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ESSAYS ON PRODUCT ACQUISTION FOR VALUE RECOVERY 
 

ABSTRACT 
 

This dissertation studies decision problems facing the manufacturer that offers cash 

incentive to encourage a fraction of its install base to return end-of-use devices. 

Marketing managers often use such tactics as a promotion tool to motivate sales of new 

products. Supply chain managers often use such tactics to obtain used products for 

profitable recovery operations.  

The first essay, “Product Acquisition for Remanufacturing: A Dynamic Analysis,” 

analyzes the performance of buyback and trade-in policies for acquiring products to be 

remanufactured. A key distinguishing feature of this analysis is the consideration of time 

dynamics. In particular, both the quantity-condition profile of used products and the 

market interest in remanufactured products evolve over time, and the manner of evolution 

is influenced by new product sales. Essay 1 introduces and analyzes a series of models 

that reflect the dynamics of customer willingness-to-return and willingness-to-pay 

attitudes, the size and condition of the OEM product install base, the demand for 

remanufactured product, and the demand for new product. Conventional approaches set 

trade-in and buyback prices to maximize profits in a single period; however, our analysis 

show that companies can earn higher profits by adopting a proactive approach. 

The second essay “Final Purchase and End-of-Use Acquisition Decisions in Response 

to a Component Phase-Out Announcement” is motivated by informal talks with supply 

chain executives from the computer industry. Essay 2 investigates a problem faced by a 

durable-goods manufacturer of a product that is no longer manufactured but still under 



  
 

warranty. A supplier announces that a component of the product will be phased out and 

specifies a deadline for the final order. In addition to determining the final order quantity 

from the supplier, the manufacturer may introduce a trade-in program to generate an 

alternative supply of the component for the purpose of satisfying warranty claims. We 

analyze how industry and market characteristics influence the manufactures optimal 

decisions and profits. The analysis in the second essay lends insight into the determinants 

of the initial order quantity, the characteristics of a well-designed trade-in program to 

support component harvesting, and the cost of ignoring a trade-in program for component 

harvesting. We find that launching a trade-in program and harvesting spare-parts from the 

returned device is not only a viable response to a supplier’s component phase out 

announcement, under certain conditions, launching a trade-in program is actually 

profitable.  
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CHAPTER 1:  INTRODUCTION 

1. Introduction 

Increasing concerns about the environment and the rise of extended producer 

responsibility (EPR) legislation has generated an interest in the recovery of used products 

from consumers. The recovery of used products supports corporate sustainability 

initiatives. For example, when Sharp Electronics announced its nation-wide TV and 

electronics take-back initiative, chairman and CEO Doug Koshina said “In all aspects of 

our business, we continuously seek ways to reduce impact on the environment” (Sharp 

Electronics, 2008). Recovering used products extends the product’s useful life and keeps 

potentially hazardous materials from entering and polluting the waste stream. For the 

growing number of firms in industries affected by increasing EPR directives, proactively 

taking back used products is one way to address both international and domestic EPR 

mandates.  

Aside from environmental concerns, a growing number of companies have introduced 

recovery programs because of economic benefits. Research in both the marketing 

(Guiltinan 2009, Jacoby et al. 1977, Nes and Cramer 2005) and operations (Linton and 

Jayaraman 2005) literature show that the economic value of most durable goods generally 

outlasts the owner’s usage desires—consumers will stop using a product even though it 

still works. These end-of-use (EOU), yet functioning devices often have residual 

economic value. Gently used products can be resold through secondhand markets and 

working components can serve as replacement parts. This is particularly true for durable 

goods with rapidly changing features (e.g., mp3 players, flat-screen television, gaming 
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consoles, PCs) and durable goods with infrequent, yet breakthrough technology upgrades 

(e.g., medical imaging equipment, wheel-balancing equipment, lawn mowers, kitchen 

appliances). For example, when Apple Inc. released the iPhone 4, third-party product take 

back and recovery intermediaries were willing to pay top dollar to acquire the iPhone 3 

from their owners.1 When Snap On launched its 2010 trade-in program, they used spare-

parts recovered from returned wheel balancing systems to meet international service 

demand.2

The environmental and economic benefits of product recovery programs have 

persuaded a growing number of large manufacturers and retailers to launch trade-in 

and/or buyback programs (e.g., Best Buy, Caterpillar, Dell, Herman Miller, General 

Electric, Pitney Bowes, Sony). For firms adopting such programs, a major managerial 

decision is determining the right time to buy and how much to pay for used product in a 

given condition. Determining the right time to buy is complicated by gaps between the 

available supply of used products and the demand for remanufactured product. 

 Cisco discovered internal use for its end-of-use returns and as result, reduced 

recycling cost by 40% (Nidumolu et. al 2009). In summary, gently used devices such as 

iPhones can be refurbished and sold through secondhand channels, well used devices 

such as wheel-balancing systems can be remanufactured and sold oversees in emerging 

markets, and non-working devices can be disassembled and harvested for working 

components to meet post-sales service requirements (e.g., spare-parts for warranty 

claims).  

                                                 
1 According to a 2010 press release, NextWorth (www.NextWorth.com), a firm that manages consumer 
electronic upgrade and trade-in programs, announced its new trade-in program for Apple iPhone owners. 
The program provided between $208 and $260  in exchange for the iPhone 3. The iPhone 4 sold for $199. 
Thus the buyback price fully covered the price of upgrading to the new iPhone 4.  
2 This statement comes from direct talks with senior executive from Snap On’s Repair Service and 
Information Division. 
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Determining how much to pay for product in a given condition is complicated by 

condition-dependent recovery cost and evolving consumers’ willingness to accept return 

incentives. 

1.2 Research Objectives 

The primary purpose of this dissertation is to gain insight into the main economic 

trade-offs related to used product acquisition decisions for value recovery. Towards this 

end, this dissertation has two key objectives. The first objective is to develop decision 

frameworks that incorporate marketing and operational considerations into product 

acquisition policies in two different settings—one where products are acquired for the 

purposes of remanufacturing and another where products are acquired for the purposes of 

component harvesting to support warranty claims. For each setting, we seek to develop a 

rich framework suitable for investigating a range of specific questions related to product 

acquisition. The second objective is to provide guidance to managers on the design and 

implementation of alternative acquisition policies. We seek to identify types of 

acquisition policies that do, and do not, work well in different settings, and key factors 

under management control that drive performance.  

In both essays, we focus on an integrated framework because, although trade-in and 

buyback programs have been studied in the marketing and operations literature 

independently, there is a need to develop decision frameworks that take both approaches 

into consideration. 
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1.3 Overview of Essay 1 

The first essay addresses the dynamic pricing of trade-in and buyback offer menus. 

We consider a firm that engages in remanufacturing and new product manufacturing. In 

order to remanufacture a product, the firm must have a supply of used products. We 

consider the question of how to design an effective buyback program for product 

acquisition, and we consider the question of how to design an effective trade-in program 

for product acquisition. We also evaluate the relative performance of the two types of 

programs. There has been work that has examined trade-in policies and work that has 

examined buyback policies, but no work that has compared the two policies.  

The sales rate of a product over its life-cycle follows a pattern of growth, maturity, 

and decline as a new generation of the product is introduced. A key distinguishing feature 

of the essay is the consideration of quality and volume dynamics. In particular, we 

account for the relationship between the life-cycles of new and remanufactured product. 

By defining and examining models that account for this relationship, we elucidate the 

time-dependent linkages between the new product sales, the supply of used products, the 

consumer’s willingness to accept a buyback or trade-in offer, and the demand for 

remanufactured product. The life-cycle of a new product affects availability of used 

products and demand for recovered products, yet there have only been a few attempts to 

incorporate these effects into the trade-in or buyback pricing models.  

Essay 1 introduces a framework that allows investigation of such questions as how 

the phase of the life-cycle influences issues such as the relative performance of buyback 

and trade-in programs, optimal acquisition prices, the value of coordinating marketing 

and operational considerations in used product acquisition, and the penalty for ignoring 
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time-dynamics. To address these questions, Essay 1 introduces and analyzes a series of 

models that reflect the dynamics of customer willingness-to-return and willingness-to-

pay attitudes, the size and condition of the OEM product install base, the demand for 

remanufactured product, and the demand for the new product. From a methodological 

perspective, this essay defines and analyzes a parsimonious model of the problem. 

Characterizations of optimal solutions are developed and solution methods for identifying 

optimal decisions and corresponding costs/profits are devised.  

Our results contribute to the growing body of closed-loop supply chain research. First 

we introduce two algorithms that can be used to determine a menu of buyback prices and 

trade-in credits that maximize myopic profits. These two algorithms are significant to the 

literature because the resulting trade-in and buyback offer prices are based on consumer 

replacement purchase characteristics, which drive the availability and condition profile of 

used products. Second, we introduce two math programming formulations to calculate 

near optimal or dynamic trade-in and buyback prices. These math programming 

formulations account for the size and age-structure of the install base. This contribution is 

significant and as a result, we expose a “sweet-spot” age where used products are most 

amenable to profitable recovery operations. Furthermore, we show that even when 

remanufacturing is profitable, the firm may choose not to satisfy all demand for the 

remanufactured product. Finally, we contribute to the literature by comparing proactive 

and myopic product acquisition strategies. We find that when the time lag between new 

product sales and the demand for remanufactured product matches the sweet-spot age, 

myopic pricing policies perform nearly as well as the proactive policies.  
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1.4 Overview of Essay 2 

The second essay addresses the issue of designing a trade-in program to acquire end-

of-use components to support warranty claims. We consider the challenge that arises 

when a sole-source supplier phases out production of a key component used in a product 

with an install base under warranty. The supplier releases a component phase out 

announcement (CPOA), outlining final production plans and final order due dates. The 

importance and prevalence of this final order problem has increased over time due to two 

long-term trends—shrinking product life-cycles and growth in outsourcing. And the 

problem of sourcing spare-parts after the product life-cycle is an important issue in 

practice. Cattani (2005) describes how an end-of-life buy left the firm with millions of 

dollars of worthless inventory at a cost of 1% of sales.  

The traditional response to a CPOA by the OEM is to place a final order that is large 

enough to cover all warranty requirements. However, our conversations with a large 

computer manufacturer indicate an interest in the possibility of using a trade-in program 

to supplement the final order quantity. Designing an appropriate trade-in policy is 

complicated because it involves consumer choice models and price-dependent return 

volumes. The design of a trade-in program to support warranty claims is also 

complicated, and unique, because the warranty claims on the obsolete product are 

influenced by the volume of product acquired through the trade-in program.  

In Essay 2, we address these complications and consider the merits of using a trade-in 

program to obtain obsolete products under warranty for purposes of component 

harvesting. Specifically, we consider two types of trade-in policies—full and matching. 

The full trade-in policy offers a trade-in credit to the entire warranty population at a 
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single point in time. The optimal trade-in quantity may or may not match warranty 

demand; units in excess of demand are salvaged and shortages incur a penalty cost (e.g., 

cost premium for a component obtained from a third party or for replacing the customer’s 

product with a current generation model). Trade-in units are received and warranty 

claims are satisfied from inventory over the duration of the warranty horizon. The 

matching trade-in policy matches the component supply rate with the warranty claim 

demand rate over the duration of the warranty horizon.  

We introduce a two-stage decision model where first-stage decision is the number of 

components in the final order. The second-stage decision, if necessary, is the design of a 

trade-in program. The second-stage decision is required if or when component supply 

approaches zero. The objective is to minimize total discounted product acquisition, 

warranty service, and component holding cost. Characterizations of optimal solutions are 

developed and solution methods for identifying optimal decisions and corresponding 

costs are devised. 

Essay 2 contributes to operations literature related to managing spare parts inventory 

when the primary product is no longer manufactured. This period of the production life 

cycle is referred to as the final-phase or end-of-life phase. Although several authors have 

considered remanufacturing as an alternative supply source, this paper is the first to 

consider proactive marketing efforts to acquire used products from a segment of the 

warranty populations. 

 In our analysis of full and matching trade-in policies, we find that the use of a full 

trade-in policy is relatively robust—it will not perform much worse than the matching 

trade-in policy as long as the discount rate (net of inflation) and the holding cost rate are 
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not too high, and will potentially lead to much greater savings. While a full trade-in 

policy is generally a safe choice, we find that three key indicators of when a matching 

trade-in policy is likely to be preferred: (1) positive trade-in potential, (2) low warranty 

service cost per unit, and (3) a high inventory holding cost rate. Finally, by incorporating 

market and consumer related elements into our model, this work exposes an interesting 

marketing result. We  find that the single most important driver of trade-in policy value is 

the trade-in potential—a simple measure that is the difference between the increase in 

profit from locking in disloyal customers by means of a trade-in transaction and the 

minimum markdown required for a customer to accept a trade-in offer. The nature of this 

contribution is novel and raises additional questions about how market and consumer 

characteristics influence final-phase sourcing policies. 
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CHAPTER 2: PRODUCT ACQUISITION FOR REMANUFACTURING: A 

DYNAMIC ANALYSIS 

1. Introduction 

Sustainability concerns and the rise of extended producer responsibility (EPR) 

legislation have generated a growing interest in product take-back and recovery practices 

(e.g., product reuse, remanufacturing, recycling, spare parts harvesting, incineration for 

energy recovery). Such practices are attractive for two reasons. First, product take-back 

and recovery programs increase and extend the economic value of products in the market. 

Second, product take-back and recovery programs positively affect the environment (e.g., 

landfill avoidance) and support EPR legislation that requires collection of end-of-use 

product. This is especially true for durable goods such as automobiles, home appliances, 

and computers that are costly to dispose due to size and/or the presence of hazardous 

materials. Indeed, durable goods producers often offer product acquisition schemes such 

as trade-in discounts on a new product, cash buyback, and deposit fees to encourage 

returns.  

The importance of product take-back and recovery programs is reflected in a growing 

literature on product acquisition policies for remanufacturing. For example, Guide et al. 

(2003) define an economic model of a remanufacturing firm and derive the optimal 

condition-dependent buyback prices and the optimal selling price for the remanufactured 

product. Bakal and Akcali (2006) study a similar problem but with a focus on the effects 

of uncertain yield of the return supply. Ray et al. (2005) consider a firm that produces 

both new and remanufactured products. The authors derive optimal selling prices for new 

and remanufactured product and the optimal condition-dependent trade-in discount 
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function. The results in the product acquisition for remanufacturing literature are based 

on models of profit in a single period.  

In this essay, we investigate the performance of buyback and trade-in policies for 

acquiring used product to be remanufactured. A key distinguishing feature of our analysis 

is the consideration of time dynamics. In particular, both the quantity-condition profile of 

used product and the market interest in remanufactured product evolve over time, and the 

manner of evolution is influenced by new product sales. In addition, the introduction of a 

new generation of the product can cause a shift in both return attitudes and 

remanufactured product purchase attitudes—customers become more willing to exchange 

old for new and the desirability of remanufactured product from the old generation 

decreases (Atasu et al. 2010). We introduce and analyze a series of models that reflect the 

dynamics of customer willingness-to-return and willingness-to-pay attitudes, the size and 

condition of the OEM product install base, the demand for remanufactured product, and 

the demand for new product.  

The motivation for our study comes from our discussions with management at a 

computer manufacturer that sells both new and remanufactured product. However, we 

begin our analysis by studying the case where the remanufacturing division is run as a 

separate and independent entity. By contrasting decisions and profits of independent 

firms with that of a combined firm, we are able assess the value and impact of 

coordinating the operations of new and remanufactured product.  

We find that although trade-in pricing schemes may lead to higher acquisition prices, 

the trade-in policies will generally result in higher profits from product take-back and 

recovery activities. In our analysis we also compare myopic product acquisition strategies 
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with proactive strategies. We find that the relative performance of myopic and proactive 

pricing strategies is tied to the lag between new product sales and demand for 

remanufactured products and to a “sweet-spot” age. The “sweet-spot” age is the age 

where the combined take back and recovery cost are minimized.  

The remainder of the essay is organized into four sections. Section 2 outlines the 

related literature and how our investigation differs from past research. Section 3 presents 

a model and analysis of a buyback program. Section 4 presents a model and analysis of a 

trade-in program. Section 5 investigates the relative performance of buyback and trade-in 

programs, and Section 6 provides a summary and suggestions for future research. A list 

of notation and assumptions, as well as derivations and proofs, can be found in the 

appendix. 

2. Related Literature 

Product trade-in and buyback strategies are broadly practiced in durable goods 

industries (i.e., automotive, consumer electronics, computers, and industrial equipment), 

and are well studied in the marketing literature. Earlier works in this area show that the 

benefits from offering trade-in programs are due largely to market segmentation and price 

discrimination, as the firm is able to price discriminate between owners and non-owners. 

Van Ackere and Reyniers (1995) develop a two-period pricing model. The first-period 

purchase decision segments the second-period market into owners and non-owners. The 

trade-in price can be set to take advantage of the fact that, by virtue of a past purchase 

decision, the owners have a relatively high valuation of the product Okada (2001, 2006). 

In addition to serving as a market segmentation and price discrimination mechanism, 

trade-in and buyback programs can reduce cannibalization of new product sales from 
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secondhand markets. Levinthal and Purohit (1989) examine the competition between the 

new and old version of durable good and show how a monopolist who introduces a new 

product and continues to sell the old model can improve profits by buying back some of 

the old products. Fudenberg and Tirole (1998) show how used textbook and software 

purchases by the OEM helps to increase new product sales by reducing cannibalization. 

Bruce et al. (2006) consider how trade-in discounts can spur demand and increase profit 

when consumers are otherwise reluctant to purchase a new product due to the burden of 

paying off an outstanding loan (e.g., as in the auto industry). Rao et al. (2009) show how 

a trade-in program can be used to reduce the inefficiencies associated with the “lemon 

problem”—the trade-in opportunity motivates more owners to purchase new goods by 

reducing their proclivity to hold on to purchased goods because of the low price the latter 

would fetch in a lemon market. The above marketing papers are relevant because they 

provide guidance on modeling return volume as a function of trade-in and buyback 

prices. However, these papers only consider a two-period setting where the trade-in 

prices are set in period two. We consider a multi-period setting. Furthermore, none of 

these papers incorporate the economics of product take-back for remanufacturing, which 

is an element that is central to our analysis. 

The marketing literature focuses on how trade-in and buyback programs affect the 

profitability of new product sales, or the forward flow of new products. The closed-loop 

supply chain (CLSC) literature, on the other hand, focuses on how trade-in and buyback 

incentives affect the reverse flow of used products, e.g., for the purposes of product 

recovery to support remanufacturing and/or respond to take-back legislation. Product 

acquisition management is an important function of CLSC systems with remanufacturing. 
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Remanufacturing depends on timely access to a reliable supply of used products that are 

still in relatively good condition. In the CLSC setting, trade-in and buyback prices 

incentivize product returns and thus act as product acquisition mechanisms. As such, they 

are critical because of their role in (i) shaping the quality of the returned products, and (ii) 

influencing the return volumes to align supply with demand (Thierry et al. 1995). Guide 

and Jayaraman (2000) and Flapper (2001) provide an overview of how product 

acquisition incentives influence the profitability of a remanufacturing firm. Klausner and 

Hendrickson (2000) study a German remanufacturer that once acquired used power-tools 

from the waste stream. They show how the firm improves profits by buying gently used 

tools from current holders instead of collecting used products from the waste stream.  

Several recent studies model the volume of product returns as a function of 

acquisition price, either under a buyback program (e.g., Bakal and Akcali 2006, Guide et 

al. 2003, Karakayali et al. 2007) or a trade-in program (e.g., Ray et al. 2005). Guide et al. 

(2003) and Karakayali et al. (2007) consider models with discrete classes for the 

condition of used products whereas Bakal and Akcali (2006) and Ray et al. (2006) model 

the condition of used product as a continuous variable. All of these papers identify 

optimal condition-dependent acquisition prices. In addition, product selling prices—for 

remanufactured product in the case of Bakal and Akcali (2006), Guide et al. (2003), and 

Karakayali et al. (2007) and for new product in the case of Ray et al. (2006)—are 

endogenous. Acquisition and selling prices are set to maximize profit in a single period. 

The main distinguishing features between these papers and our work are (1) we compare 

and contrast both buyback and trade-in programs, (2) we consider the acquisition pricing 

problem over the life-cycle of a product rather than a single period, and (3) we consider 
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settings where the firm is a price-taker rather than a price-setter in the new and 

remanufactured product markets. 

Both forward and reverse operations are influenced by new product diffusion and 

product life-cycle dynamics. The product life-cycle explains how the sale of a new 

product grows, matures, and declines over time (Mahajan et.al. 1990). The product life-

cycle also affects the availability of used products and the demand for remanufactured 

products over time. Tibben-Lembke (2002) and Östlin et al. (2009) describe the 

relationship between new product sales, used product returns, and recovered product 

demand, and how these relationships vary over different stages of product life-cycle (see 

Figure 2.1). We make use of this relationship in our model of remanufactured product 

demand. 

 

 

Figure 2.1. Illustration of the theoretical relationship between new product sales and the 
demand for a remanufactured version of the product (adapted from Östlin et al. 2009). 

Several studies have addressed the implications of the product life-cycle on CLSC 

collection, recovery, and remarketing strategies. Debo et al. (2006) consider 

remanufacturing production strategies when the firm selects the degree of product 

remanufacturability in settings where the product is collected and remanufactured many 

times. Geyer et al. (2007) also consider a setting where the product is remanufactured 
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many times. They focus on the economic feasibility of recovery operations and how life-

cycle dynamics influence remanufacturability levels, collection rates, and optimal cost 

savings from remanufacturing. Umeda et al. (2006) consider the question of how many 

times a device can be used over the life-time of the product. Our work is similar to these 

papers in that we examine the evolution of the install base of new product over time and 

the associated evolution of demand for remanufactured product. Our work differs from 

these papers in that we concentrate on the impact of life-cycle dynamics on optimal 

acquisition prices and on the relative merits of buyback and trade-in programs. These 

elements are not considered within this stream of literature. 

The cost to recover used products depends on the product’s condition and on the 

targeted return volume. Higher trade-in prices increase the flow of reusable returns 

(Klausner and Hendrickson 2000). Galbreth and Blackburn (2006) analyze optimal 

acquisition and sorting policies. They show how acquiring more used products may 

reduce the average cost of remanufacturing. When the difference in the cost to recover 

high vs. low quality products is significant, the firm can potentially benefit from 

acquiring more used products in order to secure better quality products. Zikopoulos and 

Tagaras (2007) identify optimal procurement quantities from multiple alternative sources. 

In contrast to these papers, we consider condition-dependent acquisition pricing. In 

addition, our research is distinct in that we incorporate how the condition and quantity of 

the install base change over time. 

Finally, a few recent studies have addressed the dynamic aspects of CLSC systems. 

Lee et al. (2010) examine a decentralized two-echelon distribution channel where the 

manufacturer provides a retailer with a fixed incentive to collect used products. The 
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retailer determines a time-variant pricing rule that includes the price of the new product 

and the trade-in incentive. The manufacturer chooses a constant wholesale price and 

offers a fixed payment for the returned products. The authors show how the retailer’s 

behavior over time affects collection rates. Although Lee et al. (2010) develop a time-

variant model, their model does not incorporate how the recovery cost changes as a 

function of the age or condition of the trade-in returns. This is an important feature that 

underlies the motivation for our study because the OEM has information on the profile of 

the install base (e.g., quantity and age)—information that is highly relevant for setting 

acquisition prices. 

3. Buyback Policies for a Producer of Remanufactured Product 

The sales rate of a product over its life-cycle follows a pattern of growth, maturity, 

and decline as a new generation of the product is introduced. Both the supply and the 

demand of a remanufactured version of the product are influenced by historical sales of 

the new product. In particular, the sales history exposes the quantity-age profile of the 

install base (e.g., number of products in the market for less than one year, less than two 

years, etc.) and, as a measure of market response to the new product, is an indicator of 

market interest in the remanufactured product.  

Section 3.1 addresses the relationship between new product sales over its life-cycle 

and the supply of used product for remanufacturing. Section 3.2 attends to the 

relationship between new product sales and the demand for remanufactured product. 

Section 3.3 identifies the optimal myopic age-dependent buyback pricing function and 

characterizes the optimal profits over the remanufactured product life-cycle. A myopic 

buyback price function sets prices to maximize profit in each period, with no 
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consideration of future periods. Section 3.4 considers how the optimal buyback price 

function and profits are impacted when the firm is proactive in its pricing. Section 3.5 

presents numerical analyses that compare and contrast the two pricing policies.  

3.1. Remanufactured Product Supply 

In this section we develop a model of return volume as a function of age-dependent 

buyback prices. We begin by describing the consumer-choice model that we use to define 

new product purchase probabilities and product return probabilities. We model the 

diffusion of new product sales in markets of two segments. Our model results in sales that 

are consistent with the diffusion model of Bass (1969), a parsimonious model that is 

empirically well-established for sales of consumer durables.  

A generation of a product is introduced in period t = 1. The market is divided into two 

segments—innovators and imitators—that are distinguished by their valuation of the new 

product. The innovator segment (segment 1) valuation at the time of purchase is V1, 

which is uniformly distributed. We normalize the support to [0, 1], i.e., 

V1 ~ U[0, 1].           (1.1) 

Uniformly distributed valuation is common in the literature (e.g., Mussa and Rosen 1978, 

Purhoit and Staelin 1984). Note that the new product price is less than the maximum 

innovator valuation (i.e., pn < 1); otherwise there would be no sales. 

The imitator segment (segment 2) valuation at the time of purchase is V2, which is 

also uniformly distributed. However, the upper support of V2 in period t is the new 

product purchase price plus a term that is proportional to cumulative sales at the start of 

the period Dn(t – 1), i.e., 
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V2 ~ U[0, pn + ιDn(t – 1)].        (1.2) 

Note that the innovator segment valuation is unaffected by historical sales whereas the 

maximum valuation of a consumer in the imitator segment increases with the number of 

users. The maximum possible imitator valuation occurs at the end of the life-cycle when 

Dn(t – 1) is close to M, and its value depends upon model parameters. In the data 

underlying Figure 2.2, for example, V2 ≤ pn + ιM = 0.92. 

The innovator segment makes up fraction θ of consumers who consider purchasing 

the product in each period, and the imitator segment makes up the balance 1 – θ. A 

consumer makes a purchase if the difference between valuation and purchase price is 

nonnegative. The total number of purchases over the life of the product is M. 

Accordingly, the sales in period t is 

dn(t) = ( ) ( )( ) ( ) ( ) ( )( )1 1 1 1 1n n n np M D t D t M D tθ θ ι− − − + − − − − ,  (1.3) 

which matches the form of the classic Bass model: 

dn(t) = ( )( ) ( ) ( )( )1
1 1n

n n

D t
a M D t b M D t

M
 − 

− − + − − 
 

       

where 

a = θ(1 – pn) 

is the coefficient of external influence (e.g., individual conversion ratio in the absence of 

adopter’s influence) and  

b = (1 – θ)ιM 
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is the coefficient of internal influence (e.g., effect of each adopter on each non-adopter) 

(Jeuland, 1981). We approach the new product sales process as a two-step flow of 

information between two segments. This approach is consistent with marketing literature 

(see Van den Bulte and Joshi, 2007). Figure 2.2 illustrates sales over time according to 

(1.3). 

 

Figure 2.2 Illustration of data presented in Bass (1969). Sales per period with θ = 0.0218, 
ι = 0.0000248, pn = 0.5, M = 16,895.This data yield the curve presented in Bass (1969) 
that closely matches the sales of room air conditioners between 1946 and 1961. The 
upper border of the shaded region shows sales to the innovator segment.  

A product that has been used for i periods is said to be of age i. During ownership, the 

value of product in the eyes of the user declines with age. We let function υ(i) denote the 

valuation fraction of a product of age i, with υ(0) = 1 and υ(i) ≤υ(i – 1). We assume that 

the function υ(i) applies to both segments. Thus, an individual with valuation V at the 

time of purchase has residual valuation Vυ(i) when the product reaches age i. The 

function υ(i) characterizes the residence index which is the ratio of the time a product is 

used before reaching end-of-use and the length of the product lifecycle (Georgiadis et al., 
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2006). The value of Vυ(i) can also be interpreted as the disutility associated with giving 

up a product through a buyback program, or buyback disutility. 

A1. The valuation fraction of a product of age i, υ(i), is the same for the innovator and 

imitator segments. 

At time t, a customer with product of age i will return the product if the difference 

between the buyback price and the buyback disutility is nonnegative. The implicit 

assumption is that customers are not strategic in their return decision. In our setting, the 

firm sets the age-dependent buyback prices dynamically, and consequently there is little 

basis for a customer to predict how the age-dependent buyback price function will change 

in the future. The setting is consistent with the firm in the computer industry that 

motivates this work—a customer can go to a website, enter the product and condition, 

and receive a real-time quote of the credit for a return.3

A2. Customers are not strategic in their return decision. 

   

We let cb(t, i) denote the buyback price at time t for a product of age i. The 

probability distributions of the segment valuations in period t conditioned on a purchase 

transaction at time t are  

V1 ~ U[pn, 1]            (1.4) 

V2 ~ U[pn, pn + ιDn(t – 1)].        (1.5) 

Thus, the probability distributions of the residual value of a product purchased in period t 

– i + 1 that is now of age i at the end of period t are  
                                                 
3 Based on discussions with executives from several third-party recovery firms, most firms determine these 
prices by using proprietary software to scan the Internet for the Lowest Internet Price (LIP) for a new 
product, estimate the resale price for the recovered product at 20 – 60%  of LIP, then set trade-in and 
buyback prices to ensure profitability. 
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V1υ(i) ~ U[pnυ(i), υ(i)]          (1.6) 

V2υ(i) ~ U[pnυ(i), (pn + ιDn(t – i))υ(i)]      (1.7) 

and the return probabilities in response to buyback price function cb(t, i) offered at the 

end of period t are 

( ) ( ) ( ) ( )
( )( )1

,
, min ,1

1
b n

b
n

c t i p i
P V i c t i

i p
υ

υ
υ

+  −  ≤  =      −   
     (1.8) 

( ) ( ) ( ) ( )
( ) ( )2

,
, min ,1b n

b
n

c t i p i
P V i c t i

i D t i
υ

υ
υ ι

+  −  ≤  =      −   
     (1.9) 

for i∈ [1, t]. 

We next introduce expressions for the size of the install base of age i product in each 

segment at time t. From (1.3), it follows that the fraction of sales to the innovator 

segment in period t is 

θ(t) =
( )

( ) ( ) ( )
1

1 1 1
n

n n

p
p D t

θ
θ θ ι

−
− + − −

        (1.10) 

and the fraction of sales to the imitator segment in period t is 1 – θ(t). The number of 

products of age i in the segment j install base at the end of period t is Nbj(t, i). The 

number of products of age i returned in period t from segment j is sbj(t, i). For the 

purposes of defining age in functions Nbj(⋅) and sbj(⋅), we assume that all sales occur at the 

beginning of the period and all returns occur at the end of the period.4

                                                 
4 Some firms allow returns for a full refund within a specified time period after purchase for product that is 
in “like new” condition. These products are reintroduced to the market with minimal investment and do not 
enter the remanufacturing process. The volume of sales in period t, dn(t), is net of these returns. 

 In particular, the 

timing of events in each period is as follows: 



22 
 

 

1. Demand for new product occurs 

Start of period t 

1. Buyback price schedule is posted and returns occur 

End of period t 

2. Returns are remanufactured  

3. Demand for remanufactured product occurs 

4. Incur cost h per unit on inventory of remanufactured product 

We assume that the populations of consumers who consider purchasing new products 

and remanufactured products are distinct. This is consistent with observations by Guide 

and Li (2010) who study bidding behavior of participants in eBay auctions for a 

consumer good (i.e., Skil jigsaw). They found that customers who bid on the new product 

never bid on the remanufactured version of the product, and customers who bid on the 

remanufactured product never bid on the new product. Feedback from each group 

showed awareness of both new and remanufactured versions of the product, and that the 

products were not perceived as substitutes.  

A3. The new product and the remanufactured product serve distinct markets—the 

products are not substitutes. 

A certain fraction of customers who return their product of age i in response to the 

buyback offer at the end of the period replace their product by purchasing a new version 

of the product from the firm at the beginning of the next period (i.e., customers who 

accept the buyback offer do not consider purchasing a remanufactured product). The 

repurchase fraction is a measure of customer brand loyalty that we assume is not affected 
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by the number of periods the customer has used the product. We let γ denote this fraction. 

As an example, the number of products of age 1 in the install base at the end of period t is 

the new customer sales plus the buyback customers sales at the beginning of period t less 

the buybacks at the end of period t. The buyback customer sales to segment j at the 

beginning of period t is the number of buybacks at the end of the previous period adjusted 

by the repurchase fraction, i.e., 

( ) ( )
1

1
1,

t

bj bj
k

d t s t kγ
−

=

= −∑ .5

A4. The repurchase rate,γ, is independent of the age of the product when returned. 

            (1.11) 

for t ≥ 1. For the computation of dbj(0, 0), we define sbj(0, 0) = 0.  

Recall that dn(t) denotes sales to new customers. Formulas for Nb1(t, i) are illustrated 

below for the first few periods 

  Nb1(1,1) = θ(1)dn(1) – sb1(1,1)    

  Nb1(2,1) = θ(2)dn(2) + γsb1(1,1) – sb1(2,1)    

  Nb1(2,2) = Nb1(1,1) – sb1(2,2)     

  Nb1(3,1) = θ(3)dn(3) + γ[sb1(2,1) + sb1(2,2)] – sb1(3,1)   

  Nb1(3,2) = Nb1(2,1) – sb1(3,2)  

  Nb1(3,3) = Nb1(2,2) – sb1(3,3), 

 (see Figure 2.3). The only differences between the Nb1(t, i) formulas and the Nb2(t, i) 

formulas are that j = 1 is replaced with j = 2 and θ(t) is replaced with 1 – θ(t).  

                                                 
5 The number of distinct owners of the product does not change when a buyback credit is used for a 
replacement purchase. Consequently, these repeat purchases do not impact sales to the imitator segment 
(any segment?).  
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To simplify the presentation of a general expression for Nbj(t, i), we define Nbj(t, 0) as 

units that enter the segment j install base at the beginning of period t + 1 (equivalently, at 

the end of period t), which are of age 0 at the moment of entry, i.e.,  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1

,0 1 1 1 1 1 ,
t

b n b n b
k

N t t d t d t t d t s t kθ θ γ
=

= + + + + = + + + ∑
  

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2
1

,0 1 1 1 1 1 1 1 ,
t

b n b n b
k

N t t d t d t t d t s t kθ θ γ
=

=  − +  + + + =  − +  + +    ∑   

for t ≥ 0. A general expression for the number of age i units in the segment j install base 

at time t is simply the segment j install base of age i – 1 product at the end of period t – 1 

(and beginning of period t) less the number of age i units returned by segment j customers 

at the end of period t, i.e.,  

Nbj(t, i) = Nbj(t – 1, i – 1) – sbj(t, i) for j∈ {1, 2}, i∈ [1, t], t ≥ 1.   (1.12) 

Based on the consumer choice model, the volume of age i product that is returned by 

each segment at the end of period t is given by 

sbj(t, i) = ( ) ( ) ( ), 1, 1j b bjP V i c t i N t iυ ≤ − −   for j∈ {1, 2}, i∈ [1, t], t ≥ 1.6

                                                 
6 In practice, there may be some fraction of products in the install base that cannot be returned (e.g., lost or 
discarded products, customers who would never consider returning product due to lack of awareness, 
interest, etc.). The right-hand side of (1.13) could be proportionally reduced to account for this effect and 
the following results carry through. In the interest of parsimony, we do not include this parameter in the 
expressions. 

  (1.13)  
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Figure 2.3. Illustration of the evolution of the innovator segment install base.  

3.2. Remanufactured Product Demand 

Section 3.1 describes a model for the relationship between new product sales over its 

life-cycle and the supply of used products for remanufacturing. In this section we turn our 

attention to the relationship between new product sales and the demand for 

remanufactured products. Figure 2.4 shows monthly new product sales and 

remanufactured product demand (actual and projected) of a model of a photocopy 

machine between 2005 and 2012. The sales patterns in the figure are consistent with the 

linkage between new product sales and remanufactured product demand illustrated in 

Figure 2.1. 
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Figure 2.4. Relationship between new product sales of a photocopy machine and the 
demand for a remanufactured version of the photocopier. The time frame is 2005 –2012.  

We use two parameters to specify the remanufactured product demand in terms of 

new product sales—a relative-size parameter α and a time-lag parameterτ. The value of α 

defines the size of the remanufactured product market relative to the new product market. 

The value of τ is the number of periods that the remanufactured product demand is 

behind the new product demand. In Figure 2.4, for example, the value of τ is about four 

years and the value of α is approximately 25%. 

As noted above, the populations of consumers who consider purchasing new products 

and remanufactured products are distinct (Guide and Li 2010). The remanufactured 

product demand in period t is  

dr(t) = αdn(t – τ) for τ < t          (1.14) 

and the total sales in periods 1 through t is  

Dr(t) = αDn(t – τ) = ( )
1

t

r
j

d j
=
∑  for τ < t.      (1.15) 
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Recall that in our model, demand for new product occurs at the beginning of the period, 

whereas returns occur at the end of the period (i.e., so that the install base at the time that 

buybacks take place is net of any “like new” returns to the retailer that take place shortly 

after purchase). We assume that demand for remanufactured product occurs at the end of 

the period, and thus can be satisfied using the buyback returns in the period. If the 

duration of a period is long, then it is possible that τ = 0. However, there is typically a 

time lag for products to be returned (Umeda et al. 2005), which can lead to a multi-period 

time lag between the patterns of new and remanufactured product demand. In practice, 

the magnitude of the time lag may evolve over time, though in the interest of parsimony, 

we assume a fixed value over the duration of the life-cycle. 

3.3 Remanufacturing Cost and the Optimal Myopic Buyback Price Schedule 

The net out-of-pocket costs of transforming a returned unit into a remanufactured 

product of age i is cm(i), is which is nondecreasing in age (i.e., age is a proxy for the 

condition of a returned product). This cost is comprised of the pure remanufacturing cost, 

less the profit benefit of advancing the sale of unit loyal consumers who would have 

purchased the product at some point in the future if the product acquisition program did 

not exist. Guide et al. (2003), for example, report that ReCellular’s remanufacturing cost 

is convex increasing in i, where the larger the value of i, the worse the condition of the 

returned product. The value includes the discounted benefit associated with advancing 

replacement purchase. According to our notation, the total cost to acquire and 

remanufacture a product of age i in period t is  

cb(t, i) + cm(i).         (1.16) 
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We assume that each unit acquired through the buyback program is remanufactured 

(e.g., some portion of each returned product is reused). Of course, once product is beyond 

a certain age, the value of cm(i) may reach a point where it is not profitable to 

remanufacture the product and the firm will not offer to buyback these products.  

The total return volume in period t of product of age i is  

sb(t, i) = sb1(t, i) + sb2(t, i)           (1.17) 

or in expanded form (see (1.13)), 

sb(t, i) =

( ) ( )
( )( ) ( )

( ) ( )
( ) ( ) ( )

1

2

,
min ,1 1, 1

1

,
min ,1 1, 1

b n
b

n

b n
b

n

c t i p i
N t i

i p

c t i p i
N t i

i D t i

υ
υ

υ
υ ι

+

+

  −  − − +   −   
  −  − −   −   

 .   (1.18) 

We denote the total number of units of age i in the install base just prior to returns at the 

end of period t as Nb(t, i), i.e.,  

Nb(t, i) = Nb1(t, i) + Nb2(t, i).         (1.19) 

Note that if Nb(t – 1, i – 1) = 0, then there can be no returns of age i products in period 

t (i.e., because there are no such products in the install base). We let Ω(t) denote the set of 

product ages for which returns are possible in our optimization problem, i.e., Ω(t) = {i : 

Nb(t – 1, i – 1)  > 0}. 

