2n�� n= 0�1�2� � � �

This result generalizes that obtained using the Mach–Zehnder interferometer in
Exercise 1.6.5 to the case where the beam splitter is not symmetric. If it is symmetric

BR

AL AR

BL

Fig. 2.1. A beam splitter.

6 A. Zeilinger, General properties of lossless beam splitters in interferometry, Am. J. Phys. 49, 882 (1981).
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�R = �L = �/2. What is the form of M in the symmetric case? Rederive the results of
Exercise 1.6.5 and show that for suitably chosen phases we can write the following in
the symmetric case:

M = 1√
2

(
i 1
1 i

)
� or M =H = 1√

2

(
1 1
1 −1

)
�

The matrix H is called the Hadamard matrix (or gate) and is widely used in quantum
computing (Section 6.4.2).

2.5 Further reading

The results on finite-dimensional vector spaces and operators can be found in any under-
graduate linear algebra text. In addition, the reader can consult Isham [1995], Chapters 2
and 3, or Nielsen and Chuang [2000], Chapter 2, which gives an elegant demonstration
of the spectral decomposition theorem for a Hermitian operator.
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Polarization: photons and spin-1/2 particles

In this chapter we build up the basic concepts of quantum mechanics using two simple
examples, following a heuristic approach which is more inductive than deductive. We
start with a familiar phenomenon, that of the polarization of light, which will allow
us to introduce the necessary mathematical formalism. We show that the description of
polarization leads naturally to the need for a two-dimensional complex vector space, and
we establish the correspondence between a polarization state and a vector in this space,
referred to as the space of polarization states. We then move on to the quantum description
of photon polarization and illustrate the construction of probability amplitudes as scalar
products in this space. The second example will be that of spin 1/2, where the space of
states is again two-dimensional. We construct the most general states of spin 1/2 using
rotational invariance. Finally, we introduce dynamics, which allows us to follow the time
evolution of a state vector.
The analogy with the polarization of light will serve as a guide to constructing the

quantum theory of photon polarization, but no such classical analog is available for
constructing the quantum theory for spin 1/2. In this case the quantum theory will be
constructed without reference to any classical theory, using an assumption about the
dimension of the space of states and symmetry principles.

3.1 The polarization of light and photon polarization

3.1.1 The polarization of an electromagnetic wave

The polarization of light or, more generally, of an electromagnetic wave, is a familiar
phenomenon related to the vector nature of the electromagnetic field. Let us consider a
plane wave of monochromatic light of frequency � propagating in the positive z direction.
The electric field �E�t� at a given point is a vector orthogonal to the direction of propa-
gation. It therefore lies in the xOy plane and has components (Ex�t��Ey�t��Ez�t� = 0}
(Fig. 3.1). The most general case is that of elliptical polarization, where the electric field
has the form

�E�t�=
{
Ex�t�= E0x cos��t−�x�

Ey�t�= E0y cos��t−�y�
� (3.1)

61
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analyzer

x

Ex

Ey

θ

α
y x

y
z

polarizer

Fig. 3.1. A polarizer–analyzer ensemble.

We have not made the z dependence explicit because we are only interested in the field
in a plane z= constant. By a suitable choice of the origin of time, it is always possible
to choose �x = 0� �y = �. The intensity � of the light wave is proportional to the square
of the electric field:

� = �x+�y = k�E2
0x+E2

0y�= kE2
0� (3.2)

where k is a proportionality constant which need not be specified here. When � = 0
or �, the polarization is linear: if we take E0x = E0 cos , E0y = E0 sin  , Eq. (3.1) for
�x = �y = 0 shows that the electric field oscillates in the n̂ direction of the xOy plane,
making an angle  with the Ox axis. Such a light wave can be obtained using a linear
polarizer whose axis is parallel to n̂ .
When we are interested only in the polarization of this light wave, the relevant param-

eters are the ratios E0x/E0 = cos and E0y/E0 = sin  , where  can be chosen to lie
in the range �0���. Here E0 is a simple proportionality factor which plays no role in
the description of the polarization. We can establish a correspondence between waves
linearly polarized in the Ox and Oy directions and orthogonal unit vectors �x� and �y�
in the xOy plane forming an orthonormal basis in this plane. The most general state of
linear polarization in the n̂ direction will correspond to the vector � � in the xOy plane:

� � = cos �x�+ sin  �y�� (3.3)

which also has unit norm:


 � � = cos2  + sin2  = 1�

The fundamental reason for using a vector space to describe polarization is the super-
position principle: a polarization state can be decomposed into two (or more) other states,
or, conversely, two polarization states can be added together vectorially. To illustrate
decomposition, let us imagine that a wave polarized in the n̂ direction passes through
a second polarizer, called an analyzer, oriented in the n̂� direction of the xOy plane
making an angle � with Ox (Fig. 3.1). Only the component of the electric field in the
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n̂� direction, that is, the projection of the field on n̂�, will be transmitted. The amplitude
of the electric field will be multiplied by a factor cos� −�� and the light intensity at the
exit from the analyzer will be reduced by a factor cos2� −��. We shall use a� → ��

to denote the projection factor, which we refer to as the amplitude of the n̂ polarization
in the n̂� direction. This amplitude is just the scalar product of the vectors � � and ���:

a� → ��= 
�� � = cos� −��= n̂� · n̂ � (3.4)

The intensity at the exit of the analyzer is given by the Malus law:

� = �0�a� → ���2 = �0�
�� ��2 = �0 cos
2� −�� (3.5)

if �0 is the intensity at the exit of the polarizer. Another illustration of decomposition is
given by the apparatus of Fig. 3.2. Using a uniaxial birefringent plate perpendicular to
the direction of propagation and with optical axis lying in the xOz plane, a light beam
can be decomposed into a wave polarized in the Ox direction and a wave polarized in the
Oy direction. The wave polarized in the Ox direction propagates in the direction of the
extraordinary ray refracted at the entrance and exit of the plate, and the wave polarized
in the Oy direction follows the ordinary ray propagating in a straight line.
The addition of two polarization states can be illustrated using the apparatus of Fig. 3.3.

The two beams are recombined by a second birefringent plate, symmetrically located
relative to the first with respect to a vertical plane, before the beam passes through
the analyzer.1 In order to simplify the arguments, we shall neglect the phase difference

optical axis

birefringent plate

Dx

Dy

z

x

θ

y

E

O

O

Fig. 3.2. Decomposition of the polarization by a birefringent plate. The ordinary ray O is polarized
horizontally, and the extraordinary ray E is polarized vertically.

1 This recombination of amplitudes is possible because two beams from the same source are coherent. Of course, it would be
impossible to add the amplitudes of two polarized beams from different sources; the situation is identical to that in the case
of interference.
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analyzer
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Fig. 3.3. Decomposition and recombination of polarizations using birefringent plates.

originating from the difference between the ordinary and extraordinary indices in the
birefringent plates (equivalently, we can imagine that this difference is cancelled by an
intermediate birefringent plate which is oriented appropriately; see Exercise 3.3.1). Under
these conditions the light wave at the exit of the second birefringent plate is polarized in
the n̂ direction. The recombination of the two x and y beams gives the initial light beam
polarized in the n̂ direction, and the intensity at the exit of the analyzer is reduced as
before by a factor cos2� −��.
If we limit ourselves to linear polarization states, we can describe any polarization state

as a real unit vector in the xOy plane, in which a possible orthonormal basis is constructed
from the vectors �x� and �y�. However, if we want to describe an arbitrary polarization,
we need to introduce a two-dimensional complex vector space � . This space will be the
vector space of the polarization states. Let us return to the general case (3.1), introducing
complex notation �� = ��x� �y� for the wave amplitudes:

�x = E0xe
i�x � �y = E0ye

i�y � (3.6)

which allows us to write (3.1) in the form

Ex�t�= E0x cos��t−�x�= Re
(
E0xe

i�xe−i�t
)= Re

(
�xe

−i�t
)
�

Ey�t�= E0y cos��t−�y�= Re
(
E0ye

i�ye−i�t
)= Re

(
�ye

−i�t
)
�

(3.7)

We have already noted that owing to the arbitrariness of the time origin, only the
relative phase � = ��y − �x� is physically relevant and we can multiply �x and �y by
a common phase factor exp�i�� without any physical consequences. For example, it is
always possible to choose �x = 0. The light intensity is given by (3.2):

� = k���x�2+��y�2�= k� ���2 = kE2
0 � (3.8)

An important special case of (3.7) is that of circular polarization, where E0x = E0y =
E0/

√
2 and �y = ±�/2 (we have conventionally chosen �x = 0). If �y = +�/2, the tip
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of the electric field vector traces a circle in the xOy plane in the counterclockwise sense.
The components Ex�t� and Ey�t� are given by

Ex�t�= Re
(
E0√
2
e−i�t

)
= E0√

2
cos�t�

Ey�t�= Re
(
E0√
2
e−i�tei�/2

)
= E0√

2
cos��t−�/2�= E0√

2
sin�t�

(3.9)

An observer at whom the light wave arrives sees the tip of the electric field vector
tracing a circle of radius E0/

√
2 counterclockwise in the xOy plane. The corresponding

polarization is termed right-handed circular polarization.2 When �y =−�/2, we obtain
left-handed circular polarization – the circle is traced in the clockwise sense:

Ex�t�= Re
(
E0√
2
e−i�t

)
= E0√

2
cos�t�

Ey�t�= Re
(
E0√
2
e−i�te−i�/2

)
= E0√

2
cos��t+�/2�=− E0√

2
sin�t�

(3.10)

These right- and left-handed circular polarization states are obtained experimentally start-
ing from linear polarization at an angle of 45o to the axes and then introducing a phase
shift ±�/2 of the field in the Ox or Oy direction by means of a quarter-wave plate.
In complex notation the fields �x and �y are written as

�x =
1√
2
E0� �y =

1√
2
E0e

±i�/2 = ±i√
2
E0�

where the + sign corresponds to right-handed circular polarization and the − to left-
handed. The proportionality factor E0 common to �x and �y defines the intensity of the
light wave and plays no role in describing the polarization, which is characterized by the
normalized vectors

�R� = − 1√
2
��x�+ i�y��� �L� = 1√

2
��x�− i�y�� � (3.11)

The overall minus sign in the definition of �R� has been introduced to be consistent with
the conventions of Chapter 10. Equation (3.11) shows that the mathematical description
of polarization leads naturally to the use of unit vectors in a complex two-dimensional
vector space � , in which the vectors �x� and �y� form one possible orthonormal basis.

2 See Fig. 10.8. Our definition of right- and left-handed circular polarization is the one used in elementary particle physics.
With this definition, right- (left-) handed circular polarization corresponds to positive (negative) helicity, that is, to projection
of the photon spin on the direction of propagation equal to +� (−�). However, this definition is not universal; optical
physicists often use the opposite, but, as one of them has remarked (E. Hecht, Optics, New York: Addison-Wesley (1987),
Chapter 8): “This choice of terminology is admittedly a bit awkward. Yet its use in optics is fairly common, even though it
is completely antithetic to the more reasonable convention adopted in elementary particle physics.”
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Above we have established the correspondence between linear polarization in the n̂ 

direction and the unit vector � � of � , as well as the correspondence between the two
circular polarizations and the two vectors (3.11) of � . We are now going to generalize
this correspondence by constructing the polarization corresponding to the most general
normalized vector �%� of � :3

�%� = 
�x�+��y�� �
�2+���2 = 1� (3.12)

It is always possible to choose 
 to be real (in Exercise 3.3.2 we show that the physics
is unaffected if 
 is complex). The numbers 
 and � can then be parametrized by two
angles  and ,:


= cos � �= sin  ei,�

We shall imagine a device containing two birefringent plates and a linear polarizer, on
which an electromagnetic wave (3.7) is incident. This device will be called a �
��)
polarizer.

• The first birefringent plate changes the phase of �y by −, while leaving �x unchanged:

�x → ��1�
x = �x� �y → ��1�

y = �ye
−i,�

• The linear polarizer projects on the n̂ direction:

���1� → ���2� = (��1�
x cos +��1�

y sin  
)
n̂ 

= (�x cos +�y sin  e
−i,
)
n̂ �

• The second birefringent plate leaves ��2�
x unchanged and shifts the phase of ��2�

y by ,:

��2�
x → �′x = ��2�

x � ��2�
y → �′y = ��2�

y ei,�

The combination of the three operations is represented by the transformation �� → ��′
which can be written in terms of components:

�′x = �x cos
2  +�y sin  cos e

−i, = �
�2�x+
�∗�y�

�′y = �x sin  cos e
i,+�y sin

2  = 
∗��x+���2�y�
(3.13)

The operation (3.13) amounts to projection on �%�. In fact, if we choose to write the
vectors �x� and �y� as column vectors

�x� =
(
1
0

)
� �y� =

(
0
1

)
� (3.14)

then the projector 
%


% = �%�
%� = (
�x�+��y�)(
∗
x�+�∗
y�)
3 We shall use upper-case letters �%� or �-� for generic vectors of � of the form (3.12) or (3.16), to avoid any confusion
with an angle, as for � � or ���.
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is represented by the matrix


% =
⎛
⎝ �
�2 
�∗


∗� ���2

⎞
⎠ � (3.15)

We can put the incident field �� (3.7) in correspondence with a (non-normalized) vector
��� of � with the complex components �x and �y:

��� = �x�x�+�y�y��
Using ��� we can define a vector �-� normalized to unity by ��� = E0�-�:

�-� = ��x�+�y�� ���2+��2 = 1� (3.16)

where

� = �x

E0

�  = �y

E0

�

The normalized vector �-� which describes the polarization of the wave (3.7) is called
the Jones vector. According to (3.13) and (3.15), the electric field at the exit of the �
���
polarizer will be

��′� = 
%��� = E0
%�-� = E0�%�
%�-�� (3.17)

Now let us generalize everything we have obtained for the linear polarizer to the �
���

polarizer. The latter projects the polarization state �-� onto �%� with amplitude equal to

%�-�:

a�- →%�= 
%�-�� (3.18)

At the exit of the polarizer the intensity is reduced by a factor �a�- →%��2 = �
%�-��2.
If the polarization state is described by the unit vector �%� (3.12), then the transmission
through the (
��� polarizer is 100%. On the other hand, the polarization state

�%⊥� = −�∗�x�+
∗�y� (3.19)

is completely stopped by the �
��� polarizer. The polarization state (3.16) is in general
an elliptic polarization. It is easy to determine the characteristics of the corresponding
ellipse and the direction in which it is traced (Exercise 3.3.2).
The states �%� and �%⊥� form an orthonormal basis of � obtained from the (�x�� �y�)

basis by a unitary transformation U :

U =
⎛
⎝ 
 �

−�∗ 
∗

⎞
⎠ �

In summary, we have shown that any polarization state can be put into correspondence
with a normalized vector �%� of a two-dimensional complex space � . The vectors �%�
and exp�i���%� represent the same polarization state. Stated more precisely, a polarization
state can be put into correspondence with a vector up to a phase.
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3.1.2 The photon polarization

Now we shall show that the mathematical formalism used above to describe the polar-
ization of a light wave can be carried over without modification to the description of the
polarization of a photon. However, the fact that the mathematical formalism is identical
in the two cases should not obscure the fact that the physical interpretation is radically
modified. We shall return to the experiment of Fig. 3.2 and reduce the light intensity
such that individual photons are registered by the photomultipliers Dx and Dy, which
respectively detect photons polarized in the Ox and Oy directions. We then observe the
following:

• only one of the two photomultipliers is triggered by a photon incident on the plate. Like the
neutrons of Chapter 1, the photons arrive in lumps: they are never split.

• the probability px (py) of Dx (Dy) being triggered by a photon incident on the plate is px = cos2  
(py = sin2  ).

This result must hold true if we want to recover classical optics in the limit where the
number N of photons is large. In fact, if Nx and Ny are the numbers of photons detected
by Dx and Dy, we must have

px = lim
N→�

Nx

N
� py = lim

N→�
Ny

N

and �x ∝ Nx = N cos2  , �y ∝ Ny = N sin2  in the limit N →�. However, the fate of an
individual photon cannot be predicted. We can only know its probability of detection by
Dx or Dy. The need to resort to probabilities is an intrinsic feature of quantum physics,
whereas in classical physics resorting to probabilities is only a way to take into account
the complexity of a phenomenon whose details we cannot (or do not want to) know. For
example, when flipping a coin, complete knowledge of the initial conditions under which
the coin is thrown and inclusion of the air resistance, the state of the ground on which
the coin lands, etc. permit us in principle to predict the result. Some physicists4 have
suggested that the probabilistic nature of quantum mechanics has an analogous origin:
if we had access to additional variables which at present we do not know, the so-called
hidden variables, we would be able to predict with certainty the fate of each individual
photon. This hidden variable hypothesis has some utility in discussions of the foundations
of quantum physics. Nevertheless, in Chapter 6 we shall see that, given very plausible
hypotheses, such variables are excluded by experiment.
However, probabilities alone provide only a very incomplete description of the pho-

ton polarization. A complete description requires also the introduction of probability
amplitudes. Probability amplitudes, which we denote a (the difference between the wave
amplitudes of the preceding subsection and probability amplitudes is emphasized by using
different notation: a instead of a), are complex numbers, and probabilities correspond
to their squared modulus �a�2. To make manifest the incomplete nature of probabilities

4 Including de Broglie and Bohm.
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alone, let us again consider the apparatus of Fig. 3.3. Between the two plates a photon
follows either the trajectory of an extraordinary ray polarized in the Ox direction, called
an x trajectory, or the trajectory of an ordinary ray polarized in the Oy direction, called a y
trajectory. According to purely probabilistic reasoning, a photon following an x trajectory
has probability cos2  cos2 � of being transmitted by the analyzer, and a photon following
a y trajectory has the corresponding probability sin2 sin2�. The total probability for a
photon to be transmitted by the analyzer is therefore

ptot = cos2  cos2 �+ sin2  sin2 �� (3.20)

This is not what is found from experiment, which confirms the result obtained earlier
using wave arguments:

ptot = cos2� −���

A correct reasoning must be based on probability amplitudes, just as before we used
wave amplitudes. Probability amplitudes obey the same rules as wave amplitudes, which
guarantees that the results of optics are reproduced when the number of photons N →�.
The probability amplitude for a photon linearly polarized in the n̂ direction to be polarized
in the n̂� direction is given by (3.4): a� → �� = cos� −�� = n̂ · n̂�. We obtain the
following table of probability amplitudes for the experiment of Fig. 3.3:

a� → x� = cos � a�x→ ��= cos��

a� → y� = sin  � a�y→ ��= sin��

This example provides an illustration of the rules governing the combination of probability
amplitudes. The probability amplitude ax for an incident photon following an x trajectory
to be transmitted by the analyzer is

ax = a� → x�a�x→ ��= cos cos��

This expression suggests the factorization rule for amplitudes: ax is the product of
the amplitudes a� → x� and a�x → ��. This factorization rule guarantees that the
corresponding rule for the probabilities holds. We also have

ay = a� → y�a�y→ ��= sin  sin��

If the experimental setup does not allow us to know which trajectory a photon has
followed, the amplitudes must be added. The total probability amplitude for a photon to
be transmitted by the analyzer is then

atot = ax+ay = cos cos�+ sin  sin�= cos� −��� (3.21)

and the corresponding probability is cos2� −��, in agreement with the result (3.5)
of classical optics. If there is a way to distinguish between the two trajectories, the
interference is destroyed and the probabilities must be added as in (3.20).
Since the rules for combining probability amplitudes are the same as those for wave

amplitudes, these rules will apply if the polarization state of a photon is described by a
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normalized vector in a two-dimensional vector space � , called the space of states. In the
present case this is the space of polarization states. When a photon is linearly polarized
in the Ox (Oy) direction, we can put this polarization state in correspondence with a
vector �x� (�y�) of this space. Such a polarization state is obtained by allowing a photon
to pass through a linear polarizer oriented in the Ox (Oy) direction. The probability that
a photon polarized in the Ox direction will be transmitted by an analyzer oriented in the
Oy direction is zero: the probability amplitude a�x→ y�= 0. Conversely, the probability
that a photon polarized in the Ox or Oy direction will be transmitted by an analyzer
oriented in the same direction is equal to unity, and so

�a�x→ x�� = �a�y→ y�� = 1� a�x→ y�= a�y→ x�= 0�

These relations are satisfied if �x� and �y� form an orthonormal basis of � and if we
identify the probability amplitudes as scalar products:

a�x→ x�= 
x�x� = 1� a�y→ y�= 
y�y� = 1� a�y→ x�= 
x�y� = 0� (3.22)

The most general linear polarization state is the state in which the polarization makes an
angle  with Ox. This state will be represented by the vector

� � = cos �x�+ sin  �y�� (3.23)

Equations (3.22) and (3.23) ensure that the probability amplitudes listed above are cor-
rectly given by the scalar products, for example,

a� → x�= 
x� � = cos �

or, in general, if ��� is a state of linear polarization,

a� → ��= 
�� � = cos� −���

The most general polarization state will be described by a normalized vector called a
state vector:

�%� = 
�x�+��y�� �
�2+���2 = 1�

As in the wave case, the vectors �%� and exp�i���%� represent the same physical state:
a physical state is represented by a vector up to a phase in the space of states. The
probability amplitude for finding a polarization state �-� in �%� will be given by the
scalar product 
%�-�, and the projection onto a given polarization state will be realized
by the �
��� polarizer described in the preceding subsection. In summary, we have used
a specific example, that of the polarization of a photon, to illustrate the construction of
the Hilbert space of states.
The photon polarization along some (complex) direction is an example of a quantum

physical property. The interpretation of a quantum physical property differs radically
from that of a classical physical property. We shall illustrate this by examining the photon
polarization. At first we limit ourselves to the simplest case, that of a linear polarization
state. Using a linear polarizer oriented in the Ox direction, we prepare an ensemble of
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photons all in the state �x�. The photons arrive one by one at the polarizer, and all the
photons which are transmitted by the polarizer are in the state �x�. This is the stage
of preparation of the quantum system, where one only keeps the photons which have
passed through the polarizer aligned in the Ox direction. The next stage, the test stage,
consists of testing this polarization by allowing the photons to pass through a linear
analyzer. If the analyzer is parallel to Ox the photons are transmitted with unit probability
and if it is parallel to Oy they are transmitted with zero probability. In both cases the
result of the test can be predicted with certainty. The physical property “polarization of
a photon prepared in the state �x�” takes well-defined values if the basis (�x�� �y�) is
chosen for the test. On the other hand, if we use analyzers oriented in the direction n̂ 

corresponding to the state � � (3.23) and in the perpendicular direction n̂ ⊥ corresponding
to the state

� ⊥� = − sin  �x�+ cos �y�� (3.24)

we can predict only the transmission probability �
 �x��2 = cos2 in the first case and
�
 ⊥�x��2 = sin2  in the second. The physical property “polarization of the photon in
the state �x�” has no well-defined value in the basis (� �� � ⊥�). In other words, the
physical property “polarization” is associated with a given basis, and the two bases
(�x�� �y�) and (� �� � ⊥�) are termed incompatible (except when  = 0 and  = �/2).
Complementary bases are a special case of incompatible ones: in a Hilbert space of
dimension N , two bases (�m�) and (���) are termed complementary if �
m����2 = 1/N
for all m and �.
The preceding discussion should be made more precise in two respects. First, it is

clearly impossible to test the polarization of an isolated photon. The polarization test
requires that we are provided with a number N � 1 of photons prepared under identical
conditions. Let us then suppose that N photons have been prepared in a certain polarization
state and that they are tested by a linear analyzer oriented in the Ox direction. If we
find – within the experimental accuracy of the apparatus – that the photons pass through
the analyzer with a probability of 100%, we can deduce that the photons have been
prepared in the state �x�. The observation of a single photon obviously does not allow us
to arrive at this conclusion, unless we know beforehand in which basis it was prepared.
The second point is that even if the photons are transmitted with a probability cos2 , we
cannot deduce that they have been prepared in the linear polarization state (3.23). In fact,
we will observe the same transmission probability if the photons have been prepared in
an elliptic polarization state (3.12) with


= cos ei�x � �= sin  ei�y �

Only a test whose results have probability 0 or 1 allows the photon polarization state to
be determined unambiguously with one orientation of the analyzer. Otherwise, a second
orientation will be necessary to determine the phases.
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In the representation (3.14) of the basis vectors of � , the projectors 
x and 
y onto
the states �x� and �y� are represented by matrices


x =
(

1 0
0 0

)
� 
y =

(
0 0
0 1

)

which commute: �
x�
y�= 0. The two operators are compatible according to the defini-
tion of Section 2.3.3. The projectors 
 and 
 ⊥ can be calculated directly from (3.15):


 =
(

cos2 sin  cos 
sin  cos sin2 

)
� 
 ⊥ =

(
sin2 − sin  cos 

− sin  cos cos2 

)
�

They commute with each other, but not with either 
x or 
y: 
x and 
 , for example, are
incompatible. The commutation (or noncommutation) of operators is the mathematical
translation of the compatibility (or incompatibility) of physical properties.
As another choice of basis we can use the right- and left-handed circular polarization

states �R� and �L� of (3.11). The basis (�R�� �L�) is incompatible with any basis con-
structed using linear polarization states, and in fact complementary to any such basis. The
projectors 
R and 
L onto these circular polarization states are


R =
1
2

(
1 −i
i 1

)
� 
L =

1
2

(
1 i
−i 1

)
� (3.25)

We can use 
R and 
L to construct the remarkable Hermitian operator .z:

.z = 
R−
L =
(

0 −i
i 0

)
� (3.26)

This operator has the states �R� and �L� as its eigenvectors, and their respective eigen-
values are +1 and −1:

.z�R� = �R�� .z�L� = −�L�� (3.27)

This result suggests that the Hermitian operator .z with eigenvectors �R� and �L�
is associated with the physical property called “circular polarization.” We shall see
in Chapter 10 that �.z = Jz is the operator representing the physical property called
“z component of the photon angular momentum (or spin).” We also observe that
exp�−i .z� is an operator which performs rotations by an angle  about the Oz axis, as
can be seen from a simple calculation (Exercise 3.3.3)

exp�−i .z�=
(

cos − sin  
sin  cos 

)
� (3.28)

and exp�−i .z� transforms the state �x� into the state � � and �y� into � ⊥�:
exp�−i .z��x� = � �� exp�−i .z��y� = � ⊥�� (3.29)
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3.1.3 Quantum cryptography

Quantum cryptography is a recent invention based on the incompatibility of two different
bases of linear polarization states. Ordinary cryptography makes use of an encryption key
known only to the transmitter and receiver. This is called secret-key cryptography. It is
in principle very secure,5 but it is necessary that the transmitter and receiver be able to
exchange the key without its being intercepted by a spy. The key must be changed often,
because a set of messages encoded using the same key can reveal regularities which
permit decipherment by a third party. The process of transmitting a secret key is risky, and
for this reason it is preferable to use systems based on a different principle, the so-called
public-key systems, where the key is made public, for example via the Internet. A public-
key system currently in use is based on the difficulty of factoring a very large number
N into primes,6 whereas the reverse operation is straightforward: without a calculator
one can obtain 137× 53 = 7261 in a few seconds, but given 7261 it would take some
time to factor it into primes. The number of instructions needed for a computer using
the best modern algorithms to factor a number N into primes grows with N roughly as
exp��lnN�1/3�.7 In a public-key system, the receiver, conventionally named Bob, publicly
sends to the transmitter, conventionally named Alice, a very large number N = pq which
is the product of two primes p and q, as well a number c having no common factor with
�p−1��q−1�. Knowledge of N and c is sufficient for Alice to encrypt the message, but
decipherment requires knowing the numbers p and q. Of course, a spy, conventionally
named Eve, possessing a sufficiently powerful computer and enough time can manage
to crack the code, but in general one can count on keeping the contents of the message
secret for a limited period of time. However, it is not impossible that eventually very
powerful algorithms will be found for factoring a number into primes, and, moreover, if
quantum computers (Section 6.4.2) ever see the light of day, they will push the limits
of factorization very far. Fortunately, thanks to quantum mechanics we are nearly at the
point of being able to counteract the efforts of spies.
“Quantum cryptography” is a catchy phrase, but somewhat inaccurate. The point is not

that a message is encrypted using quantum physics, but rather that quantum physics is
used to ensure that the key has been transmitted securely: a more accurate terminology is
thus “quantum key distribution” (QKD). A message, encrypted or not, can be transmitted
using the two orthogonal linear polarization states of a photon, for example, �x� and �y�.
We can adopt the convention of assigning the value 1 to the polarization �x� and 0 to the
polarization �y�; then each photon transports a bit of information. The entire message,
encrypted or not, can be written in binary code, that is, as a series of ones and zeros,
and the message 1001110 can be encoded by Alice using the photon sequence xyyxxxy

and then sent to Bob via, for example, an optical fiber. Using a birefringent plate, Bob

5 An absolutely secure encryption was discovered by Vernam in 1917. However, absolute security requires that the key be as
long as the message and that it be used only a single time!

6 Called RSA encryption, discovered by Rivest, Shamir, and Adleman in 1977.
7 At present the best factorization algorithm requires a number of operations ∼ exp�1�9�lnN�1/3�ln lnN�2/3�. One cannot hope
to factor numbers with more than 180 figures (∼1020 instructions) in a reasonable amount of time.
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will separate the photons of vertical and horizontal polarization as in Fig. 3.2, and two
detectors located behind the plate will permit him to decide if a photon was horizontally
or vertically polarized. In this way he can reconstruct the message. If this were an ordinary
message, there would of course be much simpler and more efficient methods of sending
it! At this point, let us just note that if Eve eavesdrops on the fiber, detects the photons
and their polarization, and then sends to Bob other photons with the same polarization
as the ones sent by Alice, Bob is none the wiser. The situation would be the same for
any device functioning in a classical manner, that is, any device that does not use the
superposition principle: if the spy takes sufficient precautions, the spying is undetectable,
because she can send a signal that is arbitrarily close to the original one.
This is where quantum mechanics and the superposition principle come to the aid of

Alice and Bob, allowing them to be sure that their message has not been intercepted. The
message need not be long (the method of transmission via polarization is not very effi-
cient). The idea in general is to transmit the key permiting encryption of a later message,
a key which can be replaced when necessary. Alice sends Bob four types of photon:
photons polarized along Ox (�) and Oy (↔) as before, and photons polarized along axes
rotated by ±45o, that is, Ox′ ( � ) and Oy′ ( �), respectively corresponding to bits 1 and 0.
Again Bob analyzes the photons sent by Alice, now using analyzers oriented in four
directions, vertical/horizontal and ±45o. One possibility is to use a birefringent crystal
randomly oriented vertically or at 45o from the vertical and to detect the photons leaving
this crystal as in Fig. 3.3. However, instead of rotating the crystal+detector ensemble, it
is easier to use a Pockels cell, which allows a given polarization to be transformed into
one of arbitrary orientation while keeping the crystal+detector ensemble fixed (Fig. 3.4).
Bob records 1 if the photon has polarization � or � , and 0 if it has polarization↔ or �.
After recording a sufficient number of photons, Bob announces publicly the analyzer
sequence he has used, but not his results. Alice compares her polarizer sequence to that
of Bob and also publicly gives him the list of polarizers compatible with his analyzers.
The bits corresponding to incompatible analyzers and polarizers are rejected (−), and,
for the other bits, Alice and Bob are certain that their values are the same. It is these
bits which will serve to construct the key, and they are known only to Bob and Alice,
because an outsider knows only the list of orientations and not the results. An example
of photon exchanges between Alice and Bob is given in Fig. 3.5.

Detector

P P

laser
Alice Bob(a) (b)

Attenuator

Fig. 3.4. The BB84 protocol. An attenuted laser beam allows Alice to send individual photons.
A birefringent crystal selects a given linear polarization, which can be rotated thanks to a Pockels
cell P. The photons are polarized, either vertically/horizontally (a), or to ±45o (b).
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Fig. 3.5. Quantum cryptography: transmission of polarized photons between Bob and Alice.

The only thing left is to ensure that the message has not been intercepted and that the
key it contains can be used without risk. Alice and Bob randomly choose a subset of
their key and compare it publicly. If Eve has intercepted the photons, this will result in a
reduction of the correlation between the values of their bits. Suppose, for example, that
Alice sends a photon polarized in the Ox direction. If Eve intercepts it using a polarizer
oriented in the Ox′ direction, and if the photon is transmitted by her analyzer, she does
not know that this photon was initially polarized along the Ox direction, and so she
resends Bob a photon polarized in the Ox′ direction, and in 50% of cases Bob will not
obtain the right result. Since Eve has one chance in two of orienting her analyzer in the
right direction, Alice and Bob will register a difference in 25% of cases and conclude
that the message has been intercepted. The use of two complementary bases maximizes
the security of the BB84 protocol. Of course, this discussion is greatly simplified. It does
not take into account the possibilities of errors which must be corrected, and moreover it
is based on recording impacts of isolated photons, while in practice one sends packets of
coherent states with a small (
n� ∼ 0�1) average number of photons by using an attenuated
laser beam.8 Nevertheless, the method is correct in principle, and, to this day, two devices
capable of realizing transmissions over several tens of kilometers are available on the
market.

3.2 Spin 1/2

3.2.1 Angular momentum and magnetic moment in classical physics

Our second example of an elementary quantum system will be that of spin 1/2. Since for
such a system there is no classical wave limit as there is in the case of the photon, our
classical discussion will be much shorter than that of the preceding section. We consider
a particle of mass m and charge q describing a closed orbit in the field of a central
force (Fig. 3.6). We denote the position and momentum of this particle as �r�t� and �p�t�.

8 In the case of the transmission of isolated photons, the theorem of quantum cloning (Section 6.4.2) guarantees that it is
impossible for Eve to fool Bob. However, Eve can slightly reduce her error rate by using a more sophisticated method: see
Exercise 15.5.3.
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Fig. 3.6. The gyromagnetic ratio.

Let d � be the oriented element of area swept out by the radius vector. It satisfies the
relation

d �
dt

= 1
2m

�r× �p= 1
2m

�j�

where �j is the angular momentum. We recall that for motion in a central force field, the
angular momentum is a fixed vector perpendicular to the orbital plane. Integrating over
a period, we can relate the total oriented area of the orbit � to �j and to the period T :

�= T

2m
�j�

The current induced by the charge is I = q/T because the charge q passes a given point
1/T times per second, and the magnetic moment �� induced by this current will be

��= I �= q

2m
�j = ��j � (3.30)

The gyromagnetic ratio � defined by (3.30) is q/2m. The motion of the electrons inside
an atom gives rise to atomic magnetism and the motion of protons inside atomic nuclei
gives rise to nuclear magnetism. However, the motion of the charges cannot quantitatively
explain either atomic magnetism or nuclear magnetism. It must be assumed that particles
have an intrinsic magnetism. Experiment shows that elementary particles of nonzero
spin carry a magnetic moment associated with an intrinsic angular momentum, called
the spin of the particle, which we denote as �s. We can try to represent this angular
momentum intuitively as arising from rotation of the particle about its axis. Such a picture
may be useful, but it should not be taken very seriously, as it leads to insurmountable
contradictions if pushed too far. Only quantum mechanics can give a correct description
of spin. Experiments show that the electron, the proton, and the neutron have spin 1

2�. The
factor � is often omitted, and it is simply said that the electron, proton, and neutron are



3.2 Spin 1/2 77

spin-1/2 particles. The gyromagnetic ratio associated with spin is different from (3.30).
For example, for the electron9 and the proton we have

electron � �e = 2
qe
2me

� proton � �p = 5�59
qp

2mp

�

where �qe� qp =−qe� and �me�mp� are the charges and masses of the electron and proton.
Moreover, even though its charge is zero, the neutron possesses a magnetic moment. Its
gyromagnetic ratio is given by

�n =−3�83
qp

2mp

�

Atomic magnetism arises from the electron motion (orbital magnetism) combined with
the magnetism associated with the electron spin. The magnetism of atomic nuclei arises
from the proton motion and the magnetism associated with the spins of the neutrons and
protons. Equation (3.30) shows that the gyromagnetic ratio is inversely proportional to
the mass: magnetism of nuclear origin is weaker than that of electron origin by a factor
∼me/mp ≈ 1/1000. In spite of this suppression, nuclear magnetism is of great practical
importance as it lies at the basis of nuclear magnetic resonance (NMR; see Section 5.2.3)
and derived technologies such as magnetic resonance imaging (MRI).
Let us use classical physics to study the motion of a magnetic moment �� in a constant

magnetic field �B. This magnetic moment is subject to a torque �0 = ��× �B, and the equation
of motion is

d�s
dt
= ��× �B = q

2m
�s× �B =− qB

2m
B̂×�s� (3.31)

This equation implies that �s and �� rotate about �B with constant angular speed � =
−qB/2m called the Larmor frequency. It is convenient to assign an algebraic value to
�: the rotation occurs in the counterclockwise sense for q < 0 �� > 0�. This rotational
motion is called Larmor precession (Fig. 3.7).

3.2.2 The Stern–Gerlach experiment and Stern–Gerlach filters

The experiment performed by Stern and Gerlach in 1921 is shown schematically in
Fig. 3.8. A beam of silver atoms leaves an oven and is collimated by two slits, then passes
between the poles of a magnet with the magnetic field pointing in the Oz direction.10 The
magnetic field is nonuniform: Bz is a function of z. A silver atom possesses a magnetic
moment due to that of its valence electron. From the point of view of the magnetic
forces, it is just as though an electron were passing through the magnet gap. However,
the dynamics is simplified owing to the absence of the Lorentz force, as the silver atom
is electrically neutral; moreover, the electron mass is replaced by the atomic mass. The

9 Up to corrections of order 0.1%, which can be calculated using quantum electrodynamics.
10 The reader will note that the orientation of the axes is different from that in the preceding section; the direction of propagation

is now the Oy direction. This new choice is made in order to conform with the usual conventions.
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Fig. 3.7. Larmor precession: the spin �s precesses about �B with angular frequency �.
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Fig. 3.8. The Stern–Gerlach experiment.

potential energy U of a magnetic moment in �B is U = −�� · �B, and the corresponding
force is

�F =−��U� Fz = �z

�Bz

�z
� (3.32)

In reality, �B cannot be strictly parallel to Oz; if �B = �0�0�B�, �B/�z �= 0 is incompatible
with the Maxwell equation �� · �B = 0. A complete justification of (3.32) can be found
in Exercise 9.7.13, where it is shown that this expression gives the effective force on
an atom. When the magnetic field is zero, the atoms arrive in the vicinity of a point on
the screen and form a spot of finite size owing to their velocity spread, as they are not
perfectly collimated. The orientation of the magnetic moments at the exit of the oven is
a priori random, and when a magnetic field is present we would expect the spot to be
larger: the atoms with magnetic moment �� antiparallel to Oz should undergo maximal
upward deflection for ��Bz/�z� < 0, while those with �� parallel to Oz should undergo
maximal downward deflection, with all intermediate deflections being possible. But in
fact it is observed experimentally that there are two spots symmetrically located about
the point of arrival in the absence of a magnetic field. It is as though �z, and thus sz,
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could take two and only two values, and we find11 that they correspond to sz = ±�/2,
i.e., sz is quantized. We note that since the gyromagnetic ratio is negative (�< 0), upward
(downward) deflection corresponds to sz > 0 �< 0�. The Stern–Gerlach apparatus acts like
the birefringent plate of Fig. 3.2: at the exit of the device the atom follows a trajectory12

on which its spin points either up, sz = +�/2, or down, sz = −�/2. The analogy with
photon polarization suggests that the space of spin-1/2 states is a two-dimensional vector
space, which is in fact the case. A possible basis in this space is formed by the two vectors
�+� and �−� describing the physical states obtained by selecting atoms deflected upward
or downward by the Stern–Gerlach device and respectively corresponding to sz =+�/2
and −�/2. The states �+� and �−� are called “spin up” and “spin down.” These spin
states are the analog of the two orthogonal polarization states �%� and �%⊥� in the case
of photons.13

The apparatus shown schematically in Fig. 3.9 can be used to recombine atoms deflected
upward or downward along a single trajectory, just as the set of two birefringent plates
of Fig. 3.3 allows the trajectories of photons polarized in the Ox and Oy directions to
be recombined. This apparatus, which we shall refer to as a Stern–Gerlach filter, was
not actually realized experimentally by Stern and Gerlach. It was imagined 40 years
later by Wigner, and it allows us to illustrate the following theoretical argument. If two
Stern–Gerlach filters are located one after the other with the same orientation of �B and,
for example, the two lower paths are blocked (Fig. 3.10(a)), then it can be stated that
100% of the atoms that pass through the first filter will also be transmitted by the second,
just as a photon selected by a polarizer oriented in the Ox direction is transmitted with
100% probability by an analyzer of the same orientation. If, on the other hand, the lower
path is blocked in the first filter and the upper one in the second filter (Fig. 3.10(b)), then
not a single atom is transmitted, just as no photons are transmitted if the analyzer and
polarizer are orthogonal. As in the preceding section, these results can be expressed by

N

S

S

N

N

S

z

⎟ –〉

⎟ +〉

Fig. 3.9. A Stern–Gerlach filter.

11 Knowledge of �Bz/�z and � makes it possible in principle to obtain sz from the deflection; see Exercise 9.7.13.
12 It can be shown (Exercise 9.7.13) that the trajectories can be treated classically.
13 This analogy should not be pushed too far; as we shall see in Chapter 10, the photon has spin �, not �/2. Spin � normally

has three possible polarization states. However, in the case of the photon there are only two because the photon is massless.
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Fig. 3.10. Stern–Gerlach filters in series.

writing the probability amplitudes a�+→+� and a�+→−� as scalar products of the
basis vectors:14

a�+→+�= 
+�+�= 1� a�−→−�= 
−�−�= 1� a�+→−�= 
−�+�= 0� (3.33)

If the vectors �+� and �−� are represented as column vectors

�+� =
(
1
0

)
� �−� =

(
0
1

)
� (3.34)

the most general (normalized) state vector �&� ∈� can be written as

�&� = 
�+�+��−� or �&� =
(



�

)
� (3.35)

The vectors �+� and �−� can be used to construct a Hermitian operator Sz such that these
vectors are eigenvectors of Sz with eigenvalues ±�/2:

Sz =
1
2

�
(
�+�
+�− �−�
−�

)
= 1

2
�
(

+−
−

)
= 1

2
�

(
1 0
0 −1

)
� (3.36)

where 
+ and 
− are projectors on the states �+� and �−�. With the physical property
�z, the z component of the spin, we associate a Hermitian operator Sz acting in the space
of states � . The vectors �+� and �−� are also called eigenstates of Sz, and they form the
basis in which Sz is diagonal. In this basis Sz is represented by a diagonal matrix (3.36).
The physical property corresponding to the z component of the spin takes the well-defined
value +�/2 or −�/2 if the state vector �&� is �+� or �−�.

3.2.3 Spin states of arbitrary orientation

Let us pursue the analogy with photon polarization and rotate the magnetic field in the
Stern–Gerlach filter so that it points in the n̂ direction. Then only the magnetic field
component Bn̂ = �B · n̂ is nonzero. With this new orientation the Stern–Gerlach filter
will produce states denoted as �+� n̂� and �−� n̂� which are obtained by selecting atoms

14 More rigorously, we know only that �a�+→+�� = �a�−→−�� = 1, but a suitable choice of phase always leads to (3.33).
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deflected respectively in the direction of n̂ and opposite to it.15 By analogy with the case
of photons, we say that the spin 1/2 is polarized in the direction +n̂ or −n̂. We proceed
as in the discussion of photon polarization, with the first Stern–Gerlach filter acting as
the polarizer; its magnetic field is oriented in the Oz direction and selects spins in the
state �+�. The second filter has its magnetic field oriented in the n̂ direction and acts as
the analyzer. It allows experimental measurement of the probabilities p�+→ �+� n̂�� =
�
+� n̂�+��2 and p�+→ �−� n̂�� = �
−� n̂�+��2; as in the preceding section, we assume
that these probabilities are given by the squared modulus of a scalar product. Like the
states16 �+� and �−�, the states �+� n̂� and �−� n̂� are orthogonal: 
+� n̂�−� n̂� = 0. If the
polarizer and analyzer are oriented in the same direction, a state prepared by the polarizer
is transmitted with 100% probability by the analyzer. If their orientations are opposite17

there is 0% transmission probability. The result of testing the polarization is certain.
If the directions are not the same, we observe only a certain transmission probability.
Just as the bases of photon polarization states (�x�� �y�) and (� �� � ⊥�) are incompatible
(Section 3.1.2), the bases (�+�� �−�) and (�+� n̂�� �−� n̂�) are incompatible for states of
spin 1/2.
Now let us determine the transmission probabilities using the invariance under rotation,

i.e., the fact that the physics of the problem cannot depend on the orientation of the axes.
The first consequence of this invariance is that the Oz direction is in no way special,
and so there must exist a Hermitian operator Sn̂ = �S · n̂, the spin projection on the n̂ axis,
which has eigenvalues �/2 and −�/2 and takes the form (3.36) in a basis (�+� n̂�� �−� n̂�)
which we must determine. The operator Sn̂ is written as a function of its eigenvalues and
eigenvectors as

Sn̂ =
1
2

�
(
�+� n̂�
+� n̂�− �−� n̂�
−� n̂�

)
� (3.37)

We introduce the concept of the expectation value of the spin component in the n̂

direction, which we denote 
Sn̂�. Since deflection in the direction ±n̂ corresponds to a
value sn̂ =±�/2 when the spin is in an arbitrary state �&�, this expectation value, denoted

Sn̂�, will be given by


Sn̂� =
1
2

�
(
p�& → �+� n̂��−p�& → �−� n̂��

)

= 1
2

�
(

&�+� n̂�
+� n̂�&�−
&�−� n̂�
−� n̂�&�

)

= 
&�1
2

�
(
�+� n̂�
+� n̂�− �−� n̂�
−� n̂�

)
�&�

= 
&�Sn̂�&�� (3.38)

15 This presupposes that we know how to change the electron propagation direction to make it orthogonal to n̂. Since we are
discussing a “thought experiment,” we shall not dwell on how this can be done in practice.

16 Thus �+� and �−� are shorthand notations for �+� ẑ� and �−� ẑ�.
17 And not orthogonal as in the case of photons!
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The matrix representing Sn̂ in the basis (3.34) in which Sz is diagonal is a priori given by
the most general Hermitian 2×2 matrix with eigenvalues ±�/2:

Sn̂ =
1
2

�

(
a b

b∗ c

)
= 1

2
�A� (3.39)

where a and c are real numbers. The equation for the eigenvalues 
± of the matrix A is


2− �a+ c�
+ac−�b�2 = 0�

We must have 
++
− = 0 and 
+
− = −1, and so

a+ c = 0� ac−�b�2 =−1⇒ a2+�b�2 = 1�

We parametrize a and b using the two angles � and �: a= cos� and b= exp�−i�� sin�.
Then for Sn̂ we find

Sn̂ =
1
2

�

(
cos� e−i� sin�

ei� sin� − cos�

)
� (3.40)

where the eigenvectors up to a phase are (cf. (2.35))

�+� n̂� =
(
e−i�/2 cos�/2
ei�/2 sin�/2

)
� �−� n̂� =

(−e−i�/2 sin�/2
ei�/2 cos�/2

)
� (3.41)

3.2.4 Rotation of spin 1/2

We still need to find a geometrical interpretation for the angles � and �. We shall hypoth-
esize that the expectation value 
�S�, which has components �
Sx�� 
Sy�� 
Sz��, transforms
under rotation as a vector in a three-dimensional space, that is, as the corresponding
classical object �s. Again we use the polarizer/analyzer experiment. First we have the
magnetic fields of the polarizer and the analyzer point in the Oz direction. We know
that in 100% of cases the spins pass through the analyzer. If the field of the analyzer is
oriented antiparallel to Oz none of the spins is transmitted. We can express this result
as follows. At the exit of the polarizer the expectation value of Sz, that is, 
Sz�, is equal
to �/2. Now we orient the magnetic field of the analyzer in the Ox direction. It can be
verified experimentally that the spins now have one chance in two of being deflected
toward positive x and one chance in two of being deflected toward negative x, which
corresponds to expectation value of Sx equal to zero: 
Sx� = 0. This result is not unex-
pected. One argument for it is based on classical reasoning: a classical spin parallel to Oz

is not deflected by a field gradient in the Ox direction. A second, more general argument
is based on rotational invariance.18 In our problem the spin variables are decoupled from
the spatial variables associated with the propagation of the atom and, for spin rotations,

18 It is also possible to invoke parity invariance without resorting to the decoupling of the spin and spatial variables; see
Exercise 9.7.13.
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the system is invariant under rotations about the Oz direction: in the absence of a privi-
leged direction in the xOy plane, 
Sx� = 
Sy� = 0. The vector 
�S� then has components
�0�0��/2�.
Let us now suppose that the experimentalist decides to use the set of axes x′Oz′

obtained from xOz by a rotation of angle − about Oy (Fig. 3.11(a)). If 
�S� is a vector,
its components in the new set of axes will be 1

2��sin  �0� cos �. An equivalent physical
situation is obtained by keeping the original set of axes and orienting the magnetic field
gradient of the polarizer in the direction making an angle  with Oz (Fig. 3.11(b)).19 The
polarizer then prepares the spins in a state which we denote �+� n̂ �. The expectation
values become


Sx� = 
+� n̂ �Sx�+� n̂ � =
�

2
sin  � 
Sz� = 
+� n̂ �Sz�+� n̂ � =

�

2
cos � (3.42)

In general, the magnetic field �B of the polarizer can be oriented in any direction n̂: the
polarizer prepares the spins in the state �+� n̂�. Let  and ' be the polar and azimuthal
angles defining the direction of n̂ (Fig. 3.12). Direct generalization of the preceding
argument shows that the expectation values of �S then become


Sx� = 
+� n̂�Sx�+� n̂� = �

2
sin  cos'= �

2
nx�


Sy� = 
+� n̂�Sy�+� n̂� = �

2
sin  sin'= �

2
ny� (3.43)


Sz� = 
+� n̂�Sz�+� n̂� = �

2
cos = �

2
nz�

or, in vector notation,


�S� = 
+� n̂��S�+� n̂� = �

2
n̂� (3.44)
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Fig. 3.11. (a) 
�S� in two sets of axes. (b) Rotation of 
�S�.

19 We shall see in Section 8.1.1 that this amounts to going from a passive to an active point of view for a symmetry operation.



84 Polarization: photons and spin-1/2 particles

O

z

y
x

n
θ

φ

∧

Fig. 3.12. Orientation of n̂.

We went through a rather detailed and lengthy argument leading to (3.44), but we could
have taken a shortcut by noting that the only vector at our disposal is n̂, and 
�S� is
necessarily parallel to n̂, whence (3.44). Let us now calculate the expectation values
taking into account (3.41):


Sz� =
�

2

(
cos2 �/2− sin2 �/2

)= �

2
cos��

We must therefore have �=± . We choose the solution �=  and calculate the matrices
representing Sx and Sy in the basis (3.34). Since  = � = �/2 in both cases, (3.40)
becomes

Sx =
1
2

�

(
0 e−i�x

ei�x 0

)
� Sy =

1
2

�

(
0 e−i�y

ei�y 0

)
�

This gives the expectation values


Sx� =
1
2

� sin  cos��−�x�� 
Sy� =
1
2

� sin  cos��−�y��

By identification with (3.43) we obtain

cos��−�x�= cos'� cos��−�y�= sin'� (3.45)

The solution of (3.45) is not unique;20 we shall adopt by convention

�x = 0� �y = �/2�

With this choice �= ' and the operators Sx, Sy, and Sz in the basis (3.34) take the form

Sx =
1
2

�x� Sy =
1
2

�y� Sz =
1
2

�z� (3.46)

20 The other solutions correspond to the set of axes obtained by rotating the Ox and Oy axes about Oz, or to the set of axes
obtained by inversion of Oy; cf. Exercise 3.3.4.
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The matrices x, y, and z are called the Pauli matrices:

x =
(

0 1
1 0

)
� y =

(
0 −i
i 0

)
� z =

(
1 0
0 −1

)
� (3.47)

These matrices satisfy the following important, frequently used relations:

2
x = 2

y = 2
z = I� xy = iz and permutations� (3.48)

which can be written compactly as

ij = �ij+ i
∑
k

�ijkk � (3.49)

where the indices �i� j� k� take the values �x� y� z�, and �ijk is the completely antisym-
metric tensor, equal to +1 if �ijk� is a cyclic permutation of �xyz�, −1 for a noncyclic
permutation, and zero otherwise.21 An equivalent form of (3.49) is the following: if �a
and �b are two vectors, then

�� · �a��� · �b�= �a · �b+ i� · ��a×�b�� (3.50)

which is readily deduced from the form of the vector product

��a×�b�i =
∑
j�k

�ijkajbk� (3.51)

Equation (3.49) also implies the commutation relations22

�i�j�= 2i
∑
k

�ijkk� (3.52)

or equivalently for the spin components

�Si� Sj�= i�
∑
k

�ijkSk � (3.53)

The Pauli matrices together with the identity matrix I form a basis for the vector space
of matrices on � . Any 2×2 matrix can be written as

A= 
0I+
∑
i


ii� (3.54)

where the coefficients 
0 and 
i are real for a Hermitian matrix A= A† and are given by
(Exercise 3.3.5)


0 =
1
2
TrA� 
i =

1
2
TrAi� (3.55)

21 For example, �yzx = 1, �yxz =−1, and �xxz = 0.
22 If the indices are written out explicitly, we have �x�y� = 2iz along with the two other relations obtained by cyclic

permutation of the indices �x� y� z�.
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Since the Pauli matrices form a basis for the matrices acting in any two-dimensional
Hilbert space, they are often used in problems where the space of states is two-
dimensional, even if the physical situation has nothing to do with spin 1/2. For example,
they are very useful for dealing with a common model in atomic physics, that of the
“two-level atom” (see Sections 5.4 and 14.4.1).
The eigenvectors �+� n̂� and �−� n̂� of Sn̂ = 1

2�� · n̂ are derived from (3.41) with �=  

and �= �:

�+� n̂� =
(
e−i'/2 cos /2
ei'/2 sin  /2

)
� �−� n̂� =

(−e−i'/2 sin  /2
ei'/2 cos /2

)
� (3.56)

The states �+� n̂� and �−� n̂� are obtained by transforming �+� and �−� by a rotation that
aligns the Oz azis with n̂. A possible choice which is consistent with that which will be
made in Chapter 10 is to rotate first by an angle  about Oy, then rotate by an angle '

about Oz. Then (3.56) can be written as

�+� n̂� =D
�1/2�
++ � �'��+�+D

�1/2�
−+ � �'��−��

�−� n̂� =D
�1/2�
+− � �'��+�+D�1/2�

−− � �'��−��
(3.57)

This equation defines a matrix D�1/2�� �'�, called the rotation matrix for spin 1/2:23

D�1/2�� �'�=
(

e−i'/2 cos /2 −e−i'/2 sin  /2
ei'/2 sin  /2 ei'/2 cos /2

)
� (3.58)

This matrix is unitary because it performs a change of basis in � . We can also check that
it has determinant 1, and so it is a matrix belonging to the group SU�2� (cf. Exercise 8.5.2).
It is interesting to consider rotations by 2�, which return the physical system to its initial
position. We have, for example, D1/2� = 2��'= 0�=−I . Under a rotation by 2� about
Oy, the state vector �&� → −�&�! However, there is no paradox: the vectors �&� and
−�&� represent the same physical state, and, as must be the case, a rotation by 2� does
not change this state. This behavior of spin 1/2 contrasts with that of photons. According
to (3.28), exp�−2i�.z�=+I and the state vector is unchanged under a rotation by 2�.
Here we see a remarkable difference between integer and half-integer spins, to which we
shall return in Chapter 10.
The form (3.56) of the eigenvectors of Sn̂ allows the probability amplitudes to be

calculated:

a�+→ �+� n̂��= 
+� n̂�+� = ei'/2 cos /2 �

a�+→ �−� n̂��= 
−� n̂�+� = −ei'/2 sin  /2�
(3.59)

23 It should be noted that this matrix is a function of  /2 and not  as in the photon case (3.28): the photon has spin 1 rather
than 1/2!
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along with the corresponding probabilities:

p�+→ �+� n̂��= �
+� n̂�+��2 = cos2  /2�

p�+→ �−� n̂��= �
−� n̂�+��2 = sin2  /2�
(3.60)

We have obtained the essential properties of spin 1/2 on the basis of only three hypotheses,
with the first two following from invariance under rotation:

• The expectation value 
�S� transforms like a vector under rotations.
• The eigenvalues of �S · n̂ are independent of n̂.
• The space of states is two-dimensional.

Some of these properties, like the commutation relations (3.53) or the existence of rotation
matrices, can be carried over to any angular momentum �J (Chapter 10). However, other
properties are specific to spin 1/2; for example, it is only in this case that any state of �
can be written as an eigenvector of �J · n̂= �S · n̂ for some n̂.

3.2.5 Dynamics and time evolution

Let us return to the problem of a spin placed in a uniform constant magnetic field �B, which
we assume to be oriented along the z axis. Our classical study of Section 3.2.1 revealed
the phenomenon of Larmor precession. In classical physics, the energy is a number

U =−�� · �B =−��s · �B =−�szB = �sz� (3.61)

where � = −�B is the Larmor frequency. In quantum physics the energy becomes a
Hermitian operator called the Hamiltonian and denoted H which acts in the space of
states. Since this space is two-dimensional, the Hamiltonian will be represented by a 2×2
matrix. We assume24 that in quantum mechanics the Hamiltonian formally remains of the
form (3.61), with the condition that the classical quantity sz is replaced by the operator
Sz, the projection on Oz of the spin operator �S:

H = �Sz =
�

2
�

(
1 0
0 −1

)
� (3.62)

Here the second form of H is its matrix representation in a basis in which Sz is diagonal.
The eigenvalues of H are +��/2 and −��/2. These are the two possible values
of the energy, and the corresponding eigenvectors are of course those of Sz: �+� and �−�.
The energy-level scheme is given in Fig. 3.13 for � > 0, and the two levels are called
the Zeeman levels of a spin 1/2 in a magnetic field.
Let us assume that at time t = 0 the spin is found in the eigenstate �+� n̂�. We can

then ask the following question: what will the spin state be at a later time t? To answer
this question we need an additional postulate. This postulate, whose details will be made

24 In the end, the expression for the Hamiltonian will be justified by agreement with experiment.
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E+ = 1
2 hω

hω

E– =– 1
2 hω

Fig. 3.13. Spectrum of the Hamiltonian (3.62), or Zeeman levels of a spin 1/2 in a magnetic field.

more explicit in the following chapter, stipulates that the state vector �&�t�� at time t is
derived from the state vector at time t = 0, �&�t = 0��, as follows:

�&�t�� = exp
(
− iHt

�

)
�&�0��� (3.63)

This evolution law is particularly simple for eigenvectors ofH , which are called stationary
states:

�+�→ exp
(
− i�t

2

)
�+�� �−�→ exp

(
i�t
2

)
�−��

If �1� is an arbitrary state, the probability of finding a stationary state in �1� is independent
of time. For example, ∣∣∣
1∣∣∣ exp(− iHt

�

)∣∣∣+�∣∣∣2 = �
1�+��2�

Let us suppose that a spin points in the direction n̂ at time t = 0:

�&�0�� = cos
1
2
 exp�−i'/2��+�+ sin

1
2
 exp�i'/2��−��

At time t we have

�&�t�� = cos
1
2
 exp�−i�'+�t�/2��+�+ sin

1
2
 exp�i�'+�t�/2��−�� (3.64)

If at time t = 0 the spin points in a direction n̂ defined by the angles  and ', 
�S� =
1
2�n̂, at time t the spin will point in the direction � �'+�t�. The rotation is in the
counterclockwise sense for q < 0 and, of course, coincides with that of the classical spin.
The expectation value of the spin precesses about �B with the Larmor frequency.
The evolution law (3.64) allows us to introduce a relation between the energy spread

!E and the characteristic evolution time of a quantum system, which will be written in
the general form of a temporal Heisenberg inequality in Section 4.2.4. We rewrite (3.64)
using the notation c+ and c− for the components of �&�0�� in the basis (�+�� �−�):

c+ = cos
1
2
 exp�−i'/2�� c− = sin

1
2
 exp�i'/2��

and we define the frequencies �± as

�+ =
E+
�
=+1

2
�� �− =

E−
�
=−1

2
��
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so that for �&�t�� we have

�&�t�� = c+ exp�−i�+t��+�+ c− exp�−i�−t��−��

Let us calculate the probability of finding the state vector �&�t�� in an arbitrary state �1�:

�
1�&�t���2 = �c+�2�
1�+��2+�c−�2�
1�−��2

+2Re
[
c∗+c− exp�i��+−�−�t�
+�1�
1�−�

]
� (3.65)

The first two terms of (3.65) are independent of time and the third oscillates with frequency

�+−�− =
E+−E−

�
= !E

�
�

where !E is the energy spread. The energy of the system does not have a well-defined
value because the system evolves from one level to another in a characteristic time !t �
�/!E. We can express this as a relation between the energy spread and the characteristic
evolution time:

!E !t � �� (3.66)

This expression, which we shall write as an inequality using the more general method of
Section 4.2.4, is an example of a temporal Heisenberg inequality.

3.3 Exercises

3.3.1 Decomposition and recombination of polarizations

Figure 3.3 illustrates an experiment in which a birefringent plate decomposes a linear
polarization into polarizations in the Ox and Oy directions, with the two polarizations
corresponding to distinct light rays. This decomposition is followed by a recombination
of the two polarizations by a second plate which restores the initial polarization. In fact,
the scheme shown in Fig. 3.3 does not lead to the advertised result, because the indices
of refraction of the ordinary ray and the extraordinary ray are different, which leads to
a difference in the optical paths of the two rays. It is necessary to compensate for this
difference if we wish to recombine the two polarizations. We recall that the extraordinary
ray is always polarized in the plane containing the optical axis, while the ordinary ray is
polarized in the plane perpendicular to it. The two birefringent plates are assumed to be
identical; they are cut from calcite crystals and have thickness a.

1. The extraordinary ray in the calcite plate makes an angle �= 6�20o (0.1082 rad) to the normal.
The thickness of the plate is 10 mm and the ordinary and extraordinary indices are

nO = 1�65567� n′E = 1�55405�
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respectively.25 The incident light beam is produced by a helium–neon laser of wavelength

 = 632�8nm, and the beam diameter is 250 �m.26 Are the two rays well separated at the
exit of the first plate? What is the difference between the optical paths of the ordinary and
extraordinary rays?

2. We want to compensate for this difference in the optical paths, as well as for that induced by the
second plate, by inserting an intermediate calcite plate (a compensating plate) with optical axis
perpendicular to the plane of Fig. 3.14. In this plate ray x propagates like an ordinary ray and ray
y like an extraordinary ray with index nE = 1�48465. What thickness D must this intermediate
plate have if we wish to compensate for the difference of the optical paths so as to be able to
recombine the two polarizations at the exit of the second plate?

3. Show that a precision of 10−5 for the indices is sufficient for determining the thickness of the
compensating plate. Compare this with the precision required for the indices if we want to avoid
using a compensating plate and instead fix the thicknesses of the entrance and exit plates such
that the difference induced in the optical path by the two plates is an integer multiple of the
wavelength. In order to simplify the discussion, neglect the difference between n′E and nE in the
calculation of the error.

4. The apparatus is very sensitive to temperature variations owing to expansion of the calcite and
variation of the indices. In order to simplify the discussion, we shall limit ourselves to the effects
of variation of the indices, which are

�nO = 2�1×10−6 K−1� �nE = 11�9×10−6 K−1�

We assume that the compensation is perfect at a particular temperature T . Then what will be
the total difference in the optical paths (induced by the three plates) if the temperature varies by
1 degree? What will happen if a compensating plate is not used?

5. Now let the first plate have a thickness of 2 mm. Describe the polarization at the exit of this plate.

.

E

optical
axis

optical
axis

O αα

Fig. 3.14. Compensation of the phase shift by an intermediate plate. The optical axis of the
intermediate plate is perpendicular to the plane of the figure.

25 The value of n′E has been calculated using the ellipsoid of indices.
26 In fact, this diameter w�z� is not constant, but varies as

w�z�= w0

√
1+
( z

zR

)2
�

where zR � 0�31 m and w0 is the minimum diameter or waist of the beam. If the entire apparatus is about 10 cm long, this
variation in diameter is negligible if the waist is located at the center of the apparatus.
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3.3.2 Elliptical polarization

1. Determine the axes of the ellipse and the direction in which it is traced for a polarization
state (3.12):

�%� = 
�x�+��y�� �
�2+���2 = 1�

2. Show that the state �%⊥� (3.19) orthogonal to �%�,
�%⊥� = −�∗�x�+
∗�y��

is not transmitted by the linear polarizer of the (
��) polarizer.
3. Show that the physical properties of the �
��� polarizer are unchanged if a general parametriza-

tion with complex 
 and � is used:


= cos ei,x � �= sin  ei,y �

with ,= ,y−,x. Recover the expression for 
%.

3.3.3 Rotation operator for the photon spin

Prove (3.28). Hint: expand exp�−i .z� in a series. What is �.z�
2?

3.3.4 Other solutions of (3.45)

1. In the space of spin-1/2 states, the unitary matrix D�1/2�� �1� transforms the state �+� into the
state �+� n̂�, where the unit vector n̂ is given by n̂= �sin  cos1� sin  sin1� cos �. If the rotation
is performed about the z axis,  = 0 in (3.58) and

D�1/2�� = 0�1�= U =
(

e−i1/2 0
0 ei1/2

)
�

Discuss what action U has on the states �+� and �−�.
2. The operator U can be considered a change of basis in which an operator A is transformed

according to (2.18) into

A→ A′ = U†AU�

What are the transforms of x, y, and z?
3. The conditions (3.45) have the solution (1) �−�x = ' or (2) �−�x =−'. Show that in case

(1), x and y are given by

x =
(

0 e−i�x

e−i�x 0

)
� y =

(
0 −ie−i�x

ie−i�x 0

)
�

and that with reference to the standard solution (3.47) this solution corresponds to a simple
rotation of the axes about Oz.

4. Show that if we choose �−�x =−' the standard solution is

x =
(

0 1
1 0

)
� y =

(
0 i
−i 0

)
�

What is the interpretation of this result?
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3.3.5 Decomposition of a 2×2 matrix

1. We introduce the notation

̂0 = I� ̂i = i� i= 1�2�3�

Show that if a 2×2 matrix A satisfies Tr�̂iA�= 0∀i= 0� � � � �3, then A= 0.
2. Let us write a 2×2 matrix as

A= 
0I+
3∑

i=1


ii =
3∑

i=0


îi�

Show that


i =
1
2
Tr�Âi��

Show that any 2×2 matrix can always be written as

A=
3∑

i=0


îi�

What condition must the coefficients 
i obey when A is Hermitian, A= A†?

3.3.6 Exponentials of Pauli matrices and rotation operators

1. Show that

exp
(
−i

 

2
� · p̂

)
= I cos

 

2
− i�� · p̂� sin  

2
� (3.67)

where p̂ is a unit vector. Hint: calculate �� · p̂�2. The operator exp�−i � · p̂/2� is the rotation
operator U ��p̂� �� of an angle  around the p̂ axis. To see it, show that in order to rotate
the state �±� into �±� n̂�, as in (3.57), one can use as a rotation axis p̂ = �− sin'� cos'�0�.
Compare with (3.57) and show that exp�−i � · p̂/2��±� gives the correct result, up to an overall,
physically irrelevant, phase factor. Compute the operator U ��x� �� and give its explicit matrix
form.

2. Show that any 2×2 matrix U which is unitary and has unit determinant can be written in the
form in question 1 above. Hint: show that U has the form

(
a b

−b∗ a∗

)

and write a= a1+ ia2, b = b1+ ib2. Show that a1 = cos /2.
3. Find two 2×2 matrices A and B such that

eAeB = e�A+B� with �A�B� �= 0�
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3.3.7 The tensor �ijk

1. Prove the identity ∑
k

�ijk�lmk = �il�jm−�im�jl�

Use this identity to derive

�a× ��b×�c�= �a · �c��b− ��a · �b��c�
What is the result for ∑

jk

�ijk�ljk ?

2. The ith component of the curl of a vector �A can be written as

���× �A�i =
∑
i�j

�ijk2jAk�

with 2j = 2/2xj . Use the identity of question 1 to show that

��× ��× �A= ����� · �A�−�2 �A�

3.3.8 A 2� rotation of spin 1/2

Let us return to the neutron interferometer of Exercise 1.6.7, where the plane ABDC is
horizontal and  B is a Bragg angle. A variable phase shift & is obtained by having the
neutrons of beam I pass through a uniform constant magnetic field �B over a distance l,
where the magnetic field is perpendicular to the plane of the figure (Fig. 3.15).27 The
neutrons are assumed to be polarized parallel to the plane of the figure. Determine the
rotation angle of the neutron spin at the exit of the magnetic field as a function of l,
the (known) speed v of the neutron, and the neutron gyromagnetic ratio �n. Show that

B

θB

θB

θB

I

II

D1

D2

l

→

Fig. 3.15. Experimental demonstration of a 2� rotation of spin 1/2.

27 S. Werner, R. Colella, A. Overhauser, and C. Eagen, Observation of the phase shift of a neutron due to precession in a
magnetic field, Phys. Rev. Lett. 35, 1053–1055 (1975).
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the counting rates of the detectors D1 and D2 depend sinusoidally on B. Show that from
these oscillations we can deduce that the spin state vector is multiplied by −1 in a single
rotation by 2�.

3.3.9 Neutron scattering by a crystal: spin-1/2 nuclei

Let us revisit the experiment described in Exercise 1.6.4 on neutron diffraction by a
crystal, assuming that the atomic nuclei have spin 1/2 (some examples are 1H, 13C, 19F,
and so on). We shall limit ourselves at first (questions 1 and 2) to the case where the
neutrons have spin up (↑) and the nuclei have spin down (↓): the neutrons and nuclei are
polarized. Under these conditions there are two possible scattering amplitudes, because
it can be shown (Chapter 12) that the z component of the total spin is conserved in the
neutron–nucleus scattering. These two amplitudes are

• The amplitude fa where the scattering occurs without change of the spin state:

neutron ↑ + nucleus ↓ → neutron ↑ + nucleus ↓ �

• The amplitude fb where the scattering occurs with spin flip:

neutron ↑ + nucleus ↓ → neutron ↓ + nucleus ↑ �

1. Show that in the first case we obtain the same results as in scattering without spin.
2. Show that in the second case there are no diffraction peaks as the scattering probability is

independent of �q.
3. In general, nuclei are not polarized, and so they have one chance in two of having spin up

and one chance in two of having spin down. It becomes necessary to take into account a third
amplitude fc corresponding to the scattering

neutron ↑ + nucleus ↑ → neutron ↑ + nucleus ↑ �

Following the method used in Exercise 1.6.8, we introduce a number �i that takes the value 0 if
the nucleus i has spin up and the value 1 if it has spin down. The ensemble of (�i) characterizes
a spin configuration of the crystal. Show that the amplitude for neutron scattering by the crystal
in the configuration (�i) is∑

i

��ifa+ �1−�i�fc� e
i�q·�ri +∑

i

�ifbe
i�q·�ri �

What would the intensity be if the configuration (�i) were fixed? Care must be taken to add
the probabilities for different final states. In addition, it is necessary to use the average over
different crystal configurations, with the spin of each nucleus assumed to be independent of the
other spins. If 
•� denotes the average over configurations, show that


�i�j� =
1
4
+ 1

4
�ij �

Show that the scattering probability is proportional to

� = 1
4
�fa+fc�

2
∑
i�j

ei�q·��ri−�rj �+ �

4
��fa−fc�

2+2f 2
b ��
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where � is the number of nuclei. In reality, the three amplitudes fa, fb, and fc are not
independent. In Exercise 12.5.5 we shall see that

−fa =
1
2
�at+as�� −fb =

1
2
�at−as�� −fc = at�

where at and as are the scattering lengths in the triplet and singlet states.
4. What happens if the neutrons are not polarized, as is usually the case in practice?

3.4 Further reading

The polarization of light and its propagation in anisotropic media are explained in detail
in, for example, E. Hecht, Optics, New York: Addison-Wesley (1987), Chapter 8. As
a complement to the discussion of photon polarization, one can consult Lévy-Leblond
and Balibar [1990], Chapter 4, or G. Baym, Lectures on Quantum Mechanics, Reading:
Benjamin (1969), Chapter 1. A recent journal article on quantum cryptography with
numerous references to previous studies is the review by N. Gisin, G. Ribordy, W. Tittel,
and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002); a popularized
account of quantum cryptography can be found in C. Bennett, G. Brassard, and A. Ekert,
Quantum cryptography, Scientific American, 26 (October 1992). The Stern–Gerlach exper-
iment is discussed by Feynman et al. [1965], vol. III, Chapter 5; by Cohen-Tannoudji
et al. [1977], Chapter IV; and by Peres [1993], Chapter 1.
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Postulates of quantum physics

In this chapter we shall present the basic postulates of quantum physics, generalizing the
results obtained in the preceding chapter for the two special cases of photon polarization
and spin 1/2. In general, the space of states will a priori have any dimension N , which
may even be infinite, rather than only two dimensions. The postulates which we present
in this chapter fix the general conceptual framework of quantum mechanics and do not
directly provide the tools necessary for solving specific problems. The solution of a
specific physical problem always involves a modeling stage, where the system to be
studied is simplified, the approximations to be used are defined, and so on, and this
modeling stage inevitably rests on more or less heuristic arguments which cannot be
derived within the general framework of quantum physics.1 In Section 3.2.5 we gave an
example of a heuristic procedure leading to the solution of a specific problem, that of the
motion of a spin 1/2 in a magnetic field.
Other sets of postulates can be used. For example, another approach is to state the

postulates of quantum mechanics in terms of path integrals.2 As is often the case, the
same physical theory can be dressed in various different mathematical clothes. Finally, it
should be emphasized that the postulates of quantum physics give rise to some difficult
epistemological problems which are still largely under debate and which we do not discuss
in this book. The interested reader may consult, for example, the book by Isham [1995].

4.1 State vectors and physical properties

4.1.1 The superposition principle

In Chapter 3 we learned how to characterize the polarization state of a photon or of a
spin-1/2 particle by means of a vector belonging to a complex Hilbert space, the space of
states. Postulate I generalizes the ideas of state vector and space of states to any quantum
system.

1 This procedure does not differ fundamentally from that followed in classical physics. For example, the three laws of Newton
fix the conceptual framework of classical mechanics, but the solution of a specific problem always requires some modeling:
simplification of the posed problem, approximations for the forces, and so on.

2 See, for example, L. S. Schulman, Techniques and Applications of Path Integration, New York: Wiley (1981).

96
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Postulate I: the space of states

The properties of a quantum system are completely defined by specification of its state
vector ���, which fixes the mathematical representation of the physical state of the
system.3 The state vector is an element of a complex Hilbert space � called the space
of states. It will be convenient to choose ��� to be normalized that is, to have unit norm:
�����2 = 
���� = 1.
The fact that a physical state is represented by a vector implies, under certain conditions,

the superposition principle characteristic of the linearity of the theory: if ��� and �&� are
vectors of � representing physical states, the normalized vector

�1� = 
���+��&�
��
���+��&��� � (4.1)

where 
 and � are complex numbers, is a vector of � and also represents a physical
state.
In the preceding chapter we defined probability amplitudes as scalar products of vectors

belonging to the space of states. For example, if ��� represents the state of a photon linearly
polarized in the Ox direction, ��� = �x�, and �&� the state of a photon linearly polarized in
the n̂ direction (3.3), �&� = � �, the probability amplitude a�x→  �= 
 �x� = cos . We
also showed that the squared modulus of this amplitude possesses a remarkable physical
interpretation: if we test the polarization by having the photon �x� pass through a linear
analyzer oriented in the n̂ direction, we obtain the transmission probability

p�x→  �= �a�x→  ��2 = �
 �x��2 = cos2  �

which is the probability for the photon in the state �x� to pass the � � test. We shall
generalize the ideas of probability amplitude and testing as postulate II.

Postulate II: probability amplitudes and probabilities

If ��� is the vector representing the state of a system and if �&� represents another physical
state, there exists a probability amplitude a��→ &� of finding ��� in state �&�, which is
given by a scalar product on � : a��→ &� = 
&���. The probability p��→ &� for the
state ��� to pass the �&� test is obtained by taking the squared modulus �
&����2 of this
amplitude:4

p��→ &�= �a��→ &��2 = �
&����2 � (4.2)

This postulate is often called the Born rule.

3 The viewpoint of the present author is that the state vector describes the physical reality of an individual quantum system.
This point of view is far from universally shared, and the reader can easily find other interpretations, for example: “the
state vector describes the available information on a quantum system,” or “the state vector is not a property of an individual
physical system, but simply a protocol for preparing a set of such states,” or even “quantum mechanics is a set of rules which
allow the probability of an experimental result to be calculated.” This diversity of viewpoints has no effect on the practical
application of quantum mechanics.

4 To make the order of the factors correspond to that of the scalar product, it is sometimes useful to denote probability
amplitudes as a�& ← �� and probabilities as p�& ← ��. We also note that although (4.2) is not intuitive, it is at least
consistent: the probability of finding a state in itself is unity, and according to the Schwarz inequality 0 ≤ �
&����2 ≤ 1.
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Let us add a few remarks to complete our statement of the first two postulates.

• Unless the contrary is explicitly stated, we assume that state vectors have unit norm. If this is
not the case, care must be taken to divide by the norm. For example, Eq. (4.2) becomes

p��→ &�= �
&����2
��&��2�����2 �

• The vectors ��� and ��′� = exp�i����� represent the same physical state. Actually, we know
only how to measure probabilities, and

�
&����2 = �
&��′��2 ∀ �&� ∈� �

It is therefore impossible to distinguish between ��� and ��′�, which differ by a phase factor.
To be rigorous, a physical state is represented by a ray, or a vector up to a phase, in the Hilbert
space. However, the superposition 
���+��&� represents a physical state that is different from

��′�+��&�. The answer to the question “Which are the arbitrary phases and which are the
physically relevant ones?” may be tricky in some cases.

• We limit ourselves to physical systems called pure states, where there is maximal information
about the physical state. In cases where the available information is incomplete, we must resort
to the state (or density) operator formalism, which will be described in Section 6.2.

• We have taken great care to use the term “quantum system” rather than “quantum particle,”
which is a special case of the former. In fact, we shall see in Chapter 6 that for a system of
two or more particles it is in general impossible to attribute an individual state vector to each
particle; a state vector can be associated only with the ensemble of particles, that is, with the
whole quantum system. This point will be developed and illustrated in Section 6.3.

• There exist restrictions on the superposition principle called “superselection rules”,5 which we
shall not consider in this book.

4.1.2 Physical properties and measurement

In Chapter 3 we showed that the physical property “spin component along the n̂ axis” can
be put into correspondence with a Hermitian operator �S · n̂ acting in the space of states.
Postulate III generalizes this result to any physical property.

Postulate III: physical properties and operators

With every physical property  (energy, position, momentum, angular momentum, and
so on) there exists an associated Hermitian operator A which acts in the space of states
� : A fixes the mathematical representation of .

5 It is generally agreed that a state of spin 1/2, �&�1/2, and a state of spin 1, ���1, cannot be superposed. This impossibility is an
example of a superselection rule. As we have seen in Chapter 3 (and this observation will be generalized in Chapter 10), the
state vector of a spin-1/2 particle is multiplied by −1 in a rotation by 2�, while that of a spin-1 particle is multiplied by +1. In
a rotation by 2� which takes the system back to its original situation, if the state vector is of the form �1� = 
���1+��&�1/2 it
is transformed by a 2� rotation into �1′� = 
���1−��&�1/2 �= �1�. In contrast, the fact that �&�1/2 is transformed into −�&�1/2
does not present any problem, because the two vectors differ by only a phase factor. Another example is the superselection
rule on the mass in the case of Galilean invariance. For a critical view of superselection rules, see Weinberg [1995], Chapter 2.
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To simplify our discussion, let us start by considering a physical property represented
by a Hermitian operator A whose eigenvalues an are nondegenerate: A�n� = an�n�. We
can then write down the spectral decomposition

A=∑
n

�n�an
n��

If the quantum system is in a state ��� ≡ �n�, the value of the operator A in this state is
an, that is, the physical property  takes the exact numerical value an. If ��� is not an
eigenstate (or eigenvector) of A, we know from postulate II that the probability pn≡ p�an�

of finding ��� in �n�, and therefore of measuring the value an of , is pn = �
n����2.
To determine if the quantum system is in the state �n�, n= 1� � � � �N , we can imagine a
generalization of the Stern–Gerlach experiment with N exit channels instead of the two
channels �+� and �−�, with a detector associated with each channel. Let us carry out a
series of tests on a set of quantum systems that are all in the state ���. It is said that
these systems have been prepared in the state ���; we have already encountered the idea
of preparing a quantum system in the case of photon polarization, and we shall return to
it again below. If the number of tests � is very large, one can obtain experimentally an
accurate estimate of the expectation value of the physical property  in the state ���,
denoted 
A��:


A�� = lim
�→�

1
�

�∑
p=1

p� (4.3)

wherep is the result of the pth measurement. This result varies from one test to another,
but it always takes one of the eigenvalues an. The expectation value is given as a function
of A and ��� by


A�� =
∑
n

pnan =
∑
n


��n�an
n��� = 
��A����

We have already encountered a special case of this relation in (3.38). It is not difficult to
generalize to the case of degenerate eigenvalues. If the system is in some state ���, we
can decompose ��� on the basis formed by the eigenvectors of A using the completeness
relation (2.30)

��� =∑
n�r

�n� r�
n� r��� =∑
n�r

cnr �n� r��

To find the probability p�an� of observing the eigenvalue an, we now need to sum all the
probabilities of finding ��� in any state �n� r� over the index r with n fixed:

p�an� =
∑
r

�cnr �2 =
∑
r


��n� r�
n� r���

= 
��
n���� (4.4)

where 
n is the projector on the subspace of the eigenvalue an (cf. (2.29)):


n =
∑
r

�n� r�
n� r�� (4.5)
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As above, by carrying out a large number of measurements on quantum systems pre-
pared under identical conditions, we can obtain the expectation value 
A�� of  in the
state ���:


A�� =
∑
n

anp�an�=
∑
n�r


��n� r�an 
n� r����

and then, using (2.31), we find


A�� = 
��A��� � (4.6)

which generalizes the preceding result. The operators representing physical properties are
often called “observables” in the literature. We shall avoid this terminology, as it does
not seem to provide further insight into quantum physics.6

The simplest Hermitian operator is the projector on a vector of � , and subjecting
a quantum system to a �&� test is equivalent to measuring the projector 
& = �&�
&�,
with result 1 if the system passes the �&� test and 0 if it fails. Viewing the spectral
decomposition of a Hermitian operator as the sum of projectors, we see that the ideas
of testing and measuring a physical property are closely related. We shall emphasize
the measurement aspect if we are interested in the eigenvalues of A, and the test aspect
if we are interested in the probability of finding the system in an eigenstate of A.7

Let us illustrate this using the Stern–Gerlach experiment of Section 3.2.2. In the spin-
measurement interpretation the Stern–Gerlach apparatus measures the z component of the
spin from the upward or downward deflection of the beam of silver atoms; detection of
an atom on the screen at the exit of the device makes it possible to distinguish between
the values +�/2 and −�/2 of the physical property �z, the spin component on the Oz

axis. Equivalently, we can say that we have subjected the atoms to �+� and �−� tests.
The probability of upward (downward) deflection is �
+����2 (�
−����2).

However, the measurements, or tests, described in Section 3.2.2 have a major drawback:
the measurement is not complete until the atoms are absorbed by the screen, and then
they are no longer available for further experiments. In an ideal measurement (or ideal
test) it is assumed that the physical system is not destroyed by the measurement.8 From
postulate II, if before the measurement of  the state vector is ��� = ∑n cn�n�, the
probability that the system after the measurement will be in the state �n� is �cn�2. It is

6 This terminology goes back to a seminal article of Heisenberg containing the following statement: “The present paper seeks
to establish a basis for theoretical quantum mechanics founded exclusively upon relationships between quantities which are
in principle observable.” Limiting ourselves to this approach is somewhat restrictive, and Heisenberg himself did not follow
it in practice!

7 We can view the photon polarization test in, for example, the basis (�x�� �y�) as a measurement by introducing the physical
property x represented by the operator

Ax = �x�
x�− �y�
y��
which takes the value +1 if the photon is polarized in the Ox direction and −1 if it is polarized in the Oy direction.

8 If the same ideal measurement could be repeated a number of times, one would have a “quantum nondemolition (QND)
measurement.” See, for example, C. Caves et al., On the measurement of a weak classical force coupled to a quantum
mechanical oscillator, Rev. Mod. Phys. 52, 341–392 (1980) or V. Braginsky, Y. Vorontsov, and K. Thorne, Quantum
non-demolition measurements, Science 209, 547–557 (1980).
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possible to think up a way to perform an ideal measurement9 of the spin (but completely
beyond present technology!) using a Stern–Gerlach filter modified in the spirit of the
apparatus described in Section 1.1.4. Taking as our starting point the filter of Fig. 3.8, the
atom entering the filter is illuminated by a suitable laser beam so as to induce a transition
to one of its excited levels. When the two trajectories inside the filter are maximally
separated, they pass through two different resonant cavities in which the atom returns to
its ground state by emitting a photon with near 100% probability (Fig. 4.1). This photon
is detected in one of the two cavities, and it is thus possible to tag the trajectory inside
the filter without disturbing whatever spin state it is in, assuming that the transition is
of the electric dipole kind. Such a measurement involves a profound modification in the
description of the spin state. Assume, for example, that the spin state at the entrance to
the filter is the eigenstate �+� x̂� of Sx. When no measurement is made the coherence
of the two trajectories will be preserved, and they can be recombined at the exit of the
filter to reconstruct the state �+� x̂�. The filter contains a coherent superposition of the
eigenstates of Sz, �+� and �−�, with amplitude 1/

√
2:

�+� x̂� = 1√
2

(�+�+ �−�)�
In contrast, when a measurement is made, the spin is projected onto one of the states �+�
or �−� with 50% probability, and it is impossible to go backward and reconstruct the state
�+� x̂�. Later on we shall return to this point of the irreversible nature of a measurement.
As we shall see in more detail in Chapter 6 and Appendix B, the measurement has
transformed the coherent superposition �+� x̂� into a classical statistical ensemble of 50%
spins up and 50% spins down, but an experiment performed on an individual atom always
gives a unique result.
If a measurement of �z has given the result +�/2 and if this measurement is repeated,

the result will always be +�/2: immediately after a measurement of �z that has given

laser

N

S

S

N

N

S

z

C1

C2

⎟ +〉

⎟ –〉

Fig. 4.1. An ideal measurement of the spin.

9 Another thought experiment has been suggested by M. Scully, B. Englert, and J. Schwinger, Spin coherence and
Humpty-Dumpty III. The effect of observation, Phys. Rev. A 40, 1775–1784 (1989).
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the result +�/2, the spin is in the state �+�. In general, a quantum system that passes the
�&� test will be found in the state �&� immediately after the test:

���→ 
& ���
��
& �����

�

The system has undergone an irreversible evolution which has projected it onto the state
�&�. The general statement is the contents of a supplementary postulate called wave-
function collapse (WFC), which complements postulate II.

The WFC postulate

If a system is initially in a state ���, and if the result of an ideal measurement of  is
an, then immediately after this measurement the system is in the state projected on the
subspace of the eigenvalue an:

���→ �1� = 
n���
�
��
n����1/2

� (4.7)

The vector �1� in (4.7) is normalized because

��
n�����2 = 
��
†
n
n��� = 
��
n���

owing to the properties of projectors. The WFC postulate presupposes that the measure-
ment is ideal, that is, nondestructive, so that the tests can be repeated. From a purely
pragmatic viewpoint, this postulate is only interesting if at least two consecutive mea-
surements are made. Above we have given the example of an ideal measurement of the
spin of a silver atom (Fig. 4.1). At the exit of the filter we know the spin state of the
atom, which is now available for further tests. A repetition of the measurement of �z will
again give +�/2 for atoms that have emitted a photon in C1 and −�/2 for those that have
emitted a photon in C2. It should be noted that an ideal measurement is rarely possible
in practice. In general, detection destroys the system under observation.10 An example
which we have already mentioned is that of the detection of a photon by a photomultiplier
Dx or Dy in Fig. 3.2. Another example of a nonideal measurement is the determination
of the momentum of a particle in an elastic collision with a second particle of known
momentum using energy–momentum conservation. After the collision the first particle is
no longer in the momentum state that was measured. The concept of ideal measurement
is convenient for the discussion of measurement in quantum physics, but in practice ideal
measurement is the exception and not the rule.
The point of view underlying the WFC postulate originates in the standard, or “ortho-

dox” interpretation of quantum mechanics. In this viewpoint the measurement apparatus
acts as a classical object and one does not worry about the details of the measurement
procedure, which occurs in a sort of “black box.” The only relevant thing is the result,
which is read from a classical measurement such as the position of a needle on a meter. In

10 It is now known how to make nondestructive measurements on a photon; see G. Nogues et al., Seeing a single photon
without observing it, Nature 400, 239–242 (1999).
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Section 6.4.1 and Appendix B we shall return to the topic of measurement procedure in
quantum mechanics and try to go beyond this viewpoint. A complete analysis of the mea-
surement procedure including the quantum interactions with the two devices performing
consecutive measurements, as well as the interactions with the environment, shows that
theWFC postulate is a consequence of postulate II and of the time evolution postulate IV
stated below in Eq. (4.11), and is thus not independent of the other postulates. However,
the standard viewpoint is perfectly operational in all current applications of quantum
mechanics, and from now on we shall use it without further comment.
When we try to completely determine the state vector ��� of a physical system, it can

happen that an ideal measurement of a physical property  gives the result a, where the
eigenvalue a of A is nondegenerate. Immediately after the measurement the state vector
is then the eigenvector �a� of A. If the eigenvalue is degenerate, it is necessary to find a
second physical property � compatible with : �A�B�= 0. In this case it is possible that
the known eigenvalues a and b completely specify the state vector. If this is not yet so, it
is necessary to find a third physical property � compatible with and�, and so on. When
the known eigenvalues (a� b� c � � �) of the compatible operators (A�B�C � � �) entirely
specify the state vector we say, following the terminology introduced in Section 2.3.3, that
these operators (or the physical properties which they represent) form a complete set of
compatible operators (or compatible physical properties). The simultaneous measurement
of the complete set of compatible physical properties (���� � � �) constitutes a maximal
test of a state vector. If the space of states has dimension N , the maximal test must have
N different mutually exclusive outcomes. When an ideal maximal test has been carried
out on a quantum system the state vector of the latter is known exactly, and in this way
the quantum system has been prepared in a determined state. The stage corresponding to
preparation of the system has been completed. However, the preparation stage need not
(and in general does not) involve a measurement: for example, the left filter of Fig. 3.10
prepares the spin in the �+� state without measuring it.
To illustrate these ideas, let us suppose that two known eigenvalues ar and bs of two

compatible operators A and B completely specify a vector �r� s� of � :

A�r� s� = ar �r� s�� B�r� s� = bs�r� s��

The simultaneous measurement of the physical properties  and � is then a maximal
test and the N possible results are labeled by the set �r� s�. An example of a device
that performs a maximal test is the Stern–Gerlach apparatus of Fig. 3.7. This apparatus
separates the spin states �+� and �−�, giving two different spots on the screen because
the space of states has dimension 2: N = 2. In the general case, the measurement of 
and � allows the system to be prepared in the state �r� s� by selecting the systems that
have given the result �ar� bs�. If the selected quantum systems in the state �r� s� are again
subjected to simultaneous measurement of  and �, the result of this new measurement
will be �ar� bs� with 100% probability. When a physical system is described by a state
vector, there must exist, at least in principle, a maximal test one of whose possible results
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has 100% probability. For a spin 1/2 in the state �+�, one such maximal test is that
performed using a Stern–Gerlach apparatus with magnetic field in the Oz direction.
It is also instructive to study the case of a physical property which is compatible with

� and � , �A�B�= �A�C�= 0, while � and � are incompatible: �B�C� �= 0. In this case
the result of a measurement of depends on whether � or � is measured simultaneously.
This property is called contextuality, and an example of it will be given in Section 6.3.3.
By now the reader will have realized that measurement in quantum physics is fun-

damentally different from that in classical physics. In classical physics, a measurement
reveals a pre-existing property of the physical system that is tested. If a car is driving at
180 km h−1 on the highway, the measurement of its speed by radar determines a property
that exists prior to the measurement, which gives the police the legitimacy to give a ticket
to the driver. On the contrary, the measurement of the �x component of a spin-1/2 particle
in the state �+� does not reveal a value of �x existing before the measurement. The spread
in the results of measuring �x in this case is sometimes attributed to “uncontrollable
perturbation of the spin due to the measurement process,” but the value of �x does not
exist before the measurement, and that which does not exist cannot be perturbed. We
shall return to this point in Section 6.4.1.

4.1.3 Heisenberg inequalities II

In the preceding chapter we introduced the idea of incompatible physical properties. We
shall now discuss this idea and its consequences for measurement in a more quantitative
way. Two physical properties  and � are incompatible if the commutator of the
operators A and B representing them is nonzero: �A�B� �= 0. Let us assume that the first
measurement of A has given the result a and has projected the initial state vector onto
the eigenvector �a� of A � A�a� = a�a�. If � is measured immediately after , in general
the vector �a� will not be an eigenvector of B and the result of the measurement will only
be known with a certain probability. For example, if b is a nondegenerate eigenvalue
of B corresponding to eigenvector �b�, B�b� = b�b�, then the probability of measuring b

will be p�a→ b� = �
b�a��2. In general, it will not be possible to find states for which
the values of  and � are both known exactly. Let us derive an important result on the
dispersion (or standard deviation) of measurements performed starting from an arbitrary
initial state ���. It is convenient to define the dispersions !�A and !�B in the state ���
as

�!�A�
2 = 
A2��− �
A���2 = 
�A−
A��I�2���

�!�B�
2 = 
B2��− �
B���2 = 
�B−
B��I�2��� (4.8)

The commutator of A and B is of the form iC, where C is a Hermitian operator because

�A�B�† = �B†�A†�= �B�A�=−�A�B��

We can then write

�A�B�= iC� C = C†� (4.9)
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Let us define the Hermitian operators of zero expectation value (a priori specific to the
state ���):

A0 = A−
A��I� B0 = B−
B��I�
Their commutator is also iC, �A0�B0� = iC, because 
A�� and 
B�� are numbers. The
squared norm of the vector

�A0+ i
B0�����
where 
 is chosen to be real, must be positive:

���A0+ i
B0������2 = ��A0�����2+ i

��A0B0���− i

��B0A0���+
2��B0�����2
= 
A2

0��−

C��+
2
B2
0�� ≥ 0�

The second-degree polynomial in 
 must be positive for any 
, which implies


C�2�−4
A2
0��
B2

0�� ≤ 0�

This demonstrates the Heisenberg inequality

�!�A� �!�B�≥
1
2

∣∣
C��∣∣ � (4.10)

This is the desired relation constraining the dispersions in the measurements of  and
�: the product of the dispersions in the measurements is greater than or equal to half
the modulus of the expectation value of the commutator of A and B. It is easy to show
(Exercise 4.4.1) that a necessary and sufficient condition for !�A = 0 is that ��� be
an eigenvector of A. In a vector space of finite dimension we then have 
C�� = 0.
It is important to stress the correct interpretation of (4.10): when, as in (4.3), a large
number � of measurements of  are performed on systems all prepared in the same
state ���, and similarly for � and � , we can obtain accurate experimental estimates for
the dispersions !�A and !�B as well as the expectation value 
C��, which then obey
(4.10). We emphasize that , �, and � are of course measured in different experiments:
they cannot be measured simultaneously if A, B, and C do not commute. Furthermore,
!�A and !�B are in no way related to errors of measurement. If, for example, �A is
the experimental resolution for the measurement of , we must have �A	 !�A for an
accurate determination of the dispersion. The error on 
A� is governed by the experimental
resolution, and not at all by !�A, and 
A�� may be determined with an accuracy much
better than !�A.

4.2 Time evolution

4.2.1 The evolution equation

So far we have considered a physical system at a certain instant of time, or during the
time interval necessary to perform the measurement, which is assumed to be very short.



106 Postulates of quantum physics

We shall now take into account the time evolution of the state vector, which will be
written as explicitly dependent on the time t: ���t��.

Postulate IV: the evolution equation

The time evolution of the state vector ���t�� of a quantum system is governed by the
evolution equation

i�
d���t��

dt
=H�t����t�� � (4.11)

The Hermitian operator H�t� is called the Hamiltonian.
Let us be precise on the conditions under which Eq. (4.11) applies. It holds for a closed

quantum system, and this statement should be understood as follows: the quantum system
under consideration must not be part of a larger quantum system, a situation dealt with
at length in Chapter 15. However, (4.11) is valid if the quantum system interacts with a
classical system, which means that it is not necessarily isolated. It is valid, for example, in
the case of a spin 1/2 submitted to a time-dependent magnetic field (Section 5.2), or for a
two-level atom submitted to a classical electromagnetic field (Sections 14.3.1 to 14.3.3),
but not for an atom interacting with a quantized electromagnetic field (Section 14.4).
In the latter case, the time evolution of the state vector (or more accurately of the state
operator) of the atom is not governed by a Hamiltonian. A Hamiltonian evolution holds
only for the atom + field system.

The operator H has the dimensions of energy, and we do identify H later on as the Her-
mitian operator representing the physical property of energy (Eq. (4.23)). Equation (4.11)
is of first order in time, and the evolution is deterministic: given an initial condition
���t0�� for the state vector at time t = t0, the evolution (4.11) determines ���t�� at any
later time t > t0, provided of course that the Hamiltonian is known. In fact, the restriction
to t > t0 is unnecessary: the evolution (4.11) is reversible and we can perfectly well go
backwards in time. A schematic view of a typical experiment is given in Fig. 4.2. The
system is prepared at time t = t0 by an ideal measurement of an ensemble of compati-
ble physical properties, which determines the state vector ���t0��. The state vector then
evolves until time t according to (4.11), and a second measurement of one or a set of
physical properties (either the same ones as in the first measurement, or different ones)

U (t, t0)

preparation t0

measurement
of A

measurement
of B

measurement t

|ϕ〉
|ψ〉

|ϕ (t)〉
|ϕ (t0)〉 = |n〉

Fig. 4.2. Preparation and measurement. Measurement of  at time t0 gives the result an. The state
vector evolves between t0 and t as ���t�� = U�t� t0����t0� (4.14). Then � is measured at time t.
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is made at time t. Note that the duration of the measurements is assumed to be very short
with respect to the characteristic evolution time of the Schrödinger equation. This second
measurement permits the complete or partial determination of ���t�� from which we may
infer, for example, the properties of H . For (4.11) to hold between the two measurements
it is of course necessary that the quantum system be closed, as defined above, during the
corresponding time interval.
The (necessary) conservation of the norm of the state vector is assured by the Her-

miticity of H . We have

d

dt
����t���2 = d

dt

��t����t��

= 
��t��
( 1
i�

H
)†���t��+
��t��( 1

i�
H
)
���t��

= 1
i�

��t���H−H†����t�� = 0 (4.12)

because H =H†. If ���t�� is decomposed on a basis �n� r�
���t�� =∑

n�r

�n� r�
n� r���t�� =∑
n�r

cnr�t��n� r��

the components cnr�t� satisfy

d
dt

(∑
n�r

�cnr�t��2
)
= d

dt

(∑
n

p�an� t�
)
= 0�

The sum of the probabilities p�an� t� must always be unity.
The matrix form of the evolution equation (4.11) is obtained in an arbitrary basis (���)

of � by multiplying (4.11) on the left by 
�� and using the completeness relation:

i�
d
dt

����t�� = 
��H�t����t�� =∑

�


��H�t����
����t���

which gives

i�ċ��t�=
∑
�

H���t� c��t�� (4.13)

We have emphasized the reversible and unitary nature of the evolution (4.11). This should
be contrasted with the nature of the evolution in a measurement, which is nonunitary
and irreversible. The projection of the initial state vector on the eigenvector of the
measured physical property is not unitary – the norm is not conserved, and the result

n��� of the projection (cf. the denominator in (4.7)) must be normalized. Moreover, it
is impossible to reconstruct the initial state vector once the measurement has been made.
From the orthodox point of view this implies that there are two types of evolution: one
reversible (4.11) and one irreversible (4.7). This is not a very satisfying state of affairs,
and we shall examine this problem in Appendix B.
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4.2.2 The evolution operator

In (4.11) we gave the differential form of the evolution equation. There exists an integral
formulation of this equation involving the evolution operator U�t� t0�. In this formulation
postulate IV becomes the following.

Postulate IV ′: the evolution operator

The state vector ���t�� at time t is derived from the state vector ���t0�� at time t0 by
applying a unitary operator U�t� t0�, called the evolution operator:

���t�� = U�t� t0����t0�� � (4.14)

The unitarity of U , U†U = UU† = I , ensures conservation of the norm (4.12):


��t����t�� = 
��t0��U†�t� t0�U�t� t0����t0�� = 
��t0����t0�� = 1�

Inversely, we can start from conservation of the norm and show that U†U = I . In a vector
space of finite dimension this is sufficient to ensure that UU† = I (cf. Section 2.2.1), but
this is not necessarily true in a space of infinite dimension. The evolution operator also
satisfies the group property:

U�t� t1�U�t1� t0�= U�t� t0�� t0 ≤ t1 ≤ t� (4.15)

In effect, going directly from t0 to t is equivalent to going first from t0 to t1 and then
from t1 to t:

���t�� = U�t� t0����t0��
= U�t� t1����t1�� = U�t� t1�U�t1� t0����t0���

As before, the restriction t0 < t1 < t is unnecessary: t1 can take any value. Obviously
U�t0� t0�= I , and the group property together with the unitarity of U implies

U�t� t0�= U−1�t0� t�= U†�t0� t�� (4.16)

Of course, the temporal evolution postulates IV and IV′ are not independent. In fact, it
is easy to write down a differential equation for U�t� t0� starting from (4.11). Differenti-
ating (4.14) with respect to time

i�
d
dt
���t�� = i�

[
d
dt

U�t� t0�

]
���t0��

and comparing the result with (4.11), we obtain

i�
[
d
dt

U�t� t0�

]
���t0�� =H�t�U�t� t0����t0���
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Since this equation must hold for any ���t0��, we can derive from it a differential equation
for U�t� t0�:

i�
d
dt

U�t� t0�=H�t�U�t� t0� � (4.17)

which leads to

H�t0�= i�
d
dt

U�t� t0�
∣∣∣
t=t0

(4.18)

by taking the limit t→ t0. Then it is easy to pass from the integral formulation (4.14)
to the differential formulation (4.11). The reverse is more complicated. If H�t� were a
number, it would be possible to integrate (4.17) immediately; however, H�t� is an operator
and in general

U�t� t0� �= exp
(
− i

�

∫ t

t0

H�t′�dt′
)
� (4.19)

because there is no reason to have �H�t′��H�t′′�� = 0. However, there exists a general
expression11 for calculating U�t� t0� from H�t�, and postulates IV and IV′ are strictly
equivalent.12

4.2.3 Stationary states

A very important special case is that of a system that is isolated from any kind of
environment, be it quantum or classical. The evolution operator of such a system cannot
depend on the choice of time origin – it is of no importance if we choose to describe
a system isolated from all external influences using the time of London or that of New
York, which, as is well known, differ by � = 5 hours:

tNewYork = tLondon− ��

Whatever � is, we must have

U�t− �� t0− ��= U�t� t0�� (4.20)

This implies that U can only depend on the difference �t− t0�. Equation (4.18) then shows
that the Hamiltonian is independent of time, because the choice of t0 is arbitrary. Naturally,
it can perfectly well happen that the Hamiltonian is independent of time even for a system
that is not isolated, for example, if the system is exposed to a time-independent magnetic
field like the spin-1/2 particle of Section 3.2.5. On the other hand, if a magnetic field is
switched on between 12:00 and 12:10 London time, the choice of time origin will matter!

11 See, for example, Messiah [1999], Chapter XVII.
12 To be completely accurate, it is possible to find exceptions where U is defined but H is not; see Peres [1993], 85.
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Since the Hamiltonian is independent of time, the differential equation (4.17) can easily
be integrated and we find

U�t� t0�= exp
(
− i�t− t0�

�
H

)
� (4.21)

which depends only on �t− t0�.
The operator U�t− t0� (4.21) is obtained by exponentiating the Hermitian operator

H ; U�t− t0� performs a time-translation �t− t0� on the state vector, and if �t− t0� is
infinitesimal

U�t− t0�� I− i�t− t0�

�
H� (4.22)

This equation can be interpreted as follows: H is the infinitesimal generator of time-
translations, and, for an isolated system, the most general definition of the Hamiltonian is
precisely that of an infinitesimal time-translation generator. The concept of infinitesimal
generator will be extended to other transformations in Chapter 8.
Let us consider an isolated physical system which can to a good approximation be

described by a state vector of a Hilbert space of dimension 1. This might be a stable
elementary particle, an atom in its ground state, and so on. The state vector is a complex
number ��t� and H is a real number, H = E. The evolution law (4.13) becomes, taking
into account (4.20),

��t�= exp
(
− i

�
E�t− t0�

)
��t0�= exp�−i��t− t0����t0�� (4.23)

where we have defined E = ��. According to the Planck–Einstein relation E = ��, it is
natural to identify E as the energy.
Now let us consider a less trivial case. Let �n� r� be an eigenvector of H corresponding

to the eigenvalue En: H�n� r� = En�n� r�. Its time evolution is particularly simple. If
���t0�� = �n� r�, then

���t�� = exp
(
− i�t− t0�

�
H

)
�n� r� = exp

(
− i

�
En�t− t0�

)
�n� r�� (4.24)

The probability of finding ���t�� in any state �&� is independent of time:

�
&���t���2 =
∣∣∣
&� exp(− i

�
En�t− t0�

)
���t0��

∣∣∣2 = �
&���t0���2�

For this reason an eigenstate of H is called a stationary state.
Sometimes it is useful to write the time-evolution law in component form. Let us write

down the decomposition of an arbitrary state vector ���t0�� at time t = t0 on the basis
(�n� r�) of eigenvectors of H :

���t0�� =
∑
n�r

cnr�t0��n� r�� cnr�t0�= 
n� r���t0���
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We then find

���t�� =∑
n�r

cnr�t0� exp
(
− i�t− t0�

�
H

)
�n� r� =∑

n�r

cnr�t0� exp
(
− i

�
En�t− t0�

)
�n� r��

which gives the variation of the coefficients cnr as a function of t:

cnr�t�= exp
(
− i

�
En�t− t0�

)
cnr�t0�� (4.25)

4.2.4 The temporal Heisenberg inequality

In Section 3.2.5 we gave an elementary explanation of the relation between a characteristic
evolution time !t and an energy spread !E. Now we shall give a general derivation of
an inequality for the product !E!t, the temporal Heisenberg inequality. First we write
down the evolution equation for the expectation value 
A���t� = 
��t��A���t�� of an
operator A representing a physical property , assumed to be independent of time:

d
dt

��t��A���t�� = 1

i�
�−
��t��HA���t��+
��t��AH���t���

= 1
i�

��t��AH−HA���t���

which gives the Ehrenfest theorem:

d
dt

A���t�=

1
i�

��t���A�H����t�� = 1

i�

�A�H��� � (4.26)

Now we use (4.10), replacing B by H :

!�H !�A≥ 1
2
�
�A�H���� =

1
2

�

∣∣∣ d
dt

A���t�

∣∣∣� (4.27)

and define the time ���A� as

1
���A�

=
∣∣∣d
A���t�

dt

∣∣∣ 1
!�A

�

The time ���A� is the characteristic time for the expectation value of A to change by !�A,
that is, by an amount of the order of the dispersion. The preceding inequality becomes

!�H ���A�≥
1
2

�� (4.28)

which is the rigorous form of the temporal Heisenberg inequality. This inequality is often
written as

!E!t >∼
1
2

� (4.29)
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where !E represents the energy spread and !t the characteristic evolution time.13 This
equation has great heuristic value, but the meaning of !E may be ambiguous, as explained
below. The value of the energy can be fixed exactly only when the spread !E is zero,
which implies that the characteristic time must be infinite. This is not possible unless
the system is in a stationary state, which occurs, for example, for a stable elementary
particle or an atom in its ground state in the absence of external perturbations. However,
an atom or a nucleus raised to an excited state is not in a stationary state. Owing to the
coupling with the vacuum fluctuations of the electromagnetic field (cf. Section 14.3.4),
the atom, or the nucleus, emits a photon after an average time �, called the lifetime of the
excited state (cf. Section 1.5.3). The energy of the final photon has a spread !E called
the width of the state and often denoted as �0 ; an example is given in Appendix C,
Fig. C.1. The decay law of the excited state is generally very nearly exponential: the
survival probability p�t� of the excited state is given by p�t�= exp�−t/��. The width !E

of the state and the lifetime � are related by Fourier transformation and one can show
that �!E � �, so that, from !E = �0 , one has

0� � 1� (4.30)

However, !E is not the same thing as the dispersion !H of the Hamiltonian computed in
the excited state. It fact, it can be shown that �0 = !E	 !H for the exponential decay
law to be valid; see Exercise 4.4.5 and Appendix C for more details.14

Let us look at orders of magnitude for a typical system in atomic physics, the first
excited state of the rubidium atom. An atom in this state returns to its ground state by
emitting a photon of wavelength 
= 0�78�m corresponding to energy �= 1�6 eV. The
width and lifetime of the state are �0 = 2�4×10−8 eV and � � 1/0 = 2�7×10−8 s. The
energy spread of the excited state is therefore very small compared with the difference
between the energies of the ground and excited states: �0/�� 10−8, which means that the
energy of the excited state is very precisely defined. The relation (4.30) can be generalized
to any particle decay, for example, a two-body decay C → A+B.
As in the case of the Heisenberg inequality (4.10), the dispersion !E is in no way

related to the accuracy with which the energy can be measured. It is of course possible to
measure an energy with a precision better than !E. Let us take as an example the energy
E of the Z0 boson, a carrier of the weak interaction (cf. Section 1.1.4); in the Z0 rest
frame E =mZc

2, where mZ is the Z0 mass. The Z0 boson is unstable and therefore has a
width, which has been measured very precisely: �0Z = 2�4952±0�0023 GeV. However,
the Z0 mass has actually been measured more precisely than 0Z! The best measurement
gives mZc

2 = 91�1875± 0�0021 GeV (Fig. 4.3). In other words, it is possible to locate
the center of the peak with an accuracy much better than its spread.

13 The status of the inequality !E!t >∼ � is different from that of (4.10) in that, as shown by Pauli, there is no operator T
which obeys the commutation relation �T�H�= i�. The quantity !t is often incorrectly interpreted as the time necessary to
measure the energy. Also, one cannot invoke the time–frequency inequality for a signal, !t!� ≥ 1/2, because we do not
have E = ��, but rather ��= �E1−E2�, at least in nonrelativistic quantum mechanics.

14 The conditions of validity of the exponential decay law are examined by A. Peres, Nonexponential decay law, Ann. Phys.
(NY), 129, 33 (1980).
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measurement
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Γ

Fig. 4.3. Mass spectrum of the Z0 boson. The solid line shows the raw experimental data. This
result must be corrected taking into account radiative corrections (photon emission), which can be
calculated with extremely high accuracy. The dotted line shows the Z0 mass spectrum. From the
LEP collaboration, CERN Preprint EP-2000-13 (2000).

The relation (4.29) also leads to the idea of “virtual particles.” It is possible to interpret
processes in quantum field theory in terms of virtual particle exchange. For example,
the Coulomb interaction in the hydrogen atom corresponds to the exchange of virtual
photons between the proton and the electron. Virtual exchange does not correspond to an
observable reaction between the particles, because virtual particles cannot satisfy energy–
momentum conservation together with the condition relating the energy to the momentum
and the mass E2 = �p 2c2+m2c4. Let us take the example of interactions between nucleons,
or strong interactions (cf. Section 1.1.4). In 1935 Yukawa imagined that these interactions
arose from the exchange of a then-unknown particle which today we call the � meson.
This exchange is represented in Fig. 4.4 by a “Feynman graph.” The proton on the left (p)
emits a �+ meson and is transformed into a neutron (n), while the neutron on the right

π+

n

p

n

p

Fig. 4.4. Feynman diagram for �-meson exchange.



114 Postulates of quantum physics

absorbs this �+ meson and is transformed into a proton. Energy–momentum conservation
forbids the reaction

p→ n+�+�

If the momentum is conserved, the energy cannot be. However, if we assume that the
reaction occurs over a very short time!t, it becomes possible to have an energy fluctuation
!E � �/!t. The energy fluctuation needed for the reaction to be possible is !E ∼m�c

2,
where m� is the mass of the �+ meson. In the time interval !t the meson can travel at
most a distance15 ∼c!t∼ �/m�c, the Compton wavelength of the � meson. This distance
corresponds to the maximum range r0 of the nuclear forces (cf. Section 1.1.4), which is
of order 1 fm. In this way Yukawa succeeded in predicting the existence of a particle
of mass of order �/cr0 ∼200 MeV, and indeed the � meson of mass 140 MeV was
discovered some years later. The � meson exchanged in Fig. 4.4 is not observable: it is
virtual. We know today that the nuclear forces are not fundamental but are derived from
the fundamental forces between quarks. Nevertheless, the argument of Yukawa remains
valid, because it is possible to write down an effective theory of nuclear forces involving
meson exchange, where the maximum range of the forces is determined by the lightest
meson, the � meson. Since the photon has zero mass, the range of electromagnetic forces
is infinite. Indeed, we have seen in Section 1.1.4 that the Coulomb potential is long-range.

4.2.5 The Schrödinger and Heisenberg pictures

The point of view adopted above, in which the state vector evolves with time while
the operators are independent of time, is called the Schrödinger picture. An equivalent
viewpoint as regards physical results is that of Heisenberg, where the state vectors are
independent of time and the operators depend on time. To simplify the discussion, we
shall consider the case of a Hamiltonian H and an operator A which are time-independent.
This is not the most general situation, because it may happen that even in the Schrödinger
picture an operator A has an explicit time dependence, or that H depends on time. We
shall assume that this is not so here, and leave the general case to Exercise 4.4.7. The
expectation value of A at time t is


A���t�= 
��t0�� exp
(
i�t− t0�

�
H

)
A exp

(
− i�t− t0�

�
H

)
���t0���

If we define the operator A in the Heisenberg picture AH�t� as

AH�t�= exp
(
i�t− t0�

�
H

)
A exp

(
− i�t− t0�

�
H

)
� (4.31)

then the expectation value of A can be calculated as


A���t�= 
��t0��AH�t����t0��� (4.32)

15 For simplicity we neglect time dilation.
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The time dependence is incorporated in the operator, leaving the state vector independent
of t.

4.3 Approximations and modeling

We have now stated the general principles that determine the universal framework of
quantum theory. However, we are not yet ready to take on a physical problem. In order
to solve a specific problem, for example that of calculating the energy levels of the
hydrogen atom, we need to fix the space of states and the Hamiltonian appropriately
according to the degree of precision with which we hope to solve the problem. Choosing
the space of states and Hamiltonian always implies that we are using a certain approx-
imation, and this approximation (model) should not be confused with the fundamental
principles. For example, as we shall show immediately below, the space of states is
always initially of infinite dimension, but it may turn out that it is possible to find an
approximation framework where it reduces to a space of finite dimension, and maybe
even of small dimensions. The dimension N of this space is called the number of levels
of the approximation. We have already seen an example in our study of spin 1/2. In the
first approximation the spin degrees of freedom are decoupled from the spatial degrees of
freedom, which is what allowed us to consider a two-dimensional space and ignore the
spatial degrees of freedom. Another example is that of a two-level atom, a standard model
in atomic physics. When we are interested in the interaction between an atom and an
electromagnetic field of frequency � (in practice, the field of a laser), and if the spacing
of two energy levels is ��0 � ��, we can limit ourselves to these two energy levels.
They form a basis for a two-dimensional space of states, and then we can write down a
Hamiltonian for the interaction with the laser field acting in this space; cf. Sections 5.4
and 14.1.1. This approach provides an excellent approximation for the laser–atom inter-
action and can easily be refined, for example, by taking into account the effects of level
splitting due to the spins.
Unfortunately, the situation is not always so simple. As we shall see in Chapter 9, spatial

degrees of freedom can be dealt with using the correspondence principle. According
to this principle, the physical properties corresponding to position and momentum are
represented by operators �R and �P with components Xi and Pj , i� j = �x� y� z�, satisfying
commutation relations called canonical commutation relations:

�Xi�Pj�= i��ijI� (4.33)

Taking the trace of the two sides, we see that it is impossible to satisfy these relations
in a space of finite dimension: the trace of the quantity on the left is zero (the trace
of a commutator is always zero), while that of the quantity on the right is i�N , where
N is the dimension of � . Once this feature is recognized, the rest of the procedure
(which itself is not always unambiguous) consists of replacing the positions and momenta
�r and �p in the classical expression for the energy E by the operators �R and �P, thus
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obtaining the quantum Hamiltonian of a particle of mass m with potential energy V��r�.
The correspondence principle therefore gives the transformation E→H :

E = �p2

2m
+V��r�→H = �P2

2m
+V��R�� (4.34)

In the case of the hydrogen atom, (4.34) provides a very good approximation if the
Coulomb potential corresponding to the force law (1.3) is used for V��r� and the space of
states is taken to be that of the electron. The effect of the finite proton mass is taken into
account by using the reduced mass. It should be clear that (4.33) and (4.34) represent
a choice for the space of states and the Hamiltonian, and that approximations have
been made. In particular, we have neglected relativistic effects, the inclusion of which
would greatly complicate the problem. As a first step, one could try to generalize the
expression for the Hamiltonian (which leads to the Dirac equation), but a theory that is
truly quantum and relativistic requires the introduction of quantized electron–positron and
electromagnetic fields. This theory is called quantum electrodynamics (QED). Under these
conditions, the correspondence principle in the form (4.33) is no longer valid;16 in fact,
there is no longer a position operator. Moreover, quantum electrodynamics itself is very
likely just an approximation to a more comprehensive theory, and so on. It is therefore
necessary to distinguish carefully between fundamental principles and the approximations
needed to solve a specific physical problem. As Isham [1995] has emphasized, the
standard procedure of “quantizing a classical theory” using the correspondence principle
has only heuristic value; in the end, the approximations based on this principle or any
other heuristic approach must be validated by confrontation with the experimental results.
Up to now we have used different notation for a physical property () and the associated

Hermitian operator (A). Now we shall abandon this distinction and, unless explicitly
stated otherwise, denote both the property and the operator by upper-case letters: the
Hamiltonian H , position �R, momentum �P, angular momentum �J , and so on. Eigenvalues
will be denoted by the corresponding lower-case letter: �r, �p, �j, � � � , with the exception
of the energy for which we use two different letters: the eigenvalues of H will be
denoted by E.

4.4 Exercises

4.4.1 Dispersion and eigenvectors

Show that a necessary and sufficient condition for ��� to be an eigenvector of a Hermitian
operator A is that the dispersion (4.8) !�A= 0.

16 It is replaced by canonical commutation relations between the fields and their conjugate momenta, which lead to complicated
mathematical objects called operator-valued distributions. But there is still such a long way to go (gauge invariance, renor-
malization) before calculating a physical quantity that the correspondence principle appears of rather secondary importance,
and anyway in practice it is nowadays replaced by the Feynman path integral approach.
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4.4.2 The variational method

1. Let ��� be a vector (not normalized) in the Hilbert space of states and H be a Hamiltonian. The
expectation value 
H�� is


H�� =

��H���

���� �

Show that if the minimum of this expectation value is obtained for ��� = ��m� and the maximum
for ��� = ��M�, then

H��m� = Em��m� and H��M� = EM ��M��
where Em and EM are the smallest and largest eigenvalues.

2. We assume that the vector ��� depends on a parameter �: ��� = ������. Show that if

2
H�����
2�

∣∣∣
�=�0

= 0�

then Em ≤ 
H����0� if �0 corresponds to a minimum of 
H�����, and 
H����0� ≤ EM if �0

corresponds to a maximum. This result forms the basis of an approximation method called the
variational method (Section 14.1.4).

3. If H acts in a two-dimensional space, its most general form is

H =
(

a+ c b

b a− c

)
�

where b can always be chosen to be real. Parametrizing ������ as

������ =
(
cos�/2
sin�/2

)
�

find the values of �0 by seeking the extrema of 
�����H������. Rederive (2.35).

4.4.3 The Feynman–Hellmann theorem

Let a Hamiltonian H depend on a parameter 
: H =H�
�. Let E�
� be a nondegenerate
eigenvalue and ���
�� be the corresponding normalized eigenvector (����
���2 = 1):

H�
����
�� = E�
����
���
Demonstrate the Feynman–Hellmann theorem:

2E

2

= 
��
�

∣∣∣2H
2


∣∣∣��
��� (4.35)

4.4.4 Time evolution of a two-level system

We consider a two-level system with Hamiltonian H represented by the matrix

H = �

(
A B

B −A

)
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in the basis

�+� =
(
1
0

)
� �−� =

(
0
1

)
�

According to (2.35), the eigenvalues and eigenvectors of H are

E+ = �
√
A2+B2� �&+� = cos

 

2
�+�+ sin

 

2
�−�

E− = −�
√
A2+B2� �&−� = − sin

 

2
�+�+ cos

 

2
�−�

with

A=
√
A2+B2 cos � B =

√
A2+B2 sin  � tan  = B

A
�

1. The state vector ���t�� at time t can be decomposed on the (�+�� �−�) basis:

���t�� = c+�t��+�+ c−�t��−��

Write down the system of coupled differential equations which the components c+�t� and c−�t�
satisfy.

2. Let ���t = 0�� be decomposed on the (�&+�� �&−�) basis:

���t = 0�� = ���0�� = 
�&+�+��&−�� �
�2+���2 = 1�

Show that c+�t�= 
+���t�� is written as

c+�t�= 
 e−i+t/2 cos
 

2
−� ei+t/2 sin

 

2

with += 2
√
A2+B2. Here �+ is the energy difference of the two levels. Show that c+�t� (as

well as c−�t�) satisfies the differential equation

c̈+�t�+
(
+

2

)2

c+�t�= 0�

3. We assume that c+�0�= 0. Find 
 and � up to a phase as well as c+�t�. Show that the probability
of finding the system in the state �+� at time t is

p+�t�= sin2 sin2
(
+t

2

)
= B2

A2+B2
sin2
(
+t

2

)
�

4. Show that if c+�t = 0�= 1, then

c+�t�= cos
+t

2
− i cos sin

+t

2
�

Find p+�t� and p−�t�, and verify that the result is compatible with that of the preceding question.
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4.4.5 Unstable states

Let ���0�� represent the state vector at time t= 0 of an unstable particle, or more generally
that of an unstable quantum state such as an atom in an excited state, and let p�t� be
the probability (survival probability) that it has not decayed at time t. The particle is
assumed to be isolated from external influences (but not from quantized fields), so that
the Hamiltonian H that governs the decay is time-independent. Let �-�t�� be the state
vector at time t of the full quantum system

�-�t�� = exp
(
− iHt

�

)
���0���

The probability amplitude for finding the state of the quantum system at time t in ���0��
is

c�t�= 
��0��-�t�� = 
��0�
∣∣∣ exp(− iHt

�

)∣∣∣��0���
and the survival probability is

p�t�= �c�t��2 = �
-�t����0���2 = 
-�t��
�-�t���
where 
 = ���0��
��0�� is the projector on the initial state.

1. Let us first restrict ourselves to very short times. Show that for t→ 0

p�t�� 1− �!H�2

�2
t2�

so that, for very short times, the decay law is certainly not exponential. The expectation values
of H and H2 are computed in the state ���0��. Note that !H must be finite, otherwise ���0��
would not belong to the domain of H2, which would be difficult to imagine physically (see
Chapter 7 for the definition of the domain of an operator).

2. A more general result is obtained as follows. Show first that

!
2 = 

�−

�2

and use (4.27) to deduce the inequality (!H = �
H2�−
H�2�1/2)∣∣∣dp�t�
dt

∣∣∣≤ 2!H
�

√
p�1−p��

Integrating this differential equation, derive

p�t�≥ cos2
(
t!H

�

)
0 ≤ t ≤ ��

2!H
�

3. Let �n� be a complete set of eigenstates of the Hamiltonian

H�n� = En�n��
Show that c�t� is given by the Fourier transform of a spectral function w�E�

w�E�=∑
n

�
n���0���2 ��E−En��

Set E0 = 
H� and give the expression of �!H�2 in terms of w�E� and E0.
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4. If w�E� has a Lorentzian shape

w�E�= 0�

2�
1

�E−E0�
2+�202/4

�

show that

c�t�= e−iE0t/� e−0t/2

and that the decay law is an exponential. The width of w�E� is �0 , but !H is infinite, Thus !H
is a rather poor measure of energy spread, and the width �0 = !E is the physically relevant
quantity.

4.4.6 The solar neutrino puzzle

The nuclear reactions occurring in the interior of the Sun produce an abundance of
electron neutrinos �e; 95% of these are produced in the reaction

p+p → 2H+ e++�e�

The Earth receives 6�5× 1014 neutrinos per second and per square metre from the Sun.
For about thirty years several experiments sought to detect these neutrinos, but all of
them concluded that the measured neutrino flux is only about half the flux calculated
using the standard solar model. Now this model is considered to be quite reliable,17 in
particular owing to recent results from helioseismology. In any case, the uncertainties
in the solar model cannot explain this “solar neutrino deficit.” The combined results of
three experiments (see Footnote 4, Chapter 1) have now shown with no possible doubt
that this neutrino deficit is due to the transformation of �e neutrinos into other types of
neutrino during the passage from the Sun to the Earth. These experiments show that the
total neutrino flux predicted by the solar model is correct, but that the measured electron
neutrino flux is too small. We shall construct a simplified theory which gives the essential
physics. We assume that

• there exist only two types of neutrino, the electron neutrino �e and the muon neutrino �� (in
fact, there is also a third type, the $ neutrino �$);

• the entire phenomenon takes place in a vacuum during the propagation from the Sun to the Earth
(the propagation inside the Sun actually plays an important role).18

It has long been thought that neutrinos have zero mass. If, on the contrary, they are
massive, we can place them in their rest frame and write down the Hamiltonian in the
(��e�� ����) basis:

��e� =
(
1
0

)
� ���� =

(
0
1

)
� H = c2

(
me m

m m�

)
�

17 It is often said that the interior of the Sun is much better understood than that of the Earth.
18 See E. Abers, Quantum Mechanics, New Jersey: Pearsons Education (2004), Chapter 6, for an elementary discussion.
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The off-diagonal element m makes transitions between electron neutrinos and muon
neutrinos possible.

1. Show that the states of definite mass are ��1� and ��2�:

��1� = cos
 

2
��e�+ sin

 

2
�����

��2� = − sin
 

2
��e�+ cos

 

2
�����

with

tan  = 2m
me−m�

�

and that the masses m1 and m2 are

m1 =
me+m�

2
+
√
m2+

(me−m�

2

)2
�

m2 =
me+m�

2
−
√
m2+

(me−m�

2

)2
�

2. Neutrinos propagate with a speed close to that of light; their energy is very high compared with

m�c2, where 
m� is the typical mass in H . Show that if an electron neutrino is produced inside
the Sun at time t = 0 with state vector

���t = 0�� = ��e� = cos
 

2
��1�− sin

 

2
��2��

the state vector at time t has component on ��e� given by


�e���t�� = e−iE1t/�

(
cos2

 

2
+ sin2

 

2
e−i!E t/�

)
�

where !E = E2−E1. Show that the probability of finding a neutrino �e at time t is

pe�t�= 1− sin2  sin2
(
!E t

2�

)
�

This transformation phenomenon is called neutrino oscillation.
3. If p� 
m�c is the neutrino momentum, show that !E, as measured in the Sun rest frame, is

!E = �m2
2−m2

1�c
3

2p
= !m2 c3

2p

with !m2 = m2
2−m2

1. Then t must also be measured in the Sun rest frame, and not in the
neutrino rest frame!

4. Assuming that half an oscillation occurs during the trip from the Sun to the Earth (that is,
!E t/� = �) for neutrinos of energy 8 MeV, what is the order of magnitude of the difference
of the squared masses !m2? The Earth–Sun separation is 150 million kilometers.
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4.4.7 The Schrödinger and Heisenberg pictures

Let a Hermitian operator A be time-dependent in the Schrödinger picture: A= A�t�. The
Hamiltonian H is also assumed to be time-dependent. Show that

AH�t�= U−1�t� t0�A�t�U�t� t0�

satisfies

i�
dAH

dt
= �AH�t��HH�t��+ i�

(
2A�t�

2t

)
H

�

where HH�t� and �2A/2t�H are obtained from H�t� and �2A�t�/2t� by the transformation
law used for A.