The return volume function, sb(t, i), is constant for any cb(t, i) ≥ max{υ(i), υ(i)[pn + 

ιD(t – i)]}, e.g., 100% of the age i product owned by the innovator segment is returned if 

cb(t, i) ≥υ(i), and 100% of the age i product owned by the imitator segment is returned if 
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cb(t, i) ≥υ(i)[pn + ιD(t – i)]. For any age i ∈ Ω(t), we see from (1.18) that sb(t, i) is strictly 

increasing over the range of viable buyback prices  

cb(t, i) ∈ ( ) ( ) ( ) ( ){ }, , max 1,
bc n n nt i p i i p D t iυ υ ι Ω ≡ + −  , i∈Ω(t).  (1.20) 

Thus, we can invert (1.18) to express buyback price as a function of volume over the 

corresponding range of viable volumes, denoted ( ),
bs t iΩ  for product of age i, i.e., 

( ) ( ), 0, 1, 1
bs bt i N t iΩ ≡  − −            (1.21) 

If 1 ≥ pn + ιD(t – i), we say that the age i cost structure conforms to Regime 1; 

otherwise the age i cost structure conforms to Regime 2. If Regime 1 applies, then at   

cb(t, i) = υ(i)[pn + ιD(t – i)], 100% of age i product owned by the imitator segment is 

returned and the total return volume is  

Ab1(t, i) =
( ) ( ) ( )1 21, 1 1, 1

1
n

b b
n

D t i
N t i N t i

p
ι − 

− − + − − − 
      (1.22) 

(obtained by substituting cb(t, i) = υ(i)[pn + ιD(t – i)] into (1.18)). At cb(t, i) = υ(i), the 

entire age i install base is returned.  

If Regime 2 applies, then at cb(t, i) = υ(i), 100% of age i product owned by the 

innovator segment is returned and the total return volume is  

Ab2(t, i) = ( ) ( ) ( )1 2
11, 1 1, 1n

b b
n

pN t i N t i
D t iι

 −
− − + − −  − 

      (1.23) 

(obtained by substituting cb(t, i) = υ(i) into (1.18)). At cb(t, i) = υ(i)[pn + ιD(t – i)], the 

entire age i install base is returned. Inverting (1.18), the buyback price under Regime k∈ 

{1, 2} is  



30 
 

 

cb(t, i) =
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
, , , ,  , 0, ,

, , , ,  , , , 1, 1
b b b b bk

bk b bk b bk b

a t i s t i b t i s t i A t i

a t i s t i b t i s t i A t i N t i

 + ∈   


+ ∈ − −   
  (1.24) 

where 

ab(t, i) =
( )( ) ( )

( ) ( ) ( ) ( )2 1

1
1 1, 1 1, 1

n n

n b n b

i p D t i
p N t i D t i N t i

υ ι
ι

− −
− − − + − − −

  

bb(t, i) = ( )np iυ  

ab1(t, i) =
( )( )
( )1

1
1, 1

n

b

i p
N t i
υ −

− −
    bb1(t, i) = ( ) ( ) ( )

( )
2

1

1 1, 1
1, 1

n b
n

b

p N t i
i p

N t i
υ

 − − −
−  − − 

 

ab2(t, i) =
( ) ( )
( )2 1, 1

n

b

i D t i
N t i
υ ι −

− −
    bb2(t, i) = ( ) ( ) ( )

( )
1

2

1, 1
1, 1

n b
n

b

D t i N t i
i p

N t i
ι

υ
 − − −

−  − − 
. 

The value of bb(t, i) is the upper limit of the buyback price cb(t, i) for which there is 

no return volume (i.e., cb(t, i) must be above bb(t, i) in order for some customers to accept 

the buyback offer). The value of ab(t, i) is the increase in the buyback price required to 

generate an additional unit in return volume once the buyback price passes the threshold 

value bb(t, i). Depending on the regime, the slope of the buyback price function shifts to 

either ab1(t, i) or ab2(t, i) once all customers in a segment with age i product have 

accepted the buyback offer. 

The objective of the firm is to maximize its total profit ( )b tΠ , which is the sum of the 

profit from remanufactured products and the revenue earned from replacement purchases. 

The remanufactured product’s selling price is pr and revenue earned from the 

replacement purchase is m with a probability of γ (e.g., a fraction γ of loyal consumers 

will replace their existing product with a new product once they are finished using it). 

The profit due to buyback and remanufacturing in period t is 
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( ) ( ) ( )( ) ( )
( )

, ,b r b m b
i t

t p c t i c i s t i
∈Ω

Π = − −∑ .     (1.25) 

The value of pr – cb(t, i) – cm(i) is the profit on each unit that is returned and sold as a 

remanufactured product. An alternative representation of (1.25) could include the term 

mγ, which represents the marginal contribution from the fraction of consumers who will 

replace their existing product with a new product once they are finished using it. We omit 

this term from (1.25) because our comparative analysis focus on the relative performance 

of buyback and trade-in transaction. In section 4.2, we present the profit due to trade-in 

and remanufacturing. 

The myopic pricing problem treats each period independently. We assume that unmet 

demand in a period is not backordered. The optimal remanufactured product profit in 

period t is  

( )
( ) ( ) ( )

( ) ( )
( )

( )
, , ,

max | ,
b sb

m
b b b rs t i t i i t i t

t t s t i d t
∈Ω ∈Ω

∈Ω

  Π = Π ≤ 
  

∑ .     (1.26) 

By substituting (1.24) into (1.25), we see that Πb(t) is a piecewise concave function that 

is separable in the decision vector sb(t) = (sb(t, 1), …, sb(t, t)). The marginal profit 

associated with age i product under Regime k∈ {1, 2} is  

( )
( )

( ) ( ) ( ) ( ) ( ) ( ))
( ) ( ) ( ) ( ) ( ) ( ) ( )(

, 2 , , ,  , 0, ,

, , 2 , , ,  , , , 1, 1
r m b b b b bkb

b r m bk bk b b bk b

p c i b t i a t i s t i s t i A t it
s t i p c i b t i a t i s t i s t i A t i N t i

 − − − ∈∂Π  = 
∂ − − − ∈ − −  

. (1.27) 

A5. Unsatisfied demand in a period results in a lost sale (i.e., no backorders). 

The profit function is non-differentiable at sb(t, i) = Abk(t, i). However, as we will 

show below, the marginal profit at sb(t, i) = Abk(t, i)- is not less than the marginal profit at 
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sb(t, i) = Abk(t, i)+. We can use this fact to specify a simple greedy algorithm that solves 

(1.26).  

Observe that  

ab(t, i) ≤ abk(t, i) for k∈ {1, 2} and i∈ {1, …, t}.      (1.28) 

The profit contribution of age i product under Regime k∈ {1, 2}, denoted ( )( ), , ,b bt i s t iΠ , 

is piecewise continuous, and at sb(t, i) = Abk(t, i) we have  

     ( )( ), , ,b kt i A t iΠ  = ( ) ( ) ( ) ( ) ( ), , , ,bk r m b b bkA t i p c i b t i a t i A t i − − −    

     = ( ) ( ) ( ) ( ) ( ), , , ,bk r m bk bk bkA t i p c i b t i a t i A t i − − −    

which implies  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,r m b b bk r m bk bk bkp c i b t i a t i A t i p c i b t i a t i A t i− − − = − − − . (1.29) 

Expression (1.28) says that the slope of the buyback price function is lower when there 

are age i products owned by both segments than when one segment has returned all age i 

product (e.g., each additional unit of return volume requires a lower increase in buyback 

price when the install base includes both segments). As noted above, the profit expression 

is a piecewise continuous function comprised of two curves that intersect at return 

volume sb(t, i) = Ak(t, i), yielding (1.29). Thus, from (1.28) and (1.29), it follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 2 , , , 2 , ,r m b b bk r m bk bk bkp c i b t i a t i A t i p c i b t i a t i A t i− − − ≥ − − −  (1.30) 

An optimization algorithm for solving (1.26) begins by ranking the values of 

( )
( ) ( ), 0

,
b

b

b s t i

t
s t i

=

∂Π
∂

from largest-to-smallest for i∈Ω(t). Of course, the value of 
( )
( ),
b

b

t
s t i
∂Π
∂

 

changes as return volume is allocated to sb(t, i). The algorithm tracks marginal profit and 
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allocates volume in a manner that maximizes the increase in profit per unit increase in 

return volume. Volume is allocated as long as marginal profit is positive and the  

constraint ( )
( )

( ),b r
i t

s t i d t
∈Ω

≤∑  is satisfied. The algorithm steps are described below (see the 

appendix for details on the implementation of Step 3). We suppress the parameter t in our 

description. 

1. Initialize the decision vector, sb = (0, …, 0) 

Optimal Algorithm for the Myopic Buyback Problem 

2. From among the viable ages (contained in Ω), identify the age(s) with the maximum 

marginal profit, say age J. 

3. Add volume to sb(J) in an amount that is the minimum of 5 values: (1) quantity that 

results in marginal profit of age J to equal the second-highest marginal profit, (2) 

quantity at which sb(J) = Abk(J), (3) quantity at which sb(J) = Nb(J – 1), (4) quantity at 

which the marginal profit of age J is zero, (5) quantity at which total return volume is 

equal to demand dr. 

4. If the quantity added to sb(J) is equal to the value given in either (4) or (5), then exit. 

5. If the quantity added to sb(J) is equal to the value given in (3), then remove J from the 

viable age set Ω. 

6. Go to step 2. 

3.4 Optimal Proactive Buyback Price Schedule 

The previous section solves a myopic optimization problem. In this section we 

consider the problem of setting a buyback price schedule in the current period so as to 

maximize profit over the duration of the product life-cycle. In effect, this requires 
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determining the buyback price schedule in each future period, though in practice, such 

future period price schedules would be finalized once the period is reached based on the 

sales history and demand projections available at that time.  

Myopic buyback pricing has the advantage of being relatively simple. One objective 

of our analysis of myopic and proactive pricing problems is to identify conditions under 

which myopic buyback pricing is nearly optimal and far from optimal.  

We let T denote the last period in the remanufactured product life-cycle. The 

particular value of T is a management decision that we assume to be exogenous to our 

problem, though period T would typically be in the decline stage of the life-cycle, i.e., T 

> t* where t* denotes the period of peak sales for the remanufactured product. For 

example, in the continuous-time analog of our Bass diffusion model of demand, 

remanufactured product sales reaches its peak in period 

t* = 
( ) ( )

( )
( )

11 ln
1 1 1n n

M
p M p

θ ι
τ

θ θ ι θ
   −

+      − + − −   
 .     (1.31) 

The first term in (1.31) is the period of peak sales for new product, which is advanced by 

τ periods to yield the period of peak demand for the remanufactured version of the 

product.  

The problem is to maximize total discounted profit over the planning horizon of T 

periods. We present two math programming formulations for this problem. An advantage 

of the first formulation is that it conveys the problem in a relatively simple manner. A 

disadvantage is that the objective function is not smooth in the decision variables, which 

creates difficulties for some nonlinear optimization algorithms. The second formulation is 

more complex but yields a smooth objective function. 
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Math Programming Formulation 1 

We require the following additional notation: 

h      = inventory holding cost per unit-period for returned product (incurred at the  

end of the period after returns are received) 

r       = net discount rate, e.g., cost of capital less inflation 

x(t)   = sales of remanufactured product in period t 

I(t)   = inventory of remanufactured product at the end of period t, with I(0) = 0 

The problem is 

( ) ( )
1

max 1
T

tp
b b

t
r t

=

Π = − Π∑  

where  

( ) ( ) ( ) ( ) ( )( ) ( )
1

, ,
t

b r b m b
i

t p x t h I t c t i c i s t i
=

Π = − − +∑          (1.32) 

subject to 

( ) ( ) ( ) { } { } { }, , 1, 1 0,  1,..., , 1,2 , 1,...,bj bj bjN t i s t i N t i i t j t T+ − − − = ∈ ∈ ∈     (1.33) 

( ) ( ) ( ) ( ) { }
1

, 1 0,  1,...,
t

b
i

I t x t s t i I t t T
=

+ − − − = ∈∑          (1.34) 

( ) ( ) { },  1,...,rx t d t t T≤ ∈                (1.35) 

( ) ( ) ( )
( )( ) ( ) { } { }1 1

,
, min ,1 1, 1 0,  1,..., , 1,...,

1
b n

b b
n

c t i p i
s t i N t i i t t T

i p
υ

υ

+  − − − − = ∈ ∈   −   
  (1.36) 

( ) ( ) ( )
( ) ( ) ( ) { } { }2 2

,
, min ,1 1, 1 0,  1,..., , 1,...,b n

b b
n

c t i p i
s t i N t i i t t T

i D t i
υ

υ ι

+  − − − − = ∈ ∈   −   
  (1.37) 

( ) ( ) ( ) ( ) { } { } { }, , , , , 0,  1,..., , 1,2 , 1,...,b bjs t i N t i x t I t i t j t T≥ ∈ ∈ ∈       (1.38) 
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Constraints defined in (1.33) are the flow-balance constraints for the install base of each 

age and segment over time. Constraints defined in (1.34) are flow-balance constraints for 

remanufactured product inventory. Constraints defined in (1.35) state that sales can be no 

more than demand. Constraints defined in (1.36) and (1.37) specify returns by segment 

given the buyback price cb(t, i), as determined by total return volume sb(t, i). Constraints 

defined in (1.38) enforce nonnegativity of the decision variables. The expressions for  

cb(t, i) depend on the regime, and are given below (see (1.24)): 

If pn + ιDn(t – i) ≤ 1, then   

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )
( )

2 1

1 2

2

1 1

1 ,
,  

1 1, 1 1, 1

           if , 0, 1, 1 1, 1
1

, 1 , 1 1, 1
,  

1, 1 1, 1

       

n n b
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n b n b
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b b b
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b n b n b
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p D t i s t i
i p

p N t i D t i N t i

D t i
s t i N t i N t i

p

c t i p s t i p N t i
i p

N t i N t i
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ι
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 − −
+  − − − + − − − 

  − 
∈ − − + − −  

−   
=  − − − −

+ −  − − − − 
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( ) ( ) ( )

( ) ( )

1 2

1 2

1, 1 1, 1 ,
1     if ,

1, 1 1, 1

n
b b

nb

b b

D t i
N t i N t i

ps t i
N t i N t i

ι











   −  − − + − −   −∈     − − + − −  

 

if pn + ιDn(t – i) ≥ 1, then  

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )
( )
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  −
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+ −  − − − − 
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1, 1 1, 1

n
b b

nb

b b
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

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
   − − − + − −    −∈     − − + − − 
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The positioning of cm(i) in Πb(t), is based on the assumption that the firm 

remanufactures the unit in the period in which it is returned. We make this assumption in 

order to simplify the problem while still capturing the essence of the anticipatory 

buyback pricing problem. Without this assumption, we would need to track inventory by 

condition and we would need to assure that units in inventory are remanufactured in order 

of best-to-worst condition (i.e., from smallest-to-largest cm(i)). This simplifying 

assumption has no impact when r = 0 (i.e., the cost to remanufacture x units in a period is 

the same as the cost to remanufacture the x units n periods later). 

A6. The firm remanufactures the unit in the period in which it is returned. 

 

Math Programming Formulation 2 

For the second formulation, we use y-(t) to denote unsatisfied demand in period t and we 

use y(t) to denote the difference between supply and demand in period t. Thus, the 

inventory at the end of period t is y(t) + y-(t), which is initialized at 0, i.e., y(0) + y-(0) = 0. 

A number of other intermediate variables are computed in the constraints. The problem is 

( ) ( )
1

max 1
T

tp
b b

t
r t

=

Π = − Π∑            (1.39) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 2
1

, , ,
t

b r r b m b b
i

t p d t y t h y t y t c t i c i s t i s t i− −
=

Π =  −  −  +  − +  +      ∑   

subject to 

( ) ( ) ( )
( )( ) { } { },

1 , ,  1,..., , 1,...,
1

b n

n

c t i p i
z t i i t t T

i p
υ

υ
−

≤ ∈ ∈
−

        (1.40) 
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( ) ( ) ( )
( ) ( ) { } { },

2 , ,  1,..., , 1,...,b n

n

c t i p i
z t i i t t T

i D t i
υ

υ ι
−

≤ ∈ ∈
−

        (1.41) 

( ) { } { } { }, 0,  1,..., , 1,2 , 1,...,zj t i i t j t T≥ ∈ ∈ ∈           (1.42) 

( ) { } { } { }, 1,  1,..., , 1,2 , 1,...,zj t i i t j t T≤ ∈ ∈ ∈           (1.43) 

( ) ( ) ( ) { } { } { }, , 1, 1 ,  1,..., , 1,2 , 1,...,bj bjs t i zj t i N t i i t j t T= − − ∈ ∈ ∈      (1.44) 

( ) ( ) ( ) { } { } { }, 1, 1 , ,  2,..., , 1,2 , 1,...,bj bj bjN t i N t i s t i i t j t T= − − − ∈ ∈ ∈              (1.45) 

( ) ( ) ( ) ( )1 21 1,1 1,1 1b b ry s s d= + −             (1.46) 

( ) ( ) ( ) ( ) ( )( ) ( ) { }1 2
1

1 1 , ,  , 2,...,
t

b b r
i

y t y t y t s t i s t i d t t T−
=

= − + − + + − ∈∑    (1.47) 

( ) ( ) ( ) ( )( )1 21 1 1,1 1,1r b by d s s− ≥ − +             (1.48) 

( ) ( ) ( ) ( )( ) ( ) ( ) { }1 2
1

, , 1 1  , 2,...,
t

r b b
i

y t d t s t i s t i y t y t t T− −
=

≥ − + − − − − ∈∑    (1.49) 

( ) { }0,  1,...,y t t T− ≥ ∈                (1.50) 

Constraints (1.40) – (1.43) ensure that the min{(⋅)+, 1} terms in (1.18) take on the proper 

values. Constraints (1.44) – (1.45) are implementations of  (1.18) and (1.12). Constraints 

(1.46) and (1.47) define the difference between supply and demand at the end of periods 

1 though T. Constraints (1.48) and (1.49) define unsatisfied demand in periods 1 through 

T; the inequality is tight when demand is more than supply because of the cost.  

3.5 Numerical Illustrations 

This section compares the performance of myopic and proactive solutions through a 

few numerical illustrations. Note that the cost to acquire and remanufacture a unit of age i 

from a segment 1 customer is in the following range: 
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υ(i)pn + cm(i) < cb(t, i) + cm(i) ≤ υ(i) + cm(i).      (1.51) 

The range follows from the fact that the range of valuations at the time of purchase is in 

the interval [pn, 1] (see (1.4)). Thus, the buyback price for age i must be at least υ(i)pn 

before a segment 1 customer will accept the offer, and all segment 1 customers will 

accept the offer at buyback price cb(t, i) = υ(i). Similarly, the cost to acquire and 

remanufacture a unit of age i from a segment 2 customer is in the following range: 

υ(i)pn + cm(i) < cb(t, i) + cm(i) ≤ υ(i)[pn + ιD(t – 1)]  + cm(i).    (1.52) 

 

Figure 2.5. Upper and lower bounds on buyback acquisition and recovery cost 

For given functions υ(i) and cm(i), we can examine how the lower and upper limits of 

the ranges vary as a function of i (see Figure 2.5). And for certain functional forms, there 

may exist a relatively narrow range of ages associated with lowest acquisition and 

remanufacturing cost, e.g., a sweet spot defining a band of ages that are most cost 

effective. Guide et al. (2003), for example, report ReCellular’s cost and acquisition 

percentage data by condition (see Table 3 in Guide et al.). The data suggest a sweet spot 
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around condition 3, and that the acquisition and remanufacture of very new and very old 

product is not cost effective. In settings with a pronounced sweet spot, say i*, we find that 

the difference between i* and the time lag τ is an indicator of the relative performance 

between a myopic solution and a proactive solution. In particular, when i* is close to τ, 

then the profit of the myopic solution is close to the profit of the profit of the proactive 

solution. As these parameter values get farther apart, the use of a proactive solution 

method in place of the myopic algorithm is more likely to add value. This effect is 

illustrated in Table 2.1 below. 

i* τ ΠM/ΠP %M %P 

6 0 0.877 41% 34% 

6 6 0.973 83% 83% 

6 10 0.820 33% 47% 

Table 2.1. The ratio of optimal myopic to proactive buyback profits and the percent of 
remanufactured product demand satisfied by myopic and proactive buyback policies  

The results in Table 2.1 correspond to a 12 year new product diffusion process. The 

diffusion parameters are based on sales data from Xerox DocuTech copiers sold from 

1991 to 2000 where the market size, coefficient of innovation, and coefficient of 

imitation are M = 38,833 units, p =.015 and q =0.346 respectively (Van de Capelle, 

2004). Given a value pn =0.5, the values of θ =0.3 and ι =0.00001273 correspond with the 

values of p and q; however, we adjust these values and let θ = .15 and ι =0.00001329. 

These adjustments preserve the fundamental structure of the diffusion process, and yet 

allow us to generate a product lifecycle of approximately 12 years, ensuring that the 

maximum valuation for imitator type is not more than 1. We assume υ(i) is linear where 

υ(0)  = 1, and υ(12)  approaches 0.This assumption suggests a residence index = 1, which 
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implies the typical consumer’s usage cycle matches the product lifecycle. We assume 

cm(i) is convex and increasing such that at cm(12)  = 1 and we set its shape parameter 

equal to 4.7

The results in Table 2.1 show that when the time lag matches the sweet spot age (i.e., 

τ  = i*), there is little difference between optimal profits under the myopic and the 

proactive buyback pricing policies (i.e., 97.3%). This is because when τ  = i*, the 

availability of used products that are both affordable and suitable for cost effective 

remanufacturing is high. Columns 4 and 5 of table 2.1 contain the percent of 

remanufactured demand satisfied by the myopic and proactive solutions respectively. The 

return volumes under the optimal myopic and proactive policies show that when the time 

lag matches the sweet spot age, both polices satisfy roughly 83% of the demand for 

remanufactured product. However, the proactive solution has a slight advantage when τ  

< i * and when τ  > i *, but for different reasons. When τ  < i *, the proactive decision 

maker acquires fewer products in the early stages only to acquire them later at a lower 

price. The myopic decision maker will acquire end-of-use returns as long as marginal 

cost is less than marginal profits. When τ  = 0, the myopic decision maker satisfies 41% 

 Finally we let γ = 0.4, pr = 0.4 and α = 0.8. Note, our assumptions regarding 

the functional form of υ(i) and cm(i), suggest a sweet-spot at age i = 6. Given these 

assumptions, we used the algorithm outlined in Section 3.3 to generate the optimal 

myopic profits. We used Large Scale SQP solver to search for optimal (near optimal) 

solutions to the math programming formulations developed in Section 3.4. Large Scale 

SQP uses genetic and evolutionary algorithms to find solutions to non-smooth 

optimization problems.  

                                                 
7We assume the functional form for our condition dependent remanufacturing cost is  cm(i) = (i /12)4, for 0 
< i ≤ 12  cm(i) = 1, otherwise. 
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of the remanufactured product demand while the proactive active decision maker only 

satisfies 34% of the remanufactured product demand, yet earns higher profits. When τ = 

10 > i *, the opposite is true. The myopic decision maker is less able to accommodate the 

demand for the remanufactured product in later periods due to insufficient supply of 

products that are affordable to recover. On the other hand, the proactive decision maker 

accumulates an inventory of used products in earlier periods (e.g., where acquisition and 

recovery cost are low), in order to satisfy demand in later periods (e.g, where recovery 

cost are high). For instance, when τ = 10, we see that in table 2.1 the optimal myopic 

policy satisfies 33% of the remanufactured product demand while the proactive policy 

satisfies 47% of total remanufactured product demand and earns larger profits. 

4. Trade-in Policies for a Producer of New and Remanufactured Products  

In this section, we consider the relative performance of myopic and proactive trade-in 

acquisition policies. A firm that sells both new and remanufactured product has the 

option to offer a trade-in price for a return.8

                                                 
8The more common terms are trade-in discount or trade-in credit. We use price to be consistent with 
buyback terminology, which simplifies our wording later on when we discuss these policies together.  

 A customer who accepts the trade-in offer 

receives a price discount on the purchase of the new product. In the next section, we will 

compare the profitability of buyback and trade-in policies for an OEM/remanufacturer.  

The organization of this section parallels Section 3. In Section 4.1 we describe how 

return volumes are related to the trade-in credit. Section 4.2 examines the optimal myopic 

trade-in price schedule, Section 4.3 examines the optimal proactive trade-in price 

schedule, and Section 4.4 contains numerical analyses that compares and contrasts the 

two pricing policies. 
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4.1 Remanufactured Product Supply 

Recall from Section 3.1 that the buyback disutility for a customer with age i product 

and valuation V at the time of purchase is Vυ(i). This means that a customer who is 

offered a cash amount of cb(t, i) satisfying cb(t, i) ≥Vυ(i) will return his or her product. A 

trade-in transaction, on the other hand, has strings attached. A customer who is offered a 

trade-in price of ct(t, i) must purchase a new product from the firm to receive the credit, 

e.g., the new product purchase price on a trade-in transaction is pn – ct(t, i). We let φ ∈ [1, 

∞) be a measure of the consumer’s perceived cost of reduced flexibility associated with a 

trade-in transaction relative to a buyback transaction. More precisely, φ is the ratio of 

trade-in- to-buyback disutility, which we assume to be independent of product’s age. 

Thus, at time t, a customer with product of age i will accept the trade-in offer and return 

the product if ct(t, i) ≥φVυ(i).  

A7. The ratio of trade-in- to-buyback disutility, φ, is independent of product age. 

Recall from Section 3.1 that γ is the fraction of buyback customers with product of 

age i who prefer to replace their returned product with a new product from the firm. The 

parameters φ and γ are related. For example, if γ = 1, then a trade-in transaction offers no 

disadvantage relative to a buyback transaction, andφ = 1; customers prefer to use the cash 

from a buyback transaction to purchase a new product from the firm, i.e., 

γ = 1 ⇒ φ = 1          (1.53) 

In general, the values of φ and γ are inversely related; a small value of γ means that few 

customers prefer to replace their old product with a new product from the firm, which 
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implies a high value φ, i.e., a high cost of the reduced flexibility associated with a trade-

in transaction relative to a buyback transaction. 

As one may expect (and as will be shown below), the buyback and trade-in profit 

expressions are equivalent when customers are very loyal to the firm (i.e., γ = φ = 1). In 

essence, when γ = 1, customers perceive no difference between a buyback credit and a 

trade-in credit. Differences in the relative performance of buyback and trade-in programs 

arise in settings where γ < 1. 

From the valuation probability distributions associated with customers who purchased 

the product (see (1.4) and (1.5)), it follows that 

φV1υ(i) ~ U[φpnυ(i), φυ(i)]          (1.54) 

φV2υ(i) ~ U[φpnυ(i), φ(pn + ιDn(t – i))υ(i)]      (1.55) 

and the return probabilities in response to trade-in price function ct(t, i) offered at the end 

of period t are 

( ) ( ) ( ) ( )
( )( )1

,
, min ,1

1
t n

t
n

c t i p i
P V i c t i

i p
φ υ

φ υ
φυ

+  −  ≤  =      −   
     (1.56) 

( ) ( ) ( ) ( )
( ) ( )2

,
, min ,1t n

t
n

c t i p i
P V i c t i

i D t i
φ υ

φ υ
φυ ι

+  −  ≤  =      −   
     (1.57) 

for i∈ [1, t].  

The number of products of age i in the segment j install base at the end of period t is 

Ntj(t, i). The number of products of age i returned in period t from segment j is stj(t, i). 

The expressions for Ntj(t, i) are similar to the expressions for Nbj(t, i). The only difference 

stems from the fact that each trade-in transaction is associated with the purchase of a new 
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product from the firm, whereas only fraction γ of buybacks result in the purchase of a 

new product from the firm. Replacing γ with 1 in (1.11) yields the trade-in customer sales 

to segment j at the beginning of period t, i.e.,  

dtj(t) = ( )
1

1
1,

t

tj
k

s t k
−

=

−∑ .            (1.58) 

for t ≥ 1. For the computation of dtj(0, 0), we define stj(0, 0) = 0.  

Recall that dn(t) denotes sales to new customers in period t. Following Section 3.1, we 

define 

 Nt1(t, 0) = ( ) ( ) ( ) ( ) ( ) ( )1 1
1

1 1 1 1 1 ,
t

n t n t
k

t d t d t t d t s t kθ θ
=

+ + + + = + + +∑    

Nt2(t, 0) = ( ) ( ) ( ) ( ) ( ) ( )2 2
1

1 1 1 1 1 1 1 ,
t

n t n t
k

t d t d t t d t s t kθ θ
=

 − +  + + + =  − +  + +    ∑    

for t ≥ 0, and the general expression for the install base is 

Ntj(t, i) = Ntj(t – 1, i – 1) – stj(t, i) for j∈ {1, 2} and i∈ [1, t], t ≥ 1.   (1.59) 

The volume of age i product that is returned by each segment at the end of period t is 

given by 

stj(t, i) = ( ) ( ) ( ), 1, 1j b tjP V i c t i N t iφ υ ≤ − −   for j∈ {1, 2}, i∈ [1, t], t ≥ 1.  (1.60) 

4.2 The Optimal Myopic Trade-in Price Schedule 

The total return volume in period t of product of age i is  

st(t, i) = st1(t, i) + st2(t, i)           (1.61) 

or in expanded form (see (1.60)), 
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st(t, i) =

( ) ( )
( )( ) ( )

( ) ( )
( ) ( ) ( )

1

2

,
min ,1 1, 1

1

,
min ,1 1, 1

t n
t

n

t n
t

n

c t i p i
N t i

i p

c t i p i
N t i

i D t i

φυ
φυ

φυ
φυ ι

+

+

  −  − − +   −   
  −  − −   −   

 .   (1.62) 

We denote the total number of units of age i in the install base just prior to returns at 

the end of period t as Nt(t, i), i.e.,  

Nt(t, i) = Nt1(t, i) + Nt2(t, i).         (1.63) 

Recall from Section 3.3 that Ω(t) is the set of ages at the end of period t for which returns 

are viable, i.e., Ω(t) = {i : Nt(t, i) > 0}. The return volume function, st(t, i), is constant for 

any ct(t, i) ≥ max{φυ(i), φυ(i)[pn + ιD(t – i)]}, e.g., 100% of the age i product owned by 

the innovator segment is returned if ct(t, i) ≥φυ(i), and 100% of the age i product owned 

by the imitator segment is returned if ct(t, i) ≥φυ(i)[pn + ιD(t – i)]. For any age i∈Ω(t), we 

see from (1.62) that st(t, i) is strictly increasing over the range of viable trade-in prices  

ct(t, i) ∈ ( ) ( ) ( ) ( ){ }, , max 1,
tc n n nt i p i i p D t iφυ φυ ι Ω ≡ + −  , i∈Ω(t).   (1.64) 

Thus, we can invert (1.62) to express trade-in price as a function of volume over the 

corresponding range of viable volumes, denoted ( ),
ts t iΩ  for product of age i, i.e., 

( ) ( ), 0, 1, 1
ts tt i N t iΩ ≡  − −   .        (1.65) 

If 1 ≥ pn + ιD(t – i), we say that the age i cost structure conforms to Regime 1; otherwise 

the age i cost structure conforms to Regime 2. If Regime 1 applies, then at ct(t, i) = 

φυ(i)[pn + ιD(t – i)], 100% of age i product owned by the imitator segment is returned 

and the total return volume is  
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At1(t, i) =
( ) ( ) ( )1 21, 1 1, 1

1
n

t t
n

D t i
N t i N t i

p
ι − 

− − + − − − 
     (1.66) 

(obtained by substituting ct(t, i) = φυ(i)[pn + ιD(t – i)] into (1.62); see (1.22)). At  ct(t, i) = 

φυ(i), the entire age i install base is returned.  

If Regime 2 applies, then at ct(t, i) = φυ(i), 100% of age i product owned by the 

innovator segment is returned and the total return volume is  

At2(t, i) = ( ) ( ) ( )1 2
11, 1 1, 1n

t t
n

pN t i N t i
D t iι

 −
− − + − −  − 

     (1.67) 

(obtained by substituting ct(t, i) = φυ(i) into (1.62); see (1.23)). At ct(t, i) = φυ(i)[pn + 

ιD(t – i)], the entire age i install base is returned. Inverting (1.62), the trade-in price under 

Regime k∈ {1, 2} is  

ct(t, i) =
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
, , , ,  , 0, ,

, , , ,  , , , 1, 1
t t t t tk

tk t tk t tk t

a t i s t i b t i s t i A t i

a t i s t i b t i s t i A t i N t i

 + ∈   


+ ∈ − −   
   (1.68) 

where 

at(t, i) =
( )( ) ( )

( ) ( ) ( ) ( )2 1

1
1 1, 1 1, 1

n n

n t n t

i p D t i
p N t i D t i N t i

φυ ι
ι

− −
− − − + − − −

  

bt(t, i) = ( )np iφυ  

at1(t, i) =
( )( )
( )1

1
1, 1

n

t

i p
N t i
φυ −

− −
    bt1(t, i) = ( ) ( ) ( )

( )
2

1

1 1, 1
1, 1

n t
n

t

p N t i
i p

N t i
φυ

 − − −
−  − − 

 

at2(t, i) =
( ) ( )
( )2 1, 1

n

t

i D t i
N t i
φυ ι −

− −
    bt2(t, i) = ( ) ( ) ( )

( )
1

2

1, 1
1, 1

n t
n

t

D t i N t i
i p

N t i
ι

φυ
 − − −

−  − − 
. 
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The objective of the firm is to maximize its total profit ( )t tΠ , which is the sum of the 

profit from remanufactured products and the revenue earned from the fraction of buyback 

consumers who purchasing a new product. The remanufactured product selling price is pr 

and m is the marginal contribution from new products to replacement consumers. Recall 

that γ is the repeat purchase rate (e.g., an average of fraction γ of customers replace their 

old product with a new product from the firm). A trade-in transaction induces a customer 

to replace their returned product with a new product from the firm, which generates 

incremental contribution (1 – γ)m, relative to the case of buy-back program. Accordingly, 

the profit in period t is 

( ) ( ) ( ) ( )( ) ( )
( )

1 , ,t r t m t
i t

t p m c t i c i s t iγ
∈Ω

Π = + − − −∑ .     (1.69) 

The optimal remanufactured product profit in period t is  

( )
( ) ( ) ( )

( ) ( )
( )

( )
, , ,

max | ,
t st

m
t t t rs t i t i i t i t

t t s t i d t
∈Ω ∈Ω

∈Ω

  Π = Π ≤ 
  

∑ .     (1.70) 

Πt(t) is a piecewise concave function that is separable in the decision vector st(t) =      

(st(t, 1), …, st(t, t)). The marginal profit associated with age i product under Regime k ∈ 

{1, 2} is  

( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( ) ( )
( )
( )

1 , 2 , , ,  , 0, ,

, ,
, 1 , 2 , , ,  ,

1, 1

r m t t t t tk

t
tk

t r m tk tk t t
t

p m c i b t i a t i s t i s t i A t i
t

A t i
s t i p m c i b t i a t i s t i s t i

N t i

γ

γ

 + − − − − ∈∂Π =  
∂ + − − − − ∈   − −   

. (1.71) 

The problem structure follows the structure of the myopic buyback problem. The steps of 

an algorithm to solve problem (1.70) steps are described below. We suppress the 

parameter t in our description. 
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1. Initialize the decision vector, st = (0, …, 0) 

Optimal Algorithm for the Myopic Trade-in Problem 

2. From among the viable ages (contained in Ω), identify the age(s) with the maximum 

marginal profit, say age J. 

3. Add volume to st(J) in an amount that is the minimum of 5 values: (1) quantity that 

results in marginal profit of age J to equal the second-highest marginal profit, (2) 

quantity at which st(J) = Atk(J), (3) quantity at which st(J) = Nt(J – 1), (4) quantity at 

which the marginal profit of age J is zero, (5) quantity at which total return volume is 

equal to demand dr. 

4. If the quantity added to st(J) is equal to the value given in either (4) or (5), then exit. 

5. If the quantity added to st(J) is equal to the value given in (3), then remove J from the 

viable age set Ω. 

6. Go to step 2. 

4.3 Optimal Proactive Trade-in Price Schedule 

The problem is to maximize total discounted profit over the planning horizon of T 

periods. As in Section 3.4, we present two math programming formulations for this 

problem—one that is simple but with a non-smooth objective function and another that is 

complex but with a smooth objective function. 

Math Programming Formulation 1 

The problem is 

( ) ( )
1

max 1
T

tp
t t

t
r t

=

Π = − Π∑  

where  
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( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1

, 1 ,
t

t r t m t
i

t p x t h I t c t i c i m s t iγ
=

Π = − − + − −∑       (1.72) 

subject to 

( ) ( ) ( ) { } { } { }, , 1, 1 0,  1,..., , 1,2 , 1,...,tj tj tjN t i s t i N t i i t j t T+ − − − = ∈ ∈ ∈     (1.73) 

( ) ( ) ( ) ( ) { }
1

, 1 0,  1,...,
t

t
i

I t x t s t i I t t T
=

+ − − − = ∈∑           (1.74) 

( ) ( ) { },  1,...,rx t d t t T≤ ∈                (1.75) 

( ) ( ) ( )
( )( ) ( ) { } { }1 1

,
, min ,1 1, 1 0,  1,..., , 1,...,

1
t n

t t
n

c t i p i
s t i N t i i t t T

i p
φυ

φυ

+  − − − − = ∈ ∈   −   
  (1.76) 

( ) ( ) ( )
( ) ( ) ( ) { } { }2 2

,
, min ,1 1, 1 0,  1,..., , 1,...,t n

t t
n

c t i p i
s t i N t i i t t T

i D t i
φυ

φυ ι

+  − − − − = ∈ ∈   −   
 (1.77) 

( ) ( ) ( ) ( ) { } { } { }, , , , , 0,  1,..., , 1,2 , 1,...,t tjs t i N t i x t I t i t j t T≥ ∈ ∈ ∈       (1.78) 

Constraints defined in (1.73) are the flow-balance constraints for the install base of each 

age and segment over time. Constraints defined in (1.74) are flow-balance constraints for 

remanufactured product inventory. Constraints defined in (1.75) state that sales can be no 

more than demand. Constraints defined in (1.76) and (1.77) specify returns by segment 

given the trade-in price ct(t, i) as determined by total return volume st(t, i). Constraints 

defined in (1.78) enforce nonnegativity of the decision variables. The expressions for  

ct(t, i) depend on the regime, and are given below (see (1.68)): 

If pn + ιDn(t – i) ≤ 1, then   
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Math Programming Formulation 2 

For the second formulation, we use y-(t) to denote unsatisfied demand in period t and we 

use y(t) to denote the difference between supply and demand in period t. Thus, the 

inventory at the end of period t is y(t) + y-(t), which is initialized at 0, i.e., y(0) + y-(0) = 0. 

A number of other intermediate variables are computed in the constraints. The problem is 

( ) ( )
1

max 1
T

tp
t t

t
r t

=

Π = − Π∑            (1.79) 

where 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2
1

, 1 , ,
t

t r r t m t t
i

t p d t y t h y t y t c t i c i m s t i s t iγ− −
=

Π =  −  −  +  −  + − −   +        ∑  

subject to 

( ) ( ) ( )
( )( ) { } { },

1 , ,  1,..., , 1,...,
1

t n

n

c t i p i
z t i i t t T

i p
φυ

φυ
−

≤ ∈ ∈
−

        (1.80) 

( ) ( ) ( )
( ) ( ) { } { },

2 , ,  1,..., , 1,...,t n

n

c t i p i
z t i i t t T

i D t i
φυ

φυ ι
−

≤ ∈ ∈
−

        (1.81) 

( ) { } { } { }, 0,  1,..., , 1,2 , 1,...,zj t i i t j t T≥ ∈ ∈ ∈           (1.82) 

( ) { } { } { }, 1,  1,..., , 1,2 , 1,...,zj t i i t j t T≤ ∈ ∈ ∈           (1.83) 

( ) ( ) ( ) { } { } { }, , 1, 1 ,  1,..., , 1,2 , 1,...,tj tjs t i zj t i N t i i t j t T= − − ∈ ∈ ∈      (1.84) 

( ) ( ) ( ) { } { } { }, 1, 1 , ,  2,..., , 1,2 , 1,...,tj tj tjN t i N t i s t i i t j t T= − − − ∈ ∈ ∈              (1.85) 

( ) ( ) ( ) ( )1 21 1,1 1,1 1t t ry s s d= + −              (1.86) 

( ) ( ) ( ) ( ) ( )( ) ( ) { }1 2
1

1 1 , ,  , 2,...,
t

t t r
i

y t y t y t s t i s t i d t t T−
=

= − + − + + − ∈∑    (1.87) 

( ) ( ) ( ) ( )( )1 21 1 1,1 1,1r t ty d s s− ≥ − +             (1.88) 

( ) ( ) ( ) ( )( ) ( ) ( ) { }1 2
1

, , 1 1  , 2,...,
t

r t t
i

y t d t s t i s t i y t y t t T− −
=

≥ − + − − − − ∈∑    (1.89) 

( ) { }0,  1,...,y t t T− ≥ ∈                (1.90) 

Constraints (1.80) – (1.83) ensure that the min{(⋅)+, 1} terms in (1.62) take on the proper 

values. Constraints (1.84) – (1.85) are implementations of (1.62) and (1.59). Constraints 

(1.86)  and (1.87) define the difference between supply and demand at the end of periods 

1 though T. Constraints (1.88) and (1.89) define unsatisfied demand in periods 1 through 

T; the inequality is tight when demand is more than supply because of the cost.  
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4.4 Numerical Illustrations 

This section compares the performance of myopic and proactive solutions through a 

few numerical illustrations. The cost to acquire and remanufacture a unit of age i from a 

segment 1 customer is in the following range: 

φυ(i)pn + cm(i) < ct(t, i) + cm(i) ≤ φυ(i) + cm(i).      (1.91) 

Similarly, the cost to acquire and remanufacture a unit of age i from a segment 2 

customer is in the following range: 

φυ(i)pn + cm(i) < ct(t, i) + cm(i) ≤ φυ(i)[pn + ιDn(t – 1)]  + cm(i).    (1.92) 

The structure of (1.91) and (1.92) follows the structure observed in (1.51) and (1.52) 

under analysis of a buyback policy (i.e., the only difference is the inclusion of factor φ). 

Figure 2.6 illustrates the upper and lower bounds on the trade-in credits and product 

recovery cost.  

 

Figure 2.6. Upper and lower bounds on trade-in acquisition and recovery cost 
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Table 2.2 show how the differences between i* and the time lag τ affects the relative 

performance of myopic and proactive solution methods. 

i* τ ΠM/ΠP %M %P 

6 0 0.860 44% 34% 

6 6 0.960 100% 100% 

6 10 0.705 58% 69% 

Table 2.2. The ratio of optimal myopic to proactive trade-in profits and the percent of 
remanufactured product demand satisfied by myopic and proactive trade-in policies 

The results in Table 2.2 correspond to the same parameter values and diffusion 

process used to generate Table 2.1. The only difference is that we use the myopic 

algorithm outlined in Section 4.3 to generate the optimal myopic profits and we use the 

math programming formulation developed in Section 4.4 to facilitate search for the 

optimal proactive solutions. Recall, the trade-in problem requires an extra parameter, φ, 

which reflects the disutility associated with getting a store-credit versus cash. We set φ = 

1.4. The main conclusions are the same as in Section 3.5. When τ  matches the sweet spot 

age i*, there is little difference between optimal, myopic trade-in profits and optimal or 

near optimal proactive trade-in profits. The proactive solution has a slight advantage 

when τ  < i * and when τ  > i *. When τ  < i * for example, the proactive decision maker 

acquires fewer end-of-use products, and satisfies less demand for the remanufactured 

product. In the earlier stages of the product lifecycle, demand for the remanufactured 

product is low and used products are costly to acquire (i.e., the residual valuations are 

high). As the new product matures, demand for the remanufactured product begins to 

pick up. Thus, when τ  < i, The proactive decision maker evaluates the trade-off between  

When τ  < i *, the proactive decision maker acquires fewer products in the earlier stages, 
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only to acquirer them later at a lower prices. When τ = 10 > i *, the opposite is true; that 

is, the proactive decision maker satisfies a larger portion of the remanufactured product 

demand. Note that when τ = 10, the proactive trade-in policy is considerably more 

profitable than the myopic counterpart. The proactive decision maker launches take-back 

and recovery activities well before observing demand for the remanufactured product.  

5. Comparison of Buyback and Trade-in Policies 

Key factors that influence the relative performance of a buyback and trade-in 

programs are the repeat purchase rate γ and the ratio of trade-in-to-buyback disutilityφ. 

As discussed earlier, the value of φ reflects in relative increase in trade-in disutility due to 

the strings attached, i.e., the customer must use the credit toward the purchase of a new 

product from the firm. An advantage of the trade-in program is that it captures the margin 

on a new product sale from faction 1 – γ of customers who would not have repurchased 

from the firm under a buyback program. An advantage of a buyback program is that the 

firm can get a higher return rate for a given credit because there are no restrictions on the 

use of the credit.  

In settings where the firm offers a wide array of products that qualify for the trade-in 

credit, a customer may perceive the trade-in disutility to be very close to the buyback 

disutility (e.g., φ ≈ 1) even though some customers would not purchase from the firm 

when receiving a buyback credit (e.g., γ < 1). If this is the case, then a trade-in program 

will likely be more profitable than a buyback program. This notion is formalized in the 

following proposition. 
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Proposition 1.If φ = 1 and γ < 1, then the profit from an optimal trade-in program is the 

same or higher than the optimal profit from a buyback program. Furthermore, if a 

buyback program is profitable, then a trade-in program will be more profitable. 

The effects of changing values of φ and γ on profits under buyback and trade-in 

policies are illustrated in Table 2.3 and Table 2.4. To generate the results, we used the 

same data that was used to generate tables 2.1 and 2.2, but with the time lag τ set to 

match the sweet spot, i.e., τ = i* = 6. We used the myopic algorithm to generate the 

profits.  

ΠB/ΠT 
φ 

1.0 1.2 1.4 1.6 1.8 

γ 

1.0 1.0 6.620 ∞ ∞ ∞ 

0.8 0.337 0.638 1.83 14.2 ∞ 

0.6 0.195 0.273 0.441 0.899 2.448 

0.4 0.134 0.168 0.227 0.321 0.537 

0.2 0.099 0.012 0.143 0.181 0.242 

Table 2.3. Ratios of buyback profit to trade-in profit. 
 
 
 
 
 
 
 
 
 
 
 
 



57 
 

 

%B 

%T 
φ 

1.0 1.2 1.4 1.6 1.8 

γ 

1.0 
90.3 

90.3 

90.3 

37.5 

90.3 

0.0 

90.3  

0.0 

90.3 

0.0 

0.8 
88.9   

100.0 

88.9   

96.5 

88.9   

66.8 

88.9   

23.3 

88.9   

0.0 

0.6 
86.5   

100.0 

86.5   

100.0 

86.5   

100.0 

86.5   

85.7 

86.5   

54.9 

0.4 
83.8   

100.0 

83.8   

100.0 

83.8   

100.0 

83.8   

100.0 

83.8   

93.3 

0.2 
79.7   

100.0 

79.7   

100.0 

79.7   

100.0 

79.7   

100.0 

79.7   

100.0 

Table 2.4. Percent of remanufactured product demand satisfied under buyback and trade-
in product acquisition policies. 

Column one in Table 2.3 highlights the lessons from Proposition 1. Since φ = 1, 

consumers are indifferent between buyback cash and a trade-in credit. The cost structure 

of the two policies is the same and the only difference between the two objectives 

reduces to an extra-margin earned from the replacement purchase. Table 2.3 also shows 

that in most practical settings (i.e., 1 < φ  < 1.4 and 0 <  γ  < 0.6), trade-in programs are 

more profitable than buyback programs.  

When repeat purchase rates are either low or high, adopting a trade-in program to 

facilitate the collection of end-of-use products is either very attractive or very 

unattractive. For instance, when repeat purchase rates are low, trade-in programs are 

clearly the most attractive product acquisition policy to adopt. Notice from Table 2.3 

where φ = 1 and  γ  =0.2. In this setting, repeat purchase rates are low and the owners’ 
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disutility for the trade-in transactions is low. Both policies are profitable in this region, 

however, when the firm adopts a trade-in policy that allows the owner to apply the trade-

in credit to an acceptable range of alternatives, the profits from doing so are exceptionally 

high. This is because when γ  is low, the firm benefits the most from replacement 

purchase transactions. Since φ  is low, the consumer has no qualms applying the trade-in 

credit and since  γ  is low the firm preserves a greater share of revenues from the 

replacements. The income effect from higher revenues earned on replacement purchase 

transactions allows the firm to increase the trade-in credit and thus acquire enough end-

of-use products to completely satisfy demand for the remanufactured product. Table 2.4 

show that at φ = 1 and  γ  = 0.2,  the optimal acquisition quantity under the trade-in policy 

satisfies 100% of the demand for the remanufactured product while the optimal 

acquisition quantity under the buyback policy only satisfies roughly 80% of demand for 

remanufactured products. 

When repeat purchase rates are high, on the other hand, it is likely to be much more 

profitable to adopt a buyback product acquisition policy instead of a trade-in policy. 

Since γ = 1 ⇒ φ = 1 (see (1.53)),  we already know the buyback and trade-in profit 

expressions are equivalent when customers are very loyal to the firm (i.e., γ = φ = 1); thus 

when this is the case neither policy has an advantage. However, note from Table 2.3 that 

when consumers perceive just a small difference between the buyback credit and the 

trade-in credit, the buyback to trade-in profit ratio increases significantly. We see in 

Table 2.3 that the relative value of adopting the buyback program is increasing in φ. Thus 

as the range of products that consumers are allowed to apply the trade-in credit to 

declines, the more attractive it becomes for the firm to acquire end-of-use products by 
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offering a buyback policy instead of a trade-in policy. We see that in settings reflecting 

the upper right corner of Table 2.3, the buyback policy is strictly preferred. This is 

because, when both γ and φ are high, the cost of offering loyal consumers a trade-in credit 

is so high that remanufacturing is no longer attractive. For instance, Table 2.4 shows that 

when γ =0.8 and  φ  = 1.2 (i.e, profits from trade-ins are relatively more attractive), the 

firm acquires enough returns to satisfy 96.5% of the remanufactured product demand. 

When φ  = 1.4, the firm satisfies 66.8% of the demand for the remanufactured product. 

When the value of φ reaches 1.6 the firm only acquires enough units to satisfies 23% of 

the demand for the remanufactured product. Finally, when consumer loyalty is 

considerably high, and the value of φ reaches 1.8, the optimal acquisition quantity under 

the trade-in policy is zero.  

6. Summary and Conclusions 

This study was motivated by extensive discussions with supply chain managers who 

oversee some aspect of product take-back and recovery activities for a large computer 

company. These companies use trade-in and buyback programs as a means to acquire a 

supply used products in order to meet a demand for remanufactured products. There is a 

genuine interest in understanding the marketing and operational merits of various product 

acquisition policies. Indeed, we respond to these managerial concerns by studying two 

buyback programs and two trade-in programs. Our analysis focused on the time 

dimensions of the pricing problem and our models incorporate key elements of consumer 

willingness-to-return and replacement purchase behavior. The results of our analysis are 

summarized below.  
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Product lifecycle dynamics influence the profitability of remanufacturing activities. 

The diffusion of new product sales, the consumers’ depreciating valuations of the owned 

product, and age dependent remanufacturing cost characterizes conditions shaping 

product acquisition and recovery cost. We find that there exists a “sweet spot” age where 

acquisition and recovery cost are most economical. The sweet spot age is independent of 

the product lifecycle, however, the number of used products in the install base that are at 

the sweet spot age is affected by to product lifecycle dynamics. We find that any optimal 

acquisition policy will target used products that are at the sweet spot age. This is an 

important result because trade-in and buyback programs will often specify the model and 

model year of products that qualify for the take back deal. Our findings regarding the 

sweet spot age offers guidance to managers.  

We study the relative performance between myopic and proactive acquisition 

policies. A common approach to setting buyback prices and trade-in credits draws on 

pricing algorithms which set prices to maximize profits in a single period. Such myopic 

pricing strategies are limiting because they ignore opportunities to exploit the dynamic 

condition of used product markets. We find that the relative performance between 

myopic and proactive product acquisition policies is tied to the time lag between new 

product sales and the demand for remanufactured products. Specifically, when this time 

lag matches the sweet-spot age, myopic pricing policies perform nearly as well as 

proactive policies; otherwise proactive pricing strategies will generally lead to higher 

profits. This finding is important considering that various remanufacturing settings are 

characterized by this time lag. Our findings show that myopic pricing policies are most 

appropriate when remanufacturing activities are targeted to satisfy demand for used 
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products in secondhand markets; otherwise, proactive acquisition policies are likely to be 

more profitable.  

We study the relative performance of buyback and trade-in acquisition policies. Our 

analysis accounts for replacement purchase rates and consumer preferences for buyback 

cash and trade-in credits. Our main conclusion is that in most practical settings, trade-in 

policies are likely to yield more profits than buyback policies. We find that the difference 

between the performance of trade-in and buyback programs are most pronounced when 

repeat purchase rates are high and when the range of products that the trade-in credits can 

be applied to are less appealing.  

Regarding the generality and the applicability of our results, we assumed the residual 

valuation function for both adopter segments is the same. The residual valuation function 

reflects how a consumer’s perception of the value of the owned good changes over time. 

This function is a proxy for voluntary replacement decision which could depend on 

several factors, such as the owner’s usage rate (Raymond et. al. 1993), desires for 

newness, and situational factors (Jacoby et. al. 1977). This suggests that owners are, to 

some degree, heterogeneous with respect to their residual valuation of the used product. 

A model that captures heterogeneity in the residual valuation could be of potential use. 

We also assumed the replacement fraction is constant, where in practice the replacement 

fraction may depend on the age of the product. The math programming formulations can 

easily be extended to examine how age-dependent replacement rates influence policy 

preferences. 

In addition to relaxing key assumptions of the model, we conclude with several 

suggestions for future research. We consider the company that offers either a trade-in 
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program or a buyback program. Some companies allow the consumer to choose between 

a trade-in credit and buyback cash (i.e., BestBuy). The trade-in credit is generally larger 

than the corresponding buyback rebate. An interesting extension to this work would be a 

model that examines the optimal trade-in credit and buyback price when both programs 

are offered. Second, while our analysis focused on age-dependent policies, some 

companies will offer a flat credit regardless of the age or condition of the returned 

product. For example, in 2010 Snap On Equipment offered a fixed fee trade-in credit with 

only one condition, the dealer returns a wheel balancing systems – regardless of brand 

and working condition. A dynamic study of a family of fixed fee trade-in or buyback 

credits could provide new and interesting insights. Another contribution would be a 

rigorous examination of trade-in policies that allow consumers to return competitor 

equipment. A model that accounts for uncertain resale value could also provide 

interesting insights about the effect of uncertainty on product acquisition policy choice.  

Another important issue to consider is that of competition. The number of companies 

offering trade-in and buyback programs are growing. A rigorous analysis of how of 

competition effects policy choice could add valuable insight to the growing body of 

literature related to competition in product recovery markets.  

7. Appendix 

7.1 Notation 

L = time until all warranties expire if there is no trade-in program, 

i.e., length of the warranty horizon 

M = total number of purchases over the life of the product  
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θ  = fraction of new purchases influenced by external source, i.e., 

innovator segment 

α = size of the remanufactured product market relative to the new 

product market 

τ = number of periods remanufactured product demand lags behind 

the new product demand 

p = coefficient of innovation denotes adoption due to external 

influences 

q = coefficient of imitation denotes adoptions due to internal market 

influences. 

dn(t) = new product demand at time t. 

dr(t)      = remanufactured product demand in period t 

dbj(t),  dtj(t) = new product sales to segment j  resulting from buyback / trade-in  

transactions 

θ(t)        = the fraction of sales to the innovator segment in period t 

Dn(t – 1) = cumulative new product sales at the start of period t 

Dr(t)      = total  remanufactured product sales in periods 1 through t 

Nbj(t, i), Ntj(t, i) = The number of products of age i in the segment j install base at 

the end of period t 

sbj(t, i), st(t, i) = The number of products of age i returned in period t from 

segment j 

cb(t, i) = denote the buyback price at time t for a product of age i. 

ct(t, i) = trade-in price reduction on the new model of the product at time 

t according to policy i, i.e., trade-in discount 

cm(i) = cost to remanufacture a returned product of age i 

h = inventory holding cost per unit-period excluding the cost of 
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capital (e.g., storage fees) 

M = margin on the new model of the product 

pn = price of the new model of the product, i.e., pn = cn + m 

pr = remanufactured product selling price  

r = net discount rate, e.g., cost of capital less inflation 

γ = fraction of trade-in customers who purchase the new model 

when returning the old product  (e.g., repeat purchase rate) 

φ = the ratio of trade-in- to-buyback disutility 

V  = consumer’s valuation of the new product 

i = age of a product 

υ(i) = consumer’s valuation fraction of a product of age i, 

7.2 Assumptions 

A1.  The valuation fraction of a product of age i, υ(i), is the same for the innovator 

and imitator segments. 

A2.  Customers are not strategic in their return decision.  

A3.  The new product and the remanufactured product serve distinct markets—the 

products are not substitutes. 

A4.  The repurchase rate, γ, is independent of the age of the product when 

returned. 

A5.  Unsatisfied demand in a period results in a lost sale (i.e., no backorders). 

A6.  The firm remanufactures the unit in the period in which it is returned. 

A7.  The ratio of trade-in- to-buyback disutility, φ, is independent of product age. 

7.3 Step 3 of the Myopic Algorithm 

The logic of Step 3 of the myopic algorithm is presented at a high level. We provide 

additional detail on implementation in this section. We use the myopic buyback 
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algorithm for purposes of illustration; the implementation of the myopic trade-in 

algorithm is identical except for changes in notation.  

Recall that the profit associated with age i product under Regime k ∈ {1, 2} is  
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(obtained by setting marginal profits equal after allocating ρi∆ to each age i ∈ J and 

solving for ρi). To simplify the notation, let  
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The value of ∆ is the minimum of five values, ∆1, …, ∆5, that are explained below. 

1. Quantity that results in marginal profit of age J to equal the second-highest marginal 

profit: 

Let j denote the age of the second-highest marginal profit. If there is no positive 

second-highest marginal profit, then ∆1 = ∞; otherwise the quantity is 
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< 

 
 ∞ ≥ 

  

3. Quantity at which sb(J) = Nb(J – 1): 

∆3 =
( ) ( )

( ) ( ) ( ) ( )
,                                 if 

1, 1min ,  if 

b bk

b b
i J b bk

i

s i A i
N t i s i

s i A i
ρ

∈

∞ < 
 − − − ≥  

  

4. Quantity at which the marginal profit of age J is zero: 

∆4 =
( )min i i b

i J
i i

b a s i
a ρ∈

 − 
 
 

  

5. Quantity at which total return volume is equal to demand dr: 

∆5 = ( )r b
i J

d s i
∈

−∑   

The total quantity allocated to the ages in J is  

∆ = min{∆1, …, ∆5} 

and sb(i) = sb(i) + ρi∆ ∀i ∈ J. 

7.4 Derivations and Proofs 

Proof of Proposition 1. Note that the buyback and trade-in models are identical when φ 

= γ = 1 (compare (1.11), (1.18), and (1.32) with (1.58), (1.62), and (1.72)). Suppose φ = 1 

> γ. Setting trade-in prices to the optimal buyback prices, i.e.,  

ct(t, t) = cb
*(t, i) for all i and t, 

yields a feasible solution to the trade-in problem and the following difference in profit: 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )*
1 2

1 1 1
1 | , , 1 1 , ,

T T t
t tp

t t b b b b
t t i

r t c t i c t i r m s t i s t iγ
= = =

− Π = −Π = − − +∑ ∑ ∑  

(see (1.32) and (1.72)), which is positive when a buyback program is profitable (i.e., 

when sbj(t, i) > 0 for some i, j, and t).  
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CHAPTER 3: FINAL PURCHASE AND TRADE-IN PROGRAM DECISIONS IN 

RESPONSE TO A COMPONENT PHASE-OUT ANNOUNCEMENT 

1. Introduction 

In this essay, we investigate a problem faced by a durable-goods manufacturer of a 

product that is no longer manufactured but still under warranty. A supplier announces 

that a component of the product will be phased out and specifies a deadline for the final 

order. The manufacturer projects the component needs for the product under warranty 

and considers a two-stage decision problem: (1) the size of the final order and, in the 

event that the final order is less than actual requirements, (2) the design of a trade-in 

program for component harvesting.  

The importance and prevalence of this problem have increased over time due to two 

long-term trends—shrinking product life-cycles and growth in outsourcing. These trends 

are especially pronounced in the computer industry where the high pace of change and 

technical challenges favor supply chains of independent firms with specialized expertise 

(e.g., AMD and Intel for processors, Seagate and Western Digital and for hard drives, 

Cisco and D-Link for routers, Flextronics and Selectron for assembly). Indeed, our 

motivation for this study comes from our discussions with management at a computer 

manufacturer. The following is a description of the problem by a manager at the firm. 

What we are doing today for warranty parts is we place an end-of-life buy. 
The supplier will come to us and say okay, in the next three months we are 
going to stop producing this part forever, how many do you want? Now 
typically we would have three to five more years’ worth of warranty life 
that we have to cover for that part when the buyer comes to tell us that. So 
we then run it through a series of parts planning tools that tells us the 
demand we will have for that part over the remaining service life, and we 
assign a service level to that. But naturally considering that it is warranty 
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coverage and we know we can't get the part again, we have to be pretty 
conservative of how we place that buy. So, by definition, we over purchase 
on that end-of-life buy. A thought is that if we had something in place such 
that in those situations where demand for warranty parts ends up greater 
than we thought, if in those situations we can go out to the install base and 
proactively identify those units that we would like to have back. We could 
offer the current customer a very good deal on an upgrade and get those 
systems back and then tear them down. 

 

We present a model of the decision problem in response to a component phase-out 

announcement (CPOA) by a sole source supplier. In particular, we consider the special 

setting where the CPOA occurs after the manufacturer has discontinued sales of the 

parent product. We investigate how a firm’s optimal decisions and profits are influenced 

by industry and market characteristics. Our analysis lends insight into the determinants of 

the initial order quantity, the characteristics of a well-designed trade-in program to 

support component harvesting, and the cost of ignoring a trade-in program for component 

harvesting.  

Our main contributions are three-fold. First, we introduce and define an important 

problem that, to our knowledge, has not been addressed in the literature. Second, we 

introduce a simple, yet rich, model of the problem. Third, we characterize optimal 

decisions and profits and we identify a series of insights for effective response to CPOAs. 

The remainder of the essay is organized into four sections. Section 2 identifies the 

salient elements of the CPOA problem. Section 3 reviews the related literature. Section 4 

presents the models and analyses. Section 5 provides a summary and offers suggestions 

for future research. A list of notation and assumptions, as well as derivations, proofs, and 

DP algorithms, can be found in the appendix. 
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2. Elements of the Component Phase-Out Announcement Problem 

As a new generation of a component is introduced and the volume of the previous 

generation declines, a supplier eventually ceases to supply the older generation 

component and announces a time-line for phase out. While it is possible that a CPOA 

may occur when the manufacturer is still producing a product with the component, we 

limit consideration to the case where the product is no longer being manufactured (as is 

consistent with CPOA timing examples described to us by those in industry). Thus, the 

final component purchase decision is driven by warranty obligation considerations. 

Durable-goods manufacturers commonly offer a limited-time warranty to consumers. For 

illustrative purposes, we describe elements of Dell’s warranty, which is representative of 

other computer manufacturer warranties. We then outline elements of the manufacturer’s 

decision problem. 

Dell provides a replacement warranty on their PCs. Each computer is sold with Dell’s 

Basic Service Plan, which includes a minimum of 12 months of warranty coverage. The 

plan covers all Dell-branded component parts (e.g., motherboard, hard drive, LCD 

display, optical drive, graphics card, processor, power supply, fan assemblies). A 

consumer can extend the basic service plan for up to four additional years by paying a fee 

at the time of purchase. Dell’s warranty is non-renewing, meaning that if a Dell-branded 

item fails while under the warranty period, Dell will replace any defective part with a 

new or refurbished part. Once the component has been repaired or replaced, however, 

Dell does not extend the warranty period beyond that of the service plan. 

The CPOA problem can be viewed as a two-stage decision problem. The first-stage 

decision is the number of components in the final order. After the final order is placed, 
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component demand is realized over time. The second-stage decision, if necessary, is the 

price discount to be offered on a trade-in. The second-stage decision is required if or 

when component supply approaches zero, in which case the firm announces a trade-in 

program.  

In some settings, the firm may have access to customer-specific warranty data. In 

these settings, the trade-in offer can be targeted to specific customers based on product 

age and time remaining under warranty. In settings where these data are not available, a 

firm can announce a limited-time trade-in offer to the general public. We consider both 

settings in our analysis. Figure 3.1 illustrates the timing of decisions and the nature of 

data gathering and analysis in response to a CPOA. 

      CPOA     1. Place final order 2. Offer trade-in program to customers,  
harvest &  refurbish components 

Events &  
Actions 
Information 
Gathering & 
Analysis 
 
 

• Available 
component stock 

• Number of units 
on warranty & 
timing of warranty 
expirations 

• Component failure 
characteristics 

• Estimation of total 
component needs 

• Observe component 
demand over time 

• If supply approaches zero, 
then: 
• collect data on install base 
• determine trade-in offer 

terms & distributed to 
install base 

• Replace faulty 
components 
until 
outstanding 
warranties 
expire 

 

Figure 3.1. Sequence of events in response to a CPOA tied to a product that is no longer 
manufactured. 

A firm interested in component harvesting could offer a buyback program instead of a 

trade-in program. Buyback programs offer money for used product without the 

requirement that the consumer purchase a new product from the firm. In Chapter 2, we 

find that trade-in programs are more profitable than buyback programs in settings where 
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the trade-in credit can be applied to a wide range of products sold by the firm (see 

Proposition 1). In addition, we find no interest in a buyback program in our discussions 

with management of the computer manufacturer. For these reasons we limit consideration 

to trade-in programs for component harvesting. 

3. Related Literature 

There are four streams of research related to our two-stage problem of how a 

manufacturer determines the size of the final order and designs the trade-in program for 

component harvesting. Stage-one of our problem is related to the literature on warranty 

management and the literature on spare parts inventory management. Stage-two of our 

problem is related to the literature on trade-in programs and the literature on product 

recovery operations (i.e., reverse logistics and closed-loop supply chain management).  

Most consumer durables come with either a pro-rata refund or a free 

repair/replacement warranty policy (Blischke and Murthy 1992). Murthy et al. (2004) 

provide a comprehensive review of various issues associated with warranty management. 

There are three main issues of concern: warranty terms, warranty cost, and forecasting 

warranty claims. The issue of claims forecasting is relevant for our problem because we 

require a model of warranty claims (i.e., component requirements) over time. Warranty 

claims are driven by the warranty population, usage characteristics, product reliability, 

and warranty terms. In most of the warranty claim literature, usage characteristics, 

product reliability, and warranty terms are exogenous, and failure rates are characterized 

as a function of time of ownership. Three processes for modeling warranty claims over 

time are assumed: increasing failure rate (IFR), decreasing failure rate (DFR), or constant 

failure rate (CFR) (Hong et al. 2004). A constant failure rate implies that the time to 
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failure is exponentially distributed. For products with IFR and DFR, failure time 

distributions are modeled with the Weilbull distribution (Wu et al. 2009). However, 

several papers develop warranty claims models where usage characteristics are 

endogenous. Gerner and Bryant (1980) estimate component demand by modeling 

consumer behavior over the warranty period. They identify a mapping from the owner’s 

usage choice to time-to-failure. Consumers decide their usage level by considering the 

marginal benefits from use, the likelihood of failure during use, and the total expected 

cost of repair (i.e., downtime cost, unrecoverable repair expenses). In a similar vein, 

Murthy (1990) assumes a discrete distribution of failure time that is based on the number 

of uses, and each consumer weighs trade-offs to determine the usage rate. In our 

framework, we model the warranty claims process under the CFR assumption.  

A second stream of related literature addresses of problem of spare parts inventory 

management. The literature on this topic is vast (e.g., see Cohen and Lee 1990 or 

Kennedy et al. 2002 for a review). Within this literature, a number of researchers have 

studied the problem managing component parts after the parent product has reached the 

end of its sales life-cycle. During this phase, key suppliers will usually discontinue 

normal production of key components and the firm has to resolve sourcing issues related 

to meeting warranty and service obligations. Hasselbach et al. (2001) and Inderfurth and 

Mukherjee (2008) discuss three sourcing options: (i) secure new components from an 

alternative supply source, (ii) secure new components by placing a potentially large final 

order, (iii) secure components by harvesting parts (i.e., remanufacturing, refurbishing, 

and repairing) from used product returns. The key decision concern is determining order 

quantities and/ or the production lot sizes. In the case of option (i), determining the 
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number of components to acquire from an alternative supply source is not much different 

from traditional inventory management problem.  

The final order problem, option (ii), has been addressed by a number of authors. For 

example, Fortuin (1980) considers a firm that manages a single service component for an 

obsolete machine. Fortuin (1980) introduces a model wherein the machines’ remaining 

operating life is divided into discrete intervals and the number of components that fail in 

each interval is random. He proposes a method for estimating the component stock-out 

probability as a function of the final order quantity. Teunter and Fortuin (1999) also 

consider the single component setting and develop a single stage, dynamic program to 

determine the optimal final order quantity for a single component. In addition, they 

identify a closed-form expression for a near-optimal order quantity. In a follow-up paper, 

the authors use these closed-form expressions in a case study of a firm that produces 

electronic equipment (Teunter and Fortuin 1998). Teunter and Hansveld (1998) extend 

the single component setting of the previous papers to a multi-component ordering 

problem. They show the multi-component problem can be decomposed into independent 

single-component ordering problems. Bradley and Guerrero (2009) also consider the 

multi-component final buy problem, though in contrast to Teunter and Hansveld (1998) 

who assume all components are phased out at the same moment in time, components are 

phased out gradually over time. They employ a sequential newsvendor framework where 

the final order decision for each component is constrained by the remaining inventories 

of previous phased-out components. Bradley and Guerrero propose heuristics that yield 

near-optimal solutions. While the motivating application in these papers differs from our 
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setting, the structure of the problem is similar to our stage-one decision when a trade-in 

program is not viable.  

Most of above analyses assume the firm is unable to secure the phased-out 

component from an alternative source. Furthermore, with the exception of Teunter and 

Fortuin (1999), the papers discussed in the previous paragraph do not consider 

remanufacturing, option (iii), as a possible source for spare-parts. In their analysis, the 

firm passively accepts used product returns. The components harvested from these 

returns are shown to reduce spare-parts demand; however the supply of remanufacturable 

products does not affect the structure of the optimal policies. Several recent papers have 

also incorporated option (iii) as a source for spare-parts. For example, Minner and Kleber 

(2001) examine a setting where the firm produces a new component and remanufactures 

used components to meet a deterministic demand for spare parts. The authors develop a 

dynamic inventory framework and use optimal control techniques to determine an 

optimal production and recovery strategy for a firm who passively accepts used products. 

Spengler and Schröter (2003) also develop a dynamic model that integrates component 

harvesting. However, unlike Minner and Kleber (2001), Spengler and Schröter (2003) 

assume the new product is no longer produced (e.g., final service phase). Spengler and 

Schröter (2003) develop a systems dynamic model of a closed-loop supply chain in order 

to study flows of new product sales, spare parts demands, product returns, and recovery 

rates. Their model focuses on the behavior of the spare parts management system. They 

consider various policies related to acquisition of obsolete parts and redesign of new 

components and they observe how the system responds when the firm over and 

underestimates spare-parts demand. Inderfurth and Mukherjee (2008) develop a decision 
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model where the firm uses options (i), (ii), and (iii) to meet a dynamic demand for spare-

parts during the phase-out period. Their model accounts for uncertain supply of used 

components and uncertain demand for spares. We also consider a problem where the 

parent product, with outstanding warranty obligations, is no longer produced. Our model 

resembles that of Inderfurth and Mukherjee (2008). The decision maker chooses the final 

order quantity and remanufactures components from returned products to meet dynamic 

demand for spare parts (e.g., warranty claims). However, our model differs from their 

model in three ways: (1) We assume return and demand flows are deterministic rather 

than stochastic. We make this assumption in order to clarify the essence of a trade-off 

that exists between the final order quantity and the design of a trade-in program. (2) As 

opposed to an exogenous flow of returns, we assume that the firm proactively acquires 

used products from its install base. The firm sets a trade-in discount to influence the 

timing and quantity of the return flow. Spengler and Schröter’s (2003) dynamic 

simulation model captures proactive acquisition of used products. In their model, the 

acquisition cost and returns flows are exogenous parameters that determine the stocks and 

flows of used products. We determine optimal trade-in credits and acquisition quantities. 

(3) We account for the impact of returns of product under warranty on future warranty 

claims.  

A third stream of related literature examines the relationships between new product 

prices, trade-in rebates, product return volumes, and new product purchases. Ray et al. 

(2005) examine how a trade-in program for a product that is remanufactured can be used 

as a price-discrimination mechanism to increase profits. Bruce et al. (2006) study trade-in 

programs for expensive durables purchased with the aid of a loan (e.g., automobiles). 
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They examine the relationship between the magnitude of the trade-in discount and the 

durability of the product. Rao et al. (2009) study the value of trade-in programs for 

products in which used product prices are negatively affected due to information 

asymmetry (e.g., a positive probability of buying a “lemon”). They show that trade-in 

programs increase profit and are more valuable for less reliable products and for products 

that deteriorate more slowly. The model of our second-stage problem will draw on 

features of the trade-in volume models introduced in this stream. 

Finally, a fourth stream of related literature investigates product recovery operations. 

Seitz (2007) reports that the use of recovered components to satisfy warranty claims is a 

common practice in the automobile and home appliance industries. The benefits of 

harvesting parts from product returns have been highlighted in a number or papers related 

to closed-loop supply chain management (e.g., Fleischmann et al. 2003, Guide and Van 

Wassenhove 2001, Linton 2008). Cisco, for example, began using returns to support 

warranty claims in 2008. The initiative increased the recovered value from returns by 

nine-fold, from 5% to 45% (Nidumolu et al. 2009). The papers that are most closely 

related to our work address the problem of procuring end-of-use products from the install 

base. Key decisions are the procurement quantity and the buyback price offered to the 

user. Guide and Van Wassenhove (2001) consider a firm that sets a buyback price to 

match the supply of cores with the demand for remanufactured components. Bakal and 

Akcali (2006) also consider a buyback price to match supply with demand and 

investigate the impact of supply and demand uncertainty. Galbreth and Blackburn (2006) 

study the interaction between procurement lot size and the firm’s sorting policies. 

Zikopoulos and Tagaras (2007) consider the problem of ordering used products from 
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multiple supply sources with correlated recovery yield. Each of these papers considers a 

single-stage decision environment. While the purpose and method of acquiring used 

components in this stream differ from our setting, we draw on elements of these models 

in our second-stage problem. 

In summary, our stage-one problem is similar to final purchase quantity problems in 

the literature. A key difference is the consideration of a trade-in program that leads to a 

two-stage decision problem. Although the final purchase quantity literature has 

considered active product recovery, the literature has not considered the design of trade-

in programs as a mechanism for acquiring used components. Our stage-two problem is 

similar to the problem of designing a trade-in program that is considered in the marketing 

literature. As in this literature, we need to model how features of the trade-in program 

and other factors influence return volume. However, a key difference is that there is not 

an associated demand for used components that must be met, as is the case in our 

problem. Our stage-two problem is also similar to the problem of acquiring used product 

for the purposes of remanufacturing. While the mechanism for acquiring returns differs 

(i.e., buyback vs. trade-in), our problem shares the feature of aligning supply of a used 

component with demand. In the next section we outline a model of our problem, and we 

identify specific commonalities and differences with models from the literature. 

4. Models and Analyses 

We begin by presenting a general cost model of the CPOA problem. The model 

includes a policy-dependent second-stage cost function. Section 4.1 contains optimal 

decisions and cost functions for three second-stage policies. Section 4.2 characterizes the 

optimal first-stage decisions and costs under each of the second-stage policies.  
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A firm has received a CPOA for a component and must determine the final order 

quantity q1 that will be received at time t = 0. The purchase cost per unit is c1, the 

inventory holding cost rate is h, the warranty claim service cost per unit is cw (e.g., 

disassembly, component replacement, reassembly, test, and shipping), and the cost per 

unit to dispose unused components is c3 where –c3 < c1 (i.e., salvage value is less than 

purchase cost). The difference between the firm’s discount rate and the rate of inflation in 

operating costs and margin is r. The last warranty will expire L periods after time t = 0. 

As noted earlier, we assume return and demand flows are deterministic. Our focus is 

on understanding essence of a trade-off that exists between the final order quantity and 

the design of a trade-in program. The component demand rate at time t (i.e., due to 

warranty claims) is d(t), the cumulative demand through period t is D(t), i.e.,  

D(t) = ( )
0

t

d x dx∫ ,          (2.1) 

and T1(q1) is the time that component inventory reaches zero, or L, whichever is smaller, 

i.e.,  

T1(q1) = ( ){ }{ }1min min | ,t D t q L≥         (2.2) 

The cost of ordering q1 units is  

( ) ( )( ) ( )
( )

( )( )
1 1

1 1 1 1 1 2 1 1
0

T q
rt

wC q c q e h q D t c d t dt C T q−  = + − + + ∫     (2.3) 

where C2(t) is the cost of satisfying warranty claims over time interval [t, L] given that 

the final order quantity runs out at time t. (If time is discrete, then ∫ is replaced by ∑ in 

(2.1) and (2.3).) The first term in (2.3) is the component purchase cost of the final order. 

The second term in (2.3) is the holding and warranty claim servicing cost, of which the 
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parenthetical term in the integrand is the inventory at time t that is assessed a holding cost 

rate h..  

The specification of function C1(q1) requires assumptions on the demand process, the 

manner in which warranties expire over time, and the policy for satisfying warranty 

claims in the event of T1(q1) < L. In the remainder of this section, we introduce modeling 

assumptions as needed to specify cost functions and characterize optimal decisions for 

alternative policies. 

4.1 Second-Stage Policies 

Let t1 denote the realization of T1(q1). If t1 = L, then C2(t1) = 0 and no second-stage 

policy is needed to satisfy remaining warranty claims. In this section, we assume t1 < L 

and consider three possible policies for servicing warranty claims. We use a superscript 

on policy-specific costs to indicate the second-stage policy. 

4.1.1 No Trade-Ins – Second-Stage Policy 0 

The firm acquires components, as needed, by means other than a trade-in program 

(e.g., component is purchased from a third party, though at a higher price compared to the 

OEM). For example, there is an industry with sales of $2.6 billion in 2001 (Sullivan 

2002) that manufactures and sells parts that have been declared obsolete by an OEM. The 

cost of this policy provides a benchmark for assessing the value of trade-in programs for 

component harvesting.  

The component purchase cost per unit is 0
2c . We assume 0

2c  > c1; otherwise the firm 

would not purchase any units from the vendor in the first-stage. Recall that cw is the 

warranty claim service cost, net of component acquisition cost. Thus, the total warranty 
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claim service cost is 0
2c  + cw. It is possible that the firm prefers to satisfy the claim by 

replacing the old model with the new model (e.g., no reasonably priced sources for the 

component), in which case 0
2c  + cw represents the cost of this transaction.  