4.4.8 The system of neutral K mesons

Let us suppose that at time t = 0 an unstable particle A of mass m is created whose state
vector at time t = 0 is ���0��. If the particle A were stable, c�t� would simply be given
by

c�t�= exp
(
−i

Et

�

)
= exp

(
−i

mc2t

�

)
in the particle rest frame, where its energy is E =mc2, and we would have �c�t��2 = 1 for
all times t, as the probability that the particle exists at any time t would always be unity.
Now let us suppose that the particle is unstable and that its decay follows an exponential
law. Then, from Exercise 4.4.5,

c�t�= exp
(
−i

mc2t

�

)
exp
(
− t

2�

)
�

We would like to adapt this description of particle decay to a two-level system, the system
of neutral K mesons, by generalizing the differential equation obeyed by c�t� �� = 1/0�

i�ċ�t�=
(
mc2− i

�0

2

)
c�t��

There exist two types of neutral K meson,19 the K0 formed from the down quark d and
the strange antiquark s, and the K0 formed from the d and the s. We recall that the
charges of the u, d, and s quarks are respectively 2/3, −1/3, and −1/3 in units of the
proton charge. These mesons are produced by the strong interaction, for which there is
a conservation law analogous to that for electric charge: the number of strange quarks
minus the number of strange antiquarks is conserved (just as in a reaction involving
only electrons and positrons the number of electrons minus the number of positrons is
conserved owing to electric charge conservation). Let us give some examples. The �+

19 There also exist two charged K mesons, the K+�us� and the K−�us�.



4.4 Exercises 123

meson is the combination �ud�, the �− meson is the combination �ud�, and the �0 is the
combination (uds). The reactions

�−�ud�+proton �uud�→ K0�d s�+�0 �uds�

and

K0 �d s�+proton �uud�→ �+ �ud�+�0 �uds�

are allowed, while

�− �ud�+proton �uud�→ K0�d s�+�0 �uds�

and

K0 �d s�+proton �uud�→ �+�ud�+�0 �uds�

are forbidden.

1. The �K0� K0� system is a two-level system and its state vector ���t�� can be written as

���t�� = c�t��K0�+ c�t��K0�
in the (�K0�� �K0�) basis. The components of the vector ���t�� satisfy an evolution equation

i�
(
ċ�t�

˙c�t�
)
=M

(
c�t�

c�t�

)
�

whereM is a 2×2 matrix. Let � be the “charge conjugation operator” which exchanges particles
and antiparticles:20

� �K0� = �K0�� � �K0� = �K0��
Show that if M commutes with � , its most general form is

M =
(

A B

B A

)
�

where A and B are a priori complex numbers, because the matrix M is not Hermitian.
2. What are the eigenvectors �K1� and �K2� of M? Show that it is these two states which have

well-defined energy and lifetime. If ���t�� has components c�0� and c�0� at time t= 0, calculate
c�t� and c�t�. We can write

A = 1
2

[
�E1+E2�−

i�
2
�01+02�

]
�

B = 1
2

[
�E1−E2�−

i�
2
�01−02�

]
�

3. Imagine that at time t = 0 a K0 meson is produced in the reaction

�−�ud�+proton �uud�→ K0�ds�+�0 �uds��

20 We can generalize the argument using not � but the product �
 , where 
 is the parity operator. In fact, experiment shows
that �M��
� �= 0, but the corrections are very small.
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What is the probability of finding a K0 meson at time t?21 Assuming that 01 � 02,
show that the probability of observing the reaction

K0 �d s�+proton �uud�→ �+ �ud�+�0 �uds�

for t ∼ �1 = 1/01 is proportional to

p�t�= 1−2 exp
(
−01 t

2

)
cos

�E1−E2�t

�
+ exp �−01 t� �

Plot the curve representing p�t�. What can be said about the order of magnitude of
�E1−E2� versus that of E1 or E2? How can �E1−E2� be measured? The numerical values
are �1 � 10−10 s, �2 � 10−7 s, and E1 � E2 � 500MeV.

4.5 Further reading

Our presentation of the postulates of quantum mechanics essentially follows the classical
expositions of, for example, Messiah [1999], Chapter VIII, Cohen-Tannoudji et al. [1977],
Chapter III, and Basdevant and Dalibard [2002], Chapter 5. The reader can also consult
Peres [1993], Chapter 2; Isham [1995], Chapter 5; Ballentine [1998], Chapters 8 and 9;
and Omnès [1999]. A qualitative discussion of the Heisenberg inequalities can be found
in Lévy-Leblond and Balibar [1990], Chapter 3. Ballentine [1998], Chapter 12, and
Peres [1993], Chapter 12, give particularly lucid discussions of the temporal Heisenberg
inequality. A recent book on epistemological problems in quantum mechanics is J. Baggot,
Beyond Measure, Oxford: Oxford University Press (2004).

21 In practice, the K mesons travel in a straight line from their production point with a speed close to the speed of light, and
the detector is located a distance l� ct�1−v2/c2�−1/2 from the production point.
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Systems with a finite number of levels

In this chapter we examine some simple applications of quantum mechanics in situations
where it is possible to model quantum systems accurately by restricting ourselves to a
space of states of finite dimension. If each energy level, including degenerate ones, is
counted once, the dimension of � is equal to the number of levels, and this is why we
use the term system with a finite number of levels. The first two examples (Section 5.1)
are taken from quantum chemistry and allow us to study a stationary situation where
the Hamiltonian is time-independent. But the most important point in this chapter is the
introduction of time dependence, which will be implemented by coupling a two-level
system to an external periodic classical field. This will be illustrated by three examples
of great practical importance: nuclear magnetic resonance (Section 5.2), the ammonia
molecule (Section 5.3), and the two-level atom (Section 5.4).

5.1 Elementary quantum chemistry

5.1.1 The ethylene molecule

The ethylene molecule C2H4 will serve as an introduction to the subject. The “skeleton”
of this molecule is formed by the so-called 3 bonds, pairs of  electrons of opposite
spin common to two carbon atoms or to a carbon and a hydrogen atom, thus forming the
�C2H4�

++ ion (Fig. 5.1). The remaining two electrons, called � electrons, are mobile –
they can jump from one carbon atom to another. It is said that they are delocalized. The
separate treatment of the � and  electrons is, of course, an approximation, but one that
plays an important role in the theory of chemical bonding. Let us begin by putting the
first � electron in place. It can be localized near carbon atom 1; we shall denote the
corresponding quantum state as ��1�.1 It can also be localized near carbon atom 2, and
the corresponding quantum state will be denoted as ��2� (Fig. 5.2). The energy E0 of
this electron when localized near atom 1 or atom 2 is the same owing to the symmetry
between the two atoms. We shall approximate the space of states as a two-dimensional

1 Dirac notation is superfluous in this chapter. We use it for coherence, but the reader can dispense with it if desired.
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yz plane
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Fig. 5.1. The ethylene molecule.

11 2 2

 ⎟ ϕ1〉 ⎟ ϕ2〉

Fig. 5.2. The two possible states of a � electron, localized near atom 1 or near atom 2.

space � in which the basis vectors are (��1�� ��2�). In this basis the Hamiltonian can be
written provisionally as

H0 =
(

E0 0
0 E0

)
� H��1�2� = E0��1�2�� (5.1)

However, this Hamiltonian is incomplete, because we have neglected the possibility of
the electron jumping from one carbon atom to another. Within our approximations, which
are those of Hückel’s theory of molecular orbitals, the most general form of H is

H =
(

E0 −A

−A E0

)
� (5.2)

and the off-diagonal element −A is precisely what gives rise to transitions between ��1�
and ��2�. By suitable choice of the phase of the basis vectors we can take A to be real;
cf. Section 2.3.2. We have written A with a minus sign, which is significant because it
can be shown that A > 0.

If A �= 0, the states ��1� and ��2� will no longer be stationary states. As we have seen
in Section 2.3.2, the eigenvectors of H are now

�&+� =
1√
2

(
��1�+ ��2�

)
= 1√

2

(
1
1

)
� (5.3)

�&−� =
1√
2

(
��1�− ��2�

)
= 1√

2

(
1
−1

)
� (5.4)
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E0

E0 + A

E0 – A

2A

Fig. 5.3. Energy levels of a � electron.

with

H�&+� = �E0−A��&+�� H�&−� = �E0+A��&−�� (5.5)

Since A > 0, the symmetric state �&+� is the state of lowest energy. The spectrum of
the Hamiltonian is shown in Fig. 5.3, where we see that the ground state is the state �&+�
of energy �E0−A�. These results can be interpreted spatially by studying the localization
of the electron on the line joining the two carbon atoms, which we take to be the x axis,
with the origin located at the center of the line. As we shall see in detail in Chapter 9,
if �x� is an eigenvector of the position operator, the quantity 
x��1� is the probability
amplitude for finding the electron in the state ��1� at point x. In Chapter 9 we shall call
this probability amplitude the wave function of the electron. The squared modulus of
this probability amplitude gives the probability of finding the electron at point x,2 also
called the probability density for the electron at point x. This interpretation allows us to
qualitatively represent the probability amplitudes &±�x� = 
x�&±� corresponding to the
states �&±� as in Fig. 5.4. This probability vanishes at the origin in the antisymmetric
case �&−�, but not in the symmetric one �&+�. The symmetric or antisymmetric nature of
the ground-state wave function is related to the sign of A. Most of the time, ground states
are symmetric, which corresponds to A > 0.

ϕ 1(x) ϕ 2(x)

1 O

1 2O

1 2O

1

+ + +

– 2
χ – (x)χ + (x)
O

Fig. 5.4. Probability amplitudes for finding a � electron at a point x.

2 More precisely, the probability per unit length: �
x����2dx is the probability of finding the particle in the range �x� x+dx�;
see Section 9.1.2.



128 Systems with a finite number of levels

We still need to place the second electron. This is very easily done if we can ignore the
interactions between this electron and the first one, that is, if we can use the approximation
of independent electrons. To obtain the ground state it is sufficient to place the second
electron in the state �&+� of energy �E0−A�. The Pauli principle (Chapter 13) restricts
the spin states: if the first electron has spin up (�+�), the second must have spin down
(�−�), as we shall see in Chapter 13. The ground-state energy of the � bond then is
2�E0−A�, where −2A is called the delocalization energy of the � electrons. The crucial
role played by the independent particle approximation should be emphasized. We have
assumed that the � electrons do not interact with the  electrons or with each other.
It is difficult to justify this model on the basis of fundamental principles or from what
are now termed ab initio calculations, but nevertheless it is of considerable practical
importance.

5.1.2 The benzene molecule

In the benzene molecule the  skeleton of the �C6H6�
6+ ion forms a hexagon. If we

again add the six � electrons so as to form three double bonds we obtain the Kékulé
formula (Fig. 5.5a) and the prediction 6�E0−A� for the ground-state energy. It is known
from chemistry that the Kékulé formula cannot be completely correct,3 and we shall see
that taking into account the delocalization of the � electrons along the entire hexagonal
chain leads to an energy lower than 6�E0−A�. Therefore, the Kékulé formula does not
give the correct ground-state energy. Let us begin by considering the addition of a single
electron, assigning the numbers 0 to 5 to the carbon atoms along the hexagonal chain
starting from an arbitrary origin (Fig. 5.5b).4 For example, we use ��3� to denote the
state where the electron is localized near atom 3. Since it is just as easy to deal with

H

H

H

H

H

H
C

C C

C

C

C

(a)

1

2

3

4

5

C

C

C

C

C

C

0

(b)

Fig. 5.5. (a) Hexagonal configuration of the benzene molecule. (b) The skeleton of  electrons.

3 For example, there exists a single form of orthodibromobenzene, whereas the Kékulé formula predicts two different ones.
Moreover, the length of the bond between two carbon atoms in benzene (1.40 Å) is intermediate between the lengths of a
simple (1.54 Å) and a double (1.35 Å) bond.

4 As we shall soon see, it is much more convenient to number from 0 to 5 rather than from 1 to 6!
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any number N of carbon atoms forming a closed chain, that is, a regular polygon of N
sides, we shall use ��n� to denote the state where the electron is localized near the nth
atom, n = 0�1� � � � �N − 1, with N = 6 for benzene. Atoms n and n+N are identical:
n≡ n+N . The space of states has N dimensions, and the Hamiltonian is defined by its
action on ��n�:

H��n� = E0��n�−A���n−1�+ ��n+1��� (5.6)

We shall use the symmetry of the problem under circular permutations of the N atoms of
the chain to find the eigenvalues and eigenvectors of H . Let UP be the unitary operator
performing a circular permutation of the atoms in the direction n→ �n−1�:

UP��n� = ��n−1�� U†
P ��n� = U−1

P ��n� = ��n+1�� (5.7)

According to (5.6) and (5.7), we can write the Hamiltonian as

H = E0I−A�UP+U†
P �� (5.8)

which implies that H and UP commute:

�H�UP�= 0� (5.9)

and therefore have a basis of common eigenvectors. Let us look for the eigenvectors
and eigenvalues of UP, as this operator is a priori simpler than H . Since UP is unitary,
its eigenvalues have the form exp�i�� (see Section 2.3.4). From �UP�

N = I , we deduce
exp�iN��= 1, and so the eigenvalues can be classified by an integer index s:

�= �s =
2�s
N

� s = 0�1� � � � �N −1� (5.10)

We have therefore determined the N distinct eigenvalues of UP. Since the latter acts in
a space of dimension N , the corresponding eigenvectors are orthogonal and form a basis
of � . Let us write a normalized eigenvector �&s� in the form

�&s� =
N−1∑
n=0

cn��n��
N−1∑
n=0

�cn�2 = 1� (5.11)

On the one hand we have

UP�&s� =
N−1∑
n=0

cn��n−1� =
N−1∑
n=0

cn+1��n��

while on the other

UP�&s� = ei�s �&s� =
N−1∑
n=0

ei�s cn��n��
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Equating the coefficients of ��n� in these two equations leads to

cn+1 = ei�s cn or cn = ein�s c0�

The eigenvector corresponding to the eigenvalue exp�i�s� then is

�&s� =
1√
N

N−1∑
n=0

ein�s ��n�� (5.12)

The choice c0 = 1/
√
N ensures that �&s� is normalized. The bases ��n� and �&s� are

complementary according to the definition given in Section 3.1.2. Taking into account
the expression (5.8) for H , the eigenvalue Es is given by

Es = E0−A
(
ei�s + e−i�s

)
= E0−2A cos�s

or (Fig. 5.6)

Es = E0−2A cos
2�s
N

� (5.13)

We could have obtained (5.13) directly without the intermediary of the circular permu-
tation operator UP. However, our use of UP illustrates a general strategy and is not just a
computational trick. We shall often use this strategy, as it simplifies, sometimes greatly,
the diagonalization of the Hamiltonian: instead of diagonalizing H directly, we first diag-
onalize the unitary symmetry operators which commute with H , when such operators
exist owing to some symmetry of the physical problem.
It should be noted that the values s and s̃ = N − s give the same value of the energy;

aside from s= 0 and s=N−1 (for N even), the energy levels are doubly degenerate. It is

E0 – 2A

E0 – A

E0 + A

E0 + 2A

s = 0

s = 5 s = 1

s = 4

s = 3

s = 2

π / 3

π / 3

π / 3

E

Fig. 5.6. Energy levels of a � electron of the benzene molecule.
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possible to obtain eigenvectors of H with real components by forming linear combinations
of �&s� and �&s̃�:

�&+
s � =

1√
2
��&s�+ �&s̃��=

√
2
N

N−1∑
n=0

cos
2�ns
N

��n�� (5.14)

�&−
s � =

1

i
√
2
��&s�− �&s̃��=

√
2
N

N−1∑
n=0

sin
2�ns
N

��n�� (5.15)

Now we can write down the results for the eigenvalues of H and the corresponding
eigenvectors in the case of benzene, where N = 6, cos�2�/6� = 1/2, and sin�2�/6� =√
3/2 (Fig. 5.6):

s = 0 E = E0−2A

�&0� =
1√
6
�1�1�1�1�1�1�*

s = 1� s̃ = 5 E = E0−A

�&+
1 � =

1√
3

(
1�

1
2
�−1

2
�−1�−1

2
�
1
2

)
� �&−

1 � =
(
0�

1
2
�
1
2
�0�−1

2
�−1

2

)
*

s = 2� s̃ = 4 E = E0+A

�&+
2 � =

1√
3

(
1�−1

2
�−1

2
�1�−1

2
�−1

2

)
� �&−

2 � =
(
0�

1
2
�−1

2
�0�

1
2
�−1

2

)
*

s = s̃ = 3 E = E0+2A

�&3� =
1√
6
�1�−1�1�−1�1�−1�� (5.16)

Let us now find the ground state, that is, the state of lowest energy of the benzene
molecule, by placing the six delocalized � electrons. In the approximation where the
electrons are independent, this state will be obtained by first putting two electrons of
opposite spins in the level E0− 2A. The Pauli principle (Chapter 13) forbids any more
electrons in this level. As the level �E0 −A� is doubly degenerate, we can put four
electrons in it (two pairs of electrons with opposite spins). This gives the total energy

E = 2�E0−2A�+4�E0−A�= 6E0−8A� (5.17)

This energy is lower by 2A than the energy in the Kékulé formula �6E0− 6A�. The �

electrons of benzene are not localized on the double bonds, but are delocalized along the
entire hexagonal chain, and this form of delocalization decreases the energy by 2A.
By comparing the heat of hydrogenation5 of benzene into cyclohexane

C6H6+3H2 → C6H12−49�8 kcal mol−1

5 For purists: this is in fact a variation of the enthalpy, but the difference is negligible.
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with that of cyclohexene, which contains a single double bond,

C6H10+H2 → C6H12−28�6 kcal mol−1�

we can estimate 2A: 2A = 3× 28�6− 49�8 = 36 kcalmol−1 � 1�6eV. However, this
estimate is at best an order of magnitude, because it involves uncertainties which are
difficult to evaluate. They arise mainly from the approximation of independent electrons,
which is poorly controlled.

5.2 Nuclear magnetic resonance (NMR)

In Section 5.1 we studied the energy levels of time-independent Hamiltonians. In the
next three sections we introduce a time-dependent interaction for a two-level system by
placing it in an external classical field which is periodic with frequency �. Under these
conditions it is clear that stationary states no longer exist, and the interesting problem
is now the study of transitions from one level to another induced by the external field.
We shall find the following fundamental result: if � � �0, where ��0 is the energy
difference between the two levels, a remarkable resonance phenomenon occurs. We are
going to give three examples of great practical importance: nuclear magnetic resonance
in the present section, the ammonia molecule in Section 5.3, and the two-level atom in
Section 5.4.

5.2.1 A spin 1/2 in a periodic magnetic field

Nuclear magnetic resonance (NMR) rests on the fact that an atomic nucleus with nonzero
spin possesses a magnetic moment. We shall limit ourselves to spin-1/2 nuclei (1H, 13C,
19F, etc.), for which the magnetic moment, which is an operator in quantum mechanics,
is given by

��= ��S = 1
2
���� (5.18)

where �S is the spin operator defined in Section 3.2 and � is the gyromagnetic ratio:

� = �
qp

2mp

* (5.19)

� = 5�59 for the proton, 1.40 for 13C, 5.26 for 19F, and so on. The nuclear spin is placed
in a magnetic field �B0 pointing in the Oz direction. Following (3.61), we can write the
Hamiltonian H0 of the nuclear spin as

H0 =−�� · �B0 =−1
2
��B0z =−1

2
��0z� (5.20)

with �0 = �B0, or in matrix form in the basis in which z is diagonal:

H0 =−1
2

�

(
�0 0
0 −�0

)
� (5.21)
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We note that since the proton charge qp is positive there is no minus sign in the definition
of �0, in contrast to the case of Section 3.2.5 for the electron. Here �0 is the Larmor
frequency, the frequency with which the classical magnetic moment precesses about �B0

(Fig. 3.7). In the case of the proton the Larmor precession is in the clockwise direction.
The state �+� has energy −��0/2, and the state �−� has energy ��0/2. We therefore
have a two-level system, the two Zeeman levels of a spin 1/2 in a magnetic field, with
the energy difference of the levels being ��0.
Now let us add to the constant field �B0 a periodic radiofrequency field �B1�t� parallel

to the xOy plane and rotating in the clockwise direction,6 that is, in the same direction
as the Larmor precession, with angular speed �:

�B1�t�= B1�x̂ cos�t− ŷ sin�t�� (5.22)

In practice, such a field can be obtained by means of two coils placed along the Ox

and Oy axes and fed by an alternating current of frequency �. The contribution to the
Hamiltonian due to the field �B1�t� is

H1�t�=−�� · �B1�t�=−1
2

��1�x cos�t−y sin�t��

where �1 = �B1 is the Rabi frequency, often called the nutation frequency �nut in NMR.
The total time-dependent Hamiltonian H�t� in matrix form is then

H�t�=H0+H1�t�=−1
2

�

(
�0 �1e

i�t

�1e
−i�t −�0

)
� (5.23)

where we have used the expressions (3.49) for x and y. It is now easy to write down
the Schrödinger equation in matrix form (4.13), decomposing the state vector �1�t�� onto
the basis vectors �+� and �−�:

�1�t�� = c+�t��+�+ c−�t��−�� (5.24)

We obtain the following system of differential equations for c±�t�:

i
dc±
dt

=∓1
2
�0c±−

1
2
�1e

±i�tc∓� (5.25)

5.2.2 Rabi oscillations

To solve the system of differential equations (5.25), we define the coefficients �±�t� as

c±�t�= �±�t� e
±i�0t/2� (5.26)

This definition has an interesting geometrical interpretation. When �B1 = 0 the spin
simply performs Larmor precession (Fig. 3.7) about �B0 in the clockwise direction with

6 We could also use a field �B1�t� parallel to Ox; see Exercise 5.5.6.
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frequency �0. Instead of using the laboratory frame to measure the x and y components
of the spin, we can use the reference frame rotating around Oz with the Larmor frequency
�0, in which �1�t�� becomes �1′�t��:7

�1�t��→ �1′�t�� = e−i�0zt/2 �1�t��
= c+�t� e

−i�0t/2 �+�+ c−�t� e
i�0t/2�−�� (5.27)

The operator which performs a rotation by an angle  about Oz is exp�−i z/2�, so that
the coefficients �±�t� are just the components of the state vector in the rotating reference
frame. Another way of interpreting the transformation (5.27) is to note that if �B1 = 0,
then

c±�t�= e±i�0t/2 c±�0� �±�t�= const�

and the transformation (5.26) allows us to eliminate the trivial time dependence due to
H0. Using

i
dc±
dt

=
(
∓1
2
�0�±+ i

d�±
dt

)
e±i�0t/2�

we can transform (5.25) into

i
d�±
dt

=−1
2
�1 e

±i��−�0�t �∓�t�=−1
2
�1 e

±i�t �∓�t�� (5.28)

The difference �= ��−�0� between the frequency of the external field and the Larmor
frequency is called the detuning, and the offset frequency by NMR practitioners. It is
particularly easy to solve (5.28) in the case of resonance, �= 0 (we shall see shortly the
reason for this terminology):

i
d�±
dt

=−1
2
�1�∓�t�� (5.29)

Differentiating one of the equations with respect to time and using the second equation,
we obtain

d2�±
dt2

=−1
4
�2

1�±�t�� (5.30)

This equation can be integrated immediately. The solution depends on two constants a

and b, �a�2+�b�2 = 1, which are related to the initial conditions:

�+�t�= a cos
(�1t

2

)
+b sin

(�1t

2

)
�

�−�t�= ia sin
(�1t

2

)
− ib cos

(�1t

2

)
�

(5.31)

Equation (5.31) can be given a very interesting geometrical interpretation in the rotating
reference frame. If the angle  is defined as �1t =  , the operation (5.31) amounts to

7 Another method of solving (5.25) is to use a reference frame rotating with frequency �.
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rotating the spin by an angle − about the Ox axis. This can be seen using the expression
for the operator that performs a rotation by an angle − about the Ox axis:8

U ��x�− ��= exp
(
i
 

2
x

)
�

We then have

(
�+�t�
�−�t�

)
= ei x/2

(
�+�0�
�−�0�

)
=
(

cos  
2 i sin  

2

i sin  
2 cos  

2

)(
a

−ib

)
� (5.32)

in agreement with (5.31). The classical picture of the rotation is also interesting. In
the rotating frame, the spin sees a time-independent field �B1, which is aligned along
Ox. Thus (5.31) is nothing other than the Larmor precession about �B1 with an angular
frequency �1. To illustrate this rotation, let us suppose that at time t= 0 the spin is in the
state �+�, which has the lowest energy −��0/2: a= 1� b = 0. At time t the probability
p± of finding the spin in the state �±� will be

p+�t�= �
+�1�t���2 = ��+�t��2 = cos2
(�1t

2

)
�

p−�t�= �
−�1�t���2 = ��−�t��2 = sin2
(�1t

2

)
�

(5.33)

The oscillations between the two levels are called Rabi oscillations. A spin which is
initially in the state �+� will be found in the state �−� at times t given by

�1t

2
=
(
n+ 1

2

)
�� n= 0�1�2�3� � � � (5.34)

If the radiofrequency field �B1�t� is applied during a time interval �0� t� satisfying (5.34),
in general with n= 0, it is said that a � pulse has been applied. When

�1t

2
=
(
n+ 1

2

)
�

2
� n= 0�1�2�3� � � � � (5.35)

we say that a �/2 pulse has been applied. The spin is then in a linear combination of the
states �+� and �−� with equal weights.
In the off-resonance case, starting from (5.28) we obtain a second-order differential

equation for �+:

2
�1

d2�+
dt2

− 2i
�1

�
d�+
dt

+ 1
2
�1�+ = 0� (5.36)

8 This expression is derived from Exercise 3.3.6, eq. (3.67), by taking the unit vector p̂ parallel to Ox.
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the solutions of which we seek in the form

�+�t�= ei+±t�

The values of +± are the roots of a second-order equation given as a function of the
frequency += ��2

1+�2�1/2 by

+± =
1
2
��±+�� (5.37)

The solution of (5.36) for �+ is a linear combination of exp�i++t� and exp�i+−t�:

�+�t�= 
 exp�i++t�+� exp�i+−t��

Let us choose the initial conditions �+�0� = 1, �−�0� = 0. Since �−�0� ∝ �̇+�0�, these
initial conditions are equivalent to


+�= 1 and 
+++�+− = 0�

and so


=−+−
+

� �= ++
+

�

The final result can be written as

�+�t� =
ei�t/2

+

[
+ cos

+t

2
− i� sin

+t

2

]
� (5.38)

�−�t� =
i�1

+
e−i�t/2 sin

+t

2
� (5.39)

which reduces to (5.31) when �= 0. The factor exp�±i�t/2� arises because � is the Larmor
frequency in the rotating reference frame. Equation (5.39) is particularly interesting. It
shows that if we start from the state �+� at t = 0, the probability of finding the spin in
the state �−� at time t is

p−�t�=
�2

1

+2
sin2
(
+t

2

)
� (5.40)

We see that the maximum probability of making a transition from the state �+� to the
state �−� for +t/2= �/2 is given by a resonance curve of width �:

pmax
− = �2

1

+2
= �2

1

�2
1+�2

= �2
1

�2
1+ ��−�0�

2
� (5.41)

As shown in Fig. 5.7, the Rabi oscillations are maximal at resonance and decrease rapidly
in amplitude with growing �. This has a clear intuitive interpretation: the influence of the
radiofrequency (RF) field �B1 is maximal when it rotates with the same speed as the spin
undergoing Larmor precession about Oz, so that the spin sees a constant field �B1 instead
of a periodic one.
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Fig. 5.7. Rabi oscillations. (a) �= 0, (b) �= 3�1. In case (b) the maximum value of p−�t� is 1/10.

5.2.3 Principles of NMR and MRI

NMR is principally used to determine the structure of molecules in chemistry or biology,
and for studying condensed matter in the solid or liquid state. A detailed description
of how NMR works would take us too far afield, and so we shall only touch upon
the subject. The sample under study is placed in a uniform field �B0 of several teslas,
the maximum strength attainable at present being about 20 T (Fig. 5.8). An NMR is
usually characterized by specifying the resonance frequency9 �0 = �0/�2��= �B0/�2��
for a proton: a field of 1 T corresponds to a frequency of about 42.5 MHz, and so we

Sample tube

RF coil Static
field coil

B0

Capacitor

Directional
coupler

Mixer

RF
oscillator

Computer

Amplifier

Free induction decay

Fourier transform

Spectrum ω 0 ω

t t

Fig. 5.8. Schematic depiction of an NMR. The static field �B0 is horizontal and the RF field is
generated by the vertical solenoid, which is also used for signal detection. The RF pulse and the
signal are drawn on the bottom right of the figure. One notices the exponential decay of the signal
and the peak of its Fourier transform at �= �0. After Nielsen and Chuang [2000].

9 See Footnote 23 of Chapter 1.
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have an NMR of 600 MHz if the field B0 is 14 T. Owing to the Boltzmann law (1.12), the
�+� level is more populated than the �−� level, at least if � > 0, which is the usual case:

p+�t = 0�
p−�t = 0�

= exp
(

��0

kBT

)
� (5.42)

At room temperature for an NMR of 600 MHz, the population difference

p+−p− �
��0

2kBT

between the levels �+� and �−� is ∼ 5×10−5.
The application of a radiofrequency field �B1�t� near resonance during a time t such

that �1t = �, or a �-pulse (see (5.34)), causes the spins in the state �+� to flip to the
state �−�, thus inducing a population inversion relative to the equilibrium situation, so
that the sample is no longer in equilibrium. The return to equilibrium is governed by a
relaxation time T1,

10 the longitudinal relaxation time. For reasons which will be explained
in Section 6.2.4, a �/2 pulse is generally used, and so �1t = �/2. This corresponds
geometrically to rotating the spin by an angle �/2 about an axis in the xOy plane
(cf. (5.32)); if the spin is initially parallel to �B0, it ends up in a plane perpendicular to
�B0, a transverse plane (whereas a �-pulse aligns the spin in the longitudinal direction
−�B0). The return to equilibrium is then governed by a relaxation time T2, the transverse
relaxation time. In any case, the return to equilibrium is accompanied by the emission
of electromagnetic radiation of frequency �0, and Fourier analysis of the signal gives
a frequency spectrum which permits the structure of the molecule under study to be
reconstructed. In doing this, the following basic properties are used:

• the resonance frequency depends on the type of nucleus through �;
• the resonance frequency of a given nucleus is slightly modified by the chemical environment of
the corresponding atom, which can be taken into account by defining an effective magnetic field
B′
0 acting on the nucleus:

B′
0 = �1−�B0�  ∼ 10−6�

where  is called the chemical shift. There are strong correlations between  and the nature of
the chemical group to which the nucleus belongs;

• the interactions between neighboring nuclear spins lead to a splitting of the resonance frequencies
into several subfrequencies, which are also characteristic of the chemical groups.

This is summarized in Fig. 5.9, where we show a typical NMR spectrum. In the
case of magnetic resonance imaging (MRI)11 one is interested exclusively in the protons
contained in water and fats. The sample is placed in a nonuniform field �B0, which
makes the resonance frequency spatially dependent. Since the signal amplitude is directly
proportional to the spin density, and thus to the proton density, it is possible to obtain a

10 When a field �B0 is applied, thermodynamical equilibrium (5.42) is not established instantly, but only after a time ∼T1.
11 The adjective “nuclear” was dropped in order not to frighten the public!
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OH
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Fig. 5.9. NMR spectrum of protons of ethanol CH3CH2OH, obtained using an NMR of 200 MHz.
The observed peaks are associated with the three groups OH, CH3, and CH2. The dashed line
represents the integrated area of the signals, and the peak splitting is explained in Exercise 6.5.6.
The TMS (tetramethyl silane) is a reference signal.

three-dimensional image of the density of water in biological tissues by means of complex
computer calculations. The spatial resolution is of the order of a millimeter, and an image
can be made in 0.1 s. This has permitted the development of functional MRI (fMRI),
which can be used, for example, to watch the brain in action by measurement of local
variations in the blood flow. The longitudinal and transverse relaxation times T1 and T2

play an important role in obtaining and interpreting MRI signals.
Although we shall meet the Rabi oscillations between two levels again in the next two

sections, there are important differences of principle between NMR and the problems of
molecular and atomic physics of these sections, on which we shall comment at the end
of Section 5.4.

5.3 The ammonia molecule

The ammonia molecule will serve as the second example of a two-level system which
can be coupled to an external periodic field.

5.3.1 The ammonia molecule as a two-level system

The ammonia molecule has the form of a pyramid with the nitrogen atom at the summit
and the three hydrogen atoms forming an equilateral triangle which is the base (Fig. 5.10).
There are a great many possible motions of this molecule. It can undergo translations
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Fig. 5.10. The two configurations of the ammonia molecule.

and rotations in space, the atoms can oscillate about their equilibrium position, and the
electrons can be in excited states. Once the degrees of freedom corresponding to the
translation, rotation, and vibration of the molecule in its electronic ground state are fixed,
there are still two possible configurations for the molecule rotating about its symmetry
axis.12 These two configurations are reflection-symmetric, one being the reflection of
the other in a plane (Fig. 5.10). To go from one configuration to the other, the nitrogen
atom must cross the plane formed by the hydrogen atoms. This is possible owing to the
tunnel effect, which we shall explain in Section 9.4.2. Here we shall focus exclusively
on these two configurations, which is justified by the energies involved.13 As in the case
of the ethylene molecule, we shall use a two-dimensional space to describe these two
configurations. The molecule in state 1 (2) of Fig. 5.10 will be described by the basis
vector ��1� ���2��. If the nitrogen atom were unable to cross the plane of the hydrogen
atoms, the energies of the states ��1� and ��2� would be identical and equal to E0.
However, there exists a nonzero amplitude for crossing this plane, and the Hamiltonian
takes the form (5.2)

H =
(

E0 −A

−A E0

)
(5.43)

with, of course, values of E0 and A completely different from those in Section 5.1. The
value of E0 is irrelevant for our discussion. However, it is worth noting that the value

12 The importance of this rotation for generating the two different configurations has been emphasized by Feynman, and it has
often been neglected in later discussions by other authors. In fact, if this rotation were absent, it would be possible to pass
continuously from one configuration to the other by a spatial rotation.

13 The ammonia molecule possesses two rotational eigenfrequencies, one of which is degenerate. They correspond to the
energies 0�8×10−3 eV and 1�2×10−3 eV (degenerate). There are four vibrational modes, two of which are degenerate; the
energy of the lowest one is 0.12 eV. In addition, the complications arising from the hyperfine structure should be taken into
account.
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Fig. 5.11. Splitting of the two levels E0 and E′
0.

of A in (5.43) differs from that in (5.2) by several orders of magnitude. We now have
2A � 10−4 eV, whereas before 2A was of order 1 eV. This reflects the fact that it is
easy for a � electron to jump from one atom to another, whereas it is very difficult
for the nitrogen atom to cross the plane of the hydrogen atoms. This energy 10−4 eV
corresponds to frequency 24 GHz or wavelength 1.25 cm. It is very low compared with
the electron excitation energies (several eV), and also low compared with the vibrational
(∼0�1 eV) and rotational (∼10−3 eV) energies (see Footnote 13). These numbers justify
the approximation as a two-level system, because the difference between two adjacent
rotational levels is of order 10A (Fig. 5.11). However, the molecule is not in its ground
rotational state; since kBT ∼0�025 eV is large compared with ∼10−3 eV, the rotational
levels are thermally excited. Following the discussion of Section 5.1.1, the energy levels
of H are E0∓A, corresponding to the stationary states (5.2) and (5.3):

E0−A � �&+� =
1√
2

(
��1�+ ��2�

)
= 1√

2

(
1
1

)
� (5.44)

E0+A � �&−� =
1√
2

(
��1�− ��2�

)
= 1√

2

(
1
−1

)
� (5.45)

The symmetric state �&+� is the ground state of energy �E0−A�, and the antisymmetric
state �&−� is the excited state of energy �E0+A�.

5.3.2 The molecule in an electric field: the ammonia maser

The ammonia molecule possesses an electric dipole moment �d which, by symmetry, is
perpendicular to the plane of the hydrogen atoms. Since the hydrogen atoms tend to lose
their electrons and the nitrogen atom tends to attract them, this dipole moment points
from the nitrogen atom toward the plane of the hydrogen atoms (Fig. 5.10). Let us place
the molecule in an electric field �� pointing in the Oz direction. The energy of a classical
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dipole �d in an electric field �� (we use the script letter for the electric field to avoid
confusion with the energy) is

E =−�d · ��� (5.46)

In quantum mechanics the dipole moment is an operator �D expressed as a function of
the charges and the position operators of the various charged particles. We shall restrict
�D to our two-dimensional subspace, so that it is given by the following matrix in the
(��1�� ��2�) basis:

−�D→
(

d 0
0 −d

)
� −�D · ��→

(
d� 0
0 −d�

)
�

This corresponds to the diagram in Fig. 5.10. The energy of the state ��1� in this figure
is +d� because the dipole moment is antiparallel to the field, and the energy of the state
��2� is −d� because the dipole moment is parallel to the field. The ultimate justification
for the matrix form of this dipole moment lies in its agreement with experiment. The
Hamiltonian then takes the form

H =
(

E0+d� −A

−A E0−d�

)
� (5.47)

Let us first study the case of a static electric field. The Hamiltonian is then independent
of time. The eigenvalues can be calculated immediately:14

det
(

E0+d�−E −A

−A E0−d�−E

)
= �E−E0�

2− �d��2−A2 = 0�

giving

E± = E0∓
√
A2+ �d��2� (5.48)

These eigenvalues are shown in Fig. 5.12 as a function of �. If d�� A, the energies are
�E0±d� and the corresponding approximate eigenvectors are ��1� and ��2�. In practice,
the opposite case is the usual one: d�	 A. We can then expand the root in (5.48) as

E± � E0∓A∓ 1
2
d2�2

A
� (5.49)

Up to terms of order d�/2A (cf. Exercise 5.5.4) the eigenvectors are �&+� and �&−�. If
the electric field is nonuniform, the molecule will be subject to a force

�F± = −��E± = ± d2

2A
���2� (5.50)

As in the Stern–Gerlach experiment, it is possible to separate the eigenstates �&±� of the
Hamiltonian (5.47) experimentally, using a nonuniform electric field;15 see Fig. 5.13.

14 The results of Section 2.3.2 can also be used.
15 In practice the field is chosen such that �&−� is focused and the state �&+� is defocused; cf. Basdevant and Dalibard [2002],

Chapter 6.
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Fig. 5.12. Values of the energy as a function of the electric field �.

Let us now assume that the electric field is an oscillating field:

��t�= �0 cos�t =
1
2
�0

(
ei�t+ e−i�t

)
� �0 real> 0� (5.51)

The Hamiltonian depends explicitly on time. It will be convenient to take as the basis
vectors the stationary states �&+� and �&−� ((5.44) and (5.45)) of the Hamiltonian (5.43),
rather than ��+� and ��−�. The Hamiltonian (5.47) in this new basis becomes

H�t�=
(

E0−A d��t�
d��t� E0+A

)
� (5.52)

Let us write down the general time-dependent state vector:

�1�t�� = c+�t��&+�+ c−�t��&−�� (5.53)

The evolution equations (4.13) are

i�
dc+
dt

= �E0−A�c++d��t� c−�

i�
dc−
dt

= d��t� c++ �E0+A�c−�
(5.54)

Thanks to our choice of basis vectors, when �� = 0

c+�t�= �+ exp�−i�+t�� c−�t�= �− exp�−i�−t��

where �+ = �E0 − A�/�, �− = �E0 + A�/�, and �+ and �− are constants. It will be
convenient to set �0 = 2A/�, which physically represents the angular frequency, about
1�5×1012 rad s−1, of the electromagnetic wave emitted when the molecule makes a transi-
tion from the excited level of energy �E0+A� to the ground state of energy �E0−A�, so
that 2A is the energy of the photon emitted in this transition. The frequency �0 is again
called the resonance frequency, and the strong resemblance to the NMR equations should be
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noticed. This resemblance is not surprising, as in both cases we are dealing with a two-level
system coupled to an oscillating perturbation. We can take the analogy farther by setting
E0 = 0, which simply amounts to redefining the zero of the energy so that�± = ∓�0/2.

When �0 �= 0 we can as before write

c+�t�= �+�t� exp�−i�+t�� c−�t�= �−�t� exp�−i�−t��

with the difference that �± are no longer constants. Now they are functions of time, and
we can repeat the calculation leading to (5.28)

i
dc±
dt

=
(
�±�±+ i

d�±
dt

)
exp�−i�±t��

Substituting these into (5.54), we find

i
d�+
dt

= d��t�

�
exp�−i�0t��−�t��

i
d�−
dt

= d��t�

�
exp�i�0t��+�t��

(5.55)

We have obtained a system of coupled differential equations, which shows that the
electric field induces transitions from the state �&+� to the state �&−� and back. Now let
us substitute the electric field (5.51) into (5.55):

i
d�+
dt

= d�0

2�

(
exp�i��−�0�t�+ exp�−i��+�0�t�

)
�−�t��

i
d�−
dt

= d�0

2�

(
exp�i��+�0�t�+ exp�−i��−�0�t�

)
�+�t��

(5.56)

These equations are exact, but they cannot be solved analytically.16 We shall obtain
an approximate solution first assuming that the perturbation due to the electric field is
weak: d�0 	 A, or, equivalently, d�0/�	�0. The Rabi frequency is now �1 = d�0/�.
The weak-field condition can therefore also be written as �1 	 �0, which is (almost)
always realized in practice. Under these conditions the functions �±�t� vary slowly over
a characteristic time �−1

0 : ∣∣∣d�±
dt

∣∣∣∼ �1��∓� 	 �0��∓��

The second hypothesis needed for a simple approximate solution of (5.56) is that the
frequency of the electric field be close to resonance, �� �0. This can be expressed as a
function of the detuning �= ��−�0�, so that we can state the preceding condition more
precisely as ��� 	 �0. Under these conditions the terms that behave as

exp�±i��+�0�t�∼ exp�±2i�0t�

16 Had we chosen a linearly polarized magnetic field in (5.22) instead of a circularly polarized field, we would also have
needed to appeal to the rotating wave approximation: see Exercise 5.5.6.
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in (5.56) vary very rapidly compared with the terms

exp�±i��−�0�t�∼ exp�±i�t��

and so their effect averaged over time is negligible. Omitting these terms, an approxima-
tion known as the rotating-wave or quasi-resonant approximation, we finally obtain the
following system of coupled equations:

i
d�±
dt

= �1

2
exp�i��−�0�t��∓�t�� (5.57)

This system of coupled differential equations, which is identical to that of (5.28) for
NMR up to an unimportant overall sign, can now be solved analytically. Again we stress
the fact that the two conditions �1 	 �0 and ��� 	 �0 are essential in going from (5.56)
to (5.57).
Let us now take the frequency of the electric field equal to the transition frequency,

so that we are sitting right on the resonance: � = �0. We assume that at time t = 0
the molecule is in the state �&−� of energy �E0+A� (a = 0, b = 1).17 To calculate the
probability p± of finding the molecule in the state �&±� at time t it is sufficient to
copy (5.33):

p−�t�= �
&−�1�t���2 = ��−�t��2 = cos2
(�1t

2

)
�

p+�t�= �
&+�1�t���2 = ��+�t��2 = sin2
(�1t

2

)
�

(5.58)

The molecule goes from the state �&−� to the state �&+� with angular frequency �1/2 =
d�0/2�.
Having put the molecule in the state �&−� by means of the filter described above, the

molecule is then allowed to pass through a cavity in which there is a field oscillating at
the resonance frequency (Fig. 5.13). The molecule crosses the cavity in a time interval t.
If this time is adjusted such that

d�0t

2�
= �

2
�

that is, a �-pulse, at the exit from the cavity, all the molecules that have passed through
will be in the state �&+�. By energy conservation the molecules deliver energy to the
electromagnetic field. This process is called stimulated (or induced) emission. If the
molecules are initially in the state �&+�, they will absorb energy from the electromagnetic
field in going to the state �&−�, a process called (stimulated) absorption.

The process of stimulated emission can be used for amplifying an electromagnetic field
provided that molecules can be produced in an excited state, that is, that a population

17 In the case of NMR the spin is initially in the lowest energy state, while in the case of the maser we are interested in the
opposite situation.
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Fig. 5.13. The ammonia maser.

inversion can be generated.18 The experimental apparatus shown schematically in Fig. 5.13
realizes such an amplification. The molecules selected in the state �&−� cross a cavity of
suitable length in which there is an electric field oscillating at the resonance frequency.
This apparatus is a prototype of a maser.19

5.3.3 Off-resonance transitions

Now let us imagine the system is away from resonance, � � �0 but � �= �0, and start
for example at time t = 0 from a molecule in the state �&+�. We wish to calculate the
probability p��* t� of finding the molecule in the state �&−� at time t. Exact solution of
Eqs. (5.57) gives the result (5.40) which can be written as

p��* t�= �2
1

��−�0�
2+�2

1

sin2
(
t

2

√
��−�0�

2+�2
1

)
� (5.59)

We recall that the Rabi frequency �1 = d�0/�. Although we can write down the exact
solution, it is useful to find a simple approximate solution of (5.57) when the condition

d�0t

�
= �1t	 1 or t	 �

d�0

= 1
�1

= �2 (5.60)

18 As we have already seen in (5.42), if E0 is the ground-state energy and E1 the excited-state energy, the ratio p1/p0
of the probabilities of finding an atomic or molecular system in the state E1 or E0 is given by the Boltzmann law:
p1/p0 = exp��E0−E1�/kBT� < 1. It is therefore necessary to depart from thermal equilibrium to obtain such a population
inversion.

19 Maser is an acronym for “microwave amplification by stimulated emission of radiation,” and laser for “light amplification
by stimulated emission of radiation.”
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is satisfied: that is, for sufficiently short times. This approximate solution is interesting
because it may be used in many problems that cannot be solved exactly and it sets the
stage for Chapter 9. At t = 0 we have

�+ = 1� �− = 0�

We are interested in a process in which the absorption of electromagnetic radiation makes
it possible to go from the ground state to an excited state. In solving (5.57) for �−�t� we
can assume that �+ � 1; in fact, owing to the condition (5.60) there is no time for �+ to
vary appreciably. The approximate solution of the equation giving �− is then obvious:

�−�t��
�1

2i

∫ t

0
dt′ exp�−i��−�0�t

′�=−�1

2

[
1− exp�−i��−�0�t�

�−�0

]
� (5.61)

This gives the transition probability at frequency �, p��* t�:

p��* t�= ��−�t��2 =
1
4
�2

1 t
2 sin

2���−�0�t/2�
���−�0�t/2�2

� (5.62)

It thus appears that p��* t� ∝ t2 for ���t 	 1, but this situation actually arises because
we are considering a single frequency �. In practice, the frequency spectrum is always
continuous, and we are going to take this into account. The ratio of the above result and
the result at resonance is

p��* t�
p��0* t�

= f��−�0* t�=
sin2���−�0�t/2�
���−�0�t/2�2

�

The function f��−�0* t� is plotted as a function of � in Fig. 5.14. At � = �0 it has a
sharp peak of width ∼2�/t. Using the fact that∫ �

−�
sin2 x
x2

dx = ��

–6π –4π –2π 2π

1

4π

I (δ )

f (δ = ω − ω0; t)

6π δ × t0

Fig. 5.14. The function f��−�0* t�.
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the area under the peak is 2�/t and f��−�0* t� is approximately a Dirac delta function:

f��−�0* t�=
sin2���−�0�t/2�
���−�0�t/2�2

� 2�
t

���−�0�� (5.63)

These results allow us to calculate the rate of the transition from the state �&+� to the
state �&−� due to absorption of electromagnetic radiation by the molecule in its ground
state.20 The incident energy flux � of an electromagnetic wave is given by the Poynting
vector �� = �0c

2 ��× ��:

� = �0c
2
 ��× ��� = 1

2
�0c�

2
0� (5.64)

where 
•� represents the time average and the electric field is of the form (5.51). Under
these conditions

p��* t�=
(
d�0

2�

)2

t2f��−�0* t�= 2�
(

d2

4��0�
2c

)
� t2f��−�0* t�� (5.65)

As we have already noted, the frequency of the electric field is not fixed exactly, but lies
in a spectrum of frequencies whose typical variation scale is !�. Let � ��� be the intensity
per unit frequency and assume that !�� �/t (Fig. 5.14). The transition probability
integrated over � is then

p�t� = 2�
(

d2

4��0�
2c

)
t2
∫ �

0
d�� ���f��−�0* t�

� 4�2

(
d2

4��0�
2c

)
� ��0� t�

where we have used the approximation (5.63) for f��−�0* t�. The remarkable fact is
that p�t� is proportional to t (and not to t2!), and that p�t�/t can be interpreted as a
transition probability per unit time 0 :

0 = 1
t
p�t�= 4�2

(
d2

4��0�
2c

)
� ��0�� (5.66)

The fact that the transition probability is proportional to d2 and � is characteristic of most
processes of absorption of electromagnetic radiation by an atomic or molecular system.
The conditions for this approximation to be valid are (i) t� �1 ∼ 1/!� and (ii) p�t�	 1,
that is, t	 �2 (see (5.60)). The time t must therefore lie in the range

�1 ∼
1
!�

	 t	 �2 ∼
1
�1

�

Of course this implies that �1 	 !�.

20 More precisely, these results apply to an ensemble of transitions from energy �E0−A� to energy �E0+A� (Fig. 5.11), where
it is assumed that molecules in the state �E0−A� are selected by the method described in Section 5.3.2.
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5.4 The two-level atom

The calculation which we have just presented lays the foundations of a general theory
of the absorption and emission of electromagnetic radiation by an atomic or molecular
system, up to the following restrictions.

• The approximation by a two-level system must be valid. This will be the case if we are
exclusively interested in transitions between two levels separated by an energy ��0 induced
by an electromagnetic field of frequency � � �0, that is, if we are near resonance. We shall
conventionally denote the state with the lowest energy as �g� (this will often be the ground state),
and the second as �e� (the excited state; Fig. 5.15). In the case of an atom, this approximation is
called the two-level atom approximation, and it provides a basic model for atomic physics and
lasers.

• The transition must be an electric dipole transition, that is, controlled by the matrix element of
the electric dipole moment operator �D acting between the two levels, and the condition �1 	�0

must be satisfied.
• The electromagnetic field is treated as a classical field. The treatment which we have just
presented is termed “semiclassical”: the atom is treated as a quantum system, but the field
remains classical. The “photon” behavior of the electromagnetic field is therefore ignored, and
it is not possible in principle to take into account the spontaneous emission of radiation by an
atom in an excited state (or at best it is possible to treat it heuristically).

• The results of Section 5.3.3 should be modified to take into account the finite lifetime of the
excited state (Section 14.4).

When a two-level atom interacts with an electromagnetic field, in practice these days
the field of a laser, the absorption probability is calculated following the scheme of
Section 5.3.3, but the orders of magnitude are of course different from those in the case
of the ammonia molecule. To take the example already mentioned in Section 1.5.3, the
energy difference ��0 between the ground state and the first excited state of rubidium
is about 1.6 eV, corresponding to a wavelength of 0.78 �m, at the limit of the infrared
region. This order of magnitude is typical of atomic physics; the transitions generally
used are in the visible region or in the near ultraviolet or near infrared.
We have already emphasized the fact that spontaneous emission cannot in principle

be described by a semiclassical treatment, because it involves a transition from an initial
state with zero photons to a final state with one photon – a photon is created at the
instant the atom de-excites. Only a quantum theory of the electromagnetic field permits

(c)

e

g

e

g

e

g

(a) (b)

Fig. 5.15. (a) Spontaneous emission. (b) Stimulated emission. (c) Absorption.
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the rigorous description of spontaneous emission. Although our classical treatment of
the electromagnetic field does not admit an interpretation in terms of photons, we can
nevertheless try to describe heuristically the process of Section 5.3.3 using this concept.
For example, we can interpret the energy gain of the field as an increase of the number
of photons in the cavity. The process

�&−�+n photons→ �&+�+ �n+1� photons (5.67)

then represents stimulated emission. Stimulated absorption is the reverse process:

�&+�+ n photons→ �&−�+ �n−1� photons� (5.68)

Finally, the spontaneous emission of a photon occurs when the excited level �&−� de-
excites in the absence of an electromagnetic field:

�&−�+0 photon→ �&+�+1 photon� (5.69)

These processes are shown schematically in Fig. 5.15. It is important to distinguish
between stimulated emission, which is coherent with the incident wave and proportional
to the incident intensity, and spontaneous emission, which is random, as it has no phase
relation to the applied field and is not influenced by external conditions.21

The necessity of spontaneous emission was first demonstrated by Einstein. Let us
study a collection of atoms with two levels E1 and E2, E1 < E2, located in a cavity at
temperature T . The cavity contains radiation obeying Planck’s law (1.22). If N is the
total number of atoms and N1�t� and N2�t� are the numbers of atoms in the states E1 and
E2, then

N1�t�+N2�t�= N = constant�

assuming that only the states E1 and E2 have significant populations.22 The numbers
N1�t� and N2�t� satisfy the kinetic equations

dN1

dt
=−dN2

dt
= �−AN1+BN2������ (5.70)

where �� = E2−E1, A���� is the rate per unit time of E1 → E2 transitions due to
stimulated absorption in the state E1, and B���� is the rate per unit time of E2 → E1

transitions due to stimulated emission. These rates are proportional to the energy density
����. At equilibrium

dN1

dt
= dN2

dt
= 0�

and the population ratio is given by the Boltzmann law (1.12):

A

B
= N

eq
1

N
eq
2

= exp
(
−E1−E2

kBT

)
= exp

(
��

kBT

)
� (5.71)

21 Except in the following exceptional case: if the atom is trapped between highly reflective mirrors and held at a very low
temperature, it is possible to modify spontaneous emission. This is called cavity electrodynamics; see, for example, Grynberg
et al. [2005], Complement VI.1.

22 This will be the case if, for example, the other states En are such that En−E1 � E2−E1 and En−E1 � kBT .
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This result is not physically acceptable, because A and B can only depend on the char-
acteristics of the interaction between the electromagnetic field and the atom, and not
on temperature. Therefore, (5.70) must be corrected to include spontaneous emission
independent of ����:

dN1

dt
= �−AN1+BN2�����+B′N2� (5.72)

The condition dN1/dt = 0 combined with the Boltzmann equilibrium condition gives the
following for ����:

����= B′

AN1/N2−B
= B′

A exp
(

��

kT

)
−B

� (5.73)

Comparison with (1.22) shows that A= B and that

B′

A
= ��3

�2c3
�

We note that we could just as well have based our arguments on the photon density
n��� = ����/�� or any quantity proportional to the energy density ����, at the price
of a simple redefinition of A and B. Let us calculate B′ explicitly. According to (1.16),
���� is an energy density per unit frequency, and the intensity � ��� in (5.66) is related
to ���� as

� ���= c �����

which by comparison with (5.66) gives the probability of stimulated emission:

A= 4�2c

(
d2

4��0�
2c

)
�

We can then derive the probability of spontaneous emission B′:23

B′ = ��3

�2c3
A= 4�3

c2

(
d2

4��0�c

)
� (5.74)

In the case of atomic physics, the order of magnitude of the dipole moment d is d∼ qea,
where a is the radius of the electron orbit, and using the substitution �→ �0 we obtain
the estimate

B′ ∼ �
a2�3

0

c2
∼ �5

(
mec

2

�

)
� (5.75)

where � = q2
e/4��0�c is the fine-structure constant. This estimate agrees with (1.44),

which was based on a classical calculation of the radiation. A complete calculation of B′

will be given in Section 14.3.4, where we shall re-examine (5.75).

23 Equation (5.74) is sometimes written with an additional overall factor 1
3 . This factor comes from an angular average.

Alternatively one can replace d2 by 
d2�, where 
 � denotes an angular average; see (14.52).
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Although NMR and two-level atoms display interesting analogies and analogous math-
ematical treatment, there are important differences of principle. Indeed the NMR mea-
surement is not a projective measurement as defined in (4.7), but it uses a collective
signal, built by collecting individual signals from a large number of molecules �∼1020�.
The photon energy of the transition between the two Zeeman levels of the nuclear spin is
much too small (∼1�eV) to be detected on a single molecule, and another consequence
is that spontaneous emission is essentially negligible. The NMR detector is a coil of wire,
wrapped around the sample (see Fig. 5.8). As the magnetization cuts across the wire, it
induces an electromotive force which can be detected, and the detection method is best
described classically.

5.5 Exercises

5.5.1 An orthonormal basis of eigenvectors

Show by explicit calculation that the vectors �&s� (5.12) form an orthonormal basis:

&s′ �&s� = �s′s.

5.5.2 The electric dipole moment of formaldehyde

1. We wish to model the behavior of the two � electrons of the double bond in the formaldehyde
molecule H2–C=O. Using the fact that oxygen is more electronegative than carbon, show that
the Hamiltonian of an electron takes the form(

EC −A

−A EO

)

with EO <EC, where EC (EO) is the energy of an electron localized at a carbon (oxygen) atom.
2. We define

B = 1
2
�EC−EO� > 0

and the angle  by

B =
√
A2+B2 cos � A=

√
A2+B2 sin  �

Calculate as a function of  the probability of finding a � electron localized at a carbon or
oxygen atom.

3. We assume that the electric dipole moment d of formaldehyde is exclusively due to the charge
distribution on the C=O axis. Express this dipole moment as a function of the distance l

between the carbon and oxygen atoms, the proton charge qp, and  . The experimental values
are l= 0�121 nm and d = qp×0�040 nm.

5.5.3 Butadiene

The butadiene molecule C4H6 has a linear structure (Fig. 5.16). Its �C4H6�
4+ skeleton

formed of  electrons involves four carbon atoms numbered n = 1 to n = 4. The state
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Fig. 5.16. The chemical formula of butadiene.

of a � electron localized near the nth carbon atom is designated ��n�. It is convenient
to generalize to a linear chain of N carbon atoms, numbering them n = 1� � � � �N . The
Hamiltonian of a � electron acts on the state ��n� as follows:

H��n� = E0��n�−A���n−1�+ ��n+1�� if n �= 1� N�

H��1� = E0��1�−A��2��
H��N � = E0��N �−A��N−1��

where A is a positive constant. We note that the states ��1� and ��N � play a special role,
because in contrast to benzene there is no cyclic symmetry in this molecule.

1. Write down the explicit matrix for H in the ��n� basis for N = 4.
2. The most general state for a � electron is

�&� =
N∑

n=1

cn��n��

To adapt the method used in the case of cyclic symmetry to the present case, we introduce two
fictitious states ��0� and ��N+1� and two components c0 = cN+1 = 0, which allows us to rewrite
�&� as

�&� =
N+1∑
n=0

cn��n��

Show that the action of H on the state �&� is written as

H�&� = E0�&�−A
N∑

n=1

�cn−1+ cn+1���n��

3. Inspired by the method used in the case of cyclic symmetry, we seek cn in the form

cn =
c

2i

(
ein�− e−in�

)
�

which ensures that c0 = 0. Show that we must choose

�= �s

N +1
� s = 1� � � � �N�

if we also wish to have cN+1 = 0.
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4. Show that the eigenvalues of H are labeled by an integer s:

Es = E0−2A cos
�s

N +1
�

and give the expression for the corresponding eigenvectors �&s�. Show that the normalization
constant c is

√
2/�N +1�. [Hint: cf. (5.15).]

5. In the case of butadiene N = 4, find the numerical values of Es and the eigenvector components.
Show that the ground-state energy of the ensemble of four � electrons is

E0 � 4�E0−A�−0�48A�

Is the gain due to the delocalization of the � electrons belonging to the chain important as
regards the chemical formula of Fig. 5.16? Qualitatively sketch the probability density for these
electrons for s = 1 and s = 2.

6. What would the ground-state energy of a hypothetical cyclic (i.e., having the form of a square)
molecule C4H4 be?

7. We define the order of a bond l between two carbon atoms n and n+1 as

l= 1+∑
s


�n�&s�
&s��n+1��

where the sum runs over the states �&s� occupied by the � electrons. The factor 1 corresponds
to the  electrons. Show that the order of the bond is l= 2 for ethylene. Calculate the order of
the bonds for benzene and of the various bonds of butadiene and comment on the results. Why
is the central bond of butadiene shorter than a simple bond (1.46 Å instead of 1.54 Å)?

5.5.4 Eigenvectors of the Hamiltonian (5.47)

Show that in the case where the electric field is independent of time and when d�/A	 1,
the normalized eigenvector of H corresponding to the eigenvalue E0−A is given to order
d�/A by

�& ′
+� =

1√
2

(
1−d�/�2A�
1+d�/�2A�

)
�

What is the other eigenvector?

5.5.5 The hydrogen molecular ion H+
2

The hydrogen molecular ion H+
2 is formed of two protons and an electron. The two

protons are located on an axis which we choose to be the x axis, at points −r/2 and r/2.
They are assumed to be fixed, in agreement with the Born–Oppenheimer approximation.

1. Assuming that the electron is located on the x axis, express its potential energy V�x� as a function
of its position x and e2 = q2

e/4��0, where qe is the electron charge, and sketch it qualitatively.
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2. If the two protons are very far apart, r � l, the electron is either localized near the proton on
the right (the state ��1�), or near the proton on the left (the state ��2�). We assume that these
states both correspond to the ground state of the hydrogen atom of energy

E0 =−1
2
mee

4

�2
=− e2

2a0
�

where me is the electron mass and a0 is the Bohr radius: a0 = �2/mee
2. What is the relevant

length scale l in the relation r � l?
3. We shall treat the ion H+

2 as a two-level system with basis states (��1�� ��2�) and 
�i��j� = �ij .
Justify the following form of the Hamiltonian with the choice A > 0:

H =
(

E0 −A

−A E0

)
�

What are the eigenstates �&+� and �&−� of H and the corresponding energies E+ and E−,
E+ <E−? Qualitatively sketch the wave functions &±�x�= 
x�&±� of the electron on the x axis.

4. The parameter A is a function of the distance r between the protons, A�r�. Justify the fact that
A is an increasing function of r and limr→�A�r�= 0. The electron energy is then a function of
r, E±�r�.

5. Show that the total energy of the ion E′
±�r� must contain an additional term +e2/r. What is the

physical origin of this term?
6. We parametrize A�r� as

A�r�= c e2 exp
(
− r

b

)
�

where b is a length and c an inverse length. Give the expression for the two energy levels E′
+

and E′
− of the ion. Let

!E�r�= E′
+�r�−E0

be the energy difference between the ground state of the ion and that of the hydrogen atom.
Show that !E�r� can pass through a minimum at a value r = r0 and derive the expression

!E�r0�=
e2

r0

(
1− b

r0

)
�

What condition must hold for b and r0 in order for the ion H+
2 to be a bound state?

7. The experimental values are r0 � 2a0 and !E�r0� � E0/5 = −e2/10a0. Compute b and c as
functions of a0.

5.5.6 The rotating-wave approximation in NMR

1. Instead of the rotating field of (5.22), we shall use a field �B1�t� parallel to Ox:

�B1�t�= 2B1x̂ cos��t−'��

We define the state vector ��̃�t�� in the rotating frame with angular velocity � as

��̃�t�� = exp
[
− i�zt

2

]
���t�� ��̃�t = 0�� = ���t = 0���
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Why can one call ��̃�t�� the state vector in the rotating frame? Show that the time evolution of
��̃�t�� is governed by a Hamiltonian H̃�t�

i�
d��̃�
dt

= H̃�t���̃�t��

where

H̃�t�= exp
[
− i�zt

2

]
H�t� exp

[
i�zt

2

]
�

More generally, for any operator A�t�, we have in the rotating frame

Ã�t�= exp
[
− i�zt

2

]
A�t� exp

[
i�zt

2

]
�

2. Show that the preceding definition gives for the operators ± = �x± iy�/2

̃±�t�= exp
[
− i�zt

2

]
± exp

[
− i�zt

2

]
= e∓i�t±�

Hint: establish the following differential equation from the definition of ̃±�t�

d̃±�t�
dt

=∓i�̃±�t��

Writing x = ++−, obtain the Hamiltonian in the rotating frame

H̃�t�= �

2
�z−

�

2
�1�x cos'+y sin'�+��1

(
+e

−2i�tei'+−e
2i�te−i'

)
where � is the detuning, � = �−�0. Use the rotating wave approximation to eliminate the
terms between square brackets in the preceding equation. The Hamiltonian H̃�t� is now time-
independent!

3. Show that at resonance, the evolution operator Ũ �t� in the rotating frame given by

Ũ �t�= exp

[
−iH̃t

�

]
= exp

[
i�1t�x cos'+y sin'�

2

]

is a rotation operator of angle −�1t about an axis n̂ of components

n̂x = cos' n̂y = sin' n̂z = 0�

Thus the angle ' allows one to choose the rotation axis. One may (rightly) be puzzled by the
fact that ' could be eliminated by changing the origin of time. However, this angle is important
in a sequence of pulses: then the relative phase between the pulses is physically relevant.

4. Let us now take for simplicity ' = 0. In order to compute the matrix form of the evolution
operator in the rotating frame, we write

exp�−iH̃t/h�= exp
[
−i

+t

2

(
�

+
z−

�1

+
x

)]

with +=√�2+�2
1. The vector n̂

n̂=
(
n̂x =−�1

+
� n̂y = 0� n̂z =

�

+

)
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is a unit vector. Using (3.67), obtain the following expression

exp�−iH̃t� =
(
cos

+t

2
− i

�

+
sin

+t

2

)
�+�
+�+ i

�1

+
sin

+t

2

(
�+�
−�+ �−�
+�

)

+
(
cos

+t

2
+ i

�

+
sin

+t

2

)
�−�
−��

5.6 Further reading

Discussions of elementary quantum chemistry can be found in Feynman et al. [1965],
Vol. III, Chapter 15; F. Goodrich, A Primer of Quantum Chemistry, New York: Wiley
(1972), Chapter 2; or C. Gatz, Introduction to Quantum Chemistry, Columbia:
C. E. Merrill (1971), Chapters 10–12. Two-level systems with resonant and quasi-resonant
interactions are discussed by Feynman et al. [1965], Vol. III, Chapters 8 and 9 and by
Cohen-Tannoudji et al. [1977], Chapter IV. An excellent introduction to NMR can be
found in, for example, J. W. Akitt, NMR Chemistry: An Introduction to Modern NMR
Spectroscopy, New York: Chapman & Hall (1992) or Levitt [2001]. The interaction of a
two-level atom with an electromagnetic field is studied at an advanced level by Grynberg
et al. [2005], Chapter II. The reader will find additional details on the molecular ion H+

2

in Cohen-Tannoudji et al. [1977], Complement GXI.
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Entangled states

Up to now we have limited ourselves to states of a single particle. In the present chapter we
shall introduce the description of two-particle states. Once this case is understood, it will
be easy to generalize to any number of particles. States of two (or more) particles lead to
very rich configurations called entangled states. A remarkable feature is that two entangled
quantum particles, even at arbitrarily large spatial separations, continue to form a single
entity and no classical probabilistic model is able to reproduce the correlation between
particles. In the first section we shall present the essential mathematical formalism, that
of the tensor product. This will permit us in Section 6.2 to describe quantum mixtures
using the state operator formalism. Section 6.3 is devoted to the study of important
physical consequences like the Bell inequalities and interference experiments involving
entangled states, which will lead us to a deeper understanding of quantum physics.
Finally, in the last section we shall briefly review applications to measurement theory
and quantum information theory. The latter is undergoing rapid development at present
and has applications to quantum computing, cryptography, and teleportation.

6.1 The tensor product of two vector spaces

6.1.1 Definition and properties of the tensor product

We wish to construct the space of states of two physical systems which we assume
initially to be completely independent. Let �N

1 and �M
2 be the spaces of states of the two

systems, of dimension N and M , respectively. Since the two systems are independent,
the global state is defined by specifying the state vector ��� ∈�N

1 of the first system and
the state vector �&� ∈�M

2 of the second. The pair (���� �&�) can be viewed as a vector
belonging to a vector space of dimension NM , called the tensor product of the spaces
�N

1 and �M
2 and denoted �N

1 ⊗�M
2 . It will be defined precisely below.

We choose an orthonormal basis �n� of �N
1 and an orthonormal basis �m� of �M

2 on
which we decompose the arbitrary vectors ��� ∈�N

1 and �&� ∈�M
2 :

��� =
N∑

n=1

cn �n�� �&� =
M∑

m=1

dm �m�� (6.1)
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The space �N
1 ⊗�M

2 will be defined as a space of NM dimensions where the pairs
(�n�� �m�), denoted �n⊗m� or �n�⊗ �m�, form an orthonormal basis


n′ ⊗m′�n⊗m� = �n′n�m′m� (6.2)

and the tensor product of the vectors ��� and �&�, denoted ��⊗&� or ���⊗ �&�, is a
vector with components cndm in this basis:

��⊗&� =∑
n�m

cndm�n⊗m�� (6.3)

The linearity of the tensor product can be verified immediately:

��⊗ �&1+
&2�� = ��⊗&1�+
��⊗&2��
���1+
�2�⊗&� = ��1⊗&�+
��2⊗&�� (6.4)

We must also check that the definition of the tensor product is independent of the choice
of basis. Let �i� and �j� be two orthonormal bases of�N

1 and�M
2 obtained from the bases

�n� and �m� by the unitary transformations R�R−1 = R†� and S �S−1 = S†�, respectively:

�i� =∑
n

Rin �n�� �j� =∑
m

Sjm �m��

According to (6.3), the tensor product �i⊗ j� is given by

�i⊗ j� =∑
n�m

RinSjm �n⊗m��

Moreover, the decomposition of ��� and �&� in the bases �i� and �j�, respectively, can be
written as

��� =
N∑
i=1

ci �i�� �&� =
M∑
j=1

dj �j��

Direct calculation (Exercise 6.4.1) shows that∑
i�j

cidj�i⊗ j� = ��⊗&��

where ��⊗&� is defined by (6.3). The result for ��⊗&� is then independent of the choice
of basis. When the two systems are no longer independent, we must state a fifth postulate.

Postulate V

The space of states of two interacting quantum systems is �N
1 ⊗�M

2 .1

It is reasonable to assume that interactions cannot modify the space of states. The most
general state vector will be of the form

�%� =∑
n�m

bnm �n⊗m�� (6.5)

1 Nevertheless, we shall see in Chapter 13 that in the case of two identical particles (where N =M) only a part of �N
1 ⊗�N

2
corresponds to physical states.
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In general, the vector �%� cannot be written as a tensor product ��⊗&�. This would
require that it be possible to factorize bnm in the form cndm, which is impossible except
for independent systems. The state vectors which can be written as a tensor product form
a subset (but not a subspace) of �N

1 ⊗�M
2 . A state vector which cannot be written in

the form of a tensor product is termed entangled state.
The tensor product C = A⊗B of two linear operators A and B acting respectively in

the spaces �N
1 and �M

2 is defined by its action on the tensor product vector ��⊗&�:
�A⊗B���⊗&� = �A�⊗B&�� (6.6)

and its matrix elements in the basis �n⊗m� of �N
1 ⊗�M

2 are then


n′ ⊗m′�A⊗B�n⊗m� = An′nBm′m� (6.7)

In general, an operator C acting on �N
1 ⊗�M

2 will not be of the form A⊗B. Its matrix
elements will be


n′ ⊗m′�C�n⊗m� = Cn′m′*nm�

and, except in special cases, it will not be possible to write Cn′m′*nm in the factorized form
An′nBm′m. Two interesting special cases of (6.6) are A = I1 and B = I2, where I1 and I2
are the identity operators of �N

1 and �M
2 :

�A⊗ I2���⊗&� = �A�⊗&�� �I1⊗B���⊗&� = ��⊗B&�� (6.8)

In terms of the matrix elements, we have


n′ ⊗m′�A⊗ I2�n⊗m� = An′n�m′m� 
n′ ⊗m′�I1⊗B�n⊗m� = �n′nBm′m� (6.9)

Finally, if ��� is an eigenvector of A with eigenvalue a (A��� = a���), then ��⊗&� will
be an eigenvector of A⊗ I2 with eigenvalue a:

�A⊗ I2���⊗&� = a��⊗&�� (6.10)

The identity operators I1 and I2 are often not written out explicitly, and one finds (6.10)
written as

A��⊗&� = a��⊗&� or simply A��&� = a��&�� (6.11)

with the symbol for the tensor product omitted. Since the notation⊗ is rather cumbersome,
it will often be omitted when there is no possibility of confusion.

6.1.2 A system of two spins 1/2

Let us illustrate the notion of the tensor product by constructing the space of states of a
system of two spins 1/2. The spaces of states of the two spins are the two-dimensional
spaces �1 and �2. The space of states of the system of two spins � =�1⊗�2 is
four-dimensional (4= 2×2). We choose the orthonormal bases of �1 and �2 to be the
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eigenstates ��1� and ��2�, �i =±1, of the operators S1z and S2z projecting the spin on the
z axis, where

S1z��1� =
1
2

��1 ��1�� S2z��2� =
1
2

��2 ��2��

According to (6.5), the states of the two-spin system are decomposed on the orthonormal
basis ��1⊗�2�; furthermore, we have, for example,

�S1z⊗ I2���1⊗�2� =
1
2

��1 ��1⊗�2�� �S1z⊗S2z���1⊗�2� =
1
4

�2 �1�2��1⊗�2��

Following (6.11), we shall often use the abbreviated notation ��1�2� instead of ��1⊗�2�
and S1zS2z instead of S1z⊗S2z. In this notation the preceding equations become

S1z��1�2� =
1
2

��1 ��1�2�� S1zS2z��1�2� =
1
4

�2 �1�2��1�2�� (6.12)

Let �&1� and �&2� be two arbitrary (normalized) vectors of �1 and �2:

�&1� = 
1�+1�+�1�−1�� �
1�2+��1�2 = 1�

�&2� = 
2�+2�+�2�−2�� �
2�2+��2�2 = 1�

According to (6.3), the tensor product �&1⊗&2� is given by (�+1⊗+2� = �+⊗+� etc.)
�&1⊗&2� = 
1
2�+⊗+�+
1�2�+⊗−�+
2�1�−⊗+�+�1�2�−⊗−�� (6.13)

An arbitrary vector �-� ∈� is

�-� = ��+⊗+�+��+⊗−�+��−⊗+�+��−⊗−�� (6.14)

This vector is not in general of the form (6.13); comparing (6.13) and (6.14), we see that
a tensor product vector satisfies

��= ���

and a priori there is no reason for this condition (which is necessary and sufficient) to be
valid. When �-� is not of the form (6.13), we are thus dealing with an entangled state of
two spins.
An important special case is the entangled state

�%� = 1√
2

(
�+⊗−�−�−⊗+�

)
�

or in abbreviated notation (6.12)

�%� = 1√
2

(
�+−�−�−+�

)
� (6.15)
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This state is manifestly entangled because � = � = 0 and � = −� = 1/
√
2, and so

�� �= ��. A remarkable property of �%� is its invariance under rotations, i.e., it is a
scalar under rotations.2 In fact, as we have seen in Section 3.2.4, the transform �&�� by
a rotation � of a state �&� is obtained by applying the operator D1/2 (3.58), which is an
SU�2� matrix, that is, a 2× 2 unitary matrix of unit determinant (Exercise 3.3.6). The
transforms of �+� and �−� are

�+�� = a �+�+b �−��
�−�� = c �+�+d �−�� (6.16)

with ad−bc = 1.3 We then obtain

�+−�� = ac �++�+ad �+−�+bc �−+�+bd �−−�� (6.17)

and, making the exchange +↔−,

�−+�� = ac �++�+ad �−+�+bc �+−�+bd �−−��
we see that �%� transforms under rotations as

�%�� =
1√
2

(
�+−��−�−+��

)
= �ad−bc��%� = �%�� (6.18)

6.2 The state operator (or density operator)

6.2.1 Definition and properties

Let us consider a system of two particles described by a state vector �-� ∈�1⊗�2. If
�-� is a tensor product ��1⊗�2�, the state vector of particle 1 is ��1�. But what happens
if �-� is not a tensor product, or, in other words, if �-� is an entangled state? Can we still
regard particle 1 as having a state vector? We shall see that the answer to this question
is no: in general, a state vector cannot be associated with particle 1. This example shows
that we must generalize our description of quantum systems, and this generalization will
go well beyond the special case we have just mentioned. When a quantum system can be
described by a vector in a Hilbert space of states, we say that we are dealing with a pure
state or a pure case; this will be the situation if complete information about the system
is available. When the information on the system is incomplete, we are dealing with a
mixture, and a quantum system is then described mathematically by a state operator.4

The introduction of the state operator will allow us to reformulate postulate I of Chapter 4
so as to describe physical situations more general than those imagined so far, such as
cases in which only partial information is available on the system under consideration.

2 In Section 10.6.1 we shall see that �%� is a state of zero angular momentum and therefore a scalar under rotations.
3 And also c =−b∗, d = a∗, but we shall not use these relations here.
4 This is another instance where the common term “density operator” is inappropriate. This terminology was introduced in the
case of wave mechanics (Chapter 9), where the diagonal elements of � in position space, 
x���x�, or in momentum space,

p���p�, are indeed densities. However, “density operator” conceals the fact that the operator contains essential information
on the phases. We prefer to use “state operator” by analogy with “state vector”. “Statistical operator” would also be possible.
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When we are dealing with a pure state, being given the state vector ��� ∈� describing
a quantum system is equivalent to being given the projector 
� = ���
�� onto the state
���. In some sense, 
� is a better mathematical description because the arbitrary phase
of ��� disappears: 
� is invariant when ��� is multiplied by a phase factor

���→ ei� ����
and then there is a one-to-one correspondence between the physical state and 
� rather
than correspondence up to a phase. The expectation value of a physical property A is
expressed simply as a function of 
�, which is, as we shall see, the simplest case of a state
operator. Let us introduce an orthonormal basis �n� of � to compute this expectation
value:


A� = 
��A��� =∑
n�m


��n�
n�A�m�
m���

=∑
n�m


m���
��n�
n�A�m�

=∑
m


m�
� A�m� = Tr�
�A�� (6.19)

Now we can generalize to a mixture. There we know only that the quantum system has
probability p� (0 ≤ p� ≤ 1�

∑
� p� = 1) of being in the state ����. The states ���� are

assumed to be normalized (
������ = 1) but not necessarily orthogonal. By definition,
the state operator � describing this quantum system is

�=∑
�

p�����
��� =
∑
�

p�
��
� (6.20)

The expectation value of a physical property A is obtained by immediate generalization
of (6.19). In fact, 
A��, the expectation value of A in the state ����, is


A�� = 
���A�����
and it is associated with the weight p� when calculating the global expectation value 
A�.
The expectation value in the mixture is then


A� =∑
�

p�
A�� =
∑
�

p�
���A���� = Tr��A� � (6.21)

The weights p� are fixed by the physical problem under consideration. Let us give two
important examples.

• The quantum system is a subsystem of a larger system in a pure state. The weights p� are then
determined by taking a partial trace according to the procedure defined in (6.30) below.

• The system is described by equilibrium statistical mechanics. The weights p� are then obtained
by maximizing the von Neumann entropy SvN = −Tr � ln�, which corresponds physically to
maximizing the missing information.
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The fundamental properties of � that follow immediately from the definition (6.20) are

• � is Hermitian: �= �†;
• � has unit trace: Tr �= 1;
• � is a positive operator:5 
������ ≥ 0 for any ���;
• a necessary and sufficient condition for � to describe a pure state is �2 = �. In fact, since �= �†,
the condition �2 = � implies that � is a projector. Since Tr �= 1, the dimension of the projection
vector space is unity6 and � has the form ���
��.

Inversely, a Hermitian operator which is positive and has unit trace can be interpreted as a
state operator. In fact, since � is Hermitian, we can write down its spectral decomposition
(which is not unique if there are degenerate eigenvalues)

�=∑
n

pn�n�
n��

and a possible way of preparing the quantum system is to construct a mixture of states
�n� with probabilities pn. However, whereas specifying p� and ���� in (6.20) determines
� uniquely, the reverse is not true: many different preparations can correspond to a single
state operator, as we shall see explicitly for the example of spin 1/2. In other words, a
state operator does not specify a unique microscopic configuration, but it is sufficient for
calculating the expectation values of physical properties using (6.21).

6.2.2 The state operator for a two-level system

As an example, let us find the most general form of the state operator for a two-level
quantum system, in which case the Hilbert space is two-dimensional. There are many
applications of this: the description of the polarization of a massive spin-1/2 particle or
of a photon, the state of a two-level atom, and so on. The standard two-level system
is that of spin 1/2, and so we shall use this particular case to define the notation and
terminology. Let us choose two basis vectors of the space of states, �+� and �−�. These
might be, for example, the eigenvectors of the z component of the spin. In this basis the
state operator is represented by a 2×2 matrix, the state matrix (or density matrix) �. This
matrix is Hermitian and has unit trace. The most general such matrix is

�=
(

a c

c∗ 1−a

)
� (6.22)

where a is a real number and c is a complex number. Equation (6.22) does not yet define
a state matrix, because in addition � must be positive. The eigenvalues 
+ and 
− of �
satisfy


++
− = 1� 
+
− = det �= a�1−a�−�c�2�

5 A (strictly) positive operator is Hermitian and has (strictly) positive eigenvalues and vice versa; see Exercise 2.4.10.
6 In general, if 
 is a projector, Tr
 is equal to the dimension of the projection vector space. To see this it is sufficient to use
a basis in which 
 is diagonal.



6.2 The state operator (or density operator) 165

and we must have 
+ ≥ 0 and 
− ≥ 0. The condition det � ≥ 0 implies that 
+ and

− have the same sign, and the condition 
+ +
− = 1 implies that 
+
− reaches its
maximum for 
+
− = 1/4, so that finally

0 ≤ a�1−a�−�c�2 ≤ 1
4
� (6.23)

The necessary and sufficient condition for � to describe a pure state is

det �= a�1−a�−�c�2 = 0�

As an exercise, the reader should calculate a and c for the state matrix describing the
normalized state vector �1� = 
�+� +��−� with �
�2 + ���2 = 1, and show that the
determinant of this matrix vanishes.
It is often convenient to decompose the state matrix (6.22) on the basis of Pauli matrices

i. In fact, any 2×2 matrix can be written as a linear combination of the unit matrix I

and the i (Exercise 3.3.5):

�= 1
2

(
1+bz bx− iby
bx+ iby 1−bz

)
= 1

2

(
I+�b · �

)
� (6.24)

The vector �b, called the Bloch vector, must satisfy ��b�2 ≤ 1 owing to (6.23). The pure
state, which corrresponds to ��b�2 = 1, is also termed completely polarized, the case �b= 0
unpolarized or of zero polarization, and the case 0< ��b�< 1 partially polarized. To obtain
the physical interpretation of the vector �b, we calculate the expectation value of the spin
�S = 1

2 �� using Trij = 2�ij . We find


Si� = Tr ��Si�=
1
2

�bi� (6.25)

so that ��b/2 is the expectation value 
�S� of the spin.
Let us show that several different preparations can lead to the same state matrix when

��b�< 1. We set �b= �OP, construct a sphere of center O and unit radius, and draw a chord
of the sphere passing through the tip of �b. This chord cuts the sphere at two points P1

and P2, and we define the two unit vectors

n̂1 = �OP1� n̂2 = �OP2�

The Bloch vector can be written as

�b = n̂1+
�n̂2− n̂1�= �1−
�n̂1+
n̂2� 0< 
 < 1�

The state matrix defined by the Bloch vector �b then is

�= 1
2

(
I+ � · �b

)
= 1

2
�1−
�

(
I+ � · n̂1

)+ 1
2


(
I+ � · n̂2

)
� (6.26)

We can prepare the corresponding quantum state using a statistical mixture with prob-
ability p1 = �1−
� for the state �+� n̂1� and probability p2 = 
 for the state �+� n̂2�
(cf. (3.56)):

�= p1�+� n̂1�
+� n̂1�+p2�+� n̂2�
+� n̂2��
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Since there are an infinite number of chords passing through the tip of �b, there are an
infinite number of ways of preparing the quantum state (6.26).
It is essential to clearly distinguish between a pure state and a mixture. Let us suppose,

for example, that a spin 1/2 is in the pure state:

�&� = 1√
2
��+�+ �−��� (6.27)

Analysis using a Stern–Gerlach device in which the magnetic field �B is parallel to Oz

will give a 50% probability of upward deflection and 50% probability of downward
deflection. However, the state (6.27) is an eigenstate of Sx, �&� = �+� x̂�, and so if �B is
parallel to Ox, 100% of the spins must be deflected toward positive x; the Bloch vector
is �b = �1�0�0�. When �b = 0, the unpolarized case with state matrix

�= 1
2
�+�
+�+ 1

2
�−�
−�� (6.28)

the probabilities of deflection toward positive and negative z will be of 50% as for (6.27).
However, for any orientation of the Stern–Gerlach apparatus, there will always be 50%
of the spins deflected in the �B direction and 50% in the −�B direction. The difference
between the two cases is that in the pure state (6.27), where the state is completely
polarized, there is a well-defined phase relation between the amplitudes for finding �&�
in the states �+� and �−�. The pure state �&� is a coherent superposition of the states
�+� and �−�, and the mixture (6.28) is an incoherent superposition of the same states.
The phase information is lost, at least partially, in a mixture (because partially polarized
states 0 < ��b� < 1 can certainly exist), and it is completely lost in an unpolarized state.
In a given basis, the phase information is contained in the off-diagonal elements of the
matrix �. For this reason these elements are called coherences of the state operator.

The same remarks apply to the polarization of light, or the polarization of a photon.
Unpolarized light is an incoherent superposition of light linearly polarized 50% in the Ox
direction and 50% in the Oy direction, with no phase relation between the two. Light with
right- or left-handed circular polarization, �R� or �L�, is described by the vectors (3.24)

�R� = − 1√
2
��x�+ i�y��� �L� = 1√

2
��x�− i�y���

Fifty percent of this light will be stopped by a linear polarizer oriented in the Ox

direction, or, more generally, in any direction, just as for unpolarized light. However,
the corresponding photons will be transmitted with either 100% or 0% probability by
a circular polarizer, while if the photons are not polarized any �
��� polarizer (see
Section 3.1.1) will allow photons through with 50% probability.
In general, a characteristic of a pure state is that there exists a maximal test such that

one of its outcomes occurs with 100% probability, whereas for a mixture there is no
maximal test possessing this property (Exercise 6.4.3). In the case of spin 1/2, this means
that for a mixture there is no orientation of �B such that 100% of the spins will be deflected
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in the �B direction, and in the case of the photon there is no �
��� polarizer which allows
all photons to pass through with unit probability.

6.2.3 The reduced state operator

As an application of the state operator formalism, let us consider a system of two particles
described by a state operator � acting in the space �1⊗�2. What then is the state
operator of particle 1? To answer this question, let us examine a physical property C

which depends solely on this particle. Then C has the form A⊗ I2, where A acts in �1.
We want to find a state operator ��1� acting in �1 such that


A� = Tr ���1�A�� (6.29)

In the space �1⊗�2 the expectation value of A⊗ I2 is given by


A⊗ I2� = Tr��A⊗ I2���=
∑

n1m1*n2m2

An1m1
�n2m2

�m1m2*n1n2
= ∑

n1m1

An1m1

∑
n2

�m1n2*n1n2

= ∑
n1m1

An1m1
��1�
m1n1

= Tr�A��1���

The state operator of particle 1 is then given in the �n1� basis of �1 by the matrix ��1�

with elements

��1�
n1m1

=∑
n2

�n1n2*m1n2
or ��1� = Tr2� � (6.30)

The second expression is independent of the basis; Tr2 represents the trace on the space
�2, called the partial trace of the global state operator, while ��1� is the reduced state
operator. It can be shown that the reduced state operator gives the unique solution
of (6.29).7 An important application of (6.29) is to calculate the probability of finding the
eigenvalue an of a physical property A, which is given as a function of the projector 
n

onto the subspace of the eigenvalue an by an expression which generalizes (4.4):

p�an�= Tr1
(

n�

�1�
)= Tr1Tr2 ��
n⊗ I2��� � (6.31)

It is important to understand that the prescription of taking the partial trace is a conse-
quence of postulate II, because the expression giving the expectation values follows from
this postulate.
As an example, let us give the reduced state operator starting from the most general

pure state �-� in the tensor product space � �N�
1 ⊗� �M�

2 :

�-� =
N∑
i=1

M∑
j=1

cij��i⊗&j�� �= �-�
- ��

7 See Nielsen and Chuang [2000], p. 107.
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The reduced state operator can be calculated immediately if we observe that

Tr �a�
b� =∑
n


n�a�
b�n� =∑
n


b�n�
n�a� = 
b�a�� (6.32)

Writing out the explicit expression for �-�
- �, we find that the reduced state operator
��1� in � �N �

1 is

��1� = Tr2�-�
- � =
∑
ijkl

cijc
∗
kl��i�
�k�
&l�&j�� (6.33)

A commonly encountered special case is:

�-� =
N∑
i=1

ci��i⊗&i��

with N =M , but the dimension of � �M�
2 can be larger than N , M ≥ N . Then (6.33) is

simplified as

��1� =∑
i

cic
∗
j ��i�
�j�
&j�&i� � (6.34)

If the �&i� are orthogonal, 
&i�&j� = �ij , the coherences in ��1� vanish and we obtain an
incoherent mixture:

��1� =∑
i

�ci�2 ��i�
�i� if 
&i�&j� = �ij � (6.35)

Equations (6.34) and (6.35) will play an important role in the discussion of measurement
in Appendix B1.
If two particles are in the tensor product state �-� = ��⊗ &�, then ��1� = ���
��

describes a pure state, as expected. However, (6.33) or (6.34) show that this is not the
case when �-� is not a tensor product: then it is not possible to attribute a well-defined
state to either particle. Let us verify this explicitly in the case of two spin-1/2 particles in
the state (6.15). The reduced state operator is readily obtained using (6.35)

��1� = Tr2�=
1
2
�+�
+�+ 1

2
�−�
−� =

(
1/2 0
0 1/2

)
� (6.36)

which is nothing other than the unpolarized state (6.28). Even if the two-spin system is
in a pure state, the state of an individual spin is in general a mixture. In fact, the state
matrix (6.36) represents an extreme case of a mixture corresponding to maximal disorder
and minimal information on the spin. It can be shown that a quantitative measure of the
information contained in the state operator is given by the von Neumann (or statistical)
entropy SvN = −Tr � ln�,8 which is the larger the less the information. In the case of
spin 1/2, it lies between 0 and ln 2, 0 corresponding to the pure state and ln 2 to the

8 It should be noted that Tr � ln� �= ∑� p� lnp� except when the vectors ���� in (6.20) are orthogonal to each other.
−∑� p� lnp� is the Shannon entropy, SSh, and it can be shown that SvN ≤ SSh.
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mixture (6.36), respectively; ln 2 is the maximum value of the von Neumann entropy
for a spin 1/2, and the mixture (6.36) is that which contains the minimal information.
If the Hilbert space of states of a quantum system has dimension N , the state operator
corresponding to maximal disorder is �= I/N , and so the statistical entropy SvN = lnN .
Further properties of entangled states and state operators will be examined in Chapter 15.

6.2.4 Time dependence of the state operator

It is not difficult to find the time dependence of the state operator for a closed quantum
system.9 If we first consider the state operator


��t�= ���t��
��t��
for a pure state, using (4.11) we have

i�
d
dt


��t� = i�
d
dt

(
���t��
��t��

)
=H�t�
��t�−
��t�H�t�= [H�t��
��t�

]
�

Summing over the probabilities p� as in (6.20), we obtain the evolution equation for ��t�:

i�
d��t�
dt

= [H�t����t�
]

� (6.37)

An equivalent law is obtained using the evolution operator U�t�0� in (4.14):

��t�= U�t�0���t = 0�U−1�t�0��

This type of time evolution of a state operator is called Hamiltonian, or unitary evolution.
It is worth observing that a state of maximal disorder is a dynamical invariant because
�H���= 0.
Let us discuss the important example of the evolution law of the state operator of a spin-

1/2 particle in a constant magnetic field. With �B parallel to Oz, the Hamiltonian (3.62) is
written as

H =−1
2
�z�

and the evolution equation (6.37) becomes, using the commutation relations (3.52),

d�
dt

= 1
i�

[
H��

]=−1
2
�B�bxy−byx��

which is equivalent to

dbx
dt

=−�Bby�
dby
dt

= �Bbx�
dbz
dt

= 0�

9 See the comments following (4.11).
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or in vector form

d�b
dt

=−� �B×�b� (6.38)

This is exactly the classical differential equation (3.31) describing Larmor precession.
The Bloch vector undergoes the same motion as a classical spin.
In our discussion of NMR in Section 5.2.2 we studied an isolated spin. In fact, the spins

are located in an environment which fluctuates at temperature T , and in the absence of
a radiofrequency field they are described by a state operator � corresponding to thermal
equilibrium in a constant magnetic field �B0:

�� 1
2

(
I+ ��0

2kBT
z

)
= 1

2

(
I+ 1

2
�pz

)
� (6.39)

where �p is the difference of the populations �p= p+−p− (5.42) in the levels �+� and
�−�. The Bloch vector has components �b = �0�0� �p/2�. The application of a resonant
radiofrequency pulse during a time t =  /�1 transforms � into � :

�→ � = U ��x�− ���U†��x�− ��

owing to (5.32). It is easy to calculate the matrix product explicitly, but more elegant to
use (2.54):

e i x/2ze
−i x/2 = z+

i 
2
�x�z�+

1
2!
(
i 
2

)2

�x� �x�z��+· · ·

= z+
i 
2
y−

1
2!  

2z+· · · = cos z+ sin  y�

which is just the transformation law for the y and z components of a vector rotated by
an angle − about Ox. We then find

� =
1
2

[
I+ 1

2
�p
(
cos z+ sin  y

)]
� (6.40)

In the special case of a �/2 pulse ( = �/2) the result is

��/2 =
1
2

[
I+ 1

2
�py

]
� (6.41)

Since the matrix y is not diagonal, we have created coherences: the difference between
the initial populations has been converted into coherences. Note first that a natural basis
(�+�� �−�) is defined by the �B0 field, and second that the identity operator I is not affected
by unitary evolution (6.37), and that it is permissible to start from z in (6.39), although
z is not a state matrix! The return to equilibrium is controlled by the relaxation time T2.
In the case of a �-pulse we obtain an inversion of the populations of the levels �+� and
�−�, and the return to equilibrium is controlled by the relaxation time T1.
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6.2.5 General form of the postulates

The introduction of the state operator allows us to give a more general formulation of the
postulates stated in Chapter 4.

• Postulate Ia. The state of a quantum system is represented mathematically by a state operator
� acting in a Hilbert space of states � ; � is a positive operator with unit trace.

• Postulate IIa. The probability p& of finding the quantum system in the state �&� is given by

p& = Tr
(
��&�
&�)= Tr ��
&��

• Postulate IVa. The time evolution of the state operator is given by (6.37):

i�
d��t�
dt

= �H�t����t���

Postulate III is unchanged, and the WFC (wave-function collapse) postulate (4.7) becomes

�→ 
n�
n

Tr �
n

when the result of a measurement of a physical property A is the eigenvalue an. We
again stress the fact that (6.37) holds only for a closed system. The time evolution of
the state operator of a system which is part of a larger quantum system is much more
complicated and will be studied in Chapter 15. In statistical mechanics, the case of a
system in contact with a heat bath represents a typical example of a system which is not
closed. The evolution of the ensemble system + heat bath is unitary (if the ensemble
itself is closed), but that of the system obtained by taking the trace over the variables of
the heat bath is not.10

6.3 Examples

6.3.1 The EPR argument

Let us suppose that we are capable of making a state �%� (6.15) of two identical spin-1/2
particles, with the two particles traveling with equal momenta in opposite directions. For
example, they could originate in the decay of an unstable particle of zero spin and zero
momentum, in which case momentum conservation implies that the particles move in
opposite directions. An example which is simple theoretically (but not experimentally)
is the decay of a �0 meson into an electron and a positron:11 �0 → e+ + e−. Two
experimentalists, conventionally named Alice and Bob, measure the spin component of
each particle on a certain axis (Fig. 6.1) when the particles are very far apart compared
with the range of the force and have not interacted with each other for a long time. For
clarity, in this figure the axes used for spin measurement are taken to be perpendicular to

10 In Hamiltonian evolution, the von Neumann entropy −Tr � ln� is conserved, but this is not the case for non-Hamiltonian
evolution, where the von Neumann entropy of a system in contact with a heat bath is not constant.

11 This decay mode is rare, but it is useful for our theoretical discussion.
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Fig. 6.1. Configuration of an EPR type of experiment.

the direction of propagation, though this is not essential.12 Using a Stern–Gerlach device
in which the magnetic field points in the direction â, Alice measures the spin component
on this axis for the particle traveling to the left, particle a, while Bob measures the
component along the b̂ axis of the particle traveling to the right, particle b. Let us first
study the case where Alice and Bob both use the Oz axis, â= b̂= ẑ. We assume that the
decays are well separated in time, and that each experimentalist can know if he or she
is measuring the spins of particles emitted in the same decay. In other words, each pair
(e+� e−) is perfectly well identified in the experiment.
Using her Stern–Gerlach device, Alice measures the z component of the spin of particle

a, S�a�
z , with the result +�/2 or −�/2, and Bob measures S�b�

z of particle b. As we have
seen in (6.36), neither of these particles is polarized; Alice and Bob observe a random
series of results +�/2 and −�/2. After the series of measurements has been completed,
Alice and Bob meet and compare their results. They conclude that the results for each
pair exhibit a perfect (anti-)correlation. When Alice has measured +�/2 for particle a,
Bob has measured −�/2 for particle b and vice versa. To explain this anticorrelation, let
us calculate the result of a measurement in the state �%� (6.15) of the physical property
�S�a�

z ⊗ S�b�
z �, a Hermitian operator acting in the tensor product space of the two spins.

Taking into account (6.12), we immediately see that �%� is an eigenvector of �S�a�
z ⊗S�b�

z �

with eigenvalue −�2/4:

�S�a�
z ⊗S�b�

z �
1√
2

(
�+−�−�−+�

)
=−�2

4
1√
2

(
�+−�−�−+�

)
�

12 See Footnote 15 of Chapter 3.
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Measurement of �S�a�
z ⊗ S�b�

z � must then give the result −�2/4, which implies that Bob
must measure the value −�/2 if Alice has measured the value +�/2 and vice versa.13

Within the limit of accuracy of the experimental apparatus, it is impossible that Alice and
Bob both measure the value +�/2 or −�/2.
Upon reflection, this result is not very surprising. It is a variation of the game of the two

customs inspectors.14 Two travelers a and b, each carrying a suitcase, depart in opposite
directions from the origin and eventually are checked by two customs inspectors Alice and
Bob. One of the suitcases contains a red ball and the other a green ball, but the travelers
have picked up their closed suitcases at random and do not know what color the ball inside
is. If Alice checks the suitcase of traveler a, she has a 50% chance of finding a green ball.
But if in fact she finds a green ball, clearly Bob will find a red ball with 100% probability.
Correlations between the two suitcases were introduced at the time of departure, and these
correlations reappear as a correlation between the results of Alice and Bob.
However, as first noted by Einstein, Podolsky, and Rosen (EPR) in a celebrated paper15

(which used a different example, ours being due to Bohm), the situation becomes much
less commonplace if Alice and Bob decide to use the Ox axis instead of the Oz axis
for another series of measurements.16 Since �%� is invariant under rotation, if Alice and
Bob orient their Stern–Gerlach devices in the Ox direction, they will again find that their
measurements are perfectly anticorrelated, because

�S�a�
x ⊗S�b�

x ��%� = −�2

4
�%��

The viewpoint underlying the EPR analysis of these results is that of “realism”: EPR
assume that microscopic systems possess intrinsic properties which must have a counter-
part in the physical theory. More precisely, according to EPR, if the value of a physical
property can be predicted with certainty without disturbing the system in any way, there
is an “element of reality” associated with this property. For a particle of spin 1/2 in the
state �+�, Sz is a property of this type because it can be predicted with certainty that
Sz = �/2. However, the value of Sx in this same state cannot be predicted with certainty
(it can be +�/2 or −�/2 with 50% probability of each); Sx and Sz cannot simultaneously
have a physical reality. Since the operators Sx and Sz do not commute, in quantum physics
it is impossible to attribute simultaneous values to them.
In performing their analysis, EPR used a second hypothesis, the locality principle,

which stipulates that if Alice and Bob make their measurements in local regions of

13 The following argument is sometimes encountered: if Alice obtains +�/2 upon making the first measurement of S�a�z , the
state �%� is projected onto �+−� by wave-function collapse (the WFC postulate), and Bob then measures S�b�z =−�/2. This
reasoning is not satisfactory, because the statement “Alice makes the first measurement of the spin” is not Lorentz-invariant
if Alice and Bob are separated by a distance L and if their measurements are separated by a time interval � < L/c. The
temporal order of the measurements of Alice and Bob is irrelevant.

14 Invented just for this occasion!
15 A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?

Phys. Rev. 77, 777–780 (1935). The term “EPR paradox” is sometimes used, but there is nothing paradoxical in the EPR
analysis.

16 However, even in this case the result can be reproduced using a classical model; see Fig. 6.2.
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spacetime which cannot be causally connected,17 then it is not possible that an exper-
imental parameter chosen by Alice, for example the orientation of her Stern–Gerlach
device, can affect the properties of particle b.18 According to the preceding discussion,
this implies that without disturbing particle b in any way, a measurement of S�a�

z by Alice
permits knowledge of S�b�

z with certainty, and a measurement of S�a�
x permits knowledge

of S�b�
x with certainty. If the “local realism” of EPR is accepted, the result of Alice’s

measurement serves only to reveal a piece of information which was already stored in
the local region of spacetime associated with particle b. A theory that is more complete
than quantum mechanics should contain simultaneous information on the values of S�b�

x

and S�b�
z , and be capable of predicting with certainty all the results of measurements of

these two physical properties in the local region of spacetime attached to particle b. The
physical properties S�b�

x and S�b�
z then simultaneously have a physical reality, in contrast to

the quantum description of the spin of a particle by a state vector. EPR do not dispute the
fact that quantum mechanics gives predictions that are statistically correct, but quantum
mechanics is not sufficient for describing the physical reality of an individual pair. Within
the framework of local realism such as that defined above, the EPR argument is unassail-
able and the verdict incontestable: quantum mechanics is incomplete! Nevertheless, EPR
do not suggest any way of “completing” it, and we shall see in what follows that local
realism is in conflict with experiment.

6.3.2 Bell inequalities

According to local realism, even if an experiment does not permit the simultaneous
measurement of S�b�

x and S�b�
z , these two quantities still have a simultaneous physical

reality in the local region of spacetime attached to particle b, and owing to symmetry
the same is true for S�a�

x and S�a�
z of particle a. This ineluctable consequence of local

realism makes it possible to prove the Bell inequalities, which fix the maximum possible
correlations given this hypothesis. Let us return to the case of some given measurement
axes â and b̂, which as above we take to lie in the xOz plane perpendicular to the
propagation direction Oy, in order to make the figures clear. We shall use A�â� and B�b̂�

to denote the results of measuring � · â and � · b̂; in order to eliminate the factor �/2,
it is convenient to use the Pauli matrices rather than the spin operators. In addition, we
shall simplify the notation by omitting the indices �a� and �b� when the vectors â or b̂
remove any ambiguity:


�a�

â = ��a� · â→ � · â� 
�b�

b̂
= ��b� · b̂→ � · b̂�

17 For example, if Alice and Bob are separated by a distance L in a reference frame in which they are both at rest, and if the
measurements take a time � with � 	 L/c.

18 This is not the same as saying that the results of Alice and Bob are not correlated. In the simple example of the two travelers,
the opening of the suitcase of traveler a by Alice reveals the color of the ball in the suitcase of b. This opening does not
disturb anything in the suitcase of b, but it determines the result of Bob, which means the results are correlated. The color
of the ball in the suitcase of b existed before the suitcase of a was opened.
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The possible results of the measurements are ±1:

A�â�= �a =±1� B�b̂�= �b =±1�

Let p�a�b
be the joint probability for Alice to find the result �a and Bob to find the result

�b, and let E�â� b̂� be the expectation value 
�a�b�:
E�â� b̂�=∑�a�b p�a�b

= �p+++p−−�− �p+−+p−+�� (6.42)

This quantity measures the correlation between the measurements of Alice and Bob when
they use the axes â and b̂. It is obtained experimentally by making a series of N � 1
measurements on N pairs. If An�â� and Bn�b̂� are the results of a measurement on the
pair n for the orientations �â� b̂�, then

E�â� b̂�= lim
N→�

1
N

N∑
n=1

An�â�Bn�b̂��

This is an experimental result, independent of any a priori theoretical considerations. Let
us now consider two possible orientations â and â′ for the measurements of Alice, two
possible ones b̂ and b̂′ for those of Bob, and use the abbreviated notation A′

n = An�â
′�,

B′
n = Bn�b̂

′� for the pair n. Let Xn be the combination

Xn = AnBn+AnB
′
n+A′

nB
′
n−A′

nBn = An�Bn+B′
n�+A′

n�B
′
n−Bn�� (6.43)

In contrast to E�â� b̂�, writing down Xn rests on an a priori theoretical idea, that of the
EPR picture in which particles a and b “possess” the properties An� � � � �B

′
n. Only one

of the four possible combinations �An�Bn� � � � �A
′
n�B

′
n� can be effectively measured in an

experiment on the pair n, but the potential result for the three other experiments, although
unknown, is well defined. This can be illustrated using the suitcase model, where each
suitcase is composed of small angular sectors labeled + or −, with opposite labels for
Alice and Bob (Fig. 6.2). To measure An�â� [Bn�b̂�], Alice [Bob] opens the angular sector
marked by the direction â [b̂], and if â = b̂, Alice and Bob find two opposite results,
reproducing all the results of Section 6.3.1. If Alice opens the sector â and observes the
result (+) as in Fig. 6.2, the sector â′ must contain the well-defined result (−), which
Alice would have observed had she opened that sector.
For each pair the combination Xn is ±2. In fact, we have either Bn = B′

n, in which
case B′

n −Bn = 0 and Bn +B′
n = ±2, or Bn = −B′

n, in which case Bn +B′
n = 0 and

B′
n−Bn = ±2. Since the possible values of An and A′

n are ±1, we necessarily have
Xn =±2. The average over a large number of experiments can only give an expectation
value 
X� whose absolute value is less than two:

�
X�� =
∣∣∣ lim
N→�

1
N

N∑
n=1

Xn

∣∣∣≤ 2 � (6.44)

The result �
X�� ≤ 2 is an example of a Bell inequality. We again stress the fact that this
inequality depends crucially on local realism: particle a possesses the properties An and
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Fig. 6.2. Classical model of EPR correlations. The suitcases of travelers A and B are circles divided
into small angular sectors labeled by the orientations â� � � � � b̂′ in the xOz plane and containing the
result (+), meaning spin in this direction, or the result (−) meaning spin in the opposite direction.
The figure corresponds to An�â�= �+�, An�â

′�= �−�, Bn�b̂�= �−�, and Bn�b̂
′�= �−� for pair n.

A′
n simultaneously, particle b possesses the properties Bn and B′

n, and the value of, for
example, An cannot depend on the orientation b̂ or b̂′ of Bob’s analyzer.

What are the predictions of quantum mechanics? To calculate E�â� b̂� defined in (6.42)
we use the rotational invariance of �%�, which allows us to choose â in the Oz direction.
The eigenstates of Sâ, or of � · â, are then the eigenstates �+� and �−� of S�a�

z . Let  be
the angle between b̂ and Oz. According to (3.56), in the basis (�+�� �−�) we have

�+� b̂� = cos
 

2
�+�+ sin

 

2
�−��

The tensor product19 �+⊗�+� b̂�� is then given by

�+⊗�+� b̂�� = cos
 

2
�+⊗+�+ sin

 

2
�+⊗−�� (6.45)

and the amplitude a++ in p++ = �a++�2 will be

a++ = 
+⊗ �+� b̂� �%� = 
+⊗ �+� b̂� �+⊗−� = 1√
2
sin

 

2
� (6.46)

By symmetry, under the exchange +↔− we have

p++ = p−− =
1
2
sin2

 

2
and thus

p+− = p−+ =
1
2
cos2

 

2
�

19 For clarity, we temporarily restore the notation for the tensor product.
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as can be verified by explicit calculation (Exercise 6.4.7). We find that

E�â� b̂�= sin2
 

2
− cos2

 

2
=− cos =−â · b̂� (6.47)

Another way of calculating E�â� b̂� is to note that A�â� = �a is the eigenvalue of � · â,
B�b̂�= �b is that of � · b̂, and measurement of �� · â�⊗ �� · b̂� gives the result �a�b. Then
E�â� b̂� is just the expectation value of �� · â�⊗ �� · b̂� in the state �%�:

E�â� b̂�= 
�� · â�⊗ �� · b̂��% = 
%��� · â�⊗ �� · b̂��%�� (6.48)

Exercise 6.5.7 shows that we recover (6.47) starting from (6.48).
Let us now choose the axes on which the two spins are measured. We take â parallel

to ẑ, b̂ pointing along the second bisector of the axes x̂ and ẑ (Fig. 6.3), â′ parallel to x̂,
and b̂′ parallel to the first bisector and orthogonal to b̂. The various expectation values
are given by

E�â� b̂�= E�â� b̂′�= E�â′� b̂′�=− 1√
2
� E�â′� b̂�= 1√

2
� (6.49)

The combination 
X� of these expectation values will be −2
√
2 in quantum mechanics:


X� = E�â� b̂�+E�â� b̂′�+E�â′� b̂′�−E�â′� b̂�=−2
√
2� (6.50)

It can be shown that the choice of orientations in Fig. 6.2 gives the maximum value of
�
X��, �
X��max = 2

√
2. This value violates the limit (6.44) �
X�� ≤ 2. Quantum mechanics

is incompatible with the Bell inequalities, and therefore with the EPR hypothesis of local
realism – the correlations of quantum mechanics are too strong. Theories with local
hidden variables represent an example of a realistic local theory, and the predictions
of quantum mechanics are therefore incompatible with any theory of this type. The
contradiction between quantum mechanics and the EPR hypotheses arises because in
quantum mechanics we cannot simultaneously attribute well-defined values to the four

z

xO

π / 4 π / 4

π / 4

â

b b′

â′

Fig. 6.3. Optimal configuration of the angles.
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quantities An, Bn, A
′
n, and B′

n of (6.43) for a single pair of spin-1/2 particles, because
these quantities correspond to eigenvalues of operators that do not commute with each
other. We can experimentally measure at most two of these quantities simultaneously,
one per particle, and we cannot assume in any physical argument that these quantities
exist although they are unknown. In contrast to the opening of suitcase a, measurement of
the spin of particle a by Alice does not reveal a pre-existing property of particle b.20 The
quantity Xn in (6.43) is “counterfactual,” that is, it cannot be measured in any realizable
experiment.21

The first experiments comparing the predictions of local realism with those of quantum
mechanics were performed using two photons originating in the successive de-excitation
of two excited states of an atom (an atomic cascade), the polarizations of the two photons
being entangled in a state22

�-� = 1√
2
��RR�+ �LL��= 1√

2
��xx�+ �yy��� (6.51)

The experiments of Aspect et al.23 in the early 1980s were the first to demonstrate
convincingly the conflict with local realism. Nowadays much more precise experiments
are carried out using parametric photon conversion. In an experiment performed in
Innsbruck24 an ultraviolet photon is converted in a nonlinear crystal into two photons in an
entangled polarization state (Fig. 6.4). In this experiment the orientation of the analyzers
can be changed randomly while the photons are traveling between their production point
and the detectors. The two detectors are 400 m apart, a distance traveled by light in
1.3 �s, while the total time required to make the individual measurements and rotate the
polarizers is less than 100 ns. It is impossible that the measurements of Alice and Bob are
causally related, and any information on the orientation of the analyzers that could have
been stored in advance is also erased. The only possible objection is that only 5% of the
photon pairs are detected, and it must be assumed that this 5% constitutes a representative
sample. A priori, there is no reason to dispute this.25 It can very reasonably be stated
that experiment has decided in favor of quantum mechanics and has eliminated Einstein’s
principle of local realism. One might be tempted to conclude that quantum physics is
nonlocal, but in such a way that the “nonlocality” never contradicts special relativity and

20 From this point of view, Fig. 2.18 of Lévy-Leblond and Balibar [1990] can be interpreted erroneously. It might be inferred
that the quanton “possesses” the properties of a wave and of a particle simultaneously, and that observation revealing one
or the other of these aspects only reveals a pre-existing reality.

21 As stated by A. Peres [1993]: “Unperformed experiments have no results.” It should not at all be concluded that it is
necessarily forbidden to introduce quantities which are not directly observable into the theory. For example, the consequences
of causality on a time-dependent dielectric constant are expressed most conveniently by taking its Fourier transform and
showing that this transform is an analytic function of the frequency � in the complex half-plane Im� > 0. However, a
complex frequency is never observed experimentally! As Feynman has written (Feynman et al. [1965], Vol. III, Section 2.6),
“it is not true that we can pursue science completely by using only those concepts directly subject to experiment.”

22 Great care must be taken with the orientation conventions; cf. Exercise 6.5.8.
23 A. Aspect, P. Grangier, and G. Roger, Experimental realization of Einstein–Podolsky–Rosen gedanken experiment: a new

violation of Bell’s inequalities, Phys. Rev. Lett. 49, 91–94 (1982); A. Aspect, J. Dalibard, and G. Roger, Experimental test
of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49, 1804–1807 (1982).

24 G. Weihs et al., Violation of Bell’s inequality under strict locality conditions, Phys. Rev. Lett. 81, 5039–5043 (1998).
25 The result of an election for the President of the French Republic can be predicted with some degree of confidence from a

sample of 1000 out of 30 million voters, that is, 0.003%.
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Fig. 6.4. Experiment involving entangled photons. A pair of entangled photons is produced in
a nonlinear BBO crystal, and the two photons travel inside optical fibers which take them to
polarization analyzers. After A. Zeilinger, Experiment and the foundations of quantum physics,
Rev. Mod. Phys. 71, S288–S297 (1999).

does not allow, for example, information transmission at speeds higher than the speed
of light. Alice and Bob each observe a random sequence of +1 and −1, which does
not contain any information, and it is only when their results transmitted by a classical
path, that is, a speed lower than c, are compared that they can see they are correlated.
Additional remarks on this point will be found in the comments following (6.69).
Rather than nonlocality, it is preferable to speak of nonseparability of the state vector

�%� (6.15), which does not contain any reference to spacetime. The experiments described
above permit an inference of nonlocality only if “realism” is added: it is “local realism”
which is refuted.

6.3.3 Interference and entangled states

In the discussion of interference experiments in Chapter 1, we emphasized the fact that
interference is destroyed if it is possible, at least in principle, to know the particle
trajectory and to determine which slit the particle has passed through. The qualification
“at least in principle” is crucial: it doesn’t matter whether or not the experimentalist
actually makes the observation, or whether or not the observation can actually be made
using the available technology. It is sufficient that the observation be possible in principle
in the framework of the experimental setup. The use of entangled states will considerably
enrich our possibilities, and allow us to better appreciate the astonishing strangeness of
quantum mechanics relative to our prejudices gained from classical experience.
Let us imagine an experiment in which a particle 1 passes through a Young’s slit

apparatus, and let �a� (�a′�) be the quantum state of this particle when it passes through
slit a (a′), that is, the quantum state of the particle when slit a′ (a) is closed. Let us
suppose that the state of particle 1 is entangled with that of a particle 2, so that the global
state �-� is

�-� = 1√
2
��a⊗b�+ �a′ ⊗b′��� (6.52)
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If, for example, the two particles are emitted in the decay of an unstable particle of zero
momentum, their momenta will be correlated according to momentum conservation:

�p1+ �p2 = 0�

Measurement of �p2 gives information on �p1, and under certain conditions allows the
trajectory of particle 1 to be reconstructed; for example, the slit through which the
latter has passed can be determined, and so the interference is destroyed. In the case
of interference involving only one particle, it is often said that the observation of the
trajectory “perturbs” it, and that this perturbation is the reason for the destruction of
the interference. Our example of interference involving entangled particles confirms the
discussion of Section 1.4.4 and shows that this “explanation” misses the essential point: in
this new experiment, particle 1 is never observed, and it is the information on 1 provided
by a measurement made (or not made) on 2 that leads to the conclusion that interference is
destroyed. It is the possibility of labeling the different trajectories and not the perturbation
due to observing them which is the origin of the destruction of the interference.
This labeling of trajectories has already been displayed in Exercise 3.3.9 for neutron

diffraction by spin-1/2 nuclei. In fact, the possibility in theory of labeling the neutron
trajectory owing to spin flip of a nucleus is sufficient to destroy the interference – instead
of diffraction peaks, a continuous background is observed, as the spatial variables of the
neutrons are not affected at all by spin flip. However, the experiment we are going to
examine below is even more complete, because it provides the option of erasing this
labeling and recovering the interference.
Before describing an experiment which has actually been performed, let us discuss its

principle for a simplified geometry. Two photons 1 and 2 are emitted in the decay of
an unstable particle assumed to be practically at rest; we shall return to this assumption
later. The decay occurs in a plate of height d (Fig. 6.5). Photon 1 travels to the left and
passes through a Young’s slit device, while photon 2 travels to the right with opposite
momentum, passes through a convergent lens of focal length f , and then is detected by a
detector array at screen E2 located a distance 2f from the lens. The plane F of the Young’s
slits is also located a distance 2f from the lens. The position at which photon 2 arrives

d

a

E1 F
2f

L

2f

E2

D

Fig. 6.5. The blurring of interference: the detection of photon 2 in the plane located a distance 2f
from the lens makes it possible to trace back to the position of photon 1 in the plane of the Young’s
slits.



6.3 Examples 181

on the screen E2 can be used to trace back to the position of photon 1 on the plane F , as
the planes E2 and F are conjugate to each other with respect to the lens. If photon 1 is
detected on the screen E1 after passing through the Young slits, photon 2 will be detected
in coincidence with it on the screen E2, which will give information on which slit it has
passed through. Therefore, the photons 1 will not form an interference pattern. Even in the
absence of the lens and the detector, there will be no interference pattern, because we can
in principle install the lens and the detector array at E2 and thus recover the information on
the trajectory of photon 1. It is the existence of the accompanying photon that is crucial.
However, it is possible to erase this potential information by performing a different

experiment, where a detector is placed in the focal plane of the lens (Fig. 6.6). The
detection of photon 2 then determines the direction of the momentum of photon 2 before
the lens, and as a consequence also that of photon 1. All the information on the position
of photon 1 in the passage through the plane F of the slits is now erased – the detector
functions like a “quantum eraser.” The photons 1 detected in coincidence with photons 2
will again form an interference pattern on the screen E1, with the position of the central
fringe fixed by the position of the detector in the focal plane of the lens.
The following observation should be added. The characteristic angle in the experimen-

tal geometry is  = a/D, where a is the distance between the slits and D is the distance
between the slits and the source. The spread !pz in the vertical component of the momen-
tum of the photons produced in the plate of height d as a function of wavelength 
 is

!pz ∼
h

d
=⇒ !pz

p
∼ h

dp
= 


d
�

In the discussion above it is assumed that this spread is negligible compared with  :




d
	  � (6.53)

On the other hand, for 
/d�  we observe two sets of independent fringes if the two
photons are allowed to pass through Young’s slits (Exercise 6.5.9).
The experiment is performed in a slightly different geometry. The two photons are

produced by parametric conversion in a nonlinear crystal from an ultraviolet photon of
momentum �P, and the condition �p1+�p2 = 0 is replaced by �p1+�p2 = �P. The two photons

f

E2

D

F

a

E1

L

d

S

2f

Fig. 6.6. Interference in coincidence. The detector of photon 2 is now located in a plane a distance f
from the lens. The potential information on the trajectory of photon 1 is erased, and an interference
pattern is observed if photon 1 is detected in coincidence with photon 2.
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Fig. 6.7. Experiment of the Innsbruck group. The pair of entangled photons is produced in a
nonlinear crystal. After A. Zeilinger, Rev. Mod. Phys. 71, S288 (1999).

both travel to the right with a small variable angle between their trajectories (Fig. 6.7).
In order to obtain the trajectory of photon 1, it is sufficient to reverse its direction of
propagation when leaving the plate in Figs. 6.5 and 6.6. The experiment confirms the
preceding discussion in all respects (Fig. 6.8).

6.3.4 Three-particle entangled states (GHZ states)

GHZ (Greenberger–Horne–Zeilinger) states are three-particle entangled states which
exhibit nonclassical properties in an even more spectacular fashion than two-particle
states. It is known how to create three-photon entangled states experimentally using para-
metric conversion. To simplify the discussion, we shall limit ourselves to the theory of
entangled states of three spin-1/2 particles. We assume that an unstable particle decays

100

40

–6 –4 –2 0 2
position of detector D1

4 6

Fig. 6.8. Interference observed by the Innsbruck group. After A. Zeilinger, Rev. Mod. Phys. 71,
S288 (1999).
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into three identical particles of spin 1/2 which are emitted in a plane in a configuration
in which the three momenta lie at angles of 2�/3 to each other, and the three particles
are in the entangled spin state

�-� = 1√
2

(
�+++�−�−−−�

)
� (6.54)

Three experimentalists, Alice (a), Bob (b), and Charlotte (c), can measure the spin
component in the direction perpendicular to the direction of propagation of each particle
(Fig. 6.9). The momenta lie in the horizontal plane, and the Oz axis is chosen to lie along
the propagation direction (so that it depends on the particle), while Oy is vertical and
x̂ = ŷ× ẑ. Let us examine the three following operators:

.a = axbycy� .b = aybxcy� .c = aybycx� (6.55)

The matrices i act in the space of spin states of particle i, i = a�b� c. The index i of
.i specifies the position of the matrix x in the products (6.55). The three operators
.i commute with each other. To show this, we use the fact that  matrices acting on
different spaces commute, for example

axby = byax�

For matrices acting in the same space we use (3.48):

xy =−yx�

as well as

2
x = 2

y = I�

O
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x
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x

Fig. 6.9. Configuration of a GHZ type of experiment.
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As an example, let us show that .a and .b commute owing to the fact that the two
operators .a.b and .b.a differ by an even number of anticommutations:

.a.b = axbycyaybxcy = axbyaybx

= −ayaxbybx = aybxaxby

= aybxcycyaxby = .b.a�

The other commutation relations are demonstrated in a similar fashion. The squares of the
operators .i are unit operators (.

2
i = I), their eigenvalues are ±1, and, as they commute

with each other, they can be simultaneously diagonalized. There then exists an eigenvector
�-� preserving the symmetry between the three particles constructed explicitly in (6.54)
such that

.a�-� = .b�-� = .c�-� = �-�� (6.56)

Equation (6.56) can be shown directly by examining the action of .i on �-� using the
following properties

x�+� = �−�� x�−� = �+��
y�+� = i �−�� y�−� = −i �+��

The spins are measured in the configurations (x� y� y), �y� x� y�, and (y� y� x�. For example,
in the configuration (x� y� y�, Alice orients her Stern–Gerlach apparatus in the direction
Ox, and Bob and Charlotte orient theirs in the direction Oy. Measurements of ix or of
iy always give the result ±1, and if the particle triplet is in the state �-�, the product of
the results of Alice, Bob, and Charlotte will be +1 for any configuration of measurement
devices.
Let us now turn to the configuration �x� x� x� by examining the action of the operator

.= axbxcx

on �-�. The product of the results of spin measurements in the configuration �x� x� x�

will always be −1 because

.�-� = −�-�� (6.57)

as is easily checked by allowing axbxcx to act on �-�:

axbxcx�-� = axbxcx

(
1√
2

(
�+++�−�−−−�

))

= 1√
2

(
�−−−�−�+++�

)
=−�-��

Let us now confront the above results with local realism. Once the three particles are
sufficiently far apart, each of them possesses its own physical characteristics. We use Ax

to denote the result of measuring the x component of the spin of particle a by Alice, � � � ,
Cy the result of measuring the y component of the spin of particle c by Charlotte, and
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so on, with Ax� � � � �Cy = ±1. When the x component is measured in conjunction with
two measurements of the y component, we have seen (see (6.56)) that the product of the
results is +1:

AxByCy =+1� AyBxCy =+1� AyByCx =+1� (6.58)

However, when the particles are in flight, two of the three experimentalists can decide to
modify the direction of their analyzer axes, orienting them in the Ox direction. Then the
product of the three spin components will be −1:

AxBxCx =−1� (6.59)

However, we note that

AxBxCx = �AxByCy��AyBxCy��AyByCx�= 1

because A2
y = B2

y =C2
y = 1. Equations (6.58) and (6.59) are incompatible. We do not have

an inequality based on statistical correlations as in Section 6.3.2, but instead a perfect
anticorrelation! Local realism would mean that the property ax has a physical reality
in the EPR sense, since it can be measured without disturbing particle a by measuring
by and cy: Ax = ByCy. However, it is also possible to obtain Ax by measuring bx

and cx: Ax = −BxCx. Local realism implies that it is the same Ax, but this is not
the case in quantum mechanics. The value of Ax is contextual; it depends on physical
properties incompatible with each other which are measured simultaneously with ax,
and Ax in (6.58) is not the same as Ax in (6.59). As in the case of the Bell inequalities,
the problem arises because it is not possible to simultaneously measure the six quantities
Ax� � � � �Cy, which are the eigenvalues of operators which do not all commute with each
other, and the simultaneous measurement of these six quantities is counterfactual: at
most three can be measured in a given experiment. The operators .a, .b, .c, and . all
commute with each other, because . is a function of the commuting operators .a, .b, .c

.=−.a.b.c�

It is therefore possible to imagine an experiment where they are all four measured
simultaneously. Such an experiment could not be performed by measuring the spins
separately, and as in the case of teleportation (Section 6.4.2), it would be necessary to use
an interaction between the spins. However, local realism also requires that measurement
of the product .a.b.c gives a result identical to the product of the individual values of
the spin operators, which is a statement incompatible with quantum physics.

6.4 Applications

6.4.1 Measurement and decoherence

In the Bohr or Copenhagen interpretation – or rather noninterpretation; see A. Leggett
in Further Reading – of measurement in quantum mechanics, the measuring device
operates according to macroscopic laws: the result of the measurement is read, for
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example, from the position of a needle on a meter. Furthermore, it is not meaningful
to regard a quantum particle as possessing any intrinsic property, independent of the
(classical) measuring apparatus used to observe it. This interpretation is remarkably useful,
and is used unthinkingly by thousands of physicists. From the viewpoint of everyday
practice, there is nothing left to be desired. However, if we think more deeply about this
interpretation, the situation is not so clear. In fact, if we believe that the universal laws
of physics are quantum laws, then classical physics is only an approximation,26 under
conditions which remain largely unknown today, except for models which are too crude
to be realistic. It can be tentatively stated that macroscopic objects are classical, but this
would not apply to macroscopic objects such as quantum fluids (for example, the 3He
and 4He helium superfluids) or superconductors. The boundary between the quantum and
classical worlds, which is an essential feature of Bohr’s interpretation, is a fuzzy concept,
which may even be dependent on the ability of experimentalists to manufacture quantum
superpositions of “large” objects.
The measurement process certainly begins with a microscopic interaction which takes

us into the quantum domain. Then, by some process whose details remain largely unknown
to this day, the microscopic interaction is amplified and the measurement is translated into
a classical effect like the position of a needle on a meter. von Neumann did not want to
draw a boundary between the quantum and classical worlds, and he proposed, as above,
that a measurement begins with an initial quantum interaction between the object being
measured and the measurement device, which is also considered to be a quantum object.
In the von Neumann theory it is easy to follow the first phase of the measurement process,
that which is governed by the evolution equation (4.11) and which can be referred to as
the premeasurement phase (Exercise 9.7.14). However, pursuing the process, one arrives
at the so-called infinite-regress problem, so that the final stage of the measurement can
be pushed as far as the brain of the experimentalist, a feature of von Neumann’s theory
which has been the subject of an abundant literature.
To obtain an actual measurement one must necessarily pass through a stage which is

governed no longer by (4.11), but rather by an irreversible evolution. The interaction of
the system being measured S with the measurement apparatus M creates an entangled
state S+M . This does not present any problem as long as M remains microscopic, but
it cannot persist until the end of the measurement process. To give a simple example,
suppose that the initial state of the system is either ��+� or ��−�, assumed to be orthogonal,
and that of the apparatus is �-0�. The interaction between the system and the apparatus
leads to the following evolution

��+⊗-0�→ ��+⊗-+� ��−⊗-0�→ ��−⊗-−� 
-+�-−� = 0�

26 The “classical approximation” of a quantum system is fundamentally different from the classical approximation of relativistic
mechanics by the Newtonian one. In the latter case, there is no conceptual difference in our description of the world, and it
is a simple matter, at least in principle, to take the limit v/c→ 0. In the former case, we have two different conceptions of
the world, and going from quantum to classical cannot be as simple as letting a small parameter go to zero.
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Then observation of the apparatus, either in the state �-+� or in the state �-−�, informs
us of the initial state of the system. Now comes the difficulty: nothing prevents us from
starting from an initial system state that is a linear superposition of ��+� and ��−�,

��+�+���−�; then, from the linearity of quantum mechanics, the evolution leads to a
final state


��+⊗-+�+���−⊗-−�
that is a linear superposition of macroscopic states if the measuring apparatus is macro-
scopic. This argument, first put forward by Schrödinger, is known as “the Schrödinger’s
cat paradox”: in the original argument, the macroscopic states are the states �-+� and �-−�
corresponding to a live and dead cat, so that the unfortunate cat is left in a superposition
of alive and dead states. To take a less extreme example, we could have a measurement
apparatus in a linear superposition, with, for example, a needle pointing to two posi-
tions on a meter at the same time. In such a situation which could lead (in principle)
to interference effects, we could not say that the system was in just one state before it
was observed. By contrast, in a classical mixture, each individual system is in either one
state or the other, but we cannot tell which without observing it. Our experience with
measurement devices (or cats) implies that they are described by a classical statistical
ensemble and not a state vector, and it is widely believed that irreversible interactions
of M with its environment, or decoherence, lead to this result. As we shall see in Chap-
ter 15 on simple examples, decoherence selects a preferred basis which is linked to the
particular form of interaction of the quantum system with its environment. Then, in this
basis, the off-diagonal matrix elements of the state operator of the macroscopic quantum
system which contain the information on the phases decay at a rate much faster than the
“natural” decay rate, for example the characteristic decay rate of the energy. This process
is irreversible for all practical purposes, and it leaves the system in a classical mixture,
although information on the phases is, in principle, available in the system–environment
quantum correlations. However, it should be emphasized that while decoherence is very
likely an essential stage of the measurement process, it is not sufficient to account for the
complete process. It explains how to pass from a quantum superposition to a statistical
mixture, but has nothing to say about the origin of postulate II or about the fact that a
particular experiment on a quantum system always gives a unique result (the problem of
definite outcomes). It also appears that some degrees of freedom remain almost entirely
decoupled from the environment and are thus not very sensitive to decoherence. This
may be the case, for example, for the position of the center of mass of a heavy molecule.
It cannot be excluded that superpositions of macroscopically distinguishable states be
observed in the future, for example superpositions of macroscopic currents (∼ 1 �A)
flowing in opposite directions in superconducting rings with Josephson junctions.
In order to make these ideas more concrete, let us discuss an experiment performed

at the Ecole Normale Supérieure in 1996.27 It is shown schematically in Fig. 6.10. Our

27 M. Brune et al., Observing the progressive decoherence of the “meter” in a quantum measurement, Phys. Rev. Lett. 77,
4887–4890 (1996).
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Fig. 6.10. An experiment on decoherence. Atoms leave an oven O and cross the first microwave
cavity R1. They then pass through a superconducting cavity C followed by a second microwave
cavity R2. The cavities R1 and R2 are fed by the same source S. Finally, the atoms are detected by
two ionization detectors De and Dg , which are triggered by atoms in the states e and g, respectively.
After M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996).

discussion will be brief; details can be found in Appendix B and in the original article.
In this experiment, the measurement is made by an electromagnetic field enclosed in a
superconducting cavity C shown in Fig. 6.10. The quality factor of this cavity is very high,
of order 5×107; the lifetime Tr of a photon in the cavity is several hundred microseconds
and the resonance frequency �C is 3�21×1011 rad s−1 (�C = 51�1 GHz). After the field is
established in the cavity, all interaction with the field source S is cut off and one works
with an average number of photons 
n� between 3 and 10. The object that is measured
is an atom which follows a trajectory from O to the detectors D in crossing the cavity.
This atom can exist in two states, the ground state �g� and an excited state �e�.28 The
passage of the atom through the cavity induces a phase shift ±% of the electromagnetic
field depending on the state of the atom.29 We use �G� with phase shift +% (�E� with
phase shift −%) to denote the (quantum) state of the field after an atom in the state �g�
(�e�) has crossed the cavity. Depending on whether the atom is in the state �e� or �g�, the
atom + field state vector is

�eE� or �gG��
Measurement of the state of the field makes it possible in principle – if not in practice –
to measure the state of the atom.30 If the field is found in the state �E�, this would
indicate that the atom is in the state �e�. The state of the field is the needle which gives
the measurement result: the needle position is either +% corresponding to �g�, or −%

corresponding to �e�. However, we are still in the premeasurement stage: up to now
the entire evolution has been governed by an equation of the type (4.11) for a closed

28 These two states are the Rydberg states of a rubidium atom corresponding to a valence electron in a level n � 50; see
Exercise 14.5.4.