The second-stage cost is  

( ) ( ) ( )
1

0 0
2 1 2

L
rt

w
t

C t e c c d t dt−= +∫ .        (2.4) 

If r = 0, then (2.4) reduces to 

( ) ( ) ( )0 0
2 1 2 1wC t c c D t= +           (2.5) 

where ( )1D t  is demand over time interval [t1, L], i.e.,  

( ) ( ) ( )1 1D t D L D t= − .         (2.6) 

4.1.2 Relationship between Trade-in Discount, Trade-in Volume, and Trade-in Cost 

A firm offering a trade-in program specifies the discount off the purchase price of a 

new model if the customer returns the old model. Throughout this essay, we assume that 

the trade-in discount is offered only to customers with product under warranty. 

Conceivably a firm could offer the trade-in discount to a customer with a product that is 

no longer under warranty. While such a customer might be willing to trade-in for a lower 

discount, the tactic of offering a trade-in discount for product not under warranty has two 

drawbacks. First, there is a risk that the component in the returned product will be faulty. 

This risk is low for product under warranty because, if it was faulty, the firm would have 

likely already received a claim. Second, the return of a product under warranty reduces 

the firm’s warranty liability associated with the obsolete component (i.e., the product 

containing the obsolete component is traded in for a new model of the product). 
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A1.The trade-in discount is only available to customers with product under warranty. 

In this section we identify the functional relationships between trade-in discount, 

volume, and the cost of a component acquired through trade-in. We will make use of 

these relationships when we examine two alternative trade-in policies in the following 

sections. 

We make two assumptions that allow us to define the fraction of customers who 

accept a trade-in offer as a function of the trade-in discount.  

A2. A customer receiving a trade-in offer receives a single take-it-or-leave-it offer and 

accepts the offer if consumer surplus is positive. 

A3. The valuation of the new model in exchange for the old model under warranty is 

independent of time and is uniformly distributed with range normalized to [0, 1]. 

 

An alternative to A2 is to allow multiple trade-in offers to the same customer over time. 

However, this promotes strategic behavior that greatly complicates the analysis and may 

work against the interest of the firm (e.g., customer holds out for a better offer). 

Uniformly distributed valuation results in a linear volume function and is common in the 

literature (e.g., Mussa and Rosen 1978, Purhoit and Staelin 1984).  

A firm offering a trade-in program must select the trade-in discount and the rate at 

which customers are exposed to the trade-in offer (i.e., the trade-in offer rate), both of 

which may vary with time. The trade-in discount is ct(t) and the trade-in offer rate is ν(t) 

(i.e., ν(t) is the number of customers receiving a trade-in offer per period). The 

contribution margin of a new model of the product is m and the variable cost is cn, i.e., 
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the new model selling price is pn = cn + m. Thus, the trade-in price is cn + m – ct(t) and, by 

A2 and A3, the fraction of customers who accept the trade-in offer from among those 

who receive it is  

( ) ( ) ( ) ( ) ( )–   1– – 1 .n t n t t nt P V c m c t c m c t c t pβ =  > +  = + = − −     (2.7) 

Rewriting (2.7) in terms of the trade-in credit,  

( ) ( )( )– 1 –t nc t p tβ= .         (2.8) 

We see that the trade-in price is the complement of the acceptance rate β(t), i.e.,  

( ) ( )– 1 –n tp c t tβ= . 

Note that the new model selling price should be more than the maximum valuation, 

i.e.,  

1n np c m= + > .          (2.9) 

Condition (2.9) reflects the practical reality that customers are unlikely to trade-in a 

product under warranty unless there is a trade-in discount. For example, pn < 1 would 

imply that fraction 1 – pn of customers would be willing to return their product (that is 

under warranty and functional) and pay full price for the new model. 

We refer to the value of pn – 1 as the trade-in resistance. This value is the minimum 

trade-in discount that is required before any customers will be willing to return their unit. 

The larger the value of pn – 1, the greater the market resistance to a trade-in offer. 

In (2.7), we see that the difference between the trade-in credit, ct(t), and the trade-in 

resistance, pn – 1, gives the fraction of those receiving the trade-in offer who accept the 

offer. Thus, the product return rate is  
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( ) ( ) ( ) ( ) ( ) ( )1t ns t t t c t p tβ ν ν= =  − −   .      (2.10) 

In general, the specification of trade-in acquisition cost can be challenging due to the 

effect of cannibalization. We capture this effect through a single parameter γ. The 

interpretation of γ is straightforward when the difference between the firm’s discount rate 

and the rate of inflation (in costs and margin) is zero (i.e., r = 0): γ is the fraction of trade-

in customers who would have purchased the new model at full price in the future if the 

trade-in program was not offered, or repeat purchase rate. If r > 0, then the value of the 

full margin in the future is lower due to the time-value-of-money. All time-value-of-

money effects and, more generally, all cannibalization effects are incorporated into the 

value of γ. Indeed, it is possible for γ to be negative in some settings, e.g., by reducing 

secondary market supply and thus cannibalization of new product sales. 

The margin of a new product sold at the trade-in discount is m – ct(t), which takes the 

place of a possible full margin m in the future with probability γ. Accordingly, the cost of 

a component obtained through a trade-in is the reduction in margin through a trade-in 

sale, which is  

( ) ( ) ( ) ( )2 – 1 –tc t c t m tγ β τ= = −        (2.11) 

where  

τ = (1 – γ)m – (pn – 1).         (2.12) 

We refer to the value of τ as the trade-in potential, which is the difference between 

the gain from locking-in disloyal customers via the trade-in offer, (1 – γ)m, and the 

market resistance to the trade-in offer, pn – 1. More generally, τ is the marginal profit on 
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trade-in volume at the origin. For example, if τ > 0, then trade-in potential is positive and 

trade-ins are profitable up to acceptance rate β(t). On the other hand, if τ < 0, then trade-

in potential is negative and trade-ins are costly from the get-go. 

4.1.3 Relationship between Trade-in Offers and Warranty Expirations 

In the absence of a trade-in program, the rate at which warranties expire at time t is 

given by n(t). The function n(t) is known with certainty (e.g., obtained from company 

records). The warranty population at time t = 0 is N, i.e., ( )
0

L

n t dt N=∫ . 

Analysis of second-stage trade-in policies sometimes requires an expression for the 

number of customers who do not receive a trade-in offer before their warranty expires. 

Recall that trade-in units are under warranty (see A1). As a consequence, we require an 

assumption that allows us to determine when the warranties of trade-in units expire in the 

future. 

A4. The warranty expiration date of a customer who accepts a trade-in offer is no later 

than the warranty expiration date of a customer who rejects a trade-in over. 

 

Assumption A4 stems from the idea that customers who own product with a near-term 

warranty expiration date are more open to a trade-in offer than customers who own 

product with a more distant warranty expiration date. 

Let Γ(t, ν) denote the number of customers during time interval [0, t] who do not 

receive a trade-in offer before their warranty expires given trade-in offer rate function 
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ν(⋅). Due to A4, the firm distributes trade-in offers to customers in order of warranty 

expiration. Accordingly, if there exists a point in time t such that  

( ) ( )
0 0

0
t t

n x dx x dxν− >∫ ∫ ,         (2.13) 

then there are some customers who do not receive a trade-in offer prior to warranty 

expiration. More precisely, the number of customers who do not receive a trade-in offer 

prior to warranty expiration is the maximum value of the left-hand side of (2.13) over 

time interval [0, t], i.e., 

( )
[ ]

( ) ( )
0,

0

, max
y

y t
t n x x dxν ν

+

∈

 
Γ =  −    

 
∫ .      (2.14) 

Due to A2, any feasible trade-in policy must ensure that a customer does not receive a 

trade-in offer more than once, which implies that the sum of customers who do not 

receive trade-in offers and those who do is equal to the warranty population, i.e.,  

( ) ( )
0

L

t dt Nν νΓ + =∫           (2.15) 

where  

( ) ( )
[ ]

( ) ( )
0,

0

, max
t

t L
L n x x dxν ν ν

+

∈

 
Γ = Γ =  −   

 
∫ .    (2.16) 

4.1.4 Full Trade-in Policy – Second-Stage Policy 1 

Under the full trade-in policy, the firm launches a time-sensitive promotion to the 

entire warranty population. The firm only provides trade-in credits for units returned 

during a valid offer period. For example, HP offers featured, time-sensitive promotions 

on certain product categories (i.e., earn a trade-in credit for HP Designjet T1300 between 
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August 1 and October 31).Thus at time t1 < L, when the inventory from the final order 

quantity reaches zero, the firm offers a trade-in opportunity to the entire warranty 

population. From (2.10), it follows that the number of units returned is  

( )( ) ( )1
2 11t nq c p N t −= − −            (2.17) 

where 1
tc  is the trade-in discount (i.e., 1

tc = ct(t1)). From (2.7) and (2.11) , we have 

( ) ( )1
1 2 11 / 1t n nc t p q N t pβ −= + − = + −                 (2.18) 

( ) ( ) ( )1
2 2 1/ 1 nc q N t c m tγ β τ−= − − − = − .       (2.19) 

We let T2(q2) denote the time that second-stage component inventory reaches zero, or 

L, whichever is smaller, i.e.,  

T2(q2) = ( ) ( ){ }{ }1 2min min | ,t D t D t q L− ≥ .    (2.20) 

If T2(q2) < L, then the firm satisfies warranty claims by an alternative means at unit cost 

0
2c  as discussed in Section 4.1.1. Thus, the expected cost of a full trade-in policy is  

       

( ) ( ) ( )( )

( )
( )

( )( )

1

1 1

2 2

1 1
2 1 2 2 2 1 2

0
2 3 2 1

,

                

L L
rt rt rt

w
t t

L
rt rL

T q

C t q e c q e c d t dt e h q q D t dt

e c d t dt e c q D t

− − −

+− −

= + + + − +

+ −

∫ ∫

∫
 

                  =

( )
( ) ( )

( ) ( )( )
( )

( ) ( )
( )

( )( )

1

1

2 2

11

1

1

2 2

2
2

2
1

1 2

0
2 3 2 1

L
r t t

w
t

T q
r t trt

t

L
r t t rL

T q

q q e c d t dt
N t

e e h q q D t dt

e c d t dt e c q D t

τ − −

−

− −−

+− − −

  
  − + +
    
 

+ − + 
 
 
 + − 
  

∫

∫

∫

                  (2.21) 
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The first term in (2.21) is the component acquisition cost through the trade-in program, 

the second term is warranty claim service cost, the third term is the cost of holding 

inventory, the fourth term is the cost to satisfy the warranty claim by alternative means if 

quantity q2 is less than demand, and the fifth term is the cost to dispose unneeded 

components. If r = 0, then (2.21) reduces to 

( ) ( ) ( ) ( )( )
( )

( )( ) ( )( )

2 2

1

2
1 2
2 1 2 2 1 1 2

1

0
2 1 2 3 2 1

,

                  

T q

w
t

qC t q q c D t h q q D t d t
N t

c D t q c q D t

τ
−

+ +

= − + + + − +

− + −

∫
.      (2.22) 

The value of q2 affects component demand over interval [t1, L] because the warranty 

population is reduced by quantity q2 at time t1. We now turn our attention to the 

functional forms of the warranty population function N(t) and ( )1D t . The warranty 

population at any time t < t1 is N(t) = ( )
0

t

N n x dx− ∫ , and  

( ) ( )
1

1
0

t

N t N n x dx
−

− = − ∫ .          (2.23) 

At time t1, the warranty population is reduced by q2, i.e., N(t1) = ( )1 2N t q− − . Due to A4, 

the warranty population function in general is 

( )

( ) [ )

( ) ( ))

( ) ( )
( )

( ) )
2 2

1
0

1 2 1 2 2

1 2 2 2

,                    0,

,                        ,

,  ,

0,                                         

t

t

t q

N n x dx t t

N t q t t t q
N t

N t q n x dx t t q L

t L

−

−


− ∈


 − ∈ = 
 − − ∈

 =

∫

∫
            (2.24) 
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where t2(q2) is the time it takes beyond t1 for the warranties of q2 customers to expire, or 

L, whichever is smaller, i.e.,  

( ) ( )
1

2 2 2min min | ,
t

t

t q t n x dx q L
     = ≥   

    
∫ .          (2.25) 

Note that, due to A1, the value of q2 is limited to be no more than the warranty 

population, i.e.,  

     q2 ≤ ( )1N t − .              (2.26) 

If n(t) = 0 for all t ∈ [0, L] (i.e., all warranties expire at the end of the warranty horizon), 

then (2.24) reduces to  

( )
[ )
[ )

1

2 1

,          0,

,  ,
0,           

N t t

N t N q t t L
t L

 ∈


= − ∈
 =

.             (2.27) 

If n(t) = n for all t ∈ [0, L], then 

            
( ) 2

2 2 1min ,qt q t L
n

 = + 
 

.             (2.28) 

and (2.24) reduces to  

( )

[ )
( ))

( ) ( ) )

1

1 2 1 2 2

1 2 2 2 2 2

,                                 0,

,                         ,

,  ,

0,                                          

N nt t t

N nt q t t t q
N t

N n t t t q q t t q L

t L

 − ∈


− − ∈ = 
−  + −  − ∈   


=

,     (2.29)   

which in turn reduces to (2.27) if n = 0. For the case of n(t) = n, it follows from the 

definition of L that  
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n ≤ N/L           (2.30) 

(e.g., n > N/L implies that all warranties expire prior to time L). 

The demand for components is influenced by the component failure rate, which we 

assume to be constant at value α. The assumption of a constant failure rate facilitates 

tractability and is consistent with the literature (e.g., Murthy 1990, Hong et al. 2008, Wu 

et al. 2009, Zhou et al. 2009). 

A5.  The component failure rate is constant. 

In the remainder of this section we analyze versions of problem 
( )

( )
2 1

1
2 1 2min ,

q N t
C t q

−≤
 that 

correspond to alternative sets of assumptions. Additional assumptions required for the 

specification of problems are listed below. 

A6a. r = 0 

A6b. r > 0 

A7a. n(t) = 0 for all t ∈ [0, L) and n(L) = N, by the definition of L; see (2.30)) 

A7b. n(t) = n for all t ∈ [0, L) (and n(L) = N – nL ≥ 0, by the definition of L; see (2.30)) 

A8a. h = 0 

A8b. h > 0 

Throughout the essay we use the naming convention X j
is  where X ∈ {C, D} 

indicates whether the problem is based on a continuous-time model (C) or a discrete-time 

model (D), s ∈ {1, 2} indicates the problem stage, the superscript j ∈ {0, 1, 2} indicates 

the second-stage policy in effect, and the subscript i indicates the set of assumptions in 
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effect. Discrete-time models with associated solution methods are defined in the 

appendix.  

Problem 1
1C2 : Assumptions A1 – A5, A6a, A7a, A8a 

The problem is 

1
1C2 : ( ){ }

2

1
2 1 2min , | A1- A5, A6a, A7a, A8a

q N
C t q

≤
. 

Due to A5 and A7a, the demand rate over time interval [t1, L) is 

( ) ( ) ( )( ) ( )1 2 2d t N t N t q N qα α α−= = − = −         (2.31) 

(see (2.27)) and the total demand is 

( )1D t = ( )
1

L

t

d t dt∫ = ( ) ( )( ) ( )( )1 1 2 1 2L t N t q L t N qα α−− − = − − .   (2.32) 

Substituting (2.32) into (2.22) yields  

( )

( ) ( )( )

( ) ( ) ( )
( )

( ) ( )( )

( ) ( ) ( )
( )

2
0 02
2 1 2 2

10
2 1 2

11
2 1 2 2

2
3 1 3 2

1
3 1 2

1

        ,             
1

,

         ,              
1

w

w

w

w

q c c L t c q
N

L t N
c c L t N q

L t
C t q

q c c L t c q
N

L t N
c c L t N q

L t

α τ

α
α

α

α τ

α
α

α


− + − + + +


−

+ − ≤ + −= 
 − − − − + +


− − − ≥ + −

.       (2.33) 

The optimal solution is characterized below. 

Proposition 1. For 1
1C2 , the optimal trade-in quantity is 
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q2 =

( )( ) ( )
( )

( )( ) ( )
( )

( )
( )

( )( ) ( ) ( )
( )

( )( )

1 1 11

1

2 1 12

1

2 1 1 11 1 1

1 1

,                       
2 2 1

min , ,        
2 2 1

,    
1 2 1 2

b L t L tb N
L t

b L t L tb N N
L t

b L t b L tL t L t L t
N

L t L t

α α
α

α α
α

α αα α α
α α

 − −
≤

+ −
 − −   ≥  

+ − 
 − − − − − ≤ ≤   + − + − 

    (2.34) 

where  

  b1 = ( ) ( )0 0
2 2 1wc c c L tτ α+ + + −  

  b2 = ( ) ( )3 3 1wc c c L tτ α− + − − . 

Problem 1
2C2 : Assumptions A1 – A5, A6a, A7b, A8a 

The problem is 

1
2C2 : ( ){ }

2

1
2 1 2min , | A1-A5, A6a, A7b, A8a

q N
C t q

≤
. 

Problem 1
2C2  generalizes 1

1C2  to allow n(t) = n > 0, i.e., if n = 0, then the problems are 

identical. We begin by identifying the possible forms of the second-stage cost function. 

Due to A5 and A7b, ( )1 1N t N nt− = − , ( )2 2t q = 2
1min ,qt L

n
 + 
 

, and the demand rate over 

time interval [t1, L] is 

d(t) = αN(t) = 

( ) ( ))
( ) ( )( ) ( ) )

1 2 1 2 2

1 2 2 2 2 2

,                          ,

,  ,

0,                                                 

N t q t t t q

N t q n t t q t t q L

t L

α

α

−

−

  − ∈ 
  − − − ∈  


=

.    (2.35) 

(see (2.29)) and the total demand is 

      ( )1D t = ( ) ( ) ( )( ) ( )( )
1

2
1 1 2 2 22

L

t

nd t d t L t N t q L t qα − = − − − −  ∫  
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=
( ) ( ) ( ) ( )

( ) ( )( ) ( )

2
2

1 1 1 2 1

1 1 2 2 1

,  
2 2

,                       

qnL t N t L t q n L t
n

L t N t q q n L t

α

α

−

−

   − − − − ≤ −      
  − − ≥ −  

     (2.36) 

 The functional form of the second-stage cost depends on the value of the warranty 

fall-off rate n, as shown in Proposition 2. Proposition 3 characterizes the optimal trade-in 

quantity. 

Proposition 2. If  

1
n
N L

α
α

≤
+

          (2.37) 

then 

( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )
( ) ( )

( )

( )

0
2 2 0

2 2 2
1

0
2 1 1 1 2 1

2
0 02
2 1 2 2

11
2 1 2

1 10
2 1 1 1 2

1

2
2

1

1
2

       ,             if  
2

,

               ,   if 
1

w

w

w

w

c c
q c q

nN t

nc c L t N t L t q n L t

q c c L t c q
N t

C t q
L t N t

c c L t N t n L t q
L t

q
N t

α
τ

α

α τ

α
α

α

−

−

−

−
−

−

 +
 − − + +
 
 

 + − − − ≤ − 
 

− + − + + +

=
−

+ − − ≤ ≤
+ −

( ) ( )( )

( ) ( ) ( ) ( ) ( )
( )

3 1 3 2

1 1
3 1 1 2

1

              ,                  if  
1

w

w

c c L t c q

L t N t
c c L t N t q

L t

α τ

α
α

α

−
−
















 − − − − + +



−
− − ≥

+ −

. (2.38) 

If 

1
n
N L

α
α

≥
+

          (2.39) 

then 
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( )

( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

0
2 2 0

2 2 2
1

0
2 1 1 1

1/22
1 1 22

2 1

3 2
2 3 21

12 1 2

1
2

         ,
2

2
                     if  1 1

1
2,

         

w

w

w

c c
q c q

nN t

nc c L t N t L t

L t N tnq L t
n

c c
q c q

nN tC t q

c

α
τ

α

α
α

α

α
τ

−

−

−

−

 +
 − − + +
 
 

 + − − − 
 
  −  ≤ + − − −
  
   

 −
 − − + +
 =  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )( )( ) ( )

3 1 1 1

1/22
1 1 22

1 2 1

2
2

1 2 1 1
1

3 2 1 1 2 2 1

,
2

2
      if  1 1

         ,                       if  

w

w w

nc L t N t L t

L t N tn L t q n L t
n

q c L t q c L t N t
N t

c q L t N t q q n L t

α

α
α

α

α τ α

α

−

−

−
−

−

















 − − − − 
 

  −  + − − − ≤ ≤ −
  
   

− − + + − +

− − − ≥ −


















  (2.40) 

Proposition 3. For 1
2C2 , the optimal trade-in quantity is obtained from the following 

rules.  

If 
1

n
N L

α
α

≤
+

 , then 

for a3 ≥ 0 and n ≥ ( )
( )
1 1

12
b N t

L t

−

−
and ( )

( ) ( )12
1

2 12 1
L tb N t

a L t
α
α

−−
≤

+ −
 

q2 = 3

32
b
a

                   (2.41) 

for a3 ≥ 0 and n ≥ ( )
( )
1 1

12
b N t

L t

−

−
and ( ) ( )

( ) ( )12
1 1

12 1
L tb N t N t

L t
α
α

− −−
≥

+ −
 

q2 = 3 2
3 2

3 2

arg min ,
2 2
b bf f
a a

     
    
    

             (2.42) 



95 
 

 

for a3 ≤ 0 or n ≤ ( )
( )
1 1

12
b N t

L t

−

−
 

q2 =

( )
( ) ( )

( )

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

1 11 1
1

1 1 1

1 12 2
1

2 2 1

1 1 1 12 1

1 2 1 1

max , ,  
2 2 1

min , ,      
2 2 1

,          
1 2 1 2

L t N tb bn L t
a a L t

L t N tb bN t
a a L t

L t N t L t N tb b
L t a L t a

α

α

α

α

α α

α α

−

−
−

− −

 − 
 − ≤ 

+ −  


− 
≥  

+ − 
 − − ≤ ≤ + − + −

        (2.43) 

 if 
1

n
N L

α
α

≥
+

 , then 

for a4 ≤ 0 

q2 = ( ) ( )2
1 1

2

min max , ,
2
bn L t N t
a

−   −   
   

            (2.44) 

for a4 > 0 and a3 ≤ 0 

q2 =

( ) ( )

( )
( )

( ) ( )

1/22
1 1

4
4 1

422
1

2
2 1 1

2

2
1

min max 1 , , ,
2

arg min

min max , ,
2

L t N t
bnf n L tn
a

L t

bf n L t N t
a

α

α
α

−

−

      −      + −      − −             −           
      −           

  (2.45) 

for a4 > 0 and a3 > 0 
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q2 =

( ) ( )

( )

( ) ( )

( )
( )

1/22
1 1

3
3

3 22
1

1/22
1 1

4
4 1

422
1

2
1

min max 0, , 1
2

      

2
1

arg min min max 1 , ,
2

L t N t
b nf n
a

L t

L t N t
bnf n L tn
a

L t

α

α
α

α

α
α

−

−

    −      + −   −          −       

    −    + −   − −   
   −     

( ) ( )2
2 1 1

2

,

min max , ,
2
bf n L t N t
a

−

 
 
 
 
 
 
                   
     −           
 
 
 

  (2.46) 

where  

fi(q2) = aiq2
2 – biq2 + ei 

a1 = a2 = ( )11 / N t −  

a3 = ( )
( )0

2

1

1
2
wc c

nN t

α
−

+
−  

a4 = ( )
( )3

1

1
2
wc c

nN t
α

−

−
−  

    b1 = ( ) ( )0 0
2 2 1wc c c L tτ α+ + + −  

    b2 = ( ) ( )3 3 1wc c c L tτ α− + − − . 

b3 = 0
2c τ+  

b4 = 3cτ −   

e1 = ( ) ( ) ( )0
2 1 1wc c L t N tα −+ −  

e2 = ( ) ( ) ( )3 1 1wc c L t N tα −− −  

e3 = ( ) ( ) ( ) ( )0
2 1 1 12w

nc c L t N t L tα − + − − − 
 
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e4 = ( ) ( ) ( ) ( )3 1 1 12w
nc c L t N t L tα − − − − − 

 
. 

The following proposition states that if q2 from (2.34) is such that no warranties 

expire until time t = L, then the trade-in quantity given in Proposition 1 is optimal. 

Proposition 4. a) If 

( )( )0 0
2 1 2 2wc L t c cτ α+ + − + ≥        (2.47) 

then Proposition 1 gives the optimal solution to 1
2C2 .  

b) If the trade-in quantity given in Proposition 1 is not less than warranty expirations 

over interval [t1, L) (i.e., n(L – t1)), then Proposition 1 gives the optimal solution to 1
2C2 . 

Proposition 4 begs the question of whether a similar conclusion may hold when A7b 

is relaxed so that there are no restrictions on n(t) (other than ( )
0

L

n t dt N=∫ as required by 

the definition of L and N). For example, if the trade-in quantity given in Proposition 1 is 

not less than ( )
1

L

t

n t dt
−

∫ , then is the trade-in quantity optimal? The answer is no. For 

example, letting q2 denote the trade-in quantity according to Proposition 1, if n(t1
+) = q2, 

then it is possible that a reduction in the quantity will reduce cost.  

The following proposition identifies a condition under which the optimal cost is 

nonincreasing in n.  

Proposition 5. If c3 ≤ cw, then ( )1 *
2 1 2,C t q is nonincreasing in n.  
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The condition of Proposition 5 clearly holds in settings where leftover over components 

have a salvage value (i.e., c3 ≤ 0) because cw ≥ 0. If c3 > cw, then it is possible for 

( )1 *
2 1 2,C t q  to get larger as n increases.9

Problem 

  

1
3C2 : Assumptions A1 – A5, A6b, A7a, A8b 

The problem is 

1
3C2 : ( ){ }

2

1
3 1 2min , | A1-A5, A6b, A7a, A8b

q N
C t q

≤
.  

Problem 1
3C2  generalizes 1

1C2  to allow r > 0 and h > 0, i.e., if r = h = 0, then the 

problems are identical. The run-out time of the trade-in quantity q2 given in (2.20) 

reduces to  

T2(q2) = ( )
2

2

min ,q L
N qα

  
 

−  
.        (2.48) 

Substituting (2.31), (2.32), and (2.48) into (2.21) yields 

                                                 
9 This result is possible when trade-ins are profitable and q2

* is more than the remaining warranty demand. 
For example, let t1 = 0, N = 1000, L = 10, α = 0.05, cw = 0, cn = 0.1, m = 0.5, γ = 0, c2

0 = 0.4, c3 = 0.1. At n 
= 40, we have q2

* = 376.5 and C2
1(q2

*) = -190.6. At n = 50, we have q2
* = 381.0 and C2

1(q2
*) = -189.9. 
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( )

( )( )

( )( ) ( ) ( )( )( )( )
( )

( ) ( )( )

( )( )
( )

1

1
2 2 1

2 21

1

1

2
2

1

1

2
/0

2

/
0
2

0
2

1
3 1 2

1

1

1

    ,

               ,

1

r L t
w

r L t
r q N q L t

r q N qr L t

w

r L t

rt

hc e
r rq q

h
r

h L t

h
r

N ec e
r

e ec

h L

c
r r N

e

C t q e

tc
r

α

α

α

ατ

α

α

− −

− −
− − − −

− −− −

− −

−

  − + − −  
  −

 
+ − − 
 
  −  +       +  
 − − 
 

=

+ −

−

−

( )
( )

( )( )

( )( ) ( )( ) ( )

( )
( )

1

1

1

1
2

1

2
2

2

3 11

3 1

                                                if 
1

1

1

1  

1

  

r L t
w

r L t

r L t
r L

w

h
r
h

L t N
q

L t

hc e
r rq q

N
c L t e

ec c L

L t
r

h h
r r

t e
r

α
α

ατ

αα

− −

− −

− −
−

−
≤

+ −

  − + − −  
  −

  + − − −  
  

 −   + − − −        

+ −

−


( )

( )
( )

1

1
2

1

,

                                                              if  
1

t N

L t N
q

L t

α

α
α

−

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

         
  −  ≥ + − 

   (2.49) 

The cost function is not analytically tractable, i.e., the function that applies when 

( )
( )

1
2

11
L t N

q
L t

α
α
−

≤
+ −

 does not have stationary points that can be expressed in closed form. 

Numerical methods are required to determine the optimal trade-in quantity and cost.  

We next consider the full trade-in policy under the requirement that the trade-in 

quantity is equal to second-stage demand (i.e., q2 = ( )1D t ), and we refer to this policy as 

the restricted full trade-in policy. Substituting q2 = ( )1D t = ( )
( )

1

11
L t N

L t
α
α
−

+ −
 into (2.49) yields 

the second-stage cost  
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( )

( )
( )

( )
( )

( )1

1

1

11
3 1

1

1

2

1

1
1

1

1
L

t

t r

w

r

L t
L t

C t Ne
L h h ec

r r r
t

L t L t

α
α

α
τ

α

− −

−

  
 −    
 

    − − − −       −      

−
+ −

=
 −
  + −  

.   (2.50) 

Substituting β(t) = ( )
( )

1

11
L t

L t
α
α

−
+ −

 into (2.8) yields the trade-in credit 

( ) ( )1
1

1
1t nc t p

L tα
= −

+ −
.         (2.51) 

If r = 0, then (2.50) reduces to  

( ) ( )
( )

( )
( )

( )1 1 11
3 1

1 1

2

1 21 w

L t L t L t
C t N

L t L t
h

cτ
α α
α α

    
 − − +        

− −  − 
=  

+ −  
− 

+ 
    (2.52) 

Problem 4
1C2 : Assumptions A1 – A5, A6b, A7b, A8b 

The problem is 

1
4C2 : ( ){ }

2

1
4 1 2min , | A1-A5, A6b, A7b, A8b

q N
C t q

≤
.  

Problem 1
4C2  generalizes 1

3C2  to allow n(t) = n > 0, i.e., if n = 0, then the problems are 

identical. The following proposition identifies a condition on the warranty fall-off rate n 

that leads to a simple expression for the second-stage cost. 

Proposition 6. If  

( ) 11 /n L
N

α −≤ +           (2.53) 

then the cost of the restricted full trade-in policy is  
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( ) ( )

( )
( )

( )
( ) ( )

1

1

2

1

1

1
4 1 1

1

1

1

1

1 1 1

r

w

t

L t r

h
r

h ec
r

L

r L t

t
L t

C t N nt e
L t

L t

τ

α
α

α
α − −

−

  
 −    
 

  − −  
  

   −  −        −

−
+ −

= −
 −
  + −

     
 



   (2.54) 

The left-hand side of (2.53) is the warranty fall-off rate expressed as a percent of the 

install base. The right-hand side of (2.53) is the reciprocal of the sum of the warranty 

horizon and the average time between failures. If the inequality holds, then the trade-in 

quantity is at least as large as the total second-stage warranty fall-off, regardless of when 

the second-stage begins. If the inequality does not hold, then trade-in quantity will be less 

that the total second-stage warranty fall-off, and a more complicated cost expression 

applies. 

4.1.5 Matching Trade-in Policy – Second-Stage Policy 2 

At time t1 < L, when the inventory from the final order quantity reaches zero, the firm 

sets the trade-in credit ct(t) and the trade-in offer rate ν(t) so that component supply 

matches component demand over the remainder of the warranty horizon, i.e.,  

( ) ( ) ( ) ( ) [ ]1 ,s t t t d t t t Lβ ν= = ∀ ∈        (2.55) 

where β(t) = ct(t) – τ  is the trade-in acceptance rate among those customers exposed to 

the trade-in offer at time t (see (2.7)), or the trade-in fraction. Note that β(t) must be a 

valid fraction, i.e.,  

β(t) ∈ [0, 1] ∀t ∈[t1, L].         (2.56) 
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In contrast with a full trade-in policy where the entire warranty population receives 

the trade-in offer at time t1, a matching policy allows the firm to set the offer rate ν(t) 

(and trade-in credit) over time so as to match supply with demand. Consequently, a 

matching trade-in policy is only viable in settings where the firm has access to customer-

specific warranty data (e.g., otherwise the firm cannot control the fraction of customers 

with product under warranty who are exposed to the trade-in offer). The firm’s choice of 

customers who will receive the trade-in offer over time is influenced by A4. Recall that 

A4 implies that customers with a soon-to-expire warranty are more likely to accept a 

trade-in offer than customers with a more distant warranty expiration date. In recognition 

of A4, the firm sends the trade-in offer to customers in order of warranty expiration date.  

From (2.11) , the component acquisition cost rate for the matching trade-in policy is 

( )2
2c t = ( ) ( )1nt c m tβ γ β τ+ + − = − .       (2.57) 

The cost of the matching trade-in policy is  

      
( ) ( )( ) ( )

( ) ( )( ) ( )

1

11

1

2 2
2 1 2, ,

L
rt

w
t

L
r t trt

w
t

C t e c t c d t dt

e e t c d t dt

β ν

β τ

−

− −−

= +

= − +

∫

∫
           (2.58) 

where functions β(t) and ν(t) satisfy (2.55) – (2.56) and ν(t) is such that a customer 

receives a trade-in offer no more than once (see A2).10

                                                 
10 A more general form of the matching trade-in policy matches supply with demand over time interval [t1, 
t2) for t2 ≤ L, with demand over interval [t2, L) satisfied with purchases from the third-party supplier (e.g., 
as in the full trade-in policy). However, as illustrated in propositions and figures below, settings in which it 
is optimal to set t2 < L are also settings where the full trade-in policy tends to less costly than the matching 
trade-in policy, e.g., corresponds to settings where the trade-in acquisition cost per unit is positive. 
Consideration of this general matching policy increases complexity while adding relatively little value in 
additional insight, and we exclude from our analysis. 

 We wish to minimize (2.58). In 

the remainder of this section we analyze several versions of problem. 
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Problem 2
1C2 : Assumptions A1 – A5, A6b, A7a, A8b 

Due to A7a (i.e., n(t) = 0 for all t), we have ( )1N t − = N. The requirement that a 

customer receives a trade-in offer no more than once implies  

( )
1

L

t

t dt Nν ≤∫ ,           (2.59) 

e.g., ( )
1

t

t

x dxν∫ is the number of customers who have been exposed to the trade-in offer by 

time t. Thus, the problem can be stated as 

2
1C2 : 

( ) [ ] ( ) ( ) ( ) ( )
( ){ }

1

2
2 1

0,1 , ,

min , , | A1-A5, A6b, A7a, A8b
L

t

t t dt N t t d t

C t
β ν β ν

β ν
∈ ≤ =∫

 

Due to A5, the demand and supply rate over time interval [t1, L] is  

d(t) = s(t) =αN(t),          (2.60) 

and due to A7a the warranty population is  

N(t) = ( )
1

t

t

N s x dx− ∫  = ( )
1

t

t

N d x dx− ∫ = ( )
1

t

t

N N x dxα− ∫      (2.61) 

We obtain an explicit expression for N(t) by taking the limit of a discrete-time model as 

the time interval goes to zero. For notational convenience, we let t1 = 0. Given time 

interval ∆ > 0, the failure rate per time interval ∆ is α∆, we have 

( ) ( ) ( ) ( )d s N N sα α∆ = ∆ = ∆ ∆ = ∆  − ∆    

( )
1

Ns α
α
∆

∆ =
+ ∆

 

  ( ) ( ) ( )0
1 1

N NN N s N α
α α
∆

∆ = − ∆ = − =
+ ∆ + ∆
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  ( ) ( ) ( )
( )22 2

1 1

N Ns N
α αα

α α

∆ ∆ ∆
∆ = ∆ ∆ = =

+ ∆ + ∆
 

( ) ( ) ( )
( ) ( )2 22 2

1 1 1
N N NN N s α
α α α

∆
∆ = ∆ − ∆ = − =

+ ∆ + ∆ + ∆
 

and, in general, for integer i 

( )
( )1 i

NN i
α

∆ =
+ ∆

.           (2.62) 

Letting t = i∆ 

            N(t) = 
0

lim tN
∆→

  ∆  ∆  
 = ( ) /

0
lim 1 tN α − ∆

∆→
+ ∆ = ( ) /ln 1

0
lim

tNe α − ∆+ ∆

∆→
= 

( ) /

0
lim ln 1 tN

e
α − ∆

∆→
+ ∆

 

and 

       ( ) /

0
limln 1 tN α − ∆

∆→
+ ∆ = 

( )
0

ln 1
ln lim

t
N

α
∆→

− + ∆
+

∆
 = 

0
ln lim

1
tN α
α∆→

−
+

+ ∆
 (by L’Hospital) 

      = ln N tα− . 

Therefore, for t ∈ [t1, L),  

N(t) = ( )1ln N t te α− − = ( ) ( ) ( )1 1
1

t t t tN t e Neα α− − − −− =        (2.63) 

d(t) = s(t) = ( ) ( )1t tN t Ne αα α − −= .         (2.64) 

Substituting (2.64) into (2.58) yields second-stage cost 

( )2
2 1, ,C t β ν  = ( )( ) ( )( )11

1

L
r t trt

w
t

e e t c Ndtα β τ α− + −− − +∫ .     (2.65) 

From (2.55) and (2.64),  

( ) ( ) ( )1 /t tt Ne tαβ α ν− −= ,           (2.66) 
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By substituting (2.66) into (2.8) we see that ct(t) is decreasing in ν(t). Therefore a 

necessary condition for an optimal trade-in offer rate function is  

( )
1

L

t

t dt Nν =∫            (2.67) 

i.e., if ( )
1

L

t

t dt Nν <∫ , then an increase in ν(t) will decrease the trade-in discount and reduce 

( )2
2 1, ,C t β ν . Thus, 2

1C2  can be written as 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) [ ]1

1

2
2 1,

min , , , , 0,1
L

t t

t t
t

C t t dt N t t Ne tα

β ν
β ν ν β ν α β− −

  = = ∈ 
  

∫ .    (2.68) 

Proposition 7. For 2
1C2 , if 

( )( ) ( )1 1
1

2 1 1
2

r
L t L tre eα αα

α

+− − − + ≤ 
 

        (2.69) 

then the optimal trade-in fraction is 

( )
( )( )( ) ( )1 10.5 0.51

0.5

r L t r t te e
t

r

αα
β

α

− + − −−
=

+
,        (2.70) 

the optimal trade-in offer rate is 

( ) ( ) ( )

( )( ) ( ) ( )
1

1

1

0.5

10.5

0.5
1

r t t
t t

r L t

r e
t N t e

e
α

α

α
ν

− −
− −−

− + −

 +
=   − 

,      (2.71) 

and the optimal cost is   

( )2
2 1C t = ( )

( )( )( ) ( )( )( )
( )

1 1

1

2
0.5 0.5

1

1 1

0.5

r L t r L t

rt
w

e e
e N t c

r r

α αα α
τ

α α

− + − − + −

− −

    − −    − −    + +        

.  (2.72) 

Note that α(L – t1) is the mean number of times that a component fails over the 

duration of the warranty horizon. Table 1 shows the maximum value of α(L – t1) that 
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ensures condition (2.69) is satisfied for various values of the net discount rate r. For 

example, if the component failure rate is 0.5% per year and the annual net discount rate is 

5%, then the solution given in Proposition 7 is optimal as long as the warranty horizon is 

no more than 76 years (i.e., r = 10α and max(L – t1) = 0.38/α = 76). In the computer 

industry that is motivating this work, component failure rates tend to be low (e.g., less 

than 1%) and the warranty duration is on the order of three to five years. In these settings, 

the condition given in (2.69) is likely to hold. 

 
 
r 

max value  
of α(L – t1) 

to satisfy (2.69) 

 
 
r 

max value  
of α(L – t1) 

to satisfy (2.69) 
0 ∞ 12α 0.34 

2α 0.88 14α 0.31 
4α 0.63 16α 0.28 
6α 0.51 18α 0.26 
8α 0.43 20α 0.25 
10α 0.38 22α 0.23 

Table 3.1. Upper limit on component failure rate per L – t1 periods as a function of the 
net discount rate r. 