29 The situation is off-resonance and the cavity photons are not absorbed by the atoms; see Section 5.3.3.
30 The potential existence of such a measurement is confirmed by the disappearance of interference; see Appendix B.
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Fig. 6.11. Representation of the modulus and phase of the electric field in the cavity C. The shaded
circles show the spread at the tip of the field vector.

atom + field system. The states �G� and �E� are “almost classical”: if the number of
photons were large, the modulus and phase of the field would be perfectly defined.31 The
modulus and phase of these states are shown in Fig. 6.11. In the complex plane of the
electric field the field modulus is proportional to the square root 
n�1/2 of the average
number of photons. However, in contrast to the classical case, the tip of the electric field
vector is not exactly fixed; it is affected by quantum fluctuations satisfying !n!% ∼ 1
(cf. Section 11.3.4).
Now in R1 a microwave pulse of suitable duration �1t=�/2 (a �/2 pulse; see (5.35)),

where �1 is the Rabi frequency (Section 5.3.2), is applied to the atom before it passes
through C; see Fig. 6.10. This pulse has the following effect on the state vector of the
atom:32

�e�→ �a� = 1√
2

(
�e�+ �g�

)
�

�g�→ �b� = 1√
2

(
−�e�+ �g�

)
�

(6.60)

If the atom is initially in the state �e�, the microwave pulse sends it into the state �a�, and
the atom + field final state will be the entangled state

�-� = 1√
2

(
�eE�+ �gG�

)
� (6.61)

but the correspondence E→ e� G→ g always holds. The difficulties will arise from the
fact that we can perform linear transformations on the state of the atom after its passage
through C at a time such that an actual measurement has not been completed and the
atom + field system has remained closed. Nothing is yet final in the measurement when

31 From a technical point of view these states are “coherent states”; see Section 11.2.
32 Equations (6.60) are derived from (5.31) with �1t/2= �/4. The factors ±i can be absorbed by redefining the basis vectors

by a phase.
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the atom exits from C; we are still in a stage of reversible evolution. It is possible to
perform linear transformations on the state of the atom which have the effect of leaving
the field in a linear superposition of �E� and �G�. To do this, a second microwave pulse
is applied at R2 before the detectors. Then �-� becomes �- ′�:

�-�→ �- ′� = 1
2

[
��e�+ �g���E�+ �−�e�+ �g���G�

]

= 1√
2

[
�e� 1√

2
��E�− �G��+�g� 1√

2
��E�+ �G��

]
� (6.62)

If we now decide to use the atom as a device for measuring the field, this equation shows
that depending on whether the atom is found to be in the state �e� by De or in the state
�g� by Dg, the field is in a linear superposition

1√
2
��E�− �G�� or

1√
2
��E�+ �G��� (6.63)

As in an experiment of the EPR type, the final state of the field is not fixed until after the
interaction of the atom with the field, because this state is determined by manipulations (in
the cavity R2) after this interaction. This is an example of a “delayed choice” experiment.
Equation (6.63) shows that the previous measurement device, the field, is projected in a
state of linear superposition. In contrast to the states �E� and �G�, the states (6.63) are
not “almost classical” states, and they give an example of a Schrödinger’s cat.33 As we
shall see in Section 15.4.5, linear superpositions of the kind in (6.63) are destroyed very
rapidly by interactions with the environment, and this occurs the more quickly the larger
the object. It is not yet possible to identify �E� and �G� as two positions of a needle,
and this first measurement stage can in fact only be a premeasurement, because linear
superpositions are not observed in a measurement which has been completed.
To learn more about the state of the field, a second atom is sent to probe the field

inside the cavity (a mouse to test the cat). It is then possible to show experimentally
that the linear superposition (6.63) is very fragile. The coherence between the states �E�
and �G� vanishes in several tens of microseconds, a time much shorter than the field
relaxation time, and the field returns to a statistical mixture of the states �E� and �G�.
This is the phenomenon of decoherence due to the dissipative coupling of the field with
its environment. If we initially have the field in a pure state

�%� = 
�E�+��G�� �
�2+���2 = 1� (6.64)

the state operator in the basis (�E�� �G�) will be

�in =
( �
�2 
�∗


∗� ���2
)
� (6.65)

33 Transposing the original discussion of Schrödinger, if the entangled state is (6.61), observation of the atom in the state �e�
implies the death of the cat (the state �E�), while observation of the atom in the state �g� means the cat is alive (the state
�G�). After the microwave pulse is applied and the state of the atom is observed, the cat is in a linear superposition alive +
dead.
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Decoherence transforms this state operator into

�final =
( �
�2 0

0 ���2
)
� (6.66)

In the present case, decoherence is principally due to the leakage of photons out of the
cavity owing to imperfections of the mirrors, and the leakage of a single photon is enough
to destroy the phase coherence. The off-diagonal elements of � in the preferred basis of
coherent states, or coherences, contain information about the phase and tend to zero very
rapidly. This evolution �in → �fin is nonunitary – it is not governed by a Hamiltonian.
In fact, the interaction of the field with its environment leads to a field + environment
entangled state, and the state operator of the field is obtained by taking a partial trace:

�field = Trenv��field+env��

This nonunitary evolution translates into a leakage of information to the environment
degrees of freedom, corresponding to an increase of the von Neumann entropy of the
field characteristic of a dissipative phenomenon:

SvN��fin�≥ SvN��in��

In summary, the measurement process begins with an interaction S +M governed
by (4.11), but this is not sufficient for performing the complete measurement. It is nec-
essary to pass through a stage of irreversible evolution, with leakage of information
to unobservable degrees of freedom. As long as the system S+M remains closed, the
measurement cannot be completed and we remain in the premeasurement stage. It is the
interaction of M with the environment which is responsible for the irreversibility and
decoherence. The Ecole Normale Supérieure experiment demonstrates this decoherence
in a well-controlled experimental situation, even though there is still a considerable way
to go from a cavity containing a few photons to a macroscopic measurement device.
However, it seems clear that the interaction with the environment lies at the origin of
the loss of the phase information and the absence of Schrödinger’s cats. As we shall see
in more detail in Section 15.4.5, most of the Hilbert space of states is extremely fragile
owing to the environment, and after a very short time only a tiny fraction of this space
survives, that which is selected by decoherence and defines the statistical mixtures of
states possessing a classical limit, the states which are robust regarding dissipation in the
environment.

6.4.2 Quantum information

Let us conclude this chapter with an examination of some applications of entangled states
to the field of quantum information, that is, the theory of the processing and transmission
of information using the features specific to quantum mechanics. As a preliminary result,
let us demonstrate the quantum no-cloning theorem. The essential condition for the
method of quantum encryption described in Section 3.1.3 to be perfectly secure is that
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the spy Eve should not be able to reproduce (clone) the state of the particle sent by Bob
to Alice while leaving unchanged the result of Bob’s measurement, so that interception of
the message is undetectable. The impossibility of Eve reproducing the state is guaranteed
by the quantum no-cloning theorem. To demonstrate this theorem, let us suppose that we
wish to duplicate an unknown quantum state �&1�. The system on which we wish to print
the copy is denoted ���; it is the equivalent of a blank page. For example, if we wish to
clone a spin-1/2 state �&1�, ��� is also a spin-1/2 state. The evolution of the state vector
in the cloning process must have the form

�&1⊗��→ �&1⊗&1�� (6.67)

This evolution is governed by a unitary operator U which we do not need to specify:

U �&1⊗�� = �&1⊗&1�� (6.68)

U must be independent of �&1�, which is unknown by hypothesis. If we wish to clone a
second original �&2� we must have

U �&2⊗�� = �&2⊗&2��
Let us now evaluate the scalar product

X = 
&1⊗��U†U �&2⊗��
in two different ways:

�1� X = 
&1⊗��&2⊗�� = 
&1�&2��
�2� X = 
&1⊗&1�&2⊗&2� = �
&1�&2��2�

(6.69)

It follows that either �&1� ≡ �&2� or 
&1�&2� = 0, which prevents us from cloning any
a priori given state. This proof of the no-cloning theorem explains why in quantum
cryptography we cannot restrict ourselves to a basis of orthogonal polarization states
(�x�� �y�) for the photons. It is the use of linear superpositions of polarization states �x�
and �y� that allows the presence of a spy to be detected. The no-cloning theorem also
guarantees that Alice and Bob cannot communicate at speeds greater than the speed of
light in the experiment of Fig. 6.1. If Bob were capable of cloning his spin 1/2, he would
be able to measure its polarization and deduce the choice of axes used by Alice to measure
her spin.
Let us now turn to the second subject in this subsection, quantum computing. In

information theory the elementary unit is the bit, which can take two values, by convention
0 and 1. A bit is stored classically by a two-state system, for example, a capacitor which
can be either uncharged (bit value 0) or charged (bit value 1). A bit of information
typically implies 104 to 105 electrons in the RAM of an actual computer. An interesting
question is then whether or not it is possible to store information using electrons (or
other particles) which are isolated. As we have already seen, a two-state quantum system
is capable of storing a bit of information. For example, in Section 3.1.3 we have used
the two orthogonal polarization states of a photon to store a bit. To be specific, we are
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now going to use the two polarization states of a spin-1/2 particle. By convention, the up
spin state �+� will correspond to the value 0 of the bit and the down spin state �−� to
the value 1: �+� ≡ �0�� �−� ≡ �1�. However, in contrast to a classical system which can
only exist in the state 0 or 1, the quantum system can exist in states ��� that are linear
superpositions of �0� and �1�:

��� = 
�0�+��1�� �
�2+���2 = 1� (6.70)

Instead of an ordinary bit, the quantum system stores a quantum bit or a qubit whose
value in the state (6.70) remains undetermined until the z component of the spin is
measured. This measurement will give the result 1 with probability ���2 and the result 0
with probability �
�2, which itself is not a particularly useful property. The information
stored by means of qubits is an example of quantum information. The no-cloning theorem
implies that it is impossible to copy this information.
Suppose that we would like to store a number between 0 and 7 in a register. This

would require three bits, as in a system of base 2 a number between 0 and 7 can be
represented by a set of three numbers 0 or 1. A classical register would store one of the
eight following configurations:

0 = (000) 1= (001) 2= (010) 3= (011)

4 = (100) 5= (101) 6= (110) 7= (111)�

A system of three spins 1/2 could also be used to store a number between 0 and 7, for
example, by having these numbers correspond to the eight three-spin states

0 � �000� 1 � �001� 2 � �010� 3 � �011�
4 � �100� 5 � �101� 6 � �110� 7 � �111��

(6.71)

We shall use �x�, x = 0� � � � �7, to denote the eight states in (6.71), for example �5� =
�101��= �−+−��. These vectors form a basis in the Hilbert space of states of the three
spins, which is called the computational basis. Since we can form a linear superposition
of the states (6.71), we conclude that the state vector of a system of three spins will allow
us to store 23 = 8 numbers at a time, while a system of n spins will allow us to store 2n

numbers. However, a measurement of the components of the three spins on the Oz axis
will necessarily give one of the eight states in (6.71). We possess some important virtual
information, but when we seek to access it by making a measurement we do not do any
better than with the classical system: the measurement gives one of eight numbers, not
all eight at the same time.
The operations performed by a quantum computer are unitary transformations (4.14)

acting in the Hilbert space of states �⊗n of the qubits. These operations are performed
by quantum logic gates. It is possible to show that all unitary operations in �⊗n can be
decomposed into

• unitary transformations on individual qubits;
• control-not (cNOT) gates acting on a pair of qubits, to be defined below.
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(b)

H

control bit

target bit
(a)

Fig. 6.12. Graphical representation of quantum logic gates. (a) Hadamard gate; (b) cNOT gate.

One frequently used unitary transformation on individual qubits is the Hadamard gate H
(Fig. 6.12(a))

H= 1√
2

(
1 1
1 −1

)
�

so that

H�0� = 1√
2

(�0�+ �1�) H�1� = 1√
2

(�0�− �1�)�
It is easy to see that by applying a gate H to each of the n qubits in the �0� state, we
obtain the following linear combination �%� of states in the computational basis

�%� = H⊗n�0 � � �0� = H⊗n�0⊗n� = 1
2n/2

2n−1∑
x=0

�x�� (6.72)

The cNOT gate (Fig. 6.12(b)) has the following action on a two qubit state: if the first
qubit, termed control bit, is in the �0� state, nothing happens to the second qubit, termed
target bit. If the control qubit is in the �1� state, then the two basis states of the target
qubit are exchanged: �0� ↔ �1�. The matrix representation of the cNOT gate is, in the
basis (�00�� �01�� �10�� �11�),

cNOT =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠=

(
I 0
0 x

)
� (6.73)

What advantage can we expect from a quantum computer functioning with qubits? A
quantum computer is capable of performing a large number of operations in parallel. The
elementary operations on qubits and therefore on states of the type (6.72) are unitary evo-
lutions governed by the evolution equation (4.11) or its integral version (4.14). In certain
cases useful information can be extracted by these operations if parallel quantum comput-
ing can be used. Such computing is based on the following principle. An input register
of n qubits is stored in a state �%� (6.72). If we start from the state �00 � � �0� = �0⊗n�,
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only n elementary operations are necessary for arriving at (6.72). Then we construct the
tensor product �-� of �%� with the state �0⊗m� of an output register of m qubits

�-� = �%⊗0⊗m� = 1
2n/2

∑
x

�x⊗0⊗m�� (6.74)

and a unitary operator Uf corresponding to a time evolution of the system transforms
�-� into �- ′�:

�-�→ �- ′� = Uf �-� =
1

2n/2
∑
x

�x⊗f�x��� (6.75)

The ensemble of two registers simultaneously contains the 2n+m values of the pair
�x� f�x��. Of course, a measurement will give a unique pair, but it is possible to use the
information stored in the state vector (6.75), for example to perform a Fourier transform
of this superposition and then sample the power spectrum to find out the period of f�x�.
A toy example of a quantum algorithm is given in Exercise 6.5.11.
An interesting example is the determination of the period of a function f�x�. Let

us suppose that f�x� is defined on ZN , the additive group of integers modulo N . An
algorithm executed by a classical computer must perform a number of operations of order
O�exp�lnN�1/3� to find the period, whereas if a quantum computer is used this number
will be O�ln2N�. This period determination forms the basis of the Shor algorithm for the
decomposition of a number into primes, the function f�x� in that case being ax mod N ,
a integer.
Once the principle of algorithms which can be executed by quantum computers is

mastered, there remains the question of the actual realization of such a computer. Opinions
on this vary widely, from complete pessimism to measured optimism. A group at IBM has
managed to obtain the period of axmod15 using a quantum computer based on NMR,34

but a computer that can give useful results is still far from realization. The main problem
is decoherence. The calculations described above require that the evolution be unitary,
which implies the absence of uncontrolled interactions with the environment. Of course,
total isolation of this type is impossible. At best it is possible to minimize the perturbations
due to the environment, and to develop algorithms for correcting the inevitable errors
using redundant information. The field of quantum information is expanding rapidly, and
the reader is referred to the articles and books cited in the References for further details.
A promising technique, based on trapped ions, is described in Exercise 11.5.13.
Teleportation is an amusing application of entangled states which could serve as a

method of transferring quantum information (Fig. 6.13).35 Let us suppose that Alice
wishes to transfer to Bob information about the spin state ��A� of particle A of spin 1/2

��A� = 
�0A�+��1A�� (6.76)

34 L. Vandersypen et al., Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,
Nature 414, 883–887 (2001).

35 Two recent experiments are described by M. Riebe et al., Deterministic quantum teleportation with atoms, Nature 429,
734–737 (2004) and M. Barret et al., Deterministic quantum teleportation of atomic qubits, Nature 429, 737–739 (2004).
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entangled pair

Bob
Alice
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B

classical
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to be teleported

Source of entangled particles

C

Fig. 6.13. Teleportation. Alice performs a Bell measurement on particles A and B and informs Bob
of the result through a classical channel.

which is a priori unknown, without sending him this particle directly.36 She cannot
measure the spin, because she does not know the spin orientation of particle A, and
any measurement would in general project ��A� onto another state. The principle of
information transfer amounts to using a pair of entangled particles B and C of spin 1/2.
Particle B is used by Alice and particle C is sent to Bob. Particles B and C are assumed
to have been put in an entangled state, for example in the state �-BC�

�-BC� =
1√
2

(�0B0C�+ �1B1C�)� (6.77)

The initial state of the three particles is thus �%ABC�

�%ABC� =
(

�0A�+��1A�

) 1√
2

(�0B0C�+ �1B1C�)

= 
√
2
�0A�

(�0B0C�+ �1B1C�)+ �√
2
�1A�

(�0B0C�+ �1B1C�)�
(6.78)

Alice is now going to perform a measurement on the pair AB by applying first a cNOT
gate (6.73), with the qubit A �B� as the control (target) qubit, followed by a Hadamard
gate on qubit A (Fig. 6.14). The cNOT gate transforms the initial state (6.77) of the three
qubits into �%′

ABC�

�%′
ABC� = cNOT�%ABC� =


√
2

(�0A���0B0C�+ �1B1C�)+ �√
2

(�1A���1B0C�+ �0B1C�)�
(6.79)

36 For clarity, it is better to label the three particles A, B, and C, rather than 1, 2, and 3.
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H
qubit A

qubit B

Fig. 6.14. Alice applies a cNOT gate on the pair AB, and then a Hadamard gate on qubit A.

Then the Hadamard gate has the following action

�%′′
ABC� = H�%′

ABC� =
1
2

[

�0A0B0C�+
�0A1B1C�+
�1A0B0C�+
�1A1B1C�

+��0A1B0C�+��0A0B1C�−��1A1B0C�−��1A0B1C�
]
�

(6.80)

This equation can be cast in the form

�%′′
ABC� =

1
2
�0A0B�

(

�0C�+��1C�

)
+ 1

2
�0A1B�

(
��0C�+
�1C�

)
+ 1

2
�1A0B�

(

�0C�−��1C�

)
+ 1

2
�1A1B�

(−��0C�+
�1C�
)
�

(6.81)

The last operation is a measurement by Alice of the two qubits in the (�0�� �1�) basis.
The whole measurement is termed Bell measurement. It projects the AB pair on one of
the four states �iAjB� i� j = 0�1, and the state vector can be read on each of the lines
of (6.81).
The simplest case is that where the result is �0A0B�. The C qubit then arrives at Bob

in the state


�0C�+��1C��
that is, exactly in the initial state of qubit A, with the same coefficients 
 and �. Alice
informs Bob through a classical channel (telephone� � �) that he is going to receive qubit
C in the same state as A. If, on the contrary, she measures �0A1B�, qubit C is in the state

��0C�+
�1C��
she informs Bob that he must rotate qubit C by � around Ox, or equivalently, apply the
x matrix

exp
(
−i

�x

2

)
=−ix�
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In the third case (�1A0B�), Bob must rotate by � around Oz, and in the last case (�1A1B�)
he must rotate by � around Oy. In the four cases, Alice never gains knowledge of the
coefficients 
 and �, and the only information she sends Bob is the rotation he must
perform.
It is useful to add the following remarks.

• The coefficients 
 and � are never measured, and the state ��A� is destroyed during the
measurement made by Alice. There is therefore no contradiction with the no-cloning theorem.

• Bob does not “know” the state of particle C until he has received the result of Alice’s measure-
ment. This information must be transmitted by a classical channel, at a speed at most equal to
the speed of light. Therefore, there is no instantaneous transmission of information at a distance.

• Teleportation never involves the transport of matter.

6.5 Exercises

6.5.1 Independence of the tensor product from the choice of basis

Verify that the definition (6.3) of the tensor product of two vectors is independent of the
choice of basis in �1 and �2.

6.5.2 The tensor product of two 2×2 matrices

Write down explicitly the 4×4 matrix A⊗B, the tensor product of the 2×2 matrices A
and B:

A=
(

a b

c d

)
� B =

(
� �

� �

)
�

6.5.3 Properties of state operators

1. The matrix elements �ii, �ij , �ji, and �jj of a state operator � can be used to construct the 2×2
matrix

A=
(

�ii �ij

�ji �jj

)
�

Show that �ii ≥ 0, �jj ≥ 0, and detA≥ 0, from which ��ij �2 ≤ �ii�jj . Also deduce that if �ii = 0,
then �ij = �∗ji = 0.

2. Show that if there exists a maximal test giving 100% probability for the quantum state described
by a state operator �, then this state is a pure state. Also show that if � describes a pure state,
and if it can be written as

�= 
�′ + �1−
��′′� 0 ≤ 
≤ 1�

then �= �′ = �′′. Hint: first demonstrate that if �′ and �′′ are generic state operators, then � is
a state operator. The state operators form a convex subset of Hermitian operators.
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6.5.4 Fine structure and the Zeeman effect in positronium

Positronium is an electron–positron bound state very similar to the electron–proton bound
state of the hydrogen atom.

1. Calculate the energy of the ground state of positronium as a function of that of the hydrogen
atom. We recall that the positron mass is equal to the electron mass.

2. In this exercise we are interested solely in the spin structure of the ground state of positronium.
The space of states to be taken into account is then a four-dimensional space � , the tensor
product of the spaces of spin-1/2 states of the electron and the positron. Following the notation
of Section 6.1.2, we use ��1�2� to denote a state in which the z component of the electron spin is
��1/2 and that of the positron spin is ��2/2, with �=±1. Determine the action of the operators
1x2x, 1y2y, and 1z2z on the four basis states � ++�, � +−�, � −+�, and � −−� of � .
Deduce the action of the operator

�1 · �2 = 1x2x+1y2y+1z2z

on these states.
3. Show that the four vectors

�I� = �++�

�II� = 1√
2
��+−�+�−+��

�III� = �−−�

�IV � = 1√
2
��+−�−�−+��

form an orthonormal basis of� and that these vectors are eigenvectors of �1 · �2 with eigenvalues
1 or −3.

4. Find the projectors 
1 and 
−3 onto the subspaces of the eigenvalues 1 and −3, writing these
projectors in the form


I+��1 · �2�

5. Show that the operator 
12


12 =
1
2
�I+ �1 · �2�

exchanges the values of �1 and �2:


12��1�2� = ��2�1��
6. The Hamiltonian H0 of the spin system in the absence of an external field is given by

H0 = E0I+A�1 · �2� A > 0�

where E0 and A are constants. Find the eigenvectors and eigenvalues of H0.
7. The positronium atom is placed in a uniform, constant magnetic field �B parallel to Oz. Show

that the Hamiltonian becomes

H =H0−
qe�

2m
B�1z−2z��
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where m is the electron mass and qe is its charge. Find the matrix representation of H in the
basis (�I�� �II�� �III�� �IV �). The parameter x is defined by

qe�

2m
B =−Ax�

Find the eigenvalues of H and graph their behavior as a function of x.

6.5.5 Spin waves and magnons

NB: This exercise uses the notation and results of questions 2 to 5 in the preceding
exercise.
A one-dimensional ferromagnet can be represented as a chain of N spins 1/2 numbered

n= 0� � � � �N−1, N � 1, fixed along a line with a spacing l between each. It is convenient
to use periodic boundary conditions, where spin N is identified with spin 0: N ≡ 0.
We suppose that each spin can interact only with its two nearest neighbors, and the
Hamiltonian is written as a function of a constant A as

H = 1

2
NAI− 1

2
A

N−1∑
n=0

�n · �n+1�

1. Show that all eigenvalues E of H satisfy E ≥ 0 and that the minimum one E0 corresponding
to the ground state is obtained when all the spins point in the same direction. Throughout this
exercise this is chosen to be the z direction. A possible choice for the ground state �%0� then
is37

�%0� = �+++· · ·+++��
2. Show that H can be written as

H = NAI−A
N−1∑
n=0


n�n+1 = A
N−1∑
n=0

�I−
n�n+1��

where


n�n+1 =
1
2
�I+ �n · �n+1��

Using the result of question 5 of the preceding exercise, show that the eigenvectors of H are
linear combinations of vectors in which the number of up spins minus the number of down spins
is a constant. Let �-n� be the state in which the spin n is down with all the other spins up. What
is the action of H on �-n�?

3. We seek eigenvectors �ks� of H which are linear combinations of �-n�. Taking into account the
cyclic symmetry, we set

�ks� =
N−1∑
n=0

e iksnl�-n�

with

ks =
2�s
Nl

� s = 0�1� � � � �N −1�

37 Any state obtained from �%0� by rotating the ensemble of spins by the same angle about Oz is also a possible ground state.
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Show that �ks� is an eigenvector of H and determine the corresponding energy Ek. Show that the
energy is proportional to k2s if ks → 0. An elementary excitation called a magnon is associated
with the state �ks� of (quasi-) wave vector ks and energy Ek.

6.5.6 Spin echo and level splitting in NMR

1. For various purposes, it is important to be able to measure accurately the transverse relaxation
time T2 (Section 5.2.3) in NMR experiments. In the rotating frame of Exercise 5.5.6, the NMR
signal a�t� takes the form (� is the detuning)

a�t�∝ ei�t/2 e−t/T2 �

Compute the Fourier transform ã��� of a�t�

ã���=
∫ �

0
dt ei�t a�t��

One could hope to deduce T2 from the width 1/T2 of the peak of ã���. However, the different
molecules have different detunings, for example because the field �B0 may be slightly inhomo-
geneous, leading to different Larmor frequencies, so that the signals from the different molecules
interfere destructively and a�t� decays with a characteristic time much smaller than T2. In
order to overcome this problem, one applies the following sequence of operations on the state
matrix (6.41): free evolution during t/2, rotation by � about the y axis and free evolution during
t/2. Show that in the absence of relaxation, the state matrix would evolve from ��t = 0� (6.41)
as

��t = 0�→ ��t� = U�t���t = 0�U†�t�

U�t� = exp
(−i�zt

4

)
�−iy� exp

(−i�zt

4

)
�

Show that U�t�=−iy, and that, taking relaxation into account, ��t� is

��t�= 1
2

(
I+ 1

2
�py e

−t/T2

)

independently of the detuning �. Show that measuring the time decay of the height of the peak
in ã��� allows a reliable determination of T2, and explain why the sequence of operations
described above is called a “spin echo experiment.”

2. Let us consider two identical spin-1/2 nuclei (for example two protons) belonging to a single
molecule which is being used in a NMR experiment. The two nuclear spins have an interaction
Hamiltonian H12, which, in the simplest case, has the following form

H12 = ��12 
�1�
z ⊗�2�

z �

Show that the corresponding evolution operator is given by

U12�t�= exp�−iH12t/��= I12 cos�12t− i��1�
z ⊗�2�

z � sin�12t�

Prove the following identity

U ���1�
x ���� exp�−iH12t/��U ���1�

x ���� exp�−iH12t/��= I12
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where U ���1�
x ���� is a rotation by � of spin 1 around the x axis. From this equation, demonstrate

that the sequence of operations

free evolution during t→� rotation about Ox→ free evolution during t→� rotation about Ox

brings back the spins to their original orientation at time t = 0. The preceding sequence
of operations is widely used in NMR quantum computing. It relies on the property that
�−1

12 is of the order of a hundred milliseconds, while a rotation takes only a few tens of
microseconds.

3. In the rotating frame, show that the full Hamiltonian for the two spins is

Htot =
1
2
��1��1�

z + 1
2
��2��2�

z − 1
2
�

�1�
1 �1�

x − 1
2
�

�2�
1 �2�

x +��12
�1�
z ⊗�2�

z

where ��i� is the detuning and �
�i�
1 the Rabi frequency for spin �i�. The difference

��1�−��2� = ��B
�1�
0 −B

�2�
0 �

is the chemical shift (Section 5.2.3). What are the four energy levels in the absence of radio-
frequency field (��1�

1 = �
�2�
1 = 0)? Let us introduce the operator38

.z =
1
2
��1�

z +�1�
z ��

One can show that the only allowed transitions correspond to !.z = ±1, while !.z = ±2
and !.z = 0 are forbidden. Show that the four frequencies which appear in the NMR
signal are

��1�+�12 ��1�−�12 ��2�+�12 ��2�−�12�

Sketch the NMR spectrum and compare with Figure 5.9.

6.5.7 Calculation of E�â� b̂�

1. Find the amplitudes a+−, a−+, and a−− (cf. (6.46)).
2. Show that (cf. (6.47))

E�â� b̂�= 
�� · â�⊗ �� · b̂��% = 
%��� · â�⊗ �� · b̂��%� = −â · b̂�

where �%� is the entangled state (6.15) of two spins 1/2:

�%� = 1√
2
��+−�−�−+���

Hint: using the rotational invariance of �%�, show that ��a��%� = −��b��%� and use (3.50).

38 .z is the z component of the total spin; see Chapter 10.
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6.5.8 Bell inequalities involving photons

Let us consider two photons traveling in opposite directions, one (1) along Oz and the
other (2) along −Oz, in an entangled polarization state:

�%� = 1√
2

(
�x�1⊗�y�2−�y�1⊗�x�2

)
= 1√

2
��xy�− �yx���

The states �x� and �y� are states of linear polarization in the Ox and Oy directions.

1. Let

� � = cos �x�+ sin  �y�
be the state of linear polarization in the direction n̂ of the xOy plane (cf. (3.23)) and � ⊥� be
the orthogonal polarization state (3.24). Show that

�%� = 1√
2
��  ⊥�− � ⊥  ���

The state �%� is then invariant under rotation about Oz.
2. Write �%� as a function of the circular polarization states �R� and �L� (3.11) paying attention

to the orientation of the axes (Fig. 6.15). The sense of rotation depends on the propagation
direction:

�%� = i√
2
��RR�− �LL���

Use (3.27) to verify that the second form of �%� is invariant under rotations about Oz.
3. Alice and Bob analyze the photon polarization using linear polarizers oriented in the direction

n̂� for photon 1 and n̂� for photon 2 in the xOy plane. We define

• p++�����, the probability for photon 1 to be polarized in the n̂� direction and photon 2 in
the n̂� direction;

• p+−�����, the probability for photon 1 to be polarized in the n̂� direction and photon 2 in
the n̂�⊥ direction.

The probabilities p−+����� and p−−����� are defined analogously. As for spin 1/2 (cf. (6.45)),
we define

E�����= �p++�����+p−−������− �p+−�����+p−+�������

Show that

E�����=− cos�2��−����

L

x x

y
y

–z

z

R

L

R

Fig. 6.15. Configuration of polarizations of entangled photons.
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Use the rotational invariance of �%� to simplify the calculation. What values of �, �′, �, and �′

should be used to obtain

X = E�����+E����′�+E��′��′�−E��′���=−2
√
2

as in (6.50)?
4. Show that the state

�-� = 1√
2
��xx�+ �yy��

is also invariant under rotations about Oz. Express it as a function of the circular polarization
states.39

6.5.9 Two-photon interference

Let us consider the two-photon Young’s slit interference experiment shown schematically
in Fig. 6.16. The two photons are emitted in opposite directions with wave vectors of
about ±�k by a source whose vertical position is defined with accuracy ±d/2; we can
assume, for example, that the two photons are created in the decay of a particle + of
momentum close to 0 located on segment CD of height d. The distance between the slits
is l and the distance between the slits and the source, as well as between the slits and the
screens, is D, with l	D.

1. What is the spread !kx in the x component of the photon wave vector? It is always assumed
that !kx 	 k.

2. The position of the source is specified by its x coordinate, and the impacts of photons 1 and 2
by their y and z coordinates. Show that for photon 1 the path difference ��x� y� is

��x� y�−��0�0�=∓ l

2D
�x+y�=∓ �x+y��

2

C

D

x
y z

1

Ω

Fig. 6.16. Two-photon interference.

39 The states �%� and �-� both have zero angular momentum. If the two photons originate in the decay of a spin-0 particle,
the choice between the two states depends on the parity of the parent particle; see Exercise 13.4.4.
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where the signs ∓ correspond to the passage of photon 1 through the upper �−� or lower �+�

slit; 2 = l/D is the angle subtended by the space between the slits as seen from the source.
3. Show that the probability amplitude for detecting in coincidence photon 1 at y and photon 2 at

z is proportional to

a�x�y� z�= cos�k �y+x�� cos�k �x+ z��

when the source is located at point x.
4. Show that the total amplitude of detection in coincidence is proportional to

a�y� z�= 1
d

∫ d/2

−d/2
a�x�y� z�dx

and deduce that

a�y� z�= 1
2d

[
1
k 

sin�k d� cos�k �y+ z��+d cos�k �y− z��

]
�

Carefully justify the fact that the amplitudes must be added rather than the intensities, as would
be the case for interference involving a single photon.

5. Show that for d� 1/�k �∼ 
/ the probability of detection in coincidence is

p�y� z�∝ cos2�k �y− z���

How is this result interpreted in terms of conditional interference? What happens if only one
screen is observed?

6. Show that when d	 1/�k � we have

p�y� z�= cos2�k y� cos2�k z��

and two sets of independent fringes are obtained. What is the physical reason that the sets of
individual fringes are restored?

7. What conditions on !kx do the limits d� 
/ and d	 
/ correspond to? How can the results
of questions 5 and 6 be interpreted?

8. Instead of using Young’s slits, photons can be made to interfere by means of two symmetric
beam splitters S and S′ (Fig. 6.17). The reflection and transmission probabilities are 50%. The
phase shift between reflection and transmission by a beam splitter is �/2 (Exercise 2.4.12). We
introduce the phase shifts � and � in the two arms of the interferometer and set ' = ��−��.
Let p�c� c′� be the probability of detection in coincidence by the detectors c and c′. Show that

p�c� c′�= 1
2
sin2

'

2

and that

E�����= �p�c� c′�+p�d�d′��− �p�c�d′�+p�c′�d��=− cos'�

Construct a Bell inequality analogous to that obtained using spins 1/2 by allowing � and �

to vary.
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d
c′

d′

S′ S

c

Ω

αβ

Fig. 6.17. Interference using beam splitters.

6.5.10 Interference of emission times

In an experiment performed by a Nice–Geneva collaboration,40 a laser beam (from a
pumped laser) of wavelength 
 = 655 nm is incident on a nonlinear crystal (Fig. 6.18).
A fraction of the incident photons is converted into pairs of photons of wavelength
2
 = 1310 nm, each photon leaving via one of two optical fibers and then crossing a
Mach–Zehnder (MZ) interferometer (cf. Exercise 1.6.6). These interferometers are chosen
to have a short arm and a long arm, and the difference between the two is !l= 20 cm. The
optical path on the long arm of the right-hand interferometer can be varied by an amount
� by means of a plate. The coherence length lcoh � 40�m of the converted photons is
very small compared with !l: lcoh 	 !l (whereas the coherence length of the pumped
laser is around 100m).

1. The phase � on the long arm of the right-hand interferometer is allowed to vary. Show that the
number of photons counted by the detector D1 is independent of �.

2. The two photons are detected in coincidence at D1 and D2 with a window of coincidence
of order 0�1 ns. Since the pumped laser operates continuously, no other information about the
creation time of the photon pair is available. Show that it is not possible to distinguish between
the two paths, short–short and long–long, followed by the photons. Demonstrate that by varying
� it is possible to obtain a sinusoidal variation in the coincidence count, but that the numbers
detected individually in D1 and D2 remain independent of �. Hint: show that if the two beam
splitters of the left-hand MZ interferometer are suppressed, it is possible to obtain one piece of

crystal
MZ MZ

D1D2
1310 nm 1310 nm

optical fibers

pump laser
655 nm

δ

Fig. 6.18. Interference of emission times.

40 S. Tanzilli et al., PPLN waveguide for quantum communication, Eur. Phys. J. D18, 155–160 (2002).
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information about the trajectory followed by the photon on the right. What happens if the entire
apparatus on the left (MZ interferometer and detectors) is suppressed?

6.5.11 The Deutsch algorithm

This exercise gives the simplest example of a parallel quantum algorithm, the Deutsch
algorithm. We are given a function f�x�, x = 0 or 1, which also takes two values, 0 or
1, so that we need one qubit for the input register and one qubit for the output register.
We want to ask the following question: is f�x� constant (f�0� = f�1�� or “balanced”
(f�0� �= f�1�)? With a classical computer, we need to compute the two values of f�x�
and compare. With a quantum computer, we can get the answer in only one operation.
The quantum circuit is drawn on Fig. 6.19. The register (output) qubit is initially in state
�0� ��1��. Starting from

�-� = (H�0�)⊗ (H�1�)
show that (see (6.75))

Uf �-� =
1
2

( 1∑
x=0

�−1�f�x� �x�
)
⊗ (�0�− �1�)�

What is the state ��� of the input register in Fig. 6.19? Compute H��� and show that
measuring the qubit of the input register allows us to decide whether f�x� is constant or
“balanced.”

Uf

H

H

H

⎟ ϕ〉

⎟ Ψ 〉

⎟ 1〉

⎟ 0〉

Fig. 6.19. Quantum circuit for implementing the Deutsch algorithm.

6.6 Further reading

The tensor product and the state operator are discussed by Messiah [1999], Chapters VII
and VIII, and by Cohen-Tannoudji et al. [1977], Complements EIII and EIV. Two more
recent references are Isham [1995], Chapter 6, and Basdevant and Dalibard [2002],
Appendix D. Applications of the state operator to statistical mechanics and the properties
of the von Neumann entropy can be found in Balian [1991], Chapters 2 to 5, and Le Bellac
et al. [2004], Chapter 2. Applications of the state operator to NMR are discussed, for
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example, by Levitt [2001], Chapter 10. There are many accounts of Bell inequalities,
and we recommend those of Peres [1993], Chapters 6 and 7; Isham [1995], Chapters 8
and 9; N. Mermin, Hidden variables and the two theorems of John Bell, Rev. Mod.
Phys. 65, 803–815 (1993); and Laloë [2001]. These references also discuss the important
theorems of Gleason and of Kochen-Specker. The original article corresponding to the
experiment described in Section 6.4.1 is M. Brune et al., Observing the progressive
decoherence of the “meter” in a quantum measurement, Phys. Rev. Lett. 77, 4887–4890
(1976). A popularized account is given by S. Haroche, Entanglement, decoherence and
the quantum/classical boundary, Phys. Today, 36–42 (July 1998), and a pedagogical
discussion by Omnès [1999], Chapter 22. Interference involving entangled states is
described by D. Greenberger, M. Horne, and A. Zeilinger, Multiparticle interferometry
and the superposition principle, Phys. Today, 22–29 (August 1993), and by A. Zeilinger,
Experiment and the foundations of quantum physics, Rev. Mod. Phys. 71, S288–S297
(1999). The 1989–90 Collège de France lecture course by C. Cohen-Tannoudji (in French,
available on the website www.lkb.ens.fr) contains a very complete discussion of measure-
ment theory and decoherence; see also W. Zurek, Decoherence and the transition from
quantum to classical, Phys. Today, 36–44 (October 1991), p. 36 and Zurek [2003]. For a
critical view of the “decoherence program,” see A. Leggett, Testing the limits of quantum
mechanics: motivation, state of play, prospects, J. Phys. Cond. Mat. 14, R415–R451
(2002); and The quantum measurement problem, Science 307, 871–872 (2005). See also
M. Schlossauer, Decoherence, the measurement problem and interpretations of quantum
mechanics, Rev. Mod. Phys. 76, 1267 (2004). An excellent introduction to quantum
computing can be found in the book of Nielsen and Chuang [2000]; the various aspects
of quantum information are covered in the book edited by D. Bouwmeester, A. Ekert, and
A. Zeilinger, The Physics of Quantum Information, Springer (2000). More recent (and
shorter!) books are: J. Stolze and D. Suter, Quantum Computing, Chichester: J. Wiley
(2004) and M. Le Bellac, A Short Introduction to Quantum Information and Computation,
Cambridge University Press (2006). A popularized account of teleportation is given
by A. Zeilinger, Quantum teleportation, Scientific American, 32 (April 2000). The
“historical” articles (dating to before 1982, for example EPR etc.) have been collected
in a book edited by J. A. Wheeler and W. Zurek, Quantum Theory and Measurement,
Princeton: Princeton University Press (1983).
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Mathematics of quantum mechanics II: infinite
dimension

In Chapter 4 we saw that the canonical commutation relations force us to use a space
of states of infinite dimension, in which rigor would require the use of advanced math-
ematical tools. Fortunately, physicists generally need only to carry the results for finite
dimension over to infinite dimension with some simple modifications which we shall
indicate here, without embarking on sophisticated mathematics. Nevertheless, it is useful
to be aware of the lapses in rigor which are customarily made in physics in order to avoid
possible unpleasant surprises.
The objective of this chapter is, on the one hand, to present some concrete examples

illustrating the new features which arise in infinite dimension and, on the other, to give
the rules for practical calculations, in particular to write down the spectral decomposition
of Hermitian and unitary operators. The mathematics we use is a bit more detailed than
commonly found in most quantum mechanics textbooks. The reader interested purely in
the practical aspects can proceed directly to Section 7.3, where the results essential for
later on are summarized.

7.1 Hilbert spaces

7.1.1 Definitions

The space of states of quantum mechanics is a Hilbert space � , which in general is of
infinite dimension. The axiomatic definition of a Hilbert space is the following.

1. It is a vector space which, for the needs of quantum mechanics, is defined on complex numbers.
The vectors of this space are denoted ���.

2. This space is endowed with a positive-definite scalar product; if ��� and �&� are two vectors,
the scalar product is denoted 
&��� and satisfies


&��� = �
��&��∗� (7.1)


&��+
1� = 
&���+

&�1�� (7.2)


���� = �����2 = 0⇐⇒ ��� = 0� (7.3)

where 
 is an arbitrary complex number and ����� denotes the norm of ���.

209
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3. � is a complete space, that is, a space where every Cauchy series has a limit: if one series of
vectors ���l�� of � is such that ����l�−��m��� → 0 for l�m→�, then there exists a vector ���
of � such that ����l�−��� → 0 for l→�.1

4. A Hilbert space is characterized by its dimension; all spaces of the same dimension are isomor-
phic. The dimension of a Hilbert space can be finite and equal to N , or it can be denumerably
or nondenumerably infinite.

In Chapter 2 we studied Hilbert spaces of finite dimension in detail. If the dimension is
N , it takes N orthogonal unit vectors �n�� n = 1� � � � �N , to form an orthonormal basis:
(�1�� �2�� � � � � �n�� � � � � �N�). In the denumerable case there exists a denumerable series
of orthogonal unit vectors �1�� �2�� � � � � �n�� � � � forming a basis of � , and any vector of
� can be written as a linear combination of these basis vectors:

��� =
�∑
n=1

cn�n�� (7.4)

However, in contrast to the case of finite dimension, an arbitrary combination of the
form (7.4) is not in general a vector of � . In fact, the squared norm of ��� is given by

�����2 =
�∑
n=1

�cn�2� (7.5)

and (7.4) defines a vector if and only if this norm is finite: the series in (7.5) must be
convergent,

�∑
n=1

�cn�2 <��

Under these conditions, for any � > 0 there exists an integer N such that the vector ��N �
defined by the following finite combination of basis vectors

��N � =
N∑

n=1

cn�n�

satisfies

���−�N ��2 =
�∑

n=N+1

�cn�2 ≤ �� (7.6)

In other words, it is possible to approximate ��� by a vector ��N � whose norm differs
by an arbitrarily small amount from that of ���. We can now approximate the cn by
rational numbers, and we see that it is possible to construct in � a denumerable series
of vectors which is dense in � .2 This property, which is common to spaces of finite and
denumerably infinite dimension, is called the separability of the Hilbert space, not to be

1 This axiom is in fact rather superfluous. It is automatically satisfied in the case of finite dimension, and for separable Hilbert
spaces, we can always add the limit vectors of Cauchy series.

2 A set of vectors (������) is dense in � if for any � > 0 and for any vector ��� of � it is possible to find a ������ such that
���−������< �.
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confused with the separability of Section 6.3.2. The Hilbert spaces of quantum mechanics
are separable.
The convergence defined by (7.6) is convergence in the norm, also called strong

convergence. It is said that a series of vectors ���l�� converges in the norm to ��� for
l→� if for any � > 0 there exists an integer N such that for l≥ N

���−��l��� ≤ � ∀ l≥ N� (7.7)

There exists another type of convergence, called weak convergence: a series of vectors
���l�� converges weakly to ��� if for any vector �&� of �

lim
l→�


��l��&� = 
��&�� (7.8)

We shall not have occasion to use weak convergence,3 but the existence of this con-
vergence illustrates a difference from the case of finite dimension: the two types of
convergence are identical for a space of finite dimension but not for a space of infi-
nite dimension. Strong convergence implies weak convergence, but not the reverse
(Exercise 7.4.1).

7.1.2 Realizations of separable spaces of infinite dimension

All separable Hilbert spaces of infinite dimension are isomorphic. However, their concrete
realizations can a priori appear different and it is interesting to be able to identify
them. We shall successively define the spaces 4�2�, L�2��a� b�, and L�2����, which are all
separable and of infinite dimension.

1. The space 4�2�. A vector ��� is defined by an infinite series of complex numbers c1� � � � � cn � � �
such that

�����2 =
�∑
n=1

�cn�2 <�� (7.9)

As in (7.4), the cn are the coordinates of ���. Let us verify that ��+
&� belongs to � . If �&�
has components dn, as

�cn+
dn�2 ≤ 2��cn�2+�
�2�dn�2��
it follows that ���+
&��<�. The scalar product of two vectors


&��� =
�∑
n=1

d∗ncn

is well defined because, according to the Schwartz inequality (2.10),

�
&���� =
∣∣∣ �∑
n=1

d∗ncn
∣∣∣≤ ��&�� ������

3 It arises in, for example, certain problems of quantum field theory.



212 Mathematics of infinite dimension

Let us now show that 4�2� is complete. Let ���l�� and ���m�� be two vectors with components c�l�n
and c

�m�
n . If ����m�−��l���< � for l�m > N , this means that( �∑

n=1

∣∣∣c�l�n − c�m�
n

∣∣∣2
)1/2

< ��

The inequality is a fortiori true for each individual value of n and, for n fixed, the numbers c�l�n
form a Cauchy series which converges to cn for l→�. It is easy to show (Exercise 7.4.1) that
the vector ��l� converges to ��� =∑n cn�n� for l→�:

lim
l→�

∑
n

∣∣∣cn− c�l�n

∣∣∣2 = lim
l→�

���−��l���2 = 0�

Finally, 4�2� is of denumerable dimension by construction.

2. The space L�2��a� b�. Now we are going to introduce a class of vector spaces which will play a
fundamental role, functional spaces. The simplest example is the space of functions which are
square-integrable on the interval �a� b�. Let us consider complex functions ��x� satisfying4∫ b

a
dx���x��2 <�� (7.10)

or functions which are square-integrable on the interval �a� b�. These functions form a vector
space denoted L�2��a� b�. In fact, (i) ��x�+
&�x� is square-integrable if ��x� and &�x� are, and
(ii) the scalar product 
&���,


&��� =
∫ b

a
dx&∗�x���x�� (7.11)

is well defined owing to the Schwartz inequality:∣∣∣ ∫ b

a
dx&∗�x���x�

∣∣∣2 ≤ ∫ b

a
dx �&�x��2

∫ b

a
dx ���x��2 = ��&��2 �����2� (7.12)

The fact that L�2��a� b� is complete is a result of a theorem due to Riesz and Fischer, and the
separability results from a standard theorem of Fourier analysis: any square-integrable function
��x� can be written, in the sense of convergence in the mean (or in the norm), as the sum of a
Fourier series:

��x� =
�∑

n=−�
cn

1√
�b−a�

exp
(2i�nx
b−a

)
� (7.13)

cn =
1√

�b−a�

∫ b

a
dx��x� exp

(
− 2i�nx

b−a

)
� (7.14)

The functions

�n�x�=
1√

�b−a�
exp
(2i�nx
b−a

)
(7.15)

4 Two functions ��x� and ��x� such that ∫ b

a
dx ���x�−��x��2 = 0

represent the same vector of � : ���−��� = 0.
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form a denumerable orthonormal basis of L�2��a� b�, which is then a separable Hilbert space.

3. The space L�2����. When the interval �a� b� is identified as the real line �, �a� b�→ �−��+��,
we obtain the Hilbert space L�2���� (or L�2��−��+��), the space of functions which are square-
integrable on �−��+��. Although the proof is more delicate, it can be shown that L�2���� is
still a separable space and is thus isomorphic to 4�2�.

7.2 Linear operators on 	

7.2.1 The domain and norm of an operator

Linear operators on � are defined as in the case of finite dimension. However, there are
important differences. It can happen, and is very often the case in quantum mechanics, that
an operator is not defined for any vector of � , but only on a subset of vectors of � . For
example, let the operator A act in 4�2� such that if ��� has components (c1� c2� � � � � cn� � � �),
then A��� has components (c1� 2c2� � � � � ncn� � � �). In L�2��a� b� this operator corresponds
to differentiation up to a multiplicative factor, as is seen immediately by examining the
Fourier decomposition (7.13). It is clear that the squared norm of A���, given by

��A���2 =∑
n

n2�cn�2�

can diverge, whereas
∑

n �cn�2 converges; it is sufficient, for example, to take cn = 1/n.
In other words, A��� is not a vector of � . The domain of A, denoted �A, is defined as
the set of vectors ��� such that A��� is a vector of � . In the example above, the domain
of A is the set of vectors such that

∑
n n

2�cn�2 <�, and it is easy to convince ourselves
that this domain is dense in � . In practice, an operator A is of interest only if its domain
is dense in � .
If A��� exists for any ���, it is said that the operator A is bounded. We must then

have ��A���<� for any ���. The maximum of ��A���/����� is called the norm of A and
denoted ��A��:

��A�� = sup
�����=1

��A���� (7.16)

If the norm of ��A�� does not exist, then A is termed unbounded. Unbounded operators are
much more delicate to handle than bounded operators. Unfortunately, they are omnipresent
in quantum mechanics.
In L�2��0�1� the operator X which takes the function ��x� to x��x�,

��x�→ �X���x�= x��x�� (7.17)

is a bounded operator of unit norm. On the other hand, the operator d/dx which takes
��x� to its derivative,

��x�→ d��x�
dx

� (7.18)
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is not a bounded operator, as we have already seen. Another simple argument to show
that d/dx is unbounded is to find a function such that the norm of ��x� is finite, but that
of �′�x� is not. For example, we can choose

��x�= x−1/4�
d��x�
dx

=−1
4
x−5/4

so that ∫ 1

0
dxx−1/2 = 2�

∫ 1

0
dx

1
16

x−5/2 diverges at x = 0�

Domain problems can make the definition of the sum and product of two unbounded
operators rather delicate. For example, it is not possible a priori to define the sum A+B

of two unbounded operators A and B except on the intersection �A ∩�B of the two
domains, which can become problematic if this intersection reduces to a null vector.
When two operators A and B are equal on the same domain �A, but when the domain
of B contains that of A, �A ⊆�B, it is said that B is an extension of A, A ⊆ B. Let us
give an example. The canonical commutation relation (4.33) between the position and
momentum operators X and P written in one-dimensional space (d = 1),

�X�P�= i�I� (7.19)

implies that at least one of the two operators is unbounded (Exercise 7.4.3). The left-hand
side �X�P� of (7.19) is a priori defined only on a subset of � , while the right-hand side
i�I is defined for any vector of � . The correct way to write the canonical commutation
relation is then

�X�P�⊆ i�I�

Let us note another difference from the case of finite dimension. Whereas in a vector
space of finite dimension the existence of a left inverse implies the existence of a right
one and vice versa, this property no longer holds in infinite dimension.5 For example, let
the operators A and B be defined by their action on the components cn of a vector ���:

A�c1� c2� c3 � � ��= �c2� c3� c4 � � ��� B�c1� c2� c3 � � ��= �0� c1� c2� � � ���

Then

BA�c1� c2� c3 � � �� = B�c2� c3� c4 � � ��= �0� c2� c3� � � ���

AB�c1� c2� c3 � � �� = A�0� c1� c2� � � ��= �c1� c2� c3� � � ���

and AB = I but BA �= I , although A and B are both bounded.

5 An important example of such an operator in physics is the Møller operator of scattering theory in the presence of bound
states.



7.2 Linear operators on � 215

7.2.2 Hermitian conjugation

In the case of a bounded operator there is no difficulty of principle in defining the
Hermitian conjugate operator A† of A by


&�A�� = 
A†&���� (7.20)

As in the case of finite dimension, it is said that A is Hermitian if A= A†, and then


&�A�� = 
A&���� (7.21)

The situation becomes more complicated if A is unbounded owing to domain problems.
First, (7.20) can be used to define A† only if �A is dense in � . Next, the domain
in which A† is defined is generally larger than that of A: �A ⊆ �A† . In an instant we
shall give an example of this. In general, for an unbounded operator that satisfies (7.21)
we will have not A = A† but rather A ⊆ A†. Mathematicians reserve the term “Her-
mitian operators” for operators such that A ⊆ A†, and call operators satisfying A = A†

“self-adjoint.”
Let us illustrate this by an example in L�2��0�1� which will familiarize us with the scalar

product and Hermitian conjugation in this space. Let A0 be the operator−id/dx defined on
the domain �A0

of functions ��x� of L�2��0�1� which are differentiable and have square-
integrable derivative and which also satisfy the boundary conditions ��0� = ��1� = 0,
whence the subscript 0 of A0. It is intuitively obvious and easily verified that this domain
is dense in L�2��0�1�. Let us first show that A0 is Hermitian. Since &�x� is a differentiable
function of L�2��0�1� with derivative belonging to L�2��0�1�,


&�A0�� =
∫ 1

0
dx&∗�x�

(
− i

d
dx

��x�
)
=−i

∫ 1

0
dx&∗�x��′�x��


A0&��� =
∫ 1

0
dx
(
− i

d
dx

&�x�
)∗
��x�= i

∫ 1

0
dx �& ′�x��∗��x��

Integration by parts shows that


&�A0��−
A0&��� = −i�&∗�x���x��10 = 0� (7.22)

We note that Hermiticity requires the presence of the factor i and the boundary conditions.
We can define A†

0 on a domain larger than �A0
. In fact, for functions &�x� that are

not constrained by boundary conditions, that is, functions for which &�0� and &�1� are
arbitrary,


A†
0&��� = i

∫ 1

0
dx �& ′�x��∗��x�

= i�&∗�x���x��10− i
∫ 1

0
dx&∗�x��′�x�= 
&�A0���
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and consequently A0 ⊆ A†
0. Finally, we define AC as the operator −id/dx acting in

the domain �AC
of functions ��x� of L�2��0�1� that are differentiable with derivative

belonging to L�2��0�1� and satisfy the boundary conditions

��1�= C��0�� �C� = 1�

The operator AC is self-adjoint. Indeed


AC&���−
&�AC�� = −i�C&∗�1�−&∗�0����0��

The necessary and sufficient condition for the right-hand side to vanish6 is that &�1� =
C&�0�, which shows that the domain of the Hermitian conjugate operator is also �AC

:
A†

C =AC . The operators AC represent different extensions of A0 for each value of C. Even
though the definition is superficially the same (A=−id/dx), owing to the difference of
the domains AC and AC′ are different operators for C �= C ′. This can be confirmed by
showing that the eigenvalues and eigenvectors of AC and AC′ are different for C �= C ′

(Exercise 7.4.3).

7.3 Spectral decomposition

7.3.1 Hermitian operators

The spectral decomposition theorem which generalizes (2.31) is rigorously valid only
for self-adjoint operators.7 Following physicists’ practice, we shall no longer distinguish
between Hermitian and self-adjoint, and speak only of Hermitian operators. If an operator
A is Hermitian, the eigenvalue equation

A��� = a��� (7.23)

does not always have a solution, even if A is a bounded operator. In L�2���� the operator
−id/dx is Hermitian, as seen by immediate generalization of (7.22). The equation

−i
d
dx

��x�= a��x� (7.24)

has plane-wave solutions

�a�x�= C eiax (7.25)

where C is a constant, but �a�x� does not belong to L�2���� because∫ �

−�
dx ��a�x��2 =

∫ �

−�
dx �C�2

is a divergent integral. The operator −id/dx is unbounded, however, even for a bounded
operator such as x in L�2��0�1�, the equation

x&a�x�= a&a�x� (7.26)

6 Note that C∗ = 1/C.
7 More precisely, for operators that are “essentially self-adjoint,” �A†�† = A†.
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has no solution in L�2��0�1�. In fact, the generalization of (7.23) to the case of infinite
dimension is guaranteed only for a very special class of operators, compact operators.
In finite dimension, when ��� is an eigenvector of A with eigenvalue a as in (7.23), it

is said that a belongs to the spectrum of A. To generalize this idea to infinite dimension,
we consider the operator �zI−A�, where z is a complex number and the equation

�zI−A���� = �&�� (7.27)

Let � be the domain of �zI−A� and !�z� be its image. If !�z�=� , z is a regular value
of A. The correspondence between ��� and �&� is one-to-one and the resolvent (2.46)
R�z�A�= �zI−A�−1 exists. The spectrum of A is by definition the set of singular values
of z. This definition coincides with that in finite dimension. If ��� satisfies (7.23),

�zI−A�
∣∣∣
z=a
��� = �aI−A���� = 0 �

and the resolvent is not defined for z = a. If A is Hermitian, it is easy to show
(Exercise 7.4.2) that z = a+ ib is a regular value when b �= 0. The spectrum of A is
then real, as for finite dimension. The values of a can either be labeled by a discrete
index, a1� a2� � � � � an� � � � � or they can be continuous, for example all the values in an
interval on the real line. These correspond to the cases of a discrete spectrum and a
continuous spectrum. The values of a belonging to a discrete spectrum satisfy an eigen-
value equation (7.23), but those of a continuous spectrum do not. It may happen that
the continuous spectrum and the discrete spectrum overlap. For example, if a takes all
values between 0 and 1, it may happen that the spectrum of A contains some discrete
eigenvalues 0≤ an ≤ 1, although this case is exceptional in practice. In general, for most
of the operators used in quantum physics the discrete and continuous spectra do not
overlap.
Although the spectrum for infinite dimension presents some new properties compared

to that for finite dimension, there exists a spectral decomposition theorem which gener-
alizes (2.31):

A=∑
n

an
n�

The precise mathematical form of this theorem is complicated, and physicists resort to
using “pseudoeigenvectors,” that is, objects as in (7.25) that formally satisfy the eigenvalue
equation but are not elements of � . In the case of (7.26), the “solution” will be

&a�x�= ��x−a�� because x��x−a�= a��x−a�� (7.28)

where ��x� is the Dirac delta function, which is not actually a function and is certainly
not an element of L�2��0�1�.

The examples we have just given hint at a general result. The “normalization” condition
of the pseudoeigenvectors (7.25) of −id/dx is, with the choice C = 1/

√
2�,


�a��b� =
1
2�

∫ �

−�
dx e−iaxeibx = ��a−b�� (7.29)
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while for the eigenvalues (7.28) of x


&a�&b� =
∫ �

−�
dx��x−a���x−b�= ��a−b�� (7.30)

The normalization of the “pseudoeigenvectors” is therefore given not by a Kronecker delta
symbol, but by a Dirac delta function. The generalization of the spectral decomposition
theorem is then stated (without proof) as follows.

• For the values an of the discrete spectrum labeled by a discrete index n, it is possible to
write down an eigenvalue equation and normalization conditions analogous to those for finite
dimension:

A�n� r� = an�n� r�� (7.31)


n� r�n′� r ′� = �nn′ �rr ′ � (7.32)

where r is a discrete degeneracy index.
• For the values a��� of the continuous spectrum labeled by continuous index � we have

A��� s� = a������ s�� (7.33)


�� s��′� s′� = ���−�′��ss′ � (7.34)

where ��� s� is not a vector of � ; s is a degeneracy index which can be either discrete or
continuous, and here we have taken it to be discrete for the sake of clarity in the notation.

• Moreover, the eigenvectors of the discrete spectrum and of the continuous spectrum are
orthogonal:


n� r��� s� = 0� (7.35)

The generalization of the decomposition of the identity, or the completeness rela-
tion (2.30), is written as

I =∑
n�r

�n� r�
n� r�+∑
s

∫
d� ��� s�
�� s� � (7.36)

while the spectral decomposition (2.31) of A becomes

A=∑
n�r

�n� r�an
n� r�+
∑
s

∫
d� ��� s�a���
�� s� � (7.37)

We stress the fact that the existence of a discrete and/or continuous spectrum has no
relation whatsoever to whether or not the operator A is bounded. There exist unbounded
operators whose spectrum is entirely discrete, such as the Hamiltonian of the harmonic
oscillator (Section 11.1.1) or the squared angular momentum �J 2 (Section 10.1), and there
are bounded operators like multiplication by x on L�2��0�1� ((7.26)) whose spectrum is
entirely continuous.
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7.3.2 Unitary operators

A unitary operator U is defined as

U†U = UU† = I or U† = U−1� (7.38)

It is immediately seen that unitary operators are necessarily bounded, as they have unit
norm. As in the case of finite dimension, it is possible to construct unitary operators by
exponentiating Hermitian operators. Using the spectral decomposition of A (7.37), we
have

U���= exp�i�A�=∑
n�r

�n� r� exp�i�an�
n� r�+
∑
s

∫
d� ��� s� exp�i�a����
�� s� �

(7.39)

This equation shows that the spectrum of exp�i�A� is localized on the circle �z� = 1, and
it is easy to verify that this property holds for any unitary operator. Moreover, (7.39)
shows that U��� satisfies the Abelian group property:

U��1+�2�= U��1�U��2�� U�0�= I� (7.40)

The reciprocal of this property is the important Stone theorem.8

The Stone theorem. Given a set of unitary operators depending on a continuous
parameter � and satisfying the Abelian group law (7.40), there exists a Hermitian
operator T , called the infinitesimal generator of the transformation group U���, such
that U���= exp�i�T�.
This theorem can be demonstrated heuristically by showing that U��� satisfies a

differential equation. If ��→ 0, then

U��+���= U����U����
(
I+��

dU
d�

∣∣∣
�=0

)
U���� (7.41)

If we take

T =−i
dU
d�

∣∣∣
�=0

� (7.42)

T must be Hermitian because

U����U†���� � �I+ i��T�
(
I− i��T†

)
� I+ i���T −T†�= I�

from which we have T = T†. From (7.41) we deduce that

dU���
d�

= iTU���� (7.43)

which gives the Stone theorem by integrating and taking into account the boundary
condition U�0�= I .

8 Also known as the SNAG (Stone, Naimark, Ambrose, and Godement) theorem.
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7.4 Exercises

7.4.1 Spaces of infinite dimension

1. Show that the space 42 is complete.
2. Show that strong convergence implies weak convergence, but not the reverse, except if the space

is of finite dimension.

7.4.2 Spectrum of a Hermitian operator

Show that if A= A† and z= x+ iy, the vector

�&� = �zI−A����
cannot vanish if y �= 0.

7.4.3 Canonical commutation relations

1. Let two Hermitian operators A and B satisfy the commutation relation �B�A�= iI . Show that at
least one of these operators is unbounded. Without loss of generality (why?) it can be assumed
that ��B�� = 1. Hint: show that

�B�An�= inAn−1

and derive

��An�� ≥ n

2
��An−1���

2. Assume that A possesses a normalizable eigenvector ���
A��� = a���� a= a∗�

On the one hand we have


���BA−AB���� = 
��B�A��−
A��B���
= a�
��B���−
��B����= 0�

while on the other


���BA−AB���� = 
���B�A���� = i�����2 �= 0�

What is the solution of this pseudoparadox? Hint: examine the case where B= x and A=−id/dx
on L2�0�1� with the boundary conditions ��x = 0�= ��x = 1�.

3. Let us consider the operators AC defined in Section 7.2.2. Find the eigenvalues and eigenvectors
of AC , and show that the spectrum of AC varies depending on the values of C. The von Neumann
theorem (Chapter 8) states that the canonical commutation relations are unique up to a unitary
equivalence. However,

�X�AC�= iI and �X�AC′ �= iI�

and AC �=AC′ if C �= C ′. What is the solution of this new pseudoparadox (which is not indepen-
dent of the preceding one)?
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7.4.4 Dilatation operators and the conformal transformation

1. Let A be the operator

A=−ix
�

�x
�

Is A Hermitian? Show that [
e−i�A %

]
�x�=%�e−� x��

Method 1: use the variable u= ln x.
2. Method 2: obtain the partial differential equation(

�

��
+x

�

�x

)[
e−i�A %

]
�x�= 0�

3. Let B be the operator

B =−ix2
�

�x
�

Show that [
e−i�B %

]
�x�=%

(
x

1+�x

)
�

7.5 Further reading

Jauch [1968], Chapters 1–4, and Peres [1993], Chapter 4, contain a fairly detailed and
mathematically rigorous exposition of useful notions about Hilbert spaces of infinite
dimension and operators on these spaces. The reader interested in the mathematical
aspects can plunge into the classic text of F. Riesz and B. Sz.-Nagy, Functional Analysis,
New York: Ungar (1955).
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Symmetries in quantum physics

The solution of problems in classical physics is simplified, sometimes considerably, by
the presence of symmetries, that is, transformations that leave certain physical problems
invariant. For example, in classical mechanics the problem of a particle in a time-
independent central force field �F��r�= F�r�r̂ is invariant under time-translations and under
rotations about any axis passing through the origin. Invariance under time-translations
ensures the conservation of mechanical energy E, and invariance under rotations ensures
the conservation of angular momentum �j. In the absence of symmetries, it is necessary
to solve a system of three second-order differential equations (one for each component).
When these symmetries are present the problem reduces to the solution of only a
single first-order differential equation. Let us summarize the consequences of invariance
principles in classical mechanics.

• Invariance of the potential energy under time-translations implies conservation of mechanical
energy E = K+V , the sum of the kinetic energy K and the potential energy V .

• Invariance of the potential energy under spatial translations parallel to a vector n̂ implies
conservation of the momentum component �p · n̂= �pn̂.

• Invariance of the potential energy under rotations about an axis n̂ implies conservation of the
component �j · n̂= �jn̂ of the angular momentum.

Symmetry properties play an even more important role in quantum mechanics. They make
it possible to obtain very general results which are independent of approximations made,
for example, for the Hamiltonian (of course, as long as these approximations respect the
symmetries of the problem). In this chapter we shall exploit the following invariance
hypotheses, which we assume are valid for an isolated system.1

• The description of an isolated system should not depend on the origin of time; it must be invariant
under translation of the time origin.

• Space is homogeneous, that is, the description of an isolated system should not depend on the
origin of the axes; it must be invariant under space translations.

1 These hypotheses are eminently plausible, but there may always exist subtle effects that violate one (or several) of the
invariances. Before 1957, the vast majority of physicists believed that physics was invariant under the parity operation.
Pauli himself vetoed plans for an experiment at CERN in Geneva designed to seek parity violation, as he found the idea of
such violation so absurd. As a consequence, parity violation was discovered experimentally soon afterwards in the USA by
C. S. Wu (cf. Section 8.3.3).

222
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• Space is isotropic, that is, the description of an isolated system should not depend on the
orientation chosen for the axes; it must be invariant under rotations.

• The form of the laws of physics should not change in going from one inertial reference frame
to another.

This last hypothesis must be made more precise, because there exist two possible transfor-
mation laws between inertial reference frames, the Lorentz law and the Galilean law, the
latter being valid when v/c→ 0. Naturally, the Lorentz transformation law is the more
general one, but it would take us into quantum field theory. Since here we shall consider
only particles with speeds much less than the speed of light, we can limit ourselves to
Galilean transformations and work within the framework of what is conventionally, but
improperly, called “nonrelativistic quantum mechanics.”2

8.1 Transformation of a state in a symmetry operation

8.1.1 Invariance of probabilities in a symmetry operation

The viewpoint adopted implicitly in the introduction to this chapter is called passive: the
physical system is not changed, but the set of axes is. It is in general equivalent to adopt the
active point of view,3 in which the set of axes is unchanged, but a symmetry operation is
applied to the physical system. We have already used this equivalence in the discussion of
Section 3.2.4: compare in Figure 3.11 the passive (a) and the active (b) points of view. In the
rest of this chapter we shall adopt the active point of view, as it is perhaps more intuitive,4

and it will be more convenient for certain discussions, for example that of Section 10.5.
We have seen in Chapter 4, postulate I, that the mathematical object in one-to-one

correspondence with a physical state is a normalized ray in the space of states � , that
is, a normalized vector up to a phase. In the present section only, the distinction between
vectors and rays will be crucial; afterwards, we shall forget it. It can be shown immediately
that the relation between two vectors of �

��′� = ei ���� (8.1)

where  is a real number, is an equivalence relation ��′� ∼ ���.5 The equivalence class is
a ray, which we denote �̃. The scalar product of two rays �̃ and &̃ is not defined, but the
modulus of this scalar product, which we denote ��&̃� �̃��, is well defined. We can choose
two arbitrary representatives ��� and �&� in the equivalence classes and write

��&̃� �̃�� = �
&����� (8.2)

because the modulus does not depend on the phase factors. The result is independent of
the choice of representatives in the equivalence classes.

2 In fact, this theory is perfectly relativistic, as it satisfies Galilean relativity.
3 For certain transformations like reflection in a plane it is simpler to use the passive point of view, which amounts to viewing
the system in a mirror. One can also imagine constructing a setup symmetric to the original one with respect to a plane.

4 At least it is for the author!
5 In this subsection only, ∼ means “belongs to the same equivalence class”, and not “of the order of.”



224 Symmetries in quantum physics

Let us return to the spin 1/2 of Chapter 3. We have seen how to prepare a spin
state oriented along Oz, represented by the ray �̃+, by using a Stern–Gerlach device
with magnetic field pointing along Oz and selecting atoms which are deflected upwards
(by choosing the appropriate sign of the field). Let us rotate the field by an angle � about
the direction of propagation Oy to have it point in the direction n̂� making an angle �

with Oz, 0 ≤ � < 2�. In this way we prepare the physical spin state represented by the
ray �̃+�n̂��, which by definition will be the state �̃+ transformed by rotation by � about
Oy (Fig. 8.1). Using the notation of Chapter 3, the equivalence class of the vector �+�
is the ray �̃+, and that of the vector �+� n̂�� is the ray �̃+�n̂��. In general, the state �̃�

obtained by a rotation � of the state �̃ will be obtained by a rotation � of the apparatus
that prepares the state �̃.

Now let us suppose that after the first Stern–Gerlach apparatus (the polarizer), in which
the field is parallel to Oz, we place a second device (the analyzer) with field parallel
to the direction n̂� obtained from Oz by rotation by an angle � about Oy (Fig. 8.2a).
If along the trajectory there is no magnetic field that can rotate the spin, the probability

z z

x x

O O

yy

α

B
B

→

→

Fig. 8.1. Preparation of the physical states (rays) �̃+ and �̃+�n̂��.

analyzeranalyzer
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→
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(a) (b)

Fig. 8.2. Simultaneous rotations of the polarizer and the analyzer by an angle �.
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for the spin to be deflected in the direction n̂� is

���̃+�n̂��� �̃+��2�
Let us now perform the experiment after rotating the polarizer and the analyzer at the
same time by an angle � (Fig. 8.2b). The probability of deflection in the direction n̂�+� is

���̃+�n̂�+��� �̃+�n̂����2�
Since both the polarizer and the analyzer have undergone the same rotation, rotational
invariance implies that the probabilities are unchanged:

���̃+�n̂�+��� �̃+�n̂����2 = ���̃+�n̂��� �̃+��2� (8.3)

Let us generalize (8.3). If we make a transformation g on a state �̃ by applying this
transformation to the apparatus that prepares �̃ to obtain the transformed state �̃g, �̃→ �̃g,
and if we perform the same operation on the measurement device for &̃, &̃ → &̃g, then
the probabilities must be unchanged if the physics is invariant under this operation:

��&̃g� �̃g��2 = ��&̃� �̃��2� (8.4)

8.1.2 The Wigner theorem

The property (8.4) of rays is translated into a property of vectors owing to a very important
theorem due to Wigner.
The Wigner theorem. If a transformation g on physical states is mathematically trans-

lated into a transformation law for the corresponding rays, �̃→ �̃g, and if we assume
that the probabilities are invariant under this transformation,

��&̃g� �̃g��2 = ��&̃� �̃��2 ∀ �̃� &̃�
it is then possible to choose a representative ��g� of �̃g such that for any vector ��� ∈�

��g� = U�g����� (8.5)

where the operator U�g� is unitary or antiunitary and is unique up to a phase.
The transformation law of rays thus becomes a transformation law of vectors by the

application of an operator that depends only on the transformation g. If U�g� is unitary,
the Wigner theorem implies not only invariance of the norm of the scalar product, but
also invariance of its phase, since


U�g�&�U�g��� = 
&����
Antiunitary operators transform the scalar product into its complex conjugate:


U�g�&�U�g��� = 
&���∗ = 
��&�� (8.6)

The proof of the Wigner theorem involves only elementary concepts, but it is quite
delicate, and we shall leave it to Appendix A. Antiunitary operators come in only when the
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transformation g includes time reversal; we shall say a bit more about this in Section 8.3.3,
but we leave the detailed study to Appendix A. For the time being we limit ourselves to
unitary transformations.
The Wigner theorem has particularly interesting consequences if the transformations

g form a group �. The product g = g2g1 of two transformations, as well as the inverse
transformation g−1, is then a transformation of �. The order of the transformations in
g2g1 is important because the group � is not in general Abelian: g2g1 �= g1g2. If g = g2g1,
the rays �̃g and �̃g2g1

must be identical. For example, if � is the group of rotations about
Oz, and if �z� � represents a rotation by angle  about Oz, then we have

�z� =  2+ 1�=�z� 2��z� 1�� (8.7)

The physical state obtained by rotation by an angle  =  2+ 1 must be identical to that
obtained by rotation by an angle  1 followed by rotation by an angle  2.
Let us now use the Wigner theorem to choose the phases of the vectors such that the

correspondence between ��� and ��g� will be given by (8.5). If g = g2g1, on the one hand
we have

��g� = U�g����� (8.8)

while on the other

��g2g1
� = U�g2���g1

� = U�g2�U�g1����� (8.9)

The vectors ��g� and ��g2g1
� represent identical physical states, and they must be equal

up to a phase:

��g� = ei��g2�g1���g2g1
�� (8.10)

The phase factor in (8.10) could a priori depend on ���, but in fact it depends only on g1
and g2. This is easily seen by writing

��g� = ei���g2g1
�� �&g� = ei��&g2g1

��
and by examining the scalar product 
&���:


&��� = 
&g��g� = ei��−��
&g2g1
��g2g1

�
= ei��−��
U�g2�U�g1�&�U�g2�U�g1���
= ei��−��
&����

which implies that �= �. Since the vector ��� is arbitrary, (8.10) implies the correspond-
ing relation for the operators U�g�:

U�g�= ei��g2�g1� U�g2�U�g1�� (8.11)

This equation expresses a mathematical property: the operators U�g� form a projective
representation of the group �. In the rest of this book we shall consider only two
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simple versions of (8.11). In one the phase factor is +1, and this corresponds to a vector
representation of �:

U�g�= U�g2�U�g1�� (8.12)

In the other the phase factor is ±1:

U�g�=±U�g2�U�g1�� (8.13)

We shall see this factor ± arises in the case where � is the rotation group; the represen-
tations (8.13) of this group are called spinor representations of the rotation group.

8.2 Infinitesimal generators

8.2.1 Definitions

Two types of transformation group can be distinguished.

• Discrete groups, in which the number of elements is finite or denumerably infinite. Some
simple examples are parity, the operation that changes the sign of the coordinates �r → −�r
(cf. Section 8.3.3), and the crystallographic groups that play an important role in solid-state
physics.

• Continuous groups, in which the elements are parametrized by one or more parameters that vary
continuously.6 For example, the rotation �z� � about Oz is parametrized by an angle  which
varies continuously between 0 and 2�.

The interesting continuous groups in physics are the Lie groups (Exercise 8.5.4), of which
an example is the group of spatial rotations, or the SO�3� group of orthogonal matrices
�T�=��T = I of determinant +1 in three-dimensional space.7 Here AT stands for the
transpose of the operator A. This group, which is a three-parameter group, will play a
major role in the rest of the book. For example, a rotation can be parametrized by the
two angles giving the direction n̂ of the rotation axis in a reference frame Oxyz plus the
rotation angle, where all three angles can vary continuously. The rotation group possesses
an infinite number of Abelian subgroups, rotations about a fixed axis. We shall show that
it is sufficient to consider the three Abelian subgroups corresponding to rotations about
Ox, Oy, and Oz; the number of these subgroups is equal to the number of independent
parameters. Rotations belonging to these subgroups are parametrized by an angle  , and
according to (8.7) this parameter is additive: the product of two rotations by angles  1
and  2 is a rotation by an angle  =  1+ 2. In general, if a Lie group � is parametrized
by n independent parameters, it is said that the dimension of the group is n, and we are

6 It should be noted that in the case of a continuous group, the transformations U�g� are necessarily unitary by continuity if
any group element can be related in a continuous fashion to the neutral element e of the group, in other words, if the group
is connected: U�e�= I is unitary.

7 The relation �T�= I implies that det�=±1. When writing SO�3� for the rotation group, S indicates that we must choose
det�=+1, O means that the group is orthogonal, and the 3 denotes the spatial dimension. If inversion of the axes, or parity,
is added to the rotations, we obtain the O�3� group, which includes also matrices of determinant −1. The group SO�3� is
connected, but O�3� is not: it is not possible to pass continuously from det�=+1 to det�=−1.
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led to the study of n Abelian subgroups (Exercise 8.5.4). Let us take an Abelian subgroup
of � whose elements h are parametrized by an additive parameter �:

h��1+�2�= h��2�h��1�� (8.14)

According to (8.12), the operators Uh��� which transform the state vectors of � must
satisfy

Uh��1+�2�= Uh��2�Uh��1�� (8.15)

The Stone theorem (Section 7.3.2) implies the existence of a Hermitian operator Th = T†
h

such that

Uh���= e−i�Th � (8.16)

The operator Th is called the infinitesimal generator of the transformation in question.
Since Th is Hermitian, it is a good candidate for a physical property, and in fact all the
transformations listed in the introduction to this chapter correspond to fundamental physi-
cal properties. The following correspondence can be established between the infinitesimal
generators for these various transformations and physical properties, and we shall discuss
all these in more detail later on in this chapter.

• Time translations by t: U�t� = exp�−itH/��. The operator Th = H is the Hamiltonian; see
Chapter 4.

• Space translations by �a= aâ: U��a�= exp�−ia��P · â�/��. The operator Th= �P · â is the component
of the momentum �P along â.

• Rotations by  about an axis n̂: Un̂� � = exp�−i ��J · n̂�/��. The operator Th = �J · n̂ is the
component of the angular momentum �J along n̂.

• Galilean transformations of the velocity �v: U��v� = exp�−i��v · �G�/��. The operator �G = −m�R,
where �R is the position and m is the mass.

In each case the presence of � in the exponential ensures that the exponent is dimen-
sionless. If we choose precisely � and not � times a number, the preceding expressions
define the operators representing the physical properties of energy, momentum, angular
momentum, and position. In fact, these expressions give the most general definition of
these operators.

8.2.2 Conservation laws

We are going to show that in quantum physics the conservation laws for the expectation
values of physical properties correspond to the conservation laws of classical physics in
the presence of a symmetry. Let us first generalize (4.26) to the case where the operator A
depends explicitly on time. To the right-hand side of (4.26) we must add


��t�
∣∣∣�A
�t

∣∣∣��t�� = 〈�A
�t

〉
�
�



8.2 Infinitesimal generators 229

and this equation gives the general form of the Ehrenfest theorem:

d
dt

A���t�=

i
�

�H�A���+

〈�A
�t

〉
�

� (8.17)

When the operator A is time-independent, ��A/�t�= 0, we recover (4.26):

d
dt

A���t�=

i
�

�H�A���� (8.18)

Since this equation is valid for any ���, we obtain the following theorem (assuming that
H is independent of time).
Theorem of conservation of the expectation value. When a physical property A is

independent of time, the condition d
A�/dt = 0 implies that �H�A�= 0 and the reverse:

If
�A

�t
= 0�

d
dt

A�� = 0⇐⇒ �H�A�= 0� (8.19)

As an application, let us assume that the properties of a physical system are invariant
under spatial translations. This will be the case, for example, for an isolated system of
two particles whose potential energy depends only on the difference of their positions
��r1−�r2�. The expectation value of theHamiltonianmust be the same for the state ��� and the
state ���a� = exp�−i��P · �a�/����� obtained by translation by �a, where �a is an arbitrary vector:


��a�H���a� = 
�� exp
(
i
�P · �a
�

)
H exp

(
− i

�P · �a
�

)
��� = 
��H����

Allowing �a to tend to zero, we deduce that

Invariance under spatial translation⇐⇒ �H� �P�= 0 � (8.20)

The notation �H� �P�= 0 indicates that the three components of the momentum commute
with H . According to (8.18), this equation implies that the expectation value 
�P� of �P
is independent of time: invariance under translation implies conservation of momentum
(more precisely, its expectation value). The same reasoning shows that

Invariance under rotation⇐⇒ �H� �J�= 0 � (8.21)

The expectation value 
�J� of �J is independent of time: invariance under rotation implies
the conservation of angular momentum (more precisely, its expectation value).
It is also useful to note the following.

• If �H�A� = 0, A and H can be diagonalized simultaneously and, in particular, it is possible to
find the stationary states among the eigenvectors of A.

• The condition �H�A�= 0 implies that A commutes with the evolution operator U�t− t0� (4.20).
If ���t0�� is an eigenvector of A at time t0,

A���t0�� = a���t0���
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then ���t�� is an eigenvector of A with the same eigenvalue:

A���t�� = AU�t− t0����t0�� = U�t− t0�A���t0�� = a���t���

The eigenvalue a is conserved; it is a constant of the motion. We could have obtained this result
directly from (8.19), because in this case 
A� = a.

8.2.3 Commutation relations of infinitesimal generators

Most of the properties of a Lie group can be determined by examining the neighborhood
of the identity; more precisely, by studying the commutation relations of the infinitesimal
generators. The set of these commutation relations constitutes the Lie algebra of the group
(Exercise 8.5.4). However, two Lie groups that are isomorphic in the neighborhood of the
identity may differ in their global topological properties; we shall soon give an example
of this. Let us examine in more detail the case of the rotation group.8 The operator �n̂� �

which rotates by an angle  about the axis n̂ is an orthogonal operator of three-dimensional
space: �T�=��T = I . The rotations �n̂� � form an Abelian subgroup of the rotation
group, and according to the Stone theorem we can always write

�n̂� �= exp
(
− i ��T · n̂�

)
� (8.22)

where �T · n̂ is a Hermitian operator. Since � is orthogonal and real, it is also unitary.
In this notation a vector �V is transformed into �V ′ (Fig. 8.3):

�V ′ = �1− cos ��n̂ · �V�n̂+ cos �V + sin  �n̂× �V�� (8.23)

z

x

y
O

n

V

θ
V′

→

→

Fig. 8.3. Rotation of a vector �V by an angle  about the axis n̂.

8 Unless explicitly stated otherwise, we are always dealing with the SO�3� group of rotations in three-dimensional Euclidean
space.
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This transformation law can be written in matrix form as

V ′
i =

3∑
j=1

��n̂� ��ijVj� (8.24)

The explicit determination of the matrix ��n̂� ��ij is proposed in Exercise 8.5.1. We shall
not need it, because we are going to take the limit  → 0, that is, the limit of infinitesimal
rotations:

�V ′ = �V + �n̂× �V�+O� �2� (8.25)

Expansion of the exponential in (8.22) and comparison with (8.25) gives

��T · n̂� �V = i

⎛
⎝ 0 −nz ny

nz 0 −nx

−ny nx 0

⎞
⎠
⎛
⎝ Vx

Vy

Vz

⎞
⎠ �

and by identification the Hermitian operators Tx, Ty, and Tz:

Tx =
⎛
⎝ 0 0 0

0 0 −i
0 i 0

⎞
⎠ � Ty =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠ � Tz =

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠ � (8.26)

When  is finite, the exponential in (8.22) can easily be calculated by noting that
��T · n̂�3 = �T · n̂ (Exercise 8.5.1) and we recover (8.23). Direct calculation (Exercise 8.5.1)
gives the following commutation relations,9 which form the Lie algebra of SO�3�:

�Tx�Ty�= iTz� �Ty�Tz�= iTx� �Tz�Tx�= iTy� (8.27)

or, using the notation of (3.52),

�Ti� Tj�= i
∑
k

�ijkTk � (8.28)

Now let us give a quicker and more instructive demonstration of (8.27) using the following
expression for a rotation by an angle  about an axis n̂�'� in the yOz plane, obtained
starting from the Oy axis by rotating by an angle ' about Ox (Fig. 8.4):

�n̂�'�� �=�x�'��y� ��x�−'�� (8.29)

The rotation �x�−'� first takes the axis n̂�'� onto Oy. We then rotate by an angle  

about Oy and finally return to the initial position of the axis by the rotation �x�'�. Let us
express �n̂�'�� � and �y� � in exponential form (8.22) and expand to first order in  :

�T · n̂�'�= cos'Ty+ sin'Tz = e−i'Tx Tye
i'Tx �

Then expanding to first order in ' we find

�Tx�Ty�= iTz�

9 In fact, it is sufficient to prove only the first, and the other two follow by circular permutation.
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n(φ)

z

x

O
y

φ

θ

Fig. 8.4. The rotation �n̂�'�� �.

and the two other commutation relations (8.27) follow by circular permutation.
Now let us consider operators that perform rotations on physical states in � . We have

seen that the operator which performs a rotation by an angle  about an axis n̂ is

Un̂� �= exp

(
−i 

�J · n̂
�

)
� (8.30)

Since these operators form a representation of the rotation group, from (8.12) and (8.29)
we deduce that

U ��n̂�'�� ��= U ��x�'��U ��y� ��U ��x�−'���

Again expanding the exponentials to first order in  and then in ', we obtain the angular
momentum commutation relations:

�Jx� Jy�= i�Jz� �Jy� Jz�= i�Jx� �Jz� Jx�= i�Jy� (8.31)

where

�Ji� Jj�= i�
∑
k

�ijk Jk � (8.32)

The commutation relations of the Ji are, up to a factor of �, identical to those of the
Ti. The infinitesimal generators of rotations in � have the same commutation relations
as the infinitesimal generators of the rotation group in ordinary space. Our demonstration
of the relations (8.31) or (8.32) emphasizes their geometrical origin.
The commutation relations of scalar and vector operators with �J are of great practical

importance. A scalar operator � is an operator whose expectation value is invariant under
rotation. If U��� is the operator performing a rotation � in the space of states

���� = U�������
we must have


�������� = 
��U†����U������ = 
�������
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and therefore for a rotation Rn̂� �,

exp

(
i 
�J · n̂
�

)
� exp

(
−i 

�J · n̂
�

)
= ��

Taking  to be infinitesimal, we can state that � commutes with �J :

��J���= 0 � (8.33)

A scalar operator commutes with the angular momentum.
By similar reasoning we can determine the commutation relations for �J with �R or �P,

and more generally with any vector operator. By definition, a vector operator �V is an
operator whose expectation value transforms under rotation according to the law (8.24).
We must then have


���Vi���� = 
��U†���ViU������ =
3∑

j=1

�ij 
��Vj����

and consequently for a rotation �n̂� �,

exp

(
i 
�J · n̂
�

)
Vi exp

(
−i 

�J · n̂
�

)
=

3∑
j=1

��n̂� ��ijVj� (8.34)

Let us take n̂= x̂ and  to be infinitesimal. According to (8.25), �V ′ has the components

�Vx� Vy− Vz� Vz+ Vy��

and then we have, for example, for the component i= y of (8.34),(
I+ i

�
 Jx

)
Vy

(
I− i

�
 Jx

)
= Vy− Vz

whence i�Jx�Vy�=−�Vz. Examining the other components, we find

�Jx�Vx�= 0� �Jx�Vy�= i�Vz� �Jx�Vz�=−i�Vy�

or in the general form

�Ji� Vj�= i�
∑
k

�ijkVk � (8.35)

These relations are valid, in particular, for the position operator �R and the momentum
operator �P, which are vector operators.
The attentive reader will have noticed that the commutation relations (3.53) for spin 1/2,

�S = 1
2�� , are identical to (8.31), and spin 1/2 is therefore an angular momentum. Let us

give some other evidence for this identification without entering into the mathematical
details which would take us too far afield. The Lie algebra (3.52) of the Pauli matrices
is that of the SU�2� group of 2×2 unitary matrices of determinant +1 (Exercise 8.5.2).
The Lie algebras of SU�2� and SO�3� are identical; the two groups coincide in the
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neighborhood of the identity. However, the two groups are not globally identical. This
can be seen by considering a rotation of 2� about an axis n̂. Using (3.67)

exp
(
− i

 

2
� · n̂

)
= cos

 

2
I− i� · n̂ sin

 

2

we see that

exp
(
− i

 

2
� · n̂

)
=−I for  = 2��

The identity is recovered only for  = 4�! The identity rotation of SO�3� therefore
corresponds to two elements of SU�2�, +I and −I . The correspondence between SU�2�
and SO�3� is a homomorphism such that two elements of SU�2� correspond to one
element of SO�3�, and so for spin 1/2 we have a projective representation (8.13) of the
rotation group. This property results from the fact that the SO�3� group is connected, but
not simply connected.10 A continuous curve drawn in the parameter space of the group
cannot always be continuously deformed to a point. This property is seen in rotations
in ordinary space11 and is not peculiar to quantum mechanics, as there is sometimes a
tendency to suggest.12 The real identity rotation of an object in relation to its environment
is not a rotation by 2� but a rotation by 4�.

8.3 Canonical commutation relations

8.3.1 Dimension d = 1

Let us first place ourselves in one dimension, on the x axis, and let X be the position
operator. We consider a particle in a state ��� such that the particle is localized in the
neighborhood of an average position x0 with dispersion !x:


��X��� = 
X� = x0� 
���X−x0�
2��� = �!x�2� (8.36)

The particle is localized, for example, in the interval �x0−!x�x0+!x� (Fig. 8.5). If we

10 A disk in a plane is simply connected. If a hole is made in the disk, the resulting region of the plane is no longer simply
connected, because a curve encircling the hole can no longer be shrunk to a point.

11 Cf. Lévy-Leblond and Balibar [1990], Chapter 3.D; the argument is due to Dirac.
12 A word about the conditions under which projective representations are necessary. Two cases can arise. (i) As for the

correspondence between SU�2� and SO�3�, a projective representation may become necessary owing to global topological
properties. The phase factor in (8.11) then takes discrete values, as in (8.13). (ii) If

�Ti� Tj �= i
∑
k

CijkTk

is the algebra of the Lie group (of which (8.28) for SO�3� is an example; see also Exercise 8.5.4), it can happen that it is
possible to construct another Lie algebra with right-hand side differing by a multiple of the identity:

�T ′
i � T

′
j �= i

∑
k

CijkT
′
k+ iDijI� Dij =−Dji�

This extra term is called a central extension of the initial Lie algebra. If the term DijI can be eliminated by a redefinition of
the infinitesimal generators T ′

i , then only vector representations exist (with perhaps discrete phase factors due to the global
topological properties, as in (i)). In the contrary case, for example, that of the Galilean group (Exercise 8.5.7), there exist
projective representations in which the phase factor varies continuously; see, for example, Weinberg [1995], Chapter 2.
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x0 x0 + ∆xx0 – ∆x x0 + a x

| ϕ (x)|2

Fig. 8.5. A particle localized in the neighborhood of x = x0 and translated by a.

apply to this state a translation a,

���→ ��a� = exp
(
− i

Pa

�

)
��� = U�a�����

where P is the momentum operator and U�a� is the translation operator,

U�a�= exp
(
− i

Pa

�

)
� U−1�a�= U†�a�= exp

(
i
Pa

�

)
� (8.37)

then after translation the particle will be localized in the interval �x0+a−!x�x0+a+!x�:


X�a = 
�a�X��a� = 
��U−1�a�XU�a���� = x0+a= 
X�+a�

Since the state ��� is arbitrary, equality of the expectation values implies that of the
operators:

U−1�a�XU�a�= X+aI� (8.38)

and if we allow a to tend to zero we obtain the canonical commutation relation between
X and P:

�X�P�= i�I � (8.39)

As an application, let us calculate the commutator of P and some function f�X�. We
expand f�X� in a Taylor series:

f�X�= c0+ c1X
2+· · ·+ cnX

n+· · · �
According to (8.38),

U−1�a�X2U�a�= U−1�a�XU�a�U−1�a�XU�a�= �X+aI�2�

and this generalizes immediately to Xn:

U−1�a�XnU�a�= �X+aI�n�

We then obtain

U−1�a�f�X�U�a�= f�X+aI� � (8.40)
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Using a well-proven technique we allow a to tend to zero and obtain

�P� f�X��=−i�
�f�X�

�X
� (8.41)

As a particular case of (8.40) we can choose f�X�= exp�i�X�, � real. We then find the
Weyl form of the canonical commutation relations:

exp
(
i
Pa

�

)
exp�i�X� exp

(
− i

Pa

�

)
= exp�i�X� exp�i�a�� (8.42)

The Weyl form is more interesting mathematically than (8.39), because the unitary
operators involved in (8.42) are bounded (Section 7.2.1), in contrast to the operators X
and P.
From (8.39) we immediately derive the Heisenberg inequality relating the dispersions

in position and momentum. According to (4.10),

!x!p=√
�X−x�2�√
�P−p�2� ≥ 1
2

� � (8.43)

8.3.2 Explicit realization and von Neumann’s theorem

An explicit realization or representation of the canonical commutation relations (8.39) can
be given in the space L�2���� of differentiable functions ��x� which are square-integrable
on the real line in the range �−��+��. This representation is

�X���x�= x��x�� �P���x�=−i�
��

�x
� (8.44)

In these equations �X�� and �P�� stand for functions, for example, �X���x�= g�x� and
�P���x�= h�x�. Let us verify (8.44):

��XP−PX����x�=−i�x
��

�x
+ i�

�

�x
�x���x�= i���x�

or

��X�P����x�= i���x��

It is legitimate to ask whether or not the representation (8.44) for the canonical commu-
tation relations is unique: is (8.44) a unique solution of (8.39)? Obviously, two represen-
tations should not be considered distinct if they are related by a unitary transformation,
which is just a simple change of orthonormal basis in � . Let U be a unitary operator.
The operators P ′ and X′ obtained by a unitary transformation

P ′ = U†PU� X′ = U†XU

also obey the canonical commutation relations

�X′�P ′�= U†XUU†PU −U†PUU†XU = U†�X�P�U = i�I�
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The representation �X′�P ′� of the canonical commutation relations is said to be unitarily
equivalent to the representation �X�P�. The importance of (8.44) comes from the following
theorem, which we state without proof.
The unitary equivalence theorem of von Neumann. All representations of the canonical

commutation relations of the Weyl form13 (8.42) are unitarily equivalent to the repre-
sentation (8.44) on L�2����. Moreover, this representation is irreducible, that is, any
operator on � can be written as a function of X and P. Any operator that commutes
with X (P) is a function of X (P). Any operator that commutes with X and P is a multiple
of the identity I .
This theorem implies that we do not have to worry about the choice of representation

in (8.39), because any two choices are related to each other by a unitary transformation.
In three dimensions the position and momentum operators �R and �P are vector operators

with components X�Y�Z and Px, Py, Pz, which we denote collectively as Xi and Pi,

i= x� y� z. The different components of �R and �P commute, and only identical components
have nonzero commutation relations:

�Xi�Pj�= i��ijI � (8.45)

8.3.3 The parity operator

The parity operator reverses the sign of the coordinates: �x→−�x. It can also be viewed
as a combination of reflection with respect to a plane followed by a rotation by � about
an axis perpendicular to this plane. Let us take for example the xOy plane and call M
the reflection with respect to this plane and �z��� the rotation about Oz:⎛

⎝x

y

z

⎞
⎠ M−→

⎛
⎝ x

y

−z

⎞
⎠ �z���−−−→

⎛
⎝−x

−y

−z

⎞
⎠ � (8.46)

Since rotational invariance is valid in general, parity invariance can be imagined as
follows: the mirror image of a physics experiment must appear as being physically
possible. The action of the parity operator on true vectors, or polar vectors, such as the
position �r, momentum �p, or electric field �E,

�r →−�r� �p→−�p� �E→−�E� (8.47)

is different from that on pseudovectors, or axial vectors, such as the angular momentum
�j or the magnetic field �B, which are associated with a rotational sense rather than a
direction:

�j→�j� �B→ �B� (8.48)

13 This precision is important, because otherwise the operators AC of Section 7.2.2 would permit the construction of a
counterexample to the theorem.
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We recall that the vector product of two polar vectors is an axial vector;14 for example,
�j = �r× �p is an axial vector.

Weak interactions (see Section 1.1.4) are not parity-invariant; this was first shown by
C. S. Wu using the �-decay (1.4) of polarized cobalt (60Co) nuclei to an excited state
of 60Ni:

60Co→ 60Ni∗ + e−+��

In the Wu experiment, the expectation value of the 60Co angular momentum 
�J� has a
fixed orientation (Fig. 8.6). The decay electrons are emitted preferentially in the direction
opposite to that of the angular momentum: if �P is the electron momentum, 
�J · �P� < 0.
However, 
�J · �P�, the expectation value of the scalar product of a polar vector and an
axial vector, is a pseudoscalar which changes sign under the parity operation. The mirror
image of the experiment (Fig. 8.6) does not appear to be physically possible: in the mirror
image the rotations are reversed in sense, and the electrons are emitted preferentially in
the direction of �J .
The group � corresponding to the parity operation is the multiplicative group of two

elements (+1�−1), the group Z2. Since −1 cannot be continuously connected to the
identity, it is necessary to find an argument for deciding if the operator 5 representing
the parity operation in the space of states is unitary or antiunitary. Let & and � be two

mirror 60Co

image

experiment

j
→

j
→

p
→ p

→

Fig. 8.6. Experiment on the decay of polarized cobalt.

14 The existence of axial vectors is a peculiarity of three-dimensional space d = 3. An axial vector is in fact an antisymmetric
tensor of rank 2 with d�d− 1�/2 components in general. For d = 3 the number of components is three, so that it can
correspond to a (pseudo)vector. In four dimensions it is not possible to make this identification, because an antisymmetric
tensor of rank 2 like the electromagnetic field has six components.
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arbitrary vectors and �&��� be their scalar product (we switch to the mathematicians’
notation until the end of this section). If parity is a symmetry, then

��5&�5��� = ��&�����
Since in the parity operation the position and momentum operators must both transform
as vectors:

�R→5−1 �R5=−�R� �P →5−1 �P5=−�P� (8.49)

their commutator is unchanged:

5�Xi�Pj�5
−1 = i��ijI�

Let us examine the matrix element

�5&�5�Xi�Pj��� = �5&�5�Xi�Pj�5
−15��

= �5&� i��ij5��= i��ij�5&�5��� (8.50)

On the other hand, we also have

�5&�5�Xi�Pj��� = �5&�5 i��ij��

= i��ij�5&�5�� (8.51)

if we assume that 5 is unitary. In fact, for a unitary operator

�U&�U i��= �&� i��= i�&����

while for an antiunitary operator

�U&�U i��= �i��&�=−i���&��

The equations (8.50) and (8.51) are compatible only if 5 is unitary. On the other hand, if
instead of parity5 we consider time reversal6, �R→ �R and �P→−�P (See Appendix A.2),
then

6�Xi�Pj�6
−1 =−�Xi�Pj�=−i��ij

and the change of sign implies that 6 is antiunitary.
If parity is a symmetry, which as far as we know is the case in strong and electro-

magnetic interactions, 5 must commute with the Hamiltonian: �5�H�= 0. Since 52 = I ,
two successive parity operations take the system of axes back to its initial position, and
the eigenvalues of 5 are ±1. Since 5 and H commute, it is possible to find a set of
eigenvectors ��±� common to H and 5:

H��±� = E±��±�� 5��±� = ±��±�� (8.52)
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The states ��+� are said to have positive parity and the states ��−� to have negative
parity.

8.4 Galilean invariance

8.4.1 The Hamiltonian in dimension d = 1

We are now going to examine the consequences of the one invariance that so far we have
not used, invariance under a change of inertial reference frame. First we limit ourselves to
one dimension, taking the case of a particle on the x axis. The equations of nonrelativistic
physics must preserve their form under a Galilean transformation

x′ = x−vt� (8.53)

which takes one reference frame into another moving at speed v relative to the first. The
transformation law (8.53) corresponds to the passive point of view of changing the axes.
In order to be consistent with the preceding sections, we shall choose the active point of
view, in which the speeds of all the particles are modified by v; it is said that the particles
are “boosted”15 by an amount v. If the initial position, speed, momentum p, and kinetic
energy K of a classical particle of mass m are

x� ẋ� p=mẋ� K = 1
2
mẋ2�

these variables when boosted by v become

x′ = x+vt� ẋ′ = ẋ+v� p′ =mẋ′� K′ = 1
2
m�ẋ′�2� (8.54)

In contrast to the case of translations and rotations, the energy is not invariant under a
Galilean transformation. The only requirement that can be imposed is that the form of
the equations of physics remains invariant.
Let us now turn to the quantum case and place ourselves at time t = 0, which corre-

sponds to an instantaneous Galilean transformation. The transformation law for the state
vectors under a Galilean transformation will be a unitary transformation U�v�

U�v�= exp
(
− i

vG

�

)
� (8.55)

where G=G† is the infinitesimal generator of Galilean transformations. Galilean trans-
formations in one dimension form an additive group, because the composition of two
transformations with velocities v and v′ is a transformation with velocity v′′ = v+ v′.
Once again, the Stone theorem guarantees the existence of a Hermitian infinitesimal
generator G. If 
A� is the expectation value of a physical property in the state ���, the
expectation value 
A�v in the transformed state ��v� = U�v���� will be


�v�A��v� = 
A�v = 
��U−1�v�AU�v����� (8.56)

15 This term originates from the idea of a rocket booster.
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From (8.54) (for t = 0) we expect that the expectation values of the position X,
momentum P, and velocity operators Ẋ will transform as


X� → 
X�v = 
��U−1�v�XU�v���� = 
X�� (8.57)


Ẋ� → 
Ẋ�v = 
��U−1�v�ẊU�v���� = 
Ẋ�+v� (8.58)


P� → 
P�v = 
��U−1�v�PU�v���� = 
P�+mv� (8.59)

The strong hypothesis,16 even though it seems natural, is in fact (8.58), because in quantum
mechanics Ẋ is defined as �i/���H�X�, and (8.58) leads to constraints on the possible
Hamiltonians. Since (8.58) is valid for any ���, we obtain

exp
(
i
vG

�

)
P exp

(
− i

vG

�

)
= P+mvI� (8.60)

and by making v tend to zero,

�G�P�=−i�mI�

It is therefore possible to choose G = −mX. According to the von Neumann theorem,
any other choice will be unitarily equivalent.
Let us now consider the operator Ẋ describing the speed, which according to (8.18)

for A= X is defined by

Ẋ = i
�
�H�X�� (8.61)

From (8.58) we have

exp
(
i
vG

�

)
Ẋ exp

(
− i

vG

�

)
= Ẋ+vI� (8.62)

and subtracting (8.60) (divided by m) from (8.62) we find

exp
(
i
vG

�

)[
Ẋ− 1

m
P
]
exp
(
− i

vG

�

)
= Ẋ− 1

m
P� (8.63)

which implies that the operator �Ẋ−P/m� commutes with G and therefore with X. Again
using the von Neumann theorem, �Ẋ−P/m� must be a function of X:

Ẋ− P

m
= 1

m
f�X�� (8.64)

In the one-dimensional case, and in general only in this case, the function f can be
eliminated by a unitary transformation. Let F�x� be a primitive of f�x�, F ′�x� = f�x�,

16 See H. Brown and P. Holland, The Galilean covariance of quantum mechanics in the case of external fields, Am. J. Phys.
67, 204 (1999) for a critical evaluation of this hypothesis.
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and consider a unitary transformation, which is in fact a local gauge transformation
(cf. Section 11.4.1):

S = exp
( i

�
F�X�

)
� (8.65)

In the unitary transformation X′ = S−1XS the quantity X is obviously not changed, X′ =X.
Let us calculate P ′. Using (8.41), we find

�P�S�=−i�
�S

�X
= �−i��

( i
�

)
f�X�S = f�X�S�

from which we deduce

S−1PS−P = S−1�PS−SP�= S−1�P�S�= S−1f�X�S = f�X��

This gives P ′ = S−1PS = P+f�X� and, according to (8.64),

Ẋ = 1
m

P ′�

We can therefore always choose the momentum operator to be P = mẊ. This choice is
unitarily equivalent to any other. We shall use these results to determine the most general
form of the Hamiltonian compatible with the Galilean transformation laws. We define
the operator K, which will of course be the quantum version of the kinetic energy, as

K = 1
2
mẊ2 = P2

2m
(8.66)

and calculate its commutator with X:

�K�X�= 1
2m

�P2�X�=− i�
2m

�P2

�P
=−i�

P

m
� (8.67)

Interchanging the roles of P and X, equation (8.41) implies that

�X� f�P��= i�
�f�P�

�P
�

However,

1
m

P = Ẋ = i
�
�H�X��

and subtracting this equation from (8.67) gives

�H−K�X�= 0�

The operator �H−K� is a function only of X, which we denote as V�X�. This then gives
the most general form of the Hamiltonian compatible with Galilean invariance:

H = K+V�X�= P2

2m
+V�X�� (8.68)
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This is what we would have obtained using the correspondence principle and starting
from the classical analog of the energy, equal to the sum of the kinetic and potential
energies:

E = p2

2m
+V�x��

Galilean invariance is ensured by the fact that the Hamiltonian preserves its form after
transformation. If the initial Hamiltonian is a function of X and P, the transformed
Hamiltonian is the same function of Xv = X and Pv = P+mv:

• The initial state:

H = P2

2m
+V�X��

• The transformed state:

Hv =
P2
v

2m
+V�Xv�=H+Pv+ 1

2
mv2+V�X�� (8.69)

8.4.2 The Hamiltonian in dimension d = 3

Repeating the argument of the preceding subsection for the case of three space dimensions,
we easily arrive at the generalization of (8.64):

d�R
dt

= 1
m
�P− 1

m
�f��R�� (8.70)

but we cannot in general eliminate f��R�. It would be necessary to find a unitary trans-
formation

S = exp
( i

�
F��R�

)
such that

�f��R�= ��F��R��
which is only possible if �� × �f = 0.17 The equation (8.70) implies the commutation
relation

�Ẋi�Xj�=− i�
m

�ij� (8.71)

The kinetic energy K is defined by

K = 1
2
m
(d�R
dt

)2 = 1
2m

��P− �f��R��2� (8.72)

17 This condition is necessary but not sufficient in a domain that is not simply connected.
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It is easy to calculate the commutator of K and Xi. We find

�K�Xi�=
1
2
m
∑
j

�Ẋ2
j �Xi�=

1
2
m
∑
j

�Ẋj�Ẋj�Xi�+ �Ẋj�Xi�Ẋj�=−i�Ẋi�

Comparing the commutators

�K�Xi�=−i� Ẋi and �H�Xi�=−i� Ẋi�

we obtain

�H−K�Xi�= 0�

and so �H −K� is a function only of �R: H = K+V��R�. The most general Hamiltonian
compatible with Galilean invariance is then of the form

H = 1
2m

(�P− �f��R�
)2+V��R�� (8.73)

It is important to emphasize the difference between �P/m and d�R/dt: it is the latter that
gives the kinetic energy K,

K = 1
2m

(d�R
dt

)2 �= �P2

2m
�

We can now make the connection with classical physics. In classical mechanics the
Hamiltonian of a particle of charge q in a magnetic field �B��r�= ��× �A��r� and an electric
field �E��r�=−�����r� which may be time-dependent is18

Hcl =
1
2m

(
�p−q �A

)2+q���r�� (8.74)

We then find (8.73) using the correspondence principle and making the identification
q �A= �f and q�= V . The significance of this Hamiltonian will be examined more deeply
in Section 11.4.1, when we discuss local gauge invariance; the transformation (8.65) and
its generalization to three dimensions are local gauge transformations. If f��R� can be
eliminated by such a transformation, this would imply that �B = 0. However, one should
not conclude that �f and V are necessarily identified with electromagnetic potentials,
because �f and V are arbitrary functions which need not obey Maxwell’s equations, and the
particle need not be charged. All we have shown is that the classical Hamiltonian (8.74)
can be quantized with a result consistent with Galilean invariance.
Let us summarize what has been achieved in this chapter. By assuming that expectation

values of physical properties (Hermitian operators) transform in the same manner as the
corresponding classical quantities, we have been able to derive the canonical commutation
relations and the form of the Hamiltonian. We never made use of the correspondence
principle, but we checked the consistency of this principle with our results.

18 Cf. Jackson [1999], Chapter 12.
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8.5 Exercises

8.5.1 Rotations

1. Let �n̂� � be the 3× 3 matrix representing a rotation by an angle  about n̂. Show that
Tr�n̂� �= 1+2 cos . Hint: use (8.29).

2. Starting from (8.23), write out the matrix �n̂� � explicitly as a function of the components of n̂,

n̂= �������� �2+�2+�2 = 1�

3. Explicitly verify the commutation relation �Tx�Ty�= iTz using the matrix forms (8.26).
4. Show that

��T · n̂�3 = �T · n̂

and that

e−i ��T ·n̂� = I− i sin  ��T · n̂�− �1− cos ���T · n̂�2�

Compare with (8.23).

8.5.2 Rotations and SU�2�

The SU�2� group is the group of 2×2 unitary matrices of unit determinant.

1. Show that if U ∈ SU�2�, then U has the form

U =
(

a b

−b∗ a∗

)
� �a�2+�b�2 = 1�

2. Show that in the neighborhood of the identity we can write

U = I− i� with � = �†�

and that � is expressed as a function of the Pauli matrices as

� = 1
2

3∑
i=1

 ii�  i → 0�

3. We take  = �
∑

i  
2
i �

1/2 and  i =  n̂i, where n̂ is a unit vector. Assuming that the  i are finite,
we define Un̂� � as

Un̂� �= lim
N→�

[
Un̂

(
 

N

)]N
�

Show that

Un̂� �= e−i �·n̂/2�

Conversely, any SU�2� matrix is of this form (Exercise 3.3.6).
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4. Let �V be a vector of �3 and � be a Hermitian matrix of zero trace:

� =
(

Vz Vx− iVy

Vx+ iVy −Vz

)
= � · �V �

What is the determinant of �? Let � be the matrix [U ∈ SU�2�]

� = U�U−1�

Show that � has the form � · �W and that �W is derived from �V by a rotation. Has this property
been completely proved at this stage?

5. We define �V� � as
� · �V� �= Un̂� � �� · �V�U−1

n̂ � �� �V� = 0�= �V �
Show that

d �V� �
d 

= n̂× �V� ��

Show that �V� � is obtained from �V by rotation by an angle  about n̂. This result establishes a
correspondence between the matrices �n̂� � of SO�3� and the matrices Un̂� � of SU�2�. Is this
a one-to-one or a two-to-one correspondence?

8.5.3 Commutation relations between momentum and angular momentum

This exercise gives another demonstration of the commutation relations (8.35) between
momentum and angular momentum if we choose the vector operator �V = �P. Let �y�a�

be a translation by a parallel to Oy:

�y�a��r = �r+aŷ�

If �x� � is a rotation by an angle  about Ox, show that

�x� ��y�a��x�− �

is a translation along an axis to be determined. From the result, derive the commutation
relation

�Jx�Py�= i�Pz�

8.5.4 The Lie algebra of a continuous group

Let us consider a group � whose elements g are parametrized by N coordinates  a� a=
1� � � � �N , where g� a = 0� is the neutral element of the group. The variables  a are
collectively denoted  :  = ( a). If � is a Lie group, the composition law is given by an
infinitely differentiable function f :

g� �g� �= g�f� �  ���
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Again, f is collective notation for the set of N functions f : f� �  �= (fa� b�  c�). Given
a set of unitary matrices U� a� with the multiplication law

U� �U� �= U�f� �  ���

the matrices U� � then form a representation of the group �; see (8.12).

1. Show that fa� �  = 0� =  a and that fa� = 0�  � =  a. Show that for  �  → 0, the function
fa� �  � has the form

fa� �  �=  a+ a+fabc b c+O� 3�  2  �   
2
�  

3
��

where we have used the convention of summation over repeated indices:

fabc b c =
∑
b�c

fabc b c�

2. In the neighborhood of U� �= I we expand U� � for  → 0:

U� �= I− i aTa−
1
2
 b cTbc+O� �3�

Compute the product U� �U� � to order � 
2
�  2� and show that the equation

U� �U� �= U�f� �  ��

for the terms in  a b implies that

Tbc = TcTb− ifabc Ta�

Using the symmetry of Tbc, obtain

�Tb�Tc�= iCabc Ta

with Cabc = −Cacb. Express Cabc as a function of fabc. The preceding commutation relations
constitute the Lie algebra of the group defined by the composition law f� �  �.

8.5.5 The Thomas–Reiche–Kuhn sum rule

Let us take a particle of mass m in a potential V��r�. The Hamiltonian is

H = �P2

2m
+V��R��

Let ��n� be a complete set of eigenvectors of H :

H��n� = En��n��
∑
n

��n�
�n� = I�

and ��0� be a bound, and therefore normalizable, state of energy E0. We set


�n�X��0� = Xn0�
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1. Demonstrate the commutation relation

��H�X��X�=−�2

m
�

2. Show that ∑
n

2m�Xn0�2
�2

�En−E0�= 1�

8.5.6 The center of mass and the reduced mass

Let us take two particles of masses m1 and m2 moving on a line. We use X1 and X2

to denote their position operators and P1 and P2 to denote their momentum operators.
The position and momentum operators of two different particles commute. We define the
operators X and P as

X = m1X1+m2X2

m1+m2

� P = P1+P2

and X̃ and P̃ as

X̃ = X1−X2� P̃ = m2P1−m1P2

m1+m2

�

1. Calculate the commutators �X�P� and �X̃� P̃� and show that

�X� P̃�= �X̃�P�= 0�

2. Write the Hamiltonian

H = P2
1

2m1
+ P2

2

2m2
+V�X1−X2�

as a function of the operators X�P� X̃� P̃. Show that, as in classical mechanics, it is possible
to separate the motion of the center of mass and the motion of a particle of reduced mass
�=m1m2/�m1+m2� about the center of mass. Generalize this to three dimensions.

3. The following example of an entangled state was used in the original article of Einstein, Podolsky,
and Rosen (Section 6.2.1). The wave function of two particles is written as

1�x1� x2*p1� p2�= ��x1−x2−L���p1+p2��

where L is a constant length. Why is it possible to write such a wave function? What is its
physical interpretation? Measurement of x1 determines x2, and measurement of p1 determines p2.
Develop the analogy with the example of Section 6.3.1.

8.5.7 The Galilean transformation

1. Let W�a�v� be the product of a Galilean transformation of velocity v and of a one-dimensional
translation by a, both along Ox:

W�a�v�= exp
(
−i

Pa

�

)
exp
(
i
mvX

�

)
�
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Show that

W�a1� v1�W�a2� v2�= exp
(
−i

mv1a2

�

)
W�a1+a2� v1+v2��

2. Calculate

W�a�v�W�−a�−v�

and show that it is necessary to use projective representations for the Galilean group.

8.6 Further reading

Useful complementary information on symmetries in quantum physics can be found in
Jauch [1968], Chapters 9 and 10; Ballentine [1998], Chapter 3; and Merzbacher [1970],
Chapter 16. Chapter 2 of Weinberg [1995] also contains an excellent summary of all
the basic concepts. The canonical commutation relations and Galilean invariance are
discussed by Jauch [1968], Chapters 12 and 13. There are many books devoted to the use
of group theory in quantum mechanics, one of which is M. Tinkham, Group Theory and
Quantum Mechanics, New York: McGraw Hill (1964).
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Wave mechanics

In this chapter we shall study a particular realization of quantum mechanics of great
practical importance, namely wave mechanics, used to describe the motion of one1 quan-
tum particle in three-dimensional space �3. It is this realization which serves as the
introduction to the fundamentals of quantum mechanics in most textbooks. It amounts to
taking the “eigenvectors”2 ��r � of the position operator �R as the basis in � , or, in other
words, choosing a basis in which the position operator is diagonal. In wave mechanics
a state vector can be identified with an element ���r� of the Hilbert space L2

�r ��
3� of

functions which are square-integrable in three-dimensional space �3. This state vector
is called the wave function, and we shall see that it is identified with the probability
amplitude 
�r ��� for finding the particle in the state ��� localized at position �r. The wave
function is normalized by the integrability condition (7.10)∫ �

−�
d3r ����r��2 = 1� (9.1)

Owing to the symmetric roles played by the position and momentum operators, it is
also possible to use eigenvectors of �P and “momentum-space wave functions” �̃��p� =

�p ���, which we shall see are the Fourier transforms of the ���r�. After examining the
principal properties of the wave functions, we shall study some applications: bound states,
scattering, tunneling, and the periodic potential. These applications will first be treated in
the simplest case of one dimension. The generalization to three dimensions will permit us
to discuss the important notion of the density of states and its use in Fermi’s Golden Rule.

9.1 Diagonalization of X and P and wave functions

9.1.1 Diagonalization of X

We wish to study the motion of a quantum particle, and for the time being we restrict this
motion to the real line �, on which the particle moves between −� and +�. The relevant

1 Or more; see the generalization in Section 9.9.3 and Chapter 13.
2 As we have seen in Section 7.3.1, these objects are not vectors of the Hilbert space, which we have stressed by using quotation
marks. However, since we shall make intensive use of these “vectors” in what follows, we shall drop the quotation marks in
order to simplify the notation.

250



9.1 Diagonalization of X and P and wave functions 251

physical properties are a priori the position and momentum of the particle, represented
mathematically by the operators X and P whose properties we have established in Sec-
tion 8.3. We shall study the eigenvectors of X starting from the canonical commutation
relation between X and P in the form (8.40):

exp
(
i
Pa

�

)
X exp

(
− i

Pa

�

)
= X+aI� (9.2)

Let us first of all show that the spectrum of X is continuous. We take �x� to be an
eigenvector of X

X�x� = x�x�� (9.3)

and examine the action of X on the vector exp�−iPa/���x�:
X
[
exp
(
− i

Pa

�

)
�x�
]
= exp

(
− i

Pa

�

)
�X+aI��x�

= �x+a�
[
exp
(
− i

Pa

�

)
�x�
]
� (9.4)

We have used the commutation relation (9.2) and the definition (9.3) of the eigenvector
�x�. The vector exp�−iPa/���x� is an eigenvector of X with eigenvalue �x+ a�, and
since a is arbitrary, this shows that all real values of x between −� and +� are
eigenvalues of X. This also proves that the spectrum of x is continuous, and consequently
the normalization must be written as in (7.34) using Dirac delta functions:


x′�x� = ��x−x′�� (9.5)

In view of the arguments of Section 8.3.1, the result (9.4), which can be written as

exp
(
− i

Pa

�

)
�x� = �x+a��

is not surprising, since exp�−iPa/�� is the operator for translation by a which transforms
the state �x� exactly localized at x into the state �x+a� exactly localized at �x+a�: P
is the infinitesimal generator of translations. The vector �x+a� satisfies a normalization
condition analogous to (9.5) because the operator exp�−iPa/�� is unitary. If we wish,
we can fix the phase of the basis vectors �x� by the condition

�x� = exp
(
− i

Px

�

)
�x = 0�� (9.6)

Let us return to the physical interpretation. What exactly does the vector �x� represent?
According to the postulates of Chapter 4, �x� represents a state in which the position of
the particle is known with absolute precision: the particle is localized exactly at the point
x on the real line. However, in quantum mechanics it is impossible to realize such a state
physically. As we shall soon see, such a state has all possible momenta between p=−�
and p=+� with equal probabilities. The mathematical property “�x� is not an element
of the Hilbert space” corresponds to the physical property “�x� is not a realizable physical
state.” Physically realizable states are always represented by “true” vectors of � , that is,
normalizable vectors.
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We have implicitly assumed that the eigenvalues x of X are nondegenerate. Of course,
this is not necessarily the case; for example, the particle can have spin 1/2, in which
case it is necessary to specify whether the particle is in a state with spin up �+� or one
with spin down �−�, and every eigenvalue of X will be doubly degenerate. Under these
conditions, the Hilbert space of states will be the tensor product L�2�

x ���⊗�2 of the
space of position states L�2�

x ��� and the two-dimensional space of spin states �2. A basis
in this space might, for example, be constructed from the states �x⊗+� and �x⊗−� with

�X⊗z��x⊗±� = ±x�x⊗±��
Even though the use of eigenvectors that are not true elements of � is mathematically
questionable, it is extremely convenient and we shall do it often in what follows without
any particular precautions. We shall also generalize the notion of a matrix element. Since
the operator X is diagonal in the basis �x�, we can write down the “matrix elements”
of X:


x′�X�x� = x
x′�x� = x��x−x′�� (9.7)

and more generally those of a function F�X�:


x′�F�X��x� = F�x�
x′�x� = F�x���x−x′�� (9.8)

The completeness relation (7.37) is written as∫ �

−�
�x�dx 
x� = I� (9.9)

The projector 
�a� b� onto the subspace of eigenvalues of X in the interval �a� b� is
obtained by restricting the integration over x to this interval:


�a� b�=
∫ b

a
�x�dx 
x�� (9.10)

This expression generalizes that for a finite-dimensional space. If ! is the subspace of a
set of eigenvalues of a Hermitian operator A, the projector 
�!� onto this subspace is


�!�=∑
n∈!

�n�
n��

9.1.2 Realization in L�2�
x ���

Now let us make the connection between the Dirac formalism which we have just made
explicit in the basis in which X is diagonal and the realization given in Section 8.3.2
of the operators X and P as operators acting in the space L�2���� of square-integrable
functions on �. Let ��� be a normalized vector of � representing a physical state. Using
the completeness relation (9.9), we can decompose ��� in the basis �x�,

��� =
∫ �

−�
�x�dx 
x���� (9.11)
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where 
x��� is thus a component of ��� in the basis �x�, or, in physical terms, the
probability amplitude of finding the particle localized at point x. Let us examine the
matrix elements of the operators X and exp�−iPa/��:


x�[X���] = 
Xx��� = x 
x��� = x��x�� (9.12)


x
∣∣∣[ exp(− i

Pa

�

)∣∣∣��] = 
x−a��� = ��x−a�� (9.13)

These equations show that 
x��� can be identified with a function ��x� of L�2�
x ��� such

that the action of the operators X and P will be given by (8.44). The equation (9.12)
then is [

X�
]
�x�= x��x� � (9.14)

and (9.13) is written as [
exp
(
− i

Pa

�

)
�
]
�x�= ��x−a�� (9.15)

Expanding to first order in a, we have

[
P�
]
�x�=−i�

��

�x
� (9.16)

We recover the action of the operators X and P as defined in Section 8.3.2. Let us check
that the scalar product is correctly given by (7.11) using the completeness relation (9.9):


&��� =
∫ �

−�
dx 
&�x�
x��� =

∫ �

−�
dx&∗�x���x�� (9.17)

The function ��x−a� in (9.15) is just the function ��x� translated by +a, and not by −a.
If, for example, ��x� has a maximum at x= x0, then ��x−a� has a maximum at x−a= x0,
that is, at x = x0+a (Fig. 9.1). We emphasize the fact that the choice �a�x�= ��x−a�

for the translated wave function is the simplest one, but it is not unique. The function

�′
a�x�= ei �x���x−a�

ϕ (x – a)

ϕ (x)

x

ϕ (x)

x0 x0 + a

Fig. 9.1. Translation by a of a particle localized in the neighborhood of x0.
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is derived from ��x−a� by a local gauge transformation (8.65). The choice ��x−a�

is related to that of the infinitesimal translation generator, and the phase transformation
�a�x�→ �′

a�x� will correspond to using an infinitesimal translation generator derived
from (9.16) by the local gauge transformation

P ′ = e−i �x�

(
i�

2

2x

)
ei �x��

In summary, the physical state of a particle moving on the x axis is described by a
normalized wave function ��x� belonging to L�2�

x ���:∫ �

−�
dx ���x��2 = 1� (9.18)

which is interpreted physically as the probability amplitude 
x��� of finding the particle
localized at the point x. The action of the position and momentum operators X and P on
��x� is given by (9.14) and (9.16). The squared modulus

���x��2 = �
x����2

is called the probability for the particle to be found at a point x; it is actually a probability
density, in this case a probability per unit length. According to (9.10), the probability
p��a� b�� of finding the particle localized in the interval �a� b� is

p��a� b��= 
��
�a� b���� =
∫ b

a
dx ���x��2� (9.19)

This probability is normalized to unity by construction since 
���� = 1, which is the
same as (9.18). If we take the interval �x� x+ dx� to be infinitesimal, ���x��2dx is the
probability of finding the particle in this interval.
When the particle possesses extra degrees of freedom, for example, a spin 1/2, its

quantum state can be described using the wave functions �±�x�:

�+�x�= 
x⊗+���� �−�x�= 
x⊗−����
We have just defined what is customarily called “wave mechanics in the x representation,”
as we have chosen to start from the basis �x� in which the position operator is diagonal.
Since X and P play symmetric roles, we could have just as well started from the
basis in which P is diagonal; that is, we could have defined “wave mechanics in the p

representation.” The following subsection is devoted to this representation and its relation
to the x representation.

9.1.3 Realization in L�2�
p ���

Let �p� be an eigenvector of P:

P�p� = p�p�� (9.20)
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First we shall determine the corresponding wave functions

&p�x�= 
x�p� (9.21)

in the x representation:


x�[P�p�] = p
x�p� = p&p�x�

= −i�
2

2x
&p�x��

We have used (9.16) to obtain the second line of the preceding equation. For any p in
the interval �−��+��, the differential equation

−i�
2

2x
&p�x�= p&p�x�

has the solution

&p�x�=
1√
2��

eipx/�� (9.22)

which shows that the spectrum of P is continuous, like that of x. The normalization factor
�2���−1/2 in (9.22) was chosen such that &p�x� is normalized to a Dirac delta function:

∫ �

−�
dx&∗

p′�x�&p�x�=
1

2��

∫ �

−�
dx exp

[
i
�p−p′�x

�

]
= ��p−p′�� (9.23)

and the completeness relation is written as∫ �

−�
dp&p�x�&

∗
p�x

′�= 1
2��

∫ �

−�
dp exp

[
i
p�x−x′�

�

]
= ��x−x′�� (9.24)

We could equally well have started from the completeness relation in the form∫ �

−�
�p�dp 
p� = I (9.25)

and written ∫ �

−�

x′�p�dp 
p�x� = 
x′�I�x� = ��x−x′��

which also leads to (9.24).
If ��� is the state vector of a particle, the “wave function in the p representation”

will be �̃�p� = 
p���. This wave function in the p representation is just the Fourier
transform of the wave function ��x�= 
x��� in the x representation. Since �
x�p��2 is a
constant, the �x� and �p� bases are complementary according to a slight generalization
of the definition in Section 3.1.2. Using the completeness relation (9.9) as well as (9.21)
and (9.22), we find

�̃�p�= 
p��� =
∫ �

−�

p�x�dx 
x��� = 1√

2��

∫ �

−�
dx e−ipx/� ��x� � (9.26)
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and conversely

��x�= 1√
2��

∫ �

−�
dp eipx/� �̃�p� � (9.27)

The action of the operators X and P in the p representation is easily obtained:

[
X�̃
]
�p� = i�

�

�p
�̃�p�� (9.28)

[
P�̃
]
�p� = p �̃�p�� (9.29)

An expression analogous to (9.19) holds in momentum space: the probability p��k� q��
for the particle to have momentum in the interval �k� q� is

p��k� q��=
∫ q

k
dp ��̃�p��2� (9.30)

where ��̃�p��2 is a probability density in momentum space.

9.1.4 Evolution of a free wave packet

Let us start from the Fourier representation (9.27) of the wave function ��x� of a physical
state. The Fourier transform �̃�p�, like ��x�, satisfies the normalization condition∫ �

−�
dp ��̃�p��2 = 1� (9.31)

Such a physical state is often called a wave packet, because according to (9.27) it is a
superposition of plane waves. The expectation values of position 
X� and momentum

P� are calculated by inserting the completeness relations (9.9) and (9.25) twice:3


X� = 
��X��� =
∫

dx dx′
��x�
x�X�x′�
x′��� =
∫ �

−�
dxx���x��2� (9.32)


P� = 
��P��� =
∫

dpdp′
��p�
p�P�p′�
p′��� =
∫ �

−�
dpp��̃�p��2� (9.33)

We have also used (9.7) and an analogous equation in momentum space. The dispersions
!X and !P are given by a similar calculation:

�!X�2 = 
���X−
X��2��� =
∫ �

−�
dx �x−
X��2���x��2� (9.34)

�!P�2 = 
���P−
P��2��� =
∫ �

−�
dp �p−
P��2��̃�p��2� (9.35)

3 The explicit notation would be 
X�� and 
P��; we have suppressed the index � to simplify the notation.
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According to the general argument of Section 4.1.3, these dispersions satisfy the
Heisenberg inequality:

!x!p ≥ 1
2

� � (9.36)

where we have used the usual notation !x!p instead of !X!P. A direct demonstration
of (9.36) is proposed in Exercise 9.7.1.
Let us introduce a time dependence in the state vector: the state vector is ���0�� ≡ ���

at time t = 0 and ���t�� at time t. The wave function ��x� t� at time t then is ��x� t�=

x���t��. To obtain ���t�� as a function of ���0��, we need the evolution equation (4.11)
and also the Hamiltonian H . Until the end of this section, we shall restrict ourselves to
the case where the potential energy is zero and the Hamiltonian reduces to the kinetic
energy term K (8.66):

H = K = P2

2m
� (9.37)

Since K and P commute, the eigenstates of H can be chosen among those of P:

P�p� = p�p� H�p� = P2

2m
�p� = p2

2m
�p� = E�p��p�� (9.38)

and consequently

exp
[
− i

Ht

�

]
�p� = exp

[
− i

E�p�t

�

]
�p�� (9.39)

Then it is natural to express 
x���t�� as a function of the components of ���t�� in the
basis �p�:


x���t�� = 
x� exp
(
− i

Ht

�

)
���0�� =

∫
dp 
x�p�
p� exp

(
− i

Ht

�

)
���

= 1√
2��

∫ �

−�
dp exp

(
i
px

�
− i

E�p�t

�

)
�̃�p�� (9.40)

In order to eliminate the factors of �, we introduce the wave vector k = p/� and the
frequency ��k�:

k= p

�
� ��k�= E��k�

�
= �k2

2m
� A�k�=√

� �̃��k�

so that ��x� t� can be written as

��x� t�= 1√
2�

∫ �

−�
dkA�k� exp

(
ikx− i��k�t

)
� (9.41)

The qualitative behavior of �A�k��2 and ���x�0��2 is shown in Fig. 9.2. The function
�A�k��2 is centered at k� k and has width !k. The Heisenberg inequality (9.36) becomes

!x!k≥ 1
2
� (9.42)
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| A(k)|2
| ϕ (x, 0)|2

k x
∆ k

∆  x

k
–

Fig. 9.2. Spread of a wave packet in k and in x.

The limiting cases are

• A particle of sharply defined wave vector (or momentum), which is a plane wave:

A�k�= ��k−k�� ��x�0�= 1√
2�

eikx� (9.43)

• A particle localized exactly at x = x0:

A�k�= 1√
2�

e−ikx0 � ��x�0�= ��x−x0�� (9.44)

We recall that neither a plane wave (9.43) nor a perfectly localized state (9.44) corresponds
to a physically realizable state. In the case (9.44) of a localized particle, the probability
�A�k��2 of observing momentum �k is independent of k, and so the probability distribution
cannot be normalized. Similarly, for the case (9.43) of fixed momentum we have ���x��2=
const. and the probability density is uniform on the x axis, so that again the probability
distribution cannot be normalized. According to (9.31), for a state to be physically
realizable we must have ∫ �

−�
dk �A�k��2 <��

Let us now study the time evolution of a wave packet. We shall use the stationary phase
approximation to evaluate (9.41). Defining A�k� = �A�k�� exp�i'�k��, the phase  �k� of
the exponential in (9.41) becomes

 �k�= kx−��k�t+'�k��

We obtain the leading contribution to the integral (9.41) if the phase  �k� is stationary in
the region k� k where �A�k�� has a maximum; if  �k� is not stationary, the exponential
oscillates rapidly and the contribution to the integral (9.41) averages to zero. We then
must have

d 
dk

∣∣∣
k=k

= x− t
d�
dk

∣∣∣
k=k

+ d'
dk

∣∣∣
k=k

= 0�

The center of the wave packet will move according to the law

x = vg�t− ��� (9.45)
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where vg is the group velocity, which is just the average velocity v of the particle:

vg = v= d�
dk

∣∣∣
k=k

= d
dk

�k2

2m

∣∣∣
k=k

= �k

m
= p

m
� (9.46)

The time � determining the t = 0 position x0 =−vg� of the center of the wave packet is

� = 1
vg

d'
dk

∣∣∣
k=k

= �
d'
dE

∣∣∣
k=k

� (9.47)

In order to obtain a more precise result, we can rewrite the phase by expanding ��k� in
the neighborhood of k= k:

 �k� = kx−��k�t− �k−k�vgt−
1
2
�k−k�2

�

m
t+'�k�

= ��k�t+k�x−vgt�−
1
2
�k−k�2

�

m
t+'�k��

We obtain a very simple form for ��x� t� if it is possible to neglect the quadratic term in
�k−k�2:

��x� t� = 1√
2�

exp�i��k�t�
∫

dkA�k� exp�ik�x−vgt��

= exp�i��k�t���x−vgt�0�� (9.48)

This equation shows that aside from the phase factor exp�i��k�t�, the wave function at
time t is obtained from that at time t = 0 by the substitution x → x− vgt, that is, if
vg > 0 the wave packet propagates without deformation in the direction of positive x

with velocity vg. However, this result is only approximate since we have neglected the
quadratic term in �k−k�2. This term gives a contribution to the phase

−1
2
�k−k�2

�

m
t

which must remain 	 1 in the domain where �A�k�� is sizable if we want to remain
within the linear approximation. The contribution of this term can be neglected if

1
2
�k−k�2

�t

m
	 1

in a region of extent !k about k. For the deformation of the wave packet to be small, we
must have

t	 2m
��!k�2

= 2m�

�!p�2
� (9.49)

If this condition is not satisfied, the wave packet is deformed and broadens, with its center
continuing to move at speed vg. This phenomenon is called wave-packet spreading.
Let us conclude this section by showing how the Heisenberg inequality (9.36) can be

used as a heuristic tool to estimate the energy of the ground state of the hydrogen atom
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(see Section 1.5.2). If the electron describes a circular orbit of radius r with momentum
p=mv, its classical energy will be

E = p2

2m
− e2

r
� (9.50)

In classical physics, the orbital radius of the electron tends to zero (it is said that the
“electron falls into the nucleus”) with the emission of electromagnetic radiation. In fact,
in classical physics the energy of a circular orbit E = −e2/�2r� is not bounded below
and nothing prevents the orbit radius from becoming arbitrarily small. The decrease in
the energy of the orbit is compensated for by the emission of energy in the form of
electromagnetic radiation, which ensures energy conservation. However, in an orbit of
radius r the spread !x of the position on the x axis is of order r, which makes the
momentum spread at least ∼ �/!x = �/r. We find rp ∼ �, and the expression for the
energy (9.50) becomes

E ∼ �2

2mr2
− e2

r
�

Let us seek the minimum of E:

dE
dr

∼− �2

mr3
+ e2

r2
= 0�

so that a minimum occurs at

r = a0 =
�2

me2
� (9.51)

which is just the Bohr radius (1.34) of the hydrogen atom. Naturally, the fact that we
obtain exactly a0 in this order-of-magnitude calculation is a happy coincidence. It leads
to the ground-state energy (1.35):

E0 =− e2

2a0

=−me4

2�2
� (9.52)

While this calculation can give only the order of magnitude, the accompanying physics
explains the deep reason for the stability of the atom: owing to the Heisenberg inequalities,
the electron cannot exist in an orbit of very small radius without acquiring a large
momentum, which makes its kinetic energy high. The energy of the ground state is
obtained by finding the best possible compromise between the kinetic and potential energy
so as to obtain the minimum total energy.

9.2 The Schrödinger equation

9.2.1 The Hamiltonian of the Schrödinger equation

We have seen in Section 8.4.1 that the most general time-independent Hamiltonian
compatible with Galilean invariance in dimension d = 1 is given by (8.68):

H = P2

2m
+V�X�� (9.53)



9.2 The Schrödinger equation 261

where K=P2/2m is the kinetic energy operator and V�X� is the potential energy operator,
or briefly the potential. We also recall the evolution equation (4.11):

i�
d���t��

dt
=H���t��� (9.54)

We multiply both sides of this equation on the left by the bra 
x� taking (9.53) as the
Hamiltonian:

i�
d
dt

x���t�� = i�

�

�t
��x� t��


x�P2���t�� = �P2���x� t�=
(
−i�

�

�x

)2

��x� t�=−�2 �
2��x� t�

�x2
�


x�V�X����t�� = V�x���x� t��

where we have used (9.8) and (9.16). We thus obtain the time-dependent Schrödinger
equation:

i�
2��x� t�

2t
=− �2

2m
22��x� t�

2x2
+V�x���x� t� � (9.55)

which is a wave equation for the wave function ��x� t�.
Since the potential V�X� is independent of time, we know that there exist stationary

solutions of (9.54):

���t�� = exp
(
− i

Et

�

)
���0��� H���0�� = E���0��� (9.56)

Multiplying on the left by the bra 
x�, the equation H��� = E��� becomes the time-
independent Schrödinger equation:

[
− �2

2m
�2

�x2
+V�x�

]
��x�= E��x� � (9.57)

Equation (9.55) can be generalized in two ways. While remaining compatible with
Galilean invariance, it is possible to add a time dependence to the potential: V�x�→
V�x� t�. It is also possible to use velocity-dependent potentials, for example to approximate
relativistic effects. In this case the Galilean invariance is lost, and moreover ambiguities
may be introduced when it is necessary to choose the ordering of a product of position
and momentum operators.

9.2.2 The probability density and the probability current density

With the probability density ���x� t��2 we can associate a current density j�x� t� by analogy
with hydrodynamics or electrodynamics. Let us recall the example of hydrodynamics to
see how this works. Let ���r� t� be the mass density of a compressible fluid of total massM
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flowing with local velocity �v��r� t�.4 The current density (or simply current) �j��r� t� is
defined as

�j��r� t�= ���r� t� �v��r� t�� (9.58)

We consider a surface � surrounding the volume � , which contains a mass M�� � of fluid
(Fig. 9.3). The mass dM�� �/dt of fluid leaving � per unit time is equal to the flux of
current through �:

dM�� �

dt
=
∫
�
�j ·d �� =

∫
�
��� · �j� d3r�

where we have used Green’s theorem. This fluid mass is also equal to minus the time
derivative of the integral of the density over � :

dM�� �

dt
=− d

dt

∫
�
d3r ���r� t�=−

∫
�
d3r

����r� t�
�t

�

The two expressions for dM�� �/dt must be equal for any volume � , which implies that
the integrands must be equal. This leads to the continuity equation:

��

�t
+ �� · �j = 0 � (9.59)

In electrodynamics � is the charge density and �j is the current density, which also satisfy a
continuity equation of the type (9.59) expressing the local conservation of electric charge.
Returning to dimension d = 1,

2�

2t
+ 2j

2x
= 0� (9.60)

In quantum mechanics we expect to find a continuity equation of the type (9.59), or (9.60)
in one dimension. If ∫ b

a
dx ���x� t��2

is the probability of finding the particle at time t in the interval �a� b�, this probability will
in general depend on the time. If, for example, this probability decreases, this indicates

jV

dS

→

→

Fig. 9.3. Current and flux leaving a volume � .

4 We temporarily revert to the dimension d = 3.
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that the probability of finding the particle in the union of the two intervals �−�� a� and
�b�+�� must increase, because for any t the integral∫ �

−�
dx ���x� t��2

is constant and equal to unity. Similarly, the integral of the fluid density over all space
remains constant and equal to the total mass M , whereas in electrodynamics the integral
of the charge density over all space remains constant and equal to the total charge Q.
The analog of the density in quantum mechanics is ��x� t�= ���x� t��2; however, this is
a probability density and not an actual density. We shall seek a current j�x� t� satisfy-
ing (9.60); this also will be a probability current and not an actual current. The form
of this current is suggested by the following argument. In hydrodynamics, the average
velocity 
v�t�� of a fluid (or the velocity of the center of mass) is given by


v�t�� = 1
M

∫
��x� t�v�x� t�dx = 1

M

∫
j�x� t�dx� (9.61)

In quantum mechanics, the velocity operator according to (8.61) is

Ẋ = i
�
�H�X�= P

m
�

and its expectation value is


Ẋ��t�= 
��t�
∣∣∣P
m

∣∣∣��t�� = ∫ dx�∗�x� t�
�

im
2��x� t�

2x
�

where we have used (9.9) and (9.16). The integrand in this equation is in general complex
and is not suitable for the current density. Integration by parts allows us to construct a
current which is a real function of x:


Ẋ��t�= �

2im

∫
dx
(
�∗�x� t�

���x� t�

�x
−��x� t�

��∗�x� t�
�x

)
� (9.62)

Comparison of (9.61) for M = 1 with (9.62) suggests the following form for the current
j�x� t�:

j = �

2im

(
�∗�x� t�

���x� t�

�x
−��x� t�

��∗�x� t�
�x

)
= Re

(
�

im
�∗�x� t�

���x� t�

�x

)
�

(9.63)

In order to familiarize ourselves with this rather unintuitive expression, let us examine
the case of a plane wave:

��x�= A eipx/��

The density is ��x�= �A�2. The current becomes

j�x�= Re
(

�

im
A∗ e−ipx/�

[
ip
�

]
A eipx/�

)
= �A�2 p

m
(9.64)
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and is interpreted as current = density × velocity. The current points to the right if p > 0
and to the left if p < 0. When the wave function is independent of time, as in the case of
a plane wave, the current is necessarily independent of x since 2�/2t = 0⇒ 2j/2x = 0.
We still need to check that the current (9.63) is actually the current that satisfies the
continuity equation (9.60). On the one hand

2j

2x
= �

2im

[
�∗ 2

2�

2x2
−�

22�∗

2x2

]
= i

�
��∗�H��−��H��∗� �

where we have used
�

2im
22�

2x2
= i

�
��H−V���

and the fact that V is a real function of x and t. On the other hand

2

2t
���x� t��2 = �∗ 2�

2t
+�

2�∗

2t
= 1

i�
��∗�H��− �H���∗� �

which shows that
2

2t
���x� t��2+ 2

2x
j�x� t�= 0� (9.65)

9.3 Solution of the time-independent Schrödinger equation

9.3.1 Generalities

The sections 9.3 to 9.5 will be devoted to finding the solutions of the time-independent
Schrödinger equation (9.57), that is, the eigenvalues E and the corresponding eigen-
functions ��x�. We start with the simplest case where the potential V�x� = 0. The
equation (9.57) becomes (

22

2x2
+ 2mE

�2

)
��x�= 0� (9.66)

The general solution of this equation is a combination of plane waves with p=√
2mE> 0,

��x�= A eipx/�+B e−ipx/� (9.67)

propagating toward the positive x direction with amplitude A and the negative x direction
with amplitude B. Since the solution (9.67) is independent of time, it generates a stationary
current,5 which according to (9.64) consists of a term �A�2p/m pointing to positive x and
a term −�B�2p/m pointing to negative x. To the time-independent solutions exp�±ipx/��
there correspond time-dependent solutions of (9.55), namely, exp�i�±px−E�p�t�/��,
which are traveling waves propagating in the positive or negative x direction. The traveling
waves exp�i�+px−E�p�t�/�� can be combined to form wave packets propagating in
the positive x direction, and we say that these wave packets originate from a source of
particles at x =−�. From the traveling waves exp�i�−px−E�p�t�/�� we can construct

5 An example of a stationary current is the d.c. electric current.
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V(x) x

Fig. 9.4. A potential well.

wave packets propagating in the negative x direction, corresponding to a source of
particles at x =+�.
Let us consider the case V�x� �= 0 and, to be specific, assume that V�x� has the form

in Fig. 9.4, that of a “potential well” with V�x�→ 0 if x→±�. In classical mechanics,
from the discussion of Section 1.5.1, this potential has bound states if E< 0 and scattering
states if E> 0. For E< 0 the classical particle remains confined in a finite range of the x
axis, and for E > 0 it travels to infinity. The range of the x axis allowed for the classical
particle is that for which E > V�x� and the momentum p�x� is real:

p�x�=±√2m�E−V�x��� (9.68)

while the region E < V�x� where the momentum is imaginary,

p�x�=±i
√
2m�V�x�−E�� (9.69)

is forbidden. We shall see that this classical behavior is reflected in the quantum behavior:
the form of the solutions of (9.57) will differ depending on whether p�x� is real or
imaginary. For ��x� to be an acceptable solution, it is not sufficient that it formally
satisfies (9.57); ��x� must also be normalizable:∫ �

−�
dx ���x��2 <��

It is this condition which we shall use to obtain the bound states. However, it is too
strong for the scattering states. We have seen that for V�x�= 0 the solutions of (9.57) are
non-normalizable plane waves. For x→±� we expect the solutions of (9.57) to have
plane-wave behavior because the potential vanishes at infinity. For the scattering states
E > 0 of the potential in Fig. 9.4 we shall demand only plane-wave behavior at infinity:
one should not require more from the solution in the presence of the potential than in its
absence!

9.3.2 Reflection and transmission by a potential step

In the rest of this section we shall be interested in the case where the potential is
piecewise-constant, that is, V�x� is constant in some range and then jumps abruptly to
another constant value at certain points (Fig. 9.5). This type of potential represents a good
approximation of an actual potential in certain cases and can be used to approximate
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x

V(x)

Fig. 9.5. A piecewise-constant potential.

a potential which varies continuously in other cases (Fig. 9.6). Since the potential has
discontinuities, it is necessary to examine the behavior of the wave function in the
neighborhood of one. We shall show that the wave function ��x� and its derivative �′�x�
are continuous if the potential has a finite discontinuity V0 at the point x = x0 (Fig 9.7).
Since ���x��2 must be integrable at x0, ���x�� must be also. It will be convenient to rewrite
the time-independent Schrödinger equation (9.57) as

(
22

2x2
+ 2m�E−V�x��

�2

)
��x�= 0� (9.70)

We can find the behavior of �′�x� in the neighborhood of the discontinuity using

�′�x0+��−�′�x0−��=
∫ x0+�

x0−�

22��x�

2x2
dx =

∫ x0+�

x0−�

[
2m�V�x�−E�

�2

]
��x��

The second integral is well defined because ��x� is integrable. This integral must tend
to zero with �, which shows that �′�x� and a fortiori ��x� are continuous as long as the
discontinuity V0 is finite.
Instead of writing down the continuity equations for ��x� and �′�x�, it is often con-

venient to write them down for ��x� and its logarithmic derivative �′�x�/��x�. An
immediate consequence of these conditions is that the current j�x� is equal to the same

x

V(x)

Fig. 9.6. Approximation of a potential by a sequence of steps.
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x

V(x)

V0

x0

x0 – ε
x0 + ε

Fig. 9.7. A discontinuity in the potential.

constant on both sides of x0. As an application of these continuity conditions, we take
the case of a “step potential” (Fig. 9.8):

region I � V�x�= 0 for x < 0�
region II � V�x�= V0 for x > 0�

To be specific we first choose 0< E< V0. If we define k and 7 as

k=
√
2mE

�2
� 7=

√
2m�V0−E�

�2
� (9.71)

the solutions of (9.70) are written in regions I and II as

I � ��x� = A eikx+B e−ikx� (9.72)

II � ��x� = C e−7x+D e7x� (9.73)

If V�x� remains equal to V0 for all x> 0, the behavior (9.73) of the wave function remains
unchanged for any x > 0. It is then necessary that D= 0, because otherwise the function
���x��2 behaves as exp�27x� for x→�. Behavior of constant modulus like that of a

x

I II

V(x)

V0

Fig. 9.8. A step potential.
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plane wave is acceptable, but behavior this divergent is not. Under these conditions, the
continuity of � and its logarithmic derivative at x = 0 is written as

� � C = A+B�
�′

�
�−7= ik�A−B�

A+B
�

The coefficients A and B are a priori defined up to a multiplicative constant since we
have not made any hypotheses about the region x > 0. We can arbitrarily set A= 1, and
then the solution for the other two coefficients becomes

B =−7+ ik
7− ik

� C =− 2ik
7− ik

� (9.74)

Since C �= 0, we see that the region x > 0, in which the particle momentum is imaginary
(see (9.69)), is not strictly forbidden to the quantum particle. From these expressions we
can derive the limiting case of V0 →�, which corresponds to a barrier insurmountable
by a classical particle no matter what its energy – that is an infinite potential barrier.
Equation (9.71) then shows that 7→� and (9.74) that B→−1 and C → 0. The wave
function vanishes in region II and remains continuous at the point x = 0. However, its
derivative �′�x� is discontinuous at this point.
Let us now discuss the physical interpretation of these results. We assume that at

x = −� we have a source of particles of unit amplitude: A = 1. The corresponding
incident wave will be partly reflected and partly transmitted by the potential step. If
we take as above the case 0 < E < V0, we expect that the quantum particle will be
reflected with 100% probability, since the corresponding classical particle cannot cross
the potential step. On the other hand, in the case E> V0 we can show that the solution of
the quantum problem corresponds to partial reflection and partial transmission, whereas
a classical particle is 100% transmitted. Let us compare these two cases.

The potential step: total reflection

We have as above E < V0. The wave functions in regions I and II are

I � ��x� = eikx+B e−ikx�

II � ��x� = C e−7x�

The values of B and C are given by (9.74). We note that �B� = 1, and so B is a phase
factor, B = exp�−i'�. This shows that the reflected wave

Be−ikx = e−ikx−i'

has intensity equal to that of the incident wave, so that there is total reflection at the
potential discontinuity. A classical particle arriving at the potential discontinuity will also
be reflected. However, the quantum motion presents two important differences compared
to the classical motion.

• The probability density is nonzero in region II, which is strictly inaccessible to the classical par-
ticle: the depth of penetration into the classically forbidden region is 4= 1/7. This phenomenon
parallels that of an evanescent wave in optics.
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• If we construct an incident wave packet, the particle will be reflected with a delay � given
by (9.47):

� =−�
d'
dE

�

whereas the reflection of the classical particle is instantaneous.

The potential step: reflection and transmission

Now we turn to the case E > V0, assuming as before that the particles are incident from
the left and arrive at the potential step, so that in region II the particles can travel only to
the right:6 there is no source of particles at x =+�, only at x =−�. We define

k′ =
√
2m�E−V0�

�2
�

The wave functions in regions I and II are now

I � ��x� = eikx+B e−ikx�

II � ��x� = C eik
′x�

The continuity conditions are

1+B = C� ik′ = ik�1−B�

1+B
�

so that

B = k−k′

k+k′
� C = 2k

k+k′
� (9.75)

A classical particle will always cross the potential step (and in the process lose kinetic
energy), but in quantum mechanics there exists a reflection probability �B�2 �= 0, so that
�B�2 = R is the reflection coefficient and T = 1−R is the transmission coefficient:

R=
(
k−k′

k+k′

)2

� T = 1−R= 4kk′

�k+k′�2
� (9.76)

It is important to note that T �= �C�2. In fact, it is not the probability density which must
be conserved, but the particle current (or flux). In Fig. 9.9 the particle flux entering the
hatched area must be equal to the flux leaving it, or

�k

m
= �k

m
�B�2+ �k′

m
�C�2� (9.77)

which is satisfied for the values (9.75) of B and C. The transmission coefficient is not
�C�2, but

T = k′

k
�C�2�

6 As we have already emphasized, to be completely rigorous it is necessary to construct wave packets from superpositions of
plane waves in order to have a truly time-dependent problem describing the motion of a quantum particle.
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υ= hk / m –υ = –hk / m υ′ = hk′ / m

Fig. 9.9. Conservation of the current in crossing a potential step.

It takes into account the change of velocity in crossing the potential step: v′/v = k′/k.
The loss of kinetic energy is of course the same as in classical mechanics.

9.3.3 The bound states of the square well

As the first example of bound states, let us study those of the infinite square well
(Fig. 9.10):

V�x�= 0� 0 ≤ x ≤ a�

V�x�=+�� x < 0 or x > a�

The potential barriers at x= 0 and x= a are infinite: a classical particle is confined to the
region 0≤ x≤ a for any energy. According to the preceding discussion, the wave function
of a quantum particle vanishes outside the range �0� a� and so the quantum particle is
also strictly confined to the interval �0� a�; its probability density is zero outside the range
�0� a�. Since the wave function vanishes at x = 0, the solutions of (9.70) have the form

��x�= A sin�kx�� k=
√
2mE

�2
�

and they must also vanish at x = a. The values of k then are

k= kn =
��n+1�

a
� n= 0�1�2�3� � � � (9.78)

ϕ1

ϕ0

a
(a) (b)

V(x)

E0

E1

0

Fig. 9.10. The infinite square well and the wave functions of its first two levels.
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We see that the energy takes discrete values labeled by a positive integer n:7

En =
�2k2n
2m

= �2

2m

(�
a

)2
�n+1�2� n= 0�1�2�3� � � � � (9.79)

In other words, we have just shown that the energy levels of the infinite well are quantized,
and this is the first example in which we have explicitly demonstrated this quantization.
The correctly normalized wave function corresponding to the level En is

�n�x�=
√
2
a
sin

��n+1�x
a

� (9.80)

It is easy to check that two wave functions �n�x� and �m�x� are orthogonal for n �= m.
The values kn and −kn correspond to the same physical state, because the substitution
kn →−kn leads to a simple change of sign of the wave function, and a minus sign is a
phase factor. This is why we have not included negative values of n in (9.78). We also
note that the wave function �n�x� vanishes n times in the interval �0� a�: it is said that
the wave function has n nodes in this interval. The number of nodes gives a classification
of the levels according to increasing energy: the higher the energy, the more nodes there
are in the wave function. This is a general result when the potential V�x� is sufficiently
regular, which we always assume is the case: if En is the energy of the nth level, the
corresponding wave function will have n nodes. The ground state wave function E0 does
not vanish. Another remark is that the Heisenberg inequality can be used to find the order
of magnitude of the ground-state energy. It gives p∼ �/x ∼ �/a, from which we find

E = p2

2m
∼ �2

2ma2
�

in agreement with (9.79) for n = 0 up to a factor of �2. In contrast to the case of the
hydrogen atom, the heuristic result differs from the exact result by a factor of ∼ 10. This
originates in the strong variation of the potential at x = 0 and x = a which makes the
wave function vanish abruptly, resulting in a large kinetic energy. The expectation value
of the kinetic energy in the state � is


K�� = 
��K��� = − �2

2m

∫
dx�∗�x�

d2��x�
dx2

�

and it is larger the larger the second derivative of ��x�.
Let us now find the energy levels of the finite square well (Fig. 9.11):

V�x�= 0� �x�> a/2�

V�x�=−V0� �x�< a/2�

7 Our convention is that n = 0 corresponds to the ground state, so as to conform with the usual convention: in general, the
ground-state energy is denoted E0.
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– a / 2 a / 2

– V0

x
O

Fig. 9.11. The finite square well.

We seek the bound states, and so we must choose the energy to lie in the range �−V0�0�.
We define k and 7 as

7=
√
−2mE

�2
� k=

√
2m�V0+E�

�2
� 0 ≤ 72 ≤ 2mV0

�2
� (9.81)

The potential V�x� is invariant under the parity operation 5: x→−x, as V�x� is an even
function of x, V�−x� = V�x�, and so the Hamiltonian is also parity-invariant: H�−x� =
H�x�. Following the discussion of Section 8.3.3, we can seek the eigenvectors ��±� of H
which are even or odd under the parity operation:

5��±� = ±��±��
In terms of the wave function, if 
x��±� = �±�x�, then

�+�−x�= ��x�� �−�−x�=−�−�x�

where we have used 5�x� = �−x�:

x�5��±� = 
−x��±� = �±�−x�

= ±
x��±� = ±�±�x��

The solutions of the Schrödinger equation (9.57) split up into even and odd ones. In the
following display we give these solutions for region I where x <−a/2, region II where
�x�< a/2, and region III where x > a/2. The middle column gives the wave functions of
the even solutions, and the right-hand column gives the wave functions of the odd ones:

I � A e−7�x� −A′e−7�x�

II � B cos�kx� B′ sin�kx�

III � A e−7x A′e−7x�

The continuity conditions on �′/� at the point x = a/2 give

7= k tan�ka/2� for even solutions� (9.82)

7=−k cot�ka/2� for odd solutions� (9.83)
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κ / k

k

u√

Fig. 9.12. Graphical solution for the bound states of the finite square well, located at points where
the curves tan ka/2 (solid line) and − cot ka/2 (dotted line) intersect the curve

√
U −k2/k, with

U = 2mV0/�
2.

The graphical solution of these equations is shown in Fig. 9.12. We see that the number
of bound states is finite, and there always exists at least one.

9.4 Potential scattering

9.4.1 The transmission matrix

Now that we have studied bound states, let us turn to scattering states. We shall study the
behavior of a particle when it passes over a square well (Fig. 9.11) or a square barrier
(Fig. 9.13) using explicit expressions based on the continuity of the wave function and
its derivative at a discontinuity of the potential. In the course of our discussion, we shall
also be able to derive results which are general as they are independent of the shape of

Re ϕ (x)

xa / 2–a / 2

V(x)

V0

I

E

IIIII

Fig. 9.13. Behavior of the real part of the wave function in the presence of the tunnel effect.
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the potential. Let us start with the square well of Fig. 9.11. In Section 9.3.3 we found its
bound states E < 0, and now we are interested in the scattering states E > 0. Defining

k=
√
2mE

�2
� k′ =

√
2m�V0+E�

�2
� (9.84)

the wave functions in the three regions become

I � x <−a

2
� ��x�= A eikx+B e−ikx� (9.85)

II � − a

2
≤ x ≤ a

2
� ��x�= C eik′x+D e−ik′x� (9.86)

III � x >
a

2
� ��x�= F eikx+G e−ikx� (9.87)

Let us first study the passage from region I to region II, that is, the point x = −a/2.
Since the Schrödinger equation is linear, A and B are linearly related to C and D, which
we can write in matrix form:8 (

A

B

)
= R

(
C

D

)
� (9.88)

where R is a 2×2 matrix. The properties of R can be determined without explicitly writing
down the continuity conditions. A first observation is that if ��x� is a time-independent
solution of the Schrödinger equation (9.70), then the complex conjugate �∗�x� is also a
solution of this equation because the potential V�x� is real. This property is related to the
invariance under time reversal; see Section 9.4.3 and Appendix A. The function �∗�x� in
regions I and II is

I � �∗�x� = A∗e−ikx+B∗eikx� (9.89)

II � �∗�x� = C∗e−ik′x+D∗eik
′x� (9.90)

Comparing the coefficients of exp�±ikx� and exp�±ik′x� with those of (9.85) and (9.86),
from (9.88) we find that (

B∗

A∗

)
= R

(
D∗

C∗

)
�

or

R∗
11 = R22� R∗

12 = R21�

We can then write the matrix R as a function of two complex numbers � and �:

R=
√
k′

k

(
� �

�∗ �∗

)
� (9.91)

8 One can also observe that the continuity conditions linearly relate �A�B� to �C�D�.
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The reason for the introduction of the a priori arbitrary factor
√
k′/k will become apparent

shortly. The current conservation in regions I and II is expressed as (cf. (9.77))

k��A�2−�B�2�= k′��C�2−�D�2��
Let us calculate the current in region I, writing A and B as functions of C and D:

k��A�2−�B�2� = k
k′

k

(��C+�D�2−��∗C+�∗D�2)
= k′

(���2−���2) (�C�2−�D�2) �
which implies that ���2− ���2 = 1: the matrix

√
k/k′R has unit determinant. We see

why the coefficient
√
k′/k in (9.91) is of interest: owing to the variation of the velocity

between regions I and II, it is the matrix
√
k/k′R which possesses the simplest properties.

Let us now return to the explicit calculation of the continuity conditions in order to
find the parameters � and � of the matrix R. It is convenient to choose C = 1 and D= 0,
which corresponds to the situation where there is no source of particles at x =+� (see
Footnote 6). The continuity conditions then become

e−ik′a/2 = A e−ika/2+B eika/2�

k′ e−ik′a/2 = kA e−ika/2−kB eika/2�

Multiplying the first equation by k′ and then adding and subtracting the two equations,
we immediately obtain A and B:

�=
√

k

k′
A = k+k′

2
√
kk′

ei�k−k′�a/2� (9.92)

�=
√

k

k′
B∗ = k−k′

2
√
kk′

ei�k+k′�a/2� (9.93)

These values of � and � satisfy ���2−���2 = 1. The continuity equations for x= a/2 are
obtained by the substitutions a→−a and k↔ k′. The matrix R̃ satisfying(

C

D

)
= R̃

(
F

G

)

is written as

R̃=
√

k

k′

(
�̃ �̃

�̃∗ �̃∗

)

with

�̃ = k+k′

2
√
kk′

ei�k−k′�a/2 = ��

�̃ = − k−k′

2
√
kk′

e−i�k+k′�a/2 =−�∗�
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The transmission matrix M for regions I and III relates the coefficients A and B to the
coefficients F and G: (

A

B

)
= R

(
C

D

)
= RR̃

(
F

G

)
=M

(
F

G

)
� (9.94)

and so we have M = RR̃. The arguments used above immediately give two properties
of M .

(i) Since �∗�x� is a solution of (9.57) (invariance under time reversal), we find relations identical
to those for R:

M11 =M∗
22� M12 =M∗

21�

(ii) Current conservation implies that detM = 1. There is no factor
√
k′/k because the velocity is

the same in regions I and III.

The general form of M is therefore

M =
(

� �

�∗ �∗

)
� ���2−���2 = 1� (9.95)

This expression for M is independent of the form of the potential provided that the latter
vanishes sufficiently rapidly for x→±�; for example, it is valid for the potential of
Fig. 9.4. Let us explicitly calculate M for the potential well of Fig. 9.11 using the results
obtained for the matrices R and R̃:

M11 = � = �2−�2 = eika

4kk′
[
�k+k′�2e−ik′a− �k−k′�2eik

′a]

= eika
[
cosk′a− i

k2+k′2

2kk′
sin k′a

]
� (9.96)

M12 = �=−��∗ +�∗�= i
k′2−k2

2kk′
sin k′a� (9.97)

It is instructive to check, using (9.95), that the expressions (9.96) and (9.97) satisfy
���2−���2 = 1.
There is a general property of M which we have not yet used. When the potential is

parity-invariant, V�x�= V�−x�, the parity operation x→−x exchanges regions I and III.
If ��x� is the initial solution and &�x�= ��−x�, we have

I � &�x� = F e−ikx+G eikx�

III � &�x� = A e−ikx+B eikx�

and the relation between the various coefficients is now(
G

F

)
=M

(
B

A

)



9.4 Potential scattering 277

or (
B

A

)
=M−1

(
G

F

)
=
(

M22 −M12

−M21 M11

)(
G

F

)
�

We have used detM = 1. Comparing with (9.94), we find that M is an antisymmetric
matrix, M12 =−M21, which together with M∗

12 =M21 implies that � is purely imaginary,
� = i,, with , real. This property is satisfied by (9.97). The general form of M for an
even potential [V�x�= V�−x�] then is

M =
(

� i,
−i, �∗

)
���2−,2 = 1� (9.98)

with � complex and , real.
All of these results can be used to calculate the reflection and transmission coefficients

for the potential well of Fig. 9.11 and to understand their behavior. We shall return to
this subject in Exercise 9.7.8. Now we go directly to the case of a potential barrier, which
will lead to discussion of the tunnel effect.

9.4.2 The tunnel effect

Let us consider the potential barrier of Fig. 9.13:

V�x�= V0� �x� ≤ a

2
�

V�x�= 0� �x�> a

2
� (9.99)

for energy E<V0 (the case E>V0 is solved immediately using the results of the preceding
subsection). The quantity k′ then is purely imaginary:

k′ = i7� 7=
√
2m�V0−E�

�2
� (9.100)

and the wave function in region II, �x� ≤ a/2, is

��x�= C e−7x+D e7x� (9.101)

The element M11 of the transmission matrix is obtained without calculation by replacing
k′ by i7 in (9.96); this gives, for example,

sin k′a= 1
2i

(
eik

′a− e−ik′a)→ 1
2i

�e−7a− e7a�= i sinh7a

and similarly cosk′a→ cosh7a. The result for M11 then is

M11 = eika
[
cosh7a+ i

72−k2

27k
sinh7a

]
� (9.102)
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We assume that the particle source is located at x=−� and we adopt the normalization
A= 1. Since there is no particle source at x =+�, we must have G= 0, which gives(

1
B

)
=M

(
F

0

)
=
(
M11F

M21F

)

or F = 1/M11:

F = e−ika

cosh7a+ i
72−k2

27k
sinh7a

� (9.103)

This leads to an important physical result, namely, the transmission coefficient T = �F �2:

T = �F �2 = 1

1+ q4

4k272
sinh2 7a

� (9.104)

where we have defined q2= k2+72= 2mV0/�
2. The essential point is that T �= 0. Whereas

region III is inaccessible to a classical particle incident from x = −� with an energy
E < V0, a quantum particle has a nonzero probability of passing through the potential
barrier. This is called the tunnel effect. The origin of this effect is easy to understand: the
wave function does not vanish in the region �x� ≤ a/2 and it can be matched to a plane
wave in the region x > a/2 (Fig. 9.13).

An approximate expression for T can be obtained in the commonly encountered case
7a� 1:

T � 16k272

q4
e−27a� (9.105)

The dominant factor in this equation is the exponential exp�−27a�. It is possible to
derive heuristically a widely used approximation for a potential barrier of any shape
when E <MaxV�x�. Approximating the barrier as a sequence of steps of length !x as
in Fig. 9.6, we can calculate the transmission factor in the range �xi� xi+!x�:

T�xi�� e−27�xi�!x� 7�xi�=
√
2m�V�xi�−E�

�2
�

and for the total transmission factor we find

T �∏
i

e−27�xi�!x = exp

(
−2!x

∑
i

7�xi�

)
�

We recognize this as a Riemann sum, and in the limit !x→ 0

T � exp

(
−2
∫ x2

x1

√
2m�V�x�−E�

�2
dx

)
� (9.106)
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The points x1 and x2 are defined by V�x1�= V�x2�= E. The demonstration we have just
given is not rigorous, because the treatment of the turning points x1 and x2 is actually
rather delicate. An important observation is that the exponential dependence in (9.106)
makes the transmission coefficient T extremely sensitive to the height of the barrier and
the value of the energy.
The tunnel effect has numerous applications in quantum physics. Here we shall consider

only two, #-radioactivity and tunneling microscopy. Alpha-radioactivity is the decay of
a heavy nucleus with the emission of an #-particle, that is, a 4He nucleus. Using Z and
N to denote the numbers of protons and neutrons in the initial nucleus �A= Z+N� (in
general, Z >∼ 80), the nuclear #-decay reaction can be written as

�Z�N�→ �Z−2�N −2�+ 4He� (9.107)

An example is the decay of polonium into lead:

214
84Po→210

82 Pb+4
2He+7�8 MeV� (9.108)

In an approximate theory of # radioactivity, it is assumed that the #-particle pre-exists
inside the initial nucleus and for simplicity the problem is assumed to be one-dimensional.
If R � 1�2×A1/3 � 7 fm is the nuclear radius, the #-particle will be subjected to the
nuclear potential and the repulsive Coulomb potential between the 4He nucleus of charge
2 (in units of the proton charge) and the final nucleus of charge �Z− 2� assuming that
the charge distribution is spherically symmetric. If r is the distance between the helium
nucleus and the final nucleus, for r > R we will have

VCoul�r�=
2�Z−2�e2

r2
�

When r < R the attractive nuclear forces dominate the Coulomb forces and the latter
can be neglected. The result is the potential shown schematically in Fig. 9.14. It has a
potential barrier which would prevent the #-particle from leaving the nucleus if its motion
were governed by classical physics. It is the tunnel effect that allows the #-particle to

E

V(r)

rR ~ 7 fm–

Fig. 9.14. Potential barrier of #-radioactivity.
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leave the nucleus. This argument can be used to obtain a theoretical estimate of the
lifetime of the initial nucleus, but the approximations we have made are crude and the
tunnel effect is very sensitive to the details. While the underlying physics is undoubtedly
correct, we cannot expect to obtain results in quantitative agreement with experiment. The
reverse of radioactive decay is the fusion reaction; an example is the reaction mentioned
in Section 1.1.2:

2H+3H→4He+n+17�6 MeV�

which also involves the tunnel effect and is studied in Exercise 12.5.1.
A very important application of the tunnel effect is scanning tunneling microscopy

(STM). In such a microscope a very fine tip is moved over the surface of the conducting
sample very close to it (Fig. 9.15). Owing to the tunnel effect, electrons can pass from the
tip to the sample, thus producing a macroscopic current that depends very sensitively on
the distance between the tip and the sample (the dependence (9.105) is exponential). This
allows a very precise mapping of the surface of the sample with a resolution of about
0.01 nm. An extension of this technique can be used to manipulate atoms and molecules
deposited on a substrate (Fig. 9.16).

9.4.3 The S matrix

In Chapter 12 we shall study the theory of scattering in three-dimensional space. We shall
see that an important tool in this theory is the S matrix, which we introduce here in the
simplest case of one dimension. We assume a potential of arbitrary shape which vanishes
in the region �x� > L.9 Particle sources at x = −� and x = +� generate plane waves

tunneling

crystal

tip

Fig. 9.15. The principle of the scanning tunneling microscope (STM). A fine tip is moved near the
surface of a crystal and the distance is adjusted such that the current is constant. This gives a map
of the electron distribution on the surface.

9 We can generalize to the case of a potential which vanishes sufficiently rapidly for x→±�.
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Fig. 9.16. Deposition of atoms by scanning tunneling microscopy. Iron atoms (peaks) are deposited
in a circle on a copper substrate and form resonant electron states (waves) on the copper surface.
Copyright: IBM.

exp�ikx� and exp�−ikx� in the regions x < −L and x > L, respectively; we call these
the incoming waves. These incoming waves can be reflected or transmitted, resulting in
outgoing waves exp�−ikx� in the region x < −L and exp�ikx� in the region x > L. By
definition, the S matrix relates the coefficients B and F of the outgoing waves to the
coefficients A and G of the incoming waves (cf. (9.85) and (9.87)):(

B

F

)
= S

(
A

G

)
=
(

S11 S12
S21 S22

)(
A

G

)
� (9.109)

The S matrix can be expressed as a function of M . However, before deriving the expres-
sions for going from M to S, it is instructive to repeat the arguments that led us to the
general properties of M .

(i) Current conservation:

�A�2−�B�2 = �F �2−�G�2 =⇒ �A�2+�G�2 = �B2�+ �F �2�
This equation shows that the norm of S is conserved and so S is unitary.10

(ii) �∗�x� is a solution of the Schrödinger equation, so that(
A∗

G∗

)
= S

(
B∗

F ∗

)
=⇒

(
B

F

)
= �S∗�−1

(
A

G

)
�

10 This argument is valid only for finite dimension: we have proved only that S is an isometry, which is sufficient to make it
a unitary operator in finite dimension. It turns out that S is unitary also in infinite dimension, but the proof of this requires
additional arguments.
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from which we find

S = �S∗�−1 = �S−1�∗ = �S†�∗ = ST �

The S matrix is symmetric: S12 = S21. The operation of complex conjugation exchanges the
incoming and outgoing waves, which corresponds to time reversal. The symmetry property
S12 = S21 is therefore related to invariance under time reversal.

Now let us relate S and M in the form (9.95) by calculating the coefficient B:

B = S11A+S12G= S11��F +�G�+S12G

= S11�F + �S11�+S12�G�

We identify

(a) S11� = �∗� S11 =
�∗

�
*

(b) S12+S11�= �∗� S12 = �∗ −S11�=
1
�
�

or

S = 1
�

(
�∗ 1
1 −�

)
� (9.110)

If the potential is even V�x�= V�−x�, �= i, with , real and S becomes

S = 1
�

( −i, 1
1 −i,

)
� (9.111)

To write S in the most transparent form possible, we set

� = ���e−i'�
,

��� = cos �
1
��� = sin  �

The S matrix becomes

S =−iei'
(

cos i sin  
i sin  cos 

)
� (9.112)

However, we cannot have  = 0, as this would correspond to ��� → �. On the other
hand, it is possible to have  =±�/2 if ,= 0.
An interesting aspect of the S matrix is that it can be used to relate scattering to bound

states and, more generally, to resonances (Exercise 12.5.4). Taking a potential well of
arbitrary shape (but such that V�x� = 0 outside some finite range in order to simplify
the discussion), we choose E < 0 with 7 = −ik given by (9.81). The wave functions in
regions I and III are

I � ��x� = A e−7x+B e7x�

III � ��x� = F e−7x+G e7x�
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We must have A=G= 0 in order for ��x� to be normalizable. Using the relation (9.109),
if we want to have �B�F � �= 0, S must have a pole11 at k= i7. This property is general
and can be verified for the square well of Fig. 9.11. According to (9.96),

��i7�= e−7a

[
cosk′a− k′2−72

27k′
sin k′a

]
�

Since S contains an overall factor of 1/� (cf. (9.111)), � must vanish for a bound state.
Setting v= tan�k′a/2�, the equation � = 0 is equivalent to

7k′v2+v�k′2−72�−7k′ = 0�

whose solutions are v = 7/k′ and v = −k′/7, that is, precisely the relations (9.82)
and (9.83) found directly for the finite square well.

9.5 The periodic potential

9.5.1 The Bloch theorem

As a final example of the one-dimensional Schrödinger equation, let us take the case of
a periodic potential of spatial period l:

V�x�= V�x+ l�� (9.113)

The results that we shall obtain are of great importance in solid-state physics, as an
electron in a crystal is subjected to a periodic potential due to its interactions with the ions
of the crystal lattice. That case is, of course, three-dimensional, but the results obtained for
one dimension generalize to three. The periodicity of the potential leads to the existence
of energy bands which, in combination with the Pauli principle, form the basis of our
understanding of electrical conductivity. If the potential has the form (9.113), the problem
is invariant under any translation x→ x+ l, and according to the Wigner theorem there
exists a unitary operator Tl acting in the Hilbert space of states, here the space of wave
functions L�2�

x ���, such that

�Tl���x�= ��x− l�� T †
l = T−1

l � (9.114)

We recall that the function obtained from ��x� by translation by l is ��x− l�. Since
the operator Tl is unitary, its eigenvalues tl have unit modulus and can be written as a
function of a parameter q as

tl�q�= e−iql� (9.115)

The parameter q is defined up to an integer multiple of 2�/l; if

q→ q′ = q+ 2�p
l

� p= 0� ±1� ±2� � � � � (9.116)

11 Or, more generally, a singularity, but it can be shown that bound states and resonances correspond to poles.
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the value of tl is unchanged. Since Tl commutes with the Hamiltonian owing to the
periodicity (9.113) of the potential, Tl and H can be diagonalized simultaneously. Let
�q�x� be the common eigenfunctions of Tl and H :

Tl�q�x� = tl�q��q�x�= e−iql �q�x��

H�q�x� = Eq�q�x�� (9.117)

The first of these equations shows that

�q�x− l�= e−iql �q�x��

and we derive the Bloch theorem,12 which states that the stationary states in a periodic
potential (9.113) have the form

�q�x�= eiqx usq�x�� usq�x�= usq�x+ l�� (9.118)

where usq�x� is a periodic function with period l. The index s is needed because several
possible solutions correspond to each value of q; we shall see below that s labels the
energy bands. It is easy to write down the differential equation satisfied by usq�x�. Since
P =−i�d/dx, we have

Peiqx = �q eiqx�

P�q�x� = eiqx �P+�q�usq�x��

P2�q�x� = eiqx �P+�q�2usq�x��

from which

H�q�x�= eiqx
[
− �2

2m
d2

dx2
− i

�2q

m

d
dx

+ �2q2

2m
+V�x�

]
usq�x�= Esqe

iqx usq�x��

or, dividing by exp�iqx�,[
− �2

2m
d2

dx2
− i

�2q

m

d
dx

+ �2q2

2m
+V�x�

]
usq�x�= Esqusq�x�� (9.119)

The wave function in a periodic potential is obtained by solving (9.119) in, for example,
the range �0� l� with the boundary condition usq�0� = usq�l�. The quantity �q has the
dimensions of momentum and is in some ways analogous to a momentum. However, it
is not a true momentum, because according to (9.116) q is not unique; �q is therefore
called a quasi-momentum. Finally, we note that if the potential is even, V�x� = V�−x�,
then (9.119) is unchanged under the simultaneous transformations x →−x, q →−q;
us�−q�x� is therefore a solution of (9.119) with the same value of the energy, Esq = Es�−q,
and all levels are doubly degenerate.

12 This theorem is also known as the Floquet theorem in the case of periodicity in time.
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9.5.2 Energy bands

Let us now examine the properties of the solutions of the Schrödinger equation (9.119)
for the periodic potential of Fig. 9.17. Here V�x� is a series of potential barriers and V�x�

is nonzero in intervals centered on x= pl� p= � � � �−2�−1�0�1�2 � � � and vanishes in the
intervals13 (

p− 1
2

)
l−!x ≤ x ≤

(
p− 1

2

)
l+!x� (9.120)

In the intervals where V�x� vanishes a solution ��x� of the Schrödinger equation is a
superposition of plane waves with wave vector ±k, k= �2mE/�2�1/2. To the left of the
nth barrier and in the interval (9.120) for p= n, ��x� is written as

��x�= Ane
ikx+Bne

−ikx�

and to the right of this barrier, in the interval (9.120) with p= n+1,

��x�= An+1e
ikx+Bn+1e

−ikx�

The coefficients �An�Bn� are related to the coefficients �An+1�Bn+1� as in (9.94) by the
transmission matrix M (9.95) corresponding to a barrier V�x�:(

An

Bn

)
=
(

� �

�∗ �∗

) (
An+1

Bn+1

)
� (9.121)

However, using the Bloch theorem (9.118) we find

��x+ l�= eiql��x��

so that

An+1 e
ikl eikx+Bn+1 e

−ikl e−ikx = eiql
(
Ane

ikx+Bne
−ikx
)

or

eiql
(
An

Bn

)
=
(
eikl An+1

e−ikl Bn+1

)
=D

(
An+1

Bn+1

)
=DM−1

(
An

Bn

)
� (9.122)

Here D is a diagonal matrix with elements D11 = exp� ikl�, D22 = exp�−ikl� and

DM−1 =
(

�∗ eikl −� eikl

−�∗ e−ikl � e−ikl

)
� (9.123)

0 l 2l

V(x)

–l x

Fig. 9.17. A periodic potential of period l in one dimension.

13 In fact, it is not necessary to assume this vanishing to obtain the following results, but it simplifies the discussion.
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Equation (9.122) implies that �An�Bn� is an eigenvector of the matrix M̃ = DM−1 with
eigenvalue exp�iql�, which has unit modulus. The eigenvalues 
 of the matrix M̃ are
given by (det M̃ = 1)


2−2
Re ��∗eikl�+1= 0�

and setting x = Re ��∗ exp� ikl�� the eigenvalues 
± become


± = x±√x2−1� �x�> 1�


± = x± i
√
1−x2� �x� ≤ 1�

The case �x�> 1 is excluded because the roots cannot have unit modulus as their product
is equal to unity and they are real. However, the two complex roots have unit modulus
for �x� ≤ 1; they are nondegenerate if �x�< 1 and degenerate if �x� = 1.
To study the energy eigenvalues we could use the example of the rectangular barrier

V�x� (9.99) of Fig. 9.13. In order to simplify the calculations as much as possible, we shall
study a limiting case of (9.99) where the barrier becomes a delta function. Our results
can be qualitatively generalized to any periodic potential. The periodic potential (9.113)
then is

V�x�=
�∑

p=−�

�2g

2m
��x− lp�� (9.124)

The delta-function potential is obtained by taking the limit a→ 0 of the barrier (9.99)
while keeping the product V0a constant:

V0a=
�2g

2m
�

The arbitrary factor �2/2m is chosen so as to simplify the expressions which follow.
Taking V0 � E, we find that 7 (9.100) has the limit

7→
√
2mV0

�2
=
√
g

a
�

which gives

72−k2

27k
→ 7

2k
=
√
g/a

2k
�

while � =M11 in (9.102) becomes (see also Exercise 9.7.7)

�→ 1+ i

√
g/a

2k
√
ga= 1+ i

g

2k
� (9.125)
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We then find

x = Re ��∗eikl�= coskl+ g

2k
sin kl�

and the eigenvalue equation is written as

x = cosql= coskl+ g

2k
sin kl� (9.126)

It should be noted that q is not fixed uniquely by (9.126), as q′ = q+2�p/l with integer
p also satisfies (9.126). This equation shows that certain ranges of k, and therefore certain
energy ranges owing to E= �2k2/2m, are excluded because the right-hand side of (9.126)
can have modulus greater than unity. These ranges are called forbidden bands. Let us
demonstrate this explicitly in the region k� 0. We set y = kl and

f�y�= cosy+ gl

2y
sin y�

Since f�0� = 1+ gl/2, we see that the range 0 ≤ y < y0 or 0 ≤ k < k0 is forbidden.
Assuming that gl	 1 in order to make an analytic estimate, we find

y0 �
√
gl or k0 �

√
g/l�

Other forbidden bands exist; in fact, if

y = n�+�� ��� 	 1�

then

�f�y�� � 1+ gl

2y
��

and we see that there is a forbidden region where �f�y��> 1 for 0<�	 1. These remarks
allow us to qualitatively sketch the curve f�y� in Fig. 9.18. We adopt the convention
where E is a function of q (recalling that �q is the quasi-momentum), which gives
Fig. 9.19, in which the allowed bands labeled by s are displayed. Using (9.116), q can
be restricted to the range �0�2�/l�, or, equivalently, the range �−�/l��/l�, which is
called the first Brillouin zone. In certain regions E can be expressed simply as a function
of q. For example, let us examine the region k� k0. Since cosql= 1 for k= k0, (9.126)
becomes, taking f�k0l�= 1,

−1
2
q2l2 � �k−k0�lf

′�k0l��

This allows us to estimate �E−E0�:

E−E0 =
�2

2m
�k2−k20��

�2k0�k−k0�

m
�

or

E−E0 =
�2lk0

2m�f ′�k0l��
q2 = �2

2m∗ q
2� (9.127)
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+1

–1

2π y

f(y)

0
π

Fig. 9.18. Solutions of (9.126).

–3π/l –2π/l 2π/l–π/l π/l q OO q

EE

(b)(a)

Fig. 9.19. Energy bands. (a) q varies without restrictions; (b) q is limited to the first Brillouin zone.
The hatched regions correspond to forbidden bands.

In the neighborhood of k= k0 the behavior of the energy is that of a particle of effective
mass m∗:

m∗ = m�f ′�k0l��
lk0

� (9.128)

This effective mass plays an important role in the theory of electrical conductivity. To a
first approximation the effect of the crystal lattice amounts to a simple change of the mass.
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9.6 Wave mechanics in dimension d = 3

9.6.1 Generalities

Let �R and �P be the position and momentum operators in three-dimensional space with
components Xj and Pj , j= x� y� z.14 We recall the canonical commutation relations (8.45):

�Xj�Pk�= i��jk I� (9.129)

The components of �R and �P commute if j �= k. We can then construct the space of states
as the tensor product of the spaces L�2�

x ���, L�2�
y ���, and L�2�

z ���:

L
�2�
�r ��3�= L�2�

x ���⊗L�2�
y ���⊗L�2�

z ���� (9.130)

In this space the X component of �R will be the operator

X⊗ Iy⊗ Iz�

If �n�x� is an orthonormal basis of L�2�
x ���, we can construct a basis �nlm�x� y� z� of

L
�2�
�r ��3� by taking the products15

�nlm�x� y� z�= �n�x��m�y��l�z�� (9.131)

The construction of the space of states and the orthonormal basis is strictly parallel to that
of the space of states of two spins 1/2. In Section 6.2.3 we observed that the most general
state vector of the space of states of two spins 1/2 is not in general a tensor product
��1⊗�2� of two state vectors of the individual spins. Similarly, a function 1�x� y� z� of
L
�2�
�r ��3� is not in general a product ��x�&�y�,�z�, but 1�x� y� z� can be decomposed on

the basis (9.131):

1�x� y� z� = ∑
n�m�l

cnml �n�x��m�y��l�z�� (9.132)

cnlm =
∫

d3r �∗
n�x��

∗
m�y��

∗
l �z�1�x� y� z�� (9.133)

We can immediately write down the three-dimensional generalization of the equations in
Section 9.1. We shall just give a few examples, leaving it to the reader to derive the other
expressions.

• The eigenstates ��r� of �R (cf. (9.3)):

�R ��r� = �r ��r�� (9.134)

• The completeness relation (cf. (9.9)): ∫
d3r ��r�
�r� = I� (9.135)

14 The components of �R will also be denoted as �X�Y�Z� and those of �r will be denoted as �x� y� z�.
15 To simplify the notation, we have taken the same basis functions in the �x� y� z� spaces, but we could of course have chosen

three different bases.
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• The probability amplitude ���r� for finding a particle in the state ��� at the point �r , that is, the
wave function of the particle:

���r�= 
�r���� (9.136)

• The probability density: ����r��2d3r is the probability of finding the particle in the volume d3r
about the point �r.

• The action of the operators �R and �P on ���r� [cf. (9.14) and (9.16)]:

(�R�)��r�= �r���r��
(�P�)��r�=−i� �����r� � (9.137)

• The Fourier transform (cf. (9.26)):

�̃��p�= 1
�2���3/2

∫
d3r ���r� e−i�p·�r/� � (9.138)

The factor �2���−1/2 for each space dimension should be noted.

In Section 8.4.2 we determined the general form of the Hamiltonian in dimension d= 3.
In the rest of this section we assume that �A is a gradient: �A = �����r�. Physically, this
means that there is no magnetic field; the case of nonzero magnetic field will be studied
in Section 11.3. The Hamiltonian (8.74) is simply

H = �P2

2m
+V��R�� (9.139)

The time-independent Schrödinger equation16 generalizing (9.57) to three dimensions is

(
− �2

2m
��2+V��r�

)
���r�= E���r� � (9.140)

The generalization of the probability current (9.63) is

�j��r� t�= Re
[

�

im
�∗��r� t������r� t�

]
� (9.141)

which satisfies the continuity equation (Exercise 9.7.10)

2����r� t��2
2t

+ �� · �j��r� t�= 0� (9.142)

16 We leave to the reader the task of writing down the time-dependent Schrödinger equation that generalizes (9.55) to three
dimensions.
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9.6.2 The phase space and level density

In many problems it is necessary to know how to count the number of energy levels in
a certain region of space ��r� �p�; this space is called the phase space. Let us return to
the infinite well of Section 9.3.3 and use Lx to denote the width of the well. The energy
levels are labeled by a positive integer n, and we shall consider the case where n� 1
and Lx is large. Then the energy levels (9.79) are very closely spaced and the sums over
n can be replaced by integrals. Let us take a wave vector (9.78) with kn = ��n+1�/Lx.
We shall calculate the number of energy levels in a range of k: �kn� kn+!k�. According
to (9.78) for a→ Lx, the number of levels !n (1	 !n	 n) in the range �k� k+!k� is

!n= Lx

�
!k� (9.143)

Instead of vanishing boundary conditions for the wave function at the points x = 0 and
x=Lx, it is often more convenient to choose periodic boundary conditions, ��0�=��Lx�,
leading to the wave functions17

�n�x�=
1√
Lx

eiknx� kn =
2�n
Lx

� n= � � � �−2�−1�0�1�2� � � � � (9.144)

and therefore

!n= Lx

2�
!k� (9.145)

At first sight (9.145) differs from (9.143) by a factor of 1/2.18 However, we have already
observed that for the wave functions (9.78) the values kn and −kn correspond to the
same physical state because the substitution kn → −kn leads to a simple change of
sign of the wave function. By contrast, the substitution kn →−kn in (9.144) leads to
a different physical state; thus the division by two in (9.145) is compensated for by
doubling the number of possible values of kn. Periodic and vanishing boundary conditions
are equivalent for counting the energy levels (see also Footnote 19).
Let us now turn to the infinite square well in dimension d = 3. The wave functions

vanish outside the ranges where V��x�= 0, i.e., outside

0 ≤ x ≤ Lx� 0 ≤ y ≤ Ly� 0 ≤ z≤ Lz� (9.146)

The wave functions inside the well take the form

��nx�ny�nz�
�x� y� z�=

√
8

LxLyLz

sin
(
��nx+1�x

Lx

)
sin
(
��ny+1�y

Ly

)
sin
(
��nz+1�z

Lz

)

(9.147)

17 This choice of wave function is sometimes called “quantization in a box.” It makes it possible to avoid working with
plane waves of the continuum, since the “plane waves” of (9.144) are normalizable. However, the Fourier integrals of the
continuum case then are replaced by Fourier sums, making the calculations more cumbersome.

18 Since n� 1, no distinction is made between n and �n+1�.
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with �nx�ny� nz�= 0�1�2� � � �. The corresponding energies are

E�nx�ny� nz�=
�2�2

2m

(
�nx+1�2

L2
x

+ �ny+1�2

L2
y

+ �nz+1�2

L2
z

)
� (9.148)

When Lx = Ly = Lz = L, these eigenvalues are in general degenerate (Exercise 9.7.9).
Let us count the levels in three dimensions. It will be convenient to use periodic boundary
conditions:

��x� y� z�= ��x+Lx� y+Ly� z+Lz�� (9.149)

Let !� be the volume element !kx!ky!kz of �k space such that the tip of the wave

vector �k lies in !� . The �x� y� z� components of this vector lie in the ranges

�kx� kx+!kx�� �ky� ky+!ky�� �kz� kz+!kz��

The number of energy levels in !� is found by generalizing (9.145):

!n=
(
Lx

2�

)
!kx

(
Ly

2�

)
!ky

(
Lz

2�

)
!kz =

LxLyLz

�2��3
!� � (9.150)

Taking !� to be infinitesimal, !� = d3k, we define the level density (or density of
states) ���k� in �k space as follows: ���k�d3k is the number of levels in the volume d3k
centered on �k. According to (9.150),

���k�d3k= �

�2��3
d3k � (9.151)

where � = LxLyLz is the volume of the box with sides �Lx�Ly�Lz�.
19 Using �p= ��k, for

the level density20 in �p space we find

���p�= �

�2���3
= �

h3
� (9.152)

This is a very often used result. Now let us find the level density per unit energy.21 Since
���p� depends only on p= ��p�, we have

��p�= 4� �

�2���3
p2 = �

2�2�3
p2� (9.153)

19 This result is also valid for a box which is not a parallelepiped. The correction terms are powers of �kL�−1, where L is
the typical scale of the box. The first correction represents a surface term. The difference between periodic and vanishing
boundary conditions, which is a surface effect, is also included by this type of correction. Such corrections are negligible in
a sufficiently large box.

20 To be rigorous we should use different notation for the various level densities; however, we use the same letter� everywhere
so as to reduce the amount of notation.

21 When vanishing boundary conditions on the wave function are used, a factor of 1/8 is introduced in (9.151) to take into
account the fact that the components of �k are positive. The final result will in any case be the same, because of the factor
of 1/2 difference between (9.143) and (9.145): �1/2�3 = 1/8�
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The level density per unit energy ��E� is

��E�= �

2�2�3
p2 dp

dE
= �

2�2�3
mp

or

��E�= �m

2�2�3
�2mE�1/2 � (9.154)

The number of levels in �E�E+ dE� is ��E�dE. It is also possible to calculate ��E�

starting from %�E�, which is the number of energy levels below E: ��E�=%′�E� (Exer-
cise 9.7.11). The quantity �/� is the level density per unit volume and is independent
of the volume.
Noting that � = ∫� d3r, from (9.152) we find that the number of levels in d3r d3p is

dN = d3r d3p
�2���3

= d3r d3p
h3

� (9.155)

where d3r d3p is an infinitesimal volume in phase space ��r� �p�. Equation (9.155) can be
interpreted as follows: h3 is the volume of an elementary cell in phase space, and one
can assign one energy level to each elementary cell. The Heisenberg inequality explains
this: if a particle is confined within a range !x, its momentum satisfies p ∼ h/!x, and
then (9.155) can be expressed more pictorially as follows. Whereas a classical particle
whose state is defined by its position �r and its momentum �p occupies a point ��r� �p� in
phase space, a quantum particle must occupy at least a volume ∼ h3.
The results (9.153) or (9.154) are very important in quantum statistical mechanics: the

probability that a system in thermal equilibrium has energy E (see (1.12) and Footnote 16
of Chapter 1) is

p�E�=� ��E� e−�E�

where � is a normalization constant fixed by∫
dE p�E�= 1�

9.6.3 The Fermi Golden Rule

The concept of level density will be used in the proof of one of the most important
formulas of quantum physics, the Fermi Golden Rule, which allows us to calculate the
probabilities of transition to scattering states. These are also called continuum states
because they belong to the continuous spectrum of the Hamiltonian, which in the present
case is H�0� (9.156). Let us consider a physical system governed by a time-dependent
Hamiltonian H�t�:

H�t�=H�0�+W�t�� (9.156)
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where H�0� is time-independent and has known spectrum with eigenvalues En and eigen-
vectors �n�:

H�0��n� = En�n�� (9.157)

We wish to solve the following problem. At time t = 0 the system is in the initial state
�1�0�� = �i�, an eigenstate of H�0� with energy Ei, and we want to calculate the probability
pi→f �t� of finding it at time t in the eigenstate �f� of H�0� with energy Ef . For this we
must find the state vector �1�t�� of the system at time t, because

pi→f �t�= �
f �1�t���2 with �1�t = 0�� = �i�� (9.158)

We have already encountered this problem in a simple case. In Chapter 5 we calculated
the probability of transition from one level to another for an ammonia molecule in an
oscillating electromagnetic field. The Hamiltonian (9.156) generalizes (5.52), with H�0�

being the analog of (5.43). We follow the method of Section 5.3.2 adapted to any number
of levels. Generalizing (5.53), we decompose the state vector �1�t�� on the basis �l� of
eigenstates of H�0�:

�1�t�� =∑
l

cl�t� �l�� (9.159)

Multiplying (9.159) on the left by the bra 
n�H�0�, we obtain


n�H�0��1�t�� =∑
l


n�H�0��l� 
l�1�t�� =∑
l

H
�0�
nl cl�t�

= En
n�1�t�� = cn�t�En� (9.160)

The system of differential equations obeyed by the coefficients cn�t� is, according
to (4.13),

i�ċn�t�=
∑
l

(
H

�0�
nl +Wnl�t�

)
cl�t�� (9.161)

Still following the method of Section 5.3.2, we eliminate the trivial dependence on t, the
factor exp�−iEnt/�� in cn�t� arising from the time evolution due to H�0�, by setting

cn�t�= e−iEnt/� �n�t�� (9.162)

which transforms (9.161) into

i��̇n�t�e
−iEnt/�+Encn�t�=

∑
l

H
�0�
nl cl�t�+

∑
l

Wnl�t��l�t�e
−iElt/��

Using (9.160), this equation simplifies to become

i��̇n�t�=
∑
l

Wnle
i�nlt �l�t�� �nl =

En−El

�
� (9.163)

The system of differential equations (9.163) generalizes (5.55). The equations are exact,
but they are not solvable analytically, except in special cases, and approximations must
be made. We shall use the method called time-dependent perturbation theory. It is
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convenient to introduce a real parameter 
, 0 ≤ 
 ≤ 1, multiplying the perturbation W .
Then W → 
W , which allows the strength of the perturbation to be varied by hand.22

Perturbation theory amounts to obtaining an approximate solution of the Schrödinger
equation in the form of a series in powers of 
 and taking 
 = 1 at the end of the
calculation. In what follows we shall limit ourselves to first order in 
.23 At time t = 0
the system is assumed to be in the state �i�:

�n�0�= �ni�

and we write

�n�t�= �ni+��1�
n �t��

When t is sufficiently small, ���1�
n �t�� 	 1 because the system does not have time to

evolve appreciably. Upon introduction of the parameter 
, (9.163) becomes

i�
d
dt

(
�ni+��1�

n �t�
)
=∑

l


Wnl�t�
[
�li+�

�1�
l �t�

]
ei�nlt�

We observe that ��1�
l �t� is of order 
, and that the term

∑
l 
Wnl�t��

�1�
l �t� will therefore

be of order 
2. This term is negligible to first order in 
, and taking 
= 1 we find

i��̇�1�
n �t��Wni�t� e

i�ni t� (9.164)

An important special case is that of an oscillating potential:

W�t�= A e−i�t+A†ei�t� (9.165)

where A is an operator. It is this type of potential that describes, for example, the
interaction of an atom with an oscillating electromagnetic field:

��t�= �0 e
−i�t+�∗0 e

i�t�

If as in Chapter 5 we are interested in a transition i→ f to a well-defined final level �f�,
the probability amplitude 
f �1�t�� is given up to a phase by �f �t�� �

�1�
f �t�, which is the

solution of the differential equation (9.164),

i��̇�1�
f �t�= Afi e

−i��−�0�t+A∗
if e

i��+�0�t� (9.166)

with �0 = �fi = �Ef −Ei�/�. This differential equation can be integrated immediately
because the coefficients Afi = 
f �A�i� are independent of time:

�
�1�
f �t�= 1

�

[
Afi

e−i��−�0�t−1
�−�0

−A∗
if

ei��+�0�t−1
�+�0

]
� (9.167)

This probability amplitude will be important if � � ±�0, that is, as in Chapter 5, at
resonance. For �� �0 we have

Ef � Ei+���

22 If the perturbation is due to an interaction with an external field, it can be varied by varying the field.
23 The complexity of the expressions grows rapidly with increasing powers of 
.
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and the system absorbs an energy ��. If we consider the situation of interaction with an
electromagnetic wave, the system absorbs a photon of energy ��. In the case ��−�0

Ef � Ei−���

and the system gives up an energy ��, for example, by emitting a photon of energy ��.
To clarify these ideas let us study the first case. The transition probability pi→f �t� will be

pi→f �t�= ���1�
f �t��2 = 1

�2
�Afi�2t2f��−�0* t�� (9.168)

where the function f was defined in (5.63):

f��−�0* t�=
sin2���−�0�t/2�
���−�0�t/2�2

� 2�
t

���−�0�� (9.169)

We recover the results of Section 5.3.3 in a more general case. Within our approximations,
a necessary condition for (9.168) to be valid is that pi→f �t�	 1.
However, it is in general impossible to isolate a transition to any particular final state

f , and so we are usually interested in a transition to a set of final states close in energy:

0 =∑
f

0i→f �

The summation over f is equivalent to integration over energy if we include the level
density ��E�:

∑
f

→
∫

dE��E��

For example, if the final state corresponds to that of a free particle and if �Afi�2 is
isotropic, the level density will be given by (9.154). If �Afi�2 is not isotropic but depends,
for example, on the direction of the momentum �p of the final particle, we will use

��E�= �m

2�2�3
�2mE�1/2

d+
4�

�

where + = � �'� defines the direction of �p. Using (9.168) and (9.169), we obtain a
transition probability per unit time 0

0 = 1
�2

∫
dE �Afi�2��E� t

sin2���−�0�t/2�
���−�0�t/2�2

� 1
�

∫
dE �Afi�2��E�2� ��E− �Ei+�����
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Performing the integration, we obtain the Fermi Golden Rule with energy absorption:

0 = 2�
�
�Afi�2��Ef �� Ef = Ei+�� � (9.170)

This equation holds also in the case of energy emission if we take Ef = Ei−��, and for
a constant potential V�t� if Ef = Ei (Exercise 9.7.12). The calculation is valid under the
following conditions.

• The probability of finding the system in the initial state �i� must be close to unity, or

∑
f �=i

pi→f �t�	 1 or� in terms of 0i→f �

(∑
f �=i

0i→f

)
t	 1�

which implies that t must be sufficiently short: t	 �2.
• In the integral over energy E the quantity f��− �E−Ei�/�* t� may be replaced by a delta
function: ∫

dE g�E�f

(
�− E−Ei

�
* t

)
→
∫

d�g�E�
2�
t

��E−��0�=
2�
t

g�Ef ��

If !E1 is the characteristic range of variation of g�E�= �Afi�2��E�, �1 = �/!E1 must be small
compared to t: t� �1.

In summary, t must lie in the range �1	 t	 �2. When the condition t	 �2 is not satisfied,
it is sometimes possible to use the resonance approximation to reduce the problem to one
of two levels, for which an exact solution exists (Exercise 9.7.12).
An important application of the Fermi Golden Rule is to the decay of an unstable

state i (an excited state of an atom or a nucleus, an unstable particle, and so on) to a
continuum of states f . The perturbation is then time-independent and Ef � Ei in (9.170).
For sufficiently short times the probability of finding the system in the initial unstable
state i (survival probability) is

pii�t�= 1−0t � e−0t� t	 �2� (9.171)

and it is tempting to identify 0 as the inverse of the lifetime �: 0 = �/�. The calculation
we have just done does not permit us to make this identification, because it is not a
priori valid for any t. However, the exponential decay law (9.171) can be generalized to
long times using a method due to Wigner and Weisskopf described in Appendix C. This
method shows that the spread !E of the energy Ef of the final states is !E= �/� = �0/2.

9.7 Exercises

9.7.1 The Heisenberg inequalities

1. Let ��x� be a square-integrable function normalized to unity and I��� the non-negative quantity:

I���=
∫ �

−�
dx
∣∣∣x��x�+�

d�
dx

∣∣∣2 ≥ 0�
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with � a real number. Integrating by parts, show that

I���= 
X2�−�+�2
K2��
where K =−id/dx and


X2� =
∫ �

−�
dxx2���x��2� 
K2� = −

∫ �

−�
dx�∗�x�

d2�
dx2

�

Derive the expression


X2� 
K2� ≥ 1
4
�

2. How should the argument of the preceding question be modified to obtain the Heisenberg
inequality

!x!k≥ 1
2
?

Show that !x!k= 1/2 implies that ��x� is a Gaussian:

��x�∝ exp
(
−1
2
2 x2

)
�

9.7.2 Wave-packet spreading

1. Show that �P2�X�=−2i�P.
2. Let 
X2��t� be the mean square position in the state ���t��:


X2��t�= 
��t��X2���t���
Show that

d
dt

X2��t� = 1

m

PX+XP�

= i�
m

∫ �

−�
dxx

[
�
��∗

�x
−�∗

��

�x

]
�

Are these results valid if the potential V�x� �= 0?
3. Show that if the particle is free (V�x�= 0), then

d2

dt2

X2��t�= 2

m2

P2� = 2v21 = const�

4. Use these results to derive


X2��t�= 
X2��t = 0�+80t+v21t
2� 80 =

d
X2�
dt

∣∣∣
t=0

�

as well as the expression for �!x�t��2:

�!x�t��2 = �!x�t = 0��2+ �80−2v0
X��t = 0��t+ �v21−v20�t
2

with v0 = 
P/m� = const.
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9.7.3 A Gaussian wave packet

1. We assume that the function A�k� in (9.41) is a Gaussian:

A�k�= 1
��2�1/4

exp

[
− �k−k�2

22

]
�

Show that ∫
�A�k��2dk= 1� !k= 1√

2
�

and that the wave function ��x� t = 0� is

��x� t = 0�= 1/2

�1/4
exp
[
ikx− 1

2
2 x2

]
�

Sketch the curve of ���x� t = 0��2. What is the width of this curve? Identify the dispersion !x

and show that !x!k= 1/2.
2. Calculate ��x� t�. Show that if �2t/m	 1 we have

��x� t�= exp

(
i�k

2

2m
t

)
��x−vgt�0�� vg =

�k

m
�

3. Calculate ��x� t� exactly:

��x� t�=
(

1
�2

)1/4

 ′ exp
[
ikx− i��k�t− 1

2
 ′2�x−vgt�

2

]

with
1

 ′2 =
1
2

+ i�t
m

and find ���x� t��2. Show that

!x2�t�= 1
22

(
1+ �24t2

m2

)
�

Interpret this result physically.
4. A neutron leaves a nuclear reactor with a wavelength of 0.1 nm. We assume that the wave

function at t = 0 is a Gaussian wave packet of width !x =1 nm. How long does it take for the
width to double? What distance does the neutron travel during this time?

9.7.4 Heuristic estimates using the Heisenberg inequality

1. If the electron emitted in neutron � decay

n→ p+ e−+�e

were initially confined inside the neutron with radius of about 0�8 fm, what would its kinetic
energy be? What conclusion can be drawn?
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2. A quantum particle of mass m moves on the x axis in the harmonic potential

V�x�= 1
2
m�2x2�

Use the Heisenberg inequality to estimate the energy of its ground state.

9.7.5 The Lennard–Jones potential for helium

1. The potential energy of two atoms separated by a distance r is often well represented by the
Lennard–Jones potential:

V�r�= �

[(
r

)12−2
(
r

)6]
�

where � and  are parameters with the dimensions of energy and length, respectively. Calculate
the position r0 of the potential minimum and sketch V�r� qualitatively. Show that near r = r0

V�r��−�

[
1−36

(
r− r0
r0

)2
]
= 1

2
m�2�r− r0�

2+V0�

2. In the case of helium, � � 10−3 eV and r0 � 0�3nm. Calculate the vibration frequency � and
the energy ��/2 of the ground state. Why does helium remain a liquid even if the temperature
T → 0? Does the reasoning hold for the two isotopes 3He and 4He?

3. For hydrogen, � � 4 eV. Why does hydrogen become a solid at low temperature? What about
the rare gases (argon, neon, etc.)?

9.7.6 Reflection delay

1. The equation (9.74) gives the coefficient B of the reflected wave when an incident wave exp�ikx�
of energy E = �2k2/2m< V0 arrives at a potential step, where V0 is the step height. Show that
�B� = 1 and B can be written as B = exp�−i'�. Find ' and d'/dE.

2. We assume that the incident wave is a wave packet of the type (9.41),

��x� t�=
∫ dk√

2�
A�k� exp�ikx− i��k�t��

What will the reflected wave packet be? Show that the reflection occurs with a delay

� =−�
d'
dE

> 0�

9.7.7 A delta-function potential

We consider a one-dimensional potential of the form

V�x�= �2g

2m
��x��

where m is the mass of the particle subject to the potential. This potential sometimes can
be used as a convenient approximation. For example, it can represent a potential barrier
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of width a and height V0 in the limit a→ 0 and V0 →� with V0a constant and equal to
�2g/2m. In the case of a barrier (a repulsive potential) g > 0, but we can also model a
well (an attractive potential), in which case g < 0.

1. Show that g has the dimensions of an inverse length.
2. The function ��x� obeys the Schrödinger equation[

− d2

dx2
+g ��x�

]
��x�= 2mE

�2
��x��

Show that the derivative of ��x� satisfies the following equation near x = 0:

�′�0+�−�′�0−�= g ��0�� ��0±�= lim
�→0±

�����

Assuming g < 0, show that there exists one and only one bound state. Determine its energy and
the corresponding wave function. Show that we recover these results by taking the limit of a
square well with V0a→ �2�g�/2m and a→ 0.

3. Model of a diatomic molecule. Assuming always that g < 0, we can very crudely model the
potential felt by an electron of a diatomic molecule as

V�x�= �2g

2m

[
��x+ l�+��x− l�

]
�

The nuclear axis is taken as the x axis, and the two nuclei are located at x = −l and x = +l.
Show that the solutions of the Schrödinger equation can be classified as even and odd. If the
wave function is even, show that there exists a single bound state given by

7= �g�
2

�1+ e−27l�� 7=
√
2m�E�

�2
�

Draw a qualitative sketch of its wave function.
If the wave function is odd, find the equation giving the energy of the bound state:

7= �g�
2

�1− e−27l��

Is there always a bound state? If not, what condition must be obeyed for there to be one?
Qualitatively sketch the wave function when there is a bound state.

4. The double well and the tunnel effect. Let us consider the preceding question assuming that
7l� 1. Show that the two bound states form a two-level system whose Hamiltonian is

H =
(

E0 −A

−A E0

)
�

and relate A to
√
T , where T is the transmission coefficient due to tunneling between the two

wells.
5. The potential barrier. Now we are interested in the case g > 0, which models a potential barrier.

Directly calculate the transmission matrix and show that it is the limit of that in the case of a
square barrier if V0a→ g and a→ 0. Give the expression for the transmission coefficient.
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6. A periodic potential. An electron moves in a one-dimensional crystal in a periodic potential of
period l modeled as

V�x�=
�∑

n=−�

�2g

2m
��x−nl��

For convenience we take g > 0. Show that the periodicity of the potential implies that the
wave function, labeled by q, has the form

�q�x− l�= e−iql�q�x��

Hint: examine the action of the operator Tl which translates by l. It is therefore possible
to limit ourselves to study of the range �−l/2� l/2�. Outside the point x = 0 the wave
functions are complex exponentials:

− l

2
≤ x < 0 � �q�x� = Aeikx+Be−ikx�

0< x ≤ l

2
� �q�x� = Feikx+Ge−ikx�

Use the conditions on �′�x� to obtain

cosql= coskl+ g

2k
sin kl�

Show that there exist forbidden regions of energy. Qualitatively sketch the energy Eq as
a function of q.

9.7.8 Transmission by a well

1. Show that the transmission coefficient T for the square well of Fig. 9.11 is

T = 1

1+
(

q2

4kk′

)2

sin2 k′a

� q2 = 2mV0

�2
�

Show that T passes through a maximum if the de Broglie wavelength in the well 
′ = 2�/k′ is
of the form 2a/n, n integer.

2. Qualitatively sketch the curves giving T and the reflection coefficient 1− T . This behavior
explains, among other things, the Ramsauer–Townsend effect.24

9.7.9 Energy levels of an infinite cubic well in dimension d = 3

Find the energies of the first six energy levels of the infinite cubic well as a function of
the length L of a side of the cube along with their degeneracies.

24 Cf. Lévy-Leblond and Balibar [1990], page 314.
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9.7.10 The probability current in three dimensions

Show that the continuity equation

2�

2t
+ �� · �j = 0� �= ����r� t��2

holds for the current (9.141).

9.7.11 The level density

1. Calculate the energy level density ��E� in dimension d = 2. Show that it is independent of E.
2. Calculate directly the number of levels %�E� of energy lower than E by counting the number of

possible levels in a sphere of radius �p� = √
2mE in momentum space and taking into account

the boundary conditions. Recover the expression (9.154) for ��E�:

��E�= d%�E�

dE
�

3. Calculate the energy level density ��E� for an ultrarelativistic particle of energy E = cp.
Generalize to the case E = �p2c2+m2c4�1/2. Show that d3p/E is a Lorentz invariant. Owing to
this invariance, this expression is often taken as the level density.

9.7.12 The Fermi Golden Rule

1. Comparison with the Rabi formula. In a two-level system, the Rabi formula (5.40) gives the
exact transition probability between the two levels in the presence of a harmonic perturbation,
for example,

p+→−�t�=
�2

1

+2
sin2

+t

2
� +2 = [��−�0�

2+�2
1

]1/2
�

Show that the approximate expression (9.168) is obtained as the limit of the Rabi formula if

• ��−�0� � �1, that is, far from resonance, or
• �1t	 1, that is, for sufficiently short times.

2. A constant potential. Give the expression for the amplitude (9.167) ��1��t� and the transition
probability per unit time 0 when the potential W�t� of (9.165) is time-independent.

9.7.13 Study of the Stern–Gerlach experiment

1. Classical study. We use the notation of Section 3.2.2. The trajectory of the silver atoms (Fig. 3.8)
is assumed to lie in the symmetry plane yOz and along the y axis. Show that 2Bz/2x�x=0 = 0
and 2Bz/2y = 0 if edge effects are neglected. Show that an approximate form of the magnetic
field satisfying the Maxwell equations between the magnet poles near x = 0 and z= 0 is

�B = B0ẑ+b�zẑ−xx̂��

where b = 2Bz/2z�z=0. The classical expression for the force is �F = −����� · �B�. Find the com-
ponents Fx, Fy, and Fz. Show that under the influence of B0 the magnetic moment �� precesses
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about the z axis with frequency � = ��B0�, where � is the gyromagnetic ratio, and that if 1/�
is very small compared with the time for the atom to travel between the magnet poles, then the
component �x gives a vanishing average force. Therefore, it is as though the magnetic moment
were subject to an effective force �F = b�zẑ.

2. Numerical data. Silver atoms of mass m = 1�8× 10−27 kg leave an oven with a speed v �
500m s−1 and a velocity spread !v∼ 10 m s−1. The collimating slits have height !z= 10−4 m,
the length of the gap is L= 5×10−2 m, the magnetic field is B0 = 1 T, and b= 104 Tm−1. Show
that at the exit from the magnet poles the spacing � between the two trajectories corresponding
to Sz = �/2 and Sz =−�/2 is

�= �b

m

(
L

v

)2

�

Evaluate � numerically. Calculate the product !z!pz and show that !z!pz � �. The atomic
trajectories can therefore be treated classically.

3. The quantum description. Let �±��r� t� be the wave function of an atom with spin in the state
�±�. Show that �± satisfies the Schrödinger equation

i�
2�±
2t

=
(
− �2

2m
�2∓�B

)
�±�

We define the average position 
�r±��t� and the average momentum 
�p±��t� of the wave packets
�±��r� t� as


�r±��t� =
∫

d3r �r ��±��r� t��2�


�p±��t� =
∫

d3r �∗±��r� t�
[
−i� ���±��r� t�

]
�

Write down the evolution equations for these average values by calculating d
�r±��t�/dt and
d
�p±��t�/dt using the Ehrenfest theorem (4.26). Show that the spacing � between the centers of
the two wave packets is the same as that calculated in question 2 for classical trajectories.

4. Parity invariance. In an experimental configuration for analyzing a spin pointing in the z

direction using a Stern–Gerlach apparatus such that �B (Ox, we assume that the spin is deflected
preferentially in the direction x > 0, for example, 
Sx� > 0. By examining the image of the
experiment in a mirror located in the xOy plane, show that such a preferred deflection is excluded
if the relevant interactions in the experiment are invariant under parity (which is indeed the
case).

9.7.14 The von Neumann model of measurement

1. In the model of quantum measurement imagined by von Neumann, a physical property A of a
quantum system S is measured by allowing the system to interact with a (quantum) particle 5

whose momentum operator is P. For simplicity we consider the case of one spatial dimension.
The interaction Hamiltonian is assumed to be of the form

H = g�t�AP�
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where g�t� is a positive function with a sharp peak of width � at t = 0 and

g =
∫ �

−�
g�t�dt �

∫ �/2

−�/2
g�t�dt�

We assume that the evolution of S and 5 can be neglected during the very short time � of the
interaction between S and 5, which occurs between times ti and tf : ti � −�/2 and tf � �/2.
Find the evolution operator (4.14):

U�tf � ti�� e−igAP/��

2. We assume that the S+5 initial state is

�1�ti�� = �n⊗���
where �n� is an eigenvector of A with, for simplicity, nondegenerate spectrum, A�n� = an�n�,
and ��� is a state of the particle localized near the point x = x0 with dispersion !x. Show that
the final state is

�1�tf �� = �n⊗�n� with ��n� = e−igAP/� ����
Let �n�x�= 
x��n� be the final wave function of the particle. Show that

�n�x�= ��x−gan��

The function �n�x� then is localized near the point x0− gan, and if g�an−am� � !x for any
n �=m, the position of the particle allows one to deduce the value an of A so that a measurement
of A is obtained. The final state of the particle is perfectly correlated with the value of A and
the final state of S because the states ��n� and ��m� are orthogonal for n �=m: 
�n��m� = �nm.

3. What is the final state of 5 if the initial state of S is the linear superposition

�&� =∑
n

cn�n�?

Show that the probability of observing S in the final state �n� is �cn�2. The measurement is ideal
because it does not modify the probabilities �cn�2.

9.7.15 The Galilean transformation

Let us consider a classical plane wave, for example a sound wave, propagating along the
x axis:

f�x� t�= A cos�kx−�t�

and a Galilean transformation of velocity v:

x′ = x+vt� t′ = t�

1. Show that for a classical wave the transformed amplitude f ′�x′� t′� satisfies

f ′�x′� t′�= f�x� t��

from which we extract the transformation law of the wave vectors and frequencies:

k′ = k� �′ = �+vk�
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What is the physical interpretation of the frequency transformation law? Now let us assume that
we are dealing with the de Broglie wave of a particle of mass m. Are the preceding relations
compatible with the momentum and energy transformation laws

p′ = p+mv� E′ = E+pv+ 1
2
mv2?

2. Show that for a de Broglie wave we should not require

�′�x′� t′�= ��x� t�

but rather

�′�x′� t′�= exp
[
if�x� t�

�

]
��x� t��

Using the relations (prove them)

2

2t′
= 2

2t
−v

2

2x
�

2

2x′
= 2

2x
�

determine the form of the function f�x� t� by requiring that if ��x� t� obeys the Schrödinger
equation, �′�x′� t′� must also.

9.8 Further reading

The results of this chapter are classic and can be found in similar form in most texts
on quantum mechanics. One of the clearest expositions is that of Merzbacher [1970],
Chapter 6. Lévy-Leblond and Balibar [1990], Chapter 6, also give a very complete
discussion with many illustrative examples. See also Messiah [1999], Chapter III;
Cohen-Tannoudji et al. [1977], Chapter I; or Basdevant and Dalibard [2002], Chapter 2;
this last reference comes with a CD made by M. Joffre which allows the motion of
wave packets to be visualized. For the Fermi Golden Rule the reader can consult
Messiah [1999], Chapter XVII, or Cohen-Tannoudji et al. [1977], Chapter XIII.
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Angular momentum

In this chapter we shall study the properties of angular momentum, which we have
introduced already in Chapter 8. The fundamental property of angular momentum is that
it is the infinitesimal generator of rotations. All the results that we shall obtain in this
chapter will be more or less direct consequences of this property. In Section 10.1 we
explicitly construct a basis of eigenvectors common to �J 2 and Jz, which are compatible
Hermitian operators. The rotation of a physical state, which we have already introduced in
Chapter 3 for the photon polarization and for spin 1/2, will be studied in the general case
in Section 10.2. Section 10.3 is devoted to orbital angular momentum, which originates in
the spatial motion of particles. In Section 10.4 we extend the classical results on motion
in a central force field to quantum mechanics, and in Section 10.5 we discuss applications
to particle decay and excited states. Finally, in Section 10.6 we study the addition of
angular momenta.
NB Throughout this chapter we use a system of units in which �= 1.

10.1 Diagonalization of �J 2 and Jz

In Chapter 8 we established the commutation relations (8.31) and (8.32) between the
various components of angular momentum. Here we give them again in a system of units
in which �= 1 (we recall that angular momentum has the same dimensions as �, which
is why the notation is simpler in this system of units):

�Jx� Jy�= iJz� �Jy� Jz�= iJx� �Jz� Jx�= iJy � (10.1)

or

�Jk� Jl�= i
∑
m

�klmJm � (10.2)

Knowledge of only these commutation relations will permit us to diagonalize the angular
momentum, that is, to find the eigenvectors and eigenvalues of suitable combinations of

307
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Jx, Jy, and Jz. Since these three operators do not commute with each other, they cannot

be diagonalized simultaneously: the three components of �J are mutually incompatible
physical properties. To choose our combinations of Jx, Jy, and Jz, we observe that �J 2 is
a scalar operator (cf. (8.33)) and, according to the result of Section 8.2.3, must commute
with the three components of �J :

��J 2� Jk�= 0� (10.3)

as can be verified by explicit calculation (Exercise 10.7.1). The usual choice is to simulta-
neously diagonalize �J 2 and Jz, and this is often referred to as quantization of the angular
momentum in the z direction. It is also said that Oz is chosen as the angular momentum
quantization axis. It is convenient to define the operators J± = J†

∓ and J0 as

J± = Jx± iJy� J0 = Jz� (10.4)

We can immediately verify the commutation relations and the following identities:

�J0� J±� = ±J±�

�J+� J−� = 2J0�

�J 2 = 1
2
�J−J++ J+J−�+ J 2

0 �

J+J− = �J 2− J0�J0−1��

J−J+ = �J 2− J0�J0+1��

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

These relations will be useful for the diagonalization. Let �jm� be an eigenvector of �J 2

and Jz, where j labels the eigenvalue of �J 2 and m labels those of Jz. Since �J 2 is a positive
operator, its eigenvalues are ≥ 0. We write them in the form j�j+ 1� with j ≥ 0; this
notation for the eigenvalues of �J 2 will be justified below. The number m is called the
magnetic quantum number. In summary:

�J 2�jm� = j�j+1��jm�� (10.10)

J0�jm� = m�jm�� (10.11)

According to (10.5), the vectors J±�jm� are eigenvectors of J0 with eigenvalue m±1:

J0�J±�jm�� = �J±J0± J±��jm� = J±�m±1��jm�
= �m±1��J±�jm���

Similarly, since ��J 2� J±�= 0,

�J 2�J±�jm��= j�j+1��J±�jm���
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We have just shown that the vectors J±�jm� are eigenvectors of �J 2 with eigenvalue
j�j+ 1� and of J0 with eigenvalue m± 1. Moreover, assuming that �jm� is normalized,

jm�jm� = 1, we can calculate the norm of J+�jm� using (10.9):

��J+�jm���2 = 
jm�J−J+�jm� = 
jm��J 2− J0�J0+1��jm�
= j�j+1�−m�m+1�= �j−m��j+m+1�≥ 0� (10.12)

and that of J−�jm� using (10.8):

��J−�jm���2 = 
jm�J+J−�jm� = 
jm��J 2− J0�J0−1��jm�
= j�j+1�−m�m−1�= �j+m��j−m+1�≥ 0� (10.13)

The simultaneous positivity of the two norms is guaranteed only if −j ≤m≤ j. Starting
from �jm�, by repeated application of J+ we obtain a series of eigenvectors common to
�J 2 and J0, labeled by �j�m+1�, �j�m+2�, etc. These eigenvectors have positive norm
as long as m ≤ j, but the norm becomes negative for m > j. The series must therefore
terminate, which is possible only if one of the vectors �J+�n�jm� vanishes for an integer
value of n= n1+1 such that m+n1 = j:

J+��J+�
n1 �jm��= 0�

The same argument for J− shows that there must exist an integer n2 such that

J−��J−�
n2 �jm��= 0�

From the relations

j =m+n1� −j =m−n2

we find that 2j, and therefore �2j+1�, must be an integer, which leads to the diagonal-
ization theorem for �J 2 and Jz.

Theorem. The possible values of j are integers or half-integers: j = 0�1/2�1�3/2� � � � . If
�jm� is an eigenvector common to �J 2 and J0, m necessarily takes one of �2j+1� values:

m=−j�−j+1�−j+2� � � � � j−2� j−1� j�

When j takes the values 0�1�2� � � � we have so-called integer angular momentum, and
when j= 1/2�3/2� � � � we have half-integer angular momentum.1 Let us study the normal-
ization and phase of the vectors �jm�. Starting from a vector �jm�, by repeated application
of J+ and J− we construct a series of �2j+ 1� orthogonal vectors which span a vector

1 Although half of an even integer is also a half-integer� � �
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subspace of �2j+1� dimensions ��j� of � . These vectors do not have unit norm, but if
we define �j�m−1� by

�j�m−1� = �j�j+1�−m�m−1��−1/2J−�jm�� (10.14)

then �j�m−1� has unit norm according to (10.13). Moreover, using (10.8),

J+J−�jm� = �j�j+1�−m�m−1��1/2J+�j�m−1�
= �j�j+1�−m�m−1���jm�

or

J+�j�m−1� = �j�j+1�−m�m−1��1/2�jm��
and with the replacement m→m+1 we have

J+�jm� = �j�j+1�−m�m+1��1/2�j�m+1�� (10.15)

The relations (10.14) or (10.15) completely fix the relative phase of the vectors
�j� j�� �j� j−1�� � � � � �j�−j�. A basis of ��j� formed from vectors �jm� satisfying (10.14)
or (10.15) is called the standard basis �jm�.
It can happen that knowing �j�m� is not sufficient for uniquely specifying a vector of

� : �J 2 and Jz do not form a complete set of compatible physical properties. We shall
see an example of this in Section 10.4.2 where we discuss the hydrogen atom. There
the values of the (orbital) angular momentum, denoted l, are not sufficient for specifying
a bound state; an additional quantum number n = l+ 1� l+ 2� � � � , called the principal
quantum number, must also be given. In general, it is necessary to use a quantum number
or a set of supplementary quantum numbers � to label the eigenvectors �j�m= j� of �J 2

and Jz, and these are normalized by the condition


�� j� j�� ′� j� j� = ���� ′ �

By repeated application of J− we form the standard basis of ���� j�:

��� j� j�� ��� j� j−1�� � � � � ��� j�−j+1�� ��� j�−j��
Let us summarize the essential properties of a standard basis ��� jm�:

�J 2��� jm� = j�j+1���� jm�� Jz��� jm� =m��� jm��
J+��� jm� = �j�j+1�−m�m+1��1/2��� j�m+1��
J−��� jm� = �j�j+1�−m�m−1��1/2��� j�m−1��
J+��� j� j� = 0� J−��� j�−j� = 0�


� ′� j′m′��� jm� = �� ′��j′j�m′m�

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)
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In what follows we shall suppress the index �, as it plays no role in this chapter (except
in Section 10.4). The matrix elements of �J 2, J0, and J− in a standard basis are


j′m′��J 2�jm� = j�j+1��j′j�m′m� (10.21)


j′m′�J0�jm� = m �j′j�m′m� (10.22)


j′m′�J±�jm� = �j�j+1�−mm′�1/2�j′j�m′�m±1� (10.23)

In the subspace ��j� in which �J 2 has fixed eigenvalue j�j+1�, the operators J0 and J±
are represented by �2j+1�×�2j+1� matrices, and the matrix representing J0 is diagonal.
It is instructive (Exercise 10.7.4) to write out these matrices explicitly in the case j = 1/2
and recover the 2× 2 matrices of spin 1/2 (3.47) as well as those of the case j = 1. In
the latter case we recover the infinitesimal generators of rotations in three-dimensional
space: the transformation law of a vector in �3 is that of angular momentum j = 1.
Equation (10.23) gives the following for the infinitesimal generators (Exercise 10.7.4):

Jx =
1√
2

⎛
⎝ 0 1 0

1 0 1
0 1 0

⎞
⎠ � Jy =

1√
2

⎛
⎝ 0 −i 0

i 0 −i
0 i 0

⎞
⎠ � Jz =

⎛
⎝ 1 0 0

0 0 0
0 0 −1

⎞
⎠ �

(10.24)

These infinitesimal generators superficially differ in form from the generators Ti

found in (8.26). In fact, the two sets are related by the unitary transformation (10.64)
which transforms the Cartesian components of r̂ into spherical components; see
Exercise 10.7.4.

10.2 Rotation matrices

In Chapter 3 we saw how to rotate a spin 1/2. Starting from a state �+� obtained by means
of a Stern–Gerlach apparatus in which the magnetic field is parallel to Oz, we know
from (3.57) how to construct the state �+� n̂� obtained using a Stern–Gerlach apparatus
with magnetic field parallel to n̂. We apply to the state �+� a rotation operator U���

which transforms �+� into �+� n̂�:
�+� n̂� = U����+� = �+���

The rotation � aligns Oz in the direction n̂. This rotation is not unique, and we shall
see that this nonuniqueness corresponds to an arbitrary phase in the definition of �+� n̂�.
Another example of the rotation of a physical state was given in Chapter 3 in the case
of photon polarization. Starting from a linear polarization state �x�, we obtain a linear
polarization state � � by applying to the former a rotation operator U��z� �� corresponding
to rotation by an angle  about the photon’s direction of propagation Oz (3.29):

� � = exp�−i .z��x� = U��z� ���x��
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In the general case, the state ���� transformed by a rotation � from a state ��� is
���� = U �������

We now give the explicit matrix form of the rotation operator U��� in the basis �jm�.
The rotation operator U��� is expressed as a function of the infinitesimal generators
Jx, Jy, and Jz; cf. (8.30). Since the components of �J commute with �J 2, the commutator

�U���� �J 2�= 0 and the matrix elements of U are zero if j �= j′:


j′m′�U ����jm� ∝ �j′j �

In the subspace ��j�, the operator U��� will be represented by a �2j+ 1�× �2j+ 1�
matrix denoted D�j����. Its elements are

D
�j�
m′m���= 
jm′�U ����jm�� (10.25)

The matrices D�j� are called rotation matrices, or Wigner matrices. Let us examine the
rotational transformation of a state �jm� giving the vector �jm��:

�jm�� = U����jm� =∑
m′
�jm′�
jm′�U ����jm��

where we have used the fact that in the completeness relation∑
j′�m′

�j′m′�
j′m′� = I

only the terms with j = j′ contribute. We can then write

�jm�� =
∑
m′

D
�j�
m′m����jm′� � (10.26)

Let us recall the group properties of the operators U���. In the case of a vector represen-
tation (8.12)

U ��2�U ��1�= U ��2�1�� (10.27)

while for a spinor representation (8.13)

U ��2�U ��1�=±U ��2�1�� (10.28)

At the end of this section we shall show that (10.27) corresponds to the case of integer
angular momentum and (10.28) to the half-integer case. The multiplication law for rotation
matrices is determined by the group property for the operators U :

D
�j�
m′m��2�1�=±∑

m′′
D

�j�
m′m′′ ��2�D

�j�
m′′m��1��

Let us return to the study of the rotation which takes Oz to the direction n̂ described by
the polar and azimuthal angles � �'�:

n̂x = sin  cos'� n̂y = sin  sin'� n̂z = cos � (10.29)
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Fig. 10.1. The rotation �� �'� aligns the axis Oz with n̂.

We shall adopt the following convention for the rotation: �, denoted �� �'�, will be
the product of a rotation by an angle  about Oy followed by one by an angle ' about
Oz (Fig. 10.1):

�� �'�=�z�'��y� � � (10.30)

Using (10.30) and the group law, the rotation operator U��� �'�� is given as a function
of the infinitesimal generators Jy and Jz by

U ��� �'��= e−i'Jze−i Jy � (10.31)

and its matrix elements in the basis �jm� are

D
�j�
m′m��� �'��= 
jm′�e−i'Jze−i Jy �jm� � (10.32)

This equation can be simplified:

D
�j�
m′m��� �'��≡D

�j�
m′m� �'� = e−im′'
jm′�e−i Jy �jm� (10.33)

= e−im′'d
�j�
m′m� �� (10.34)

We have defined the matrix d�j�� � as

d
�j�
m′m� �= 
jm′�e−i Jy �jm� � (10.35)

The matrices d�j� satisfy a group property derived from that of the matrices D�j�:

d
�j�
m′m� 2+ 1�=

∑
m′′

d
�j�
m′m′′� 2�d

�j�
m′′m� 1��

There is no sign ± in this equation because the rotation angle can be greater than 2�.



314 Angular momentum

We have already mentioned the arbitrariness in the choice of rotation � �'�; we could
have first rotated by an angle 1 about Oz without changing the final axis n̂. In that case
the new rotation operator would be

U ��′�= U ��� �'��e−i1Jz �

and the result (10.26) would acquire the phase factor exp�−im1�. The most general
definition of the rotation matrices involves three angles, called the Euler angles �'� �1�,
and our convention corresponds to the choice �'� �0�.2

In the basis �jm�, iJy is represented by a real matrix, because according to (10.23) the
matrix elements of J+ and J− are real and

Jy =− i
2
�J+− J−��

The matrix exp�−i Jy� is also a real matrix and the group property

U†���= U−1���= U��−1�

becomes [
d�j�� �

]† = [d�j��− �
]
�

which gives the following for the matrix elements:

d
�j�
m′m� �= d

�j�
mm′�− � � (10.36)

There exists another symmetry property (Exercise 10.4.12):

d
�j�
m′m� �= �−1�m−m′

d
�j�
−m′�−m� � � (10.37)

Finally, it can be shown that the matrices D�j� form a so-called irreducible representation
of the rotation group, that is, any vector of ��j� can be obtained from an arbitrary vector
of this space by application of a rotation matrix D�j�, and any matrix that commutes with
all the matrices D�j� is a multiple of the identity matrix.
Whether or not the factor ± occurs in (10.28) can be checked by studying rotations by

2�, as this factor arises when a rotation by 2� is represented by the operator −I in the
space ��j�. Let us consider a rotation by 2� about the z axis:


jm′�U��z�2����jm� = e−2i�m�m′m = �m′m� integer j

= e−2i�m�m′m =−�m′m� half-integer j�

2 The usual notation for the rotation matrices is

D�j�� �'�→D�j��'� �1 = 0��



10.2 Rotation matrices 315

Since the choice of axis Oz is arbitrary, the operator rotating by 2� will be I for integer
j and −I for half-integer j. However, operators that rotate by 4� are all equal to I for
any value of j. Let us examine two successive rotations by angles  1 and  2 about an
axis n̂, with

 1+ 2 =  +2�n� 0 ≤  < 2�� integer n≥ 0�

From the equations

e−i� 1+ 2��J ·n̂ = e−i ��J ·n̂�e−2i�n��J ·n̂� = e−i ��J ·n̂�� integer j

= �−1�ne−i ��J ·n̂�� half-integer j�

we find that (10.27) is valid for integer j and (10.28) for half-integer j. In other words, to
any rotation � there correspond two rotation operators of opposite sign for half-integer
j and only one for integer j.
Let us check that in the case of spin 1/2 we recover the matrix D�1/2�� �'� already

calculated in Chapter 3. The matrix d�1/2�� � according to Exercise 3.3.6 is

d�1/2�� �= exp�−i y/2�= cos
 

2
I− iy sin

 

2
�

or in explicit form

d�1/2�� �=
(
cos /2 − sin  /2

sin  /2 cos /2

)
� (10.38)

where the rows and columns are arranged in the order m= 1/2�−1/2. Then (10.33) gives
the following for the matrix D�1/2�� �'�:

D�1/2�� �'�=
(
e−i'/2 cos /2 −e−i'/2 sin  /2

ei'/2 sin  /2 ei'/2 cos /2

)
�

in agreement with (3.58).
The rotation matrix d�1�� � for angular momentum j = 1 is obtained from the infinites-

imal generators (10.24), with the rows and columns arranged in the order m = 1�0�−1
(Exercise 10.7.4):

d�1�� �=
⎛
⎜⎝

1
2 �1+ cos � − 1√

2
sin  1

2 �1− cos �
1√
2
sin  cos − 1√

2
sin  

1
2 �1− cos � 1√

2
sin  1

2 �1+ cos �

⎞
⎟⎠ � (10.39)

The reader should verify that the matrices d�1/2� and d�1� possess the symmetry proper-
ties (10.36) and (10.37).
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10.3 Orbital angular momentum

10.3.1 The orbital angular momentum operator

Let us consider a classical scalar field 1��r� and subject it to a rotation �z�'� by an angle
' about Oz, with �r ′ =��r being the vector transformed from �r by this rotation:

x′ = x cos'−y sin'�

y′ = x sin'+y cos'�

z′ = z�

The value of the transformed scalar field 1′��r� at the point �r ′ must be identical to that
of the initial field at the point �r:

1′��r ′�= 1��r��
or

1′��r�= 1��−1�r� � (10.40)

This transformation law is correct for a (scalar) classical field, but if 1��r� is the wave
function of a particle 1��−1�r� and 1′��r� can a priori differ by a phase:

1′��r�= ei ��r�1��−1�r�
(see the discussion following (9.17)). We know only that �1′��r ′�� = �1��r��, and our goal
is to show that the phase factor that might arise is actually absent. The vector U�����r �
physically represents an eigenstate of the position operator �R, obtained from the eigenstate
��r � of �R by a rotation U���. Let us show this explicitly using the fact that �R is a vector
operator whose components Xk transform as the components of V in (8.34):

Xk�U�����r�� = U���U−1���XkU�����r�
= U���

(∑
l

�klXl

)
��r� = U���

(∑
l

�klxl

)
��r�

= ���r�k�U�����r���
which shows that the state vector ���r � can be defined, that is, its phase can be fixed, as

���r� ≡ U�����r�� (10.41)

If �1′� is the transform of �1� by U���, �1′� = U����1�, then
1′��r� = 
�r�1′� = 
�r�U����1� = 
U†����r�1�

= 
U−1����r�1� = 
�−1�r�1� = 1��−1�r��
which demonstrates (10.40). At first sight the argument �−1 in (10.40), which can also
be written as

�U���1���r�= 1��−1�r��
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may seem surprising, but we have already encountered a similar situation in the case of
translations in (9.15), which in three dimensions with �= 1 is written as[

e−i�P·�a1
]
��r�= 1��r− �a��

even though3

e−i�P·�a��r� = ��r+ �a��
The function 1��r� transformed by a translation �a is 1��r − �a� and not 1��r + �a�! If the
rotation angle ' becomes infinitesimal for a rotation about Oz, then

U��z�'��� I− i'Jz�

and according to (10.40)

��I− i'Jz�1���r� � 1�x+y'�−x'+y� z�

� 1��r�+'

(
y
21

2x
−x

21

2y

)

= 1��r�− i'�XPy−YPx�1�

from which we find

�Jz1���r�= ��XPy−YPx�1���r�= ���R× �P�z1���r�= ��Lz1���r�� (10.42)

The angular momentum operator of the particle described by a wave function 1��r� is
called the orbital angular momentum (because it is associated with the motion of the
particle in a spatial orbit), and is in general denoted �L:

�L= �R× �P� (10.43)

The operator �L has been constructed as the infinitesimal generator of rotations and
necessarily satisfies the angular momentum commutation relations (10.1) or (10.2):

�Lj�Lk�= i
∑
l

�jklLl� (10.44)

These relations can be verified by explicit calculation using the canonical commutation
relations (8.45); see Exercise 10.7.5. We use �lm� to denote the eigenvectors of �L2 and Lz:

�L2�lm� = l�l+1��lm�� (10.45)

Lz�lm� = m�lm�� (10.46)

These equations can be transformed into differential equations by writing the operators
Lj as differential operators acting in L�2���3�. The calculation is lengthy if we make the
change of variables �x� y� z�→ �r�  �'�, but it is simplified if we use the fact that the Li

3 We note that this equation fixes the phase of the vector ��r+ �a � relative to that of ��r �, in the same way as (10.41) fixes the
phase of ���r � relative to that of ��r �.
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are infinitesimal generators of rotations. The case of Lz is particularly simple. Considering
1 as a function of �r�  �'�, we have(

e−i�Lz1
)
�r�  �'�= 1�r�  �'−���

and taking � to be infinitesimal,

��I− i�Lz�1� �r�  �'�= 1�r�  �'�−�
21

2'

or Lz1 =−i�21/2'�. The calculation of Lx and Ly takes a few more lines, because both
 and ' vary in a rotation about Ox or Oy. The result is (Exercise 10.7.5)

Lz = −i
2

2'
� (10.47)

L± = ie±i'

(
cot  

2

2'
∓ i

2

2 

)
� (10.48)

�L2 = −
(

1
sin  

2

2 

[
sin  

2

2 

]
+ 1

sin2  

22

2'2

)
� (10.49)

The operators Lj depend only on angles and not on r, hence the name angular momentum.

The eigenfunctions of �L2 and Lz depend only on the angles  and ' or, equivalently,
on r̂. These eigenfunctions are called the spherical harmonics:

Ym
l � �'�= Ym

l �r̂�= 
r̂�lm�� (10.50)

Equations (10.45) and (10.46) become

��L 2Ym
l ��r̂� = 
r̂ ��L 2�lm� = l�l+1�Ym

l �r̂�� (10.51)

�LzY
m
l ��r̂� = 
r̂ �Lz�lm� =mYm

l �r̂�� (10.52)

while (10.15) is written as

�L±Y
m
l ��r̂�= 
r̂�L±�lm� = �l�l+1�−m�m+1��1/2Ym±1

l �r̂��

Equation (10.52) becomes, using (10.47),

�LzY
m
l �� �'�=−i

2

2'
Ym
l � �'�=mYm

l � �'��

which implies that

Ym
l � �'�= eim'fm

l � �� (10.53)

The tranformation law (10.40) shows that in a rotation by 2� the wave function is
unchanged, and so no minus sign is introduced. This implies that orbital angular momenta
are always integers.
A simple and important application is the spherical rotator. We consider a diatomic

molecule rotating about its center of mass, taken to be the coordinate origin (Fig. 10.2
and Exercise 1.6.1). Its moment of inertia is I = �r20 , where � is the reduced mass and
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θ

z

x

φ

y

Fig. 10.2. The spherical rotator.

r0 is the distance between the nuclei (the electron contribution is negligible). If � is the
angular velocity of the rotation, the classical Hamiltonian Hcl is

Hcl =
1
2
I�2 = 1

2
�I��2

I
= l2

2I
�

where l= I� is the angular momentum. The quantum version of the Hamiltonian is

H = �L2

2I
�

and the energies are

El =
l�l+1�

2I
� (10.54)

The eigenfunctions are the Ym
l � �'�, where the angles  and ' specify the orientation of

the line joining the two nuclei; Ym
l � �'� is the amplitude for finding this line oriented

in the direction � �'�. The spectrum of rotational levels is given in Fig. 10.3, and well
reproduces the experimental results for the spectra of diatomic molecules.

10.3.2 Properties of the spherical harmonics

Let us now summarize, in some cases without proof, the properties of the spherical
harmonics that are most frequently used.

1. Basis on the unit sphere

The spherical harmonics form an orthonormal basis for square-integrable functions on
the unit sphere �r2 = 1:∫

sin  d d'�Ym′
l′ � �'��

∗Ym
l � �'�=

∫
d+�Ym′

l′ � �'��
∗Ym

l � �'�= �l′l�m′m� (10.55)

We shall frequently use the notation += � �'� and

d+= sin  d d'= d2r̂ � (10.56)
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4

j = 0

j = 1

j = 2

j = 3

j = 4

1

2

3

Fig. 10.3. Spectrum of the spherical rotator. The jth level is separated from the �j−1�th level by
an amount j/I , or �2j/I if � is restored.

If a function f� �'� is square-integrable on the unit sphere, we can write down an
expansion analogous to a Fourier series:

f� �'� =∑
l�m

clmY
m
l � �'��

clm =
∫

d+�Ym
l � �'��

∗f� �'�� (10.57)

2. Relation to the Legendre polynomials

One definition of the Legendre polynomials Pl�u� is

Pl�u�=
1
2ll!

dl

dul
�u2−1�l� (10.58)

where Pl�u� is a polynomial of degree l and parity �−1�l:

Pl�−u�= �−1�lPl�u��

The Legendre polynomials form a complete set of orthogonal polynomials in the interval
�−1�+1�. The first few Legendre polynomials are

P0�u�= 1� P1�u�= u� P2�u�=
1
2
�3u2−1�� (10.59)

The associated Legendre functions Pm
l �u� are defined as

Pm
l �u�= �1−u2�m/2 dm

dum
Pl�u�� P0

l �u�= Pl�u�� (10.60)
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and it can be shown that the spherical harmonics are related to the Pm
l as

Ym
l � �'�= �−1�m

[
�2l+1�
4�

�l−m�!
�l+m�!

]1/2
Pm
l �cos � e

im'� m > 0�

Y m
l � �'�= �−1�m�Y−m

l � �'��∗� m < 0�

(10.61)

According to (10.53), Y 0
l is independent of ' and proportional to Pl�cos �:

Y 0
l � �'�=

√
2l+1
4�

Pl�cos �� (10.62)

As a special case, we write down the Ym
l for l= 0 and l= 1:

l= 0 � Y 0
0 =

√
1
4�

�

l= 1 � Y 0
1 =

√
3
4�

cos =
√

3
4�

r̂0 �

Y±
1 =∓

√
3
8�

e±i' sin  =
√

3
4�

r̂±1 �

(10.63)

Up to the normalization factor
√
3/4� the Ym

1 are just the spherical components of the
unit vector r̂:

r̂ = �sin  cos'� sin  sin'� cos ��

Y 0
1 =

√
3
4�

r̂0� Y±
1 =∓

√
3
4�

r̂x± ir̂y√
2

=
√

3
4�

r̂±1 � (10.64)

These expressions justify the phase conventions used for right- and left-handed polariza-
tion in (3.11).

3. Transformation under rotation

Multiplying (10.26) for j = l on the left by the bra 
r̂�, we find

Ym
l ��

−1r̂�=∑
m′

D
�l�
m′m���Ym′

l �r̂� � (10.65)

We can also obtain (Exercise 10.7.6) a relation between the spherical harmonics and the
rotation matrices:

D
�l�
m0� �'�=

√
4�

2l+1
�Y m

l � �'��
∗ � (10.66)

From these two equations we can derive the addition theorem for the spherical harmonics.
Taking r̂ in the direction given by the polar angles �����, let � be the rotation by angles
� �'� aligning ẑ with n̂ and 6 be the angle between r̂ and the direction defined by the
angles � �'� (Fig. 10.4):

cos6 = cos� cos + sin� sin  cos��−'� �
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βx

z

y

Θθ
α

φ

Fig. 10.4. Angular configuration in (10.67).

The angle 6 between �−1r̂ and the z axis is the same as the angle between n̂ and r̂. It
is then sufficient to take m= 0 in (10.65) to obtain

Pl�cos6�= 4�
2l+1

l∑
m=−l

�Y m
l � �'��

∗Ym
l ����� � (10.67)

4. Parity of the spherical harmonics

The parity operator 5 defined in Section 8.3.3 acts on a wave function 1��r� as
�51���r�= 1�−�r�� (10.68)

5 commutes with the orbital angular momentum �L and, more generally, with �J . In fact,
the representation matrix of the parity operator in three-dimensional space �3 is the
matrix −I , which commutes with any rotation matrix �, from which we infer

�U����5�= 0⇒ ��J�5�= 0 and ��L�5�= 0� (10.69)

This implies the equations

�L25Ym
l = 5�L2Ym

l = l�l+1�5Ym
l �

Lz5Ym
l = 5LzY

m
l =m5Ym

l �

which show that 5Ym
l is proportional to Ym

l :

5Ym
l = ��l�m�Ym

l �

Y m
l is therefore an eigenfunction of 5, and since 52 = I , ��l�m�=±1. Let us show that

��l�m� is in fact independent of m using the fact that L+ commutes with 5:

L+5Ym
l = ��l�m�L+Y

m
l = ��l�m��l�l+1�−m�m+1��1/2Ym+1

l

= 5L+Y
m
l = �l�l+1�−m�m+1��1/25Ym+1

l

= �l�l+1�−m�m+1��1/2��l�m+1�Ym+1
l �
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which implies that ��l�m+1�= ��l�m�. Therefore, ��l�m� is independent of m and

�5Ym
l ��r̂�= ��l�Ym

l �r̂�= Ym
l �−r̂��

The transformation r̂ →−r̂ corresponds to

 → �− � '→ '+�� (10.70)

If m = 0, then Y 0
l ∝ Pl�cos �; using (10.62) and Pl�−u� = �−1�lPl�u�, we find ��l� =

�−1�l and

Ym
l � �'�= �−1�lY m

l ��− �'+�� or Ym
l �r̂�= �−1�lY m

l �−r̂� � (10.71)

10.4 Particle in a central potential

10.4.1 The radial wave equation

We shall use the preceding results to show that the three-dimensional Schrödinger equa-
tion, which is a partial differential equation, can be reduced to an ordinary differential
equation when the potential is central, that is, invariant under rotation:

V��r�= V���r��= V�r��

In this case, since the kinetic energy is a scalar operator, the full Hamiltonian for a particle
of mass M

H = �P2

2M
+V�r� (10.72)

is invariant under rotation: �H� �J� = 0. Our problem involves only the orbital angular
momentum, since the only operators at our disposal are �P and �R:

�H� �L�= 0 or �H�Lx�= �H�Ly�= �H�Lz�= 0� (10.73)

In the space L
�2�
�r ��3� the kinetic energy operator is proportional to the Laplacian �2:

−�P2 =−�−i��2 = �2 = 1
r

22

2r2
r+ 1

r2

[
1

sin  
2

2 

(
sin  

2

2 

)
+ 1

sin2  

22

2'2

]
� (10.74)

where we have written the Laplacian in polar coordinates. Comparing with (10.49), we
recognize in the operator �L2 the angular part of the Laplacian:

�2 = 1
r

22

2r2
r− 1

r2
�L2� (10.75)

This equation confirms the commutation relation �H� �L� = 0, since ��L2� �L� = 0 and the
radial part of the Laplacian, which does not depend on angles, obviously commutes
with �L. We can therefore write the Hamiltonian (10.72) as

H =− 1
2M

1
r

22

2r2
r+ 1

2Mr2
�L2+V�r�� (10.76)
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Owing to these commutation relations, we know that it is possible to simultaneously
diagonalize H , �L2, and Lz. Let 1lm��r� be an eigenfunction common to these three
operators. Since there is only one spherical harmonic (l�m), if

�L21lm = l�l+1�1lm and Lz1lm =m1lm�

then 1lm must be proportional to Ym
l :

4

1lm�r�  �'�= fl�r�Y
m
l � �'�=

ul�r�

r
Ym
l � �'�� (10.77)

It is convenient to factorize 1/r; ul�r� is the radial wave function. Let us examine the
action of H on 1lm:

H1lm�r�  �'�=
[
− 1
2M

1
r

22

2r2
ul�r�+

(
l�l+1�
2Mr2

+V�r�

)
ul�r�

r

]
Ym
l � �'��

The eigenvalue equation

H1lm = El1lm

becomes the radial equation

[
− 1
2M

d2

dr2
+ l�l+1�

2Mr2
+V�r�

]
ul�r�= Elul�r� � (10.78)

The radial wave function and the energy are labeled by only the index l and not m,
because according to (10.78) they are independent of m. Each value of the energy will
therefore be at least �2l+ 1�-fold degenerate. This could have been foreseen from the
commutation relation �H�L±�= 0. If

H1lm = Elm1lm�

by reasoning similar to that which enabled us to show that ��l�m� is independent ofm, we
deduce that Elm is also independent of m (Exercise 10.7.7). For each value of the angular
momentum l, or for each partial wave l, we have reduced the Schrödinger equation to
an ordinary differential equation in a single variable r. Following historical tradition, the
partial waves are labeled s, p, d, f , g, h, � � �:

l= 0 � s wave� l= 1 � p wave� l= 2 � d wave� l= 3 � f wave�

and so on in alphabetical order: l = 4: g wave, etc. In each partial wave, (10.78) shows
that the potential V�r� must be replaced by an effective potential Vl�r� (Fig. 10.5):

Vl�r�= V�r�+ l�l+1�
2Mr2

� (10.79)

4 We anticipate the fact, proved a few lines later, that fl is independent of m.
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V(r)

V(r)

r

Vl(r)

l(l+1)

2Mr2

Fig. 10.5. An effective potential. The solid lines represent the potential V�r� and the centrifugal
barrier l�l+1�/2mr2, and the dashed lines represent their sum, the effective potential Vl�r� in the
partial wave of angular momentum l.

The term l�l+1�/2Mr2 is called the centrifugal barrier term. It is also present in classical
mechanics, where the energy can be written as

E = 1
2
M�v2+V�r�= 1

2
M�v2r +�2r2�+V�r��

where vr is the radial velocity and � the angular velocity. Since5 l = M�r2 and �l is
constant in the case of a central force, we have

E = 1
2
Mv2r +

l2

2Mr2
+V�r�= 1

2
Mv2r +Vl�r��

The term l2/2Mr2 corresponds to the centrifugal force:

− d
dr

(
l2

2Mr2

)
= l2

Mr3
=M�2r�

This term tends to push the particle away from the force center in the rotating frame and
corresponds to a repulsive potential. In quantum mechanics we replace the operator �L2 by
its eigenvalue l�l+1� for each value of l, and to the potential V�r� we add the repulsive
potential l�l+1�/2Mr2.
Not all functions 1lm��r� of the type (10.77) with ul�r� a solution of (10.78) are

physically acceptable. If the function 1lm��r� represents a bound state, it must satisfy the
normalization condition ∫

d3r�1lm��r��2 = 1� (10.80)

5 Following our usual convention, lower-case letters denote classical quantities (numbers) or quantum numbers.
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If 1lm��r� represents a scattering state, behavior corresponding to a plane wave plus a
spherical wave at infinity exp�±ikr�/r is acceptable [cf. (10.81)]. In the case of a bound
state, (10.78) in general possesses several solutions for l fixed. In fact, since 0 ≤ r <�
this equation is identical to that of the one-dimensional problem in the range �0�+��

with Vl�r� (10.79) as the effective potential. The radial wave function and the energy are
labeled by an additional quantum number n′, n′ = 0�1�2� � � �, and denoted as un′l�r� and
En′l. If the potential V�r� is sufficiently smooth, it can be shown that n′ is equal to the
number of zeros, also called nodes, of the radial wave function un′l�r� (cf. Section 9.3.3).
The quantum number n′ classifies the values of the energy in increasing order:

n′1 > n′2 ⇒ En′1l > En′2l�

In Chapter 12 we shall see that the wave functions of scattering states are labeled by the
wave vector �k:

r →� � 1�k��r�� ei�k·�r +f� �'�
e±ikr

r
� (10.81)

It is possible to analyze the behavior of the wave functions un′l�r� for r → 0. In all cases
of physical interest the centrifugal barrier term is the most singular term when r → 0 and
it controls the behavior of unl�r� in this limit. If we assume a power-law behavior6

r → 0 � ul�r�∝ r�

and substitute it into (10.78), for the two most singular terms in r�−2 we obtain

− 1
2M

���−1�r�−2+ l�l+1�
2M

r�−2 = 0�

which implies that

���−1�= l�l+1��

i.e., � = l+ 1 or � = −l. The second value is excluded because the integral (10.80)
diverges at the origin unless l = 0. However, for l = 0 a solution u0�r� ∝ const., or
1l��r� ∝ 1/r, although normalizable, is not acceptable because it cannot be a solution of
the Schrödinger equation owing to

�2 1
r
=−4����r��

In summary, the behavior of the radial wave functions for r → 0 is

r → 0 � ul�r�∝ rl+1 � (10.82)

The radial wave function vanishes at the origin. This can be seen intuitively: since
0 ≤ r <�, it is as though there were an infinite potential barrier at r = 0, and we know
that in this case (see Section 9.3.2) the wave function must vanish. Nevertheless, the

6 The power law giving the behavior at the origin is independent of the quantum numbers n′ and k, and so we suppress them.
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solutions involving r−l may be useful in solving the Schrödinger equation in a region
where r is strictly positive.
The example of the hydrogen atom, which is studied in the following subsection, leads

to a redefinition of the radial quantum number, which becomes the principal quantum
number:

n′ → n= n′ + l+1� (10.83)

10.4.2 The hydrogen atom

The results of the preceding subsection can be used to calculate the energy levels and
wave functions of the hydrogen atom, which is one of the few physical problems for
which an analytic solution is available. The mass M in (10.78) is the electron mass me,
or, more precisely, the reduced mass � (Exercise 8.5.6):

�= memp

me+mp

�me� (10.84)

where mp is the proton mass. However, we shall use me rather than � in the equations
in order to emphasize the order of magnitude of the masses which are relevant to this
problem. The potential V�r� is the attractive Coulomb potential between the electron and
the proton:

V�r�=− q2
e

4��0r
=−e2

r
� (10.85)

and (10.78) becomes[
− 1
2me

d2

dr2
+ l�l+1�

2mer
2
− e2

r

]
unl�r�= Enlunl�r�� (10.86)

In physics it is always advisable to make equations dimensionless by an appropriate change
of variable. In the present problem the natural unit of length is the Bohr radius (1.34)
a0 = 1/mee

2, and the natural unit of energy is the Rydberg (1.35) R� = e2/2a0 =mee
4/2.7

This suggests that we define the dimensionless quantities x and �nl:

x = r

a0

=me2r� �nl =−Enl

R�
= −2a0Enl

e2
� (10.87)

In what follows we limit ourselves to bound states for which Enl < 0 and therefore �nl > 0,
whence the choice of the minus sign. Also defining

vnl�x�= unl�r�= unl�a0x��

after simplification by �2mea
2
0�
−1 we obtain[

− d2

dx2
+ l�l+1�

x2
− 2

x

]
vnl�x�=−�nlvnl�x�� (10.88)

7 We recall that we have chosen a system of units in which �= 1. If � is restored, then a0 = �
2/mee

2 and R� =mee
4/2�

2.
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We shall limit ourselves to finding the solution in the case l = 0, that is, in the s wave,
and leave the general case to Exercise 10.7.9. To simplify the notation, we set

vn0�x�= v�x�� �n0 = ��

and (10.88) becomes

d2v�x�
dx2

=
(
�− 2

x

)
v�x��

We know from the preceding subsection that v�x� ∝ x for x→ 0. Let us now find the
dominant behavior for x→� neglecting the term involving 2/x. We then have8

v�x�∼ exp�±√� x��

The exp�
√
� x� behavior is unacceptable because the wave function will not be normal-

izable owing to the exponential divergence. The only possible behavior is exp�−√� x�.
In order to include the information contained in the behavior at infinity, we define a new
function f�x� as

v�x�= e−�xf�x�� �2 = ��

This change of function transforms the differential equation for v�x� into

d2f
dx2

−2�
df
dx

+ 2
x
f = 0� (10.89)

Let us seek f�x� in the form of a series in powers of x. Since we know that f�x�∝ x for
x→ 0,

f�x�=
�∑
k=1

akx
k� (10.90)

Equation (10.89) determines a recursion relation for the coefficients ak:

�∑
k=1

k�k−1�akx
k−2−2�

�∑
k=1

kakx
k−1+2

�∑
k=1

akx
k−1 = 0�

Noting that for k= 1 the first term in the preceding equation vanishes and relabeling k,
we have

�∑
k=1

[
k�k+1�ak+1−2��k−1�ak

]
xk−1 = 0� (10.91)

The cancellation of the coefficient of xk−1 gives a relation between ak+1 and ak:

ak+1 =
2��k−1�
k�k+1�

ak�

8 In fact, this behavior is determined only up to a multiplicative polynomial.



10.4 Particle in a central potential 329

If we arbitrarily fix a1, all the ak can be derived from a1. For k� 1 the recursion relation
is approximately

ak+1 �
2�
k
ak ⇒ ak �

�2��k

k! a1

and
�∑
k=1

akx
k ∼

�∑
k=1

�2��k

k! a1x
k ∼ a1e

2�x�

This implies that for x→�
v�x�∼ e2�xe−�x ∼ a1e

�x�

which makes the wave function non-normalizable. The only way to avoid the exponential
divergence is to have the series (10.90) terminate at some integer k= n, which can happen
only if �n= 1. The possible values of � then are labeled by an integer n:

�n = �2 = 1
n2

�

as are those of the energy:

En = En0 =−me4

2
1
n2

=−R�
n2

� (10.92)

Exercise 10.7.9 shows that the possible energies for l �= 0 have the form

Enl =−R�
n2

� n= l+1� l+2� � � � (10.93)

The first two (n= 1�2) radial wave functions vn0�x� of the bound states of the hydrogen
atom in the s wave, normalized to unity, are

v10�x� = 2xe−x� (10.94)

v20�x� =
1√
2
x
(
1− x

2

)
e−x/2� (10.95)

The radial wave function in the state n= 2, l= 1 (the p wave) is

v21�x�=
1

2
√
6
x2e−x/2� (10.96)

The spectrum of the hydrogen atom that we have found is shown in Fig. 10.6. The
notation for the levels is ns, np,� � �: 1s denotes the ground state, 2s and 2p the first
excited (degenerate) levels etc. All the levels are degenerate, except in the case n = 1.
For a given value of n, all values of l lying between l= 0 and l= n−1 are possible, and
the degeneracy is

G�n�=
n−1∑
l=0

�2l+1�= n2�

This degeneracy is peculiar to the Coulomb potential. The spectrum of the outer electron
of an alkali atom (Fig. 10.7) qualitatively resembles that of the hydrogen atom, except that
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there is no degeneracy. The Coulomb potential also presents a remarkable peculiarity in
classical mechanics: it is the only potential, along with the harmonic potential V�r�∝ r2,
for which the trajectories close on themselves.9 This feature of the classical motion as
well as the degeneracies associated with the quantum problem are due to the presence of
an extra symmetry. This symmetry leads to an additional conservation law, that of the
Lenz vector in the Coulomb case.