The following corollary gives the optimal solution for the special case of r = 0. 

Corollary 1. For 2
1C2 ,if r = 0, then the optimal trade-in fraction is 

( ) ( )11 L tt e αβ − −= − ,            (2.73) 

the optimal trade-in offer rate is 

( ) ( ) ( ) ( )1

1 11
t t

L tt N t e
e

α
α

αν − −−
− −

 =  − 
,        (2.74) 

the total number of units traded in is  

( )( ) ( )1
2 11 L tq e N tα− − −= − ,          (2.75) 

and the optimal cost is  
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( )2
2 1C t = ( ) ( )( ) ( )( )( )1 1

2

1 1 1L t L t
wN t e e cα α τ− − − −−  − − − −  

.   (2.76) 

We see that the optimal solution has a very simple structure when r = 0. In particular, 

the optimal trade-in fraction β(t) is independent of time. This means that the optimal 

trade-in discount stays constant over the warranty horizon, i.e.,  

( ) ( )1L t
t nc t p e α− −= − ,          (2.77) 

(obtained by substituting β(t) into (2.8)). The term in the first parentheses in the right 

hand side of (2.74) is the fraction of the population exposed to the trade-in offer (i.e., 

( ) ( )1
1

t tN t e α− −− is the warranty population), which also stays constant over the warranty 

horizon. In contrast, at r > 0, we see that β(t) is increasing in time, and consequently, the 

trade-in discount is increasing in time (e.g., the firm offers higher discounts later in the 

horizon, which are less costly for the firm). Similarly, the fraction of the population 

exposed to the trade-in offer is decreasing over time. 

Problem 2
2C2 : Assumptions A1 – A5, A6b, A8b 

This problem is the same as the previous problem except we relax the requirement of 

n(t) = 0 for all t ∈[0, L). Recall that the number of customers who do not receive a trade-

in offer prior to warranty expiration is 

( )
[ ]

( ) ( )
0,

0

max
t

t L
n x x dxν ν

+

∈

 
Γ =  −   

 
∫ .       (2.78) 

and that due to A2, any feasible trade-in policy must ensure that a customer does not 

receive a trade-in offer more than once, i.e.,  
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( ) ( )
0

L

t dt Nν νΓ + =∫ .         (2.79) 

Thus, the problem is  

2
2C2 : 

( ) [ ] ( ) ( ) ( ) ( ) ( )
( ){ }

1

2
2 1

0,1 , ,

min , , | A1-A5, A6b, A8b
L

t

t t dt N t t d t

C t
β ν ν β ν

β ν
∈ +Γ = =∫

 

Proposition 8 identifies a condition under which the solution for 2
1C2  given in 

Proposition 7 is also optimal for 2
2C2 . Proposition 9 shows that Proposition 7 gives the 

optimal solution when n(t) is constant for all t ∈ [0, L). 

Proposition 8. If ( )( ) ( )1 1
1

2 1 1
2

r
L t L tre eα αα

α
+− − − + ≤ 

 
 and  

( ) ( )( ) ( ) ( )( )1

1

1 1

0.5
10.5

0.5
1

t t
r x t

r L t
t t

rn x dx N t e dx
e

α
α

α − + −−
− + −

+ ≤  − ∫ ∫  for all t ∈ [t1, L],  (2.80) 

then Proposition 7 gives the optimal solution to 2
2C2 . 

Proposition 9. If ( )( ) ( )1 1
1

2 1 1
2

r
L t L tre eα αα

α

+− − − + ≤ 
 

and A7b holds (i.e., n(t) = n for all t ∈ 

[0, L)), then Proposition 7 gives the optimal solution to 2
2C2 . 

Note that the condition of Proposition 9 always holds when r = 0 (see Table 1). 

4.1.6 Comparison of Second-Stage Policy Performance 

In this section we compare the cost of the second-stage policies. We investigate how 

failure rates, remaining warranty time, and take-back processing cost affect optimal 

acquisition quantities, trade-in discounts, and optimal second-stage cost. And we identify 
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conditions where the full trade-in policy outperforms the matching trade-in policy, and 

vice-versa.  

We limit consideration to the restricted full trade-in policy (i.e., q2 = ( )1D t ). The 

policy captures the basic structure of the full trade-in policy while maintaining tractability 

and thus facilitating interpretations. It also allows a more direct comparison with the 

matching trade-in policy in the sense that both policies set trade-in supply equal to 

demand, and only differ in the timing of trade-in transactions. 

The case of r = h = n(t) = 0 

We initially concentrate our analysis on the case of r = h = n(t) = 0 (i.e., assumptions 

A6a, A7a, A8a)—the case for which closed-form solutions are available for the full and 

matching second-stage trade-in policies. Under these assumptions, the restricted full 

trade-in policy is identical to the optimal full trade-in policy when  

( )
( )

( ) ( )( )( )

( ) ( )( )( )

1 3 1
1

01
1 2 1

1 1 ,
2
11 1
2

w

w

c L t c L tL t
L t c L t c L t

τ α αα
α τ α α

 + − − + − −
∈ 

+ −  + − + + −  

    (2.81) 

(see Proposition 1). 

To simplify notation in the following discussion, we let x = α(L – t1). The value of x 

can be interpreted as the aggregate failure rate of the component over a period of length 

L – t1. Let 1
2q  denote the trade-in quantity under a restricted full trade-in policy, i.e.,  

1
2 1

xq N
x

 =  + 
          (2.82) 
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(see Proposition 1). Let 2
2q denote the trade-in quantity under a matching trade-in policy, 

i.e.,  

( )2
2 1 xq e N−= −           (2.83) 

(see Corollary 1). Note that ( ) 11xe x −− < +  for all x > 0 (i.e., the terms correspond to 

continuous-time and discrete-time discounting factors). Thus 
1 2
2 2q q<  .          (2.84) 

The intuition underlying (2.84) is as follows. For both policies, the total number of trade-

in units is equal to the total warranty claims over time interval [t1, L]. The total warranty 

claims are lower for the restricted full trade-in policy because the warranty population is 

reduced at a single time instant t1, and of course, any unit removed from the warranty 

population eliminates a possible future warranty claim on the obsolete product. In 

contrast, the matching trade-in policy reduces the warranty population gradually over the 

entire time interval [t1, L]. Thus, the restricted full trade-in policy has an inherent 

advantage over the matching trade-in policy when warranty claims are costly (i.e., due to 

fewer warranty claims). Indeed, when r = h = 0, the only settings in which the matching 

trade-in policy can outperform the restricted full trade-in policy is when the firm can 

make money on each trade-in unit.  

Figure 3.2 illustrates the relationship between the restricted full trade-in quantity, the 

matching trade-in quantity, and the acquisition quantity under the benchmark policy of no 

trade-in units (i.e., components are purchased from a third party). 
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Figure 3.2. Second-stage acquisition quantities as a percent of the install base under the 
restricted full trade-in policy, matching trade-in policy, and the benchmark policy. The 
aggregate failure rate, α(L – t1), is the expected number of failures per component over 
the warranty horizon.  

As alluded to above, expression (2.84) and Figure 3.2 expose the essence of the 

comparative advantages and disadvantages of the two trade-in policies. The values of 

1
2q and 2

2q  are the total warranty claims under each policy. A restricted full trade-in policy 

has the advantage of fewer warranty claims through a single dramatic reduction of the 

install base at time t1. In some settings, however, trade-in transactions are profitable, and 

in these settings a restricted full trade-in policy has the disadvantage of lower trade-in 

volume. These notions are formalized in the following proposition.  

Proposition 10. ( )2
2 1C t < ( )1

2 1C t  if and only if  

( ) 1 2
1

x
w

xc e
x

τ −+
− > −

+
.         (2.85) 
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Note that the right-hand-side of (2.85) is positive (follows from ( ) 11xe x −− < +  for all x 

> 0) and is increasing in x. Thus, conditions that favor the matching trade-in policy over 

the restricted full trade-in policy are a low aggregate failure rate (x), low warranty service 

cost (cw), and high trade-in potential (τ)—conditions under which trade-in transactions 

are more likely to be profitable. Recall that the aggregate failure rate is x = α(L – t1), and 

small values of x are associated with a low component failure rate (α) and/or a brief 

warranty horizon (L – t1). Figure 3.3 shows the regions in which each trade-in policy is 

favored. 

 
Figure 3.3. Boundary curve delineating the preference for the matching trade-in policy 
(to the left) and the restricted full trade-in policy (to the right). The curve is (1 + 2x)/(1 + 
x) – e – x, which defines the set of values satisfying ( )2

2 1C t = ( )1
2 1C t . 

The fact that the processing of each warranty claim is costly (at unit cost cw) 

combined with the fact that fewer warranty claims are processed under a restricted full 

trade-in policy than a matching trade-in policy hints that a restricted full trade-in policy 

may never cost too much more than a matching trade-in policy. Indeed, this is the case. 

The cost of each policy is  



113 
 

 

( )1
2 1 1 1 w

x xC t N c
x x

τ  = − +  + +  
        (2.86) 

( ) ( )( )2
2 1 1 1x x

wC t N e e cτ− −= − − − +         (2.87) 

(follows from Proposition 1 and Corollary 1). From 1 – e-x > x/(1 + x) (see (2.84)), it 

follows that  

( ) ( )1 2
2 1 2 10wc C t C tτ − ≤ ⇒ ≤ .      (2.88) 

For positive y = 1 – cn – γm – cw = τ  – cw, the maximum percentage increase in second-

stage cost when a restricted full trade-in policy is used instead of a matching trade-in 

policy is  

( ) ( ) ( )
( )

1 2
2 1 2 1

20
2 1

max
x

C t C t
w y

C t≥

 − =  
  

,        (2.89) 

which is increasing in y. Furthermore, if parameters are such that ( )2
2 1C t = 0, then ( )1

2 1C t < 

0 (due to ( ) 11xe x −− < +  for all x > 0). As a consequence, w(y) is finite. Table 2 shows the 

values of w(y) for various values of y (obtained via numerical search).  

y w(y)  y w(y) 
≤ 0 0%  0.6 4.9% 
0.1 0.9%  0.7 5.6% 
0.2 1.7%  0.8 6.3% 
0.3 2.5%  0.9 7.0% 
0.4 3.3%  1.0 7.7% 
0.5 4.1%    

Table 3.2. Worst-case percentage increase in second-stage cost when a restricted full 
trade-in policy is used instead of a matching trade-in policy for various values of y = τ  – 
cw.  
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The values of cn, m, and cw are nonnegative. Suppose γ  is nonnegative, as is likely to 

be commonly the case in practice. Then we have y ≤ 1 and, at worst, the restricted full 

trade-in policy is no more than about 8% more expensive than a matching trade-in policy. 

And, since the cost of restricted full trade-in policy is an upper bound on the cost of an 

unrestricted full trade-in policy, the same worst-case performance ratio applies. In 

contrast, the maximum percentage increase in second-stage cost when a matching trade-

in policy is used instead of a restricted full trade-in policy is unbounded, i.e., a matching 

trade-in policy can be much more expensive than a restricted full trade-in policy. 

Our main conclusions regarding the comparison of the restricted full trade-in policy 

with the matching trade-in policy for the case of r = h = n(t) = 0 are as follows: (i) the 

restricted full trade-in policy has fewer warranty claims due to upfront reduction in the 

warranty install base; (ii) the restricted full trade-in policy favors medium-to-high 

aggregate failure rates, medium-to-high warranty service cost, and low-to-moderate 

trade-in potential; (iii) the matching trade-in policy favors low aggregate failure rates, 

low warranty service cost, and high trade-in potential; (iv) at worst, the restricted full 

trade-in policy is no more than 8% more expensive than the matching policy.  

We now consider how the trade-in policies compare with the benchmark policy. A 

trade-in program differs from the benchmark in two ways—volume and unit acquisition 

cost. We begin by examining unit acquisition cost. The average acquisition cost per unit 

for each policy is  

benchmark policy: 0
2c               (2.90) 

restricted full trade-in policy: ( )
( )

11
2

11
L t

c
L t

α
τ

α
−

= −
+ −

      (2.91) 
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matching trade-in policy: ( )12
2 1 L tc e α τ− −= − −         (2.92) 

((2.90) follows from (2.5), (2.91) follows from (2.82) and (2.86), (2.92) follows from 

(2.83) and (2.87)). The preceding expressions lead to the following proposition. 

Proposition 11. a) The acquisition cost per unit under the restricted full trade-in policy 

is less than the acquisition cost per unit under the benchmark policy if and only if 

( )
( )

1
1 02

2
11

L tq c
N L t

α
τ

α
−

= < +
+ −

.          (2.93) 

b) The acquisition cost per unit under the matching full trade-in policy is less than the 

acquisition cost per unit under the benchmark policy if and only if 

( )1

2
02
21 L tq e c

N
α τ− −= − < + .          (2.94) 

Proposition 11 presents two inequalities with a volume term on the left and a cost 

term on the right. The left-hand side of inequality (2.93) is the number of trade-in returns 

(also warranty demand) as a percent of the install base under a restricted full trade-in 

policy (see (2.82)). Similarly, the left-hand side of inequality (2.94) is the number of 

trade-in returns (also warranty demand) as a percent of the install base under a matching 

trade-in policy (see (2.83)). The higher aggregate failure rate, α(L – t1), the higher the 

return fraction, the larger the required trade-in credit, and the more likely that the trade-in 

acquisition cost will be higher than the benchmark.  

The right-hand side of (2.94) is the sum of the benchmark cost term, 0
2c , and the 

trade-in potential τ = (1 – γ)m – (pn – 1). Even without Proposition 11 it is clear that a 

larger value of 0
2c  makes it more likely that a trade-in acquisition cost will be lower than 

the benchmark acquisition cost. What is perhaps more interesting are the roles of the 
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other parameters. Proposition 11 shows that the aggregate failure rate, trade-in potential, 

and third-party unit cost are the key drivers of the inequality between the trade-in and 

benchmark acquisition cost per unit. 

Relative to the benchmark, a trade-in program results in lower warranty demand. 

Thus, the total cost of a trade-in program may be lower than the total cost of the 

benchmark even if both of the inequalities in Proposition 11 don’t hold. Proposition 12 

compares the total cost of benchmark and trade-in policies.  

Proposition 12. a) The total cost under the restricted full trade-in policy is less than the 

total cost unit under the benchmark policy if and only if 

( )
0
2
1

1 2

1
1

w

w

c c
L t c cα

+
<

+ − +
.          (2.95) 

or equivalently,  

cw > 0
2

1 1
1

xc
x x x

τ + − −  +  
.         (2.96) 

b) The total cost under the matching trade-in policy is less than the total cost unit under 

the benchmark policy if and only if 

( )

( )
1 0

2
2

1 2

1 L t
w

w

c ce
L t c c

α

α

− − +−
<

− +
.          (2.97) 

or equivalently,  

cw > ( )
( ) ( ) ( )

2

0
2

1 1
1 1 1

x x

x x x

e e xc
x e x e x e

τ
− −

− − −

   − −   − −
   − − − − − −   

.    (2.98) 

 The term on the left-hand side of (2.95) and (2.97) is a ratio of trade-in-to-

benchmark volumes, which as noted above, is less than 1 (e.g., Figure 3.2). The term on 
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the right-hand side of (2.95) and (2.97) is the ratio of benchmark-to-trade-in acquisition 

and warranty service cost per unit. If the inequalities in Proposition 11 hold, then the 

inequalities in Proposition 12 also hold (i.e., the inequalities in Proposition 11 imply 

1 0
2 2c c< and 2 0

2 2c c< ). Figure 3.4 illustrates how the least-cost policy is affected by 

parameter values. 
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(a) 

 
(b) 

 
(c) 

Figure 3.4. Boundary curves delineating the preference for the restricted full trade-in 
policy (indicated by F), the matching trade-in policy (indicated by M), and the 
benchmark policy of no trade-ins (indicated by B). 0

2c  = 0.2 in all three plots. The shading 
signifies that the cost of the restricted full trade-in policy is equal to the full trade-in 
policy. 
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The trade-in potential in the plot (a) of Figure 3.4 is τ = (1 – γ)m – (pn – 1) = -0.5. If γ 

= 1 for example (e.g., repeat purchase rate of 100%), then the setting is one in which the 

firm must offer a trade-in discount of at least 0.5 to trigger a return (i.e., high trade-in 

resistance). It is a setting where the unit acquisition cost of a trade-in program at any 

return volume is more than twice the benchmark cost of 0
2c  = 0.2 (i.e., 1 2

2| 0 2| 0x xc c= ==  = -τ = 

0.5). We see that, even in this rather extreme setting, the restricted full trade-in policy is 

less expensive than the benchmark when the unit warranty service cost and the aggregate 

failure rate are high. For this combination of parameter values, the benefit of lower 

warranty demand achieved through the trade-in program more than offsets the unit 

acquisition cost premium. 

For plot (b) in Figure 3.4 we have τ = (1 – γ)m – (pn – 1) = 0. In this setting, 1 0
2 2c c≤  = 

0.2 for x ≤ 0.25. Thus, the restricted full trade-in policy clearly dominates the benchmark 

policy when the aggregate failure rate is less than 0.25 (i.e., due to lower unit acquisition 

cost and lower return volume). The difference between the boundary curve and vertical 

line at x = 0.25 is the region in which the higher trade-in unit acquisition cost is more 

than offset by the reduction in warranty demand, relative to the benchmark. As the unit 

warranty cost (cw) increases, the reduction in volume afforded by the trade-in program 

adds more value, as reflected in the widening of this region as cw increases. 

Plot (c) in Figure 3.4 illustrates a setting where the trade-in potential is positive at τ = 

(1 – γ)m – (pn – 1) = 0.5, due to a combination of low trade-in resistance (pn – 1), low 

consumer loyalty (γ), and high margin (m). It is a setting where the firm may make a 

profit on trade-in volume (i.e., negative unit acquisition cost). For example, the unit 
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acquisition cost of the restricted full trade-in policy ( 1
2c ) is negative over all aggregate 

failure rates in the figure, and the unit acquisition cost of the matching trade-in policy 

( 2
2c ) is negative up to aggregate failure rate x < -ln(0.5) ≈ 0.7. The restricted full and 

matching trade-in policies dominate the benchmark over the entire area of the plot. The 

regions of trade-in policy preference reinforce the message of Figure 3.3: matching tends 

to be favored over restricted full when the aggregate failure rate is low, the trade-in 

potential is high, and the warranty service cost per unit is low.  

We emphasize that the restricted full trade-in policy is a limited form of a full trade-in 

policy, and that the full trade-in policy dominates the benchmark policy. This is because 

the full trade-in policy optimally satisfies component warranty demand through a 

combination of trade-ins and purchases from a third party. Rewriting (2.81) in terms of 

the warranty service cost per unit, the cost of the restricted full trade-in policy is the same 

as full trade-in policy when  

0
2 3

2 1 2 1,
1 1w

x xc c c
x x x x x x

τ τ + +   ∈ − − − +    + +    
.     (2.99) 

The “F” regions in Figure 3.4 are shaded above the function that defines the left endpoint 

in (2.99). Given that it is not economical to acquire more trade-ins than warranty demand 

(e.g., high disposal cost), the shading indicates that the full trade-in policy sets trade-in 

volume to match warranty demand (i.e., restricted full trade-in and full trade-in policies 

are identical). In the non-shaded areas, the firm can reduce cost by acquiring some 

components through a trade-in program and some components from the third party.  
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For the remainder of this section, we examine how the relative performance among 

policies is impacted by relaxing various assumptions. We begin by considering a change 

in the way warranties expire over time. 

Impact of linearly decreasing warranty population 

The preceding analysis assumes that all warranties expire at time L. Suppose that 

warranties expire linearly at rate n > 0 (i.e., n(t) = n). The cost of the matching trade-in 

policy is unaffected by a linear decreasing warranty population (see Proposition 9). If  

1
n
N L

α
α

≤
+

,          (2.100) 

then the cost of the restricted full trade-in policy is also unaffected by a linear decreasing 

warranty population (see Proposition 6), and the worst-case performance results in Table 

2 continue to hold.  

The worst-case performance percentages can be larger when the inequality given in 

(2.100) is reversed. The reason stems from the differing effects of increasing n on the two 

policies when trade-ins are profitable: a larger value of n translates into fewer profitable 

trade-ins for the restricted full trade-in policy whereas the number of trade-ins is 

unaffected by n in a matching trade-in policy. 

The following two propositions identify conditions for the dominance of trade-in 

policies over the benchmark. 

Proposition 13. a) If 

( ) ( )
( )

2
1 0

1 2
12

n L t
L t c

N nt
α

α τ
−

− − < +
−

        (2.101) 
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then the acquisition cost per unit under the restricted full trade-in policy is less than the 

acquisition cost per unit under the benchmark policy. 

b) The acquisition cost per unit under the matching full trade-in policy is less than the 

acquisition cost per unit under the benchmark policy if and only if 

( )1

2
02
21 L tq e c

N
α τ− −= − < + .         (2.102)  

Proposition 14. a) If 

( ) ( )
( )

2
1 0

1 2
12

n L t
L t c

N nt
α

α τ
−

− − < +
−

        (2.103) 

then the total cost unit under the restricted full trade-in policy is less than the total cost 

under the benchmark policy. 

b) The total cost under the matching trade-in policy is less than the total cost under the 

benchmark policy if and only if 

( )

( ) ( ) ( )( )
1 0

2
2
21 1 1

1
1 0.5 /

L t
w

w

c ce
c cL t n L t N n t

α

α α

− − +−
<

+− − − −
.     (2.104) 

or equivalently,  

cw > ( )
( ) ( ) ( ) ( )

( )
( ) ( )

2

0
2

1 11
1 1 1 1 1 1

x x

x x x

e x ae c
x a e x a e x a e

τ
− −

− − −

   − −−   − −
   − − − − − − − − −   

.  (2.105) 

where a = ( ) ( )1 10.5 /n L t N ntα − − . 

Impact of positive holding cost rate 

Under the restricted full trade-in policy, the firm acquires N(t1
-)α(L – t1)/[1 + α(L – 

t1)] units at time t1 with component inventory reaching zero at time L as the second stage 
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ends. Since the matching policy maintains zero inventory over the duration of the second-

stage, we know that the relative attractiveness of the matching policy is increasing in the 

holding cost rate h. Updating expression (2.86) for h > 0 (e.g., by taking the limit of 

(2.50) as r approaches zero) , yields  

 
( ) ( ) ( )2

1
2

1

1 1 2 1
– w

h L tx x x
x

C N
x

x c
x

τ
 −     − +      + + +       

=    (2.106) 

The cost of the matching policy is unaffected by h > 0 and (2.87) holds. Figure 3.5 

illustrates how the boundary curve in Figure 3.3 shifts to the right as h increases.  
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(a) 

 
(b) 

Figure 3.5. The curves satisfy ( )2
2 1C t = ( )1

2 1C t  for alternative values of h. Plot (a) shows 
the indifference curves when the duration of the second-stage is 1 period (i.e., L – t1 = x/α 
= 1). Plot (b) shows the indifference curves when the duration of the second-stage is 4 
periods (i.e., L – t1 = x/α = 4).  

We now consider how the performance of the trade-in polices compares to the 

benchmark. Note that since the unit acquisition cost is unaffected by h > 0, Proposition 

11 continues to hold, i.e., 

( )
( )

11 0 0
2 2 2

11
L t

c c c
L t

α
τ

α
−

< ⇔ < +
+ −

        (2.107) 



125 
 

 

( )12 0 0
2 2 21 L tc c e cα τ− −< ⇔ − < + .        (2.108) 

Furthermore, a change from h = 0 to h > 0 results in no change in cost under the matching 

trade-in policy, which maintains zero inventory. And a change from h = 0 to h > 0 causes 

a larger absolute increase in cost under the benchmark policy than under the restricted 

full trade-in policy. This is because the warranty demand is higher under the benchmark 

policy (i.e., trade-ins lower warranty demand). Therefore the necessary and sufficient 

conditions for trade-in policy dominance identified in Proposition 12 for the case of h = 0 

are sufficient conditions for trade-in policy dominance when h > 0. 

Proposition 15. a) If  

( )
0
2
1

1 2

1
1

w

w

c c
L t c cα

+
<

+ − +
.          (2.109) 

or equivalently,  

cw > 0
2

1 1
1

xc
x x x

τ + − −  +  
,         (2.110) 

then the total cost under the restricted full trade-in policy is less than the total cost unit 

under the benchmark policy. 

b) If  

( )

( )
1 0

2
2

1 2

1 L t
w

w

c ce
L t c c

α

α

− − +−
<

− +
.          (2.111) 

or equivalently,  

cw > ( )
( ) ( ) ( )

2

0
2

1 1
1 1 1

x x

x x x

e e xc
x e x e x e

τ
− −

− − −

   − −   − −
   − − − − − −   

    (2.112) 
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then the total cost under the matching trade-in policy is less than the total cost unit under 

the benchmark policy. 

Combined impact of positive discount rate and holding cost rate 

We next examine the case of r > 0 and h > 0. Substituting x = α(L – t1) into (2.50) and 

(2.72) yields 

( )
( )

( )
1

11
2

1

1
1 1

rt
L t r

w
x x h h ec

x x r r
C Ne

r
x

L t
τ

− −
−

   −      − − + −          + + −         
=


  (2.113) 

( )
( )( )

( )

( )( )
( ) ( )1

1 1
2

0.5 0.5

1

2
2

1

1 1

0.5

L t r

t

x r L t x

r
w

x e x e
Ne c

x L t r x L t r
C x τ

− − − − − −

−

    − −    − −    + − + −      

=


  (2.114) 

The introduction of r > 0 lowers the magnitude of the total cost of our two second-

stage trade-in policies. However, the above expressions do not permit a simple prediction 

about how changes in the discount rate affect the relative performance of the restricted 

full and matching trade-in policies. Figure 3.6 illustrates how the boundary curves in 

Figure 3.5 shift as r increases when the remaining warranty life is short (i.e., L – t1= 1). 

(The range of 1 – cn – γm – cw = τ – cw is the same in figures 3.5 and 3.6, from -0.5 to 

0.5.) The darker regions, labeled M1 and M2, and the lighter regions, labeled F1 and F2, 

indicate areas where either the matching or the restricted full trade-in policy holds a 

relative cost advantage. The subscripts on M and F reflect the magnitude of the cost 

advantage where the larger subscript indicates a larger cost advantage (i.e., 

( ) ( )2 1
2 1 2 2 1 2| |C t M C t M−  ≤ ( ) ( )2 1

2 1 1 2 1 1| |C t M C t M−  ≤ 0 ≤ ( ) ( )2 1
2 1 1 2 1 1| |C t F C t F−  ≤ 

( ) ( )2 1
2 1 2 2 1 2| |C t F C t F− ).  
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(a) 

 
(b) 

 
(c) 

Figure 3.6. The curves separating M1 and F1 satisfy ( )2
2 1C t = ( )1

2 1C t . The plots are 
generated with parameter values L – t1 = x/α = 1= (i.e., the duration of the second-stage is 
one period), h = 0.08, and cw = 0.2. The values of r are 2.5% (a), 6.5% (b), and 11% (c).  
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When the discount rate is low (e.g., plot (a) of Figure 3.6 where r  = 2.5%), the 

regions of preference between our two second-stage policies  are similar to case of r = 0 

(see figures 3.3 and 3.5). That is, the restricted full trade-in policy has an advantage when 

phased-out component has a high failure rate and the matching trade-in policy has an 

advantage when component failure rate is low. When failure rates are moderate, the 

matching (restricted full) trade-in policy has an advantage when transactions are 

profitable (costly). However, note the region labeled F1 in the upper left corner of plot 

(a). In this region, failure rates are low and trade-in transactions are relatively profitable. 

Without discounting, the matching policy has an advantage in this region; but under 

discounting, the restricted full trade-in policy is preferred. This shift in rankings is driven 

by the way discounting affects cash flows from trade-in transactions and by when these 

cash flows are realized under the different policies. Recall that more units are returned 

under the matching trade-in policy. So when trade-in transactions are profitable, the 

matching policy has an advantage. However, when r > 0, the gains from future trade-in 

transactions are discounted. On the other hand, return volumes and transaction gains 

under the restricted full trade-in policy occur at the beginning of the time horizon, and 

these gains are uninfluenced by discounting.  

We see the effect of discounting playing a relatively larger role in the matching policy 

than in the restricted full policy when trade-ins are costly. Observe that the portion of the 

lower region in which matching is preferred moves to the right as r increases. Trade-ins 

are costly in this region (e.g., trade-in potential τ is negative). The high acquisition cost is 

discounted in the matching policy, whereas this cost is unaffected by the value of r in the 

restricted full policy, thus increasing the attractiveness of the matching policy.  
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These two basic effects of increasing discount rate—restricted full displacing 

matching in the upper left region and matching displacing restricted full in the lower 

region—become more pronounced as the duration (and warranty claim volume) of the 

second stage increases. This is shown in Figure 3.7, where the value of L – t1 is increased 

from 1 (in Figure 3.6) to 4. 
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(a) 

 
(b) 

 
(c) 

Figure 3.7. The curves separating M1 and F1 satisfy ( )2
2 1C t = ( )1

2 1C t . The plots are 
generated with parameter values L – t1 = x/α = 4, h = 0.08, and cw = 0.2. The values of r 
are 2.5% (a), 6.5% (b), and 11% (c). 
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We now consider how the performance of the trade-in polices compares to the 

benchmark. The following proposition presents sufficient conditions for trade-in policy 

dominance over the benchmark policy. 

Proposition 16. a) If 

( )
( )( ) ( )

10
2 2

11
11

L t
c

L tL t

α τ
αα

−
> −

+ −+ −
,11

( )10
2 1 L tc e α τ− −> − −

       (2.115) 

then the total discounted cost under the restricted full trade-in policy is less than the total 

discounted cost unit under the benchmark policy. 

b) If 

           (2.116) 

then the total discounted cost under the matching trade-in policy is less than the total 

discounted cost unit under the benchmark policy. 

4.2 First-Stage Problem 

In this section we direct our attention to the manufacturer’s final order decision 

problem. The first-stage cost of policy i given final order quantity q1 is denoted ( )
1 1
iC q , 

and the optimum is 
1

iC , where  

  benchmark policy:     i = 0 

  restricted full trade-in policy:   i = 1 

  matching trade-in policy:    i = 2. 

                                                 
11 Note that (2.115) is equivalent to (2.95) in Proposition 12 if cw = 0. 
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4.2.1 First-Stage Cost Functions 

We develop cost expressions for two first-stage problems that differ by the 

assumptions and the second-stage trade-in policy in effect.  

Problem 1i
1C : Assumptions A1 – A5, A6a, A7a, A8a 

We initially concentrate our analysis on the case of r = h = n(t) = 0 (i.e., assumptions 

A6a, A7a, A8a)—the case for which closed-form solutions are available for the full and 

matching second-stage trade-in policies. Due A6a – A8a, we can rewrite the first-stage 

cost function given in (2.3) as 

( )
1 1
iC q  = ( ) ( )( )

21 1 1 1
i

wc c q C t q+ +       (2.117) 

where the superscript i denotes the second-stage policy in effect and t1 = q1/(αN) is the 

run-out time of the final order quantity q1. (From –c3 < c1 it follows q1 ≤ αLN in an 

optimal solution, i.e., the firm does not order more than total demand.)  

As in Section 4.1.6, we consider the optimal full trade-in policy under the 

requirement that the trade-in quantity is equal to second-stage demand (i.e., q2 = ( )1D t ), 

i.e., the restricted full trade-in policy. As noted in the previous section, the function 

captures the basic structure of the full trade-in policy while maintaining tractability and 

thus facilitating interpretations. It also allows a more direct comparison with the 

matching trade-in policy in the sense that both policies set trade-in supply equal to 

demand, and only differ in the timing of trade-in transactions. 

The first-stage costs under the three policies are 

Benchmark; no trade-ins 
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( ) ( ) ( )( )
1 1 1 1 1
0 0

2w wq c c qC c c LN qα+ + −= +          (2.118) 

( ) ( )
( )

1

2

1

1
1

1

1
1 1

1

w

w

LN q
LN q N

q N
LN q

LN q

C c c q

c
N

α
α

α
τ

α

  − − − +  +  
 − 
  − +  

= +

−

Restricted full trade-in policy 

       (2.119) 

( ) ( ) ( )
1

1

1
2

2
1 1 1 1 1

LN q LN q
N

w w
NC q c c q N e e c

α α

τ
− −

− −    
 = + − − − −   
    

+


Matching trade-in policy 

    

(2.120) 

(follows from (2.5), (2.33) with q2 = ( ) ( )
( )
1 1

11
L t N t

L t
α

α

−−

+ −
, and (2.76)). The first term in each 

of the above cost expressions is the acquisition and warranty service cost attributed to the 

final order quantity, i.e., the first-stage cost. The second term in each expression is the 

acquisition and warranty service cost in the second stage. The following proposition 

characterizes the optimal solutions to the first-stage problems.  

Proposition 17. Let a = τ – cw and b = c1 + cw. The optimal final order quantity given a 

benchmark second-stage policy is 

0
1q LNα=                  (2.121) 

and the optimal cost is 

( )
1 1
0

wc LNC c α+= .              (2.122) 

The optimal final order quantity given a restricted full trade-in second-stage policy is: 

for 
3 22 1

3
a

b b
−   −   

   
< 0: q1 = 0            (2.123) 
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for 
3 22 1

3
a

b b
−   −   

   
≥ 0: 

{ }
( )

1
1 2
3

1 1
1

, ,
,

arg min
LN z N LN z Nq LN z N LN

q C q
α α
α α

− −∈ −

=       (2.124) 

where zi = ( )
1/2 3/2

12 1 1 3max 0,min 2 cos cos 2 1 1,
3 3 2

a b i L
b b a

π α−
     −       − + − −         −          

.  

The optimal final order quantity given a matching trade-in second-stage policy is: 

for (2 – a)2 – 8b ≤ 0: q1 = 0            (2.125) 

for (2 – a)2 – 8b > 0: 
{ }

( ){ }1
1 2

2 2
1

0, , ,
arg min

q LN z N LN z N LN
q C q

α α α∈ − −
=      (2.126) 

where zi = 
( ) ( )

1/222 1 2 8
max 0,min ln ,

2

ia a b
L

b
α

    − + − − −    
   
   

   

. 

Problem 21iC : Assumptions A1 – A5, A6b, A7a, A8b 

Now we consider the effects of r > 0 and h > 0 Discounting becomes especially 

important in settings characterized by rapid growth and innovation (e.g., r is a proxy for 

the firm’s return on capital net of inflation, which tends to be larger in industries with 

high growth and innovation). Substituting (2.113) and (2.114) into (2.117) , we get the 

expressions from the first-stage discounted cost for the benchmark, matching and 

restricted full trade-in policies:  

( )
( )

( )
1 1

1

1

2
/

1 1 21
0 01

q r q rLrr q N N N

w w
h h e eq q c N c N c
r r r r

eC c
α α α

α α
− − −− − −   + + − + +        

 
 =  



 



Benchmark; no trade-ins 

 (2.127) 
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 

 
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 
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=

 
 
 
 


 


  


Restricted full trade-in policy  

    (2.128) 
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 
    
 − −          − 

+ 

=

−

 +     

Matching trade-in policy  

   (2.129) 

4.2.2 Trade-in Policy Dominance Conditions and Worst-Case Cost Savings 

Proposition 18 presents a series of sufficient conditions for trade-in policy dominance 

over the benchmark. Proposition 19 presents lower bounds on the percent savings 

achieved by replacing the benchmark policy with a trade-in policy. The propositions 

expose key determinants of trade-in policy dominance over the benchmark, and the 

degree of dominance. 
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Proposition 18. Sufficient conditions for trade-in policy dominance are as follows: 

Problem  i Conditions that assure { }
1 1

0 , 1,2iC C i< ∈   

n = 0 

h = 0 

r = 0 

1 1
1

1 1 w
Lc c L

L L
α τ α

α α
  > − −  + +  

 (2.130) 
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−−
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  − − −   > − − −    −    
 − −
 ≥ − − −
 − 

 (2.131) 

n > 0 

h = 0 

r = 0 

1 1 1
2
Lnc L
N

α τ > − − 
 

 (2.132) 
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 (2.133) 

n = 0 

h > 0 

r = 0 

1 0
2 1
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L

α τ
α

> −
+

 (2.134) 

2 0
2 1 Lc e α τ−> − −  (2.135) 

n = 0 

h > 0 

r > 0 

1 if τ ≥ 0: 0
2

1
1 1

Lc
L L

α τ
α α

  > −  + +  
 (2.136) 

2 0
2 1 Lc e α τ−> − −  (2.137) 

 

Proposition 19. a) If h = r = n(t) = 0, then  

( )( )1 1

1 0

1

11 / 1
1 1 w

w

LC C c
L c c L

α τ
α α

  − ≥ − − +   + + +  
     (2.138) 
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11 / 1 1
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eC C e c
L c c

α
α τ
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−
− −

− ≥ − − − +  + 
.      (2.139) 

b) If h = r = 0 and n(t) = n, then 
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.        (2.140) 

4.3 Numerical Illustrations 

Section 4.1.6 provides comparative analysis of second-stage policy performance. 

Figure 3.4, in particular, exposes the determinants of relative performance among the 

policies. In this section we explore the extent to which the drivers of relative performance 

that are illustrated in Figure 3.4 continue to hold in the first-stage problem. We do this 

through numerical illustrations that correspond to the three plots in Figure 3.4.  

Figure 3.4 displays behavior in a single-stage problem (i.e., stage two) with 0
2c  = 0.2. 

In our numerical illustrations, we set c1 = 0.2. This allows us to capture how the 

introduction of a multistage element of the problem affects insights from our single-stage 

analysis. In particular, the benchmark policy covers all warranty demand with the final 

order quantity (due to r = h = 0), and consequently, there is no second stage under this 

policy. The cost of the benchmark policy for the first-stage problem is identical to the 

cost of the benchmark policy for the second-stage problem that underlies the results in 

Figure 3.4. Thus, any differences in behavior between Figure 3.4 and Figure 3.8 below 

are solely due to the additional flexibility afforded to the trade-in policies through a two-

stage decision (i.e., acquire some units from the vendor and some units from trade-ins as 

opposed to all units from trade-ins).  



 

 
 

138 

   

   

Figure 3.8. First-stage order quantity as a percent of the benchmark first-stage order quantity, percent cost savings over the 
benchmark, and lower bound on the percent costs savings over the benchmark. The parameter values are c1 = 0.2,τ = -0.5, cw = 0.8 
(left plot), c1 = 0.2,τ = 0, cw = 0.1 (middle plot), and c1 = 0.2,τ = 0.5, cw = 0.1 (right plot). 
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The left plot of Figure 3.4 shows the regions of policy preference in a setting where 

the trade-in potential is negative, i.e., τ = -0.5. In this setting, the unit acquisition cost of a 

trade-in program at any return volume is more than twice the benchmark acquisition cost. 

It is a setting that is very unfavorable to a trade-in policy. Even in this rather extreme 

setting, the restricted full trade-in policy is less expensive than the benchmark when the 

unit warranty service cost and the aggregate failure rate are high; the benefit of lower 

warranty demand achieved through the trade-in program more than offsets the unit 

acquisition cost premium. The left plots in Figure 3.8 correspond to parameter values 

associated with a horizontal line drawn at cw = 0.8 in Figure 3.4. If we study Figure 3.4 at 

cw = 0.8, we see that the benchmark is preferred up to an aggregate failure rate of 0.71, 

with the restricted full trade-in policy preferred for larger values. This behavior is 

replicated in Figure 3.8. In fact, this is a scenario where our second-stage analysis 

completely informs first-stage policy performance. We see that the restricted full trade-in 

policy sets q1 to cover entire demand up to an aggregate failure rate of 0.71 (i.e., reduces 

to the benchmark policy), and sets q1 = 0 thereafter. The two-stage problem reduces to 

single-stage problem over all aggregate failure rates; all units are either acquired from the 

vendor or from trade-ins. The optimal matching trade-in policy sets q1 to cover all 

warranty demand over all aggregate failure rates (i.e., trade-ins are never profitable under 

this policy).  