10.5 Angular distributions in decays

10.5.1 Rotations by �, parity, and reflection with respect to a plane

In this section we shall study decays of a particle C into two particles A and B:

C → A+B� (10.97)

We shall choose a reference frame in which particle C is at rest; particles A and B then
have equal and opposite momenta �p and −�p, respectively. The process (10.97) includes
radiative decays (or transitions) with the emission of a photon, in which an excited level
A∗ of an atom, a molecule, or a nucleus emits a photon � as the system undergoes a
transition to a lower energy level A, which may or may not be the ground state:

A∗ → A+�� (10.98)

The states A∗ and A may also correspond to different particles, as, for example, in the
decay

.0 →�0+�� (10.99)

where the particles .0 and �0 are neutral particles formed from an up quark, a down
quark, and a strange quark (Exercise 10.7.17).
The invariance under rotation of the Hamiltonian responsible for the decay implies

conservation of angular momentum, which leads to constraints on the decay amplitudes
and to important consequences for the angular distribution of the final particles. If the
Hamiltonian governing the decay is invariant under parity, which is the case for the
electromagnetic and strong interactions but not for weak interactions, we obtain additional
constraints. It is convenient to introduce the operator �, the product of a rotation by �

about the y axis and the parity operator 5 (Section 8.3.3):

Y = e−i�Jy � � = Y 5= e−i�Jy5=5e−i�Jy � (10.100)

This operator is just reflection with respect to the plane xOz; � is the reflection operator
with respect to this plane. Let us first study the action of Y . This operator transforms Jx
into −Jx and Jz into −Jz while leaving Jy unchanged:

Y−1JzY =−Jz� Y−1J±Y =−J∓� (10.101)

9 The two cases are related; cf. Basdevant and Dalibard [2002], Chapter 11, Exercise 3. The extra symmetry can be used to find
the energy levels and the wave functions, see e.g. E. Abers, Quantum Mechanics, New Jersey: Pearson Education (2004),
Chapter 3.
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Let us examine the action of Y on the state �jm�:
Jz�Y �jm��=−YJz�jm� = −m�Y �jm���

The state Y �jm� is then equal to �j�−m� up to a phase:

Y �jm� = ei��j�m��j�−m��
because Y is unitary and preserves the norm. This result is not surprising, because the
action of Y is equivalent to reversing the direction of the angular momentum quantization
axis. Following the procedure used above in the case of parity, we apply J+ to relate
��j�m� to ��j�m+1�:

J+Y �jm� = ei��j�m�J+�j�−m� =√j�j+1�−m�m−1� ei��j�m� �j�−m+1�
= −YJ−�jm� = −√j�j+1�−m�m−1� Y �j�m−1�
= −√j�j+1�−m�m−1� ei��j�m−1��j�−m+1��

or

ei��j�m−1� =−ei��j�m��

Since Y is a rotation by �, Y 2 is a rotation by 2�, Y 2 = �−1�2j , and

Y 2�jm� = ei��j�m�ei��j�−m��jm� = e2i��j�m��−1�2m�jm� = �−1�2j�jm��
from which we find the two possible solutions

ei��j�m� = �−1�j−m or ei��j�m� = �−1�j+m�

These two solutions are identical for integer j, while for j = 1/2 we can check
using (10.38) that the first solution is the good one. It can be shown that this is also the
case for all half-integer j. In the end, we have

Y �jm� = �−1�j−m�j�−m�� Y−1�jm� = �−1�j+m�j�−m� � (10.102)

10.5.2 Dipole transitions

Now let us study radiative transitions of the type (10.98). First we return to the description
of the photon polarization studied in Chapter 3, placing it within the general context of
angular momentum. We have determined the infinitesimal generator of rotations of the
polarization when the rotation is made about the propagation direction, taken to be the z

axis. In the basis of linear polarization states �x� and �y� this infinitesimal generator is
given by (3.26):

.z =
(
0 −i
i 0

)
�
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We have already seen in (3.29) that exp�−i .z� performs a rotation of the polarization
in the xOy plane by an angle  , and we can identify .z as the z component of the
photon angular momentum: .z = Jz. Then according to (3.27) the action of the operator
exp�−i .z� on the right- and left-handed polarization states �R� and �L� (3.11) is

exp�−i .z��R� = e−i �R�� exp�−i .z��L� = ei �L��
which proves that the states �R� and �L� have the magnetic quantum numbers m= 1 and
m = −1, respectively.10 Furthermore, the description of the electromagnetic field by a
vector potential shows that the photon has a vector nature and therefore spin 1, which
permits �R� and �L� to be identified as the states �jm� (Fig. 10.8):

�R� = �j = 1�m= 1� = �11�� �L� = �j = 1�m=−1� = �1�−1�� (10.103)

where the angular momentum quantization axis Oz is taken to lie along the photon
propagation direction. The value ofm is called the photon helicity:m=+1 corresponds to
positive helicity and m=−1 to negative helicity. Since angular momentum 1 corresponds
to three possible values of the magnetic quantum number, m = +1�0�−1, we might
wonder what has happened to the value m= 0 for the photon. A general analysis due to
Wigner shows that for a particle of zero mass and spin j, the only allowed eigenvalues of
Jz are m= j and m=−j, where the axis Oz is taken to lie along the particle propagation
direction. When parity is not a symmetry of the Hamiltonian, the two possible values are
independent. If the spin-1/2 neutrino had zero mass,11 it would always have m=−1/2,
while the antineutrino, which is a different particle, would always have m=+1/2. The
photon interactions conserve parity as they are electromagnetic interactions, and so the
same particle can have both m= 1 or m=−1.
We still need to check that the definition (10.103) corresponds to a standard angular

momentum basis. We shall use the operator Y = exp�−i�Jy� which changes the direction

z

x

y

⎟ R〉

x

z

y

⎟ L〉

(a) (b)

Fig. 10.8. (a) Right-handed circular polarization; (b) left-handed circular polarization.

10 An equivalent argument is to note that .z�R� = �R� and .z�L� = −�L�.
11 Which for a long time seemed possible, but apparently is not the case; see Exercise 4.3.6 and Footnote 4 of Chapter 1.
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Fig. 10.9. Action of Y on linear polarization states.

of the photon propagation while leaving Oz unchanged. Its action on linear polarization
states is (Fig. 10.9)

Y �x� = −�x�� Y �y� = �y��
We can derive its action on the circular polarization states �R� and �L� (3.11):

Y �R� = Y

[−1√
2

(
�x�+ i�y�

)]
= 1√

2

(
�x�− i�y�

)
= �L�� (10.104)

The relative phase of the states �R� and �L� corresponds to that of a standard basis since,
according to (10.102),

Y �R� = Y �1�1� = �−1�1−1�1�−1� = �L��
The choice (3.11) is also confirmed by the fact that �R� and �L� are given by the same
combinations as the spherical components r̂1, r̂−1, and r̂0 (10.64) of r̂.
Let us use �p to denote the photon momentum, which we choose to lie along the z axis,

and let �jm� be the angular momentum state of A∗ (it is often said that the excited state
has spin j), �j′m′� be the angular momentum state of the final level A (or the spin of
the final level A), and �1�� be the angular momentum state of the photon. Owing to the
invariance under rotation, the angular momentum is conserved in the transition:

�J = �J ′ + �S+ �L�
where �S is the photon spin and �L is the orbital angular momentum. Projecting this
equation on Oz, we find

m=m′ +�+ml�

It is easy to convince ourselves that the magnetic quantum number of the orbital angular
momentum is zero: ml = 0. In fact, the spatial wave function of the photon is a plane
wave

ei�p·�r = eipz = eipr cos �
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which is invariant under rotation about Oz. The z component of the orbital angular
momentum must be zero. Another justification follows from (10.47):

Lze
ipr cos =−i

2

2'
eipr cos = 0�

The conservation of the angular momentum in the z direction gives

right-handed final photon: m=m′ +1�

left-handed final photon: m=m′ −1�
(10.105)

If A and A∗ have zero spin (j = j′ = 0), then m=m′ = 0 and the equations (10.105) have
no solution: there is no single-photon radiative transition j = 0→ j′ = 0, often called a
0→ 0 transition. Radiative 0→ 0 transitions are possible only with the emission of at
least two photons, and the probability of such a transition is suppressed by a power of
the fine-structure constant �� 1/137.
A more interesting case which is often encountered in practice is that of j = 1 and

j′ = 0. If the photon is emitted in the z direction with helicity � = ±1, there are two
possible cases taking into account j′ =m′ = 0:

right-handed final photon: m = 1� �= 1� (10.106)

left-handed final photon: m = −1� �=−1� (10.107)

Let a be the probability amplitude of (10.106) and b that of (10.107). It should be
clearly understood that we are dealing with the amplitude of a transition probability,
analogous to that calculated in (9.167), and not with probability amplitudes like those
defined in postulate II of Chapter 4. The squared modulus of a transition amplitude gives
the transition probability per unit time. The amplitudes a and b can be viewed as matrix
elements of an operator T called the transition matrix, which can be calculated, at least
formally, as a function of the Hamiltonian and which has the same symmetries as the
Hamiltonian. We define the angle  between the photon emission direction, taken to lie
in the xOz plane, and the z axis, and we write the transition amplitudes a and b as
(in (10.105) m′ = 0 because j′ = 0) for  = 0

a= 
R�  = 0�T �j = 1�m= 1� = 
R�  = 0�T �11��
b = 
L�  = 0�T �j = 1�m=−1� = 
L�  = 0�T �1�−1��

(10.108)

If parity is a symmetry of the Hamiltonian responsible for the transition, then T commutes
with � (10.100). Since the two amplitudes a and b correspond to transitions which are
deduced from each other by reflection with respect to the plane xOz (Fig. 10.10(a) and
(b)), we must have �a� = �b�. To determine the phase in this relation we use

a = 
R�  = 0��−1T��1�1� = ,�,A,A∗
L�  = 0�T �1�−1�
= ,�,A,A∗b� (10.109)
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Fig. 10.10. Emission of photons with �p (Oz. The amplitudes in (a) and (b) are deduced from each
other by reflection with respect to the plane xOz. (c) Linear polarization of the final photon. The
charge q undergoes oscillations along Oz.

where ,X = ±1 is the parity of the particle X. If X has momentum �p and we write its
state vector as �X� �p�, then

5�X� �p� = ,X�X�−�p�� (10.110)

The description of the electromagnetic field by a vector potential, which is a polar vector,
shows that the photon parity is ,� = −1. Let , = ,A,A∗ . Then there are two possible
cases:

1. ,=−1� a= b*

2. ,=+1� a=−b�

We are going to show that the first case is that of an electric dipole transition and
the second is that of a magnetic dipole transition.12 We do this by comparing with the
simplest classical case, that of the radiation of a charge undergoing harmonic motion
along the z axis. The classical angular momentum of this charge relative to the origin,
and in particular its component in the z direction, is always zero, and the quantum case
most similar to this situation is that where the excited state A∗ possesses zero angular
momentum in the z direction, that is, it is in the state �j = 1�m= 0�. In order to compare
the photon angular distribution with that of the classical radiation, we must imagine the
case where the photon emission angle  �= 0, the initial state of the atom being �10�. We
obtain the state �R�  � (�L�  �) of the photon by rotation by an angle  about Oy starting
from �R�  = 0� (�L�  = 0�):

�R�  � = U ��ŷ� ���R�  = 0��
�L�  � = U ��ŷ� ���L�  = 0��

12 This result depends on the sign conventions used for the states �R� and �L�; we find the sign opposite to that of Feynman
et al. [1965], Vol III, Section 18.1 owing to the different sign convention in the definition of �R�.
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The emission amplitude in the  direction, for example, for a right-handed photon and
initial state �j = 1�m= 0�, is

am=0
R � � = 
R�  �T �10� = 
R�  = 0�U†��ŷ� ��T �10�

= 
R�  = 0�TU†��ŷ� ���10�
= 
R�  = 0�T �11�
11�U†��ŷ� ���10�
= ad

�1�
01 � �=

a√
2
sin  � (10.111)

We have used the rotational invariance of T , introduced a set of intermediate states∑
m �1m�
1m� in the j = 1 subspace, and obtained the rotation matrix element

using (10.39). A similar calculation gives the following for the emission of a left-handed
photon:

am=0
L � �= bd

�1�
0−1� �=− b√

2
sin  � (10.112)

If the final polarization is linear, we can decompose it on the states �x� polarized in the
plane xOz and �y� polarized along Oy (Fig. 10.10 (c)):13

�x� = 1√
2

(
−�R�+ �L�

)
� �y� = i√

2

(
�R�+ �L�

)
� (10.113)

and we find

am=0
x � � = 
x� �T �10� = −1

2
�a+b� sin  �

am=0
y � � = 
y�  �T �10� = i

2
�a−b� sin  � (10.114)

In the electric dipole case a = b the photons are polarized along Ox, while in the
magnetic dipole case they are polarized along Oy. This corresponds to the classical case.
If, for example, we take a charge undergoing harmonic oscillations along Oz with zero
z component of angular momentum, the radiation is polarized in the plane xOz. On the
other hand, a magnetic dipole will produce radiation polarized along Oy. An electric
dipole transition corresponds to , = −1, and therefore to initial and final states with
opposite parities, while a magnetic dipole transition corresponds to initial state and final
state with the same parity. In both cases the angular distribution is sin2 .

10.5.3 Two-body decays: the general case

Let us return to the general case of two-body decay (10.97), using jA, jB, and jC to denote
the spins of the particles A, B, and C. We define the transition amplitude for the initial

13 The states �x� and �y� are defined with respect to the propagation direction �p; see Fig. 10.10 (c).
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state �jCmC� of particle C to the final states �jAmA� and �jBmB� of particles A and B,
assuming that particle A is emitted with momentum �p in the direction � �'�:

amC
mAmB

� �'�= 
mAmB* � �'��T �mC�� (10.115)

If particle A is emitted in the direction p̂= � �'�, the state

�mAmB* � �'�� = U����mAmB* � = 0�'= 0��
is the state �mAmB* � = 0�' = 0�� transformed by the rotation � �'� aligning the z

axis in the direction of p̂. It should be emphasized that in this state we have chosen the
angular momentum quantization axis to lie along p̂, and mA and mB are the eigenvalues
of ��J · p̂� and not Jz (Fig. 10.11). When particle A is emitted in the z direction,  ='= 0,
conservation of the z component of angular momentum implies, as in the preceding
subsection, that mC =mA+mB. The only nonzero transition amplitudes are

bmA�mB
= 
mAmB* � = 0�'= 0��T �mC =mA+mB�� (10.116)

Using the same arguments as for (10.111), we find

amC
mA�mB

� �'� = 
mAmB* � �'��T �mC�
= 
mA�mB* � = 0�'= 0��U†���T �mC�
= 
mA�mB* � = 0�'= 0��T �m′

C =mA+mB�
m′
C =mA+mB�U†����mC�

= bmA�mB

(
D

�jC�
mC*mA+mB

� �'�
)∗

(10.117)

= bmA�mB
d
�jC�
mC*mA+mB

� �eimC'� (10.118)

If parity is conserved in the decay, then

bmA�mB
= 
mA�mB* � = 0�'= 0���†T��mC =mA+mB�
= ,�−1�jC−jA−jBb−mA�−mB

� (10.119)
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Fig. 10.11. The decay C → A+B.
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where ,= ,A,B,C is the product of the parities of the three particles. Parity conservation
halves the number of independent amplitudes. The amplitudes defined in (10.118) are
called helicity amplitudes. However, it should be noted that the angular momentum
quantization axis of particle B is often taken to be aligned with its momentum −p̂, which
causes mB →−mB. The magnetic quantum numbers mA and −mB (with our definition)
are the helicities of particles A and B.

10.6 Addition of two angular momenta

10.6.1 Addition of two spins 1/2

In Section 6.1.2 we constructed a four-dimensional space �1⊗�2 by taking the tensor
product of the two-dimensional spaces of two spins 1/2, �S1 and �S2. A possible basis in
this space is formed from the eigenvectors ��1�2�, �=±, of S1z and S2z:

�++�� �+−�� �−+�� and �−−�� (10.120)

The physical properties that are diagonal in this basis are �S2
1 , �S2

2 , S1z, and S2z:

�S2
1 ��1�2� =

3
4
��1�2�� S1z��1�2� = �1��1�2�� (10.121)

�S2
2 ��1�2� =

3
4
��1�2�� S2z��1�2� = �2��1�2�� (10.122)

This basis corresponds to the following choice of complete set of compatible operators:
(�S2

1� �S2
2� S1z� S2z). It is possible to construct another interesting basis using the total angular

momentum �S obtained by adding �S1 and �S2:

�S = �S1+ �S2� (10.123)

Here �S is actually the total angular momentum, because it can be used to construct the
infinitesimal generator in the tensor product space �1⊗�2 of a rotation �n̂� � by an
angle  about the n̂ axis:

U��n̂� ��= e−i ��S1·n̂�e−i ��S2·n̂� = e−i ��S·n̂�� (10.124)

where we have used ��S1� �S2� = 0. Since �S2
1 and �S2

2 are scalar operators, they commute
with �S, and another set of compatible operators is (�S2

1� �S2
2� �S2� Sz). We shall show below

that this set is also complete. Let us find the basis vectors of this new set. Setting
�1�1� = �++�, we can show that

Sz�1�1� = �1�1��
S+�1�1� = �S1++S2+��++� = 0�

S−�1�1� = �S1−+S2−��++� = �+−�+�−+� =√
2 �1�0��
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This last equation defines the normalized state vector �1�0�, which satisfies

Sz�1�0� = �S1z+S2z�
1√
2

(
�+−�+�−+�

)
= 0�

Finally,

S−�1�0� = �S1−+S2−�
1√
2

(�+−�+�−+�)=√
2 �−−� =√

2 �1�−1��

Sz�1�−1� = −�1�−1�� S−�1�−1� = 0�

These equations show that the three state vectors

(�1�1�� �1�0�� �1�−1�)
form a standard basis for angular momentum 1. It is sufficient to check the properties of
the standard basis for Sz and S−, because S+ = S†

− and �S2 = 1
2 �S+S− +S−S+�+S2

z . The
above calculation shows that we have indeed constructed a standard basis; for example,

S−�1�1� =
√
j�j+1�−m�m−1� �1�0� = √

2 �1�0��
Finally, to obtain a basis of �1⊗�2, we need to construct a fourth vector orthogonal to
the other three:

�0�0� = 1√
2

(�+−�−�−+�)�
This vector is just the vector �%� (6.15). As it is invariant under rotation, it corresponds
to angular momentum zero, and it can be verified explicitly that

Sz�0�0� = 0� S±�0�0� = 0�

In summary, when two angular momenta 1/2 are added, we obtain the angular momenta
s = 1 and s = 0. A standard basis of �S2 and Sz is formed from the vectors corresponding
to s = 1:

s = 1

⎧⎪⎨
⎪⎩
�1�1� = �++��
�1�0� = 1√

2

(�+−�+�−+�)�
�1�−1� = �−−��

(10.125)

and s = 0:

s = 0 �0�0� = 1√
2

(�+−�−�−+�)� (10.126)

Since we have found four orthogonal vectors, they form a basis of �1⊗�2, and the set
of compatible operators (�S2

1� �S2
2� �S2� Sz), or simply (�S2� Sz), is complete. The s = 1 states

are called triplet states and the s = 0 state is called the singlet state.
As an application, let us rederive the results of Exercise 6.5.4, where we diagonalized

the operator ��1 · �2�. This operator is diagonal in the basis (�S2� Sz). We have

�S2 = 1
4
��1+ �2�

2 = 3
2
+ 1

2
�1 · �2� (10.127)
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whence

�1 · �2 = 2�S2−3I = �2s�s+1�−3�I�

The operator �1 · �2 is equal to I in the triplet state and −3I in the singlet state. We can
find the projectors 
1 and 
0 on the triplet and singlet states:


0+
1 = I� �1 · �2 =−3
0+
1�

from which


0 =
1
4
�I− �1 · �2�� 
1 =

1
4
�3+ �1 · �2� � (10.128)

The operator �1 · �2 is a scalar operator which commutes with �S, but not with the individual
spin operators �S1 and �S2. It should also be noted that the triplet states are symmetric (that
is, they do not change sign) under the interchange of spins 1 and 2, while the singlet state
is antisymmetric under this interchange.

10.6.2 The general case: addition of two angular momenta �J1 and �J2

Now let us generalize the preceding discussion to the addition of two angular momenta �J1
and �J2. The reasoning used in (10.124) can be repeated to show that �J = �J1+�J2 is the total
angular momentum. As in the preceding subsection, we construct the �2j1+1�×�2j2+1�-
dimensional tensor product space:

� = ��j1�⊗��j2��

A possible basis of this space is constructed from the eigenvectors

�j1j2m1m2� = �j1m1�⊗ �j2m2� (10.129)

common to �J 2
1 , �J 2

2 , J1z, and J2z:

�J 2
1 �j1j2m1m2� = j1�j1+1��j1j2m1m2��
�J 2
2 �j1j2m1m2� = j2�j2+1��j1j2m1m2��

J1z�j1j2m1m2� = m1�j1j2m1m2��
J2z�j1j2m1m2� = m2�j1j2m1m2��

This basis corresponds to the complete set of commuting operators (�J 2
1 � �J 2

2 � J1z� J2z). We
shall construct another basis of � in which the operators (�J 2

1 � �J 2
2 � �J 2� Jz) are diagonal.

We start with the two following observations.

• Any vector �j1j2m1m2� is an eigenvector of Jz with eigenvalue m=m1+m2.
• If a value of j is allowed, by applying J+ and J− we generate a series of �2j+1� vectors �jm�.
A priori, we could have several series of vectors of this type, and we use N�j� to denote the
number of such series for a given value of j.
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m1 + m2 = 3

m2

m1

Fig. 10.12. Addition of two angular momenta.

Let n�m� be the degeneracy of the eigenvalue m of Jz. Since m occurs if and only if
j ≥ �m�, we have (Fig. 10.12)

n�m�= ∑
j≥�m�

N�j��

and consequently

N�j�= n�j�−n�j+1��

However, n�m� is equal to the number of pairs �m1�m2� such thatm=m1+m2. Assuming,
for example, that j1 ≥ j2,

n�m�=
⎧⎨
⎩

0 if �m�> j1+ j2�

j1+ j2+1−�m� if j1− j2 ≤ m≤ j1+ j2�

2j2+1 if 0 ≤ �m� ≤ j1− j2�

We then conclude that

N�j�= 1 for j1− j2 ≤ j ≤ j1+ j2

and N�j�= 0 otherwise. To deal with the case j2 > j1 it is sufficient to replace �j1− j2�

by �j1− j2�. We can then state the following theorem.

The angular momentum addition theorem

In the tensor product space � = ��j1�⊗��j2�

1. The possible values of j are

�j1− j2�� �j1− j2�+1� � � � � j1+ j2−1� j1+ j2*

2. To each value of j there corresponds only one series of eigenvectors �jm�:
�J 2�jm� = j�j+1��jm�� Jz�jm� =m�jm��

(10.130)

(10.131)
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� It is instructive to verify that the dimension of � is indeed correct (j1 ≥ j2):

dim� = ∑
j1−j2≤j≤j1+j2

�2j+1�

= �j1+ j2��j1+ j2+1�− �j1− j2−1��j1− j2�+ �j1+ j2�− �j1− j2−1�

= �2j1+1��2j2+1��

Let us now go from the orthonormal basis �j1j2m1m2� to the orthonormal basis �jm� by
means of a unitary transformation. The elements of the unitary matrix that performs this
transformation are called the Clebsch–Gordan (CG) coefficients Cj1j2

m1m2*jm
:

�jm� = ∑
m1+m2=m

C
j1j2
m1m2*jm

�j1j2m1m2�� (10.132)

They can be nonzero only if m = m1+m2 and �j1− j2� ≤ j ≤ j1+ j2. We choose the
following phase convention:

C
j1j2
m1m2*j�m=j real ≥ 0�

and then by application of J− it can be shown that all the CG coefficients are real. The
Clebsch–Gordan coefficients are the elements of a unitary real matrix with the matrix
indices �m1m2� and �jm�. They therefore satisfy the orthogonality conditions

j1∑
m1=−j1

j2∑
m2=−j2

C
j1j2
m1m2*jm

C
j1j2
m1m2*j

′m′ = �jj′�mm′ � (10.133)

and inversely
j1+j2∑

j=�j1−j2�

j∑
m=−j

C
j1j2
m1m2*jm

C
j1j2
m′

1m
′
2*jm

= �m1m
′
1
�m2m

′
2
� (10.134)

Equations (10.125) and (10.126) give examples of CG coefficients:

C
1
2
1
2

1
2
1
2 *11

= 1� C
1
2
1
2

1
2− 1

2 *10
= 1√

2
�

As an application of angular momentum addition, let us study spin–orbit coupling. Owing
to relativistic effects, the orbital angular momentum and the spin of an atomic electron,
for example the electron of the hydrogen atom or the valence electron of an alkali atom,
are not independent, as we shall see in Section 14.2.2. The total angular momentum of
the electron is the sum of its orbital angular momentum �L and its spin �S:

�J = �L+ �S� (10.135)

The possible values of j then are j = l+1/2 and j = l−1/2 (except if l = 0, in which
case j = s= 1/2). The orbital angular momentum and the spin are coupled by a spin–orbit
potential:

Vso�r�= V�r��L · �S� (10.136)
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This potential takes different values depending on whether j = l+1/2 or j = l−1/2. We
can write

��L+ �S�2 = �J 2 = �L2+ �S2+2�L · �S

and so

�L · �S = 1
2

[
j�j+1�− l�l+1�− s�s+1�

]
� (10.137)

which gives for the spin–orbit potential

Vso�r�=
{

1
2V�r�l for j = l+1/2�

− 1
2V�r��l+1� for j = l−1/2�

(10.138)

10.6.3 Composition of rotation matrices

The rule for the addition of angular momentum is reflected in a composition law for
rotation matrices. Let us consider the matrix elements of the rotation operator U��� taken
between states �jm� and �jm′� of the type (10.132):


jm�U����jm′� = D
�j�
mm′���

= ∑
m1m2

∑
m′

1m
′
2

C
j1j2
m1m2*jm

C
j1j2
m′

1m
′
2*jm

′ 
j1j2m1m2�U����j1j2m′
1m

′
2��

from which

D
�j�
mm′���= ∑

m1m2

∑
m′

1m
′
2

C
j1j2
m1m2*jm

C
j1j2
m′

1m
′
2*jm

′D
�j1�

m1m
′
1
���D

�j2�

m2m
′
2
���� (10.139)

Using the orthogonality relations (10.133) and (10.134) of the CG coefficients, we can
invert (10.139):

D
�j1�

m1m
′
1
���D

�j2�

m2m
′
2
���=

j1+j2∑
�j1−j2�

C
j1j2
m1m2*jm

C
j1j2
m′

1m
′
2*jm

′D
�j�
mm′���� (10.140)

These equations can be interpreted in the following manner. In the space ��j1�⊗��j2�
we construct the matrix !���, the tensor product of D�j1���� and D�j2����:

!m1m2*m
′
1m

′
2
���=D

�j1�

m1m
′
1
���⊗D

�j2�

m2m
′
2
����

By a change of basis made using a unitary matrix whose elements are the CG coefficients
C

j1j2
m1m2*jm

, the matrix

!′���= C!���C−1
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becomes a block-diagonal matrix:

C!���C−1 =

⎛
⎜⎜⎜⎜⎝
D�j1+j2� 0 � � � 0

0 D�j1+j2−1� � � �
���

0 0 · · · ���

0 � � � 0 D��j1−j2�

⎞
⎟⎟⎟⎟⎠ �

In mathematical terms, this is referred to as reducing the product of two representations
D�j1� and D�j2� of the rotation group to irreducible components:

D�j1�⊗D�j2� =D�j1+j2�⊕D�j1−j2−1�⊕· · ·⊕D��j1−j2��� (10.141)

10.6.4 The Wigner–Eckart theorem (scalar and vector operators)

In Section 8.2.3 we defined a scalar operator � as an operator which commutes with �J :
��� �J� = 0. Let us examine the matrix elements 
j′m′���jm� of � in a standard angular
momentum basis:

��� �J 2�= 0⇒ j′ = j� ��� Jz�= 0⇒m′ =m�

In addition,

��� J±�= 0⇒ 
jm���jm� = 
j�����j� is independent of m� (10.142)

The quantity 
j�����j� is called the reduced matrix element of �.
Now let us turn to vector operators �V , which we have defined in Section 8.2.3. The

Cartesian components Vk of a vector operator transform under rotation as

U†���VkU���=∑
l

�klVl� (10.143)

By considering infinitesimal rotations, in Section 8.2.3 we derived the commutation
relations involving the components of angular momentum:

�Jk�Vl�= i
∑
p

�klpVp� (10.144)

Equations (10.143) and (10.144) are strictly equivalent and either can be used to define
a vector operator. It is convenient to use spherical components Vq of �V :

V1 =− 1√
2
�Vx+ iVy�� V0 = Vz� V−1 =

1√
2
�Vx− iVy�� (10.145)

These components are also called the standard components of �V , because when �V is
the position operator, �V = �R, the components r̂1� r̂0, and r̂−1 of the vector r̂ are just
the spherical harmonics Y±

1 and Y 0
1 up to a factor of

√
3/4� (cf. (10.64)). According

to (10.65), this implies the transformation law

��r̂�m =
∑
m′

D
�1�
m′m��

−1�r̂m′ � (10.146)
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The transformation law of the spherical components of �V then is14

U���VqU
†���=∑

q′
D

�1�
q′q���Vq′ � (10.147)

This can easily be checked using the explicit expressions for D�1� and the definition of
the spherical components.
Our goal is to relate the matrix elements of the various components of a vector operator

to the states �jm�. To do this, let us study the properties of the vector �1jqm� = Vq�jm�
under rotation:

U����1jqm� = U���VqU
†���U����jm�

= ∑
q′m′

D
�1�
q′q���D

�j�
m′m����1jq′m′��

The vectors �1jqm� transform under rotation in exactly the same way as the vectors
�j1j2m1m2� with j1 = 1� j2 = j�m1 = q�m2 =m. We can then construct the vectors

�j̃m̃� = ∑
m+q=m̃

C
1j
qm*j̃m̃�1jqm�� (10.148)

which transform under rotation as

U����j̃m̃� =∑
m̃′

D
�j̃�
m̃′m̃�j̃m̃′��

This equation shows that the vectors �j̃m̃� form a standard basis of the space ��j̃� up to
a global multiplicative factor. These vectors will not in general be normalized, but they
will have the same norm for any m̃:


j̃m̃�j̃′m̃′� = �j̃j̃′�m̃m̃′��j̃��

Inverting (10.148),

Vq�jm� = �1qjm� =
j+1∑

j̃=j−1

C
1j
qm*j̃m̃�j̃m̃��

from which


j′m′�Vq�jm� =
∑
j̃

C
1j
qm*j̃m̃
j′m′�1jj̃m̃�

=∑
j̃

C
1j
qm*j̃m̃�j′ j̃�m′m̃��j

′� j�= C
1j
qm*j′�m′��j

′� j��

Defining the reduced matrix element 
j′��Vq��j� as

j′��V ��j� = ��j′� j��

14 We note that the ordering of U and U†, as well as that of the indices, is different from that in (10.143).



10.7 Exercises 347

we obtain the Wigner–Eckart theorem for vector operators:


j′m′�Vq�jm� = C
1j
qm*j′m′ 
j′��V ��j� � (10.149)

All the dependence on the magnetic quantum numbers m, m′, and q is contained in the
Clebsch–Gordan coefficient C1j

qm*j′m′ , which can be looked up in tables. For fixed j, the
only possible values of j′ are j′ = j− 1, j, j+ 1. This theorem can be generalized to
irreducible tensor operators; see Exercise 10.7.18.
As an application, let us calculate the matrix elements of a vector operator when j = j′,

using the fact that �J is a vector operator with matrix elements satisfying (10.149):


jm′�Jq�jm� = C
1j
qm*jm′ 
j��J ��j��

This leads to a proportionality relation for the Cartesian components Vk:


jm′�Vk�jm� = K
jm′�Jk�jm��
To evaluate the constant K, we calculate the scalar product �J · �V , which is a scalar
operator:


jm���J · �V��jm� = ∑
k�m′′


jm�Jk�jm′′�
jm′′�Vk�jm�

= K
∑
k�m′′


jm�Jk�jm′′�
jm′′�Jk�jm�

= K
jm��J 2�jm� = Kj�j+1��

Combining these equations, we obtain for the matrix elements of Vk


jm′�Vk�jm� =
1

j�j+1�

j����J · �V���j�
jm′�Jk�jm� � (10.150)

Since ��J · �V� is a scalar operator, 
jm���J · �V��jm� is independent of m and equal to the
reduced matrix element 
j����J · �V���j�.

10.7 Exercises

10.7.1 Properties of �J
Show by explicit calculation that ��J 2� Jz�= 0. Also verify the identities (10.5) to (10.9).

10.7.2 Rotation of angular momentum

Let � be a rotation (10.30) by angles � �'�. Show that the vector

U����jm� = e−i'Jze−i Jy �jm�
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is an eigenvector of the operator

Jx sin  cos'+ Jy sin  sin'+ Jz cos = �J · n̂
with eigenvalue m. Here n̂ is the unit vector in the direction � �'�. Hint: adapt (8.29).

10.7.3 Rotations �����

Show that the rotation (10.30) �� �'� can be written as

�� �'�=�y′� ��z�'��

where Oy′ is the axis obtained from Oy by a rotation by ' about Oz. Hint: show that

�y′� �=�z�'��y� ��z�−'��

10.7.4 The angular momenta j = 1
2 and j = 1

1. Use (10.23) to find the operators Sx, Sy, and Sz for spin 1/2.
2. Again using (10.23), calculate the 3× 3 matrix representations of Jx, Jy, and Jz for angular

momentum j = 1.
3. Show that for j = 1, Jx, Jy, and Jz are related to the infinitesimal generators (8.26) Tx, Ty,

and Tz by a unitary transformation which takes the Cartesian components of r̂ to the spherical
components (10.64): Ji = U†TiU with

U = 1√
2

⎛
⎜⎝−1 0 1
−i 0 −i
0

√
2 0

⎞
⎟⎠ �

4. Calculate the rotation matrix d�1�� �:

d�1�� �= exp�−i Jy��

and verify (10.39). Hint: show that J 3
y = Jy.

10.7.5 Orbital angular momentum

1. Use the canonical commutation relations

�Xi�Pj�= i�ijI

and the expression �L= �R× �P to show that

�Lx�Ly�= iLz�

2. Prove Equations (10.47) to (10.49). Hint: show that for an infinitesimal rotation by an angle d�
about Ox, the angles  and ' vary by

d =− sin'd�� d'=− cos'
tan  

d��

Find Lx and Ly = i�Lx�Lz�.
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3. Since Lz =−i2/2', the following Heisenberg inequality should be valid:

!'!Lz ≥
1
2
�

In an eigenstate of Lz where m is fixed !Lz = 0, whereas !' ≤ 2� since 0 ≤ ' ≤ 2�. The
Heisenberg inequality is therefore violated in this state. Where is the flaw in this argument?
Hint: see Exercise 7.4.3, question 2. Why does the argument of Exercise 9.7.1 break down?

10.7.6 Relation between the rotation matrices and the spherical harmonics

1. Let ���r�= ��x� y� z� be the wave function of a particle. Show that

(
e−i�Lz�

)
�0�0� z�= ��0�0� z�

and that if a particle is localized on the z axis, the z component of its orbital angular momentum
is zero. Interpret this result qualitatively.

2. We assume that the orbital angular momentum of the particle is l and write the wave function as
the product of a spherical harmonic and a radial wave function gl�r� depending only on r = ��r�:

1lm��r�= Ym
l � �'�gl�r�= 
 �'�lm�gl�r��

We are interested uniquely in the angular part. Using

� �'� = U���� = 0�'= 0��

where � is a rotation by the angles � �'�, show that

Ym
l � �'�∝

[
D

�l�
m0� �'�

]∗
�

It can be shown that the proportionality coefficient is
√
�2l+1�/�4��:

Ym
l � �'�=

√
2l+1
4�

[
D

�l�
m0� �'�

]∗
�

10.7.7 Independence of the energy from m

Assuming that the potential V�r� is invariant under rotation, let 1lm be a solution of the
time-independent Schrödinger equation:

H1lm = Elm1lm�

Use the commutation relation �L+�H�= 0 to show that the energy Elm is in fact indepen-
dent of m.
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10.7.8 The spherical well

1. We are given a potential V��r� which is spherically symmetric (see Fig. 12.4):

V��r�=−V0� 0 ≤ r ≤ R�

= 0� r > R�

called a spherical well. Find the equation giving the s-wave (l= 0) bound states. Is there always
a bound state? Compare with the case of a one-dimensional well.

2. The neutron–proton potential can be modeled by a spherical well of radius R � 2 fm. There is
a single neutron–proton bound state in the s-wave, namely, the deuteron,15 with binding energy
B� 2�2MeV. Calculate the depth V0 of the well needed for there to be just a single bound state.
Compare V0 with the binding energy and show that V0 � B.

3. Find the s-wave energy levels of a particle in the potential

V�r�= A

r2
− B

r
� A�B > 0�

10.7.9 The hydrogen atom for l �= 0

1. Write down the equation that generalizes (10.89) when the orbital angular momentum l �= 0.
Show that it is necessary to add to (10.91) the term

−l�l+1�

[
a1

x
+

�∑
k=1

ak+1x
k−1

]
�

2. Prove the recursion relation

ak+1 =
2��k−1�

k�k+1�− l�l+1�
ak

and derive

• �= 1
n
,

• k≥ l+1,

so that l+1≤ k≤ n. Show that the spectrum of the hydrogen atom is given by (10.93).

10.7.10 Matrix elements of a potential

The external electron of an atom is assumed to be in a p state (l= 1�. Its wave function
is

11m��r�= Ym
1 � �'�

u1�r�

r
�

It is placed in an external potential of the form

V��r�= Ax2+By2− �A+B�z2�

where A and B are constants.

15 In fact, the deuteron also has a small d-wave component.
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1. Show without calculation that the matrix representing V in the basis �lm� has the form

Vm′m =
⎛
⎜⎝� 0 �

0 � 0
� 0 �

⎞
⎟⎠ �

where the rows and columns are arranged in the order m′�m= 1�0�−1.
2. Determine the eigenvalues and eigenvectors of V . Show that 
Lz� = 0 in an eigenstate of V .
3. Use (10.63) to calculate �, �, and � explicitly as functions of A, B, and

I =
∫ �

0
�u1�r��2r2dr�

10.7.11 The radial equation in dimension d = 2

We wish to write the equivalent of (10.78) in two-dimensional space when the potential
is rotationally invariant. The time-independent Schrödinger equation is[

− 1
2M

�2+V�r�

]
1��r�= E1��r��

We use polar coordinates in the plane xOy:

x = r cos � y = r sin  �

We recall the expression for the Laplacian in polar coordinates:

�2 = 1
r

2

2r
r
2

2r
+ 1

r2
22

2 2

and the expression for the angular momentum

Lz = XPy−YPx =−i
2

2 
�

1. Show that the eigenfunctions of Lz have the form exp�im �.
2. We seek solutions of the Schrödinger equation of the form

1nm��r�=
1√
r
eim unm�r��

Show that unm�r� and Enm satisfy the radial equation[
− 1
2M

d2

dr2
+V�r�+ m2+1/4

2Mr2

]
unm�r�= Eunm�r��

What is the interpretation of n? What is the behavior of unm�r� when r → 0?

10.7.12 Symmetry property of the matrices d�j�

Using the operator Y (10.100), demonstrate the symmetry property of the rotation matrices
d�j����:

d
�j�
m′m���= �−1�m−m′

d
�j�
−m′�−m�−���
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10.7.13 Light scattering

1. Let us resume the study of the radiative transition A∗ → A+� with j = j�A∗� = 1 and j′ =
j�A� = 0. Show in the electric dipole case that the transition amplitudes are the following for
an initial state m = 1 when circularly polarized photons are emitted in the plane xOz with
momentum �p making an angle  with the z axis:

am=1
R � � = 1

2
a�1+ cos ��

am=1
L � � = 1

2
a�1− cos ��

Generalize to the case where the photon is emitted in the direction � �'�.
2. We assume that photons of momentum �p (Oz arrive on the atom in its ground state A. The atom

absorbs a photon and makes a transition to its excited state A∗. It then returns to the ground
state by emitting a photon in the plane xOz at an angle  with respect to Oz. We use b to denote
the absorption amplitude of a photon of right-handed circular polarization R:

b = 
j = 1�m= 1�T ′�R��

Show that if the transitions are of the electric dipole kind, we also have

b = 
j = 1�m=−1�T ′�L��

Let cP→P′ � � be the transition amplitude for the scattering of the initial photon of circular
polarization P (P = R or L) at an angle  with final polarization P′. Show that

cP→P′ � �=
ab

2
�1± cos ��

where the+ sign corresponds to P= P′ and the− sign to P �= P′. Derive the transition amplitudes
for linear polarization �x� of the initial photon and linear polarization �x′� or �y� of the scattered
photon, defined with respect to the photon propagation direction:

cx→x′ � � = ab cos �

cx→y� � = 0�

Give a classical analogy which also leads to a cos2  angular distribution with radiation polarized
in the plane xOz. Generalize to the case where the photon is emitted in the direction � �'�.

10.7.14 Measurement of the �0 magnetic moment

The �0 is a particle of zero charge, mass M � 1115 MeV c−2, spin 1/2, and lifetime
� � 2�5×10−10 s. One of its principal decay modes (66% of cases) is

�0 → proton+�−meson�

where the proton has spin 1/2 and the �− meson has spin 0.
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1. In the reference frame where the �0 is at rest, we assume that the proton is emitted with
momentum �p in the direction Oz, chosen to be the angular momentum quantization axis. Let m
be the projection of the �0 spin on the z direction and m′ be that of the proton. Why must we
have m=m′? Let a and b be the probability amplitudes of the transitions

a � �0

(
m= 1

2

)
→ proton

(
m′ = 1

2
* �p ( Oz

)
�

b � �0

(
m=−1

2

)
→ proton

(
m′ = −1

2
* �p ( Oz

)
�

Show that �a� = �b� if parity is conserved in the decay. Hint: examine the action of a reflection
with respect to the plane xOz.

2. The proton is now emitted with momentum �p in the plane xOz parallel to the direction n̂ making
an angle  with Oz. Let m′ be the projection of the proton spin on the direction n̂ and am′m� �

be the amplitude:

am′m� �� �
0

(
m= 1

2

)
→ proton

(
m′* �p ( n̂) �

Express

a 1
2 �

1
2
� �= a++� � and a− 1

2 �
1
2
� �= a−+� �

as functions of a, b, and  .
3. We assume that the �0 is produced in the spin state m = 1/2. Show that the proton angular

distribution is of the form

w� �= w0�1+� cos ��

Calculate � as a function of a and b. Experiment shows that

��−0�645±0�016�

What can be concluded about parity conservation in the decay?
4. The �0 is produced by bombarding a target of protons at rest by a �−-meson beam in the

reaction (Fig. 10.13)

�− meson+proton→�0+K0 meson�

pK

φ

θ

z

x

B

pp

y
Π

pπ × pΛ
→

→

→

→

→

→

pΛ
→

pπ

Fig. 10.13. Kinematics of �0 production.
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By momentum conservation, �p�− , �p�0 , and �pK0 are located in the same plane. We choose the
axis Oz to be perpendicular to this plane:

ẑ= �p�− × �p�0

��p�− × �p�0 � �

and the axis Oy to be the direction �p�0 of the �0 momentum. Given that parity is conserved in
the production reaction and that the target protons are not polarized, show that if �S is the �0

spin operator, then the average values of the components Sx and Sy are zero: 
Sx� = 
Sy� = 0.
5. To simplify the situation, we assume that16 
Sz� = 1/2 and that all the �0 have the same lifetime

� and decay at the same point. The system is located in a uniform, constant magnetic field �B
parallel to Oy. The �0 possesses a magnetic moment �� related to its spin �S by the gyromagnetic
ratio �: ��= ��S. Qualitatively describe the motion of the �0 spin. Determine its orientation at
the instant the decay occurs as a function of �, B, and �. Show that the angular distribution of
the proton emitted in the decay is

w� �'�= w0�1+� cos6�

with

cos6 = cos
 cos + sin
 sin  cos'�

where the angles  and ' are the polar and azimuthal angles of the proton momentum. What
is the value of the angle 
? Show that determination of w� �'� allows measurement of the
gyromagnetic ratio �. Neglect the curvature of the proton trajectory due to the magnetic field
as well as the transformations of angles due to the motion of the �0.

10.7.15 Production and decay of the 	+ meson

1. The 9+ meson is a particle of spin 1 which decays into two � mesons, particles of spin 0:

9+ → �++�0�

We choose a reference frame in which the 9+ meson is at rest, and assume that its spin is
quantized on the z axis and that it is initially in the spin state �1m�, m=−1�0�1. Let

am� �'�= 
 �'�T �1m�
be the transition amplitude for the decay of a 9+ meson in the initial state �1m� with emission
of a �+ meson in the direction characterized by the polar and azimuthal angles � �'�. Show
that it is possible to write

am� �'�= a
[
D

�1�
m0� �'�

]∗
�

What is the physical significance of a? Find the angular distribution Wm� �'� of the �
+ meson,

that is, the �+ emission probability in the direction � �'� when the 9+ meson is initially in the
state �1m�. Show that Wm� �'� is independent of ' (why?) and give its explicit expression as
a function of  for the three values m=−1�0�1.

16 In fact, �
Sz��< 1/2 and we should use the state operator formalism for spin 1/2; see Section 6.2.2, where the Bloch vector
�b is identified with 2
�S�.
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2. If the initial state of the 9+ meson is a linear combination of the states �1m�,

�
� = ∑
m=−1�0�1

cm�1m��
∑

m=−1�0�1

�cm�2 = 1�

what will the angular distribution W
� �'� be?
3. In general, the 9+ is not produced in a pure state, but in a mixture described by a state operator �:

�=∑



p
�
�

�� p
 ≥ 0�
∑



p
 = 1�

Show that the angular distribution is then

W� �'� = �00 cos
2  + 1

2
sin2  ��11+�−1�−1�

+ 1√
2
sin 2 Re

(
�−10e

−i'−�10e
i'
)− sin2  Re

(
�1�−1e

2i'
)
�

4. The 9+ meson is produced in the reaction �+ meson (�p1) + proton (�p= 0) → �+ meson (�p2) +
proton (�p3), where �pi denotes the particle momentum. We choose the normal n̂ to the reaction
plane as the z axis:

n̂= �p1× �p2

��p1× �p2�
�

The parity5 is conserved in this reaction and we assume that the target protons are not polarized.
Show that the expectation value 
�J� = Tr���J� of the 9+ spin points in the direction n̂: 
�J� = cn̂.
Show that

Tr��Jx�= Tr��Jy�= 0�

Use the fact that the kinematics of the production reaction is invariant under the operation

�=5e−i�Jz � �����= 0�

to show

�mm′ = �−1�m−m′
�mm′ �

so that � in fact depends only on four real parameters and has a checkerboard pattern⎛
⎜⎝ �11 0 �1�−1

0 �00 0
�∗1�−1 0 �−1�−1

⎞
⎟⎠ �

10.7.16 Interaction of two dipoles

The interaction Hamiltonian of two magnetic dipoles carried by particles of spin 1/2 is
written as

H = K

r3

[
3��1 · r̂���2 · r̂�− �1 · �2

]
= K

r3
S12�
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where �r is the vector joining the two dipoles and �1 and �2 are the Pauli matrices of
these particles. Let

�.= 1
2
��1+ �2�

be the total spin. Show that

S12 = 2
(
3Q2− �.2

)
� Q2 = ��. · r̂�2�

and that Q4 = Q2, i.e., Q2 is a projector. Show that S2
12 = 4�.2 − 2S12 and that the

eigenvalues of S12 are 0, 2, and −4.

10.7.17 
0 decay

The .0 particle is composed of an up quark, a down quark, and a strange quark and has
mass 1192MeV c−2 and spin 1/2. It decays via a radiative transition to a �0 particle,
also composed of an up quark, a down quark, and a strange quark and having mass
1115MeV c−2 and spin 1/2:

.0 →�0+��

The .0 is assumed to be at rest, its spin is quantized along the z axis, and the spin
projection on this axis is m. The photon momentum �p lies in the plane xOz and makes
an angle  with the z axis.

1. First we assume that the photon is emitted in the z direction ( = 0). If m′ is the projection of
the �0 spin on Oz, show that the nonzero amplitudes are (T is the transition operator)

a = 
R�m′ = −1
2
*  = 0�T �m= 1

2
��

b = 
L�m′ = 1
2
*  = 0�T �m=−1

2
��

while

c = 
R�m′ = 1
2
*  = 0�T �m= 1

2
� = 0�

d = 
L�m′ = −1
2
*  = 0�T �m=−1

2
� = 0�

in other words, m′ =m is forbidden and the allowed transitions correspond to m′ = −m when
 = 0. The notation (R, L) specifies the right- or left-handed circular polarization state of the
photon.

2. The transition operator T is invariant under the parity operation. Show that �a� = �b�. If , is the
product of the .0 and �0 parities, also called the relative parity of the two particles

,= ,.0,�0 �

show that a= ,b. Experiment gives ,= 1 and so a= b.
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3. We assume that the initial value of the projection of the .0 spin is m = 1/2. Let am′
R � � and

am′
L � � be the transition amplitudes, where m′ is the projection of the �0 spin on the direction

of �p, and therefore the eigenvalue of �S · p̂. Calculate am′
R and am′

L as functions of a and  . What
are the allowed values of m′?

10.7.18 Irreducible tensor operators

An irreducible tensor operator of order k, T�k�, possesses �2k+1� components T�k�
q :

q =−k�−k+1� � � � � k−1� k

and transforms under a rotation � as

U���T �k�
q U†���=∑

q′
D

�k�
q′q���T

�k�
q′ �

Show that the vector

�kjqm� = T�k�
q �jm�

transforms under rotation as the vector �j1j2m1m2� with j1 = k, j2 = j, m1 = q, and
m2 =m. Using the vectors

�kjj̃m̃� = ∑
q+m=m̃

C
kj
qm*j̃m̃�kjqm�

as intermediaries, prove the general form of the Wigner–Eckart theorem:


j′m′�T�k�
q �jm� = C

kj
qm*j′m′ 
j′��T�k���jm�

and show that

�j−k� ≤ j′ ≤ j+k�

10.8 Further reading

The presentation in this chapter, inspired by that of Feynman et al. [1965], Vol. III,
Chapters 17 and 18, places particular emphasis on the properties and use of the rotation
matrices. For a more classical presentation the reader can consult Messiah [1999], Chap-
ter XIII, Cohen-Tannoudji et al. [1977], Chapter VII, or Basdevant and Dalibard [2002],
Chapter 10. Numerous applications to elementary particle physics can be found in the
book by S. Gasiorowicz, Elementary Particle Physics, New York: Wiley (1966). In addi-
tion, Chapter 4 of that book describes the Wigner analysis based on invariance under
the Poincaré group, which shows in particular that a particle of zero mass has only two
helicity states, whatever its spin. On this last subject see also Weinberg [1995], Chapter 2.
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The harmonic oscillator

The harmonic oscillator describes small oscillations about a stable equilibrium position,
and is a very important system in classical mechanics. It is just as important in quantum
mechanics. To be specific, let us consider a simple example of motion in one dimension,
the vibration of a diatomic molecule whose two nuclei have massesm1 andm2. We choose
the line connecting the two nuclei as the x axis and use x= x1−x2 to denote the relative
particle coordinate (Exercise 8.5.6). At equilibrium the two nuclei are separated by a
distance x= x0. In classical physics the Hamiltonian of the relative particle is written as

Hcl =
p2

2m
+V�x�� (11.1)

where m = m1m2/�m1+m2� is the mass of the relative particle. We expand V�x� in a
series about x = x0:

V = V�x0�+ �x−x0�V
′�x0�+

1
2
�x−x0�

2V ′′�x0�+· · ·
The constant V�x0� is in general uninteresting and we can set it equal to zero by
redefining the zero of the energy. Since x0 is an equilibrium position V ′�x0�= 0, and if
this equilibrium position is stable V ′′�x0� > 0. Setting

q = x−x0 � C = V ′′�x0� � �=
√
C

m
�

the classical Hamiltonian (11.1) becomes

Hcl =
p2

2m
+ 1

2
m�2q2 � (11.2)

where � is the frequency of oscillations about the equilibrium position.
We shall start with the simplest example, that of an isolated oscillator. In Section 11.1

we study the quantum version of this case using a particular basis, that of the energy
eigenstates. Another “basis,” that of the coherent states, will be studied in the following
section. It has many applications in quantum optics. A slightly more complicated case
is that of coupled oscillators, which also has important applications. An example will be
given in Section 11.3, where we study a simple model of vibrations in a solid which will

358
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allow us to introduce the concept of phonon. The generalization to photons will also be
discussed for a simple situation.
It might be surprising to find, in the last section of this chapter, a study of the motion of

a charged particle in a magnetic field. We shall see that in the case of constant magnetic
field the equations of motion become those of two independent harmonic oscillators. We
will define local gauge invariance, which fixes the form of the interaction of a charged
particle with an electromagnetic field, and then study the energy levels in a magnetic
field, called the Landau levels.

11.1 The simple harmonic oscillator

11.1.1 Creation and annihilation operators

Our starting point will be the Hamiltonian (11.2). It can be carried over to quantum
mechanics if p and q are interpreted as operators: p→ P, q → Q, and the canonical
commutation relations are imposed:

�Q�P�= i�I� (11.3)

As is often the case in physics, it is useful to define dimensionless quantities, and so we
introduce the dimensionless operators P̂ and Q̂:

Q=
(

�

m�

)1/2

Q̂� P = �m���1/2P̂� (11.4)

which obey the commutation relation

�Q̂� P̂�= iI� (11.5)

We shall construct the eigenvectors of H by an algebraic method similar in spirit to that
used for angular momentum. It is based on the principle of introducing the operators a
and a†, respectively called the annihilation (or destruction) operator and the creation
operator of the harmonic oscillator, which take us from one eigenvalue of H to another,
reminiscent of how J− and J+ take us from one eigenvalue of Jz to another. We therefore
define the operators1

a = 1√
2

(
Q̂+ iP̂

)
� (11.6)

a† = 1√
2

(
Q̂− iP̂

)
� (11.7)

The commutation relations of a and a† can be obtained by direct calculation:

�a�a†�= I � (11.8)

1 In order to conform to the standard notation, we depart from our rule of denoting operators by upper-case letters.



360 The harmonic oscillator

as can three useful expressions for H :

H = 1
2

��
(
P̂2+ Q̂2

)
= ��

(
a†a+ 1

2

)
= ��

(
N + 1

2

)
� (11.9)

We have introduced the operator N , called the number operator:2

N = a†a � (11.10)

which satisfies the following commutation relations with a and a†:

�N�a�=−a� �N�a†�= a†� (11.11)

Using (11.9), we see that diagonalizing N is equivalent to diagonalizing H .

11.1.2 Diagonalization of the Hamiltonian

Let us assume that we have found an eigenvector ��� of N which is normalizable but not
necessarily of unit norm and has eigenvalue �:

N ��� = �����
We must have � ≥ 0; actually,

0 ≤ ��a�����2 = 
��a†a��� = 
��N ��� = �
�����
which implies that if �= 0, then a��� = 0. In the contrary case, a��� is a vector of squared
norm �
����, and it is an eigenvector of N with eigenvalue ��− 1� because it can be
shown using (11.11) that

Na
[���]= a�N −1���� = ��−1�

[
a���]�

Finally, a†��� is certainly a non-null vector; it has squared norm ��+1�
���� and is an
eigenvector of N with eigenvalue ��+1�. On the one hand

0 ≤ ��a†����2 = 
��aa†��� = 
���N +1���� = ��+1�
�����
while on the other

N
[
a†���]= a†�N +1���� = ��+1�

[
a†���]�

If � > 0, we have seen that a��� is an eigenvector of N with eigenvalue ��− 1�. If
��−1� = 0, then a2��� = 0. If ��−1� > 0, we can construct a non-null vector a2��� of
eigenvalue ��−2� and continue the process if ��−2� > 0. The set of vectors

a0���� a1���� a2���� � � � � ap��� � � �

2 This terminology will be justified in Section 11.3.1.
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is a set of eigenvectors of N corresponding to the eigenvalues

�� �−1� � � � � ��−p� � � �

This shows that � is necessarily an integer. If it were not, ��−p� would become negative
for p sufficiently large and the vector ap��� would have negative norm. The series must
therefore terminate at an integer � = p such that the vector ap+1��� = 0.
The set of vectors

�a†�0���� �a†�1���� �a†�2���� � � � � �a†�p��� � � �
forms a set of eigenvectors of N corresponding to the eigenvalues

�� �+1� � � � � ��+p� � � �

In summary, the eigenvalues of N are integers:

n= 0�1�2� � � � � n� � � �

We use �n� to denote an eigenvector of N corresponding to the eigenvalue n:

N �n� = a†a�n� = n�n�� (11.12)

or, equivalently for H ,

H�n� = ��

(
n+ 1

2

)
�n�� (11.13)

The energy eigenvalues En labeled by the integer n have the form

En = ��

(
n+ 1

2

)
� (11.14)

In contrast to the case of the classical oscillator, the ground-state level E0 is nonzero
rather than zero, as would be expected for a particle at rest at the equilibrium position.
The value E0 = ��/2 is called the zero-point energy of the harmonic oscillator. This can
be explained qualitatively using the Heisenberg inequalities (Exercise 9.7.4). We warn
that the ground-state eigenvector �0� should not be confused with the null vector of the
Hilbert space � , ��� = 0! We also note that the energy levels are equidistant from each
other, and this is what is found experimentally in a first approximation for the vibrational
levels of a molecule.
The vectors �n� are of course orthogonal if n �= n′, and from now on we assume that

they have unit norm. We still need to show that they are nondegenerate, that they form a
basis in the Hilbert space � , and above all that N has at least one eigenvector, which is
not guaranteed for an operator, even a Hermitian one, in a space of infinite dimension.
In the following section we shall explicitly construct the vector �0� and show that it is
unique. This will be sufficient for showing that the series of vectors

�0�� �a†�1�0�� �a†�2�0�� � � � � �a†�n�0� � � � (11.15)
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is unique. Actually, we can argue recursively, assuming that the vector �n� is nonde-
generate. Let �n+ 1� be an eigenvector of N corresponding to the eigenvalue �n+ 1�:
N �n+1� = �n+1��n+1�. Then, with c a nonzero complex number,

a�n+1� = c�n� ⇒ a†a�n+1� = ca†�n� ⇒ �n+1� = ca†

n+1
�n��

which shows that �n+1� ∝ a†�n�. Therefore, if �0� is unique, which we shall prove to be
the case in Section 11.1.3, the vector �n� is also unique up to a phase.

As in the case of the standard angular momentum basis �jm�, it is convenient to fix the
relative phase of the eigenvectors of H once and for all. If �n� has unit norm, the vector
a†�n� has norm √

n+1 and consequently

a†�n� = ei�
√
n+1 �n+1��

The simplest choice of phase is �= 0 and we then have

a†�n� = √
n+1 �n+1�� (11.16)

a�n� = √
n �n−1�� (11.17)

Equations (11.16) and (11.17) display the creation and destruction role of the operators
a† and a: the operator a† increases n by unity, while a decreases n by unity. The vectors
�n� are derived from �0� by

�n� = 1√
n! �a

†�n �0� � (11.18)

We still need to show that the vectors �n� form a basis of � . This important issue is the
subject of Exercise 11.5.1.

11.1.3 Wave functions of the harmonic oscillator

In wave mechanics, the Hamiltonian of the harmonic oscillator is written as

H =− �2

2m
d2

dq2
+ 1

2
m�2q2� (11.19)

The wave mechanics representation of Q̂ in (11.4) is the dimensionless variable u,

q =
(

�

m�

)1/2

u� −i�
d
dq

=−i��m��1/2
d
du

� (11.20)
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and the Hamiltonian (11.19) becomes

H = 1
2

��

[
− d2

du2
+u2

]
� (11.21)

We could have obtained this form of H directly starting from the first of Equations (11.9)
and using the fact that u and −id/du are just the realizations of the operators Q̂ and P̂ in
the space L�2�

u ���. We could directly seek solutions of

H�n�u�=
1
2

��

[
− d2

du2
+u2

]
�n�u�= En�n�u� (11.22)

with �n�u� = 
u�n�, but instead we shall limit ourselves to showing that the vector �0�
is unique, a feature which we need to check. Since 
u�0� = �0�u�, the equation a�0� = 0
becomes


u�a�0� = 1√
2

[
u+ d

du

]
�0�u�= 0�

which can be integrated immediately to give

�0�u�=
1

�1/4
e−u2/2� (11.23)

The factor �−1/4 ensures that �0 is normalized to unity. This solution is unique, which
proves that the eigenvectors given by the series (11.15) are nondegenerate. It can be
verified immediately that �0�u� obeys (11.22) with eigenvalue ��/2. The function �0�u�

possesses the property characteristic of a ground-state wave function: it does not vanish
or, equivalently, it has no nodes.
Finally, let us determine the explicit form of the wave functions �n�u� = 
u�n�. We

multiply (11.18) written as

�n� = 1√
2n n!

(
Q̂− iP̂

)n �0�
on the left by the bra 
u�:

�n�u�= 
u�n� = 1
�1/4

1√
2n n!

(
u− d

du

)n

e−u2/2� (11.24)

The functions �n�u� are orthogonal for n �= n′ and normalized to unity because

n�n′� = �nn′ . The functions defined in (11.24) are related to the Hermite polynomials
Hn�u�:

e−u2/2Hn�u�=
(
u− d

du

)n

e−u2/2 (11.25)

as

�n�u�=
1

�1/4

1√
2n n! e

−u2/2Hn�u�� (11.26)
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The first few Hermite polynomials are

H0�u�= 1� H1�u�= 2u� H2�u�= 4u2−2�

In summary, we can compile a “dictionary” which allows us to go from the “N repre-
sentation” of Section 11.1.2 to the representation of Section 11.1.3 using as eigenstates
of H the wave functions �n�u�. In the following summary the first equation is written in
the basis �n�, and the second is the equivalent equation in wave mechanics.

• The eigenvalue equation:

1
2

(
P̂2+ Q̂2

)
�n� =

(
n+ 1

2

)
�n� ⇐⇒ 1

2

(
− d2

du2
+u2

)
�n�u�=

(
n+ 1

2

)
�n�u��

• The orthonormalization relations:


n�m� = �nm ⇐⇒
∫ �

−�
du�∗n�u��m�u�= �nm�

• The completeness relation:∑
n

�n�
n� = I ⇐⇒∑
n

�n�u��
∗
n�v�= ��u−v��

Complex conjugation is in fact superfluous because the functions �n�u� are real.

11.2 Coherent states

Coherent states, or semi-classical states, are remarkable quantum states of the harmonic
oscillator. In these states the expectation values of the position and momentum operators
have properties identical to the classical values of position q�t� and momentum p�t�.
Exercise 11.5.3 shows that the expression for coherent states follows from the requirement
that the dynamics of the quantum expectation values of Q, P, and H be identical to that
of the classical variables. Below we shall give an a priori definition of these states. Let
z�t� be a complex number, a combination of q�t� and p�t�:

z�t�=
√
m�

2�
q�t�+ i√

2m��
p�t�� (11.27)

Starting from the classical equations of motion

dq�t�
dt

= 1
m

p�t��
dp�t�
dt

=−m�2q�t�� (11.28)

we show that z�t� satisfies the differential equation

dz
dt

=−i�z�t�� (11.29)

which has the solution

z�t�= z0e
−i�t�
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The complex number z�t� traces out a circular trajectory in the complex z plane with
uniform speed. From z�t� we can derive the position q�t�, the momentum p�t�, and the
energy of the oscillator:

q�t� =
√

2�

m�
Re z�t��

p�t� = √
2m�� Im z�t�� (11.30)

E = ���z0�2�
It is easy to show that the expectation value 
a��t� of the annihilation operator a satisfies
the same differential equation as z�t� (Exercise 11.5.3). This suggests that we seek the
eigenvectors of the operator a, which we shall show do exist,3 because the corresponding
eigenvalues will then obey (11.29). These eigenvectors will in fact be the coherent states.
A coherent state �z� is defined as

�z� = e−�z
2�/2

�∑
n=0

zn√
n! �n� = e−�z�

2/2 ea†z�0� � (11.31)

Let us list some properties of coherent states, after verifying that �z� is an eigenvector
of a.

• The coherent state �z� is an eigenvector of the (non-Hermitian) annihilation operator a with
eigenvalue z:

a�z� = z�z� � (11.32)

This can be proved using (11.31) directly, but it is also possible to use the identity (2.54) of
Exercise 2.4.11, which here we write as

ea
†za e−a†z = a+ z�a†� a�= a− z�

ea
†za = �a− z�ea

†z�

It is sufficient to apply both sides of the last equation to the vector �0� to obtain (11.32).
• The vector �z� has unit norm: 
z�z� = 1 and the squared modulus of the scalar product 
z�z′�,

�
z�z′��2 = exp
(−�z− z′�2) � (11.33)

is a measure of the “distance” between two coherent states.
• The probability distribution of n is given by a Poisson distribution:

p�n�= �
n�z��2 = �z�2n
n! e−�z�

2
� (11.34)

which gives the expectation value 
n� = �z�2 and the dispersion !n= �z�.

3 It is not evident a priori that a, which is not a Hermitian operator, has eigenvalues, and even less that these eigenvectors
form a basis of � .



366 The harmonic oscillator

• The action of exp�
N� on a coherent state, where 
 is purely imaginary (� exp
� = 1), again
gives a coherent state:

e
N �z� = e
N e−�z�
2/2

�∑
n=0

zn√
n! �n� = e−�z�

2/2
�∑
n=0

zn√
n! e


n�n�

= e−�z�
2/2

�∑
n=0

�e
z�n√
n! �n� = �e
z�� (11.35)

The relation � exp
� = 1 has been used only to obtain the last equality.
• The coherent states form an “overcomplete” basis:∫ dRe zdIm z

�
�z�
z� = I� (11.36)

To prove this identity, we sandwich it between the bra 
n� and the ket �m�. Setting z= � exp�i �,
we have ∫ dRe zdIm z

�

n�z�
z�m� =

∫ �

0
�d�

∫ 2�

0

d 
�

znz∗m√
n!m! e

−�2

=
∫ �

0
�d�

∫ 2�

0

d 
�

�n+m

√
n!m! e

i�n−m� e−�2 = �nm�

where we have used the change of variable �2 = u and∫ �

0
duune−u = n!�

A direct consequence of (11.36) is that the “diagonal matrix elements” 
z�A�z� are sufficient to
completely define an operator A (Exercise 11.5.3).

These properties allow us easily to calculate the expectation values:


z�Q�z� =
√

�

2m�

z� (a+a†

) �z� =
√

2�

m�
Re z�


z�P�z� = √
2�m� Im z� (11.37)


z�H�z� = ��

(
�z�2+ 1

2

)
�

This is the classical result (11.30) if we ignore the zero-point energy ��/2 in the
expression for 
H�. Moreover, if the state of the harmonic oscillator is a coherent state
at time t = 0, this property is conserved by the time evolution. Let us assume that the
oscillator at time t = 0 is in the coherent state ���t = 0�� = �z0� and calculate ���t��:

���t�� = e−iHt/� �z0� = e−i�t/2 e−i�Nt �z0� = e−i�t/2 �z0e−i�t�� (11.38)

where we have used (11.35). We obtain the classical evolution z�t� = z0 exp�−i�t� up
to a phase exp�−i�t/2� multiplying the state vector. If we start from a coherent state
at time t = 0, the evolution of the expectation values 
Q�, 
P�, and 
H� follows very
exactly the classical evolution of q�t�, p�t�, and E. We have therefore shown that the
expectation values in a coherent state obey the classical laws.
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It is also instructive to calculate the dispersions. Let us evaluate, for example, 
Q2� in
the coherent state �z�:


Q2�z =
�

2m�

z�a2+ �a†�2+aa†+a†a�z� = �

2m�

z�a2+ �a†�2+2a†a+1�z�

= �

2m�

[
1+ �z+ z∗�2

]= �

2m�

[
1+4�Re z�2

]
�

A similar calculation (Exercise 11.5.3) gives 
P2� and 
H2�, from which we derive the
dispersions4 in the coherent state �z�:

!zQ=
√

�

2m�
� !zP =

√
m��

2
� !zH = ���z� � (11.39)

The dispersion !zH can be obtained from (11.34) using !H = ��!zN and !zN = !n=
�z�, but it is also possible to calculate 
z�N 2�z� directly. We note that the Heisenberg
inequality is saturated in a coherent state: !zQ!zP = �/2, and for �z� � 1

!zH


H� �
1
�z� → 0 if �z� →��

In summary, for �z� � 1 the dispersions about the expectation values are the smallest
possible.

11.3 Introduction to quantized fields

11.3.1 Sound waves and phonons

When the vibration amplitudes are small, a system of coupled oscillators can be decom-
posed into normal modes and treated as a set of independent harmonic oscillators. An
interesting case is that of vibrations in a solid, and we shall use it to introduce quantized
fields. The first quantum model of vibrations in a crystalline solid was constructed by
Einstein, who assumed that each atom can vibrate independently of the others about
its equilibrium position with a frequency �. In quantum physics each atom is therefore
associated with a quantized harmonic oscillator of frequency �. This model was the first
to qualitatively explain the behavior of the specific heat of solids at low temperature:
whereas the Dulong–Petit law predicts a specific heat independent of temperature, exper-
iment shows that in fact this law is valid only at a sufficiently high temperature, and
the specific heat actually decreases with temperature. However, the Einstein model does
not give quantitatively correct results. This is not surprising, because the hypothesis of
independent atomic vibrations is not realistic. If it were the case, vibrations would not be
able to propagate in a solid and there would be no such thing as sound waves.

4 We shall use either notation (!P�!Q) or (!p�!q) for the dispersions, as there is no possible ambiguity.
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Let us study the simplest possible model of a chain of coupled oscillators, limiting our-
selves to the case of one dimension. At equilibrium N atoms are located at regular intervals
l along a line. The N equilibrium positions have abscissas xn = nl, n= 0�1� � � � �N −1. It
will be convenient to use periodic boundary conditions xn+N ≡ xn, but it is also possible to
take vanishing ones: x0 = xN+1 = 0. As before, we shall use qn to denote the displacement
from equilibrium of the nth atom. The coupling between the nth and �n+ 1�th atoms
is described by the term �K/2��qn− qn+1�

2, where K is a constant, and the classical
Hamiltonian of the ensemble is

Hcl =
N−1∑
n=0

p2
n

2m
+ 1

2
K

N−1∑
n=0

�qn+1−qn�
2 � (11.40)

This is in fact the Hamiltonian of N identical masses m connected by identical springs
with spring constant K (Fig. 11.1). In (11.40) pn =mq̇n is the momentum of the atoms.
The first term in Hcl is the kinetic energy and the second is the potential energy. The
equations of motion corresponding to the Hamiltonian (11.40) are written as

mq̈n =−K
[
�qn−qn−1�+ �qn−qn+1�

]
� (11.41)

Let us begin with the classical problem. To decouple the modes qn, we seek the normal
modes by taking the discrete (or lattice) Fourier transform of qn and pn:

qk =
1√
N

N−1∑
n=0

e ikxn qn =
∑
n

Uknqn� k= j× 2�
Nl

� j = 0� � � � �N −1� (11.42)

To reduce the amount of notation we have not used q̃k to designate the Fourier transform,
as the subscript k or n allows the Fourier components qk and positions qn on the lattice to
be unambiguously distinguished. The matrix Ukn performs a discrete Fourier transform,
and it is a unitary matrix:

∑
n

UknU
†
nk′ =

∑
n

UknU
∗
k′n =

1
N

∑
n

eikxn e−ik′xn = 1
N

∑
n

exp
[
2i�
Nl

�j− j′�xn

]

= 1
N

1− exp�2i��j− j′��
1− exp�2i��j− j′�/N�

= �jj′ �

l l

xn – 1 xn xn + 1 xn + 2

qn – 1 qn qn + 1

x

qn + 2

l

Fig. 11.1. Model for vibrations of a solid: a chain of springs.
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that is, noting that U†
nk = U ∗

kn = U−kn,∑
n

UknU
†
nk′ =

∑
n

UknU−k′n = �kk′ � (11.43)

The range of variation of k is

0 ≤ k≤ 2��N −1�
Nl

�

but, making use of the periodicity, we can replace this by the interval

−�

l
≤ k≤ �

l
�

which is the first Brillouin zone already encountered in Section 9.5.2. Since we assume
that N � 1, we neglect edge effects. The unitarity of the Ukn allows us to write down the
inverse Fourier transform of (11.42):

qn =
1√
N

�/l∑
k=−�/l

e−ikxn qk =
∑
k

U†
nkqk =

∑
k

U−knqk� (11.44)

The Fourier transform (11.42) and its inverse (11.44) also apply to the momentum; we
need only make the substitutions qn → pn, qk → pk. We obtain the desired expression for
the Hamiltonian by expressing pn and qn as functions of pk and qk. The kinetic energy
term is the simplest to evaluate:∑

n

p2
n =
∑
n

∑
k�k′

U−knU−k′npkpk′ =
∑
k�k′

�k�−k′ pkpk′ =
∑
k

pkp−k�

This is just the Parseval relation. Next we study the potential energy term:∑
n

�qn+1−qn�
2 =∑

n

∑
k�k′

(
e−ikl−1

) (
e−ik′l−1

)
U−knU−k′ nqkqk′

=∑
k

(
e−ikl−1

) (
eikl−1

)
qkq−k = 4

∑
k

sin2
(
kl

2

)
qkq−k�

Combining these two equations, we arrive at an expression for Hcl in which the modes
are nearly decoupled:

Hcl =
∑
k

pkp−k

2m
+ 1

2
K
∑
k

4 sin2
(
kl

2

)
qkq−k =

∑
k

pkp−k

2m
+ 1

2
m
∑
k

�2
k qkq−k� (11.45)

We have defined the frequency �k of the kth mode as

�k = 2

√
K

m
sin

�k�l
2

� (11.46)

The law (11.46) giving the frequency �k as a function of k is the dispersion law for the
normal modes (Fig. 11.2). The expression (11.45) for Hcl as a function of the normal
modes was obtained within the framework of classical physics. It can be generalized



370 The harmonic oscillator

0

ωk

2 K/m

–π/l π/l

Fig. 11.2. Dispersion law of the normal modes.

immediately to the quantum version by replacing the numbers pn and qn in (11.40) by
the operators Pn and Qn obeying the commutation relations

�Qn�Pn′ �= i��nn′I� (11.47)

because the operators corresponding to different atoms n and n′ commute. The Fourier
transforms can be carried over without modification to the quantum version of the
problem, and we obtain

H =∑
k

PkP−k

2m
+ 1

2
K
∑
k

4 sin2
(
kl

2

)
QkQ−k =

∑
k

PkP−k

2m
+ 1

2
m
∑
k

�2
k QkQ−k�

The commutation relations of the Qk and Pk are

�Qk�Pk′ �=
∑
nn′

UknUk′n′ �Qn�Pn′ �= i�I
∑
n

UknUk′n = i��k�−k′I� (11.48)

We still need to decouple the modes k and −k. To do this we introduce the annihilation
and creation operators of the normal modes by analogy with (11.4) and (11.6)–(11.7):

Qk =
√

�

2m�k

(
ak+a†

−k

)
� Pk =

1
i

√
�m�k

2

(
ak−a†

−k

)
� (11.49)

It can immediately be verified that the commutation relations (11.48) are satisfied when5

�ak� a
†
k′ �= �kk′I � (11.50)

The factors �k�−k′ in (11.48) and �kk′ in (11.50) should be noted. They originate in
the periodic boundary conditions, which imply plane waves with k > 0 and k < 0. If
vanishing boundary conditions are used, we have only k > 0 and we find the factor �kk′ ;

5 Equivalently, ak and a†k can be expressed as functions of Qk and Pk and then the commutation relations (11.50) derived.
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see Exercise 11.5.9. Substituting the relations (11.49) into the expression for H and using
the commutation relations (11.50), we arrive at the final form of H :

H =
�/l∑

k=−�/l

��k

(
a†
kak+

1
2

)
� (11.51)

The Hamiltonian is a sum of independent harmonic oscillators of frequency �k. Let �r�
be an eigenstate of H , H�r� = Er �r�. Using the commutation relations (11.11), we have

Hak�r� = �akH+ �H�ak�� �r� = �Er −��k�ak�r��
Ha†

k�r� =
(
a†
kH+ �H�a†

k�
) �r� = �Er +��k�a

†
k�r��

The creation operator a†
k increases the energy by ��k, and the annihilation operator

ak decreases it by ��k. This energy is associated with an elementary excitation or a
quasi-particle, called a phonon. The operator Nk = a†

kak, which commutes with H , counts
the number of phonons in the mode k. Let �0k� be the ground state of the kth mode:
ak�0k� = 0. This state corresponds to zero phonons in the kth mode. Let us construct the
state �nk� containing nk phonons in the kth mode using (11.18):

�nk� =
1√
nk!

�a†
k�

nk �0k�� (11.52)

and the eigenstates of H by forming the tensor product of the states �nk�:

�r� =⊗k=�/l

k=−�/l
�nk�� (11.53)

H�r� =
�/l∑

k=−�/l

(
nk+

1
2

)
��k �r�� (11.54)

The Hilbert space thus constructed is called the Fock space. The state �r� is specified by
its occupation numbers nk, or the number of phonons in the kth mode. The formalism
that we have developed allows us to describe situations in which the number of particles
is variable; in fact, we have just constructed a quantized field using the simplest possible
nontrivial example.

11.3.2 Quantization of a scalar field in one dimension

Now that we have quantized elasticity, our objective is to do the same with the electro-
magnetic field. We shall pass through an intermediate stage where we quantize a simple
model, that of the scalar field in one dimension, which we define below. This model is



372 The harmonic oscillator

relevant to the physical case of vibrations of an elastic rod considered as a continuous
medium. When �k�l	 1, the dispersion law (11.46) becomes linear in �k�:

�k�l	 1 � �k �
√
K

m
�k�l= cs�k�� (11.55)

where cs = l
√
K/m is the speed of sound at low frequencies. It will prove useful to rewrite

this equation as a relation between the speed of sound, Young’s modulus Y = Kl,6 and
the mass per unit length �=m/l:

cs =
√
Y

�
� (11.56)

Our scalar field will be the long-wavelength limit 
� l (or �k�l	 1) of the lattice model
of the preceding subsection, and the linear dispersion law (11.55) �k = cs�k� will be
assumed valid for all k. In fact, our ultimate goal is to take the limit l→ 0, also called
the continuum limit of the lattice model. We introduce two functions ��x� t� and ��x� t�

such that

qn�t�= ��xn� t�� pn�t�= l��xn� t�� (11.57)

In the long-wavelength limit, the displacements qn�t� and momenta pn�t� vary only
slightly from one site to another, and so we can use the following approximation for the
derivative of ��x� t� with respect to x:

2�

2x

∣∣∣
x=xn

� 1
l

[
��xn+1� t�−��xn� t�

]= 1
l

[
qn+1�t�−qn�t�

]
� (11.58)

The equation of motion (11.41) becomes

�
22�

2t2

∣∣∣
x=xn

= Y

l2

{
���xn+1�−��xn��+ ���xn−1�−��xn��

}
�

A Taylor series expansion through order l2 gives

��x+ l�+��x− l�−2��x�� l2
22�

2x2
�

and we obtain a wave equation describing the propagation of vibrations at speed cs:

22�

2t2
− c2s

22�

2x2
= 0� (11.59)

The classical Hamiltonian is written as a function of �n and �n as

Hcl = l
∑
n

{
�2�xn�

2�
+ 1

2
Kl
[��xn+1�−��xn�

l

]2}
�

6 In one dimension, the change of length !L of a rod of length L acted on by a force F = K!x satisfies

!L

L
= F

Y
= !x

l
= F

Kl
�

which gives Y = Kl. In three dimensions !L/L = F/Y�, where � is the cross-sectional area of the rod and Y = K/l,
cs =

√
Y/� with �=m/l3.
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which is an approximation to the integral

Hcl =
∫ L

0
dx

[
1
2�

�2�x�+ 1
2
�c2s

(
2�

2x

)2
]

� (11.60)

where L=Nl is the length of the rod: Hcl in (11.60) is the continuum version of (11.40).7

We have suppressed the time dependence: ��x� = ��x� t = 0� and ��x� = ��x� t = 0�
because Hcl is independent of time.
As in the preceding subsection, we shall decompose ��x� and ��x� into normal modes

by means of a Fourier transform. We define �k as

�k = �∗
−k =

1√
L

∫ L

0
dx eikx ��x�� l√

Nl

∑
n

eikxn��xn�=
√
l qk (11.61)

by comparison with (11.42). The inverse of �k is given by

��x�= 1√
L

∑
k

e−ikx �k� (11.62)

The relation for pk corresponding to (11.83) is �k = l−1/2pk. Now let us go to the
quantum version, replacing the numbers �k and �k by the operators %k and 5k obeying
commutation relations derived from (11.48):8

�%k�5k′ �= i��k�−k′I� (11.63)

As a consequence, if the numbers �k and �k in (11.62) and in the corresponding equation
for ��x� are replaced by the operators %k and 5k, the functions ��x� and ��x� become
operators %�x� and 5�x�. Here %�x� is called a field operator or a quantized field.9 We
note that %�x� t� and 5�x� t� are labeled by a continuous variable x, whereas their Fourier
transforms %k and 5k are labeled by a discrete index k. This property follows from the
use of boundary conditions in a box: 0≤ x≤L. The variable x is not a dynamical variable
which is transformed into an operator in the quantum version of the problem, but rather
the label of a point on the rod, and the fundamental operators are % and 5.

7 The reader familiar with analytical mechanics will note that the Hamilton equations are

�H

���x�
= 1

�
� = �̇�

�H

���x�
=−Y

22�

2x2
=−��̈�

which give the wave equation (11.59).
8 The usual procedure is to derive these relations from the equal-time canonical commutation relations postulated between the
field %�x� t� and its “conjugate momentum” 5�x� t�:

�%�x� t��5�x′� t��= i���x−x′�I�

which will be demonstrated below in (11.69) starting from (11.63). This procedure is – mistakenly – considered by some
authors to be more “rigorous”; in fact, it is just as heuristic as the one we follow here.

9 The procedure we have followed is sometimes called “second quantization.” This expression is completely misleading.
Clearly, there is only a single quantization, and so “second quantization” should definitively be banished.
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Now we can express the quantum Hamiltonian H as a function of the Fourier compo-
nents of 5 and %. We write, for example, the potential energy term as a function of the
%k as ∫ L

0
dx
(
�%

�x

)2

= 1
L

∫
dx
∑
k�k′

%k%k′�−ik��−ik′�e−ikx e−ik′x

= −∑
k

%k%k′kk
′�k�−k′ =

∑
k

k2%k%−k�

This leads to the following expression for the quantum Hamiltonian H :

H =∑
k

(
1
2�

5k5−k+
1
2
�c2sk

2%k%−k

)
� (11.64)

Finally, as in (11.49), we introduce the operators ak and a†
k satisfying the commutation

relations (11.50):

%k =
√

�

2��k

(
ak+a†

−k

)
� 5k =

1
i

√
���k

2

(
ak−a†

−k

)
� (11.65)

and H again takes the form of a sum of independent harmonic oscillators:

H =∑
k

��k

(
a†
kak+

1
2

)
� (11.66)

The result is superficially identical to (11.51), but there is an essential difference. The
earlier wave vectors k were bounded as �k� ≤ �/l. Now in the continuum limit there is
no longer a bound on k and the zero-point energy

E0 =
∑
k

1
2

��k

is infinite. However, this infinite result is artificial in this particular case (Exercise 11.5.6).
Actually, when the wave vector k becomes large or, equivalently, when the wavelength

 = 2�/k becomes small, of the order of the lattice spacing l, the continuum theory is
no longer valid. It is only when the wavelength of a vibration satisfies 
� l that the
wave does not “see” the underlying crystal lattice. We shall encounter this problem of
infinite energy again in the case of the electromagnetic field, where k will be genuinely
unbounded.
Let us conclude this subsection by giving the Fourier expansion of the quantized field

%H�x� t� in the Heisenberg picture (4.31), with %H�x� t = 0�=%S�x�=%�x�. The time
dependence is found using the equations

ak�t�= eiHt/� ak e
−iHt/� = ak e

−i�kt�

a†
k�t�= eiHt/� a†

k e
−iHt/� = a†

k e
−i�kt�

(11.67)

which follow from
dak

dt
=−i�ak�t��H�=−i�kak�t��
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and we obtain from (11.62) and (11.65)

%H�x� t�=
√

�

2�L

∑
k

1√
�k

[
ake

i�kx−i�kt�+a†
ke

−i�kx−i�kt�
]

� (11.68)

We check from this expression that the field operator %H�x� t� (which has the dimensions
of a length) is Hermitian as it should be. The commutation relations of %H�x� t� and
5H�x

′� t� can be calculated immediately. First we take t = 0, %�x� = %H�x� t = 0�,
5�x′�=5H�x

′� t = 0�:

�%�x��5�x′�� = − i�
2L

∑
k�k′

√
�k′

�k

[
ak e

ikx+a†
k e

−ikx� ak′ e
ik′x−a†

k′ e
−ik′x]

= i�
L

∑
k

eik�x−x′�I = i���x−x′�I� (11.69)

where we have used (9.145) to obtain the last expression. Since this commutator is a
multiple of the identity, we trivially obtain the same result for the equal-time commutator
�%H�x� t��5H�x

′� t��.

11.3.3 Quantization of the electromagnetic field

The quantization of the electromagnetic field follows that of the scalar field in the
preceding subsection with three modifications: we must work in three dimensions, we
must take into account the vector nature of the electromagnetic field, and we must replace
the speed of sound cs by the speed of light c. Let us recall the Maxwell equations (1.8)–
(1.9) for electric field �E and magnetic field �B:

�� · �B = 0� ��× �E =−��B
�t

� (11.70)

�� · �E = �em

�0

� c2 ��× �B = � �E
�t

+ 1
�0

�jem� (11.71)

The two equations (11.70) are constraints on the fields �E and �B, and the two
equations (11.71) depend on the sources of the electromagnetic field, that is, the charge
density �em and the current density �jem. From the Maxwell equations we can derive the
continuity equation:

2�em

2t
+ �� · �jem = 0� (11.72)

One could dream of quantizing the fields �E and �B directly. However, there are two
technical difficulties with this. First, �E and �B are related by the constraints (11.70), which
means that their six components are not independent and, moreover, as shown by the
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Bohm–Aharonov effect,10 the interaction of the electromagnetic field with the charges is
not local. It is preferable to use the intermediary of the scalar and vector potentials11 V

and �A and obtain the fields by partial differentiation:

�E =−��V − 2�A
2t

� �B = ��× �A� (11.73)

The use of potentials instead of fields should not be surprising; in quantum mechanics we
have never used forces, which are related directly to the fields �E and �B by the Lorentz
law (1.11); instead, we used the potential energy. In quantum mechanics it is the energy
and momentum that play the fundamental role, because they directly influence the phase
of the wave function. In the presence of an electric field �E, it is the potential V that
shows up in the Schrödinger equation via the potential energy V = qV . It is therefore not
surprising that in the presence of a magnetic field �B, it is the vector potential �A that is
involved directly in the Schrödinger equation rather than the field �B.
The potentials are not unique. Under a gauge transformation

�A→ �A′ = �A− ���� V → V
′ = V + 2�

2t
� (11.74)

where ���r� t� is a scalar function of space and time, the fields �E and �B are unchanged.
To eliminate this arbitrariness in the potentials ��A�V ), it is usual to choose a gauge by
imposing a condition on ��A�V�. A common choice (but not the only one possible!) which
we shall use here is the Coulomb gauge, or the radiation gauge:

�� · �A= 0 � (11.75)

With this choice, the vector potential becomes transverse: in Fourier space, the con-
dition (11.75) becomes �k · �A��k� = 0 (see also Exercise 11.5.7). According to the first
equation in (11.71) and (11.73),

�� ·
(
��V + 2�A

2t

)
= �2V + 2

2t
��� · �A�= �2V =−�em

�0

�

from which we derive the scalar potential V :

V��r� t�= 1
4��0

∫ �em��r ′� t�
��r−�r ′� d3r ′� (11.76)

This expression for the scalar potential is called the instantaneous Coulomb potential,
because the retardation effects are not explicit: the time t in V is the same as that of the
source �em. This might seem to be incompatible with relativity, but it should be born in
mind that a potential is not directly observable, and so the contradiction is only apparent.12

10 See, for example, Feynman et al. [1965], Vol. II, Chapter 15.
11 We use the notation V for the electric potential so as not to create confusion with the potential energy V . A particle of

charge q in a potential V has potential energy V = qV .
12 Cf. Weinberg [1995], Chapter 8.
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In the absence of sources, �em = �jem = 0, the second of Equations (11.71) is written as

c2 ��× ���× �A�= c2 �� · ��� · �A�− c2�2 �A=−����V�
�t

− �2 �A
�t2

�

or, using (11.75) and the fact that V = 0,

22 �A
2t2

− c2�2 �A= 0� (11.77)

This wave equation is analogous to (11.59) with the three following differences: (i) the
spatial dimension is three rather than one; (ii) it involves the speed of light c rather than
the speed of sound cs; (iii) the field �A is a vector field and not a scalar one. Using the
classical expression for the energy density of the electromagnetic field, the expression
for the classical Hamiltonian becomes

Hcl =
1
2
�0

∫
d3r
(�E 2+ c2 �B 2

)
� (11.78)

If �A is the analog of �, then �E = −2�A/2t will be the analog13 of � and the term c2 �B2,
which depends on spatial derivatives of �A, will be the analog of c2s �2�/2x�

2. We can
immediately write down a Fourier expansion for the quantized electromagnetic field
�AH��r� t� by analogy with (11.68),14 making the replacements L→ L3 and �→ �0. The
last substitution is determined by comparing the terms �0c

2��� × �A�2 in (11.78) and
�c2s �2�/2x�

2 in (11.60). The final difference from (11.68) is that �A is a vector. A priori,
a Fourier component of �A should be decomposed on an orthonormal basis of three unit
vectors k̂, �e1�k̂�, and �e2�k̂� with k̂ · �ei�k̂� = 0. This is effectively the case for sound
vibrations in three dimensions in an isotropic medium,15 where the vibrations can be
either compression waves, which are longitudinal waves parallel to k̂, or shear waves,
which are transverse and perpendicular to k̂. In the case of an electromagnetic field, the
gauge condition (11.75) becomes k̂ · �A��k�= 0 in Fourier space and there is no longitudinal
component. Taking into account all these considerations, we can generalize (11.68) and
write the quantized electromagnetic field16 in the Heisenberg picture (we continue to use
periodic boundary conditions in a box of volume � = L3, or quantization in a box):

�AH��r� t�=
√

�

2�0L
3

∑
�k

2∑
s=1

1√
�k

[
a�ks�es�k̂�ei��k·�r−�kt�+a†

�ks�e∗s �k̂�e−i��k·�r−�kt�
]

� (11.79)

13 In fact, in a formulation of electromagnetism like that used in analytical mechanics (cf. Footnote 7), it is −�0 �E that plays
the role of the momentum conjugate to �A, as seen from (11.85).

14 In order to distinguish quantized fields from classical ones, we shall designate the former by sans serif letters: �A, �E, �B.
15 Our discussion is actually oversimplified, because the speed of compression waves is different from that of shear waves.
16 We have glossed over several delicate problems; see, for example, Weinberg [1995], Chapter 8, for a full discussion.
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The unit vectors �es�k̂� orthogonal to �k describe the polarization. It is possible to choose a
complex polarization basis, for example, a basis of circular polarization states: s = R�L,
which makes it necessary to perform the complex conjugation in the second term
of (11.79), thus ensuring that �A is Hermitian. The expression for the projector onto the
subspace orthogonal to �k is often useful:∑

s

esi�k̂� e
∗
sj�k̂�= �ij− k̂ik̂j � (11.80)

The operators a�ks (a
†

�ks) destroy (create) photons of wave vector �k and polarization s. They
satisfy the commutation relations

�a�ks� a
†

�k′s′ �= ��k��k′�ss′I � (11.81)

From (11.79) we derive the expression for the quantized electric field �EH =−��AH/�t:

�EH��r� t�= i

√
�

2�0L
3

∑
�k

2∑
s=1

√
�k

[
a�ks�es�k̂�ei��k·�r−�kt�−a†

�ks�e∗s �k̂�e−i��k·�r−�kt�
]

(11.82)

and, using the expression

��×
(
�es�k̂�ei�k·�r

)
= i�k×�es�k̂� ei�k·�r � (11.83)

that for the magnetic field:

�BH��r� t�=
√

�

2�0L
3

∑
�k

2∑
s=1

i
c

√
�k k̂×

[
�es�k̂�a�ksei��k·�r−�kt�−�e∗s �k̂�a†

�kse
−i��k·�r−�kt�

]
� (11.84)

Just like for a classical plane wave, �B = �k̂/c�× �E. It is easy, as in the case of a scalar
field, to calculate the commutators of the various components of the field at t = 0. We
then find the following commutation relations between the field component Ai and the
component −�0Ej of the conjugate momentum (Exercise 11.5.8):

�Ai��r��−�0Ej��r ′��= i�
∫ d3k

�2��3
e i�k·��r−�r ′�

(
�ij− k̂ik̂j

)
I� (11.85)

where we have used (9.151). We then deduce that Ex commutes with Bx, but not with By

or Bz, which shows that it is not possible to measure simultaneously the x component of
the electric field and the y component of the magnetic field at the same point.
The expression for the Hamiltonian (Exercise 11.5.8) is a trivial generalization

of (11.66):

H =∑
�k�s

��k

(
a†

�k�sa�k�s+
1
2

)
� (11.86)
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We then find the (infinite) zero-point energy:

E0 =
1
2

∑
�k�s

��k →
L3

�2��3

∫
d3k�ck= �cL3

2�2

∫ �

0
k3dk� (11.87)

where we have used (9.151). In the case of black-body radiation, it was shown that the
thermal fluctuations leading to infinite energy in classical statistical mechanics can be
controlled by quantum mechanics. However, we eliminated that infinity by introducing
another one, an infinity associated with quantum fluctuations. These quantum fluctuations
have observable effects: for example, they lead to the Casimir effect (Exercise 11.5.12).
The zero-point energy is also called the vacuum energy; it may play an important role in
cosmology, where it might be related to the so-called dark energy, whose properties are
still far from being understood.
It is possible to couple the quantized field to a classical source �jem ��r� t� by writing

W�t�=−
∫

d3r �jem ��r� t� · �A��r�� (11.88)

This coupling generalizes that of (11.124) for the forced harmonic oscillator of Exer-
cise 11.5.4, with the force f�t� replaced by the source �jem and the position operator Q
replaced by the quantized field �A. It can then be shown17 that if we start from a state
with zero photons and if the source acts for a finite time, we obtain a coherent state of
the electromagnetic field in which the number of photons in a mode �k obeys a Poisson
law with average given by ��jem��k��k��2, where �jem��k��k� is the four-dimensional Fourier
transform of �jem��r� t�.
The quantized field �A was written down in the Coulomb gauge. This is the gauge

most convenient for elementary problems, but it is not convenient for a general study
of quantum electrodynamics. The condition �� · �A= 0 distinguishes a particular reference
frame, and so the Lorentz invariance of the theory is not manifest. Naturally, this is
not a fundamental defect, because it is possible to show that the physical results are
consistent with Lorentz invariance. The real fault of the Coulomb gauge is that it leads to
inextricable calculations because the renormalization procedure (elimination of infinities)
requires that Lorentz invariance be maintained explicitly in order for the calculations to
be manageable.18 A gauge in which Lorentz invariance is manifest is the Lorentz gauge:19

2V

2t
+ �� · �A= 0�

However, the Lorentz gauge introduces unphysical states, which must be correctly inter-
preted and eliminated from the physical results. These unphysical states do not appear in the
Coulomb gauge, which is an example of a “physical gauge.” Unfortunately, it is not possible
to use a physical gauge and preserve formal Lorentz invariance at the same time.

17 See Exercise 11.5.4. A detailed discussion can be found, for example, in Le Bellac [1991], Chapter 9, or C. Itzykson and
J.-B. Zuber, Quantum Field Theory, New York: McGraw-Hill (1980), Chapter 4.

18 From a technical point of view, the counter-terms that eliminate the infinities are constrained by the Lorentz invariance if
the gauge choice respects this formal invariance.

19 This formal Lorentz invariance is manifest in four-dimensional notation: 2�A
� = 0, A� = �V � �A).



380 The harmonic oscillator

11.3.4 Quantum fluctuations of the electromagnetic field

In the formalism of the preceding subsection, the electromagnetic field is an operator and
quantum fluctuations should be present. In the zero-photon state, or vacuum state �0�, the
expectation values of the electric field (11.82) and the magnetic field (11.84) vanish:


0��EH��r� t��0� = 
0��BH��r� t��0� = 0�

because 
0�a�ks�0� = 
0�a†

�ks�0� = 0. However, the vanishing of an expectation value does
not imply that there are no fluctuations. These fluctuations have important physical
consequences, and we shall study them for several types of state of the electromagnetic
field: the vacuum, states with a fixed number of photons, coherent states, and squeezed
states. In order to simplify the discussion, we shall concentrate on a single mode with
wave vector �k and fixed polarization s, and so a�ks → a, �k → �. In addition, we take
�r = 0. This restriction to a single mode is often a good approximation, for example in the
case of a single-mode laser when transverse effects due to diffraction are neglected, or
for a mode in a superconducting cavity of the type studied in Appendix B. The electric
field in a cavity reduced to a single mode is written as

E�t�= i

√
��

2�0�

(
a e−i�t−a†ei�t

)
� (11.89)

where � is the cavity volume; the expression (11.89) can be derived immediately
from (11.82). Here we have suppressed the label H and the vector notation in order to
simplify the notations. The operators a and a† satisfy the commutation relation �a�a†�= I .
First let us calculate the fluctuations of E in the vacuum state using(

ae−i�t−a†ei�t
)2 = a2e−2i�t+ �a†�2e2i�t−2a†a− I� (11.90)

Only the last term gives a nonzero result when the vacuum expectation value is taken,
and we find


0�E2�t��0� = ��

2�0�
�

which gives the dispersion

!0E=
[
0�E2�t��0�−
0�E�t��0�2]1/2 =

√
��

2�0�
� (11.91)

The quantum fluctuations of the electromagnetic field have important physical conse-
quences. In addition to the Casimir effect (Exercise 11.5.12), they also lead to a splitting
between the 2s1/2 and 2p1/2 levels of the hydrogen atom, which are degenerate in the
approximation of the relativistic Dirac theory (cf. Section 14.2.2). This is called the Lamb
shift. This shift of about 4�38× 10−6 eV is roughly 10−7 of the difference between the
energies of the 1s and 2s levels, and amounts to 1058 MHz in frequency units.20 These
quantum fluctuations are also responsible for the anomalous magnetic moment of the
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electron. Whereas the Dirac theory predicts an electron gyromagnetic ratio of �e = qe/me,
the actual one is

�e =
qe
me

(
1+ �

2�
+O��2�

)
�

where �� 1/137 is the fine-structure constant.
In a state with a fixed number of photons n (in the mode under consideration), the

expectation value of E�t� is zero because 
n�a�n� = 
n�a†�n� = 0, while that of E2�t� is,
according to (11.90) and (11.12),


n�E2�t��n� = ���2n+1�
2�0�

�

This leads to the dispersion !nE in the state �n�:

!nE=
[
n�E2�n�−
n�E�n�2]1/2 =

√
���2n+1�

2�0�
� (11.92)

This dispersion grows as the square root of the number of photons when n� 1.
States which are more interesting in practice than those with a fixed number of photons

are coherent states �z�. Most ordinary light sources emit states of the electromagnetic
field that are very close to a coherent state (lasers), or to a statistical mixture of coherent
states (classical sources). Let us calculate the expectation value of E�t� in a coherent state
setting z= �z� exp�i'�:


z�E�t��z� = i

√
��

2�0�

(
ze−i�t− z∗ei�t

)=
√
2��

�0�
�z� sin��t−'�� (11.93)

and


z�E2�t��z� = − ��

2�0�

[(
ze−i�t− z∗ei�t

)2−1
]
�

The dispersion !zE in a coherent state is identical to that in vacuum:

!zE=
[
z�E2�t��z�−
z�E�t��z�2]1/2 =

√
��

2�0�
= !0E� (11.94)

The average number of photons is 
N�z = 
z�N �z� = �z�2 and the dispersion !zN = �z�.
These two results follow from the Poisson distribution (11.34) for the number of photons,
which makes it possible to predict the statistics of results of photon-counting experiments.
In the present section only, we define the Hermitian operators Q and P as

Q= 1
2

(
a+a†

)
� P = 1

2i

(
a−a†

)
� (11.95)

20 A small part of this shift (−27MHz � 3%) arises not from fluctuations of the electromagnetic field, but from fluctuations
of the electron–positron field. The creation of (virtual) electron–positron pairs has the effect of screening the Coulomb field
and acts as a vacuum dielectric constant. This effect is much more important in muonic atoms; cf. Exercise 14.5.3 and
Footnote 36 of Chapter 1.
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They satisfy the commutation relation �Q�P� = i/2, which leads to the Heisenberg
inequality

!P !Q≥ 1
4
� (11.96)

Direct calculation shows that

E�t�=
√
2��

�0�

[
Q sin�t−P cos�t

]
� (11.97)

whereas, according to (11.37) and (11.39),


Q�z = Re z� 
P�z = Im z� !zP = !zQ= 1
2
�

The Heisenberg inequality (11.96) is therefore saturated when the field is in a coherent
state, in agreement with the results of Section 11.2. The expectation value 
E�t��z of the
field is given by (11.93). To interpret the fluctuations about this expectation value it is
convenient to use a Fresnel representation, in which the field is the projection on a fixed
axis of a rotating vector. The Fresnel vector of the expectation value is a vector of length

�z�
√
2��

�0�
= 
�z�

which rotates in a plane with angular velocity �. To be specific, let us take ' = 0 in
(11.93). At time t = 0, 
E�t��z = 
�z� and, according to (11.94), the dispersion about this
expectation value is !zE= 
/2. At time t = �/2� we have 
E�t��z = 0 and, as always,
!zE= 
/2. In general, we see that fluctuations may be visualized by imagining that the
tip of the Fresnel vector is not actually a point, but rather a fuzzy area: the tip is centered
at the end of a vector of length 
�z�, but fluctuates within a circle of radius

R= 


2
=
√

��

2�0�
�

These fluctuations of the tip of the Fresnel vector are interpreted as the dispersion in the
phase !z', and, as shown by Fig. 11.3,

!z'� !zE

�z� =

1
2�z� � (11.98)

According to (11.39), the fluctuation of the number of photons is precisely !zN = �z�.
For a coherent state we then obtain a relation between the dispersion !z' of the phase
and the dispersion !zN of the number of photons:

!z' !zN � 1
2
�

These fluctuations are very weak for a single-mode laser where �z� � 1, but they are
important for the superconducting cavity studied in Appendix B, where �z�<∼ 3.
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∆φ

∆ N

∆φ

∆ N
∆ N

∆φ

(a) (b) (c)

Fig. 11.3. Fresnel representation of the electric field. The shaded region represents the dispersion
at the tip of the field. (a) A coherent state; (b) and (c) squeezed states.

We would like to obtain a Heisenberg inequality for the product!'!N , but a derivation
similar to that of Section 4.1.3 is impossible because we do not know how to define a
phase operator. Nevertheless, we can try to simulate quantum fluctuations by taking as
a model a classical field whose amplitude and phase are random functions. Then it is
possible to prove the inequality

!'!N ≥ 1
2

� (11.99)

Coherent states saturate this inequality.
There is another type of interesting state, a squeezed state. Such states are obtained by

a Bogolyubov transformation of the operators a and a†.21 Let b and b† be the operators

b = 
a+�a†� b† = 
∗a†+�∗a� (11.100)

where the complex numbers 
 and � satisfy

�
�2−���2 = 1�

It is straightforward to show that the operators b and b† satisfy �b� b†� = I . It is said
that the Bogolyubov transformation is a canonical transformation, as it preserves the
commutation relations. Since the operators b and b† satisfy the same algebra as a and a†,
there exist states �z̃� such that b�z̃� = z̃�z̃�. The transformation inverse to (11.100) is

a= 
∗b−�b†� a† = 
b†−�∗b�

A simple but cumbersome calculation (Exercise 11.5.5) shows that the dispersions in the
state �z̃� are

!z̃P =
1
2
�
−��� !z̃Q= 1

2
�
+���

21 This transformation was first used by Bogolyubov in the early 1950s in the theory of superfluidity.
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or, if 
 and � are real or have the same phase,

!z̃P !z̃Q= 1
4
�

This shows that squeezed states, just like coherent states, saturate the Heisenberg
inequality. Figures 11 (b) and (c) schematically show the Fresnel representation of the
electric field in a squeezed state. We see that we can either decrease the dispersion of
the phase and increase that of N , or, inversely, decrease the dispersion in the number of
photons and increase that in '.

11.4 Motion in a magnetic field

11.4.1 Local gauge invariance

Now let us return to the classical electromagnetic field ��E� �B� with the objective of
determining the form of the interaction between this field and a quantum particle of
charge q. In classical electrodynamics the electric charge density �em��r� t� and the current
density

�jem��r� t�= �em��r� t��v��r� t� (11.101)

satisfy the continuity equation (11.72). We want to generalize the expression for the
current to quantum physics. In Chapter 9 we found the expression for the particle cur-
rent (9.141):

�j ��r� t� = Re
{
�∗��r� t�

[−i�
m

��
]
���r� t�

}

= �∗��r� t�
[−i�
2m

��
]
���r� t�−���r� t�

[−i�
2m

��
]
�∗��r� t�� (11.102)

The electromagnetic current created by the motion of a quantum particle of charge q

should a priori be jem = q�j, the charge density �em being q���2. The particle current in
this form obeys the continuity equation (11.72) when the wave function ���r� t� satisfies
the Schrödinger equation:

i�
2�

2t
=
(
− �2

2m
�2+V

)
��

and similarly for the associated electromagnetic current

�em = q���2� �jem = q�j�
which satisfies (11.72). However, we shall see that the expression for the current (11.102)
must be modified when a vector potential is present. The current (11.102) is invariant
under a global gauge transformation, which consists of multiplying � by a phase factor

���r� t�→ �′��r� t�= exp
(
−i

q

�
�
)
���r� t�=+���r� t� � (11.103)
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where � is a real number. When � is a function of �r and t, we have the case of a local
gauge transformation; the connection to (11.74) will soon become clear. We are going
to deduce the form of the current from a principle of local gauge invariance. This might
a priori seem arbitrary, but in fact this principle is very general, and it is now believed
that all the fundamental interactions of elementary particle physics can be derived from it
(Exercise 11.5.11). A local gauge transformation is obtained by replacing the constant �
in (11.103) by a function of �r and t:

���r� t�→ �′��r� t�= exp
(
−i

q

�
���r� t�

)
���r� t�=+��r� t����r� t� � (11.104)

This transformation is manifestly unitary. We can immediately verify that the cur-
rent (11.102) is not invariant under a local gauge transformation, because the gradient
acts on exp�iq�/��. We shall modify the expression for the current by replacing the
gradient �� by the covariant derivative �D:

−i� �D =−i���−q �A � (11.105)

In contrast to the ordinary derivative, the covariant derivative has a simple behavior under
a local gauge transformation (11.104):

−i� �D�=−i� �D�+−1�′� = �−i���−q �A� exp
(
i
q

�
���r� t�

)
�′��r� t�

= +−1�−i���−q �A+q �����′

= +−1�−i���−q �A′��′ =+−1�−i� �D′�′�� (11.106)

where �D′ is the covariant derivative calculated using the transformed vector poten-
tial (11.74). The covariant derivatives �D and �D′ are physically equivalent because �A and �A′

are. The expression for the current becomes invariant under a local gauge transformation
if the ordinary derivative in (11.102) is replaced by the covariant derivative:

�j ��r� t�= Re
{
�∗��r� t�

[−i�
m

��− q

m
�A
]
���r� t�

}
= Re

{
�∗��r� t�

[−i�
m

�D�

]}
�

(11.107)

Indeed, if � is expressed as a function of �′ using (11.104) and (11.106), then the current
is invariant:

�j ��r� t�= Re
{
�′∗��r� t�++−1

[−i�
m

�D′�′
]}

= Re
{
�′∗��r� t�

[−i�
m

�D′�′
]}

= �j ′��r� t��
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This suggests that the velocity operator d�R/dt is not simply d�R/dt = �P/m=−�i�/m���
but rather

d�R
dt

=− i�
m
�D =− i�

m
��− q

m
�A� (11.108)

Knowing that the velocity operator is given by the commutator of �R and the Hamiltonian,
let us study its x component. According to (8.61) and the expression (11.108) for d�R/dt,

Ẋ = i
�
�H�X�= 1

m
�Px−qAx��

which, according to the reasoning of Section 8.4, gives the most general form of H :

H = 1
2m

(�P−q �A
)2+qV = 1

2m

(
−i���−q �A

)2+qV = 1
2m

�−i� �D�2+qV� (11.109)

where V = qV is an arbitrary function of �R and t. Requiring local gauge invariance of the
current allows us to recover the generic form (8.73) of the Hamiltonian compatible with
Galilean invariance. The substitution −i��� →−i� �D in the Schrödinger equation in the
absence of an electromagnetic field gives this equation in the presence of an electromag-
netic field; this is called minimal coupling.22 The minimal-coupling prescription extends
to non-Abelian gauge theories (Exercise 11.5.11) and can be used to write down all the
interactions of the Standard Model of elementary particle physics between the spin-1/2
particles (“matter particles”) and spin-1 particles (gauge bosons) listed in Section 1.1.3.
In analytical mechanics, it can be shown that the Hamiltonian leading to the Lorentz

force (1.11) is

Hcl =
1
2m

(
�p−q �A

)2+qV �

Another method of obtaining (11.109) is to start from this classical form and use the
correspondence principle to replace �p and �r by operators: �p→ �P =−i��� , �r → �R.

If � is a solution of the Schrödinger equation with the potential ��A�V�, then �′ will be
a solution of it with the gauge-transformed potential ��A′�V

′
� (11.74). The Schrödinger

equation for � can be written as

i�
2�

2t
= 1

2m
�−i� �D�2�+qV��

However, on the one hand

2�

2t
= 2

2t

(
exp
(
iq�
�

)
�′
)
=+−1

(
iq
�

2�

2t
�′ + 2�′

2t

)
�

22 The interaction W = −��S · �B between a spin magnetic moment and a magnetic field does not appear to be derived from
minimal coupling. In fact, this interaction is derived from the relativistic Dirac equation and the use of the minimal-coupling
prescription in that equation, which leads to the gyromagnetic ratio � = qe/me. The corrections of the anomalous magnetic
moment type are derived from minimal coupling applied to quantum electrodynamics.



11.4 Motion in a magnetic field 387

while on the other

1
2m

�−i� �D�2�= 1
2m

�−i� �D�2+−1�′ =+−1 1
2m

�−i� �D′�2�′�

Dropping the factor +−1 from the two sides of the Schrödinger equation for �′, we find

i�
2�′

2t
= 1

2m
�−i� �D′�2�′ +qV

′
�′�

It can also be verified (Exercise 11.5.10) that �j obeys the continuity equation:

2���2
2t

+ �� · �j = 0� (11.110)

11.4.2 A uniform magnetic field: Landau levels

As an application, let us study the motion of a charged particle in a uniform constant
magnetic field. We shall ignore spin effects, as the interaction of a magnetic moment
related to the spin has already been studied in Section 3.2.5. We assume that �B points
along Oz, and to simplify the discussion we also assume that the motion is confined to
the plane xOy. This case is in fact of great practical interest, because two-dimensional
structures having important applications like the quantum Hall effect can be manufactured
in the laboratory.23 A classical particle under the action of a force

�F = q�v× �B

moves in a circle of radius � = mv/�q�B with frequency � = �q�B/m,24 the Larmor
frequency (cf. (3.61)). If, to be specific, we assume that q < 0, the circle is traced in the
counterclockwise direction. The motion is then

x�t�= x0+� cos�t�

y�t�= y0+� sin�t�
(11.111)

where x0 and y0 are the coordinates of the center of the circle. The projection of this
uniform circular motion on the axes Ox and Oy gives two independent harmonic oscil-
lators, which we shall recover in quantum mechanics. A possible choice for the vector
potential is

�A= 1
2
�B×�r� (11.112)

23 Cf. Ph. Taylor and O. Heinonen, Condensed Matter Physics, Cambridge: Cambridge University Press (2002), Chapter 10.
24 If the motion occurs in three dimensions, the trajectory is a helix whose projection on the plane xOy is a circle of radius �

traced out with frequency �.
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or Ax = −yB/2, Ay = xB/2, Az = 0. This choice is obviously not unique, and another
common choice is Ax =Az= 0, Ay = xB.25 Let us calculate the commutator of the velocity
components:

�Ẋ� Ẏ � = 1
m2

[
Px+

q

2
YB�Py−

q

2
XB
]

= 1
m2

qB

2

(
−�Px�X�+ �Y�Py�

)
=− i��

m
I� (11.113)

Since the Hamiltonian H can be written as

H = 1
2
m
(
Ẋ2+ Ẏ 2

)
� (11.114)

we can recover the form (11.9) by defining

Q̂=
√

m

��
Ẏ � P̂ =

√
m

��
Ẋ�

so that

H = 1
2

��
(
P̂2+ Q̂2

)
� (11.115)

The energy levels are labeled by an integer n:

En = ��

(
n+ 1

2

)
� n= 0�1�2� � � � (11.116)

These levels are called Landau levels. Guided by the analogy with the classical case,
we define an operator R2 which is the analog of the squared radius �2 of the circular
trajectory:

R2 = 1
�2

(
Ẋ2+ Ẏ 2

)= 2H
m�2

� (11.117)

The expectation value of R2 in the state �n� is


R2�n =
2

m�2

n�H�n� = 2�

m�

(
n+ 1

2

)
�

If the particle is in an eigenstate of H , the dispersion of R2 is zero. The flux % of the
magnetic field through an orbit is quantized in units of h/�q�. We can write

% = �
R2�n B =
h

�q�
(
n+ 1

2

)
�

The second characteristic of the motion is the position of the center of the circle. Follow-
ing (11.111), we define the operators X0 and Y0 as

X0 = X− 1
�
Ẏ � Y0 = Y + 1

�
Ẋ� (11.118)

25 This gauge is used by, for example, Landau and Lifschitz [1958], Section 111.
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Using �X� Ẋ�= �Y� Ẏ �= i�I/m and (11.113), the commutator �X0� Y0� becomes

�X0� Y0�=
i�
m�

I�

It can immediately be verified that

�X0� Ẋ�= �X0� Ẏ �= �Y0� Ẋ�= �Y0� Ẏ �= 0�

and so �H�X0�= �H�Y0�= 0. The operator R2
0,

R2
0 = X2

0 +Y 2
0 � (11.119)

commutes with R2; R2 and R2
0 are Hermitian and can be diagonalized simultaneously.

Setting

Q̂0 =
√
m�

�
X0� P̂0 =

√
m�

�
Y0�

we find

R2
0 =

�

m�

(
Q̂2

0+ P̂2
0

)
�

and the eigenvalues r20 of R2
0 are

r20 =
2�

m�

(
p+ 1

2

)
� p= 0�1�2� � � � (11.120)

We have again found two harmonic oscillators. The first gives the value n of the Landau
level, that is, the radius of the orbit, and the second gives the position of the center of the
orbit. Let us assume that the particle is located in the plane inside a circle of radius r0
and that �2 	 r20 . The values of p will then be limited to

p ≤ m�

2�
r20 =

m�

2��
��

where � = �r20 is the area of the circle. The degeneracy g of a Landau level n is given
by the number of possible values of p:

g = m�

2��
� = �q�B

2��
�� (11.121)

This result must be multiplied by a factor of 2 if we wish to take spin into account. To
be rigorous, it is necessary to check that there is no extra degeneracy by showing that
any operator commuting with H (or R2) and R2

0 is a function of H and R2
0, so that it is

not possible to find additional physical properties which are compatible and independent.
The demonstration is similar to that for the simple harmonic oscillator (Exercise 11.5.2).
It is not difficult to generalize to the case of three-dimensional motion. Actually, since

Az = 0 it is sufficient to add to the Hamiltonian a term P2
z /2m whose eigenvalues are

p2
z/2m. The total energy is a function of n and pz:

En�pz
= ��

(
n+ 1

2

)
+ p2

z

2m
� (11.122)
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If the vertical motion of the particle is limited to the range 0 ≤ z ≤ Lz, the number of
Landau levels in the range �pz�pz+!pz� is

g = Lz

2��

�q�B
2��

�!pz� (11.123)

11.5 Exercises

11.5.1 Matrix elements of Q and P

1. Calculate the matrix elements 
n�Q�m� and 
n�P�m� of the operators Q and P in the basis �n�.
2. Calculate the expectation value 
n�Q4�n� of Q4 in the state �n�. Hint: calculate

��n� =
(
a+a†

)2 �n�
and ���n��2.

11.5.2 Mathematical properties

1. Prove the commutation relations

�N�ap�=−pap and �N�a†p�= pa†p�

Show that the only functions of a and a† that commute with N are functions of N , and that the
eigenvalues of N are nondegenerate.

2. Let � ′ be the subspace of � spanned by the vectors �n� and let � ′
⊥ be the orthogonal space:

� =� ′ ⊕� ′
⊥. We use 
 ′ to denote the projector onto � ′. Show that 
 ′ commutes with a and

a† and prove, using the von Neumann theorem of Section 8.3.2, that either 
 ′ = 0 or 
 ′ = I .
Since the first possibility is excluded, 
 ′ = I and the vectors �n� form a basis of � .

11.5.3 Coherent states

1. Calculate 
z�P2�z� and 
z�H2�z� and derive the dispersions (11.39).
2. Let us study states ���t�� such that the expectation values of a and H have properties identical

to the classical properties. First, if 
a��t�= 
��t��a���t��, show that

i
d
dt

a��t�= �
a��t��

so that 
a��t� must satisfy the same differential equation (11.29) as z�t�. We define the complex
number z0 as

z0 = 
a��t = 0�= 
��0��a���0���
and so we then have the following solution of the differential equation for 
a��t�:


a��t�= z0e
−i�t�
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3. The second condition concerns the expectation value of the Hamiltonian. Using (11.30) and
adding the zero-point energy, we require that


��0��H���0�� = ��

(
�z0�2+

1
2

)
�

or, equivalently,


a†a� = 
��0��a†a���0�� = �z0�2�
Let the operator b�z0�= a− z0. Show that


��0��b†�z0�b�z0����0�� = 0

and that

a���0�� = z0���0���
The state ���0�� then is the coherent state �z0�.

4. Let D�z� be a unitary operator (prove this!):

D�z�= exp�−z∗a+ za†��

Using (2.55), show that

D�z�= exp
(
−1
2
�z�2
)
exp�za†� exp�−z∗a�� D�z��0� = �z��

5. The wave function of a coherent state. Express D�z� as a function of the operators P and Q and
calculate the wave function 1z�q�= 
q�z�. Hint: write D�z� in the form

D�z�= f�z� z∗� exp�c�z− z∗�Q� exp�ic′�z+ z∗�P��

find the constants c and c′, and use the fact that P is the infinitesimal generator of translations
(cf. Section 9.1.1):

exp
(
−i

Pl

�

)
�q� = �q+ l��

Express 1z�q� as a function of the wave function �0�q� (11.23) of the ground state.
6. Show that an operator A is fully determined by its “diagonal elements” 
z�A�z�. Hint: use


z�A�z� = e−�z�
2∑
n�m

Anmz
nz∗m√

n!m! �

11.5.4 Coupling to a classical force

Coherent states can be used for a simple treatment of the quantum version of the forced
harmonic oscillator. In elementary classical mechanics, the action of an external force
F�t� on a harmonic oscillator

mq̈�t�=−m�2q+F�t�
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is carried over into the Hamiltonian by a coupling −qF�t� between the displacement q
and the force F�t�. In the quantum version a coupling between the displacement Q and
the external force is added to the Hamiltonian of the simple harmonic oscillator (11.9):

W�t�=−Q

√
2m�

�
f�t�� (11.124)

where the multiplicative factor f�t� is chosen so as to simplify the later expressions.
Here Q is an operator, but f�t� is a number which, with our definition (11.124), has
the dimensions of energy. It is conventionally referred to as the classical force or the
classical source. We shall use H0 to denote the Hamiltonian (11.9) of the simple harmonic
oscillator and H�t� the total Hamiltonian:

H�t�=H0+W�t�� (11.125)

1. The problem greatly resembles that encountered in Section 9.6.3 (cf. (9.156)), and we can
attempt to solve it using perturbation theory. However, it turns out that it is possible to calculate
the time evolution defined by (11.125) exactly. Show that

H�t�=H0−
(
a+a†

)
f�t��

We rewrite the evolution operator U�t�= U�t� t0 = 0� (4.14) in the form

U�t�= U0�t�UI�t��

where U0�t� = exp�−iH0t/��. In order to simplify the notation, we have chosen the reference
time t0 = 0 and we write U�t� instead of U�t�0�. Show that UI�t� satisfies the differential
equation

i�
dUI

dt
= U−1

0 W�t�U0UI =WI�t�UI� (11.126)

The operator WI�t�,

WI�t�= U−1
0 W�t�U0 = eiH0t/� W�t�e−iH0t/�� (11.127)

is the perturbation in the Dirac picture or the interaction picture, hence the subscript I. This
picture is intermediate between those of Schrödinger and Heisenberg (cf. Section 4.2.5). The
results (11.126) and (11.127) are quite general and do not depend on the specific form of H0 or
W�t�. In fact, we have reformulated the method of Section 9.6.3 in operator language.

2. Show that the operator a in the interaction picture is given by

aI�t�= eiH0t/� a e−iH0t/� = ae−i�t

given that f�t� is a number and not an operator. Hint: cf. (11.67). Derive the differential equation
for UI�t�:

i�
dUI

dt
=− (a e−i�t+a† ei�t

)
f�t�UI�t�=WI�t�UI�t�� UI�0�= I� (11.128)

In (4.19) we already noted that (11.126) cannot be simply integrated as

UI�t�= exp
(
− i

�

∫ t

0
WI�t

′�dt′
)
�
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because in general the commutator �WI�t
′��WI�t

′′�� �= 0. In the present case this commutator is
not zero but rather a multiple of the identity, which allows (11.128) to be integrated. From the
identity (2.55) of Exercise 2.4.11, valid if �Ai�Aj�= cijI , derive

eAneAn−1 · · · eA1 = eAn+···+A1 e
1
2
∑

j>i�Aj �Ai��

3. Divide the interval �0� t� into n infinitesimal intervals !t and, starting from

UI�t��
n∏

j=1

[
exp
(
− i

�
WI�tj�!t

)]
�

show that

UI�t�� exp

(
− i

�
!t

n∑
j=1

WI�tj�

)
exp

(
− �!t�2

2�2

∑
tj>ti

[
WI�tj��WI�ti�

])
�

What is the commutator
[
WI�t

′��WI�t
′′�
]
? Show that we obtain UI�t� by taking the limit !t→ 0:

!t
n∑

j=1

WI�tj� →
∫ t

0
dt′WI�t

′�=−
∫ t

0
dt′
(
a e−i�t′ +a†ei�t

′)
f�t′�

= −�az∗�t�−�a†z�t��

where the complex number z�t� is defined as

z�t�= 1
�

∫ t

0
dt′ ei�t

′
f�t′��

4. Obtain the !t→ 0 limit of

�!t�2
∑
tj>ti

�WI�tj��WI�ti��

and show that

UI�t� = exp
[
i
(
az∗�t�+a†z�t�

)]
exp
[
− X

2�2

]
�

X =
∫ t

0
dt′
∫ t

0
dt′′ e−i��t′−t′′� f�t′�f�t′′���t′ − t′′��

where ��t� is the sign function: ��t�= 1 if t > 0, ��t�=−1 if t < 0.
5. This result can be written in a more convenient form. Show that

exp
[
i
(
az∗�t�+a†z�t�

)]= exp
[
ia†z�t�

]
exp �iaz∗�t�� exp

[
−1
2
z�t�z∗�t�

]

and, noting that 2 �t�−��t�= 1, where  �t� is the Heaviside function, show that

UI�t� = eia
†z�t� eiaz

∗�t�e−Y/�2
� (11.129)

Y =
∫ t

0
dt′
∫ t

0
dt′′ e−i��t′−t′′� f�t′�f�t′′� �t′ − t′′�� (11.130)

Verify by explicit calculation that (11.129)–(11.130) obey the original differential equa-
tion (11.128).
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6. Let us study the case where the initial state at time t = 0 is an eigenstate �n� of H0 assuming
that the force acts only during a finite time interval �t1� t2� and that we choose to observe the
oscillator at a time t > t2, where 0< t1 < t2 < t. Defining the Fourier transform f̃ ��� of f�t�/�,

f̃ ���= 1
�

∫ �

−�
dt′ ei�t

′
f�t′�= 1

�

∫ t2

t1

dt′ ei�t
′
f�t′��

and using the Fourier representation of the  function,

 �t�= lim
,→0+

∫ +�

−�
dE
2i�

eitE

E− i,
and

1
E− i,

= P
1
E
+ i���E�� (11.131)

where P designates the principal part, show that Y is given by

1
�2

Y = P
∫ dE

2i�E
�f̃ �E−���2+ 1

2
�f̃ ����2

= i'+ 1
2
�f̃ ����2�

7. Show that the final result for UI�t� is independent of t for t > t2:

UI�t�= exp
(
ia†f̃ ��

)
exp
(
iaf̃ ∗��

)
exp�−i'� exp

(
−1
2
�f̃ ����2

)
� (11.132)

Show that if the oscillator is in its ground state at time t = 0, the final state vector is a coherent
state:

UI�t��0� = e−i' �if̃ ����� (11.133)

Show that the probability of observing a final state �m� is given by a Poisson law (11.34):

p�m�=
(
�f̃ ����2

)m
exp
(
−�f̃ ����2

)
m! � (11.134)

8. Generalize the above results to the coupling (11.88) of a quantized electromagnetic field to a
classical source �jem��r� t� by writing the perturbation in the form (see Footnote 17)

W�t�=−
∫ d3k

�2��3
�A�k · �jem��k� t��

11.5.5 Squeezed states

Replacing a and a† by their expression (11.100) as functions of b and b†, calculate


z̃� (a+a†
) �z̃� = z̃�
∗ −�∗�+ z̃∗�
−��

and


z̃��a+a†�2�z̃� = 
z̃� [a2+ �a†�2+2a†a+ I
] �z̃��

Show that

�!z̃Q�2 = 1
4
�1+2���2−
∗�−
�∗�= 1

4
�
−��2�
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Also calculate !z̃P. Writing


= cosh  � �= sinh  ei'�

show that

�
−��2 �
+��2 = cosh4  −2 cosh2  sinh2  cos2'+ sinh4  

and derive

!z̃Q!z̃P =
1
4

if '= 0 or '= �.

11.5.6 Zero-point energy of the Debye model

1. In the Debye model it is assumed that the dispersion law ��k� = cs�k� is valid for all k ≤ kD.
Using

L

2�
dk= L

2�cs
d��

show that 0≤�≤�D with �D = cskD = 2�cs/l. The quantity �D is called the Debye frequency.
Derive the zero-point energy

E0 =
1
4
N��D�

2. Generalize to three dimensions and show that in this case

E0 =
9
8
N��D�

11.5.7 The scalar and vector potentials in Coulomb gauge

We can write the expression (11.76) giving the instantaneous Coulomb potential
formally as

V =− 1
�0

��2�−1�em�

which is the inverse of �2V =−�em/�0. Use the second Maxwell equation (11.71) in the
form

c2 ��× ���× �A�= 2

2t

(
−2�A

2t
− ��V

)
+ 1

�0

�jem

to show that �A satisfies

1
c2

22 �A
2t2

−�2 �A= �0�j T
em�

where the “transverse electromagnetic current” �j T
em is

�j T
em = �jem− �� · ���2�−1��� · �jem���
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11.5.8 Commutation relations and Hamiltonian of the electromagnetic field

1. Taking t = 0, evaluate the commutator (11.85):

�Ai��r��−�0Ej��r ′��= i�
∫ d3k

�2��3

(
�ij− k̂ik̂j

)
ei�k·��r−�r

′��

Show that these relations are also valid for the equal-time commutator:

�AHi��r� t��−�0EHj��r ′� t���

2. Derive the commutation relations between EHi and BHj .

3. Express the Hamiltonian (11.78) with �E→ �E and �B→ �B as a function of the operators a�ks and
a†

�ks at t = 0. Hint: for a polarization s write

�Es = i

√
�

2�0�

∑
�k

√
�k

(
a�ks�es−a†

−�ks�es ∗
)
ei�k·�r

=∑
�k
�E�ks e

i�k·�r

and use the Parseval relation ∫
d3r �E2

s = �
∑
�k
�E�ks · �E−�ks�

Proceed in the same way for �B noting that

��es× k̂� · ��es× k̂�= 1�

11.5.9 Quantization in a cavity

1. We consider the classical scalar field ���r� t� of Section 11.3.2 in the three-dimensional case,
assuming that this field is enclosed in a cavity. Let �j be an eigenfrequency of the cavity and

�j��r� t�= �j��r� cos��t−'�

be the corresponding field, which obeys the wave equation (11.59) with appropriate boundary
conditions, for example, vanishing on the cavity walls: �j��r�= 0 at the walls. The eigenfunctions
�j��r� are assumed to be real and form a complete orthogonal set:∫

d3r �j��r��k��r�= �jk�
∑
j

�j��r��j��r ′�= ���r−�r ′��

Show that the quantized field in the Heisenberg picture

%H��r� t�=
√

�

2�

∑
j

√
1
�j

(
aje

−i�jt+a†
j e

i�jt
)
�j��r� (11.135)

satisfies the equal-time commutation relations

�%H��r� t��5H��r ′� t��= �%H��r� t��� %̇H��r ′� t��= i����r−�r ′�I
if the operators aj and a†

j satisfy the commutation relations �aj� a
†
k�= �jkI .
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2. Application to dimension d = 1. The field is contained in the interval �0�L� with vanishing
boundary conditions at the ends ��x= 0�= ��x=L�= 0. Show that in this case the eigenmodes
are labeled by a wave vector k:

�k�x�=
√

2
L

sin kx� k= �j

L
� j = 1�2� � � �

Verify the orthogonality and completeness relations:

2
L

∫ L

0
dx sin kx sin k′x = �kk′ �

2
L

∑
k

sin kx sin kx′ = ��x−x′��

Derive the expression for %H�x� t�.
3. The electromagnetic field. We take the case of three dimensions assuming that the field is

enclosed in a cavity which is a parallelepiped of sides Lx, Ly, Lz and volume � = LxLyLz.
Show that instead of (11.82) we have

�EH��r� t�= i

√
4�

�0�

∑
�k

2∑
s=1

√
�k

[
a�ks�es�k̂� e−i�kt−a†

�ks�e∗s �k̂� ei�kt
]
sin�xkx� sin�yky� sin�zkz�

(11.136)
with

�k=
(
�

Lx

nx�
�

Ly

ny�
�

Lz

nz

)
� nx� ny� nz = 1�2� � � �

11.5.10 Current conservation in the presence of a magnetic field

Using the Schrödinger equation in a magnetic field, show that the current �j (11.107)
obeys the continuity equation

2�

2t
+ �� · �j = 0�

11.5.11 Non-Abelian gauge transformations

The fundamental interactions of elementary particle physics are all based on non-Abelian
gauge theories, which we shall define in an elementary case by generalizing the gauge
transformation (11.104). Omitting the time dependence in order to simplify the discus-
sion, we shall assume that the wave function ���r� is a two-component vector %��r� =
��1��r���2��r�� in a two-dimensional complex Hilbert space and that in this space there
exists a symmetry operation called an internal symmetry that leaves the physics invariant:

%��r�→%′��r�=+% or �′
� =

2∑
�=1

+�����

generalizing (11.103). + is a 2× 2 unitary matrix with unit determinant, i.e., an SU�2�
matrix. The symmetry is called gauge symmetry and the SU�2� group is the gauge group.
In general, the gauge group is a compact Lie group. The gauge group of electromag-
netism is the group of phase transformations (11.103), denoted U�1�, which is Abelian:
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electromagnetism is an Abelian gauge theory. When the gauge group is non-Abelian, the
gauge theory will be termed non-Abelian. The gauge groups of the Standard Model of
elementary particle physics are the groups SU�2�×U�1� for the electroweak interactions
and SU�3� for quantum chromodynamics. These are all non-Abelian groups.
According to the results of Exercise 3.3.6, the matrix + can be written as a function

of the Pauli matrices as

+= exp

(
−iq

3∑
a=1

�a

1
2
a

)
�

When the functions�a are independent of �r, we are dealing with a global gauge symmetry,
and if the �a are functions of �r, we have a local gauge symmetry. In order to simplify
the notation, we use a system of units in which �=m= 1.

1. The analog of the vector potential of electromagnetism is a vector field with components �Aa in
the internal symmetry space. The matrix �A is defined as

�A=
3∑

a=1

�Aa

1
2
a�

and it simultaneously has the ordinary components i= �x� y� z� and components a in the internal
symmetry space: �A= (Aia). The expression for the current �j generalizes (11.113):

�j = Re
[
%†�−i��−q �A�%

]
= Re

[
%†�−i �D%�

]
�

where

�D=−i��−q �A
is the covariant derivative. Show that the gauge transformation %→%′ leaves �j invariant if this
gauge transformation is global with the condition that �A is also transformed into �A′:

�A′ =+ �A+−1�

If the gauge transformation is local, show that invariance of the current

�j = �j ′ = Re
[
%′†�−i��−q �A′�%′

]
implies the transformation law �A→ �A′:

�A′ =+ �A+−1− i
q
���+�+−1�

Recover the transformation law (11.74) in the Abelian case.
2. We choose an infinitesimal gauge transformation: �q�a��r�� 	 1. Derive the transformation law

for �Aa:

��Aa = �A′
a− �Aa =−���a+q

∑
b�c

�abc�b
�Ac�

The (crucial) difference from the Abelian case is that the gauge field �Aa depends nontrivially
on the internal symmetry index a of the gauge group.26 In electromagnetism the photons do not
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carry charge, but the gauge bosons of a non-Abelian theory do: they are “charged” because they
carry the quantum numbers of the internal symmetry.

3. Show that if % obeys the time-independent Schrödinger equation

1
2

(
−i�−q �A

)2
% = 1

2
�−i� �D�2% = E%�

we have the same for %′ if the field �A′ is used.

11.5.12 The Casimir effect

Owing to quantum fluctuations of the electromagnetic field, there is an attractive force
between two parallel conducting plates separated by a distance L, even if the two plates
are located in a vacuum and are electrically neutral. This is known as the Casimir effect.
We assume that the dimensions of the plates are very large compared to their separation L.

1. Using a dimensional argument, show that the force P on a plate per unit surface area is of the
form

P = A
�c

L4
�

where A is a numerical coefficient. The surprise is that A �= 0!
2. The two plates are rectangles parallel to the plane xOy and separated by a distance L, the lengths

of their sides are Lx and Ly with Lx�Ly � L, and their area is � = LxLy. We choose periodic

conditions along the axes Ox and Oy and define the wave vector �k of xOy as

�k=
(
2�nx

Lx

�
2�ny

Ly

)
�

where nx and ny are relative integers, nx�ny ∈ Z. Show that if the plates are perfect conductors,
then the possible frequencies of standing waves have the form

�n��k�= c

√
�2n2

L2
+�k 2� n= 0�1�2� � � �

We recall that for a perfect conductor the transverse component of the electric field vanishes at
the surface of the metal.27 Explain why for n= 0 there is only one possible polarization mode.

3. Show that the zero-point energy (11.87) is

E0�L�=
�

2

⎛
⎝2∑

n��k

′
�n��k�

⎞
⎠ �

where ∑
n��k

′ = 1
2

∑
n=0��k

+ ∑
n≥1��k

�

26 Since the field �A is a vector field, the associated particles have spin 1, like the photon, and are called gauge bosons. The
photon, Z0 and W± are the gauge bosons of the electroweak interactions, and the gluons are those of chromodynamics.

27 See, for example, Jackson [1999], Section 8.1.
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4. It is necessary to take into account the fact that there is no such thing as a perfect conductor.
The approximation that the conductor is perfect is excellent at low frequencies, but at high
frequencies any real conductor becomes transparent. It is therefore necessary to modify the
zero-point energy to include a cutoff &��/�c�, where &�0�= 1 and limu→� &�u�= 0; &�u� is a
regular function which decreases from unity at u= 0 to zero for u→�. Show that

E0�L� =
��

�2��2

�∑
n=0

′
∫

d2k�n��k�&
(
�n��k�
�c

)

= ��

2�c2

�∑
n=0

′
∫ �

�n

d��2&

(
�

�c

)
� �n =

�cn

L
�

Owing to the cutoff, this energy is finite.
5. Calculate the pressure on the right-hand plate

Pint =− 1
�

dE0

dL
=−�2�c

2L4

∑
n

′
g�n��

where

g�n�= n3&

(
�n

�c

)
�

To obtain the total pressure on this plate it is necessary to subtract the pressure in the opposite
direction due to the vacuum outside the space between the two plates. Calculate the corresponding
energy and find the pressure

Pext =−�2�c

2L4

∫ �

0
dng�n��

The total pressure on the plate is Ptot = Pint−Pext . Use the Euler–Maclaurin formula

�∑
n=0

′g�n�−
∫ �

0
g�n�=− 1

12
g′�0�+ 1

6! g
′′′�0�+· · ·

to show that the result in the limit where the cutoff factor becomes unity is

Ptot =− �2

240
�c

L4
�

This pressure is attractive, and moreover it is finite. By carefully taking into account all the
physical effects, we have derived a quantity which is finite and measurable from a quantity
which is a priori infinite, the zero-point energy.28

11.5.13 Quantum computing with trapped ions

1. Trapped ions may turn out to be a promising technique for building a quantum computer. In
an experiment performed by a group in Innsbruck, 40Ca+ ions are confined in an approximately
one-dimensional harmonic trap.29 The ground state S1/2 = �g� is identified with the state �0�

28 A recent reference is U. Mohiden and A. Roy, Precision measurement of the Casimir force from 0.1 to 0.9 �m, Phys. Rev.
Lett. 81, 4549 (1998). The accuracy with which the Casimir effect has been measured is of order 1%, and the measurements
confirm the validity of the theoretical expression.

29 F. Schmid-Kaler et al., Realization of the Cirac-Zoller controlled-NOT gate, Nature 422, 408 (2003).
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of quantum computation (Section 6.4.2), and the excited state D5/2 = �e� with �1�. The excited
state is long-lived (∼1 s) because the transition D5/2 → S1/2 is an electric quadrupole transition.
Let us first consider a single ion in the trap. Its Hamiltonian is approximately

Htrap =
1
2M

p2
z +

1
2
M�2

zz
2�

where M is the ion mass and �z the frequency of the trap. In the absence of applied external
field, one may write the total Hamiltonian as

H0 =−1
2

��0z+��za
†a�

where �0 is the frequency of the transition �0� ↔ �1�. One applies to the ions the electric field
of a laser wave

�E = E1x̂ cos��t−kz−'��

and the Rabi frequency is denoted �1. The coupling between the field and the ion is

Hint =−��1x cos��t−kz−'�

and the state vector in the interaction picture (see Exercise 5.5.6 or 11.5.4) is

��̃�t�� = eiH0t/����t�� ��̃�t = 0�� = ���t = 0���
Show that the Hamiltonian H̃int in the interaction picture is

H̃int�t�= eiH0t/� Hint e
−iH0t/��

and that in the rotating wave approximation, with ± = �x± iy�/2

H̃int �−�

2
�1

[
+ e

i��t−'� e−ikz̃+− e
−i��t−'� eikz̃

]
where �= �−�0 is as usual the detuning. Since

z=
√

�

2M�z

(
a+a†

)

exp�±ikz̃� couples the internal levels �0� and 1� to the vibrational levels in the trap. The internal
levels will be labeled n, n= 0�1, the vibrational levels m� m= 0�1�2� � � � and the product state
�n�m�

2. Let us define the dimensionless Lamb–Dicke parameter , by

,= k

√
�

2M�z

�

Give the physical interpretation of ,. Consider two vibrations levels m and m+m′ and show
that the Rabi frequency �m→m+m′

1 is given by

�m→m+m′
1 = �1�
m+m′�ei,�a+a†��m���
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3. We limit ourselves to the case m′ = ±1. Transitions corresponding to frequencies �= �0+�z

(�=�0−�z) are called blue sideband (red sideband) transitions, while transitions with �=�0

are called carrier transitions. We also assume that ,	 1 and work to first order in ,. Write the
expression of H̃int on the two sidebands and show that for the blue one

H̃+
int =

i
2
,�1

√
m+1

[
+ab e

−i'−−a
†
be

i'
]
�

while for the red one

H̃−
int =

i
2
,�1

√
m
[
+a

†
re

−i'−−ar e
i'
]
�

The operators ab � � � a
†
r are defined so as to preserve the norm of the state vectors

ab =
a√
m+1

a†
b =

a†

√
m+1

ar =
a√
m

a†
r =

a†

√
m
�

4. The levels used in the following discussion are �0�0�� �0�1�� �1�0�� �1�1� and �1�2�. Draw the
level scheme and identify the blue sideband and the red sideband transitions. Show that the
operator

R+
�� = R+����/2�R+���0�R+����/2�R+���0��

is equal to −I for �= � whatever �, or �= � whatever �. R±� �'� is a rotation by  about
an axis in the xOy plane which makes an angle ' with the x axis and which uses the blue (+)
or red (−) sideband. Use the fact that the Rabi frequency for the transition �0�1�↔ �1�2� is √2
times that for the �0�0� ↔ �1�1� transition to determine � and � in such a way that R+

�� =−I

for both transitions. Show that a cZ gate (up to a sign) has been built in the preceding operation
(a cZ gate is obtained from (6.73) by the substitution x → z)

�0�0� ↔−�0�0� �0�1� ↔−�0�1� �1�0� ↔+�1�0� �1�1� ↔−�1�1��

5. It is now necessary to “transfer” the cZ gate to the computational basis of product states �n�n′�,
n�n′ = 0�1 being ground and excited states of two different ions. Show that the desired result is
obtained by sandwiching the rotation operator R+�1�

�� on ion number one using the blue sideband
between two rotations by � on ion number two using the red sideband[

R−�2�����/2�
]
R
+�1�
��

[
R−�2��−���/2�

]
�

A slightly more complicated operation allows one to build a cNOT gate.

11.6 Further reading

The diagonalization of the Hamiltonian of the one-dimensional harmonic oscillator by the
algebraic method is classic and can be found in any quantum mechanics textbook. The
theory of coherent states is discussed by Cohen-Tannoudji et al. [1977], Complement GV.
Applications of phonons in thermodynamics are given by Le Bellac et al. [2004],
Chapter 4. Additional material on the quantization of the scalar field and the electromag-
netic field can be found in C. Itzykson and J.-B. Zuber, Quantum Field Theory, New York:
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McGraw-Hill (1980), Chapter 3; Le Bellac [1991], Chapter 9; Grynberg et al. [2005],
Chapter V; or Weinberg [1995], Chapter 8. Fluctuations of the electromagnetic field and
squeezed states are treated by Ballentine [1998], Chapter 19; by Grynberg et al. [2005],
Chapter V and Complement V.1; and by Mandel and Wolf [1995], Chapters 10–12.
Feynman et al. [1965], Vol. III, Chapter 21 gives a physical discussion of the difference
between the velocity and �p/m in the presence of an electromagnetic field. The Landau
levels are discussed by Cohen-Tannoudji et al. [1977], Complement EVI, and applications
to solid-state physics can be found in K. Huang, Statistical Mechanics, New York: Wiley
(1963), Chapter 11.
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Elementary scattering theory

Up to now we have mainly studied bound states, except for the brief mention of
one-dimensional scattering in Section 9.4. However, essential information on interactions
between particles, atoms, molecules, etc., as well as on the structure of composite objects,
can be obtained from scattering experiments. Bound states – when they exist, which is not
always the case – give only partial information on such interactions, whereas it is nearly
always possible to perform scattering experiments. In this chapter we shall limit ourselves
to potential scattering, which can be used to describe elastic collisions of two particles of
masses m1 and m2. Indeed, in the center-of-mass frame the problem is reduced to that of
a particle of mass m= �m1m2�/�m1+m2� in a potential (Exercise 8.5.6).1

In Sections 12.1 and 12.2 we develop the elementary formalism of elastic scattering
theory with emphasis on the low-energy limit, which plays an extremely important role in
practice. In Section 12.3 we generalize the formalism to the inelastic case; more precisely,
we examine the effect of inelastic channels on elastic scattering. Finally, Section 12.4 is
devoted to some more formal aspects of scattering theory.

12.1 The cross section and scattering amplitude

12.1.1 The differential and total cross sections

A scattering experiment is shown schematically in Fig. 12.1. A beam of particles of mass
m1 and well-defined momentum moving along the z axis collides with a target composed
of particles of mass m2. To simplify the discussion, we assume that m1 	 m2 and we
neglect the recoil of the target in the collision. In general, it is necessary to go from
the laboratory frame to the center-of-mass frame via a simple kinematic transformation
(Exercise 8.5.6). A fraction of the incident particles is deflected in the collision with the
target, and these particles are recorded by detectors placed at polar angles ( �'), called
the scattering angles and collectively denoted by +. Let !� be the surface area of a
detector located a distance r from the target. This detector is seen from the target as
subtending a solid angle !+�!�/r2. We assume that the density nt of target particles is

1 In ring accelerators such as LEP (the Large Electron–Positron collider), the e+ − e− accelerator operating at CERN between
1990 and 2000, the center-of-mass frame is the same as the laboratory frame.
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detectorr

k′

Ω = (θ, φ)

zbeam
target

k

→

Fig. 12.1. Schematic view of a scattering experiment.

low enough that multiple collisions can be neglected. Under these conditions, the number
of particles !� �+� per unit time and unit target volume that have undergone a collision
and are recorded by the detector is proportional to

• the flux � of incident particles, that is, the number of particles crossing a unit surface perpen-
dicular to Oz per unit time: � = niv, where ni is the incident particle density and v is the particle
speed;

• the density nt of target particles;
• the solid angle !+ the detector subtends as seen from the target (Fig. 12.1). In what follows we
shall assume that this solid angle is infinitesimal: !+→ d+.

We then have

d� �+�= � nt

d
d+

d+� (12.1)

The proportionality factor d/d+ is called the differential cross section of the scattering.
Dimensional analysis shows that d/d+ has the dimensions of a surface and is measured
in m2 per steradian. By integrating over + we obtain the total cross section tot:

tot =
∫

d+
d
d+

� (12.2)

The product � nttot is equal to the number of collisions recorded per second for a target
of unit volume. The total cross section is a priori a function of the speed v of the incident
particle, or, equivalently, its energy. The differential cross section is a function of the
energy and the angles  and '. When the physical problem is invariant under rotation
about the z axis,2 the differential cross section depends only on  .
Let us give an intuitive illustration of the idea of cross section by studying a collision

between two billiard balls of radii R1 and R2 in classical mechanics. First we assume that
the incident particles (here, the billiard balls) have radius R and the target particles are
point particles. During one second an incident particle sweeps out a volume �R2v, and so

2 Such invariance does not occur if, for example, the potential is not rotationally invariant or the target particles have spin
polarized along an axis perpendicular to Oz and the scattering is spin-dependent.
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it encounters nt�R
2v target particles. The number of collisions recorded per second in the

experiment is nint�R
2v= � nt�R

2, which gives the total cross section tot = �R2. Geo-
metrically, this is the area of a disk of radius R. This is also the cross section for the scat-
tering of point particles by target particles of radius R, in which case the geometrical origin
of �R2 is obvious: it is the area of the target as seen by an incident particle. The total cross
section for incident particles of radius R1 and target particles of radius R2 can be derived
from this result: the number of collisions is the same as if the incident particles were
point particles and the target particles had radius �R1+R2�. The total cross section then is

tot = ��R1+R2�
2� (12.3)

The differential cross section is easily obtained in the case of incident point particles
(Fig. 12.2) colliding with target particles of radius R. The impact parameter b of the
collision is the smallest distance between the incident trajectory in the absence of a
collision and the center of the target. Figure 12.2 shows that the impact parameter and
the scattering angle  are related as

b = R cos
 

2
�

while

d = 2�bdb = �R2 sin
 

2
cos

 

2
d = 1

2
�R2d�cos ��

from which we find the differential cross section

d
d+

= 1
2�

d
dcos 

= 1
4
R2� (12.4)

because the integration over ' gives a factor of 2�. This cross section, which is called
the cross section for hard-sphere scattering, is therefore independent of the scattering
angle, i.e., it is isotropic. It can be checked that integration over + again gives �R2.

12.1.2 The scattering amplitude

Now let us turn to the quantum description of scattering by a potential V which we assume
to be spherically symmetric, V = V�r�. We shall return to the general potential V��r� in

θ = π – 2α

b

O

α
α

θ

Fig. 12.2. Classical collision between a point particle and a sphere of radius R.
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Section 12.3.2. We ignore possible spin degrees of freedom, except in Section 12.2.4.
Scattering is a time-dependent process: an incident particle described by a wave packet
���r� t� leaves from z=−�, travels along the z axis, and encounters the potential at time
t ∼ 0. This wave packet has a certain probability of being scattered in a direction  , and
a detector located at this angle has a certain probability of recording the particle. The
rigorous quantum description can be obtained only by using wave packets. Nevertheless,
this description is rather cumbersome, and at first we shall simplify the discussion by
considering a stationary process. Later on in Section 12.4.2 we will return to wave packets.
We start with an incident plane wave of wave vector �k= �0�0� k� parallel to Oz:

���r�= A eikz� k2 = 2m
�2

E� (12.5)

where m is the mass of the incident particles, E is their energy, and �A�2 = ni is their
density. The current �j associated with a plane wave (12.5) is given by (9.141):

�j = �

2mi

[
�∗ ���− �����∗�

]
= �A�2 ��k

m
= �A�2�v� (12.6)

The flux of incident particles is � = ��j � = �A�2v. The plane wave ���r� is a solution of
the time-independent Schrödinger equation in the absence of a potential [V�r�= 0]:

− �2

2m
�2���r�= �2k2

2m
���r�= E���r�� (12.7)

In Section 12.4.1 we shall show that when V�r� �= 0, for the same value of the energy E

there exist solutions of the Schrödinger equation 1
�+�

�k ��r� labeled by the wave vector �k,[
− �2

2m
�2+V�r�

]
1

�+�

�k ��r�= E1
�+�

�k ��r�� (12.8)

which for r →� behave as

1
�+�

�k ��r�= A

[
ei�k·�r +f�+�

eikr

r

]
� (12.9)

where f is a complex function of + (in our case only of  , owing to the invariance under
rotation about Oz) called the scattering amplitude. The first term in (12.9) is the incident
plane wave exp�i�k · �r� = exp�ikz�, and the second corresponds to an outgoing spherical
wave, as we shall show shortly. It is essential to note that it is the absolute values of k
and r that are involved in the second term. The expression (12.9) is valid provided that
the potential V�r� falls off sufficiently rapidly for r →�. It is not valid for the Coulomb
potential, whose 1/r falloff is too slow. There also exist solutions of the Schrödinger
equation with an incoming spherical-wave term:

1
�−�

�k ��r�= A

[
ei�k·�r +f�+�

e−ikr

r

]
� (12.10)

Such solutions are useful in some cases, but we shall not need them here.
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target

k
spherical wave

→

Fig. 12.3. Large-distance behavior of an incident plane wave.

Let us calculate the total current for the asymptotic wave function (12.9). This current
is composed of the plane-wave current, the spherical-wave current, and an interference
term. Here we must appeal to a physical argument, relying on the observation that the
transverse extent of the incident wave is actually limited and not infinite, as in a plane
wave (Fig. 12.3), and the interference term should be neglected except in the region where
the incident wave packet and the spherical wave overlap.3 For a direction  �= 0, that is,
away from the direction of the incident wave  = 0, it is always possible to place the
detector far enough from the target that the interference term is negligible, and then it is
sufficient to calculate the current of the spherical wave. Using ��g�r�= r̂ g′�r�, we obtain

��
[
eikr

r
f�+�

]
= ikr̂

eikr

r
f�+�+O

(
1
r2

)
�

because ∣∣∣�� 1
r

∣∣∣∝ 1
r2

and � ��f�+�� ∝ 1
r
�

so that the final expression for �j is

�j = �A�2�k
m

�f�+��2 r̂

r2
= �A�2v �f�+��2 r̂

r2
� (12.11)

If we draw a very large sphere of radius r about the target, the current associated with the
second term in (12.9) at the surface of this sphere points along �r away from the center
of the sphere and represents an outgoing wave. The current associated with the term
exp�−ikr�/r in (12.10) will point toward the inside of the sphere and corresponds to an
incoming spherical wave. The number of particles !� �+� recorded by the detector per
unit time is equal to the integral of the current over the surface of the detector !�� r2!+:

!� �+�=
∫
!�
�j ·d �� = r2

∫
!+
�j · r̂ d+�

where the detector is located at a distance r from the target. For infinitesimal !+ this gives

d� �+�= �A�2v �f�+��2 d+= � �f�+��2 d+�

3 This interference term is essential for understanding the optical theorem (12.54); cf. Lévy-Leblond and Balibar [1990].
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It is in fact the 1/r behavior of the outgoing spherical wave term that ensures that the
flux in a solid angle !+ is independent of r. The definition (12.1) of the differential
cross section permits the following identification for nt = 1:

d
d+

= �f�+��2 � (12.12)

12.2 Partial waves and phase shifts

12.2.1 The partial-wave expansion

In Section 10.4.1 we presented a method for solving the Schrödinger equation when
the potential V�r� is spherically symmetric. The method consists of expanding the wave
function in spherical harmonics as in (10.77):

1�r�  �'�=∑
l�ml

ul�r�

r
Y

ml

l � �'��

The cylindrical symmetry about Oz in the present problem allows us to limit ourselves
to terms independent of ', ml = 0, and take into account the proportionality (10.62) of
the spherical harmonics with ml = 0 to the Legendre polynomials. We can then write4

1�r�  �=
�∑
l=0

ul�r�

r
Pl�cos �� (12.13)

where ul�r� is the solution of the radial equation (10.78):[
− �2

2m
d2

dr2
+ l�l+1�

2mr2
+V�r�

]
ul�r�= Elul�r�� (12.14)

with the boundary condition ul�0�= 0, or, more precisely using (10.82),

r → 0 � ul�r�∝ rl+1� (12.15)

Since the Legendre polynomials form a basis for functions defined on the interval
�−1�+1�, we can write the following series expansion for f� �:

f� �=
�∑
l=0

flPl�cos �� fl =
2l+1
2

∫ +1

−1
f� �Pl�cos �dcos � (12.16)

The series (12.16) is called the partial-wave expansion of the scattering amplitude.

4 We have modified the normalization of ul�r� by the unimportant factor
√
4�/�2l+1� in going from one equation to the

other.
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If V�r� tends to zero sufficiently rapidly for r →�,5 we can neglect V�r� and the
centrifugal barrier term in (12.14). The asymptotic behavior of ul�r� will then be

r →� � ul�r�∝ sin�kr+ �̂l��

Let us compare this behavior to that of a plane wave. A plane wave exp�ikz� =
exp�ikr cos � is a cylindrically symmetric solution of the Schrödinger equation when
V�r� = 0. We can then expand exp�ikz� in a series of Legendre polynomials of the
type (12.13). The coefficients of this series are calculated using (12.16) and are called
the spherical Bessel functions jl�kr�:

e ikz =
�∑
l=0

�2l+1�iljl�kr�Pl�cos �� (12.17)

The spherical Bessel functions can be expressed in terms of sines and cosines and are
given by the recursion relation

jl�x�= �−1�lxl
(
1
x

d
dx

)l sin x
x

= �−1�lxl
(
1
x

d
dx

)l

j0�x�� (12.18)

When r → 0 we have krjl�kr�∝ �kr�l+1, which is a special case of the behavior (12.15)
since rjl�kr� is a solution of the radial Schrödinger equation with V�r�= 0. When r→�
it can be shown that6

r →� � jl�kr��
1
kr

sin
(
kr− 1

2
l�

)
� (12.19)

Comparison with the behavior of ul�r� leads to the definition

�l = �̂l−
1
2
l��

which allows us to write down the asymptotic behavior of ul�r�:

r →� � ul�r�� al sin
(
kr− 1

2
l�+�l

)
� (12.20)

The number �l is the phase shift in the lth partial wave, and is a function of k: �l�k�. To
express f� � as a function of the phase shifts, it is sufficient to compare the asymptotic
expansions of (12.9) and (12.13) at r→�, choosing A= 1. Taking into account (12.17),
the series (12.9) can be written as

eikz+f� �
eikr

r
=

�∑
l=0

Xl�r�Pl�cos ��

Xl�r� = �2l+1�iljl�kr�+fl
eikr

r
�

5 This restriction on the potential should be made more precise. All the results of the present chapter are valid if V�r� has finite
range [V�r�= 0 if r > R] or decreases at infinity faster than any power. If V�r� falls off at infinity as r−�, certain results will
be valid only if �≥ �0. The discussion of this problem is rather technical, and we refer the reader to the references cited in
Further Reading.

6 See, for example, Cohen-Tannoudji et al. [1977], Complement AVIII .
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The asymptotic form (12.19) of the jl gives

iljl�kr��
1

2ikr

[
�−1�l+1e−ikr + eikr

]
�

and we obtain

Xl =
2l+1
2ikr

[
�−1�l+1e−ikr +

(
1+ 2ik

2l+1
fl

)
eikr

]
� (12.21)

The function Xl�r� must asymptotically be equal to ul�r�/r , and so according to (12.20)

ul�r�

r
� al

2ir

[
�−1�l+1e−ikr + e2i�leikr

]
� (12.22)

The expressions (12.21) and (12.22) can be equal only if

e2i�l = 1+ 2ik
2l+1

fl

or

fl =
2l+1
2ik

(
e2i�l −1

)= 2l+1
k

ei�l sin�l� (12.23)

This equation gives the partial wave expansion for f� �� as a function of the phase shifts:

f� �= 1
k

�∑
l=0

�2l+1�ei�l sin�lPl�cos � � (12.24)

We can obtain the differential cross section from (12.12) and then the total cross section
by integrating over angles using the orthogonality relation of the Legendre polynomials
derived from (10.62) and the orthogonality (10.55) of the spherical harmonics:

∫
d+Pl�cos �Pl′�cos �=

4�
2l+1

�ll′ �

The result for tot can be written as

tot =
4�
k2

�∑
l=0

�2l+1� sin2 �l � (12.25)

The function

Sl�k�= e2i�l�k� � (12.26)

where we have noted explicitly the dependence on k, is called the S-matrix element in
the 1th partial wave. It plays an important role in scattering, which can be understood
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by comparing the behavior (12.21) of a free spherical wave jl�kr� with that of the wave
function in the presence of a potential (12.22):

jl�kr� ∝ [
�−1�l+1e−ikr + eikr

]
�

ul�r� ∝ [
�−1�l+1e−ikr + e2i�leikr

]
�

The effect of the potential is to multiply the outgoing spherical wave by the phase factor
Sl = exp�2i�l� while not affecting the incoming wave. This is a result of the boundary
conditions that have been imposed, since the incident plane wave is composed of an
incoming spherical wave and an outgoing spherical wave. The outgoing part is modified
by the scattering, because the particles are scattered by the target and diverge from
it. However, the incoming wave is not modified by the interaction with the target. In
Section 12.3.1 we shall show that the condition �Sl� = 1 takes into account the fact that
the number of particles entering a sphere of large radius drawn about the target is equal
to the number of particles leaving the sphere when the scattering is elastic.
Each term of (12.25) corresponds to the scattering cross section in the lth partial wave.

It is obviously impossible to identify the contribution of each partial wave except in the
total cross section, because the various partial waves interfere in the differential cross
section. We note that the contribution to the total cross section from each partial wave is
bounded:

l =
4�
k2

�2l+1� sin2 �l ≤ max
l = 4�

k2
�2l+1�� (12.27)

Let us give a semi-classical interpretation of this result. Classically, the angular momentum
�l and the impact parameter are related as l= kb, and so

l

k
≤ b ≤ l+1

k
�

The maximum classical cross section is the area between the circles of radii l and l+1:

l ≤
�

k2

[
�l+1�2− l2

]= �

k2
�2l+1�= 1

4
max
l �

The classical cross section is at most a quarter of the maximum quantum cross section.
If the potential has finite range, V�r� = 0 for r > R, then, from the classical point of
view, an incident particle can interact only if its impact parameter is less than R, b < R,
and only partial waves with l <∼ kR will contribute. We see that the phase-shift method
will work well if the energy is low, because in this case only a limited number of partial
waves will contribute. In particular, only the s-wave (l = 0) will contribute appreciably
when k→ 0. In quantum mechanical terms, the probability density ∝ r2j2l �kr� of a free
spherical wave is negligible for kr <∼ �l�l+1��1/2, and this wave does not penetrate into
regions where the potential is important for small k unless l= 0, when r2j20�kr� ∝ const
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if r → 0. It can be rigorously shown7 that for a potential of finite range the phase shift
�l behaves as

�l�k�∝ �kR�2l+1 (12.28)

when k→ 0 or l→�.

12.2.2 Low-energy scattering

When the potential has finite range, the s-wave will be the only one to contribute
significantly to the low-energy cross section, and so the latter will be isotropic. In the
rest of this section we shall take into account only the l = 0 wave and use the notation
�l=0�k�= ��k�, Sl=0�k�= S�k�, fl=0�k�= f�k�, ul=0�r�= u�r�. Using the behavior (12.28)
for l= 0, ��k�∝ k, we can define the scattering length a as

a=− lim
k→0

��k�

k
� (12.29)

The minus sign is chosen by convention and will be justified below.
As an example of a calculation of the phase shift and scattering length, let us consider

the spherical well (Fig. 12.4):

V�r�=−V0� 0 ≤ r ≤ R�

V�r�= 0� r > R�

Such a spherical well gives an approximate description of neutron–proton scattering with
the following parameters (Exercises 10.7.8 and 12.5.3):

R� 2 fm� V0 � 26 MeV�

The radial Schrödinger equation is written as(
− d2

dr2
+ 2m

�2
V�r�

)
u�r�= 2m

�2
Eu�r�� (12.30)

R

V(r)

rO

–V0

Fig. 12.4. The spherical well.

7 See, for example, Messiah [1999], Chapter X.
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which gives

r > R �

(
d2

dr2
+k2

)
u�r�= 0�

r < R �

(
d2

dr2
+k′2

)
u�r�= 0�

with k2= 2mE/�2 and k′2= 2m�E+V0�/�
2, from which, taking into account the condition

u�r = 0�= 0, we find

r > R � u�r� = C sin�kr+���

r < R � u�r� = D sin k′r�

The continuity of the logarithmic derivative of u�r� at r = R imposes the condition

k′ cot k′R= k cot�kR+��� (12.31)

The equation

cot x = i
e2ix+1
e2ix−1

can be used to determine the S-matrix element S�k�. An easy calculation gives

S�k�= e2i��k� = e−2ikR
cosk′R+ i

k

k′
sin k′R

cosk′R− i
k

k′
sin k′R

� (12.32)

As expected, the expression for S�k� has unit modulus. The phase shift is determined
only up to a factor of �, and to learn the “true” value of the phase shift it is necessary to
allow the potential to increase from 0 to V0 while following the evolution of � between
zero and its final value.
As in the one-dimensional case (cf. Section 9.4.3), there exists a remarkable relation

between the S-matrix and bound states. Let us set k= i7 (in an instant we shall see that
we must choose k= i7, 7 > 0 and not k=−i7). The function S�k� has poles for

cosk′R+ 7

k′
sin k′R= 0� (12.33)

but this is also just the equation that determines the bound states. The wave function of
a bound state of energy E =−B < 0 is given by

r > R � u�r� = Ce−7r�

r < R � u�r� = D sin k′r�

with 7= �2mB/�2�1/2 and k′ = �2m�V0−B��1/2/�, and the continuity of the logarithmic
derivative at r = R is written as

−7= k′ cot k′R� (12.34)
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which is exactly the equation for the poles of S�k�. The result is general for potentials
that fall off sufficiently rapidly at infinity and is valid for any partial wave: the poles of
Sl�k� for k= i7 give the position of the bound states in the lth partial wave.
It is easy to derive the scattering length from (12.31). This equation can also be written

as

tan�kR+��= k

k′
tan k′R�

In the limit k→ 0 and kR→ 0, �→ 0 and k′ → k0 = �2mV0/�
2�1/2, from which we have

kR+��k�� k

k0
tan k0R�

or

��k��−k

(
R− tan k0R

k0

)
�

which according to the definition (12.29) gives

a= R

(
1− tan k0R

k0R

)
� (12.35)

Another case of particular interest is that of hard-sphere scattering: V�r�= 0 if r > R and
V�r�=+� if r < R. The radial wave function u�r� must vanish at r = R:

r > R � u�r� = C sin�kR+���

r < R � u�r� = 0�

so that kR+�= n� and for k sufficiently small,

�=−kR� a= R� (12.36)

The minus sign in the definition (12.29) has been chosen such that the scattering length
of a hard sphere is +R rather than −R. From the qualitative behavior of u�r� in Fig. 12.5
we see that a > 0 for any repulsive potential. The situation is more complicated for an
attractive potential. When there is no bound state an attractive potential gives a negative
scattering length. The appearance of a bound state changes the sign of a, which becomes
positive. The sign changes again with the appearance of a second bound state, and so
on. This is confirmed by (12.35): the condition for the appearance of a first bound state
is k0R = �/2 and the scattering length is negative for k0R < �/2. It becomes infinite
when k0R=�/2, positive when k0R>�/2, and remains positive for �/2< k0R< 3�/2.
The appearance of a second bound state corresponds to k0R = 3�/2, and the scattering
length is negative beyond this value after having again become infinite. A large positive
scattering length indicates the presence of a low-energy bound state, and a scattering
length that is large and negative indicates that a bound state is about to appear. It is
sometimes said that there is an antibound or virtual state.
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r

V(r)

V(r)

V(r)

u(r)
u(r) u(r)

a

(a) a > 0

a

(b) a < 0

a

(c) a > 0

r r

Fig. 12.5. Behavior of the wave function and the scattering length for various potentials: (a) a
repulsive potential; (b) an attractive potential without a bound state; (c) an attractive potential with
a single bound state.

According to (12.12) the low-energy cross section is isotropic, and the total cross
section is

tot = 4�a2� (12.37)

It is interesting to note that the quantum cross section of a hard sphere (a=R) is four times
the classical cross section �R2, in agreement with the inequality mentioned previously.
Measurement of the total cross section gives only the absolute value of a. However, the
sign of the scattering length is an important quantity. For example, the effective potential
which we shall define in the following paragraph is attractive for a < 0 and repulsive
for a > 0, which has direct consequences, for example, for the possibility of forming
Bose–Einstein condensates of atomic gases. Another important case is neutron–proton
scattering (Section 12.2.4).
The low-energy form ��k��−ka is actually the first term of an expansion of the phase

shift in powers of k2. Exercise 12.5.3 shows that the function k cot ��k� is an analytic
function8 of k2 for which we can write down a Taylor series for k2 → 0:

k cot ��k�=−1
a
+ 1

2
r0k

2+O�k4�� (12.38)

The distance r0 is called the effective range. We often use the low-energy form of the
scattering amplitude:

f�k�= e2i��k�−1
2ik

= 1
k�cot ��k�− i�

�

or, expressing cot ��k� as a function of a if r0k	 1,

f�k�= −a

1+ ika
� (12.39)

8 If V�r� falls off at least as fast as exp�−�r�. Equation (12.38) is valid provided that V�r� falls off at least as r−5.
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This form can be made more precise by using the effective-range approximation (12.38):

f�k�= −a

1+ ika− 1
2 r0ak

2
� (12.40)

12.2.3 The effective potential

The scattering length makes it possible to introduce the very useful concept of effective
potential, not to be confused with the effective potential Vl�r� of (10.79). When studying
a system of low-energy particles, it is convenient to be able to replace the actual potential
V�r� by a simpler potential Veff�r�, called the effective potential, which gives the same
results for low-energy scattering. An effective potential is used, for example, for the
theoretical study of low-energy neutron scattering or Bose–Einstein condensates of atomic
gases. We shall show that low-energy scattering is described by choosing an effective
potential proportional to a � function:

Veff�r�1�r�= g���r� d
dr

�r1�r��� (12.41)

where g is a constant to be determined. To justify this potential and find g, let us examine
the Schrödinger equation for a wave function 1�r� = u�r�/r. The expression for the
Laplacian applied to a function of r

�2f�r�= 1
r

d2

dr2
�rf�r�� (12.42)

is valid only for a function f�r� that is regular at r = 0, and for f�r� ∝ 1/r the familiar
equation from electrostatics is used:

�2 1
r
=−4����r�� (12.43)

Let us study the Schrödinger equation taking (12.41) as the potential:

− �2

2m
�2 u�r�

r
+Veff�r�

u�r�

r
= �2k2

2m
u�r�

r
�

and write down the kinetic energy term

�2 u�r�

r
= �2

[
u�r�−u�0�

r

]
+u�0��2 1

r

= 1
r

d2

dr2
r

[
u�r�−u�0�

r

]
−4�u�0����r�= 1

r

d2u�r�
dr2

−4�u�0����r��

where we have noted that �u�r�−u�0��/r is a regular function at r = 0. Moreover, if we
write

u�r�= a+br+ cr2+· · · �
then

1
r

d2u
dr2

= 2c
r
+· · ·
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and the integral of this term in a sphere of radius R about the origin tends to zero with R.
We then have

− �2

2mr

d2u�r�
dr2

− �2k2

2m
u�r�

r
=
[
−4��2

2m
u�0�−gu′�0�

]
���r��

The two sides of this equation must vanish separately, which for the left-hand side implies

u�r�= C sin�kr+��k��� r > 0�

and so u′�0�/u�0� = k cot ��k�. The vanishing of the coefficient of ���r� imposes the
condition

−2��2

m
= gk cot ��k��

and the k→ 0 limit of this equation makes it possible to relate g and a:9

g = 2��2

m
a� Veff��r�=

2��2a

m
���r� d

dr
r � (12.44)

The effective potential depends on a single parameter, the scattering length a; we take it
to be that of a more realistic potential or simply use the experimental value. Let us also
study the bound states of the effective potential. The radial wave function of a bound
state must have the form

u�r�= Ce−7r�

and so u′�0�/u�0�=−7. We can derive a relation between the binding energy B and the
scattering length:

7=
√
2mB

�2
= 2��2g

m
= 1

a
� (12.45)

The bound state of the effective potential is unique, and we again find that a > 0 for a
single bound state. In summary, an effective potential for which a > 0 may correspond
either to a hard sphere or to an attractive potential with a single bound state. These two
potentials lead to the same behavior for an ensemble of low-energy particles, but the
behavior will be different if a < 0: it is the sign of the scattering length that is crucial.
The function k cot ��k� is a constant:

k cot ��k�=−2��2

mg
=−1

a
�

and the scattering amplitude of the effective potential is given exactly by (12.39):

feff�k�=
−a

1+ ika
�

9 It should be born in mind that if we consider the scattering of identical particles of mass M , the reduced mass is m=M/2
and g = �4��

2/M�a.
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12.2.4 Low-energy neutron–proton scattering

Low-energy neutron–proton scattering provides a very important practical example of the
formalism we have just developed. The proton and the neutron are spin-1/2 particles and
the scattering is spin-dependent, and so we shall generalize the above results to take this
into account. In low-energy scattering the total spin �Stot is conserved. The orbital angular
momentum is zero, because the scattering occurs in the s-wave, and the conservation of
total angular momentum is equivalent to the conservation of total spin. The scattering
amplitude can be written as an operator f̂ acting in the four-dimensional space � , the
tensor product of the two spaces of spin-1/2 states, as a function of the projectors 
s =
0

and 
t = 
1 on the singlet (total spin zero) and triplet (total spin one) states given
in (10.128):

f̂ �k�= fs�k�
s+ft�k�
t�

This form of f̂ ensures that the total spin remains unchanged in the scattering: a singlet
state remains a singlet and a triplet state remains a triplet. We shall limit ourselves to the
case ka	 1. According to (12.39),

fs�k�=−as� ft�k�=−at�

where as and at are the scattering lengths in the singlet and triplet states. When the
condition ka	 1 is not satisfied, it is possible to use expressions analogous to (12.39),
or even (12.40), for fs�k� and ft�k�, thus introducing the effective ranges r0s and r0t. In
summary, in the approximation where ka	 1

f̂ =−as
s−at
t� (12.46)

or, introducing the Pauli matrices �p and �n acting in the space of the proton and neutron
spin states,

−f̂ = â= 1
4
�as+3at�I+

1
4
�at−as��p · �n� (12.47)

The differential cross section is isotropic and the total cross section for a state of initial
spin �i� and final spin �f� is

fi = 4��
f �â�i��2� (12.48)

If the final spins are not measured and the initial state is a mixture for which we know
only the probability pi of finding the initial spins in the state �i�, it is necessary to sum
over the states �f� and the probabilities pi:

 = 4�
∑
i

pi

∑
f


i�â�f�
f �â�i�

= 4�
∑
i

pi
i�â2�i� = 4� Tr ��init â
2��
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where we have used the completeness relation in � ,
∑

f �f�
f � = I , and the definition
of the state operator of the initial state:

�init =
∑
i

pi�i�
i��

The most frequently encountered case is that of unpolarized initial state, so that the states
�++�, �+−�, �−+�, and �−−� have the same probability. In this case �init = I/4 and

unpol = � Tr â2 = � Tr
(
a2
s
s+a2

t
t

)
= 4�

(
1
4
a2
s +

3
4
a2
t

)
= 1

4
s+

3
4
t� (12.49)

The physical interpretation is straightforward: if the initial state is unpolarized, the prob-
ability of having a singlet state is 1/4 and that of having a triplet state is 3/4, which gives
the weights 1/4 and 3/4 of the singlet and triplet cross sections in (12.49).
The unpolarized cross section gives only the combination a2

s + 3a2
t of the scattering

lengths. Additional information can be obtained from the existence of a bound state in the
triplet state, the deuteron, which allows the approximate determination of at . A precise
relation between the deuteron parameters and the low-energy scattering parameters in the
triplet state is obtained in Exercise 12.5.3 using the effective-range approximation. An
approximate expression is obtained by noting that the deuteron wave function extends
far beyond the range of the potential, 7−1 � R, which makes it possible to use the
effective potential and the relation (12.45). Using the fact that B � 2�22MeV, we obtain
7−1 � 4�2 fm, while the exact value of at is 5.4 fm. However, this argument is sufficient
for determining the sign of at : at > 0.
Knowledge of at from the deuteron parameters and measurement of the unpolarized

cross section make it possible to determine the modulus of the scattering length in the
singlet state �as�, but not its sign. A possible method for finding the sign of as is to use
neutron scattering on a hydrogen molecule; this is studied in Exercise 12.5.2. It is found
that the scattering length as is negative, consistent with the fact that there is no singlet
bound state. The experimental values of the scattering lengths and effective ranges are

at = 5�40 fm� r0t = 1�73 fm� as =−23�7 fm� r0s = 2�5 fm�

It can be observed that as is large and negative, and that the neutron–proton system in the
singlet state is very close to forming a bound state, showing the presence of a virtual state.

12.3 Inelastic scattering

12.3.1 The optical theorem

In general, in a collision particles can undergo not only elastic, but also inelastic scattering.
For example, the scattering of a photon on an atom A in its ground state E0 can leave the
atom in an excited level A∗ of energy E1:

	+A→ 	′ +A∗�
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the final photon having lost an energy �E1−E0� compared with the initial one (if the
atomic recoil is neglected). It is also possible for the final particles to be different from
the initial ones, as in

�−+p→ K0+�

or

�−+p→ �−+�++n�

We have seen that �Sl�k�� = 1 in the case of elastic scattering. We shall show that it is
possible to generalize the expression for the scattering amplitude f�+� to the inelastic
case if we allow �Sl�k�� ≤ 1. This inequality follows from the condition that the modulus
of the amplitude of the outgoing wave be smaller than that of the incoming wave, that
is, the number of particles Nout leaving a large sphere of radius r enclosing the target
must be smaller than the number Nin entering the sphere, because incident particles can
only disappear in inelastic scattering. As we shall show below, this inequality holds
for each partial wave, Nl

out ≤ Nl
in, because the integration over the surface of the sphere

eliminates interference between partial waves. If the scattering is purely elastic in the lth
partial wave, Nl

in =Nl
out and �Sl�k�� = 1. Let us evaluate Nl

in and Nl
out using the asymptotic

form (12.22) of the wave function at r →�. As in elastic scattering, only the outgoing
wave term can be modified:

e ikr

r
→ Sl�k�

eikr

r
�

from which we find the asymptotic behavior of 1��r�:

1 � iA
2kr

�∑
l=0

�2l+1�Pl�cos �
[
�−1�le−ikr −Sl e

ikr
]
�

which gives for f� �

f� �= 1
2ik

�∑
l=0

�2l+1�Pl�cos ��Sl−1��

The total elastic cross section then is

el =
∫

d+�f� ��2

and the result of the integration over + generalizes (12.25):

el =
�

k2

�∑
l=0

�2l+1��1−Sl�2 � (12.50)

Let us calculate the number of incoming particles in the lth partial wave, Nl
in, by integrating

the current entering through the surface of a sphere of radius r →� about the target.
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Since the Legendre polynomials are orthogonal, there are no interference terms between
different partial waves. We find

Nl
in =

[
�2l+1�2�A�2

4k2

] [
2

2l+1

] [
�k

m

]
�2��= ���2l+1��A�2

mk
�

The first term comes from the normalization of �1�2, the second from the orthogonality
relation of the Legendre polynomials, the third from the expression for the current of the
incoming wave, and the last from the integration over '. A similar calculation gives Nl

out:

Nl
out =

���2l+1��A�2
mk

�Sl�2�

The condition Nl
out ≤Nl

in implies that �Sl� ≤ 1. The inelastic cross section in the lth partial
wave is, up to the flux factor � = �k�A�2/m, just the difference between the numbers of
incoming and outgoing particles:

l
inel =

1
�

(
Nl

in−Nl
out

)= ���2l+1��A�2
k2

�1−�Sl�2��

and the total inelastic cross section becomes

inel =
�

k2

�∑
l=0

�2l+1��1−�Sl�2� � (12.51)

If Nl
in = Nl

out, the number of outgoing particles is equal to the number of incoming ones,
the scattering is elastic in the lth partial wave, and �Sl�k�� = 1, Sl�k�= exp�2i�l�k��. The
condition �Sl� ≤ 1 implies l

inel ≥ 0, as it should. The sum of the elastic and inelastic cross
sections is the total cross section:

tot =
2�
k2

�∑
l=0

�2l+1��1−ReSl� � (12.52)

The presence of inelastic channels implies that �1−Sl� �= 0, and so in quantum physics
it is not possible to have purely inelastic scattering, whereas in classical physics particles
can be sent onto perfectly absorbing targets, without undergoing elastic scattering. If the
absorption in the lth partial wave is total, which corresponds to N out

l = 0 and therefore to
Sl = 0, then

el = l
inel =

�

k2
�2l+1�� (12.53)

By comparison, the maximum elastic cross section is

l
el�max =

4�
k2

�2l+1��
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An important consequence of the intertwining of elastic and inelastic scattering is the
optical theorem. Let us calculate the imaginary part of the forward scattering amplitude10

Im f� = 0� using Pl�1�= 1:

Im f� = 0�= 1
2k

�∑
l=0

�2l+1��1− Re Sl��

Comparing this with (12.52) for tot, we see that

tot =
4�
k

Imf� = 0� � (12.54)

This relation is the optical theorem, which relates the total cross section to the imaginary
part of the forward scattering. The proof of the theorem shows that it follows from
probability conservation.

12.3.2 The optical potential

Inelastic scattering can be taken into account by introducing a complex potential in the
Schrödinger equation. Actually, if we repeat the proof in Section 9.2.2 of the continuity
equation for the current �� · �j = 0 in the case of a stationary wave 1�k��r�, we see that this
equation is not satisfied if the potential is complex:

�� · �j = 2
�
ImV��r��1�k��r��2� (12.55)

Of course, we recover the result �� · �j = 0 in the case of the real potential used in
Section 9.2.2. The number of particles absorbed per unit time is equal to the incident flux
multiplied by the inelastic cross section. To calculate the number of absorbed particles,
we imagine that the target is surrounded by a large sphere and calculate the flux of �j
through the surface � of the sphere:

−
∫
�
�j ·d �� =−

∫
�

�� · �j d3r =−2
�

∫
�
ImV��r��1�k��r��2 d3r�

where � is the volume of the sphere and the minus sign corresponds to the fact that d ��
points toward the outside. We then have

in =− 2m
�2k

∫
ImV��r��1�k��r��2 d3r� (12.56)

where we have integrated over all space because the potential is assumed to have finite
range or to fall off sufficiently rapidly at infinity. From now on to the end of this
chapter the potential V��r� will be arbitrary, not necessarily invariant under rotation.
Equation (12.56) implies that the imaginary part of V��r� must be negative, Im V��r�≤ 0.

10 This quantity cannot be measured directly, because in the forward direction one finds mostly incident particles which have
not undergone a collision. It is necessary to take the  → 0 limit of f� �. See also Footnote 3.



424 Elementary scattering theory

A complex potential with negative imaginary part V��r� is called an optical potential. Such
a potential is useful when we are interested not in the details of inelastic processes, but
only in their effects on elastic processes. It is often used, in particular, in neutron–nucleus
scattering. At low energies this complex potential can be represented as an effective
potential of the type (12.41) with a complex scattering length a= a1+ ia2, a2 < 0. Under
these conditions Im f =−a2 and the total cross section is very large compared with the
elastic cross section:

tot � in �
4�
k
�a2� � el = 4�a2

1�

The proportionality of in to 1/k, or to 1/v, where v is the speed of the incident neutrons, is
an extremely important result: the cross section for neutron absorption grows as 1/v when
v→ 0. This implies, for example, that neutrons must be slowed down in order to obtain
sizable cross sections for uranium fission in a nuclear reactor. Another example is the
use of cadmium to absorb neutrons: the scattering length is complex, with a1 =−3�8 fm
and a2 =−1�2 fm.
Let us rewrite the optical theorem using (12.56):

Im f� = 0�= k

4�

∫
�f�+��2 d+− m

2��2

∫
ImV��r��1�k��r��2 d3r� (12.57)

This equation can be generalized. We define the scattering amplitude f�kr̂� �k� using the
solution (12.9) of the Schrödinger equation:

1
�+�

�k ��r�= ei�k·�r +f�kr̂� �k�e
ikr

r
�

Since the potential is not assumed to be invariant under rotation, the scattering amplitude
depends on r̂ and �k, and not only on k and the angle between r̂ and k̂. It is then possible
to prove the unitarity relation:11

1
2i

[
f��k ′� �k�−f ∗��k� �k ′�

]
= k

4�

∫
f ∗�kr̂� �k ′�f�kr̂� �k�d2r̂

− m

2��2

∫
ImV��r� �1�+�

�k ′ ��r��∗1
�+�

�k ��r�d3r� (12.58)

Invariance under time reversal implies that f��k ′� �k�= f�−�k�−�k ′�, and invariance under
parity implies that f��k ′� �k� = f�−�k ′�−�k�. If these two invariances are valid, f��k ′� �k� =
f��k� �k ′� and

1
2i

[
f��k ′� �k�−f ∗��k� �k ′�

]
= Im f��k ′� �k�

in (12.58). We then recover (12.57) by taking �k ′ = �k.

11 See, for example, Landau and Lifschitz [1958], Section 124.
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12.4 Formal aspects

12.4.1 The integral equation of scattering

In this section we shall take up several points that we have previously glossed over,
in order to clarify certain arguments we have made above. First we shall prove an
equation, the integral equation of scattering, which will allow us to justify the asymptotic
expression (12.10) and will also prove useful for other aspects of scattering theory. The
proof rests on the expression for the Green’s functions G��r� of the Schrödinger equation
when V = 0, which satisfy

��2+k2�G��r�= ���r�� (12.59)

In general, the Green’s functions G of a wave equation �1 = 0 are defined from �G=
���r�. The solution of an equation of this type is not unique and the precise form of function
that must be used for a given problem is actually fixed by the boundary conditions. We
shall need the Green’s functions G�±���r� corresponding to an outgoing spherical wave
[G�+���r�] and an incoming spherical wave [G�−���r�]. They are given by12

G�±���r�=− 1
4�

e±ikr

r
� (12.60)

We can immediately verify (12.59):

�2 e
±ikr

r
= �2

[
e±ikr −1

r

]
+�2 1

r

= 1
r

d2

dr2
e±ikr −4����r�

= −k2
e±ikr

r
−4����r��

where we have used (12.42) and the fact that the function �exp�ikr�−1�/r is regular at
r = 0.
Let us examine the behavior of the functionG�+���r−�r ′� when r→� with r ′ remaining

finite. In this limit

��r−�r ′� = r− r̂ · �r ′ +O

(
r ′2

r

)

and, defining �k ′ = kr̂, we obtain

G�+���r−�r ′�=−eik��r−�r ′ �

4�r
=−eikr ei�k ′ ·�r ′

4�r
+O

(
k
r ′2

r2

)
� (12.61)

12 Any combination 
G�+�+�1−
�G�−�+Gh, whereGh is a solution of the homogeneous wave equation, also satisfies (12.59).
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which shows that G�+� does behave as an outgoing spherical wave. The function 1
�+�

�k ��r�
defined implicitly as

1
�+�

�k ��r�= ei�k·�r + 2m
�2

∫
G�+���r−�r ′�V��r ′�1�+�

�k ��r ′�d3r ′ (12.62)

obeys the Schrödinger equation. Actually, using (12.59) we have

��2+k2�1
�+�

�k ��r�= 2m
�2

∫
���r−�r ′�V��r ′�1�+�

�k ��r ′�= 2m
�2

V��r�1�+�

�k ��r��

Equation (12.62) is called the integral equation of scattering. The essential point is that
1

�+�

�k ��r� does behave asymptotically as (12.9). Using (12.61) and (12.62) for r →�, we
find

1
�+�

�k ��r�� ei�k·�r − m

2��2

e ikr

r

∫
e−i�k ′ ·�r ′V��r ′�1�+�

�k ��r ′�d3r ′� (12.63)

We can immediately identify the scattering amplitude f�+� using (12.9):

f�+�= f��k ′� �k�=− m

2��2

∫
e−i�k ′ ·�r ′V��r ′�1�+�

�k ��r ′�d3r ′� (12.64)

This equation is exact, but of course it is necessary to know 1
�+�

�k ��r�, and so we cannot
avoid solving the Schrödinger equation! We can solve (12.63) approximately by iteration.
The first iteration will be

1
�+�

�k ��r�= ei�k·�r �

Substituting this into (12.64), we obtain f��k ′� �k� in the Born approximation:

fB��k ′� �k�=− m

2��2

∫
e−i�q·�r V��r�d3r � (12.65)

The vector �q = �k ′ − �k is the wave vector transfer, ��q is the momentum transfer, and fB
is the Fourier transform of the potential with respect to �q. We note that

q = 2k sin
 

2

and that fB depends only on the combination k sin� /2� of k and  if the potential is
spherically symmetric. This feature is of course specific to the Born approximation. It is
difficult to state the criteria for validity of the Born approximation precisely: generally
speaking, the energy should be high or the potential should be weak. In the case of
Coulomb scattering, the Born approximation gives the exact result for the cross sec-
tion (but not the amplitude) at any energy, far outside its theoretical region of validity
(Exercise 12.5.4).
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12.4.2 Scattering of a wave packet

A second point that must be justified is the use of a stationary formalism, whereas
particle scattering is fundamentally a time-dependent process. This forces us to study
the scattering of a wave packet. We assume that we have a wave packet centered about
a momentum ��k0 with a dispersion !k	 k0, and we also assume that the dimension
!r ∼ 1/!k of the wave packet is very small compared with the characteristic lengths
in the experiment, for example the distance between the target and the detector. A free
wave packet is described by an expression which is the three-dimensional generalization
of (9.41):

���r� t�=
∫ d3k

�2��3
A��k� exp

[
i�k · �r− i�kt

]
(12.66)

with�k= �k2/2m, the average frequency being�0= �k20/2m. In Section 9.1.4 we showed
that if the condition �!k�2�t/m	 1 is satisfied (which is nearly always the case), we
can neglect the spreading of the wave packet, and (12.66) in the form (9.48) generalized
to three dimensions (with the change of notation k→ k0, vg → v0) becomes

���r� t�� ei�0t���r−�v0t� t = 0�� (12.67)

where the group velocity �v0 = ��k0/m. This implies that ����r� t�� is negligible if ��r−�v0t��
!r, that is, if ��r −�v0t� is large compared with the extent !r of the wave packet. The
time-dependent wave function 1

�+�

�k ��r� t� in the presence of a potential V��r� is obtained
by replacing the plane wave exp�i�k · �r� in the expression for a wave packet (12.66) by
1

�+�

�k ��r�. The resulting expression is actually a solution of the time-dependent Schrödinger
equation in the presence of the potential V��r� with the behavior of an outgoing spherical
wave. We decompose the wave function 1

�+�

�k ��r� t� into a free part and a scattered part:

1
�+�

�k ��r� t�= ���r� t�+1scatt��r� t��

When the wave packet is far from the target, 1�+�

�k ��r� can be replaced by its asymptotic
form (12.63):

1
�+�

�k ��r�→ ei�k·�r +f�kr̂� �k�e
ikr

r
�

and then

1scatt��r� t�=
∫ d3k

�2��3
A��k�f�kr̂� �k�e

ikr

r
e−i�kt�

We assume that f�kr̂� �k� varies sufficiently slowly with �k.13 Under these conditions

f�kr̂� �k�� f�k0r̂� �k0��

13 This condition may not be satisfied in the presence of a resonance.
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and the scattered part is

1scatt��r� t��
f�k0r̂� �k0�

r

∫ d3k
�2��3

A��k� exp�i�kr−�kt��� (12.68)

Next we note that

k= ���k0+ ��k−�k0��2�1/2 = k0+ k̂0 · ��k−�k0�+O

[
�!k�2

k0

]
= k̂0 · �k+O

[
�!k�2

k0

]
�

Since the characteristic time t ∼ r/v0 =mr/�k0, we have

�!k�2 r

k0
� �!k�2�t

m
	 1

and kr in (12.68) can be replaced by rk̂0 · �k, which gives

1scatt��r� t��
f�k0r̂� �k0�

r
��rk̂0� t��

f�k0r̂� �k0�
r

���r−v0t�k̂0�0�e
i�0t�

When t is large and negative, ��r−v0t���!r, and since ��r ′�0� is negligible for r ′ �!r,
we have 1scatt → 0 and the wave packet tends to a free wave packet: since the wave
packet does not overlap with the potential, 1scatt is practically zero:

lim
t→−�1��r� t�= ���r� t��

The wave packet interacts with the target for t ∼ 0, and when t→+�

1scatt��r� t��
f�k0r̂� �k0�

r
���r−v0t�k̂0�0� e

i�0t�

We therefore recover the wave packet in a direction different from the initial one,
modulated by the scattering amplitude f�k0r̂� �k0� and propagating radially with a speed v0.

Now we can calculate the probability dp for triggering a detector of area d� = r2d+
located in the direction �r. Since the current at time t is v0�1scatt�2r̂, the probability for
triggering the detector is

dp = v0r
2d+

∫ +�

−�
�1scatt��r� t��2dt

= v0 d+�f�k0r̂� �k0��2
∫ +�

−�
����r−v0t�k̂0�0��2dt�

On the other hand, the probability for the incident particle to cross a unit surface perpen-
dicular to the incident beam is ∫ +�

−�
����r−v0t�k̂0�0��2dt�

and from the definition (12.1) we find the cross section

d
d+

= �f�k0r̂� �k0��2 = �f�+��2� (12.69)

which completes the justification of (12.12).
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12.5 Exercises

12.5.1 The Gamow peak

1. We wish to evaluate the cross section for the reaction

2H+ 3H→ 4He+n (12.70)

occurring in the interior of a star at a temperature of the order of 107 K. We have chosen this
particular reaction to be specific, but our discussion will apply to any nuclear reaction occurring
in a star between light nuclei. Show that the kinetic energy of the incident 2H and 3H nuclei
is of the order of keV. Why are the atoms completely ionized? The following relation is often
useful in nuclear physics. In a system of units where � = c = 1, the relation between the units
fermi (≡ femtometer) and MeV can be written as

1 fm−1 � 200MeV�

Verify this relation. The potential V�r� between the two incident nuclei is the repulsive Coulomb
potential V�r� = e2/r for r > R and an attractive nuclear potential for r ≤ R, with R � 1 fm.
Show that e2/R is very large compared with the kinetic energy E of the incident nuclei.

2. Show that in classical physics the two nuclei cannot approach each other to distances less than
r0 = e2/E, and the nuclear reaction (12.70) cannot occur. In quantum physics the reaction is
possible owing to the tunnel effect. Using (9.106), show that the probability for tunneling is

pT�E�= exp

(
− 2

�

∫ r0

R

[
2�
(
e2

r
−E

)]1/2
dr

)
�

where � is the reduced mass: E = �v2/2, v being the relative speed of the two nuclei. Show
that �� �6/5�mp, where the proton mass mp � 940MeV c−2. To calculate pT�E� we can make
the change of variable

u2 = e2

r
−E�

A useful integral is ∫ u2du
�u2+a2�2

= 1
2a

tan−1 u

a
− u

2�u2+a2�
�

Show that

pT�E�� exp

(
−
√

E

EB

)
� EB = 2�2�2�c2

with �= e2/�c � 1/137. Give the value of EB in MeV.
3. Justify the approximate form of the cross section for the reaction (12.70):

�E�∼ 4�
k2

pT�E�

assuming that the nuclear reaction occurs as soon as the nuclei come into contact with each
other; k is the wave vector and E = �2k2/2�.

4. According to (12.1), the number of nuclear reactions (12.70) per unit time is nintv�v�, where
ni and nt are the densities of the incident nuclei and the target nuclei. However, the speeds are
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not fixed, and to obtain the reaction rate in a star it is necessary to average over the Maxwell
velocity distribution:

pM�v�=
(

�

2�kBT

)3/2

exp
(
− �v2

2kBT

)
�

The physically relevant quantity is the average 
v�. By integrating over angles, show
that


v� = 4�
(

�

2�kBT

)3/2 ∫ �

0
dv v3�v� exp

(
− �v2

2kBT

)
�

Then, making the change of variable v→ E, deduce that


v� = 16�2�2

�3

(
�

2�kBT

)3/2 ∫ �

0
dE e−E/�kBT�e−

√
EB/E� (12.71)

Show that the integrand in (12.72) has a sharp peak at an energy E = E0 with

E0 =
(
1
2
kBT

√
EB

)2/3

�

and that the width of the peak !E is given by

!E ∝ E
1/6
B �kBT�

5/6�

This peak is called the Gamow peak, and it determines the energy E0 at which the
reaction (12.70) has maximum probability: the reaction rate in the star is controlled by E0.
Obtain a numerical estimate of the position and width of the peak.

12.5.2 Low-energy neutron scattering by a hydrogen molecule

1. First let us consider the scattering of a particle by two different nuclei 1 and 2 of a diatomic
molecule neglecting spin. The center of the molecule is located at the origin, and the detector
is located at a distance r from the target. The nuclei 1 and 2 are located at the points �R/2 and
−�R/2, with R	 r. Show that the amplitude for scattering by the molecule is

f = a1 exp
(
− i
2
�q · �R

)
+a2 exp

(
i
2
�q · �R

)
�

Denote by �k the wave vector of the incident particles, �k ′ = kr̂, ��q = ���k ′ − �k� is the momentum
transfer, and a1 and a2 are the scattering lengths for the nuclei 1 and 2. Sketch the cross section
as a function of the angle  between �k ′ and �k when qR∼ 1.

2. Now we consider the case of neutron scattering on a hydrogen molecule taking into account the
neutron and proton spins. We assume that the energy is low enough that qR	 1. What must
the energy be in eV for this condition to be satisfied? If the neutrons are produced in a reactor,
to what temperature must they be cooled (cf. Section 1.4.2)? The total spin �S of the molecule is
defined as

��S = 1
2

���1+ �2��
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where �1 and �2 are the Pauli matrices describing the spins of the two protons. Show that the
scattering amplitude is written in spin space as a function of the scattering lengths as and at as

f̂ = 1
2
�as+3at�I+

1
2
�at−as���n · �S��

3. If the neutron–proton interaction is dealt with using an effective potential (12.41), the constant
g will be fixed by the characteristics of the potential. Show that owing to a reduced-mass effect,
it is necessary to use 4a/3 for the scattering length on protons bound in a hydrogen molecule,
where a is the scattering length for a neutron on a free proton. The cross section is therefore
multiplied by a factor of 16/9; this is an effect of the chemical bond. This reduced-mass effect
occurs as long as the neutron energy is so low that the vibrational levels of the molecule are not
excited.

4. The hydrogen molecule can exist in two spin states: the parahydrogen state of spin zero and
the orthohydrogen state of spin one. What is the neutron–parahydrogen total cross section? Is it
sensitive to the sign of as?

5. Calculate the neutron–orthohydrogen total cross section assuming that the molecule is unpolar-
ized. Hint: prove the identity

Tr�A⊗B�2 = �TrA2��TrB2��

12.5.3 Analytic properties of the neutron–proton scattering amplitude

The objective of this exercise is to relate the properties of bound states and resonances to
the scattering amplitude. We shall limit ourselves to the s-wave. We neglect the neutron–
proton mass difference and define M � mp � mn, so that the reduced mass is M/2. All
spin effects are neglected.

1. Let u�r� be the (real) radial wave function of a bound state, here the deuteron. It is characterized
by its asymptotic behavior ∝ exp�−7r�and its asymptotic normalization N :

r →� � u�r�� Ne−7r with
∫ �

0
u2�r�dr = 1�

Show that in the case of the spherical well of Fig. 12.4 of range R and depth V0,

N 2 = 27k′2 e27r

�72+k′2��1+7R�

with k′ =√M�V0−B� and 7=√
MB, where B is the binding energy. Sketch u�r� qualitatively.

2. Let g�k� r� be a solution of the radial equation with the asymptotic behavior

r →� � g�k� r�∝ e−ikr with k=
√
ME

�
�

Show that the wave function u�k� r� is given by

u�k� r�= g�−k� r�g�k�−g�k�−r�g�−k�� g�k�= g�k� r = 0��
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and that the S-matrix element S�k� is

S�k�= e2i��k� = g�k�

g�−k�
�

3. We analytically continue g�k� r� to complex values of k. Show that

g∗�k� r�= g�−k∗� r�� S∗�k∗�= 1
S�k�

= S�−k��

4. Calculate g�k� and S�k� for the spherical well and show that g�k� is an entire function of k (that
is, it is analytic for all k).

5. It can be proved that g�k� is analytic in the half-plane Im k < �/2 for a potential which falls off
more rapidly than exp�−�r� when r →�. This result will be used in the rest of this exercise.
Show that if S�k� has a pole on the imaginary axis, k= i7, 0< 7 < �/2, this pole corresponds
to a bound state of the potential. Show that if S�k� has a pole at k = h− ib, �b� < �/2, then
necessarily b > 0.

6. The case of the pole at k = h− ib, b > 0, is that of a resonance. Show that a choice for S�k�
satisfying the conditions of question 3 is

S�k�= �k−h− ib��k+h− ib�
�k−h+ ib��k+h+ ib�

� k−h− ib
k−h+ ib

for k∼ h�

Assuming that b	 h, find the behavior of the phase shift ��k� as a function of k by showing
that

cot �= h−k

b
�

Prove that � passes through �/2 for k = h and that the cross section can be written in the
so-called Breit–Wigner form:

�E�= 2��2

ME

�202/4
�E−E0�

2+�202/4
� (12.72)

Relate E0 and 0 to b and h. Show that h= 0 corresponds to a virtual state.
7. Prove the relation [

u′
2u

2k
−u

2u′

2k

]r
0

= 2k
∫ r

0
u2�r ′�dr ′� u′ = 2u

2r
�

By studying this expression for r → 0 and r →�, show that near a pole k= i7

S�k�� −iN 2

k− i7
�

8. Show that the function

k cot ��k�= ik
g�k�+g�−k�

g�k�−g�−k�

is analytic in k near k= 0, that it tends to a constant for k→ 0, and that it is an even function
of k. Show that we can write

k cot ��k�=− 1
a
+ 1

2
r0k

2+O�k4��
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Demonstrate the relations

r0 =
2
7

(
1− 1

7a

)
� N 2 = 27

1−7r0

between the deuteron parameters �7�N� and the low-energy scattering characteristics
(a� r0). Calculate r0 given that B= 2�22 MeV and a= 5�40 fm and compare this with the
experimental result r0 = 1�73 fm.

12.5.4 The Born approximation

1. Calculate the scattering amplitude fB��q�, �q = �k ′ − �k, in the Born approximation when the
potential has the so-called Yukawa form:

V�r�= V0
e−�r

�r
�

Find d/d+ and tot .
2. Examine the limit �→ 0 with V0/�→ e2 = const, where the Yukawa potential tends to the

Coulomb potential V�r�= e2/r . Show that

d
d+

= e4

16E2 sin4  /2
� (12.73)

where E = �2k2/2m is the incident energy. This result was obtained by Rutherford using
arguments from classical mechanics (quantum mechanics did not yet exist!), and it is called the
Rutherford cross section. This is also the result obtained by a rigorous treatment of the Coulomb
potential in quantum mechanics. It is remarkable that the Born approximation, which is of more
than doubtful validity in this case, gives the correct result for the cross section (but not for the
amplitude f� �).

12.5.5 Neutron optics

1. Scattering by a thin plate. We consider a low-energy neutron beam of vacuum wave vector k
which passes through a very thin plate of thickness � perpendicularly to the plate, and at first
we neglect spin effects. The neutrons are detected after their passage through the plate at a point
z on the axis Oz perpendicular to the plate, with the origin O chosen to lie at the center of the
plate. If a neutron is scattered by a nucleus of the plate located a distance s from O, show that
the probability amplitude for observing the scattered neutron at z is

�s =−a

r
eikr � r =

√
s2+ z2�

where a is the scattering length. The probability amplitude for finding a neutron at z is the sum
of the incident wave exp�ikz� and the wave scattered by the plate:

��z�= eikz−a
∑ eikr

r
�

where the sum runs over all the nuclei of the plate. Show that

��z�= eikz−2�a��
eikr

ik

∣∣∣�
z
�
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where � is the volume density of nuclei. The limit r →� gives zero if we average over
oscillations, and we find

��z�=
(
1−2i�

a��

k

)
eikz�

2. The index of refraction. When the neutrons pass through the plate it behaves like a medium
with index of refraction n, and so, as in optics, the wave vector is transformed as k→ k′ = nk

or, equivalently, the wavelength 
→ 
′ = 
/n. Comparing with the result of question 1 when
�n−1�k�	 1, show that

n= 1− 2�a�
k2

= 1− a�
2

2�
�

When n < 1 a beam of neutrons arriving at grazing incidence on the flat surface of a crystal can
undergo total reflection (the difference between the indices of refraction of the vacuum and air
is negligible). If the angle of incidence is ��/2− �,  	 1, show that critical incidence is

 c = 

(�a
�

)1/2
�

Estimate  c numerically for the following typical values: 
= 1nm, �= 1029 m−3, and a= 10 fm.
The property of total reflection is used to construct the neutron guides used in instruments for
neutron optics.

3. Spin effects: spin-1/2 nuclei. In the following questions we study effects related to the neutron and
nuclear spins. Taking the results of Exercise 3.3.9 and using (12.46), show that the amplitudes
fa, fb, and fc of this exercise are given as functions of the triplet and singlet scattering lengths
at and as for spin-1/2 nuclei by

fa =−1
2
�at+as�� fb =−1

2
�at−as�� fc =−at�

Show that the intensity scattered by the crystal is

� = 1
16

�3at+as�
2
∑
i�j

ei�q·��ri−�rj �+ 3�
16

�at−as�
2�

where� is the number of scattering nuclei. The first term of � corresponds to coherent scattering
and the second to incoherent scattering (Exercise 1.6.8). By integrating � over angles we obtain
the coherent and incoherent cross sections:

coh =
�

4
�3at+as�

2� inc =
3�
4

�at−as�
2�

In the case of scattering by hydrogen, at = 5�4 fm and as = −23�7 fm. Evaluate coh and inc

numerically and show that inc � coh. This property is peculiar to hydrogen, because in general
the two cross sections are of the same order of magnitude. Show that the scattering length to be
used in calculating the index of refraction is that defined by coherent scattering:

aeff =
3
4
at+

1
4
as�

What is the physical interpretation of the weights 3/4 and 1/4? What is the sign of aeff for
hydrogen? Is it possible to obtain total reflection of neutrons on liquid hydrogen?
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4. Scattering by nuclei of spin j. We assume that the nuclear scatterers have spin j. Let

�I = �J + �

2
�

be the total angular momentum of the nucleus + neutron system, where � �/2 is the neutron
spin operator. Show that the nucleus + neutron scattering amplitude is written in spin space as
a function of the two lengths a and b as

−f̂ = a+ b

�

(
� · �J

)
�

Let a+ = aj+1/2 and a− = aj−1/2 be the two scattering lengths corresponding to scattering in the
total angular momentum states i± = j±1/2. Show that

a+ = a+bj� a− = a−b�j+1�

and, inversely,

a= 1
2j+1

[
�j+1�a++ ja−

]
� b = 1

2j+1
�a+−a−��

5. Coherent and incoherent scattering. If the nuclei and neutrons are unpolarized, what are the
probabilities that the scattering occurs in the states i+ = j+ 1/2 and i− = j− 1/2? Using the
results of Exercise 1.6.8, show that the coherent and incoherent cross sections are given by

coh =
4�

�2j+1�2
[
�j+1�a++ ja−

]2 = 4�a2�

inc =
4�j�j+1�
�2j+1�2

�a+−a−�
2 = 4�j�j+1�b2�

Verify that the results of question 3 are recovered when j = 1/2.

12.5.6 The cross section for neutrino absorption

1. The goal of this exercise is to calculate the cross section for neutrino absorption by neutrons

�+p→ n+ e+

in terms of the lifetime of the neutron, which decays via the reaction (1.2):

n→ p+ e−+��

The two processes are related because the same interaction, the weak interaction, is responsible
for both phenomena. The transition matrix element for the calculation of the neutron lifetime
can be written as

Tfi =GF�fi
�f ��i��
where the initial- and final-state wave functions are plane waves normalized in a volume � and
have the form

1√
�
ei�p·�r/��
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GF is the Fermi constant, or the weak interaction coupling constant, and �fi is a dimensionless
spin-dependent matrix element.14 The energy E0 = �mn−mp�c

2 � 1�2 MeV is the energy avail-
able in the decay (to an excellent approximation m� = 0). Let �pn = 0 (stationary neutron),
�P = �pp, �p = �pe, and �q = �p� be the momenta in the initial and final states, and let T = P2/2mp

be the proton kinetic energy and E and cq be the total energies of the electron and the neutrino.
Energy–momentum conservation can be written as

�P+ �p+ �q = 0� T +E+ cq = E0�

Show that T can be neglected: T 	 E� cq. Let d0/dE be the neutron decay rate per unit energy.
It can be shown that there are no correlations between the electron and neutrino momenta. Show
that under these conditions this rate is written as a function of the density of states � of the
electron and the neutrino as

d0
dE

= 2�
�

G2
F
��fi�2��−2�e�E����E−E0�

= 2�
�

G2
F
��fi�2�

[
4�

�2���3
pE

c2

][
4�

�2���3
�E0−E�2

c3

]

where 
��fi�2� represents the spin matrix element summed over the final spins and averaged
over the initial spins. To obtain the lifetime � = 1/0 it is necessary to integrate over E. The
integral

I�E0�=
∫ E0

mec
2
dEE�E0−E�2

√
E2−m2

ec
2

can be calculated exactly, but we shall just use an ultrarelativistic approximation neglecting the
electron mass:

I�E0��
∫ E0

0
dEE2�E0−E�2 = E5

0

30
�

Find the expression for the lifetime:

1
�
= 0 ∼ G2

FE
5
0

60�3���c�6
�

What is the dimension of GF/��c�
3? Estimate GF from the lifetime � � 900 s and compare with

the exact value
GF

��c�3
= 1�17×10−5 GeV−2�

2. Show that the differential cross section for neutrino absorption by neutrons is given by

d
d+

= 2�
�c

G2
F
��fi�2�

Ep

�2���3c2

where E is the energy of the positron e+, and obtain

tot ∼
1
�

[
GF

��c�3

]2
��c�2E2�

14 �fi also depends on two dimensionless constants of order unity, the vector coupling constant gV = 1 and the axial coupling
constant gA = 1�25.
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Verify that tot does actually have the dimensions of area. Estimate tot numerically for 8 MeV
solar neutrinos, and show that the mean free path of solar neutrinos inside the Earth is measured
in light-years.

3. The Fermi theory used in this exercise gives an isotropic cross section: the interaction occurs
only in the s-wave, l= 0. Using (12.51), show that the result obtained for the absorption cross
section cannot be valid at very high energy, and estimate the energy beyond which the Fermi
theory must be modified. This modification is well known: it is the Glashow–Salam–Weinberg
electroweak theory, a component of the Standard Model unifying the weak and electromagnetic
interactions, with the Fermi constant related to the electron charge and the W±- and Z0-boson
masses as GF ∼ e2/M2

W.

12.6 Further reading

A discussion of scattering theory more complete than that given here can be found in
Merzbacher [1970], Chapters 11 and 19; Messiah [1999], Chapters X and XIX; and
Landau and Lifschitz [1958], Chapters XVII and XVIII. Low-energy scattering theory is
discussed by H. Bethe and Ph. Morrison, Elementary Nuclear Theory, New York: Wiley
(1956), Chapters IX to XI, and in C. Pethick and H. Smith, Bose–Einstein Condensation
of Dilute Gases, Cambridge: Cambridge University Press (2002), Chapter 5.
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Identical particles

13.1 Bosons and fermions

13.1.1 Symmetry or antisymmetry of the state vector

Let us consider a state �-� of two different particles, for example two different oxygen
atoms 16O and 18O in their ground states, and let �a1� and �b2� be the respective states of
these two atoms. The states �a� and �b� are, for example, eigenstates of the operators �P,
�J� � � � labeled by the momentum �p of the atom, the atomic spin component jz, and so on:1

�a� = ��p� jz� � � ��� �b� = ��p ′� j′z� � � ���
We use �a1⊗ b2� to denote the two-particle state where particle 1 (16O) is in the state
�a� and particle 2 (18O) is in the state �b�; for example,2 �a1⊗ b2� = ��p1⊗ �p ′

2�. For
clarity, we can assume that the particles have interacted in the distant past and are in an
entangled state �-�. The tests performed on particles 1 and 2 are clearly unrelated, as
they take place in well-separated regions of space, like in the experiments discussed in
Section 6.3.1. Two detectors D1 and D2 are used to determine �p� jz� � � � for each particle:
D1 detects an

16O atom with momentum �p and D2 detects an
18O atom with momentum

�p ′ (Fig. 13.1a), which makes it possible to perform an �a1⊗ b2� test on the state �-�.
The probability for the state �-� to pass the �a1⊗b2� test is

p-→�a1�b2�
= �
a1⊗b2�-��2� (13.1)

One can also imagine the opposite configuration and measure the probability that the
detector D1 records an 18O atom while D2 records an 16O atom (Fig. 13.1b). This is
different from (13.1), as this probability corresponds to an �a2⊗b1� test, where the 18O
atom has momentum �p and the 16O atom has momentum �p ′, so that except in special
cases

p-→�a2�b1�
�= p-→�a1�b2�

�

1 The 16O and 18O atoms have spin 2 (the electronic state is 3P2) and the ground state is five-fold degenerate. If necessary in
a theoretical argument, this degeneracy can be lifted by the Zeeman effect in a magnetic field.

2 This notation is not ideal. It suggests that particle 1 is in the momentum state �p1, and not �p, and a better notation would be
��p�1⊗��p′�2. However, there is no ambiguity in the case of two spins: �+1⊗−2�, as in (13.14).

438
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p′

16O

π–θ

θ16O

16O

16O

18O

18O18O
18O

D1D1

D2 D2

→

p
→

p′→

p→

Fig. 13.1. 16O–18O scattering. (a) The scattering angle  ; (b) the scattering angle ��− �.

Let us now assume that particles 1 and 2 are identical, for example that they are both
16O atoms. If the energies involved in the interaction between these two particles are
several eV, nothing will a priori distinguish this case from the preceding one, because
16O–18O and 16O–16O interactions are strictly identical. This is true up to energies of the
order of MeV, where differences due to the nuclei begin to be important, and yet the two
cases can differ radically, even at low energy. When the two particles are identical, it no
longer makes sense to speak of an �a1⊗b2� test. It may be convenient to formally label
the two particles and then speak of an �a1⊗b2� or �a2⊗b1� test, but such labeling has no
physical significance. It is not physically acceptable to write a state in the form �a1⊗b2�
(except if a≡ b), because it cannot be stated that particle 1 is in state a and particle 2 in
state b or vice versa, since the particles cannot be distinguished. The problem therefore
is how to correctly define the state �a⊗ b�. This state must be physically identical to
�b⊗a� and can only differ by a phase, which may depend on a and b:

�a⊗b� = ei ab �b⊗a��
�b⊗a� = ei ba �a⊗b�� (13.2)

These equations imply that

ei ba ei ab = 1� (13.3)

We define the new vectors

�a⊗b�′ = ei ab/2�a⊗b��
�b⊗a�′ = ei ba/2�b⊗a�� (13.4)

Instead of (13.2) we have

�b⊗a�′ = e−i ba/2�b⊗a� = ei ba/2�a⊗b�
= ei� ab+ ba�/2�a⊗b�′ = ±�a⊗b�′�

because according to (13.3)

ei� ab+ ba�/2 =±1�
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It is therefore always possible to choose the phases of the vectors �a⊗ b� and �b⊗a�
such that these vectors are symmetric or antisymmetric under the permutation a↔ b:

symmetric �a⊗b� = +�b⊗a�� (13.5)

antisymmetric �a⊗b� = −�b⊗a�� (13.6)

As a result, the amplitudes 
a⊗b�-� are also either symmetric or antisymmetric:

symmetric 
a⊗b�-� = 
b⊗a�-�� (13.7)

antisymmetric 
a⊗b�-� = −
b⊗a�-�� (13.8)

This property of symmetry or antisymmetry is characteristic of the pair of identical
particles under consideration. It cannot depend on the states �-� or �a⊗ b�. To show
this, let us assume that for the same pair of particles we have a symmetric amplitude if
�-� = �%1� and an antisymmetric one if �-� = �%2�:


a⊗b�%1� = 
b⊗a�%1��

a⊗b�%2� = −
b⊗a�%2��

The linearity of quantum mechanics also allows us to choose a state which is a linear
combination of �%1� and �%2�:

�-� = �%1�
%1�-�+ �%2�
%2�-��
where we assume for convenience that 
%1�%2� = 0. We then have


a⊗b�-� = 
a⊗b�%1�
%1�-�+
a⊗b�%2�
%2�-��
This probability amplitude is neither symmetric nor antisymmetric under the exchange
a ↔ b, and it is physically unacceptable. It is necessary that 
%1�-� = 0, or that

%2�-� = 0, for all states �-�. If 
%2�-� = 0, transitions - → %2 are forbidden and
�%2� does not belong to the space of two-particle states. As far as the behavior under
the exchange of two states is concerned, there are two and only two classes of identical
quantum particles, and they correspond to two types of amplitude:

• symmetric amplitudes (13.7), and the corresponding particles are called bosons;
• antisymmetric amplitudes (13.8), and the corresponding particles are called fermions.

The bosonic or fermionic nature of a particle space is called its statistics. As we shall see
in an instant, electrons are an example of fermions, and it is also said that they obey Fermi
(or Fermi–Dirac) statistics. Photons, which are bosons, obey Bose (or Bose–Einstein)
statistics.
We have already noted that it is convenient to give artificial labels to particles: 1�2� � � �

Equation (13.7) implies that the state vector of a system of two bosons will be symmetric
under an exchange of labels 1↔ 2:

�a⊗b�B =
1√
2

(
�a1⊗b2�+ �a2⊗b1�

)
� (13.9)
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and (13.8) implies that the state vector of two fermions must be antisymmetric:

�a⊗b�F =
1√
2

(
�a1⊗b2�− �a2⊗b1�

)
� (13.10)

If the particles have no internal degrees of freedom (spin, etc.), the particle state can be
characterized by its wave function �a��r�= 
�r�a� and �b��r�= 
�r�b�. The wave function
of the system in the case of bosons is


�r1� �r2�a⊗b�B =
1√
2

(
�a��r1��b��r2�+�a��r2��b��r1�

)
� (13.11)

while in the case of fermions


�r1� �r2�a⊗b�F =
1√
2

(
�a��r1��b��r2�−�a��r2��b��r1�

)
� (13.12)

We have just written down the state vector, or wave function, of two independent identical
particles without spin. When interactions are present, the wave function will be a linear
combination of wave functions of the type (13.11) or (13.12), but even when interactions
are absent the state vector, or wave function, will not be a simple tensor product.
The space of states for a pair of identical particles is therefore not the entire space

� �1�⊗� �2�, but only the subspace of vectors that are symmetric under exchange of labels
in the case of two bosons, or antisymmetric under such exchange for two fermions. These
two spaces are invariant under time evolution, because the Hamiltonian must be invariant
under the exchange 1↔ 2: �H�P12�= 0, where P12 is the label permutation operator.

These results can be generalized immediately to the case of an arbitrary number N
of identical bosons or fermions: the wave function of N bosons (fermions) must be
symmetric (antisymmetric) under the exchange of any two labels of two particles. In the
case of fermions, the wave function can therefore be written as a determinant. Let us
write it out explicitly for three independent, identical fermions:


�r1� �r2� �r3�a⊗b⊗ c�F =
1√
3!

∣∣∣∣∣∣∣
�a��r1� �a��r2� �a��r3�
�b��r1� �b��r2� �b��r3�
�c��r1� �c��r2� �c��r3�

∣∣∣∣∣∣∣ � (13.13)

If for example �a = �b for fermions, the wave function vanishes. This is called the Pauli
principle, although this “principle” actually follows from the antisymmetrization. It is
often stated as follows: it is impossible to put two or more fermions in the same state.
A spectacular effect of quantum statistics is described in Exercise 13.4.5.

13.1.2 Spin and statistics

In Equations (13.11) to (13.13) we have assumed that the particles do not have internal
degrees of freedom, in particular, spin. When internal degrees of freedom are included, the
exchange of labels must be done for all the quantum numbers characterizing the particle
state. In particular, the spin degrees of freedom must be exchanged. It is remarkable that



442 Identical particles

spin and statistics are intimately related by the spin–statistics theorem, which states that
particles of integer spin (0��, 2�, � � �) are bosons and those of half-integer spin (�/2,
3�/2, � � �) are fermions. Photons, which have spin 1, are bosons, and electrons, neutrinos,
protons, and neutrons, which have spin 1/2, are fermions. The proof of the spin–statistics
theorem uses relativistic quantum theory, or the relativistic theory of quantized fields,
and requires an arsenal of sophisticated mathematics and the mastering of some difficult
concepts. Therefore, it is unfortunately not possible to give even an intuitive idea of it
here. It is frustrating to have to acknowledge that there is no elementary argument to
justify this fundamental result which can be stated so simply.3

Having made this fundamental statement, we return to the state vectors (13.11)
and (13.12). As we have just seen, spin-zero bosons can perfectly well exist (examples
are � mesons, 4He atoms, and so on) and there is no problem with using a state vector
like (13.11) to represent the state of a system of two spin-zero bosons. On the other
hand, the spin cannot be neglected for a system of two fermions and must be taken into
account in writing down the state vector. The case of greatest practical importance is that
of spin-1/2 fermions like electrons, protons, neutrons, and so on. According to the results
of Section 10.6.1, using two spins 1/2 it is possible to construct angular momentum equal
to unity with the three basis vectors �jm�, collectively denoted &t :

�1�1� = �+1⊗+2��
�1�0� = 1√

2

(
�+1⊗−2�+ �−1⊗+2�

)
� (13.14)

�1�−1� = �−1⊗−2��
as well as angular momentum zero:

&s = �0�0� = 1√
2

(
�+1⊗−2�− �−1⊗+2�

)
� (13.15)

It is evident from (13.14) and (13.15) that the three states &t are symmetric under the
exchange 1↔ 2 while &s is antisymmetric. We recall that these states are respectively
called triplet and singlet states, hence the notation &t and &s. The totally antisymmetric
state vectors of a system of two fermions are therefore either antisymmetric in space and
symmetric in spin,


�r1� �r2�a⊗b�F =
1√
2

(
�a��r1��b��r2�−�a��r2��b��r1�

)
&t� (13.16)

or symmetric in space and antisymmetric in spin:


�r1� �r2�a⊗b�F =
1√
2

(
�a��r1��b��r2�+�a��r2��b��r1�

)
&s� (13.17)

3 For a proof, see R. Streater and A. Wightman, PCT, Spin and Statistics and All That, New York: Benjamin (1964). The
situation is similar to that of the Fermat theorem, which can be stated very simply but, as shown by A. Wiles, is extremely
complicated to prove. See, however, M. Berry and J. Robbins, Indistinguishability for quantum particles: spin, statistics and
the geometric phase, Proc. Roy. Soc. London A 453, 1771–1790 (1997).
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As an application, let us assume that two spin-1/2 fermions are in a state of orbital angular
momentum l in their center-of-mass frame. The angular part of the wave function of the
relative particle is the spherical harmonic Ym

l �r̂�, where �r = �r1−�r2 is the vector joining
the positions of the two fermions. Exchanging the labels is equivalent to �r →−�r or
r̂ →−r̂. According to (10.71), the parity of the spherical harmonics is �−1�l:

Ym
l �−r̂�= �−1�lY m

l �r̂�� (13.18)

In the center-of-mass frame, a system of two spin-1/2 fermions is in a state of even orbital
angular momentum l if its spin state is a singlet, and in a state of odd orbital angular
momentum l if its spin state is a triplet. It is usual to to denote the total spin as S, the
total orbital angular momentum as L, the total angular momentum as J , and 2S+1LJ the
state of the two fermions. For example, a 3P2 state corresponds to S = 1, L = 1, J = 2
and a 1D2 state to S = 0, L= 2, J = 2. The case of two spin-zero bosons is even simpler:
only states of even orbital angular momentum are allowed.
The symmetry properties of the state vector of two spins 1/2 can be generalized to the

addition of any two spins �S to form a total spin �F = �S1+ �S2, 0 ≤ F ≤ 2s. The symmetry
property of the Clebsch–Gordan coefficients4

C
jm
j2j1*m2m1

= �−1�j1+j2−jC
jm
j1j2*m1m2

shows that states of total spin 2F , 2F −2, � � � are symmetric under label exchange, while
states 2F − 1, 2F − 3, � � � are antisymmetric. As an application, let us show that these
symmetry properties affect the rotational spectrum of a homonuclear diatomic molecule,
that is, a molecule whose two nuclei are strictly identical, of the same isotope, for example
the 1H–1H ≡ H2 molecule, in contrast to a heteronuclear molecule like 1H–2H or H–D,
where a proton is replaced by a deuteron D≡ 2H (the deuterium is an isotope of hydrogen
with nucleus formed of a proton and a neutron). The dynamics of the nuclei is that of a
spherical rotator (cf. Section 10.3.1) whose wave functions are the spherical harmonics
Ym
j �r̂�, where �r is the vector joining the two nuclei. The rotational levels, or rotational

spectrum, are given as a function of j by (10.54):

Ej =
j�j+1�

2I
�

where I is the moment of inertia.
If we choose the coordinate origin to lie at the center of the line joining the nuclei, the

Hamiltonian H of the electrons is invariant under the parity operator 5 taking �r →−�r:
�5�H�= 0 (cf. Section 8.3.3). It is then possible to diagonalize 5 and H simultaneously.
Let �1el� be an eigenvector of the electronic state common to H and 5. Since 52 = I , the
eigenvalues of 5 are ±1, 5�1el� =±�1el� (cf. (8.52)). In most cases, and in particular that
of the hydrogen molecule, the electronic ground state corresponds to the + sign, which
is what we shall assume in the following discussion. The exchange of the labels of the

4 See, for example, Cohen-Tannoudji et al. [1977], Complement BX.
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two nuclei corresponds to �r →−�r, and in this operation the nuclear wave function is
multiplied by the parity of the spherical harmonic �−1�j . If the two nuclei have spin s,
the total angular momentum F runs from zero to 2s. The complete state vector of the
molecule must be symmetric (antisymmetric) under the exchange of the labels of the two
nuclei if the nuclei are bosons (fermions), and when they are bosons (integer s) there are
two possible cases:

• F even and j even,
• F odd and j odd.

The result is the same when the two nuclei are fermions (half-integer s). The opposite
situation could of course arise in rare cases where the parity of �1el� is negative. In the
case of the hydrogen molecule, the proton spin is s = 1/2 and F = 0 (parahydrogen) or
F = 1 (orthohydrogen). The value of F fixes the parity of j: F = 1 corresponds to odd j

and F = 0 to even j. There are no restrictions on j in the case of the H–D molecule.
Another important consequence of the statistics is the appearance of exchange forces,

which are responsible, in particular, for magnetism. Macroscopic magnetism corresponds
to the alignment of a macroscopic number of electron spins in the same direction, and
this alignment creates a macroscopic magnetic moment. If the alignment is produced
by an external magnetic field and disappears in the absence of this field, the material
is paramagnetic. If the alignment persists in the absence of the field, the material is
ferromagnetic (examples are iron, cobalt, nickel, and so on). Ferromagnetism vanishes
above a certain temperature, called the Curie temperature TC. There is another type of
magnetism, antiferromagnetism, where the spins are ordered but in alternating directions
such that the magnetism is zero. This antiferromagnetic ordering also vanishes above
a certain temperature, the Néel temperature TN. For a material to be ferromagnetic or
antiferromagnetic there must be an interaction between the spins which is strong enough
to align them or arrange them in alternating order. In the absence of such an interaction
the thermal motion tends to favor a state in which the spins are randomly oriented and
the magnetism vanishes. This interaction does not originate in the coupling between the
electron magnetic moments. A simple order-of-magnitude calculation shows that the Curie
temperature, which is of order 103 K, would be no more than 1 K for this hypothesis. The
interaction giving rise to magnetism is the Coulomb repulsion between the electrons in
conjunction with the antisymmetrization of the state vector, which leads to a competition
between the kinetic and (Coulomb) potential energy. Let us consider a pair of electrons.
If they are in a triplet spin state, their spatial wave function is antisymmetric, which
implies a weak Coulomb repulsion, because the wave function vanishes when the two
electrons are close together. The kinetic energy is large, because the wave function must
vary rapidly near the point where it vanishes. The reverse situation occurs when the spin
state is a singlet. If it is preferable to minimize the potential energy, the two electrons
will tend to align their spins, which implies a ferromagnetic type of interaction. If on the
contrary the kinetic energy plays the leading role, we obtain an antiferromagnetic type of
interaction with alternating ordering of the spins.
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A consequence of the spin–statistics theorem is that spin-zero particles like 4He, 16O,
and so on are bosons. However, these are composite particles, and it is interesting to
check the consistency with the spin–statistics theorem starting from their elementary (or
more elementary) constituents. Naturally, this only makes sense if the particle remains
intact in the reactions it undergoes, for example because the energies involved are not
high enough to dissociate the particle into its constituents. Instead of making completely
general arguments, we shall content ourselves with studying a particular case, that of the
deuteron. Let �A� be the deuteron state vector and 
a⊗b�A� = 
ab�A� be the amplitude
for finding the proton in the state �a� and the neutron in the state �b� inside the deuteron,
where we have suppressed the tensor product to simplify the notation. We introduce a
second deuteron �A2� assuming for now that there is a quantum number distinguishing
the proton and neutron of this nucleus from those of the first nucleus. In the spirit of
quantum chromodynamics, we imagine that we can assign a color to the protons and
neutrons, green for the first nucleus and red for the second. We will then have a second
amplitude 
a′2b′2�A′

2�, where the prime indicates that it involves red neutrons and protons,
while the corresponding amplitude for the green neutrons and protons will be denoted

a1b1�A1�. Let us construct the two-deuteron state �A1A

′
2�. The amplitude for finding the

green proton and neutron in the states a1 and b1 and the red proton and neutron in the
states a′2 and b′2 is, using the properties of the tensor product,


a1b1a
′
2b

′
2�A1A

′
2� = 
a1b1�A1�
a′2b′2�A′

2��
However, we cannot really color protons and neutrons red and green, and so we must
return to the real world, where the amplitude is given by 
a1b1a2b2�A1A2�. Since the
proton and the neutron are fermions, this amplitude must be antisymmetric under the
label exchanges a1 ↔ a2 and b1 ↔ b2:


a1b1a2b2�A1A2� = 
a1b1�A1�
a2b2�A2�−
a2b1�A1�
a1b2�A2�
−
a1b2�A1�
a2b1�A2�+
a2b2�A1�
a1b1�A2��

This amplitude is symmetric under the exchange A1 ↔ A2,


a1b1a2b2�A1A2� = 
a1b1a2b2�A2A1�� (13.19)

and the deuteron is therefore a boson. In general, a particle composed of an even number
of fermions is a boson, and one composed of an odd number is a fermion. The proton,
made of three spin-1/2 quarks, is a fermion, while the � meson made of a quark and an
antiquark is a boson. The 4He atom, made of two protons, two neutrons, and two electrons,
is a boson, whereas an isotope of it, namely the 3He atom made of two protons, one
neutron, and two electrons, is a fermion, which leads to completely different behaviors of
these two isotopes at low temperatures. It should be noted that these results are compatible
with the spin–statistics theorem, because given an odd number of particles of half-integer
spin we can only make a particle of half-integer spin, a fermion, while given an even
number of particles of half-integer spin we can only make a particle of integer spin, a
boson.
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13.2 The scattering of identical particles

Let us return to Fig. 13.1, which we can interpret as describing 16O–18O scattering in the
center-of-mass frame. We assume that the ground-state degeneracy is lifted by a magnetic
field, and the atoms are in the lowest Zeeman level (cf. Section 14.2.3). Let f� � be the
amplitude for scattering at the angle  in Fig. 13.1a; the two oxygen atoms are deflected
by the angle  . The scattering amplitude of Fig. 13.1b then is f��− �; the two oxygen
atoms are deflected by the angle �− . Let us assume the most plausible situation, namely
that the detectors D1 and D2 do not distinguish between the two isotopes. The counting
rate of detector D1 (and also of D2) will then be proportional to

p� �= �f� ��2+�f��− ��2� (13.20)

This result also gives the differential cross section (12.12) d/d+. In (13.20) we have
added the probabilities, because the final states [16O in D1,

18O in D2] and [16O in D2,
18O in D1] are different final states, even if in practice the detectors are incapable of
distinguishing between them. In calculating the total cross section we multiply (12.2) by
1/2 in order to avoid double counting (or, equivalently, we restrict the integration over
 to the range 0 ≤  ≤ �/2):

tot =
1
2

∫
d+
(�f� ��2+�f��− ��2) � (13.21)

Let us now turn to 16O–18O scattering. Although the atomic physics interactions between
the two isotopes are strictly identical, the results in this case are totally different. The
processes of Fig. 13.1a and 13.1b can no longer be distinguished, even in principle, and
so the amplitudes must be added. The scattering amplitude f� � is defined by formally
labeling the two particles, particles 1 and 2 being deflected by an angle  . Exchange
of the two atoms corresponds to  ↔ �−  . The total amplitude is obtained by adding
f� � and f��− �, with the + sign being imposed by the symmetry under the exchange
 ↔ �− . Instead of (13.20), the probability for triggering D1 is

p� �= �f� �+f��− ��2 (13.22)

and the total cross section becomes

tot =
1
2

∫
d+�f� �+f��− ��2 =

∫ �/2

0
sin  d 

∫ 2�

0
d'�f� �+f��− ��2� (13.23)

The addition of the amplitudes suggests that the differential cross section can exhibit
interference-like patterns, and this has actually been observed in numerous cases. We
note that when the parity of the Legendre polynomials Pl�−u�= �−1�lPl�u� is taken into
account, only even values of l are involved in the partial-wave expansions of

ftot� �= f� �+f��− �� ftot� �= ftot��− ��

In the above example we considered the scattering of two spin-zero bosons. The discussion
becomes a bit more complicated when the particles have spin. Let us limit ourselves to
the scattering of two identical spin-1/2 fermions, for example, two neutrons. In this case
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as in Section 12.2.4 we can define a scattering amplitude f̂ � � which is a 4× 4 matrix
in the tensor product space of the two spins. If 
t and 
s are the projectors on the triplet
and singlet states, and if the scattering does not change the total spin, we can write

f̂ � �= [fs� �+fs��− �
]

s+

[
ft� �−ft��− �

]

t� (13.24)

which ensures the space + spin antisymmetry of the amplitude. If as in (12.16) we expand
�fs� �+ fs��−  �� and �ft� �− ft��−  �� in partial waves, the scattering will occur in
the waves with l= 0�2� � � � (or the s, d, � � � waves) for neutrons in the singlet state, and in
the waves with l= 1�3� � � � (or the p, f , � � � waves) for neutrons in the triplet state. The
cross section is obtained as in Section 12.2.4. If the initial polarization of the set of two
neutrons is denoted by � and the final polarization by �, the differential cross section
will be

d��

d+
= �
��f̂ � �����2� (13.25)

If the polarization of the final neutrons is not measured we must sum over �, and if the
initial state is an incoherent superposition of polarization states ��� with probability p�

we have
d
d+

=∑
�

p�

∑
�


��f̂ †���
��f̂ ���

=∑
�

p�
��f̂
†
f̂ ��� = Tr

(
�inf̂

†
f̂
)
� (13.26)

where �in is the initial state operator of the spin states:

�in =
∑
�

p����
���

When the initial neutrons are not polarized, �in = I/4 and

d
d+

∣∣∣
unpol

= 1
4
Tr
(
f̂
†
f̂
)= 1

4
Tr
[(
f tot∗
s 
s+f tot∗

t 
t

)(
f tot
s 
s+f tot

t 
t

)]

= 1
4
Tr
[
�f tot

s �2
s+�f tot
t �2
t

]
= 1

4
�f tot

s �2+ 3
4
�f tot

t �2

= 1
4
�fs� �+fs��− ��2+ 3

4
�ft� �−ft��− ��2� (13.27)

The weights 1/4 and 3/4 arise, of course, from the fact that there are one singlet state and
three triplet states. The total cross section is obtained using (13.23). For spin-independent
scattering fs = ft = f , which is the case in the Coulomb scattering of two charged
particles, for example two electrons (Exercise 12.5.4):

d
d+

∣∣∣
unpol

= �f� ��2+�f��− ��2−Re�f� �f ∗��− ���

and the interference term is reduced by a factor of two compared with that which would
be obtained in the scattering of two spin-zero fermions (forbidden by the spin–statistics
theorem!).
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13.3 Collective states

The statistics has a decisive influence on the behavior of a system of N identical
particles, N � 1, that is, on the collective behavior of such a system. Let us begin with
fermions and examine the case of N fermions without interactions. We can, for example,
assume that these N independent fermions are located in a potential well in which the
energy levels �4 of an individual particle are labeled by an index 4. The index 4 represents
the complete set of quantum numbers needed to specify the 4th state: the momentum,
spin, and so on. It may perfectly well happen, and is the case in general, that several levels
�4 correspond to the same energy. In other words, the energy levels of the Hamiltonian
of a particle in the potential well are degenerate. Let us try to construct the ground-state
level of the ensemble of N fermions. Since at most one fermion can be put in a state �4,
the state of lowest energy is obtained by filling the levels one by one starting from the
lowest, until the N fermions have all been placed (Fig. 13.2). The state of highest energy
�4�max that the last fermion is placed in is called the Fermi level and denoted as �F.

5 Let
us take the potential well to be a cubic box of volume � ; a set of fermions in a box is
called a Fermi gas. The quantum state of a fermion is then specified by its momentum
�p and spin component mz: 4= (�p�mz). In the absence of an external field the energy is
purely kinetic, �= �p2/2m, and independent of mz. Each value of �p corresponds to 2s+1
states of the same energy, and according to (9.152) the sum over 4 becomes

∑
4

= ∑
�p�mz

= �2s+1�
∑
�p
→ �2s+1��

h3

∫
d3p� (13.28)

εl

ε1

ε2

εF

Fig. 13.2. Filling of the levels of a Fermi gas.

5 From the viewpoint of thermodynamics, this system of fermions is a system at zero temperature T = 0. The Fermi level is
also the chemical potential, because at zero temperature the chemical potential is the energy needed to add a particle. At
nonzero temperature the occupation probability of the levels above the Fermi level is nonzero, and the chemical potential no
longer coincides with the Fermi level.
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To the Fermi energy �F corresponds the Fermi momentum pF:

�F =
p2
F

2m
or� in general� �F =

√
p2c2+m2c4−mc2� (13.29)

Since the energy is an increasing function of p, all states (�p�mz) such that p ≤ pF will
have occupation number equal to unity. It is now straightforward to calculate the Fermi
momentum:

N = �2s+1��
h3

∫
p≤pF

d3p= �2s+1��
h3

4�
3

p3
F� (13.30)

If n= N/� is the fermion density, then

pF =
[

6�2

2s+1

]1/3
�n1/3� (13.31)

This equation is valid at both nonrelativistic and relativistic energies. The sphere of radius
pF is called the Fermi sphere and its surface is the Fermi surface. These ideas can be
generalized to solid-state physics, where the symmetry is no longer spherical symmetry,
but a symmetry determined by the crystal lattice. The Fermi surface, which then has
a shape more complicated than a sphere, is a fundamental object in the study of the
electromagnetic properties of metals. From (13.31) we obtain the Fermi energy in the
nonrelativistic case where �= p2/2m:

�F =
p2
F

2m
=
[

6�2

2s+1

]2/3
�2

2m
n2/3� (13.32)

The usual case is s = 1/2. The Fermi energy is the characteristic energy of a system of
N fermions in a box of volume � .
It is useful to perform an order-of-magnitude calculation in the most important particular

case of a Fermi gas, that of the conduction electrons in a metal. Let us take the example
of copper, with mass density 8�9 g cm−3 and atomic mass 63.5, which corresponds to a
number density n of 8�4×1028 atoms per m3. Since copper has one conduction electron
per atom, this is also the electron number density. Substituting it into (13.32) with s= 1/2,
for the Fermi level we find �F � 7�0 eV. This is typical for the conduction electrons of a
metal: the Fermi energy is several eV.
Let us now calculate the energy of the Fermi gas. According to (13.28) with s = 1/2,

we have

E = �

�2�2

∫ pF

0
p2dp

(
p2

2m

)
= 3

5
N�F� (13.33)

where we have used (13.30) for pF as a function of N in the case s = 1/2. Another
interesting expression is that for the energy per particle E/N :

E

N
= �3�2�2/3

3�2

10m
n2/3� (13.34)

The average kinetic energy of a particle grows as n2/3. If we now take interactions into
account in the case of an electron gas, the average potential energy is of order e2/d,
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where d ∝ n−1/3 is the average distance between two electrons. The average potential
energy per particle then is ∝ n1/3, and the denser the Fermi gas, the more the kinetic
energy ∝ n2/3 wins over the potential energy. This result is the opposite to that for a
classical gas: in contrast to the latter, a Fermi gas approaches an ideal gas more closely
the higher its density.
An intuitive picture of a Fermi gas can be obtained by noting that the momentum

dispersion !p is of order pF, whereas the order of magnitude of the position dispersion
is � 1/3. From (13.31) we then find

!p!x ∼ �N 1/3� (13.35)

Owing to the Pauli principle, the � of the Heisenberg inequality is transformed into �N 1/3.
The situation regarding bosons is more complicated than that of fermions. It is neces-

sary to distinguish between the cases where the number of bosons is variable (photons,
phonons, and so on) and where it is fixed (helium atoms). In the latter case, at strictly zero
temperature the ground state is obtained by putting all the bosons in the lowest state �4.
The problem is to show that if the temperature is not zero, a finite fraction of the bosons
remains in this ground state. This is called Bose–Einstein condensation. This condensa-
tion does not occur in all cases, for example it does not occur in a two-dimensional box,
but it does occur in a three-dimensional one. The temperature at which Bose–Einstein
condensation occurs can be estimated by noting that the two characteristic lengths of the
problem, the thermal wavelength 
T and the average distance between bosons d ∝ n−1/3,
must be of the same order of magnitude: 
T ∼ n−1/3. This estimate is confirmed by an
exact calculation. Using


T =
(

h2

2�mkT

)1/2

� (13.36)

the condensation temperature is given by 
T = 2�61n−1/3.6 Bose–Einstein condensation
has recently been observed for gases of alkali atoms at very low temperature and for
polarized hydrogen. We refer the interested reader to the References.

13.4 Exercises

13.4.1 The �− particle and color

The +− hyperon (of mass 1675 MeV c−2) is a spin-3/2 particle composed of three strange
quarks of spin 1/2. The quark model requires that the spatial wave function not vanish.
Show that the three quarks cannot all be identical. In the early 1970s (in the early days
of quantum chromodynamics) this observation provided one of the arguments in favor
of the introduction of the concept of “color” making it possible to distinguish between
quarks; the three quarks of the +− have different colors.

6 The wavelength 
T is the de Broglie wavelength of a particle of energy ∼kBT . The factor 2� is a convention.
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13.4.2 Parity of the � meson

1. If low-energy �− mesons are allowed to hit a deuterium target, the mesons can be captured
and form bound states analogous to those of the hydrogen atom. Give the expression for the
energy of these �-meson–deuteron bound states using the fact that the �-meson mass is of order
139 MeV c−2 and the deuteron mass is 1875 MeV c−2. The �-meson is captured in a state of
high principal quantum number n and terminates its radiative cascade in the 1s ground state7

after emitting photons. Show that the energy of these photons must lie in the X-ray region.
2. Once it has arrived in the 1s state, the � meson undergoes a nuclear interaction which leads to

the reaction

�−+ 2H→ n+n

with two neutrons n in the final state. Using the fact that the spin of the deuteron is 1 and that of
the �− meson is zero, what is the initial angular momentum state of the reaction? Show that the
two final neutrons can only be in a state of total orbital angular momentum L= 1 and total spin
S = 1, that is, in the 3P1 state. If, following convention, we assign positive parity to the nucleons
(protons and neutrons) and use the fact that the deuteron orbital angular momentum is zero (the
deuteron is a 3S1 state),8 show that the � meson has negative parity. Parity is conserved in the
reaction.

13.4.3 Spin-1/2 fermions in an infinite well

We consider two identical spin-1/2 fermions in an infinite cubic well of side L. If these
two fermions do not interact with each other, what are the possible eigenvalues of the
total energy and the corresponding wave functions (space and spin)? We assume that the
two fermions interact via a potential

V = V0 �
�3���r1−�r2��

where �r1 and �r2 are the positions of the two fermions. Show that triplet states are not
affected by this potential.

13.4.4 Positronium decay

Positronium is an electron–positron (e−–e+) bound state; the positron is a particle with
the same mass me as the electron and opposite charge −qe.

1. In this question we neglect the spins of the two particles. Given that the energy levels of the
hydrogen atom for an infinitely heavy proton have the form (e2 = q2

e/4��0)

En =
E0

n2
=−1

2
mee

4

�2

1
n2

� n= 1�2�3� � � � �

what are the energy levels of positronium?

7 The nuclear reaction also has a small probability of occurring in a state ns, n �= 1, that is, for states where the probability
density is nonzero at the origin. However, this does not change the argument.

8 The deuteron also has a small d-wave component and therefore a 3D1 component, but this does not affect the argument.
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2. The electron and the positron have spin 1/2. The state of lowest energy, the ground state with
n= 1, has orbital angular momentum l= 0 (s-wave). What are the possible values of the total
angular momentum j of positronium in this n= 1 state?

3. Positronium in its ground state decays into two photons:9

e−+ e+ → 2	�

In the positronium rest frame the two photons leave the decay point with opposite momenta.
We choose the axis Oz to be the direction of the photon momentum. Using angular momentum
conservation, show that the two photons necessarily have the same circular polarization, either
right-handed or left-handed. Hint: sketch the decay.

4. By examining the effect of a rotation by � about the axis Oy and taking into account the fact
that the two photons are identical, show that only one of the two states of angular momentum j

of positronium can decay into two photons.10

5. Let 5 be the parity operator acting on the state �A� of a particle A as 5�A� = ,A�A�, where ,A

is the parity of A. It can be shown that ,e−,e+ = −1. Deduce that the parity of the ground state
of positronium is −1. The two possible states of the two photons can be written as

�i� �%+� =
1√
2

(
�RR�+ �LL�

)
� �ii� �%−� =

1√
2

(
�RR�− �LL�

)
�

where �R� and �L� represent the right- and left-handed polarization states. Which of the states
(i) or (ii) is obtained in positronium decay,11 given that parity is conserved?

13.4.5 Quantum statistics and beam splitters

1. Let a and b be two identical modes of the electromagnetic field (e.g. identical wave packets),
arriving at a beam splitter, one of them horizontally and the other one vertically. Using the
results of Exercise 1.6.6, show that the beam splitter couples the two modes through an operator
U� � as follows

U†� �aU� � = a cos + ib sin  

U†� �bU� � = b cos + ia sin  �

Here a and b are field operators which destroy photons in the modes a and b. Therefore, a
transmitted photon has a nonzero probability amplitude of being exactly in the same mode as
a reflected photon at the beam splitter output. A symmetric beam splitter (Exercise 2.4.12) has
 = �/4.

2. Show that U� � can be written in the form of an evolution operator, U� �= exp�−i G�, with

G= a†b+b†a�

G plays the role of an effective Hamiltonian for mode coupling. Hint: use (2.54) to compute

ei G �a/b� e−i G�

9 The decay e− + e+ → 	 is forbidden by energy–momentum conservation.
10 The other state must decay into three photons.
11 Correlations in the polarizations of the two photons have been measured by C. Wu and I. Shaknow, The angular correlations

of scattered annihilation radiation, Phys. Rev. 77, 136 (1950), who were able to verify that the parity of the ground state is
indeed −1.
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3. Assume that each of the modes contains exactly one photon, so that the initial state is

�-0� = �1a�1b��
Find the beam splitter output

�-� = U� ��-0��
and show that for  = �/4

�-� = 1√
2

(�2a�0b�+ �0a�2b�)�
Out of the four possibilities at the beam splitter output, only two are physically realized, those in
which the two photons stick together, while the situation where the two photons are in different
beams does not occur (Fig. 13.3). This is an interference effect, a spectacular consequence of
Bose–Einstein statistics,12, which contradicts Dirac’s statement: “a photon can only interfere
with itself.”

4. Suppose now that the incident particles are fermions, We neglect spin and interactions. Show
that the antisymmetry of the state vector requires ((A�B)= AB+BA is the anticommutator of
A and B)

(a�a†)= (b� b†)= I�

all the other anticommutators being zero

(a�a)= · · · = (a� b†)= 0�

Show that the preceding operator G is now replaced by

G= ab†−a†b�

and compute the action of U� �= exp�−i G� on the operators a and b as in question 1. What
happens if one starts with an initial state �1a�1b� at the entrance of the beam splitter?

(a)

(b)

Fig. 13.3. If  = �/4, one cannot have one photon in mode a and the other in mode b at the exit
of the beam splitter. Both photon must exit in the same mode.

12 C. Santori, D. Fattal, J. Vukovic, G. Solomon and Y. Yamamoto, Indistinguishable photons from a single photon device,
Nature 419, 594 (2002). See also Ph. Grangier, Single photons stick together, Nature 419, 577 (2002).
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13.5 Further reading

An excellent discussion of identical particles accompanied by numerous examples is
that of Lévy-Leblond and Balibar [1990], Chapter 7. See also Feynman et al. [1965],
Vol. III, Chapter 4; Cohen-Tannoudji et al. [1977], Chapter XIV; and Basdevant and
Dalibard [2002], Chapter 16. Collective states are studied by Le Bellac et al. [2004],
Chapter 4, which contains an introduction and references to Bose–Einstein condensates
of atomic gases. A very complete treatment of such condensates is given in C. Pethick
and H. Smith, Bose–Einstein Condensation of Dilute Gases, Cambridge: Cambridge
University Press (2002).
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Atomic physics

This chapter is devoted to an introduction to atomic physics which will be mainly
concerned with one-electron atoms. After a brief discussion of the perturbation and
variational methods in Section 14.1, in Section 14.2 we study the fine and hyperfine
structure of the energy levels as well as the effect of a magnetic field on these levels.
In Section 14.3 we examine the coupling of an atom to an electromagnetic field and
important applications of this coupling such as the photoelectric effect and the rate of
spontaneous emission. In Section 14.4 we give a brief introduction to a subject which has
been expanding enormously in the last twenty years, the laser manipulation of atoms, and
we discuss Doppler cooling and magneto-optical traps. Finally, Section 14.5 is devoted
to a short discussion of two-electron atoms.

14.1 Approximation methods

14.1.1 Generalities

In classical physics it is only in exceptional cases that it is possible to solve the Newton
or Maxwell equations analytically given the initial conditions at time t = t0 and, in the
first case, the forces, or, in the second, the sources of electromagnetic field. In general,
it is necessary to resort to an approximation method such as numerical integration of the
equations, the perturbation method, or something else. The situation is no different in
quantum physics: only in exceptional cases do we know how to “solve the Schrödinger
equation” exactly, that is, how to obtain the time evolution of the state vector ���t�� as
a function of its value ���t0�� at initial time t = t0. In the case where the Hamiltonian
is time-independent, which is what we shall consider in this section, knowledge of this
time evolution implies that we know how to diagonalize the Hamiltonian, that is, find
its eigenvalues and eigenvectors. Except in some special cases (the square well, the
harmonic oscillator, the hydrogen atom, and so on), we do not know how to diagonalize
the Hamiltonian exactly, and approximation methods such as numerical integration or the
perturbation method must be used.
In this section we shall present the method of time-independent perturbation theory. It

consists of starting from a HamiltonianH0 which we know how to diagonalize exactly, and

455
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then perturbing it by adding a term W which gives the “exact” Hamiltonian H =H0+W

within some predefined domain of approximation (cf. Section 4.3). We write

H�
�=H0+
W� (14.1)

where we have introduced a real parameter 
 such that H =H0 if 
= 0 and H =H0+W

if 
 = 1. If 
→ 0, we can hope that the perturbation 
W is in some sense “small”
compared with H0.

1 It may happen that it is possible to effectively vary 
. For example, if

W corresponds to the interaction of an atomic system with an external electromagnetic
field, the value of this external field and therefore also 
 can be varied at will, and 
→ 0
if the field is made to vanish. However, in general the perturbation is fixed by physical
conditions that cannot be changed. In this case 
 is a fictitious parameter that we vary
artificially, and then at the end of the calculations we set it to its physical value 
 = 1.
We have already used this trick in the introduction to time-dependent perturbation theory
in Section 9.6.3, where we wrote the perturbation as 
W�t� and then took 
 = 1 at the
end of the calculation.
We therefore assume that the spectrum of H0 is known. Let E

�n�
0 be its eigenvalues and

�n� r� its eigenvectors, where r is the degeneracy index as in Section 2.3.1:

H0�n� r� = E
�n�
0 �n� r�� (14.2)

We seek the eigenvalues and eigenvectors of H�
� in the form of series in powers of 
,
called perturbation series. If H�
����
�� = E�
����
��, we can write the series for the
eigenvector ���
�� and the energy E�
� as

���
�� = ��0�+
��1�+
2��2�+ · · · � (14.3)

E�
� = E
�n�
0 +
E

�n�
1 +
2E

�n�
2 +· · · � (14.4)

If 
= 0, ���
= 0�� = ��0� = �n� r� and E = E
�n�
0 . Our implicit hypothesis is that a series

in 
 with nonzero radius of convergence exists or, in other words, that the energy is an
analytic function of 
 at the point 
= 0. Two cases must be distinguished.

• The eigenvalue E
�n�
0 of H0 is simple: then we have the case of nondegenerate perturbation

theory.
• The eigenvalue E�n�

0 of H0 is degenerate with degeneracy N : then we have the case of degenerate
perturbation theory.

We shall discuss these two cases one after the other, without entering into the details of
the general method of calculating to all orders in 
. We limit ourselves to the lowest
nontrivial order in 
 and refer the reader to the classic texts for the general case.