The bottom-left plot in Figure 3.8 shows that the percent savings due to the restricted 

full trade-in policy is relatively small, hitting a maximum of 10% at an aggregate failure 

rate of 100%. We also see that the lower bound on percent savings is tight. The lower 

bound on percent savings given in Proposition 19 derives from propositions that apply to 



140 
 

 
 

140 

second-stage problem, and is tight whenever the solution to the first-stage problem results 

in a single-stage decision (i.e., the second stage is not activated), as is the case here. 

The middle plot of Figure 3.4 shows the region of policy preference in a setting where 

the trade-in potential is neutral, i.e., τ = 0. The middle plots in Figure 3.8 correspond to 

parameter values associated with a horizontal line drawn at cw = 0.1 in Figure 3.4. If we 

study Figure 3.4 at cw = 0.1, we see that the restricted full trade-in policy is preferred up 

to an aggregate failure rate of 0.67, with the benchmark policy preferred for larger values. 

In contrast with the left plots in Figure 3.8, we now see a difference in behavior that 

stems from the multistage element of the problem. In particular, the benchmark policy is 

never preferred. For aggregate failure rates larger than 0.67, which is where the 

benchmark policy is preferred under second-stage analysis, both trade-in policies exploit 

the flexibility of dividing the source of components between the final order quantity and 

trade-ins from customers. We see that the fraction acquired from the vendor increases as 

the aggregate failure rate increases. This reflects the fact that the trade-in acquisition cost 

per unit is increasing in the trade-in quantity (see (2.11)), so more volume is shifted to the 

vendor as warranty demand increases.  

The bottom-middle plot in Figure 3.8 shows that the percent savings due to the trade-

in policies is significant when the aggregate failure rate is small (e.g., 64% at a 1% 

aggregate failure rate). The savings diminish as the aggregate failure rate increases, 

reaching 5% and 4% at an aggregate failure rate of 100% for the restricted full and 

matching trade-in policies, respectively. We also see that a gap between the actual 

percent savings and the lower bound on percent savings arises at the point where the 

trade-in policies begin dividing the source of components between the vendor and 
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customers. This is as expected because, as noted above, the lower bound is derived from 

the case where the optimal decision reduces to a single-stage form. Finally, we note that 

the restricted full trade-in policy dominates the matching trade-in policy over the entire 

region of the plot, which is consistent with the results in Figure 3.4. 

The right plot of Figure 3.4 shows the region of policy preference in a setting where 

the trade-in potential is positive, i.e., τ = 0.5. As in the middle plots, the right plots in 

Figure 3.8 correspond to parameter values associated with a horizontal line drawn at cw = 

0.1 in Figure 3.4. If we study Figure 3.4 at cw = 0.1, we see that the matching trade-in 

policy is preferred up to an aggregate failure rate of 0.23, with the restricted full trade-in 

policy preferred for larger values. This boundary point of preference between the two 

trade-in policies is unchanged in right plots of Figure 3.8. In this example, the regions of 

preference are unaffected by the multistage element of the problem. In fact, we can see 

that the restricted full trade-in policy reduces to a single-stage problem over all aggregate 

failure rates (i.e., no units are ordered from the vendor). The matching trade-in policy, on 

the other hand, begins to divide the sourcing of components between the vendor and 

customers once the aggregate failure rate reaches 70%. As we saw in our second-stage 

analysis, the matching trade-in policy results in larger warranty demand than the 

restricted full trade-in policy. And it is this difference, with the consequent pressure on 

the acquisition cost per unit, that drives the more liberal use of sourcing flexibility in the 

matching trade-in policy.  

The main lesson in the bottom-right plot in Figure 3.8 pertains to the significance of 

the savings achieved through the use of a trade-in policy. The restricted full trade-in 

policy saves more than 100% of the benchmark cost when the aggregate failure rate is 
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less than 66% (51% for the matching trade-in policy), and is as high as 230% for low 

aggregate failure rates. Over this range, the profit from trade-in volume more than offsets 

the cost of servicing warranty claims. The plot also reinforces the insight from second-

stage analysis that the restricted full trade-in policy is not a bad choice when the discount 

and holding cost rates are close to zero. For the data in the example, the profit from the 

restricted full trade-in policy is, at most, 3.3% less than the profit from the matching 

trade-in policy. 

We conclude by summarizing the preceding discussion in the form of two 

observations. First, insights relating to regions of policy preference from our second-

stage analysis largely transfer to the first-stage problem with one clarification: second-

stage analysis tends to understate the value of trade-in policies relative to the benchmark. 

For some parameter values, the trade-in policies are able to exploit the flexibility of dual 

sourcing of components—a flexibility that is not present in the second-stage problem. 

This flexibility is relatively more valuable for trade-in policies because the firm may be 

able to make money from trade-in transactions when the trade-in volume is low. In 

contrast, acquiring units from a third-party vendor, which is a sourcing option under the 

benchmark policy, is always costly. Second, the savings obtained by supplementing the 

final order quantity with a trade-in program can be significant, even to the point where 

the firm is able to make money servicing warranty claims. The single most significant 

indicator of a savings opportunity is the trade-in potential. Trade-in potential is the 

difference between the increase in profit from locking in disloyal customers and the 

minimum markdown required for a customer to accept a trade-in offer (i.e., trade-in 
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resistance). If trade-in potential is positive, it is a strong positive signal for the use of a 

trade-in policy. 

5. Summary and Conclusions 

In this essay, we consider the final order problem that arises when a vendor 

announces that production of a component will cease in the near future. Our interest in 

this problem comes from discussions with management at a large computer manufacturer. 

While the firm is typically not producing the product when the supplier issues a 

component phase-out announcement (CPOA), there is an install base of products under 

warranty that must be serviced in the event of component failure. The firm is interested in 

understanding the merits supplementing the final order quantity with a trade-in program 

that is offered to owners of obsolete product under warranty. Components harvested from 

returned products can be used to satisfy future warranty claims while simultaneously 

reducing the install base (and future warranty claims) and potentially generating profits 

from sales that would not have otherwise occurred.  

While there has been research on the final order quantity problem and there has been 

research on the design and merits of trade-in programs, the combination of these two 

elements has, to our knowledge, not been studied. There is a pressing need for research 

on this problem for two reasons. First, product lifecycles are shrinking and outsourcing is 

expanding, which are increasing the incidence of CPOAs. Second, the prevalence of 

trade-in programs is increasing. This is in part due to economic reasons as more firms are 

discovering opportunities for value recovery in end-of-use product. And in part due to 

environmental reasons, whether driven by take-back legislation or the desire to enhance a 
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firm’s reputation of environmental stewardship. Interestingly, the firm motivating this 

work has an active trade-in program located in a division that is separate from the 

warranty group. The presence of this activity has prompted the warranty group to think 

about the possibility of targeted trade-in programs that offer both marketing benefits 

(e.g., locking in disloyal customers) while providing a source of obsolete components for 

warranty claims. The purpose of this essay is to help understand when the use of a trade-

in program is likely to be a high value opportunity and, in settings of high value, provide 

guidance on trade-in program design. 

Under the benchmark policy, which reflects the firm’s current policy for responding 

to a CPOA, the firm places a final order with the vendor that is large enough to cover 

warranty demand. In addition to a benchmark policy, we consider two simple trade-in 

policies—a full trade-in policy and a matching trade-in policy. The full trade-in policy 

offers a trade-in discount to all owners with product under warranty shortly before the 

component supply reaches zero. The matching trade-in policy also goes into effect as 

component supply reaches zero, but makes the trade-in offer to select owners over time 

so as to match supply with demand. Both trade-in policies dominate the benchmark 

policy (i.e., feasible region includes the benchmark solution). Our analysis illuminates the 

relationship between parameter values and the degree of dominance over the benchmark 

(e.g., magnitude of cost savings) and conditions under which each trade-in policy is 

preferred. We identify sufficient conditions for trade-in policy dominance over the 

benchmark and we obtain lower bounds on the percent savings obtained by replacing the 

benchmark policy with a trade-in policy. 
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We find that the single most important driver of trade-in policy value is the trade-in 

potential—a simple measure that is the difference between the increase in profit from 

locking in disloyal customers by means of a trade-in transaction and the minimum 

markdown required for a customer to accept a trade-in offer. If trade-in potential is 

positive, it is a strong positive signal for the use of a trade-in policy. Indeed, the use of a 

trade-in program in these settings can drive warranty service costs below zero, especially 

when the failure rate over the warranty horizon is moderate (e.g., 20% or less). 

We also find that the use of a full trade-in policy is relatively robust—it will not 

perform much worse than the matching trade-in policy as long as the discount rate (net of 

inflation) and the holding cost rate are not too high, and will potentially lead to much 

greater savings. The reason is that a full trade-in policy benefits from a single large 

reduction in the install base that maximizes the reduction in future claims, and 

consequently, warranty service costs. This is a fortuitous result in the sense that a 

matching trade-in policy may not even be an option for some firms. A matching trade-in 

policy requires that the firm have a warranty database that includes owner contact 

information. Firms that sell directly to customers will often have access to this level of 

detail, but this is less likely to be the case for firms that sell through distributors or 

retailers. 

While a full trade-in policy is generally a safe choice, there are three key indicators of 

when a matching trade-in policy is likely to be preferred: (1) positive trade-in potential, 

(2) low warranty service cost per unit, and (3) a high inventory holding cost rate. The 

reason for (1) and (2) is that, relative to the full trade-in policy, trade-in volume (and 

warranty demand) is higher. Higher volume can lead to higher profit when trade-ins are 
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profitable (positive trade-in potential) and the cost to service a claim is low (low warranty 

service cost per unit). The reason for (3) is clear—by aligning supply with demand, the 

matching trade-in policy maintains no inventory. In contrast, component inventory can be 

significant under the full trade-in policy. 

In summary, this essay offers three broad contributions. First, we introduce an 

important problem that has not previously been studied. It is a problem that draws on two 

major branches in the literature—literature on the final order problem and literature on 

the design and merits of trade-in programs. It is an area ripe for additional research. 

Second, we introduce a parsimonious, yet rich, model that is defined by five basic 

assumptions (A1 – A5). All warranty service cost expressions and optimal policy 

decisions flow from these assumptions. Our investigation has touched on a small set of 

questions and results, and we believe there is ample opportunity for further study using 

this model as is, or as a foundation for a richer model. Third, we provide insight into the 

merits and effective use of trade-in policies as discussed above.  

We offer two directions for future research. First, there is a need for a broader 

assessment of trade-in policy designs. The full trade-in policy and the matching trade-in 

policy are just two of many possibilities. There is a question of how good or bad these 

policies perform relative to a wider set of alternatives. In our appendix we introduce 

discrete dynamic programming algorithms that can be used to investigate this question. 

One algorithm returns the optimal cost under a full trade-in policy, one algorithm returns 

the optimal cost under a matching trade-in policy, and a third algorithm returns the 

optimal cost with no restrictions on the trade-in policy. By comparing solutions returned 
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by these algorithms, one will be able to develop a sense of how the optimal policy 

compares with the full and matching trade-in policies.  

Second, there is a need to consider the impact of uncertainty in warranty demand. 

Compared to the benchmark of placing a very large final order up-front, we know that the 

introduction of uncertainty will generally increase the value of a trade-in program (e.g., 

by virtue of a sourcing alternative if realized demand is greater than the final order 

quantity). However, there are important unanswered questions on the degree of value-

added as related to the nature of uncertainty and how uncertainty may shape the design of 

an effective trade-in program. 
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6. Appendix 

6.1 Notation 

L = time until all warranties expire if there is no trade-in program, i.e., 

length of the warranty horizon 

n(t) = rate of reduction in components under warranty at time t due to 

warranty expiration 

N(t) = number of working components under warranty at time t, i.e., warranty 

population 

N = number of components under warranty at time 0, i.e., N = N(0) 

α = component failure rate 

x = aggregate failure rate at time t1, i.e., x = α(L – t1) 

d(t)  = component demand rate at time t, i.e., due to warranty claims 

D(t) = cumulative component demand through time t 

( )D t  = total component demand from time t to time L, i.e., ( )D t = D(L) – D(t) 

T1(q1) = run-out time of final order quantity q1 

T2(q2) = run-out time of second-stage full trade-in quantity q2 given realization 

t1 of T1(q1) 

t2(q2) = time after realization t1 of T1(q1) for the warranties of q2 trade-in 

customers to expire, or L, whichever is smaller for a full trade-in 

policy 

r = net discount rate, e.g., cost of capital less inflation 

h = inventory holding cost per unit-period excluding the cost of capital 

(e.g., storage fees) 
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c1 = component cost/unit in the final order 

c2
i(t) = total cost per unit to acquire and refurbish a component via policy i at 

time t (e.g., accounts for trade-in price discount, cannibalization, and 

refurbishment) 

c3 = component disposal cost per unit (e.g., c3 < 0 implies a salvage value, 

which is less than the final order cost/unit, i.e., -c3 < c1) 

cw = warranty claim service cost, net of component acquisition cost (e.g., 

cost per unit for disassembly, component replacement, reassembly, 

test, and shipping) 

ct
i(t) = trade-in price reduction on the new model of the product at time t 

according to policy i, i.e., trade-in discount 

cn = unit cost of the new model of the product 

M = margin on the new model of the product 

pn = price of the new model of the product, i.e., pn = cn + m 

γ = fraction of trade-in customers who would have purchased the new 

model at full price in the future if the trade-in program was not offered 

(e.g., repeat purchase rate) 

τ = trade-in potential, i.e., τ = (1 – γ)m – (pn – 1) 

V = valuation of the new model when exchanged for the old model under 

warranty 

s(t) = component trade-in volume at time t 

ν(t) = rate at which customers are exposed to trade-in offer at time t, i.e., 

trade-in offer rate 

β(t) = fraction of customers who elect to trade-in their product from among 

those receiving a trade-in offer at time t, i.e., trade-in acceptance rate 

q1  = final order quantity of the component 



150 
 

 
 

150 

q2 = trade-in quantity under a full trade-in policy 

6.2 Assumptions 

A1. The trade-in discount is only available to customers with product under 

warranty 

A2. A customer receiving a trade-in offer receives a single take-it-or-leave-it 

offer and accepts the offer if consumer surplus is positive 

A3. The valuation of the new model in exchange for the old model under 

warranty is independent of time and is uniformly distributed with range 

normalized to [0, 1] 

A4. The warranty expiration date of a customer who accepts a trade-in offer is no 

later than the warranty expiration date of a customer who rejects a trade-in 

over 

A5. The component failure rate is constant 

A6a. r = 0 

A6b. r ≥ 0 

A7a. n(t) = 0 for all t ∈ [0, L) and n(L) = N, by the definition of L; see (2.30)) 

A7b n(t) = n for all t ∈ [0, L) (and n(L) = N – nL ≥ 0, by the definition of L; see 

(2.30)) 

A8a. h = 0 

A8b. h ≥ 0 

6.3 Derivations and Proofs 

Proof of Proposition 1. The second-stage cost is  

( )1
2 1 2,C t q = 

( )

( )

1 2
1 2 2

1 2

1 2
2 2 2

1 2

,  

,  

e ef q q
b b
e ef q q
b b

− ≤ −
 − ≥
 −

       (2.141) 

where 

    fi(q2) = aq2
2 – biq2 + ei 



151 
 

 
 

151 

   a = 1/N 

  b1 = ( ) ( )( )0
1 2 11 1w nc L t c m c L tα γ α+ − − − + + −  

  b2 = ( ) ( )( )1 3 11 1w nc L t c m c L tα γ α+ − − − − + −  

  e1 = ( ) ( )0
2 1wc c L t Nα+ −  

  e2 = ( ) ( )3 1wc c L t Nα− − . 

(see (2.33) ). The function fi(q2) is convex and thus is minimized at stationary point 

q2 = 2
ib
a

.           (2.142) 

Note that 0
3 2c c− <  (e.g., 0

3 2c c− ≥  implies that firm can sell a leftover component for more 

than the cost to buy the component from a third party). Note that 1 – cn  – m is the 

fraction of the population with positive utility from purchasing a new product, which 

cannot be negative (i.e., 1 – cn  – m ≥ 0). Thus, b1 ≥ 0 and a > 0. In addition, b1 > b2, e1 > 

e2, and thus 

2 1

2 2
b b
a a
<            (2.143) 

f2(0) < f1(0)          (2.144) 

and the two curves intersect at 

1 2
2

1 2

e eq
b b
−

=
−

.           (2.145) 

The optimal trade-in quantity q2 follows from (2.142) – (2.145): 

if 1 1 2

1 22
b e e
a b b

−
≤

−
, then 2 1 2

1 22
b e e
a b b

−
≤

−
 & thus q2 = 1

2
b
a

& ( )1
2 1 2,C t q = 1

1 2
bf
a

 
 
 

  (2.146) 
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if 2 1 2

1 22
b e e
a b b

−
≥

−
, then 1 1 2

1 22
b e e
a b b

−
≥

−
 & thus q2 = 2min ,

2
b N
a

 
 
 

& ( )1
2 1 2,C t q = 2

2 min ,
2
bf N
a

  
  
  

 (2.147) 

if 2 1 2 1

1 22 2
b e e b
a b b a

−
≤ ≤

−
 , then q2 = 1 2

1 2

e e
b b
−
−

& ( )1
2 1 2,C t q = 1 2 1 2

1 2
1 2 1 2

e e e ef f
b b b b

   − −
=   − −   

.  (2.148) 

Proof of Proposition 2. Setting ( )1D t = q2 and solving for q2 yields 

q2 =

( ) ( )
( )

( )
( )

( ) ( ) ( ) ( )
( )

1 1 1

1 1

1/22
1 1 122

1
1

,                                                   if 
1 1

2
1 1 ,  if 

1

L t N t N t
n

L t L t

L t N t N tn L t n
n L t

α α

α α

α α
α

α α

− −

− −

 −
 ≤

+ − + −
   −   + − − − ≥    + −    

.       (2.149) 

Note that  

( ) ( ) ( ) ( ) ( )( )
2

2
1 1 1 1 1 22 2

qnL t N t L t L t N t q
n

α α− −    − − − − ≤ − −      
   (2.150) 

(follows from (L – t2(q2))2 ≥ 0) with equality at q2 = n(L – t1). Therefore 

( ) ( ) ( )
( ) ( )

( )

1/22
1 1 1 122

1
1

2
1 1

1
L t N t L t N tn L t

n L t
α α

α
α α

− −  − −  + − − − ≤
   + −   

   (2.151) 

with equality if any only if  

n = ( )
( )

( )11

1 11
N tL t

L t L t
α
α

− −
  + − − 

.        (2.152) 

Since h = 0, the second-stage cost is 

( ) ( ) ( ) ( ) ( )( ) ( )( )
2

1 02
2 1 2 2 1 2 1 2 3 2 1

1

, 1 n w
qC t q c m q c D t c D t q c q D t

N t
γ

+ +

−
= − − − + + − + −  (2.153) 
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(see (2.22)). We consider two cases. 

Case 1 ( )
( )

( )11

1 11
N tL t

L t L t
α
α

− −
  + − − 

: n ≤ . Rearranging the inequality, we have 

( ) ( )
( ) ( )1

1 1
11

L t
n L t N t

L t
α
α

− −
− ≤   + − 

.       (2.154) 

Substituting (2.36) into (2.153) while accounting for (2.154) and noting that 

 ( ) ( )( )2 1 1 2q L t N t qα − ≥ − −   iff 
( ) ( )

( )
1 1

2
11

L t N t
q

L t
α

α

−−
≥

+ −
 

yields (2.38). 

Case 2 ( )
( )

( )11

1 11
N tL t

L t L t
α
α

− −
  + − − 

: n ≥ . Rearranging the inequality while accounting for (2.151)

, we have 

( ) ( ) ( ) ( )
( ) ( ) ( )

1/22
1 1 2 12

1 1 1
1

2
1 1

1

L t N t L tn L t N t n L t
n L t

α α
α

α α

−
−

  −  −  + − − − ≤ ≤ −     + −    

. (2.155) 

From (2.149) and (2.155) it follows that that the trade-in quantity that matches supply 

with demand is given by the left-most term in (2.155), i.e.,  

( ) ( ) ( )
1/22

1 1 22
1

2
1 1

L t N tn L t
n

α
α

α

−  −  Λ = + − − −
  
   

. 

Thus,  

q2 < ( )1D t  iff  q2 < Λ.       (2.156) 

Substituting (2.36) into (2.153) while accounting for (2.155) and (2.156) yields (2.40). 
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We simplify the inequality that defines the two cases by substituting ( )1 1N t N nt− = −  

into  

( )
( )

( )11

1 11

N tL t
n

L t L t
α
α

− −
≤   + − − 

          

and consolidating terms to get  

1
n
N L

α
α

≤
+

.  

Proof of Proposition 3. Define 

fi(q2) = aiq2
2 – biq2 + ei 

a1 = a2 = ( )11 / N t −  
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1
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1

1
2
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−
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b1 = ( ) ( )0 0
2 1 21 w nc c L t c c mα γ+ + − + − −  

b2 = ( ) ( )3 1 31 w nc c L t c c mα γ+ − − − − −  

b3 = 0
21 nc c mγ+ − −  

b4 = 31 nc c mγ− − −   

e1 = ( ) ( ) ( )0
2 1 1wc c L t N tα −+ −  

e2 = ( ) ( ) ( )3 1 1wc c L t N tα −− −  

e3 = ( ) ( ) ( ) ( )0
2 1 1 12w

nc c L t N t L tα − + − − − 
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e4 = ( ) ( ) ( ) ( )3 1 1 12w
nc c L t N t L tα − − − − − 

 
. 

Case 1 ( ) ( )1 1/ 1N t L tα α−  + −  : n ≤ . If n ≤ ( )
( )

1

11
N t

L t
α

α

−

+ −
, then the second-stage cost is  

( )1
2 1 2,C t q = 

( ) ( )

( ) ( )
( ) ( )

( )

( )
( ) ( )

( )

3 2 2 1

1 1
1 2 1 2

1

1 1
2 2 2

1

,  

,  
1

,  
1

f q q n L t

L t N t
f q n L t q

L t

L t N t
f q q

L t

α

α

α

α

−

−




≤ −
 − − ≤ ≤

+ −
 − ≥ + −

    (2.157) 

(see (2.38)). In general, the optimal trade-in quantity is 

q2 =
( )

( )

( )
( ) ( )

( )

( )

( ) ( )
( ) ( )

( )

2 1

1 1
2 1

1

1 1
2 1

1

3 20,

1 2

,
1

2 2

,
1

min ,  

arg min min ,  

min

q n L t

L t N t
q n L t

L t

L t N t
q N t

L t

f q

f q

f q

α

α

α

α

−

−
−

∈ −  

 −
 ∈ −
 + −
  

 −
 ∈
 + −
  

 
 
 
 
 
 
 
 
 
 
 
 
 

.       (2.158) 

We identify alternative closed-form expressions for the optimal trade-in quantity that are 

contingent on the parameter values. 

Note that fi(q2) for i ∈{1, 2} is convex and thus is minimized at stationary point 

q2 = 2
i

i

b
a

.          (2.159) 

If a3 > 0, then f3(q2) is convex and minimized at the stationary point (2.159) with i = 3. If 

a3 ≤ 0, then f3(q2) is concave and minimized at  

q2 = ∞.            (2.160) 
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Note that 0
3 2c c− <  (e.g., 0

3 2c c− ≥  implies that firm can sell a leftover component for more 

than the cost to buy the component from a third party). Note that 1 – cn  – m is the 

fraction of the population with positive utility from purchasing a new product, which 

cannot be negative (i.e., 1 – cn  – m ≥ 0). Thus, b1 ≥ 0, a1 > 0, and a2 > 0. In addition, b1 > 

b2, e1 > e2, and thus  

2 1

2 12 2
b b
a a

<            (2.161) 

f2(0) < f1(0)          (2.162) 

f1(q2) and f2(q2) intersect at 

( ) ( )
( )
1 1

2
11

L t N t
q

L t
α

α

−−
=

+ −
,          (2.163) 

and f3(q2) and f1(q2) intersect at 

q2 = n(L – t1).          (2.164) 

Note that functions f1(q2) and f3(q2) have the same form, i.e.,  

fi(q2) = ( ) ( ) ( ) ( )( )
2

02
2 1 2 1 2

1

1 n w
q c m q c D t c D t q

N t
γ

−
− − − + + − ,   (2.165) 

and differ only by the remaining demand function, i.e.,  

for f1, ( )1D t = ( ) ( )( )1 1 2L t N t qα − − −              (2.166) 

for f3, ( )1D t = ( ) ( )( )
2

2
1 1 2 12

qnL t N t q L t
n

α −
  − − − − −  

   
≤ ( ) ( )( )1 1 2L t N t qα − − −  . (2.167) 

Therefore  

f3(q2) ≤ f1(q2) for all q2 ≥ 0.       (2.168) 
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If a3 ≤ 0, then from (2.160) it follows that the optimal trade-in quantity subject to q2 ≤ 

n(L – t1) (i.e., the range of the cost function over which f3(q2) applies) is q2 = n(L – t1). 

Thus the optimal trade-in quantity can be obtained by minimizing (2.157) over the range 

( ) ( )1 1,n L t N t − −   for which the second-stage cost is defined by functions f1(q2) and f2(q2). 

Accordingly, the optimal trade-in quantity follows from (2.159) – (2.163): 

if ( ) ( )
( )
1 11

1 12 1
L t N tb

a L t
α

α

−−
≤

+ −
,  

then ( ) ( )
( )
1 12

2 12 1
L t N tb

a L t
α

α

−−
≤

+ −
 & thus q2 = ( ) 1

1
1

max ,
2
bn L t
a

 
− 

 
.    (2.169) 

if ( ) ( )
( )
1 12

2 12 1
L t N tb

a L t
α

α

−−
≥

+ −
,  

then ( ) ( )
( )
1 11

1 12 1
L t N tb

a L t
α

α

−−
≥

+ −
 & thus q2 = ( )2

1
2

min ,
2
b N t
a

− 
 
 

    (2.170) 

if ( ) ( )
( )
1 12 1

2 1 12 1 2
L t N tb b

a L t a
α

α

−−
≤ ≤

+ −
 ,  

then q2 = ( ) ( )
( )
1 1

11
L t N t

L t
α

α

−−

+ −
.             (2.171) 

If a3 ≥ 0, then from (2.159) it follows that the optimal trade-in quantity subject to q2 ≤ 

n(L – t1) (i.e., the range of the cost function over which f3(q2) applies) is q2 = 

min{b3/(2a3), n(L – t1)}. If n(L – t1) ≤ b3/(2a3), then the optimal trade-in quantity can be 

obtained by minimizing (2.157) over the range ( ) ( )1 1,n L t N t − −   , and the optimal trade-

in quantity is given in (2.169) – (2.171). If n(L – t1) ≥ b3/(2a3), then we need to compare 

the cost at q2 = b3/(2a3) (i.e., f3(b3/(2a3)) with the least cost over the range 
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( ) ( )1 1,n L t N t − −   that is obtained from (2.169) – (2.171). Note that if conditions defined 

in either (2.169) or (2.171) apply, then the optimal cost over range ( ) ( )1 1,n L t N t − −   can 

be expressed in terms of the function f1(q2), and thus from (2.168) it follows that the 

optimal trade-in quantity is q2 = b3/(2a3). Otherwise, the optimal trade-in quantity is 

based lowest cost among the pair f3(b3/(2a3)) and f2(b2/(2a2)).  

Note that  

      n(L – t1) ≤ b3/(2a3) ⇔ n ≤
( )

3

3 12
b

a L t−
 

       ⇔ 
( )( )( )
( )( )

0
1 2 1

0
1 2 1

2 /1 w

w

a c c n L t

n b c c L t

α

α

− + −
≥

− + −
 

       ⇔ ( )( )
( )( )

( )
( )( )

0
2 1 1 1

0 0
1 2 1 1 2 1

21 1 w

w w

c c L t a L t
n b c c L t b c c L t

α

α α

 + − −
 + ≥
 − + − − + − 

 

       ⇔ ( )1 11

3 3

21 a L tb
n b b

− 
≥ 

 
 

       ⇔ n ≤
( )

1

1 12
b

a L t−
= ( )

( )
1 1

12
b N t

L t

−

−
 

Therefore, in summary, the optimal trade-in quantity for the case of n ≤ 

( ) ( )1 1/ 1N t L tα α−  + −    is obtained from the following rules: 

if a3 ≤ 0 or n ≤ ( )
( )
1 1

12
b N t

L t

−

−
, then q2 is obtained from  (2.169) – (2.171)     (2.172) 

if a3 ≥ 0 and n ≥ ( )
( )
1 1

12
b N t

L t

−

−
& ( ) ( )

( )
1 12

2 12 1
L t N tb

a L t
α

α

−−
≤

+ −
, then q2 = 3

32
b
a

    (2.173) 
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if a3 ≥ 0 and n ≥ ( )
( )
1 1

12
b N t

L t

−

−
& ( ) ( )

( )
1 12

2 12 1
L t N tb

a L t
α

α

−−
≥

+ −
,  

then q2 = 3 2
3 2

3 2

arg min ,
2 2
b bf f
a a

     
    
    

.              (2.174) 

Case 2 ( ) ( )1 1/ 1N t L tα α−  + −  : n ≥ . If n ≥ ( )
( )

1

11
N t

L t
α

α

−

+ −
, then the second-stage cost is  

( )1
2 1 2,C t q = 

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )

1/22
1 1 22

3 2 2 1

1/22
1 1 22

4 2 1 2 1

2 2 2 1

2
,  1 1

2
,  1 1

,  

L t N tnf q q L t
n

L t N tnf q L t q n L t
n

f q q n L t

α
α

α

α
α

α

−

−

   −   ≤ + + − −   
    


   −   + + − − ≤ ≤ −       

 ≥ −




. (2.175) 

(see (2.40)). In general, the optimal trade-in quantity is 

q2 =

( ) ( )
( )

( )

( ) ( )
( ) ( )

( )

( ) ( )
( )

1/22
1 1 22

2 1

1/22
1 1 22

2 1 1

2 1 1

3 2
2

0, 1 1

4 2
2

1 1 ,

2 2
,

min ,  

arg min min ,  

min

L t N tnq L t
n

L t N tnq L t n L t
n

q n L t N t

f q

f q

f q

α
α

α

α
α

α

−

−

−

   −   ∈ + + − −         

   −   ∈ + + − − −         

 ∈ − 

 
 
 
 
  
 












.    (2.176) 

We identify a more precise characterization of (2.176), but due to the many combinations 

of positive and negative parameter values, we do not write closed-form optimal 

expressions for every possible combination. Note that a2 > 0, and thus f2 is convex and 

minimized at its stationary point b2/(2a2). 
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 If a4 ≤ 0, then from a3 ≤ a4 (follows from 0
3 2c c− < ), we must have a3 ≤ 0, and thus f3 

and f4 are concave and minimized at q2 = ∞. Thus,   

( ) ( )
( )

( )
( ) ( )

( )
1/22

1 1 22
2 1

1/22
1 1

3 2
2 220, 1 1

1

2
1

arg min min  1
L t N tnq L t

n

L t N t
nf q n

L t
α

α
α

α

α
α

−

−

   −   ∈ + + − −         

    −    + −   = +   
    −      

, 

which is on f4, 

( ) ( )
( ) ( )

( ) ( )
1/22

1 1 22
2 1 1

4 2 1
2

1 1 ,

arg min min
L t N tnq L t n L t

n

f q n L t
α

α
α

−   −   ∈ + + − − −         

 
 
  = − 
 
 
 

, 

and thus 

( ) ( )
( )

( )

( ) ( )
( ) ( )

( )
( )

1/22
1 1 22

2 1

1/22
1 1 22

2 1 1

3 2
2

0, 1 1

1
4 2

2
1 1 ,

min ,  

arg min
min  

L t N tnq L t
n

L t N tnq L t n L t
n

f q

n L t
f q

α
α

α

α
α

α

−

−

   −   ∈ + + − −         

   −   ∈ + + − − −         

 
 
 
  = − 
 
 
  

, 

which is on f2. Therefore 

( ) ( )
( )

( )

( ) ( )
( ) ( )

( )

( ) ( )
( )

1/22
1 1 22

2 1

1/22
1 1 22

2 1 1

2 1 1

3 2
2

0, 1 1

4 2
2

1 1 ,

2 2
,

min ,  

arg min min ,  

min

L t N tnq L t
n

L t N tnq L t n L t
n

q n L t N t

f q

f q

f q

α
α

α

α
α

α

−

−

−

   −   ∈ + + − −         

   −   ∈ + + − − −         

 ∈ − 

 
 
 
 
  
 












 = 
( ) ( )

( )
2 1 1

2 2
,

arg min min
q n L t N t

f q
− ∈ − 

  
 
  

 

              = ( ) ( )2
1 1

2

min max , ,
2
bn L t N t
a

−   −   
   

, 

i.e., the optimal trade-in quantity is  
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q2 = ( ) ( )2
1 1

2

min max , ,
2
bn L t N t
a

−   −   
   

.      (2.177) 

If a3 ≤ 0 and a4 > 0, then f3 is concave and minimized at q2 = ∞ and f4 is convex and 

minimized at its stationary point a4/(2b4). Thus,   

( ) ( )
( )

( )

( ) ( )
( )

( )

( )

1/22
1 1

2
22

1

1/22
1 1

2 1
22

1

3 2
2

10, 1

4 2
2

11 ,

min ,  

arg min
min  

L t N t
nq n

L t

L t N t
nq n L tn

L t

f q

f q

α

α
α

α

α
α

−

−

   −   + −  ∈ +    −     

   −   + −  ∈ + −    −     

 
 
 
 
 
 
 
 
 

=

( ) ( )

( )

( )

1/2

2
1 1

22
1

4

4

1

1

1

2 ,
max ,

min
      

2

n L t N t
n

L t

b
a

n L t

α
α

α

−

  + 
   

+    
    −    −           −     

  
  
    
 − 

,  

( ) ( )
( )

2 1 1
2 2

,
arg min min

q n L t N t
f q

− ∈ − 

  
 
  

 = ( ) ( )2
1 1

2

min max , ,
2
bn L t N t
a

−   −   
   

, 

and the optimal trade-in quantity is  

q2 =

( ) ( )

( )
( )

( ) ( )

1/22
1 1

4
4 1

422
1

2
2 1 1

2

2
1

min max 1 , , ,
2

arg min

min max , ,
2

L t N t
bnf n L tn
a

L t

bf n L t N t
a

α

α
α

−

−

      −      + −      + −             −           
      −           

.  (2.178) 

If a3 > 0 and a4 > 0, then f3 and f4 are convex and minimized at stationary points 

a3/(2b3) and a4/(2b4), respectively. Thus,   

( ) ( )
( )

( )
1/22

1 1

2
22

1

3 2
2

10, 1

arg min min  
L t N t

nq n
L t

f q
α

α
α

−   −   + −  ∈ +    −     

 
 
  
 
 
 
  

 = ( ) ( )

( )

1/2

2
1 13

3
22

1

1

2
min max 0, , 1

2
      

L t N tb n
a n

L t

α

α
α

−

  +    
  −    + −     

    
   −     

, 
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( ) ( )
( )

( )

( )
1/22

1 1

2 1
22

1

4 2
2

11 ,

arg min min  
L t N t

nq n L tn
L t

f q
α

α
α

−   −   + −  ∈ + −    −     

 
 
  
 
 
 
  

 =

( ) ( )

( )

( )

1/2

2
1 1

22
1

4

4

1

1

2
1 ,

max ,
min       

2

L t N tn
n

L t

b
a

n L t

α

α
α

−

   +        −  + −           −       
  
  

  
 − 

,  

( ) ( )
( )

2 1 1
2 2

,
arg min min

q n L t N t
f q

− ∈ − 

  
 
  

 = ( ) ( )2
1 1

2

min max , ,
2
bn L t N t
a

−   −   
   

, 

and the optimal trade-in quantity is  

q2 =

( ) ( )

( )

( ) ( )

( )
( )

1/22
1 1

3
3

3 22
1

1/22
1 1

4
4 1

422
1

2
1

min max 0, , 1
2

      

2
1

arg min min max 1 , ,
2

L t N t
b nf n
a

L t

L t N t
bnf n L tn
a

L t

α

α
α

α

α
α

−

−

    −      + −   +          −       

    −    + −   + −   
   −     

( ) ( )2
2 1 1

2

,

min max , ,
2
bf n L t N t
a

−

 
 
 
 
 
 
                   
     −           
 
 
 

. (2.179) 

In summary, the optimal trade-in quantity for the case of n ≥ ( ) ( )1 1/ 1N t L tα α−  + −    

is obtained from the following rules: 

if a4 ≤ 0, then a3 ≤ 0 and 

q2 = ( ) ( )2
1 1

2

min max , ,
2
bn L t N t
a

−   −   
   

           (2.180) 

if a4 > 0 and a3 ≤ 0, then  
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q2 =

( ) ( )

( )
( )

( ) ( )

1/22
1 1

4
4 1

422
1

2
2 1 1

2

2
1

min max 1 , , ,
2

arg min

min max , ,
2

L t N t
bnf n L tn
a

L t

bf n L t N t
a

α

α
α

−

−

      −      + −      + −             −           
      −           

 (2.181) 

if a4 > 0 and a3 > 0, then 

q2 =

( ) ( )

( )

( ) ( )

( )

( )

1/22
1 1

3
3

3 22
1

1/22
1 1

4

424 2
1

1

2
1

min max 0, , 1
2

      

2
1

max 1 , ,
2arg min min

L t N t
b nf n
a

L t

L t N t
n b

n
af

L t

n L t

α

α
α

α

α
α

−

−

    −      + −   +          −      

    −    + −   +  
    −     

−

( ) ( )2
2 1 1

2

,

min max , ,
2
bf n L t N t
a

−

 
 
 
 
 
 
                          

     −           
 
 
 

.  (2.182) 

Proof of Proposition 4. If 
( ) ( )1 1

12
b N t

n L t
−

≥ − , then the optimal trade-in quantity is given 

by (2.43), which is the same as (2.34) in Proposition 1. Rewriting 
( ) ( )1 1

12
b N t

n L t
−

≥ − , we 

get  

 
( ) ( )1 1

12
b N t

n L t
−

≥ −  ⇒
( ) ( )( )0 0

1 2 1 2

1

1

2
w nN t c L t c c c m

n
L t

α γ−  + + − + − −
  ≤
  −  

 

      ⇒ 
( )( )0 0

2 1 21

1

1
2

w nc L t c c c mN ntn
L t

α γ + + − + − − −  ≤   −  
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⇒
( )( )0 0

2 1 21

2
w nc L t c c c mNn

L
α γ + + − + − −

 ≤
 
 

,    (2.183) 

and, by the definition of L, n ≤ N/L (i.e., all warranties cannot expire before time L). 

Therefore (2.183) holds if the parenthetical term is not less than 1, i.e.,  

( )( )0 0
2 1 21 2w nc L t c c c mα γ+ + − + − − ≥ . 

For the second part of Proposition 4, note that ( )1 11

12 2
b N tb

a

−

= . From the proof of 

Proposition 3, 2 1

2 12 2
b b
a a

<  (see (2.161)). Letting q2
* denote the trade-in quantity according 

to (2.34) (or equivalently (2.43)), we have q2
* ≤

( )1 1

2
b N t −

. Thus,  

q2
* ≥ n(L – t1)          (2.184) 

implies 
( ) ( )1 1

12
b N t

n L t
−

≥ − , i.e., if q2
* from Proposition 1 satisfies (2.184), then it is 

optimal for 1
2C2 .  