1 Rigorously proving that one operator is “small” compared with another is a most delicate mathematical problem.
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14.1.2 Nondegenerate perturbation theory

We start from H0�n� = E
�n�
0 �n� and set ��0� = �n� with 
�0��0� = 1, as well as E0 = E

�n�
0

in order to simplify the notation. In practice, we shall be interested in the perturbative
expansion (14.4) of the energy, treating the perturbative expansion (14.3) of the vector
���
�� as auxiliary to the calculation permitting us to fix ���
�� by a convenient condition:

�0���
�� = 
�0��0� = 1. With this condition ���
�� is in general not a normalized
vector, but it is always possible to make it one if we wish. Through order 
 we have, on
the one hand,

H�
����
�� =H0��0�+
W ��0�+
H0��1��
while on the other

H�
����
�� = �E0+
E1����
�� = E0��0�+
E1��0�+
E0��1��
from which, identifying the terms of order 
,

W ��0�+H0��1� = E1��0�+E0��1��
Multiplying the two terms of this equation on the left by the bra 
�0� and using 
�0�H0 =
E0
�0�, we obtain2

E1 = 
�0�W ��0�� (14.5)

and so, denoting by !E1 the energy difference between the cases 
 �= 0 and 
= 0 to first
order in 
, we can write

!E1 = 

�0�W ��0� � (14.6)

The order-
2 term is also found fairly easily (Exercise 14.6.1):

!E
�n�
2 = 
2

∑
k �=n

�
k�W �n��2
E

�n�
0 −E

�k�
0

� (14.7)

As an application, let us calculate the shift of the levels of the one-dimensional harmonic
oscillator acted on by an anharmonic perturbation proportional to q4:


W = 

m2�3

�
Q4� (14.8)

From the result of Exercise 11.5.1 and (14.6) we obtain the shift of the nth level through
order 
:

!E
�n�
1 = 3

4

��

(
2n2+2n+1

)
� (14.9)

Even if 
 is small, the result diverges for large n, because the larger n is the more
important the wave function is at large values of q, and therefore the more important

2 This expression (14.5) can be obtained directly using the Feynman–Hellmann theorem; see Exercise 4.4.3, Eq. (4.35).
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the perturbation ∝ q4 is: the perturbation 
Q4 is never “small.” We have begun with the
hypothesis that there exists a series in powers of 
 with nonzero radius of convergence. In
practice, this hypothesis of analyticity at 
= 0 is not always satisfied, and the anharmonic
oscillator we have just studied provides an example of this. Actually, it is easy to see
in this case that E�n� cannot be analytic at 
= 0, because the nature of the Hamiltonian
changes abruptly at this point. For 
> 0 it is bounded below and bound states are present,
but for 
< 0 it is no longer bounded below and the problem becomes meaningless, unless
one adds, for example, a 
′q6� 
′ > 0 term to avoid the difficulty. The perturbative series
is therefore no longer meaningful for 
 < 0, and it gives an example of an asymptotic
series, which gives good results for 
 > 0 if sufficiently few terms are kept, but which
diverges if we try to keep too many. This type of series is well known in mathematics.
A good example is the Stirling formula valid for n� 1:

0�n+1�= n! =
(n
e

)n√
2�n

(
1+ 1

12n
+ 1

288n2
+· · ·

)
� (14.10)

which is a nonconvergent asymptotic series in powers of 1/n. Sophisticated methods
have been developed for summing such asymptotic series.3

14.1.3 Degenerate perturbation theory

Let us now consider the case of a degenerate level, using � �n� to denote the subspace of
dimension N of the eigenvalue E

�n�
0 . The projector 
 �n� on � �n� is written as


 �n� =
N∑
r=1

�n� r�
n� r�� (14.11)

In the subspace � �n� the operator W is represented by an N ×N matrix with elements
W�n�

sr = 
n� s�W �n� r� which can be diagonalized. The eigenvectors ���n�q�
0 � of W in � �n�

are linear combinations of the �n� r�:

���n�q�
0 � =

N∑
r=1

cqr �n� r��

W ���n�q�
0 � = E

�n�q�
1 ���n�q�

0 ��
The coefficients cqr are of zeroth order in 
 sinceW can be diagonalized without affecting
H0, which is a multiple of the identity in � �n�:

H0���n�q�
0 � = E

�n�
0 ���n�q�

0 ��
The diagonalization of W in � �n� gives the result for the energy through order 
. We
recover the results of the nondegenerate case by taking the dimension of � �n� equal to

3 See, for example, J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford: Oxford University Press (1989),
Chapter 37.
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unity. In summary, through order 
 we can calculate the energy levels and eigenvectors
as for a system with a finite number N of levels by diagonalizing the matrix representing
H0+
W in � �n�. In fact, an approximation by a system with a finite number of levels is
often obtained by neglecting the interactions between the subspaces � �n�. A final remark
is that the quasi-degenerate case should also be treated by this method.

14.1.4 The variational method

We shall again limit ourselves to the study of a simple case, that of finding the ground-
state energy, and leave the use of the variational method in other cases to the classic
texts. Let E0 be the ground-state energy of a Hamiltonian H and �0� be the corresponding
eigenvector

H�0� = E0�0��
and let ��� be an arbitrary unit vector in the Hilbert space of states. We write the
expectation value of H in the state ��� by decomposing ��� on the basis of eigenstates
�n� of H , H�n� = En�n�:


��H��� =∑
n�m

c∗mcn
m�H�n� =
∑
n

En�cn�2�

We find that


��H���−
0�H�0� =∑
n

�En−E0��cn�2 ≥ 0� (14.12)

where we have used
∑

n �cn�2 = 1 and En ≥ E0. The variational method consists of
specifying a trial vector ������ depending on a parameter �, or several parameters �i,
which we try to choose to be as close as possible to the assumed form of �0�. The
result (14.12) shows that


H����= 
�����H������ ≥ E0�

Within the framework of the chosen parametrization, the best result for E0 will be obtained
by seeking the minimum of 
H����:

d
d�


H����
∣∣∣
�=�0

= 0� (14.13)

and an upper bound on E0 is

E0 ≤ 
���0��H����0��� (14.14)

To compare two different choices ����� and ��̃���� we compare the two minima. The
best choice will be the one that gives the smallest value of 
H�. The generalization to a
vector depending on several parameters �1� � � � ��p is immediate: we seek the minimum
of 
H� using

�

��i


H���1� � � � �p�
∣∣∣
�j=�j0

= 0�
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As an example, let us study the variational calculation of the ground state of the harmonic
oscillator, choosing the trial wave function to be a normalizable function of unit norm:


x������ = ���x�=
√

2
�

�3/2 1
x2+�2

� (14.15)

The integrals needed in the following calculations can be derived from the expression

I���=
∫ �

−�
dx

x2+�2
= �

�
(14.16)

by differentiating I��� with respect to �2. Starting from the form (11.9) of the Hamiltonian
of the harmonic oscillator, we calculate 
H����:


H���� = 1
2

��
∫ �

−�
dx

[(
d��

dx

)2

+x2�2
��x�

]

= 1
2

��

[
1

2�2
+�2

]
�

The first term in the square brackets is the kinetic energy and the second is the potential
energy. The value of 
H���� is a minimum for �2 = �2

0 = 1/
√
2 and


H���0�=
��√
2
> E0 =

��

2
�

For �= �0 the average kinetic energy and the average potential energy are equal:

1
2m


P2� = 1
2
m�2
X2� = ��

2
√
2
�

The choice (14.15) for the trial wave function is not very good (the error is ∼40%),
because this wave function decreases much too slowly at infinity. If we use a Gaussian
trial wave function, we of course find the exact result ��/2. The power of the variational
method will be illustrated in Section 14.5.1.

14.2 One-electron atoms

14.2.1 Energy levels in the absence of spin

In Chapter 10 we studied the spectrum of the hydrogen atom, which has a single electron.
An immediate generalization can be made to the ions He+, Li++, etc. When there is more
than one electron, it is no longer possible to analytically solve for the energy levels. It is
necessary to resort to approximation methods, which are sometimes very accurate, as in
the case of light atoms and, in particular, helium (Section 14.5). Alkaline atoms can also
be treated using a simple approximation. Actually, to a first approximation an alkaline
atom is an atom with a single outer electron subject to the effective potential produced by
the nucleus and the other �Z−1� electrons, called the inner-shell electrons. The spectrum
is therefore similar to that of the hydrogen atom, with the difference that no degeneracy
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is observed between levels of different orbital angular momentum, because the effective
potential does not behave as 1/r. In the case of sodium, for example, the ground state is
a 3s level, and the 3p level lies between the 3s and 4s levels (Fig. 10.7).
The spectra of Figs. 10.6 and 10.7 were obtained neglecting the spin of the outer

electron as well as the nuclear spin. We are going to study the modifications introduced
when these spins are taken into account, namely the fine structure due to the interaction
between the electron orbital angular momentum and spin (Section 14.2.2), the Zeeman
effect in the presence of an external magnetic field (Section 14.2.3), and the hyperfine
structure due to the interaction between the nuclear spin and the electron spin and orbital
angular momentum (Section 14.2.4).

14.2.2 The fine structure

The fine structure is an effect of relativistic origin whose correct study is based on a
relativistic quantum wave equation which is valid for spin-1/2 particles, namely, the
Dirac equation.4 Within the framework of a classical description we are going to make
an intuitive argument, which is not entirely correct, to justify the expression for the fine-
structure Hamiltonian. In the reference frame where the nucleus is at rest, or the nucleus
frame, the electromagnetic field is the gradient of the electrostatic potential V�r�/qe
produced by the nucleus and the �Z−1� inner-shell electrons, and the external electron
moves with velocity �v in this reference frame. In its rest frame, the electron sees the
nucleus moving with velocity −�v and an electromagnetic field which is the transform of
the field in the nucleus frame. This transformed field consists of not only an electric field,
but also a magnetic field given as a function of the electrostatic field �E in the nucleus
frame as5

�B �− 1
c2
�v× �E � 1

qec
2

[
1
r

dV�r�
dr

]( �p
me

×�r
)
� (14.17)

This magnetic field interacts with the magnetic moment �� = ��s of the outer electron,
leading to an interaction energy

Wso =−�� · �B �− qe
me

�s · �B� (14.18)

because the gyromagnetic ratio � � qe/me. Combining these two equations and introduc-
ing the orbital angular momentum �l= �r× �p, we derive the spin–orbit potential:

Wso =
1

m2
ec

2

[
1
r

dV�r�
dr

]
�l · �s� (14.19)

Our argument can be criticized because we have used the formulas for transformations
between inertial reference frames, while the electron reference frame is accelerated with

4 The Dirac equation is not the only relativistic quantum wave equation. Another important one is the Klein–Gordon equation,
which describes particles of spin 0. However, neither of these equations is completely consistent, as the real unification of
quantum mechanics and relativity requires quantized field theory.

5 In (14.17) we have used the approximation v	 c; the exact expression contains factors of �1−v2/c2�−1/2.
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respect to the nuclear frame because the electron rotates about the nucleus. This rotational
motion leads to the phenomenon of spin precession, called Thomas precession,6 which
reduces the result (14.19) by a factor of two. In the end, the correct quantum expression
for the spin–orbit potential is obtained by correcting (14.19) by a factor of 1/2 and
replacing the classical quantities �l and �s by the operators �L and �S:

Wso =
1

2m2
ec

2

[
1
r

dV�r�
dr

]
�L · �S � (14.20)

Let us evaluate the order of magnitude of the correction to the energy levels for the
hydrogen atom. Since �L and �S are of order � and V�r�=−e2/r , in a state n we obtain


Wso� ∼
�2e2

2m2
ec

2

〈 1
r3

〉
∼ �2e2

2m2
ec

2n3a3
0

=
(

e2

2a0

)(
e2

�c

)2 1
n3

= �2R�
n3

�

where we have introduced the Bohr radius a0, the fine-structure constant �, and the
Rydberg constant R� (see (1.39)–(1.41)). The corrections to the energy levels are therefore
of order �2 in relative value, which is what we expect for relativistic corrections, because
�v/c�2 ∼�2.7

Let us examine the effect of the potential (14.20) on a level �nl� with principal quantum
number n and orbital angular momentum l. Since the effect on the levels is small,
∼�2, we can use perturbation theory. Neither the orbital angular momentum �L nor the
spin �S commutes with Wso. However, the scalar operator �L · �S commutes with the total
angular momentum �J = �L+ �S and moreover, since ��L2� �L� = 0 and ��L2� f�r�� = 0, the
potential (14.20) commutes with �L2, which implies that levels with different l are not
related. In summary, the spin–orbit potential is diagonal in the basis �l 1/2 jmj�. In the
absence of the spin–orbit potential, the degeneracy of a level �nl� is 2�2l+ 1� and it is
necessary in principle to use degenerate perturbation theory. However, in the present case
the situation is very simple, because we already know the basis �l 1/2 jmj� in which Wso

is diagonal. The spin–orbit potential will partially lift the degeneracy. In fact, two values
j = l± 1/2 of the total angular momentum are possible, and according to (10.138) and
using �J 2 = ��L+ �S�2,

�L · �S = �2

2

[
j�j+1�− l�l+1�− s�s+1�

]
(14.21)

or

�L · �S =−�2

2
�l+1�� j = l− 1

2
�

�L · �S =+�2

2
l� j = l+ 1

2
� (14.22)

6 See, for example, E. Taylor and J. Wheeler, Space-Time Physics, New York: Freeman (1963), Section 103, or Jackson [1999],
Section 11.8.

7 For a nucleus of charge Z and a single electron, �v/c�2 ∼ �Z��2.
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The states of total angular momentum j = l−1/2 and j = l+1/2 therefore have different
energies and the spin–orbit potential partially lifts the degeneracy. Naturally, each of the
two corresponding energy levels still has a �2j+ 1�-fold degeneracy. We note that the
spin–orbit potential does not affect s-waves (l= 0).
As a special case, let us consider the 2p (l = 1) level of hydrogen. The two possible

values of j are j = 1/2 and j = 3/2. The corresponding levels are denoted as 2p1/2 and
2p3/2. The 2p→ 1s transition is split, which is easily confirmed by spectroscopy. In the
case of hydrogen, the 2s1/2 and 2p1/2 levels are degenerate in the approximation of the
Dirac equation. They differ in energy from the 2p3/2 level by about 4�5×10−5 eV, which
corresponds to a frequency difference of about 10 GHz. The order-of-magnitude calcu-
lation we have just done gives an energy difference ∼ �2R�/8∼ 10−4 eV, in qualitative
agreement with experiment. Experiment shows that, in contrast to the prediction of the
Dirac equation, the 2s1/2 and 2p1/2 levels are in fact nondegenerate: the 2p1/2 level is
lower by about 5×10−5 eV, which corresponds to about 1 GHz. This difference, known
as the Lamb shift, is explained by effects of quantum electrodynamics, the theory of the
quantized electromagnetic and electron–positron fields.
The above notation �nl�j can be generalized to higher levels: for a d-wave (l = 2)

the possible values of j are 3/2 and 5/2 and the levels are denoted as nd3/2 and nd5/2.
For an f -wave (l = 3) we will have the nf5/2 and nf7/2 levels, and so on. A classic
example in spectroscopy is the splitting of the yellow line of sodium, which corresponds
to a 3p→ 3s transition; the two lines are called D1 at 589.6 nm and D2 at 589.0 nm. In
general, the j = l+1/2 level is higher than the j = l−1/2 level because the expectation
value 
dV/dr�> 0, but there are some exceptions. In the nuclear shell model, where the
spin–orbit potential plays a crucial role, this order is systematically inverted.

14.2.3 The Zeeman effect

The �2j+1�-fold degeneracy of the �nl�j level is lifted by placing the atom in a constant

magnetic field �B. This is the Zeeman effect. It arises from the interaction of the magnetic
field with the orbital magnetic moment due to the motion of the electron in its orbit,
and also to the magnetic moment associated with the spin of this electron. The magnetic
moment associated with �L is given by the classical gyromagnetic ratio (3.30) � = qe/2me,
and the gyromagnetic ratio due to the spin is roughly qe/me. The interaction energy is
derived from the coupling between the magnetic moment and the field:8

W =− qe
2me

��L+2�S� · �B � (14.23)

8 However, this argument gives only the dominant term in the interaction; see Exercise 14.6.5 for a detailed justification
of (14.23).
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It is usual to choose �B to be parallel to Oz:

W =− qeB

2me

�Lz+2Sz�� (14.24)

When the Zeeman energy (14.23) is sufficiently small compared with the characteristic
energy of the fine structure of the level under consideration, we can use degenerate
perturbation theory for each level �nl�j . If this is not the case, it is necessary to simulta-
neously diagonalize the Hamiltonian of the fine structure and that of the Zeeman effect;
see Exercise 6.5.4. Let us consider the case of small Zeeman effect. The matrix elements
of the perturbation (14.24) in the �nl�j level are

W
nlj
mm′ = − qeB

2me


nljm�Lz+2Sz�nljm′�� (14.25)

The operators �L and �S are vector operators, and according to the Wigner–Eckart theo-
rem (10.150) for these operators the matrix elements for, for example, Lz are given by


nljm�Lz�nljm′� = 1
�2j�j+1�


j����J · �L���j�
nljm�Jz�nljm′�

= m

�j�j+1�

��J · �L�� �mm′ �

Using

�S2 = ��J − �L�2 and �L2 = ��J − �S�2

to write out �J · �S and �J · �L, we find


�J · ��L+2�S�� = 3
2
�J 2+ 1

2
�S2− 1

2
�L2

and then


nljm�Lz+2Sz�nljm′� = m�

2j�j+1�

[
3j�j+1�+ 3

4
− l�l+1�

]
�mm′

= m�

{
1+ 1

2j�j+1�

[
j�j+1�+ 3

4
− l�l+1�

]}
�mm′ �

The final result can be written as

W
nlj
mm′ = −g

qeB

2me

m��mm′ � (14.26)

Within our approximation the shifts of the Zeeman sublevels are linear in B. They are
controlled by the Landé g factor:

g = 1+ 1
2j�j+1�

[
j�j+1�+ 3

4
− l�l+1�

]
� (14.27)
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The quantity gqe/2me can be interpreted physically as an effective gyromagnetic ratio.
For a free electron in a magnetic field we have seen that the Landé g factor is 2. This is
also the case for an s-wave, as can be verified by setting l= 0 in (14.27).

14.2.4 The hyperfine structure

An even smaller effect, of order 10−6 in relative value, arises from the interaction between
the nuclear magnetic moment and the orbital and spin magnetic moments of the outer
electron. The interaction between a nuclear magnetic dipole moment �n and an electron
magnetic dipole is a priori weaker than that between two electric dipoles by a factor
∼10−3, as the nuclear Bohr magneton �N = qp�/2mp is smaller than the Bohr magneton
�B = �qe��/2me by a factor of mp/me ∼ 2000. We recall the expressions for the electron
and proton magnetic moment operators:

��e = �e
�Se �−2�B

�Se
�
� �p = �p

�Sp � 5�59�N

�Sp
�
� (14.28)

In classical electrodynamics it can be shown9 that the magnetic field �B��r� of a point
dipole ��n at the origin is

�B��r�=− �0

4�r3
[��n−3���n · r̂�r̂

]+ 2�0

3
��n���r�� (14.29)

The energy of the orbital magnetic moment and the spin of the outer electron in this
magnetic field can be written as in (14.23). We shall limit ourselves to the case of an
s-wave electron, where only the spin magnetic moment needs to be taken into account,
as in the s-wave there is no contribution from the orbital angular momentum to the
atomic magnetic moment. Moreover, the term inside the square brackets in (14.29) gives
a vanishing contribution. Actually, if we use perturbation theory to calculate the magnetic
energy 
W ′� =−
��e · �B� corresponding to the interaction of the electron magnetic moment
with the term inside the square brackets in (14.29) for an s-wave, where the wave function
��r� depends only on r, we find


W ′� = �0

4�

∫
d3r���r��2 1

r3

[
���n · ��e�−3���n · r̂����e · r̂�

]

= �0

4�

〈 1
r3

〉[
���n · ��e�−3

3∑
i�j=1

�ni�ejIij

]
�

To obtain the second line of the above equation we separated the radial part of the integral
of the second term in the square brackets from the angular part by writing∫

d3r = 4�
∫ �

0
r2dr

∫ d+
4�

�

9 See, for example, Jackson [1999], Section 5.6.
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The radial integral gives ∫ �

0
r2dr���r��2 1

r3
=
〈 1
r3

〉
�

The angular integral Iij is

Iij =
∫ d+

4�
r̂ir̂j =

1
3
�ij�

To prove this, we observe that the only rotationally invariant rank-2 tensor that can be
constructed using the indices �i� j� is �ij:

Iij = c�ij and
∑
ij

�ijIij = 1�

which shows that c = 1/3. Thus, the term between square brackets in (14.29) gives a
vanishing contribution and we are left with just the contact term:

Wcont = −2�0

3
��n · ��e���r�

= −2�0

3
�n�e��Sn · �Se����r�� (14.30)

As an example, let us take the hyperfine structure of the ground state of the hydrogen
atom: �n → �p, n = 1, l = 0. The state vector is the tensor product of a spatial wave
function derived from (10.94)

���r�= 1√
�a3

0

exp
(
− r

a0

)
(14.31)

and a spin wave function, which itself is the tensor product of the state vectors in
the electron and proton spin spaces. The spatial part and the spin part are completely
decoupled. First we find the expectation value of the spatial part:


Wcont�spat = −2�0

3
�n�e���0��2��Sp · �Se�

= A

�2
��Sp · �Se�� (14.32)

The constant A is

A= 2�0

3
�2�B��5�59�N�

1

�a3
0

� 5�87×10−6 eV�

Then the effective Hamiltonian is A��Sp · �Se�/�2, which acts in the four-dimensional Hilbert
space that is the tensor product of the two spin spaces. In the absence of the hyperfine
perturbation, the 1s1/2 ground state of the hydrogen atom is four-fold degenerate. It is

necessary to diagonalize A��Sp · �Se�/�2 in this subspace, which is straightforward if we

introduce the total spin �S = �Sp+ �Se and the identity

�Sp · �Se =
1
2

(�S2− �S2
p− �S2

e

)
= �2

2

[
s�s+1�− 3

2

]
� (14.33)
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According to the results of Section 10.6.1, the two possible values of s are s= 1 (the triplet
state) and s = 0 (the singlet state). The eigenvalues of the Hamiltonian are

s = 1� triplet state � Etr = E0+
1
4
A�

s = 0� singlet state � Esing = E0−
3
4
A�

where E0 is the energy in the absence of the hyperfine effect, and the eigenvec-
tors are given by (10.125) and (10.126). The two levels are separated by an amount
A� 5�87×10−6 eV, which corresponds to the emission of a photon of wavelength 21 cm
when the atom makes a transition from the triplet to the singlet level. Although the
lifetime of the triplet level is very long, 107 years, and a priori seems difficult to observe,
it is of great importance in astrophysics. It has given fundamental information about the
interstellar clouds of atomic hydrogen making up 10% to 50% of the mass of the galaxy,
permitting measurements of mass and velocity distributions, magnetic fields, and so on.10

14.3 Atomic interactions with an electromagnetic field

14.3.1 The semiclassical theory

In this section we shall study the interaction between an electromagnetic field and an
atom, modeled as before by an outer electron in a spherically symmetric potential. We
shall begin with the semi-classical approximation, already introduced in Section 5.3.2,
where the electromagnetic field is described classically while the atom is described in a
quantum manner. In Section 5.3 we postulated a phenomenological interaction between
an electromagnetic wave and an electric dipole responsible for transitions from one
level to another. In this section we shall complete these results by justifying the dipole
approximation and giving an explicit expression for the transition amplitude. At this point
it is useful to summarize the various possible approximations which can be used to study
interactions between an atom (or molecule) and the electromagnetic field (see Table 14.1).
In principle, the atom and the field should both be treated in a quantum manner, but it
may prove convenient to use a classical approximation for one or the other when it is
clear that such an approximation is valid.
In the approach of Section 11.3.3, the classical electromagnetic wave is described in

the Coulomb gauge �� · �A = 0 by a transverse vector potential �A��r� t�. A plane wave of
wave vector �k and frequency � can be written as

�A��r� t�= Re
[�A0e

i��k·�r−�t�
]
� �k · �A0 = 0� (14.34)

Let us recall the action of the divergence and curl operators in the Fourier space:

�� · → i�k ·� ��×→ i�k× � (14.35)

10 More details can be found in, for example, Basdevant and Dalibard [2002], Chapter 13.
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Table 14.1 Various approximation schemes

Electromagnetic
field

Atom Examples

classical classical classical radiation Section 1.5.3
classical quantum absorption and stimulated emission Section 5.3.2,

Sections 14.3.1 to 14.3.3
quantum classical coupling to a classical source Exercise 11.5.4
quantum quantum spontaneous emission Section 14.3.4, Section 14.4

which leads to the following electric and magnetic fields:

�E��r� t� = −� �A
�t

= Re
[
i��A0e

i��k·�r−�t�
]
� (14.36)

�B��r� t� = ��× �A= Re
[
i��k× �A0�e

i��k·�r−�t�
]
� (14.37)

The energy flux is given by the Poynting vector

�� = �0c
2 �E× �B� (14.38)

and averaging over time using 
cos2��t�� = 1/2 we find


 ��� = 1
2
�0c�

2� �A0�2k̂= � ���k̂� (14.39)

The intensity � ��� is related to the photon flux � as

� ���= ��� �

or, denoting the photon density by n,

� = nc = 1
2�

�0c�� �A0�2� (14.40)

According to (11.115), the Hamiltonian describing the interaction between the electron
and the field is

H = 1
2me

[�P−qe �A��R� t�
]2+V��R�� (14.41)

where V��R� represents the effective interaction of the outer electron with the nucleus
and the �Z− 1� inner-shell electrons. The Hamiltonian (14.41) can be split into the
unperturbed part H0

H0 =
1

2me

�P2+V��R� (14.42)

and a perturbation

W��R� t�=− qe
2me

(�P · �A+ �A · �P
)
+ q2

e

2me

�A2� (14.43)
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To first order in qe �A we can neglect the second term of (14.43), or the diamagnetic
term �q2

e/2me��A2 (Exercise 14.5.5). Moreover, the first term is simplified in the Coulomb
gauge �� · �A= 0 because

�P · ��Af��r�� = −i���� · �A�f��r�− i��A · ��f��r�
= −i��A · ��f��r�= ��A · �P�f��r��

The perturbation W��R� t� is finally written as

W��R� t�=− qe
me

[�A��R� t� · �P]� (14.44)

We shall work in a representation in which �R is diagonal, �R→�r. Using (14.34), we have

W��r� t�=− qe
2me

[
ei��k·�r−�t� �A0 · �P+ e−i��k·�r−�t� �A∗

0 · �P
]
� (14.45)

Now we can use the results of Section 9.6.3: the term involving exp�−i�t� in (14.45)
corresponds to energy absorption by the atom and the term involving exp�i�t� corresponds
to energy emission. If there exist two energy levels Ei and Ef with Ei < Ef corresponding
to a resonance Ef−Ei = ��0 � ��, the atom will absorb energy ��0 in a transition i→ f ,
and emit energy ��0 in a transition f → i. In a particle interpretation this would of course
mean that the atom absorbs or emits a photon of energy ��0, but such an interpretation falls
outside the framework of the semi-classical theory. According to (9.170), the probability
per unit time of absorption i→ f is given by

0fi =
2�
�

(
qe
2me

)2 ∣∣∣
f � exp�i�k · �r� �A0 · �P�i�
∣∣∣2��Ef − �Ei+����� (14.46)

14.3.2 The dipole approximation

Let us introduce a polarization unit vector �es, �e∗s · �es = 1, writing �A0 = ��A0��es. The intensity
� ��� per unit frequency is given by (14.39):

� ���= 1
2
�0c�

2� �A0����2�

We rewrite (14.46) by integrating over � and separating the squared modulus of the
transition matrix element from the characteristics of the incident wave:

0fi =
2�
�

(
qe
2me

)2 ∫
d�� �A0����2

∣∣∣�es · 
f � exp�i�k · �r� �P�i�∣∣∣2 ��Ef − �Ei+����

= 4�2�

��2
0m

2
e

� ��0�
∣∣∣�es · 
f � exp�i�k · �r� �P�i�∣∣∣2� (14.47)

The transition matrix element in (14.47) can be simplified by using the fact that the
wavelength of the emitted or absorbed radiation, 0�1�m <∼ 
 <∼ 1�m, is very large
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compared with the atomic dimensions a0 ∼ 0�1 nm, which makes it possible to replace
exp�i�k · �r� by unity because 
�k · �r� ∼ ka0 ∼ a0/
	 1:


f �ei�k·�r �P�i� =
∫

d3r �∗
f ��r�ei�k·�r

(
−i���

)
�i��r�

�
∫

d3r �∗
f ��r�

(
−i���

)
�i��r��

Moreover, �P can be written as the commutator between �R and H0:

��R�H0�=
i�
me

�P�

which gives


f ��P�i� = me

i�

f � �RH0−H0

�R�i�

= me

i�
�Ei−Ef�
f � �R�i� = ime�0
f � �R�i�� (14.48)

In classical physics �r is the vector joining the nucleus located at the origin to the outer
electron and qe�r is the electric dipole moment �d of the atom. The quantity 
f �qe �R�i� is
therefore the matrix element �Dfi of the electric dipole moment operator �D= qe �R between
the states �i� and �f�:

�Dfi = 
f � �D�i� = qe
f � �R�i�� (14.49)

Substituting these results into (14.47), we obtain the transition probability per unit time
for polarization �es:

0fi = 4�2

(∣∣�es · �Dfi

∣∣2
4��0�

2c

)
� ��0� (14.50)

= 4�2�

�

∣∣�es · �Rfi

∣∣2� ��0�� (14.51)

in agreement with (5.66). The dipole moment d introduced phenomenologically in
Section 5.3.2 takes the following explicit form for a one-electron atom:

d2 → ∣∣�es · �Dfi

∣∣2 = q2
e

∣∣�es · �Rfi

∣∣2�
The expression (14.50) is more general than (14.51), and is valid for any atomic or
molecular system when the selection rules for electric dipole transitions are satisfied:
the transition probability is governed by the transition matrix element of the electric
dipole moment of the system, which involves all the charged particles. By an identical
calculation we find the rate of stimulated emission 0if , which is also given by (14.50):
0if = 0fi. Actually, to go from absorption to emission it is sufficient to replace Dfi by
Dif = D∗

fi. Following the argument based on the Einstein relations of Section 5.4, from
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0fi we can deduce the probability for spontaneous emission of a photon by summing over
the two possible polarization states s = 1�2 and taking the average 
•� over angles and
spins:

B′ = 4�3
0

c2

(
1
2

∑2
s=1

∣∣�es · �Dfi

∣∣2�
4��0�c

)
= 2��3

0

c2

〈 2∑
s=1

∣∣�es · �Rfi

∣∣2〉� (14.52)

The electric dipole moment operator �D, like the position operator �R, is a vector operator
which is odd under a parity operation, that is, a polar vector. This property of �D implies
certain selection rules for electric dipole transitions. The Wigner–Eckart theorem for
vector operators gives the matrix elements of the spherical components (10.145) Dq of
�D: if ji and jf are the angular momenta of the initial state i and the final state f , and mi

and mf are the magnetic quantum numbers, then from (10.149) we obtain


jfmf �Dq�jimi� = C
1ji
qmi*jfmf


jf ��D��ji�� (14.53)

The Clebsch–Gordan coefficient can be nonzero only if �ji− 1� ≤ jf ≤ ji+ 1 and mf =
q+mi. Moreover, the parities of the initial and final states must be opposite: 5i5f =−1.
Therefore, electric dipole transitions obey the following selection rules.

Selection rules for electric dipole transitions

�ji−1� ≤ jf ≤ ji+1� mf =mi+q� q =−1�0�+1� 5i5f =−1�

These rules generalize the results obtained in Section 10.5.2 in the special case ji = 1
and jf = 0. The selection rules for the magnetic quantum number m are directly related
to the conservation of the z component of the angular momentum, and some examples
have already been given in Section 10.5.2 and Exercise 10.7.13.

14.3.3 The photoelectric effect

In the preceding subsection we studied a transition between two levels by generalizing
the results of Section 5.3. Now let us consider a transition to the continuum. An electro-
magnetic wave of frequency � > R�/� and polarization �es arrives at a hydrogen atom
in its ground state. In particle language the condition � > R�/� implies that the photon
energy is sufficient for ionizing the atom by ejecting its electron, which provides a very
simple example of the photoelectric effect and is a case which can be completely solved
analytically. According to the Fermi Golden Rule and the definition (12.1) of the cross
section, to first order in perturbation theory in W the cross section for photoelectron
production is

d
d+

= 2�
��

�
f �W �i��2 �meke
�2��3�2

(14.54)

where �ke is the wave vector of the final electron and the last factor is the electron density
of states (9.151) in a volume � . When ��� R� (but ��	 mec

2 in order to preserve
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the nonrelativistic kinematics and prevent electron–positron pair production11), we can
neglect the interaction of the final electron with the proton and take a plane wave for the
final state, thus obtaining the Born approximation:


�r �f� = �f��r�=
1√
�
ei�ke ·�r �

We note that the dipole approximation is not valid under the kinematic conditions defined
above. The initial state is described by the wave function (14.31) of the ground state of
the hydrogen atom. The matrix element 
f �W �i� is given by (14.46):


f �W �i� =
(
− qe
2me

)
� �A0� �es ·

∫
d3r

1√
�
ei��k−�ke�·�r

(
−i����i��r�

)
or, integrating by parts and using the fact that �es · �k= 0,


f �W �i� =
(
− qe
2me

)
� �A0�

���es · �ke�√
��a3

0

∫
d3r ei��k−�ke�·�r e−r/a0

=
(
− qe
2me

)
� �A0�

���es · �ke�√
��a3

0

8�/a0

�q2+1/a2
0�

2
� (14.55)

where we have defined �q = �k− �ke, so that ��q is the momentum transfer between the
initial photon and the final electron. To calculate the integral in (14.55) we have used the
formula∫

d3r ei�q·�r e−
r = 2�
∫ �

0
r2 dr e−
r

∫ +1

−1
e iqr cos dcos = 2�

q

∫ �

0
r dr sin qr e−
r

= 2�
q

Im
∫ �

0
r dr eiqre−
r = 4�

q
Im

1
�
− iq�2

= 8�

�
2+q2�2

�

Assembling all the factors in (14.54), we obtain

d
d+

= 32��

me�a5
0

��es · k̂e�2 k3e[
��k−�ke�2+1/a2

0

]4 � (14.56)

Let us make (14.56) explicit by choosing �k to be parallel to Oz and taking linear
polarization �es parallel to Ox. Let �+=  �'� be the polar angles defining k̂e:

��ex · k̂e�2 = sin2  cos2'�

This quantity is a maximum when �ex and �ke are parallel, or  =�/2 and '= 0 or �. The
denominator in (14.56) varies slowly with  , because, with the kinematical conditions
defined above, from energy conservation we have

k

ke
� �ke

2mec
= ve

2c
	 1�

11 This approximation is valid in the case of X-rays, where the energy varies from 1 to 100 keV.
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where ve is the speed of the photoelectrons and

��k−�ke�2 � k2e

(
1− ve

c
cos 

)
�

Therefore, the electrons are preferentially ejected in a plane perpendicular to the incident
wave vector and parallel to the electric field of the wave. If the incident wave is not
polarized, the contributions of the polarizations in the x and y directions must be added
incoherently and averaged over:

1
2

[
��ex · k̂e�2+ ��ey · k̂e�2

]
= 1

2
sin2  �

This still gives preferential emission in the plane perpendicular to �k:
d
d+

∣∣∣
unpol

= 16��

me�a
5
0

k3e sin
2  [

��k−�ke�2+1/a2
0

]4 � 16��

me�a5
0 k

5
e

sin2  [
1− ve

c
cos 

]8 � (14.57)

Under the chosen kinematical conditions we can neglect 1/a2
0 compared to q2, because

�2k2e
2me

� R� =
e2

2a0

⇒ �kea0�
2 � mee

2

�2
a0 = 1�

It is important to note that we have managed to treat the photoelectric effect in a
semiclassical approach without introducing the photon, contradicting the widespread
belief that the photon concept is necessary to explain the threshold effect (Section 1.3.2).
In the semiclassical approach the threshold effect arises from the resonance condition: the
photoelectric effect is appreciable only if the light wave is in resonance with the ground
state E0 and a level EC of the continuum: EC−E0 = ��. The photoelectric effect can be
explained without the photon, but not without �!

14.3.4 The quantized electromagnetic field: spontaneous emission

We have often had recourse to the concept of the photon in order to interpret intuitively
the results of the semiclassical theory, whereas strictly speaking this concept is foreign
to this theory. Unless we use an indirect argument12 like that of Section 5.4, it is not
possible to calculate the probability of spontaneous emission by an atom in an excited
state, because there is no pre-existing classical electromagnetic field and the interaction
term ∝ �A · �P is zero. It is necessary to resort to the concept of quantized electromagnetic
field developed in Section 11.3.3, because the annihilation and creation operators a�ks and
a†

�ks are capable of changing the number of photons. More precisely, if n�ks is the number of

photons in the mode of wave vector �k and polarization s, we are interested in transitions
with the emission of a photon n�ks → n�ks+1 or the absorption of a photon n�ks → n�ks−1,

12 The argument uses the Planck distribution, which implicitly involves the concept of photon: the occupation probability of a
mode of the electromagnetic field is given by the quantum theory of the harmonic oscillator. It is therefore not surprising
that it is possible to calculate spontaneous emission.
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with spontaneous emission in the mode ��k� s� corresponding to n�ks = 0. Let us recall the
expansion of the quantized electromagnetic field (11.79) at t = 0 in a volume L3 = � :

�A��r�=
√

�

2�0�

∑
�k

2∑
s=1

1√
�k

(
a�ks�es�k̂� ei�k·�r +a†

�ks�e∗s �k̂� e−i�k·�r
)
�

The coupling between the electromagnetic field13 and the atom is, to first order in �A,

W =− qe
me

�A · �P� (14.58)

This time-independent coupling �A · �P brings in the terms

a�ks e
i�k·�r (�es�k̂� · �P) � (14.59)

and

a†

�ks e
−i�k·�r (�e∗s �k̂� · �P) � (14.60)

The term (14.59) destroys a photon and the term (14.60) creates a photon in the mode
��k� s�. Let �i� n�ks� be the initial state with i labeling the state of the atom and let �f�n�ks±1�
be the final state. The nonzero matrix elements of a�ks and a†

�ks are given by (11.16)
and (11.17):


n�ks+1�a†

�ks�n�ks� =
√
n�ks+1�


n�ks−1�a�ks�n�ks� =
√
n�ks� (14.61)

We shall examine spontaneous emission corresponding to the case n�ks = 0 and return
briefly to absorption and stimulated emission at the end of this subsection. The interesting
physical quantity is the probability per unit time for an atom to emit a photon of wave
vector approximately equal to �k and polarization s at a solid angle d+, += � �'�, about
�k.14 To obtain this probability we need the photon density of states:

�

�2��3
d3k= �

�2��3c3
�2 d�d+ (14.62)

13 It is necessary to take the electromagnetic field (11.79) at t = 0, that is, in the Schrödinger picture �AS = �AH�t = 0� = �A,
because we are using the Schrödinger picture in the perturbative calculations and the operators �A and �P must also be in this
picture. In Subsections 14.1.1 to 14.1.3 the time dependence of the classical field is fixed by an external source, that which
produces the incident electromagnetic wave, whereas the quantized field is independent of any external source.

14 To be rigorous, we should note that we are working in the reference frame where the initial atom is at rest. Energy
conservation implies that

Ei−Ef = ��+ �
2k2

2Mat

in this reference frame. The second term is the recoil energy, which will be discussed in (14.106). In general, this recoil
energy is negligible; everything happens as though the atom were infinitely heavy, Mat →�.
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with �k → �. The transition probability per unit time is given by the Fermi Golden
Rule (9.170) with a final photon ��k� s� of energy ��:

d0s
fi�
�k� s�= 2�

�
�
f�n�ks = 1�W �i� n�ks = 0��2����− �Ei−Ef��

�

�2��3c3
�2 d�d+�

(14.63)
with the matrix element 
f�n�ks = 1�W �i� n�ks = 0� given by (in contrast to Section 14.3.2,
we now have Ei > Ef and ��0 = Ei−Ef )


f�n�ks = 1�W �i� n�ks = 0� = − q

me


f�n�ks = 1��A · �P�i� n�ks = 0�

= − q

me

√
�

2�0��

f�n�ks = 1�a†

�kse
i�k·�r (�e∗s �k̂� · �P) �i� n�ks = 0�

� iqe�0

√
�

2�0��

f �(�e∗s �k̂� · �R)�i�� (14.64)

We have used the dipole approximation exp�i�k · �r�� 1 and expressed the matrix element
of �P using (14.48).
To obtain the probability for photon emission in a solid angle d+ we must inte-

grate (14.63) over �. The � function fixes the photon energy to

��= Ei−Ef = ��0�

which, using (14.64) and defining �Rfi = 
f � �R �i�, gives
d0s

fi

d+
= ��3

0

2�c2
∣∣�e∗s �k̂� · �Rfi

∣∣2� (14.65)

An equivalent expression involves the dipole moment �D = qe �R:
d0s

fi

d+
=
(

1
4��0

)(
�3

0

2��c3

)∣∣�e∗s �k̂� · �Dfi

∣∣2� (14.66)

To obtain the total transition probability 0 , which is the inverse of the lifetime � of
the excited state � = 1/0 , it is necessary to integrate over + and sum over the two
polarization states:

0 = 1
�
=

2∑
s=1

∫ d0s
fi

d+
d+� (14.67)

In order to calculate the matrix element in, for example, the form (14.65) we work in a
representation where �R is diagonal:15

�Rfi =
∫

d3r �∗
f ��r� �r �i��r�� (14.68)

15 To simplify the formulas we neglect spin, which can easily be shown to play no role at all.
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and we separate the r-dependent radial part and the r̂-dependent angular part in the
integral (14.68) by writing �r = rr̂. To deal with a specific case, we take the example of the
2p→ 1s transition of the hydrogen atom.16 The initial wave function is written as the prod-
uct of its radial part (10.96) and its angular part, which is the spherical harmonic Ym

1 �r̂�:

�m
i ��r�=

1√
4!a5

0

r exp
(
− r

2a0

)
Ym
1 �r̂�� (14.69)

and the final wave function is given by (14.31). It is convenient to introduce the spherical
components (10.64) of the vectors �es�k̂� and �r noting that the scalar product �e∗s · r̂ is17

�e∗s · r̂ = ��es · r̂�∗ =
( ∑

q=±1�0

e∗sq r̂q

)∗
= ∑

q=±1�0

esqr̂
∗
q �

On the other hand, the projector (11.80) orthogonal to �k is written in spherical
coordinates as

2∑
s=1

esq�k̂�e
∗
sq′�k̂�= �qq′ − k̂qk̂

∗
q′ �

which gives for the angular part∣∣∣∑
s

�e∗s �k̂� · 
f �r̂�i�
∣∣∣2 =∑

qq′
��qq′ − k̂qk̂

∗
q′�
f � r̂∗q �i�
i� r̂q′ �f��

The matrix element 
f � r̂∗q �i� is easily calculated by noting that according to (10.64) r̂q
is proportional to the spherical harmonic Y

q
1 �r̂�. If the magnetic quantum number of the

initial state is m, then


f �r̂∗q �i�m� =
√
4�
3

∫
d2r̂
[
Y

q
1 �r̂�

]∗
Ym
1 �r̂�=

√
4�
3

�qm�

where we have used the orthogonality relations (10.55) of the spherical harmonics. This
then gives ∣∣∣∑

s

�e∗s �k̂� · 
f � r̂ �i�
∣∣∣2 = 4�

3
�1−�k̂m�2��

The factor �1− �k̂m�2� becomes �1− 1
2 sin

2  � for m = ±1 and �1− cos2  � for m = 0,
which gives the angular distribution of the emitted photon if the initial state has a

16 In the general case of an initial state i of angular momentum �ji�mi� and a final state f of angular momentum �jf �mf �, we

can use the Wigner–Eckart theorem to express the matrix element of the spherical components Dq of �D in the form (14.53).
17 The scalar product of two vectors �a and �b is given as a function of their spherical coordinates by

�a · �b = ∑
q=±1�0

a∗qbq =
∑

q=±1�0

�−1�q a−qbq�
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well-defined value of m. If the initial state is unpolarized, the angular distribution is of
course isotropic because there is no preferred direction:

1
3

[
2
(
1− 1

2
sin2  

)
+ �1− cos2  �

]
= 2

3
�

To obtain the total transition probability (14.67) we integrate over +, the result being
the same for the three cases m=±1�0:∫

d+
(
1− 1

2
sin2  

)
=
∫

d+�1− cos2  �= 8�
3
�

The angular part gives an overall factor of 32�2/9. According to (14.31) and (14.69),
the radial part of the matrix element is


f �r�i� = 1

a4
0

√
4!�

∫ �

0
r4dr exp

(
− 3r
2a0

)
=
√
4!
�

(
2
3

)5

a0�

The combination of all these results gives the transition probability 0�2p→ 1s�:

0�2p→ 1s�=
[
��3

0

2�c2

][
4!
�

(
4
9

)5

a2
0

][
32�2

9

]
� (14.70)

and using

�0 =
3
4
R�
�

= 3
8
�2mec

2

�
and a0 =

�2

mee
2
= �

�mc
�

we can write the result in the final form, recalling (cf. Section 1.5.3) that �/mec
2 =

1�29×10−21 s:

0�2p→ 1s�= �5

(
mec

2

�

)(
4
9

)4

� 6�2×108 s−1� � = 1
0
� 1�6×10−9 s� (14.71)

Let us return to the qualitative aspects of these results. Starting from (14.52) or (14.65)
with ��e ∗s ·Rfi� ∼ a, where a is the typical atomic scale (a� 10−10 m), we obtain the estimate

0 ∼ ��3
0

c2
a2 = �

(a�0

c

)2
�0 ∼ �3�0 ∼ �5

(
mec

2

�

)
�

In fact, the speed v of the electron in its orbit is v ∼ �c.18 The characteristic frequency
�0 is given by ��0 ∼ 1 eV or �0 ∼ 1�5×1015 rad s−1, and the lifetime � of the excited
state is estimated to be

� = 1
0
∼ 2×10−9 s�

The lifetimes of excited states that de-excite by an electric dipole transition essentially
lie between ∼10−7 s and ∼10−9 s. It is instructive also to study the case of an excited

18 The factors that are assumed to be “near unity” in this type of estimate are not always so; the above estimate differs from
the exact value (14.71) by a factor of �8/3��4/9�4 � 1/10.
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level of a nucleus which decays by emitting a photon 	. The typical energy of such a
photon is ∼ 1 MeV, which corresponds to a wavelength 
� 10−12 m. Since the nuclear
dimensions are of the order of a fermi (or femtometer), R� 10−15 m, the use of R/
	 1
and the electric dipole approximation is a priori justified. To estimate the lifetime, the
result from atomic physics must be multiplied by a factor of 10−18 to take into account
the change of energy scale 1 eV→ 1 MeV, and by a factor of 1010 to take into account the
change of dimension, a→ R, making a factor of 10−8 altogether. The estimated lifetime
of a nuclear excited state is then

�nucl ∼ 10−8 �atom ∼ 10−15 s�

An example is the decay of an excited state of an isotope of nitrogen, 13N:

13N∗ → 13N+	 �2�38 MeV��

where the lifetime is 10−15 s, in qualitative agreement with our estimate.
Let us conclude this discussion by returning briefly to emission and stimulated absorp-

tion. If we take into account the factors (14.61)–(14.62) for absorption and stimulated
emission, the absorption probability (14.50) is not modified. On the other hand, if the
atom is located in a cavity of volume � containing ��ks photons in the mode ��k� s�,
the semiclassical emission probability is proportional to the photon density n�ks =��ks/� ,
while the use of the quantized field gives a factor of ���ks+ 1�/� . The correction is in
general negligible, except in the case of superconducting microwave cavities where the
number of photons is small (Appendix B).

14.4 Laser cooling and trapping of atoms

14.4.1 The optical Bloch equations

It has long been known that light exerts forces on matter, the best-known example being
radiation pressure. However, when the light comes from conventional sources these forces
are very weak. It is only in the last twenty years that the use of lasers has made it possible
to exert sizable forces on atoms, forces which can be up to 105 times their weight.
A particularly interesting application is laser cooling, and we shall give an elementary
example of it in Section 14.4.3. We shall use the model of the two-level atom: two atomic
levels Ea and Eb (Eb > Ea) are separated by Eb−Ea = ��0. We assume Ea is the ground
state of the atom, or at least a metastable state of lifetime long enough not to be involved
in the discussion. The atom is placed in an electromagnetic wave produced by a laser
whose wave vector �k is parallel to Oz and whose frequency � is close to resonance:
���0. As in Section 5.2.2, we call the difference �=�−�0 the detuning. The electric
field at the position of the atom is of the form

�E = �esE0 cos�t� (14.72)
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For the time being we ignore the translational degrees of freedom of the atom, assuming
it to be infinitely heavy.19 Under these conditions, the Hamiltonian H is given by (5.52)
written as

H =
⎛
⎜⎝ −�

2
�0 −dE0 cos�t

−dE0 cos�t
�

2
�0

⎞
⎟⎠ � (14.73)

The rows and columns are ordered as �a� b�, the zero of the energy in the absence of
the field has been chosen to lie midway between Ea and Eb, and d is the matrix element
� �D · �es�ab of the �es component of the electric dipole moment operator between the two
levels. As in Section 5.3.2, we introduce the Rabi frequency �1:

�1 =−dE0

�
� (14.74)

The minus sign takes into account the negative charge of the electron, so that �1 > 0.
With this definition we can rewrite H as a function of the Pauli matrices 1 and 3:

1
�
H =

⎛
⎜⎝ −1

2
�0 �1 cos�t

�1 cos�t
1
2
�0

⎞
⎟⎠=−1

2
�03+ ��1 cos�t�1� (14.75)

In general, the quantum state of the atom will be described by a state operator �. In fact,
the atom is in continuous interaction with the quantized electromagnetic field, and even if
the field + atom ensemble were in a pure state, the state of the atom would not be pure,
because the atom is not a closed quantum system. As we have seen in Section 6.2.3, its
state is described by taking the partial trace over the field variables, and the result is not
a vector of the atom space of states, but a state operator, the reduced state operator of the
atom represented by a 2×2 matrix acting in the two-dimensional space of the two-level
atom. We recall that the state matrix must be Hermitian � = �†, it must have unit trace
Tr�= 1, and it must be positive. The results of Section 6.2.2 allow us to write the most
general state matrix as a function of a real vector �b, the Bloch vector (6.24), such that
�b2 ≤ 1:

�= 1
2

(
I+

3∑
i=1

ibi

)
= 1

2

(
I+ � · �b

)
� (14.76)

Conforming to the usual notation, we use (u� v�−w� to denote the components of the
Bloch vector: u = b1, v = b2, and w = −b3. We can also write � in the explicit matrix
form

�=
( 1

2 − 1
2 ��bb−�aa� �ab

�ba
1
2 + 1

2 ��bb−�aa�

)
= 1

2

(
1−w u− iv

u+ iv 1+w

)
� (14.77)

19 More precisely, the translational degrees of freedom are treated classically, assuming that �0 �ER, where 0 is the linewidth
and ER is the recoil energy (14.106). We also assume that the medium is dilute enough that collisions between atoms can
be neglected.
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In this expression for � we have taken into account the condition �aa+ �bb = 1. The
quantity w = �bb − �aa measures the population difference between the levels Eb and
Ea: if we have a collection of � atoms, on average � �aa will be in the state Ea and
� �bb in the state Eb. The off-diagonal matrix elements �ab = �∗ba are the coherences.
The presence of nonzero coherences, that is, phase-dependent effects, is a sure signal of
quantum effects.
If we first ignore the quantized electromagnetic field, the evolution equation for � is

given by (6.37):

i�̇=
[
1
�
H��

]
� (14.78)

The commutator can be calculated directly by multiplying the matrices, but it is more
elegant to use the Bloch form and the commutation relations (3.52) of the Pauli matrices.
We find

u̇ = �0v�

v̇ = −�0u+2�1w cos�t� (14.79)

ẇ = −2�1v cos�t�

To complete these equations and justify an approximation which will be made below, it
is convenient to rewrite them as a function of the coherence r = �ab = �u− iv�/2:

ẇ = −2i�1�r− r∗� cos�t� (14.80)

ṙ = i�0r− i�1w cos�t� (14.81)

These equations for the evolution of the state matrix are Hamiltonian, that is, they are
governed by a law of the type (14.78) depending on a Hamiltonian. This evolution is
unitary, because (14.78) is equivalent to

��t�= U�t�0���t = 0�U†�t�0��

where U�t� is the unitary evolution operator (4.14). Actually, though, these equations are
incomplete. The interaction of the atom with its environment leads to equations that are not
of the form (14.78), and so to an evolution which is non-Hamiltonian. It is the ensemble
atom + environment that obeys a unitary evolution, and if we are interested only in the
atomic degrees of freedom, the evolution is no longer Hamiltonian. This phenomenon is
familiar in statistical mechanics, where we consider the interaction of a system with a
heat bath, and nonunitary evolution is closely related to dissipation.20 We are going to
consider the case of an atomic environment limited to a quantized electromagnetic field,
which is an excellent approximation for atoms trapped by lasers, which form a dilute
medium. However, there could also be other sources of non-Hamiltonian evolution, such

20 See, for example, Le Bellac et al. [2004], Chapter 2.
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as collisions with other atoms in a dense medium.21 The calculation based on (14.78) takes
into account the interaction with the laser field and therefore absorption and stimulated
emission, but it does not include the interaction with the quantized field and so spontaneous
emission is neglected. Owing to spontaneous emission, an atom in the level Eb tends to
return to the level Ea by emitting a photon with probability per unit time 0 (cf. (14.67)).
The differential equation giving �̇bb must therefore include a term−0�bb on the right-hand
side, which in the absence of a laser field leads to exponentially decreasing population
of the level Eb, exp�−0t�. One then deduces that the right-hand side of the differential
equation for w contains a term −0�w+1�. The coherences must also decrease because, in
the absence of a laser field, the atom returns to its ground state Ea for t� � = 1/0 , and the
only nonzero element of the density matrix is �aa = 1. It will be shown in Section 15.2.4
that in our approximation of a diluted medium the decay rate for coherences is 0/2.
Therefore, equations (14.80) and (14.81) become

ẇ = −2i�1�r− r∗� cos�t−0�w+1�� (14.82)

ṙ = i�0r− i�1w cos�t− 0

2
r� (14.83)

Let us transform these equations using the rotating wave approximation of Section 5.3.2.
We note that if �1 	 �0, (14.83) implies that r ∼ exp�i�0t� whereas w varies slowly.
Writing cos�t as a sum of complex exponentials and neglecting the rapidly varying
terms ∝ exp�±i��+�0�t� in the rotating wave approximation, Equations (14.82)–(14.83)
become

ẇ = −i�1�e
−i�t r− ei�t r∗�−0�w+1�� (14.84)

ṙ = i�0r−
i
2
�1w

(
ei�t+ e−i�t

)− 0

2
r� (14.85)

All the terms on the right-hand side of (14.84) vary slowly. To display the time evolution
of the terms on the right-hand side of (14.85) we set

e−i�t r = r ′� e−i�t ṙ = i�r ′ + ṙ ′�

which, multiplying (14.85) by exp�−i�t�, gives

ṙ ′ = i��0−��r ′ − i
2
�1w

(
1+ e−2i�t

)− 0

2
r ′�

The rotating wave approximation consists of neglecting the rapidly varying term ∝
exp�−2i�t� in this expression. We then end up with the system of differential equations

ẇ = −i�1�r
′ − r ′∗�−0�w+1�� (14.86)

ṙ ′ = i��0−��r ′ − i
2
�1w−

0

2
r ′� (14.87)

21 An example is the active medium for a laser, which is described by optical Bloch equations analogous to (14.82)–(14.83), but
with two unrelated relaxation rates for populations and coherences; see, for example, Mandel and Wolf [1995], Chapter 18.
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14.4.2 Dissipative forces and reactive forces

When the atom interacts with the laser field during a time interval t � �, a stationary
regime ẇ= ṙ = 0 is reached where it is easy to write down the solution of the system of
differential equations (14.86)–(14.87). Passing through the intermediate stage

r ′st =
i�1wst/2

i��0−��−0/2
�

we obtain for the stationary value wst of w

wst =− ��−�0�
2+02/4

��−�0�
2+02/4+�2

1/2
� (14.88)

We then find �bb = �1+wst�/2 < 1/2: there cannot be a population inversion, that is, a
situation where the excited level is more populated than the ground state. The stationary
result for r ′ is

r ′st =
i�1

2
0/2− i��−�0�

��−�0�
2+02/4+�2

1/2
� (14.89)

It is convenient to introduce the saturation parameter s proportional to the intensity � of
the laser (we recall that the detuning �= �−�0):

s = �2
1/2

�2+02/4
∝ � laser� (14.90)

so that we can write

�bb�st =
1
2
�1+wst�=

s

2�1+ s�
� r ′st =

i
�1

(
s

1+ s

) (
0

2
− i�

)
� (14.91)

These results allow us to obtain the forces exerted by the laser light on an atom in the
stationary regime. The equivalent of the radiation pressure on the atom can be found by
a simple argument. Since in the stationary regime the probability of finding an atom in
the excited state Eb is �bb�st, the average number of photons spontaneously emitted per
unit time is 〈dN

dt

〉
= 0 �bb�st =

0

2
s

1+ s
� (14.92)

These photons are emitted isotropically and contribute to the disordered motion of the
atom, which we shall study in the following subsection. However, once the atom has
returned to its ground state it absorbs a photon of the laser field, and the momenta of
these photons ��k are all in the same direction. The number of photons absorbed is the
same as the number of photons spontaneously emitted, and the atom is subject to a force
due to photon absorption which is equal to the change of momentum per unit time:

�Fdiss = ��k
〈dN
dt

〉
= ��k0

2

(
s

1+ s

)
= ��k 0

2
�2

1/2

�2+02/4+�2
1/2

� (14.93)



14.4 Laser cooling and trapping of atoms 483

When the saturation parameter s� 1, the acceleration �a approaches its maximum value

�amax =
��k
M

0

2
� (14.94)

where M is the mass of the atom. In the case of the D2 line of sodium, 0−1 = 1�6×10−8 s
and amax ∼ 106 m s−2, which is about 105 times the gravitational acceleration.
Now let us rederive the result (14.93) for the dissipative force by examining the force

exerted by the electromagnetic field (14.72) on an atomic dipole. The form of the dipole
operator in the two-dimensional space of the two-level atom is D = d1, and according
to (6.21) its expectation value is


D� = dTr ��1�= d��ab+�∗ab�

= d�r+ r∗�= d
(
r ′ei�t+ r ′∗e−i�t

)
= 2ds

�1�1+ s�

[
−0

2
sin�t+� cos�t

]
� (14.95)

where we have used the expression (14.91) for r ′ in the stationary regime. This expectation
value of the dipole operator contains a term ∝ cos�t in phase with the field (14.72) and
a term out of phase by �/2 ∝ sin�t. The work dW/dt done on the dipole per unit time
by the field (14.72), that is, the power supplied to the atom,22 is

dW
dt

= E0 cos�t
d
D�
dt

�

Using (14.95) immediately gives d
D�/dt and we find

dW
dt

=− 2ds�E0

�1�1+ s�

[
0

2
cos2�t+� sin�t cos�t

]
� (14.96)

Taking the time average, we obtain〈dW
dt

〉
=− 2ds�E0

�1�1+ s�

0

4
= ��s

1+ s

0

2
� (14.97)

The number of photons absorbed per second is〈dN
dt

〉
= 1

��

〈dW
dt

〉
= 0

2

(
s

1+ s

)
�

in agreement with (14.92). Elementary study of the forced harmonic oscillator shows that
it is the component involving the displacement out of phase by �/2 with the external
force which is responsible for the frictional dissipation, which gives rise to the expression
“dissipative force” for the radiation pressure. The part in phase with the field is called

22 It is useful to recall the elementary forced harmonic oscillator in one dimension:

ẍ+�ẋ+�2
0x = f cos�t�

The power supplied to the oscillator is f cos�t dx/dt. The correspondence with the present problem is given by f → E0
and x→
D�.
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the “reactive” part. The model we have studied does not contain any spatial dependence,
and so the average value of the term of 
D� in phase with the field does not produce any
work. In order to obtain a nonzero result, a spatial dependence must be introduced. It can
then be shown (Exercise 14.6.7) that the reactive component of the force depends on the
gradient of the Rabi frequency:

�Freact =−��

2

���2
1��r�/2

�2+02/4+�2
1/2

� (14.98)

The reactive force is zero in a plane wave, where the Rabi frequency �1 is independent
of �r. It does not transmit any energy to the atoms. If, for example, the spatial variation
of the Rabi frequency is due to the use of several laser waves, the effect of the reactive
force is to redistribute the energy among the various waves. In contrast to the dissipative
force, the reactive force is not saturated when s→�.
The reactive force is derived from a potential

�Freact =−��U��r�� U��r�= ��

2
ln
(
1+ �2

1��r�/2
�2+02/4

)
�

For �< 0, a region in which �2
1��r� is a maximum appears as an attractive potential well for

the atom. In a nonuniform laser field the atom is attracted toward the regions of stronger
intensity. This has allowed the development of numerous practical applications where
microscopic objects are manipulated. An example is the creation of “optical tweezers”
for manipulating segments of DNA.

14.4.3 Doppler cooling

An important application of the dissipative force (14.93) is the Doppler cooling of
atoms. The atoms are modeled as above by a system of two levels separated by ��0.
They are localized in laser beams coming from opposite directions and having identical
frequencies � close to the resonance frequency �0, but with � < �0, that is, with a
detuning �=�−�0 < 0. In order to simplify the discussion we limit ourselves to cooling
along an axis which we shall choose to be the z axis, and use two laser beams with
wave vectors �k ( ẑ and −�k ( −ẑ (Fig. 14.1). Cooling in three spatial dimensions requires
the use of six lasers, two on each axis, with opposite wave vectors. We shall take the
case of saturation parameter s	 1, which will permit us to neglect the term �2

1 in the
denominator of (14.93).

laser beam (–)laser beam (+) atoms

k
→ –k

→

Fig. 14.1. The principle of Doppler cooling.
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Fig. 14.2. The fluorescence cycle.

An atom in the field of the lasers undergoes fluorescence cycles. A fluorescence cycle
consists of the absorption of a photon from one of the two lasers by an atom in its ground
state so that it makes a transition to its excited state. This is followed by the spontaneous
emission of a photon, returning the atom to its ground state (Fig. 14.2). Let n+�v� be
the number of fluorescence cycles per second that an atom of speed v (in the z direction
since our discussion is limited to one dimension) undergoes with absorption of photons
of wave vector +�k, and let n−�v� be the number of fluorescence cycles with absorption
of a photon of wave vector −�k. If an atom is moving toward the left (v < 0�, owing to
the Doppler effect it will see photons of frequency �− kv coming from the +�k laser
and photons of frequency �+ kv coming from the −�k laser. Because of the negative
detuning (� < �0), the photons of wave vector +�k are closer to resonance and are
absorbed in greater numbers than the photons of wave vector −�k which are farther from
resonance. This will give a force pointing toward the right for these atoms. Conversely,
for atoms moving toward the right (v > 0) the force will be toward the left. In summary,
atoms moving toward the left will preferentially absorb photons of wave vector +�k and
atoms moving toward the right will preferentially absorb photons of wave vector −�k. In
both cases the atoms will be slowed down and a viscosity-like force will appear. This is
the reason for the term “optical molasses.” The average force on an atom of speed v is


�F� = ��k�n+�v�−n−�v�� (14.99)

with

n±�v�=
0

4
�2

1

��∓kv�2+02/4
� (14.100)

Let us expand (14.100) in powers of the velocity through order v:

n±�v��
0�2

1/4
�2+02/4

(
1± 2�kv

�2+02/4

)
� (14.101)

This equation gives the average number of fluorescence cycles per second 2n0:

n0 =
1
2

[
n+�v�+n−�v�

]= 0�2
1/4

�2+02/4
= 0

2
s (14.102)

and the force proportional to

n+�v�−n−�v�= n0

4�kv
�2+02/4

�
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which becomes


�F� = ��k[n+�v�−n−�v�
]= n0v

4��k2

�2+02/4
k̂� (14.103)

The viscosity coefficient � is defined as

dv
dt

=−�v (14.104)

and its value is obtained from (14.103):

� =−
F�
Mv

=−n0

4�k2

M

�

�2+02/4
� (14.105)

which is positive because � < 0. Taking n0 to be constant, the viscosity coefficient is a
maximum for �=−0/2:

�max =
4�k2

M0
n0 =

8n0

�0

�2k2

2M
= 8n0

�0
ER� (14.106)

The energy ER = Mv2R/2 is called the recoil energy: it is the recoil kinetic energy
when the atom emits a photon of momentum �k, and it is also the energy acquired
by an atom at rest that absorbs a photon of momentum �k. The speed vR is the recoil
velocity. Let us give some numerical values for the D2 line of rubidium. The transition
wavelength is 
 = 0�78�m, the linewidth is 0 = 3�7× 107 s−1, and the atomic mass is
M = 1�41× 10−25 kg. These values correspond to energy �0 = 2�4× 10−8 eV, recoil
velocity vR = �k/m = 5�8× 10−3 m s−1, and recoil energy ER = 1�5× 10−11 eV, and
therefore to recoil temperature TR = ER/kB = 1�7×10−7 K.
Using these typical numerical values, we find

� � 5×10−3n0 = 2�5×10−3 0s�

We can take the saturation parameter s	 1 such that

0−1 	 n−1
0 	 �−1�

Under these conditions, there are three distinct time scales in the problem (Fig. 14.3). The
relation 0−1	 n−1

0 shows that the fluorescence cycles do not overlap and are independent.
Let us consider a time interval �t, with 0−1 	 �t 	 �−1. Let N± be the number of
fluorescence cycles ±k in this interval �t. The condition �t 	 �−1 implies that the
speed v of the atom does not have the time to vary appreciably under the action of
the viscosity force during the interval �t and so we can average over this interval, with

N±� = n±�v��t. Let p�N+�N−* �t� be the probability of observing N+ �+k� cycles and
N− �−k� cycles during the interval �t. Since the fluorescence cycles are independent,
this probability obeys a Poisson law:

p�N+�N−* �t�=

N+�N+ 
N−�N− exp�−�
N+�+
N−���

N+!N−!
�
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Fig. 14.3. A sequence of fluorescence cycles.

We use �q1� � � � ��q�N++N−� to designate the N++N− momenta of photons emitted spon-
taneously by the atom during the interval �t and �Y to denote their sum:

�Y = �q1+· · ·+�q�N++N−��

The emitted photons are not correlated with each other and 
Y � = 0. The average variation
of the momentum during the time �t is due only to the absorbed photons:


p��t�� = (n+�v�−n−�v�
)
�k�t� (14.107)

Let us now evaluate the variance of p��t�,

!p2��t�=
〈
p2��t�−
p��t��2

〉
�

Since the spontaneous photons are not correlated with the absorbed photons, 
Yk� = 0
and the two contributions can be treated separately. The contribution to the variance from
the absorbed photons is

!p2��t��abs = �2k2
〈
�N+−N−�

2− �
N+�−
N−��2
〉
= 2�2k2n0�t�

where we have used the classical property of the Poisson distribution !N 2
± = 
N±� as

well as the fact that the + and − cycles are independent: 
N+N−� = 
N+�
N−�. The
contribution from the emitted photons is

!p2��t��em = �2
Y 2� = �2
N++N−∑
i=1

q2
i = �2k2
N� = 2n0�

2k2�t�

Since we have reduced the kinematics to one dimension, we have assumed that the emitted
photons have momentum ±�k with probabilities of 1/2.23 Adding these two contributions,

23 For three-dimensional kinematics and isotropic photon emission we would have 
�2Y 2� = �
2k2/3.
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we find24

!p2��t�= 4n0�
2k2�t� (14.108)

As we shall soon show, this result corresponds to a random walk in one-dimensional
momentum space. In a random walk on a line, the walker takes a step of length l to the
right or to the left with probability 1/2. After N steps the walker has moved an average
distance 
x� = 0, but the average squared distance is nonzero:


x2� = !x2 = Nl2�

and if each step takes a time �, after a time �t = N� we have

!x2 = l2

�
�t = 2D�t� (14.109)

This equation defines the diffusion coefficient D. The proportionality of !p2 to �t

in (14.108) justifies the expression “random walk in momentum space” with diffusion
coefficient D = 2n0�

2k2.
In this random walk the kinetic energy E of the atom increases by !p2��t�/2M .

The diffusion therefore tends to increase the kinetic energy. By analogy with statistical
mechanics, we define a fictitious temperature T as

E = 1
2
kBT� (14.110)

where kB is the Boltzmann constant. If E increases, T increases, and it can be said that
the atoms are heated by the spontaneous emission, which creates a disordered motion
analogous to thermal motion. However, the temperature is actually fictitious, because there
is no thermodynamical equilibrium: the temperature (14.110) is perfectly well defined for
an isolated atom. The viscosity tends to slow the atoms down, and thus to “cool” them.
When the two effects are in equilibrium, we obtain an “equilibrium temperature” which
is the fictitious temperature of the atoms in the stationary regime. This temperature in
fact provides an intuitive way of measuring their average speed. According to (14.104),
the viscosity gives the following contribution to the time variation of the energy:

dE
dt

∣∣∣
visc

= 1
2
M

d
dt

v2 =−M�v2 =−�p2

M
� (14.111)

and adding the effect of spontaneous emission, we find

dE
dt

= 2n0�
2k2

M
− �p2

M
�

24 In three-dimensional kinematics

!p2��t�= 8
3
n0�

2k2�t�
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The condition for the regime to be stationary dE/dt = 0 gives the equilibrium value p2
eq

of p2, and choosing � = �max in (14.106), we have

p2
eq =

2n0�
2k2

�max

= 1
2

�0M�

which gives for the temperature T = TD

kBTD =
p2
eq

M
= 1

2
�0 � (14.112)

This temperature, which is of the order of 100�K for the D2 line of rubidium, is called
the Doppler temperature. The equilibrium condition dE/dt = 0 can also be written as a
function of the momentum diffusion coefficient:

D = �p2
eq =M�kBT� (14.113)

This equation relating the diffusion coefficient D and the viscosity coefficient � to
temperature is very general25 and is well known as the Einstein relation. In the case
of Brownian motion, viscosity forces and diffusion have a common origin, namely,
collisions of the Brownian particle with the fluid molecules, and it is not surprising that
the diffusion and viscosity coefficients are not independent. Diffusion and viscosity are
both dissipative processes. In our case the origin of the dissipative process is spontaneous
emission, which we have seen corresponds to nonunitary evolution.

14.4.4 A magneto-optical trap

Doppler cooling is the maximum cooling that can be obtained if we limit ourselves to
the model of the two-level atom. To go farther, and in particular to consider cooling
mechanisms which are even more effective, allowing temperatures of microkelvins and
lower to be obtained, it is necessary to bring into play the level substructure, both fine
and hyperfine. Let us consider an elementary example, taking a ground state j = 0 and
an excited state j = 1 which we split into three sublevels using the Zeeman effect. This
will permit us to trap atoms not only in velocity, as in Doppler cooling, but also in space.
Since a magnetic field must be used to obtain the Zeeman effect, such a trap is called a
magneto-optical trap (MOT). We use a nonuniform, z-dependent magnetic field pointing
in the z direction, B�z� = −bz, b > 0. According to (14.26), the Zeeman levels of the
excited state (e) with magnetic quantum number26 me are given by

Wme
=−�Bme =−g

qe�B

2m
me with �= g

qe�

2m
< 0�

The Zeeman levels of the excited state then have energies −�bz �me =−1�, 0 �me = 0�,
and +�bz �me = 1�, with Oz taken as the angular momentum quantization axis.

25 See, for example, Le Bellac et al. [2004], Chapter 5.
26 me should not be confused with the electron mass me.
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We again take the configuration of laser beams used above for Doppler cooling, but
now assuming that these beams are left-hand circularly polarized. Angular momentum
conservation along Oz (cf. (10.106)–(10.107)) implies that me =−1 if the atom absorbs
a photon of wave vector +�k and me = +1 if it absorbs one of wave vector −�k; see
Fig. 14.4. We assume that �< 0. For z > 0 the sign of B implies that the level me =+1 is
lower than the level me =−1 and therefore closer to resonance (Fig. 14.4). This implies
that the atom will preferentially absorb photons of wave vector −�k and be pushed toward
the left. The opposite occurs if the atom is in the region z < 0 where the level me =−1
is lower than the level me =+1: the atom preferentially absorbs photons of wave vector
+�k and is pushed to the right. The action of the two beams is equivalent to the existence
of two forces, a viscosity force −�Mv and a restoring force −7z:

F =−�Mv−7z� (14.114)

to which we must add the diffusion in momentum space. The atoms are not only slowed
down, but they are also confined by the recoil force in the region z� 0; this is the principle
of the magneto-optical trap. In practice, we want to confine atoms in three-dimensional
space, and so it is necessary to use six polarized laser beams (Fig. 14.5).

z

–1
0

+1 –1

0
+1

mg = 0 mg = 0

me me

Bz

G G

k
→

–k
→

Fig. 14.4. Zeeman levels for z < 0 and z > 0.
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Fig. 14.5. Laser configuration for a magneto-optical trap.

14.5 The two-electron atom

14.5.1 The ground state of the helium atom

The helium atom is a two-electron atom with a nucleus of charge 2qe, which we write
as Zqe, Z = 2, so that our theory also applies, for example, to the Li+ ion with Z = 3.
Assuming the nucleus to be infinitely heavy (an approximation better than 0.1%), in a
representation where the position operator is diagonal the Hamiltonian H reads as

H =− �2

2me

�2
1 −

�2

2me

�2
2 −

Ze2

r1
− Ze2

r2
+ e2

��r1−�r2�
� (14.115)

The vectors �r1 and �r2 are the positions of electrons 1 and 2. We write H =H0+W , where
H0 is the free Hamiltonian describing the electrons interacting with the nucleus,

H0 =− �2

2me

�2
1 −

�2

2me

�2
2 −

Ze2

r1
− Ze2

r2
� (14.116)

and W is a perturbation, whose physical origin is the electrostatic repulsion between the
two electrons:

W = e2

��r1−�r2�
� (14.117)

Let us seek the lowest energy level by first neglecting W . This level is clearly a 1s2 level,
where the two electrons are in a 1s state; the superscript counts the number of electrons
in a given state. However, electrons are fermions, and the two electrons cannot be in the
same state. Fortunately, spin saves the situation, since the electrons can be put in a singlet
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spin state &s (10.126), which is antisymmetric under the exchange of the two electrons.
Our space + spin wave function then becomes

- ��r1� �r2�& = �1s��r1��1s��r2�&s

=
(

Z3

�a3
0

)
e−Zr1/a0 e−Zr2/a0&s�

(14.118)

The corresponding ground-state energy for helium is E�0�
0 = −8R� � −108�8 eV, to be

compared with the experimental result Eexp =−79�0 eV. Thus E�0�
0 is too low by roughly

30%. However, we have neglected the repulsive interaction W in H , and we expect that
this term will push our theoretical result upward. Let us be optimistic and blindly apply
perturbation theory, although there is no obvious reason why W should be considered
“small” compared with the other potential energy terms in H0. From (14.6) we compute
the first-order correction to E0:

!E = 
- �W �-� = Z6e2

�2a6
0

∫ e−2Zr1/a0 e−2Zr2/a0

��r1−�r2�
d3r1d

3r2� (14.119)

To compute this six-dimensional integral, we use the following representation of 1/r:27

1
r
= 4�

�2��3

∫ d3k
k2

e i�k·�r �

and we find

!E = Z6e2

2�4a6
0

∫ dk
k2

[∫
e−2Zr/a0 e i�k·�r d3r

]2
� (14.120)

The integral in the square brackets has already been encountered in (14.55):∫
e−2Zr/a0 e i�k·�r d3r = 16�Z/a0

�k2+ �2Z/a0�
2�2

� (14.121)

and plugging this result into (14.120) gives

!E = 4Ze2

�a0

∫ �

0

dx
�1+x2�4

= 4Ze2

�a0

× 5�
32

= 5
4
ZR�� (14.122)

As expected, !E is positive and

E
�0�
0 +!E �−74�8 eV� (14.123)

which is much closer to the experimental value than we had a right to expect.
The variational method will give an even better result. As our trial function for one

electron we take

���r�=
(

z3

�a3
0

)1/2

e−zr/a0� (14.124)

27 To check this formula, compute the Fourier transform of �k2+�2�−1 and take the limit �→ 0.
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where z is the variational parameter. In order to compute the expectation values, we write

∫
d3r �∗��r�

(
− 1
2me

�2− ze2

r

)
���r�=−z2R� � (14.125)

since (14.124) is the ground-state solution of the Schrödinger equation for a one-electron
atom in a Coulomb potential −ze2/r . Since the potential energy is twice the total energy,
we also have ∫

d3r
(
−ze2

r

)
����r��2 =−2ze2R�� (14.126)

Equations (14.125) and (14.126) allow us to compute the expectation value of H0:


H0� = −2�2zZ− z2�R��

The expectation value of W has just been computed in the perturbative approach:


W� = 5
4
zR��

Collecting all the contributions we find

E0�z�= 2
(
z2−2Zz+ 5

8
z

)
R�� (14.127)

The optimal value of z is obtained from dE�z�/dz= 0, so that z= Z−5/16 and

Evar
0 =−2

(
Z− 5

16

)2

R�� (14.128)

In the case of helium, we find Evar
0 � −77�5 eV, which is closer to the experimental

result than the perturbative estimate. We can also check that Evar
0 > E

exp
0 , as must be the

case. For the same volume of calculations, we see that the variational method with a
good guess for the trial wave function gives much better results than the perturbative
approach!

14.5.2 The excited states of the helium atom

As we have just seen, the ground state of the helium atom has zero orbital angular
momentum and zero spin. Using the notation 2S+1LJ , where S is the total spin, L the
total orbital angular momentum, and J the total angular momentum, the ground state of
the helium atom is therefore a 1S0 state. The next lowest energy levels are the 1s12s1

and 1s22p2 states. These levels are degenerate if H0 (14.116) is used as the Hamiltonian.
However, it is a better strategy to try to take into account, at least approximately, the
effect of the repulsion W by using not the Coulomb potential −Ze2/r, but an effective
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one-electron potential Veff�r� which can be determined from self-consistency arguments.
Therefore, instead of H0 we use a Hamiltonian H ′

0:

H ′
0 =− �2

2me

�2
1 −

�2

2me

�2
2 +Veff�r1�+Veff�r2�� (14.129)

and instead of W a perturbation W ′:

W ′ = e2

��r1−�r2�
+
[
−Ze2

r1
−Veff�r1�

]
+
[
−Ze2

r2
−Veff�r2�

]
� (14.130)

With H ′
0 as the Hamiltonian, the 2s and 2p levels are no longer degenerate (see Fig. 10.7),

and the 2p level lies above the 2s level. An important remark is that W ′ is invariant
under spatial rotations, so that it commutes with the total orbital angular momentum
�L: ��L�W ′� = 0, although, for example, ��L1�W

′� �= 0. W ′ therefore has vanishing matrix
elements between the 1s12s1 and 1s12p2 states, which have total orbital angular momen-
tum L = 0 and L = 1, respectively. Thus, although these levels are not far from being
degenerate, we can use nondegenerate perturbation theory within each of the levels.
Let us begin with the 1s12s1 state, which is the first excited level. We can build

symmetric and antisymmetric wave functions:

-±��r1� �r2�=
1√
2

[
�1s��r1��2s��r2�±�1s��r2��2s��r1�

]
� (14.131)

The one-electron terms of W ′ are independent of the symmetry of - , but the W contri-
bution is symmetry-dependent:


-±�W �-±� = e2
∫

d3r1 d
3r2

��1s��r1��2��2s��r2��2
��r1−�r2�

± e2
∫

d3r1 d
3r2 �1s��r1��2s��r2�

1

��r1−�r2�
�1s��r2��2s��r1�

= K± J�

(14.132)

The integral K is clearly positive, and it can be shown that J , called the exchange integral,
is also positive, so that the energy of the antisymmetric wave function is lower than that
of the symmetric one. This is easy to understand: since the antisymmetric wave function
vanishes at �r1 = �r2, the expectation value of ��r1−�r2�, which is a maximum (and in fact
infinite) at �r1−�r2, is lower in the antisymmetric case. These considerations are completely
independent of the fermionic nature of the electrons, and would also hold if we had two
kinds of electron in the helium atom, a red one and a green one. What the Pauli principle
implies is that the symmetry of the spatial wave function is related to that of the spin
state. Then the lowest energy state is a 3S1 state, and the highest is a

1S0 state (Fig. 14.6a).
If the electrons were red and green, the total spin would not be related to the symmetry
of the wave function.
In the 1s12p1 state the total angular momentum is L = 1 and the possible states are

1P1 in the singlet spin state and 3P0,
3P1, and

3P2 in the triplet spin state. The exchange
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1P
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0.25 eV

3P0
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3S
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3P
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3P2

1.2 × 10–4 eV

1.0 × 10–5 eV

(a) (b)

2J ~ 0.8 eV

Fig. 14.6. The first two excited states of the helium atom. After Cohen-Tannoudji et al. [1977],
Complement BXIV.

integral is again positive, so that the triplet states lie lower than the singlet state. The
level scheme is sketched in Fig. 14.6b.

14.6 Exercises

14.6.1 Second-order perturbation theory and van der Waals forces

The van der Waals forces between two neutral atoms arise from the interactions between
the induced dipole moments. We wish to evaluate them in the case of two hydrogen atoms
in their ground states ��0�. To do this we shall need to use second-order perturbation
theory.

1. Second-order perturbation theory. First we determine ��1� assuming that ��0� is nondegenerate;
the notation is the same as in Section 14.1.2. Show that

�E0−H0���1� = �W −E1���0��
Keeping the term of second order in 
 in the series (14.3) and (14.4), show that

E2 = 
�0�W ��1��
We recall that ��0� ≡ �n� and

H0�n� = E
�n�
0 �n�� H0�k� = E

�k�
0 �k��
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Prove the identity

I = �n�
n�+ �E0−H0�
−1

(∑
k �=n

�k�
k�
)
�E0−H0�

and derive (14.7):

E2 =
∑
k �=n

�
n�W �k��2
E

�n�
0 −E

�k�
0

�

2. The protons of the two hydrogen atoms are separated by a distance R� a0, where a0 is the
Bohr radius (1.34); �R is the vector joining proton 1 and proton 2 and the z axis points along �R.
We use �r1 to denote the vector joining electron 1 to proton 1, �r2 the vector joining electron 2
to proton 2, and �di = qe�ri is the electric dipole moment of the atom i. Show that in classical
physics the interaction energy of the two dipoles is [e2 = q2

e/�4��0�]

W = e2

R3

[
�r1 · �r2−3��r1 · R̂���r2 · R̂�

]

= e2

R3
�x1x2+y1y2−2z1z2� �

3. To obtain the quantum expression for W , we use the correspondence principle, replacing the
numbers x1� � � � � z2 by the operators X1� � � � �Z2:

W = e2

R3
�X1X2+Y1Y2−2Z1Z2� �

Show that the expectation value of W vanishes in first-order perturbation theory:

E1 = 
�01�02�W ��01�02� = 0�

4. In second order, if ���� designates an excited state or a continuum state of energy E�, then

E2 =
∑
�1��2

�
��1
��2

�W ��01�02��2
−2R�−E�1

−E�2

�

where R� is the Rydberg constant (1.35). To obtain the order of magnitude of E2 we neglect
E�1

and E�2
in the denominator. Show that

E2 ∼−6
e2

R

(a0

R

)5
�

The interaction energy varies as R−5 and the force as R−6. Show that the preceding estimate is
no longer valid if R >∼ �c/R�. Show that the force law is R−7 for distances R� �c/R�.

14.6.2 Order-�2 corrections to the energy levels

Hint. In both this problem and the following one, it is recommended that for numerical
work the energies be written in dimensionless form by using the factor R� = 13�61 eV.
In addition to the fine structure, there exist two other O�v/c�2 corrections to the energy

levels of the hydrogen atom (or, more generally, one-electron atoms).
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1. The kinematical correction. The relativistic form of the electron kinetic energy is

K =
√
p2c2+m2

ec
4 =mec

2+ p2

2me
− 1

8
p4

m3
ec

2
+O

(
p6

m5
ec

4

)
�

Verify this series in powers of p/mec valid for p/mec	 1. The first term is the mass energy,
a simple additive constant, and the second is the nonrelativistic form of the kinetic energy used
in solving the Schrödinger equation. The objective is to evaluate the corrections due to the third
term O�p4�. Show that this term gives a correction !EK ∝ �2�v/c�2 = O��4� to the energy
levels. In order to evaluate this correction precisely, we use perturbation theory. Show that in
first order

!EK =− 1
8m3

ec
2

∫
d3pp4 ��̃��p��2�

where �̃��p� is the Fourier transform of the wave function ���r�:

�̃��p�= 1
�2���3/2

∫
d3r ei�p·�r/����r��

Calculate !EK for the 1s level of the hydrogen atom. The necessary integrals can be derived
from

I�x�=
∫ �

0

dq
q2+x

= �

2
x−1/2

by differentiating with respect to x (x > 0).
2. The Darwin term. The second correction arises from the fact that in the nonrelativistic approxi-

mation of the Dirac equation, the electron cannot be localized to better than within �/mec, the
electron Compton wavelength. To take this spatial extent into account, the potential energy is
written as

Epot =
∫

d3uf���u��V��r+ �u��

where V is the usual potential energy and f�u�, which is spherically symmetric, has extent
∼ �/mec and is normalized by ∫

d3uf�u�= 1�

Expanding V��r+ �u� about u= 0, show that

Epot = V��r�+O

[(
�

mec

)2
]
�2V +O

(
�

mec

)4

�

The Dirac equation gives the exact coeffficient:

Epot = V��r�+ �2

8m2
ec

2
�2V +O

(
�

mec

)4

�

The second term in Epot is called the Darwin term. Show that this term affects only s-waves and
gives

!ED =
�e2�2

2m2
ec

2
����r = 0��2�

Evaluate !ED numerically for the 1s level of hydrogen.
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14.6.3 Muonic atoms

The muon (�) is a lepton completely identical to the electron except that its mass is m� �
105�7MeV c−2 � 206�8me (cf. Section 1.1.3). An atom can capture a negative muon �−

into an orbit about the nucleus just like an electron, to form a “muonic atom.”

1. Calculate the Bohr radius aZ
� of the muon, as a function of the atomic number Z, the ratio

m�/me, and a0 = �2/mee
2, for an atom of atomic number Z by writing

aZ
� =

1
Z��A�

a0�

The reduced mass is used in the calculation of ��A�. Compare aZ
� to the nuclear radius R

for aluminum (Z = 13, A = 27) and lead (Z = 82, A = 208). We recall that R is given by
R� 1�2×A1/3 fm, where A is the number of nucleons.

2. Let !EZ=1
e = !Ee = E2p−E1s be the energy difference between the 2p and 1s levels of the

hydrogen atom. Calculate the corresponding quantity !EZ
� for an atom of atomic number Z as

a function of !Ee and m�/me. Compare to the experimental values:

Aluminum � !E13
� = 0�3443MeV� Lead � !E82

� = 5�96MeV�

What type of photon is emitted in these transitions?
3. Show that the screening of the inner-shell electrons is negligible. In contrast, an important

correction comes from the finite size of the nucleus. Show that the potential seen by the muon
is not −Ze2/r but

V�r�= Ze2

2R

[( r
R

)2−3
]
� r < R�

V�r�=−Ze2

r
� r > R�

We wish to calculate the level shift using first-order perturbation theory starting from the solution
for the exact Coulomb potential. What perturbation W�r� should be used? Show qualitatively
that the finite size of the nucleus is negligible except for s states, and that in this case for small Z
and an orbit of principal quantum number n with radius large compared to R the shift will be

!En =
2�Ze2

5
R2��n��r = 0��2�

where �n��r� is the unperturbed wave function. Show that for the 1s state

!E = 4
5
R�

(
Z2m′

�

me

) (
R

aZ
�

)2

�

where m′
� is the reduced mass. Find the numerical value of this shift for aluminum.28 Is the

correction in the right direction? Is it reasonable to apply the method to the case of lead?

28 Aside from the correction due to the finite size of the nucleus, the most important correction comes from the vacuum
polarization due to virtual electron–positron pairs. The correction for the 1s state of aluminum is −2�25 keV. The sign of
this correction is negative; in fact, at short distances � is larger than 1/137 and the muon, which sees a larger charge, is
more tightly bound than if � were constant. This behavior of � was mentioned in Footnote 36 of Chapter 1: � grows with
energy and, according to the Heisenberg inequality, short distance implies large momentum and therefore high energy.
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4. Show that the ratio of the typical fine-structure energies to the typical level energies is the same
for the electron and the muon. Show that this ratio, however, is larger by a factor m�/me for
the hyperfine structure.

14.6.4 Rydberg atoms

The results of Exercise 10.7.9 allow us to write down the radial wave functions unl�r� of
the hydrogen atom in the form

unl�r�=
n−l−1∑
q=0

cq

(
r

a0

)q+l+1

exp
(
− r

na0

)
�

To write down the formula for the coefficients cq, it is convenient to define k= n− l:

cq =
(
−2
n

)q
�k−1�!�2l+1�!

q!�q+2l+1�!�k−q−1�! �

where c0 is fixed by the normalization condition of the wave function. We are interested
in values n� 1, typically n∼ 50.

1. Show that if l takes its maximum value l = lmax = n− 1, the radial wave function displays a
narrow peak near the point r = a0n

2. What is the width !r of this peak? Hint: study the function

fn�x�= xn e−x/n

and show that for x � x0 = n2,

fn�x�� fn�x0� exp
[
− 1
2n3

�x−x0�
2

]
�

Show qualitatively that if l < n−1, the dispersion !r is larger than for l= n−1.
2. We are now interested in the angular part. According to (10.53),

Ym
l � �'�= eim�fm

l � ��

Using L+Y l
l = 0 and the expression (10.48) for L+, show that

Y l
l � �'�∝ eil' sinl  �

Show that if l� 1, �Y l
l � �'��2 is nonzero only near the xOy plane (that is, for  = �/2) and

calculate the dispersion ! . What happens if �m� �= l?
3. Using the first two questions, show that for n� 1 the states l= n−1 and �m� = l are localized

in a horizontal torus of radius n2a0 whose cross section is a circle of radius a0n
3/2. Compare

with the orbits (1.33) obtained using the Bohr prescriptions of Section 1.5.2.

14.6.5 The diamagnetic term

When we derived the form of the Hamiltonian (14.23) of the Zeeman effect, we neglected
a term ∝ �A 2 called the diamagnetic term. To justify this approximation, let us consider
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the case of a uniform, constant magnetic field �B, a possible expression for �A being (cf.
Section 11.4.2)

�A= 1
2
�B×�r�

1. Show that the quantum Hamiltonian of an electron of charge q in this magnetic field can be
written as

H = 1
2me

��P−q �A�2

= �P2

2me
− q

2me

�B · �L+ q2

8me

[�R2 �B2− ��R · �B�2
]

= H0+HZ+HD�

where �L= �R× �P is the orbital angular momentum. Carefully justify the operator commutations.
2. Identify HZ as the part of the Zeeman Hamiltonian (14.23) of orbital origin and give the order

of magnitude of this term for a magnetic field of 1 T when the electron is bound in an atom.
The diamagnetic term HD can be written as

HD =
q2B2

8me

�R2
⊥�

where �R⊥ is the component of �R perpendicular to �B. What can we take for the order of magnitude
of 
�R2

⊥�? Show that �
HD��	 �
HZ�� for an electron bound in an atom, and that the diamagnetic
term can be neglected in calculating the Zeeman effect. However, this term cannot be neglected
in calculating the Landau levels, because the radius of the electron orbits is macroscopic in that
case.

14.6.6 Vacuum Rabi oscillations

Let us assume that the eigenfrequency � of a cavity is close to the frequency �0 =
�Ee−Eg�/� of a transition between two levels e and g of an atom, and use �= �−�0

to denote the detuning. If the atom interacts with the quantized electromagnetic field
inside the cavity, we can to an excellent approximation limit the expansion (11.136) of
the quantized field to a single frequency mode �, because this mode is the only one that
interacts with the atom in a resonant fashion. We work in one dimension, keeping only
the dependence on z and the polarization in the x direction, so that the field can be treated
as a scalar.

1. Using (11.136), show that for the quantized field E we can write

EH�z� t�= i

√
��

�0�

(
ae−i�t−a†ei�t

)
sin kz�

We assume that the atom always moves along the line of constant phase sin kz= 1.
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2. The atom + field Hamiltonian is

H =Hatom+Hfield+W�

where W represents the interaction between the atom and the field. We take �g� to be the
zero-energy state with no photons. Derive the form of H

H = ��0�e�
e�+��N +W�

where N is the number operator for photons in the mode of frequency �. Give the spectrum of
H first neglecting W and assuming that ��� 	 �0, but � �= 0. Let � �n� be the subspace of the
Hilbert space formed from the following basis states, where n is the number of photons in the
cavity:

�e
n = �e⊗ �n−1��� �g

n = �g⊗n��

Show that these states are nearly degenerate if W is neglected.
3. We define the operators

b = �g�
e�� b† = �e�
g�

and the dipole moment of the atom (cf. Section 5.2.2)

D = d�b+b†��

Write down the interaction term W explicitly in the dipole approximation. Show that if W is
constrained to the subspaces � �n�, then

W =−i
�+R

2
�ab†−a†b�

with

�+R = 2d

√
��

�0�
�

The frequency +R is called the vacuum Rabi frequency. What terms have been neglected in
the approximate expression for W and how can this approximation be justified? The atom +
field Hamiltonian involving the approximate expression for W is called the Jaynes–Cummings
Hamiltonian.

4. What are the values of En and the corresponding eigenstates when W is taken into account? We
shall take (cf. Section 2.3.2)

tan 2 n =
+R

√
n

�
= +n

�
�

Qualitatively sketch the spectrum of the first few levels of H as a function of �.
5. The atom in the excited state �e� is sent to the empty cavity along a trajectory such that sin kz= 1.

We take the resonant case �= 0. Show that the probability pe�t� of finding the atom in the state
�e� after a time t spent in the cavity is a periodic function of t. We obtain Rabi oscillations, and
since these oscillations arise from the interaction of the atom with the vacuum fluctuations, they
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are called vacuum Rabi oscillations. The experimental observation of these oscillations provides
direct proof of the quantization of the electromagnetic field. The numerical values are29

d = 1�1×10−26 C m�
�

2�
= 5�0×1010 Hz� � = 1�87×10−6 m3�

Compare to the experimental value +R/2� = 47 kHz.
6. Calculate pe�t� away from resonance, and show that the oscillation frequency is now (always in

the case where there are no photons in the cavity)

+=
√
�2++2

R�

Show that for the detuning +R 	 ��� 	 �0 the atom nearly always remains in its excited state:
spontaneous emission is inhibited by the presence of the cavity.

7. How should the results of the two preceding questions be modified if the cavity contains exactly
n photons? If �= 0, what happens when the cavity contains a coherent state of the field?

14.6.7 Reactive forces

We take the Jaynes–Cummings Hamiltonian of the preceding Exercise 14.5.6 for an atom
with two levels �g� and �e� immersed in the quantized electric field of a cavity:

E= i��a−a†� sin kz� � =
√

��

�0�
�

with the notation of the preceding exercise. The Hamiltonian is given by

H = ��0�e�
e�+��N +W

with30

W = 1
2

�+1�ab
†+a†b��

where b = �g�
e� and b† = �e�
g�. The frequency +1 defined as

+1�z�= 2
d�

�
sin kz

is a function of z.

1. In the two-dimensional subspace � �n� in which the states �g⊗n� and �e⊗ �n− 1�� form an
orthonormal basis, show that up to an additive constant the Hamiltonian takes the form

H = 1
2

�

(
� +1

√
n

+1

√
n −�

)
�

where �= �−�0 is the detuning. We set

+1n�z�=
√
�2+n+2

1�z�=
√
�2++2

n�z�

29 M. Brune, et al. Quantum Rabi oscillations: a direct test of field quantization in a cavity, Phys. Rev. Lett. 76, 1800 (1996).
30 A suitable choice of phase for the vectors �e� and �g� has allowed us to eliminate the factors of i of the preceding exercise.
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and define the angle  n�z� as

cos2 n�z�=
�

+1n�z�
� sin 2 n�z�=

+n�z�

+1n�z�
�

Show that the eigenvectors of H restricted to � �n� are

�&1n�z�� = − sin  n�z��g⊗n�+ cos n�z��e⊗ �n−1���
�&2n�z�� = cos n�z��g⊗n�+ sin  n�z��e⊗ �n−1���

What are the eigenvalues of H? Calculate the force on an atom at rest at z when this atom is in
the state �&1n� or the state �&2n�.

2. In what follows we assume that the field inside the cavity is that of a laser in a coherent state
with an average number of photons 
n� � 1 such that !n	 
n�. We can then write down a
classical expression for this field:

EL�t� z�= �0 cos�t sin kz�

Using (11.93), show that

�+1�z�
√
n� = ��1�z�� �1�z�=

d�0

�
sin kz�

where �1�z� is the usual Rabi frequency (cf., for example, (14.74)). In the preceding discussion
we have neglected spontaneous emission, which has the effect of depopulating the laser mode in
favor of the vacuum mode. The rate of transitions between the states with n and n−1 photons
is given by

0ij�z�= 0 �
&i�n−1�z��b+b†�&jn�z���2

with �i� j�= 1�2. Calculate 0ij�z� as a function of the angles  n�z� and  n−1�z�. In what follows

we assume that the laser is intense, n� 1 and +1n �+1
n��z�=
√
�2+�2

1�z�.
3. The populations pi�z� are defined as

pi�z�=
∑
n


&in�z����&in�z���

where � is the state operator of the atom dressed by the field. Show that if +1
n� � 0 the
populations obey the master equation

ṗ1�z� = −021�z�p1�z�+012�z�p2�z��

ṗ2�z� = 021�z�p1�z�−012�z�p2�z��

What are the stationary values of the populations pst
i as a function of z? Show that an atom at

rest feels a force

F�z�= 1
4

�
��2

1�z�

�z

1√
�2+�2

1�z�

(
pst
1 �z�−pst

2 �z�
)
�

Substitute the values of pst
1 and pst

2 into this result and compare with (14.98).
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14.6.8 Radiative capture of neutrons by hydrogen

NB It is useful to reread Sections 12.2.3 and 12.2.4. In a boiling-water or pressurized-
water nuclear reactor a fraction of the neutrons is absorbed by the hydrogen of the water
in the reaction

n+p→ D+	�

where n is a neutron, p is a proton, D is a deuteron, and 	 is a photon. This reaction, called
radiative capture, has the drawback of decreasing the number of neutrons available for
fission. The deuteron is a neutron–proton bound state of total angular momentum J = 1
and binding energy B= 2�23 MeV. It is a mixture of the 3S1 and

3D1 states, but to simplify
the discussion we shall take into account only the 3S1 state. The goal is to calculate the
radiative capture cross section. In the numerical calculations it will be convenient to use
a system of units in which � = c = 1. In this system the mass, momentum, and energy
have the dimensions of inverse length, and the conversion factor is

1 �fm�−1 � 200 MeV�

1. The reactor neutrons have very low energy (	 1 MeV), and so the n–p potential in the S-wave
can to a good approximation be represented by a delta function ���r� (see (12.44)). The bound-
state wave function is given by (12.45), with a→ at � 5�40 fm. Calculate the normalization
constant C and 7−1 in fm. We note that 7−1 fixes the length scale of the problem.

The scattering states of interest to us will be the 1S0 states, where the scattering length is as,
as �−23�7 fm. It is convenient to fix the normalization by writing

1�r�= sin�pr+��p��

pr
�

Show that for p→ 0

1�r��−a

r

(
1− r

a

)
� a= at or a= as�

2. The neutron of the capture reaction is very slow, and, owing to the centrifugal barrier, the
reaction occurs in the S-wave, which a priori presents two possibilities:

�n−p �3S1�→D�3S1�+�� �n−p �1S0�→D�3S1�+��

Electric dipole transitions are negligible because they would correspond to initial state in a
P-wave (why?). The reaction comes from the coupling �� · �B between the deuteron magnetic
moment �� and the quantized magnetic field �B, with

�� = 1
2
�N

(
gp �p+gn �n

)
= 1

4
�N

[
�gp+gn���p+ �n�+ �gp−gn���p− �n�

]
� (14.133)
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where �N = qp�/2M . The quantities gp � 5�59 and gn � −3�83 are related to the proton and
neutron gyromagnetic ratios and � are the Pauli matrices. Show that the coupling to the quantized
electromagnetic field responsible for the reaction is

W ′ = − i
c

√
��

2�0�
�� · �k̂×�e∗
��k��a†

�k
e
−i�k·�r �

where the photon has wave vector �k and frequency � = ck, k̂ = �k/k, �e
 is a polarization unit
vector which we can take to be real, and � is the normalization volume. Neglecting the deuteron
recoil and noting that the incident neutron energy �	 B, calculate k in fm−1 and show that it
is possible to make the approximation exp�−i�k · �r�� 1.

3. Justify the various factors in the following expression for the cross section, where + is the
emission direction of the photon with wave vector �k and � is the incident neutron flux:

d
d+

= 2�
��

�
f �W �i��2����− �Ei−Ef ��
��2d�
�2��3c3

with

W =− i
c

√
��

2�0�
�� · �e ′


�
�k�� �e ′


�
�k�= k̂×�e
�

Here �i� is the initial n–p state and �f� is the deuteron state.
4. The matrix element 
f �W �i� breaks up into a spin part and a spatial part, because the total state

vector -i�f is a product of the spin vector &i�f and the spatial wave function 1i�f ��r�:
-i�f = 1i�f ��r�&i�f �

(a) If &m
t , m=±1�0, and &s denote the triplet and singlet spin states, the spin part of 
f �W �i�

will be

Wspin =
1
4
�N 
&f ��gp+gn���p+ �n� · �e ′


+ �gp−gn���p− �n� · �e ′

�&i��

where &f = &m
t and &i = &m

t or &s. Show that

��p+ �n��&s� = 0� 
&s� �p�&s� = 0�

(b) The spatial part will involve the integral

Ifi =
∫

d3r 1∗
f ��r�1i��r�=

∫
d3r 1∗

D��r�1i��r��

Show without calculation that Ifi = 0 if 1i and 1f are the L= 0 wave functions of the triplet
state. Calculate Ifi explicitly if 1i is a singlet wave function using the approximations of
question 1.

5. The above results can be summarized as

Wspin = 1
4
�N�gp−gn�
&m

t ���p− �n� · �e
 ′�&s�

→ 1
2
�N�gp−gn�
&m

t � �p · �e
 ′�&s� =
1
2
�N�gp−gn�W

′
spin�
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It is necessary to square this, sum over the final photon polarizations (
∑


), sum over the final
deuteron spins (

∑
m), and average over the initial spins (the factor of 1/4). Show that


�W ′
spin�2� =

1
4

∑
m

∑



�
&m
t � �p · �e
 ′�&s��2

= 1
4

∑
i�j

��ij− k̂ik̂j�
&s�pipj �&s��

Hint: show that
∑

m �&m
t �
&m

t � can be replaced by the identity operator in spin space. Obtain the
result 
�W ′

spin�2� = 1/2.
6. Assemble all these factors to show that

1
4

∑
spins

∑



�
f �W �i��2 = �

16�0�
�

c2
�2

N �gp−gn�
2I2fi�

Taking into account the normalization of the spatial wave functions, it can be shown that the flux
factor is � =√

2�/M . Derive the total cross section for the capture reaction (�= q2
p/4��0�c):

tot =
∫

d+
d
d+

= ���2

2c4
B3/2

√
2�

1
M3

�gp−gn�
2�1−7as�

2�

Compare to the experimental result for thermal neutrons at 300 K:

tot = 0�329±0�006×10−28 m2 = 32�9±0�6 fm2�

14.7 Further reading

Perturbation theory and the variational method are described in all the classic texts. A
source for further details about the energy level structure is Cohen-Tannoudji et al. [1977]:
fine structure, Chapter XII; Zeeman effect, Complement DVII; hyperfine structure,
Chapter XII. See also B. Bransden and C. Joachain, Physics of Atoms and Molecules,
Harlow: Longman Scientific and Technical (1983). Cohen-Tannoudji’s course, ‘Atomic
motion in laser light’, in Optical Coherence and Quantum Optics, Les Houches School,
Amsterdam North-Holland (1992), contains a very complete discussion of the laser
manipulation of atoms. See also D. Suter, The Physics of Laser–Atom Interactions,
Cambridge: Cambridge University Press (1997). The helium atom is treated in great
detail by Cohen-Tannoudji et al. [1977], Complement BXIV.
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Open quantum systems

Most textbooks on quantum mechanics deal exclusively, or almost exclusively, with
the time evolution of closed systems, and up to now this book has been no exception,
apart from a glimpse of nonunitary evolution in Section 14.4.1. The time evolution of
closed systems is governed by the Schrödinger equation (4.11) or its integral form (4.14).
However, a closed system is an idealization, and in practice all quantum systems (except
maybe the Universe as a whole) are in contact with some kind of environment. The
Hilbert space of states is then a tensor product �A⊗�E , where �A ��E� is the Hilbert
space of states of the system  (environment �). In Chapter 6 we learned that the state
operator �A of  is obtained by taking the trace over the degrees of freedom of �
(see (6.30)), and the time evolution of �A is not unitary: it is not governed by (6.37)
with a Hermitian Hamiltonian. The von Neumann entropy Tr��A ln�A�, which is constant
for unitary evolution, is time-dependent when the system is not closed. In general, it
increases because information is leaking into the environment, and irreversible behavior
is observed because we are not able to control the degrees of freedom of the environment.
As just mentioned, in Section 14.4.1 we gave a first example of nonunitary evolution,
the system being a two-level atom and the environment the quantized electromagnetic
field. In the present chapter we wish to give a general approach to the theory of quantum
systems which are not closed, or open quantum systems.
Let us introduce the subject by looking at a specific (but very important) case, the time

evolution of an open two-level system. In order that consistent notation be used throughout
this chapter, we borrow the notation of quantum information (Section 6.4.2) and call �0�
and �1� the basis vectors of the two-level system, with a “free” Hamiltonian H0

H0 =−1
2

��0z� (15.1)

so that the eigenstates of H0 are �0� and �1�:

H0�0� = −1
2

��0�0�� H0�1� =
1
2

��0�1�� (15.2)

Then ��0 is the energy difference between the ground and excited states. The matrix
elements �00 and �11 = 1−�00 of the state operator describe the populations of levels
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�0� and �1�, while �01 = �∗10 describes the coherences. At thermal equilibrium with
temperature T , the populations �eq

00 and �
eq
11 are fixed by Boltzmann’s law

�
eq
11

�
eq
00

= exp
(
−��0

kBT

)
� (15.3)

For the sake of definiteness, we specialize to the NMR case (Section 5.2). If the
proton spins were isolated, their time evolution would be governed by (6.37), where
the Hamiltonian depends on the constant magnetic field �B0 and the radiofrequency field
�B1�t�. As in Section 14.4.1, it is convenient to use the Bloch vector �b= �u� v�−w� (6.24);
w = ��11−�00� describes the population difference and �u� v� the coherences, �01 = r =
�u− iv�/2. If the spins were isolated from any kind of environment, the evolution equa-
tion (6.37) for � with the Hamiltonian (5.23) in terms of populations and coherences
would read as

ẇ = i�1

(
r∗ ei�t− r e−i�t

)
�

ṙ = i�0r+
i�1

2
w ei�t�

(15.4)

where �1 is the Rabi frequency. The slight differences from (14.80)–(14.81) drop out in
the rotating-wave approximation. In order to take into account the interaction with the
environment in a phenomenological way, we follow Section 14.4.1 and supplement these
equations by two relaxation terms

ẇ = i�1

(
r∗ ei�t− r e−i�t

)−01�w−weq��

ṙ = i�0r+
i�1

2
w ei�t−02 r�

(15.5)

These equations are the Bloch equations of NMR. The form of the relaxation term is not
the most general one, but the approximations leading to (15.5) are usually justified: see
the comments following (15.113). In order to give a physical interpretation of the new
terms, let us assume that the radiofrequency field has been switched off at t = 0, so that
�1 = 0 for t > 0. Then the solution of (15.5) is

w�t�−weq = �w�t = 0�−weq� e
−01t�

r�t�= r�t = 0� ei�0t e−02t�
(15.6)

The populations return to equilibrium with a relaxation time T1 = 1/01, the longitudinal
relaxation time, and the coherences with a relaxation time T2 = 1/02, the transverse
relaxation time introduced in Section 5.2. The main difference from (14.84)–(14.85) is
that we now have two independent relaxation times,1 while in (14.82)–(14.83) we had
02= 01/2= 0/2. In the NMR case, T1 and T2 are of the order of a few seconds, and T2

<∼ T1

(with T2 	 T1 in most cases, for example T2 ∼ 1ms and T1 ∼ 1 s; see Levitt [2001]).

1 Bloch equations with two independent relaxation times are also encountered in laser physics; see, e.g., Mandel andWolf [1995],
Chapter 18.
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The chapter is organized as follows. In Section 15.1 we give some additional results on
entanglement to supplement the more elementary approach of Chapter 6 by introducing
the Schmidt decomposition of entangled states and the concept of positive operator-valued
measure (POVM). Section 15.2 is devoted to establishing the general expression for the
reduced state operator at time t as a function of its value at time t = 0, which we shall
write in the Kraus form. Section 15.3 will address the particular but very important case
where one is able to write the time evolution of the state operator in the form of a
first-order differential equation in time, called a master equation. Finally, Section 15.4
will be devoted to the study of two models where the system of interest interacts with
a thermal bath of harmonic oscillators. The first example will be that of a two-level
atom and the second that of a Brownian particle. We shall derive master equations in
both cases and examine their physical implications. The case of Brownian motion will
be particularly important, as there we shall be able to understand the decoherence of the
initially coherent superposition of two wave packets in the case of heavy particles, an
example of a Schrödinger’s cat.

15.1 Generalized measurements

15.1.1 Schmidt’s decomposition

In this subsection, we give some further mathematical results on entangled states living in
a Hilbert space of states2 �A⊗�B, in order to supplement the discussion of Chapter 6.
Here �A and �B, of dimensions NA and NB, are the Hilbert spaces of states of  and �.
The full state operator acting in �A⊗�B is denoted �AB. We use Latin indices for �A

and Greek indices for �B, so that the matrix elements of �AB are �AB
m�*n�.

3 We have seen
in (6.30) that the reduced state operator �A of A is obtained by taking the trace over the
B variables:

�A = Tr��AB� �A
mn =

∑
�

�AB
m�*n�� (15.7)

Let ��AB� ∈�A⊗�B be a pure state of the coupled � system, and let (�ma�) and
(��B�) be two othonormal bases of �A and �B. The most general decomposition of
��AB� on the basis (�mA⊗�B�) of �A⊗�B reads

��AB� =
∑
m��

cm��mA⊗�B�� (15.8)

Defining the vectors �m̃B� ∈�B as

�m̃B� =
∑
�

cm���B��

2 For the time being we do not think of system � as necessarily being an environment � for system .
3 For clarity of notation, we use superscript AB when writing matrix elements.
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we can rewrite (15.8) as

��AB� =
∑
m

�mA⊗ m̃B�� (15.9)

Note that the set (�m̃B�) need not form an orthonormal basis of �B. Now let us choose
as a basis of �A a set (�mA�) which diagonalizes the reduced state operator �A:

�A = Tr���AB�
�AB� =
NS∑
m=1

pm�mA�
mA�� (15.10)

If the number NS of nonzero coefficients pm is smaller than the dimension NA of �A,
we complete the set (�mA�) by a set of �NA−NS� orthonormal vectors, chosen to be
orthogonal to the space spanned by the vectors �mA� in (15.10). We use (6.34) to compute
�A from (15.9):

�A =
∑
m�n


ñB�m̃B��mA�
nA�� (15.11)

On comparing (15.10) and (15.11) we see that


ñB�m̃B� = pm�mn�

and with our choice of basis (�mA�) it turns out that the vectors (�m̃B�) are, after all,
orthogonal. To obtain an orthonormal basis, we only need to rescale the vectors �ñB�

�nB� = p−1/2
n �ñB��

where we may assume that pn > 0 because, as explained above, it is always possible to
complete the basis of �B by a set of �NB−NS� orthonormal vectors. We finally obtain
Schmidt’s decomposition of ��AB� on an orthonormal basis of �A⊗�B:

��AB� =
∑
n

p1/2
n �nA⊗nB�� (15.12)

Any pure state ��AB� may be written in the form (15.12), but the bases (�nA�) and (�nB�)
will of course depend on the state under consideration. If some of the pn are equal, then
the decomposition (15.12) is not unique, as is the case for the spectral decomposition of a
Hermitian operator with degenerate eigenvalues. The reduced state operator �B is readily
computed from (6.35) using the orthogonality condition 
mA�nA� = �mn:

�B = Tr��AB�
�AB� =
∑
n

pn�nB�
nB�� (15.13)

Comparing (15.10) and (15.13), we see that �A and �B have the same eigenvalues. The
Schmidt number NS is the number of nonzero eigenvalues of �A (or �B). A state ��AB� is
a tensor product if and only if its Schmidt number is exactly equal to one. It is entangled
whenever NS ≥ 2. If NA = NB = N , a maximally entangled state corresponds to NS = N ,
pn = 1/N :

��max
AB � =

1√
N

∑
n

ei��n��nA⊗nB�� (15.14)
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where exp�i��n�� is a phase factor. The Bell states

�%±� =
1√
2

(�0A⊗0B�± �1A⊗1B�
)
�

�-±� =
1√
2

(�0A⊗1B�± �1A⊗0B�
) (15.15)

provide an example of maximally entangled states for NA = NB = 2. It can be verified
directly that maximally entangled states have the property that the individual reduced
state operators are proportional to the identity operators IA and IB. An important result
is that a local evolution described by a unitary operator of the form UA⊗UB does not
change the Schmidt number, because

�UA⊗UB���AB� =
∑
n

p1/2
n �n′A⊗n′B�

with

�n′A� = UA�nA�� �n′B� = UB�n′B��
As a consequence, a product state (tensor product) cannot be transformed into an
entangled state through a local evolution in which systems  and � evolve indepen-
dently.4 One needs nonlocal evolution, involving an interaction between the two systems,
in order to entangle a state which is initially a product state. Conversely, one needs
nonlocal evolution to disentangle an entangled state into a product state.

15.1.2 Positive operator-valued measures

In Chapter 4 we defined a maximal test of a quantum system whose state vector lives in a
Hilbert space of dimension N as being a test with exactly N mutually exclusive outcomes,
whose probabilities add up to one. Mathematically, a maximal test corresponds to defining
N one-dimensional orthogonal projectors 
a adding up to the identity operator:


a
b = �ab�
N∑

a=1


a = I� (15.16)

Because its eigenvalues are zero and one, 
a is a positive operator. If a physical property
MA of system A with nondegenerate eigenvalues 
a is built up as

MA =
N∑

a=1


a
a�

then measuringMA is equivalent to performing a maximal test. A set of projectors (15.16)
is called a von Neumann, or orthogonal, measurement. Let � be the initial state operator

4 In this chapter, “local” and “nonlocal” have the following meanings. Acting locally on a particle means that there is no
interaction with the other particles, for example because the particle is far away from the others. Acting nonlocally means
that there must be an interaction between this particle and other particles of the ensemble.
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of a quantum system and let us perform a von Neumann measurement of MA with
result 
a (or simply a). Recall from Section 6.2.5 that the probability p�a� of obtaining
result a is

p�a�= Tr ��
a�� (15.17)

Then from the WFC postulate in the form given in Section 6.2.5 the state operator is
transformed into

�→ �′′ = 
a �
a

Tr �
a �
a�
� (15.18)

The denominator in (15.18) ensures that Tr �′′ = 1. If the measurement is not read (if 
a

is not observed), then the measurement destroys the coherences (see Appendix B):

�→ �′ =
N∑

a=1


a �
a� (15.19)

The most efficient way of obtaining information on a quantum system is not always a
von Neumann measurement (or a maximal test). We shall introduce generalized mea-
surements by incorporating system  into a larger system � and performing a joint
measurement of a physical property MAB acting in �A⊗�B, assuming that the quantum
state of � is prepared as a tensor product5 �A⊗�B. Let us write a complete set of
orthogonal projectors 
a (15.16) acting in �A⊗�B; the probability of outcome a is

p�a�= TrTr��
a��A⊗�B��= Tr��a�A�� (15.20)

with

�a = Tr��
a�B�� (15.21)

or, in terms of matrix elements (see Footnote 3),

�a
mn =

∑
���


a
m�*n� �

B
��� (15.22)

The operators �a act in �A, and it is easy to check the following properties.

1. Hermiticity: �a = �†
a. Indeed,

��a
nm�

∗ =∑
���

�
a
n�*m��

∗ ��B
���

∗ =∑
���


a
m��*n� �

B
�� = �a

mn�

where we have used the Hermiticity of 
a and �B.
2. Positivity: �a ≥ 0. In a basis which diagonalizes �B

�B =
∑
�

p���B�
�B��

5 However, the space of states of � need not be a tensor product. From a mathematical point of view, the space of states
may be a direct sum �A⊕�B (see Exercise 15.5.1), although, in practice, it seems difficult to implement the POVM in that
case. We shall therefore limit our discussion to the case of tensor products.
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we have


1A��a�1A� =
∑
�

p�
1A⊗�B�
a�1A⊗�B� ≥ 0

because 
a is a positive operator.
3. Completeness:

∑
a

�a = Tr�

[∑
a

�
a��B

]
= IA�

because
∑

a
a = IAB and Tr��B = 1.

In contrast to the projectors (15.16), the �a need not be orthogonal: �a�b �= �ab. In
general, one defines a positive operator-valued measure (POVM) as a set of operators
�a acting in �a which obey

�a = �†
a� �a ≥ 0�

∑
a

�a = I� (15.23)

We can now generalize (15.17)–(15.19) to the POVM case. From (15.20) the probability
of result a is

p�a�= Tr��a��� (15.24)

If the measurement is performed but the result is not read, the state operator transforms as

�→ �′ =∑
a

�a ��a� (15.25)

while if the result of the measurement is read

�→ �′′ = �a ��a

Tr��a ��a�
� (15.26)

We have introduced the POVM starting from an orthogonal measurement in �A⊗�B.
This is indeed the most general case, at least if the POVM involves rank-one operators:
it follows from Neumark’s theorem6 that any POVM defined by (15.23) in �A can be
realized as a von Neumann measurement in some Hilbert space �A⊗�B.

15.1.3 Example: a POVM with spins 1/2

Let us give as an example a POVM with spins 1/2. Let (n̂�) be a set of unit vectors in
�3 and (c�) a set of real coefficients such that∑

�

c�n̂� = 0� 0 ≤ c� ≤ 1�
∑
�

c� = 1� (15.27)

6 See, e.g., Peres [1993], Chapter 9 for a proof.
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and let us define the following operators for a spin 1/2:

�� = c��I+ � · n̂��= 2c�
�n̂��� (15.28)

where 
�n̂�� is the projector on the spin state �n̂��, which is an eigenvector of �� · n̂��

with eigenvalue +1:

�� · n̂���n̂�� = �n̂���
The state �ẑ� is identified with �0�, and the state �n̂�� is obtained from �0� by the rotation
of angle  � around the y axis which brings the vertical unit vector ẑ onto n̂�:

�n̂�� = exp
(
− i
2
 �y

)
�0�� (15.29)

From (15.27) one sees that the �� are positive operators which obey the completeness
relation

∑
��� = I , but are not in general orthogonal. They are therefore an example of

a POVM. The simplest illustration of a POVM that is not a von Neumann measurement
is obtained by choosing three vectors (n̂�)= �n̂a� n̂b� n̂c� with, for example,

ca = cb = cc =
1
3
� n̂a+ n̂b+ n̂c = 0�

Then the �� are

�� =
1
3
�I+ � · n̂��=

2
3

�n̂��� (15.30)

If we choose unit vectors n̂� in the xOz plane, a possible symmetric choice is as follows:
n̂a lying along the z axis and n̂b and n̂c making angles of 4�/3 and 8�/3 with the z axis,
so that (15.29) leads to

�a� �= �n̂a� = �0��

�b� �= �n̂b� = −1
2
�0�+

√
3
2
�1��

�c� �= �n̂c� = −1
2
�0�−

√
3
2
�1��

(15.31)

Our first goal is to give an explicit verification of Neumark’s theorem by constructing
the POVM (15.28) from orthogonal projectors in a larger space, a space �A⊗�B of two
spins 1/2. The auxiliary spin, �, is called an ancilla. We build the following orthonormal
basis of entangled states in �A⊗�B, �= �a� b� c�:

��AB� =
√
2
3
��A⊗0B�+

√
1
3
�0A⊗1B��

��AB� = �1A⊗1B��
(15.32)

The orthogonality of the basis is easily checked by using the scalar products:


a�b� = 
a�c� = 
b�c� = −1
2
�
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Let us call 
�, �= a�b� c, the set of orthogonal projectors on the basis vectors (15.32):


� = ��AB�
�AB�� 
� = ��AB�
�AB��
and let us choose spin � in the state �0B�, �B = �0B�
0B�. Then we find for the POVM
�� and ��

�� = Tr���B
��=
2
3
��A�
�A��

�� = 0�
(15.33)

These equations give an explicit verification of Neumark’s theorem in this particular
case: we have been able to construct the set (��) from a set of orthogonal projectors in
�A⊗�B.
Let us now describe a possible strategy to implement the POVM. Define the unit vector

û in the xOz plane making an angle  with the z axis such that

cos
 

2
=−

√
1
3
� sin

 

2
=
√
2
3

and the spin states �û� and �− û�

�û� = exp
(
− i
2
 y

)
�0�� �− û� = exp

(
− i
2
 y

)
�1��

The vectors ��AB�, �= a�b� c, may be written in terms of �± ûB�:
�aAB� = �0A⊗−ûB��

��b/c�AB� =
1√
2
�0A⊗ ûB�±

1√
2
�1A⊗0B��

(15.34)

where the + (−) sign corresponds to b (c). To disentangle the states in the second line
of (15.34), we use a basic component of quantum information, the control-U or cU gate,
which has the following action in our particular case:7

cU�0A⊗0B� = �0A⊗0B�� cU�0A⊗1B� = �0A⊗1B��
cU�1A⊗0B� = �1A⊗ ûB�� cU�1A⊗1B� = �1A⊗−ûB��

(15.35)

In other words, cU leaves spin � unchanged if spin  is in state �0A�, and it rotates
spin � by an angle  if spin  is in state �1�. The unitary operator cU is a nonlocal
interaction: it is not a tensor product UA⊗UB. Let us apply cU to ��AB�:

cU�aAB� = �0A⊗−ûB� =
1√
2

(�x̂A⊗−ûB�+ �− x̂A⊗−ûB�
)
�

cU��b/c�AB� =
1√
2

(�0A�± �1A�)⊗�ûB� = �± x̂A⊗ ûB��
(15.36)

7 A cU gate leaves spin � unchanged if spin  is in state �0A�, and it performs a unitary transformation ��B� → UB��B� on
spin � if spin  is in state �1A�. The cU gate generalizes the cNOT gate defined in (6.73), which corresponds to the choice
UB = Bx .
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⏐0B〉

⏐ϕA〉

U

σA ⋅ x→

→σB ⋅ u

Fig. 15.1. Graphical representation of (15.36).

where the states �± x̂� = ��0�±�1��/√2 are eigenvectors of x = �� · x̂� with eigenvalues
±1. If we measure �A · x̂� and ��B · û� after applying the cU gate (Fig. 15.1), the results
of the measurements of the pair �A · x̂ * �B · û� lead to the following correspondence
(0 and 1 refer to the values of the qubits measured along x̂ or û):

�0*1� and �1*1� → a�

�0*0� → b�

�1*0� → c�

Let us show that a POVM can in some cases give better results than a von Neumann
measurement, in the sense that the former allows a better discrimination between different
states of system  when these states are not orthogonal. Assume that Alice sends Bob a
sequence of particles of spin 1/2 which are randomly distributed with equal probabilities
in the states �a⊥� and �b⊥�:8

�a⊥� = �1�� �b⊥� = �− n̂b� =
√
3
2
�0�+ 1

2
�1��

What is the best strategy that Bob can follow to tell with certainty whether a given spin
was sent by Alice in state �a⊥� or �b⊥�? Bob can perform a von Neumann measurement,
by taking a Stern–Gerlach filter oriented along ẑ. If the spin is deflected upward, he can
tell with certainty that spin  was in the state �b⊥�, and this occurs with probability 3/8.
Thus, in 37.5% of the cases, Bob is able to decide with certainty between the states �a⊥�
and �b⊥�. He can do better by performing a POVM measurement, as we are going to

8 We choose �a⊥� and �b⊥� rather than �a� and �b� in order to use the cU gate (15.35).
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demonstrate. Bob entangles spin  with an ancilla spin � in the state �0B� using the cU
gate (15.35). An easy calculation gives

cU�1A⊗0B� =
1√
2
�x̂A⊗ ûB�−

1√
2
�− x̂A⊗ ûB��

cU�− n̂bA⊗0B� = − 1√
2
�− x̂A⊗ ûB�+

1
2
�x̂A⊗ ûB�+

1
2
�− x̂A⊗−ûB��

cU�− n̂cA⊗0B� = − 1√
2
�x̂A⊗ ûB�+

1
2
�x̂A⊗−ûB�+

1
2
�− x̂A⊗−ûB��

(15.37)

If spin  is in the initial state �a⊥� = �1�, then we find the following probabilities when
measuring the pair �A · x̂ * �B · û�:

p�0*0�= p�1*0�= 1
2
� p�0*1�= p�1*1�= 0�

while if it is in the state �b⊥� = �− n̂b� we have

p�0*0�= 0� p�1*0�= 1
2
� p�0*1�= p�1*1�= 1

4
�

Then, if Bob’s measurement gives �0*0�, he knows with certainty that spin was initially
in the state �a⊥�, while if he measures �0*1� or �1*1� he can be sure that it was in the
state �b⊥�. If he measures �1*0�, he cannot decide. This occurs in 50% of the cases, so
that he is able to distinguish between the two states with a 50% probability, instead of
the 37.5% in the case of a von Neumann measurement. The same results are obtained by
using the POVM ��a��b��c� (see Exercise 15.5.2). It can be shown that this is the best
result Bob can achieve: a general theorem states that optimal POVMs consist of rank-one
operators.9

15.2 Superoperators

15.2.1 Kraus decomposition

We have seen in the preceding section how an orthogonal measurement on a bipartite
system whose state vector lies in a Hilbert space �A⊗�B is translated into a POVM
on  alone. In the present section, which is, as we shall see later on, closely related to the
preceding one, we shall attempt to answer the following question: if a state of �A⊗�B

undergoes a unitary evolution UAB from t = 0 to t, what is the general expression for the
(generally nonunitary) evolution of the state operator for ? The answer is provided by
the Kraus representation, which we are going to derive. We assume that the state operator
at t = 0 is a tensor product, with �B = �0B�
0B� a pure state, a kind of “reference state”:

�AB�t = 0�= �A⊗�B = �A⊗�0B�
0B�� (15.38)

9 E. Davies, IEEE Trans. Inform. Theory IT-24, 596 (1978).
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We shall comment on this apparently very restrictive assumption later on. The bipartite
system � evolves during a time interval t according to

�AB�t = 0�= �AB → �AB�t�= �′AB = UAB �AB�t = 0�U†
AB� (15.39)

where UAB is obtained by solving (4.17) in �A⊗�B. In order to find the state operator
�A�t�= �′A of system A, we perform a partial trace (see Footnote 3):

�′mn
A =∑

�

UAB
m�*k0 �

A
kl �U

AB�†l0*n�� (15.40)

where we have made explicit use of the peculiar form (15.38) of the initial state operator
�AB. The matrix elements of UAB are

UAB
m�*n� = 
mA⊗�B�UAB�nA⊗�B��

Equation (15.40) can be written in operator form by introducing the superoperator M�

acting in �A through

M� = 
�B�UAB�0B�� (15.41)

Writing �′A =���A�, (15.40) becomes (see Fig. 15.2)

���A�=
∑
�

M� �AM
†
�� (15.42)

The unitarity of UAB implies that the set of superoperators M� obeys the completeness
relation (note the order of the operators;

∑
�M�M

†
� has no simple expression in the

general case): ∑
�

M†
�M� =

∑
�


0B�U†
AB��B�
�B�UAB�0B� = IA� (15.43)

(b)

 UA

A

A
UAB

(a)

A = ( A)′

A = UA AUA′ †

| |0B〉 〈0B

Fig. 15.2. Graphical representation of unitary evolution (a) and the evolution (15.42) (b).
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Equation (15.42) is the Kraus representation of �′A. This Kraus representation, together
with the completeness relation (15.43), defines a linear map �A → �′A = ���A�. The
operator �′A obeys the three necessary conditions for being a bona fide state operator:

(i) �′A is obviously Hermitian;
(ii) Tr �′A = 1 owing to (15.43);
(iii) �′A is positive: indeed, with �1�

A� =M†
���A�,


�A��′A��A� =
∑
�

�
�A�M���A�M
†
���A��=

∑
�


1�
A ��A�1�

A� ≥ 0�

Conversely, any Kraus representation (15.42) can always be derived from a unitary
representation in some Hilbert space �A⊗�B, as we now show. Let us choose as �B a
Hilbert space whose dimension is at least the number of terms in (15.42), and let (��B�)
be an orthonormal basis in �B and �0B� one particular vector of this basis. Define the
action of UAB on the vector ��A⊗0B�, where ��A� is an arbitrary vector of �A, as

UAB��A⊗0B� =
∑
�

�M�⊗ IB���A⊗�B�� (15.44)

Equation (15.44) describes a quantum jump: in the time interval �0� t�, the � system
“jumps” from ��A⊗ 0B� to a superposition of states M���A�⊗ ��B�. The operator UAB

preserves the scalar product

(∑
�


1A⊗�B��M†
�⊗ IB�

)(∑
�

�M�⊗ IB���A⊗�B�
)
= 
1A�

(∑
�

M†
�M�

)
��A� = 
1A��A��

and therefore UAB, which is a priori defined only on a subset of�A⊗�B, can be extended
as a unitary operator on the full �A⊗�B. Taking a partial trace, we find

Tr�
(
UAB��A⊗0B� 
�A⊗0B�U†

AB

)
=∑

�

M���A�
�A�M†
��

so that any state operator �A, which can be written as
∑

i pi��i
A�
�i

A�, transforms according
to (15.42). We shall see later on that any “reasonable” evolution law for �A is of the
form (15.42). Then the fact that one can always find a unitary representation (15.44) is
somewhat surprising at first sight: in principle, at t= 0, systems and� are entangled, so
that assuming an initial state of the form (15.38) looks like a very restrictive assumption.
But it seems that, for the purpose of describing the evolution of �A, it is always possible
to find a model environment such that there is no initial entanglement between the system
and its (fictitious) environment.
Let us conclude this subsection by stating some general results on the Kraus represen-

tation. As some of the proofs are rather technical, we shall omit them and refer the reader
to the bibliography. One interesting question is the following: under what “reasonable”
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conditions can the Kraus representation (15.42) be proved? A priori, it would seem that
one should require that

(i) � is a linear operation:10

��
�A+��B�= 
���A�+����B��

(ii) ���A� is Hermitian:

���A�= ����A��
†�

(iii) � is trace-preserving: Tr����A��= 1�
(iv) ���A� is a positive operator: ���A�≥ 0.

But condition (iv) is actually too weak. Suppose  is coupled to a system � and there is
a third system � , totally uncoupled to , of which we are unaware. If  evolves and �
does not, then ���A�⊗ IC must be a positive operator. Thus ���A� should obey not (iv)
but the stronger condition (iv′):

(iv′) ���A� is completely positive: ���A�⊗ IC ≥ 0, for any system � .

An example of an operator that obeys (i) to (iii), but not (iv′), is the transposition
(Exercise 15.5.4)

���A�= �T
A�

We can now state without proof the Kraus representation theorem: any operator
�→���� in a space of dimension N which obeys the conditions (i) to (iii) and (iv′)
can be written in the form

����=
K∑

�=1

M� �M
†
��

K∑
�=1

M†
�M� = I� (15.45)

where the number of terms in the sum is bounded by K ≤ N 2
A, with NA the dimension

of �A; K is the Kraus number. There always exists an expression for ���� with a
number of terms ≤ N 2

A, independently of the dimension of the Hilbert space �B of the
environment, even if this dimension is infinite.
The Kraus representation is not unique, but any two representations may be related

through a unitary transformation: if

����=
K∑

�=1

M� �M
†
� =

L∑
�=1

N� �N
†
��

then N� is related to M� by a unitary transformation:

N� =
∑
�

U��M��

10 However, see, e.g., J. Preskill, Quantum Computation, http://www.theory.caltech.edu/ ˜ preskill/(1999), Section 3.2 for a
discussion; the arguments that nonlinear evolution should be excluded are not entirely compelling.
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As some of the matrix elements U�� may vanish, the number of nonzero terms need not
be the same in both decompositions: it may happen that K �= L.
Let us finally make the link with POVM by showing that a unitary transformation that

entangles  with � followed by an orthogonal measurement on � can be described as a
POVM. If a state ��A⊗0B� evolves according to (15.44), then an orthogonal measurement
on � which projects onto the (��B�) basis has a probability p��� of finding result �

p��� =∑
���

Tr
[
�IA⊗���
���M���A⊗��
�A⊗ ��M†

�

]

= 
�A�M†
�M���A��

Writing the state operator of  as �A =
∑

i pi�i�
i�, we find in the general case

p���= Tr����A�� �� =M†
�M� = �†

� ≥ 0� (15.46)

Furthermore,
∑

��� =
∑

�M
†
�M� = I , so that the �� form a POVM. Conversely, let ��

be a set of Hermitian and positive operators which obey
∑

���= I and p���= Tr �����.
A POVM which modifies the state operator according to

�→ �′ =∑
�

√
�� �

√
�� (15.47)

gives
√
�� as a special case of superoperator. Then, from the unitary representation

(15.44), one can find a unitary operator UAB such that

UAB��A⊗0B� =
∑
�

√
�� ��A⊗�B�� (15.48)

By performing an orthogonal measurement on � which projects onto the basis (��B�),
we obtain an implementation of the POVM. However, this is not in general the most
economic way to proceed, because the dimension of �B is at least K, the number of
different POVMs. For example, in Section 15.1.3, we had K = 3, so that NB = 3, while
we were able to use an ancilla living in a two-dimensional Hilbert space, NB = 2. Thus
we have (at least) two ways of implementing a POVM: (i) associate with  an ancilla
� and perform a nonlocal measurement on �; (ii) entangle  with � and perform a
local measurement on �.

Let us apply the notion of superoperators to three important examples of physical
mechanisms leading to nonunitary evolution of a two-level system. In all three examples,
conventionally called “channels,” a two-level system is coupled to an environment �,
so that the unitary evolution takes place in a Hilbert space �A⊗�E . In what follows
we wish to think of � as an environment �: �→ �. In the three examples we shall
start from a unitary evolution in �A⊗�E in the form of quantum jumps, from which
we shall derive the explicit form of the Kraus operators. Our three examples will be
(i) the depolarizing channel; (ii) the phase-damping channel; (iii) the amplitude-damping
channel.
The terminology will be justified in each of the corresponding subsections.
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15.2.2 The depolarizing channel

In this example, �E has dimension NE = 4 and an orthonormal basis is formed by a
reference state �0E� and three states �iE�, i= 1�2�3. The quantum jump (15.44) is assumed
to take the form

UAE��A⊗0E� =
√
1−p ��A⊗0E�+

√
p
3

[ 3∑
i=1

�iA⊗ IE���A⊗ iE�
]
� (15.49)

Therefore, the initial state �0E� is unchanged with probability �1− p�, and a change
��A�→ i��A�, which occurs with probability p/3, is accompanied by a change �0E�→
�iE�. On comparing (15.49) with (15.44) we find

M0 =
√
1−p I� Mi =

√
p
3
i� (15.50)

These four superoperators obey the completeness relation (15.43)

3∑
�=0

M†
�M� =

[
�1−p�I+3

p
3
I
]
= I�

where we have used 2
i = I . The state operator of the system evolves according to (15.45):

�→����= �1−p��+ p
3

3∑
i=1

�i�i�� (15.51)

Let us write the Bloch form (6.24) of the state operator with a Bloch vector �b (recall that
�b is the polarization in the case of a spin 1/2)

�= 1
2

(
I+ � · �b

)
= 1

2

(
I+

3∑
j=1

jbj

)
� (15.52)

The identities (3.49 ) for the Pauli matrices lead to the relation

iji = 2j�ij−j�

so that

�′ = 1
2

(
I+ � · �b′

)
� �b′ =

(
1− 4p

3

)
�b� (15.53)

This transformation corresponds to a simple rescaling of the polarization by a factor
�1− 4p/3�: if the initial state is a pure state with polarization ��b� = 1, we see that the
polarization is reduced from ��b� = 1 to �1− 4p/3�, hence the terminology depolarizing
channel. Note that in all cases the norm of �b is scaled down by a factor �1−4p/3� ≤ 1,
and that the orientation of �b changes if 3/4< p≤ 1.
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15.2.3 The phase-damping channel

In this case �E is of dimension 3, and the unitary evolution (quantum jump) is assumed
to be of the form

UAE�0A⊗0E� =
√
1−p �0A⊗0E�+

√
p �0A⊗1E��

UAE�1A⊗0E� =
√
1−p �1A⊗0E�+

√
p �1A⊗2E��

(15.54)

Unlike the preceding case, system  does not make any transition. The Kraus decompo-
sition is readily written from (15.44):

M0 =
√
1−p I� M1 =

√
p
(

1 0
0 0

)
� M2 =

√
p
(

0 0
0 1

)
� (15.55)

and the transformed state matrix is

����= �1−p��+p
(

�00 0
0 �11

)
=
(

�00 �1−p��01

�1−p��10 �11

)
� (15.56)

We note that the operations affect only the coherences (the off-diagonal matrix elements
of �), hence the terminology phase-damping channel. Furthermore, if we apply � twice
we get

� 2���=� ������=
(

�00 �1−p�2�01

�1−p�2�10 �11

)
�

Assume now that the quantum jump takes place in a short time interval !t, with a
probability proportional to !t: p= 0!t	 1.11 Let us write t = n!t�n� 1, and make n

iterations of � :

� n���=
(

�00 �1−p�n�01

�1−p�n�10 �11

)
→
(

�00 �01 e
−0t

�10 e
−0t �11

)
� (15.57)

The relaxation time of the coherences (the transverse relaxation time T2 of NMR) is
T2 = 1/0 . If the two-level system is prepared at t = 0 in a pure state which is a coherent
superposition of �0� and �1�

��� = a�0�+b�1�� �00 = 1−�11 = �a�2� �01 = �∗10 = ab∗�

then, after a time t� 1/0 , the quantum state is transformed from (15.57) into an inco-
herent superposition of �0� and �1�:

t� 1/0 � ��t�→ �a�2�0�
0�+ �b�2�1�
1��
As an application, let us give a heuristic discussion of the decoherence of a quantum
superposition involving macroscopic systems. Let us identify �0A� and �1A� with the
position eigenstates �x� and � − x� (or, more realistically, with narrow nonoverlapping

11 Note that this is a rather bold assumption. In general, we expect amplitudes to be proportional to !t if transitions take place
toward a single state; see (5.62). One needs transitions to a continuous set of states, as in the Fermi Golden Rule (9.170), in
order to obtain probabilities proportional to !t.
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wave packets centered at x and −x) of a “dust particle,”12 that elastically scatters photons
initially in state �0E�. Scattering by the dust particle in state �x� (�−x�) sends the photons
into states �1E� (�2E�), while the dust particle remains in its initial state. If the distance 2�x�
between the centers of the wave packets is large compared with the photon wavelength,
the states �1E� and �2E� will be approximately orthogonal, 
1E�2E� � 0, because photon
scattering is localized in space. We are therefore in the situation described by (15.54). If
the dust particle is initially in a coherent superposition of the two wave packets

��� = 1√
2
��x�+ �−x���

the coherence between the wave packets will be destroyed after a time ∼1/0 . The
relaxation rate 0 is proportional to the elastic cross section  . A rough estimate for 
is  ∝ R2 ∝ M2/3, where R is the radius of the dust particle and M is its mass. The
decoherence time �dec is proportional to M−2/3

�dec �
1
0
∝ 1

M2/3
�

The decoherence time is much shorter than the damping time � characteristic of the
motion of the dust particle, the time taken by the dust particle to change its momentum
under photon scattering: �dec 	 �; as in Section 6.4.1, �dec is controlled by the scattering
of one photon and � by the scattering of a large number of photons. This result has
important consequences for the Young’s slit experiment: if the time taken by the particle
to travel from the slits to the screen is larger than �dec, no interference is possible, because
the coherence of the two wave packets leaving the slits is destroyed before the particle
arrives at the screen. “Which path” information is encoded in the environment.
As we have seen in Section 6.4.1, a quantum superposition of two macroscopic states is

called a Schrödinger’s cat. We have just seen that this Schrödinger’s cat is destroyed over
a time ∼ �dec, and we are left with an incoherent mixture. The mechanism responsible for
decoherence selects a preferred basis: photon scattering selects a basis of position states,
because the photons scattered by different position eigenstates are sent into orthogonal
states. Actually, it is not necessary that the final photon states be orthogonal. Assume,
for example, that the states �1E� and �2E� satisfy 
1E�2E� = 1−�; then the probability p
would be replaced by p→ �p and the decoherence time by �dec → �−1�dec.

15.2.4 The amplitude-damping channel

This is a schematic model for describing the spontaneous decay of a two-level atom with
the emission of one photon. By detecting the emitted photon, we perform a POVM which
gives us information about the state of the atom. The system is the two-level atom, and
the environment is the quantized electromagnetic field. If the atom and the field are in
their respective ground states �0A� and �0E�, nothing can happen. If the atom is in its

12 A “dust particle” is large by microscopic standards and small by macroscopic standards.
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excited state �1A� and the field is in �0E�, there is a probability p that the atom emits a
photon and is left in �0A�. The unitary representation of the quantum jump then is

UAE�0A⊗0E� = �0A⊗0E��
UAE�1A⊗0E� =

√
1−p �1A⊗0E�+

√
p �0A⊗1E��

(15.58)

where �1E� is a one photon state.
The Kraus operators from (15.44) are

M0 =
(

1 0
0

√
1−p

)
� M1 =

(
0

√
p

0 0

)
� (15.59)

and �′ =���� is given by

����=
(

1+ �1−p��11

√
1−p �01√

1−p �10 �1−p��11

)
� (15.60)

As in the preceding example, we take p= 0!t	 1, !t = t/n, and make n iterations of
� :

� n���=
(

1+ �1−p�n�11 �1−p�n/2 �01

�1−p�n/2 �10 �1−p�n�11

)
→
(

1− e−0t �11 e−0t/2 �01

e−0t/2 �10 e−0t �11

)
� (15.61)

In this model, T2 = 2T1 = 2/0 , which explains why we chose 0 and 0/2 as the relax-
ation rates of populations and coherences, respectively, in the optical Bloch equations
(14.82)–(14.83).
In contrast to the preceding example, where we could not envisage detecting the photons

scattered by the dust particles, it may be possible in the present case to detect the emitted
photon. A coherent superposition of the two atomic states evolves as(

a�0A�+b�1A�
)⊗�0E�→

(
a�0A�+b

√
1−p �1A�

)⊗�0E�+b
√
p �0A⊗1E��

If we detect the photon, we know with certainty that the initial state of the atom was
�1A�. If we detect no photon, then we have prepared the (unnormalized) atomic state

a�0A�+b
√
1−p �1A��

The atomic state has evolved owing to our failure to detect a photon! As we have seen, a
unitary transformation which entangles and �, followed by an orthogonal measurement
on �, can be described as a POVM on . From (15.46), the POVM are �� =M†

�M�, so
that

�0 =M†
0M0 =

(
1 0
0 1−p

)
� �1 =M†

1M1 =
(

0 0
0 p

)
� (15.62)

and p���= Tr����A� if the atom is initially in the mixed state �A.
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15.3 Master equations: the Lindblad form

15.3.1 The Markovian approximation

The system of Bloch equations (15.5), which we wrote down from heuristic arguments,
is typical of what is called a master equation: the time evolution of the state operator is
given by a first-order differential equation in time, or, in other words, the evolution is
local in time. For example, the optical Bloch equations (14.86)–(14.87) are equivalent
to (15.61) if we ignore the unitary part �−i/���H��� of the evolution, since (15.61) may
be written as

d�
dt

=−0

2

( −2�11�t� �01�t�

�10�t� 2�11�t�

)
� (15.63)

It is readily checked that (15.63) can be cast in the form

d�
dt

= 0

2

[
2+ �−− (−+� �)

]
� (15.64)

where ± = �x± iy�/2,
13 and (A�B) denotes the anticommutator of two operators A

and B:

(A�B)= AB+BA� (15.65)

Actually, one can readily supplement (15.63) by a unitary evolution as in (15.5):

d�
dt

=− i
�
�H���+ 0

2

[
2+ �−− (−+� �)

]
� (15.66)

For later purposes, it will be useful to introduce the interaction picture:

�̃�t�= eiH0t/� ��t� e−iH0t/��

̃±�t�= eiH0t/� ± e
−iH0t/� = e∓i�0t±�

(15.67)

where H0 is the free Hamiltonian (15.1). Equation (15.66) is an example of a master
equation in the Lindblad form, of which we now give a general derivation.
In the preceding example, we have been able to go from the Kraus form (15.45) to

the master equation in the Lindblad form (15.66). However, our derivation depends on
the crucial (and strong) assumption that the probability p is proportional to !t. In the
general case, it is far from obvious that it is possible to obtain a differential equation
for the nonunitary evolution of �̃�t�, because we expect memory effects to be present
(a priori, a local time evolution can be valid only for �̃, not �). Information flows
from the system to the environment, but, conversely, information also flows from the
environment to the system. Schematically, an equation with memory effects has the form
of an integro-differential equation which is nonlocal in time:

d�̃
dt

=−
∫ t

−�
��t− t′��̃�t′�dt′� (15.68)

13 Beware of the fact that Nielsen and Chuang [2000] use the opposite convention for ±. We have chosen a convention
consistent with the definition (10.4) of the angular momentum operators J±, and which is moreover consistent with that of
field theory, since + �−� is a positive (negative) frequency operator like a (a†); see (11.67).
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where ��t−t′� is the memory function, or memory kernel.14 If the characteristic relaxation
time �∗ of ��t− t′� is much smaller that the typical evolution time � of �̃, �∗ 	 �, we
may write (15.68) in the approximate form

d�̃
dt

�−��t�
∫ t

−�
��t′�dt′ = −0 �̃�t�� (15.69)

and we obtain a master equation. The short-memory approximation in (15.69) is also
called the Markovian approximation: d�̃/dt depends only on �̃ at time t, and not on
its value at earlier times t′ < t. The Markovian approximation will hold if there are
two widely separated time scales: �, the typical evolution time of �̃, and �∗, the typical
relaxation time of the memory function, with �∗ 	 �. The assumption of two widely
separated time scales is a very common one in nonequilibrium statistical mechanics.
Let us examine the conditions under which we may hope to derive a master equation

from the Kraus representation. The first step is to use a coarse-graining approximation
with a typical time !t which obeys

�∗ 	 !t	 �� (15.70)

Assuming this condition to be valid, we write the Kraus representation for the evolution
between t and t+!t as

d�A

dt
� !�A

!t
= 1

!t

[
�A�t+!t�−�A�t�

]= 1
!t

[
�t�t+!t��A�t��−�A�t�

]
�

In order to derive a master equation, we need to satisfy two conditions.

(i) The state operator of the bipartite � system must factorize: �AE�t� � �A�t�⊗ �E�t�. This
condition is needed to write the Kraus representation at time t+!t.

(ii) The superoperator �t�t+!t must depend only on !t, and not on t.

Further comments on these conditions will be made in the next section, in the context
of a specific model for � and its interaction with . A general statement is that both
(i) and (ii) are valid provided �� ��∗/�	 1, where �� � is a typical matrix element of the
� interaction.

15.3.2 The Lindblad equation

Let us assume that conditions (i) and (ii) hold. Then we can write, from (15.45),

�!t��A�t��=
∑
�

M��!t��A�t�M
†
��!t�� (15.71)

and ��!t��A�t��−�A�t�� is first-order in !t:

�!t��A�t��= �A�t�+��!t��

14 In general, (15.68) takes a matrix form, and some additional terms are present; see the references in “Further reading.”
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It follows that one of the M�, which we call by convention M0, must have an expansion
of the form

M0�t�= IA+
(
− i

�
H−K

)
!t+O�!t�2� (15.72)

where H and K are Hermitian operators. Then the first term in (15.71) reads

M0�!t��A�t�M
†
0 �!t�= �A�t�−

i!t
�

�H��A�−!t(K��A)+O�!t�2� (15.73)

(see (15.65)). The other terms in (15.71) must be of order
√
!t

M��!t�= L�

√
!t� (15.74)

and the completeness relation in (15.45) leads to

IA =M0M
†
0 +
∑
�>0

M†
�M� = IA−2K!t+

(∑
�>0

L†
�L�

)
!t�

which implies

K = 1
2

∑
�>0

L†
�L�� (15.75)

Combining (15.71), (15.73), and (15.75) and from now on suppressing the subscript A,
we find the Lindblad equation for the state operator � of :

d�
dt

=− i
�
�H���+∑

�>0

(
L��L

†
�−

1
2
(K��)

)
� (15.76)

The operators L� are the quantum jump operators. They describe how the state of 
is modified by an orthogonal measurement on the environment. Provided the L�S are
bounded operators, the Lindblad equation is the most general (Markovian) master equation
which preserves the positivity of the state operator.
It is instructive to rederive the Bloch equations (15.64) from the Lindblad form (15.76).

Using the expressions (15.59) of M0 and M1 for the amplitude-damping channel, we can
write M0 and M1 in the form

M0 =
(

1 0
0 1− 0

2 !t

)
� M1 =

(
0

√
0!t

0 0

)
�

or, in terms of Pauli matrices,

M0 = I− 0!t

2
−+� M1 =

√
0!t +�

The operators K and L1 then are

K = 0

2
−+� L1 =

√
0 +� (15.77)

and we recover (15.64).
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15.3.3 Example: the damped harmonic oscillator

Consider a harmonic oscillator coupled to the quantized electromagnetic field, assuming
for simplicity that the system is at zero temperature; the case of nonzero temperature
will be dealt with in Section 15.4.3. If the oscillator is initially in an excited state, it
can only cascade down due to spontaneous photon emission; it cannot absorb photons,
as no photons are available at zero temperature. Hence there is only one quantum jump
operator L1, which must be proportional to a (recall the analogy between the annihilation
operator a (11.6) and +; see Footnote 13):

L1 =
√
0 a� (15.78)

Then by inspection we can write down the Lindblad equation, by comparison with (15.66):

d�
dt

=− i
�
�H0� ��+

1
2
0
[
2a�a†− (a†a��)

]
� (15.79)

where H0 = ��0a
†a is the free Hamiltonian. In this derivation, we missed the radiative

renormalization of the energy levels of the harmonic oscillator due to the interaction
between the oscillator and the quantized electromagnetic field, which is an example of a
Lamb shift, computed explicitly in Section 15.4.3. Moreover, a full derivation of (15.79)
shows that it is only valid under the condition 0 	�0. This condition allows us to ignore
the coupling between matrix elements of the state operator that evolve with different
eigenfrequencies, for example the coupling between populations and coherences. We get
rid of the commutator by going to the interaction picture (compare with (15.67)):

ã�t�= eiH0t/� a e−iH0t/� = ae−i�0t�

ã†�t�= eiH0t/� a† e−iH0t/� = a†ei�0t�
(15.80)

whence
d�̃
dt

= 0

[
ã �̃ ã†− 1

2
(ã†ã� �̃)

]
= 0

[
a �̃a†− 1

2
(a†a� �̃)

]
� (15.81)

Here we have used (15.80) to obtain the second expression. In the absence of damping
(0 = 0), the average value of the operator

a= e−iH0t/� a eiH0t/�

is time-independent. If 0 �= 0, from (15.81) we derive the evolution equation for its
average value:

d
dt

a� = d

dt
Tr �a��= d

dt
Tr
(
a eiH0t � e−iH0t

)= d
dt
Tr �a �̃�= Tr

(
a
d�̃
dt

)
�

while from (15.81)

Tr
(
a
d�̃
dt

)
= 0

2
Tr
[
2a2�̃a†−aa†a�̃−a�̃a†a

]

= 0

2
Tr
[
�a†� a�a�̃

]=−0

2

a��
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so that we find the decay law


a�t�� = e−0t/2 
a�t = 0��� (15.82)

An analogous computation shows that the average occupation number n�t�=
a†a� decays
with a relaxation time 1/0 :

n�t�= e−0t n�t = 0�� (15.83)

As shown in Exercise 15.5.7, if the initial state of the oscillator is a coherent state
(Section 11.2) �z� at t = 0, time evolution leads to

�z�→ �ze−i�0t e−0t/2��
so that the coherent state does not become entangled with its environment, although it
decays slowly (0 	�0) toward the vacuum state. However, if one starts from a coherent
superposition of coherent states �z1� and �z2�

�-� = 1√
2

(�z1�+ �z2�)�
as shown in Exercise 15.5.7, the off-diagonal terms of the state matrix decay as

exp
[
−1
2
0 �z1− z2�2t

]
�

The decoherence rate 0dec is much larger than the damping rate 0 if �z1− z2�2 � 1:

0dec =
1
2
0 �z1− z2�2� (15.84)

It is proportional to the square of the “distance” �z1−z2� between the two coherent states.

15.4 Coupling to a thermal bath of oscillators

15.4.1 Exact evolution equations

In order to derive more detailed properties of the master equation, in this section we
choose specific models for the system and the reservoir: in Section 15.4.3 system  will
be a two-level system, in Section 15.4.4 it will be a Brownian particle, and in both cases
the environment will be modeled by a large number of uncoupled harmonic oscillators
in thermal equilibrium at temperature T . In deference to the standard terminology of
thermodynamics, the environment will be called the “reservoir”: � →�. Our reservoir
is thus a thermal bath of harmonic oscillators, whose Hamiltonian HR is

HR =
∑



��
a
†

a
� (15.85)
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It is important that the frequencies �
 form a quasi-continuuum in a large frequency
interval ∼1/�∗. The state operator of the uncoupled reservoir is given by the Boltzmann
law (1.12):

�R�t = 0�= e−HR/kBT

Tr �e−HR/kBT �
� (15.86)

We shall need the following equilibrium average values, which are immediately derived
from (15.86):


a
� = 
a†

� = 0� 
a†


a�� = n
�
�� 
a
a
†
�� = �n
+1��
�� (15.87)

where the average occupation number n
 of oscillator 
 is (see (1.20))

n
 =
1

e��
/kBT −1
� (15.88)

The system–reservoir coupling V is assumed to be of the form

V = AR� R= R† =∑



�g
a
+g∗
a
†

�� (15.89)

where A= A† is an operator acting in �A and the total Hamiltonian HAR is

HAR =HA+HR+V =HT +V� HT =HA+HR� (15.90)

The evolution equation for the state operator, first written in the Schrödinger picture

d�AR

dt
=− i

�
�HAR��AR��

is transformed into the interaction picture, defined as previously by

�̃AR�t�= eiHT t/� �AR e
−iHT t/��

In this picture the evolution equation reads

d�̃AR

dt
=− i

�
�V�t�� �̃AR�t��=− i

�
�A�t�R�t�� �̃AR�t��� (15.91)

where A�t� and R�t� are given by15

A�t�= eiHT t/� A e−iHT t/� = eiHAt/� A e−iHAt/��

R�t�= eiHT t/� R e−iHT t/� = eiHRt/� R e−iHRt/� =∑



(
g
a
 e

−i�
t+g
a
†

 e

i�
t
)
�

(15.92)

The last expression in both lines of (15.92) is valid because HR �HA� does not act on the
degrees of freedom of  ���. The quantity that will play a central role in what follows
is the equilibrium autocorrelation function g�t′� of R�t�:

g�t′�= 
R�t�R�t− t′�� = 
R�t′�R�0��� (15.93)

15 We have suppressed the tilde to simplify the notation.
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where the average 
•� is taken with respect to the equilibrium state operator (15.86) of the
reservoir. From time-translation invariance at equilibrium, g depends only on t′ and not
on t and t′ separately (hence the second expression in (15.93)), while from the Hermiticity
of R we have g�t′�= g∗�−t′�. The autocorrelation function g�t′� plays a fundamental role
in linear response theory,16 where it is customary to write its real and imaginary parts
C�t′� and −&�t′�/2 separately:

C�t′� = 1
2

(R�t′��R�0�)�� (15.94)

&�t′� = i
�

�R�t′��R�0��� �t′�� (15.95)

where the second line contains a step function  �t′�, because we are interested only in
the case t′ ≥ 0. The function &�t′� is called the dynamical susceptibility of the reservoir.
In linear response theory, one shows that if the reservoir is submitted to a perturbation
−f�t�R (in the Schrödinger picture), where f�t� is a classical function, then, to first order
in f , the nonequilibrium average R�t� is

R�t�=
∫

dt′ &�t′�f�t− t′�� (15.96)

As a consequence, if f�t′� = f �−t′�, that is, we have a constant perturbation −fR

for t′ < 0, the return to equilibrium [f�t′� = 0] is governed by the equilibrium time
fluctuations, a result known as the Onsager principle.
Using (15.87) and (15.89), it is easy to derive explicit expressions for g�t′�, C�t′�, and

&�t′�:

g�t′� =∑



�g
�2
[
n
e

i�
t
′ + �n
+1�e−i�
t

′]
� (15.97)

C�t′� =∑



�g
�2�2n
+1� cos�
t
′� (15.98)

&�t′� = 2 �t′�
�

∑



�g
�2 sin�
t
′� (15.99)

We observe that the dynamical susceptibility does not depend on the state of the reservoir:
it is independent of n
. Because the reservoir is large and because the frequencies �
 are
closely spaced in a frequency interval ∼1/�∗, we expect the correlation function to decay
with a characteristic time �∗:

�g�t′�� ∼ e−�t
′ �/�∗ � (15.100)

Indeed, g�t′� is a superposition of a large number of complex exponentials oscillating at
different frequencies, and these exponentials interfere destructively once �t′�>∼ �∗.

16 See “Further reading” for references on linear response theory. In these references, the “interaction picture” is called
“Heisenberg picture,” because coupling to another quantum system is not of interest.
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Having examined the properties of the autocorrelation function, we may now revert to
the evolution equation (15.91), which can be written in integral form as

�̃AR�t�= �AR�0�−
i
�

∫ t

0
dt′
[
V�t′�� �̃AR�t

′�
]
�

We iterate this expression once

�̃AR�t� = �AR�0�−
i
�

∫ t

0
dt′
[
V�t′���AR�0�

]

− 1
�2

∫ t

0
dt′
∫ t′

0
dt′′
[
V�t′��

[
V�t′′�� �̃AR�t

′′�
]]
�

and differentiate with respect to t to obtain

d�̃AR

dt
=− i

�

[
V�t���AR�0�

]− 1
�2

∫ t

0
dt′
[
V�t�� �V�t′�� �̃AR�t

′�
]]
� (15.101)

As usual, we assume a factorized form for �AR�t = 0�

�AR�t = 0�= ��t = 0�⊗�R�t = 0�� (15.102)

and take the partial trace over the reservoir degrees of freedom. Then the first term
in (15.101) gives (Exercise 15.5.6)

Tr�
[
V�t���AR�0��=

[
A�t���A�0�

]
Tr�
(
R�t��R

)= 0�

where we have made use of (15.87). Under the factorization assumption (15.102), we
finally obtain an exact equation for the state operator �̃A�t�= �̃�t� of system :

d�̃
dt

=− 1
�2

∫ t

0
dt′ Tr�

([
V�t�� �V�t′�� �̃AR�t

′�
]])

� (15.103)

15.4.2 The Markovian approximation

The derivation of a master equation from the exact equation (15.103) relies on the
following crucial assumption: for all times t′ that are relevant for the integral in (15.103)
(and not only for t = 0 as in (15.102)!), we can use for �̃AR�t� a factorized form similar
to that in the initial state (15.102):

�̃AR�t�� �̃�t�⊗�R�t = 0�� (15.104)

There are two different points to be emphasized in explaining the physical origin
of (15.104).

(i) All the system–reservoir correlations which arise from third- and higher-order terms in V are
neglected.

(ii) The modifications to the state of the reservoir induced by its coupling to the system are
neglected.
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Both items (i) and (ii) are physically reasonable if the reservoir is much “larger” than
the system : the back action of the system on the reservoir and higher-order terms in
the perturbative expansion may be neglected. One can indeed show that the true small
parameter in an expansion in powers of V is �� ��∗/�, where � is a typical matrix element
of V . The condition for the validity of (i) and (ii) is then �� ��∗/�	 1.17 In particular, it
can be shown that

��̃AR�t�− �̃A�t�⊗ �̃R�t�� = O

( �� ��∗
�

)2

�

Plugging (15.104) into (15.102), we obtain an equation of motion for �̃ which depends
only on A and g (Exercise 15.5.6):

d�̃
dt

= 1
�2

∫ t

0
dt′ g�t′�

[
A�t− t′��̃�t− t′�A�t�−A�t�A�t− t′��̃�t− t′�

]
+H�c�� (15.105)

where H.c. = Hermitian conjugate and we have made the change of variable t′ → t− t′.
Equation (15.105) is still an integro-differential equation containing memory effects,

and not a master equation. To obtain a master equation, we note from (15.100) that the
times t′ which contribute significantly to the integral are bounded by �∗, t′ <∼ �∗. Hence
the difference ��̃�t− t′�− �̃�t�� is bounded by

��̃�t− t′�− �̃�t��<∼ O

( �� ��∗
�

)
�

and we can replace �̃�t′ − t� by �̃�t� in a manner which is consistent with the preceding
approximation: the error is of higher order in the small parameter. In this way, we have
justified a Markovian approximation, and �̃ is given by a first-order differential equation.
Taking t� �∗, we can send the upper limit in the integral to infinity and write

d�̃
dt

= 1
�2

∫ �

0
dt′ g�t′�

[
A�t− t′��̃�t�A�t�−A�t�A�t− t′��̃�t�

]
+H�c�

Actually, this equation can be derived from perturbation theory limited to second order.
It is convenient (but by no means necessary) to revert to the Schrödinger picture and to
write the master equation in its final form:

d�
dt

=− i
�
�HA���+

1
�2

(
W�A+A�W†−AW�−�W†A

)
� (15.106)

where the operator W is given by

W =
∫ �

0
g�t′�A�−t′�dt′� (15.107)

17 See C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom–Photon Interactions, New York: Wiley (1992), Chapter IV
for a detailed discussion.
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We see that the characteristic evolution time of �̃ is

� ∼ �2

�� �2�∗
=
(

�

�� ��∗

)2

�∗ � �∗�

The characteristic time � is even much larger than the “natural time” �/�� �, which one
would expect if  were coupled to a single mode of the reservoir:

�∗ 	
�

�� � 	 � ∼ �2

�� �2�∗
� (15.108)

The effective coupling is reduced owing to the fact that  is coupled to a large number
of independent modes, a phenomenon called motion narrowing.

15.4.3 Relaxation of a two-level system

Let us now apply the preceding results to the case where system  is a two-level system
coupled to a thermal bath of independent harmonic oscillators: photons, phonons� � � The
free Hamiltonian HA of the two-level system is now H0 (15.2)

HA ≡H0 =−��0

2
z� (15.109)

and our goal is to understand its relaxation properties. The system–reservoir interaction
V must be able to induce transitions between the two levels, and a possible choice is

V = xR= x

∑



(
g
a
+g∗
a

†



)
� (15.110)

Thus A= x = �++−�. The operator W (15.107) acting on the two-level system is

W =
∫ �

0
g�t′�A�−t′�dt′ =G+��0�++G−��0�−� (15.111)

with

G±��0�=G∓�−�0�=
∫ �

0
g�t′�e±i�0t

′
dt′� (15.112)

where we have used (15.67). Plugging (15.112) into (15.106) and using 2
+ = 2

− = 0, we
obtain

d�
dt

= i
2
�0�z���

+�G++G∗
+�+�−−G+−+�−G∗

+�−+

+�G−+G∗
−�−�+−G−+−�−G∗

−�+−

+�G++G∗
−�+�++ �G−+G∗

+�−�−�

(15.113)

Using the invariance of the trace under cyclic permutations, we can check that the
equation has been written in such a way that each of the first three lines in the right-
hand side has zero trace. The fourth line does not contribute to the evolution of the
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populations (Exercise 15.5.8), only to that of the coherences. But even this contribution
to the coherences may be neglected in the rotating-wave approximation, using the same
argument as in Section 14.4.1: in the interaction picture, ̃±�t�∼ exp�∓i�0t�, and the last
term in (15.113) varies as exp�∓2i�0t�. It is rapidly oscillating and assumed to average
to zero. This is a general result: if the relaxation terms are written as

d�̃ij

dt
=

1∑
k�l=0

�ijkl�̃kl�

it can be shown that the coefficients �ijkl can be neglected if ��ij −�kl� � 0 , ��ij =
Ei−Ej .

18 This is called the secular approximation, and it allows us to justify the form
of the Bloch equations (15.6).
Let us compute G±��0� explicitly:

G+��0�=
∑



�g
�2
(
�n
+1�

i
�0−�
+ i,

+n


i
�0+�
+ i,

)
�

G−��0�=
∑



�g
�2
(
n


−i
�0−�
− i,

+ �n
+1�
−i

�0+�
− i,

)
�

(15.114)

where ,→ 0+. Using the standard formula

i
x± i,

= i
P

x
±���x�� (15.115)

where P denotes a Cauchy principal value, for G+��0� we find

G+��0�=
1
2
0+− i!+�

0+ = 2�
∑



�g
�2�n
+1����0−�
��

!+ = −∑



�g
�2
(
�n
+1�

P

�0−�


+n


P

�0+�


)
�

(15.116)

while G−��0� is given by

G−��0�=
1
2
0−− i!−�

0− = 2�
∑



�g
�2n
���0−�
��

!− = −∑



�g
�2
(
n


P

�0−�


+ �n
+1�
P

�0+�


)
�

(15.117)

18 See C. Cohen-Tannoudji et al., Atom–Photon Interactions, New York: Wiley (1992), Chapter IV for a detailed discussion.
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Substituting the two preceding equations into (15.113) and making use of

+− =
1
2
�1+z�� −+ =

1
2
�1−z��

we obtain the final expression for the master equation in the Lindblad form:

d�
dt

= i
2
��0+!��z���

+1
2
0+
(
2+�−− (−+� �)

)
+1
2
0−
(
2−�+− (+−� �)

)
�

(15.118)

The two quantum jump operators of the Lindblad equation are

L+ =
√
0+
2

+� L− =
√
0−
2

−� (15.119)

The energy shift ! (or Lamb shift)

!= !−−!+ =
∑



�g
�2�2n
+1�
(

P

�0−�


+ P

�0+�


)
(15.120)

represents the radiative correction to the energy-level difference �0 due to the interaction
of the two-level system with the thermal bath of oscillators. Equation (15.118) general-
izes (15.64) obtained at T = 0, where only spontaneous emission was taken into account
and the Lamb shift could not be computed. At nonzero temperature photon absorption
must also be taken into account: the relaxation rate 0+ describes the transitions �1�→ �0�
and 0− the transitions �0� → �1� (Fig. 15.3). It is easy to check (Exercise 15.5.8) that
0 = 0+ + 0− is the relaxation rate for the populations, while that for the coherences is
0/2: the relation T2 = 2T1 also holds at nonzero temperature. In the same exercise, it is

Γ+ Γ–

Fig. 15.3. Transition rates 0+ and 0−.
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shown that in the long-time limit the populations of the levels �0� and �1� are given by
Boltzmann’s law (15.3), with temperature T equal to that of the thermal bath. This is a
quite satisfactory result, as it shows that the system is in equilibrium with the bath in the
long-time limit. The total width 0 is given explicitly by

0 = 0++0− =
2�
�

∑



�g
�2�2n
+1�����0−��
�� (15.121)

This provides a nice check of the calculation, as (15.121) can be written in the form of
the Fermi Golden Rule (9.170):

0 = 2�
�
�g��0��2�2n0+1�����0��

where ����0� is the density of states of the reservoir. The ratio 0+/0− is given by a
Boltzmann law

0+
0−

= e��/kBT �

The master equation (15.118) allows us to write by inspection (recall the correspondence
a→ +, a† → −; see Footnote 12) the T �= 0 generalization of (15.79), which gives the
master equation for a harmonic oscillator coupled to the quantized electromagnetic field
at nonzero temperature:

d�
dt

=− i
�
�H0� ��+

1
2
0+
[
2a�a†− (a†a��)

]+ 1
2
0−
[
2a†�a− (aa†��)

]
� (15.122)

Detailed derivations of the preceding equation can be found in textbooks on quantum
optics (see “Further reading”).

15.4.4 Quantum Brownian motion

Our last example will be that of a heavy free particle with mass M coupled to a thermal
bath of harmonic oscillators with massesm
 and frequencies �
. This is a typical situation
for Brownian particle motion. A heavy particle interacts with a thermal bath of light
particles (molecules), and one may identify two widely separated time scales: the time
scale �∗ for the bath and the time scale � for the motion of the heavy particle, with �∗ 	 �.
The full Hamiltonian HAR is assumed to have a translation-invariant form

HAR =
P2

2M
+∑




P2



2m


+ 1
2

∑



m
�
2

�X−X
�

2� (15.123)

where (P, P
) and (X, X
) are momentum and position operators for the particle and
the oscillators. For the sake of simplicity, we have limited ourselves to one-dimensional
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motion, without losing any essential physics. The decomposition (15.90) of HAR

reads

HA =
P2

2M
� (15.124)

HR =
∑



(
P2



2m


+ 1
2
�2


 X
2



)
=∑




��
a
†

a
� (15.125)

V = 1
2
7X2+XR=HCT+X

[
−∑




g


(
a
+a†




)]
� (15.126)

with g
 =
√

�m
�
3

/2, 7 =

∑

 m
�

2

, and CT standing for “counter-term” for reasons

to be explained below. The operator A is therefore to be identified with the position
operator of the Brownian particle, and we have neglected the zero-point energy of the
oscillators. It may appear that translation invariance has been broken in (15.126), but this
is of course an artefact of the decomposition: as we shall see later on, the contribution of
the translation-noninvariant counter-term

HCT =
1
2
7X2 (15.127)

is canceled by another contribution from the interaction. It will be convenient but by no
means necessary (see the comments following (15.142)) to work in the high-temperature
limit where (15.88) becomes

n
 � n
+1� kBT

��


� 1� (15.128)

We recall that the frequencies �
 are assumed to be closely spaced in an interval ∼1/�∗,
so that the sums over 
 can be replaced by integrals over �. It is convenient to define
the spectral function J���:

J���= �

�

∑



�g
�2���−�
�=
�

2

∑



m
�
3

���−�
�� (15.129)

From (15.98), (15.99), and (15.126) we find the expressions for the real and imaginary
parts of the autocorrelation function g�t′�:

C�t′�= 2kBT
�

∫ �

0

d�
�

J��� cos�t′�

&�t′�= 2 �t′�
�

∫ �

0
d� J��� sin�t′ = − �t′�

kBT

dC
dt′

�

(15.130)

In order to proceed further, we must now choose a specific form for the spectral function
J���. The typical frequency scale for J��� being �∗ = 1/�∗, we choose J��� to vanish
for �� �∗: �∗ plays the role of a frequency cutoff. The most convenient model for
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analytic calculations is that of Caldeira and Leggett,19 where J��� is linear for � ≤ �∗
and vanishes for �> �∗:

J���=M��� 0 ≤ �≤ �∗�

J���= 0� � > �∗�
(15.131)

The coefficient � has the dimension of a frequency, and will be interpreted physically as
a friction coefficient, as in the equation of motion (14.104) v̇=−�v. We expect that the
results do not depend qualitatively on the exact shape of J���, the only important feature
being the existence of a high-frequency cutoff �∗. In Exercise 15.5.10 it is shown that
equivalent results are obtained using

J���=M��

(
�2
∗

�2+�2∗

)
�

With the choice (15.131), C�t′� has a simple analytic form:

C�t′�= 2kBTM�
sin�∗t′

�t′
� (15.132)

The function sin�∗t′/�t′ has a peak of height �∗/M and width ∼1/�∗ = �∗ at t′ = 0,
and it becomes a delta function in the limit �∗ →�. We shall call �∗�t′� a smeared delta
function of width �∗. With this notation, the autocorrelation function reads

g�t′�= 2M�kBT�∗�t
′�+ i�M��′∗�t

′�= 2D�∗�t
′�+ i�M��′∗�t

′�� (15.133)

where we have used Einstein’s relation (14.113) linking the momentum diffusion coeffi-
cient D to � and T , D =M�kBT .
After these preliminaries, we are now ready to give an explicit form for the general

master equation (15.106), which in the present case becomes

d�
dt

=− i
�

[
P2

2M
��

]
− i

�

[
1
2
7X2� �

]
− 1

�2

(
W�X+X�W −XW�−�W†X

)
� (15.134)

with

W =
∫ �

0
g�t′�X̃�−t′�dt′� (15.135)

The operator X̃ in the interaction picture is given by

X̃�t′�= exp
[
iP2t′

2M�

]
X exp

[
− iP2t′

2M�

]
= X+ Pt

M
� (15.136)

19 A. Caldeira and A. Leggett, Path integral approach to quantum Brownian motion, Physica 121A, 587 (1983).
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a result which is immediately derived from (8.67). The term proportional to D on the
right-hand side of the master equation involves the integral

2D
�2

∫ �

0
�∗�t

′�
[(

X− Pt′

M

)
��t�X+X��t�

(
X− Pt′

M

)

−X

(
X− Pt′

M

)
��t�−��t�

(
X− Pt′

M

)
X

]
dt′�

Owing to the narrow width of �∗�t′�, the terms proportional to Pt′/M are negligible and
we are left with the double commutator

−D

�2

[
X�
[
X���t�

]]
� (15.137)

The term proportional to M� is

iM�

�

∫ �

0
�′∗�t

′�
[(

X− Pt′

M

)
��t�X+X��t�

(
X− Pt′

M

)

−X

(
X− Pt′

M

)
��t�−��t�

(
X− Pt′

M

)
X

]
dt′�

(15.138)

The two integrals that we need are

�i�
∫ �

0
�′∗�t

′�t′ dt′ = −1
2
�

�ii�
∫ �

0
�′∗�t

′�dt′ =
∫ �

0
dt′

d
dt′

(
sin�∗t′

�t′

)
=−�∗

�
�

(15.139)

Equation (15.138) can be written as a sum of two terms. The first one, which depends on
(i), is

�

2i�

[
X�(P���t�)

]
� (15.140)

and the second one depending on (ii) is

iM��∗
��

[
X2� ��t�

]= i
�

[
1
2
7X2� ��t�

]
� (15.141)

because in the Caldeira–Leggett model 7 is given by

7=∑



m
�
2

 =

2
�

∫ �

0

d�
�

J���= 2M��∗
�

�

Then the term in (15.141) exactly cancels the contribution of HCT to the evolution of
the state operator. Collecting all the contributions to d�/dt, we finally obtain the master
equation describing the quantum evolution of the Brownian particle:

d�
dt

=− i
�

[
P2

2M
���t�

]
− i�

2�

[
X�(P���t�)

]− D

�2

[
X�
[
X���t�

]]
� (15.142)
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Equation (15.142) is one of the basic results in the theory of open quantum systems. It
should be observed that this equation is not of the Lindblad form, although it preserves
the positivity of the state operator. The first term gives the unitary evolution of the wave
packet, the second one describes friction, and the last one governs decoherence, as we
shall see in detail in the next subsection. A Fokker–Planck equation for the probability
distribution of p can be derived from (15.142); see Exercise 15.5.11.
Since the model defined in Eq. (15.123) is linear (that is, its classical equations of

motion are linear), it can be solved exactly without taking the high-temperature limit.
This is done in practice using path-integral methods. One can even put the Brownian
particle in a harmonic potential well with frequency +. The exact solution at time t is

d�
dt

= − i
�

[
P2

2M
+ 1

2
M+2�t�X2� ��t�

]
− i��t�

2�

[
X�(P���t�)

]

−D�t�

�2

[
X�
[
X���t�

]]− f�t�

�

[
X� �P��

]]
�

We note the presence of a fourth term, called anomalous diffusion, which is negligible in
the long-time limit t→�. The functions +�t�, ��t�, D�t�, and f�t� are given by integrals
which must, in general, be computed numerically. In the long-time limit which has been
taken in (15.142), analytical evaluation of the integrals is sometimes possible.

15.4.5 Decoherence and Schrödinger’s cats

The preceding results are of the utmost importance, because they exhibit precise mecha-
nisms for decoherence. A Brownian particle is a large object by macroscopic standards,
and by constructing a quantum state of the particle which is a coherent superposition of
two nonoverlapping wave packets we exhibit an example of a Schrödinger’s cat. To be
specific, let us assume that at t = 0 we have a coherent superposition of two Gaussian
wave packets centered at x=±a and having width  	 a, so that the overlap of the two
wave packets is negligible. The initial wave function of the Brownian particle then is

��x�� 1√
2

(
1

�2

)1/4(
exp
[
− �x−a�2

22

]
+ exp

[
− �x+a�2

22

])
� (15.143)

The Fourier transform �̃�p� of (15.143) is readily computed and the momentum proba-
bility distribution ��̃�p��2 is found to be

��̃�p��2 = 2

�
√
�
exp
(
−2p2

�2

)
cos2

pa

�
� (15.144)

��̃�p��2 is a Gaussian of width ∼�/ modulated by fast oscillations of period ��/a	
�/ . These oscillations originate in the coherence of the two wave packets in (15.143).
Before exploiting (15.142), let us give a qualitative physical explanation for decoherence.
The Brownian particle undergoes a large number of collisions with the light particles
(molecules) in the thermal bath. Because of these collisions the particle follows a random
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walk in momentum space20 with a diffusion coefficient D (14.113), and the momentum
dispersion !p is

!p2 = 2Dt� (15.145)

Each of the peaks in ��̃�p��2 is broadened under the influence of collisions, and the peaks
will be completely blurred out after a decoherence time �dec found from (15.145) as

!p2 ∼
(
��

a

)2

= 2D�dec�

or

�dec ∼
�2

Da2
� (15.146)

Let us derive this result from the master equation (15.142). We limit ourselves to short
times, so that the motion of the Brownian particle can be neglected.21 This is equivalent
to taking the limit M →� in the master equation, and in this limit only the last term on
the right-hand side survives (see Exercise 15.5.11 for a study of the general case). The
off-diagonal matrix elements of the state operator obey the differential equation

�

�t

x���t��x′� = −D

�2
�x−x′�2
x���t��x′�� (15.147)

The off-diagonal matrix elements of � decay with a relaxation time �dec:

�dec �
�2

4Da2
� (15.148)

because �x−x′� � 2a, in agreement with the preceding heuristic estimate.
Let us give a very rough estimate for a typical decoherence time. Consider a Brownian

particle of radius R � 1�m in air with viscosity , ∼ 10−5. The friction coefficient � is
given by the Stokes law � = 6�,R/M . For a = 10 �m we find �dec ∼ 10−27 s. “Large”
Schrödinger’s cats are really quite short-lived! In Appendix B we describe experiments
in which one is able to build Schrödinger’s cats small enough that decoherence can be
observed and �dec measured, thus allowing an experimental verification of the decoherence
mechanism.
There are other ways of writing the result (15.148). Using D=M�kBT and introducing

the thermal wavelength


T =
h√

2�MkBT
�

that is, the de Broglie wavelength at temperature T , (15.148) becomes

�dec ∼
1
�

(

T

a

)2

� (15.149)

20 Not to be confused with diffusion in position space!
21 This is a general result. In the short-time limit, Brownian motion is dominated by diffusion; see “Further reading.”
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The results of the present chapter allow us to give a general picture of decoherence.
The first general feature is that one finds privileged states in the Hilbert space of states:
coherent states in the case of Section 15.3.3 and position states in that of Section 15.4.4.
These states are called pointer states, and they define the preferred basis of Section 6.4.1.
A generic state of the Hilbert space is not stable when the system is put in contact with
an environment but decays into an incoherent superposition of pointer states, which do
not become entangled with their environment and are therefore the stable states. The
stability of the pointer states can be traced back to the form the system interaction with the
environment. For example, the pointer states of the Brownian particle are position states,
because the interaction with its environment is proportional to the position operator X.
As already mentioned in Section 15.3.3, a mode of the quantized electromagnetic field
in a coherent state remains in a coherent state, because of the form of its interaction
with a T = 0 environment. Coherent states are therefore also pointer states. The second
general feature is that the decoherence time is inversely proportional to the square of
the “distance” between pointer states: this distance is the ordinary one in the case of the
position states of Section 15.4.4, and �z1−z2� in the case of the coherent states �z1� and �z2�
of Section 15.3.3. The decoherence time is nothing other than the lifetime of Schrödinger’s
cats, and this lifetime is extremely short for macroscopic, and even mesoscopic, objects.
As explained in Appendix B, decoherence is very likely an essential ingredient in the
theory of quantum measurements. It explains why the measurement apparatus cannot be
found in a quantum superposition, but can only exist in one of its pointer states.

15.5 Exercises

15.5.1 POVM as projective measurement in a direct sum

Let us consider the POVM defined by (15.30) and (15.31). Define the unnormalized
vectors ��̃� = √

2/3 ���, � = a�b� c, and use these three vectors belonging to � �2� to
construct two vectors belonging to a three-dimensional space � �3�, written as the first
two rows of a 3× 3 matrix M . Complete M by a third vector orthogonal to the two
preceding ones to obtain

M =
⎛
⎜⎝
√
2/3 −√1/6 −√1/6
0

√
1/2 −√1/2√

1/3
√
1/3

√
1/3

⎞
⎟⎠ �

Why is M an orthogonal matrix, MTM = I? Consider a projective measurement in � �3�

built from the three columns �u�� of M . Show that an observer unaware of the third
component of �u�� will conclude that she has performed a POVM in � �2�.

15.5.2 Using a POVM to distinguish between states

Assume that Alice sends Bob qubits that can be either in state �a⊥� or in state �b⊥�, each
with 50% probability (the notation is that of Section 15.1.3). Bob performs a POVM with
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elements �a, �b, and �c (15.30). Show that if he finds the result b (a), he can be sure
that the qubit was in state �a⊥� (�b⊥�), but if he finds result c, he cannot decide. Show
that in 50% of the cases Bob will be able to decide with certainty between the two states.

15.5.3 A POVM on two arbitrary qubit states

1. Consider the following two qubit states:

�a� = cos� �0�+ sin� �1�� �b� = sin� �0�+ cos� �1��
What are the projectors 
a⊥ and 
b⊥ onto the states �a⊥� and b⊥� respectively orthogonal to
�a� and �b�? Let �c�,

�c� = 
�0�+��1��
be a third qubit state vector. Build a POVM with 
a⊥ , 
b⊥ , and 
c by writing

A�
a⊥ +
b⊥�+B
c = I�

Show that A and B can be expressed in terms of the scalar product S = 
a�b� = sin 2�.
2. Assume that Alice sends Bob a random sequence of states �a� and �b�, each occurring with 50%

probability. Bob performs a POVM

(�a⊥ ��b⊥ ��c)�

What is the probability that he can be sure that Alice sent �a� or b�? Application: in the quantum
cryptography setup explained in Section 3.1.3, � = �/8. Show that Eve can fool Bob in 79%
of the cases.

15.5.4 Transposition is not completely positive

Let�A and�B be two Hilbert spaces of dimension N . Consider the maximally entangled
state

��AB� =
1√
N

N∑
m=1

�mA⊗m′
B��

and the corresponding state operator �AB = ��AB�
�AB�. The transposition operator �A in
�A has the following action on �AB:

��A⊗ IB��AB =
1
N

∑
m�n

��n�
m��A⊗ ��m′�
n′��B�

Define � = N�AB and show that applying � to a vector ��A⊗1B� has the result

� ��A⊗1B� = �1A⊗�B��
Show that � 2 = 1. Write the explicit form of � in the case N = 2: this is the so-called
SWAP matrix. Show, first in the case N = 2 and then in general, that � must have
negative eigenvalues.
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15.5.5 Phase and amplitude damping

1. Let us examine the following model with simultaneous phase and amplitude damping for a
two-level system. Three Kraus operators are given by

M0 =
(

1 0
0
√
1−
−�

)
� M1 =

(
0

√
�

0 0

)
� M2 =

(
0 0
0

√



)
�

Check that
2∑

�=0

M†
�M� = I�

What are the restrictions on 
 and �?
2. Show that the transformed state matrix � ��� is(

�00+��11 �01

√
1−
−�

�10

√
1−
−� �11�1−��

)
�

3. What is the result after n iterations of the Kraus operator? Setting

� = 0t

n
� 
= �t

n
� n� 1�

show that

��t�=
(

1−�11e
−0t �01e

−��+0�t/2

�10e
−��+0�t/2 �11e

−0t

)
�

What are the relaxation times T1 and T2? Check that T2 ≤ 2T1.

15.5.6 Details of the proof of the master equation

1. Show that if �AR�0�= �A�0�⊗�R�0�, then

Tr�

[
V�t���AR�0

]= [A�t���A�0��Tr �R�t��R�0��= 0�

2. Fill in the details of the calculations leading from (15.101) to (15.105).

15.5.7 Superposition of coherent states

We wish to study the decoherence of a superposition of two coherent states in the damped
oscillator model of Section 15.3.3. The time evolution of the state operator is given
by (15.79):

d�
dt

=− i
�
�H0� ��+

1
2
0
[
2a�a†− (a†a��)

]
�

In this problem it is instructive to keep the H0 part of the evolution.
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1. Let us consider eigenstates �n� of the free Hamiltonian H0 = �0a
†a, and let �nm be the matrix

element 
n���m� of �. Show that the diagonal matrix element �nn obeys

d�nn

dt
=−n0�nn+ �n+1�0�n+1�n+1�

Can you give a physical interpretation for the two terms of this equation? Argue that 0 is the
rate for spontaneous emission of a photon (or a phonon). What is the evolution equation for the
coherence �n+1�n?

2. Let us introduce the function C�
�
∗* t� by

C�
�
∗* t�= Tr
(
� e
a

†
e−
∗a)�

Show that partial derivatives with respect to 
 have the following effect in the trace:

2

2

→ �a†�

(
2

2

−
∗

)
→ a† ��

Hint: use the identity (2.54) to commute a† and exp�−
∗a�. What are the corresponding identities
for 2/2
∗?

3. Show that C�
�
∗* t� obeys the partial differential equation[
2

2t
+
(
0

2
− i�0

)
2

2 ln

+
(
0

2
+ i�0

)
2

2 ln
∗

]
C�
�
∗* t�= 0�

This equation is solved by the method of characteristics. The solution is (derive it or check it!)

C�
�
∗* t�= C0

(

 exp�−�0/2− i�0�t��


∗ exp�−�0/2+ i�0�t�
)

with

C�
�
∗* t = 0�= C0�
�

∗��

4. Assume that the initial state t = 0 is a coherent state �z�:
�z� = e−�z�

2/2 e za
† �0��

Show that in this case

C0 = exp�
z∗ −
∗z��

and that the state at time t is the coherent state �z�t�� with
z�t�= z e−i�0t e−0t/2�

Therefore, a coherent state remains a coherent state when 0 �= 0 (compare with (11.38)), but
�z�t��→ 0 for t� 1/0 . In the complex plane, z�t� spirals to the origin. As 0 	�0, one observes
many turns around the origin.

5. Let us now consider a superposition of two coherent states at t = 0:

�%� = c1�z1�+ c2�z2��
Show that at t = 0

C12�t = 0�= Tr
(
�z1�
z2�e
a†e−
∗a

)
= 
z2�z1�e
z∗2 e−
∗z1 �
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What is the interpretation of C12�t�? Let us define

,�t�= 
z2�z1�

z2�t��z1�t��

and write C12�t� in the form

C12�t�= ,�t�
z2�t��z1�t�� e
z∗2�t� e−
∗z1�t��

Show that

�,�t�� = exp
[
−1
2
�z1− z2�2

(
1− e−0t

)]� exp
[
−0

2
�z1− z2�2

]
�

where the last expression holds for 0t	 1. The decoherence time is therefore

�dec =
2

0 �z1− z2�2
�

6. Let us choose z1 = 0 (ground state of the oscillator) and z2 = z. From question 1, the average time
for the emission of one photon is ∼ �0 �z2�2�−1. Argue that taking the trace over the environment
(here the radiation field) shows that the coherence between the components z1 = 0 and z of �-�
will be lost after the spontaneous emission of a single photon.

15.5.8 Dissipation in a two-level system

1. Starting from (15.113), derive the evolution equation for the matrix elements of the state
operator �:

d�00

dt
= (G++G∗

+
)
�11−

(
G−+G∗

−
)
�00�

d�01

dt
= i�0�01−

(
G∗
+ +G−

)
�01+

(
G++G∗

−
)
�10�

The last line in (15.113) therefore does not contribute to the evolution of populations.
2. Argue that in the rotating-wave approximation one can neglect the term

(
G+ +G∗

−
)
�10 in the

evolution of �01. Within this approximation, rewrite the evolution equations in terms of 0± and
!± (15.116)–(15.117). Check that the relaxation rate is 0 = 0++0− for the populations and 0/2
for the coherences.

3. From the expressions for 0+ and 0−, show that at equilibrium the relative populations of the
levels �0� and �1� are

p0 =
0−
0
� p1 =

0+
0
�

and that their ratio is given by Boltzmann’s law

p1

p0

= exp
(
−��0

kBT

)
�
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15.5.9 Simple models of relaxation

1. In the first model a two-level atom A is prepared in a superposition of ground (�0A�) and excited
(�1A�) states at t = 0. The electromagnetic field is assumed to be in its ground (vacuum) state
�0B�, so that the initial state vector is

�-�t = 0�� = �
�0A�+��1A��⊗�0B�� �
�2+���2 = 1�

Guided by the Wigner–Weisskopf method (Appendix C), we write the state vector at time t as

�-�t�� = 
�0A⊗0B�+���0A⊗1B�+� e−�i�0+0/2�t�1A⊗0B��
where �1A� is a normalized one-photon state. Use the conservation of the norm ��-�t���2 = 1
to compute � and deduce from your computation the matrix elements of the state operator at
time t. Compare with the damping models of Section 15.2 and find the Kraus operators. Show
that T2 = 2T1.

2. In the second model the state �1� is assumed to be stable, but the resonance frequency is time-
dependent. This will be the case, for example, in NMR where a spin 1/2 is submitted to a
fluctuating magnetic field �B0�t�. The state vector of the spin system at time t is

�-�t�� = 
�t��0�+��t��1��
with 
�t� and ��t� given by

i
̇�t�=−1
2
�0�t�
�t�� i�̇�t�= 1

2
�0�t���t�� 
�0�= 
0� ��0�= �0�

The solution is


�t�= 
0 exp
[
i
2

∫ t

0
�0�t

′�dt′
]
� ��t�= �0 exp

[
− i
2

∫ t

0
�0�t

′�dt′
]
�

Assume that �0�t� is a Gaussian stationary random function with connected autocorrelation
function

C�t′�= 
�0�t+ t′��0�t��−
�0�2�
where 
•� is an ensemble average over all realizations of the random function. Also assume that

C�t′�� C exp
(
−�t

′�
�

)
�

Show that the populations �00 and �11 are time-independent, but that the coherences are given
by

�01�t�= �01�t = 0�ei
�0�t e−C�t� t� ��

Which of the models in Section 15.2 corresponds to this situation?

15.5.10 Another choice for the spectral function J��

Instead of (15.131), we use another choice for the spectral function J���, namely

J���=M��
�2
∗

�2+�2∗
�
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Show that the real part C�t� of the autocorrelation function is

C�t�= kBTM��∗e
−�∗�t��

Show that all the steps leading to (15.142) remain valid with this new spectral function.

15.5.11 The Fokker–Planck–Kramers equation for a Brownian particle

1. Let ��t� be the state operator of the Brownian particle of Section 15.4.4. Let us define the
Wigner function w�x�p* t� by

w�x�p* t�= 1
2��

∫ +�

−�
e−ipy/� 
x+ y

2
���t��x− y

2
�dy�

Show that another expression for w�x�p* t� is

w�x�p* t�= 1
2��

∫ +�

−�
e−ixz/� 
p+ z

2
���t��p− z

2
�dz�

Show that integrating the Wigner function over x�p� gives the probability density wx�x* t�

[wp�p* t�].
2. Unlike wx�x* t� and wp�p* t�, the Wigner function, although real, is not necessarily positive and

cannot be interpreted in a straightforward way as a probability distribution in phase space. First,
compute the Wigner function for a Gaussian wave packet and check that it is positive in this
particular case. Then compute the Wigner function of the superposition (15.143) of two wave
packets and check that it is not positive everywhere.

3. Derive from (15.142) the following partial differential equation for w�x�p* t�:

2w

2t
+ p

M

2w

2x
= �

2

2p
�pw�+D

22w

2p2
�

4. Integrate over x to obtain a Fokker–Planck equation for the probability density wp�p* t�:

2wp

2t
= �

2

2p
�pwp�+D

�2wp

�p2
�

Show that the long-time limit of wp is a Maxwell distribution and recover the Einstein relation
between � and kBT .

15.6 Further reading

The present chapter has drawn on the following sources: Peres [1993], Chapter 9;
J. Preskill, Quantum Computation, http://www.theory.caltech.edu/ ∼preskill/ (1999),
Chapter 3; Nielsen and Chuang [2000], Chapters 2 and 8; J. Dalibard, Cohérence
quantique et dissipation, graduate lecture notes, Ecole Normale Supérieure, Paris (2003);
S. Haroche, Superpositions mésoscopiques d’états, Collège de France lectures, 2003/2004.
These last two references (in French) are available from the website http://www.lkb.ens.fr.
Levitt [2001], Chapter 16, provides a study of the relaxation mechanisms in NMR. The
concept of open quantum systems is widely used in quantum optics: see for example
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H. Carmichael, An Open System Approach to Quantum Optics, Berlin: Springer-Verlag
(1993) or M. Scully and M. Zubairy, Quantum Optics, Cambridge: Cambridge University
Press (1997). Memory effects, linear response, and Brownian motion are studied in detail
in, e.g., D. Foerster, Hydrodynamics Fluctuations, Broken Symmetry and Correlation
Functions, New York: Benjamin (1975), Chapters 1 to 6, or Le Bellac et al. [2004],
Chapter 9. The model in Section 15.4 was first introduced by A. Caldeira and A.
Leggett, Physica 121 A, 587 (1983); see also C. Cohen-Tannoudji, J. Dupont-Roc, and
G. Grynberg, Atom–Photon Interactions, New York: Wiley (1992), Chapter IV. Recent
references to the Caldeira–Leggett model can be traced from the review article by
Zurek [2003].



Appendix A The Wigner theorem and time reversal

In this Appendix we shall demonstrate the Wigner theorem stated in Section 8.1.2 and
study invariance under time reversal, which is special because the operator that realizes
this symmetry in the Hilbert space � is antiunitary rather than unitary, in contrast to all
the other cases we have encountered so far. Let us recall the definition (see Section 8.1.1)
of a ray in Hilbert space: a ray is a vector up to a phase factor. Two unit vectors � and
� differing by a phase factor �= exp�i��� belong to the same equivalence class, which
is precisely a ray �̃ of � . Since the modulus of the scalar product is independent of the
representation in the equivalence class

����&�� = ����&���
the modulus of the scalar product of two rays �̃ and &̃ is well defined by choosing two
arbitrary representatives in each equivalence class:

���̃� &̃�� = ����&��� (A.1)

but it is quite clear that it makes no sense to speak of the scalar product of two rays. We
shall use the notation �•�•� for the scalar product in order to avoid the ambiguities of the
Dirac notation, which would be particularly cumbersome in this appendix.
Let there be in � a correspondence between rays

�̃→ T�̃ (A.2)

such that the modulus of the scalar product is invariant:

���̃� &̃�� = ��T �̃�T &̃��� (A.3)

The Wigner theorem states that it is always possible to choose the phases of vectors such
that the correspondence between rays becomes a correspondence between vectors:

�→ U�� ��U��U&�� = ����&��� (A.4)

where the transformation U is either linear and unitary

�U��U&�= ���&� (A.5)

552
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or antilinear and unitary (= antiunitary):

�U��U&�= �&���= ���&�∗� (A.6)

A.1 Proof of the theorem

Let (&i), i = 1� � � � �N , be an orthonormal basis of � assumed to have dimension N ,
�&i� &k�= �ik. We shall assign a special role to the first basis vector: by convention, the
indices i and k will vary between 1 and N and the indices j and l between 2 and N . We
choose a representative & ′′

1 ≡ & ′
1 in the class of T&̃1 and a representative & ′′

j in the class of
T&̃j , j = 2� � � � �N . According to (A.3), the set (& ′′

1 �&
′′
j ) also forms a basis of � because

��& ′′
i � &

′′
k �� = ��&i� &k�� = �ik�

Let us consider the set of vectors �j

�j = &1+&j� j = 2� � � � �N� (A.7)

and let T�̃j be the transform of the ray �̃j . If �
′′
j is a representative of T�̃j , we will have

��& ′
1��

′′
j �� = ��&1��j�� = 1�

��& ′′
j � �

′′
l �� = ��&j��l�� = �jl�

A representative �′′
j of T�̃j will then have components only along & ′

1 and & ′′
j :

�′′
j = cj&

′
1+dj&

′′
j �

and these components will have unit modulus: �cj� = �dj� = 1. We can now choose
representatives �′

j and & ′
j

�′
j =

1
cj

�′′
j � & ′

j =
dj

cj
& ′′
j (A.8)

such that

�′
j =

1
cj
�cj&

′
1+dj&

′′
j �= & ′

1+& ′
j � (A.9)

We have thus defined an operation on vectors of �

&1+&j → �&1+&j�
′ = & ′

1+& ′
j

such that & ′
1 ∈ T&̃1, &

′
j ∈ T&̃j , and & ′

1+& ′
j ∈ T ˜�&1+&j�. Let us now try to determine if it

is possible that an arbitrary vector 1 transforms as

1 =
N∑
k=1

ck&k → 1′ =
N∑
k=1

c′k&
′
k�
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If such a transformation law is valid, we must have, on the one hand,

�c′k� = ��& ′
k�1

′�� = ��&k�1�� = �ck��
and on the other,

�&1+&j�1�= c1+ cj� �& ′
1+& ′

j�1
′�= c′1+ c′j�

which according to (A.3) implies that

�c1+ cj� = �c′1+ c′j�� (A.10)

The two pairs of complex numbers �c1� cj� and �c′1� c
′
j� must be such that �c1� = �c′1� and

�cj� = �c′j� and they must also satisfy (A.10). We set

c1 = �c1� ei 1� cj = �cj� ei j �

c′1 = �c′1� ei ′1� c′j = �c′j� ei ′j �

The angles � 1�  j� and � ′1�  
′
j� are related by the equation

cos� 1− j�= cos� ′1− ′j�� (A.11)

which has two solutions

 1− j =  ′1− ′j� (A.12)

 1− j = −� ′1− ′j�� (A.13)

Let us examine the first case. We can redefine the phase of 1′ such that c′1 = c1 and then
 ′1 =  1. In this case  ′j =  j and c′j = cj , and so

1′ =∑
k

ck&
′
k�

If we consider another vector ,=∑k dk&k again with d′1 = d1, we will have

�
1+�,�′ =∑
k

�
ck+�dk�&
′
k = 
1′ +�,′�

By a suitable choice of phase the transformation T can be chosen to be linear, and
since it conserves the modulus of the scalar product, it is also unitary: T → U with
U†U = UU† = I .

In the second case we redefine the phase of 1′ such that c′1 = c∗1. We then have c′j = c∗j
and

1′ =∑
k

c∗k&
′
k�

The transform of 
1+�, then is

�
1+�,�′ =
[∑

k

�
ck+�dk�&k

]′
= 
∗1′ +�∗,′� (A.14)



The Wigner theorem and time reversal 555

and the transformation law of the scalar product is

�1′�,′�= �1�,�∗ = �,�1�� (A.15)

The transformation takes T → V , where V is termed antiunitary. It is antilinear and
conserves the norm.
The preceding proof is actually incomplete. In fact, it should be shown that it is not

possible to have (A.12) for cj and (A.13) for cl� l �= j. The proof that this cannot happen
is cumbersome and we leave it to the reader;1 it requires examining the behavior of the
transform of a vector 1 = &1+&j+&l.

A.2 Time reversal

In classical mechanics, Newton’s equation

m
d2�r�t�
dt2

= �F��r�t��
is invariant under time reversal t→−t. If we take �r ′�t�= �r�−t�, then

m
d2�r ′�t�
dt2

=m
d2�r�−t�

dt2
= �F��r�−t��= �F��r ′�t���

One observes that �r ′�t� also obeys Newton’s equation. The reason is obviously that this
equation depends only on the second derivative of �r with respect to time and not on
the first derivative.2 An intuitive image of time reversal is the following: we imagine
that we follow the trajectory of a particle from t = −� to t = 0 and that at t = 0 we
abruptly reverse the direction of the momentum (or velocity): �p�0�→−�p�0�. Under these
conditions the particle “retraces” its trajectory, passing at time t the position it had at
time −t with momentum in the opposite direction (Fig. A.1):

�r ′�t�= �r�−t�� �p ′�−t�=−�p�t�� (A.16)

The position vector �r is even under time reversal while �p is odd. Invariance under time
reversal is called microreversibility. If we film the motion of some particles and then
run the film backward, then microreversibility implies that this projection appears to
be physically possible.3 We know that this is not the case in everyday life, which is
fundamentally irreversible, and it is not yet completely clear,4 even to this day, how a

1 See Weinberg [1995], Chapter 2, where all the subtleties of the proof are explained in detail.
2 An equation like that of the damped harmonic oscillator

mẍ+�ẋ+m�2x = 0

is not invariant under time reversal, but the viscosity force −�ẋ is an effective force, phenomenologically representing the
effect of collisions with the fluid molecules on the particle of mass m.

3 The analogy with parity conservation is obvious; the image of an experiment in a mirror appears to be physically possible if
parity is conserved.

4 As already shown by the heated discussions between Boltzmann and his adversaries. See, for example, Balian [1991],
Chapter 15, or Le Bellac et al. [2004], Chapter 2.
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t=0

–t t

O O

(b)(a)

p(0)
→

–p(0)
→

r(–t)

p(–t)
r(t)
→

→

→

→

→

p(t) = –p(–t)

Fig. A.1. Time reversal on a classical trajectory.

dynamics which is reversible at the microscopic scale can lead to phenomena which are
irreversible at the macroscopic scale.
Let us now return to quantum mechanics, using 6 to denote the operator that performs

time reversal in � . This operator must transform �R, �P, and �J as

6 �R6−1 = �R�
6 �P6−1 = −�P� (A.17)

6 �J 6−1 = −�J�
Actually, �J must transform as �R× �P, which is odd under time reversal: the angular
momentum defines a sense of rotation which is reversed by time reversal. Examination
of the 6 transformation of the canonical commutation relations shows that 6 must be
antiunitary. Let us calculate a matrix element of the commutator �Xi�Pj�= i��ijI in two
different ways:

�6��6�Xi�Pj�1� = �6��6i��ijI1�= �ij��� i�1�
∗ = −i��ij���1�

∗

= �6��6�Xi�Pj�6
−161�= �6��−i��ijI61�=−i��ij���1�

∗�

where in the second line we have used the transformation laws (A.17) for Xi and Pj:

6�Xi�Pj�6
−1 =−�Xi�Pj��

The two lines of the preceding equation are compatible, which would not be the case if
the 6 transformation were unitary.
There is another very instructive argument proving the antiunitarity of 6. Let ��t� be

the state vector of a quantum system at time t, and let � = ��t = 0� be its state at time
t = 0:

��t�= exp
(
− i

�
Ht

)
��
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Invariance under time reversal implies that the state transformed from ��−t� by time
reversal, 6��−t�, coincides with the state obtained by the time evolution of 6��0�:

6��−t�= exp
(
− i

�
Ht

)
6��

and since these equations are valid for all �,

6 exp
(
i
�
Ht

)
= exp

(
− i

�
Ht

)
6� (A.18)

If 6 were unitary, this would imply that

6H =−H6�

and to any eigenvector �E of H with energy E there would correspond an eigenvector
6�E of energy −E. Under these conditions the energy would not be bounded below and
a fundamental instability would exist. If on the contrary 6 is antiunitary, since

6iH =−i6H�

(A.18) implies that

6H =H6 or 6H6−1 =H� (A.19)

This equation expresses the invariance of H under time reversal. However, in contrast to
the parity operator 5, 6 does not lead to a conserved quantity, because (8.17) implies
that the operator A is Hermitian, which is not the case with 6. It is known that all
the fundamental interactions of physics are invariant under time reversal except for an
extremely weak interaction whose effects are seen only in the K0–K0-meson system
(Exercise 4.4.8), and also very recently in the system of B mesons, which are formed of
an ordinary quark and a bottom (b) antiquark or vice versa.
A double time reversal obviously does not have any effect, and the state 62� is

equivalent to �, 62 = cI , where c is a phase factor. The chain of equalities

�6�a��b�= �6�b�6
2�a�= c�6�b��a�= c�6�a�6

2�b�= c2�6�a��b�

shows that c2 = 1, so that c =±1. In the case where c =−1, the choice �a = �b in the
preceding equation implies that

�6�a��a�= 0� (A.20)

If c = −1 and H is invariant under time reversal, the eigenstates of H can be arranged
as pairs of states which are degenerate under time reversal. Let � be an eigenvector of
H , H�= E�. Then

H�6��=6�H��= E�6��

and 6� is an eigenvector of H with eigenvalue E: if �6���� = 0, there exist (at least)
two eigenstates of H with eigenvalue E. This property is called Kramers degeneracy.
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Taking into account the transformation properties of �J (A.17), we must have

6�jm� = ei� �−1�j−m�j�−m�� (A.21)

where by applying J+ and J− it can be shown that � can depend on j, but not on m. The
antilinearity of 6 can be used to show that

62�jm� = �−1�2j�jm� (A.22)

and so 62 = I if j is an integer or 62 =−I if j is a half-integer. The Kramers degeneracy
then implies that a system with an odd number of electrons possesses energy levels that
are doubly degenerate in the absence of a magnetic field. The presence of a magnetic
field breaks the invariance under time reversal, because in order to respect this invariance
it would be necessary to reverse the direction of the currents producing this field. The
reason the Zeeman effect completely lifts the level degeneracy is that the magnetic field
breaks the invariance under time reversal.
Invariance under time reversal implies that for a transition amplitude �a→b

�a→b = �6b→6a� (A.23)

where 6a (6b) is the state obtained from a (b) by time reversal, by reversing all the
momenta and angular momenta. We can derive, for example, the relation for the scattering
amplitude used in Section 12.3.2:

f��k ′� �k�= f�−�k�−�k ′��

and, more generally, for a reaction in which the incident particles have momenta ��p1� �p2�

and spin projections �m1�m2� and the final particles have ��p3� �p4� and �m3�m4�,

fm1�m2*m3�m4
��p1+ �p2 → �p3+ �p4�= f−m3�−m4*−m1�−m2

�−�p3− �p4 →−�p1− �p2��

For a particle without spin, the operation of time reversal is simply complex conjugation.
If 1��r� t� satisfies the Schrödinger equation

i�
21��r� t�

2t
=− �2

2m
�21��r� t�+V��r�1��r� t��

the function 61��r� t�= 1∗��r�−t� satisfies

i�
21∗��r�−t�

2t
=− �2

2m
�21∗��r�−t�+V��r�1∗��r�−t�

provided the potential V��r� is real. This property has been used in Sections 9.4.1 and 9.4.3
to restrict the form of the transmission matrix M and of the S matrix.
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As a final example, let us examine the impact of invariance under time reversal on the
neutron electric dipole moment. Since the dipole moment operator �D is odd under parity,

5 �D5−1 =−�D�

the dipole moment5 of a particle is zero if this particle has definite parity, which will
be the case if its interactions conserve parity. This is why atoms in their ground state
do not have a permanent dipole moment. However, parity is not conserved in the weak
interactions, and this can a priori restore the possibility of a dipole moment. In fact, it
is also necessary that invariance under time reversal be violated. The only vector at our
disposal is the neutron spin ��/2, and we must have �D= 
� , where 
 is a constant. We
note that 
 �= 0 implies parity violation because �D is a vector and � is a pseudovector.
The coupling �D · �E of a dipole to an electric field is odd under time reversal and must
vanish if there is invariance under time reversal, because according to (A.17) � is odd
and �E is even; under time reversal, charges are not changed (but currents are reversed,
as we have seen above). If we send a neutron possessing an electric dipole moment in
nonuniform, constant electric and magnetic fields and at t= 0 reverse the neutron velocity
and the currents creating the magnetic field, then, in contrast to the case in Fig. A.1, the
neutron will not “retrace” its trajectory.
Let us try to estimate the neutron dipole moment by a dimensional argument. This

dipole moment must involve weak interactions and therefore the Fermi constant GF

(Exercise 12.5.6), or, more precisely, the combination GF/��c�
3, and a dimensionless

parameter � measuring the importance of the violation of time-reversal invariance. Its
order of magnitude can be estimated to be about 10−3 based on study of neutral K mesons.
We also have a mass at our disposal, the neutron mass mn � 1GeVc−2. By dimensional
analysis the only possible solution is

d ∼ qe
GF

��c�3
�mn��c

3��

It is convenient to use a system of units in which � = c = 1�200 MeV� 1 fm−1

(Exercise 12.5.1), or 1 fm� 5GeV−1:

d ∼ qe×10−5×10−3×1= qe×10−8 GeV−1 ∼ qe×10−9 fm = qe×10−24 m�

The most precise measurements of the neutron dipole moment have been made at the
research reactor of the Laue–Langevin Institute in Grenoble and give the upper bound

d <∼ qe×10−27 m�

which strongly disagrees with our naive estimate! In fact, owing to a technical feature of
the Standard Model,6 the neutron dipole moment must be proportional to G2

F:

d ∼G2
F �m

3
n��c

7�� qe×10−29 m�

5 For a particle to have nonzero electric dipole moment, it is imperative that its angular momentum be nonzero. If that is not
the case, rotational invariance is incompatible with the existence of a dipole moment.

6 See, for example, J. Donoghue, E. Golowich, and B. Holstein, Dynamics of the Standard Model, Cambridge: Cambridge
University Press (1992), Chapter IX.
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The theoretical estimates of the neutron dipole moment are not very accurate and gen-
erally lie somewhere near qe× 10−32 m; our estimate is reduced by a factor of ∼10−3

because perturbative calculations using the Standard Model lead to a multiplicative numer-
ical factor of �−4 � 10−2 and suggest that a typical mass of order 0�3 GeV be used
instead of mn.



Appendix B Measurement and decoherence

In this appendix we shall describe in more detail how the experiment of Brune et al.
mentioned in Section 6.4.1 provided evidence of the phenomenon of decoherence in an
entirely controlled manner. In addition to its intrinsic interest, this experiment is a prime
example of actual experiments which allow the fundamentals of quantum mechanics to
be tested with a precision undreamed of by its founders, and the study of this experiment
constitutes a beautiful exercise in quantum physics. It will also allow us to give a small
sample of the current ideas on the notion of measurement in quantum mechanics.1 We
shall first return to the interference experiment of Section 1.4.4, this time discussing it
within the framework of an elementary theory of measurement. Then we shall examine
the realization of Ramsey fringes using Rydberg atoms, and show how the interaction of
these atoms with an electromagnetic field progressively blurs these fringes when we try
to answer the “which of the two trajectories?” question. Finally, we shall show how the
use of a pair of atoms allows decoherence to be tested.

B.1 An elementary model of measurement

Let us return to the discussion of the Young’s slit experiment with the trajectories labeled
as in Fig. 1.13, enlarging on it with the introduction of a mathematical formulation. Let
c1�x� [c2�x�] be the complex probability amplitude for an atom to be localized at a point x
on the screen after having passed through slit 1 [2]. The (arbitrary) normalization is fixed
by �c1�x��2 = �c2�x��2 = 1. In the absence of any device for observing the trajectories, the
probability of arriving at a point x on the screen is

p�x�= 1
2

(�c1�x��2+�c2�x��2+2Re �c1�x�c
∗
2�x��

)
� (B.1)

The last term in (B.1) is of course the interference term. The probability amplitude c1�x�
is the product of the amplitude2 
�1�S� for an atom emitted by the source S to be localized

1 A very complete discussion of measurement theory can be found in the 1989–1990 course at the Collège de France by
C. Cohen-Tannoudji (in French, available from the website www.lkb.ens.fr). The current ideas on measurement owe a great deal
to the work ofW. Zurek, a pedagogical discussion of which can be found inW. Zurek, Physics Today, October 1991, p. 36.

2 With, for example, 
�1�S� ∝ exp�ikr1S�/r1S , where k is the modulus of the wave vector of the atom and r1S is the modulus
of the vector joining the source to slit 1; cf. Feynman et al. [1965], Vol. III, Chapter 3.
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at slit 1 and the amplitude 
x��1� for an atom emitted by slit 1 to be localized at x on
the screen. There is an analogous expression for c2�x�, and so

c1�x�= 
x��1�
�1�S�� c2�x�= 
x��2�
�2�S��

It is convenient to include the amplitudes 
�1�S� and 
�2�S� in the definition of the
atomic states ��1� and ��2� and write simply

c1�x�= 
x��1�� c2�x�= 
x��2�� (B.2)

The states ��1� and ��2� are assumed to be normalized and orthogonal, because they are
localized at different slits and their wave functions do not overlap. Let us now place the
cavities C1 and C2 of Fig. 1.13 in front of the slits and let �&10� be the state where C1

contains one photon and C2 zero photons, and �&01� be the state describing the opposite
situation. The atom + photon state is then an entangled state �-�:

�-� = 1√
2

(
��1�⊗ �&10�+ ��2�⊗ �&01�

)
� (B.3)

and the corresponding state operator is

�tot = �-�
- � = 1
2

[
���1�
�1��⊗ ��&10�
&10��+ ���2�
�2��⊗ ��&01�
&01��

+ ���1�
�2��⊗ ��&10�
&01��+ ���2�
�1��⊗ ��&01�
&10��
]
� (B.4)

Let us now seek the reduced state operator of the atom alone using (6.34):

�at = Trphot �tot =
1
2

[
��1�
�1�+ ��2�
�2�+

(
&01�&10���1�
�2�+H�c�
)]

� (B.5)

where H.c. denotes the Hermitian-conjugate expression. In the basis (��1�� ��2�) the
matrix form of this result is

�at =
1
2

(
1 
&01�&10�


&10�&01� 1

)
� (B.6)

We recall that the off-diagonal elements of �at are called coherences. In the scheme of
Fig. 1.13, the states �&10� and �&01� are orthogonal: 
&10�&01� = 0, which reflects the
localization of the photons in two different cavities such that their wave functions do
not overlap. Under these conditions the state matrix (B.6) is diagonal. It is instructive to
consider a more general situation, where the photon associated with passage of an atom
through slit 1 is not completely localized in the cavity C1, but has a certain probability
of leaking toward C2, and vice versa for the photon associated with passage of an atom
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through slit 2. Under these conditions the observation of a photon in C1 or C2 does not
allow a definite labeling of the atomic trajectory. We easily obtain the probability p�x�
of arriving at a point x on the screen:

p�x�= Tr
(
�x�
x��at

)
= 1

2

(
�c1�x��2+�c2�x��2+2Re �c1�x�c

∗
2�x�
&01�&10��

)
� (B.7)

The photon emitted in C1 or C2 performs a measurement = labeling of the trajectory, or,
more precisely, a premeasurement, and this premeasurement corresponds to the formation
of an entangled state (B.3), that is, to the establishment of quantum correlations between
the atom (the system) and the photon (the measuring device). The possible interferences
are contained in the coherences of the reduced state matrix (B.6), and these interferences
vanish if the coherences are zero, when �&10� and �&01� are orthogonal. In this case the
measurement of the trajectory is unambiguous. It is not necessary for the photon to be
observed, or, in other words, for the measurement result to be recorded, in order to
obtain (B.7). It is the entanglement of the photon with the atom and the orthogonality
of the states �&10� and �&01� that destroy the coherences. On the contrary, if the states
�&10� and �&01� are not orthogonal, the measurement of the trajectory is not unambigu-
ous, and the interferences are only partially blurred, the blurring being more important
the closer 
&10�&01� is to zero. In the limit where �
&10�&01�� = 1, the device gives no
information on the trajectories, the interferences are completely re-established, and we
recover (B.1).
The preceding discussion can be generalized to an elementary measurement model.

Let us suppose that we wish to make a measurement on a quantum system S which can
be found in one of N states ��n� belonging to the space of states � �N �

S of dimension N .
The first phase of the measurement, which we shall call the premeasurement phase, is
performed using an interaction between S and another quantum systemM , the “measuring
device.” In the above example, the atom is the system S and the photon is the measuring
device M . If S is initially in the state ��n� and M is in the state �&�, we assume that the
interaction between S and M has the following effect:

��n�⊗ �&� =⇒ ��n�⊗ �&n��
where �&� and �&n� belong to a Hilbert space�M . An explicit mechanism giving this type
of result is described in Exercise 9.7.14. It is crucial to note that the evolution during the
premeasurement phase where S and M interact is unitary and governed by an evolution
equation of the type (4.11) with a Hamiltonian HS+M . The reading of the final state of M
makes it possible to recover the initial state ��n� of S: M is a “needle” whose “position”
�&n� gives the state of S. The linearity of quantum mechanics implies that if the initial
state of S is the linear superposition ��� =∑N

n=1 cn��n�, the result of the premeasurement
is given by

���⊗ �&� =
(

N∑
n=1

cn��n�
)
⊗�&� =⇒

N∑
n=1

cn��n�⊗ �&n��



564 Appendix B

The result is an entangled state of S+M . We easily calculate the reduced density operator
of S using (6.34):

�S = TrM �S+M =
N∑

n�m=1

cnc
∗
m��n�
�m�
&m�&n�� (B.8)

If the states �&n� are orthogonal, 
&n�&m� = �nm, the result of the measurement is
unambiguous, because the observation of M determines the state of S uniquely, and the
coherences of �S vanish:

�S =
N∑

n=1

�cn�2��n�
�n�� (B.9)

The reduced state operator �S is completely different from the initial state operator
�in
S of S:

�in
S =

N∑
n�m=1

cnc
∗
m��n�
�m�� (B.10)

The coherences have vanished in going from (B.10) to (B.9). Only the information on
the probabilities �cn�2 of finding S in the state ��n� is conserved. However, the situation
is still reversible: as long as the system S+M remains closed, only a premeasurement
has been made, not a true measurement, and the information on the phases has not been
lost in the full S+M system. Moreover, it is possible to use a basis of �M other than
the basis (�&n�); this new basis is coupled to a basis of �S which is different from the
basis (��n�), and physical properties different from those measured in the former case are
associated with it. There are therefore ambiguities in the physical properties of S which
are measured by M . However, the interactions of M with its environment, which have
not been taken into account up to now, will select a preferred basis of pointer states, thus
lifting the ambiguities.

B.2 Ramsey fringes

Let us now discuss the experiment of Brune et al. The experimental setup is shown in
Fig. 6.10. Rubidium atoms in a circular Rydberg state (Exercise 14.6.4) are prepared at
O. A Rydberg state of rubidium (which is an alkali atom) is an atomic state in which the
outer electron of the atom is located in an orbit of very high principal quantum number
n, and so the size of the atom is very large compared with the Bohr radius a0. Moreover,
the orbital angular momentum is made to take its maximum value l = n− 1, as is the
magnetic quantum number �m� = l. Under these conditions a circular Rydberg state is
obtained, that is, a state in which the orbit is circular and the electron is confined in a very
thin torus about the average radius of the orbit � n2a0 � 125 nm. In the experiment the
two Rydberg states that are used correspond to n= 50 (denoted �g�) and n= 51 (denoted
�e�). These states are separated in energy by 0.21 meV, which corresponds to a frequency
�0 = 3�21× 1011 rad s−1 (� = 51�1 GHz). Owing to the choice of circular orbits, these
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states have a very long lifetime, of order 30 ms, on the atomic scale, and the probability
of spontaneous decay during their flight between O and the detectors D is negligible.
The atoms are detected by selective ionization detectors De and Dg, because the states e
and g are ionized by different fields. The efficiency of the detectors, that is, the probability
that De is triggered by e and Dg by g, is of order 40%, while the probability of triggering
by the “wrong” state is a few percent.
At first the cavity C is empty and the atoms are subjected to a radiofrequency field

��t�= E0 cos��t−'� (B.11)

in the cavities R1 and R2, where the value of ' depends on the cavity. The frequency �

is close to the resonance frequency �0 and the detuning is � = �−�0. To an excellent
approximation the atom+field system is described by a two-level system �e� and �g�
interacting with a classical field (B.11). This system has been studied in detail in Chapter 5,
and we can immediately use Equations (5.32) with only trivial modifications to take into
account the phase ' in (B.11). It is convenient to revert to the notation of Chapter 5 and
to define

�g�→ �+�� �e�→ �−�� Ee−Eg → E−−E+ = ��0 > 0�

The solution of the evolution equations with the initial conditions �+�0�= 1, �−�0�= 0
is, when ' �= 0,

�+�t�= cos
�1t

2
�

�−�t�=−i ei' sin
�1t

2
�

(B.12)

where the functions �±�t� are defined in (5.26). The solution of the evolution equations
with the initial conditions �+�0�= 0, �−�0�= 1 is obtained without calculation by noting
that it is sufficient to make the substitutions +↔− and '→−' in (B.12):

�+�t�=−i e−i' sin
�1t

2
�

�−�t�= cos
�1t

2
�

(B.13)

If the time to cross the cavity R is adjusted such that �1t/2 = �/4, that is a �/2 pulse,
an atom entering the cavity in the state �+� leaves according to (B.12) in the state ��+�,

��+� =
1√
2

(�+�− ie i' �−�) � (B.14)

and one entering in the state �−� leaves according to (B.13) in the state ��−�,3

��−� =
1√
2

(−ie−i' �+�+ �−�) � (B.15)

3 We can get rid of the factors of i by redefining the phase of the states �±� and returning to the phase conventions of
Section 6.4.1.
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The two cavities are fed symmetrically by the same source S and are therefore exactly in
phase. It is always possible to choose '= 0 for R1, but for R2 we must take into account
the time T to travel between R1 and R2, with '=−�T . Although we are at resonance
�= �0, we shall formally retain the two frequencies � and �0 for later use. Taking into
account (B.14) and the different free time evolution of the states �+� and �−� during time
T , if an atom enters the cavity R1 in the state �+�, it will arrive in the cavity R2 in the
state ��′�:

��′� = 1√
2

(�+�− ie−i�0T �−�) � (B.16)

Now using (B.14) and (B.15) and the value '=−�T , we can state that the atom leaves
R2 in a state �1�:

�1� = 1
2

[(
1− ei�T

) �+�− ie−i�0T
(
1+ e−i�T

) �−�] � (B.17)

since as already mentioned we have formally retained � even though �= 0 at resonance.
Actually, the two frequencies � and �0 play different roles: �0 controls the free time
evolution and � controls the phase '. It is therefore possible to identify their respective
roles. If we take �= 0 in (B.17), the global effect is �1� ∝ �−�, which was to be expected
because we have effectively applied a �-pulse to the atom, thus transforming a state �+�
into a state �−�.
The evolution equations in the nonresonant case have been solved in Section 5.2.2,

and the result for the initial conditions �+�0�= 1, �−�0�= 0 is

�+�t�=
ei�t/2

+

[
+ cos

+t

2
− i� sin

+t

2

]
�

�−�t�=− i�1

+
ei�'−�t/2� sin

+t

2
�

(B.18)

The result for the initial conditions �+�0� = 0, �−�0� = 1 is again obtained without
calculation by making the substitutions +↔−, �→−�, and '→−' in (B.18).

We choose the detuning � to be nonzero, but sufficiently small that ���/+	 1. Then �

can be neglected, except in terms involving exp�i�T �, because there is no reason for �T
to be small compared with unity. We then recover the results of the nonresonant case, but
� in (B.17) is explicitly nonzero. If the atom has entered the cavity R1 in the state �+�,
the probability p++ of finding it in the state �+� at the exit from R2 is given from (B.17):

p++ =
1
4

∣∣∣1− ei�T
∣∣∣2 = 1

2
sin2

�T

2
� (B.19)

We therefore predict that p++ varies with � with period T = 2�/�, a phenomenon called
Ramsey fringes. Experiment confirms the existence of these fringes with a good contrast
of about 55% (Fig. B.1a).
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Fig. B.1. Ramsey fringes. (a) Empty cavity; (b) to (d) average number of photons 
n� = 9�5. The
column on the right gives the overlap of the coherent states �z±�; see Fig. 6.11. From M. Brune
et al., Phys. Rev. Lett. 77, 4887 (1996).

B.3 Interaction with a field inside the cavity

The superconducting cavity C now contains an electromagnetic field in a coherent
state (11.31) of an eigenmode of frequency �C � �0 of the cavity, with a detuning
�C = �C−�0 �= 0:

�z� = exp
(
−�z�

2

2

)
exp�a†z��0�� (B.20)

where �0� is the vacuum of the electromagnetic field in the mode under consideration
(the zero-photon state). The complex number z± is defined as

z± = �e±i%�

where � is a real positive number; �2 is the average number of photons 
n� in the cavity,
�2 = 
n�. Since the atom and the field are not in resonance, there is no photon emission
or absorption during the passage of the atom through C. Away from resonance the atom
acts like a medium of index of refraction �= 1 and the passage of the atom through C

has the effect of changing the phase of the field by an angle ±% depending on whether
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the atom is in the state �+� or the state �−�:4 the electromagnetic field inside the cavity
measures the state of the atom, with % acting as the needle on the measuring device. The
state of the field left inside the cavity theoretically5 makes it possible to identify the state
of the atom which has crossed C. The scheme is exactly the same as that described in
Section B.1, with �±� playing the role of ��n� and �z±� that of �&n�.
When there is no field in the cavity, an atom initially in the state �+� will arrive at R2

in ��′� (B.16). The presence of the field inside the cavity has the effect of creating an
atom + field entangled state �- ′� at the entrance of R2:

�- ′� = 1√
2

(�+�⊗�z+�− ie−i�0T �−�⊗�z−�
)
�

while at the exit of R2, instead of (B.17) we find

�-� = 1
2

(
�+�⊗

[
�z+�− ei�T �z−�

]
− ie−i�0T �−�⊗

[
e−i�T �z+�+ �z−�

])
� (B.21)

We can then obtain p++:6

p++ =
1
4

(

z+�z+�+
z−�z−�−2Re

[
ei�T
z+�z−�

])
�

The coherent states �z±� are normalized, 
z±�z±� = 1, and the scalar product 
z+�z−� is

z+�z−� = exp

(−2�2 sin2%
)
exp
(−i�2 sin 2%

)
� (B.22)

Substituting these values into p++, we obtain the final result

p++ =
1
4

[
1− exp�−2�2 sin2%� cos��T −�2 sin 2%�

]
� (B.23)

This expression shows that the Ramsey fringes are blurred and that the factor responsible
for this blurring is exp�−2�2 sin2%� coming from 
z+�z−�: the fringes are more blurred
the larger the average number of photons �2 and the larger the phase shift % (Fig. B.1).
The quantity 2� sin% has an interesting geometrical interpretation: it is the distance in the
complex z plane between the centers of the circles representing the quantum fluctuations
of the electric fields (Fig. 6.11). These results can be interpreted in terms of paths in
a Hilbert space. The probability amplitude a++ of observing an atom in the state �+�
at the exit of R2 when this atom entered R1 in the state �+� is the sum of two terms

4 % can be calculated explicitly:

% =
√

�

2
+2

R

�C
TC�

where +R is the vacuum Rabi frequency in the cavity (Exercise 14.6.6) and TC is the duration of the passage through C.
Using the experimental numbers, +R � 47 kHz, �C/2� � 100 kHz, TC � 20�s, and %� 0�7 rad. % can be varied by varying
the detuning �C .

5 But not in practice using current technology! However, it is not necessary that the measurement actually be made; it is
sufficient that we can imagine making it.

6 The careful reader can verify this result by calculating the reduced state matrix of the atom.
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corresponding to the possible intermediate states �+� and �−� given by (B.17) when C is
empty:

a++ = a++++a+−+ =
1
2
− 1

2
exp�i�T ��

These two paths (in Hilbert space!) are indistinguishable when there is no field in the
cavity C. When there is a field in the cavity, the passage of the atom through the cavity
leaves a trace by changing the phase of the field by ±%, and this trace is different
depending on the state �±� of the atom. We can therefore distinguish between the two
paths and the interference pattern is blurred. The degree of blurring is controlled by the
overlap of the states �z+� and �z−�. In the limit where these states are orthogonal, the
paths are completely distinct and the fringes are destroyed. In the opposite limit, when the
angle �%� 	 1, the state of the field does not allow the paths to be distinguished and the
fringes remain. This experiment is a concrete realization of one proposed by Feynman for
distinguishing between the two trajectories in a Young slit experiment (cf. the discussion
of Section 1.4.4). However, our discussion makes it evident that the destruction of the
interference pattern does not arise from any perturbation of the atomic trajectories, but
from the possibility of labeling the two paths.

B.4 Decoherence

Let us return to the connection with the general discussion of measurement in Section B.1.
The system S is the atom which crosses the experimental apparatus, the measuring device
M is the field, and the position of the needle is the phase shift ±% of the field after
passage of the atom in the state �±�. According to (B.21), after the atom has passed
through the cavity the measuring device is left in the state

�Z� = 1√
2

[
�z+�∓ ei�T �z−�

]
� (B.24)

depending on the result of the detection. For an operation to truly be a measurement, it is
necessary that there be a one-to-one correspondence between the state of the measuring
device (the field) and the system (the atom):

�+�←→ �z+�� �−�←→ �z−��
However, this is not always the case: after passage through the cavity the state �+�
corresponds to a linear superposition (B.24) of the states �z+� and �z−�. This is a symptom
of the ambiguity mentioned at the end of Section B.1.
Moreover, the state (B.24) is a Schrödinger’s cat (Section 6.4.1),7 that is, a linear

superposition of two positions of the needle on the meter of the measuring device. If we
compare the states �z±� to classical states, which will be correct when there are a large
number of photons in the cavity, and if % is the position of the needle, the state (B.24)

7 Since the measuring device is at best mesoscopic, it is a kitten rather than a cat.
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is a linear superposition of two positions of this needle. To explain why such states are
never observed, at least in the limit where the measuring device is macroscopic, it is
necessary to consider the coupling of M to the environment E. In fact, it can be shown
in a general way that an interaction S+M is not sufficient for making a measurement of
S: it is also necessary to introduce a coupling of M to the environment in order to make
a real measurement. As long as no information is leaked to the environment the situation
remains reversible, that is, we remain in the premeasurement stage, and the entanglement
S+M can be manipulated as above. It is the leakage of information to the environment
that makes the measurement irreversible. The coupling of the measuring device to the
environment leads to the phenomenon of decoherence: the quantum coherences of M

with S are destroyed in a very short time such that only the states of a preferred basis
in the Hilbert space of M are physically observable, and linear superpositions of such
states, the Schrödinger’s cats, are eliminated. The states of the preferred basis are the
classical states of M , which are fixed by the form of the interaction of M with the
environment. Consequently, the physical properties of S that are measured by M are also
well determined: the quantum correlations betweenM and S are transformed into classical
correlations and the ambiguity in the physical properties measured by M is removed.
In Section 15.4.5 we proved the following results for a linear superposition of two

wave packets describing a Brownian particle:

• the decoherence time is inversely proportional to the diffusion coefficient;
• this time is the shorter the larger the “distance” a between the two linearly superimposed states
in (B.24).

For a sufficiently large particle the decoherence time is infinitesimally short compared
with the characteristic time of the quantum evolution. Moreover, the environment selects
the basis of the position states as the privileged basis, because it very rapidly destroys
the coherences between different position states.
In the experiment of Brune et al., the decoherence time TD is estimated as follows.

The lifetime of a photon inside the cavity is Tr = Q/� � 160�s, where Q is the qual-
ity factor. The leakage of a single photon is sufficient to destroy the coherence of the
superposition (B.24) and this occurs after a time TD ∼ Tr/
n�. More precisely, the “dis-
tance” between the two superimposed states is a= 2
n�1/2 sin% (Fig. B.2), and according
to (15.148) we expect the decoherence time to be inversely proportional to a2:

TD �
Tr

4
n� sin2%� (B.25)

The principle of measuring TD is the following. A second atom is sent into the cavity
C with a variable delay � after the first in order to probe the field in the state in which
it has been left by the passage of the first atom. Let p��1�2�

be the joint probability of
detecting the first atom in the state �1 = ± and the second atom in the state �2 = ± at
the exit of R2. The passage of the first atom in the state �+�1 shifts the phase of the field
by +%, and that of the second atom in the state �−�2 shifts it by −%, so that the total
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phase shift is zero. It is clear that a phase shift of zero is also obtained when the order is
reversed, �−�1 followed by �+�2, as the trajectories (in the Hilbert space) �1+�2−� and
�1−�2+� are indistinguishable, and this property is what leads to the interferences in the
joint probabilities p��1�2�

. It can be shown that the quantity

,= p�1−�2−�

p�1−�2−�+p�1−�2+�

− p�1+�2−�

p�1+�2−�+p�1+�2+�

(B.26)

is 1/2 if the two states of the field are coherent and zero if they form a statistical mixture.
Measurement of ,, which is controlled by the coherences of the state matrix, permits
recovery to the degree of partial coherence preserved after a time � (Fig. B.2). The
experimental results confirm the expected properties in every point.
Returning to the general analysis of Section B.1, once the measurement has been com-

pleted, the state operator of S is given by an incoherent superposition (B.9). In this sense
the WFC postulate is a consequence of the measurement operation, and this postulate
is convenient but not independent of the other postulates. In the case of two consecu-
tive measurements, if the interaction of the measuring devices with the environment is
taken into account it is possible to calculate the probabilities of results of the second
measurement without resorting to the wave-function collapse postulate, and the results
will be the same as those obtained when this postulate is used. On the other hand, pos-
tulate II remains completely outside the scope of decoherence:8 this postulate tells us
that the probability of the result ��n� is �cn�2, but it is a unique result which is obtained

τ / Tr

0 1 2

0

0.1

0.2

Fig. B.2. Time falloff of the coherence. The solid line corresponds to a large angle 2% between
the two coherent states, and the dotted line corresponds to two strongly overlapping states. From
M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996).

8 We recall that the prescription of the partial trace, which we have used intensively in this appendix, is a consequence of
postulate II.
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in a particular measurement, with a certain probability. All the possible results appear
in (B.9), but there is nothing that can explain why one particular result will emerge from a
particular experiment. No unitary evolution of the type (4.11) can explain this uniqueness
of the result, and so far there is no known justification – assuming that this term even
makes sense in this context – of postulate II.



Appendix C The Wigner–Weisskopf method

The derivation of the Fermi Golden Rule in Section 9.6.3 is limited to sufficiently short
times t	 �2, and the exponential decay law (9.171) cannot be justified using only the
arguments of that section. A method due to Wigner and Weisskopf permits this law
to be justified for long times with the help of another approximation scheme.1 Let us
consider the following situation. A state of an isolated system a of energy Ea decays to
a continuum of states b of energy Eb. Examples of such a situation are the de-excitation
of an excited state of an atom, a molecule, a nucleus, and so on with the emission of a
photon, or the decay of an elementary particle. The states of energy Ea and Eb are the
eigenstates of a Hamiltonian H�0�:

H�0��a� = Ea�a�� H�0��b� = Eb�b�� (C.1)

and a time-independent perturbation W is responsible for the transition a→ b; in the
case of spontaneous photon emission, W is given by (14.58). The states a and b are
not stationary states of the total time-independent Hamiltonian H = H�0�+W . We can
assume that the diagonal matrix elements of W are zero:2 Waa = Wbb = 0 and we use
�1�t�� to denote the state vector of the system, the initial state being �1�t = 0�� = �a�.
Let us decompose the state �1�t�� on the states �a� and �b� using the density of states
��Eb�:

�1�t�� = �a�t�e
−iEat/��a�+

∫
dEb��Eb��b�t� e

−iEbt/�� (C.2)

The Schrödinger equation applied to the decomposition (C.2)

i�
d�1�t��

dt
= (H�0�+W

) �1�t�
1 The method of Wigner and Weisskopf is described by Cohen-Tannoudji et al. [1977], Complement DXIII , and by Basdevant
and Dalibard [2002], Chapter 17; a detailed and rigorous treatment is given by Messiah [1999], Chapter XXI.

2 If this were not the case, we could redefine H�0�:

H�0� →H�0� ′ =H�0�+�a�Waa 
a�+
∫

dEb ��Eb� �b�Wbb 
b��

573
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leads to the system of differential equations (cf. (9.163))

i��̇a�t� =
∫

ei�abtWab �b�t���Eb�dEb� (C.3)

i��̇b�t� = e−i�abt W ∗
ab �a�t�� (C.4)

with �ab = �Ea−Eb�/�. We know empirically that ��a�t��2 is given by an exponential
law:

��a�t��2 = e−0t� (C.5)

which suggests that we try the function

�a�t�= exp
(
− i�

2
t

)
� �= �1− i0� (C.6)

where �1 is real. Substitution of (C.6) into (C.4) with the initial conditions �b�t = 0�= 0
gives after integration over t

�b�t�=
W ∗

ab

� ��ab+�/2�

[
exp �−i��ab+�/2�t�−1

]
� (C.7)

For long times t� 0−1, the exponential in (C.7) tends rapidly to zero and

lim
t→� ��b�t��2 =

�Wab�2
�2
[
��ab+�1/2�2+02/4

] � (C.8)

To verify that our initial hypothesis is consistent with the evolution equations (C.3)
and (C.4), we substitute (C.6) into (C.3), which gives

��

2
=
∫

dEb��Eb� �Wab�2
1− exp�i��ab+�/2�t�

���ab+�/2�
� (C.9)

The constant � must be a solution of the integral equation (C.9). To be specific, let us
study a transition from an excited state i of energy Ei to the ground state f of energy Ef

of an atom, with the emission of a photon of energy ��. To an excellent approximation
we can neglect the recoil kinetic energy of the final atom, which simply has energy Ef

in the reference frame chosen to be that where the atom in its initial state is at rest (cf.
the discussion of Section 14.3.4). The density of final states to be used in (C.9) is that of
the photon (14.62). In summary, we have �a� = �i� and �b� is the atom in the state f+
photon �f ⊗�ks�, as well as energy conservation

��ab = Ea−Eb = Ei− �Ef +���= ���0−�� (C.10)

with ��0=Ei−Ef . Choosing � as the integration variable instead of Ef , with dEb = �d�,
Equation (C.9) becomes

��

2
=
∫ �

0
d����� �Wab����2

1− exp�i��0−�+�/2�t�
�0−�+�/2

� (C.11)
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We are interested in the behavior of this equation at long times, and we shall need the
behavior for t→� of the function f�t� x� considered as a distribution:

f�t� x�= 1− eitx

x
�

When x is real, its Fourier transform is

f̃ �t� u�= i� �u�− �t+u�� (C.12)

because

−i
∫ 0

−t
dx e−iux = 1− eitx

x

and the t→� limit of f̃ �t� u� is simply −i �−u�, which gives the following for f�t� x�:

lim
t→�f�t� x�= lim

,→0+
1

x+ i,
= P

1
x
− i���x�� (C.13)

This result is also valid when x has a small imaginary part, x = Rex± i,� ,→ 0+.
To see this it is sufficient to integrate over x in the complex plane, completing the
integration contour by a semicircle whose radius tends to infinity. If �1 and 0 are small
compared with the typical ranges of variation of the functions ���� and �Wab����2, we
can substitute (C.13) into (C.11) and find the value of �:

�= 2
�

P
∫ �

−�
d�

�����Wab����2
�0−�

− 2i�
�

���0��Wab��0��2� (C.14)

The second term on the right-hand side of (C.14) confirms that 0 = −i Im � is really
given by the Fermi Golden Rule:

0 = 2�
�

���0��Wab��0��2� (C.15)

while the first term corresponds to the shift of the energy level:

Re�= �1 =
2
�

P
∫ �

−�
d�

�����Wab����2
�0−�

� (C.16)

This shift could have been obtained by a calculation using second-order time-independent
perturbation theory; it is zero in first-order according to our hypothesis Waa =Wbb = 0.
The phase �1 can be absorbed in a redefinition of �0: �0 → �0+�1, and then according
to (C.8) the probability of observing a photon of frequency � is

p���d�� ���0��Wab��0��2
�
[
��−�0�

2+02/4
] d�� (C.17)



576 Appendix C

This probability is correctly normalized to unity

∫ +�

−�
p���d�= 1 because

∫ +�

−�
dx

x2+a2
= �

a

taking into account the value (C.15) of 0 . The curve representing p��� is a Lorentzian
(also known as a Breit–Wigner curve):

p���= ���0��Wab��0��2
�
[
��−�0�

2+02/4
] � (C.18)

The frequency of the final photon is not sharply defined, but has a spread !�= 0 ,3 which
is the width at half-max of the curve p���:

p
(
�0±

1
2
!�

)
= 1

2
p��= �0��

In other words, the frequency spectrum of the emitted photon is not monochromatic. The
quantity 0 is called the linewidth or sometimes the natural linewidth, as there are also
other causes of this broadening such as the Doppler effect or collisions. Owing to (C.5),
the lifetime of the excited state is the inverse of the linewidth, � = 1/0 . The energy spread
of the final photon shows, from energy conservation, that the energy of the excited state

–20

N (Ef)

Ef – Ei (neV)

–15 –10 –5 0 5

Fig. C.1. Photon spectrum N�Ef � from the decay 57Fe∗ → 57Fe+ photon, as a function of the
difference Ef −Ei between the initial and final energies. After Basdevant and Dalibard [2002].

3 !� is not a dispersion because the integral

∫ �

0
d���−�0�

2p���

is divergent, and so strictly speaking a dispersion cannot be defined; see Exercise 4.4.5.
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has a spread !E = �0 about a central value Ei, and from it we derive the relation (4.30)
between the lifetime and the energy spread:

� !E = �� (C.19)

However, there is in principle no limit to the precision with which this central value
can be measured. Figure C.1 shows the experimental curve of p��� for the decay of an
excited level of 57Fe∗:

57Fe∗ → 57Fe+ photon �14keV��

where the lifetime is � � 1�4×10−7 s.
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absorption 145, 150

addition theorem (of spherical harmonics) 321

alpha-radioactivity 279

ammonia molecule 139

amplitude damping channel 524

ancilla 514

angular momentum 228

addition theorem 342

conservation of 222

quantization axis 308

standard basis of 310

annihilation operator 359, 371

anticommutator 453, 526

antiferromagnetism 444

asymptotic series 458

atom 4, 28

dressed 503

atomic nucleus 4

atomic number 4

autocorrelation function 531

beam (of particles) 404

beam splitter 59, 452

Bell inequality 174, 175, 203

Bell measurement 197

Bell state 511

benzene molecule 128

beta-radioactivity 5

binding energy 4

birefringent plate 63

black body 13

Bloch equations (of NMR) 508

Bloch theorem 284

Bloch vector 165, 479

Bohr atom 29

Bohr frequency 29

Bohr magneton 465

nuclear 465

Bohr radius 30, 260, 327

Boltzmann constant 11

Boltzmann law 10, 138, 508

Boltzmann weight 11

Born approximation 426, 433

Born–Oppenheimer approximation 154

Born rule 97

Bose–Einstein condensation 450

boson 440

bound state 4, 27, 265

bra 47

Bragg angle 36

Breit–Wigner curve 432, 576

Brownian motion 538

butadiene molecule 152

Caldeira–Leggett model 541

canonical commutation relations 114, 235

representation of 236

canonical transformation 383

Casimir effect 399

Cauchy series 210

cell 37

center-of-mass 248

central extension (of a Lie algebra) 234

centrifugal barrier 325

chemical bonding 125

chemical potential 448

chemical reaction 4

chemical shift 138

classical source (or force) 392

Clebsch–Gordan (C–G) coefficients 343

closed quantum system 106

coherences (of a state matrix) 166, 191, 480

coherent state 189, 365, 381, 390, 567

coherent superposition 101, 166

commutation relations 231

of angular momentum 232, 307

commutator 51

complementary bases 71, 130, 255

complete set of compatible (or commuting)

operators 52, 103

579
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complete vector space 210

completeness relation 48, 218, 250, 289

Compton wavelength 31, 114, 497

computational basis 193

conjugate momentum 373, 378

connected 234

simply 234

conservation law 228

contextuality 104, 185

continuity equation 262, 290

continuum limit 372

control bit 194

control-not (c-NOT) gate 194

control-U (c-U) gate 515

Copenhagen interpretation 185

convergence

strong (or in the norm) 211

weak 211

correspondence principle 114, 243

cosmic microwave background 15

Coulomb gauge 376, 395, 467

Coulomb law 7

counterfactual 178

coupling constant 8

covariant derivative 385, 398

creation operator 359, 371

cross section

coherent 435

differential 405

elastic 421

incoherent 435

inelastic 422

total 405, 422

crystal lattice 3

Curie temperature 444

current 262, 407

current density 262

de Broglie wavelength 18

Debye frequency 395

Debye model 395

decoherence 187, 190, 570

decoherence time 543, 548

delayed choice experiment 190

delocalization energy 128

density matrix: see state matrix

density of states 292, 436, 573

density operator: see state operator

depolarizing channel 522

detuning 134, 144, 478

deuterium 4

deuteron 5, 350, 420, 431, 443, 504

Deutsch algorithm 207

diamagnetic term 499

diffraction 18

diffusion coeffcient 488

dimension

of a Lie group 227

of a vector space 42, 210

dipole approximation 469, 475

Dirac equation 461

Dirac notation 47

Dirac picture: see interaction picture

dispersion 24, 104

dispersion law 369

dissipative force 483

dissociation energy 5

domain (of an operator) 213

Doppler cooling 484

Doppler temperature 489

dynamical susceptibility 532

effective mass 288

effective potential 324, 417

effective range 416

Ehrenfest theorem 111, 229

eigenstate 80

eigenvalue 48

degenerate 48

subspace of an 49

eigenvector 48, 217

Einstein–Podolsky–Rosen (EPR) argument 171

Einstein relation 489

electric dipole moment 141, 470

neutron 559

electric dipole transition 149, 336, 352

electromagnetic current 384

electromagnetic interactions 7

electron 4

electroweak interactions 7, 398, 437

elementary excitation 371

element of reality 173

energy band 284

energy level 27, 30, 271

entangled state 160

environment 187, 521, 570

ethylene molecule 125

evolution equation 106

evolution operator 108

exchange force 444

exchange integral 494

expectation value (of an operator) 81, 99, 100

exponential decay law 112, 120, 297, 573

extension (of an operator) 214

factorization rule 69

Fermi constant 436, 559

Fermi gas 448

Fermi Golden Rule 297, 471

Fermi level 448
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Fermi momentum 449

fermion 440

Fermi sphere 449

Fermi surface 449

ferromagnetism 444

Feynman diagram (or graph) 113

Feynman–Hellmann theorem 117

field operator 373

fine structure 461

fine structure constant 32

first Brillouin zone 287, 369

fluorescence cycle 485

flux 405, 468

Fock space 371

Fokker–Planck equation 550

forbidden band 287

formaldehyde molecule 152

Fourier transform 255, 290

discrete, or lattice 368

fullerene 21, 33

functional space 213

Galilean transformation 240, 305

Gamow peak 430

gauge boson 399

gauge field 398

gauge group 397

gauge symmetry 397

gauge transformation 376

global 384

local 242, 254, 385

Gaussian integral 57

Gaussian wave packet 299

gluon 7, 399

gravitational constant 9

gravitational interaction 9

graviton 7

Greenberger–Horne–Zeilinger (GHZ) state 182

Green function 425

ground state 30, 127, 259

group property 108

group velocity 259, 427

gyromagnetic ratio 76, 465

Hadamard gate (or matrix) 60, 194

Hamiltonian 87, 106, 228

Hamiltonian (or unitary) evolution 106, 169

hard sphere scattering 406

harmonic oscillator 13, 358

damped 529

forced 379

Heisenberg inequality 24, 35, 105, 257, 259, 299, 367, 382

temporal 88, 111

Heisenberg picture 114, 122

Heisenberg uncertainty principle: see Heisenberg inequality

helicity 333

helicity amplitude 339

helium 491

Hermite polynomial 363

Hermitian conjugate 44, 215

hidden variables 68, 177

Higgs boson 9

Hilbert space 42, 209

Hilbert space of states 70

homomorphism 234

hydrogen atom 29, 327

hydrogen molecular ion 154

hyperfine structure 466

impact parameter 406, 412

incoherent superposition 166

incoming wave 281, 407

incompatible bases 71, 81

independent particle approximation 128

indistiguishable paths 24, 569

inertial reference frame 223, 240

infinitesimal generator 219, 228

of Galilean transformations 240

of rotations 232

of time-translations 110

of translations 251

infinitesimal rotation 231

input register 194

integral equation of scattering 426

intensity of a light wave 62

interaction picture 392, 529

interference 18

internal symmetry 397

ionization energy 5, 30

irreducible tensor operator 347, 357

isometry 45

Jaynes–Cummings Hamiltonian 501

Jones vector 67

ket 47

kinetic energy 242, 257

Klein–Gordon equation 461

Kramers degeneracy 557

Kraus representation 519, 520

Kraus number 520

(lambda-mu) polarizer 66

Lamb–Dicke parameter 401

Lamb shift 380, 463

Landau level 388

Landé g-factor 464

Larmor frequency 77, 87, 133, 387

Larmor precession 77, 133, 170

laser 146
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laser cooling 478

laser trapping: see magneto-optical trap

Legendre polynomial 320, 409

Lennard–Jones potential 300

lepton 6

level density 292

level spectrum 30

Lie algebra 230, 247

Lie group 227, 246

lifetime of an excited state 33, 112, 149

Lindblad equation 528

linear response theory 532

linewidth 479, 576

local evolution 511

local realism 174, 184

longitudinal relaxation time 138, 508

long-range force (or law) 8

long-range order 3

Lorentz force (or law) 10

Lorentz gauge 379

Mach–Zehnder interferometer 37, 206

magnetic dipole transtion 336

magnetic moment 76

magnetic quantum number 308

magnetic resonance imaging (MRI) 138

magneto-optic trap (MOT) 489

magnon 201

Malus law 63

Markovian approximation 527, 534

maser 146

mass number 4

master equation 526, 537, 538, 541

matrix 44

normal 57

positive 58

strictly positive 58

maximally entangled states 510

maximal test: see test

Maxwell equations 10, 375

measurement 186, 561

ideal 100

von Neumann (or orthogonal) 511

memory effect 526

memory kernel 527

microreversibility 555

minimal coupling 386

mixture 162

molecular orbital 126

molecule 4

diatomic 33, 301, 318, 443

momentum 10

conservation of 222

momentum operator 228, 250

momentum transfer 426, 472

muon 498

muonic atom 498

Néel temperature 444

Neumark theorem 513

neutrino 7, 435

neutrino oscillations 121

neutron 4

cold 18

thermal 18

neutron diffaction 18, 35

neutron interferometer 38, 93

neutron optics 433

no-cloning theorem 191

node 271, 326, 363

non-Abelian gauge theory 386, 397

nonlocal evolution 511

nonseparability (of the state vector) 179

norm

of a vector 43, 209

of an operator 213

normalized vector 47, 97

normal mode 367, 369

magnetic resonance imaging (MRI) 138

nuclear magnetic resonance (NMR) 132, 201, 508

nuclear reaction 4

nucleon 4

number of levels 115

number operator 360

nutation frequency 113

observable: see physical property

occupation number 371

offset frequency 134

open quantum system 507

operator

antilinear 553

antiunitary 225, 553

bounded 213

compatible 72

Hermitian (self-adjoint) 45, 98, 215

incompatible 72

linear 44

scalar 232, 345

unbounded 213

unitary 45, 52, 219

vector 233, 345

optical Bloch equations 478, 525

optical molasses 485

optical potential 424

optical theorem 423, 424

optical tweezers 484

orbital angular momentum 317

orthohydrogen 431, 444

orthonormal basis 43, 210
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outgoing wave 281, 407

output register 195

parahydrogen 431, 444

paramagnetism 444

partial wave 324

parity 237, 322, 443

negative 240

positive 240

partial wave expansion 409, 411

Pauli matrices 85

Pauli principle 128, 441

periodic boundary conditions 291

periodic potential 283, 302

perturbation theory 492

degenerate 456, 458

nondegenerate 456, 457

second-order 495

time-dependent 294

time-independent 455

perturbation series 456

phase damping channel 523

phase factor 98, 163

phase shift 410

phase space 291

phenomenological law 11

phonon 33, 371

photo-electric effect 16, 471

photon 7, 16, 378

physical property 70, 98, 163

compatible 72, 103

incompatible 104, 308

pi electron 125

pi-meson 113, 445

pi-pulse 135, 566

pi/2-pulse 135, 565

Planck’s constant 15

Planck–Einstein relation 17

pointer state 544

Poisson distribution (or law) 365, 394, 487

Polarization

circular 64

elliptic 67

left-handed circular 65, 333

linear 62, 70

of light 61, 166

of a photon 68, 166, 322

right-handed circular 65, 333

polarized 81

completely 165

partially 165

population inversion 138, 145, 482

position operator 228, 250, 254

positive operator valued measure (POVM) 513

positron 7, 199, 451

positronium 199, 451

potential 27, 261

potential barrier 27, 277

potential scattering 404

potential well 27, 265

Poynting vector 34, 148

preferred basis 187, 544

premeasurement 186, 563

preparation 71, 99, 164

principal quantum number 310, 327

probability amplitude 23, 68, 97

probability current 263, 290

probability density 127, 254, 290

projection operator (or projector) 46, 252

proton 4

public key 73

pure state (or pure case) 98, 162, 164, 166

quantization in a box 291, 377

quantization of energy levels 29, 271

quantized electromagnetic field 377

quantized field 371, 373

quantum bit (qubit) 193

quantum chromodynamics (QCD) 8, 398

quantum computing 192

quantum cryptography 73

quantum electrodynamics (QED) 116, 463

quantum field theory 8

quantum fluctuations (of the electromagnetic field) 379,

380

quantum information 191

quantum jump 519

quantum jump operator 528, 537

quantum key distribution (QKD) 73

quantum logic gate 193

quark 6

quasi-momentum 284

quasi-particle: see elementary excitation

quasi-resonant approximation: see rotating wave

approximation

Rabi frequency 133, 144, 479

Rabi oscillation 135

radial equation 324, 351, 409

radial quantum number 327

radial wave function 324

radiation gauge: see Coulomb gauge

radiative capture 504

radiative decay (or transition) 331

Ramsey fringes 566

ray 98, 223, 552

reactive force 484, 502

reciprocal lattice 36

recoil energy 474, 486, 574

recoil temperature 486
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reduced mass 31, 34, 248

reduced matrix element 345, 347

reflection coefficient 269

relaxation time 527

renormalization 8, 32

representation (of a group) 247

irreducible 314

projective 226, 249

spinor 227

vector 227

reservoir 530

resolvent 54, 217

resonance 132, 432

resonance curve 136

resonance frequency 143

rotating (reference) frame 134, 155

rotating wave (or quasi-resonant) approximation 145, 156,

401, 481

rotation matrix 86, 312, 344

rotational levels 319

RSA encryption 73

Rutherford cross section 433

Rydberg atom (or state) 499, 564

Rydberg constant 30, 327

saturation parameter 482

scalar field 317, 371

scalar product 42, 209

scanning tunneling microscopy (STM) 280

scattering

coherent 40, 434

elastic 412

incoherent 40, 434

inelastic 420

scattering amplitude 407, 426

scattering angle 404

scattering experiment 404

scattering length 95, 413

scattering of identical particles 446

scattering state 27, 265, 273

Schmidt decomposition 510

Schmidt number 510

Schrödinger’s cat 187, 190, 524, 542, 569

Schrödinger equation

time-dependent 261

time-independent 261, 264, 290

Schrödinger picture 114, 122

Schwarz inequality 43, 211, 212

secret key 73

secular approximation 536

selection rules (for electric dipole transitions) 471

semi-classical aproximation 32, 149, 467

separability (of a Hilbert space) 210

short-range force 8

sigma electron 125

singlet state 340, 419, 442

S-matrix (or scattering matrix) 280

S-matrix element 411

SO(3) group 227

source (of the electromagnetic field) 10, 375

source (of particles) 264

space of states 42, 70, 97

space of polarization states 64, 70

spectral decomposition 50, 218

spectral function 539, 549

spectrum (of an operator) 217

continuous 217

discrete 217

spherical Bessel function 410

spherical component (of a vector) 321, 345, 476

spherical harmonic 318

spherical rotator 318, 443

spherical well 350, 413

spin 76

spin echo 201

spin 1/2 77

spin orbit coupling 343

spin orbit potential 462

spin statistics theorem 442

spontaneous emission 149, 473

square well

finite 271

infinite 270

squeezed state 383, 394

standard model (of particle physics) 9

state matrix 164

state operator 162, 163

reduced 167, 509

state vector 70, 97

stationary state 88, 110

stationary phase approximation 258

statistics 440

Bose–Einstein 440

Fermi–Dirac 440

Stern–Gerlach experiment 77, 172, 303

Stern–Gerlach filter 79

stimulated emission 145, 150

Stone theorem 219

strong interactions 8

SU(2) group 86, 233

superoperator 518

superposition principle 42, 62, 97

superselection rule 98

survival probability 112, 119

symmetry 222

system with a finite number of levels 125

target 404

target bit 194

teleportation 195
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tensor product

of two vector spaces 158

of two operators 160

test 71

ideal 100

maximal 103, 166, 511

thermal wavelength 450

Thomas precession 462

time reversal 239, 274, 282, 555, 556

T -matrix (or transition matrix) 335

trace (of an operator) 48, 55

partial 167

transformation

active 223

passive 223

transition probability 148, 296

transmission coefficient 269, 278

transmission matrix 276

transverse relaxation time 138, 508

trapped ions 195, 400

triplet state 340, 419, 442

tunnel effect 140, 278, 301, 429

turning point 279

two-level atom 114, 149

unitarity relation 424

unit vector 8

unpolarized 165, 420

vacuum energy 379

vacuum Rabi frequency 501

vacuum Rabi oscillations 502

vacuum state 380

van der Waals force 495

vanishing boundary conditions 291

variational method 117, 459, 492

vector

axial (or pseudo) 237

polar 237

virtual (or antibound) state 415

von Neumann (or statistical) entropy 168, 507

von Neumann (or orthogonal) measurement 511

von Neumann measurement theory 304

von Neumann theorem 237

wave equation 261, 372, 377

wave function 127, 250, 254, 290

in the p-representation 255

wave function collapse (WFC) 102, 571

wave mechanics 250, 362

wave packet 256, 407

wave-packet scattering 427

wave-packet spreading 259, 298

wave vector 13, 18, 257

W-boson 7, 399

weak interactions 8, 238, 435

width of a state 112

Wigner–Eckart theorem 347

Wigner function 550

Wigner matrix: see rotation matrix

Wigner theorem 225, 552

Wigner–Weisskopf method 573

Z-boson 7, 112, 399

Zeeman effect 463, 489

Zeeman level 87, 133, 464, 489

zero-point (or vacuum) energy 361, 379, 400
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