Proof of Proposition 5. If q2 ≤ ( ) ( )( ) ( )( )2
1 1 2 2 22

nL t N t q L t qα − − − − −  
, then  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
2

21 0 02
2 1 2 2 2 2 1 1 2 2 2

1

, 1
2n w

q nC t q c m c q c c L t N t q L t q
N t

γ α −
−

 = − − − − + + − − − −  
. 

if q2 ≥ ( ) ( )( ) ( )( )2
1 1 2 2 22

nL t N t q L t qα − − − − −  
, then 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )
2

21 2
2 1 2 3 2 3 1 1 2 2 2

1

, 1
2n w

q nC t q c m c q c c L t N t q L t q
N t

γ α −
−

 = − − − + + − − − − −  
. 
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Recall that ( )2 2t q = 2
1min ,qt L

n
 + 
 

, which is nonincreasing in n. Thus, for any given q2, 

( )1
2 1 2,C t q  is nonincreasing in n.  

Proof of Proposition 6. Inequality (2.53) corresponds to Case 1 in the proof of 

Proposition 2, which is the case where the total warranty fall-off, n(L – t1), is less than the 

trade-in quantity that matches supply with demand  

( ) ( )
( )
1 1

2
11

L t N t
q

L t
α

α

−−
=

+ −
 

(see (2.149)), i.e., q2 ≥ n(L – t1). Consequently, there is no reduction in the warranty 

install base after the q2 trade-in units are received. Thus, and the cost is identical to the 

case of n = 0 except that ( )1 1N t N nt− = −  replaces N in (2.50) and (2.52).  

Proof of Proposition 7. The problem is 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) [ ]1

1

2
2 1,

min , , , , 0,1
L

t t

t t
t

C t t dt N t t Ne tα

β ν
β ν ν β ν α β− −

  = = ∈ 
  

∫    (2.185) 

where ( )2
2 1, ,C t β ν  = ( )( ) ( )( )11

1

1
L

r t trt
w n

t

e e t c c m Ndtα β γ α− + −− + + + −∫ . We see that ( )2
2 1, ,C t β ν is 

minimized by minimizing ( )( ) ( )1

1

L
r t t

t

e t dtα β− + −∫ . Note that β(t)ν(t) = ( )1t tNe αα − − can be 

rewritten as ν(t) = ( ) ( )1 /t tNe tαα β− − . Thus, 

( )
1

L

t

t dt Nν =∫ ⇔ 
( )

( )
1

1

1L t t

t

e dt
t

α

β α

− −

=∫ .       (2.186)  

We solve the following equivalent problem 
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( )
( )( ) ( )

( )

( ) ( ) [ ]
1

1

1 1

1min , 0,1
L L t t

r t t

t
t t

ee t dt dt t
t

α
α

β
β β

β α

− −
− + −

  = ∈ 
  
∫ ∫ ,   (2.187) 

but with the bound constraint β(t) ∈ [0, 1] ignored (i.e., unrestricted problem), i.e., we 

solve  

( )
( )( ) ( )

( )

( )
1

1

1 1

1min
L L t t

r t t

t
t t

ee t dt dt
t

α
α

β
β

β α

− −
− + −

  = 
  
∫ ∫ .      (2.188) 

After solving the unrestricted problem (2.188), we identify conditions on parameter 

values that ensure the solution is also optimal for the restricted problem.  

 To simplify notation and without loss of generality, we let t1 = 0. We define  

y(t) = ( )0

t xe dx
x

α

β

−

∫ ,          (2.189) 

which implies  

y′(t) = 
( )

te
t

α

β

−

           (2.190) 

( ) ( ) 1'tt e y tαβ −−= .         (2.191) 

Thus, problem (2.188) is 

( )
( ) ( ) ( ) ( )12

0

1min ' 0 0,
L

r t

y t
e y t dt y y Lα

α
−− +  = = 

  
∫ ,     (2.192) 

which can be solved using calculus of variations methods. Let y*(t) denote the optimal 

function. We express y(t) in terms of parameter a, y*(t), and difference function h(t), i.e.,  

y(t) = y*(t) + ah(t)          (2.193) 
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and thus y′(t) = y*′(t) + ah′(t). For any feasible y(t), we must have h(0) = h(L) = 0 (i.e., in 

order to satisfy the boundary conditions, which are clearly satisfied by the function y*(t)). 

Let 

g(a) = ( ) ( ) ( ) ( ) ( ) 112 2 *

0 0

' ' '
L L

r t r te y t dt e y t ah t dtα α −−− + − +  = + ∫ ∫ .   (2.194) 

Note that  

g′(a) = ( ) ( ) ( ) ( )22 *

0

' ' '
L

r te y t ah t h t dtα −− +  − + ∫ .     (2.195) 

Applying integration by parts and recognizing 
0

Luv = 0 due to h(0) = h(L) = 0, we have 

g′(a) = ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )
2*

2
3* *0

2 ' ' 2

' ' " "

L
r t

r y t ah t
e h t dt

y t ah t y t ah t

α
α

−

− +

−

 + + + −  
+ +  

∫ .   (2.196) 

Since y*(t) is optimal, we can conclude that for any h(t) (with h(0) = h(L) = 0), we must 

have g′(0) = 0. This implies that the integrand of the above (with a = 0) must be equal to 

zero at all values of t, i.e., we must have 

( ) ( ) ( )( ) ( )( ) ( ) ( )2 32 * * *2 ' 2 ' " 0r te r y t y t y t h tα α
− −− +  + + =  

 

    ⇔ ( ) ( ) ( )* *2 ' 2 " 0r y t y tα + + =  

    ⇔ ( ) ( )* *2" '
2

ry t y tα + = − 
 

 

Solving the differential equation, we get 

( ) ( )0.5* ' r ty t Ae α− += ,         (2.197) 

where A is obtained from the boundary condition, i.e., 
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( ) ( ) ( )( )
* *

0.5
0

1 0.5'
1

L

r L

ry L y t dt A
e α

α
α α − +

+
= = ⇔ =

−
∫      (2.198) 

Thus 

( ) ( ) ( )

( )( )
0.5

*
0.5

0.5
'

1

r t

r L

r e
y t

e

α

α

α

α

− +

− +

+
=

−
.         (2.199) 

The function ( )* 'y t  is a unique extremal (i.e., no other function yields g′(0) = 0). Taking 

the derivative of (2.195) and evaluating at a = 0, we get 

g″(0) = ( ) ( ) ( )3 22 *

0

2 ' '
L

r te y t h t dtα −− +      ∫ .       (2.200) 

Since y*′(t) > 0 for all t ∈ [0, L], it follows that g″(0) > 0, and thus ( )* 'y t minimizes 

(2.192).  

Substituting (2.199) into (2.191) yields optimal trade-in fraction 

( ) ( )
( )( ) ( ) ( )( )0.5 0.5 0.5 0.5

1 1 1
'

0.5 0.5

r L r t r Lt rt

t
e e e e e

t e y t
r r

α α αα

α
α α

β
α α

− + + − +−
−−

− −
= = =

+ +
     

and accounting for t1 > 0 yields optimal trade-in fraction for the unrestricted problem 

( )
( )( )( ) ( )1 10.5 0.51

0.5

r L t r t te e
t

r

αα
β

α

− + − −−
=

+
.       (2.201) 

Recall that the difference between the unrestricted problem and the restricted problem 

is that the restricted problem includes the constraint β(t) ∈ [0, 1]. From (2.201) we see 

that β(t) is increasing in t and β(t1) ∈ [0, 1]. Thus, if β(L) ≤ 1, then the optimal solution to 

the unrestricted problem is also optimal for the restricted problem. Note that  

( )
( )( )( ) ( )1 10.5 0.51

1
0.5

r L t r L te e
L

r

αα
β

α

− + − −−
= ≤

+
⇔ ( )( ) ( )1 1

1
2 1 1

2

r
L t L tre eα αα

α

+− − − + ≤ 
 

.  (2.202) 
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Thus, β(t) ∈ [0, 1] if and only if (2.202) holds. The optimal trade-in offer rate is obtained 

by substituting (2.201) into (2.66) and solving for ν(t), and the optimal cost is obtained 

by substituting (2.201) into (2.65).  

Proof of Corollary 1. Expressions (2.73), (2.74), and (2.76) follow directly from 

substituting r = 0 into (2.70) – (2.72). The trade-in quantity expression (2.75) follows 

from two observations: (1) 100% of the install base receives the trade-in offer over the 

warranty horizon (i.e., ( ) ( )
1

1

L

t

t dt N tν −=∫  ) and (2) the fraction of those receiving the offer 

who trade-in is the constant ( ) ( )11 L tt e αβ − −= − .  

Proof of Proposition 8. Assume that ( )( ) ( )1 1
1

2 1 1
2

r
L t L tre eα αα

α

+− − − + ≤ 
 

 holds. Note that  

( ) ( )
1

L

t

t dtν ν+ Γ∫ = ( )
[ ]

( ) ( ) ( )
1

1
1 1

,
0

max
tL t

t t L
t t

t dt n x x dx n x dxν ν
−+

∈

 
+  −  +   

 
∫ ∫ ∫  

and thus constraint ( ) ( )
1

L

t

t dt Nν ν+ Γ =∫  can be rewritten as 

( )
[ ]

( ) ( ) ( )
1

1 1

1,
max

L t

t t L
t t

t dt n x x dx N tν ν
+

−

∈

 
+  −  =   

 
∫ ∫ .      (2.203) 

If (2.80) holds, then setting  

( )
( )( )( ) ( )1 10.5 0.51

0.5

r L t r t te e
t

r

αα
β

α

− + − −−
=

+
         (2.204) 

( ) ( ) ( )

( )( ) ( ) ( )
1

1

1

0.5

10.5

0.5
1

r t t
t t

r L t

r e
t N t e

e
α

α

α
ν

− −
− −−

− + −

 +
=   − 

        (2.205) 

yields a feasible solution for problem 2
2C2 , i.e.,  
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β(t) ∈ [0, 1] 

( )
[ ]

( ) ( ) ( ) ( )
1

1 1 1

1,
max

L t L

t t L
t t t

t dt n x x dx t dt N tν ν ν
+

−

∈

 
+  −  = =   

 
∫ ∫ ∫  

β(t)ν(t) = d(t) = ( ) ( )1
1

t tN t e αα − −−  

and, by Proposition 7, (2.204) and (2.205) uniquely solve  

( ) ( )
( )

( )
[ ]

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]
[ ]

( ) ( )

1

1
1 1

1
1

1 1,
2
2 1,

,

max , ,
min , ,

0,1 , max 0

L t
t t

t t L
t t

t t t

t t L
t

t dt n x x dx N t t t N t e
C t

t n x x dx

α

β ν

ν ν β ν α
β ν

β ν

+

− −− −

∈

∈

   +  −  = =       
 

∈  −  ≤  
  

∫ ∫

∫
, 

which is the same as 2
2C2  except with the additional constraint 

[ ]
( ) ( )

1
1

,
max 0

t

t t L
t

n x x dxν
∈

 −  ≤ ∫ .  

What remains is to consider whether cost can decrease by allowing 

[ ]
( ) ( )

1
1

,
max 0

t

t t L
t

n x x dxν
∈

 −  > ∫ . The answer is no. The reason is that 

[ ]
( ) ( )

1
1

,
max 0

t

t t L
t

n x x dxν
∈

 −  > ∫ implies that 
[ ]

( ) ( )
1

1
,

max
t

t t L
t

n x x dxν
∈

 −  ∫  customers did not receive a 

trade-in offer during time interval [t1, L]. And increasing ν(t) just enough so that 

[ ]
( ) ( )

1
1

,
max

t

t t L
t

n x x dxν
∈

 −  ∫  = 0 results in a lower trade-in discount (for the same trade-in rate) 

and results in lower cost.  

Proof of Proposition 9. From A7b, the left-hand side of (2.80) 

( ) ( ) ( )
1

1

t

t

f t n x dx n t t= = −∫                (2.206) 

is linear increasing in t with f(t1) = 0 and f(L) = ( )1N t − . The right-hand side of (2.80) 
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( ) ( )( ) ( ) ( )( )
( )( )

( )( ) ( )
1

1

1 1

1

0.5
0.5

1 10.5 0.5

0.5 1
1 1

t r t t
r x t

r L t r L t
t

r eg t N t e d x N t
e e

α
α

α α

α − + −
− + −− −

− + − − + −

 + − = =     − −   
∫    (2.207) 

is concave increasing in t with g(t1) = 0 and g(L) = ( )1N t − . Therefore f(t) ≤ g(t) for all t ∈ 

[t1, L].  

Proof of Proposition 10. Letting y = 1 – cn – γm – cw, the cost of each policy is  

( ) ( ) ( )
1

1 1 2
2 1 2 1

1

1 11 1
1 1

qC t q y N t y
x xN t

−
−

     = − = − − −    + +   
     (2.208) 

( ) ( ) ( )( )( )
2

2 2 2
2 1 2 1

1

1 1x xqC t q y N t e e y
N t

− − −
−

 
 = − = − − −
 
 

      (2.209) 

(follows from Proposition 1 and Corollary 1; see also (2.86) and (2.87)). Letting  

∆ = ( )
2 1
2 2

1

1
1

xq q e
xN t

−
−

−
= −

+
> 0,            (2.210) 

we have 

      ( ) ( )
( )

1 2
2 1 2 1

1

C t C t
N t−
−  = 1 1 1 11 1 1 1

1 1 1 1
y y

x x x x
     − − − − − + ∆ − + ∆ −     + + + +     

 

     = 2
1

xy
x

 ∆ − ∆ + ∆ + 
   

     = 1 2
1

xxy e
x

− + ∆ − −  +  
 .  

Therefore ( ) ( )1 2
2 1 2 1C t C t>  if and only if ( ) 1 21

1
x

n w
xc m c e

x
γ −+

− − − > −
+

.  

Proof of Proposition 11. Follows directly from (2.90) – (2.92) and pn = cn + m.  

Proof of Proposition 12. Follows directly from (2.5), (2.86), and (2.87).  
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Proof of Proposition 13. a) The unit acquisition cost under a full trade policy as a 

function of the trade-in quantity is the difference between the trade-in quantity as a 

percent of the install base and the trade-in potential τ = (1 – γ)m – (pn – 1), i.e.,  

( ) ( ) ( )1 2
2

1

1 1n
qc m p

N t
γ

−
= −  − − −   . 

(see (2.19)). Recall that the warranty demand under a trade-in policy is always less than 

the warranty demand under the benchmark policy (because trade-ins reduce the install 

base, and consequently warranty demand), i.e.,  

1 0
2 2q q< .          (2.211) 

The warranty demand as a percent of the install base under the benchmark policy is  

( )
( )
( ) ( ) ( )( ) ( ) ( )

( )
1

20
1 12

1 1
101 1 1

1
2

L tD t n L tq N t ns dt L t
N ntN t N t N t

α
α

−
−

− − −

−
= = − = − −

−∫ .  (2.212) 

Therefore,  

 
1
2c  =

( ) ( ) ( )
1
2

1

1 1n
q m p

N t
γ

−
−  − − −    

 <
( ) ( ) ( )

0
2

1

1 1n
q m p

N t
γ

−
−  − − −         (due to (2.211)) 

 = ( ) ( )
( ) ( ) ( )

2
1

1
1

1 1
2 n

n L t
L t m p

N nt
α

α γ
−

− − −  − − −  −
  (due to (2.212)) 

 < 0
2c             (due to (2.101). 

We next consider Proposition 13b. From Corollary 1 it follows that  
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( ) ( ) ( ) ( ) ( ) ( )1

2
2 2
2

1

1 1 1 1 1L t
n n

qc m p e m p
N t

αγ γ− −

−
= −  − − −  = − −  − − −        (2.213) 

and 2 0
2 2c c<  if and only if (2.102) holds.  

Proof of Proposition 14. a) From Proposition 13, the restricted full trade-in policy 

results in lower unit acquisition cost when (2.103). And warranty claim volume is lower 

under the trade-in policy, and thus total cost is lower. 

b) The cost of the benchmark policy as a percent of the install base is  

( )
( )

( )
( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )
1

20 00
2 22 1 10 0

1 2 1 2
101 1 1

1
2

L t
w

w w

q c cC t n L t
N t ns dt c c L t c c

N ntN t N t N t
α

α
−

−
− − −

   + −
   = = − + = − − +

   −  
∫ . 

The cost of the matching trade-in policy as a percent of the install base is 

( )
( )

( )
( ) ( )( ) ( ) ( )( )

2 22
2 22 1 2

2
1 1

1 1 1 1w x x x
w n w

q c cC t
e c c e e c m c

N t N t
γ− − −

− −

+
= = − + = − − − − − +  

(see Corollary 1). Eqs. (2.104) and (2.105) follow from substitution.  

Proof of Proposition 15. Follows from Proposition 11 and the fact that the benchmark 

policy results in higher inventory than either of the trade-in policies and thus is more 

negatively affected by increasing h.  

Proof of Proposition 16. a) Since warranty claim volume is lower under the trade-in 

policy, the discounted cost of servicing warranty claims under the restricted full trade-in 

policy is lower than under the benchmark policy. Let ∆ denote the positive savings is 

discounted warranty claim service costs and a percent of the install base. Thus, if (2.115) 

holds, then  
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( ) ( )0 1
2 1 2 1C t C t

N
−

 = 
0 0 1 1
2 2 2 2c q c q

N
−

+ ∆  

    = ( ) ( )
( ) ( ) ( ) ( )

( )
1 10

2 1
1 1

1 1
1 1n

L t L t
c L t m p

L t L t
α α

α γ
α α

  − −
− − −  − − −  + ∆     + − + −  

 

    = ( )
( ) ( )( )

( ) ( )
( )

1 0
2 2

1 11

1 11
1 1

nm pL t
c

L t L tL t

γα
α αα

   − − −  −    − − + ∆   + −  − + −    
 

     > 0.   (due to  ∆ > 0 and (2.115). 

For b), we begin by noting that for the case of r = 0, (2.116) implies  

2 0
2| 0 2rc c= <           (2.214)  

(see Proposition 11). The magnitude of the present value of the average acquisition cost 

per unit under the matching trade-in policy is decreasing in r (due to the effect of 

discounting), i.e.,  

2 2
2| 0 2| 0r rc c> =< .          (2.215) 

From (2.214), (2.215), and the fact that 0
2c > 0, it follows that 2 0

2| 0 2rc c> < . Since the 

matching trade-in policy results in lower unit acquisition cost and lower warranty claim 

demand, it follows that ( ) ( )2 0
2 1 2 1C t C t< .  

Proof of Proposition 17. Let x denote the aggregate failure rate in the second stage, i.e., 

x = α(L – t1). Note that q1 = αLN – xN. We write and analyze the first-stage cost under 

each policy as a function of x (see (2.86) and (2.87) for the second-stage cost of the trade-

in policies as a function of x). For the benchmark policy, due to 0
2 1c c> , 
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[ ]
( )

1

0
0

0,
arg min

x L
x C x

α∈
= = 0 and ( ) ( )

1

0
0 1 wC x N c c Lα=  +   , i.e., q1 is set to exactly match total 

demand. 

The problem 
[ ]

( )
1

1

0,
min

x L
C x

α∈
is equivalent to  

[ ]
( )

2

0,
min

1 1x L

x xf x a bx
x xα∈

     = − −    + +     
 

where a = 1 – cn – γm – cw and b = c1 +  cw. The first-order condition is  

( ) ( ) ( )( )3' 1 2 1 2 0f x b x a x= − + + − + − =        (2.216) 

and  

[ ]
( )

{ }
( )

1 1
1 2 3

1 1
1

0, 0, , , ,
arg min arg min

x L x z z z L
x C x C x

α α∈ ∈
= = . 

where zi = ( )
1/2 3/2

12 1 1 3max 0,min 2 cos cos 2 1 1,
3 3 2

a b i L
b b a

π α−
     −       − + − −         −          

. 

The problem 
[ ]

( )
1

2

0,
min

x L
C x

α∈
is equivalent to  

[ ]
( ) ( ) ( ){ }2

0,
min 1 1x x

x L
f x e a e bx

α

− −

∈
= − − − −  

where a = 1 – cn – γm – cw and b = c1 +  cw. The first-order condition is  

( ) ( ) ( )2
' 2 2 0x xf x b e a e= − + − − = .       (2.217) 

The values of ex that solve (2.217) are roots of a quadratic, i.e., the stationary points of 

f(x) are 

( )
1/222 2 8

ln
2

a a b
x

b

  − ± − −  =  
 
 

 

and  
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[ ]
( )

{ }
( ){ }1 1

1 2

2 2
2

0, 0, , ,
arg min arg min

x L x z z L
x C x C x

α α∈ ∈
= =  

where zi = 
( ) ( )

1/222 1 2 8
ln

2

ia a b

b

  − + − − −  
 
 
 

.  

Proof of Proposition 18. Suppose that t1
* is the optimal start time of the second stage 

under the benchmark policy (i.e., the point in time when components to cover remaining 

warranty demand are ordered from a third party). If a trade-in policy dominates the 

benchmark policy in the second stage that begins at time t1
*, then the trade-in policy 

dominates the benchmark policy in the first-stage problem. This is because the cost of the 

first stage is the same for both policies, and the trade-in policy is less costly in the second 

stage. By similar reasoning, if a trade-in policy dominates the benchmark policy in the 

second stage for all possible t1 ∈ [0, αL), then the trade-in policy dominates the 

benchmark policy in the first-stage problem. We use these observations to reinterpret 

sufficient conditions from the second-stage problem for the first-stage problem. 

 If h = r = 0, then t1
* = 0. This is because 0

1 2c c< , and without the presence of holding 

cost or discounting, the firm will never elect to purchase from the third party (i.e., it is 

less expensive to purchase all units from the vendor at time 0). Since t1
* = 0, the firm 

purchases q1 units at cost c1, and thus we can make use of earlier second-stage 

propositions but with c1 in place of 0
2c . Substituting t1

* = 0 into (2.96) and (2.98) of 

Proposition 12 and replacing 0
2c with c1 and solving for c1 yields (2.130) and (2.131). 

Substituting t1
* = 0 into (2.103) and (2.105) of Proposition 14 and replacing 0

2c with c1 

and solving for c1 yields (2.132) and (2.133). 
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 If h > 0 and n = r = 0, then t1
* > 0 is possible. Note that  

( )
( ) ( ) ( )11 0 0

2 2 2
1

1 1
1 n

L t
c c c m p

L t
α

γ
α

−
< ⇔ < +  − − −  + −

      

 ( ) ( ) ( )12 0 0
2 2 21 1 1L t

nc c e c m pα γ− −< ⇔ − < +  − − −   .       

(see (2.107) and (2.108)). The above inequalities holds for all t1 ∈ [0, αL) if they hold at 

t1 = 0 (i.e., the left-hand sides are maximized at t1 = 0). Substituting t1 = 0 into the above 

yields (2.134) and (2.135). And if the unit acquisition cost is lower under a trade-in 

policy, then total cost is lower (due to lower warranty claim volume). 

 If h > 0, r > 0, and n = 0, then t1
* > 0 is possible. Note that if τ ≥ 0, then the right-

hand side of (2.115) is decreasing in t1, and thus is maximized at t1 = 0. Substituting t1 = 

0 into (2.115) yields (2.136). Thus condition  (2.136) ensures that the restricted full trade-

in policy dominates that benchmark for any t1
*. Note that the left-hand side (2.116) is 

maximized at t1 = 0, which when substituted into (2.116) yields (2.137). Thus, if (2.137) 

holds, the matching trade-in policy dominates that benchmark for any t1
*.  

Proof of Proposition 19. If h = r = 0, then under the benchmark policy, t1
* = 0 (see the 

proof of Proposition 18 for details on the support for this conclusion). 

a) If n(t) = 0, then the optimal order quantity under the benchmark policy is equal to the 

remaining demand (i.e., q1
* = αLN) and 

( )
1

0
1 wC LN c cα= + . 

 Therefore 
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1 1

1 01 /C C−  ≥ ( )
1 1

1 01 0 /C C−  =
( )( )1

1
1 1 w

w

L c
L c c L

α τ
α α

  − +   + + +  
 (see (2.86)) 

 
1 1

2 01 /C C−  ≥ ( )
1 1

2 01 0 /C C−  =
( ) ( )

1

11 1
L

L
w

w

e e c
L c c

α
α τ

α

−
− −

− − − +  + 
 (see (2.87)). 

b) If n(t) = n, then the optimal order quantity under the benchmark policy is equal to the 

remaining demand and 

( )
2

0
1 12 w

nLC N L c c
N

αα
 

= − + 
 

 

(see the proof of Proposition 14). Recall that the matching trade-in policy is unaffected 

by the value of n (see Corollary 1). Therefore 

1 1

2 01 /C C−  ≥ ( )
1 1

2 01 0 /C C−   =
( )( )

( )
2

1

1 1
1

2

L L
w

w

e e c

nLL c c
N

α α τ

αα

− −− − − +
−

 
− + 

 

 (see (2.76)).  

6.4 Discrete-Time Problems  

Sections 4.1 and 4.2 contain analyses of problems when time is continuous. We use 

the analytical framework in these sections as a means to understand the relationships 

between environmental characteristics (e.g., as reflected in the values of parameters), 

relative effectiveness of alternative trade-in policies, and optimal decisions/costs. 

However, while continuous-time models offer the advantage of tractability and 

consequent characterizations of behavior, the models rely on simplifying assumptions. In 

this section, we define problems based on discrete-time models and we specify solution 

algorithms.  
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 The number of components in stock at the beginning of the first period is 0 and the 

number of units under warranty at the beginning of the first period is N. The sequence of 

events at the start and end of a time period are as follows. 

1. Place final order (t = 1 only) 

Start of period t 

2. Send trade-in offer to selected customers 

5. Receive final order and incur cost c1 per unit (t = 1 only) 

End of period t 

6. Receive trade-in units and incur cost 2
ic  per unit where i ∈{1, 2} denotes the 

trade-in policy 

7. Warranty population reduced by trade-in quantity and/or warranty expirations 

8. Observe demand from customers with product under warranty (t < L only because 

remaining warranties expire in period L) 

9. If demand is more than supply, then acquire the shortfall at cost 0
2c  per unit 

10. Process demand and incur service cost cw per unit  

11. Incur cost h per unit on inventory 

12. If inventory is positive, dispose/salvage desired number of units at cost c3, or all 

units if t = L  

6.4.1 Full Trade-in Policy 

We define several problems for the case where the firm uses a full trade-in policy in 

the second-stage and we specify dynamic program (DP) algorithms that return the 

minimum cost. Under a full trade-in policy, the trade-in discount is disseminated to all 
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customers with product under warranty in a single period. The number of products under 

warranty at the beginning of period t is N(t). From the continuous-time relationships 

established in sections 4.1.2 and 4.1.4, it follows that the number of units returned is  

q2 = ( ) ( )11 n tc m c N t− − +         (2.218) 

where 1
tc  is the trade-in discount. Solving (2.218) for 1

tc  yields 

1
tc  = ( )2 / 1 nq N t c m− + +         (2.219) 

which when substituted into (2.11) yields trade-in cost 

1
2c  = ( ) ( )2 / 1 nq N t c mγ− − − .        (2.220) 

Problem 1
1D1 : Assumptions A1 – A5, A6b, A7a, A8b 

Problem 1
1D1  assumes that all warranties expire at the end of period L (i.e., n(L) = N. 

Let  

 ( )1
1 1 2, , ,1g t x x = minimum cost from period t through the end of the horizon given 

inventory x1, warranty population x2, and customers received the trade-

in offer before period t 

 ( )1
1 1 2, , ,0g t x x = minimum cost from period t through the end of the horizon given 

inventory x1, warranty population x2, and no trade-in offer to-date 

where (x1, x2) is the state at the beginning of period t. 

 For some sets of parameter values it can be advantageous to acquire more trade-ins 

than what is necessary to satisfy demand. In these cases, it may be cost effective for the 

firm to dispose/salvage the unneeded components immediately after acquisition rather 

than carrying the inventory until the end of the warranty horizon. However, due to 

deterministic demand (A9a) and c1 > -c3, it is never optimal to dispose of inventory prior 
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to the trade-in offer (i.e., the firm would never set q1 more than total demand). 

Consequently, the alternative of disposal is considered in the trade-in period and every 

period thereafter in the following expressions. 

For period L,  

( ) ( ) ( )( )1 1
1 1 2 1 1 2 3 1, , ,0 , , ,1 1g L x x g L x x r h c x= = − +      (2.221) 

and for t ∈ [2, L – 1]  

( )1
1 1 2, , ,1g t x x  = ( )

( ) ( )

( )
( )( )( ){ }

1 2

0
2 2 2 1 1 2

1
3 1 1 2 2

1
min 1, , ,1

w

q x x

c x c x x h x x
r

c q g t x q x x
α

α α α

α
+

+ +

+

≤ −

 + − + − +
 −  + + − −  

       (2.222) 

( )1
1 1 2, , ,0g t x x =
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( ) ( ) ( )( )
( ) ( ) ( )( )

( )( )

( )( )
( )( )
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1 2 2 2

0 1
2 2 2 1 1 2 1 1 2 2

2
02
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α
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
− + − − − + − − −


−   + − − +      + + − − −  +   −    

 
 
    
  
 
 
 
       

 (2.223) 

The optimum is 
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( )1
1 1,0, ,0g N = ( )

( ) ( )
( )( )
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( )

( )( )
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+
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 + + − + − + 
 

−  
+ − +

− − − +

−
− − − +

+ − − +

 + − − 
   + −  


− 

 
 
 
 
                                          (2.224)

 

The top expression in (2.224) returns the minimum cost given that no trade-in offers are 

disseminated in the first period. Since it is never optimal to dispose f inventory prior to 

the trade-in offer, there is no need to search over alternative values for the disposal 

quantity. Such a search is necessary in the bottom expression. The bottom expression in 

(2.224) returns the minimum cost given that trade-in offers are disseminated in the first 

period (though the firm can set q2 = 0, which essentially prohibits trade-ins for the 

duration of the horizon). Pseudocode for a DP algorithm based on the above recursion is 

given in Section 7.4 of the appendix. 

Problem 2
1D1 : Assumptions A1 – A5, A6b, A7b, A8b, A9a 

Problem 1
2D1  generalizes 1

1D1  to allow nonzero reductions in the warranty population 

over time. If no trade-in program is offered, then the number of warranties that expire at 

the end of each period are n(1), n(2), …, n(L), and the sum of these values is the warranty 

population at the beginning of the first period, i.e., N = ( )
1

L

t
n t

=
∑ . If q2 trade-in units are 

received in period t, then the warranty population is reduced by q2 units. Since the trade-
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in units are from customers with warranties that expire no later than units not traded in 

(see A4), the number of warranties that expire in period t + i is 

( ) ( )
1

2

t i

j t
n t i q n j

++
+ −

=

  
 + − −    

∑  for i ∈ [0, L – t].      (2.225) 

The term ( )
1

2

t i

j t
q n j

+
+ −

=

 
− 

 
∑ is the number of consumers who traded-in their product in 

period t and whose warranty would have expired in period t + i or later. We refer to this 

number as the warranty expiration carryover in period t + i. For example, if the warranty 

expiration carryover in period t + i is more than n(t + i), then no warranties expire in 

period t + i. 

 Let  

   ( )1
2 1 2 3, , , ,1g t x x x = minimum cost from period t through the end of the horizon given 

inventory x1, warranty population x2, warranty expiration carryover z, 

and customers received the trade-in offer before period t 

( )1
2 1 2, , ,0g t x x = minimum cost from period t through the end of the horizon given 

inventory x1, warranty population x2, and no trade-in offer to-date 

where (x1, x2, x3) is the state at the beginning of period t. For period L,  

( ) ( ) ( )( )1 1
2 1 2 2 1 2 3 3 1, , ,0 , , , ,1 1g L x x g L x x x r h c x= = − +      (2.226) 

and for t ∈ [2, L – 1]  
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( )1
2 1 2 3, , , ,1g t x x x  = ( )

( )( )( ) ( )( )( )( )
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( )( )( )
( )( ) ( )( )

1 2 3

0
2 3 2 2 3 1

1 2 3

1

1
2 33 2

2 3 3

1
min 1, ,

, ,1

w

q x x n t x

c x n t x c x n t x x

h x x n t x q

r x q
t

x n t xc q g

x n t x x n t

α

α α

α

α
++

++ +

++

+

+
≤ − − −

+ +

 − − + − − − + 
 

  − − − − +  
  −    − −      +    − −+     

    − − −      (2.227)

 

( ) ( )

( )( ) ( )( )( )
( )( )( )

( )( )( ) ( )( )
( ){ }( ) ( )

( ){ }( )( )

( ){ }( )
( ){ }( )

2

1 2

2 2

0
2 2 2 1

1 2

1
2 1 2 2

2
2

2 2 2
2

0
2 2 2 1 2

1
2 1 2

3
0

1 2

2 2

max ,

1, , ,0 ,

max , 1

max ,

, , ,0 1 min

min

min max ,

w

w n

q

x q
q x n t q

c x n t c x n t x

h x x n t

g t x x n t x n t

qc x n t q c m q
x

c x n t q x q

g t x x r

c q

x q

h x n t q

qα

α α

α

α

α γ

α

α
+

+

+

+

+

≥

+ − 
≤ − 

− + − − +

− − +

+ − − −

− + − − − +

− − − +

= −

+

+ −


−

−

( ){ }( )
( ){ }

( )( )

1 2

1 2 22

2 2

2

1,

,
max ,

max , ,

,1

t

x q q

x n t qg

x n t q

q n t

α

+

+

+
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 
 
 
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                   
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  
  +  
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  

(2.228)
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The optimum is 
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







 
 
 
 
 
 
 
 


 
 
 
 
 
 
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 
 
 
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.(2.229) 

Pseudocode for a DP algorithm based on the above recursion is given in Section 7.4 of 

the appendix. 

Problem 1
3D1 : Assumptions A1 – A5, A6b, A7b, A8b 

Problem 1
3D1  generalizes 1

2D1  to allow for stochastic demand. Recall that d(t) is the 

demand in period t, which for this problem, is stochastic. In the recursion we suppress the 

time parameter and add a parameter for the expected demand. We do this in order to 

clarify the relationship between decisions and the nature of random demand. 

Accordingly, letting x denote the warranty population at the point in time when demand 

is realized, the random demand in the period is 
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d(αx)          (2.230) 

and  

E[d(αx)] = αx.        (2.231) 

The recursion closely follows the recursion for 1
2D1 . Let  

   ( )1
3 1 2 3, , , ,1g t x x x = minimum expected cost from period t through the end of the horizon 

given inventory x1, warranty population x2, warranty expiration 

carryover x3, and customers received the trade-in offer before period t 

( )1
3 1 2, , ,0g t x x = minimum expected cost from period t through the end of the horizon 

given inventory x1, warranty population x2, and no trade-in offer to-

date 

where (x1, x2, x3) is the state at the beginning of period t. For period L,  

( ) ( ) ( )( )1 1
3 1 2 3 1 2 3 3 1, , ,0 , , , ,1 1g L x x g L x x x r h c x= = − +      (2.232) 

and for t ∈ [2, L – 1]  
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       (2.233) 
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 (2.234) 
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where ( )*q d  is the disposal quantity that minimize expected cost over the remainder of 

the horizon given any realization d of random demand, i.e., for (2.233) 

( )
( )

( ) ( )( ) ( )( )( ){ }
1

* 1
3 3 1 2 3 3arg min 1, , , ,1

q x d

q d c q g t x q d x n t x x n t
+

+ + +

≤ −

= + + − − − − −


    (2.235) 

and for (2.234) 

( )
( )

( ) ( ){ } ( )( )( ){ }
1 2

* 1
3 3 1 2 2 2 2arg min 1, , max , , ,1

q x q d

q d c q g t x q q d x n t q q n t
+

+ +

≤ + −

= + + + − − − −


  . (2.236) 

The optimum is 
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α

α

α

+

+

+












  
  
  
  
  
  
  
  
  − − +  
  

− +  
  
   
   
    + − − −           −     
   − −    



































 

(2.237) 

where  
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( )
( )

( ) ( ){ } ( )( )( ){ }
1 2

* 1
3 3 1 2 2 2arg min 2, , max 1 , , 1 ,1

q q q d

q d c q g q q q d N n q q n
+

+ +

≤ + −

= + + − − − −


  . (2.238) 

6.4.2 Matching Trade-in Policy 

Under a matching trade-in policy, the trade-in discounts begin to be to customers with 

product under warranty during the period where there is insufficient inventory to cover 

demand. Trade-in volume is set to match demand in each subsequent period. No 

customer receives a trade-in offer more than once (assumption A2). 

 For a given final order quantity q1, trade-in discounts begin to be offered in period  

T1(q1) = ( ){ }{ }1min min | ,t D t q L> = ( ) 1
1 1

min min | ,
t i

i j
t N n j q Lα

= =

      − >    
     
∑ ∑ ,  (2.239) 

which is also known as the run-out time of the final order quantity. Recall that ct(t) is the 

trade-in discount off the price of a new model, ν(t) is the number of customers who 

receive the trade-in offer, β(t) is the fraction of customers who accept the trade-in offer, 

s(t) is the number of trade-in units, and ( )2
2c t is the per-unit acquisition cost of trade-in 

units. From the continuous-time relationships established in sections 4.1.2 and 4.1.5, the 

relationships among these terms is as follows: 

β(t) = 1 – cn – m – ct(t)         (2.240) 

s(t) = β(t)ν(t) = [1 – cn – m – ct(t)]ν(t)       (2.241) 

( )2
2c t = ct(t) – (1 – γ)m = β(t) + cn + γm – 1 = s(t)/ν(t) + cn + γm – 1     (2.242) 

The firm makes three types of decisions over time: (1) the value of the final order 

quantity q1 in period 1, then in periods T1(q1), …, L – 1 the firm determines (2) the 
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number of customers who receive the trade-in offer ν(t) and (3) the trade-in discount ct(t) 

(or equivalently, the trade-in fraction β(t)).  

Due to the matching policy, the number of trade-ins plus any initial inventory is set to 

match demand. Let I denote the inventory at the beginning of period t = T1(q1). The trade-

in quantity in period t = T1(q1) satisfies 

I + s(t) = d(t) = α[N(t) – max{n(t), s(t)}].      (2.243) 

The value of max{n(t), s(t)} is the reduction in the warranty population during the period, 

which is either the number of warranties that expire or the number of trade-ins, 

whichever is larger. Solving (2.243) for the trade-in quantity yields 

t = T1(q1):  s(t) =

( ) ( ) ( )

( ) ( ) ( ) ( )

,
1 1

,
1

N t I N t I
n t

N t I
N t n t I n t

α α
α α

α
α

α

 − −
≤ + +


−  −  − ≥  +

.    (2.244) 

Let O denote the warranty expiration carryover at the beginning of period t > T1(q1). 

By virtue of the matching policy, the inventory at the beginning of period t is zero. The 

trade-in quantity in period t > T1(q1) satisfies 

s(t) = d(t) = α[N(t) – max{(n(t) – O)+, s(t)}].      (2.245) 

The value of (n(t) – O)+ is the number of warranties that expire in period t if there were 

no trade-ins in the period (see (2.225)). Thus, the value of max{(n(t) – O)+, s(t)} is the 

reduction in the warranty population during the period, which is either the number of 

warranties that expire or the number of trade-ins, whichever is larger. Solving (2.245) for 

the trade-in quantity yields 
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t > T1(q1):  s(t) =

( ) ( )( ){ } ( )

( ) ( )( ) ( )( ){ } ( )

,max
1 1

,max
1

N t N t I
n t O

N t I
N t n t O n t O

α α
α α

α
α

α

+

+ +

 −
− ≤ + +


−  − − − ≥   +

.  (2.246) 

Consolidating (2.244) and (2.246), we have 

t ≥ T1(q1):  s(t) = ( ) ( ) ( )( )min ,
1

N t I
N t n t O I

α
α

α
+ −  − − −  + 

   (2.247) 

which reduces to  

t ≥ T1(q1):  s(t) = ( )
1

N t Iα
α
−

+
.       (2.248) 

when n(t) = 0 for all t. 

 

 

Problem 2
1D1 : Assumptions A1 – A5, A6b, A7a, A8b 

Problem 2
1D1  assumes that all warranties expire at the end of period L (i.e., n(L) = N 

(see A7a). Due to A7a, the warranty population at the beginning of period t is  

N(t) = ( )
1

1

t

i
N s i

−

=

−∑ .        (2.249) 

Due to A2, we require 

( )
( )1 1

1L

t T q
t Nν

−

=

≤∑          (2.250) 

(i.e., a customer receives a trade-in offer no more than once). We are now ready to 

specify the DP relationships. From (2.250) it follows that in any given period where 

trade-ins occur, the number of trade-in offers must be between the required supply and 

the number of customers who have not received a trade-in offer, i.e.,  
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( ) ( ) ( )
( )1 1

1t

t T q
s t t N tν ν

−

=

≤ ≤ − ∑ .        (2.251) 

Let x = (x1, x2, x3) and 

 ( )2
1 ,g t x = minimum cost from period t through the end of the horizon given inventory x1, 

warranty population x2, and number of customers in the warranty population 

who have not received a trade-in offer x3. 

where x is the state at the beginning of period t. Due to the matching policy and the fact 

that demand is deterministic (A9a), inventory at the start of period L is assured to be zero 

(i.e., the firm will never set the initial order quantity to more than total demand). 

Consequently, for period L,  

( )2
1 2 3,0, , 0g L x x = .        (2.252) 

Inequality (2.251) is incorporated into the following recursion that applies for t ∈ [2, L – 

1]: 

( )2
1 ,g t x = ( )

( ) ( )

( ) [ ]

( )
( )3

2
2 1 2 1 1 2 2 3 1 2

32,
1 1 21 2 3

3

1, , , ,

/ 1
1 min ,

,1,0, ,

,

w

n

s x
w

c x h x x g t x x x x x x

s c m s
r s x

c s x x xg t x s x

s x

ν

α α α α

ν γ

αν∈

 + − + + − ≥


  + + − +   − ≤   + + <+ − −    
  ∞ > 

 (2.253) 

where  

s = 2 1

1
x xα

α
−

+
         (2.254) 

(see (2.248)). The top expression in (2.253) applies when there is enough inventory to 

cover demand in the period. The bottom expression applies when trade-ins are necessary 

to cover demand. If s > x3, then the number of customers who have not yet received a 
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trade-in offer is less than the supply needed to match demand. In this case we have an 

infeasible implementation of the matching policy and we set the cost to ∞. 

 In period 1, if q1 < αN (i.e., the order quantity is less than demand in period 1), then 

the trade-in quantity to match total supply with demand is   

( ) 1
1 1

N qs q α
α
−

=
+

        (2.255) 

(see (2.248)). In period 1, x = (0, N, N) and the optimum is 

( )2
1 1,g x = ( )

( )
( )
( )( )

( )

( )( ) ( )
( )( )

1

1

1 1 1
12

1 1

1 1 1 1
0

11 1

2,
1 1

,
2, , ,

1 min

,/ 1
min

2,0, ,

w

w
q

n

s q N

c q c N h q N
q N

g q N N N

c q c s q qr

q Ns q c m s q

g N s q Nν

α α
α

α

αν γ

ν

≥

∈  

  + + − +  ≥  
−   

 + + +−     <+ + − +   
   − −     

.   (2.256) 

Pseudocode for a DP algorithm based on the above recursion is given in Section 7.4 of 

the appendix. 

Problem 2
2D1 : Assumptions A1 – A5, A6b, A7b, A8b 

Problem 2
2D1  generalizes 2

1D1  to allow nonzero reductions in the warranty population 

over time. If there are no trade-ins, then the number of warranties that expire at the end of 

each period are n(1), n(2), …, n(L), and the sum of these values is the warranty 

population at the beginning of the first period, i.e., N = ( )
1

L

t
n t

=
∑ . As in problem 1

2D1 , we 

keep track of the warranty expiration carryover.  

 Let x = (x1, x2, x3, x4) and  

    ( )2
2 ,g t x = minimum cost from period t through the end of the horizon given inventory 

x1, warranty population x2, number of customers in the warranty population 
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who have not received a trade-in offer x3, and warranty expiration carryover 

x4 

where x is the state at the beginning of period t. Due to the matching policy and the fact 

that demand is deterministic (A9a), inventory at the start of period L is assured to be zero 

(i.e., the firm will never set the initial order quantity to more than total demand). 

Consequently, for period L,  

( )2
2 2 3 4,0, , , 0g L x x x = .       (2.257) 

For t ∈ [2, L – 1] 

( )2
2 ,g t x = ( )

( )( ) ( )( )( )
( )( ) ( ) ( )( )

( )( )

( )

[ ]

( )

( )( )

( )( )

( )( )

3

2 1 2

1 22
2 1 2 2 3

1

4
2

2,
2

4
3

4

,
1, , , ,0

/ 1

1,0,

1 ,max ,
min

,max ,

w

w

n

s x

c x n t h x x n t
x x n t

g t x x n t x n t x n t

c s x

s c m s

t

r n t xx
s

g
n t xx

x s n t

ν

α α
α

α

ν γ

ν

+

∈
+

+

 − + − − +  ≥ − 
+ − − − −  
+ +

 + + − +


+ 
   − −   −   

   
  −  −   

   
  + − 

( )( )1 23

3

,,

,

x x n ts x

s x

α





                 < −≤ 
   
   
   
   
   
   
  ∞ >  

 (2.258) 

where 

s = ( )( )( )2 1
2 4 1min ,

1
x x x n t x xα α

α
+− − − − 

+ 
     (2.259) 

(see (2.247)). The top expression in (2.258) applies when there is enough inventory to 

cover demand in the period (e.g., trade-in offers have yet been disseminated). The bottom 

expression applies when trade-ins are necessary to cover demand. If s > x3, then the 
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number of customers who have not yet received a trade-in offer is less than the supply 

needed to match demand. In this case we have an infeasible implementation of the 

matching policy and we set the cost to ∞.  

The expressions for the elements of x in ( )2
2 ,g t x  in the bottom expression in (2.258) 

may benefit from explanations. The inventory going into the next period is zero by virtue 

of the matching trade-in policy (i.e., supply matches demand). The second term in x, 

which is the warranty population going into the next period, is the current population x2 

reduced by max{(n(t) – x4)+, s}. The value of (n(t) – x4)+ is the number of warranties that 

would expire in the period if there were no trade-ins, so the reduction in the warranty 

population is the larger of this value and the number of trade-ins (s). The third term in x, 

which is the number of customers in the warranty population who have not received a 

trade-in offer as of the start of the next period, is the number at the start of the current 

period (x3) reduced by max{(n(t) – x4)+, ν}. The number of customers who are in the 

warranty population and who have not received a trade-in is reduced by at least the 

number of trade-in offers (ν). However, if (n(t) – x4)+ > ν, then ((n(t) – x4)+ – ν) 

customers with warranties that expired in the period did not receive a trade-in offer, and 

these customers are no longer in the warranty population at the start of the next period. 

The fourth term in x is warranty expiration carryover, which is the warranty expiration 

carryover at the start of the period (x4) plus the net change in warranty expiration 

carryover, adjusted to zero if necessary to account for the fact that carryover cannot be 

negative. The net change in warranty expiration carryover is the difference between the 

number of trade-ins during the period (s) and the number of warranties that would have 

expired in the period if there were no trade-ins (n(t)). 
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In period 1, if q1 < α(N – n(1)) (i.e., the order quantity is less than demand in period 

1), then the trade-in quantity to match supply with demand is   

( ) ( )( )1
1 1min , 1

1
N qs q N n qα α

α
− = − − 
+ 

      (2.260) 

 (see (2.247)). Thus, x = (0, N, N, 0) and the optimum is 

( )2
2 1,g x = ( )

( )( ) ( )( )( )
( )( ) ( ) ( )( )

( )( )

( )( )

( )

( )( ) ( )

( ) ( ){ }
( ){ }

( ) ( )( )

1

1

1 1 1

12
2 1

1 1 1 1

1 1

0

1
2,
2

1

1 1
, 1

2, 1 , 1 , 1 ,0

/ 1
1 min

2,0,

max 1 , ,min
max 1 , ,

1

w

w

n

q

s q N

c q c N n h q N n
q N n

g q N n N n N n

c q c s q q

s q c m s qr

N n s q
g N n

s q n

ν

α α
α

α

ν γ

ν

≥

∈  

+

 + − + − − +  ≥ − 
− − − −  

 + + +

  + + − +

−  
  

    −  
  −  
   −   

( )( )1, 1q N nα





   
  
    < −
  
  
  
  
   

  

(2.261) 

Pseudocode for a DP algorithm based on the above recursion is given in Section 7.4 of 

the appendix. 

Problem 2
3D1 : Assumptions A1 – A5, A6b, A7a, A8b 

Problem 2
3D1 generalizes 2

2D1  to allow for stochastic demand. In contrast to 2
2D1 , the 

firm cannot exactly match supply with demand due to randomness, i.e., demand is 

realized after trade-ins are received. The matching policy in the following recursion sets 

the number of trade-ins so that supply matches expected demand. In the next section we 

identify a recursion where this restriction is relaxed (see problem 3
2D1 ).  

Let x = (x1, x2, x3, x4) and 
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    ( )2
3 ,g t x = minimum expected cost from period t through the end of the horizon given 

inventory x1, warranty population x2, number of customers in the warranty 

population who have not received a trade-in offer x3, and warranty expiration 

carryover x4 

where x is the state at the beginning of period t. For period L,  

( ) ( )( )2
3 3 1, 1g L r h c x= − +x .                

 (2.262) 

For t ∈ [2, L – 1] 

( ) ( )

( )( )( )( )
( )( )( )( )( )

( )( )( )( )( )

( )( )( )( )( )
( )( ) ( )( )
( )( )

( )( )

2 4

1 2 4

0
2 2 4 1

2
3 1 2

1 2 4
2
3

2 4 3 4

4

, 1 ,1,

,

, ,

wc d x n t x

h x d x n t x

c d x n t x x
g t r E x x n tt

x d x n t x
g

x n t x x n t x

x n t

α

α

α
α

α

+

+
+

+
+

+
+

+ +

+

 − − + 
 
 − − − +
 
 
 − − − +
 

= − ≥ − +     − − −     − − − −     −   

x  (2.263) 
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( ) ( ) [ ]

( )( )

( )( )

( )( )
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2

4

1

2

4

2

0 4
2

2 ,
3

,max

,max

,max

min
, 1

w

s x

x

c d n t x

s
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h

d n t x

s

x

d n t xc
s

E xg t r ν

α

α

α

+

+

+

+

∈

 − 
  

  +  − 
         

− 
 

 −  
   +    −  

            

 − 
  

   − 
         
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+
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







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

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



 
 
 

+ 
 
  
 

+ + − +

 
 + 
 −     −          −                 
 − −
 
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 (2.264) 

where 

s = ( )( )( )2 1
2 4 1min ,

1
x x x n t x xα α

α
+− − − − 

+ 
.      (2.265) 

In period 1, if q1 < α(N – n(1)) (i.e., the order quantity is less than demand in period 1), 

then the trade-in quantity to match supply with expected demand is   
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( ) ( )( )1
1 1min , 1

1
N qs q N n qα α

α
− = − − 
+ 

    (2.266) 

(see (2.260)). Thus, x = (0, N, N, 0) and the optimum is 
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(2.267)

 

Recursions (2.263) and (2.267) mirror recursion (2.258) and (2.261), respectively, but 

include the costs of mismatches between supply and demand due to randomness.  

 

 



200 
 

 
 

200 

6.4.3 General Trade-in Policy 

In this section we define DP algorithms that solve problems with no restrictions on 

the trade-in policy. Trade-ins can be offered in any period. The only requirement is that a 

customer receives a trade-in offer no more than a once (assumption A2). By comparing 

solutions obtained from this algorithm with solutions under the simple full and matching 

trade-in policies, we are able to assess to potential cost premiums associated with these 

simple policies. 

Problem 3
1D1 : Assumptions A1 – A5, A6b, A7b, A8b 

Recall that for a given number of trade-in units s(t), the acquisition cost per unit is 

( )2
2c t = s(t)/ν(t) + cn + γm – 1 = β(t) + cn + γm – 1.     (2.268) 

(see (2.241)). In contrast with a matching policy, there is no requirement that supply 

match demand. 

Let x = (x1, x2, x3, x4) and 

    ( )3
1 ,g t x = minimum cost from period t through the end of the horizon given inventory 

x1, warranty population x2, number of customers in the warranty population 

who have not received a trade-in offer x3, and warranty expiration carryover 

x4 

where x is the state at the beginning of period t. For period L,  

    ( )3
1 ,g L x = ( )( )3 11 r h c x− +         (2.269) 

and for t ∈ [2, L – 1]  
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 (2.270) 

The terms in (2.270) draw on the terms in (2.228) and (2.258). The demand term, which 

is based on the warranty population after trade-ins and warranty expirations, is the same 

as in (2.228) except that warranty expiration carryover is considered (there was no such 

adjustment in (2.228) because trade-ins, if offered, are offered in only one period). The 

trade-in acquisition cost is s2/ν  – (1 – cn – γm)s, which is the same as in (2.228) except s 

replaces q2. The inventory going into the next period is the same as in (2.228) but with 

the added element to account for warranty expiration carryover. The warranty population 

going into the next period is the same as in (2.228) but with the added element to account 

for warranty expiration carryover. The number of customers in the warranty population 

who have not received a trade-in offer at the start of the next period is the same as in 
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(2.258). The warranty expiration carryover going into the next period is the same as in 

(2.258). 

 In period 1, x = (0, N, N, 0) and the optimum is  
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  (2.271) 

Pseudocode for a DP algorithm based on the above recursion is given in Section 7.4 of 

the appendix. 

Problem 3
2D1 : Assumptions A1 – A5, A6b, A7a, A8b 

Problem 3
2D1 generalizes 3

1D1  to allow for stochastic demand. Let x = (x1, x2, x3, x4) 

and 

    ( )3
2 ,g t x = minimum expected cost from period t through the end of the horizon given 

inventory x1, warranty population x2, number of customers in the warranty 

population who have not received a trade-in offer x3, and warranty expiration 

carryover x4 

where x is the state at the beginning of period t. For period L,  
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    ( )3
2 ,g L x = ( )( )3 11 r h c x− +            (2.272) 

and for t ∈ [2, L – 1]  
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   (2.273) 

where ( )*q d  is the disposal quantity that minimize expected cost over the remainder of 

the horizon given any realization d of random demand, i.e.,  
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In period 1, x = (0, N, N, 0) and the optimum is  
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6.5 Pseudocode for DP Algorithms 

6.5.1 Algorithm for Problem 1
1D1 (see (2.221) – (2.224))  

Notes:  

• R(⋅) = round function 

• Global variables are cw, c1, 0
2c , c3, h, r, α, L, N, g(⋅, ⋅, ⋅, ⋅). All other variables are 

local, e.g., defining z1 in a subroutine does not affect a value of z1 in the main 

algorithm or a different subroutine 
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0
2c

Main Algorithm 
S1: Initialization 

Input cw, c1, , c3, cn, γ, m, h, r, α, L, N, n(1), …, n(L) 
S2: Compute g(L, ⋅, ⋅, ⋅,⋅) 

Do x1 = 0 to N 
  Do x2 = 1 to n(L) 
   Do x3 = 0 to n(L) 
    g(L, x1, x2, x3,1) = g(L, x1, x2, 0) = (1 – r)(h + c3)x1  
   End 
  End 
 End 
S2: Compute g(t, ⋅, ⋅, ⋅,⋅) for t ∈ {2, …, L – 1} 

l = n(L)   
Do t = L – 1 to 2 

  l = l + n(t) (l is an upper limit on the warranty population at the start of period t) 
  Do x1 = 0 to N  
   Do x2 = 1 to l 
    Do x3 = 0 to l 
     d1 = R(α(x2 – (n(t) – x3)+)  

d2 = R(α(x2 – n(t)) 
     g(t, x1, x2, x3, 1) = (1 – r)[cwd1 + 0

2c (d1 – x1)+ + h(x1 – d1)+ +  
Sub1(t + 1, (x1 – d1)+, x2 – (n(t) – x3)+, (x3 – n(t)+)] 

     z1 = cwd2+ 0
2c (d2 – x1)+ + h(x1 – d2)+ + g(t + 1, (x1 – d2)+, x2 – n(t), 0) 

     g(t, x1, x2, 0) = (1 – r)min{z1, Sub2(t, x1, x2)} 
    End 
   End 
  End 
  g(t + 1, ⋅, ⋅,⋅,⋅) = ∅  (clear out array g(t + 1, ⋅, ⋅, ⋅, ⋅) because these values are no 

longer needed) 
End 

S3: Compute and return optimal cost g(1, 0, N, 0) 
 z1 = Sub3(1, 0, N) (minimum cost if there is no trade-in program in period 1) 
 z2 = Sub4(1, 0, N) (minimum cost if there is a trade-in program in period 1) 
 Return (1 – r)min{z1, z2} 
 
Algorithm Sub1(t, x1, x2, x3) 
S1: Search over disposal quantity to find minimum cost 
 C = g(t, x1, x2, x3, 1) 
 Do q = 1 to x1 
  z1 = c3q + g(t, x1 – q, x2, x3, 1) 
  If z1 < C, then C = z1 
 End 

Return C 
 
Algorithm Sub2(t, x1, x2) 
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S1: Search over trade-in quantity to find minimum cost 
 C = ∞ 

 Do q2 = 0 to 
( )

L

i t
n i

=
∑

 
  d = R(α(x2 – max{n(t), q2})) 
  z1 = cwd + q2

2/x2 – (1 – cn – γm)q2 + 0
2c (d – x1 – q2)+ + h(x1 + q2 – d)+ +  

Sub1(t + 1, (x1 + q2 – d)+, x2 – max{n(t), q2}, (q2 – n(t))+) 
  If z1 < C, then C = z1 
 End 
 Return C 
 

0
2c

Algorithm Sub3(t, x1, x2) 
S1: Search over final order quantity to find minimum cost given no trade-in offer in 
period 1 
 C = ∞ 
 d = R(α(x2 – n(1))) 
 Do q1 = 0 to R(αLx2)  (R(αLx2) is max demand in period 1 through L) 

z1 = c1q1 + cwd + (d – x1 – q1)+ + h(x1 + q1 – d)+ + g(2, (x1 + q1 – d)+, x2 – n(1), 
0) 

  If z1 < C, then C = z1 
 End 
 Return C 
 

6.5.2 Algorithm for Problem 

Algorithm Sub4(t, x1, x2) 
S1: Search over final order quantity and trade-in quantity to find minimum cost 
 C = ∞ 
 Do q1 = 0 to R(αLx2)   (R(αLx2) is max demand in period 1 through L) 

z1 = Sub2(t, x1 + q1, x2) (returns cost based on optimal trade-in quantity given 
initial order q1) 

  If c1q1 + z1 < C, then C = c1q1 + z1 
 End 
 Return C 
 

1
2D1 (see (2.226) – (2.229))  

Notes:  

• Append n(1), …, n(L) to the global variables where ( )
1

L

t
n t N

=

=∑  
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0
2c

Main Algorithm 
S1: Initialization 

Input cw, c1, , c3, cn, γ, m, h, r, α, L, N, n(1), …, n(L) 
S2: Compute g(L, ⋅, ⋅, ⋅,⋅) 

Do x = 0 to N 
  Do y = 1 to n(L) 
   Do z = 0 to n(L) 
    g(L, x1, x2, x3,1) = g(L, x1, x2, 0) = (1 – r)(h + c3) x1  
   End 
  End 
 End 
S2: Compute g(t, ⋅, ⋅, ⋅,⋅) for t ∈ {2, …, L – 1} 

x1 = n(L)   
Do t = L – 1 to 2 

  x1 = x1 + n(t)  (x1 is an upper limit on the warranty population at the start of 
period t) 

  Do x1 = 0 to N  
   Do x2 = 1 to x1 
    Do x3 = 0 to x1 
     d1 = R(α(x2 – (n(t) – x3)+)  

d2 = R(α(x2 – n(t)) 
     g(t, x1, x2, x3, 1) = (1 – r)[cwd1 + 0

2c (d1 – x1)+ + h(x1 – d1)+ + 
   Sub1(t + 1, (x1– d1)+, x2 – (n(t) – x3)+, (x3 – n(t)+)] 

     z1 = cwd2+ 0
2c (d2 – x1)+ + h(x1 – d2)+ + g(t + 1, (x1 – d2)+, x2 – n(t), 0) 

     g(t, x1, x2, 0) = (1 – r)min{z1, Sub2(t, x1, x2)} 
    End 
   End 
  End 
 g(t + 1, ⋅, ⋅,⋅,⋅) = ∅  (clear out array g(t + 1, ⋅, ⋅, ⋅, ⋅) because these values are no 

longer needed) 
End 
S3: Compute and return optimal cost g(1, 0, N, 0) 
 z1 = Sub3(1, 0, N) (minimum cost if there is no trade-in program in period 1) 
 z2 = Sub4(1, 0, N) (minimum cost if there is a trade-in program in period 1) 
 Return (1 – r)min{z1, z2} 
 
Algorithm Sub1(t, x1, x2, x3) 
S1: Search over disposal quantity to find minimum cost 
 C = g(t, x1, x2, x3, 1) 
 Do q = 1 to x1 
  z1 = c3q + g(t, x1 – q, x2, x3, 1) 
  If z1 < C, then C = z1 
 End 

Return C 
 



208 
 

 
 

208 

( )
L

i t
n i

=
∑

Algorithm Sub2(t, x1, x2) 
S1: Search over trade-in quantity to find minimum cost 
 C = ∞ 

 Do q2 = 0 to  
  d = R(α(x2 – max{n(t), q2})) 
  z1 = cwd + q2

2/ x2 – (1 – cn – γm)q2 + 0
2c (d – x1 – q2)+ + h(x1 + q2 – d)+ +  

Sub1(t + 1, (x1 + q2 – d)+, x2 – max{n(t), q2}, (q2 – n(t))+) 
  If z1 < C, then C = z1 
 End 
 Return C 
 

0
2c

Algorithm Sub3(t, x1, x2) 
S1: Search over final order quantity to find minimum cost given no trade-in offer in 
period 1 
 C = ∞ 
 d = R(α(x2 – n(1))) 
 Do q1 = 0 to R(αL x2)  (R(αLy) is max demand in period 1 through L) 

z1 = c1q1 + cwd + (d – x1 – q1)+ + h(x1 + q1 – d)+ + g(2, (x1 + q1 – d)+, x2 – n(1), 
0) 

  If z1 < C, then C = z1 
 End 
 Return C 
 

6.5.3 Algorithm for Problem 

Algorithm Sub4(t, x1, x2) 
S1: Search over final order quantity and trade-in quantity to find minimum cost 
 C = ∞ 
 Do q1 = 0 to R(αL x2)   (R(αLy) is max demand in period 1 through L) 
  z1 = Sub2(t, x1 + q1, x2) (returns cost based on optimal trade-in quantity given 

initial order q1) 
  If c1q1 + z1 < C, then C = c1q1 + z1 
 End 
 Return C 
 

2
1D1 (see (2.252) – (2.256))  

0
2c

Main Algorithm 
S1: Initialization 

Input cw, c1, , c3, cn, γ, m, h, r, α, L, N 
S2: Compute g(L, ⋅, ⋅, ⋅) 
 Do x2 = 1 to N 
  Do x3 = 1 to N 
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   g(L, 0, x2, x3) = 0 
  End 
 End 
S2: Compute g(t, ⋅, ⋅, ⋅) for t ∈ {2, …, L} 
  Do t = L – 1 to 2 
  Do x1 = 0 to N 
   Do x2 = 1 to N 

d = R(αx2) 
s = R((αx2 – x1)/(1+α)) 

    Do x3 = 1 to N 
If x1 ≥ d then g(t, x1, x2, x3) = (1– r)[cwd + h(x1 – d) + g(t + 1, x1 – d, x2, 

x3)] 
     If x1 < d then g(t, x1, x2, x3) = (1– r)[cw(s + x1) + Sub1(t, x1, x2, x3, s)] 
    End 
   End 
  End 
 End 
 g(t + 1, ⋅, ⋅, ⋅) = ∅  (clear out array g(t + 1, ⋅, ⋅, ⋅) because these values are no longer 

needed) 
S3: Compute and return optimal cost g(1, 0, N, N) 
 C = ∞ 
 d = R(αN) 
 Do q1 = 0 to R(αLN) (R(αLN) is max demand in period 1 through L) 
  If q1 ≥ d, then z1 = (1– r)[c1q1 + cwd  + h(q1 – d) + g(2, q1 – d, N, N)] 
  If q1 < d, then  

       s = R((αN – q1)/(1+α)) 
z1 = (1– r)[c1q1 + cw(s + q1) + Sub1(1, q1, N, N, s))] 

  Endif 
 End 
 Return C 
 
Algorithm Sub1(t, x1, x2, x3, s) 
S1: Search over the number of trade-in offers to find minimum cost 
 C = ∞ 
 If s ≤ x3 then  

Do ν = s to x3 
   z1 = (s/ν + cn + γm – 1)s + g(t + 1, 0, x2 – s, x3 – ν)) 
   If z1 < C, then C = z1 
  End 
 Endif 
 Return C 
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6.5.4 Algorithm for Problem 2
2D1 (see (2.257) – (2.261))  

0
2c

Main Algorithm 
S1: Initialization 

Input cw, c1, , c3, cn, γ, m, h, r, α, L, N, n(1), …, n(L) 
S2: Compute g(L, ⋅, ⋅, ⋅) 
 Do x2 = 1 to N 
  Do x3 = 1 to N 
   g(L, 0, x2, x3) = 0 
  End 
 End 
S2: Compute g(t, ⋅, ⋅, ⋅) for t ∈ {2, …, L} 
  Do t = L – 1 to 2 (for each period) 
  l = n(L)  

Do x1 = 0 to N (for each possible inventory carryover) 
             l = l + n(t)  

 Do x2 = 1 to l (for each possible member in the warranty population at period 
t) 

Do x3 = 1 to l (for customer who have not received an offer by period t) 
     Do x4 = 1 to N (for each warranty expiration carry over) 

d = R(α( x2 – n(t))) 
        s = min{R((αx2 – x1)/(1+α)),α(x2 – (n(t) – x4)+ – x1)}  

      If x1 ≥ d then g(t, x1, x2, x3, x4) = (1– r)[cwd + h(x1 – d) +  
g(t + 1, x1 – d, x2 – n(t), x3 – n(t), 0)] 

      If x1 < d then g(t, x1, x2, x3, x4) = (1– r)[cw(s + x1) +  
Sub1(t, x1, x2, x3, x4, s)] 

     End 
End 

   End 
  End 
 End 
 g(t + 1, ⋅, ⋅, ⋅) = ∅  (clear out array g(t + 1, ⋅, ⋅, ⋅) because these values are no longer 

needed) 
S3: Compute and return optimal cost g(1, 0, N, N,0) 
 C = ∞ 
 d = R(α(N – n(t))) 
 Do q1 = 0 to R(αLN) (R(αLN) is max demand in period 1 through L) 
  If q1 ≥ d, then z1 = (1– r)[c1q1 + cwd  + h(q1 – d) + g(2, q1 – d, N – n(1), N – 

n(1),0)] 
  If q1 < d, then  

       s = min{R((αN – q1)/(1+α)),α(N – (N – n(1)) – q1)} 
z1 = (1– r)[c1q1 + cw(s + q1) + Sub1(1, 0, N, N,0,s)  )] 

  Endif 
 End 
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 Return C 
 

6.5.5 Algorithm for Problem 

Algorithm Sub1(t, x1, x2, x3, x4, s) 
S1: Search over the number of trade-in offers to find minimum cost 
 C = ∞ 
 If s ≤ x3 then  
        Do ν = s to x3 
   z1 = (s/ν + cn + γm – 1)s +  

g(t + 1, 0, x2 –max{s,(n(t) – x4)+}, x3 –max{ν, (n(t) – x4)+}, (x4 + s –
n(t))+)) 

   If z1 < C, then C = z1 
  End 
 Endif 

Return C 
 
Algorithm Sub2(t, x1, x2, x3, x4, s) 
S1: Search over the number of trade-in offers to find minimum cost 
 C = ∞ 
       Do ν = s to x2 

z1 = (s/ν + cn + γm – 1)s + g(t + 1, 0, x2 –max{s, n(t)}, x2 –max{ν, (n(t)}, (s –
n(t))+)) 

  If z1 < C, then C = z1 
 End 

Return C 
 

3
1D1 (see (2.269) – (2.271))  

0
2c

Main Algorithm 
S1: Initialization 

Input cw, c1, , c3, cn, γ, m, h, r, α, L, N, n(1), …, n(L) 
S2: Compute g(L, ⋅, ⋅, ⋅, ⋅) 
 Do x2 = 1 to N 
  Do x3 = 1 to N 
   g(L, 0, x2, x3, x4) = (1 – r)(h + c3)x 
  End 
 End 
S2: Compute g(t, ⋅, ⋅, ⋅, ⋅) for t ∈ {2, …, L} 
  Do t = L – 1 to 2 (for each period) 
  l = n(L)  
      Do x1 = 0 to N (for each possible inventory carryover) 
             l = l + n(t)  
  Do v = 1 to N 
   Do s =1 to ν   
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Do x2 = 1 to l (for each possible member in the warranty population at 
period t) 
Do x3 = 1 to l (for customer who have not received an offer by period 

t) 
      Do x4 = 1 to N (for each warranty expiration carry over) 

d = R(α( x2 –max{(n(t) – x4)+, s})) 
        g(t, x1, x2, x3, x4) = (1– r)[cwd + s2/ν – (1 – cn – γm )s + 

0
2c (d – x1 – s)+ + h(x1+ s – d) + 

Sub1(t + 1, x1+ s – d, x2 – max{(n(t) – x4)+, s}, 
x3 – max{(n(t) – x4)+,ν},(x4 + s – n(t))+)   

      End 
     End 

End 
   End 
     End 
  End 
 g(t + 1, ⋅, ⋅, ⋅, ⋅) = ∅  (clear out array g(t + 1, ⋅, ⋅, ⋅) because these values are no longer 

needed) 
S3: Compute and return optimal cost g(1, 0, N, N, 0) 
 C = ∞ 
 d = R(α(N – max{ n(1),s})) 

Do q1 = 0 to R(αLN) (R(αLN) is max demand in period 1 through L) 
Do s = 1 to N 

   Do ν =1 to N   
z1 = (1– r)[c1q1 + cwd + s2/ν – (1 – cn – γm )s + 0

2c (d – x1 – s)+ +  
h(q1+ s – d) +  
Sub1(2, q1+ s – d, N – max{n(t), s},N – max{n(t),ν},(s – n(1))+)   

   End 
  End 
 End 
 Return C 
 
Algorithm Sub1(t, x1, x2, x3, x4) 
S1: Search over disposal quantity to find minimum cost 
 C = g(t, x1, x2, x3, x4) 
 Do q = 1 to x1

 

  z1 = c3q + g(t, x1 – q, x2, x3, x4) 
  If z1 < C, then C = z1 
 End 

Return C 
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6.6 Stochastic DP Implementation 

The recursions for stochastic demand given in Section 7.4 allow for disposal of 

components at the end of any period. The inclusion of this possibility significantly 

increases the computational complexity of the stochastic DP algorithms. Consequently, in 

our implementations of stochastic DPs, we limit consideration to the case where 

components can only be disposed in the last period L. This means that q* = 0 in the above 

recursions. 

To implement the stochastic DPs, we make use of the following identities that pertain 

to nonnegative discrete random demand d(αx): 

( )( ) ( )( )E d x y E y d x x yα α α
+ +   − = − + −

          (2.277) 

( )( ) ( )
1

0
2

y

i
E y d x x y P d x iα α α

−
+

=

 − = − −  >    ∑       (2.278) 

( )( )( ) ( ) ( ) ( ) ( )
1

0
, ,... ,0,... , ,...

y

i
E g t y d x P d x y g t P d x i g t y iα α α

−
+

=

 − =  ≥  +  =  −      ∑  (2.279) 

If d(αx) is a Poisson random variable, then 

( ) ( ) ( ) 1
!

i xx e xP d x i P d x i
i i

αα αα α
−

  =  = =  = −      
     (2.280) 

and (2.277) – (2.278) can be written as  

( )( ) ( ) ( ) ( )E d x y x y P d x y xP d x yα α α α α
+ − = −  >  +  =          (2.281) 

( )( ) ( ) ( ) ( )E y d x y x P d x y xP d x yα α α α α
+ − = −  ≤  +  =      .    (2.282) 
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CHAPTER 4: CONCLUSION 

1. Contributions 

The economic and environmental benefits of taking back and recovering end-of-use 

products have captured the attention of a growing number large OEMs and retailers. End-

of-use products will often have residual economic value. For example, the returned 

products can be remanufactured and then sold to satisfy a growing appetite for gently 

used products. Alternatively, companies can harvest the returned products for reusable 

components and spare parts. Nevertheless, taking advantage of these economic benefits is 

not without managerial complexity:  capacity to satisfy demand for remanufactured 

products is linked to past sales of the new product, access to used products depends on 

consumer’s willingness to return and their replacement purchase behaviors, and 

remanufacturing cost depends on the age-condition profile of the returned products. 

These are all special features of product take back and recovery channels. Each of these 

factors can be controlled by designing an effective product acquisition management 

system. Indeed, the analysis presented in this dissertation provides practitioners and 

researchers with insight into some of the main economic trade-offs related to used 

product acquisition decisions. 

Our focus on trade-in and buyback acquisition policies is motivated by extensive talks 

with a handful of managers who oversee take back and recovery operations for leading 

companies in the computer and electronics industry. Although all of these managers work 

for divisions responsible for collection, recovery, and remarketing of used product, they 

all emphasized a clear need to coordinate acquisition pricing decisions with the 
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companies’ marketing groups. For example, two of the managers worked for companies 

that take back and recover end-of-use products in order to satisfy demand for 

remanufactured products. One of the companies offered a trade-in program, while the 

other offered a buyback program. Both managers emphasized a need to incorporate 

product lifecycle considerations into decisions regarding take back policies and recovery 

strategies, and both managers mentioned elements relating to the current owner’s 

replacement purchase rate or preference for buyback cash in lieu trade-in credits. A key 

objective of this dissertation is to provide guidance to managers on the design and 

implementation of alternative acquisition policies. To this end, our analysis provides 

insights and makes the following contributions with respect to designing trade-in and 

buyback programs to support value added product recovery.  

Product Acquisition Policies for the Purpose of Remanufacturing    

As it relates to whether to implement a trade-in or a buyback policy, we introduced an 

algorithm to determine the optimal myopic buyback price and an algorithm to determine 

the optimal myopic trade-in credit. Both algorithms incorporate elements to account for 

lifecycle effects, repeat purchase rates, valuations of the owned product, and consumer’s 

preference to take the money and run. We find that if repeat purchase rates are expected 

to be less than 100%, and owners are satisfied with the range of alternatives for which a 

trade-in credit can be applied, then the profit from an optimal trade-in program is the 

same or higher than the optimal profit from a buyback program. However, if repeat 

purchase rates are either very low or very high, adopting a trade-in program can either be 

very attractive or very unattractive.  
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As it relates to whether to implement a myopic policy that aims to maximize profits 

in each period, versus a proactive policy which maximizes profits over the product life 

cycle; we propose four math programming formulations. Solutions to  two of the 

formulations to determine the optimal (or near optimal) buyback prices and take-back 

quantities for a product of a given age in a given period. Solutions to the other two  

formulations  determine the optimal (or near optimal) trade-in credits and take-back 

quantities. We find that the relative performance between myopic and proactive policies 

depends on the relationship between the sweet-spot age, which is a measure of the 

residual economic value of used product, and lag between new product sales and demand 

for the remanufactured product. In general, unless the sweet spot age is close to the time 

lag, the company can do better by pursuing a proactive acquisition policy.  

Product Acquisition Policies for the Purpose of Component Harvesting   

The above findings and contributions provide direction to managers on the design and 

management of  acquisition policies that support product take back and recovery for the 

purpose of remarketing. The dissertation also provides guidance to managers who design 

a trade-in program where products are acquired for the purpose of component harvesting 

to support warranty claims. One of the managers who helped motivate this dissertation 

worked for a company already recognized as leader for its product take back and 

recovery activities. The company was contemplating designing a trade-in program to 

acquire spare-parts to service warranty claims in the face of a growing number of 

component phase out announcements. Management was concerned about how consumers 

would respond to the trade-in deal. They were also concerned about how a take-back 

program interacts with replacement purchase rates. To this end, the dissertation 
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introduces a decision framework to account for marketing concerns regarding 

cannibalization and repeat purchase rates as well as operational concerns regarding 

holding cost, warranty service cost, and disposal cost. We identify two acquisition 

policies (i.e., full trade-in, and matching trade-in) and examine different settings where 

these policies do and do not work, and key factors under management control that drive 

performance. 

 Our analysis provides insights and makes the following contributions with respect to 

designing a trade-in program to support warranty claims. First, we introduce an important 

problem that has not previously been studied. It is a problem that draws on two major 

branches in the literature—literature on the final order problem and literature on the 

design and merits of trade-in programs. It is an area that is ripe for additional research. 

Second, we introduce a parsimonious, yet rich, model that is defined by five basic 

assumptions. All warranty service cost expressions and optimal policy decisions flow 

from these assumptions. Our investigation has touched on a small set of questions and 

results, and we believe there is ample opportunity for further study using this model as is, 

or as a foundation for a richer model. Third, we provide insight into the merits and 

effective use of trade-in policies as discussed above.  

2. Directions for Future Research 

This dissertation has considered only a few of the growing challenges related to 

designing product acquisition policies to support product take back and recovery systems. 

Our focus on designing product acquisition policies for a monopoly producer and a single 
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product recovery agent leaves many questions for future research. To this end we offer 

the following directions for future research.  

We begin with the case of product acquisition for the purpose of remarketing 

remanufacturing. First there is a question as to how to design a product acquisition 

strategy when both buyback and trade-in credits are offered together. We limited our 

analysis to the company that offers either a trade-in program or a buyback program. 

Some companies allow the consumer to choose between a trade-in credit and buyback 

cash (i.e., BestBuy). The trade-in credit is generally larger than the corresponding 

buyback rebate. Second, a rigorous examination of trade-in policies that allow consumers 

to return competitor equipment would help address another important managerial concern 

that has not be covered in the literature. It is a common practice for consumers to return 

competitor equipment. Third, a model that accounts for uncertain resale value could 

provide interesting insights about the effect of uncertainty on product acquisition policy 

choice. Finally, the increasing popularity take-back and recovery programs raises 

question about competition. Our dynamic product acquisition framework can serve as a 

building block to conduct a rigorous analysis of how of competition and product lifecycle 

factors influence policy choice, could add valuable insight to the growing body of 

literature related to competition in product recovery markets.  

For the case of product acquisition for the purpose of component harvesting to 

support the final order decisions, we offer two directions for future research. First, there 

is a need for a broader assessment of trade-in policy designs. The full trade-in policy and 

the matching trade-in policy are just two of many possibilities. There is a question of how 

good or bad these policies perform relative to a wider set of alternatives. In our appendix, 
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we introduce discrete dynamic programming algorithms that can be used to investigate 

this question. One algorithm returns the optimal cost under a full trade-in policy, one 

algorithm returns the optimal cost under a matching trade-in policy, and a third algorithm 

returns the optimal cost with no restrictions on the trade-in policy. By comparing 

solutions returned by these algorithms, one will be able to develop a sense of how the 

optimal policy compares with the full and matching trade-in policies.  

Second, there is a need to consider the impact of uncertainty in warranty demand. 

Compared to the benchmark of placing a very large final order up-front, we know that the 

introduction of uncertainty will generally increase the value of a trade-in program (e.g., 

by virtue of a sourcing alternative if realized demand is greater than the final order 

quantity). However, there are important unanswered questions on the degree of value-

added as related to the nature of uncertainty and how uncertainty may shape the design of 

an effective trade-in program. 
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